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Chapter 1
Autonomous Intelligent Cyber-defense 
Agent: Introduction and Overview

Alexander Kott

1  Introduction

This book is based on the premise that the future of cyber-defense and cyber 
resilience will depend largely on autonomous, artificially intelligent (AI) agents. 
Such an agent will reside on a system that includes one or more computing devices 
and be responsible for defending the system from cyber compromises. If a compro-
mise occurs, the agent will then be responsible for response and recovery of the 
system, usually autonomously. To refer to such a class of agents, we use the term 
Autonomous Intelligent Cyber-defense Agent (AICA). In this book, we explore 
how AICA will be designed and how it will operate.

Experience shows that even well-protected computing systems are likely to be 
successfully attacked and infiltrated by hostile malware. There is no reason to 
believe this will be any different in the future. Today, when a compromise occurs, 
response, mitigation and recovery depend largely on human cyber-defenders. This 
approach is becoming increasingly untenable. With an ever-growing number of 
computerized, automated and even autonomous systems in our society, human- 
based cyber-defense must be replaced by autonomous cyber-defenders such 
as AICA.

Similarly to the current generation of cyber-defense tools, AICA will detect 
malicious signatures, patterns and anomalies; it will also classify, characterize and 
diagnose what it observes within its environment, traffic and host. However, unlike 
the current generation of cyber-defense tools, AICA is a doer, not merely a watcher. 
It will have to plan and then decisively execute responses to attacks and perform 
recovery actions.

A. Kott (*) 
US Army DEVCOM Army Research Laboratory, Adelphi, MD, USA
e-mail: alexander.kott1.civ@army.mil

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-29269-9_1&domain=pdf
https://doi.org/10.1007/978-3-031-29269-9_1
mailto:alexander.kott1.civ@army.mil


2

AICA will be an active fighter in maintaining a system’s resilience (Kott & 
Linkov, 2019) against cyber threats. This means that the agent’s capabilities should 
include a significant degree of autonomy and intelligence for the purposes of rapid 
response to a compromise – either incipient or already successful – and rapid recov-
ery that aids the resilience of the overall system. Often, the response and recovery 
efforts need to be undertaken in absence of any human involvement, and with intel-
ligent consideration of the risks and ramifications of such efforts.

The cyber-defense technology community is beginning to recognize the poten-
tial and even necessity of autonomous, AI-supported cyber-defenses. In particular, 
the vision of AICA is a product of a NATO-based research project that took place 
from 2016 to 2020. The research yielded an AICA Reference Architecture (Kott 
et  al., 2018). Later, an international working group formed to continue work on 
AICA (see https://www.aica- iwg.org/). The authors of this book are grateful to the 
AICA research community.

In the remainder of this chapter, we discuss what it means for AICA to be an 
agent, what environments that agent will face, what roles the agent will perform, 
how these roles will be supported by the internal architecture of the agent, and the 
inevitable concerns regarding the risks and trust associated with such an autono-
mous technology. The chapter concludes with a preview of each chapter of the book.

2  AICA as an Agent

We call AICA an agent. What does it mean? The term “agent” refers to software or 
collection of software that resides and operates on one or more computing devices, 
perceives and comprehends its environment, and plans and executes purposeful 
actions on the environment (and itself) to achieve the agent’s goals.

Autonomy, complete or partial, is an important characteristic of an agent. AICA 
will have to be capable of autonomous planning and execution of complex, multi- 
step activities. These activities will pursue the key goal of the agent – defeating or 
degrading malware while anticipating and minimizing any resulting side effects. It 
will have to be capable of adversarial reasoning (Kott & McEneaney, 2006) to battle 
against thinking, adaptive malware. To defend itself against the malware, AICA 
should keep itself and its actions as undetectable as possible, and thus will have to 
use deceptions and camouflage.

The autonomy of such an agent is a necessity, not luxury. Today, much of cyber- 
defense is based on remote monitoring and remote mitigation and recovery (Kott & 
Arnold, 2013). However, today’s reliance on human cyber-defenders, whether local 
or remote, will be untenable in the future for a number of reasons.

One reason is the growing scarcity of human cyber-experts to defend systems, 
either remotely or onsite. This is further exacerbated by the proliferation of robots, 
such as self-driving cars, where a local cyber-defender is unlikely to be found by 
definition  – these systems are intended to operate with little or no human 
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involvement (Kott & Stump, 2019). There is an ever-growing number of critically 
needed software systems, all of which present tempting targets for malicious cyber 
actors and require cyber-defenders in ever-growing – unsupportable – quantities.

Remote cyber-defense, i.e., remote monitoring, mitigation and recovery, is fur-
ther complicated by the growing sophistication of malware. One of the first actions 
sophisticated malware may do is degrade or spoof the communications of a system 
that uses a remote monitoring center. This means that the system must possess local 
defenses that do not depend on communicating with the remote service. If a local 
human defender is not available, as will most often be the case, the system will need 
to rely on a local autonomous agent, AICA.

Let’s take a more detailed look at the features and characteristics that should be 
exhibited by any autonomous intelligent agent (Théron et al., 2018). These are help-
ful as we consider the comparable features and characteristics of AICA.

A proper agent should be assigned a specific mission, with corresponding goals 
and constraints. It should possess the key competencies to execute that mission, 
such as the ability to perceive the environment in which the agent is deployed, 
detect attacks, plan and assess the required countermeasures, and adapt rapidly to 
successes or failures when executing its plan.

The agent should be proactive and autonomous, which means it should not rely 
on an external source to initiate or control its activity. On its own, the agent should 
be able to assess the situation, and make decisions and execute actions, without 
being controlled by another program or a human operator. To do so, the agent typi-
cally needs a base of knowledge, memories of what the agent has done before, and 
in many cases, even a degree of self-learning from experience.

Safety is another important characteristic. The agent should not harm the friendly 
systems it defends. For that, the agent should be able to anticipate the ramifications 
of its actions and attempt to minimize the risk of causing harm. In exceptional cases, 
considerations of safety may require the agent to contact a remote human controller, 
activate a fail-safe mode or even self-destruct when no other possibility is available. 
Similarly, the agent should be trustworthy, e.g., it will not deceive other friendly 
agents or human operators.

Finally, let’s consider robustness and resilience to various threats and abnormal 
circumstances. Doing this requires the agent to possess a means of defending itself 
and recovering its own operations when degraded by a threat.

To achieve all of these characteristics, should an agent be a monolithic piece of 
software? That can be one implementation option. In general, however, an agent’s 
modules should be distributed over multiple processes or devices, or implemented 
as a team of agents or subagents.

If implemented as a multi-agent system, a number of additional considerations 
must be addressed. These include the manner in which the multiple, potentially 
heterogenous agents are coordinated, self-organize, admit (or not) new members 
and deal with emergent behaviors.

1 Autonomous Intelligent Cyber-defense Agent: Introduction and Overview
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3  AICA’s Environment

AICA operates within its environment, i.e., everything that surrounds the agent and 
that the agent can perceive. This includes the computer hardware and software 
where the agent operates; the physical entity controlled by the computers, e.g., a 
self-driving car; the malware; the humans who communicate with the agent or with 
surrounding hardware and software; and other agents that the agent can find and 
with whom it can communicate.

To make our discussion more concrete and focused, let’s consider a single physi-
cal item or platform, such as a vehicle or industrial robot, with one or more comput-
ers residing on the platform connected to sensors and actuators. We assume that, at 
any given time, one or more computers are compromised by malware. The compro-
mise is either established as a fact or is suspected. We further assume that, in gen-
eral, the platform’s communications with any remote operators or a monitoring 
center is compromised as well; malware has disabled or is spoofing the 
communications.

As mentioned earlier, with compromised communications, conventional central-
ized cyber-defense is often infeasible. Here, by “conventional centralized cyber- 
defense,” we mean an architecture where local sensors send cyber-relevant 
information to a central location where highly capable cyber-defense systems and 
human analysts detect the presence of malware and initiate corrective actions 
remotely. It is unrealistic to expect that the human cyber-defenders will reside on 
the platform, for example, a self-driving vehicle, or that they would have the neces-
sary skills or time available to perform cyber-defense functions locally on the vehi-
cle even if present.

Furthermore, many situations demand much faster responses than human 
responders may be able to provide. Criminals or irresponsible pranksters are able to 
take control of cars traveling at high speed or planes in the air, which may constitute 
a mortal threat to the vehicle’s passengers and others interacting with those systems. 
In such cases, waiting for a human incident response team will not do. Instead, such 
systems need an onboard intelligent autonomous agent capable of taking the neces-
sary response and recovery actions, with response times on the order of seconds or 
even less (Kott & Théron, 2020). In short, AICA operates in an environment where 
it must act autonomously.

But how did AICA find itself in this environment? We assume here that the agent 
resides on a computer where it was originally installed by a human controller or an 
authorized process. We do envision a possibility that an agent may move itself (or a 
replica of itself) to another computer. Such propagation is assumed to occur only 
under exceptional and well-specified conditions, and takes place only within a 
friendly network  – from one friendly computer to another friendly computer. 
Granted, this type of action might seem very close to the controversial idea of a 
“good virus” (Muttik, 2016). However, AICA is not a virus, because it does not 
propagate except under explicit conditions within authorized and cooperative nodes.

A. Kott
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4  AICA’s Roles

Having considered the demanding environment of AICA, let’s explore its roles 
within that environment.

Unlike most of today’s cyber-defense tools, AICA is a doer, not merely a watcher 
(Kott & Théron, 2020). Most of today’s tools are largely watchers: they monitor 
traffic and events; check packets and files; detect malicious signatures, patterns and 
anomalies; and classify and characterize what they watch. In some respects, such 
tools can also be classified as doers: they issue alerts, stop suspicious packets and 
connections, and remove or quarantine suspected malware.

Still, such tools are very constrained and limited in what they do. In the face of a 
sophisticated and ongoing attack by a capable, stealthy malware, today’s tools do 
little to plan, assess options, and execute a sophisticated, multi-step response.

Further, when malware succeeds in degrading a friendly system, today’s tools do 
little to plan and execute recovery activities. The critical activities of response and 
recovery after a successful cyber-attack are left to the human cyber analysts, inci-
dent responders and system administrators. As just discussed, these human actors 
are unlikely to be available in the environments where AICA operates. AICA has to 
perform these activities, and do so autonomously.

Granted, AICA has to be a competent watcher too. The agent must be able to 
observe the state and activities within the system it is asked to defend. Using these 
observations, AICA must be able to diagnose the situation, understand what is hap-
pening and project the future, i.e., the likely actions of the malware and how those 
actions would affect the state of the system.

Having assessed the situation and formed a vision of anticipated future states if 
the malware is unopposed, AICA must create a plan of action, or generally, several 
alternative plans. All such plans have a degree of uncertainty, and AICA should 
anticipate possible adaptations of its plans as well.

With one or more plans available, the agent should assess the risks and benefits 
involved (Kott et al., 2017) and make its decisions accordingly. Needless to say, all 
this deliberation must be performed very rapidly. In cases when time is lacking and 
immediate action is needed, instead of engaging in such reasoning, AICA may have 
to resort to simple but fast “condition-action” rules.

Once a plan is selected, AICA executes the actions. Some of the actions might be 
benign, e.g., gathering additional information. Other actions, however, may have 
destructive impacts, such as destroying, degrading or quarantining certain software 
and data – autonomously – or inhibiting certain actions of the malware. This may 
involve stopping or starting certain processes, installing or reinstalling software, or 
initiating or terminating connections. In executing such actions, AICA must observe 
the specified rules of engagement and continually assess risks (Ligo et al., 2021a, b).
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One of the major risks facing AICA is being destroyed by the enemy malware. In 
the case where the enemy malware knows that an agent is likely to be present on the 
computer, the malware will seek to find and destroy the agent. Therefore, a key 
responsibility of AICA is self-defense and self-preservation. The agent must pos-
sess techniques and mechanisms for maintaining a certain degree of stealth, camou-
flage and concealment. More generally, the agent must take measures that reduce 
the probability that the enemy malware would detect it.

On the other hand, AICA may find it advantageous to communicate with other 
friendly agents that might reside on other computers and systems. For example, 
AICA may need to ask another agent to terminate a certain connection or send 
software to AICA. Such a collaboration entails risks because it potentially reveals 
the presence and activities of AICA to the malware. In cases where the communi-
cations may be impaired or observed by the malware, the agent may have to 
eschew collaboration and operate alone. Nevertheless, in general, the agent should 
be able to collaborate with other friendly agents when a need arises and condi-
tions permit. Thus, collaboration schemes and negotiation mechanisms are needed 
for that.

Finally, a friendly agent with a particularly important role is the human operator. 
Typically, these operators would be the personnel of a remote operations center who 
deploy, monitor and control AICA, to the extent that communication channels per-
mit. The agent, whenever requested and when conditions permit, reports its situa-
tion, activities and related data to the external controller. This information helps the 
controller to make inferences about the trustworthiness of the agent, measure the 
effectiveness of the agent (Kott & Linkov, 2021) and determine whether AICA 
needs to receive updates.

More generally, we envision a degree of role distribution between AICA and a 
remote cyber-defense control center (Kott et al., 2021). Their roles are not incom-
patible and may coexist. Both have their strong and weak points. As discussed, 
relying primarily on remote monitoring and response may be risky or impossible if 
the sophisticated malware takes over the communication channels. If remote miti-
gation of a cyber compromise cannot be provided rapidly, the compromised system 
will find itself at extreme risk. This is when AICA is necessary, even if it is less 
capable then the comprehensive cyber-defense capabilities of a competent 
remote center.

Similarly, reliance only on AICA comes with its own risks. For example, if the 
malware is able to overcome the capabilities – inevitably limited – of AICA, exter-
nal intervention will be a necessity. Such coexistence should be carefully orches-
trated. In particular, a clear protocol should be established for the handover of 
responsibilities between AICA and the remote center, and back. If both need to 
operate simultaneously, a coordination protocol should ensure that their respective 
actions do not produce undesirable interference.
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5  AICA’s Architecture1

The sophisticated roles and responsibilities of AICA demand appropriate internal 
functions. Let’s consider the functional capabilities the agent must possess within 
its architecture (Kott et al., 2018; Théron et al., 2020). Figure 1.1 depicts the func-
tional components of the agent.

The AICA Reference Architecture (Kott et al., 2018; Théron et al., 2020) defines 
five main functions:

• Sensing and world state identification
• Planning and action selection
• Collaboration and negotiation
• Action execution
• Learning and knowledge improvement

Sensing and world state identification allows a cyber-defense agent to acquire data 
from the environment in which it operates as well as from itself in order to under-
stand the current state of the world. This sensing and world state identification func-
tion relies upon the “world model,” “current world state and history,” “sensors” and 
“world state identifier” components of the functional architecture. Current world 
state descriptors are captured by the agent’s sensing function, while the world state 
identification draws from (1) processed current world state descriptors and (2) 
learned world state patterns. Having identified a problematic current world state 

1 This section is based in part on a book chapter. Théron et al. (2020).
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pattern (e.g., a cyber compromise), the world state identification function triggers 
the planning and action selection function.

The planning and action selection function allows AICA to formulate one or 
several action proposals and then submit them to the action selector. The latter 
decides on the action or a set of actions to execute in order to resolve the problem-
atic world state pattern previously identified by the world state identifier function. 
This function relies upon the “world dynamics” and should include knowledge 
about the “actions and effects,” “goals,” “planner-predictor” and “action selector” 
components of the functional architecture. The planning function operates based on 
(1) the problematic current world state pattern and (2) a repertoire of response 
actions. The action selector function operates based on (1) the proposed response 
plans, (2) the agent’s goals and (3) execution constraints and requirements, such as 
the environment’s technical configuration. The proposed response plan is analyzed 
by the action selector in the light of the agent’s current goals as well as any execu-
tion constraints and requirements. The proposed response plan is then trimmed of 
elements that do not fit the situation at hand and augmented with prerequisite, pre-
paratory, precautionary or post-execution complementary actions. The action selec-
tor thus produces an executable response plan, which is then submitted to action 
execution, after collaboration and negotiation if needed.

The collaboration and negotiation function enables AICA to (1) exchange infor-
mation with other agents or a central cyber command and control (C2), for instance, 
when one of the agent’s functions cannot reach satisfactory conclusions on its own 
and (2) negotiate with its partners the details of a consolidated conclusion or result. 
Collaboration and negotiation operate based on (1) the outgoing data sets sent to 
other agents or to a central C2, (2) incoming data sets received from other agents or 
a central cyber C2, and (3) the agents’ own knowledge (i.e., produced through its 
function of learning and knowledge improvement). When an agent (including pos-
sibly a central cyber C2) develops conclusions, it shares them with other (selected) 
agents, usually including the one that issued the original request for collaboration. 
Once this response is received, the network of involved agents starts negotiating to 
develop a consistent, satisfactory set of conclusions.

The action execution function enables AICA, based on the action selector’s exe-
cutable response plan, to monitor its execution and its effects, and provides the 
means to adjust the execution of the plan (or possibly dynamically adjust the plan) 
as needed. This function relies upon the “goals” and “action execution” components 
of the functional architecture. Action execution includes four subfunctions: (1) 
action effector, (2) execution monitoring, (3) effects monitoring and (4) execution 
adjustment. Taking into account the environment’s technical configuration, the 
action effector function executes each planned action within the executable response 
plan in the scheduled order. The execution monitoring function uses the executable 
response plan in concert with plan execution feedback to monitor each action’s 
execution status. Any status apart from “done” triggers the execution adjustment 
function. The effects monitoring function operates on the basis of the executable 
response plan and environment’s change feedback, leading to execution adjustment 
as needed. Should warning signs be identified by one of the two previous functions, 
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the execution adjustment function will either adapt the actions’ implementation to 
circumstances or modify the plan.

The learning and knowledge improvement function allows AICA to use its expe-
rience in order to improve progressively its efficiency. This function relies upon the 
learning and goals modification components of the functional architecture. The 
learning function operates based (1) feedback data from the agent’s functions and 
(2) feedback data from the agent’s actions. This function analyzes the reward func-
tion of the agent (the distance between goals and achievements) and their impact on 
the agent’s knowledge database. Results are fed to the knowledge improvement 
function. The knowledge improvement function merges the results (propositions) 
from the learning function with the current elements of the agent’s knowledge.

Like any reference architecture, this proposed AICA Reference Architecture is 
merely a step toward a structured solution and a set of common vocabulary with 
which to discuss possible implementations. Actual implementations of AICA may 
differ dramatically. Several chapters in this book describe case studies of implemen-
tations of AICA-like agents and illustrate the diversity of possible approaches.

6  AICA’s Risk and Trust

The architecture discussed in the previous section prompts at least two observations. 
One is that it is necessarily complex. In a complex software system, much can go 
wrong and ensuring highly reliable operation of such a system is difficult and 
expensive. Second, the entire architecture is aimed at actively doing things, i.e., 
making changes in AICA’s environment. We already mentioned that in order to fight 
the malware that has infiltrated the friendly computer, the agent may have to take 
destructive actions, such as deleting or quarantining certain software. Granted, such 
destructive actions should be carefully controlled by the appropriate rules of engage-
ment and are allowed only on the computer where the agent resides. Needless to say, 
developers of AICA will strive to design its actions and planning capability to mini-
mize the risk to the system (Ligo et al., 2021a, b).

Nevertheless, in general, such risk cannot be fully eliminated. Nothing can guar-
antee that AICA will always preserve the availability or integrity of the functions 
and data of the computer the agent is trying to defend. It is not entirely improbable 
that the agent will “break” the friendly computer, disable important friendly soft-
ware, or corrupt or delete important data. AICA’s actions may have harmful conse-
quences of a functional, safety, security or ethical nature.

To be sure, this is nothing new. Every technology comes with risk. Any artifact 
may cause unintended harm. The reason to accept AICA, as with any technology, is 
for the users to determine that the advantages of using the technology outweigh the 
risk that comes with it. In case of AICA the risk that the agent’s action will harm a 
friendly computer must be balanced against the losses that might occur if the agent 
does not act.

1 Autonomous Intelligent Cyber-defense Agent: Introduction and Overview
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This is a not fully comforting answer. Can we do better than that? Can we find 
other ways to manage the risk? Well, a natural reaction to a risky machine is to have 
a human supervise the machine. Perhaps, we should create a human-AICA team, 
where the human could intervene in AICA’s operations as needed? Unfortunately, 
this is unlikely to produce positive outcomes.

Let’s consider an analogy. Given AICA is an autonomous agent, a suitable anal-
ogy is an autonomous, self-driving car. When a dangerous situation arises on a road, 
e.g., a pedestrian suddenly appears in the middle of a street, should the human pas-
senger take over the controls and try to swerve around? Or should the human let the 
autonomous driving system execute its collision-avoidance routine? The answer 
probably depends on who is more likely to avoid the collision – the human or auton-
omous agent. Chances are quite high that the human – who has been driving less 
since buying the autonomous car – is not as alert or capable as the autonomous driv-
ing system. If so, the best course of action (COA) is for the human not interfere with 
the agent’s driving.

The case of cyber-defense is even more unfavorable for the human. Car driving, 
after all, was initially specifically designed for human drivers. It has become rela-
tively natural for humans to drive a car. Many are quite good at driving. In the world 
of cyber-defense, little if anything was designed for humans. The extremely high 
volume of information, the extremely short durations of events and so on are incon-
sistent with human cognitive abilities. Thus, the chances of a human successfully 
interfering with an autonomous decision of AICA are even lower than in case of a 
human driver taking over the controls of an autonomous car.

Still, other ways exist for a human to influence AICA. At the stage of AICA’s 
software development, human designers determine the goals of the agent and popu-
late the knowledge base of the agent. They decide on decision algorithms and deci-
sion criteria. If AICA’s knowledge base is formed through machine learning, human 
designers select the data samples for training and guide the learning process. At the 
validation stage, human developers create an ensemble of test cases, assess the cor-
rectness of the agent’s behavior and measure its effectiveness (Ligo et al., 2021a, b). 
In these multiple ways, humans shape the behavior of AICA before it begins its 
actual operation.

Then, once AICA is placed in operation, human supervisors can observe the 
agent’s behavior and determine whether its behavior meets the desired criteria. If 
the behavior needs adjustments, a human supervisor can take action. As already 
discussed, it would be unwise to intervene into the agent’s fast-paced operation 
directly. Instead, the human supervisor, in a deliberate fashion, can modify the 
goals, criteria and constraints of AICA, or offer additional examples for the agent’s 
learning process. All this can be done without taking AICA offline, while it contin-
ues its operations.

Trust is closely related to risk. Whenever a technological artifact is perceived as 
associated with risk, human users have difficulties trusting the artifact. Undoubtedly, 
human users will build their trust of AICA only gradually, by observing its behavior 
over a period of time, in multiple events. As they observe the agent’s behavior, they 
will interpret its behavior, i.e., try to determine what exactly AICA did and for what 
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reasons. Eventually, the human users will accumulate enough evidence that AICA 
appears to do the right things, for the right reasons. AICA’s designers can help this 
trust-building process by providing the agent a means to communicate to the human 
users what the agent is doing, the decision process involved, and the information 
used as inputs into its decision and eventual actions (Linkov et al., 2020).

7  Preview of This Book

The next chapter “Alternative Architectural Approaches” describes an approach to 
AICA and considerations about the rationale of the design of AICA’s architecture. 
Further, the Multi Agent System Centric AICA Reference Architecture (MASCARA) 
is presented with regard to the three layers of its definition: general, detailed and 
technical. From the early prototyping experience, lessons for the future are drawn.

Next, the “Perception of Environment” chapter describes how AICA continually 
perceives (obtains information about) its environments (network, host computer(s) 
hardware and software, broader systems such as a vehicle on which AICA resides, 
etc.). Perception in AICA is best considered a pipeline consisting of four main parts: 
physical sensors, logical sensors, transformers and the world state. This chapter 
addresses the complexity surrounding its perception, providing guidelines and 
state-of-the-art examples.

Because AICA exists to fight against a cyber-adversary, it needs a means to per-
ceive/sense the presence and characteristics of hostile agents (malware) and their 
actions and effects, as well as recognize when appropriate active sensing may be 
engaged. The “Perception of Threat” chapter discusses key use cases and methods 
of obtaining threat intelligence, fingerprinting, characterizing threats, passive threat 
detection, anomalous activity detection, the use of honeypots and threat hunting.

Given the perception of its environments and threats, AICA attempts to assess 
and characterize the situation. In “Situational Understanding and Diagnostics,” we 
discuss situational understanding (SU) inputs from sensors, the dependencies of SU 
on the knowledge base, updating the knowledge base as needed for SU, and logical 
formalisms supporting knowledge and reasoning. We also discuss the means of 
using abstraction and generalization, through which agents can better manage 
model complexity, using illustrative examples.

The “Learning about the Adversary” chapter considers how an agent can gain 
insights about the behaviors and intents of the adversary (human-directed attack or 
automated malware). We argue that the evolving nature of cyber-adversary tactics 
and techniques and system configurations and vulnerabilities makes it difficult for 
autonomous agents to rely on supervised learning or, in general, much a priori 
expert knowledge. We review alternative approaches and recent advancements in 
the field.

Having examined the perception of the environment and threat, and the overall 
assessment of the situation, in “Response Planning,” we discuss how AICA plans a 
COA, or multiple COAs, intended to defeat the malware and/or minimize the 
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malware’s damage to the system. We explore ways to include an adversary model 
into the defender’s decision making, to understand how observations differ from the 
known adversary model and hence require a different type of response than what 
worked last time. We also consider the challenges of integrating host-based response 
systems and network-based systems.

Even when the threat has been neutralized or is otherwise no longer active, AICA 
must attempt to return the system to adequate working condition. In the “Recovery 
Planning” chapter, we introduce and demonstrate a recovery planning system that 
evaluates the impact of system degradation and generates COAs for recovery. The 
system evaluates these COAs through integrated heterogeneous simulations that 
account for unavoidable uncertainty and formally verify recovery COAs with confi-
dence guarantees.

Given that hostile malware will give high priority to finding and disabling AICA, 
AICA must stay as undetectable as possible. In “Cyber Camouflage,” we review the 
common techniques of adversarial reconnaissance, and methods for formally mod-
eling reconnaissance activities and belief formation. We discuss common tech-
niques such as honeypots, deceptive or obfuscated traffic, and deceptive responses 
to probes, and then propose new techniques based on adversarial machine learning 
to create more effective deceptive objects.

The “Adaptivity and Antifragility” chapter stresses the need to make cyber- 
defense agents adaptive and antifragile. A resilient system can survive attacks by 
autonomously adapting and managing its own functionality. An antifragile system 
can also enhance its capabilities and become more resilient as a result of endoge-
nous and exogenous stressors. We present a concrete example of a self-improving 
system and middleware framework for antifragility.

When conditions permit, AICA may collaborate with other friendly agents. 
Conflicts may arise due to incompatible plans and objectives of the agents. 
Negotiations to jointly identify and execute a COA require building consensus 
under distributed and/or decentralized multi-agent settings with information uncer-
tainties. The “Negotiation and Collaboration” chapter presents algorithmic 
approaches for enabling the collaboration and negotiation function. The strengths 
and limitations of potential techniques are identified, and a representative example 
is illustrated.

Humans are a special type of friendly agent, with special privileges. When condi-
tions permit, human operators will oversee, approve or modify the actions of 
AICA. In the “Human Interactions” chapter, we explore knowledge acquisition to 
understand the user groups and use cases, as well as iterative design and feedback 
with users. Human trust in intelligent systems can be supported by transparency- 
based approaches, using metrics/frameworks to assess system transparency and 
explanation effectiveness.

The performance characteristics of AICA, including quality of defenses, resil-
ience, reliability, probability of undesirable effects, etc., must be tested in measured 
in a consistent, quantitative and rigorous manner, under a broad range of conditions. 
The “Testing and Measurements” chapter draws upon real-world examples to pres-
ent potential metrics for performance; reviews existing work in the field, e.g., 
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several testbeds for testing autonomous cyber defense algorithms; and offers a 
detailed case study.

In “Deployment and Operation,” we analyze several scenarios to consider the 
types of threats such agents might be expected to encounter and what actions would 
potentially be beneficial for them to take in response. These scenarios include an 
unmanned automated system (UAS, or “drone”), solo or as part of a swarm; an 
electrical distribution grid; an orbital or deep-space communication network; and a 
large-scale computational array (such as offered by a cloud vendor or high- 
performance computing).

Operations that involve a significant number of AICA-like agents comprise com-
plex, intractable and risk-laden tasks. The “Command in AICA-intensive 
Operations” chapter explores how such operations would be commanded. A central 
part of managing these challenges is recognizing and accepting complexity. 
Additionally, success in AICA-intensive operations requires highly capable 
SU. Finally, the turbulent environment in which these units operate stresses the need 
for organizational agility, ensuring internal operations match the degree of turmoil 
in external environments.

AICA is essentially a robot that, by necessity, must be given a chain saw. As 
such, it presents a host of risks. In the “Risk Management” chapter, we argue that 
human intervention in real time during AICA operation may increase the harm. We 
propose other options for human-centered strategies that allow humans to shape 
AICA behavior before it chooses a COA: providing labeled data for supervised 
learning of AICA, offering a choice of machine learning algorithms, and/or devising 
algorithmic rules that constrain AICA actions.

Active autonomous systems like AICA face a host of policy issues, ethical con-
cerns, governance concerns, societal impact concerns and legal concerns. In the 
“Policy Issues” chapter, we explore how the ever-changing concepts of cyber- 
defense reflect changing policies and review existing policies, including wartime 
policy considerations with examples. We note that, in some cases, AICA may fall 
into the “gray zone” of policy and explore how this relates to US national and eco-
nomic security policy, consumer privacy and matters of constitutional protections.

In “Development Challenges,” we divide development challenges into two areas: 
engineering and research. The engineering ecosystem has six components: design, 
implementation, individual test and certification, composition, composite test and 
certification, and deployment. The research ecosystem includes models, architec-
tures, mechanisms, testing and certification, operations, and social, ethical, and 
legal aspects. We show connections between these two ecosystems by describing 
how tackling challenges in the research ecosystem would contribute to tackling the 
challenges encountered when engineering AICAs.

The “Case Study A: The AICAproto21 Prototype” chapter describes a prototype 
system that encompasses a number of AICA features. This prototype was built using 
open-source software components in a containerized manner to allow for a quick 
time-to-completion with maximum flexibility for future capabilities. It demon-
strated the ability of the agent to respond to an indicated attack with a defensive 
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action. The chosen approach provided an easy-to-scale solution that is likely to 
work well cross-platform.

In chapter, “Case Study B: Tactical Edge Agent,” we focus on aspects character-
istic of deploying agents at the “tactical edge.” Here the environment for an AI 
cyber-defense agent is vastly different from its classic habitat, the enterprise-scale 
network. We discuss our approach to overcoming the challenges of austere condi-
tions, low availability of computing power, poor to nonexistent connectivity to 
enterprise-scale resources, and porous borders between the cyber domain (as con-
ventionally considered) and the physical and electronic warfare (EW) domains.

A different type of resilience-support agents called sentinels are described in the 
“Case Study C: The Sentinel Agents” chapter. A sentinel agent is connected to the 
system interfaces from which it receives the data to support its monitoring function. 
The sentinel then conditions the diverse sets of collected data so that they can be 
integrated and analyzed, and performs the specific analyses required for detecting a 
cyber attack and determining the location within the protected system that is 
under attack.

8  Summary and Conclusions

AICA is an agent, i.e., a software that resides and operates on one or more comput-
ing devices, perceives and comprehends its environment, and plans and executes 
purposeful actions on the environment (and on itself) to achieve the agent’s goals. 
AICA is local to a system and is responsible for defending the system from cyber 
compromises. If a compromise occurs, the agent is responsible for response and 
recovery of the system, usually autonomously. The autonomy of the agent is a 
necessity because of the growing scarcity of human cyber-experts who could defend 
systems, either remotely or onsite, and because sophisticated malware may degrade 
or spoof the communications of the system using a remote monitoring center. The 
agent can be distributed over multiple processes or devices, or could be imple-
mented as a team of agents or subagents.

AICA observes the state and activities within the system it is asked to defend, 
diagnoses the situation and projects the future state of the system. AICA creates a 
plan of action, assesses the risks and benefits involved in the plans of actions and 
makes its decisions accordingly. Because AICA is responsible self-defense and self- 
preservation, it must practice stealth, camouflage and concealment. An AICA 
Reference Architecture has been proposed and defines five main functions: sensing 
and world state identification, planning and action selection, collaboration and 
negotiation, action execution and learning and knowledge improvement.

As AICA is intended to make changes in its environment, there is a risk that the 
agent’s action could harm a friendly computer. This risk must be balanced against 
the losses that might occur if the agent does not act. To manage the risk, when able 
to communicate with the agent, the human supervisor could modify the goals, crite-
ria and constraints of AICA or offer additional examples to improve the agent’s 
learning process.
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New technologies are often perceived as being associated with risk, thus human 
users have difficulties trusting the artifact. AICA’s designers can help the trust- 
building process by providing the agent with a means to communicate to the users 
what the agent is doing, the decision process involved, and the information it used 
as inputs into its decision and eventual actions.
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Chapter 2
Alternative Architectural Approaches

Paul Theron

1  Introduction

In order to thrive peacefully, organisations and their systems need to be resilient to 
cyber-threats. Cyber Resilience results from building cybersecurity (cyber-attack 
prevention) and Cyber-defence (cyber-attack response & resolution) into systems, 
organisations and people. Cyber Resilience is the aptitude of an asset, i.e. an organ-
isation or a system, to keep thriving in the face of cyber threats. It is required because 
despite efforts on cybersecurity to prevent cyber-attacks the latter will happen 
because of the growing complexity of systems and of attackers’ smart strategies and 
capacities.

Cyber resilience is implemented through six mechanisms (Theron, 2013) 
(Fig. 2.1):

Cyber-attack avoidance (Cybersecurity) mechanisms seek to reduce the likeli-
hood of attacks:

• Identify cyber-threats = knowing of threats & planning cyber risk manage-
ment strategies,

• Prevent cyber-threats = eliminating cyber-threats at source or deterring 
attackers,

• Protect & Prepare = mitigating residual cyber-threats & preparing 
Cyber-defence.
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Fig. 2.1 The 6 mechanisms of cyber resilience (P3R3 model)

Cyber-attack response (Cyber-defence) mechanisms seek to fight, and learn from 
attacks:

• Detect & Alarm = detecting attacks and alarming response/crisis teams or 
cyber-defence agents,

• Respond & Restore = containing and resolving attacks and continuing or 
restoring activities,

• Recover & Rebound = lesson learning, rebuilding, adapting, handling 
consequences.

If we take the case of protective features, for instance, one should engineer them 
into all kinds of Information technology (IT) and operations technology (OT) assets: 
Endpoints (workstations for instance, mobile terminals, etc.), communications & 
connectivity, data; servers, cryptographic keys… Securing a system’s endpoint, for 
instance, requires protecting its various components against attacks: Hardware (pro-
cessor, memory, peripherals); system boot process (like BIOS); operating system, 
hypervisor and separation kernels; application software and APIs; runtime environ-
ment and containers; user access and connections, etc. To that end, cybersecurity 
engineers would implement a combination of good practices and solutions that 
make cyber-attacks more difficult to perform, easier to detect, absorb or deflect, or 
easier to analyse.

As for cyber-defence solutions, they rely typically, today, on growingly intelli-
gent sensors and detection systems, driven by AI or fed by Cyber Threat Intelligence, 
on sophisticated attack analysis and countering toolboxes, and on highly skilled 
specialists (Incident responders, Malware reverse engineers, Forensics specialists, 
cyber crisis managers, etc.).

Today, humans stand at the centre of the cyber-defence (as defined above) of IT 
and OT systems.
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Autonomous Intelligent Cyber-defence Agents (AICA) are a new, alternative, 
technological proposition. And it has a strong rationale.

IT and OT systems are now evolving towards autonomy and higher levels of con-
nectivity and complexity, both in the civil and military domains. The future looks 
like an intricate combination of highly contested and safety-critical environments, 
growingly abundant autonomous vehicles, billions of objects connected through the 
Internet of [Military or Civil] Things, 6G networks, software-defined networks and 
radios, AI and cloud computing, edge systems, storage, and much more.

To quote (Kott, 2018), in the Internet of Battlefield Things, Intelligent Things 
will fight Intelligent Things. Which, in turn, means that in the Internet of [Battlefield/
Civil] Things, Intelligent Autonomous Goodware will fight Intelligent Autonomous 
Malware (Theron & Kott, 2019).

A number of fundamental assumptions have thus progressively emerged from 
seminal research on AICA.

Many factors can shape AICAs’ architecture, which is a “trade-off” in response 
to multiple requirements. There is not necessarily an ideal, universal form of archi-
tecture for AICAs.

In the context depicted above, the speed, scale, complexity and constraints of IT/
OT operations, as well as the new cyber-attack strategies that will match the expected 
maze of new technologies, will overwhelm human SOC operators and will leave 
them powerless in the face of cyber-attacks (Theron et al., 2020a, b).

A bio-inspired autonomous, intelligent and trustworthy cyber-defence technol-
ogy, embedded into every system, must do the job for us, at speed and scale. We 
assume that AICAs will cyber defend our friendly systems and infrastructures on 
their own, on our behalf, i.e. without humans in the loop.

To act intelligently, autonomously, and before the malware inflicts serious dam-
age on our friendly systems, AICAs will monitor systems in their perimeter, detect 
attacks, plan an appropriate response and pilot its execution against the enemy mal-
ware that itself will not stand passive, and, when needed and possible, AICAs will 
interact with humans, and they will also learn as-they-walk, and they will protect 
themselves.

To make “intelligent” decisions, AICAs will need to handle, and to adapt to, a 
wide variety of adverse situations, and this implies significant progress in Artificial 
Intelligence (AI) or the way it is used. Learning from experience in this context will 
be a necessity, and the acquired knowledge and experience, successful and not so 
successful, will have to be stored in AICAs’ memory and used.

We also assume that AICAs can themselves be conceived as Multi Agent 
Systems, and that AICAs will likely work together in swarms, distributed across 
software and hardware components.

These initial assumptions have a direct impact on AICAs’ architecture. They 
have generated a number of initial thoughts about what we present here. This chap-
ter stems from research work carried out within both the AICA International Work 
Group (AICA IWG) and the French Cyb’Air research chair (Aerospace Cyber 
Resilience) since 2015.

2 Alternative Architectural Approaches
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2  The Architecture of Autonomous Intelligent 
Cyber-Defence Agents

The architecture of an agent describes the arrangement of its components and their 
relations.

Literature describes many types of agent architectures. For instance, one type of 
architecture is the layered architecture in which each layer is a function seeking to 
achieve specified goals. The different layers complement each other in achieving 
certain behaviours. Another type, cognitive architectures, implements a theory of 
the human mind and its cognitive functions and allows to carry out a succession of 
reasoning steps, each step achieving a part of the decision-making process under the 
drive of some sort of principle such as the BDI (Belief – Desire – Intention).

NATO IST-152’s final report on AICA (Kott et al., 2019) proposed an initial – 
cognitive – architecture for AICAs, itself derived from (Russell & Norwig, 1995) 
(Fig. 2.2):

Fig. 2.2 IST-152’s cognitive agent model inspired by Russell and Norwig

Kott et al. (2019), p. 18) classify AICAs’ functions into:

Classes of components Functional & non-functional components

Core components  
(Decision-making functions)

Sensing
World state identification/situation awareness
Action planning
Action selection
Action execution
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Classes of components Functional & non-functional components

Support functions Collaboration and negotiation
Learning
Goals management
Self-assurance
Stealth and security

Data services World model
Current state and history
World dynamics
Goals

3  AICAs Are Themselves Multi Agent Systems: Our 
Initial Assumption

Besides possibly working in a team/swarm, (Kott et al., 2019) indicated that AICAs 
might be implemented as a “society of agents” in which each of its components 
would be an agent.

In the work carried out between 2016 and 2021 within both the AICA International 
Work Group (AICA IWG) and the French Cyb’Air research chair of the French Air 
Force, we have assumed that each AICA would itself be conceived as a Multi Agent 
System (MAS). First specified in 2019–2020, the MASCARA (MAS-Centric AICA 
Reference Architecture) architecture was the conceptual driver of a number of ini-
tial research projects.

Multi agent systems’ architectures have been largely discussed in manifold pub-
lications, as well as a series of workshops such as ATAL and AAMAS since the 
mid-90s (https://link.springer.com/conference/atal) (Muller et  al., 1999), for 
instance, define an agent’s architecture as the set of functional components of the 
agent and how they are working together towards its goals.

Multi-Agent Systems work collectively toward a common goal, and therefore 
make decisions together and individually, from the most basic ones to the most 
sophisticated.

Multi-Agent Systems implementation architectures reflect the way their decision- 
making process is conceived. For instance (Palau et al., 2019) refer to the context of 
industrial equipment’s failure prediction. The authors recapitulate and discuss four 
types of implementation architectures:

• Centralised: A master agent (social platform (Palau et al., 2019)) makes deci-
sions from data supplied by slave agents (sensors) that themselves have a role 
limited to collecting data from the system’s environment and sending data to the 
master agent. The master agent controls communications between agents and it 
holds a data repository and a data analytics function.

• Hierarchical: Basic agents (sensors) collect data from the system’s environ-
ment. They transmit those data to intermediate agents that aggregate them and 
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make some parts of decisions: situation awareness (diagnosis & prognosis). 
Intermediate agents hold a communications manager, a data repository and a 
data analytics engine. They transmit their elaborate data to the master agent. 
Intermediate agents do not collaborate with each other. The master agent holds 
higher-order functions and finalises or/and communicate decisions to the system 
of human operator endpoints.

• Heterarchical: This type of architecture is similar to the hierarchical architec-
ture except that intermediate agents exchange data between them and collaborate 
with one another to produce more elaborate situation awareness data.

• Distributed: All agents are decision-making agents that receive basic data col-
lected by low-level agents (sensors). Decision-making agents can collaborate 
with one another and they communicate their decisions to either machines or 
human operator endpoints.

This crosses with (Dorri et  al., 2018) who identify the following types of MAS 
architectures:

 (a) Flat: Agents work all on a single level of hierarchy and can collaborate with one 
another based on needs and purpose.

 (b) Hierarchical: As previously described.
 (c) Holonic: This architecture presents several layers of “holons”, i.e. groups of 

agents clustered on the foundation of their functionality. Lower-level agents or 
holons can be required by higher-order ones to perform specific tasks that 
deliver data then consolidated at the upper level.

 (d) Coalition: Agents cluster on the foundation of a goal they all share.
 (e) Team: Agents cluster on the foundation of a global collective goal to reach.
 (f) Matrix: Agents are administered by at least two upper-level agents that them-

selves pursue different goals or see a common goal from different perspectives 
like the production of some result on one hand and the efficiency of the produc-
tion process on the other hand.

 (g) Congregation: Agents require each other’s resources to achieve their own goal.

Preliminary research projects carried out in France with ESISAR MSc students and 
ESEO MSc students in 2019, 2020 and 2021, confirmed that an AICA can be imple-
mented technically as a MAS (Theron et al., 2020a, b). This choice drove the devel-
opment of the AICAproto21 prototype (Theron et al., 2021) co-sponsored by NCIA, 
Argonne National Laboratory and Masarik University.

4  The Decision-Making Paradigm of AICAs Has a Key 
Influence on AICAs’ Architecture

Agents’ Decision-Making is a key to their trustworthiness. But Artificial Decision- 
Making is still today at a very early stage of development (Heinl, 2014). Machine 
learning (ML) and reinforcement learning are regularly advocated as a pathway to 
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the future, e.g., in (Ridley, 2018), but reduce Decision-Making to a well-rehearsed, 
goal-focused process. Out of a given data vector, the algorithm is trained to con-
clude to a certain type of results.

The issue with this is that in cyber battles between goodware and malware, 
AICAs will face complex, highly varied situations. They will then need to make 
“smart decisions”, not just implement an ML algorithm to process a constantly sim-
ilar type of data to yield a constantly similar type of results.

And smart decisions will not consist in an immediate reaction to a single state of 
the defended system. The adversary makes many moves and reacts to our response 
to his moves. In a tactical cyber battle, a smart decision is one that will win the 
battle, not one that will only respond to a single adversary move and thus ignore 
potential later malware retaliation that might entail further hardship and damage. 
The notion of value, of gain, will become more sophisticated.

As human beings, we constantly make smart decisions. Human Decision-Making 
is smart because it helps us overcome the ever-showing difficulties of life, every 
minute of our life. It is smart because it builds on vigilance, vision, knowledge, 
experience, anticipation, wisdom, goals, constraints, margins of manoeuvre, delib-
eration, emotion, simulation… It is smart because it is dynamic, i.e. because it has 
“plasticity”. Plasticity is the capacity of the mind to adjust our cognitive process to 
the necessities, the appraisal or the uncertainties of each situation to which we have 
to react. And plasticity stems from metacognition. Metacognition both ensures the 
continuity of our thoughts and actions and monitors the shortages of information 
about situations, their risks, our difficulties to understand. At each step of the cogni-
tive process of decision-making, metacognition evaluates our cognition and orients 
it in ways that best satisfy our existential needs.

Several strands of work support this idea, not mentioning Brain Sciences, which 
are beyond the scope of this chapter. Instance-Based Learning Theory (IBLT) 
showed that five mechanisms are at play in Dynamic Decision-Making (Gonzalez 
et al., 2003): instance-based knowledge, recognition-based retrieval, adaptive strat-
egies, necessity-based choice, and feedback updates. (Blakely & Theron, 2018; 
LeBlanc et al., 2017) showed that for agents, making the right decision requires the 
integration of a variety of approaches. The model of Decision-Making in Action 
(Theron, 2014) depicted the patterns of Decision-Making in Action and explored 
some potential factors of their variability, or plasticity, and its adaptive response to 
situations’ characteristics or uncertainty (Fig. 2.3).

The process of Decision-Making in Action (DMA) unfolds as depicted here:

• Some stimuli are brought to the subject’s attention (acquired by consciousness).
• Possibly at this early step, information received is incomplete and new pieces are 

requested.
• That set of information is then analysed and interpreted (judgement), and poten-

tial consequences are anticipated.
• At this step, either the situation of which the subject is now aware is appraised as 

stressful (or traumatic sometimes) and then emotion takes over and entails an 
urge to act, or not, in which case a deliberative process starts that considers what 
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Fig. 2.3 The DMA (Decision-Making in Action) model (most frequent trajectories shown as 
bold arrows)

stimulates us (our intentions/motives) as well as moderators of our reaction, such 
as rules by which we abide, our margins of manoeuvre such as time or safety, or 
our trust in ourselves or in our envisaged course of action. And all this helps us 
to come up with one or several options for action.

• This/These option(s) are then evaluated (by way of mental simulation) and a 
course of action is selected for its superior potential, and orders are given to our 
various body parts  or to people or systems  involved in the execution of our 
decision.

• Actions are then executed.
• And the loop, again, restarts in the next present moment.
• Our short-term memory and vigilance are constantly mobilised.
• Long-term memory, whether semantic or episodic, feeds every step of the 

process.
• Learning consolidates our lived experience into our semantic and epi-

sodic memory.
• Metacognition supervises the cognitive process.

At each step, deviations from the main trajectories occur, under the influence of 
some factors not yet well-known. Also, emotion and deliberation interact. Hundreds 
of cognitive operations as well as very diverse patterns of the cognitive process can 
be found in human subjects’ cognition.

The architecture of this metacognitively controlled cognitive process entails a 
sophisticated architecture of the human mind. Brain Sciences have shown, out of 
brain imagery, the multiple subcortical and cortical areas of the brain that are acti-
vated in the course of our cognitive activity.

P. Theron



25

Fig. 2.4 General diagram of the Deep Decision-Making process in AICAs

Deep Decision-Making (DDM) assumes that AICAs’ Decision-Making can be 
up to the challenge of making smart decisions in the course of fast-paced tactical 
cyber battles only if their cognitive process is organised in a human-like, plastic way 
(Theron, 2020) as suggested by the DMA model.

In AICAs, under the DDM paradigm, decision-making would then be a metacog-
nitively controlled, algorithm-fed, multi-step process. Each DDM cognitive func-
tion, as in the DMA model, would implement a combination of non-AI and AI/ML 
techniques (e.g., genetic algorithms and classifiers or neural networks, game the-
ory, …) and would call upon other steps/functions to resolve reasoning challenges 
due to the unlimited variety, complexity and uncertainty of situations at hand.

Metacognitive control would then require a specific function/component in 
charge of monitoring, driving and optimising the decision-making process. At this 
stage, we assume that AI and a formal knowledge base will be used to optimise 
AICAs’ cognitive process, to feed it and adjust it to the necessities of situations 
at hand.

The AICA is therefore primarily a metacognitive agent. Inspired by the DMA 
model, it would resemble the following diagram (Fig. 2.4):

5  The MASCARA Architecture of AICAs

The assumed MASCARA architecture (Multi Agent System Centric AICA 
Reference Architecture) was inspired by:

• Naturalistic Decision Making (NDM) studies: This research, begun in the 1990s, 
aimed at studying the pattern of cognitive processes underlying experts’ 
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 decision- making in real-life situations, in the face of events to which they had to 
react. This is illustrated by the DMA model that shows the functions of an indi-
vidual’s cognitive process in a variety of circumstances (unchallenging, stressful, 
and traumatic) and some of the factors that may explain the complex variation of 
its pattern (Theron, 2014).

• Russell & Norwig’s description of a cognitive software agent (Russell & Norwig, 
1995) shows that the functions of an individual’s cognitive process are the foun-
dation of the cognitive engine of an intelligent software agent. The NATO 
Science and Technology Organization (ST & O)’s IST-152 report on the archi-
tecture of AICAs (Kott et al., 2019) depicts how Autonomous Intelligent Cyber- 
defence Agents can make decisions to defend, on their own, our networks and 
systems against enemy malware in the safety-critical context of the battlefield. 
The speed, spread, and complexity of enemy malware attacks in a battlefield 
would overwhelm human operators who would need to monitor the cybersecu-
rity of those systems and networks, understand them, devise countermeasures, 
evaluate their potential reward and activate them.

• Multi-Agent Systems that provide a way to create a “network” of cooperating 
software entities. Each one possesses its own functional capacities to provide 
answers to the requests they process. It is to be noted that Multi Agent System 
standards such as FIPA (Foundation for Intelligent Physical Agents, @ www.
fipa.org) did not yet influence our research on AICA’s architecture.

Given these preliminary considerations, the MASCARA architecture can be 
described in three levels:

• A General Functional Model;
• A Detailed Functional Model;
• A Technical Model.

6  The General Functional Model 
of the MASCARA Architecture

The highest-level, general, functional description of MASCARA stands in the fol-
lowing diagram (Fig. 2.5):

An AICA is embedded within the host system it defends. An AICA is a set of 
functions and resources that together deliver countermeasures in response to a 
cyber-attack actually taking place within a defended host system or network. 
Besides, an AICA can work either on its own, or collectively i.e. within groups 
(swarms, cohorts…) of AICAs.

The outside world of operation of an AICA may include, not mentioning the host 
system or network itself:

• Other AICAs (case of swarms or cohorts of agents);
• A Cyber Command & Control (C2) server/application (Cyber C2, or CC2) that 

may pilot AICAs if the latter were to be used in a not-fully autonomous mode;
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Fig. 2.5 AICA’s general functional architecture

• Human operators who might be willing or requested to cooperate with AICAs in 
circumstances were the latter’s concept of operation would request it, especially 
if AICAs are unable to make decisions on their own and need humans to provide 
sense or directions;

• Data sources like IDS (Intrusion Detection Systems) that provide data to AICAs 
for making decisions;

• Actuators like a honeypot for instance that would receive orders from the AICA 
to deflect or analyse the enemy malware;

• Offline learning systems that may be loaded with data accumulated by AICAs 
during their “missions” within defended systems. They serve for learning from 
the agent’s experience in action, and increase the intelligence and capacity of 
autonomy of agents. Knowledge bases provide AICAs the information they need 
to inform their missions.

An AICA’s internal components are, on a global level:

• A Decision-Making Engine

 – Its goal is to collect data, decide on the countermeasures to oppose to enemy 
malware, to communicate those decisions to the actuators who will perform 
those countermeasures, and to pilot tactically their execution, i.e., to adjust 
planned countermeasures to the tactical evolution of the situation.

 – It is made of five key functions: Sensing (data collection), Situation Awareness 
(sense making), Action Planning (proposition of possible countermeasures), 
Action Selection (choice of the set of countermeasures promising best gains/
benefits), Action Activation (transmission/dispatch of detailed orders to out-
side actuators).
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• A Knowledge Base

 – Its goal is to record and deliver the agent’s knowledge and experience as the 
AICA acts and to supply all AICA components with the knowledge they need 
to make smart decisions.

• An Online Learning Engine

 – Its goal is to help the agent increase its intelligence: its capacity to disable the 
enemy malware and maximise its own utility. This requres deriving new 
knowledge from actions performed by the agent as a whole or by its compo-
nents, or from the global experience of the team/swarm in which the AICA 
participates.

• An Agent Behaviour Engine

 – Its goal is to specify, regulate, and control the rights and limits of the agent to 
act upon its environment.

• An Orchestrator (or Manager)

 – Its goal is to organise and optimise the way the agent’s components work 
together. The Orchestrator manages or coordinates the messages exchanged 
between the components of the agent.

 – It also manages incoming and outgoing messages and data exchanges between 
the agent and the outside world.

• A Workspace

 – Its goal is to allocate the working memory resources required by the agent’s 
components.

• A Collaboration interface

 – Its goal is to enforce and control the rules of information and data exchange 
between the interior and the exterior of the AICA, or between AICAs in the 
case of a swarm or cohort of AICAs.

• An Internal Communication Protocol between the agent’s functions

 – Its goal is to provide interoperability between the components of an AICA.

7  The Detailed Functional Model 
of the MASCARA Architecture

MASCARA can be described in more details by the following Detailed Functional 
Model (Fig. 2.6):
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Fig. 2.6 Detailed functional model of an AICA

This second-level diagram presents the sub-components of:

• The Orchestrator (Manager) component

 – Orchestrator: Its goal is to organise and optimise how the agent’s components 
work together. In particular, the Orchestrator manages the exchange of mes-
sages between the components of the agent.

 – Working Memory: Its goal is to provide, manage, and control the working 
memory resources of the agent.

 – I/0 (Input/Output) Manager: Its goal is to manage and control all incoming 
and outgoing data exchanges between the agent and its outside world of oper-
ation, including queues/piles and priorities management, interoperability, or 
portability services.

 – Action Monitor: Its goal is to watch the execution of actions plans communi-
cated to outside actuators.

• The Collaboration component

 – Cooperation with Swarm, CC2 & HO: Its goal is to “translate” outgoing and 
incoming messages destined to or originating from external entities such as 
other AICAs (working in swarm), a cyber Command & Control system (CC2) 
or Human Operators (HO). This includes the semantics and formatting of 
exchanged messages.

• The Knowledge Base component

 – World Model: Its goal is to provide the agent’s components an up to date 
ontology of the agent’s world of operation and of itself. This includes the rela-
tions between the elements of those ontologies.
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 – World State & History: Its goal is to provide the agent’s components with an 
up to date and detailed log of all transformations of the agent itself and of its 
outside world of operation.

 – World Dynamics Model: Its goal is to provide the type of “if… then…” 
clauses characterising the track record of transformations of the agent itself 
and of the components of its world of operation.

 – Actions & Effects Repertoire: Its goal is to provide the Decision-Making 
Engine with knowledge about the type of causal “if… then…” clauses about 
plans of, or individual, countermeasures, the impacts they have on the mal-
ware and on defended systems, as well as the reward/benefit associated with 
those countermeasures.

 – Goals (Missions & Limits): Its goal is to inform the agent’s components, and 
especially the Decision-Making Engine, about the mission the agent is 
assigned, the rules of engagement it must abide by, and the actions not to take 
as well as the rewards/benefits (negative vs. positive, immediate vs. long- 
term, for instance) they should seek or avoid.

 – Agent’s states, priorities, rules, plans, configurations: Its goal is to supply the 
agent’s components with any further elements of knowledge that can help 
regulating, controlling, securing, optimising the agent’s behaviour, decisions, 
self-resilience, etc.

• The Online Learning component

 – It identifies 4 classes of knowledge that an agent can generate in the course of 
its missions: World Description, Competence, Purpose, and Behaviour. Those 
4 classes correspond to the Knowledge Bases previously seen.

• The Agent Behaviour Engine component

 – Stealth & Security: Its goal is to provide the agent’s components with the 
rules of behaviour to apply when the agent faces adversity, such as during 
attacks, when tracked by the enemy malware, or when the agent’s operating 
conditions degrade. Those rules aim to improve the AICA’s resilience to the 
threats it faces.

 – Self-control: Its goal is to provide the agent with the rules it must/should 
apply to manage itself in a variety of circumstances. This would help the 
agent adapt or reorganize its internal functioning or how the agent is deployed 
across the components of the defended host system/network.

 – Collaboration Control: Its goal is to monitor, control. and possibly enforce the 
agent’s goals, priorities, and rules of behaviour.

• The Offline Learning component

 – Offline Loader: Its goal is to download from agents the data they have col-
lected during their “missions” for the purpose of learning, and to upload into 
agents the knowledge bases they need to perform their duties during their 
missions.
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 – Offline Learning: Its goal is to perform learning activities in “times of rest” 
i.e. in the context of a data science/AI laboratory, on the foundation of the data 
collected by agents during their “missions” (time of operation) in order to 
improve their performance. It identifies 4 classes of knowledge that an agent 
requires in the course of its missions: World Description, Competence, 
Purpose, Behaviour. Those 4 classes correspond to the Knowledge Bases pre-
viously seen.

8  The Technical Implementation 
of a MASCARA-Based AICA

The idea of implementing cyber-defence solutions in the shape of Multi Agent 
Systems is not new. Collaborative Intrusion Detection Systems (CIDS) have been 
developed1,2 for the past decade or so. Their principle is to implement multiple lay-
ers of sensors/monitors from which a master/manager/analyst agent draws data, 
consolidates them and via ML-based data analytics algorithms detects an attack.3 
They can be seen as Multi-Agent Systems, possibly combined with an artificial 
immune systems paradigm.4 There are developments in the area of Vehicle ad-hoc 
network (VANETs)5 and mobile ad hoc networks (MANETs).6

As for AICAs, there will be many ways to implement the MASCARA architec-
ture technically. So far, some generic principles have been identified and have driven 
its technical implementation:

• AICAs are themselves Multi Agent Systems made of a set of MicroAgents (MA).
• A MicroAgent is a “functional capsule”, a “container” of methods, algorithm(s) 

or data, altogether processing input data to deliver output data, under the regula-
tion of some form of process control parameters, and with the help of some 
resources.

• All components/functions of an AICA, such as those described in the functional 
architecture described above, are implemented as “MicroAgents”.

• MicroAgents interact with one another as needed.

An initial implementation was made in 2019–2021 in the context of the Cyb’Air 
research chair. It relied on Java and was presented by (Théron et al., 2020) at the 
2020 NATO-AICA IWG Technical Workshop on AICA.

1 https://ieeexplore.ieee.org/document/1254328
2 https://core.ac.uk/download/pdf/161257409.pdf
3 ht tps: / /www.researchgate.net /publicat ion/276205397_Taxonomy_and_Survey_ 
of_Collaborative_Intrusion_Detection
4 https://www.sciencedirect.com/science/article/abs/pii/S0952197614001444
5 https://ieeexplore.ieee.org/abstract/document/9119934
6 https://ieeexplore.ieee.org/abstract/document/6209126
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The AICAproto21 project’s team created a more elaborated technical prototype 
of an AICA that relies on Docker containers (Theron et al., 2021). The project built 
the technological “shell” of AICAs, in a fashion that allows a) its reuse under an 
LGPL licence and b) the progressive development of AICA components’ non-ML 
and ML-based decision-making and learning features.

Besides, the project developed a demonstration/visualisation environment based 
on CYST (https://dl.acm.org/doi/abs/10.5555/3451906.3451908; https://muni.cz/
go/565e43).

The project did not implement AI functionalities, only rule-based reasoning.
The development considered a simple use case situated within a Command, 

Control, Communications, Computers (C4) Intelligence, Surveillance and 
Reconnaissance (C4ISR) system. This system included personal computers (PCs) 
and servers connected via a local area network (LAN). The use case’s topology 
comprises the following nodes:

• A central router, taking care of routing the traffic within a LAN;
• A targeted server, the primary target of the attacker;
• A vulnerable server, not specifically targeted by the attacker;
• A high interaction honeypot, where the attacker is routed after successful 

detection;
• Two PCs, not specifically targeted by the attacker;
• An IDS monitoring the traffic;
• One AICA agent set on separate node;
• An infected machine containing the attacker.

In the scenario, the AICA resides on an isolated secure device and receives reports 
from the Intrusion Detection System (IDS). The AICA has no defensive capabili-
ties. In response to intrusions, the AICA triggers response actions performed by 
other systems:

• Activating the honeypot;
• Rerouting specific traffic to the honeypot.

The goal of the AICA is to isolate the malware and study its behaviour. The expected 
chain of actions is as follows:

• The AICA monitors the IDS reports of attacks;
• The attacker scans the network and its actions are detected by the IDS;
• The AICA selects an appropriate action and redirects the attacker to the 

HoneyPot;
• The HoneyPot receives all attacking traffic for further analysis.

The AICAproto21 project’s team implemented a MASCARA-based AICA as a con-
tainerized environment (Fig. 2.7).

The implementation uses Docker Compose. It:
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Fig. 2.7 AICA implemented in a Docker-based containerized environment

• Enables the creation of a lightweight, cross-platform, easy-to-replicate and 
share, and highly flexible environment that can be deployed on any Linux, Mac, 
or Windows system using only Docker, Python, and Make.

• Allows the full encapsulation of all systems that comprise an AICA, as well as 
the ability to encompass a simulation/demonstration environment with minimal 
additional overhead and no external dependencies.

• Enables the use of a wide variety of services that can be easily instantiated freely 
and publicly available from dockerhub.com with minimal required 
configuration.

Within this architecture, the AICA is a collection of containers (described below), 
and the MicroAgents are tasks running within a Celery Task Management system 
managed by Django, a common Python web application framework:

• This design permits for easily extending AICA to add human-machine interac-
tion (HMI) components with minimal additional coding, parallelization of the 
MicroAgents’ operations, and scalability to encompass large numbers of work-
ers to process tasks, as system load requires.

• This design allows developers to add easily new types of tasks. All of this func-
tionality lives within a primary container named the “Manager”.

• The Manager exposes the Flower frontend to allow for monitoring of the state of 
running and scheduled Celery tasks, and the RabbitMQ management interface to 
monitor the state of task queues.
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As for backend systems, the Manager leverages multiple other containers providing 
standard services:

• A RabbitMQ container supports the Celery Task Queues and inter-task 
communication;

• A PostgreSQL container supports the Django web application and any other 
relational-schemas as they are developed;

• A MongoDB container supports the storage of document objects such as lists and 
dictionaries in a NoSQL database.

MicroAgents consist of collections of Python functions comprising Celery tasks to 
implement MicroAgents and allow them to communicate:

• Upon start-up of the Manager container, the Django application calls the Offline 
Loader’s initialization function.

• After the Offline Loader has finished its bootstrapping tasks, it calls the Decision 
Making Engine’s main loop (the “monitor” method). This, in turn, calls the poll_
dbs function of the Collaboration Engine.

• For initial demonstration purposes, database-based or Structured Threat 
Information eXpression (STIX)/Trusted Automated Exchange of Intelligence 
Information (TAXII)-based communications with the intrusion detection system 
(described below) were not used. Instead, a shared Docker volume was used to 
allow both the IDS and Manager to access Suricata log files in real-time.

• The poll_dbs function monitors the communication channel with the IDS (in this 
case, the shared log file). If it detects an alert, it notifies the Decision Making 
Engine. The Decision Making Engine consults with the Knowledge Base to iden-
tify what actions can be taken, then determines the action to take. It then makes 
any necessary calls to other MicroAgents to update its world-state, and the 
Collaboration Engine to take any external actions, such as redirecting specific 
network traffic to a honeypot.

• Because all of these functions (exception the Offline Loader’s initialization func-
tion) are Celery Tasks, they can be run asynchronously and simultaneously and 
can scale as required to meet demand.

• Communications between them are handled either by direct Python function 
calls, or instantiation of new Celery Tasks with any necessary parameters and 
return values communicated via the RabbitMQ message bus.

In addition to tasks initiated by other tasks, the use of Celery Beat allows for tasks 
to be set to run on a periodic schedule. This can support routine loading of external 
data, polling of systems where real-time communication is not necessary, saving 
status to an external location, etc.

The AICAproto21 prototype was released at the end of November 2021. Its capa-
bilities have reached a “Minimum Viable Product” (MVP) state, meaning that they 
are operational and provide a basic level of functionality.

The containerized environment built using Docker Compose, the Manager 
Container, including the Flower monitoring application, Celery Workers and 
Scheduler, Django web framework (and gunicorn proxy), Offline Loader 
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MicroAgent, Collaboration MicroAgent, and the remaining MicroAgents, only pro-
vides a “shell” that can be filled in with functionality.

This is true for the RabbitMQ Container, the PostgreSQL Container, the 
MongoDB Container, the Target Container, the Attacker Container, the IDS 
Container and updated community rulesets, the Honeypot Container, shared Suricata 
logfile monitoring between the IDS container and Collaboration MicroAgent, and 
Secure Shell (SSH) communication between the Collaboration MicroAgent and the 
Target container.

With the capabilities completed to date, one can currently build and start the 
AICA environment (this takes 5–10 min and is fully automated using the included 
Makefile), start a shell on the Attacker, scan the Target, and confirm that the 
Collaboration Agent becomes aware of the scan.

Machine learning capabilities, the incorporation of or contribution to external 
threat feeds, and the interaction with systems outside the containerized simulation 
environment were not part of the project.

9  Beyond Prototypes, the Rationale of AICAs’ Architecture: 
Required Aptitudes and Benefits

As said earlier, there will be multiple ways to implement AICAs technically. A vari-
ety of considerations will guide future AICA developers’ choices. And designing 
the architecture of an AICA will equal to finding the right trade-off between its vari-
ous requirements.

 (a) General aptitudes required for AICAs

AICAs’ architecture will be shaped by requirements such as:

• Functional interoperability: It is the aptitude of AICAs, or of their internal com-
ponents, to operate together, and to exchange information that they can mutually 
interpret and process.

• Technical Interoperability: It is the aptitude of AICAs, or of their internal com-
ponents, to resolve their possible differences in terms of technical standards or 
protocols. Technical interoperability in a sine qua non condition of functional 
interoperability.

• Portability: It is the aptitude of AICAs, or of their internal components, to func-
tion in a native way in a specified variety of technical environments (OS, proto-
cols, formats…).

• Protection of AICAs’ resources’ confidentiality: It is the aptitude of AICAs, or of 
their internal components, to guarantee that their data, code, and specifications 
will not be disclosed to unauthorised agents, applications, software, users.

• Flexibility of AICAs’ organisation: It is the aptitude of AICAs to adapt their 
implementation or internal architecture to a specified variety of factors.
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• Resource consumption optimisation: It is the aptitude of an AICA to minimise 
the computing power, communication load & memory that it consumes within its 
host system.

The following table presents some of the consequences these requirements entail:

Aptitudes Design principles

Functional 
interoperability

MicroAgents, as well as AICAs themselves, must be able to exchange 
data and to address requests from and to one another
A messaging control mechanism should be engineered into AICAs to 
interpret and translate the format and semantics of incoming messages or 
to adapt those of outgoing messages
Common messaging standards will be required to allow AICAs created 
by different suppliers or teams to interoperate functionally
The Orchestrator MicroAgent manages the communication between all 
MA at the application/data level

Technical 
interoperability

MicroAgents, as well as AICAs themselves, must be able to communicate 
in heterogeneous technical environments that include different Operating 
Systems, protocols, data formats, languages and APIs, etc.
A technical abstraction mechanism should be engineered into AICAs to 
deal with a variety of operating systems, communication protocols, etc.
Such a mechanism should be implemented in a function of the AICA 
dedicated to the agent’s collaboration with other entities
The I/O MicroAgent manages the communication between all 
MicroAgents at the system level

Portability AICAs must be deployed at no extra-cost indifferently on any IT or OT 
platform
The use of vastly used high-level languages (Java, Python…) or/and of 
Containers (Docker…) should help making the agents portable
The AICA (I/O MicroAgent) interfaces system-level protocols in 
heterogeneous technical environment

Security 
(confidentiality)

AICAs’ data, code and specifications should not be violated and their 
details leaked to attackers
Confidentiality protective measures should be implemented within AICAs 
and their operating environment. Encryption and trust-checking (0-trust) 
are eligible approaches

Resilience AICAs will become key targets of enemy malware
MicroAgents could be cloned to maximise the AICA’s resilience
Mirror MicroAgents with data synchronisation could be an eligible 
technique
Stealth should help MicroAgents and their communications to remain 
undetected by the enemy malware

Flexibility of the 
agent’s organisation

Whatever the technical and operational constraints, multiple 
configurations/organisations of AICAs must be deployed easily within 
host systems or networks
Handling communications between all MicroAgents, keeping memory of 
MicroAgents’ locations and cooperation rights as well as of optimal 
patterns of the cognitive process, the Orchestrator MicroAgent will assure 
an important level of flexibility of the agent’s deployment

P. Theron



37

Aptitudes Design principles

Resource 
consumption 
optimisation

The engineering of AICAs must take this requirement into account in the 
context of agents’ future operating environments and their technical 
constraints
Thus, AICAs installed within powerful systems may benefit from a large 
computing power and extended memory resources
But when embedded into mere sensors, and in general within devices that 
have limited technical resource, their consumption must be reduced to a 
bear minimum
In this latter case, for instance, online/ongoing learning may reveal too 
resource-greedy and therefore knowledge bases needed by the AICA to 
make decisions should be of a small size, embedded at the Factory stage, 
and upgraded only by the AICA “factory”

 (b) Other factors that may shape an AICA’s architecture

For instance, we identified 13 research & technology (R & T)7 challenges, 
grouped into four classes:

• Building and qualifying AICAs: Infrastructure, Architecture, Engineering, test-
ing, simulation and certification challenges;

• Making decisions and learning: Individual & Collective Decision Making 
challenges;

• Facing attacks on AICAs themselves: Stealth & Resilience challenges;
• Framing AICAs: Societal limits, Law, ethics, doctrines of use, rules of engage-

ment (Fig. 2.8).

Such R & T challenges may influence AICAs’ architecture, and this remains to be 
studied. For instance:

• Agents’ engineering & certification: AICAs need to be built according to rec-
ognised standards that might imply specific architectural choices.

• Testability & At-scale Simulation: AICAs’ internal activity and data should be 
made accessible, without disturbance to their functioning, for tests and simula-
tion purposes.

• Implementation and compatibility technologies: AICAs might be imple-
mented in a variety of ways. One is a single, full agent that hosts all the functions 
and data required to detect and beat malware. Another is a swarm of full agents 
that will develop superior capacities to those of a single one. Another way might 
be to have a community/society of specialised agents working together in 
swarms, such as, but not necessarily as described, a detection agent, another 
interpreting data, a third making decisions about countermeasures, etc. Finally, 
some agents might be hardware and some software, some might be elements of 
the host environment itself while its “colleagues” would be full or specialised 
agents. Such choices could be influenced by the computing, memory and 

7 Research Challenges – Autonomus Intelligent Cyberdefence Agents International Work Group 
(aica-iwg.org).
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Fig. 2.8 13 Research & technology challenges that shape AICAs’ architecture

 communication capacities of the host system to defend. The second aspect is 
about AICA agents’ compatibility with host systems, at the present moment not 
designed to accept AICAs within, especially if those are to patrol networks and 
systems, constantly moving from one spot to another. It is likely that the engi-
neering of host systems itself might be impacted. Finally, the third aspect is 
about agents’ compatibility with cybersecurity systems and devices. As of today, 
agents would be stopped by the first firewall or detected as carrying out adverse 
activities by an IDS. AICA agents must be able to function despite cybersecurity 
devices, software and procedures or they will not operate at all. Like host sys-
tems, cybersecurity devices and processes may have to evolve in order to allow 
AICAs to function.

• Autonomous self-engineering and self-assurance: AICAs will be embedded 
into systems in which they might be operating for very long periods of time, 
may be without [sufficient] communications or maintenance through which their 
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knowledge base or their algorithms could be updated. To prevent a decline in 
their efficiency, AICAs could then be equipped with capacities to self-develop 
their functions, to adapt to new conditions of operation, to reassess their own 
performance as well as their own reliability, integrity, etc.

• Agents’ individual decision making: AICAs, by their very name, are autono-
mous and intelligent.

 – Derived from the Greek Auto (self) and Nomos (law), the word “autonomous” 
means that agents, whether purely software or software-driven hardware, act 
on their own towards goals set by their designers or users, on the basis of 
underlying rules and “cognitive” processes that generate decisions in the pur-
suit of these goals. However, agents’ autonomy is limited by rationality, situ-
atedness and sociality (Castelfranchi, 1995).

 – Derived from the Latin Intelligere (to understand), the word “intelligent” 
means that agents have a cognitive faculty to understand their environment 
and circumstances, whether internal (their current state or its variation for 
instance) or external (events occurring outside of them for instance), as well 
as the actions they should take in reaction. This faculty confers agents the 
capacity to make smart, well-adapted decisions that resolve the problems at 
hand, however complex they may be (at least in theory).

 – (Castelfranchi, 1995) suggests that autonomy frames an agent’s architecture 
by requiring it includes all due cognitive functional components.

• Collective intelligence & decision making: For swarms or communities of 
AICA agents to bring superiority over single full AICA agents, they need to 
make collective decisions that are more effective than single agents. To that end, 
agents will need sharing and exchanging data, which also raises the issue of trust 
and of its mechanisms.

• Learning, loading, sizing: AICA agents will learn “on-the-fly” (if computing 
capacities permit) or else off-line. Their size, and components will be influenced 
accordingly. And in case of off-line learning, knowledge uploading will require 
components external to AICAs themselves.

• Agents cooperation with other entities: AICA agents may have to cooperate 
with other agents, a cyber C2 or human operators, implying specific functional-
ities, protocols, data flows, data flows, ergonomics, security and continuity in 
case of disturbances.

• Agents’ stealth and resilience: To do what they are meant reliably, AICAs need 
to be protected and defended against attacks from the enemy. Protective and 
defensive mechanisms must be embedded into AICAs.

• Friend of foe? Ping, trust and social dynamics: When two agents “meet”, or 
when an unknown agent knocks on the door, AICAs must discriminate good 
agents from bad ones. To defend themselves against intruders, they might have 
to reconfigure their cooperation liaisons and trust mechanisms must be included 
in agents and between agents.

• Law, ethics, doctrines and society: The implementation of AICAs, along with 
the emergence of a similar technology for cyber-attacks, will have societal, 

2 Alternative Architectural Approaches
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 philosophical and legal implications. Similarly to debates of the UN’s Lethal 
Autonomous Weapon Systems (LAWS) committee, AICAs will appear as a 
“dangerous” technology and mechanisms to limit, for instance their degree of 
autonomy, will have to be embedded into agents.

10  And Now, What? Further Areas of Research 
and Technology

This chapter aimed at opening-up the discussion about AICAs’ architecture. As we 
understand, a Multi-Agent System approach is likely to be an interesting way for-
ward. Alternatives might be either to make an AICA a single software agent, which 
would entail coding hardships probably, or making very light agents, meaning that 
they would embark a reduced set of functionality (if that is possible) and a small 
dataset (again if that makes sense).

And as we speak today, research on AICA’s architecture (and other challenges) 
is still in its infancy. It is a vast endeavour that will probably require a good 15 years 
before operational AICAs start being embedded into real IT and OT systems.

From what we said earlier, AICAs’ architecture poses many research questions. 
To quote only a few:

• What is the optimal technical internal architecture and collective organisation 
of AICAs?

• How can we embed AI and non-ML algorithmic solutions within an AICA in 
ways compatible with the resource constraints of host systems?

• What technical standards do we need to make AICA agents implementable in 
host systems, interoperable, and resilient?

• How can we help heads of military and civil organisations understand the AICA 
technology and the part it needs to play in future technological developments?

Research about Deep Decision-Making and the MASCARA architecture should 
build on several currents of work such as, for instance:

• Cognitive Architectures (Lebiere & Anderson, 1993) and their use for computer 
games (Smart et al., 2016);

• Naturalistic Decision-Making (Lipshitz, 1997) and Decision-Making in Action 
(Theron, 2014) to explore the micro-cognitive processes, resources, metacogni-
tive control of expert Decision-Making, its circumstances and the factors that 
determine the transition between consecutive cognitive operations; Brain sci-
ences also as they study cortical synchronisations and the transition between 
them and will help understanding the control of the transition between cognitive 
operations;

• Instance-Based Learning Theory for Dynamic Decision-Making (Gonzalez 
et al., 2003);

• Agent-based modelling and simulation of cyber battles (Kotenko et al., 2012);
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• Cyber-attack graphs and models (Jajodia & Noel, 2010), (Noel et al., 2015) as 
they seek to provide formal models of adversarial cyber battles, along with game 
theory, AI and ML and its current refinements such as reinforcement learning.

Such research will help to refine and optimise the architecture of the cognitive and 
metacognitive process within single AICAs, and likely so as well within swarms 
of AICAs.

Existing technical standards for Multi-Agent Systems such as those listed below 
should be analysed for their capacity to help the development of the AICA architec-
ture with a view to assure interoperability among other required aptitudes:

• IEEE’s FIPA (Foundation for Intelligent Physical Systems) standards:8 They are 
founded on the principle that an agent is a physical device that is to cooperate 
with other physical devices.

• IEEE P2660.1/D1/D2/D3, May 2020 – IEEE Draft Recommended Practices on 
Industrial Agents: Integration of Software Agents and Low-Level Automation 
Functions.9

• OMG’s MASIF/MAF (Mobile Agent System Interoperability Facility)10 & 
CORBA:11 This standard is about interoperability between agent systems written 
in the same language, but potentially by different vendors and systems that are 
expected to go through many revisions within the lifetime of an agent.

• W3C’s Web Services Architecture:12 Inspired by and built on MAS concepts 
WSA provides a standard means of interoperating between different software 
applications, running on a variety of platforms and/or frameworks.

AICA simulation, testing and demonstration environments are very much in need to 
help decision-makers to understand the AICA technology. They are needed also by 
scientists and engineers to evaluate AICA technologies and performances in a wide 
variety of adverse and technological scenarios. And the creation of testing datasets 
of reference is also a necessity to support and systematise basic testing and bench-
marking requirements.

Simulation environments will need to scale up to the size of actual deployments, 
such as the Internet of Battlefield Things. This is due to the necessity to understand 
the phenomena that will take place within those complex environments and how 
AICAs act and perform in the face of real-life complex attack scenarios.

Testing Multi-Agent Systems, and AICAs especially in the near future, is diffi-
cult because agents exhibit a complex behaviour. The testing of Multi-Agent 
Systems,13 for instance of BDI (Belief-Desire-Intentionality) agents, has been the 

8 http://www.fipa.org/repository/componentspecs.html
9 https://ieeexplore.ieee.org/document/9093227
10 https://www.omg.org/spec/MOBFAC/About-MOBFAC/
11 https://www.omg.org/spec/CORBA/About-CORBA/
12 https://www.w3.org/TR/ws-arch/
13 https://link.springer.com/chapter/10.1007/978-3-319-50983-9_12
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object of various research14,15,16 as well as the verification and validation of Multi- 
Agent Systems.17

There are multiple development & simulation research,18 methods, languages 
and platforms. They need to be assessed in the light of AICAs’ requirements and 
specificities. As part of development and simulation technologies, we can cite a few, 
for instance:

• Agent Oriented Software Engineering (AOSE)19,20 methodologies.
• JADE (Java Agent Development Framework):21 This language and its associated 

development allow to create agents and their behaviours and communications.
• JACK and C-BDI platforms,22 meant for developing intelligent (Beliefs, Desires 

and Intentions) agents.
• GAMA,23 MATLAB,24 F#,25 agentscript,26 CoSMoSim,27 DEVS-Suite 

Simulator,28 Evoplex,29 Flame30 & Flame GPU,31 or else JaCaMo32 for program-
ming multi-agent systems including the agents (with Jason), the environment 
(with Cartago) and agents’ organisation (with Moise).

• Prometheus (Padgham & Winikoff, 2004), meant for developing intelli-
gent agents.

• GAIA33 (Wooldridge et al., 1999), which is not meant for open systems in which 
system components may join and leave at run-time, and which may be composed 
of entities that a designer had no knowledge of at design-time.

14 https://link.springer.com/article/10.1007/s11219-017-9392-4
15 https://www.jair.org/index.php/jair/article/view/10903
16 https://link.springer.com/article/10.1007/s10458-016-9356-2
17 https://arxiv.org/abs/1210.3640
18 https://dl.acm.org/doi/abs/10.1145/3310013.3322175
19 https://dl.acm.org/doi/10.1145/2980258.2982111
20 https://www.researchgate.net/publication/282392089_Understanding_Agent-Oriented_ 
Software_Engineering_methodologies
21 http://jade.tilab.com/
22 http://www.agent-software.com/
23 https://gama-platform.github.io/
24 https://fr.mathworks.com/products/matlab.html
25 https://fsharp.org/
26 https://github.com/backspaces/agentscript
27 https://sourceforge.net/projects/cosmosim/
28 https://sourceforge.net/projects/devs-suitesim/
29 https://evoplex.org/en/
30 http://flame.ac.uk/
31 http://www.flamegpu.com/home
32 https://sourceforge.net/projects/jacamo/
33 https://www.cs.ox.ac.uk/people/michael.wooldridge/pubs/jaamas2000b.pdf
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• Quviq QuickCheck34 that supports property-based testing of software written in 
Haskell.35

• MASH36 that was designed to test jointly software agents and their hardware 
environment.

• CYST that is developed for the lightweight simulation of cybersecurity agents37,38

AICA’s certification is also an important line of progress. No research has been 
done yet, it seems, about the certification of Multi-Agent Systems, either from a 
functional, technical or cybersecurity perspective. However, for instance, Europe’s 
Cybersecurity Act of 2019 will make cybersecurity certification mandatory for all 
connected objects, which includes agents such as AICAs. This is an urgent area 
of work.

One last consideration, as we need to close this discussion, is about the education 
and training of future scientists and engineers. The early research works that we 
have piloted have clearly shown that students, to handle AICA research and technol-
ogy, need a vast background: Cybersecurity and cyber-defence, Multi Agent 
Systems, Embedded systems, Artificial Intelligence, Artificial Decision-Making 
both individual and collective, MAS certification methods, etc.

Creating AICA architectures for the future requires that we invest today in 
focused MSc and PhD research and education programmes.

11  Summary and Conclusions

Autonomous Intelligent Cyber-defence Agents (AICA) represent a future of the 
cyber-defence of infrastructures, networks, systems and devices. They are particu-
larly needed where systems will be highly complex or autonomous and potentially 
disconnected from their supervisor. Embedded within these various items, they will 
substitute to human cyber operators who will not be in a position to monitor cyber-
security in missions and environments too complex and too fast-paced for their 
limited cognitive abilities.

The architecture of AICAs responds to a range of requirements. Among others, 
AICAs’ architecture must ensure that these agents can be embedded within a variety 
of host systems, from very large to very small. AICAs must function whatever the 
host operating systems, communication protocols, data formats implemented in 
their environment. And they must run fast enough and consume as little computing 
resource as feasible.

34 www.quviq.com/products/
35 www.haskell.org
36 https://hal.archives-ouvertes.fr/hal-00804650
37 https://ieeexplore.ieee.org/document/9213690
38 https://gitlab.ics.muni.cz/98998/simulation-engine-public
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On the other hand, what will structure AICAs’ architecture is the cognitive pro-
cess that will make them smart enough to become autonomous. Where current ML 
algorithms deliver an interpretation of an input vector of data, like recognising a 
pattern of a cyber-attack, AICAs need more than this. Their decision making pro-
cess is articulated around several steps/functions that complement each other, as in 
the model of Decision-Making in Action (DMA): data acquisition (sensing), data 
interpretation (situation awareness), elaboration of response plan options (action 
planning), the selection of the best option (action selection), and the activation of 
the selected action plan (action activation). Action planning can be either delibera-
tive or stress-handling driven. Each of these steps involve a wide variety of cogni-
tive operations that follow one another in a complex fashion.

AICAs’ architecture must give them the capacity to implement a highly-plastic 
cognitive process to adapt to extremely varied situations, attacks, configurations of 
host systems and uncertainty.

Beyond, AICAs’ architecture must also include the functions that guarantee the 
agent’s resilience to failures and to the attacks that will be directed against them. It 
must also include the functions that will keep agents’ actions within the limits set by 
their doctrine of use.

The MASCARA architecture is probably only one of the possible approaches to 
the set of challenges that the AICA faces.

Its first implementations have, however, shown that a Multi-Agent System archi-
tecture was a viable solution. It has to be tested  and discussed further. The 
AICAproto21 prototype, depicted in this book, was created under the AICA IWG’s 
auspices by a small consortium (Théron, Argonne National Laboratories, Masaryk 
University and Stag). Under an LPGL licence, ANL is currently developing and 
testing it further.

The way forward for the science of AICA requires, at this moment, that such 
prototypes blossom and be evaluated. This was the very reason for creating the 
AICA IWG (www.aica- iwg.org).
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Chapter 3
Perception of the Environment

Martin Drasar

1  Background

Perception is a critical component of AICA and one of the few that cannot be omit-
ted. Perception provides information about the environment, communicates the 
results of the agent’s actions, and shapes and influences the agent’s reasoning. While 
it may be possible to consider only the raw data gathered from sensors as the per-
ception, this narrow view does not appreciate the complexity involved and only 
defers the issues of percept processing to other parts of AICA, such as the decision- 
making engine.

Perception in AICA is as multifaceted concept as it is in biological systems. Even 
though the artificial systems have the benefit of not being required to copy nature, 
many of the constraints and drivers are universal. The raw percepts or stimuli go 
through a lot of preprocessing and transformations before they can be subjected to 
the reason. Consider the optical illusion in Fig. 3.1. Our brain is hardwired to iden-
tify real-world objects, so we get thrown off because they are not there. Moreover, 
it takes actual willpower to treat this image as just an image. The perception mecha-
nisms shape how we think about our environment, and the same goes for AICA.

There are multiple ways to conceptualize the perception in AICA. One possible 
way is in the context of the DIKW pyramid, which conceptualizes the relation 
between data, information, knowledge, and wisdom (Ackoff, 1989). This is depicted 
in Fig. 3.2, where the perception occupies the two lower tiers of the pyramid (data 
and information) but can sometimes venture up to the knowledge tier due to its close 
relation with AICA’s world model. Another way we will adopt in this chapter is a 
pipeline, as shown in Fig. 3.3, consisting of four main parts: physical sensors, logi-
cal sensors, transformers, and the world representation.
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Fig. 3.1 An optical 
illusion

Fig. 3.2 DIKW pyramid. (Baldasarre, 2017)

Fig. 3.3 A simple perception pipeline

Physical sensors: are primarily out of the scope of AICA. Physical sensors process 
non-virtual stimuli reaching the agent from the environment. Each of these sen-
sors has specific operation capabilities, requirements, and physical domain, but 
they all share the need for power. Therefore, AICA using physical sensors must 
very carefully manage its power envelope.
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Physical sensor examples: Temperature or pressure sensors and noise detectors 
could be employed by AICA tasked with maintaining physical security inside a 
building. Perimeter sensors could be used in outside deployment. Gyroscopes 
and lidars may be used within the context of unmanned vehicles.

Logical sensors: in the context of this chapter, they are understood as a counterpart 
to the physical ones. That is any source of data that rests within the software. A 
vast range of data can be fed to AICA in this way. Ranging from its internal state 
measurements, host diagnostics, and network measurements to open-source 
intelligence readings and even news feed. The only common attribute of this data 
is that there is nothing in common. The data provided by logical sensors is het-
erogeneous, with many dimensions, and can potentially require a large band-
width to process. These attributes go counter to the current reinforcement 
learning algorithms, so there is a need for data reduction.

Logical sensor examples: Reading of running processes to gather information 
about the state of AICA and the infrastructure it operates in. Network probe to 
gather information about traffic within a guarded infrastructure. A periodic 
download of the CVE (MITRE) database to provide updates to AICA’s knowl-
edge base.

Transformers: provide means to reduce data complexity, dimensionality, and size. 
They ensure the move from the data tier of the DKIW pyramid up to the informa-
tion tier. They can provide additional semantics to the data and serve as a heuris-
tic that offloads a part of the logic that we do not want the machine learning (ML) 
algorithms to discover. There are many different types of processors, arguably 
more than types of data. The selection of transformers ultimately dictates how an 
agent perceives the environment and how it can reason about it.

Transformer examples: Statistical aggregation and transformation of observed 
network traffic (from packet traces to flows). Anomaly detection (from flows to 
events). Application of ML-driven tools (from events to patterns).

World representation: is AICA’s representation of itself and of the environment it 
operates in. A model of the world as it is being perceived. It is the foundation on 
which the agent chooses its actions and against which their impact is evaluated. 

Fig. 3.4 A complex perception pipeline
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Currently, there exist no firm guidelines for the design of state representation. If 
anything, it is considered an art by some because the representation influences 
which algorithms can be used, how demanding the agent’s training will be, and 
ultimately, what the agent can achieve.

Even though a pipeline is a fitting and easy-to-grasp concept, it gives an illusion of 
serial data processing. However, the sensors are usually independent, and the same 
mostly holds for transformers. As the data is being processed in parallel, delays, 
time skews, and interval differences are bound to happen, as illustrated in Fig. 3.4. 
The impact of these irregularities strongly depends on the agent’s mode of operation 
and choice of algorithms. Passive observing agents are largely unaffected because 
they can evaluate snapshots of the world state as the data comes in. However, for 
active agents, this de-serialization can impact AICA’s efficiency by providing only 
partial observations over a longer time, thus impacting both learning and acting.

This chapter addresses the complexity surrounding the perception and provides 
readers with guidelines and state-of-the-art examples. It does not present definite 
solutions, as many of these problems are still open and subject to research, but all 
the presented approaches have either been peer-reviewed or tested in attempts to 
develop a functional AICA.

2  From Percepts to the World Representation

AICAs will always operate in a partially observable environment. In fact, the obser-
vations provided by sensors will usually cover only a sliver of the environment. 
AICA will not observe, among other things, triggers that make other actors behave 
the way they do. Therefore, to enable rational and sensible actions, AICA must 
construct its belief state to be as close to the objective world state as possible. 
Through a sensible world representation, perception can go a long way to enable 
AICA to do just that. Conversely, choosing a suboptimal world representation will 
widen the gap between the belief and the objective state.

The world representation, as constructed from observations, can be split into 
three categories depending on their complexity and expressive power – atomic, fac-
tored, and structured (Russel & Norvig, 2020). With the atomic representation, 
states are indivisible and without an internal structure. This is the equivalent of 
perception playing no role in shaping the agent’s understanding and providing only 
raw inputs to the decision-making engine. With the factored representation, incom-
ing percepts are processed and represented as collections of attributes. These attri-
butes may be primary, where parts of raw inputs are given their semantics, or 
secondary, where raw inputs are transformed into higher-level representations 
encoding some knowledge. With structured representation, attributes also encode 
their relation to other attributes. Going from atomic, over factored to structured 
representation leads to a sharp increase in expressiveness, where the world repre-
sentation can concisely describe a complex environment and its interactions. 
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However, this increase in expressiveness causes an inevitable increase in complex-
ity, impacting reasoning and learning. Real-world AICA thus may be forced to com-
bine representations of all three categories, carefully balancing the upsides and 
downsides.

Orthogonal to complexity, nevertheless with a considerable impact on creating a 
sensible world representation, is the matter of how perception deals with time. 
While analog sensors may measure continuously and provide an uninterrupted 
stream of stimuli, perception in AICA is inevitably discrete, with processing being 
done in independent time slices (Russel & Norvig, 2020). Meanwhile, sensors are 
unlikely to be synchronized, and their readings (or transformations) arrive at various 
intervals. It is then bound to happen that percepts related to one event will be split 
between two or more time slices. This, in turn, can impact the decision-making 
because the responses to AICA’s actions may be incomplete. Three strategies can be 
used to counter this effect: slice extension, multi-slice perception, and contextual 
perception. Slice extension, as the name suggests, extends the time frame when 
percepts are collected. The problem persists, but the frequency of occurrence 
decreases, and the impact could be considered acceptable at some point. The down-
side is that an acceptable interval may be long enough to hamper AICA’s speed of 
reaction to the point of jeopardizing its mission. With multi-sliced perception, the 
percepts are sampled in parallel with different interval lengths. Perception then pro-
duces multiple state updates, and AICA needs to have a strategy to cope with that, 
either on the perception level or at the decision-making level. With contextual per-
ception, the percepts are still sampled; however, 1 to N neighboring samples are 
inspected, and the completeness of percepts is evaluated in relation to AICA’s 
actions. This approach is the most complex one, as it requires the perception to have 
a clear model of which percepts occur and when. As with the complexity issue 
above, real-world AICA will likely have to combine all three approaches, carefully 
balancing the trade-offs.

The last consideration when designing the perception mechanism of AICA is the 
distinction between active and passive sensors, which can also be viewed as a dis-
tinction between the pull and the push model. Active sensors (pull) gather percepts 
as a result of their interaction with the environment. Passive sensors (push) receive 
stimuli from the environment and do not exert control over when and how it hap-
pens. As such, active sensors can be set in such a way to diminish the impact of the 
aforementioned sampling issue. However, this usually comes with considerably 
increased power or bandwidth requirements, as mentioned in the following text.

3  Power and Bandwidth Constraints

A naïve wisdom would suggest that the more sensors and the more sensory inputs, 
the better. After all, every new sensor can shorten the gap between the world repre-
sentation and the world’s objective state. New sensors can provide new auxiliary 
readings, additional details to already present sensors, and even wholly new 
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percepts enabling the AICA to understand the world around itself. However, with 
each added sensor, there is a trade-off (Theron et al., 2020). On the pure hardware 
level, each enabled sensor equates to energy expenditure. Whether this is a problem 
is a matter of AICA’s deployment. Large stationary installations would probably be 
unaffected; however, AICAs on mobile platforms, personnel, or autonomous devices 
will have a strict power envelope, and the decision which sensors to use and when 
will rest on many factors, which are also shared with sensors on the software level. 
These usually do not have such stringent power limitations; rather, their issue is 
bandwidth. With pull-based sensors, too short sampling rate or too broad data col-
lection can easily overwhelm the ability of AICA to process and reflect on the data.

When designing an AICA, one has to balance several sensor properties and pri-
oritize sensors providing maximum utility for AICA’s operation.

• Sensors (or their percepts) should be ordered by their importance for the decision- 
making process. This entails understanding how the percepts are transformed 
into the world representation and how the representation influences the decision- 
making. This can either be achieved through methods of explainable AI or by 
extensive testing, evaluating the importance of each sensor.

• If the hierarchy is established, a base set of sensors should be selected, and AICA 
should activate the rest on demand.

• Especially for power-constrained environments, there should be a strategy to 
limit sensor function with the smallest possible impact on decision making, e.g., 
turning off sensors, prolonging sampling intervals, switching from pull to push 
mode, etc.

• AICA’s decision-making should also be fortified against sensor impairment or 
partial sensor subversion.

4  Trusting the Perception

One common theme in the literature is that the sensors provide objective input to 
agents’ systems. Whether they are physical or logical sensors, it is taken for granted 
that the percepts they are producing are forming the world representation that is a 
clear reflection of the objective world state. This, however, need not hold in deploy-
ment settings. In fact, unintentional or deliberate fault of sensors can widen the gap 
between AICA’s belief and objective state so much that the actions of an agent will 
go contrary to its goals.

Attacks against physical sensors have been studied in the literature (Nasralla 
et al., 2020; Man et al., 2020). Recently, the interest has been in the area of autono-
mous cars (Yan et al., 2016; Liu & Park, 2021); however, for any potential AICA 
deployment where physical sensors may play a role, the same concepts apply. While 
the faults cannot be eliminated, there are ways to build fault tolerance into the sys-
tem, namely into data acquisition and data processing. For data acquisition, that can 
take the form of active probing of the environment against a known baseline 
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(Shoukry et  al., 2015). For data processing, a simple sensor redundancy, fault- 
tolerant approaches researched in the area of sensor networks, and others can be 
used (Modarez et  al., 2020). Regardless of the chosen approach, there will be 
incurred costs stemming from the need to increase the number of physical sensors, 
both as a procurement cost and increased power envelope.

For attacks against the logical sensors, mostly the same holds as for the physical 
ones. Active probing and sensor redundancy can be employed with the same 
expected results; however, some measures may be unattainable. Consider the exam-
ple of the AICA measuring the state of the machine it is on. If the adversary man-
aged to hide itself via hijacking certain syscalls, no amount of sensor redundancy 
would help because ultimately, every probe or every query would end up calling 
said syscalls, and the adversary would remain hidden. In such a case, only indirect 
information may hint at the presence of an adversary. One may argue that the time 
when an adversary hijacks syscalls is the time when the machine is effectively lost, 
but the same principle applies in different scenarios, where there is only one ulti-
mate source of information for logical sensors, which is susceptible to subversion.

Considering the previous paragraphs, the perception cannot and should not be 
fully trusted, and the possibility of its subversion should be taken into account, 
especially when AICA is being built as a resilient solution operating in an adver-
sarial environment. However, the price to maximize the trust in perception may be 
too high, and alternative solutions may have to be employed. Aside from fault- 
tolerant decision making, multi-agent setups of AICA allow for perception sharing. 
In such a case, the setup can be considered a sensor network, and all the approaches, 
issues and limitations apply.

Finally, the perception may not only be a victim of an external adversary but also 
of wrong expectations. The purpose of perception is mapping sensory inputs to pos-
sible real-world states, with the key word being “possible” here. Most sensors come 
with expectations about the domain of possible values or their combination. 
However, the vast history of program faults caused by unexpected inputs should be 
treated as a cautionary tale. With physical sensors, the domain of percepts is bound 
by physical laws, but with logical sensors, all bets are off. That is why we have a lot 
of provably secure bridges and not many provably secure programs.

5  Developing a Perception Model for AICA

Perception models, i.e., world representations and associated transformations, are 
being extensively researched in the areas of autonomous cars, planes, and robots, 
where correct processing of environmental stimuli is of paramount importance. A 
similar situation is in natural language processing, where approaches to word 
embedding for encoding semantic similarity between words can also be considered 
a perception model for natural languages (Mikolov et al., 2013).

However, perception models for fully virtual entities like AICA are not exten-
sively researched. As mentioned earlier, sensory inputs are treated as objective, and 
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the creator of such a virtual entity is left to develop the perception model on their 
own, despite there being no solid guidance in the literature. Even the seminal work 
of Russel and Norwig, which provides probably the most complete exploration of 
the field of artificial intelligence, only skirts over this topic and rather focuses on the 
transformations of visual and physical stimuli. However, the book at least presents 
three essential properties which a good world representation should have (Russel & 
Norvig, 2020):

• it contains enough information for the agent to make good decisions,
• it is structured so that it can be updated efficiently,
• it is natural in the sense that it corresponds to the real world.

These are essential properties but not as easy to use as a starting point.
Modeling the cybersecurity domain, i.e., creating a perception model that is a 

good representation of the environment and satisfies the three properties above, is 
not an easy task. Unlike the scenarios that are being used across the literature, the 
cybersecurity domain in its entirety is highly dynamic, ever-expanding, and com-
plex. The model has to reflect this to provide actionable information to the agent. 
Nevertheless, with such complexity, one can easily run into the so-called curse of 
dimensionality, when the total number of states that an agent can encounter is only 
a tiny fraction of states that exist in a world representation. And the agent would be 
wasting scarce resources to try and work with it. At the same time, it is not possible 
to simply resort to methods reducing the dimensionality of the representation, such 
as low-dimensional embedding via unsupervised learning (Saul & Roweis, 2003) or 
principal component analysis. While these methods are perfectly applicable in a 
technical sense, lowering the dimension count risk going counter to one of the 
aforementioned properties – that the representation is natural. If AICAs are ever to 
be used as a replacement for human cybersecurity experts or trusted with control 
over infrastructure, a key requirement will be full auditability in the form of explain-
able AI. However, if sensor inputs are non-linearly transformed into compact repre-
sentation, AICAs and humans lose a shared vocabulary for explanation.

Currently, the only way to create satisfactory perception models is to handcraft 
them together with required heuristics (transformations) and painstakingly evaluate 
their efficiency. The author is aware of research in the area of unsupervised dimen-
sionality reduction, which preserves explainability; however, that research is still in 
too early phase to be useful to the reader.

As there do not seem to be guidelines for creating perception models in an area 
as complex as cybersecurity, the following text will present a couple of use cases, 
which should help readers gain insights useful for building their own models. These 
use cases were taken from real-life attempts to create autonomous attackers driven 
by reinforcement learning algorithms.

Each of these use cases was realized within the CYST cybersecurity simulation 
engine, which is, to our knowledge, the currently most complex cybersecurity simu-
lator that is freely available. (Drašar et  al., 2020) CYST is a multi-agent 
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discrete- event simulator based on message passing and tailored for cybersecurity 
applications. Given its complexity, only the parts relevant to the topic of perception 
are introduced in the following text. However, this chapter is accompanied by a 
code repository where the presented use cases are implemented, and readers are 
welcome to try and tinker with the ideas presented here.

5.1  Environment – The Objective Reality

The environment observed by the AICA is the environment simulated by CYST and 
defined by its simulation model. To minimize the cognitive load on the reader, this 
text uses only the bare minimum needed to execute and understand the presented 
use cases. However, if the reader is so inclined, they can further explore the simula-
tion model in the relevant paper or the CYST’s documentation (Drašar, CYST, 2022).

The infrastructure where AICA resides consists of simulated machines on which 
services are running. These machines are connected via a simulated network that 
replicates an ethernet network without networking details. The network is parti-
tioned utilizing active network devices called routers. AICA is just one of the ser-
vices running on one or more simulated machines. AICA communicates with or 
influences the environment through messages. These messages are also the only 
mechanism through which AICA can observe the environment.

The messages used in CYST come in two types: requests and responses. One 
request-response pair represents an entire exchange related to one AICA’s action. 
The fragmentation related to, e.g., packets or even TCP sessions, is treated as an 
implementation detail; thus, the perception is fully realized through observing one 
response to each request. Messages are a collection of attributes, some of whom 
have a factually finite domain, some have a technically finite domain, and the 
domain for some is infinite. The following table summarizes the attributes and their 
function:

Message

id Unique identifier of a message. The id is the same for request and 
response in a pair

type Request or response
src_ip, dst_ip Source and destination IP addresses of the message (IPv4 or IPv6)
src_service, dst_
service

Source and destination service (in simulation treated as a string, 
technically a port number)

ttl Message time to live (used to prevent routing cycles)
metadata Observable statistical properties, such as packet count, flow length, etc.
authentication/
authorization

Authentication or authorization token (multi-factor authentication 
intricacies are purposefully omitted)

session The persistent connection between two services
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Request (in addition to all Message attributes)

Action An effect that AICA wants to achieve (for the purpose of this text, a string from a finite 
domain, otherwise a much more complicated structure)

Response (in addition to all Message attributes)

Status Structured description of the effect of the request. Contains origin (network, node, 
service, system), value (success, failure, error), and detail (an enumeration of possible 
values).

Content Currently, unstructured data sent in response.

Session

Start A tuple containing an originating IP address and a service of the 
session

End A tuple containing a destination IP address and a service of the 
session

These attributes are the variables that AICA can observe for the purpose of this 
text. The number of variables is higher within the CYST simulation, but these were 
omitted for clarity as the added complexity does not affect the proposed approaches. 
Also, despite the previously expressed concern about trust in perception, the pre-
sented use case treats all these observed attributes as trustworthy and reflecting the 
objective state, because CYST does not currently support fabrication of wrong 
percepts.

The following text presents several potential approximations of the objective 
state, which is perceived from the attributes of incoming responses. These approxi-
mations are largely independent, and their ordering rather reflects a thought process 
when developing the perception model than some kind of hierarchy.

5.2  First Approximation – Taking Inputs Verbatim

The first and probably the most straightforward way to represent the objective state 
is based on responses being the only percept that the AICA has. The world represen-
tation is constructed as a set of all possible response values.

Size: The size is 2n, where n is the number of bits in each response. If we take a 
compact representation of the response structure above (and give ourselves a bit 
of leeway in limiting the infinite domain attributes and set the strings at most 256 
bits long), we will reach the n over 1500.

Pros: This representation is very easy to make. Just take the incoming response and 
pass it to the decision-making engine to process.
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Cons: This is a clear case of the curse of dimensionality. States that are to be 
encountered during an AICA’s run will represent only a minuscule portion of the 
entire state space, and the burden of data filtering and turning it into a reasonable 
belief state will be left to the decision-making engine, which will have to expend 
disproportional amount of energy.

5.3  Second Approximation – Elimination of (Semi)
static Observations

As mentioned before, the number of states that could effectively be encountered is 
disproportionate to the size of the world representation. One of the reasons is that 
many observations are static or semi-static within the context of AICA’s operation. 
Consider the type of message. It can be either a request or a response; however, the 
perception only processes the responses. This attribute is static and can be freely 
omitted without any loss of precision. The same goes for source IP addresses and 
services of both message and its session, as these are fixed for the AICA. Destination 
IP addresses can be considered semi-static if all AICAs activities happen within 
specific subnets. In such a case, it is not necessary to process the entire range of IP 
addresses, and only a subset can be a basis for world representation.

Size: The size is still 2n, where n is the number of non-static bits in each response.
Pros: This representation is still as easy as the first approximation to make and 

requires only limited analysis.
Cons: The actual reduction in world representation size depends on the nature of 

observations, and there is no easy way to specify a fixed upper bound.

5.4  Approximation Detour – The Interplay Between Request 
and Responses

The selection of actions is not a responsibility of the perception, as it belongs to the 
decision-making engine. However, unlike many scenarios that can be seen in the 
literature, in cybersecurity, an action may have a similar complexity as a response. 
That is, not some tightly packed domain or one or more real numbers, but a complex 
structure dependent on the observed percepts. AICA thus must be able to use the 
data from the observation and must be able to use them accordingly.

Approximations of the objective state may reduce precision, especially the ones 
in the following text. Yet, AICA’s actions may require precise attributes for their 
correct execution. Therefore, any lossy approximation or transformation must be 
accompanied by supplementary data to enable the reconstruction of the attributes 
within the decision-making engine.
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5.5  Third Approximation – Indexing of Large Domains

Among the attributes in the responses, some expand the world representation unrea-
sonably, at least considering the total number of states the AICA can encounter. For 
such large domains, it is better to keep a dictionary of encountered values and map 
them to an index that is used in the world representation.

Size: This approximation enables almost arbitrary size reduction of the world rep-
resentation by specifying a fixed index size.

Pros: The size reduction does not come with a loss of information and benefits 
larger domains more. The approximation is still comparatively easy to imple-
ment. Using a fixed index with a reasonable eviction strategy can enable AICA 
to forget superfluous observations.

Cons: Using the index can hamper the transferability of the algorithms because the 
mappings of attribute values may not be static. This non-static property can also 
harm the learning algorithms, where a change in mapping between runs may lead 
to wrong transition function inference. Fixed index sizes risk unintended conse-
quences in case of overflow. This is further exacerbated if AICA is trained in 
diverse and fluctuating environments, where diversity of percepts will fuel the 
index overflow.

5.6  Fourth Approximation – State Restructuring

There is a distinct difference between the objective state as was described earlier, 
and the contents of responses. AICA’s version of this objective state  – its belief 
state – is pieced from small probes of request-response pairs. However, there is no 
reason why the perception should not be modeled closer to the objective state as it 
is being understood.

This is one of the possible versions of world representation:

Machine Machine

IP Services Sessions IP Services Sessions …

The perception is centered around the information about possible targets. For 
each target, an IP address, the running services, and active sessions are retained. All 
this information can be index-mapped, especially the services, as their domain is 
finite, and many services are likely to be shared among different machines. There 
would probably be a limit on the number of machines the AICA had in its operat-
ing memory.

Size: is likely to be similar to the third approximation. In this approximation, infor-
mation is only restructured and not necessarily changed.
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Pros: this heuristic approach removes the burden of understanding the world from 
AICA’s decision-making, and it can focus more on the higher-level strategic 
decisions. It also provides a more natural representation that AICA’s operator can 
understand.

Cons: depending on the restructuring, this approximation can help or hinder the 
decision-making process. It is thus very dependent on the capabilities of the per-
son doing the restructuring.

5.7  Fifth Approximation – Explicit Activity History

Operations in the cybersecurity domain naturally have complex dependencies on 
past events. The decision-making process thus has to keep track of what was done 
by AICA, how the counterparty reacted, how the infrastructure evolved, and so on. 
While these considerations can be technically modeled as a k-order Markov pro-
cess, the k would be very large.

Current decision-making algorithms tackle these dependencies, e.g., through the 
use of LSTM neural networks, Gated Recurrent Units, and similar. However, train-
ing and imprinting these memories to be correctly used over disjoint response- 
request pairs can be resource-consuming or currently infeasible.

The alternative is for perception to act as an explicit memory that is (partially) 
taking the role of decision-making processes. In the presented use case, this could 
mean adding new attributes to the world representation by means of also observing 
the requests. The potential representation for a service can then look like this:

Service

Name Version Vulnerable Exploitation attempts Time since the last exploitation

In this case, name and version are taken from responses, vulnerable is evaluated 
by consulting the list of vulnerable services (CVE or such), exploitation attempts, 
and time are taken from requests.

Size: each new attribute expands the world representation; however, this expansion 
can be limited by carefully choosing an appropriate domain.

Pros: this approach, which is the first strong application of transformers into the 
perception pipeline, provides several guarantees that the dependency on LSTM 
and such do not. The memory over which the decision is being made is explicit, 
precise, and does not rely on gradual imprinting into a neural network. This 
explicitness also supports better explainability.

Cons: Some important information may be hidden from the decision-making pro-
cess if the attributes are not chosen carefully.
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5.8  Sixth Approximation – Additional Transformations Within 
the Perception

This final approximation is an umbrella one for every other conceivable transforma-
tion that can be added to the perception pipeline. In principle, each new transforma-
tion moves the logic away from the decision-making engine through heuristics 
application. The goal is to let the decision-making engine concentrate on high-level 
decisions while automating the things that are possible to be automated. Today, this 
approach seems the most viable one to achieve notable results.

6  Summary and Conclusions

Perception is a key component of AICA, strongly shaping and influencing decision- 
making. This chapter introduced perception as a pipeline that acquires, transforms, 
and stores the raw percepts into a form that benefits the decision-making engine the 
most. The extent of this benefit depends on several important decisions taken when 
developing a perception model of AICA:

• What are the intended complexity and expressive power of the world 
representation?

• How should the perception deal with time?
• Should it be actively polling the percepts or waiting for their arrival?
• What power or bandwidth constraints are there for percepts’ processing, and 

what is the importance of specific sensors?
• How can perception be trusted in the adversarial environment?

This chapter discussed these questions and presented trade-offs associated with 
various decisions. It then delved deeper into developing an actual perception model 
for AICA. Because the cybersecurity domain where AICA operates is much more 
complex than the traditional environments used in the literature, it introduced 
CYST, a cybersecurity simulation engine whose simulation model was used as an 
objective reality on which the world representation building approaches were dem-
onstrated. In total, six approaches to approximating the objective state were pre-
sented, and their properties were explored:

• Passing the raw percepts to the decision-making engine.
• Eliminating (semi)static observations.
• Using indexing to eliminate the impact of percepts with large domains.
• Restructuring the world state to a form useful for the decision-making engine.
• Keeping an explicit activity history.
• Including additional transformations within perceptions.
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Because these approaches were developed in the context of CYST, which is freely 
available, users are welcome to try implementing them and experiment with their 
implementation.
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Chapter 4
Perception of Cyber Threats

Kevin Kornegay, Kofi Nyarko, Jeffrey S. Chavis, and Ahmad Ridley

1  Introduction

An important aspect of cyber threat perception is reducing the uncertainty level 
represented by the large volumes of cyber events collected from host-based and 
network-based sensors (Shakut et al., 2020). By automating the collection, filtering, 
and aggregation of these events in real-time, threat perception can be improved. In 
addition, cyber alerts generated from such context can enable the prioritization of 
threat alerts and, ultimately, efficient and effective responses to threats. Autonomous 
Intelligent Cyber-Defense Agents (AICA) can identify and prioritize cyber threats 
faster, and in an increasing number of scenarios, better than human cyber defenders, 
motivating their inclusion in the cyber threat analysis process (Muser & 
Garriott, 2021).
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Fig. 4.1 Cyber-defense monitoring and decision-making feedback loop

Cyber threats can vary depending on the type of network being monitored. 
Figure  4.1 below provides an abstract view of a closed-loop monitoring and 
decision- making system. The sensors, S, collect cyber data from hosts and network 
devices. The data is processed by fixed, rules-based, or machine learning-based 
analytics, producing results such as cyber alerts about potentially compromised net-
work devices. The analytic engine results are aggregated to create a current overall 
network state, which provides a context about the security or availability of the 
network. Based on this state of information, AICA decide how to respond to poten-
tial threats. Any response is implemented on the network using actuators, A. The 
sensors continue collecting data, initiating the next phase of the monitoring loop, 
providing feedback to the agents about the impact of their decisions.

The type of threats against an Internet-connected, open network will differ from 
a closed network with no internet access. Agents monitoring these open networks 
must continuously detect threats originating from internal and external sources, 
while agents monitoring closed networks are probably more concerned about threats 
originating from internal sources. Another example of cyber threat diversity involves 
the homogeneity of hardware and software on a network. The cyber threats to the 
homogenous enterprise networks of Windows workstations and servers vary from 
threats to an industrial control system (ICS) network. Furthermore, the spectrum of 
threats encountered by an agent monitoring a heterogeneous enterprise network 
containing a combination of Internet of Things (IoT) devices, Windows- and Linux- 
based workstations, servers, routers, and iOS- and Android-based mobile devices 
can be extremely large, and complex. Nguyen and Reddi (2021) provide specific 
examples of these types of network environments that can be monitored by AI-based 
agents. AICA have the ability to either quickly detect threats or adapt to various 
threats encountered across these diverse network environments.

One specific type of automated agent is a defensive cyber deception agent. A 
decoy environment consists of realistic, lightweight decoy agents that appear to be 
real systems running real services from an attacker’s perspective performing actions, 
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such as IP address scanning, on the network (Walter et  al., 2021). These decoy 
agents are deployed on a real network alongside real systems to maximize the prob-
ability of detecting and quickly mitigating threats from cyber-attackers. A high 
number of false systems helps provide an asymmetric advantage for cyber defend-
ers by distracting an attacker from the real assets. This forces an attacker to take 
additional actions, increasing the likelihood of revealing themselves and the 
defender detecting the threat in its early attack stage. Leveraging deceptive AICA 
for improved threat perception can be effective in reducing the inherent cyber- 
attacker advantage (Muser & Garriott, 2021).

Since authorized network users usually do not interact with decoys, these agents 
can provide an early warning, high-confidence threat signal to defenders about an 
attacker’s presence (Walter et al., 2021). In contrast to light-weight baits, honeypots 
are a different type of high-fidelity deception system. These high-interaction fake 
systems are connected to but located outside the real network. Once an attacker 
enters a honeypot, defenders can gain insight about cyber-attack threats, such as 
goals and severity level, through further attacker interactions with the deceptive 
honeypot agents. Ferguson-Walter et al. (2019) describe how the impact of cyber 
deception can be extended further, leading an attacker towards a specific incor-
rect belief.

However, there exists a full spectrum of AICA, from automated (i.e., static, 
expert-driven rules) agents to autonomous (i.e., adaptive, Artificial Intelligence 
(AI)-based rules) agents, which can be used to improve cyber threat perception. 
Although automated agents created by human expert-based rules and logic can be 
beneficial, autonomous, artificial intelligence (AI)-based agents evolve. Muser and 
Garriott (2021) describe the potential short- and long-term benefits of AICA, and 
how AICA can adapt to detect changing cyber threats. For example, as network 
administrators add new machines to a network, new hardware and software attack 
surfaces are introduced. The time required for administrators to manually update the 
security rules/policies that guide automated agents would potentially leave the net-
work vulnerable to the speed and scale of new and existing cyber threats. AI-based 
agents that efficiently learn to defend the new attack surface autonomously can miti-
gate this speed and scale challenge better than automated agents.

AICA have been employed to defend against cyber-attacks. Such agents have 
been trained using supervised and unsupervised methods to perform automated and 
autonomous cyber-defense tasks, such as intrusion detection, malware detection, 
and data privacy protection (Shakut et al., 2020). Recently, reinforcement learning 
(RL) has been increasingly used to autonomously detect (and respond) to cyber- 
attacks (Nguyen & Reddi, 2021). Unlike other ML methods, like supervised learn-
ing from labeled input-output examples, an RL-based agent learns its behavior from 
interacting directly with the environment. It is a trial and error approach that attempts 
to imitate the basic manner in which humans learn. Given a state of the environment 
and a reward signal indicating how good or bad an action is, the agent learns a 
sequence of good actions to achieve a goal (Shakut et al., 2020). For cyber threat 
perception, an RL agent can learn from which host or network device to gather 
additional data to reduce the uncertainty of cyber threats. These RL-based AICA 
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Fig. 4.2 Sample enterprise computer network

can also be leveraged to adapt the capabilities of decoy agents to maintain the effects 
of cyber-deception (Ferguson-Walter et al., 2019). Both ML- and RL-based AICA 
provide increased ability to detect threats hidden among large amounts of cyber 
event data.

Different AICA agent hierarchies can be implemented for improved cyber threat 
perception. For example, a single agent can be effective in monitoring a small, 
homogenous enterprise network. The single agent would collect cyber data from 
each devices or aggregated data across each device to perform malware detection. 
For larger, heterogenous network monitoring, this agent structure would be ineffi-
cient. A decentralized hierarchy of multiple agents is more practical and generalizes 
across multiple cyber environments, such as Internet of Things, Cloud Computing, 
and 5G Networks (Nguyen & Reddi, 2021).

Individual agents located on each network device, e.g., the switches, routers, and 
computers shown in Fig. 4.2, provide local monitoring and report their results to 
higher-level agents performing global monitoring. The higher-level agents use these 
results to monitor different network segments, e.g., the wireless and wired seg-
ments. Teaming and cooperation among agents can provide additional benefit in 
reducing uncertainty about the nature of a cyber threat.

Finally, in the remaining sections, we will discuss the potential impact of AICAs 
in a hierarchical, decentralized agent structure in perceiving complex cyber-attacks 
within various, dynamic cyber environments.

2  Simplified Hierarchical Cyber-Defense Agents 
for Threat Perception

As discussed in previous chapters, in general terms, a software agent can be defined 
as a software entity that functions continuously and autonomously in a particular 
environment and can carry out activities flexibly and intelligently that are 
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responsive to changes in the environment (Bradshaw, 1997). Ideally, an agent that 
functions continuously would be able to learn from its experience and inhabit an 
environment with other agents and processes collaboratively and cooperatively, 
moving from place to place as needed (Bradshaw, 1997). In this chapter, the hierar-
chical agent architecture (Palau et al., 2019) is further explored for the purpose of 
conceptualizing the implementation of threat perception in AICA.  More specifi-
cally, cyber-defense agent may be considered as software processes that perform 
specific monitoring and offensive and defensive functions via individualized con-
figurations that may be duplicated or migrated across multiple operating environ-
ments. Hence, these agents are autonomous because they are independently-running 
entities, individuated by their configuration profiles that govern how they sense, 
adapt, and affect their local environment. Due to the agent’s independent nature, 
they can be added, removed, and reconfigured without altering other components of 
the operating environment.

In general, a Cyber-defense agent system should provide the following charac-
teristics: (1) continuous operation, (2) fault tolerance, (3) ability to resist subver-
sion, (4) minimal overhead, (5) dynamic reconfigurability, (6) adaptability, (7) 
scalability and (8) graceful degradation of service (Spafford & Zamboni, 2000). 
Regarding continuous operation, a collection of agents may form a group that per-
forms simple or complex coordinated functions that the individual agent can not 
achieve. The collective agent system can be designed to run continuously if some 
agents are taken off-line, purposely or through malicious intent, thereby providing 
continuous cyber-defense functionality.

When agents are deployed hierarchically, they can capture higher-level system 
states and be able to adapt to changes in global behavior. This hierarchical structure 
enables agents to be inherently scalable. One bottleneck that agents deployed in this 
fashion may face lies in the agents’ communication mechanism. But there are vari-
ous methods of circumventing these bottlenecks by minimizing communication 
between components (Cen et  al., 2014). If the service for one or more agents is 
disabled, the damage is restricted to just those sets, and perhaps those directly 
depend on their service. Thus, if the agents are correctly organized in mutually 
independent sets, service degradation will be gradually proportional to the number 
of agents that stop functioning (Spafford & Zamboni, 2000). The ability to start and 
stop agents independently enables the possibility of reconfiguring dynamically. 
This, in turn, allows other agents or processes to migrate agents by overwriting cur-
rent configurations with configurations from other agents that have demonstrated 
improved effectiveness at a task in a given environment. Because an agent can be 
reconfigured arbitrarily, it can obtain its data from an audit trail, probing the system 
it is running, capturing packets from the network, or capturing data through physical 
sensors. Thus, cyber-defense activities can be supported across traditional boundar-
ies between the physical system, the operating system host, and networks. 
Furthermore, since agents are implemented as separate processes on a host, each 
agent can be implemented in the programming language best suited for the task and 
the host (e.g., light-weight drone vs. enterprise system).
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Fig. 4.3 Simplified hierarchical agents

As illustrated in Fig. 4.3, a simplified agent system architecture could consist of 
generic agent profiles that can be adapted for various functionalities based on their 
configuration. Besides specific task-based functionalities, agents can be configured 
in one of 2 primary types: low-level and supervisory. Low-Level agents are distrib-
uted over any number of hosts, where they either monitor for specific events or 
perform task-specific actions. Each agent can persist in its state for a certain period 
of time defined by its configuration, which enables the detection of long-term 
attacks. Each low-level agent is configured to monitor for one or more events and 
report detected events to a supervisory agent, where one such agent exists per host. 
The supervisory agent oversees all operations of the low-level agents on that host. 
These agents can start/stop low-level agents and send new configurations as needed. 
Supervisory agents exist in a hierarchy in which each one may communicate with 
several parent supervisory agents, where each one monitors and controls several 
child supervisory agents. This architecture provides redundancy and resistance to 
the failure of one or more supervisory agents. These agents have access to network- 
wide data and can thus perform higher-level correlations and detections across sev-
eral hosts. By combining reports from multiple agents, they can build a unified 
picture of the status of their host. Supervisory agents at the highest level of the 
architecture will employ capabilities to interface with users; this may be through a 
graphical user interface, terminal commands, or physical input/output interfaces on 
embedded systems. There are several methods by which agents can communicate 
securely and in a distributed manner, such as through asymmetric encryption over 
TLS/SSL with publish/subscribe (pub/sub) messaging (Farmer et al., 1996).

Low-level agents consume host/network data via another kind of process called 
filters (Spafford & Zamboni, 2000). These filter processors are responsible for 
acquiring specific host/network data types and feeding the filtered data to one or 
more agents. One efficient process by which agents could receive these data streams 
is through a pub/sub messaging implementation. A low-level agent would generate 
a notification when an event is detected on the subscribed data provided by one or 
more filters based on its current configuration. The agent doesn’t have the authority 
to trigger an alarm or action directly. Hence it sends its event to one or more 
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supervisory agents on the same parent hierarchical level. These agents combine 
events received across child agents and communicate across sibling supervisory 
agents to determine the appropriate course of action. Depending on the deployed 
system architecture, the right course of action may be to generate alerts sent further 
up the hierarchy to parent supervisory agents or to directly trigger an alarm or action 
event. Action events are sent across or down the hierarchy to agents capable of 
executing the actions, where the activities may change the host’s communication, 
state information, or physical posture.

Agents may evolve over time based on their function and information obtained 
from their environment. For example, suppose the agent utilizes reinforcement 
learning to detect malicious activity on its local host. In that case, it may evolve to 
better detect behavior based on communication with, and feedback from, supervi-
sory hosts. This evolution would be captured in its configuration parameters, such 
as current learned weights of its neural network. If the agent successfully detects 
desired events, supervisory agents may clone its configuration to other agents on 
other hosts.

3  Autonomous Hierarchical Agents for Anomaly Detection

Anomaly detection in a complex system of systems can be performed on two pri-
mary levels, communication network and application, including environment and 
system state sensing. These systems often have some aspect of mobility where net-
work nodes wander freely and can join and leave a given network arbitrarily. These 
network dynamics impose further complications on effective anomaly detection. 
With traditional centralized solutions, the scale of these types of networks would be 
an issue since anomaly detection solutions would have to factor in load-balancing 
and fault tolerance. However, an agent architecture inherently addresses these fac-
tors with intelligent autonomous agents.

In the AICA architecture, low-level agents disbursed across fixed and mobile 
network nodes detect anomalies by analyzing the events on the systems where a 
data instance designates each event. The data instance possesses defining features 
(i.e., attributes) (Xie et  al., 2011), such as a packet’s source/destination address, 
length, and time at which it was sent for the case of network-level anomaly detec-
tion. Features are crucial for distinguishing normal behavior from anomalous 
behavior. A given communication network typically provides many features per a 
given data instance, yet they are not necessarily all equally informative (Bhuyan 
et al., 2014). Low-level agents can be configured independently to observe varying 
features based on their location within the network and on the systems in which they 
reside. For example, some agents can be configured to use information-theoretic 
approaches to help distinguish informative features (Cen et al., 2014; Ham & Choi, 
2013; Mas’ud et al., 2014). In this approach, Information Gain (IG) (Mitchell, 1997) 
and chi-squared (Sharma, 2005) methods can be utilized to select the most informa-
tive features.
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Fig. 4.4 Example of a point anomaly

Similarly, other agents could be configured to choose features and perform 
anomaly detection based on the Fisher score, the ratio of inter-class variance to the 
intra-class variance for a given feature, assuming that normal instances form a class 
and anomalous instances form another class (Crowley et al., 2003). Agents can also 
be configured to perform a similar method through machine learning (Guyonand & 
Elisseeff, 2003). In the simplest incarnation, agents can be configured based on 
hand-pick informative features to help detect anomalies (Al Marakeby et al., 2010).

Low-level agents can detect anomalies by observing data instances (i.e., point 
anomalies). However, point anomalies do not fit the situations where anomalous 
behavior is an aggregate of data instances, or when anomalies are associated with 
given contexts, as shown in Fig.  4.4. In some cases, the anomalous behavior is 
defined within a context; thus, a given data instance is not anomalous unless it hap-
pens within a predefined context (Chandola et al., 2009). In this case, Low-level 
agents would not conclusively detect anomalies since they may lack the broader 
context of the state of relevant parts of the network or system. Hence, when the right 
conditions are met, they send alerts to the supervisory agents that consider all 
incoming alerts to facilitate the detection of anomalous contextual activity. In con-
textual anomalies, the data instance has to have some features about the context, 
whether temporal (i.e., time-relevant), spatial (i.e., location-relevant), or a different 
kind of context per the problem domain, as shown in Fig. 4.5.

Agents can be configured to detect anomalies through methods that are either 
signature-based (Migliardi & Merlo, 2013) or behavioral (Bhuyan et  al., 2014). 
Signature-based solutions operate by applying a set of hardwired patterns, signa-
tures, or rules against given behavior(s). An anomaly is detected if a given behavior 
matches either one of the hardwired signatures. Otherwise, the agent will not tell 
whether or not the designated behavior is anomalous. While these agents are poten-
tially more efficient in terms of computational cost, which is a practical consider-
ation when deployed on power-constrained platforms, these solutions fail to identify 
new or previously unseen anomalies.
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Fig. 4.5 Example of 
contextual anomaly

On the other hand, behavioral agents can learn the normal and/or anomalous 
behavior(s) of a network and, thus, have the potential to identify whether new or 
previously unseen behavioral patterns are anomalous (Mitchell, 1997). These agents 
are typically supervisory and may experience longer computational times and uti-
lize more computational resources. Hence, its best for these agents to be deployed 
on near-edge platforms or systems.

Individuated agent configurations enable hybrid methods to detect anomalies 
and activities across an entire network. The following are some common approaches 
that an agent can be configured to utilize:

The spectral approach: In some situations, the dimensions of the data instances (i.e., 
features) are inherently dependent. Thus, combining the dependent dimensions 
both improves the classification accuracy and reduces the computational com-
plexity; the application of such a combination transforms the original data 
instances into new instances with only the independent dimensions, formally 
referred to as dimensionality reduction (Wang, 2012). One popular dimensional-
ity reduction technique is the Principal Component Analysis (PCA) algorithm 
which gets applied to a matrix of the original instances and generates a set of 
orthogonal vectors. The first k vectors capture the highest variance and designate 
normal activity, while the last m vectors represent anomalous activity. Hence if a 
data instance is projected into the anomalous subspaces, it can be considered 
anomalous (Chandola et al., 2009)

The Information-Theoretic Approach: Data instances can be a set of symbols gener-
ated by the network or system, whereas each instance is generated independently 
with a certain probability. Thus, one would seek to measure the average amount 
of information conveyed by each instance. This approach utilizes the concept of 
entropy that assumes anomalies distort the information content of the network’s 
data instances. Hence, the anomaly detection technique needs to split the data 
instances into subsets that minimize the entropy (Cen et al., 2014; Ham & Choi, 
2013; Shabtai et al., 2012; Cuadra-Sanchez et al., 2014)

The Machine Learning Approach: Machine learning (ML) agents improve their 
ability to distinguish normal behavior from anomalous behavior with experience 
(Mitchell, 1997). These agents typically provide a mapping that adapts to unseen 
network anomalies (Wang, 2012) by utilizing a set of data instances that resem-
ble the instances within a given system network; this set is referred to as a  training 
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dataset. Supervised ML algorithms learn the mapping function by utilizing 
labeled training sets. On the other hand, Unsupervised ML algorithms utilize 
training sets of totally unlabeled instances. The two approaches are mixed into 
the semi-supervised learning hybrid approach in some cases. The algorithm is 
trained with most unlabeled instances and a minority of labeled instances. A 
machine learning algorithm starts by learning the mapping function from the 
training dataset, then proceeds to the testing phase. It examines “other” data 
instances collectively referred to as the testing set and computes the label for 
each instance using the mapping function learned. Once trained, an agent’s con-
figuration would include the desired ML architecture and associated trained 
weight vectors. ML algorithms can be further categorized into: (1) Classification- 
based, (2) Nearest-neighbor algorithms, (3) clustering.

The main goal of classification-based ML algorithms is to assign each data instance 
to either one of pre-set classes based on their features. Some examples include:

Classification-oriented neural networks: A neural network loosely mimics the 
human neuronal structure and comprises a set of highly interconnected pro-
cesses that operate asynchronously on their local data (Chandola et al., 2009). 
A neural network is trained on normal data instances. After that, it is pre-
sented with unseen cases. Here, the network applies a test on the test data 
instance; it gets accepted as a typical instance if it passes. Otherwise, it is 
considered anomalous. Feed-forward networks are neural networks typically 
used in classification, like multilayer perceptron networks (Cuadra-Sanchez 
et al., 2014). Depending on the labeling of the data, neural networks can be 
used for both supervised and unsupervised learning.
Bayesian networks: A Bayesian network is a graphical model that encodes 
probabilistic relationships among variables of interest (Thottan et al., 2010). 
Bayesian networks are supervised learning algorithms based on the well- 
known Bayes Theory (Mitchell, 1997). They operate by estimating the poste-
rior probability of an event given some pre-condition. A particular class of 
Bayesian networks is referred to as Naïve Bayesian networks used for univari-
ate categorical data instances (Mitchell, 1997). Here, for a given data instance, 
the network estimates the posterior probability of detecting a class label from 
a set of normal and anomalous class labels. The class label with the most 
considerable posterior probability is selected as the class to which the data 
instance belongs. Multivariate data instances are handled via generalizing the 
univariate model, as the posterior probability for each attribute is estimated. 
The estimated probabilities get combined to assign the data instance to a 
given class (Chandola et al., 2009)
Support Vector Machines (SVM): SVMs are supervised learning algorithms 
that represent the training data instances in a multi-dimensional plane and 
then determine a hyperplane that splits the data instances into two disjoint 
groups while maintaining the maximum margins around the separating hyper-
plane (Nigrin, 1993). One-class SVM algorithms are trained only with normal 
data. Thus, upon receiving a test data instance, they predict whether it belongs 
to the normal data class or not. SVMs are well-defined as they stem from a 

K. Kornegay et al.



73

solid mathematical background in statistical learning theory (Nigrin, 1993). 
An SVM algorithm is considered a linear classifier when it uses a line to split 
the data instances into normal and anomalous. To perform non-linear classifi-
cation, SVM algorithms use kernel functions (Gardner & Dorling, 1998).
Rule-based machine learning algorithms: These supervised learning algo-
rithms learn the rules that capture the expected behavior of a data instance. 
Thus, it is considered anomalous when all the rules fail to capture a data 
instance during testing. Decision trees and Association Rule Mining (ARM) 
techniques, among other rule-based methods, are used to learn the rules from 
the training data instances (Crosbie & Spafford 1995; Hofmeyr 1999). Each 
rule is assigned a weight proportional to the ratio of the number of training 
data instances the rule classified correctly to the total number of training 
instances covered by the rule. The rule that best captures the test instance for 
a given test data instance is sought. Here, the anomaly score is the inverse of 
the weight associated with the best rule. Random forests are constructed from 
several decision trees; a random forest reports the mode of classifying all 
individual decision trees as the overall classification result (Heckerman, 2008).

Nearest-neighbor algorithms use distance-based or density-based functions to mea-
sure the distance between a given data instance and its nearest neighbor (Chandola 
et al., 2009) This distance designates the anomalous score of that instance. The 
assumption is that normal instances occur in dense groups, unlike anomalous 
instances. These algorithms can operate in supervised or unsupervised fashions 
based on whether labels are used in training data instances.

Clustering algorithms are unsupervised learning algorithms that operate by trying to 
identify groups (i.e., clusters) of closely located (or similar) training data 
instances. Anomalies may form sparse clusters or belong to no cluster at all. Self- 
Organizing Maps (SOM) (Karnin et al., 2012), Expectation-Maximization (EM) 
(Kecman & Brooks, 2010), k-means clustering (Elbasiony et  al., 2013), and 
Density-Based Spatial Clustering of Applications with Noise (DBSCAN) algo-
rithms (Kohonen, 1990) are classical clustering algorithms.

Based on the anomaly detection techniques discussed, agents can be imbued with 
the ability to perform network-level and application/system level detection effec-
tively. For network-level detection, low-level agents analyze the headers and/or the 
payloads of the messages exchanged in the network and send filtered alerts to super-
visory agents for correlation and detection. For application/system-level detections, 
low-level agents analyze the application or system specification and/or examines its 
behavior during runtime and then report significant events to supervisory agents for 
further action. Generally speaking, agents can tackle anomaly detection using sev-
eral techniques belonging to different disciplines. One approach to anomaly detec-
tion uses either parametrized or non-parametrized statistical methods to model the 
network and/or devices behavior and measure the deviation of anomalous behaviors 
from normal ones. Alternatively, machine learning techniques can be used to learn 
the normal and/or abnormal behaviors and then try to classify or cluster unseen 
behaviors accordingly. In addition, information-theoretic and spectral techniques 
provide different perspectives to help measure how an anomalous behavior differs 
from normal behaviors.
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4  Honeypot Agents

Another class of general agents is one where each agent is designated to collect 
crucial, accurate, concise high-quality information about malicious activities 
(Yegneswaran et al., 2005). These agents facilitate the configuration of computer 
resources to serve as honeypots whose value lies in being probed, attacked, or com-
promised (Ester et al., 1996). With the help of these resources, agents can spot zero- 
day attacks and give insights into attackers’ actions and motivation. Supervisory 
agents can receive log data from honeypot agents for analysis from the systems on 
which they are deployed. The general objective of a computer resource configured 
as a Honeypot is either to distract attackers from their actual target or to gather 
information about the attackers and attack patterns, such as a set of popular target 
hosts and the frequency of requests-responses (Yegneswaran et al., 2005). For the 
AICA architecture, the primary purpose of honeypot agents is to configure systems 
to gather information about the attackers. Once a system has been configured and 
deployed, these agents are responsible for actively monitoring log data (e.g., appli-
cations, services, design) for known text patterns or anomalous patterns for essential 
events. When these events are detected, honeypot agents send alerts to supervisory 
agents for further analysis, resulting in alerts sent up the agent hierarchy or actions 
sent down the order to appropriate agents for execution.

While the AICA architecture includes general agents configured to detect mali-
cious activities through various techniques, this task is often complicated on pro-
duction systems because the attacks are submerged in vast amounts of production or 
mission-critical activity. Honeypot agents can simplify the detection process since 
the systems they configure have no production activity, and thus all connections to 
the honeypot system are suspect by nature. Therefore, unauthorized probes, scans, 
or attacks are easily detected with fewer false positives and negatives (Yegneswaran 
et al., 2005).

Reaction to attacks can be accelerated with the help of honeypots. Because attack 
data is not mingled with production activity data, supervisory agents’ analysis of 
potential attacks is greatly simplified. In addition, honeypot systems can be taken 
offline entirely for further forensic examination. Insights from this analysis can be 
used to reconfigure the honeypot agents for increased effectiveness and help super-
visory agents develop appropriate countermeasures against threats.

For example, an organization that deploys the AICA architecture can redirect 
incoming traffic to unused IP addresses to a virtual machine (VM) configured as an 
SSH honeypot and spun up by a honeypot agent. Agents on the honeypot VM identi-
fies the attackers by IP addresses and then send this information to supervisory 
agents that develop filters to block the access to mission-critical systems. The func-
tionality of the honeypot agents on the VM can be limited, as it only has to recog-
nize the traffic and its source. A more complex honeypot agent configuration might 
help determine which dictionaries were used to guess the passwords. This informa-
tion would be sent to a supervisory agent, which would then use the information to 
update a rule relating to password strength, which would then be sent to the human 
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analyst as an alert. This type of agent configuration would require the analysis of 
extensive log records with SSH credentials.

In general, honeypot agent configurations may be classified in terms of the level 
of interaction (Leita et al., 2008) or the direction of interaction (Spitzner, 2003). In 
terms of the level of interaction, the honeypot agents consider low-interaction, 
medium-interaction, or high-interaction configurations. Low-interaction configura-
tions simulate only a small set of services, such as SSH or FTP, and do not allow the 
attacker to access the operating system. These configurations would be suitable for 
recognizing peaks in the number of requests. Medium/High-interaction configura-
tions provide more simulated services with increasing sophistication that offer 
higher levels of attacker interactions but may still limit access to the operating sys-
tem. These systems would produce reasonable replies to attackers in the hope of 
triggering follow-up attacks. The difference between medium and high levels of 
interactions is based on the levels of risk of compromise, information levels, and 
level of access to the operating system. For honeypot agents configured based on the 
direction of interaction, they fall primarily into server or client-based configura-
tions. Server-based honeypot configurations are entirely passive; therefore, all 
incoming requests form an anomaly and are, by definition, an attack. Client-based 
honeypot configurations actively search and contact communication partners. Thus, 
client honeypots must discern which communications comprise an anomaly. 
Heuristics usually verify this by looking after uncommon modifications.

In summary, honeypot agents enable data collection that is not polluted with 
noise from production activities and is usually of high value. This makes the data 
sets they process smaller and less complex, which reduces their workload and, by 
extension, the supervisory agents to which they communicate their findings. 
Furthermore, honeypot agents deployed on configured VMs only need to process 
traffic directed at them or originates from them. This means that they are indepen-
dent of the workload of their parent process. Additionally, these agents capture 
everything used against them, which means unknown strategies and zero-day- 
exploits will be identified. It should be noted that any activity with server-honeypot 
configurations is an anomaly, which should be considered an attack. On the other 
hand, client-honeypot configurations verify attacks by detecting system state 
changes, reducing false positives and false negatives (Yegneswaran et al., 2005).

5  Perception of Threat Applications

One approach to applying automation to the cybersecurity problem is Integrated 
Adaptive Cyber Defense (IACD). IACD is a research effort jointly funded by the 
US Department of Homeland Security (DHS) and the US National Security Agency 
(NSA), in collaboration with The Johns Hopkins University Applied Physics Lab 
(JHU/APL) and industry. Integrated Adaptive Cyber Defense (IACD) aims to 
shorten the timeline and effectiveness of cyber defense via integration, automation, 
orchestration, and sharing of machine-readable cyber threat information. IACD 
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defines a strategy and framework to adopt an extensible, adaptive, commercial off- 
the- shelf (COTS)-based approach (IACD, 2016).

Since 2014, IACD has been a jointly sponsored government, industry, and 
Trusted agent (JHU/APL) initiative. IACD is an effort to get humans from ‘in the 
loop’ to ‘on the loop’ (Sparrell, 2019). Human-in-the-loop aspects of cybersecurity 
include disgruntled employees, human errors, awareness and training, access con-
trols and certifications. Human-on-the-loop, deals with the lack of Situation 
Awareness (SA) or a Common Operating Picture (COP), increased cognitive load 
and stress that contribute to lower attention span, and the difference in speed 
between technology and human cognition processes (Sundararajan et al., 2018).

Automated Cyber systems like IACD seek to create an ecosystem to alter the 
timeline and efficacy of cyber defense through integration, automation, and infor-
mation sharing. IACD seeks to decouple functions and standardize interfaces 
between functions to and defines the following security functions:

• Sensing: gathering all the data
• Sense-making: correlating and analyzing data, transforming it into information, 

knowledge, and intelligence
• Decision-making: deciding what to do
• Acting: sending the actual commands.
• Socializing: Sharing threat data among interested, trusted parties.

One of the more prevalent forms of attacks that are particularly suited for Automated 
cyber defense is effects-based courses of action. Effects Based Operations (EBO) 
are “actions taken against enemy systems, designed to achieve specific effects that 
contribute directly to the desired military and political objectives” (Caroli 
et al., 2004).

Effects-Based Courses of Action Cybersecurity attacks increase volume, scale, 
and complexity. To address the growing threats, cybersecurity solutions are also 
becoming more complex. To help manage this complexity, Security Orchestration, 
Automation, and Response (SOAR) technology can be used to coordinate the 
actions of multiple security tools. SOAR technology seeks to create a need to ensure 
that the correct information is exchanged between products to provide the necessary 
context to achieve a coordinated response. SOAR platforms enable the Observe and 
Act functions of cyber defense required to Observe, Orient, Decide, & Act, more 
commonly known as the OODA loop, for decision-making and operations.

Now, many security vendors are adding artificial intelligence (AI) and/or machine 
learning (ML) capabilities to their products, which could be used to address and 
improve decision-making functions for cyber security. This division of labor 
between AI/ML solutions and SOAR platforms could help manage cybersecurity 
solutions’ complexity, speed, and scale: AI/ML solutions can be applied to find pat-
terns and decide faster and at scale. In contrast, SOAR can be applied to act faster 
and at scale. Integrated Adaptive Cyber Defense (IACD) demonstrated how to 
bridge these technologies while maintaining human control using effects-based 
courses of action (COAs).
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An effects-based COA is a set of response actions to a cyber-attack, selected 
based on the desired high-level cyber affect – the goals of the response – rather than 
having to specify the exact steps to be executed via a course of action. In a tradi-
tional COA workflow, a SOAR platform starts the workflow, gathers additional 
data/evidence, selects an appropriate COA, and performs its execution – covering 
all the functions of the OODA loop within that single platform. With an effects- 
based COA workflow, an AI capability can be used to gather additional data/evi-
dence and select an appropriate COA based on that data and the desired cyber effect. 
Then the SOAR platform can be used to automate and orchestrate the actions 
required of various security products to achieve that desired response and outcome.

6  Experimentation

IACD conducted an experiment to demonstrate the benefits of combining AI and 
SOAR technologies using effect-based COAs. The experiment used the DarkLight 
AI expert system to provide sense-making and decision-making capabilities, cor-
responding to the Orient and Decide functions of the OODA loop. IACD used the 
Cortex XSOAR platform to control response actions, corresponding to the Act func-
tion. The figure below depicts the workflow for an effects-based COA, where 
DarkLight performed the first few decision-making functions, and Cortex XSOAR 
performed the remaining response actions.

In the experiment, The automated system successfully demonstrated the combi-
nation of DarkLight AI and the Cortex XSOAR platforms to select and execute 
effects based COAs in the face of different attack scenarios, all with a human moni-
toring “on the loop” instead of a human having to decide and act “in the loop.” 
DarkLight made sense of two different attack scenarios – malware conducting data 
exfiltration versus ransomware  – and selected an appropriate effects-based COA 
response for the attack. DarkLight then triggered Cortex XSOAR to execute the 
proper COA for the attack, and Cortex XSOAR orchestrated the response actions of 
the enterprise security products.

Throughout the process, a human monitored the performance of both the AI and 
SOAR components via metrics and summaries of the actions taken. The human had 
specific criteria defined for situations where he/she would take over control. The 
human was available for decision escalation in cases where the AI could not decide 
with a certain threshold level of confidence. The effects-based COA experiment 
successfully demonstrated the ability to coordinate the activities of an AI/ML prod-
uct and a SOAR platform, allowing each to perform functions of the OODA loop to 
which each is best suited while enabling human monitoring and control.

Leveraging automation in IT systems has been shown to provide measurable 
improvements in cyber security. Several organizations have used automation with 
their systems, as shown below:
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• JHU/APL did studies on their network comparing various automation scenarios 
with their current manual scenarios. The most significant finding was that the 
attacks were stopped two orders of magnitude faster, resulting in significantly 
less damage (Peters, 2017).

 – Phantom Cyber, a security orchestration vendor, published similar savings in 
combating phishing. Their customer reduced phishing incident response costs 
by 98% and saved $1.06 M annually (Royer, 2016)

• Zepko, a managed security service provider in the United Kingdom, used 
OpenC2 to increase the efficacy of their Security Operations Centre (SOC) by 
25–30% (Bradbury, 2016).

Automation solutions like IACD are not a cure-all for solving cybersecurity chal-
lenges, but they provide a mechanism to respond to the threat at the speed of the 
threat and not at human speed. Moving forward, much work is needed to evolve 
automation systems to recognize, react and respond to threats as they evolve and to 
deploy solutions to systems in a timely and effective fashion.

7  In Conclusion: Further Research Areas

This chapter aimed to discuss the potential benefits of applying AICA to improve 
the perception of cyber threats for effective mitigation of cyber-attacks. Research on 
applications of different types of AI/ML algorithms and architectures has been per-
formed to evaluate AICA.  As mentioned in other chapters, the practical use of 
AI-based AICA is still relatively new. More research experiments are required to 
answer the following questions and motivate AICA adoption into commercial 
cyber-defense solutions:

• What combination of cyber data, e.g., host, network, cyber threat intelligence, is 
required for optimal AICA performance?

• How do we curate representative cyber datasets for AICA training and testing?
• How do we design and evaluate more realistic simulated and emulated cyber 

environments to train AICA for real-world threat perception?
• What cooperative and competitive multi-agent AI methods can be leveraged to 

evaluate AICA architectures for cyber threat perception?
• How do we mitigate adversarial AI/ML attacks on AICA reasoning and decision- 

making processes?
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Chapter 5
Situational Understanding and Diagnostics

Steven Noel and Vipin Swarup

1  Introduction

Given percepts from the environment, an autonomous cyber-defense agent must 
gain the understanding needed to characterize and assess a given situation. For 
effective decision making, this understanding needs to span the agent itself, the 
system that the agent defends, any threats within the agent’s sphere of operations, 
and the context of the organizational mission. Situational understanding is crucial to 
effective operations not only within cyberspace, but also across all warfighting 
domains (air, land, maritime, space, and cyberspace) as part of multi-domain 
operations.

The core functions of situational understanding are to diagnose the underlying 
nature of a situation, project possible future states, and assess associated risks. This 
includes understanding the scope of adversarial presence, any exploitable vulnera-
bilities and potential adversarial movement within the defended system, and the 
way in which mission elements depend on assets within that system. To perform this 
function, situational understanding needs to employ general models of entity and 
relationship classes within the world, which can be instantiated through parame-
trized templates for a given situation. As situations dynamically evolve, a cyber- 
defense agent must continuously maintain situational understanding and keep its 
domain knowledge updated accordingly.

Given the uncertainties and myriad of concerns in contested environments, situ-
ational understanding can apply lower-fidelity modeling and analysis for managing 
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complexity. For example, it can make more conservative (worst case) assumptions 
about adversarial capabilities. Then, once a threshold level of assessed threat is 
reached, the cyber-defense agent can trigger response and recovery planning for 
more nuanced and multi-faceted treatment in formulating courses of action. To pre-
pare for this planning, situational understanding functionality needs to characterize 
the available defensive options, both passive and active. This includes options for 
reacting to threat situations, as well as options for proactively mitigating system 
weaknesses in advance of attack.

Overall, a cyber-defense agent needs to understand the current situation, what 
the situation should be, and characterize the differences. Furthermore, the agent 
needs to project the current state into potential future situations. When the level of 
risk associated with a situation reaches a threshold level, the agent can trigger 
response planning. This includes analyzing how defensive response actions (alone 
and in combination) affect potential adversary actions and impact mission function-
ality. After the planning and action selection functions decide on a course of action 
and that action is carried out, the resulting effects are perceived through the agent’s 
sensing function, which becomes new input to situational understanding.

In the next section, we provide background material for this topic and outline the 
challenges to be met. The Synthesis and Analysis section explains how an agent 
processes its sensed information, updates its knowledge base, and assesses a given 
situation. The Abstraction and Generalization section shows ways in which an agent 
can manage complexity and adapt to previously unseen situations. The Illustrative 
Examples section considers various practical concerns for the application of situa-
tional understanding and diagnostics. The Recommendations section shares insights 
about potential future directions for research and development in this area.

2  Background and Challenges

Situational awareness is conventionally held to be the perception of entities in an 
environment, the understanding of their meaning, and the projection of their future 
states (Endsley, 1995). The relationship between understanding and knowledge is 
analogous to that between learning and memorizing. From an epistemological 
standpoint, understanding is distinct from knowledge, and has been acknowledged 
as the main goal of cognitive systems (Baumberger, 2014).

Understanding is the ability to reason over gained knowledge and to apply that 
reasoning in flexible ways (Perkins, 1998). Intelligent systems are said to possess 
understanding if they can synthesize new knowledge from previous information and 
knowledge (Ackoff, 1989). Understanding can thus be characterized as the mecha-
nism for transitioning from data to information to knowledge to wisdom (Bellinger 
et  al., 2004), with understanding providing explanations of what has already 
occurred and wisdom illuminating what is best to undertake for the future.

Situational awareness seeks to understand meaning, which lies within the pur-
view of semantics. In this view, meaning is a relationship between an entity and the 
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kind of thing that the entity signifies. Semantic memory is seen as general world 
knowledge, stored as an abstract structure that applies to a wide variety of experien-
tial objects (Yee et al., 2013). One example is a semantic network (Sowa, 1992), 
which is a graph structure for representing knowledge as interconnected nodes and 
edges, e.g., stored in a graph database.

For situational understanding, considering individual events and data elements in 
isolation provides limited value. The low-level elements need to be assessed within 
the full context of the operational environment. Analysis of the interrelationships 
among the individual entities provides the insight needed for truly informed deci-
sion making. The performance of situational understanding can be assessed in terms 
of identifying activities in the cyber domain, including dimensions such as confi-
dence, purity, cost utility, and timeliness (Tadda, 2008). Effectively managing a 
wide range of concerns within situational understanding requires methods such as 
hierarchical rollups with relative importance weighting at each level of the hierar-
chy (Noel & Jajodia, 2017).

Military doctrine acknowledges that situational awareness is a key capability for 
all phases of cyberspace operations (U.S. Joint Chiefs of Staff, 2018). Doctrine also 
recognizes that because of the complexity and scope of cyberspace, the ability for 
humans to achieve and maintain cyber situational understanding is often lacking, 
and methods are needed for mitigating the risks of such inadequate understanding. 
With regards to the emerging doctrine of multi-domain operations, currently no 
capabilities exist for integrated situational understanding spanning all domains 
(Nettis, 2020). Such trends as the convergence of warfighting domains and increased 
warfighter mobility (Buckland, 2021) will accelerate the need for cyber situational 
understanding by intelligent agents.

3  Synthesis and Analysis

Figure 5.1 shows the functional elements and interfaces for Situational Understanding 
and Diagnostics within a cyber-defense agent. The Sensing function provides the 
percepts needed for building an understanding of the current state of the agent itself, 
the system it is defending, and other entities in the world. If Situational Understanding 
and Diagnostics exposes a threat posing a risk, then Planning is invoked for respond-
ing to the threat, and if needed, to recover the agent or defended system to a working 
condition.

Sensing synthesizes raw data into information (including deduplication, normal-
izing, tagging, etc.), yielding processed descriptors about the current state. Sensing 
includes information about the agent itself (to ensure its own operational integrity), 
the defended system (system resources, network connectivity, etc.), previous actions 
taken by the agent on behalf of the defended system, and activities from the environ-
ment at large (including threats and mission dependencies), i.e., that are external to 
the agent and its defended system. Sensing spans all host machines that comprise 
the defended system, including logs from the host operating systems and relevant 
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Fig. 5.1 Situational understanding and diagnostics for a cyber-defense agent

applications, as well as network traffic among the hosts. It includes other relevant 
security information such as vulnerability scan reports, authentication system con-
figuration, access control policy, placement of deceptive elements, intrusion detec-
tion system alerts, etc.

In addition to Sensing, Situational Understanding and Diagnostics for a cyber- 
defense agent depends on the agent’s Domain Knowledge Base. This knowledge 
base abstracts reality to provide semantics (meaning) of perceived information. For 
understanding threats (with corresponding risks or impacts), the agent can extract 
patterns from the knowledge base and compare patterns for current sensed percepts 
against corresponding baseline (goal) patterns. The Domain Knowledge Base is 
itself intelligent, in the sense that it includes ontologies as common vocabulary to 
accelerate information sharing, facts (truth statements), rules (facts with logical 
conditions that make them true), and an engine that can infer new facts.

The Domain Knowledge Base for a cyber-defense agent is comprised of a World 
Model that describes the entities and their relationships within the domain, along 
with behavioral rules within the domain for inferring possible future states (dynam-
ics). The World State describes the world as understood by the agent at the current 
time (Current State), as well as the state of the world as it existed in previous times 
(State History). The functions for model building within the cyber-defense agent 
leverage shared domain ontology so that consistency is maintained throughout the 
Domain Knowledge Base.
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The World Model includes the cyber-defense agent itself, the system that the 
agent defends, and the external environment in which the agent and system operate 
(including cyber threats and mission dependencies). It is based on a logical theory 
of world models in the context of cyber defense, expressed through formal descrip-
tive language. Data sources for building the World Model include system descrip-
tors, cyber threat intelligence, and mission planning information.

The World Model contains knowledge about the agent configuration, e.g., agent 
architecture, communication, collaboration links, processes, and performance indi-
cators. It contains knowledge about the configuration of the defended system (for all 
host and network elements comprising the system) such as known vulnerabilities, 
security mechanisms, and network connectivity requirements. Knowledge about 
cyber threats include the MITRE ATT&CK knowledge base of adversary tactics and 
techniques (The MITRE Corporation, 2015–2021) and standardized enumerations 
and languages under MITRE’s Making Security Measurable effort (The MITRE 
Corporation, 2007–2022), such as Common Attack Pattern Enumeration and 
Classification (CAPEC) (The MITRE Corporation, 2007–2021), Malware Attribute 
Enumeration and Characterization (MAEC) (The MITRE Corporation, 2020) and 
Common Vulnerabilities and Exposures (CVE) (The MITRE Corporation, 
1999–2022).

The dynamical aspect of the World Model captures the behavioral rules and pos-
sible future states of the agent, its defended system, and other entities in the domain 
(such as adversaries and affected elements of a mission). World dynamics can be 
categorized in terms of the entities (internal versus external) taking actions and the 
effects (either internal or external) of the actions taken. Here, internal entities are the 
cyber-defense agent and its defended system, and external entities are cooperating 
agents, threats, mission elements, etc.

World dynamics include ways in which cyber adversaries can exploit multiple 
interrelated vulnerabilities to incrementally penetrate a network (attack graphs), 
e.g., from tools such as MITRE’s CyGraph (Noel et  al., 2016, 2017) and other 
approaches (Kordy et al., 2014; Kaynar 2016; Noel 2018). World dynamics also 
include the potential defensive response actions that the agent can take, as well as 
knowledge about cyber resources in a mission context via methods such as MITRE’s 
Cyber Mission Impact Assessment (CMIA) tool (Musman & Temin, 2015) and 
other approaches (Bodeau et al., 2013; Schulz et al., 2015; Guion & Reith, 2017; 
Heinbockel et al., 2016).

The processing and tempo of knowledge updates need to match that of the sys-
tems or agents providing the data (extracted as information through Sensing). For 
example, vulnerability scans (showing detected vulnerabilities on host machines) 
might be done weekly, ingest of CVE data (showing details for reported vulnerabili-
ties) might be done daily, or network flow records might be available hourly.

Given a current operational state, the cyber-defense agent needs to analyze the 
situation and compare those results to the analytic results for a goal state. For that, 
the agent needs to continually update its Current State by processing new percepts 
from Sensing within the context of the World Model and its dynamics. To analyze 
risks more completely, a cyber-defense agent can project possible future states, map 
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likely end states to impacts on dependent mission elements, and then measure the 
risks and potential impacts in that larger context.

The State History for a cyber-defense agent is a time-ordered track of world state 
descriptors. A logical framework for autonomous agent reasoning about dynamical 
systems is called situation calculus. In the predominant formulation of situation 
calculus (Reiter, 1991), a dynamic world is modeled as progressing through a series 
of situations through various actions. Situation calculus represents changing sce-
narios as first-order logic formulas to express (1) actions that the agent can perform 
in the world, (2) fluents (properties) that describe the state of the world, and (3) situ-
ations (sequences of agent actions).

This situation calculus framework (as opposed to state-based ones) favors logical 
sentences about what is true of the domain and the causal laws in effect, rather than 
explicitly enumerating states and their transition functions. The State History is then 
comprised of the historical record of situations (action sequences) and fluents. 
Under Markovian (memoryless) reasoning, in which decisions depend on the cur-
rent state only, the current world state represents the resulting state after the sequence 
of actions (situation) have been applied to an initial state.

Figure 5.2 shows the processing flow within a cyber-defense agent for Situational 
Understanding and Diagnostics. Percepts (from Sensing) that pertain to the entities 
and relationships in the world (regardless of their current state) are processed by the 
Model Data Processing function to update the World Model in the agent’s Domain 

World
Model

World
State

Sensing Data
Processing

Friend/Foe
Identification

Environment
Identification

Anomaly
Detection

World State
Update

World Model
Update

Attacker TTPs, 
Security Architecture,…

Vulnerabilities, Alerts,
Logs, Messages, 

Mission Context,…

Risk
Analysis

Fig. 5.2 Processing flow for situational understanding and diagnostics
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Knowledge Base. Other Percepts (also from Sensing) involving the evolving state of 
the world are processed by the Sensing Data Processing function.

After processing its sensor data, a cyber-defense agent performs these three 
functions:

 1. Environment Identification assesses any changes about the environment in which 
the agent itself is deployed (physical host, virtual machine, container, etc.). This 
function also identifies the actions that are possible for mitigating cyber risks 
and responding to attacks.

 2. Anomaly Detection identifies potentially anomalous behavior in sensed data and 
produces indicators of compromise (or at least indicators of concern).

 3. Friend/Foe Identification function identifies any potential adversaries and pro-
duces indicators of compromise (e.g., host processes and files) as needed for 
delineating the scope of response actions.

Then, in the World State Update function, the results from these three functions are 
combined with the processed sensor data to update the World State in the agent’s 
Domain Knowledge Base.

Given an updated (current) World State, the Risk Analysis function assesses risks 
associated with that state. An initial phase of Risk Analysis should consider the 
immediate risk, based on factors such as the scope (friend versus foe), severity (ker-
nel, operating system, application, container, privilege level, etc.), and likelihood 
(e.g., from the Anomaly Detection function) of the attacker presence. This phase of 
analysis identifies the impact that an attacker could potentially inflict on the com-
promised resources. Then, relying on knowledge in the World Model about mission 
dependencies on cyber resources, the Risk Analysis function can measure risk in the 
context of mission elements such as critically important functionality or organiza-
tional units.

Risk Analysis can also consider possible future states, independent of any 
planned actions that the cyber-defense agent might eventually take. This provides a 
conservative assessment as a baseline, i.e., the worst-case outcome that could result 
given the current state. For this, the agent can apply knowledge of entity dynamics 
stored in its World Model, e.g., attack graph models. In particular, the agent can 
apply these models to simulate multi-step attacks in which the attacker incremen-
tally increases presence within the defended system.

Such attack simulation starts with knowledge about the scope, severity, and like-
lihood of the current attacker presence, which provides initial conditions as input 
parameters to risk models. This modeling and simulation can also include presumed 
attacker capabilities and how they can be applied within the defended system, given 
the knowledge of existing vulnerabilities. For this, vulnerabilities are to be consid-
ered in the broad sense of any system or network properties that contribute to attack 
success, not just vulnerabilities in the sense of software flaws. For example, the 
presence of password hashes cached on a system represents a kind of vulnerability 
in the sense that they could potentially be stolen and used for authenticated access 
to other systems.
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Then, as such attack modeling and simulation progresses, the Risk Analysis 
function can continually measure risk in the context of mission elements. For this, 
it can apply a potential future state (with updated properties for attacker scope, 
severity, and likelihood) as input to the risk scoring algorithms. These simulated 
attacks can also be constrained to consider only those attack paths that reach 
assumed attack goals (such as mission-critical resources within the defended sys-
tem), thus reducing the space of attack paths to be analyzed.

In some situations, an attacker presence might not be identified by the Anomaly 
Detection function. The cyber-defense agent could still perform an analysis of risk 
that is independent of a known or assumed attacker. Measures such as the number 
of connected components in an attack graph (not constrained by assumed attack 
starts and goals) could be applied in such cases. In considering weakly connected 
components (i.e., ignoring graph edge directionality), the intuition is that it is better 
to have an attack graph comprised of disconnected parts rather than a connected 
whole. Then strongly connected components take edge directions into account, 
yielding sets of nodes such that if an attacker compromises any node in the compo-
nent, every other member of the component can be reached.

Graph diameter can also be applied in situations that ignore attack starts and 
goals. The intuition in this case is that it is better to have an attack graph that is 
deeper rather than shallower. For shallower attack graphs, an attacker can directly 
reach more targets from a given node, saving effort on establishing an environment 
(attacker tools, reconnaissance, etc.) on each new attack platform.

Attack graph distances (numbers of potential attack steps) can be applied in other 
ways for situational understanding. This includes handling false negatives (missed 
detections) by inferring missing attack steps to bridge gaps in reconstructed attack 
sequences. Attack graph distances or numbers of walks can also be applied for esti-
mating adversary effort for achieving certain attack ends.

At any point in this Risk Analysis process, either from the initial attacker pres-
ence, any potential attack presence in future states, or for proactive mitigations in 
advance of detecting actual attacks, the cyber-defense agent can trigger response 
planning to consider courses of action to handle the situation.

4  Abstraction and Generalization

In practice, a World State model for a cyber-defense agent can be large and com-
plex. Just as humans seek to reason about what really matters for effective decision 
making, intelligent agents need to identify invariants, salient features, and general 
characterizations of phenomena in the world. Through abstraction and generaliza-
tion techniques, cyber-defense agents can better manage model complexity and pro-
duce models that can adapt properly to previously unseen situations. Both classes of 
techniques seek to derive simpler models while maintaining the validity of diagnos-
tic results.
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Abstraction emphasizes the qualities and properties of entities in a domain rather 
than their actual values, i.e., it suppresses irrelevant details. A concrete entity can be 
considered a superset of an abstract one, in the sense that the concrete entity can 
contain additional properties not shared by other members of that abstract class. 
Abstraction characterizes what an entity is or what it does, rather than how it is 
represented or how it works. It is therefore the primary way of managing complex-
ity in large models.

Generalization broadens processing to encompass a set of entities of a certain 
type, characterizing trends or common patterns to emphasize the similarities 
between entities. A specific entity can be considered a subset of a general one, in the 
sense that generalization formulates general concepts or rules from specific 
instances. Generalization therefore manages complexity by collecting individuals 
into groups and providing a representation that serves to specify any individual of 
the group.

Figure 5.3 illustrates some aspects of model abstraction and generalization for 
situational understanding in cyber defense. Fig. 5.3a shows the inferred state for a 
current situation, which is represented as an attack graph with intrusion alerts, 
potential exploitation paths, and mission dependencies on cyber assets (Noel et al., 
2021a, b). As an example of model abstraction, in Fig. 5.3b a decision is required 
for whether a particular security patch should be applied. For cases in which there 
are multiple servers that are candidates for patching, an agent might reduce this to a 
single decision, i.e., to apply the patch or not, for all vulnerable servers rather than 
on a per-server basis. Such reductions (along with certain approximations) can 
result in decision making that scales linearly with the size of the attack graph 
(Albanese et al., 2012).

As part of situational understanding, cyber risk analysis needs to consider the 
functional failure modes of software systems (Thieme et al., 2020), both from the 

Fig. 5.3 Some aspects of cyber-defense model abstraction and generalization
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standpoint of cyberattack impacts as well as attack mitigations. As illustrated in 
Fig. 5.3c, the correct functioning of an application requires network connectivity 
between two pairs of hosts (two graph edges) rather than connectivity between a 
single pair (one graph edge) for a given function. Such a set of edges constitutes a 
safety set (in the sense of correct functioning), so that blocking any single edge in 
the set renders the function unsafe. In Fig. 5.3c, there are two such safety sets, with 
one edge in common (i.e., when blocked would render two functions unsafe. Thus, 
situational understanding needs to abstract these safety sets as a compound entity.

Figure 5.3d considers abstraction from the standpoint of a collection of potential 
attack vectors that have a common set of preconditions (conditions needed for 
exploitation) and postconditions (results of exploitation). In this case, there are four 
potential exploits (represented as graph edges) from one host (graph node) to 
another. As a lower level of abstraction, one could represent each potential exploit 
as a separate edge, yielding a multigraph. Figure 5.3d shows the mapping to a higher 
level of abstraction by representing the entire set of four potential exploits as a sin-
gle edge. In terms of situational understanding, this is a worst-case assumption since 
the same outcome would result regardless of which of the four exploits were 
successful.

Another form of abstraction cyberattack models is to partition the elements of 
the model into clusters according to some invariants or similarities in their proper-
ties, and then treat each cluster as a single entity. In Fig. 5.3e, the host nodes in an 
attack graph are clustered according to a common property. In the resulting clus-
tered graph, situational understanding needs only to consider exploitation edges 
between each cluster, with edges within each cluster abstracted from consideration. 
The edges from one cluster to another could be considered individually (a cluster- 
level multigraph) or as a single unit (a cluster-level simple graph). Such cluster- 
based analysis can be done hierarchically (through multiple levels), based on the 
applicable semantics at each level (Noel & Jajodia, 2004).

The way in which entities and relationships are abstracted in models determines 
how a cyber-defense agent can reason about situations. An agent’s planning func-
tion has the responsibility for formulating agent actions in response to threats. Still, 
analytic results (knowledge gained) from situational understating can be applied to 
evaluate the risks associated with given response actions. Conceptually, the applica-
tion of a sequence of response actions simply represents a new situation for the 
agent, which it can evaluate as it does for any situation. This is depicted in Fig. 5.3e.

5  Illustrative Examples

Model clustering can be applied for distributing situational understanding concerns 
across multiple cyber-defense agents that cooperate in defending a system of sys-
tems. This is illustrated in Fig. 5.4. In this example, Nodes 1.x support Defended 
System 1, Nodes 2.x support Defended System 2, etc. Thus, there are four defended 
systems, each with a dedicated cyber-defense agent. Together, these four systems 
constitute a larger system of systems. In this model, each edge represents the set of 
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Fig. 5.4 Distributing situational understanding concerns across cyber-defense agents

all exposed vulnerabilities reachable from one host to another. Each edge is labeled 
with a weight showing the importance (according to some measure) of that edge to 
mission readiness.

Now, consider a situation in which an adversarial presence is detected on Node 
1.1, which is part of System 1. In this situation, the given defensive goal is to pre-
vent the adversary from reaching Node 4.2 (e.g., to protect critical data), which is 
part of System 4. As shown in Fig. 5.4a, the situation can be first considered at the 
system-to-system (rather than node-to-node) level, e.g., by a fifth cyber-defense 
agent dedicated to the overall system of systems. In this case, assume that the fifth 
agent’s planning module has chosen to block the edge(s) from System (Cluster) 1 to 
System (Cluster) 2, as well as the edge(s) from System (Cluster) 3 to System 
(Cluster) 4. Thus the remaining edges need to be monitored as potential paths of 
adversarial exploitation.

This information can be shared with the cyber-defense agents for each defended 
system. Each agent need only be concerned with its local viewpoint of the situation, 
i.e., the situation after the global (entire system of systems) agent has taken its 
actions. Thus, we have the following local situations for each (individual sys-
tem) agent:

• Agent 1 (protecting System 1): Adversarial has a presence on Node 1.1. Prevent 
the adversary from either reaching or leaving Node 1.3.

• Agent 2 (protecting System 2): Adversary will potentially reach Node 2.3 (from 
Node 3.1). Prevent the adversary from either reaching or leaving both Node 2.1 
and Node 2.3.
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• Agent 3 (protecting System 3): Adversary will potentially reach either Node 3.1 
or Node 3.4 (from Node 1.3). Prevent the adversary from either reaching or leav-
ing Node 3.1.

• Agent 4 (protecting System 4): Adversary will potentially reach Node 4.1 (from 
either Node 2.1 or Node 2.3). Prevent the adversary from reaching Node 4.2.

As cyber-defense agents have the responsibility for defending larger environments, 
the ability to effectively manage complexity becomes especially important. 
Partitioning graph-based security models in this way has been shown to provide a 
(1/k)2 reduction in computational complexity, for k clusters (Sabur et al., 2022). For 
example, to better understand trends in network traffic, an agent could cluster hosts 
according to similarities in their traffic patterns, as shown in Fig. 5.5.

The agent begins with a current state having network traffic flows as shown in 
Fig. 5.5a. In this case, there are about 75 host machines. From the input flows, the 
agent builds features (e.g., Jaccard index) for inbound and outbound hosts using 
network addresses, protocols, and port numbers, as shown in Fig. 5.5b. The agent 
then applies the features to compute similarities (in an abstract space) between each 
pair of hosts, as shown in Fig. 5.5c. Hosts having relatively more inbound and out-
bound edges in common are thus deemed more similar.

In Fig. 5.5d, the agent applies a clustering algorithm (e.g., single-linkage agglom-
erative clustering) to compute a cluster hierarchy. This hierarchy represents a 
sequence of nested clustering results (clusters of clusters). The cluster hierarchy is 
parameterized by a threshold value of host similarity, using the host-to-host similar-
ity values computed as in Fig.  5.5c. A chosen value of similarity then defines a 
particular clustering result (partitioning of hosts into clusters), such that each pair of 
hosts in a cluster have similarity within the threshold value.

Applying the approach in Fig. 5.5, the cyber-defense agent can generalize the 
entire set of observed network flows into patterns that apply at the cluster level. For 

Fig. 5.5 Analyzing commonality in host traffic patterns
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example, a straightforward rule is to consider the union of all inbound or outbound 
flows for a cluster (for a period of observation time) as the nominal behavior for all 
cluster members. Then for anomaly detection, any flows into or out of a cluster that 
are not within such a union set could be considered anomalous.

In this approach, the similarity threshold applied to the cluster hierarchy is a tun-
ing parameter that allows the agent to select the amount of generalization. At one 
extreme (largest similarity threshold), there is a single cluster containing all hosts, 
so that nominal behavior is the union of all inbound and outbound flows observed 
for the network. At the other extreme (smallest similarity threshold), each host is in 
its own cluster, so that nominal behavior is restricted to only those previously flows 
(i.e., no union operations occur). That tuning is illustrated in Fig. 5.5e, using the 
total number of rules (inbound and outbound) for the entire network divided by the 
average number of rules per cluster as a generalization measure.

To assess cyberspace risks in the context of organizational missions, situational 
understanding can leverage mappings from mission-critical functions and systems 
to the cyber assets on which they depend. This is illustrated in Fig. 5.6.

Fig. 5.6 Critical mission elements at risk from malware attack
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Figure 5.6a shows notional dependencies for a “call for fires” mission function 
(use of weapons systems to create effects on a target). Here, the graph edges repre-
sent dependencies of mission elements, i.e., the warfighting function (call for fires) 
depends on certain weapon systems, which depend on other systems, which depend 
on certain network services.

In Fig.  5.6b shows the dependency graph augmented with certain hosts and 
observed flows (dashed lines) from a red/blue team exercise network. Here, there 
are four hosts (triangle nodes) that have been infected by malware. In this example, 
given the confirmed presence of malware on these four hosts, a cyber-defense agent 
would seek to trace which other hosts have been communicating with the infected 
ones, especially those hosts providing mission-critical roles. In this case, the 
infected machines have communicated with the domain controllers, which provide 
critical functionality for three of the systems that support the “call for fires” warf-
ighting function, thus putting that function at high risk.

For situational understanding, performing analysis from a threat perspective 
(versus a pure vulnerability perspective) provides a more complete picture. Such 
threat-oriented analysis also needs to consider the defended system’s configuration 
and security posture. Matching threats against vulnerabilities within an operational 
environment focuses the analysis on what is most relevant for understanding the 
situation. Figure 5.7 shows an example of this kind of analysis.

In this example, the network is protected from the internet by an external fire-
wall, and an internal firewall protects critical servers. The client has two vulnerabili-
ties (a remote buffer overflow and a local credentials exposure), although they are 
blocked by the firewalls. The database back-end server has a vulnerability (SQL 
injection), blocked by the internal firewall. The DNS server in the DMZ is vulner-
able to a cache-poisoning attack, exposed through the external firewall.

Fig. 5.7 Matching attack patterns with host vulnerabilities and network configuration
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The nodes at the bottom of Fig. 5.7 are network devices, i.e., the firewalls that 
filter traffic according to specified access policy rules. The nodes above the firewalls 
are security domains (e.g., subnets) that are separated by firewalls, with edges of 
type ROUTES showing which domains have their traffic routed through which fire-
walls. The nodes above the domains are hosts, with edges of type IN (oriented in 
both directions) showing which hosts are in which domains. So, for example, traffic 
between the local DNS server and the attacker (coming from the Internet) is filtered 
by the external firewall, e.g., being allowed via misconfigured firewall rules. While 
this view of the operational domain does not show which connections are allowed 
through the firewall, there are other available views of the model to show that (Noel 
et al., 2015).

In Fig.  5.7, the chain of nodes along the top (connected by edges of type 
PREPARES) is a sequence of interdependent attack patterns (potential exploits) 
relevant to a certain network environment. Each attack pattern is labeled with its 
CAPEC identifier. For example, the first attack pattern in the chain is CAPEC-142 
(DNS Cache Poisoning). The CAPEC-142 attack pattern includes a CanPrecede 
field that references CAPEC-89 (Pharming). This indicates that in terms of an attack 
chain, successful execution of CAPEC-142 (DNS Cache Poisoning) provides post-
conditions that fulfill preconditions for CAPEC-89 (Pharming). In this case, a 
fraudulent record in a Domain Name System (DNS) server can misdirect traffic to a 
malicious domain, e.g., for serving malware to client hosts.

In Fig. 5.7, an edge from a host to a CAPEC attack patterns (of type LAUNCHES) 
indicates the host from which the attack can be launched, and an edge from an 
attack pattern to a host (of type VICTIM) indicates the potential victim host. An 
edge from an attack pattern to a vulnerability (of type AGAINST) gives the reported 
vulnerability on the victim (edge of type ON) that is susceptible to the attack pat-
tern. Here, each vulnerability node is labeled by CVE identifier. For example, the 
local DNS server in the defended environment has vulnerability CVE-2004-1754 
(cache poison via malicious DNS server).

In Fig. 5.7, the vulnerabilities reported in CVE are presumably detectable by 
detected by cyber-defense agent sensors, either potentially exploitable (via vulner-
ability scanning) or exploited (via intrusion detection). Thus, those elements of the 
attack chain are observable. Other attack patterns (i.e., those without corresponding 
CVE vulnerabilities in the figure) could be unobservable (e.g., pharming or applica-
tion fingerprinting). In the case of the Application Login, that event is not consid-
ered an attack pattern per se. Rather, it is a standard operation (logging in) that is 
done for malicious purpose. Such events require other sensor data sources, e.g., 
application logs. Since adversaries are often able to morph their attacks to evade 
detection, some attacks might still be missed by intrusion detection. The kind of 
threat-oriented analysis as shown in Fig. 5.7 can help fill in such missing information.

For this network, an attack graph based solely on vulnerability scan data and 
analysis of firewall rules would show four vulnerabilities, with only one of them 
exposed to the outside (cache poising on the DNS server). Augmentation with threat 
knowledge as shown in Fig.  5.7 gives a more complete understanding of the 
situation:
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• The DNS cache poisoning vulnerability (CVE 2004–1754) is associated with 
DNS cache poisoning (CAPEC-142), which is a pre-cursor to pharming 
(CAPEC-89), in which the poisoned DNS cache directs a web client to a mali-
cious web site.
This is followed by the malicious web site exploiting the client’s buffer overflow 
vulnerability (CAPEC-14 against CVE 2014–1244), which bypasses the firewall 
as an outbound connection, and then stealing the client’s credentials needed for 
permitted access to the database front-end web service (CAPEC-205 against 
CVE 2010–0557).

• The adversary then uses the stolen credentials to authenticate as a regular user on 
the database front-end user interface.

• The execution of CAPEC-170 Web Application Fingerprinting represents the 
adversary abusing the database access to discover the SQL injection vulnerabil-
ity (CVE 2014–1608), which is exploited via CAPEC-110 SQL Injection through 
SOAP Parameter Tampering.

There is in fact a vulnerable path from an outside adversary leading to critical data-
base compromise, while the basic model concludes that no such path exits. This is 
because associations between CAPEC attack patterns fill in gaps between known 
vulnerabilities.

CAPEC includes detailed descriptions of how each attack pattern is carried out. 
An attack pattern is organized as a series of individual steps, with each step prepar-
ing for the next. The attack steps are grouped into three phases: exploration, experi-
mentation, and exploitation. Within each phase, details are provided for each attack 
step, including the criteria for attack success/failure and indicators of attack activity. 
CAPEC also serves an ontological role for attack patterns, being decomposed into a 
hierarchy of attack patterns at different levels of abstraction. In Fig. 5.7, the parent 
(more abstract) attack pattern appears above each CAPEC node, e.g., CAPEC-142 
(DNS Cache Poisoning) is a child of CAPEC-141 (Cache Poisoning). A significant 
portion of the content in CAPEC is expressed as natural language text, which can be 
mined for enhanced agent situational understanding (Noel, 2015).

Once adversaries have a foothold in an environment, they can leverage the inher-
ent capabilities of the entities that they control. This means that they can perform 
operations that benign users would perform, such as system logins or accessing file 
shares. Such operations are not exploitation of vulnerabilities in the usual sense, i.e., 
the software components are not flawed. Rather, they are working as intended, but 
are being abused for malicious purposes.

Key operations that adversaries perform for lateral movement (such as logins to 
remote systems) are of particular interest for situational understanding. Such opera-
tions typically require authentication and are enforced through access policy rules. 
A predominant service for this is Windows Active Directory. Effective situational 
understanding for cyber-defense agents therefore requires understanding how 
adversaries can abuse Active Directory to achieve their aims (Binduf et al., 2018).

Figure 5.8 shows key aspects of an Active Directory configuration for an opera-
tional network. This model is built from the outputs of SharpHound, which collects 
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Fig. 5.8 Relationships within a windows active directory configuration

data as part of the BloodHound tool (Robbins et al., 2016–2019). This model has 
entities in a Windows domain as graph nodes, i.e., users (single-person icon), user 
groups (three-people icon), and computers (text label only). Graph edges show 
users as members of groups. Edges between computers and users or groups show 
which users are allow to login to which computers. The model has other properties 
(such as privilege levels) that further determine potential adversary capabilities.

Of particular interest for situational understanding is to assess risks associated 
with attacker techniques such as identity snowball attacks (Dunagan et al., 2009). In 
such attacks, an adversary who has gained access to a victim host steals the creden-
tials of legitimate users on that host and uses the stolen credentials to launch new 
attacks, via “pass the hash” or other techniques (Jungles et al., 2014). That process 
can be repeated on new hosts in a “snowball” fashion.

To model such risks, a cyber-defense agent needs to model not only the configu-
ration aspect of Active Directory (who can log in where), but also the state of cached 
credentials for hosts across the network (who has logged in where). Agent sensing 
therefore needs to include logs of user logins. For a complete picture of potential 
lateral movement through snowball attacks, the cyber-defense agent needs to cor-
relate Active Directory configuration, cached credential state, and firewall effects. 
That is, all these aspects are preconditions for remote access (logins, file shares, 
etc.) leveraging credential theft.

Figure 5.9 illustrates such a combined model. Here, each node in the graph 
model is a network host. An edge from one host to another represents the ability to 
remotely log in to the remote host via Secure Shell. The remote access edges include 
the fact that the connection is allowed over the network (enforced via 
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Fig. 5.9 Understanding combined effects of authentication events and firewall policy

transport- layer rules), and an adversary could traverse the network (from a particu-
lar starting point) to have the needed credentials at that point in the attack. A certain 
traversal path provides the “witness” (third column of the table in Fig. 5.9) as being 
sufficient to carry out that portion of the attack.

Assessing a cyber-defensive situation usually involves multiple concerns that are 
at odds with one another, constituting a multi-objective optimization problem (Noel 
et al., 2021a, b). For a particular situation, various numerical measures are possible 
to characterize the various security concerns. Informed situational understanding by 
a cyber-defense agent should consider the array of such measures, including track-
ing them over time to analyze temporal trends.

Figure 5.10 illustrates a set of measures that characterize a certain attack/defense 
situation in cyberspace. In this situation, there is an observed adversarial presence 
in a network. The primary goal of the cyber-defense agent is to prevent the adver-
sary from reaching a particular set of hosts containing mission-critical information. 
The various measures in Fig. 5.10 characterize different aspects of the situation, i.e., 
to what extent each aspects support the agent’s goal. The measures are oriented 
from top to bottom as least benefit (bottom) versus most benefit (top) to defense.

In Fig. 5.10, each column represents a certain measure assessing the situation (11 
measures total). For assessing the measures in a methodical way, they fall under two 
main categories: those that characterize thwarting the adversary, and those that 
characterize legitimate access to mission-critical resources. In Fig. 5.10, this is rep-
resented by the Attack and Mission measures (respectively). These high-level mea-
sures are combined (according to relative weights reflecting the current level of 
threat) to form the Overall measure that characterizes the situation. The remaining 
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Fig. 5.10 Various measures assessing a cyber-defense situation

measures (8 of them) fall under either the Attack or Mission high-level measures. 
For example, measure A3 (under Attack) estimates the adversary effort for the 
attack/defense scenario, i.e., the number of available walks through the attack graph 
that result in attacker success. Measure M4 (under Mission, a complement measure 
so that fewer flow losses are ranked as higher values) characterizes access to 
mission- critical resources across the network.

Such multi-faceted situational understanding provides the context needed for 
effective response planning. In Fig. 5.10, each segmented line (running horizon-
tally) assesses a given set of response actions according to the 11 assessment mea-
sures. For this situation (and range of potential response actions), the Overall 
measure ranks response sets according to overall benefit to the defender. For exam-
ple, the response sets with Overall measure above 0.8 all have a maximal value of 
Attack measure (just over 0.62), and a range of Mission measures that are all still 
above 0.83. On the other hand, the three leftmost measures (M1, M2, A1) are the 
same for all potential response sets, so those measures can be disregarded in this 
situation.

This example underscores an important characteristic of modern conflict in 
cyberspace. Defenders must be prepared for adversaries already having a presence 
within their environment. We must assume there is generally considerable overlap 
between reachability to mission-critical resources and reachability that supports 
adversarial aims. This requires a careful analysis of the various factors when evalu-
ating cyberattack situations.
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6  Summary and Conclusions

This chapter examines situational understanding and diagnostics for autonomous 
cyber-defense agents. It explains how an agent processes its sensed information, 
keeps its knowledge base continually updated, and assesses a given situation. It 
shows ways that agents can manage complexity and adapt to new situations. It also 
considers practical concerns for operational contexts.

This chapter focuses on the core functions of situational understanding: diagnos-
ing the nature of a situation, projecting possible future states, and assessing associ-
ated risks. It examines how situational understanding must consider adversarial 
presence, exploitable vulnerabilities, potential adversarial movement, and how mis-
sions depend on defended cyber assets. It describes world models that can be instan-
tiated for a given situation, spanning the agent, the defended system, threats within 
the sphere of operations, and the mission context. It also explains how an agent can 
characterize available defensive options and trigger response/recovery planning 
when it encounters a threshold level of assessed threat.

For new research and development in support of situational understanding for 
cyber-defense agents, a particularly important area to pursue is richer capabilities 
for shared threat knowledge that enable automated building of risk models (e.g., 
based on attack graphs). One example is standard ways of defining attack patterns 
in terms of preconditions and post conditions, so that chains of attack patterns can 
be readily formed. Another example is more direct and complete enumerations that 
associate known vulnerabilities (e.g., reported by vulnerability scanning tools) with 
commonly understood attack patterns. Much of the valuable information in such 
vulnerability and threat reports is provided as natural language descriptions rather 
than in formal knowledge, which impedes progress. Another area of needed 
improvement is the application of formal specifications for mission dependency 
models as a routine stage of system development.

Another challenge for situational understanding is the limited view of the world 
that an agent might have, i.e., limited by the data that can be collected by its sensors. 
For this, multi-agent collaboration could help, although communication with 
friendly agents could be limited in contested environments. Research is also needed 
in ways of integrating situational understanding results across agents, e.g., for 
defending systems of systems. Methods of measuring risks from attack graph mod-
els are also relatively unexplored.

Situational understanding depends heavily on the agent’s domain knowledge 
(world model, dynamics, and state). Thus, limitations in the collection, curation, 
and representation of domain knowledge can reduce the effectiveness of situational 
understanding and diagnostics. A key challenge is developing the appropriate the-
ory, expression languages, ontology, and reasoning needed for such knowledge 
bases. This is especially challenging in resource-constrained environments such as 
tactical military platforms.
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Chapter 6
Learning About the Adversary

Azqa Nadeem, Sicco Verwer, and Shanchieh Jay Yang

1  Introduction: “Know thy Enemy”

Understanding the capabilities of an adversary is one of the first principles of war-
fare (McFate, 2005). It allows to categorize adversaries based on their capabilities, 
and thus help with designing effective and targeted countermeasures. Attacker mod-
eling aims to quantify the risks associated with an adversary. Specific abuse cases 
can be designed using these models and security guarantees can be provided. To this 
end, several threat assessment models have been proposed. For example, the 
Capability, Opportunity, Intent (COI) model, also referred to as the Capability, 
Opportunity, Motivation, Behavior (COM-B) model is one of the most widely used 
threat assessment models in psychology, business management, and military defense 
(Michie et al., 2011; Steinberg, 2005, 2007). “Capability” is defined as an attacker’s 
capacity to undertake the task at hand. “Opportunity” refers to the presence of an 
operating environment that enables the attacker to perform the task, and “Intent” 
refers to the brain processes that make the attacker act upon the task. A “behavior” 
is an act of performing the task itself, and is directly influenced by the attacker’s 
capability, opportunity and intent (Michie et al., 2011). Risk can be measured as a 
product of the attacker’s intent and capability.

Tactics, Techniques and Procedures (TTP) describe the abilities and behavior of 
a cyber adversary. TTPs are usually an expression of an attacker’s training, and thus 
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are extremely difficult to alter, once detected. TTPs relate to an adversary’s capabil-
ity of employing a strategy to obtain their objectives. These strategies are often 
visible in observable data generated by a targeted system, e.g., network traffic and 
intrusion alerts. A vulnerability in the target system presents as an opportunity for 
the adversary, while the adversary’s intent is often implicitly inferred through their 
actions via observables.

1.1  Learning from Observable Data

Obtaining threat intelligence regarding TTPs from observables is extremely diffi-
cult, as indicated by the Pyramid of Pain (Bianco, 2013). The Pyramid of Pain 
describes the difficulty of obtaining various kinds of Indicators of Compromise 
(IoCs), where the difficulty increases as one goes up the pyramid, see Fig.  6.1. 
Lockheed Martin’s Cyber Kill Chain (Hutchins et al., 2011) and MITRE’s ATT & 
CK (Strom et al., 2018) are two of the most popular frameworks to study the struc-
ture of a cyber-attack in terms of tactics and techniques. The Cyber Kill Chain, 
shown in Fig. 6.2, models the attack process as a sequential chain of seven steps that 
an attacker must complete in order to obtain their objective, and thus implementing 
countermeasures to break the chain may be a useful defense strategy. ATT & CK is 
a popular behavioral model for the TTPs used by cyber adversaries. Though 
extremely comprehensive, the attack types in ATT & CK cannot be easily linked to 
observable signatures. Recently, Moskal et al. (Moskal & Yang, 2020) have devel-
oped an Action-Intent framework (AIF) based on the ATT & CK framework that 
links attacker intent with intrusion alert signatures.

There are two main approaches to building adversary behavioral models: expert- 
knowledge- driven and data-driven approaches. Expert-knowledge based approaches 
rely on human expertise curated over several decades’ worth of experiences, which 
makes them largely manual and time-consuming in nature. Many existing tech-
niques are expert-knowledge driven. Consequently, these models must be updated 
periodically to accurately reflect the evolving threat landscape. For example, 
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•ChallengingTools
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Fig. 6.1 The Pyramid of 
Pain (Bianco, 2013) shows 
the difficulty of obtaining 
various levels of Indicators 
of Compromise (IOCs)
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Fig. 6.2 The Cyber Kill Chain categorizes a cyber-intrusion in seven phases, starting with scan-
ning for reconnaissance and ending with actions on objectives

malware detectors often use handcrafted template-based signatures, which are 
straightforward to evade, as indicated by several studies (Afianian et  al., 2020; 
Marpaung et al., 2012). Attack graphs are another example of adversary behavioral 
models. Traditional attack graphs are based on Topological Vulnerability Assessment 
(TVA), which correlates extensive expert input and system vulnerabilities (Noel 
et  al., 2009). As such, the process of constructing such attack graphs is labor- 
intensive, and it is ineffective to constantly rely on vulnerability scanning to accu-
rately capture the threat landscape, since not all vulnerabilities are known in advance 
(Jha et al., 2002).

Data-driven approaches can be automated since they utilize observable artifacts 
collected from intrusion alerts, network traffic, software code, or shared threat intel-
ligence feeds. In recent years, there has been an explosion of data-driven approaches 
for malware detection (Nadeem et al., 2022a; Souri & Hosseini, 2018), malware 
analysis (Ucci et al., 2019; Piplai et al., 2020; Nadeem et al., 2021a), attacker strat-
egy extraction (Alsaheel et al., 2021; Moskal & Yang, 2021a; Nadeem et al., 2022b), 
and intrusion detection (Buczak & Guven, 2016; Rimmer et al., 2022), among other 
tasks. Although quite promising, building effective and reliable data-driven agents 
is difficult: The challenges are related to the quality and availability of the observ-
able data, the assumptions on the used models, and the interpretability and robust-
ness of these models. For example, reconstructing adversary behavior from intrusion 
alerts would only be successful for actions that generated alerts: the actions for 
which the attackers managed to evade detection cannot be observed in the data, and 
consequently cannot be modeled.
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1.2  Definitions

In this chapter, we primarily focus on data-driven autonomous cyber defense agents 
because of their life-long ability to learn without too much human involvement.

For clarity, we define the following terms:

• Cyber adversary: A cyber adversary is a single or group of human actors or 
automated agents that intend to perform malicious actions that harm other cyber 
resources. The actions can also have physical aspects, e.g., as in the case of 
social engineering attacks. The risk associated with a cyber adversary is related 
to their perceived capabilities and intent.

• Adversary behavior: A behavior is a learnt abstraction (model or pattern) from 
observable data that can be interpreted and transferred to other systems.

• Adversary intent: Intent is defined as the relationship between an adversary and 
their action, which lends insights into the motivations that lead to an attack. 
Intent is inferred through observed actions. A framework such as ATT & CK or 
Action-Intent framework aims to connect the intended attack stage with the cor-
responding tactics, techniques and procedures (TTPs).

• Observables: Autonomous cyber defense agents extract observables from data 
sources (via sensing) to learn about adversary behavior. These include, but are 
not limited to, software logs (network traffic, intrusion alerts, system logs), soft-
ware code (malware binaries decompiled or otherwise), threat intelligence 
(feeds shared among organizations, collected through open source threat intel-
ligence (OSINT)). “Features” are attributes derived from observables that model 
the adversary behavior. Note that obtaining real-world and usable observables 
is one of the biggest challenges in constructing autonomous cyber defense 
agents, as described later in the chapter.

In addition, we define an autonomous intelligent cyber defense agent (AICA) as 
being an autonomous, data-driven software agent that learns contextually meaning-
ful cyber adversary behaviors.

• Autonomous: A white box machine learning based semi-supervised or unsuper-
vised agent (model) that does not require frequent human intervention for (re-)
learning. The white box model enables a human-in-the-loop setting where a 
security analyst can debug and understand the inner-workings of the agent.

• Data-driven: An agent (model) that learns from observable data artifacts.
• Contextually meaningful: An agent (model) that produces contextually meaning-

ful output by correlating several temporally-linked observables from different 
modalities in order to provide a holistic view of the threat landscape, instead of 
viewing a single observable in vacuum. The output must also be multi-faceted 
and adjusted according to the operator’s level of understanding.

In the rest of the chapter, we describe the challenges of designing effective data- 
driven autonomous agents, followed by detailed illustrations of three state-of-the- 
art data-driven autonomous cyber defense agents. We specifically focus on agents 
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that learn from traffic induced data. We close with recommendations and future 
research directions for R & D practitioners who are looking to get into developing 
and utilizing data-driven autonomous cyber defense agents.

2  Challenges for Data-Driven Autonomous Cyber Agents

Data-driven autonomous agents utilize some form of machine learning to extract 
patterns from observables in order to learn cyber adversary behaviors, and to detect 
and analyze nefarious activities. Several challenges need to be addressed in order to 
design an effective agent. These challenges are related to the learning environment 
captured by the threat landscape, the availability of observable data, the assump-
tions that go into modeling cyber adversary behavior, and the open-world evaluation 
of said agent. We briefly describe these challenges below:

2.1  Evolving and Adversarial Threat Landscape

In cybersecurity, there is a continual arms-race between attackers and defenders, 
which causes the threat landscape to evolve rapidly, making it near-impossible for 
autonomous agents to rely on supervised learning, or much of a priori expert knowl-
edge. An autonomous agent is expected to perceive the changing adversary behav-
iors and relearn along with them. This can be done by detecting the changing data 
distributions (also known as Concept Drift). Change detection is commonly utilized 
in anomaly detection agents to keep up with the evolving systems. An anomaly 
detector typically models the normal state of a system in order to detect deviations 
from it. Over time, the system behavior may evolve, either due to system upgrades 
or new features, which may trigger the anomaly detector to raise false alarms for 
normal behavior that no longer fits its criteria of normality (Hammerschmidt et al., 
2016; Jordaney et al., 2017. Hence, the agent must detect when the data distribution 
has changed sufficiently and relearn what the ‘new’ normal behavior looks like.

Cyber adversaries also actively try to evade detection by obscuring their activi-
ties. An autonomous agent must expect such evasion attempts and proactively 
defend against them. For instance, malware authors often evade detection by obfus-
cating malware (e.g., by encoding or encrypting it). Malware detector agents can 
fail if the attributes (features) used to model the malware are based on its appear-
ance rather than its behavior. Behavioral features are shown to be more resilient to 
obfuscation attempts (Cai et al., 2019).

With the recent rise of adversarial machine learning for offensive security, a new 
breed of evasive attacks has surfaced that challenge the fundamental laws of machine 
learning. Deep learning models have shown to be particularly brittle to this kind of 
evasion attempts. Firstly, evasive malware samples can be crafted by either perturb-
ing an existing malware sample to look like goodware, or by perturbing it to the 
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extent that it no longer belongs to the training data distribution (a phenomenon 
known as “Out Of Distribution” sample detection). In a study, Kolosnjaji et al. were 
successful in fooling several state-of-the-art classifiers by altering less than 1% of 
the malware code (Kolosnjaji et al., 2018). Secondly, the data on which an agent 
learns can be poisoned so it no longer performs as expected (Chen et al., 2018). 
Thirdly, backdoors may be planted in a trained model so it becomes blind to 
adversary- chosen targets (Severi et al., 2021). These troubling results were followed 
by the proposal of several robust/hardened classifiers that include adversarial exam-
ples in the training process in order to identify and eliminate the so-called “blind 
spots” of the malicious domain. Despite recent advances, many classifiers are 
unable to provide robustness guarantees, making their use and deployment in the 
real-world tricky.

2.2  Data Availability and Quality

The concerns regarding the quality and availability of observable data to train 
autonomous agents is a known problem with multiple facets (Du et  al., 2018; 
Nadeem et al., 2022a). Industry practitioners are hesitant, and are often contractu-
ally not allowed to share observables since they may contain sensitive information 
about their clients. It takes significant efforts and resources to make datasets pub-
licly available. However, open source datasets quickly become obsolete due to the 
rapidly evolving threat landscape. Besides, open source data is often collected in 
isolated lab environments that do not accurately capture reality. For example, the 
well-known CTU-13 dataset (García et al., 2014) contains network traffic collected 
by running botnet-infected virtual machines, where the source IP and source port 
number are highly indicative of malicious hosts. Thus, using these features alone 
results in almost perfect classification. Such a situation almost never occurs in real-
ity. Moreover, seamlessly incorporating real (benign) traffic into synthetic mali-
cious traffic is non-trivial, since the differences in underlying network properties 
makes certain features unusable. For example, timestamps are generally unusable 
for such synthetically generated datasets, while in reality, these are among the most 
critical factors for threat intelligence and are indicative of attacker behavior.

Furthermore, open source datasets often have noisy ground truth labels. For 
example, the malware family names linked to open source malware datasets have 
repeatedly been shown to be noisy and unreliable. To partially resolve this issue, 
VirusTotal (VT) executes multiple Anti-Virus vendors and aggregates their results 
to determine whether a binary is indeed malicious. AVClass (Sebastián et al., 2016) 
was developed specifically to determine the true malware family label among the 
(many) VT labels. This unreliable nature of ground truth makes supervised learning 
very challenging, since the model is learning from faulty labels. Recent works have 
proposed learning from noisy labels as a potential countermeasure (Croft et  al., 
2022), though it is unclear how such methods fare when deployed in the real-world. 
Semi-supervised and unsupervised learning techniques appear to be more suitable 
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paradigms for training autonomous cyber defense agents. For instance, Nadeem 
et al. have utilized unsupervised learning to construct network behavioral profiles of 
malware samples to characterize them, instead of relying on noisy family labels 
(Nadeem et al., 2021a).

Finally, open source datasets are often not at the desired granularity required for 
a specific task. For example, threat intelligence feeds are often too generic to be 
useful (Sauerwein et al., 2017; Schaberreiter et al., 2019. In addition, the majority 
of the traces in network induced observables, such as intrusion alerts and network 
traffic, often reflect benign behavior, while those related to malicious activities are 
rare. Thus, it is often easier to perform anomaly detection on network traffic, rather 
than multi-class classification of the anomalies themselves. Learning with infre-
quent data remains an open problem in the machine learning community (Lu et al., 
2020). A solution for obtaining good quality experimental data is to use honeypots. 
Honeypots are bogus, deceptive systems that lure adversaries into attacking it, and 
enable security practitioners to investigate how a particular threat actor operates. 
Honeypots have been used occasionally to collect granular observables (and threat 
intelligence) in order to understand an adversary’s TTPs (Alata et al., 2006). Though, 
the design of realistic and robust honeypots is an open area of research (Surber & 
Zantua, 2022).

2.3  Modeling Adversary Behavior

The Pyramid of Pain (Fig. 6.1) shows the various levels of Indicators of Compromise 
(IOCs) that can be extracted from observables. As one moves up the pyramid, the 
IOCs get harder to extract. The IOCs regarding adversary behavior and strategy (the 
TTPs) are at the very top of the pyramid. Extracting insights regarding adversary 
strategies is difficult due to a multitude of reasons, one of them being the noisy 
nature of the observables, and another being the arbitrary nature of human actions.

When designing an autonomous agent, one must determine whether to model an 
attack or the attacker, since the former is relatively simpler to model. For example, 
a botnet detector that models the periodicity between network requests is more 
likely to succeed in its objective (Eslahi et al., 2015), compared to an autonomous 
agent that models the time it takes a human adversary to complete a task, which can 
be arbitrarily difficult. As such, autonomous threat actors, e.g., malware are much 
more deterministic than human actors. Thus, the observable features that character-
ize malware and human actors must be different. For example, in order to character-
ize a malware, observable features regarding its functionality are chosen, while to 
characterize a malware’s author, features related to the code writing style are cho-
sen, such as a function’s name, or length of added comments (Nadeem et al., 2022a). 
Ultimately, it is important to borrow insights from clinical psychology and crimi-
nology to understand the role certain features play in order to effectively model 
adversary behavior.
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2.4  Modeling Context

The context (or semantics) of observables is crucial to accurately model adversary 
behavior. In order to comprehend an attacker’s intent, it is paramount to view the 
observable data in the context of different perspectives. For example, one can assess 
a) temporal anomalies such as a host becoming excessively active during early 
morning or weekend hours, when less traffic is observed typically, b) irrational 
access attempts with mismatched port numbers, c) correlated increase in activity 
from multiple sources, and d) unexpected outbound traffic from specific internal 
hosts. An effective autonomous cyber defense agent is expected to learn such con-
textually meaningful adversary behaviors.

Additionally, investigating multiple data sources is important to establish confi-
dence in an agent’s judgment. For example, if an agent detects a data exfiltration 
attempt, only investigating an intrusion alert with data exfiltration signature does 
not provide sufficient evidence. Instead, the corresponding host’s system logs 
should be cross correlated to see if a sensitive file was accessed and transmitted over 
the network. This is known as multimodal learning, i.e., learning from different data 
sources. Multimodal learning is a highly coveted property of autonomous agents, 
but presents a few challenges: (1) Data from different modalities often exist in dif-
ferent dimensionalities that must be brought to a common representation before 
learning, e.g., consider diverse data sources like threat intelligence feeds and net-
work traffic. (2) Aligning and reasoning over semantically-linked events from dif-
ferent modalities is often not straightforward, e.g., a network packet that causes a 
denial of service attack may not have a corresponding entry in the system logs at the 
same timestamp since the system was unresponsive for the duration of the attack. 
Nevertheless, some of the challenges also present as opportunities: (1) Co-learning, 
or transferring what is learnt from one modality across different modalities is a 
promising avenue to handle the unlabeled nature of some modalities, e.g., Knowledge 
graphs can be used as a domain knowledge-rich modality to model adversary behav-
ior from intrusion alerts. (2) Translating one modality to another could prove useful 
for creating synthetic anonymized observables that can be easily shared with the 
research community.

2.5  Interpretable Approaches

Although repeated human intervention is not required to train an autonomous cyber 
defense agent, removing a human analyst entirely from the loop makes it difficult to 
understand what the agent is learning (Sejnowski, 2020). This is more so the case 
for the recently proposed deep learning models and complex ensembles of machine 
learning pipelines that turn the whole agent into a black box. Metrics alone cannot 
adequately capture the performance of such a black box. Without a qualitative anal-
ysis, the metrics may give a false sense of how well an agent is actually working. 
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For example, in a recent study, it was observed that a highly performant “Wolf vs. 
Husky” image classifier in fact did not learn the distinguishing features of the two 
animals, but rather looked at the image background to make its decision (Ribeiro 
et al., 2016). As it turned out, the training data contained all wolf images in snowy 
backgrounds, while husky images in non-snowy backgrounds. This is known as the 
“Clever Hans phenomenon” (Samhita & Gross, 2013). Machine learning models 
can easily learn such biases if the training data contains them, and it becomes 
extremely difficult to debug them if they are black boxes (Rudin, 2019). Aside from 
ethical and moral repercussions, these biases may be exploited by adversaries in 
their favor.

Recent studies show that there does not necessarily have to be a trade-off between 
explainability and performance, i.e., interpretable models can sometimes even 
achieve better performance (Letham et al., 2015). In fact, when a model is interpre-
table, it allows humans to learn from it, which ultimately also elevates human per-
formance. The cybersecurity field has placed a renewed focus on designing 
interpretable and explainable autonomous agents in recent years. There are several 
approaches that attempt to explain the inner workings of a black box model, e.g., by 
learning a simpler surrogate model (Szczepański et al., 2020), or by providing fea-
ture importance (Apruzzese et al., 2020), to name a few. While promising for verify-
ing the correctness of black box models, the fidelity and trustworthiness of these 
explanations themselves can be subjected to attacks (Slack et al., 2020). Therefore, 
there is an increasing emphasis on interpretable by-design models for decision sup-
port, where human analysts are kept in the loop. These approaches enable the 
debugging and auditing of an agent to ensure that it learns exactly what it is intended 
to learn. For example, a recent study proposed a multi-step explanation system to 
make network intrusion detection systems more interpretable (Liu et  al., 2021). 
Their system explains the model internals, its decisions, and also provides explana-
tions based on the level of expertise of the operator. These types of autonomous 
agents are more likely to be deployed and used by security operators since they keep 
the human in the loop and allow them to intervene when necessary.

2.6  Open-World Evaluation

The evaluation of an autonomous cyber defense agent must be designed with care. 
For instance, when dealing with datasets that have noisy ground truth, matching 
predicted labels with true labels is an unreliable and dangerous evaluation tech-
nique. Similarly, for unsupervised tasks such as clustering, the traditional definition 
of a true positive does not hold since data may be assigned to arbitrary clusters in 
different executions. Thus, a pair-wise co-occurrence method that looks at whether 
data items from one class are placed in the same cluster is a more suitable choice 
(Manning et al., 2010).

Furthermore, the choice of certain metrics may lead security practitioners to mis-
leading conclusions (Jordaney et  al., 2016). For example, an anomaly detector 
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trained on a highly imbalanced dataset may not detect even a single anomaly, while 
still achieving impressive accuracy. This is why it is imperative that practitioners do 
not rely entirely on metrics, and attempt to understand the inner workings of the 
autonomous agent. One way to achieve this is by explaining a detected anomaly. Li 
et al. (Li et al., 2019) explain network anomalies using a local explanation method 
that ranks the most important features that led to a network flow being classified as 
an anomaly. These insights not only help security operators generate effective pre-
ventative policies, but also enable them to debug the anomaly detector, if necessary.

Finally, open-world studies investigating the generalizability of autonomous 
agents are imperative to get a glimpse of whether such an agent behaves as expected 
when deployed. Any number of reasons may cause the agent’s performance to 
decline, including incorrect assumptions, mishandled edge cases, data quality, con-
cept drift, and evasion attempts. Recognizing the unique challenges that emerge 
when machine learning meets cybersecurity is the first step towards the solution. 
Sethi et al. (Sethi & Kantardzic, 2018) coin this crossroads between cybersecurity, 
machine learning, and streaming data mining as “Dynamic Adversarial Mining”, 
which considers the combined problems of streaming data mining and adversarial 
learning in order to build generalizable autonomous cyber defense agents.

3  Approaches and Advancements

Below, we describe three cutting-edge cyber defense agents that model contextually 
meaningful adversary behavior with little to no ground truth labels, namely ASSERT 
(use case 1), SAGE (use case 2), and HeAT (use case 3). Although they are not fully 
autonomous, these approaches are certainly pushing the boundary of what can be 
learnt from observables. Note that these use cases specifically design agents that 
learn from traffic induced data, such as intrusion alerts.

In typical enterprise networks, intrusion detection and prevention systems (IDS) 
act as gatekeepers for adversaries, and raise alerts if any malicious activity is 
detected. Intuitively, intrusion alerts can provide insights into the attacker intent and 
it should be possible to reverse engineer attacker behavior from them. However, it is 
a challenging task for supervised learning, since intrusion alerts are rarely accom-
panied by ground truth labels. In this section, we describe three autonomous cyber- 
defense agents that extract insights about adversary behavior and attack campaigns 
from intrusion alerts.

3.1  Use Case 1: Attack Model Synthesis (ASSERT)

In this example, Yang et al. (2021; Okutan & Yang, 2019) aim to monitor the evolv-
ing threat landscape by continuously synthesizing and updating emerging attack 
behavior models. To this end, they develop ASSERT – an unsupervised information 
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theoretic learning framework that analyzes an endless stream of intrusion alerts to 
either dynamically generate a new model when an emerging attack is identified, or 
to update existing models if attack behaviors change. These models aggregate 
numerous related alerts to describe the “type of host” an adversary is targeting, 
“how” they are doing it, and the “intended outcome” they are trying to accomplish. 
Analysts can utilize their time more efficiently by focusing on critical attack models 
instead of the overwhelming streaming alerts. The overall component diagram of 
ASSERT is shown in Fig. 6.3.

ASSERT is an information theoretic, unsupervised, continual learning system 
that consumes streaming alerts to synthesize statistical attack models in near real- 
time without requiring expert knowledge. It takes intrusion alerts generated by 
Suricata (https://suricata.io/) and produces attack models, with both the I/O pipe-
lines in JSON format. ASSERT analyzes aggregated intrusion alerts as non- 
parameterized data distributions in order to identify and separate emerging attack 
models. There are three main components in the core engine of ASSERT: (a) alert 
transformation into attack action aggregates, (b) unsupervised information theoretic 
synthesis of attack models, and (c) interpretation of attack models.

The first component aims to transform heterogeneous alert attributes into a set of 
contextually meaningful attack features. Specifically, ASSERT focuses on the fol-
lowing attack action dimensions:

• Attack Intent Stages (AIS) (Moskal & Yang, 2020): a condensed version of 
MITRE’s ATT & CK categories to imply the intended consequences of an 
observed attack action. A Pseudo Active Transfer Learning (PATRL) (Moskal & 
Yang, 2021a) approach has been developed to automatically transform alert sig-
natures into AIS.

Fig. 6.3 The system architecture of ASSERT. It takes intrusion alerts as input and produces visual 
representations of attack behavior models. (Adapted from Yang et al., 2021)
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• Targeted Services: Contextually, the targeted services, as implied by the port 
numbers, are one of the most indicative characteristics for an attacker’s behavior. 
This is done through a regularly updated mapping of port numbers to known 
services or labels indicating reserved or other uses of TCP and UDP ports.

• Attack Maneuver: This is a mapping of IP addresses to categorical maneuvers, 
reflecting both, the direction of the observed action (i.e., inbound, outbound, 
internal) and the change(s) in source and destination IPs between consecutive 
alerts (e.g., the src IP of the new alert is the dst IP of the last alert, or the new 
alerts has the same src IP but a different dst IP) in the same alert stream.

• Attack Speed: This feature is derived based on the time elapsed between con-
secutive alerts in the same alert stream. The time is discretized in a logarithmic 
manner to reflect the significant variation (from nano-secs to mins or hours) in 
attack speed.

• Attack Source: This feature reflects the “region” and the “blacklistness” of the 
source of the attack based on the IP address(es). Note that the source can be the 
source or destination IP, depending on which one is external to the targeted net-
work and the type of attack actions. For example, the external destination IP of a 
data exfiltration attack would be the attack source, instead of blindly treating all 
the IPs in the src-IP field as the attack source.

The second component is the main algorithm that enables the unsupervised attack 
model synthesis process. Figure 6.4 shows the high-level process, where X is an 
aggregate of attack actions transformed from intrusion alerts by processing small 
batches of alerts, and Q* is the best attack model that matches the characteristics 
exhibited by X. The H() function represents the cross-entropy between the two dis-
tributions, PX and PQ, and serves as a proxy of Kullback-Leibler divergence (KLD) 
since H(PX) is the same in the argmin process. The use of Hmax threshold provides a 
computationally efficient and effective heuristic to determine whether the new 
aggregate sufficiently resembles the best-matched model or should be used to create 
a new model. The Model Quality Index (MQI) measures the overall quality of 

Fig. 6.4 The unsupervised attack model synthesis process of ASSERT. (Adapted from Yang 
et al., 2021)
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model separation in the joint attack feature space, by integrating Jensen-Shannon 
divergence (JSD) and the notion of Wemmert-Gancarski Index (WGI).1

The final component of ASSERT aims to provide an interpretable set of charac-
teristics for each attack model. Continuing the information theoretic framework, the 
characteristic feature for each attack action dimension of model Q is as follows:

 
x p pQ x Q Q Q x Q x
�

� � � � �� � �argmax log#
 

where pQ(x) and pQ x� �  are the probabilities of the feature x in Q and Q  (all other 
models that are not Q), respectively. Intuitively, this finds the feature that is promi-
nent (not necessarily the most) in Q but very rare or non-existent in any other model. 
The characteristic features provide an intuitive way for the analysts to comprehend 
and differentiate the attack models.

The authors worked with a real-world Security Operations Center (SOC) to pro-
cess streaming Suricata alerts and to synthesize attack behavior models. Over a 
month of continuously running ASSERT, the system maintains approximately 20 to 
25 attack models even with tens of millions of intrusion alerts. Fig. 6.5 shows a 
cropped screenshot from ASSERT output. In this case, there were 21 unique attack 
models. One of the attack models drew the analyst’s attention: It shows a potential 
critical persistent code execution attack through Kerboros authentication. This is a 
persistent attack because most of the observed actions are inbound traffic with no 
change on the source or target IPs. There are other malicious activities observed in 

1 https://cran.r-project.org/web/packages/clusterCrit/vignettes/clusterCrit.pdf

Fig. 6.5 (Top) A screenshot of attack models produced by ASSERT with a persistent arbitrary 
code execution through Kerberos. (Bottom) The pie charts show the model’s attack features in 
Attack Speed, Attack Intent Stage, and Attack Maneuver. (Adapted from Yang et al., 2021)
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this persistent attack, including privilege escalation and data exfiltration. 
Recognizing this critical attack model by using the autonomous ASSERT helps the 
analysts to focus on the relevant intrusion alerts and system logs, and determine 
effective remediation to treat the vulnerabilities, and to defend against the adversary.

3.2  Use Case 2: Attacker Strategy Extraction (SAGE)

In this example, Nadeem et al. (Nadeem et al., 2022b; Nadeem et al. 2021b) propose 
a data-driven attack graph approach to extract attacker strategies without a priori 
expert input. Attack graphs (AG) are well-known models of attacker strategies that 
assess pathways utilized by a cyber adversary to penetrate a network. Existing tech-
niques to construct attack graphs are based on Topological Vulnerability Assessment 
(TVA), which requires significant expert input to correlate system vulnerabilities. 
However, it is expensive and ineffective to constantly rely on expert input and vul-
nerability scanning in real-world operations. Meanwhile, SOC analysts often inves-
tigate millions of intrusion alerts on a daily basis. Alert correlation techniques help 
to reduce the overall load of intrusion alerts by aggregating alerts that originate from 
the same attacker action. While useful in its own right, alert correlation does not 
show attack progression and attacker strategies. Instead, in this study, the authors 
define a novel adversary behavioral model, i.e., an “Alert-driven Attack Graph”, that 
learns attacker strategies directly from intrusion alerts without a priori expert input.

The authors develop SAGE – an interpretable sequence learning pipeline that 
constructs attack graphs from the actions observed through intrusion alerts, without 
a priori expert knowledge. SAGE utilizes an unsupervised statistical model, known 
as a suffix-based probabilistic deterministic finite automaton (S-PDFA) to learn 
attacker strategies from intrusion alerts, and display them in the form of attack 
graphs. The authors discuss two application scenarios for alert-driven attack graphs: 
(1) SAGE is designed to augment existing intrusion detection systems for triaging 
critical attack scenarios that might require urgent attention. Thus, instead of investi-
gating thousands of tabular alerts, SOC analysts can visualize attacker strategies, 
and investigate only a selection of intrusion alerts relevant to a critical attack path. 
They can use these AGs to understand how an attack transpired, and to extract threat 
intelligence about adversaries based on historically observed malicious activities. 
(2) Alert-driven attack graphs can monitor and rank red-teaming exercises. For 
instance, AGs can be reviewed after a training exercise to determine which team 
member(s) managed to find the shortest path to an objective, or to find redundant 
paths indicative of communication problems between the team members.

The overall component diagram of SAGE is given in Fig. 6.6. SAGE consumes 
Suricata alerts in JSON format as input, and generates images of the resulting attack 
graphs as output. The steps for learning alert-driven attack graphs are given as 
follows:
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Fig. 6.6 An overview of SAGE. It aggregates intrusion alerts into episode sequences, which are 
used by the S-PDFA to learn temporal and probabilistic relationships between them. Alert-driven 
attack graphs are extracted from the S-PDFA for each victim host and exploited objective. (Adapted 
from Nadeem et al., 2022b)

Fig. 6.7 The S-PDFA learnt from over a million intrusion alerts collected through the Collegiate 
Cyber Defense Competition. The states (vertices) are colored according to severity: the darker the 
color, the more critical the attacker action is. The edges describe an episode as a combination of 
the attack stage and the targeted service. (Adapted from Nadeem et al., 2022b)

• Intrusion alerts are pre-processed and augmented with the Attack Intent Stages 
(AIS) from the Action-Intent Framework (Moskal & Yang, 2020). Similar to the 
previous use case, the attack stages indicate the intended consequence of an 
attacker action.

• The alerts are aggregated into “Episodes” (Moskal et al., 2018) such that an epi-
sode characterizes an attacker action.

• The episodes are arranged in sequences for each attacker-victim IP pair.
• The episode sequences are partitioned for each attack attempt. The start of a new 

attack attempt is indicated by observing a low-severity episode followed by a 
high-severity episode. These episode subsequences form the training data for 
the S-PDFA.

• An S-PDFA is learnt using the FlexFringe automaton learning framework 
(Verwer & Hammerschmidt, 2017). An example of the S-PDFA learnt from over 
a million alerts is given in Fig. 6.7.

• The episode subsequences are replayed through the S-PDFA. This step augments 
the episodes with their respective contextual information (i.e., state identifiers).

6 Learning About the Adversary



120

• Finally, the augmented subsequences are transformed into attack graphs, where 
one attack graph is generated for every objective exploited on each of the victim 
host(s).

Nadeem et  al. identify three design challenges for learning alert-driven attack 
graphs: (1) Alert-type imbalance: Severe or critical alerts are infrequent, while non- 
severe alerts (e.g., related to network scans) are common. Frequency-analysis meth-
ods discard infrequent events as noise, thus making most machine learning methods 
unsuitable for this application. (2) Modeling context: The same alert signature may 
be involved in different strategies. This is indicated by the neighboring alerts, which 
can be used to model an alert’s context so as to distinguish between similar attacker 
strategies. (3) Interpretable model: SOC analysts are often contractually obligated 
to investigate all alerts, making black box models inherently unsuitable since it is 
often not possible to reverse engineer the alerts behind a classifier decision.

The S-PDFA is responsible for addressing the design challenges: (1) A suffix- 
based model is specifically chosen to highlight infrequent episodes, without dis-
carding any low-severity episodes. Since severe episodes always appear at the end 
of the episode subsequences, a suffix-based model is a natural choice. (2) The state 
identifiers of the S-PDFA model capture an episode’s context. Using the Alergia 
heuristic (Carrasco & Oncina, 1994) for state merging, states having similar futures 
and pasts are merged, while those leading to significantly different outcomes are 
not. (3) The Markovian property of the S-PDFA, together with Sink states make the 
model components interpretable. Sinks are states that occur too infrequently to 
learn from. The authors remove low-severity sinks from the S-PDFA, making the 
model cleaner and easier to follow. Additionally, the Markovian property ensures 
that the input transition symbols of a state are unique, making it easier to interpret 
the meaning of a state. In this case, the states represent milestones achieved by an 
attacker. Overall, the S-PDFA shows a bird’s eye view of all the attacker strategies 
that can be observed in an alert dataset. The deterministic nature of the S-PDFA 
makes it algorithmically-transparent. The parameters of the model are selected 
through trial-and-error of visualizing the S-PDFA until it matches the authors’ intu-
ition about the data, making it design-transparent (Roscher et al., 2020).

A notional alert-driven attack graph is shown in Fig. 6.8. The root node of an 
alert-driven attack graph shows the IP address of a victim host and the objective 
exploited on that host. The graph shows all the attempts made by the attackers to 
reach the objective. The vertices reflect actions (characterized by episodes) taken by 
the attackers to obtain the objective, while the edges are annotated with timestamps. 
All adversaries that achieve the objective are shown in the same graph to aid strat-
egy comparison. The authors compare the complexity of the attack graphs (in terms 
of vertices and edges) against several baselines, and find that SAGE generates the 
most succinct graphs.

The authors learn attacker strategies used by participating teams in the Collegiate 
Penetration Testing Competition (CPTC) (Munaiah et al., 2019), and the Collegiate 
Cyber Defense Competition (CCDC) from 2018. The CPTC alert dataset is com-
posed of 330,270 Suricata-based alerts generated by 6 participating teams, while the 
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Fig. 6.8 A notional alert-driven attack graph showing paths towards an objective. Each vertex 
represents an episode. The vertex labels are <mcat, mServ, sID>, reflecting the AIF attack stage, 
targeted service, and state identifier from S-PDFA. The vertex shape indicates the episode severity. 
The root nodes reflect the attacker’s objective and the victim host. The dotted vertices reflect the 
sink states. The edges show attack progression and are annotated with the time since the first alert 
was captured. The attacker’s IP address is stated next to the first action in an attack path. (Adapted 
from Nadeem et al., 2021c)

CCDC dataset is composed of over one million alerts. SAGE compresses all the 
CPTC alerts into 93 attack graphs, and all the CCDC alerts into 139 attack graphs. 
These graphs show the strategies employed by the various attackers to obtain their 
objectives. By visualizing the alert-driven attack graphs, the authors observe several 
insights regarding attacker strategies: First, the attackers seem to follow shorter 
paths to re-exploit objectives in 84.5% of the cases, which also appeals to common 
sense, since an attacker does not necessarily need to go through reconnaissance and 
scanning when they already know how to exploit a vulnerability. Second, they dis-
cover potentially scripted attacks by observing identical attack graphs for several 
hosts. The intuition is that the automated nature of a scripted attack targets several 
hosts simultaneously, which results in identical attack graphs for these hosts. An 
example of a potentially scripted data exfiltration attempt is given in Fig. 6.9 that 
shows identical attack graphs for two different victim hosts. In addition, the authors 
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Fig. 6.9 The alert-driven attack graphs from two different victim hosts. They show that two 
attackers attempt to exfiltrate data over the HTTP service on both hosts, where one team takes 
significantly more actions to obtain the objective than the other. Both the attack graphs are identi-
cal in terms of the attacker actions and their timestamps, indicating a potentially scripted attack 
attempt. (Adapted from Nadeem et al., 2022b)

posit that the rarity of certain attack paths can serve as fingerprints for attacker re- 
identification. They also propose a metric based on weighted average percentage to 
rank the participating teams based on the fraction of observed critical actions. This 
metric can provide a faster and cheaper alternative to manually ranking teams. 
Finally, by comparing the S-PDFA models of different alert captures, the authors 
conclude that it might be easier to break the cyber kill chain, and to place 
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countermeasures in some network infrastructures, depending on the reachability of 
critical milestones.

3.3  Use Case 3: Attack Campaign Discovery (HeAT)

In this example, Moskal et al. (Moskal & Yang, 2021b) aim to reverse engineer an 
attack campaign, given a critical intrusion event. They develop HeAT  – a semi- 
supervised learning system that incorporates analyst domain knowledge regarding 
the contribution of intrusion alerts to an attack campaign in a so-called “Alert 
Episode HeAT” value. For a given critical event, prior alerts are grouped into alert 
episodes and each alert episode is given a HeAT value estimating its contribution 
towards the critical event. A HeAT value of 0 indicates no contribution, and a higher 
value indicates increasing contribution towards the critical event. This way, HeAT 
sorts out the relevant alert episodes and gives an estimated progression of how past 
malicious activities have led to the critical event. HeAT tries to mimic and automate 
the triaging process of human analysts by learning their emphasis on particular 
features (such as port-service, attack intent stages, and IP addresses) to reconstruct 
an attack campaign. The system overview of HeAT is shown in Fig. 6.10.

Moskal et  al. define an “Attack Campaign” as a sequence of attacker actions 
showing how an attacker(s) gained initial access to the network and eventually 
obtained their objectives. In other words, an attack campaign enumerates multi- 
stage actions leading up to a critical event, by taking into consideration the net-
work’s context (e.g., services running, IP subnets) and the relationship between 
prior alerts and the critical event, similar to that used for ASSERT (Use case 1). An 
“Alert Episode HeAT” is a numeric value between 0 and 3 that captures the analyst 
opinion about the contribution of a given alert episode to a critical event. To this 
end, the authors curate a small labeled dataset composed of intrusion alerts and their 

Fig. 6.10 The system overview of HeAT. It aggregates intrusion alerts into episodes, and extracts 
features from them. These features are used in a tabular model to predict their corresponding epi-
sode’s HeAT value. Given a critical event, the episodes with high HeAT values are used to recon-
struct an attack campaign. (Adapted from Moskal & Yang, 2021b)
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corresponding HeAT values that are manually assigned by security analysts. They 
train a tabular model on this labeled dataset to predict HeAT values of other 
unseen alerts.

The process of attack campaign extraction is as follows:

• Intrusion alerts are aggregated into episodes using a Gaussian smoothing 
approach on a per-attack stage basis. Note that the concept of an episode is simi-
lar to that of SAGE (Use case 2) with a different implementation.

• Several network agnostic features are used to characterize the timing-related, 
IP- related, and action-related differences between two episodes. These network 
agnostic features allow to uncover similar attack campaigns across different net-
work infrastructures.

• The features are given to the tabular model to predict the HeAT values. Naturally, 
the HeAT values are predicted for alerts that had appeared before a selected criti-
cal alert.

• Finally, the alerts with non-zero HeAT values are used to reconstruct the attack 
campaign.

The authors also propose an entropy-based “HeAT-gain” metric to evaluate the 
quality of extracted attack campaigns. This metric is based on the diversity and 
completeness of attack stages in the attack campaign, the reduction of irrelevant 
alerts in the attack campaign, and the overall coherence between analyst opinions 
and the predicted HeAT values for the alerts in the attack campaign. The authors 
envision that HeAT-gain can also be used to prioritize attack campaigns.

The authors extract attack campaigns from the Collegiate Penetration Testing 
Competition (CPTC) (Munaiah et  al., 2019), and the Collegiate Cyber Defense 
Competition (CCDC) from 2018. They observe that the CodeRed exploit appears 
several times in both datasets. Specifically, in the CPTC dataset, they present an 
example of two different types of adversaries that exploit CodeRed in significantly 
different ways, i.e., a script kiddie and a calculated adversary. The authors find 144 
episodes showing that the script kiddie targets multiple different hosts with approxi-
mately uniform time between attempts, indicating a scripted attempt. On the con-
trary, there are 19 episodes related to the calculated adversary, showing that they 
consistently target a single host with significant time between attempts. HeAT suc-
ceeds in discarding a remarkable amount of irrelevant alerts for this exploit in the 
given time-frame, i.e., a reduction of 71% and 92% episodes for the script kiddie 
and the calculated adversary, respectively. They also demonstrate that the HeAT 
values learnt from the CPTC dataset can be used to identify similar exploits in the 
CCDC dataset, which was collected in a significantly different environment. 
Figure 6.11 shows an attack campaign extracted from the CCDC dataset for the 
CodeRed exploit. The authors find striking similarities between the campaigns from 
both datasets. Namely, the adversary found a vulnerable SMB share that enabled 
them to deliver malware to the victim host. POP and IMAP are targeted due to a 
vulnerability in the mail server, which is used to gain initial access to the victim 
host. They also use the Shellshock vulnerability and SMTP verification of root 
access to gain further access to the victim host. Even though this attack campaign is 
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Fig. 6.11 HeATed attack campaign for the CodeRed exploit from the CCDC dataset. (Adapted 
from Moskal & Yang, 2021b)

not exactly identical to the ones found in the CPTC dataset, the authors demonstrate 
that HeAT generalizes to other network infrastructures and enables analysts to find 
similar attack campaigns.

4  Thoughts and Future Opportunities

The three cyber defense agents described in Sect. 3, namely ASSERT (use case 1), 
SAGE (use case 2), and HeAT (use case 3) actively address the challenges listed in 
Sect. 2:

• The three agents are designed specifically to help security analysts manage the 
rapidly evolving threat landscape. Particularly, ASSERT continuously creates 
and updates attack behavior models as new intrusion alerts come in. All three 
agents use several open source unlabeled experimental datasets that resemble 
real-world operations.

• They also conduct extensive qualitative analysis since they operate in either 
semi-supervised or unsupervised settings. The three agents model adversary 
behavior differently, i.e., ASSERT builds attack models with an emphasis on 
continual learning, HeAT reconstructs attack campaigns with an emphasis on 
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forensic analysis, and SAGE models attacker strategies with an emphasis on 
threat intelligence.

• In addition, they all model contextual information using some combination of 
temporal and statistical features. SAGE particularly also discovers probabilistic 
patterns in intrusion alerts to model their semantics.

• Finally, the three agents utilize visual analytics to communicate their findings 
with security analysts. SAGE specifically uses an interpretable model, and has a 
detailed explainability analysis of all its components.

Needless to say, developing a data-driven autonomous cyber defense agent is a chal-
lenging task. When designed carefully, such an agent can increase the productivity 
of security analysts by tenfold. However, it is not always straightforward to realize 
when an agent works as expected. Below, we list a few recommendations for R & D 
practitioners and researchers who are getting started in this field:

• While observable data reveals a lot about an adversary, it does not show the full 
picture: It requires carefully selected data sources to form a reliable picture of an 
adversary’s behavior, and even then, putting those data sources together is not so 
straightforward (recall the challenges from, e.g., Multimodal learning). 
Oftentimes, the ideal dataset is not even available, and one must make do with 
noisy and unlabeled datasets.

• Beware of spurious and undesired correlations learnt by autonomous agents: 
First, if there is bias in an observable dataset, it will likely be learnt by the auton-
omous agent, making it behave unexpectedly, especially for minority classes. 
Second, an autonomous agent will find patterns even when there are none in the 
training dataset. For example, a clustering algorithm will always find clusters, 
even when the dataset does not have any. Therefore, it is important to run an 
autonomous agent on drastically different use cases and verify its output, when-
ever possible.

• Be prepared to handle a lot of false positives, but also be on the lookout for false 
negatives: Autonomous agents will likely never achieve a 100% accuracy in 
modeling adversary behavior, owing to the complexity of the real world and the 
noise in observables. These errors can either appear as false positives (false 
alarms) or false negatives (missed opportunities). False alarms are often investi-
gated manually. In real-world SOC operations, even 0.1% of false alarms can be 
too much to handle on a daily basis (Axelsson, 2000). False negatives can be 
even more dangerous because they give a false sense of security. These could 
either refer to adversary behaviors not picked up by the autonomous agent, or not 
yet executed by the adversary in the first place. While there is little that can be 
done about the latter, the former is a big problem since there are typically insuf-
ficient traces in the observables to learn about them. Infrequent pattern mining is 
currently an open area of research.

• Beware of misleading metrics: It is convenient to choose from several autono-
mous agents when their performance can be quantified in terms of metrics. 
Metrics like accuracy, F1 score, Area Under the Curve (AUC) are widely used in 
the machine learning world. However, metrics can mislead if not correctly cho-
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sen: It is easy to obtain impressive accuracy on highly imbalanced datasets when 
the autonomous agent does not even work. Qualitative studies, although time- 
consuming and frequently subjective, provide much deeper insights into how an 
agent actually works, and whether it works as expected.

• Choose interpretable models: It is understandable to get swept away by the giant 
state-of-the-art models. However, understanding how they actually reach their 
decisions is extremely difficult. When practitioners are able to understand the 
model internals, they can debug and fine-tune those models for further perfor-
mance optimizations. Spotting bugs in interpretable models is much easier than 
debugging a black box model. The recent emphasis on explainable AI and inter-
pretable models by-design has given evidence that white box models achieve 
competitive performance compared to their deep learning counterparts. It is also 
easier to trust the decisions of an interpretable model over a black box model, 
even when post-hoc explanations are provided, which themselves can be manip-
ulated. Besides, adversaries are known to exploit weaknesses in cyber defenses. 
Recent studies have also shown that robust models are more interpretable since 
they provide more human intelligible explanations (Ross & Doshi-Velez, 2018).

• Multi-faceted explanations: An intuitive explanation that does not accurately 
explain an agent’s behavior is more dangerous than a poor explanation. The 
faithfulness of an agent and its explanations are both equally important. Multi- 
faceted explanations from different perspectives can help identify any discrepan-
cies between an agent’s decision and an analyst’s intuition. For example, finding 
indicators of compromise from multiple data sources can ensure that an intrusion 
alert is not a false alarm. To understand why an agent assigns a particular label to 
an observable, it can be helpful to investigate the labels of similar observables 
that receive a different label. This is known as contrastive explanations, and it 
can help answer “what-if” questions about the agent’s reasoning.

• Realistic assumptions: Having unrealistic expectations of what an autonomous 
agent may be able to do can set one up for failure. Despite recent advances, it is 
important to understand that machine learning can only do so much, especially 
with noisy observables. Instead, it is better to identify the key strengths of auton-
omous agents. For example, we know that autonomous agents are much better at 
monotonous tasks, and can browse through large volumes of observables much 
faster than human analysts. Realizing this strength, Holder et  al. (Holder & 
Wang, 2021) design an autonomous cyber defense agent to serve as a junior ‘sup-
port’ analyst for human security analysts. The autonomous agent takes over the 
repetitive and time-consuming jobs, such as scouring the Internet for resources, 
correlating patterns in large volumes of intrusion alerts, and presenting them to 
their human counterparts. The human analysts are then free to spend their time 
doing more complex tasks, such as investigating critical attacks and threat 
hunting.

Given the increasing number of cyber-attacks in recent times, autonomous cyber 
defense agents will become a necessity in dealing with large volumes of observ-
ables. However, there is still much to be done regarding the adversarial robustness 
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and effectiveness of these agents. We discuss a few prominent research direc-
tions below:

• Learning from temporal features is challenging since features are often out-of- 
sync. Although temporal features provide a lot of contextual cues, it is not always 
apparent how to represent and learn from them effectively. There are two inter-
esting problem classes: Picking an event at present and looking backwards in 
time can provide forensic and provenance analysis capabilities, while looking 
forward can provide threat intelligence and predictive capabilities.

• Learning from infrequent observables that reflect the rare adversary behaviors is 
an important open problem.

• We expect that multimodal learning and multi-faceted explanations will play a 
key role in designing trustworthy and robust cyber defense agents that learn con-
textually meaningful adversary behaviors.

• Incorporating concise reporting and visualization tools that reduce the cognitive 
load on security analysts is important for effective communication between ana-
lysts and autonomous cyber defense agents.

• Cyber defense agents with threat prioritization capabilities that can present their 
findings at the right level of abstraction (based on an analyst’s expertise) are 
important for usability and deployability.

5  Summary and Conclusions

This chapter discusses how an autonomous cyber defense agent can gain insights 
into the behaviors and intents of cyber adversaries. The popular Capability, 
Opportunity, and Intent (COI) model helps categorize various types of adversaries, 
while the Cyber Kill Chain and ATT & CK frameworks describe the tactics, tech-
niques and procedures (TTPs) of cyber adversaries. Specifically, the Action Intent 
Framework (AIF) is derived from MITRE ATT & CK that infers the intent of cyber 
adversaries from traffic induced observable data.

The rapidly evolving threat landscape and adversary TTPs have made it near- 
impossible for autonomous agents to rely on a priori expert knowledge. Instead, the 
emphasis should be on the design and deployment of data-driven autonomous 
agents that learn contextual meaningful adversary behaviors from observable data. 
Although enticing, designing effective and reliable data-driven agents is diffi-
cult due to:

• The evolving and adversarial threat landscape that requires proactive and robust 
machine learning models,

• The unavailability of good quality observable data with corresponding ground 
truth that makes supervised learning paradigm unsuitable,

• The unpredictable nature of cyber adversaries and their tactics that require con-
text modeling to adequately capture their behavior,
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• The challenges of open world evaluation of black box machine learning models 
to ensure that the agent behaves as expected.

This chapter illustrates three state-of-the-art use cases for autonomous cyber defense 
agents that learn adversary behavior from traffic induced observables in order to 
assist security analysts in defending against the adversary in a timely manner.

• ASSERT is an unsupervised continual learning system that synthesizes and 
updates emerging attack behavior models from intrusion alerts in a streaming 
setting without expert input. The behavior models provide a statistical summary 
of the various attacks conducted by cyber adversaries.

• SAGE follows a two-step approach to reconstruct attacker strategies from intru-
sion alerts by first learning an unsupervised interpretable model that discovers 
temporal and probabilistic patterns in intrusion alerts, and then representing the 
discovered attacker strategies as targeted attack graphs, without any expert input. 
The attack graphs provide a dynamic view of the network by showing how spe-
cific attacks transpired, and enable visual analytics regarding attacker behavior 
dynamics.

• HeAT is a semi-supervised learning system that integrates analyst domain knowl-
edge and reverse engineers multi-stage attack campaigns given a critical intru-
sion alert. This system helps analysts in uncovering the chain of actions that led 
to a critical alert while discarding thousands of irrelevant alerts.

A brief discussion of how the use cases address the aforementioned challenges is 
given, together with some words of caution for practitioners getting started in the 
field, pertaining to observable data, spurious correlations, misleading metrics, and 
interpretable approaches. Finally, a few prominent future research directions are 
provided with respect to learning paradigms and reporting techniques.
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Chapter 7
Response Planning

Scott Musman and Lashon Booker

1  Overview of Cyber Response Planning

Given a perception of the environment and threat, and the overall assessment of the 
situation, cyber response planning is invoked to generate a course of action (COA) 
or multiple COAs intended to defeat the threat and minimize damage to the system. 
A variety of computational techniques can be employed toward this end. Before 
discussing how automated agents can begin to address these challenges, we will 
start by reviewing two historical examples of cyber response planning to highlight 
issues associated with cyber response planning problems.

1.1  Matching Wits with a Hacker

In the book the Cuckoo’s Egg (Stoll, 2005), Cliff Stoll describes a cyber-attack by a 
foreign hacker and the steps that were taken to respond to that attack. Despite the 
years since the cuckoo’s egg incident occurred, it illustrates many issues that remain 
relevant. First, note that the attacker was detected unexpectedly while investigating 
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what was thought to be an accounting error. For new, novel attacks, often what will 
be detected first is a side effect of the compromise, such as a mission impact, rather 
than the compromise itself. Stoll’s book then explains the steps taken to perform 
forensics on the breach, monitor for additional activities, the setting of traps, and his 
decision process related to response actions and when they should occur. His deci-
sion making involved attempts to gather information about the attacker, and to back-
trace the source of the attack. Partly this was to identify the perpetrator and their 
target(s), but also to understand how the attacker was able to move through the 
system. Response options were not taken immediately because Stoll did not want to 
tip off the attacker that they had been detected. The concern was that the attacker 
would just come back via some other means that may bypass his ability to monitor 
them. When he finally responded, the response actions taken included distributed 
ones that had to be coordinated to try and ensure that when the attacker was discon-
nected there was some confidence that reentry and access avenues were no longer 
available.

1.2  Defeating an Email Worm

The defensive strategies used to defeat the Morris worm (Orman, 2003) also illus-
trate some important aspects of cyber response planning. The Morris worm was the 
first worm that infected and propagated across the internet. Response planning 
required correlation across multiple servers to identify the problem, find common 
elements pointing to the compromised components, and then formulate a remedia-
tion plan. Initial remediation plans were not effective, so additional information was 
gathered and a more complex multi-step remediation plan had to be developed.

The Survivable Autonomous Response Architecture (SARA) (Lewandowski 
et al., 2001) was designed to make it possible for autonomous agents to protect a 
network. The test problem being solved with the SARA prototype was to protect a 
network against an email worm (Musman, 2010). Once an infection was detected, a 
simple solution is to shut down the mail server. This action, however, would incur a 
significant impact on the ability to perform mission functions that rely on email 
exchanges. Consequently, a significant portion of the response decision making 
involved attempts to only block email messages with worm payloads. Knowledge 
gained from an analysis of the tainted emails was used to develop blocking signa-
tures, to identify targeted hosts containing messages that may have been sent but 
had not been triggered yet, or to find any other hosts with the same infection symp-
toms as the known infected hosts.

Approaches to detecting, tracking and blocking emails include analysis of email 
subject lines (which are crafted to entice a victim to open the message), the email 
message content, characteristics of the payload itself (even if it’s a URL), and some 
of the symptoms that are found present on an infected host. To devise effective 
blocking signatures that have minimal impact on legitimate messages, this defense 
requires significant domain knowledge about how these emails and payloads are 
crafted. To support this analysis, a corpus of “normal” email traffic was collected to 
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estimate the mission impacts of blocking actions, and a specialized email anomaly 
detector was developed (Gupta & Sekar, 2003). A significant challenge in respond-
ing to worm attacks is that because infection growth is exponential, a failure to take 
action in timely manner can cause a system to be overrun by infection.

Long term response planning also needs to account for the possibility of an arms 
race between defenders and attackers. As defenders become more sophisticated, the 
attackers will correspondingly make their attacks more sophisticated. Early worms 
did little to hide their targeting actions or vary their digital signatures merely 
because, at the time, they had no need to do so. But as defenders got better, the 
attacks correspondingly became more complex. Considering that an email worm is 
just one of a multitude of attack types to potentially defend against, it should be 
apparent how complex a general-purpose response planner must be.

1.3  Topics Covered in This Chapter

As these two examples illustrate, cyber response planning brings together many of 
the capabilities described in the other chapters of this book. A response planner 
must represent the system being defended. It must also understand the capabilities 
of the attacker. It must represent the system processes and functions, and understand 
how changes to the system state can result in operational impacts. And it must rep-
resent how the set of response actions affect the state of the system and/or the ability 
of an attacker to compromise components. The timeframe over which planning and 
decision making needs to occur must also be accounted for. Does the plan outcome 
need to be the best choice over the next 10 seconds, 10 minutes, 10 hours, 10 days, 
or months? Sometimes the best action for one timeframe can be a bad option for 
the others.

The remainder of this chapter is organized as follows. The next section describes 
the characteristics of cyber response planning problems and discusses how those 
characteristics affect the solution requirements. That discussion is followed by a 
section describing various planning methods that have been proposed and imple-
mented and discuss how they relate to the requirements we identified. Finally, the 
chapter concludes with a discussion of the prospects for fully automating cyber 
response planning and a description of an implemented system that points the way 
toward that goal.

2  Response Planning Problem Characteristics 
and Requirements

Perhaps the simplest way to think about cyber response planning is in terms of reac-
tive plans. Stimulus-response pairs are a straightforward way to characterize cyber 
response plans  – i.e., as rules that match defensive actions with observed situa-
tions  – and some early attempts to automate response planning (e.g., 
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Ballasubramaniyan et  al., 1998; Lindqvist & Porras, 1999; Musman & Flesher, 
2000) pursued this approach. It soon became apparent, however, that this approach 
had fundamental limitations as a general-purpose solution for cyber response plan-
ning. First, simple reactive plans lack a formal model of system function that char-
acterizes how response actions might impact the functions that the system being 
defended is trying to perform. Without an explicit representation of system func-
tion, response interactions with intended system function or purpose must be repre-
sented implicitly, making the decisions brittle and hard to generalize across different 
systems. Second, simple reactive plans lack the ability to handle the uncertainties 
inherent in sensing the cyber environment. Sensing in cyberspace is far from per-
fect, often only providing the ability to detect some attacks, but not others, or detect 
some steps in an attack but not others. One must also consider whether a sensor 
detects the actions of the attacker, or the effects caused by the attacker. These are 
different things. Even detectable attacks can suffer from limitations in terms of poor 
detection rates and false alerts. Response actions also usually incur some cost, such 
as taking a useful service offline to thwart an ongoing attack. That cost must be 
weighed against the cost of the impacts that may occur if the defender does nothing. 
Thus, when evaluating if – and when – to respond, defenders must make a risk- 
based cost/benefit decision as to when and where a response is warranted. Thirdly, 
reactive approaches have no ability to consider the malicious attackers potential 
next actions when choosing their response. Not only is it critical to consider the 
consequences of attack responses, it is also important to anticipate how attacker/
defender response sequences will unfold over time and what that implies for the 
eventual mission success or failure of the system being defended.

The remainder of this section discusses these three critical aspects of cyber 
response planning problems in more detail.

2.1  Representing System State and Function

From a cyber defense perspective, the state of a system is a heterogenous collection 
of information spanning multiple levels of resolution both in terms of physical attri-
butes as well as time. The set of potentially relevant details include the hardware, 
software and architectural elements associated with networks, network components 
(i.e., switches, routers, firewalls), hosts on the networks, user groups accessing 
hosts, peripherals, applications, services, as well as the various access and trust 
relationships among all these entities. Other elements of state might include things 
like mission functions and objectives, and constraints imposed by cybersecurity 
policies. Clearly, no approach to planning a cyber response is feasible without mak-
ing some choices about how much of the system state to explicitly represent, yet 
still have a tractable cyber defense problem to solve.

One way to begin defining representations of system state is to consider repre-
senting the factors that enable an attacker to misuse or subvert a system and create 
mission effects. Insights about the types of details associated with cyber attacks on 
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real systems can be found in information collections that provide structured infor-
mation about cyber attacks such as the Common Vulnerability Enumeration (CVE) 
and the Common Attack Pattern Enumeration and Classification (CAPEC) (MITRE 
Corporation, 2013). More recently, the MITRE ATT&CK (MITRE Corporation, 
2019) framework has provided a more operational mapping of the tools, tactics and 
techniques used by malicious cyber actors. These information resources provide a 
starting point for representing the system state relevant to cyber defense, but there 
are a staggering number of exploits and cyberattack methods to account for. For 
example, CVE has over 170,000 entries and CAPEC enumerates over 500 cyber 
attack patterns. To avoid having to reason about every possible attack instance, it is 
clearly more efficient to reason about the possible effects of successful attacks 
rather than the attack instances themselves. Even when specific attack instance 
actions are detected, it may not be known if the attack succeeded. For this reason, 
attack instance detection is not always an indicator of system state.

Semantic representations of the relationships between the cyber and physical 
domains (de Barros Barreto et  al., 2012), along with abstractions characterizing 
various types of cyber incident effects affecting the state of the system cyber 
resources, can be very helpful tools in reducing the amount of detail in a system 
state representation. Abstractions are often based on cyber asset security attributes 
such as confidentiality, integrity, and availability. However, even given these inci-
dent abstractions, a cyber response planner still faces some difficult questions about 
how to comprehensively reason about all the cyber incidents and potential responses 
that are possible. Formal ontologies provide a class of tools that planners and rea-
soners in many domains have used to organize and represent semantic information 
about entities, their properties, and their interrelationships. The Unified Cyber 
Ontology (UCO, 2022) is an ongoing effort to provide an ontological foundation for 
modeling the cyber domain, offering definitions for classes of cyber objects and 
their interrelationships. Another relevant ontology in the cyber domain is Camus 
(D’Amico et al., 2009) which ties cyber entities to mission elements.

To represent and reason about complete cyber attacks, a cyber response planner 
must identify and defend against multi-step attacks where an attacker achieves a 
foothold and then takes subsequent steps using other cyber assets as pivot points to 
reach one or more cyber targets. Because of the interconnectedness of cyber sys-
tems, attackers can exploit seemingly non-critical cyber components to bypass 
security controls and other defenses. An individual compromise may cause no 
impact on its own but can be a vital stepping stone for follow-on attacks. Therefore, 
a cyber response planner needs to be primarily concerned with intrusion tolerance 
rather than fault tolerance. Fault tolerance assumes that faults are independent, 
whereas intrusion tolerance must consider that an attacker might cause multiple 
faults when it suits their goal. This means that a planner also needs to consider how 
combinations of incidents and non-critical system IT components contribute to risks.

Graphical models (Kordy et al., 2014) are a straightforward approach that a plan-
ner can leverage to represent and reason about multi-step attacks and their potential 
consequences. Attack graphs (Ammann et al., 2002) are graphical models that facil-
itate the analysis of attacker action sequences targeting some goal. These 
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representations can help a planner consider responses in the context of a larger 
attack sequence and make cost-based assessments given that context. Service 
dependency graphs (Kheir et al., 2009) can be used to model how different comput-
ing components rely on each other. These representations can be used to model 
actions in terms of their consequences, and reason about the ways different conse-
quences can propagate through system components and result in some impact.

Understanding how a system is vulnerable to cyber attacks requires an analysis 
of both micro and macro details, where capturing micro level details makes it pos-
sible to identify the multitude of factors that enable an attacker to misuse, subvert a 
system and create mission effects. For example, inspecting the MITRE ATT&CK 
matrix1 provides insights into the types of details that would be needed to notice that 
a process may have been hollowed,2 that operating systems can be compromised by 
rootkits,3 or to recognize the multiple ways attackers can achieve persistent access.4 
Representing a system with a high degree of detail is not necessarily practical, how-
ever, especially when considering that a complete cyber attack is better represented 
as an attack graph of complete moves to reach one or more cyber targets, all being 
done within the access and trust relationships provided by the system or enabled by 
the attack. Finding a tractable way to account for all these potentially relevant fac-
tors is what makes crafting a good representation of cyber system state such a chal-
lenge. There is no consensus on how much detail is appropriate or necessary for 
representing the state of cyber systems.

Representing time in cybersecurity response planning has similar challenges. At 
one extreme, cyber attacks can occur at machine speed, meaning that responses 
must be quick. On the other hand, some attack actions take significant amounts of 
time (e.g. brute forcing) or there can be long delays between attacker actions, mean-
ing a subsequent attacker move can occur in seconds, days or even weeks later. The 
speed at which attacker actions occur, and the duration of the incident associated 
with those actions, will affect the decision cycle timeframe for a response planner. 
If a planning cycle takes too long, it may allow an attack to succeed without interfer-
ence. This was an important consideration, for example, in the need for a timely 
response to worm attacks mentioned previously. Impacts may also be delayed, not 
occurring at the time of an incident. Additionally, impacts may stem from follow-on 
cascading effects that propagate through a system and cause impacts elsewhere in 
the mission. These details matter if one wants a coherent way to compare cata-
strophic impacts that are time sensitive with incidents that are an accumulation of 
minor impacts that can occur at any time. Accordingly, it is imperative that a cyber 
response planner be capable of reasoning about time: as it relates to attacker activ-
ity, as it relates to the time available to make a decision, and as it relates to the tim-
ing associated with the anticipated completion of its own actions.

1 https://attack.mitre.org
2 https://attack.mitre.org/techniques/T1055/012/
3 https://attack.mitre.org/techniques/T1014/
4 https://attack.mitre.org/tactics/TA0003/
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2.2  Managing Uncertainty and Risk

Every assessment of system state needs to consider sources of uncertainty in the 
evidence supporting the assessment. Sensing in cyberspace is often imperfect, with 
both false positive and false negative reports that need to be accounted for. Moreover, 
not all response actions will succeed 100% of the time. As previously noted, many 
of the failures in the early attempts to develop response planners were due to an 
inability to manage uncertainty.

It is important to recognize that there are distinct aspects of uncertainty, each of 
which needs to be handled differently in a response planner. One key consideration 
is whether a sensor detects some property of asset state (e.g. when an asset is 
unavailable, or the asset has been modified from its desired state, or when an attacker 
is making unauthorized use of a compromised asset), or whether a sensor detects a 
state transition event. State transition sensors tend to be useful only when their false 
alarm rate is very low, and when they are used in conjunction with sensors that 
detect asset state properties associated with the outcomes of the state transition. 
Another consideration is the approach used to model uncertainty in sensors. The 
classic model treats each sensor as a Bernoulli random variable, meaning that sen-
sor observations can be viewed as a sequence of independent stochastic Bernoulli 
trials. While this model is attractive because it is theoretically and computationally 
tractable, a response planner will likely require additional inference machinery to 
determine an appropriate level of confidence in assertions about the true state of an 
asset and the causal link (if any) between the asset state and attacker actions, when, 
for example, a sensor detects attack actions 100% of the time but for only some 
fraction of the attack instances. Lastly, sequences of cyber alerts, whether they are 
composed of true detections or false alarms, may include lags or bursty behavior. 
This means that a time sequence of sensor returns may not have a stationary distri-
bution even if an asset stays in the same state. For a probability model that uses only 
first order probabilities, this kind of variable behavior over time can be problematic.

There is almost always uncertainty regarding what is known about the attacker 
and their capabilities. Attacker actions, goals and strategies can also evolve as they 
acquire more information about the target system. When a defender is uncertain 
about whether all the attacker’s actions have been detected, even if nothing is appar-
ently wrong, it may be possible that the attacker is a single step away from causing 
a serious impact without the defender knowing it. These uncertainties highlight the 
risk of using information-gathering response actions that are designed to help 
reduce uncertainty about the state of the system or the adversary. These actions take 
time that the adversary might utilize for advantage, so information gathering actions 
often may need to be combined with risk mitigation actions such as quarantining or 
disabling certain types of access from suspect assets. Uncertainty about the adver-
sary may also make it difficult for the planner to even know what response options 
to consider. For example, we may know of 10 different techniques attackers can use 
to compromise a host and only be able to detect 7 of them. Planning responses to 
handle the 3 techniques that cannot be detected adds additional complexity to the 
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planning problem. It may be possible to compare what has been detected with what 
was expected and use any discrepancy to try and determine if an attack using some 
unexpected or new technique is underway. If these newly observed attack capabili-
ties are then incorporated into the planner’s ability to look ahead, this will enable the 
response planner to adapt dynamically as new attacker capabilities are discovered 
(see Chap. 6).

As discussed in Chap. 16, cyber risk does not depend only on uncertainty and 
probabilities. Typical formulations of risk (National Bureau of Standards, 1979) 
include the damage (loss) caused by an unfavorable event in addition to an estimate 
of how often the event may happen in a period of time (likelihood). This means 
cyber response planning must be mindful of costs. Cost in response planning isn’t 
necessarily just action cost. It is a combination of action cost with operation gain, 
and can be further conditioned by other operational preferences (e.g. a requirement 
to choose stealthy actions). When there is uncertainty associated with outcomes, 
costs should be conditioned probabilistically. This raises issues about confidence 
levels for risk assessments and tradeoffs in response decisions. For example, some 
cyber incidents (such as a loss of information confidentiality) can have high impact 
and can’t be recovered from. In such situations, it is often necessary to have a high 
degree of confidence in both the state and action outcome. For example, recovering 
a compromised service on a host is a relatively low cost response but is only effec-
tive if that is the only part of the host that has been subverted. On the other hand, 
recovering the whole host is a more costly response, but will also recover the com-
promised service and will work even when there are undetected subverted aspects 
of the host.

The underlying importance of costs and risks is ultimately tied to considerations 
of how an attack affects mission outcomes. The change in mission performance 
measures caused by some cyber incident is often referred to as mission impact. 
When computing mission impacts, many factors must be considered. First, impacts 
can be different depending on the type of cyber incident effect. For example, an 
interruption of an ICT resource may lead to minor losses, whereas the modification 
of that same resource could lead to catastrophic losses. Secondly, impact can depend 
on incident timing, incident duration, and whether impacts are immediate or 
delayed. For example, an incident affecting an ICT asset after it is no longer needed, 
causes no impact. Thirdly, system risks and hence, risk assessments, can change 
over time (e.g., as new vulnerabilities are discovered).

Finally, it is worth noting that any dynamic response action that incurs no cost 
(i.e. a firewall rule that blocks hosts that don’t ever need to communicate with each 
other from connecting) or has an acceptable long term cost is something that is 
worth implementing as a policy. For example, in response to the code-red virus in 
the 1990’s, which attacked only web servers, an effective solution was to stop web 
servers from connecting out to other hosts, since at the time there was no functional 
need for most web servers to do so. Later, the idea of rate-limiting the number of 
connections from one host to other hosts was shown to be an effective way to slow 
down scanning worms. Both ideas started off as response actions to a specific threat, 
and later became widely available standard policy options.
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3  Projecting Possible Futures

Actions in a dynamic cyber response arsenal incur some cost that one might only be 
willing to accept if the situation warrants it. This means cost-benefit tradeoffs are a 
key driver for response planning decisions. If, for example, the cost of preventing a 
compromised state is prohibitively expensive, a response planner may conclude that 
it is better to just take actions that clean up the consequences of the compromise and 
operate through it. A different cost profile could lead to a different decision. For 
example, a response planner may decide it is better to head off some potential com-
promise before it occurs because it is cheaper to take an action now, than incur a 
larger impact later. Decisions like this are not possible without knowing the current 
state of the system, or at least the plausible states the system might be in, and being 
able to project forward from those states a prediction of what might occur next. 
Figure 7.1 illustrates this distinction.

The need to identify potential future states implies at least three capabilities that 
a response planner must have. The first is to be able to project what is likely to occur 
if no action is taken. Since impacts may not always occur immediately, it is some-
times necessary to be able to know that an impact will occur in the future if no action 
is taken. This capability is a requirement for situation awareness (see Chap. 5). The 
second capability is to understand how response actions can alter the state of the 
system to possibly recover from or block impacts given the assessed state of the 
system. The third capability addresses the likelihood that response actions may be 
observable to the attacker and the attacker may adapt their actions based on what 
they see. Since some response actions may be easily circumvented by attackers as 
they see them, the response planner may need to anticipate how attackers may react 
to different response choices.

Fig. 7.1 Notional depiction of the difference between understanding and projecting system state
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Fig. 7.2 Decision timeframe

Finally, note that there is always a timeframe over which response decisions are 
most appropriate. That timeframe can be explicit or implicit. Figure 7.2 shows a 
notional example where the timeframe associated with a decision matters. If one 
cares about performance in the short term, action 1 is better, while if one cares about 
a longer term outcome then action 2 is the better choice. It is also worth referring 
back to the issues raised in Fig. 7.1 and considering the number of cyber moves that 
can occur during the selected decision timeframe. The number of alternative courses 
of action for the defender can grow exponentially the further ahead in time and 
moves a response planner looks. This means that, practically speaking, cyber 
response planning can usually only consider modest levels of lookahead, over a 
somewhat bounded timeframe. Because of these practical limitations of planner 
lookahead, and uncertainty associated with the state of the system, a planner may 
need to manage decisions at several timescales simultaneously. There may be short 
timeframe decisions associated with stopping catastrophic situations from occur-
ring (e.g. apply a tourniquet to buy time), along with a longer timeframe planning 
cycle is used to make decisions enabling the system to operate through or, as 
described in Chap. 8, to reach a recovered state.

The graphical methods mentioned in the previous discussion about state repre-
sentations are a starting point for projecting states into the future. What must be 
added, however, are reasoning processes that can predict how attacker and defender 
actions will interact with each other over time and affect the states represented in 
those graphs.

4  Approaches to Cyber Response Planning

Many early approaches to automating cyber response tended to be tightly coupled 
with intrusion detection systems (Stakhanova et  al., 2007; Shameli-Sendi et  al., 
2014; Inayat et al., 2016) and used the presence or absence of alerts to represent the 

S. Musman and L. Booker



143

state of the system being defended. These approaches often relied on detecting 
known signatures, or even anomalous signals (Somayaji & Forrest, 2000), to trigger 
static responses. This reactive approach to response planning has wide applicability 
and is still commonly used today; for example, anti-virus software automatically 
quarantines files it suspects are malicious. While such approaches to cyber response 
can be effective, they also have several shortcomings which were discussed earlier. 
Accordingly, these cyber response systems tend to only be used in situations where 
predefined and specific playbook style responses are sufficient.

Other lines of work sought to address these shortcomings by looking for ways to 
provide more flexible responses across a variety of scenarios a system might 
encounter. The idea was to provide a dynamic response where decisions are made 
based on conditional logic (Porras & Neumann, 1997), or on case-based reasoning 
that can map the current situation to past situations where response actions were 
successful previously (Musman & Flesher, 2000; Borges et al., 2015). There have 
also been attempts to augment reactive response plans with strategic plans (Thayer 
et al., 2013). Even with this added flexibility, however, it is difficult to generalize 
approaches like these to apply across different systems. A key limitation is that 
specific logical predicates and descriptions of past situations tend to rely on implicit 
knowledge about the specific system and its use. Consequently, decisions based on 
this implicit information are often only applicable for a specific system. A reasoning 
approach designed work across a variety of different systems will require explicit 
models of the system, domain, and mission in order to differentiate between circum-
stances where a response is suitable on one system, but not another.

Several lines of research have explored different representations to implement 
such reasoning methods. Many approaches start with the attack graphs (Ammann 
et al., 2002) or service dependency graphs (Kheir et al., 2009) mentioned earlier in 
the discussion about representations. For example, Kanoun et al. (2007) show how 
to use attack graphs to strategically disrupt an anticipated attack sequence or deny 
potential attack opportunities. Many of these attack and service dependency graphs 
are based on currently known vulnerabilities and as such are often “full knowledge” 
representations, where the models do not account for uncertainty about the current 
system state and the attacker goals. Bayesian attack graphs (BAGS) (Liu & Man, 
2005; Poolsappasit et al., 2011; Musman & Turner, 2018) extend the approach to 
incorporate the uncertainty associated with attack steps, but usually tend to assume 
a known system state from which the actions are projected. αLADS (Kreidl & 
Frazier, 2004) handles sensor uncertainty and uncertainty in the current state, but 
had to run a sample of representative attacks to collect training data on the system 
to be defended in order to empirically estimate the probability of future states. Other 
work (Wang et al., 2013) explores future attacker actions, building on the underly-
ing attack graph model by converting it into a hidden Markov model, better captur-
ing attack consequence as a probabilistic outcome. Interestingly, several lines of 
work have acknowledged the insufficient ability of attack graphs to encode uncer-
tainty from the attacker’s point of view (e.g., see Hoffmann, 2015).

Much of the literature on automated response (and automated attacking) does not 
consider the dynamic interplay between the attacker and the defender, where the 
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agents execute actions in response to one another. To address this issue, several 
authors have proposed using attack-defense (Kordy et al., 2010) or attack-response 
trees (ART) (Zonouz et al., 2014) to model the relationship between attacker and 
defender more realistically. In these trees, alternating layers in the tree represent 
attacker and defender actions, respectively. This approach offers much better insight 
into the interplay between the attacker and defender, although it quickly becomes 
computationally intractable to compute. Other efforts (Roy et  al., 2012) propose 
mechanisms to scale the tree to make solutions more computationally feasible. 
ARTs, due to their dueling-agents formulation, have also lent themselves well 
towards game theoretic solutions (Musman & Turner, 2018) wherein the optimal 
action selection policy can be explicitly computed as a problem of finding the Nash 
equilibrium. Many other approaches leveraging ARTs have been proposed and ana-
lyzed as well, with varying degrees of specificity, uncertainty, and strategy. See 
Kordy et al. (2010) for an overview of these approaches.

Once knowledge characterizing the system, domain and mission models is gath-
ered, a variety of approaches to classical automated planning (Hendler et al., 1990) 
can be used to generate a sequence of cyber responses. For example, the relevant 
knowledge in the models can be translated into logical predicates that a planner 
using forward heuristic search techniques could use to generate a cyber course of 
action (Boddy et al., 2005). It is also possible to work with an attack graph directly, 
for instance by combining it with a partial-order planner to recognize attack plans 
based on sensor observations (Amos-Binks et al., 2017). Planning approaches like 
this can be effective if the number of predicates and actions is small. This is prob-
lematic in realistic cyber problems though. There is a tension between the level of 
detail required to capture cyber nuances (e.g. like a OS library load path that most 
people don’t realize is even there that can be modified to point to a trojan library) 
and a level of detail that is more practical to model, yet which still captures the 
essence of the cyber problem. Classical planning approaches are extremely knowl-
edge intensive. Applying these techniques at scale requires a costly effort to collect 
the detailed knowledge and heuristics needed, and then to represent it symbolically 
in a language the planner can work with. Boddy et al. (2005) provides details about 
many of the challenges.

Though classical planning is good for generating action sequences to achieve 
some goal, it is less adept at capturing, dynamically assessing, and selecting among 
different strategies for generating actions. This requires the consideration of costs 
and uncertainty, capabilities that are available with decision-theoretic planning 
techniques (Boutilier et al., 1999). One of the earliest examples of applying decision- 
theoretic planning to cyber response was the Response and Recovery Engine (RRE) 
(Zonouz et al., 2009; Zonouz et al., 2014). RRE used ARTs as a primary state rep-
resentation technique and showed how cyber defense could be modeled as a game- 
theoretic variant of a Partially Observable Markov Decision Process (POMDP). 
This system was successful at defending small-scale networks that generate ART 
trees with about 900 nodes. More recently, Miehling et al. (2018) showed how to 
use a variant of an attack graph to define a POMDP with limited scope whose solu-
tion reduces the probability that an attacker reaches their goal(s), while minimizing 
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the negative impact of defender actions on availability. While decision-theoretic 
planning approaches like these have shown promise on problems of limited size or 
scope, they are not yet able to address the large cyber response problems associated 
with most real-world systems of interest.

Work applying reinforcement learning to cyber security is still in its infancy. See 
Nguyen and Reddi (2021) for an overview of the research in this area. The rein-
forcement learning work has not yet impacted developments in cyber response plan-
ning because reinforcement learning algorithms need large amounts of training data 
to characterize all the relevant cybersecurity interactions. This chapter has discussed 
the many reasons why collecting such training data is problematic for cyber response 
planning. Generating synthetic data using simulations is one way to address this 
issue (Molina-Markham et al., 2021; Musman & Turner, 2018; Microsoft Defender 
Research Team, 2021), but that raises other concerns about whether capabilities 
developed using simulations can be reliably applied to real world events, and can 
adapt when aspects of the defended system change (e.. new vulnerabilities are 
identified).

In the next section we describe ongoing work that has taken significant steps 
toward satisfying the various requirements we have identified.

5  Toward Fully Automated Cyber Response Planning

The previous sections in this chapter have characterized the key challenges that 
must be addressed by any technical approach to cyber response planning. Many 
approaches to automating cyber response planning are focused on helping human 
analysts manage these challenges, or on automating some limited aspect of the 
response planning problem. There is a case to be made, though, that even with auto-
mated support, current approaches to cyber security might be overwhelmed by a 
new generation of AI-enabled attacks. Future cyber-attackers are likely to increas-
ingly exploit advances in AI to achieve faster, stealthier, and more impactful attacks. 
Many of these effects will be achieved at a speed and scale that makes a human-in-
the-loop defense paradigm unlikely to be effective. Consequently, future systems 
will have to rely to some extent on fully automated planning and automated 
responses – with humans on the loop or out of the loop – to ensure mission success 
and continuously adapt to an evolving adversary.

This section describes an approach to fully automating cyber response planning 
that is designed with this goal in mind. The Automated Reasoning about Cyber 
Response (ARCR) project (Musman et al., 2019; Booker & Musman, 2020) uses a 
technical approach based on the premise that, from an AI perspective, it is advanta-
geous to frame the cyber response problem as a sequential decision-making prob-
lem under uncertainty. From this starting point, ARCR shows how to bring together 
state-of-the-art techniques for anytime online planning in large state spaces with a 
simulation of the system being defended to efficiently achieve fully automated 
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cyber response. The remainder of this section provides more details about the ARCR 
technical approach and empirical results illustrating how well it works.

5.1  Efficiently Managing Uncertainty in Cyber Response

ARCR views automated reasoning about cyber responses as a form of game-playing 
where the defender and attacker are each afforded an opportunity to make a move. 
One way to account for the uncertainty about the system state and future projections 
is to address the cyber response problem directly as a partially observable stochastic 
game (e.g. as a partially observable competitive Markov decision process (Zonouz 
et al., 2014)). However, suitable state-of-the-art solution techniques for these games 
are only capable of solving relatively small games that must be fully specified in 
advance.

An alternative to a pure game-theoretic solution is to focus on resolving the 
defender’s uncertainty about how to respond, rather than trying to solve the com-
plete stochastic game. When the opponent’s policy is fixed (either known or esti-
mated from data), we can model a partially observable stochastic game as a partially 
observable Markov decision problem (POMDP) from the perspective of the pro-
tagonist (Oliehoek et al., 2005). The adversarial aspects of the stochastic game are 
incorporated into the transition function of the POMDP. This is an attractive option 
because recent advances in POMDP solution techniques make it possible to solve 
large-scale POMDPs in real time. Additionally, POMDP solvers can find policies 
that exploit opponent weaknesses. For these reasons, our research tackles the cyber 
response challenges using the formal framework of partially observable Markov 
decision problems.5

Formally, a POMDP can be expressed as a tuple (S, A, Z, T, O, R) where S is a 
set of states, A is a set of actions, Z is a set of observations, T(s, a, s′) is a transition 
function giving the probability p(s′ | s, a) of transitioning to state s′ when the agent 
takes action a in state s, O(s, a, z) is an observation function giving the probability 
p(z | s, a) of observing z if the agent takes action a and ends in state s, and R(s, a) is 
a reward function giving the immediate reward for taking action a in state s. The 
goal of the decision maker is to maximize the expected reward accrued over a 
sequence of actions. Since the states in a POMDP are not fully observable, the only 
basis for decision making is the sequence of prior actions and subsequent observa-
tions. A sufficient statistic summarizing the probability of being in a particular state, 
given a history of actions and observations, is called a belief, and a probability dis-
tribution over all states is called a belief state. Solving a POMDP is a planning 
problem that involves finding an optimal policy which maps belief states to actions.

5 Note that a POMDP approach can compute the kind of general-purpose conservative solution one 
would expect from a game-theoretic approach if we formulate the POMDP to assume a robust 
adversary like a min-max opponent.
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Clearly, any search involving probabilistic belief states and arbitrarily long his-
tories of actions and observations quickly becomes computationally intractable 
(Pineau et al., 2003). Although state-of-the-art offline methods for solving POMDPs 
have made great strides, they are not yet powerful enough to address the challenges 
of real-world cyber response problems. Fortunately, there are approaches available 
to (sometimes approximately) solve POMDPs online in real time that appear to be 
suitable for cyber response planning problems.

An alternative to offline planning is to select actions online, one at a time, using 
a fixed-horizon forward search (Ross et al., 2008; He et al., 2011). Here, the key to 
making this idea effective for real-world problems relies on sampling the belief 
space, rather than fully exploring it. In particular, great efficiencies can be achieved6 
by using a black-box simulation of the problem to generate samples of possible 
action outcomes. The DESPOT algorithm (Ye et al., 2017) is a widely used approach 
that leverages simulation in this way. Moreover, DESPOT is an anytime algorithm 
for POMDP planning that avoids the worst-case behavior of other widely used 
online solution methods.

Theoretical results show that, given a suitable number of scenarios to work with, 
the DESPOT algorithm can reliably find near optimal policies with a regret bound 
that depends on the size of the optimal policy. This approach has been successfully 
applied to compute solutions to complex POMDP planning problems for autono-
mous vehicles in real time. Its performance characteristics, and its characteristics as 
a decision-theoretic planner (Boutilier et  al., 1999), make this algorithm a good 
choice as the starting point for building a POMDP planner to address cyber response 
problems.

The state representation for the POMDP used in ARCR is a bit string consisting 
of bits for each state attribute for each asset, where these state attribute bits are set 
via probabilistic intrusion detection system (IDS) alert predicates. This is a common 
choice for cyber planning approaches based on this formalism. One or more secu-
rity sensors monitor the state attributes associated with each asset, and each sensor 
reports the binary status of an asset state attributes as either compromised or uncom-
promised. The current implementation of ARCR assumes that these sensors operate 
independently, and that sensor reliability is characterized using a false negative rate 
and a false positive rate. Observations for the defender are in the form of binary 
strings showing the (possibly noisy) sensor returns for the state of each asset repre-
sented in the system.

6 A state-of-the-art algorithm like POMCP (Silver & Veness, 2010) can solve POMDPs with state 
spaces as large as 1056 with only a few seconds of computation.
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5.2  Simulating the Cyber Terrain and Attacker/
Defender Interactions

The black box simulator needed for the online planning approach used in ARCR is 
provided by a modified version of the Cyber Security Game (CSG) (Musman & 
Turner, 2018). CSG is a coarse-grained simulation of attacker and defender interac-
tions in cyberspace. The original implementation of CSG focused on assessing 
defensive architectures and deploying static cyber defenses. CSG uses a cyber mis-
sion impact assessment (CMIA) model (Musman et al., 2010; Musman & Temin, 
2015) to translate the occurrence of incidents in cyberspace into mission outcome 
impacts that relate to the state of the system’s cyber assets. CSG’s defensive cyber 
decision-making focuses primarily on defending the mission that the cyber assets 
are intended to support. This mission focus helps reduce the scope of the cyber 
defender’s problem since often only a subset of the system’s cyber assets is relevant 
at any given time.

To avoid having to reason about every possible attack instance, CSG reasons 
about the effects of successful attacks, rather than the attack instances themselves. 
The effects of cyber compromises are represented by the set of incident effects in 
the DIMFUI (Temin & Musman, 2010) taxonomy. These effects are summarized in 
Table 7.1. The DIMFUI effects provide a robust representation of cyber incidents. 
They can account for every successful cyber compromise that exists in CVE, and 
which is described by a CAPEC attack pattern, as well as the more operational map-
ping of the techniques used by malicious cyber actors found in the MITRE ATT&CK 
framework. All but one of the DIMFUI effects correspond to simple binary states of 
a cyber asset. This makes DIMFUI a useful abstraction that allows a cyber defender 
to reason only about binary representations of cyber incidents derived from the 
impact of six DIMFUI incident effects per asset, rather than hundreds or thousands 
of attack instances. To this set of effects, we also consider whether compromises are 
persistent (e.g. they survive a reboot), since different response actions are often 
needed for clearing persistent effects. Moreover, when replacing Degradation with 
Persistence, the resulting PIMFUI representation aligns nicely with our approach to 
representing cyber state using bit strings.

CSG incorporates a cyber mission impact assessment (CMIA) model that maps 
PIMFUI incident effects on the cyber assets that support mission functions into mis-
sion impacts. In addition to the CMIA model, CSG also uses models of the cyber 
terrain and the capabilities of the attacker and defender. An example of a cyber ter-
rain model used in CSG is shown in Fig. 7.3. It consists of networks, network com-
ponents (i.e. switches, routers, firewalls), hosts on the networks, user groups having 
access to the hosts, peripherals, applications, services and interactors that run on the 
host, and information used in the performing mission function. The representation 
of user groups, that may have access to multiple assets in the network, provides a 
way to simulate how compromised user credentials can be used to access and pivot 
through hosts.
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Table 7.1 The DIMFUI taxonomy

DIMFUI Explanation Typical Attacks

Degradation 1.  Reduction in performance or capacity 
of an IT system

1. Limited-effect DoS

2.  Reduction in bandwidth of a 
communication medium

2.  Zombie processes using up CPU 
and slowing server

3. Reduction in data quality 3.  Transfer of non-mission related 
data over a link that slows the 
transfer of mission data

4.  Dropped packets cause an image 
to have less resolution

Interruption IT asset becomes unusable or unavailable 1. Ping of Death
2. Wireless Jamming
3. Wipe disk

Modification Modify data, protocol, software, 
firmware, component

1. Change or corrupt data
2. Modify access controls
3. Modify/Replace system files

Fabrication Attacker inserts information into a system 
or fakes components

1. Replay attacks
2. DB data additions
3.  Counterfeit software/ 

components
Unauthorized 
Use

Attacker uses system resources for 
illegitimate purposes. Related and often a 
precondition for other DIMFUI

1.  Access account or raise privileges 
in order to modify/degrade/
interrupt the OS

2.  Subvert service to spawn a 
program on remote machine

3.  Bandwidth used surfing for porn 
degrades mission critical 
exchanges

Interception Attacker gains access to information or 
assets used in the system

1. Key logger
2. SQL injection
3. Crypto key theft
4. Man-in-middle attacks
5.  Knowledge of component or 

process that is meant to be secret

CSG was originally designed to represent a fully-observable, probabilistic out-
come, zero- sum game for assessing the employment of static defenses. In order to 
use CSG with the online planner in ARCR, it was modified to support queries from 
an external agile defender with partial and uncertain knowledge of the game state.

Figure 7.4 illustrates aspects of the ARCR state vector representation, and how 
security analytics map to the state attributes of the assets captured in the state model. 
The state vector consists of different segments associated with different types of 
assets: precursor assets (e.g. assets that cause minimal impact); target assets (assets 
that cause impact); the availability of network connections that are needed to 
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Fig. 7.3 Typical details for a CSG cyber terrain model

Fig. 7.4 Example of ARCR State Representation

support mission function; and asset types that represents assets believed to be vul-
nerable to attack at any given moment. An important aspect of this state representa-
tion is that it needs to be sufficiently expressive and self-contained enough to enable 
the CSG simulator to completely instantiate the state of the simulation and be able 
to play forward hypotheticals from that state, given only the state vector.
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5.3  Experimental Tests of an ARCR Prototype

ARCR uses the Approximate POMDP Planning (APPL) toolkit7 to build an online 
planner that employs the DESPOT algorithm. This toolkit makes it possible to 
implement a customized planner that includes problem-specific heuristic bounds on 
forward search, arbitrary representations for POMDP states, beliefs, actions and 
observations, and a clearly defined interface for the black-box simulator.

Ongoing work is applying the ARCR planner to realistic cyber defense prob-
lems. One series of simulated experimental scenarios is illustrated in Fig.  7.5. 
Figure  7.5a shows a simple use case involving an information fusion mission. 
Business transaction agents (not shown) generate Sales and Inventory files that are 
placed in File Shares A and B respectively being served from Server 1. A client 
agent accesses paired Sales and Inventory files, performs some (unspecified) fusion 
operation on them and produces a combined status update file as an output, which 
is placed in Shared Folder C being served on Server 2. It is presumed that there is 
mission value to generating the combined status files in a timely fashion, while 
maintaining their integrity and confidentiality.

Experiments with this use case assumed a persistent greedy attacker that selects 
the highest payoff path to a target. In the first scenario (Fig. 7.5b), the attacker steals 
a user credential on its foothold, then uses that credential to move laterally from the 
foothold to Server 1. Once on Server 1, the attacker modifies the Sales or Inventory 
data, thereby causing adverse impact to the mission. Assuming the available sensors 
do not detect that credentials are stolen but do detect the lateral move, the easiest 
defensive response is to eject the attacker and prevent impact by taking an action 
(RX) to restore the compromised host to a known good state. While this response 
defends against the attack, it does not eliminate the threat and the attacker can sim-
ply go after the host again. If the defender is provided with an action that can disable 
a user account (DA), the planner can determine that the DA action completely 
blocks the attacker from performing the lateral move, hence preventing any damage. 
Consequently, this is the preferred solution (unless disabling the account is too 
costly or adversely impacts the mission). Note that because the planner is using a 
model-driven lookahead search, it can consider such response options and block a 
vulnerable credential pathway even without reliable sensor input. We are not aware 
of any other approach to automating cyber defense that can provide this capability 
in the presence of probabilistic outcome assessments and sensor noise.

It is more complicated to determine the correct defensive response when more 
than one credential pathway exists. The scenario in Fig. 7.5c shows an attack that, 
in addition to the compromised user account enabling access to Server 1, also 
includes a compromise of the Server 2 admin account, giving the attacker access to 
Server 2 and the combined files. Using lookahead search, the planner correctly rec-
ognizes that that if one of the credentials are not (preemptively) disabled right at the 

7 http://bigbird.comp.nus.edu.sg/pmwiki/farm/appl/
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Fig. 7.5 Generic mission use case and cyber defense scenarios

beginning of this scenario, the defender will be forced to take a much more costly 
action later to avoid adverse mission impact.

The final scenario shown in Fig.  7.5d illustrates the importance of having an 
appropriate model of the problem in order to be successful. Here, the attacker man-
ages to grab three user credentials. Because there are now three paths to targets, but 
only two attacker moves needed to compromise one of them, the planner identifies 
that a target may get compromised and need to be reset before the credential that 
accesses it can be disabled. This dilemma is a consequence of a choice to model the 
actions that disable user accounts individually, with only one of those actions exe-
cutable for a given defender move. A more effective approach gives the planner an 
action that disables all compromised accounts, easily handling the need for concur-
rent primitive model actions in a manner consistent with the POMDP formalism.

The experimental results from testing the ARCR planner have demonstrated sev-
eral of its abilities: (a) to select mission sensitive responses that are less impactful 
on the mission when possible; (b) to appropriately respond even with unobserved 
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attacker actions; (c) to respond appropriately even with false sensor alerts; (d) to 
appropriately sequence atomic actions when they’re needed to block multiple ave-
nues of attack; (e) to use lookahead to identify preemptive actions when they are 
needed; and (f) to leverage observed attacker capability to adapt its response and 
avoid playing whack-a-mole (e.g. where an attacker stimulates the defender to per-
form the same response repeatedly). These capabilities fulfil many of the require-
ments for cyber response planning identified earlier in this chapter.

5.4  Steps Toward Deployment for Real Applications

While there is still more to be learned about the ARCR approach, the project goal is 
to deploy ARCR in real systems. Toward that end, current work uses a test harness 
on virtual machines that includes an automated adversary emulator (Applebaum 
et al., 2016) to generate attacker behavior and a streaming sensor (Damodaran et al., 
2021) for CAR analytics (MITRE Corporation, 2022) to provide the observations 
ARCR requires. This makes it possible to test ARCR performance on real machines 
for the use cases described above and many others.

The test results for the ARCR prototype to date have demonstrated it can perform 
efficiently for problems of moderate8 complexity. Work is also underway on modi-
fications to ARCR to demonstrate its ability to handle larger scale problems. 
Representations for abstract states and actions in the planner will facilitate signifi-
cant reductions in the branching factor of the lookahead belief tree. These new rep-
resentations also provide the starting point for converting the planner into a 
hierarchical POMDP solver (Vien & Toussaint, 2015; Bai et  al., 2016), which 
should significantly speed up the search of the belief tree.

The concept of operations for using ARCR in an application is shown in Fig. 7.6. 
ARCR can be applied to any cyber system and repertoire of tactics that can be mod-
eled in the modified version of CSG. Being model-based, the simulator models can 
be maintained and updated to reflect the latest threats, and changes to the system or 
mission. The progress to date on the ARCR project suggests that this technical 
approach provides a promising path toward computing automated, tractable, on-line 
solutions to complex cyber response problems in real-world scenarios.

6  Summary

This chapter has described the characteristics of the cyber response planning prob-
lem and the requirements for implementing a response planner. A response planner 
must represent the system being defended. It must also understand the capabilities 

8 In simple use cases for systems with 1024 assets, the ARCR planner can compute a defensive 
response in less than 10  s on a standard laptop. When there are 512 assets, response time is 
under 2 s.
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Fig. 7.6 Concept of operations for ARCR

and potential strategies of the attacker. It must represent the system processes and 
functions, and understand how changes to the system state can result in operational 
impacts. And it must represent how the set of response actions affect the state of the 
system and/or the ability of an attacker to compromise components. Since response 
planning integrates and leverages the capabilities described in the other chapters of 
this book, it is difficult to view a response planner as a standalone entity. All of these 
capabilities must work together seamlessly.

While many technical approaches are available to address the broad range of 
challenges in cyber response planning, there are still several areas where improve-
ments are needed. A response planner that doesn’t consider how an adversary will 
react and adapt when they perceive response actions will make it easy for an attacker 
to side step or leverage those observed actions for their own advantage. Despite this, 
it’s only recently that defenders have started incorporating adversary models into 
their decision making. Incorporating adversary capability and strategy consider-
ations into response planning brings a variety of challenges that can make the prob-
lem computationally intractable. Response planners will need to address these 
challenges by devising system representations that are suitably expressive but prac-
tical to implement, and decision-making strategies that strike a suitable balance 
between satisficing and optimizing.

Additional complications arise from the adversarial nature of cyber response 
planning. As attackers develop new strategies and capabilities, a response planner 
may need to adapt both in the short term and over the long term. This remains an 
area for additional work. It is also important for response planners to explicitly 
consider how an adversary may evolve. Planning approaches with this capability are 
still being developed.
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Approaches that can plan effectively for large scale systems, especially across 
multiple time scales, are not yet available. Historically, host-based based response 
systems have been autonomous and work independently of other host-based sys-
tems. Network-based systems have been centralized. Work on collaboration and 
coordination among these various types of agents is still an emerging capability.

Finally, it should be noted that it is difficult to “glue” cyber security and response 
agents into/onto a system in a secure manner. Once an attacker has subverted the 
operating system, information reported by sensors that drive the cyber response 
system may no longer be trustworthy. It is also necessary to protect the cyber 
defense agent itself. If its response actuators can delete users, files, etc., then attack-
ing it becomes a primary goal for an attacker. If multiple collaborative cyber defense 
agents are distributed, then it is especially difficult to secure them (see Chap. 18).
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Chapter 8
Recovery Planning

Meiyi Ma, Himanshu Neema, and Janos Sztipanovits

1  Introduction

Despite the rapid development of cybersecurity, recovery, as a core element of cyber 
resilience, is often left to human decision-makers, e.g., cyber analysts, incident 
responders, and system administrators and operators (Kott & Theron, 2020). 
However, in many scenarios in the real world, e.g., executing missions, operating 
smart cities, autonomous vehicles or vehicle fleets, due to the issues of safety, time 
constraints, communication, and complexity, recovery efforts need to be undertaken 
with only restricted human involvement and with intelligent consideration of the 
risks and ramifications of such efforts. Therefore, an autonomous intelligent cyber 
defense agent (AICA) responsible for planning rapid recovery to a compromise 
state of the system is highly demanded. When the threat has been neutralized or 
deactivated, AICA will attempt to return the system to adequate working conditions 
through the most appropriate courses of actions (COAs).

However, generating and obtaining the optimal recovery COAs in practice are 
very challenging and complex. First, multiple recovery COAs must be produced by 
various algorithmic techniques, all of which must be evaluated for possible influ-
ences and side effects. However, the requirements and objectives in applications 
such as smart cities are often expressed vaguely in natural language. Defining them 
formally and measuring the influences quantitatively on different systems and their 
environments is an open question. Secondly, these COAs may not be compatible or 
be in conflict with each other that may further harm the system and environment. It 
is extremely important yet challenging to obtain the optimal set of COAs to execute. 
Thirdly, there are uncertainties in the system’s state and environment, human 
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behaviors, and the impact of the resolutions (in time and space). It is challenging to 
simulate various attacks and predict future performance with recovery COAs under 
uncertainty. System degradation may occur due to security attacks and operational 
disruptions (e.g., a city’s road traffic may be disrupted due to national festivals, 
football games, road constructions, highway closures, etc.). Security attacks include 
cyber-attacks (e.g., DOS, Data corruption), physical attacks (e.g., lane closures, 
traffic jamming), and hardware attacks (e.g., controller overrides, sensor damage/
hacking). Fourthly, the scale of smart cities or complex mission operations also 
make it challenging to search for an optimal resolution due to an enormous solu-
tion space.

Targeting these challenges, we introduce and demonstrate a system for recovery 
planning using simulation-based predictive monitoring in this chapter. We build the 
system in the context of a smart city, but the solution is generalizable for other 
Cyber-Physical System (CPS) applications. The goal is to recover the system from 
attacks (cyber, physical, or hardware) and/or disruptions. The system is extended 
from CityResolver (Ma et al., 2018), a decision support system for conflict resolu-
tion among smart services in smart cities. It uses a novel Integer Linear Programming 
(ILP) based method to generate a small set of candidate resolution options. It then 
simulates and verifies the city’s future performance under each option against city 
requirements and computes the degree of satisfaction to support decision making. 
Targeting the unique challenges in recovery planning, we extend CityResolver by 
(1) incorporating a powerful simulation integration platform to evaluate secure and 
resilient CPS (SURE) (Koutsoukos et al., 2018; Neema et al., 2018); (2) defining 
and formalizing security and safety requirements using Signal Temporal Logic with 
Uncertainty (STL-U) (Ma et al., 2021) in smart cities for recovery planning; and (3) 
verifying the predicted performance of multiple recovery COAs with confidence 
guarantees.

In summary, the main contributions of this chapter on recovery planning 
include,

• A comprehensive overview of existing techniques for recovery planning
• Method for evaluating impact of system degradation
• Method and tool for generating recovery COAs efficiently
• Method and tool for evaluating of recovery COAs through integrated heteroge-

neous simulations considering uncertainty
• Studying and formalizing security and safety requirements using STL-U
• Verifying recovery COAs with confidence guarantees

Organization For the rest of the chapter, we first discuss the overview of recovery 
planning in Sect. 2. Then, we formalize the problem in Sect. 3 and present an over-
view of our system in Sect. 4. Next, we discuss the details of three key components 
of the system, viz. recovery COA generation, simulation and prediction with uncer-
tainty, and recovery COA verification in Sects. 5, 6, and 7, respectively. At last, we 
show two recovery scenarios using simulation-based predictive monitoring in a 
smart city in Sect. 8 and summarize the chapter with a discussion on the insights and 
future directions in Sect. 9.
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2  Recovery Planning Overview

2.1  Definition of Recovery Planning

In general, recovery is the process that an entity or system uses to quickly resume 
its functions from some unplanned, degraded state created by an incident, such as 
malicious attacks. In the scope of AICA, it includes recovery of corresponding 
physical systems as well as the recovery of software systems’ functions. Recovery 
planning is defined as the process of designing a structured approach for the recov-
ery. As a basic example, recovery plans can be a manually designed document that 
lists all the steps in a recovery process from some cyber-attacks. In an advanced 
view of recovery planning, the recovery plans are automatically generated by com-
posing the steps using available recovery tasks and actions in various ways and 
evaluating and choosing the composed recovery plans for optimal recovery goal. 
The goal is to optimize the recovery plan according to system state and resources, 
with the help of AI systems.

2.2  Different Components in the Recovery Plan

An AICA is assumed to reside on a physical platform and then protect the integrity 
of all vulnerable parts of the platform against cyber-attacks. Such platform is a mix-
ture of physical and software systems, which increases the complexity of the recov-
ery planning task. Before we introduce our system, we briefly review the recovery 
techniques for each of these components for general IoT applications, including 
device recovery, communication system recovery, and data recovery.

Device Recovery For the recovery of the platform, one key part is to make sure the 
physical devices of the platforms (e.g., sensors and actuators) are correctly func-
tioning, that is, ensure both the availability and operational integrity of devices. 
While the maintenance of the physical systems often requires human support, for 
the purpose of recovery planning the AICA should be able to diagnose the problem 
and notify the maintenance team when necessary. A second requirement for device 
recovery is to make sure the devices are trustworthy – not controlled by a mali-
cious party.

In the practice of CPS systems, the device availability and trustworthiness are 
often guaranteed by exchanging messages between the device to the server/control-
ler via secure communication protocols. For example, Sridhar and Smys (2017) 
gives a unique ID to every device in the system, and lets each device send message 
along with the device ID within the crypto protocol. Therefore, when a DoS attack, 
eavesdropping attack, or man-in-the-middle attack is present, the attack can be 
detected and subsequently an efficient recovery can be made. Li et al. (2017) pro-
pose a lightweight mutual authentication protocol to efficiently exchange messages 
between components in a smart city.

8 Recovery Planning



162

Communication Recovery Communication is essential to IoT services, especially 
during the recovery process. Therefore, continued operation could be very severely 
degraded or disrupted when communication is disrupted. A common practice is to 
set up an alternative communication path before the attack. This back-up communi-
cation should be secure against cyber-attacks. As an example, the state of Indiana 
set up redundant WAN connectivity (Indiana State Government, 2021) between 
Indianapolis and Bloomington for their IoT devices to reduce the disaster recovery 
time. The framework proposed by Woo et al. (2018) design a two-layer network 
structure, such that for each layer gateways are connected with a daisy chain. When 
at most two gateways have failed, the secure communication can still be maintained.

As a specific example, Kim et al. (2021) designs a CPS framework that is resil-
ient and able to recover from the pole-dynamic attack (PDA). PDA is an attack that 
targets physical devices of a systemin an unstable region by corrupting specific sen-
sors’ measurements. In this case, the system may still assume that the physical 
devices are functioning normally, but they may already be stuck. To recover from 
such PDA attack, Kim et al. proposes a three-step recovery plan powered by a net-
work manager. After identifying the attack’s location in the detection step, their 
network manager isolates the attacker from the existing CPS network by closing the 
connection toward adjacent nodes. The network manager then finds a new connec-
tion route in the network to connect the physical and the computing systems again, 
thus regaining the function of the IoT device. The three-step recovery process is 
shown in Fig. 8.1.

Data Recovery Recently, the application of AI techniques highlights the impor-
tance of the data in an IoT application. Data is thus another target for the adversary, 
as missing/corrupted data can greatly reduce the performance of IoT applications or 
even make them unusable.

A common approach to data recovery is to have redundancy in data storage, e.g., 
by setting up redundant array of inexpensive disks (RAID) for the data. If the redun-
dancy is set prior to the attack and the damage on the data is within a certain limit 
of the redundancy, the data can then be efficiently recovered. As an example, the 
state of Indiana (Indiana State Government, 2021) stores the IoT data with NAS and 
keeps a replication of the data in Bloomington. The data is aimed to be recovered 
within 6 h.

Researchers also target how to recover the data in an approximate way without 
physical redundancy. Analytical redundancy is an effective approach for recovering 

Fig. 8.1 Three-step recovery for PDA attack. (Source: Kim et al. 2021)
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lost sensor data if they are observations of interacting physical processes with at 
least partially known underlying models. This is frequently the case in IoT applica-
tions with dense sensor coverage. The computational approach is based on minimiz-
ing residual error relative to the underlying models that are derived from first 
principles or from observations using ML methods. For example, Fekade et  al. 
(2018) proposes an approach based on probabilistic matrix factorization, a Bayesian 
machine learning approach. Other machine learning techniques, such as SVM (Min 
& Han, 2005) or deep neural networks (Christakou et al., 2007) can also be applied 
to the problem.

Specifically, in Fekade et al. (2018), the authors first start with a random matrix R′, 
and try to optimize R′ so that the matrix R′ at the remaining positions match the original 
data matrix R. This difference is measured by an inconsistency loss, which is then mini-
mized with an optimization algorithm, The completion process is shown in Fig. 8.2.

Data integrity during communication is another issue, which requires that the 
data to be received has not been altered or modified during communication. In case 
of detection and reconstruction of tampered data, error correction mechanisms such 
as Cyclic Redundancy Checks (CRC) and checksum functions have been used.

2.3  Techniques for Recovery Planning

Simulation In recovery planning, there are usually multiple possible recovery 
COAs to take, each having a different future impact on the system. How shall we 
pick the best recovery option? Simulation offers one possible approach.

For the purpose of evaluating the performance of IoT-based systems, many simu-
lation tools have been proposed. For example, simulators NS2 (Issariyakul & 
Hossain, 2012) and Cooja (Österlind et  al., 2006) can be used to evaluate the 

Fig. 8.2 Data recovery. (Source: Fekade et al. 2018)
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performance of sensor networks, traffic simulator SUMO (Krajzewicz et al., 2012) 
can be used to evaluate performance of traffic planning, and simulator DPWSim 
(Han et al., 2014) can be used to evaluate the performance of IoT applications.

As an example of simulation-based evaluation, in Al-Hamadi and Chen (2017), 
the authors present a decision-making protocol for health IoT systems. The proto-
col, which is designed robust to malicious attack, decides whether a user should 
visit a place/environment for health reasons. To evaluate the protocol, the authors 
use network simulator to simulate scenarios when a fraction of the nodes in the 
network are malicious. The authors then test the protocol and show that within a 
certain time period, most malicious nodes are identified, and the protocol returns 
correct result confidently. With the simulation result, the authors conclude that their 
proposed decision-making protocol is effective.

Prediction with Machine Learning With recent development in machine learn-
ing, predictions with machine learning algorithms are widely applied to different 
IoT applications, even for making crucial decisions. For example, Piccialli et  al. 
(2020) uses an unsupervised learning method on IoT data to support the decision- 
making process of the stakeholders of a museum. They gather visitors’ tracks during 
the museum visit and perform a clustering to understand users’ behavior, and also 
compare them with historical results (i.e., previous month and year), to support the 
decision-making process of the museums’ owner, e.g., for deciding whether or not 
more audio guide should be added.

Specifically, the concept of predictive analytics (PAs) refers to the method that 
predict future events based on current patterns and then make analysis based on the 
potential future events. As an example, in Akbar et al. (2017), the authors propose a 
framework (shown in Fig. 8.3) that collects IoT data to predict future events and use 
those to infer complex patterns. The framework utilizes open-source machine learn-
ing components for event prediction. The proposed method is adaptive, such that its 
prediction horizon is adjusted dynamically with the data stream. The framework is 
successfully applied to perform predictive analytics on intelligent transportation 
systems.

Formal Methods In general, Formal Methods (FM) is the approach that uses logi-
cal and mathematical description to specify system behaviors (Chong et al., 2016), 
so that reliable conclusions can be drawn about those behaviors. Since 1970s, for-
mal methods have been applied for enforcing the safety of industrial systems. 
Specifically, by describing the system and a class of adversaries with formal meth-
ods, one can give a certification that the system is secure to all possible adversaries 
in the class.

Formal methods can be applied to a lot of hardware systems and software sys-
tems, including IoT applications. For example, Zhang et al. (2015) proposes a hard-
ware specification language SecVerilog that specifies the security of the 
information-flow between processors. Mohsin et  al. (2017) proposes IoTSAT, a 
framework that enforces the security of IoT applications with formal methods. The 
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Fig. 8.3 Predictive analytics system for IoT application proposed by Akbar et al. (Source: Akbar 
et al. 2017)

Fig. 8.4 Formal verification based secure IoT framework proposed by Mohsin et  al. (Source: 
Mohsin et al. 2017)

framework models IoT behavior and defines certain threats on IoT applications. 
After that the system try to verify whether adversaries can yield an unsafe state in 
the model. If the verification is successfully completed, the framework concludes 
that the IoT framework is resilient to the adversaries. The process is shown in 
Fig. 8.4.
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3  Problem Formulation

Assuming a system S and its environment E is compromised by attacks and the 
threat has been neutralized or deactivated, a set of recovery COAs A = {a1, …, an} 
are produced by various agents and services to mitigate the impact of attacks. 
Services and agents have dynamic priorities P = {p1, …, pm} under different con-
texts. The system and its environment have important safety and security require-
ments R = {r1, …, rl}. The problem is to find the optimal subset of recovery COAs 
A′ ⊆ A  that guarantees the satisfaction of requirements in set R with the highest 
degree of satisfaction under confidence level c considering the dynamic priorities 
and uncertainty.

4  System Overview

We discuss the recovery planning system in the context of a city operation center 
which would oversee all services and provide recovery COAs that aim to best miti-
gate the impact of these attacks. Figure 8.5 shows an overview of our envisioned 
architecture that extends the functionality of a city operations center with attack 
detector and recovery planner. Recovery planner makes decisions based on real- 
time city states. We refer readers to the previous chapters for attack detection and 
limit our focus on addressing challenges of recovery planning.

As shown in Fig. 8.6, our system includes four key components, which are COA 
generator, simulator, requirement formalization, and COA verification.

When a compromise is detected, it follows the following steps to obtain the opti-
mal recovery COA. First, the COA generator derives a set of COAs incorporating 
different services and agents. It may also suggest alternatives or delayed executions 
of COAs. Thus, the number of potential resolution options grows exponentially with 
the number of action requests and locations. Considering context factors and con-
straints, it returns a small subset of COAs using Integer Linear Programming (ILP). 
We will describe the ILP-based method in Sect. 5.

Fig. 8.5 Overview of security attack detection and recovery in a smart city
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Fig. 8.6 System overview

The second step is to simulate the execution of these resolution options to predict 
the effect of choices on the city. We use a powerful simulation integration platform 
for secure and resilient CPS (SURE) (Koutsoukos et al., 2018; Neema et al., 2018). 
The simulator reproduces the same scenario after the attack (e.g., half the number 
of the sensors down), then simulates the city’s future performance with COA 
options. Multiple simulations may be instantiated in parallel to simulate the execu-
tion of smart city processes under different COA options. By considering the uncer-
tainty and disturbance, the simulator returns sequences of city states as flowpipes 
(representing sequences of distributions). We will show the details of the simulation 
in Sect. 6.

The next step is to verify if each option’s simulated traces of city states satisfy 
various safety and security requirements. We develop an approach to formalize city 
requirements as Signal Temporal Logic with Uncertainty (STL-U) specifications 
and compute the satisfaction degree of different resolution options on multiple spec-
ification objectives via STL-U verification. We will show the study of safety and 
security requirements, their formalization, and verification with confidence guaran-
tees in Sect. 7.

5  Recovery COA Generation

In this section, we present an Integer Linear Programming (ILP) based method to 
generate a small set of COA options, which corresponds to the “COA Generator” 
module in Fig. 8.6.

Suppose that there are m ongoing service actions executing in the smart city. For 
example, the traffic service redirects some vehicles to a new route to reduce traffic 
congestion, and an accident service blocks a lane due to a traffic accident. After 
attacks happen, the operation center receives n new COA requests agents that try to 
mitigate the influence from the attacks. Next step is to evaluate the safety of these 
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m + n actions. One strategy to obtain resolutions is to only accept some of the new 
actions while rejecting others in a way that there is no safety violation. To achieve 
this, it may also be necessary to suspend some ongoing actions. Thus, the number 
of possible COA choices is at least 2m + n. If we consider a more complex resolution 
strategy, such as suggesting alternative actions to the requested actions, the solution 
space of possible resolutions becomes even larger. Checking all these resolution 
choices’ impact against requirements within the short time frame is very challeng-
ing. Thus, we present a method to select a small number of candidate COA options 
based on the intuition that a good set of COAs should (1) accept as many actions as 
possible, (2) not allow safety violations, and (3) account for priorities of agents.

We formulate the problem as an integer linear program. Given a set A of smart 
service actions causing conflicts, we define a binary variable μ ∈ {0, 1} for each 
action a ∈ A to track if the action is chosen by a candidate resolution option. Each 
action a is associated with a weight value w ∈ ℤ representing the action priority 
determined by current, state-dependent importance policies. For simplicity, we 
assume that action weights are given as constants at time t. We denote a set C of 
contradicting action pairs and a set D of dependent action pairs. We also group an 
action and its alternatives into a set θ ⊆ A. The resulting ILP problem is

 

maximize w
i i A

i i
w ,i� �� � � �

� �
, �

�
0 1

1  
(8.1)

Subject to

 
�� �� � �a a Ci j i j, : � � 1

 
(8.2)

 
�� �� � �a a Di j i j, : � � 0

 
(8.3)

 � � � � �a Ai i� �: 1  (8.4)

The objective function (8.1) is to maximize the number of accepted COAs in the 
recovery planning based on their priority weights. The constraint (8.2) guarantees a 
resolution does not accept a pair of contracting actions. The constraint (8.3) ensures 
that dependent actions are both accepted or rejected at the same time. Finally, the 
constraint (8.4) requires that at most one action from a set of alternative actions is 
chosen by a resolution. Transforming the problem to ILP and solving it with the 
Gurobi tool (Gurobi, 2021) do not necessarily find the best solution when the num-
ber is very large, but it can give the solution in polynomial time, which is very 
important for runtime decision making system in cites. We illustrate the usage of the 
ILP solution in Sect. 8.
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6  Simulation and Prediction with Uncertainty

6.1  Introduction to the SURE Platform

CPS involves close coupling of physical and cyber components in various ways to 
achieve their desired functions. However, these systems are vulnerable to attacks 
that can span physical and cyber spaces and impact the functionality of even deeply 
rooted system components. In addition, with the advancements in network connec-
tivity, computational environments, and process control, modern CPSs are continu-
ally becoming more distributed, which further increases their attack surfaces. 
Therefore, it is highly important to design these systems such that they are not only 
resilient to cyber-attacks but can also “recover” once under an attack. This requires 
a comprehensive experimentation and evaluation framework. The SecUre and 
REsilient Cyber–Physical Systems (SURE) platform (Koutsoukos et  al., 2018; 
Neema et al., 2018) incorporates: (1) realistic models of cyber and physical compo-
nents and their interactions; (2) cyber-attack models that focus on the impact of 
attacks to CPS behavior and operation; and (3) operational scenarios that can be 
used for evaluation of cybersecurity risks. Further, it allows the evaluation of perfor-
mance impact and assessment of resilient monitoring and control algorithms. In the 
SURE approach, research processes and results are documented as executable soft-
ware models, simulations, and generated data that support cybersecurity analysis 
and design in a quantifiable manner.

In general, there are two approaches to building resilience: passive and active 
resilience. Passive resilience refers to ‘resilient by construction’ where the system is 
designed by taking into account the operational uncertainties encountered. This is 
accomplished using redundant and overperforming components while balancing the 
cost with resilience. On the other hand, active resilience refers to the ability of a 
system to quickly restore its operation when faced with cyber-attacks and/or physi-
cal disruptions. This requires the use of monitors to actively look for abnormal 
system behavior, detectors to find causes for the abnormal behavior (e.g., a cyber- 
attack), and responders that implement cause-dependent solutions to restore system 
operations. The main issue with active resilience is that it is difficult to implement 
for complex systems and may not be feasible with respect to time and resources it 
might require. The SURE platform provides tools for both passive and active 
resilience.

As shown in the Fig. 8.7, the SURE platform provides a web-based and cloud- 
deployed architecture. Analysts interact with SURE for modeling the systems and 
attacks in an online multi-user modeling environment based on WebGME (Maróti 
et al., 2014) and the modeled experiments are run in the cloud backend with results 
reported back on the front-end both as live charts during the experiment execution 
and aggregate results when the execution has completed. In the cloud backend, the 
experiments are designed to run using Vanderbilt’s CPSWT framework (Neema & 
Karsai, 2018; Neema et al., 2019) that supports multi-domain integrated simulation 
experiments along with cyber scenarios through courses-of-action modeling. The 
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Fig. 8.7 Architectural overview of the SURE platform

CPSWT framework relies on the IEEE High-Level Architecture (HLA) (IEEE Std 
1516-2010, 2010) standard for integrating various simulation engines such as 
MATLAB/Simulink (Matlabworks), OMNeT++ (Varga, 2019), CPNTools 
(Westergaard & Kristensen, 2009), and SUMO (Krajzewicz et al., 2012). It also has 
a reusable Cyber-Attack Library (Neema & Karsai, 2018; Neema et al., 2018) and 
capability of modeling and evaluating COAs (Maróti et  al., 2014; Neema et  al., 
2018, 2019) which is utilized by the SURE platform for designing Cyber COAs. 
The framework is also capable of performing cyber-gaming experiments, where 
different cyber-attacks and their combinations can be evaluated against different 
combinations of available security mechanisms. Using the web-based architecture, 
the SURE platform allows multiple users to work on the same model at the same 
time and maintains and provides full history of model edits (like the distributed ver-
sion control system Git (Spinellis, 2012)). The online and multi-user nature of the 
platform makes it suitable for shared modeling and analysis. The cloud deployment 
of the experiment executions enables it to execute multiple experiments in parallel 
and scale to the needs of scenarios being evaluated.

It is important to note that even though the SURE platform targets the domain of 
networked sensing and control of road traffic, the components, and technologies it 
is built upon are modular and reusable for direct reuse in many different CPS appli-
cation contexts.
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6.2  Simulation of Different Attack Scenarios

The ability of simulating various attacks within the context of CPS operational sce-
narios is important for both passive and active resilience methods. The SURE plat-
form supports three different attack categories – cyber-attacks, physical attacks in 
the road traffic network, and Hardware-In-the-Loop (HIL) attacks on physical 
devices in the system (e.g., traffic lights and controllers). These different attack 
categories and the supported attacks within each category are listed in Table 8.1. 
The table also provides a description for each of the attack types supported.

These attacks from the attack libraries in SURE are modular and reconfigurable. 
For example, for a Denial-of-Service (DOS) attack, the modeler can specify the 
network node on which the attack will be deployed, the simulation time at which the 
attack will be initiated, and the simulation time at which the attack was over/miti-
gated, if any. It is important to note that these attacks do not represent the physical 
mechanisms through which these attacks are carried out in the real-world but rather 
represent the impact such attacks achieve when deployed. For example, the network 
delay attack ensures that the messages between network components are delayed by 
the amount of delay specified in the attack model rather than inserting large amount 
of extraneous network traffic that would ultimately cause network delays. This is 
important because from the perspective of security and resilience of large-scale 

Table 8.1 Attack libraries in SURE

Attack type Description

Cyber attacks
DOS Disable a controller, or network component
Disable network Disable communication within the network
Delay Delay packets when they are routed between components
Integrity Change packet values before they reach destination
Data corruption Make packets unreadable
Reply Retransmit packets
Out of order Send transmitted packets in the wrong order
Network filter Filter out traffic between given source and destination 

subnets
Sniffer Listen to communicated traffic
Routing table manipulation Redefine the network routes
Physical attacks
Lane closure Close a road or lane of a road
Vehicle failure Cause a vehicle to stall
Traffic light failure Cause a traffic light to stop operating
Vehicles crash Cause vehicles to crash within the simulation
HIL attacks
DOS/DDOS Transmit bulk traffic from multiple nodes
Side Channel Reverse engineer components based on behavior
Spoofing Transmit fake messages
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Table 8.2 Example of attacks, impacts, and recovery actions

Type of attack Description Impact in the city Potential recovery actions

Denial-of- 
Service (DOS) 
attack on a 
traffic light at a 
key intersection

A cyber-attack that 
makes the traffic 
light controller 
(responsible to 
switch traffic light 
states) unreachable

Long queues of vehicles 
in the lane where the 
traffic light remains 
‘Red’ and no waiting at 
the intersection where 
the traffic light remains 
‘Green’

1.  Switch the traffic light to 
default controller which 
turns light into ‘blinking-
yellow’ state – a 
suboptimal solution but 
fast and easy to implement

2.  Divert the incoming traffic 
in alternate routes, while 
fixing and restoring the 
traffic light damaged by 
the attack

3.  Deploy security 
mechanisms on city traffic 
lights to prevent future 
attacks

Lane closure 
attack on a key 
road segment

A physical attack 
(e.g., downed tree, 
or breaking of a 
bridge) that makes 
certain roads or 
lanes unusable

Quick accumulation of 
road traffic around the 
blocked road or lanes.

1.  Generate and install traffic 
diversions to ensure traffic 
does not accumulate

2.  Dispersion of already 
accumulated traffic 
through rerouting and lane 
changing areas

3.  Removal of the blockages 
and restoration of traffic

4.  Installation of monitors 
that can quickly warn 
agencies about the attacks

5.  Deployment of diversion 
and rerouting gear and 
personnel near key roads 
and lanes for quick 
recovery in future attacks.

Spoofing of 
traffic sensors at 
a key 
intersection

A hardware attack 
that takes over the 
data sent by traffic 
sensors to traffic 
controllers

Unwarranted and unfair 
of use of roads and 
lanes by attackers (e.g., 
a shipment company 
spoofing traffic light 
sensors in the city to 
ensure non-stop flow of 
their delivery trucks)

1.  Detection of irregular 
traffic flows by sensor- 
fusion methods on 
multiple geographically 
distributed traffic sensors.

2.  Override capability on 
traffic controllers when 
under spoofing attack.

3.  Installation of fallback 
controllers while original 
controllers are restored 
from the attack.

systems, such as the city-wide road traffic management, the most important consid-
eration is how different types of attacks will impact the road traffic and its control 
and ultimately impact the city’s resilience in maintaining acceptable traffic flows 
amidst these attacks. A few examples of using these attacks, along with the impact 
they achieve in disrupting the road traffic and potential recovery actions to alleviate 
the disruptions are given in Table 8.2.
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6.3  Simulation for Prediction with Uncertainty

Real-world systems have to deal with numerous uncertainties that arise due to com-
plex network of components, their inter-dependencies, and various other social and 
geo-political factors that affect their operations. In addition, the adversaries may 
impact the system operations by attacking its components at any time in many dif-
ferent ways. Therefore, an intelligent agent tasked for resilience and recovery of 
these systems must take uncertainties into account in order to better prepare for and 
handle emerging situations as they occur. In the SURE platform, we use integrated 
simulations for evaluating security and resilience of systems under normal condi-
tions as well as when under attack. In addition, the platform provides ways to inject 
uncertainty into the scenario designs and tools to execute a Design of Experiments 
over different parametric combinations. These parametric variations can also take 
into account different combinations of attack plans and security mechanisms. Below 
are a few examples of introducing uncertainty and handling their impact:

 1. Uncertainty in Traffic Demand: Traffic scenarios in the SURE platform are used 
for evaluating many security and resilience methods and algorithms. In these 
scenarios, we allow introduction of uncertainties by randomly varying traffic 
patterns. The traffic demand is determined by the quantity and timing of vehicles 
going between all source and destination pairs. Here, we allow randomization 
for varying both the number of vehicles and their start times. The cloud deployed 
backend and the large-scale scenario-based experimentation in SURE, allows 
scaling experiments and exercising these variations in order to determine how 
systems are going to operate in these situations.

 2. Uncertainty in Attack Plans: The course of action (COA) modeling language 
incorporates several workflow/scenario atomic elements that allow random val-
ues for their configurations. For example, the Random Duration element can be 
placed within the workflow to delay its execution (when the execution path has 
reached this workflow element) for a random duration. Another interesting 
example in the COA language is Probabilistic Choice element. This is essen-
tially a fork in the workflow where several alternative branches can be executed, 
but each of the branch has an associated probability with it. The branch that gets 
chosen for execution depends on the probabilistic value chosen during COA 
execution. This enables testing Cyber COAs for uncertain timing and paths.

 3. Situationally Aware Active Defense Strategies: One of the key defense strategies 
is to keep an adversary guessing of potential defense actions that defender might 
take. For example, the US nuclear forces use a declaratory policy of ambiguity 
to keep enemy guessing of its intentions and response as a way to ensure deter-
rence. In SURE platform, the Cyber COAs not only has means to deploy differ-
ent attacks and defense actions at different times, but it also allows introspection 
of executing scenarios and adjustment of defense strategies based on observa-
tions made during scenario execution. This capability transforms Cyber COAs 
from mundane static experimentations to highly dynamic and adaptive evalua-
tions. As an example, if an adversary knows modus operandi of how the defender 
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is going to institute security mechanisms in different attack situations, it can 
deploy counterattack plans to further exacerbate the disruption. These types of 
situations involving counter attacks and counter-counterattacks can be easily 
programmed using Cyber COAs, which along with random elements described 
above brings in significant capability to evaluate cyber resilience with 
uncertainties.

7  Recovery COA Verification

With the simulation platform, we predict the city’s future states with the requested 
COAs. However, it is challenging to check whether the predicted time series from a 
large scale of locations satisfy the safety requirements, especially with various city 
requirements. Therefore, we introduce recovery COA formal verification into our 
design. We first formalize the city requirements using Signal Temporal Logic with 
Uncertainty (STL-U) (Ma et al., 2021), then verify the simulated prediction results 
for each recovery COA option using STL-U. This section presents STL-U’s formal 
definition, syntax, and semantics, then formalizes security and safety requirements in 
smart cities using STL-U and verifies these requirements with confidence guarantees.

To start with, we formally define the signals as flowpipes that characterize the 
prediction results (i.e., the predicted future states of smart cities from the simula-
tion) with uncertainty.

Definition 1(Flowpipe) A flowpipe signal Ω is defined over a finite discrete time 
domain   such that Ω[t] = Φt at any time t∈ , where Φt is a Gaussian distri-
bution  � �t t, 2� � .

Given a confidence level ϵ ∈ [0, 1] ⊆ ℝ, the flowpipe at time t is bounded by a 

confidence interval � �t t
� �� � � ��� �� ,  with the lower bound �t t

t

N
� � � � � � �

�
· , 

where N is the number of samples that the Gaussian distribution is estimated from, 
and δ s a parameter obtained from the quantile function of Gaussian distribution Φt 
based on the confidence level ϵ. In the special case where the Gaussian distribu-
tion’s variance σt = 0, the lower and upper bounds of the confidence interval concide 
(i.e., � �t t t

� �� � � � � �  � ), thus the flowpipe becomes a single trace signal. We 
then present the syntax of STL-U which is used to formalize city requirements on 
the city’s future states. Please refer to Ma et al. (2021) for the detailed definition.

Definition 2 (STL-U Syntax) The syntax of a STL-U formula φ over ω is defined 
by the grammar

 
� � � � � � �:� � � � �x Iε

1 2 1 2
U
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where, � :�� �� n
a multi-dimensional flowpipe signal, where T R� � � �0,d  

represents for a finite discrete time domain and n =  ∣ X∣ for a finite set of (indepen-
dent) real variables X, I ⊆ ℝ+ is a time interval, and μx(ϵ) is an atomic predicate over 
a real variable x with confidence level ϵ whose value is determined by the sign of a 
function of an underlying flowpipe signal Ωx, that is, μx(ϵ)  ≡  f(x)  >  0 for 
x t t� � � � ��� ��

� �� � ,  with Φt = Ωx[t]. (We assume that f(x) = λ − x where λ ∈ ℝ is 
a constant).

The above syntactic definition of STL-U is minimal and includes only basic 
operators. We can derive other operators, for example, eventually denoted by ♢Iφ ≡ 
true ʋI φ, and always denoted by □Iφ  ≡  ¬♢I  ¬ φ. Using STL-U syntax, we can 
specify a requirement on Air Quality Index (AQI) “with 95% confidence level, the 
AQI should never exceed 100 in the next 10 hours” as “□[0, 10](AQI95% < 100)”.

To verify the predicted flowpipe with its requirement, we present the Boolean 
semantics of a STL-U formula φ over a multidimensional flowpipe signal ω at time 
t by two indices: strong satisfaction, denoted by (ω, t)⊨sφ, and weak satisfaction, 
denoted by (ω, t)⊨wφ.

Definition 3 (STL-U Strong Satisfaction)

 
� �,t fs x t� � � � � � �� � ��� ε ε� 0

 

 
� � � �, ,t ts w� � � � � �� �

 

 
� � � � � � �, , ,t t and ts s s� � � � � � � �  1 2 1 2  

 
� � � � � �, , , ,t t t I t and t t t ts I s� � � � � �� �� � � � �� � � �� � �� � ��� U �1 2 2, , ��s �1  

Definition 4 (STL-U Weak Satisfaction)

 
� �,t fw x t� � � � � � �� � ��� ε ε� 0

 

 
� � � �, ,t tw s� � � � � �� �

 

 
� � � � � � �, , ,t t and tw w w� � � � � � � �  

1 2 1 2  

 
� � � � � �, , , ,t t t I t and t t t tw I w� � � � � �� �� � � � �� � � �� � �� � ��� U �

1 2 2
, , ��w �1  

Intuitively, the strong satisfaction means that all the flowpipe signal values 
bounded within the confidence interval with a certain confidence ϵ should satisfy 
the requirement φ; while the weak satisfaction means that the flowpipe signal at 
least partially satisfies φ. In the smart city, the strong semantics can be applied to 
monitor safety critical requirements, e.g., the fire risk, accidents, and the weak 
semantics can be applied to monitor less-strict performance requirements, e.g., the 
noise levels, illumination of streetlights. We present examples of formalized city 
requirements in recovery planning in Table 8.3.
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Table 8.3 City requirements formalization using STL-U

Domain City requirements Formal specification

Safety & 
Security

Maximum disconnection 
time of device and AICA 
is 5 min

Disconnect device Disconnect device,� � � � �� �� � 0 5

At least one of the two 
data centers should 
remain active

□(a, b)(Active(C1) ⋁ Active(C2))

At least 80% of signal 
lights should maintain 
active status

□(a, b)(Activeϵ(signals) < 80%)

The sensing coverage 
should not be reduced to 
less than 50% per block

□(a, b)(Activeϵ(sensors) < 50%)

Transportation No vehicle collision 
should occur

□(a, b) ¬ Collision(i)

Number of vehicles 
should never exceed limit

□(a, b)(VehicleNumber(lane) < Capacity(lane))

Any lane on the main 
street should not be 
closed for more than 2 h

Closed lane Closed lane,� � � � �� �� � 0 120

Emergency Emergency vehicles 
should not wait for more 
than 10 s at an 
intersection

□(a, b)(EmergencyWaitTimeϵ(i) < 10)

Emergency vehicles 
should not be directed to 
a blocked lane or area

□(a, b) ¬ (EmergencyDirection(lane) ∧ Blocked(lane))

The highway blocked by 
an emergency accident 
should be unblocked 
within 30 min

Blocked lane Blocked lane,� � � � �� �� � 0 30

Environment The noise level in a lane 
should always be less 
than 70 dB

□(a, b)(Noiseϵ(lane) < 70)

The particulate matter 
(PMx) emission in a lane 
should always be no more 
than 0.2 mg

□(a, b)(PMxϵ(lane) < 0.2)

8  Recovery Scenarios

In this section, we present two recovery scenarios using simulation-based predictive 
monitoring. These two scenarios demonstrate how our system supports recovery 
from random attacks in normal days and planning for the potential attacks under 
special city events, respectively. We present these scenarios using the street network 
and communication network on Vanderbilt campus, as shown in Fig. 8.8.
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Fig. 8.8 (a) Vanderbilt Campus street network (b) Communication network model

8.1  Recovery Scenario 1

In the first recovery scenario, assume the city was under both physical and cyber- 
attacks, which lead to lane closure and signal lights failures. As shown in Fig. 8.8, 
due to the attacks, at the intersections with signal lights, long queues of vehicles in 
the lane where the traffic light remains “Red” and no waiting at the intersection 
where the traffic light remains “Green”. Meanwhile, there is a quick accumulation 
of road traffic around the blocked road or lanes.

Therefore, the goal of our recovery planning is to generate optimal recovery 
COAs to restore the signal lights and release the traffic congestion without violating 
city requirements. We illustrate the major steps of our system with an example of 
COAs from 2 recovery agents. To be noted, the scenarios could be much more com-
plex in practice (e.g., there are over 50 intersections in Fig. 8.8), and our solution is 
general and scalable.

Step 1: In this case, multiple COAs are generated by different agents and services 
based on their recovery goals. Our system first gathers all the COAs from recov-
ery agents. For example, traffic service S1 requests seven traffic signals to stay 
green for 5 min. These requested actions are denoted as {a1, …, a7}. If action a3 
is not accepted, the service also allows an alternative action (denoted by a8) to 
keep the corresponding signal green only for 3 min. Suppose that, at the same 
time, an emergency recovery service S2 requests three green different traffic 
signals for 3 min, which has conflicts with previous actions because they share a 
crossroads. These new actions are denoted {a9, a10, a11}. We know that actions a9 
and a10 are interdependent. Action a10 is contradicting with actions a3 and a8. We 
also assume actions requested by the emergency recovery service S2 has a higher 
priority weight than the traffic service S1. Let the weight value for S2 actions be 
2 and the weight value for S1 actions be 1.

Step 2: Next, we generate subsets of COAs using ILP. We write an ILP as follows:

8 Recovery Planning



178

 
maximize

i i
i

i
i

�
�

�� � � � � �
� ��

0 1
1 8 9 11

2
,

�
 

Subject to

 � �3 10 1� �  

 � �8 10 1� �  

 � �9 10 0� �  

 � �3 8 1� �  

Step 3: We rank solution results based on their objective function values. The top 3 
resolution options are as follows:

Option 1: Reject a3 and a8, accept other actions.
Option 2: Reject a3, a8, and a11, accept other actions.
Option 3: Reject a8, a9, and a10, accept other actions.

Step 4: We simulate the state of the city over time with each subset in the simula-
tion. In the simulation, we simulate not only the performance at the intersections 
but also the states of traffic, sensors, pedestrians, communications, etc., on the 
lanes and intersections nearby. By considering the uncertainty and disturbance 
(as described in Sect. 6.3), the simulator returns sequences of city states as 
flowpipes.

Step 5: To verify the safety of the predicted performance with different set of COAs, 
we formalize safety and security requirements using STL-U. Below are some 
examples of requirements:

• R1: The sensing coverage should not be reduced to less than 50% per block.
• R2: Any lane on the main street should not be closed for more than 2 h.
• R3: From location A to B, there should be at least more than 1 lane unblocked.
• R4: At least 80% of signal lights should maintain active status.
• R5: Pedestrians should not be blocked at an intersection for more than 10 min.
• R6: No system compromise should be caused by COAs.

Step 6: We verify the flowpipes against all the formalized requirements and return 
satisfaction degrees with confidence guarantees. Then we find the optimal solu-
tion by comparing the verification results. In cases that none of the options sat-
isfy all the requirements, we present the dashboard of trade-offs with violation 
degrees (as shown in Fig. 8.9) to the decision makers.
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Fig. 8.9 An example 
dashboard displaying the 
trade-off between three 
resolution options in terms 
of the percentage of time 
violating R1–R4

8.2  Recovery Scenario 2

Different from the first recovery scenario, which focuses on the random attacks after 
they are detected, in the second recovery scenario, we present how to make recovery 
plans for potential attacks before special city events. The city infrastructure, traffic, 
and communication networks are vulnerable to attacks at the same time. In advance 
of the attacks, it is of great significance to anticipate and prepare recovery plans to 
deal with potential attacks.

Assuming there is a football game on campus on Friday, city planners will make 
special arrangements for the traffic and parking to handle a large number of audi-
ences. For example, some bi-direction lanes are changed to single-direction lanes, 
some streets are blocked, and important routes are constrained for emergency 
usage only.

In this scenario, the goal of our system is to support the city to prevent potential 
attacks from happening or prepare recovery plans to mitigate the influence of 
unavoidable attacks. To start with, taking advantage of our SURE simulator, we first 
generate simulation scenarios using real-world data (e.g., traffic volume, pedestri-
ans, city event policies, etc.) from past football games. Next, we simulate different 
types of cyber-attacks, physical attacks, HIL attacks, and combinations of them.

We first simulate the city under Denial-of-Service (DOS) attack on a traffic light 
at several key intersections (as shown in Fig. 8.8a). When simulating the attacks, we 
incorporate uncertainty under attack plans which generate several workflows (i.e., 
cyber scenarios) with random variables in their configurations. As a result, long 
queues of vehicles form in the lane where the traffic light remains “Red.” Since the 
traffic is already under stress due to the football game, the DOS attack worsens the 
situation. Next, the recovery agents react to this attack and generate COAs for our 
system to evaluate. As shown in Table 8.2, potential COAs may include,
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• Switch the traffic light to default controller which turns light into ‘blinking- 
yellow’ state.

• Divert the incoming traffic in alternate routes, while fixing and restoring the traf-
fic light damaged by the attack.

• Deploy security mechanisms on city traffic lights to prevent future attacks.

Different from Scenario 1, the system also considers long-term plans to prevent 
multiple future attacks and their combinations using attack COAs. Following the 
steps in Recovery Scenario 1, we verify and identify the optimal set of COAs for 
recovery. Similarly, we simulate and test the other types of attacks in Table 8.1 and 
generate optimal COAs for them. The goal is to improve the readiness of critical 
infrastructures to handle future, potential attacks.

We continue running the system to detect and generate recovery plans for secu-
rity attacks during the event. With the precautions implemented, some types (or 
combinations) of attacks that have been tested under this particular context should 
be prevented or detected easily. The system proceeds for unseen types of attacks as 
presented in Recovery Scenario 1.

In summary, the recovery scenarios demonstrate the effectiveness of our system 
in recovery planning. It supports the city in finding the optimal COAs to recover 
from the attacks and prepares the city for potential attacks ahead of time.

9  Summary and Conclusion

This chapter discusses the problem, challenges, and solutions of recovery planning 
in cyber-physical systems. There is a high demand for an autonomous intelligent 
cyber defense agent for planning a rapid recovery. When the threat has been neutral-
ized or deactivated, AICA will attempt to return the system to adequate working 
conditions through the most appropriate COAs. However, it is challenging to auto-
matically identify the optimal COAs in recovery planning for cyber-physical sys-
tems due to the complex safety and security requirements and uncertainty in the 
impact of different sets of COAs. In this chapter, we first show various aspects of 
recovery planning regarding cyber-physical systems, including device recovery, 
communication system recovery, and data recovery. Targeting these challenges, 
many recovery techniques have been developed for each aspect. We discuss how 
several essential techniques - simulation, prediction with machine learning, and for-
mal methods – support evaluating recovery plans and making recovery decisions.

Furthermore, we create a system for recovery planning using simulation-based 
predictive monitoring to recover the system from attacks (cyber, physical, or hard-
ware) and disruptions automatically. The recovery planning system first evaluates 
the impact of system degradation and generates recovery courses of actions (COAs) 
efficiently. Then, it evaluates recovery COAs through integrated heterogeneous 
simulations considering uncertainty. By formalizing security and safety require-
ments, it formally verifies recovery COAs with confidence guarantees, and obtains 
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the optimal recovery COAs. We present two recovery scenarios in smart cities to 
demonstrate the effectiveness of our recovery planning system.

In the future, we envision extending the recovery planning systems in several 
ways. First, we will consider adding new attacks in our attack libraries to be able to 
test for system’s resilience more widely. Secondly, we plan to incorporate deep 
learning models for prediction (data-driven) and integrate it with integrated simula-
tions allowing us to develop autonomous monitoring agents capable of detecting 
deviations in observed traffic patterns and generating advance alarms for initiating 
recovery planning. Finally, we envision scaling up the system capabilities to develop 
it into a real-time autonomous decision-making system which can form the founda-
tion of creating a fully autonomous intelligent agent deployed for resilience and 
recovery in the real-world.
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Chapter 9
Strategic Cyber Camouflage

Christopher Kiekintveld, Aron Laszka, Mohammad Sujan Miah,  
Shanto Roy, and Nazia Sharmin

1  Introduction

From the earliest history of conflict, stealth and deception tactics have been a criti-
cal way to gain strategic advantage on the battlefield. While the details vary, the goal 
is always to control the information space, preventing the adversary from gaining 
useful information and creating false or misleading beliefs in some cases. 
Camouflage is one example of this; it has a long history of use in physical environ-
ments as a method to make the presence or actions of an entity difficult to detect 
against the backdrop of the environment. In cyber warfare the control of informa-
tion is even more central, and the ability to perform (or hinder) effective reconnais-
sance will likely be decisive in many engagements. Therefore, developing effective 
methods for implementing and strategically deploying camouflage in a cyber con-
text is an important research objective for cyber operations.

In the particular context of an Autonomous Intelligent Cyber-defense Agent 
(AICA), we identify three primary reasons why cyber-camouflage techniques are 
important:

C. Kiekintveld (*) · M. S. Miah · N. Sharmin 
University of Texas at El Paso, El Paso, TX, USA
e-mail: cdkiekintveld@utep.edu; msmiah@miners.utep.edu; nsharmin@miners.utep.edu 

A. Laszka 
College of Information Sciences and Technology, Pennsylvania State University,  
University Park, PA, USA
e-mail: aql5923@psu.edu 

S. Roy 
University of Houston, Houston, TX, USA
e-mail: shantoroy@ieee.org

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-29269-9_9&domain=pdf
https://doi.org/10.1007/978-3-031-29269-9_9
mailto:cdkiekintveld@utep.edu
mailto:msmiah@miners.utep.edu
mailto:nsharmin@miners.utep.edu
mailto:aql5923@psu.edu
mailto:shantoroy@ieee.org


184

 – An AICA may be tasked with implementing and deploying camouflage actions 
for a network or individual host to make reconnaissance more difficult for the 
adversary

 – An AICA may need to conceal it’s own presence or actions from the adversary to 
evade detection

 – An AICA may need to detect and identify threats that are using camouflage tac-
tics to conceal their own activities, so the agent would need to be able to mitigate 
camouflage tactics of the opponent

In this chapter we present an overview of some common methods for implementing 
camouflage tactics in the cyber environment. We then present some basic mathe-
matical frameworks based in game theory that have been developed to model the 
strategic aspects of how to use and optimize camouflage in the cyber environment. 
We go into detail on three particular models. The first two use game theory to for-
mulate specific optimization problems, and the last one shows how we can extend 
these models using machine learning to implement more effective decoy objects 
(e.g., honeypots or fake traffic) that are difficult for adversaries to detect. Finally, we 
review some of the ways in which camouflage (and more generally, deception meth-
ods) have been evaluated so far in the research literature. While we cannot cover all 
of the important topics on cyber-camouflage here, we present some fundamental 
concepts and models that can be adapted to address many key challenges for AICA, 
and provide references for additional study.

2  Implementing Camouflage

The goal of cyber camouflage is to take actions that make the presence, actions, and 
intentions of systems or artificial agents more difficult for an adversary to correctly 
perceive. This can be achieved using a wide variety of specific techniques for 
manipulating information depending on the context and objectives. We begin by 
introducing some representative methods from the literature for implementing cam-
ouflage at a technical level to give a sense of what types of actions can potentially 
be used to manipulate the information space. We focus our discussion on two broad 
categories of actions: obfuscation (hiding information) and deploying decoys (a 
form of deception). More thorough coverage and discussion can be found in related 
survey articles (e.g., Han et al., 2018; Fraunholz et al., 2018).

2.1  Obfuscation Techniques

One of the most basic goals for cyber camouflage for AICA agents is to conceal the 
presence of an agent in the first place, or to conceal specific actions or objectives. 
Cyber attackers use a wide variety of methods to conceal their activities, such as 
stealthy scanning, obfuscated malware, obfuscated command and control 
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communications, and specific actions to cover the tracks of an attack. Many of these 
are also relevant for cyber defense to make it more difficult for attackers to perform 
basic system reconnaissance as well as to conceal the nature of cyber defenses. 
However, cyber defense has typically placed less emphasis on effective conceal-
ment and obfuscation of information for several reasons, including potential impacts 
on legitimate users, the complexity of implementing such strategies broadly on a 
network, and the desire not to rely entirely on obfuscation for security. However, as 
automated agents for both attack and defense become more sophisticated, it is both 
possible and necessary to focus more attention on defensive obfuscation to gain 
advantages early in the cyber kill chain by hindering attacker reconnaissance and 
planning efforts Hosseinzadeh et al. (2015). We now briefly introduce some existing 
methods for defensive obfuscation at different levels.

Network Layer Basic properties of the network topology and configuration can be 
obscured by manipulating the data plane in various ways to limit the accuracy of 
passive and active network scanning methods. This can include intercepting and 
modifying path tracing probes directly Meier et al. (2018), route obfuscation utiliz-
ing ranking-based route mutation Bin-Yahya and Shen (2022), utilizing honey links 
and hiding important links in a large network Liu et al. (2021), delaying identified 
probe packets to hinder Network Topology Inference Hou et al. (2020), etc. New 
methods for obfuscation are actively being developed that make use of AI tech-
niques such as adversarial machine learning to more effectively obfuscate the char-
acteristics of network traffic Verma et al. (2018), Datta et al. (2018).

System Layer Attackers also use fingerprinting methods to identify specific soft-
ware or configuration details for individual systems, such as operating system ver-
sions. Information is often leaked by protocols and services, but information can be 
either redacted or modified to limit or mislead fingerprinting attempts (Anderson & 
McGrew, 2017; Hosseinzadeh et al., 2015).

Application Layer The application layer encompasses many different applica-
tions that could be running on a host, as well as their configurations, associated data, 
and user activities. This includes security applications, including AICA agents. 
Examples of application-level obfuscation include the framework proposed by 
Perez et al. that identifies and obfuscates user data using metadata and related obfus-
cation strategies (Perez et al., 2018). Software or application data can also be obfus-
cated level by level to achieve layered security (Xu et al., 2020). Other examples 
have used adversarial learning to obscure data without compromising semantic 
attributes (Bertran et al., 2019).

2.2  Decoy Technologies

Moving beyond obfuscation, deception methods aim to explicitly create false 
beliefs, rather than just hiding or changing the characteristics of existing systems or 
data. One of the most common forms of deception is using decoy objects (e.g., host, 
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files, tokens, etc.) that can be used to distract and confuse attackers, as well as to 
improve detection and monitoring of malicious activities (Rauti & Leppanen, 2017). 
Han et al. provides a layered categorization for different deception techniques (Han 
et al., 2018). Effectively deploying decoys may be an important task for AICA 
agents, who may also do this dynamically in response to detected attacker activities 
(e.g., deploying a new honeynet in response to specific scanning activities). AICA 
agents may also use decoys to try to distract opponents from their own presence or 
activities.

Network Layer Network traffic sniffing, scanning, and fingerprinting major attacks 
in the network layer, which involve capturing and analyzing existing network pack-
ets, or generating malicious and fingerprinting packets. The system can deceive the 
attacker by redirecting attack traffic (e.g., ICMP/TCP packets) to a honey network or 
fake virtual machines (Sharma & Kaul, 2018), generating vulnerability- driven honey 
traffic to prevent optimal fingerprinting or packet analysis (Anjum et al., 2020), etc. 
These methods may also lead the attacker to form incorrect beliefs and plan ineffec-
tive attacks or target fake systems rather than real ones.

System Layer Attackers typically want to compromise internal systems one after 
another and plan for the next attacks. To deceive adversaries from attacking a real 
system, honeypots are widely used in the industry. A honeypot is a fake system that 
may or may not resemble the original hosts. Recent applications of honeypot include 
VANET Cloud (Sharma & Kaul, 2018), industrial cyberphysical systems (Sun 
et al., 2020), real-time intrusion detection (Baykara & Das, 2018), defending IoT 
based botnet DDoS attacks (Vishwakarma & Jain, 2019; Du & Wang, 2019), captur-
ing CPE and IoT zero days (Vetterl & Clayton, 2019), and classifying botnet attacks 
(Lee et al., 2021).

Application Layer Application layer reconnaissance includes software and appli-
cation vulnerability scanning. Both native and web-based applications are targeted 
by the attackers. Several fake entities of software and applications can be utilized to 
detect and monitor malicious activity (Rauti & Leppanen, 2017). Software decoys 
are widely used to prevent counter-intelligence (Ferguson-Walter et  al., 2021). 
Other application-level decoys include honeytokens (Ferguson-Walter et al., 2019), 
honeypermissions for insider threat detection (Kaghazgaran & Takabi, 2015), and 
honeyfiles such as automated decoy documents (Voris et al., 2015).

3  Optimizing Camouflage Strategies

We have given some examples of specific actions and tactics that can be used to 
achieve the broad goals of cyber camouflage. Now we turn to the question of how to 
deploy these camouflage techniques and actions effectively, taking into account the 
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costs and possible impacts on resource utilization, activities of real users, etc. The 
details of these decisions will vary depending on the purpose of the camouflage, the 
techniques being used, specific costs and constraints, and assumptions about the 
adversary. However, the literature provides a set of fundamental principles, models, 
and algorithms that are abstract enough that they can be used for decision support 
and automation across a broad range of cyber camouflage and deception situations. 
We now introduce some basic models for optimizing cyber camouflage decisions 
using game theoretic models, and provide references for further reading on more 
advanced models.

3.1  Optimizing Decoy Resource Allocation

One area where game-theoretic approaches have been very successful in finding 
optimal strategies for allocating limited deceptive resources to detect and distract 
attackers (Carroll & Grosu, 2011; Kiekintveld et  al., 2015). One example is the 
Honeypot Selection Game (HSG) (Píbil et al., 2012; Kiekintveld et al., 2015) that 
models the problem of allocating honeypots to a network. In a real network, not all 
systems are equally important. A database server may be much more valuable than 
a user laptop or mobile device. A strategy for deploying honeypots should take this 
into account when deciding what kinds of systems to create as decoys. The HFG 
model uses a zero-sum game to optimize the importance values of honeypots to 
deploy to increase the likelihood that an attacker will target a honeypot rather than 
a real system. Durkota et al. (2015) extends this model by using attack graphs to 
determine the attacker’s optimal attack plans against the defender strategy, where 
the defender strategy modifies the attack graph by adding honeypots to interdict 
attacker actions. The attack graphs allow the attacker to attack sequentially, with 
costs and probabilities of success or failure associated with each attempt. Anwar 
et al. (2021) also determine the optimal strategy for deploying honeypots on the 
attack graphs in a dynamic environment where the attacker and defender interact 
and can make changes based on observations of the other player. Wang et al. (2017) 
uses Bayesian games to explore honeypot strategies in the smart grid to prevent 
denial of service attacks. La et al. (2016) also optimizes honeypot deployment for 
mitigating denial-of-service attacks in the Internet-of-Things domain. Du et  al. 
(2017) uses Bayesian game modeling to solve a similar problem for honeypots in 
the social networking domain. Anjum et al. (2020) use a Stackelberg game to deploy 
honey flows (fake network traffic) optimally to confuse the attacker in distinguish-
ing real and fake vulnerabilities.
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3.2  Optimizing Feature Obfuscation

In addition to deploying deceptive objects, there is also a significant body of work 
in optimizing strategies to obfuscate features of particular objects. This can be used 
both to make more effective decoys (by making them look more realistic) and to 
disguise or camouflage real objects (by hiding information or making them look 
fake). For example, and AICA agent may want to disguise the features of a binary 
or network traffic to make it look like a normal application.

The Cyber Deception Game (CDG) (Schlenker et al., 2018) computes an optimal 
deception strategy for concealing specific characteristics of network hosts. This 
game focuses on invalidating an attacker’s information in the reconnaissance phase 
by deciding what signals the defender wants to send about the type of the host. The 
defender can respond with obfuscated messages when the attacker probes network 
hosts, but the model is limited to zero-sum settings. The Cyber Camouflage Games 
(CCG) (Thakoor et al., 2019) extends the CDG model by considering a general-sum 
setting. This model also considers uncertainties in the defender’s knowledge of the 
attacker’s valuations of different network hosts. Miah et  al. (2020) present a 
Bayesian game model to find the optimal strategy for obfuscating the observable 
characteristics of either real or fake objects, making it difficult to distinguish 
between them. Guan et al. (2001) camouflages payload traffic components, such as 
the communication system, location, diversity of hosts, network topology, etc., such 
that their pattern is unrelated to the operational status of applications to an observer. 
However, this method is inefficient and can result in significant network overhead.

While there are various methods for obfuscating network traffic, Ciftcioglu et al. 
(2017) use a game model to obfuscate network traffic, considering that defender has 
limited resources and obfuscation has network overhead. The water-filling algo-
rithm is another efficient method for finding traffic obfuscation strategies for a given 
budget (Ciftcioglu et al., 2018). Machine learning methods have also been used for 
optimizing feature obfuscation, making use of the gradient of the loss function for 
generating a perturbation (Carlini & Wagner, 2017; Szegedy et al., 2013). Verma 
et  al. (2018) present an adversarial machine learning approach that uses a post- 
processing procedure on the resulting distributions to manipulate network traffic. 
However, the proposed method sometimes generates incorrect perturbations and 
does not correspond to real-world scenarios. Granados et al. (2020) impose more 
generalized constraints for obfuscating traffic samples and generate valid perturba-
tion and distribution.

4  Example Methods for Optimizing Camouflage

This section presents three examples of cyber camouflage optimization techniques 
from the literature in more detail. The first model determines an optimal strategy for 
disguising network configurations using a game-theoretic model for optimizing 
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signaling strategies. The second model uses game theory to determine how to mod-
ify individual features of both real and deceptive objects to make them more effec-
tive as decoys, or confusing real objects. The final approach brings in a different set 
of techniques in machine learning to address similar questions of how to modify 
features in a more scalable way. All of these models can be generalized to different 
cyber camouflage problems by considering different action spaces and objective 
functions.

4.1  Disguising Network Attributes

A network topology comprises multiple systems, each with it’s own set of attributes 
such as the operating system, running services, antivirus protection measures, etc. A 
system’s true configuration (TC) could be any combination of these attributes, and 
systems have different TCs. An attacker can employ network scanning to learn 
about each system’s characteristics before attempting to exploit a target. This recon-
naissance reveals potential weak points, such as open ports, operating services, sub-
networks, user information, etc. Then the attacker uses specific vulnerability 
information to find a strategy for system exploitation. However, if the network 
defender obfuscates the information collected by an attacker, the likelihood of a 
successful attack decreases. A defender can benefit from using a combination of 
truthful, false, and obscured responses to the attacker’s network probes. For exam-
ple, consider a network with one system running NGINX web serber and two sys-
tems running a Tomcat proxy server. The attacker has a specific NGINX exploit and 
examines all systems using NGINX before deploying the exploit. If the defender 
can deceive the attacker about the webserver, the attacker needs to exploit all sys-
tems to infiltrate the network. The attacker’s network infiltration is delayed by this 
deception strategy, giving the defender more time to detect an attack. The defender 
might also use deception techniques to reveal parts of a system’s observable attri-
butes that are not true configuration, such as changing the TCP/IP stack or spoofing 
a running service on a port. Determining deception strategies to alter an attacker’s 
perception is challenging for the defender and also associated with cost.

Cyber Deception Game The Cyber Deception Game (CDG) (Schlenker et  al., 
2018) addresses this problem and determines the optimal strategies to optimize the 
defender’s deception strategy. The CDG is a two-player zero-sum Stackelberg game 
between a defender and an attacker. The defender moves as a leader and determines 
how to respond to the attacker’s scanning activity. The attacker moves as a follower 
and chooses a system to attack based on the observations. The model assumes that 
when an attacker probes a system, the defender controls the attacker’s perception of 
observed configuration (OC). Masking a true configuration TC with an OC incurs a 
cost for the defender. The true configuration TC of a system is associated with a 
utility that is the attacker’s reward and an equal loss for the defender. Therefore, the 
defender’s objective is to determine optimal strategies to mask TCs with OCs to 
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minimize the attacker’s expected utility while considering deception costs. The fol-
lowing is a formal description of the game notation:

 – χ and χ  represents all possible TCs and OCs respectively.
 – The true state of the network (TSN) is a vector υ = (υx)x∈χ, where υx is the number 

of systems on the network with a TC x ∈ χ.
 – Similarly, the attacker’s observed state of the network (OSN) is a vector 
� �

�
� � � �x x

. Here, two systems with the same x  as their OC are indistinguish-

able from the attacker’s perspective.
 – Λ is the feasibility constraint as a (0,1)-matrix that defines whether or not x can 

be masked with x,  with 1 denoting feasibility.
 – ζ(x, x ) denotes the defender cost of masking a TC x with an OC x

Defender Strategies The CDG considers that the defender knows the TSN, all 
possible TCs and OCs, costs, total budget and feasibility constraints. The defender 
strategy Θ is to determine how many of the υx systems having TC x, should be 
assigned to the OC x.  Therefore, all possible strategies are a |χ| × | χ | matrix where 
Θx x,  representing the number of systems having TC x is masked with OC x.  Θ 
must satisfy the following constraints:

 – Any entry Θx x,  of |χ| ×  � ��  matrix must be a non-negative integer
 – The total number of systems having any TC x and OC x  must be equal to υx 

since the CDG assumes that the TSN υx is fixed.
 – The Θ must satisfy feasibility constraints. The defender is not allowed to mask 

any TC x with any OC x  if the entry Λ x x,  of (0,1)-matrix Λ is 0.
 – Finally, the total masking cost must be less than or equal to the cost budget.

Attacker’s Strategies Following the defender’s move, the attacker observes the 
OSN υ  and tries to attack the OC x  that gives the highest expected utility. The 
attacker is indifferent in attempting an attack against all such υx  because all the 
systems with the same OC x,  are indistinguishable. Therefore, when he selects an 
OC x , he means that he attacks all systems with an OC x  with the same probability.

Utility The defender aims to protect a set of systems Ns from potential exploits 
where each system is associated with a utility that is the attacker’s reward for attack-
ing it. This utility depends on the TC of a system where Ψx denotes the utility of 
each x ∈ χ. The Ψx might be negative when a system’s security level is high, or the 
attacker receives incorrect information. If the defender’s strategy is Θ, the attacker’s 
expected utility Ψx  for attacking an OC x  with �x�0  is defined by:

 
�

�
�x

x

x x

x
x�

�
�

� �
,

 

The equation denotes that υx  systems having an OC x , Θx x,  have a TC x. When 
the attacker attacks x , the defender’s expected utility is ��x  since the game is 
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zero-sum. Here, the attacker is restricted to attack an OC x  when υx  = 0 because 
it leads his expected utility to −∞.

Small Example Figure 9.1 shows a example of a small network that comprises a 
set of systems N = {n1,n2,n3,n4}, a set of TCs χ = {x1,x2,x3} (Shown in Fig. 9.1 as the 
gray boxes) and set of OCs χ  = { x1 , x2 } (Shown in Fig. 9.1 as the blue boxes). Let 
χx1  = {x1,x2} and χx 2  = {x2,x3} be feasibility constraints sets. According to Fig. 9.1, 
the following are the TCs:

 

x L N S x

W T I x

1 2

3

� � � � � � ��� ��
� � � � � � ��� ��
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Also, the following are the OCs:
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Let the utilities be Ψx1 = 5, Ψx2 = 0, and Ψx3 = 6. For simplicity, let all the costs ζ( x x,� �  
be 0 with no budget constraint. According to Fig. 9.1, the true state of the network 
(υx)x∈χ is (2, 1,1), and the defender strategy Θ is given by

 

x x

x

x x

1 2

1

2 3

20

01 01

" #

 

Now, if the attacker attempts to attack x1 , his expected utility is Ψx1  = (2 × 5)/2 = 5. 
On the other hand, the expected utility of attacking x2  is Ψx 2  =  (0 + 6)/2 = 3. 
Therefore, attacking x1  is the best response for the attacker and the defender loses 
an equal amount.

4.2  Feature Selection Game

The Feature Selection Game (FSG) (Miah et al., 2020) addresses a different aspect 
of the camouflage problem, deciding how exactly to modify the features of real or 
fake objects to achieve a specific goal (e.g., making fake objects appear more real-
istic). The FSG is modeled as a general-sum two-player extensive form imperfect 
information game between an attacker and defender. The defender’s goal is to stra-
tegically modify both real and fake objects so that the attacker can’t tell the differ-
ence. Objects are associated with observable feature vectors that can provide useful 
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Fig. 9.1 Example of an enterprise network

information to the attackers, allowing them to distinguish objects more accurately. 
To make classification difficult, the defender changes the observable features of real 
and fake samples, which we call 2-sided deception. The FSG can be formally 
defined by the tuple FSG = (K,vr,vh,Pr,Pf,τ,χ). Here, K represents the complete set of 
real and fake samples. Pr and Pf are the probability distributions over feature vectors 
of real and fake samples where the nature player generates the configurations based 
on these distributions. Samples x = (x1,…,xk) are generated according to the joint 
distribution Px where P x P x P x

i

r

i
i r

k

i
x r f� � � � �� � �

� � �
� �

1 1

. The defender examines a 

sample x ∈ X, where X represents all possible samples, and then takes steps to 
change each object’s features. An action d ∈ D results a new configuration x′ ∈ X, 
which the attacker observes and uses as an information set I ∈ τ. In each I, the 
attacker perceives any permutation of configurations in the same way. Therefore, he 
cannot reliably detect real and fake objects in a feature vector. The data set for the 
attacker is the all possible combinations of object configurations where attacker’s 
action aI is to detect real and fake objects in each information set I.

The utility functions in this game are calculated based on the importance values 
of the objects and the cost of changing the features. The attacker gets positive 
rewards when he correctly detects real and fake objects, but he receives a penalty for 
misclassifying. In particular, if an attacker’s action a in the information set I corre-
sponds to a real object, then the utility function U(x,j,a) = vr, whereas, if it corre-
sponds to a fake object, then U(x,j,a) = −vf where vr and vf are the importance values 
for real and fake objects, respectively. The defender loses the same amount as the 
attacker’s positive reward, but the situation is reversed when the attacker misclassi-
fies. This part of the utility function represents the zero-sum component of the 
game. However, the defender need to pay additional cost to change the characteris-
tics, which makes the game model non-zerosum. The defender’s action in a sample 
x that produces an information set I, where different actions in different network 
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samples can result in the same I. Then, in each I ∈ τ, the attacker plays the best 
response where the defender’s objective is to maximize his utility, considering fea-
ture modification costs. In principle, the FSG game allows us to determine optimal 
camouflage strategies for the defender to modify the appearance of different objects. 
However, in practice this model has limited scalability due the exponential growth 
in the strategy spaces as the number of features grows. This leads us to consider a 
machine learning variation that can approximate this type of strategy in the next 
section.

4.3  Two-Sided Feature Deception Using Adversarial Learning

The Two-Sided Generative Adversarial Network (TS-GAN) solves the two-sided 
feature deception problem in a complex and large feature space by using adversarial 
learning techniques. It generates fake samples that look like real samples and real 
samples that look like fake samples. This model consists of two parts: the attacker 
and the defender. The defender contains two modules, and both are neural networks. 
One of the networks is a generator that generates fake data, which is represented as 
Gθ with θ parameters. The Gθ uses a latent space z from an l-dimensional spherical 
Gaussian distribution Pg to create a fake sample x′ = Gθ(z). It learns to estimate the 
distribution from which the real training data is drawn to generate fake samples. The 
objective of Gθ is to minimize the probability of a generated sample being detected 
as fake by the attacker. The defender’s second neural network is the Obfuscator, 
which refers to Oθ with θ parameters. The Oθ takes the original instance x as input 
and generates a perturbation Oθ(x). The dimensions of the input data and output 
perturbed data of this network are identical. Then x + Oθ(x) will be passed to the 
attacker. The learning goal of Oθ is to create a perturbed adversarial example that is 
indistinguishable from a fake sample.

The attacker or Discriminator (Dθ) is also a neural network and learns to detect 
as well as possible between the real and fake samples. The problem can be formu-
lated as follows: Let (x1,……,xn) represent the training instances and (xi,yi) is the ith 
instance in the training set, which is made up of feature vectors xi ∈ χ where χ ⊆ Rn 
represents the feature space and yi corresponding real class label (1). Also, let 
Gθ(z1),…,Gθ(zr) be a collection of r examples from the generated distribution Pg that 
are corresponding fake class label (0) and represented by ( x xn1

� ��, , ) where.
xi
� � � . Similarly, assume, Oθ(x1),…,Oθ(xn) is a set of perturbation generated 

from (x1,……,xn) where xi + Oθ(xi) = xadv
i ∈ χ is the ith adversarial example, such that 

Dθ(xadv
i) = t (target attack) where t is the target class (0). The attacker’s learning goal 

is to learn a classifier Dθ: χ → Y from the domain χ to the set of classification out-
puts Y ∈ {0,1}, where |Y| represents the number of classification outputs. Figure 9.2 
shows the basic architecture of TS-GAN.

The TS-GAN model can be considered as a game between a defender and an 
attacker where the defender uses two networks Gθ and Oθ to minimize the detection 
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Fig. 9.2 Two-sided generative adversarial network architecture

success of the attacker and forms a minimax game between the attacker and the 
defender.

5  Evaluating Camouflage

We now discuss some general strategies for measuring and evaluating the effective-
ness of cyber camouflage and deception. There are several frameworks for cyber 
camouflage that have evaluated their work based on effectiveness (e.g., optimal 
defender utility in game-theoretic models (Anwar et al., 2020, Miah et al., 2020), 
expected number of attacks deceived (Rawat et al., 2019)) and cost (e.g., reducing 
defender’s cost (Anwar et  al., 2020), deceived attacks with respect to deception 
deployment time (Rawat et  al., 2019)). We divide the evaluation of camouflage 
models primarily based on two approaches: theoretical and experimental and dis-
cuss some metrics that have been used to evaluate existing models.

5.1  Theoretical Evaluation

Theoretical evaluation is one of the first steps in assessing the potential benefits of 
camouflage strategies. These evaluations assess performance within the context and 
assumptions of a particular model, and usually present an optimistic view of the 
potential impact in a realistic setting. They are relatively easy to do, and a useful 
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first step in evaluating different approaches. We present some examples of these 
types of evaluation from the literature.

Non-game-Theoretic Evaluation Jajodia et al. argued that attackers could map 
system configurations (e.g., type of operating systems, applications, or services) for 
a particular node in the network (Jajodia et al., 2017). The authors propose a belief 
state model that considers an interval of probabilities for specific configurations and 
then tightens the interval over time. The authors proposed two algorithms (Naive- 
PLD and Fast-PLD) to keep the attacker away from the valuable nodes by answer-
ing a scan query that minimizes the damage. They estimated the average damage 
against the attacker’s steps when applying these algorithms. Sugrim et al. utilize 
Bayesian inference to update the attacker’s belief for an individual node property 
(e.g., IP address) (Sugrim et al., 2018). The authors quantified the attacker’s updated 
belief over the increasing number of operations. They also measured the attacker’s 
belief error, yield, and footprints.

Game-Theoretic Evaluation Game theoretic models evaluate each player’s 
(attacker and defender) strategies, and current works focus on optimizing strategies 
for the defender. In a typical Cyber Camouflage Game, computing the optimal 
defender strategy is NP-hard (Thakoor et al., 2019; Milani et al., 2020), where the 
first model masks each machine with different observable configurations in a zero- 
sum game setting, and the second model alters the perceived structure of the attack 
graph, respectively. The authors proposed approximation algorithms (e.g., MILP, 
NAS, etc.) to calculate optimal defender strategies. Additionally, there are several 
honeypot allocation games over the attack graphs in cyber deception or camouflage 
games (Anwar et al., 2020).

Milani et al. quantified average defender utility for different proposed algorithms 
achieved against the number of nodes in the network (Milani et  al., 2020). The 
authors compared the performances of these algorithms by calculating the average 
defender utility over time. One of the essential evaluation metrics is the run time of 
proposed algorithms to approximate an optimal solution and how these algorithms 
handle the scaling of a network. For example, a typical experiment could be quanti-
fying the algorithm run time against the increasing size of the network (Anwar 
et al., 2020). Similarly, Thakoor et al. calculated the run time of the proposed MILP 
with cuts against the strategy space size. Another metric is each player’s cost esti-
mation. The goal is always to increase the attack cost or maintain the defender’s cost 
as low as possible. For example, Anwar et al. estimated the defender reward at Nash 
Equilibrium (optimal allocation) and random allocation at different attack costs 
(Anwar et al., 2020).

Here, we show an example game-theoretic measurement presented by Miah 
et al. (2020), where the authors calculated defender’s utility in different scenarios 3. 
The authors showed that the defender can benefit significantly through utilizing the 
two-sided feature deception model when the unmodifiable features are different in 
real and honeypot hosts. Figure 9.3a considers two-sided feature deception while 
calculating the defender’s utility. Figure  9.3b presents a comparison between a 
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Fig. 9.3 Game-theoretic model evaluation (comparison of defender utility) (Miah et al., 2020). (a) 
When some features cannot be modified. (b) Naïve attacker versus a fully rational attacker

rational and naïve attacker. The author confirms that the best case is when the 
defender can perform two-sided deception against a naïve attacker and the worst 
case is when the defender ignores deception against a fully rational attacker.

5.2  Experimental Evaluation

Theoretical models may not always correspond to the results obtained from a real- 
world scenario for a variety of reasons. Therefore, it is important to also conduct 
evaluations using experiments in more realistic settings, ideally using real-world 
architectures, data, etc. as much as possible.

Automated Adversaries Automated evaluation depends on particular objectives 
in a predefined scenario, such as a particular type of attacker or a typical vulnerabil-
ity/exploit choice. Simulation can be used to evaluate strategies based on a pre- 
defined automated attacker, which has the advantage of consistency and speed. For 
example, Rawat et  al. evaluated performance of deception system for deceiving 
cyber adversaries in adaptive virtualized wireless networks (Rawat et al., 2019). The 
authors quantified the expected number of attacks and deceived attacks with respect 
to deception deployment time. They also plotted the successful attack time with 
respect to the deception deployment time.

Human Adversaries In many cases the ideal evaluation is done using humans, 
including penetration testers, read teams, or ethical hackers to evaluate the impact 
of strategies in a realistic scenario. Evaluation using humans can account for how 
humans may really make decisions (including imperfect ones), which could vary 
considerably from perfect models in cyber deception scenarios. However, human 
data is also limited and expensive, and humans can exhibit a wide variety of behav-
iors and their responses may depend heavily on background knowledge and exper-
tise, especially in very technical domains.

Shade et al. performed an experimental evaluation of host-based deception that 
involved 30 participants in choosing any host to attack (Shade et al., 2020). The 
authors measured the ratio of successful task completion, the proportion of success-
ful commands, and time to task completion. They also estimated the total time to 
complete, time wasted on decoys, reported surprises, etc.
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Fig. 9.4 Ping delays in Native configuration (Acosta et al., 2021)

Acosta et al. designed a cyber deception experimentation system (CDES) where 
the authors proposed an on-demand honeypot instantiation approach (Acosta et al., 
2021). Here the honeypots are dynamically instantiated and presented before an 
identified attacker. They proposed three types of configurations: no inst configura-
tion where the honey VM is instantiated beforehand, pause resume configuration 
where VMs are usually in a suspended state and activated only when resumed, and 
save state case where the VMs are offloaded, but their state is saved and restored 
based on the requirement. Figure  9.4 compares the ping delays using CDES in 
pause resume and save state configurations. Here, the the Native setup uses a sepa-
rate laptop to run CDES.  The authors also experimented with the In-VM setup, 
which uses the CORE emulator within a virtual machine. Later, the authors esti-
mated the CPU and memory usage (Fig. 9.5) while executing these frameworks.

The primary goals of evaluating camouflage frameworks are to estimate optimal 
defender’s strategy and cost while minimizing the affect in network or system 
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Fig. 9.5 Utilization during the execution of the three configurations (Acosta et al., 2021)

performance. Even though there are several theoretical models, it is necessary to 
test the effectiveness of the models or frameworks with experimental setups and 
human evaluation to evaluate outcomes in more realistic settings.

6  Summary and Conclusions

This chapter has discussed several different aspects of strategic cyber camouflage, 
including implementation, modeling, optimization, and evaluation. All of these are 
key considerations for an Autonomous Intelligent Cyber-defense Agent (AICA), 
both for taking actions to disguise a network and to conceal the activities of the 
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AICA agent. In the basic form, cyber camouflage is about hiding information from 
an adversary, making their reconnaissance less effective. However, more advanced 
forms can also use deception tactics to introduce false information and beliefs, such 
as the use of decoy objects (hosts, traffic, etc.) into a network. These tactics can all 
achieve goals including confusing the attacker and increasing uncertainty, delaying 
attacks, creating additional opportunities for detection, etc. An AICA can imple-
ment decoy and obfuscation technologies at different layers (network, system, and 
application) and can choose the best strategies based on an optimal solution. The 
game theory and machine learning models presented here are examples that can be 
used as the basis for implementing AI strategies for using camouflage, but they are 
only a starting point, and many additional factors can be taking into account in 
developing more advanced strategies. In addition, we have presented some initial 
evaluations but there is much work to be done to evaluate different cyber camou-
flage tactics deployed by real AICA agents in realistic networks, particularly in the 
presence of adversarial agents.
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Chapter 10
Adaptivity and Antifragility

Anton V. Uzunov, Bao Vo, Hoa Khanh Dam, Charles Harold, 
Mohan Baruwal Chhetri, Alan Colman, and Saad Sajid Hashmi

1  Introduction

Like all systems, AICA systems are susceptible to various kinds of faults and 
attacks. AICA systems need to survive and fight-through these faults and attacks so 
as to maintain effective operation and continue to defend their target 
environments.

In terms of fragility, software systems can reside on a spectrum ranging from 
fragile, where the system is easily broken; robust, where the system operates until a 
breaking point, after which it becomes fragile once again; resilient/survivable 
(Linkov & Kott, 2019; Dobson et al., 2019), where the system can “bounce back” 
from failures or attacks; and antifragile (Hole, 2022), where the system can not only 
bounce back but also formulate improved responses for when similar or related 
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adverse events are encountered. Resilience and antifragility in particular can be 
achieved by:

 1. Using various architectural principles and patterns during design-time, such as 
modularity, redundancy, and diversity (Hole, 2016; Nygard, 2018);

 2. Employing active defense mechanisms during run-time, including (self- oriented) 
intrusion detection and response (Yuan et al., 2014); and

 3. Enabling the system to learn, re-organize and adapt to change (Atighetchi & Pal, 
2009; Baruwal Chhetri et al., 2018).

All of these approaches are important; however, in this chapter the focus will be on 
the last of these: re-organizing and adapting to change via self-management and 
self-improvement. Specifically, our focus is on effecting distributed self- management 
and self-improvement via collections of intelligent software agents (henceforth self-
* or simply S* agents) that either complement and reside alongside AICA agents or 
are themselves special AICA agents with the requisite S* functionality. In the fol-
lowing, we outline several assumptions about: (i) the nature of S* agents; (ii) the 
nature of AICA systems; (iii) inter-agent communication; and (iv) the relation 
between S* and AICA agents in achieving resilience and antifragility.

1.1  S* Agents

Adapting from (Wooldridge & Jennings, 1995), we define an S* agent as a compu-
tational entity situated in some environment and capable of flexible action in order 
to meet its self-management design objectives, where flexibility is further character-
ised by the following three properties: autonomy, adaptivity and interactivity. 
Autonomy refers to the agent’s ability to control its own internal state and behaviour 
without external intervention. A system capable of (self-)adaptivity has the ability 
to adjust itself to changes. This adjustment can simply be the system’s response 
when encountering or anticipating changes, but it can also imply the ability to learn 
and (implicitly) improve itself. As S* agents are typically co-situated in an environ-
ment with other agents, interaction with other agents locally and globally, via 
message- passing mechanisms, is a critical skill. An S* multi-agent system is made 
up of a collection of S* agents that interact within an evolving, exogenously or 
endogenously defined organizational structure.

1.2  AICA Systems and Agents

We assume an AICA system may be composed of tens, hundreds, or possibly even 
thousands of intelligent software agents that are co-situated and operate across a 
heterogeneous set of execution environments on different platforms and/or devices 
(see (Theron et  al., 2018) and  Chap. 2 of this volume on alternative AICA 
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architectures), with each AICA agent fulfilling some cyber defense or supportive AI 
functionality. These agents have the ability to cooperate with other types of intelli-
gent agents in a secure team structure. There are good reasons for making this 
assumption. Firstly, decomposition and decentralization of functionality and control 
across separate software units is now standard industry practice in distributed sys-
tems. A single, isolated AICA agent per environment would not reflect current engi-
neering best-practices (cf. the arguments behind micro-service architectures 
(Newman, 2021). Secondly, a single AICA agent per environment would be a single 
point of failure – a well-known resilience anti-pattern. Thirdly, it is sometimes nec-
essary and more efficient to break down a problem into smaller, more manageable 
parts, and to solve the resulting sub-problems in parallel via multiple agents (as 
argued in the distributed AI/multi-agent systems communities). Finally, a single 
AICA agent per environment would severely limit or even disable the system’s 
options for adaptivity, as monoliths are inherently tightly coupled and inflexible.

1.3  Relation Between S* and AICA Agents

We assume that AICA agents are designed to fulfill their cyber defense functions but 
do not provide system-wide self-management capabilities and are not inherently 
able to survive faults or fight-through attacks – that is, they are not in themselves 
able to deal with changes that may threaten survival or negatively affect perfor-
mance. This is the function that S* agents are designed to fulfil by evaluating their 
own state and behaviour, the state and behaviour of related AICA agents, and (as a 
collective) the state and behaviour of the whole system, and subsequently executing 
various reconfiguration/regulatory actions. S* agents could be realized as part of a 
complementary S* multi-agent system residing alongside the AICA system, or as 
special AICA agents within the AICA system itself – e.g., AICA support agents 
designed for self-management but not cyber defense per se – in either case forming 
an S* management (sub-)system. For the sake of simplicity, we will assume S* 
agents reside alongside AICA agents, and refer to S* and AICA agents separately, 
even if S* agents are realized as special AICA agents. Whatever the realization, the 
collective aim of S* agents is to provide the combined <AICA + S* > system with 
various self-* properties, including self-management and self-improvement, which 
are the premise for achieving resilience and antifragility. We discuss self-* proper-
ties in the next section.

1.4  Agent Communication

Both AICA and S* agents interact and communicate with each other in two ways: 
internally, within the same execution environment; or externally, across different 
environments. We outline our assumptions with respect to these ways of communi-
cating below.
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• Internal: our first assumption with respect to communication is that internal 
communications enabling the interaction between multiple agents are necessary, 
trusted, and reliable within a secure team structure. Various military vehicle stan-
dards, e.g., the GVA (Bergamaschi et al., 2010) and AS GVA, rely on a service- 
oriented architecture paradigm where multiple services interact internally to a 
vehicle; hence this assumption is reasonable. While internal communications can 
lead to (unwanted) on-platform discovery of AICA agents, we assume AICA 
architectures are designed to eschew the infamous “security by obscurity” anti- 
pattern, and that adaptation can ensure the functionality provided by any discov-
ered agents is not denied (this is the value of antifragility).

• External: We assume external communications is not reliable due to the nature 
of the contested battlespace, and may need to be minimized in certain circum-
stances, e.g., to avoid geo-location. At the same time, we also recognize that 
communications in the future battlespace will become ubiquitous, with devices 
and software units of various types exchanging vast amounts of information 
between each other and across different networks; hence it may not be a matter 
of how much, but in what way agents communicate. Regardless of the situation, 
we make the assumption that both AICA and S* agents use a special stealth com-
munications middleware (see also Chap. 9 of this volume), e.g. akin to a stealthy 
version of ZeroMQ or JMS, that is able to encrypt and suitably blend agent com-
munications (for example, by generating interleaved dummy messages, a tech-
nique that is well documented since the 1980s) whenever the relevant links are 
available.

With these assumptions in mind, we next describe a number of core self-* proper-
ties required to realize self-management and self-improvement.

2  Self-* Properties

2.1  Definitions

In accord with the definitions of (Berns & Ghosh, 2009), self-management can be 
seen as both a vision and a top-level self-* property pertaining to autonomous adap-
tation. Other, lower-level self-* properties include self-healing (Schneider et  al., 
2015), which is the ability of a system to recover from failures by diagnosing and 
localizing faults and taking corrective actions without manual intervention; and self- 
optimization, which is the ability of the system to adjust and improve its perfor-
mance, or to otherwise optimize some aspects of its functioning based on a local or 
global objective function. These properties are in turn based on self-awareness via 
self-monitoring, and self-configuration. Berns and Ghosh also put forward self- 
stabilization, self-adaptation, self-protection and self-scaling as separate self-* 
properties in terms of system behaviours and maintained predicates (system proper-
ties) in the face of adversary actions. However, most research uses and focuses only 
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on the four self-* properties mentioned earlier – sometimes also called self-CHOP 
(configuration, healing, optimization, protection) – due to their long history stem-
ming from initial work by IBM on autonomic computing, circa 2002 (Kephart & 
Chess, 2003; Lalanda et al., 2013). Readers are referred to (Salehie & Tahvildari, 
2009) for another perspective on self-* properties and another, though similar, prop-
erty hierarchy. Regardless of the schema or hierarchy used, all self-* properties 
support self-management in some way, which in turn supports resilience.

Besides these properties, there is a special, meta-level property called self- 
improvement (Krupitzer et al., 2016), which enables a system to learn, improve the 
realization of other self-* properties and become more resilient over time, thereby 
achieving antifragility. Following Baruwal Chhetri et al. (2019), self-improvement 
relies on perturbing the system online in a controlled fashion in order to find the 
“unknown unknowns”, which allows the system to prepare for ‘black swan’ events 
before they occur in full measure. Black swan events are those for which the system 
has no ready responses, and hence has to partially or fully improvise responses and 
learn from experience. In this way unknown unknowns can become known 
unknowns or even known knowns. Clearly this implies the need for learning, which 
we discuss later.

2.2  Realization Approaches

There are two main ways in which the self-* properties enumerated in the previous 
sub-section can be realized: internalized, where management and business func-
tionalities are blended; and externalized, where management and business function-
alities are partitioned using a separate (self-)management (sub-)system.

Each of these approaches has advantages and disadvantages. With respect to 
AICA, a separate set of S* agents complementing the AICA agents can facilitate 
both the modification of the AICA system’s own functionality (or the way this is 
realized – execution control), and also maintain operation under duress (antifragility 
aspect). However, separation of the S* agents also implies the possibility of conten-
tion and conflict, as some decisions made by S* agents may not align with those 
made by AICA agents, for example, with respect to the same set of resources (an 
AICA agent blocks a network connection, while an S* agent enables the same con-
nection to adjust throughput). Despite this disadvantage, separation of S* agents 
and AICA agents provides much stronger separation of concerns, which from an 
engineering perspective is almost always desirable – not least because in the AICA 
context it will allow the independent (co-)development of cyber security and self-* 
functionalities. Moreover, internalized realization approaches do not entirely avoid 
contention, since the same decisions will need to be made within a given agent or 
set of agents and will likewise require algorithmic resolution. Thus, we argue that 
externalized self-management and self-improvement using S* agents in a separate 
(sub-)system is the better of the two approaches.
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3  S* Multi-Agent Systems for Adaptivity & Antifragility

In the externalized approach to self-* property realization, adaptation becomes the 
responsibility of computational entities outside the target system, which in this 
chapter is the AICA cyber defense system. For these entities to be capable of self-
management and self-improvement, we argue that they need precisely the core 
properties of intelligent software agents which we discussed earlier: autonomy, 
adaptivity and interactivity (cf. also Tesuaro et al., 2004). Subsequently, an external-
ized realization of self-management/improvement for an AICA system implies 
defining various S* agents whose main responsibility will be to manage the <AICA 
+ S* > system. In the following two subsections, we provide a high-level overview 
of a conceptual framework that enables S* agents to be properly defined. The con-
ceptual framework is composed of two parts, spanning the micro- and macro-levels 
of an S* multi-agent system: (i) an abstract reference architecture of an S* agent, 
and (ii) a set of flexibly applicable concepts for multi-agent system design. Taken 
together, these two parts of the framework provide the key design abstractions for 
defining a self-managing/improving system for AICA and for allocating self- 
management/improvement concerns to various S* agents.

3.1  S* Agent Reference Architecture (Conceptual 
Framework, Part 1)

Building on the generic architecture of intelligent software agents as distilled in 
AICA (Kott et  al., 2018) (cf. Chap. 2 of this volume) – which in turn builds on 
Russell and Norvig’s (2016) abstract agent definition – and inspired by the ideas of 
Lesser (1998) and Sabatucci et al. (2018), we require each S* agent in an S* man-
agement (sub-)system to have at least ten core skill-sets captured as notional com-
ponents or modules: a sensing element (SE), an interaction element (IE), a memory 
element (ME), a coordination element (CE), an organization design element (ODE), 
an awareness element (AE), a detection & diagnosis element (DDE), an adaptation 
response  element (ARE), a meta-adaptation  element (MAE), and a learning ele-
ment (LE).

The SE enables the S* agent to perceive relevant data (percepts) from the envi-
ronment and the systems (i.e., the AICA cyber defense system) for which the agent 
provides self-* capabilities. The IE allows the S* agent to execute the actions it has 
decided to perform, which take on the form of communicating and interacting with 
the environment and other agents to effect necessary changes to the <AICA + S*> 
system. The ARE provides the core reasoning and decision-making functions per-
taining to self-management, which can be based on simple rules or more complex 
model- and metric-driven approaches. The ME provides structured local storage of 
beliefs, goals, ongoing interactions, organizational relationships and other state that 
is used by other skill-sets. The CE provides first-class interaction abstractions that 
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facilitate coordination of information (beliefs, adaptation decisions, partial models, 
etc.) for related skill-sets (ARE, LE, MAE, ODE). The ODE specifically defines 
how the S* agent participates in one or more relevant agent organizations, and 
through the coordination element can reach agreement on these organization struc-
tures in order to support the ARE. The AE continually builds up situational aware-
ness of the S* agent itself, as well as related AICA agents and the environment, and 
stores the resulting models in the ME for future use, allowing the S* agent to make 
suitable adaptation decisions via the ARE. The DDE provides an analysis function 
on the awareness information, which can diagnose problems either in parallel to the 
ARE or as a precursor to the ARE generating responses. The MAE by itself can 
adapt the ARE by providing meta-reasoning functionality or by building new strate-
gies in conjunction with the LE.

Finally, the MAE, DDE and LE together provide the S* agent with the ability to 
achieve self-improvement. More specifically  – in terms of Russell and Norvig’s 
(2016) concept of a learning agent – an MAE acts as a problem generator respon-
sible for suggesting interactions in the form of perturbations that will lead to new 
and informative experiences; the DDE acts as a critic that provides feedback in 
terms of how successful these interactions were with respect to a given adaptation- 
performance standard; while the LE acts as a learning subsystem responsible for 

Fig. 10.1 Abstract reference architecture of an S* agent
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evolving the ARE and other skill-sets, so that the S* agent and (with the use of the 
CE) S* system can become more competent than the agent’s/system’s initial knowl-
edge and skills alone might allow.

A simple UML model of the S* agent architecture is shown in Fig. 10.1. More 
sophisticated models can be defined by detailing the skill-sets and adding associated 
internal structures pertaining to reasoning and decision-making where appropriate 
(Ye et al., 2018).

For S* agents to fulfill their responsibility of achieving resilience and antifragil-
ity for the AICA cyber defense system, their SE component must be able to observe 
the status and performance of AICA agents, and their IE component must be able to 
make changes to AICA agents. That is, S* agents will have certain control authority 
over AICA agents so that they can intervene in the AICA agents’ configurations and 
activities in a timely fashion to prevent and manage task failures or other adverse 
events. Observe also that the above structure of the S* agents does not significantly 
deviate from the MAPE-K loop proposed by autonomic computing researchers 
(Kephart & Chess, 2003) that has been widely adopted by the self-adaptive systems 
community (see e.g. Villegas et al., 2017; Weyns, 2020). In particular, the M, A, P 
and E activities approximately correspond to the S* agent’s SE + AE (→ M), DDE 
(→ A), ARE (→ P) and IE (→ E) skill-sets, while the K in the MAPE-K loop is 
localized to the S* agent’s ME.

It should be noted that not all skill-sets will need to be implemented in all S* 
agents to the same degree. A simple S* agent, for example, can have a very simple 
rule-based ARE without a complex knowledge-base stored in its internal state/
ME. This gives S* agents the essential flexibility so that they can be deployed on 
low-resource devices (e.g., battery-powered IoT devices) if/when required. For the 
S* agents to fulfill their self-management and self-improvement objectives for the 
<AICA + S*> system, however, at least the following considerations need to be kept 
in mind when realizing the different skill-sets:

 1. The S* agents need to maintain models of the parts of the systems for which they 
are responsible (including other AICA and S* agents) in their ME. The S* agents 
update these models as time goes by based on the percepts they receive through 
their SEs, and the knowledge they have about how the world evolves and the 
effects their actions will have on those parts of the system. This decentralized 
structure of the system model can naturally lead to conflicting information 
between different models maintained by different agents. Thus, communication 
and conflict resolution via the CE are needed for the S* agents to synchronise 
their beliefs and activities.

 2. For the <AICA + S*> system to exhibit self-* properties, an S* agent may be 
responsible for some AICA agents, or for other S* agents, or both. The underly-
ing premise is that every component of the <AICA + S*> system (including the 
S* agents) is looked after by at least one S* agent.

 3. The S* agents are capable of improving their own self-management mechanisms 
via the MAE and LE. An S* agent can itself discover the improvement based on 
its learning capability. On the other hand, every S* agent (with or without a full 
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LE realization) can also acquire improved adaptation mechanisms discovered by 
other agents via transfer learning when appropriate (LE using CE).

 4. As S* agents operate over a long time-span, they are exposed to continuous 
streams of information generated by the system/environment or via an inte-
grated, in-system perturbation capability consisting of S* agents with suitably 
realized MAE + LE skill-sets. When new knowledge and/or experience arrives, 
the S* agents should continue learning “on-the-fly” from the new knowledge/
experience while keeping previously learned experiences. This capability is 
referred to as online, continual or lifelong learning. The S* agents incrementally 
obtain new knowledge from the continuous stream of input, and fine-tune exist-
ing knowledge. The S* agents should acquire the new information in such a way 
that it does not interfere substantially with their existing learned knowledge, 
creating the so-called “catastrophic forgetting” (McClelland et al., 1995) phe-
nomenon in learning.

3.2  S* Multi-agent System Design Concepts (Conceptual 
Framework, Part 2)

In addition to the agent architecture, we summarize below a number of design con-
cepts that can be used to both elaborate the various (micro-level) architecture ele-
ments and guide the macro-level architectural design of S* multi-agent systems. 
These concepts are a distillation of the AWaRE2-MM meta-model proposed in our 
previous work (Uzunov et al., 2021a), which in turn is inspired by several existing 
multi-agent meta-models (see Beydoun et  al., 2009 for a combined summary of 
such meta-models) and existing self-management systems.

The first set of concepts are goal, contract, and team. Similar to AICA agents, S* 
agents are autonomous, cooperative and goal driven. Hence, they are capable of 
intelligently selecting actions to fulfill the goals they have adopted. The goal con-
cept can support traditional planning as well as other decision-making processes 
(Bulling, 2014) as part of an agent’s ARE and MAE realizations; and it can also be 
refined further and used to support goal-driven self-adaptation (Uzunov et  al., 
2021b). Contracts express relationships and specify the responsibilities an agent has 
toward other components of the systems (including the AICA agents and other S* 
agents). Finally, teams provide the system with clear boundaries for the S* agents 
or groups of agents in terms of their responsibilities and authority.

The second set of concepts are capability and role. Capabilities capture the 
notion of an atomic skill for a given agent and can be aggregated to form capability- 
sets – the equivalent of skill-sets. These capabilities can be used to realize all or 
parts of the various S* agent elements discussed previously. Roles aggregate one or 
more capability-sets to define the overall responsibility or type of an S* agent.

The third and final set of concepts are activity, change and abstract quality. 
Activities refer to the sets of actions generated through the use of various 
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capabilities, which can include adaptation actions (recomposition and reparameter-
ization), monitoring actions, coordination-related actions and others. Changes occur 
at various scales within the combined <AICA + S*> system as well as its environ-
ment. Capturing these changes explicitly allows for a definition of the S*/AICA 
variability space, thereby defining the space of “known unknowns”. Change can 
also refer to the results of the adaptation actions, since they seek to change both the 
S* system as well as the AICA system. Finally, abstract qualities can define con-
straints on, or otherwise characterize, other concepts, including goals, capabilities, 
activities, etc.

The UML model in Fig. 10.2 captures a set of default relationships between the 
various design concepts, including S* agents (modelled abstractly). Since the con-
cepts are meant to be flexibly applied across the macro- and micro-levels of an S* 
multi-agent system  – including when designing S* agent element realizations, 
which are not shown in the figure – it would be perfectly reasonable for some of 
these relationships to change across different system and/or agent architectures.

3.3  Generic Self-Management and Self-Improvement 
(S-M/I) Approach

Self-management and self-improvement can be undertaken across 3 scopes: (i) 
within individual S* agents, which can reconfigure their own capabilities; (ii) within 
agent teams; and (iii) globally, spanning the whole <AICA + S* > system. We make 
this process more precise via the concept of levels of adaptation and learning, 
which we present in this sub-section. The concept, in essence, is to explicitly stratify 
the different algorithms which the system will use to adapt and learn, depending on 
the context (where context is equivalent to environmental conditions and internal 
system state), in a subsumption-style hierarchy. The levels of this hierarchy are as 

Fig. 10.2 Default relations of S* multi-agent system design concepts
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follows, described in terms of the design concepts from our S* conceptual 
framework:

• Level one (L1) – agent-self: each S* agent changes its own state or capabilities, 
provided it does not violate any existing contracts/relationships it has with other 
agents. In doing so, it also learns from its adaptation actions and the resulting 
effects.

• Level two (L2) – peer-to-peer relationship: ensures that pair-wise compositions 
of agents within the system are operating as expected: repairing minor faults as 
they appear. For example, if two S* agents controlling AICA agents have a con-
tract stating that certain quality-of-service agreements must be maintained, and 
this contract is violated, then they may try to re-negotiate the terms such that both 
sides can fulfill their obligations under the contract. The adaptation is non- 
violating in the sense that this peer-to-peer negotiation should not cause other 
contracts to become violated, which would lead to cyclic negotiations or “adap-
tation thrashing”. Through these adaptations, the S* peers learn to evolve and 
improve their relationship, for example in response to changes in their individual 
capabilities.

• Level three (L3)  – intra-team: re-configures multiple contracts/relationships 
within a team to meet the goals of the team. Specifically, if two S* agents are 
unable to resolve the failure of their contract (which may represent some contract 
failure condition for corresponding AICA agents), then the condition of the man-
agement goal associated with the contract will likewise fail, meaning that one or 
more higher-level goals will be unfulfilled. In this case the failure is escalated to 
a higher level of control. One or more S* agents may agree to reform all the 
contracts associated with sub-goals of the unfulfilled goal in order to fulfil this 
goal again – re-decomposing the problem based on other hypothetically avail-
able capability-sets of agents within the system and re-allocating capabilities and 
agents within the given team – or they may otherwise change the goal itself. 
While it is easiest to conceptualize this as a single team leader making these deci-
sions, there is no reason it cannot be done in a distributed way. Through repeated 
intra-team adaptations, the team can learn to improve its decision-making across 
all team-based activities including negotiation and coordination activities, as 
well as the adaptation activities related to an S* agent’s different skill-sets, lead-
ing to better team management.

• Level four (L4) – inter-team: the system is partitioned into teams (if not already 
organized this way) and S* agents from each team attempt to agree on a globally 
optimal or satisfactory configuration by triggering various adaptation strategies 
from the lower levels in a coordinated fashion. While L4 adaptation is clearly the 
most complex, it need not always result in large-scale system reconfigurations. 
For example, in some situations all that may be required is re-assignment of roles 
across two teams instead of one team (L3 adaptation, twice); or contracting of 
agents across teams (L2 adaptation, once per team). This is also dependent on the 
realization of team boundaries, if any, which may dictate allowable information 
sharing and scope of control, among other factors. Learning at L4 is similar to 
that at L3, except that it occurs across teams.
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Material to this concept is that the scope of control of decision-making and learning 
expands from more local to more global. At the lower levels, fine-grained adapta-
tions have local effect (assuming they are designed to be side-effect-free) and the 
learning is limited to the local level. At higher levels, adaptations necessitate recon-
figuration of multiple parts of the system; similarly, learning occurs across multiple 
parts of the system. In this hierarchical approach, goal adaptation resides higher in 
the hierarchy of levels than adapting contracts to fulfill those goals – the details of 
how the goal is realized – as well as making subsidiary adjustments – such as load 
balancing at the network or hardware layers, memory refresh-rate tuning  – and 
countless other adaptations the system could make that do not affect the higher lev-
els. Thus, each level is responsible for maintaining the resilience and contributing to 
the antifragility of the system at its “level of granularity”. The objects of control in 
each case are internal to agents (L1); between peer agents (L2); within agent teams 
(L3); and across agent teams/whole system (L4). Within a team, an S* agent might 
have the ability to tweak its contract in consultation with the other party, but like-
wise the higher-level adaptation by another S* agent might have the ability to 
rewrite the terms of that same contract to achieve higher-level goals. In effect, each 
of these levels have their own MAPE-K loop. From the viewpoint of the SOTA 
model of Abeywickrama et al. (2012) – where each configuration of the system is a 
point in a high dimensional space with a utility attached to it – lower-level adapta-
tions exploit the current configuration space, while higher-level adaptations explore 
points further away.

The cause of the adaptations can be adverse systemic/environmental changes, or 
perturbations introduced by S* agents. These perturbations can also follow the hier-
archical structure: local first, and increasingly more global.

In terms of process, applying the levels of adaptation and learning concept 
implies that adaptation typically starts with the lowest level and proceeds up through 
the levels whenever each adaptation strategy at a given level fails to account for the 
adverse changes. Once higher-level adaptations are triggered, they may initiate 
lower-level adaptations  – though with greater knowledge available from the 
increased system scope. For example, as a result of L4 adaptation, capabilities that 
are not available in one team but available in another team can lead to simple re- 
contracting – L2 adaptation – with a remote team member (assuming the team con-
cept is realized to support such team-transparency); L2 adaptation alone would not 
have been sufficient to discover the remote team member. The exception is respond-
ing to changes when realizing self-optimization, which can be initiated at the higher 
levels first. Learning occurs across all levels of adaptation, although the knowledge 
gained is greater at the higher levels.

The levels of adaptation and learning concept has several key advantages:

 1. Timeliness: Adaptation responses can be rapid, since they are initiated at the 
lowest level first, which involves simple processes utilizing small amounts of 
knowledge. If these lower-level adaptations cannot address the change which 
necessitated the adaptation, higher-level adaptations (which are increasingly 
slower by necessity) can “step-up”.
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 2. Run-time decoupling: Assuming lower-level adaptation strategies are designed 
properly, the use of the adaptation levels helps to reduce run-time dependencies 
between the S* agents executing higher−/lower-level adaptations.

 3. Potential for scalability: The knowledge created during the execution of lower- 
level adaptation strategies (including when initiated as part of higher-level 
 adaptation), can be used to inform and expedite higher-level adaptations, thus 
increasing their scalability over time.

Below we provide several examples of what can be adapted in an <AICA + S*> 
system by using the various levels of adaptation as part of the self-management 
process.

• Agents (L3 and L4 triggering L3): the number and types of agents in a secure 
team structure, as well as their internal capabilities (L3 triggering L1 adapta-
tion). A self-optimization mechanism could spawn more agents of a particular 
type that has been previously shown to prevent attacks (e.g., load balancing 
agents against repeated DDoS attacks).

• Communications (L1, L4 triggering L1): the amount and nature of the communi-
cations. For example, the number of messages allowed can be dynamically 
adjusted to the “right” amount in any given situation via a self-configuration 
mechanism (per agent, L1); and threats such as link jamming can be mitigated 
via a self-healing mechanism that allows the communications to be run over 
alternative channels, such as SATCOM (system-wide, L4).

• QoS Agreements (L2): the service-levels between agents and other software 
infrastructure, e.g., related data stores. Interconnections can be modelled as con-
tracts and dynamically re-negotiated according to fluctuations in throughput and 
performance to ensure, for example, that cyber threat data collection is uninter-
rupted; that the relevant data flows optimally throughout the system; and that this 
data is optimally stored (scaling storage infrastructure based not only on need – 
which existing commercial/open-source systems can easily do by themselves – 
but based on data analysis/domain information).

3.4  Reifying the S* Conceptual Framework and Generic S-M/I 
Approach

The conceptual framework and generic self-management/improvement approach 
presented above can be reified in various ways. Specifically, as discussed previ-
ously, the S* agents can be either part of a separate S* multi-agent system, or spe-
cial AICA agents, which can each undertake adaptation/learning across different 
levels. In all cases, it will be necessary to support the agents with a specific agent- 
based platform or middleware framework (Regli et al., 2009), which supports agent 
deployment on a variety of platforms and devices. This framework can be rudimen-
tary or comprehensive, even to the point that it provides some of the S* system 
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functionality a priori, leaving as the only requirement to fill in some of the agent 
skill-sets/capabilities. We describe such a framework, called AWaRE, in the next 
section.

4  The AWaRE Framework

In this section we provide an overview of AWaRE (Baruwal Chhetri et al., 2018; 
Uzunov et al., 2021a; Uzunov et al., 2021b) as an example of a concrete, in-progress 
system and middleware framework for antifragility, which also aims to be anti-
fragile itself. We begin by briefly discussing the principles and concepts underpin-
ning the current version of AWaRE, AWaRE 2.0 – inter alia showing their relation 
to the S* conceptual framework in the previous section; and then briefly outline the 
AWaRE 2.0 architecture, focusing on the contracting approach, goal reasoning, and 
adaptation strategies.

4.1  AWaRE Principles

AWaRE 2.0 is based on four inter-related principles:

• Virtualization refers to the formation of a “live” model of a domain system (e.g., 
AICA system) at the AWaRE level by creating proxies that represent the relevant 
domain services (meant in a broad sense).

• Transitivity refers to the management/adaptation of this “live” model as part of 
managing/adapting AWaRE itself, which in turn should translate into the man-
agement of the domain system. In other words, by managing itself, AWaRE also 
seeks to manage the domain system.

• Duality refers to the use of meta-reasoning across abstraction levels to achieve 
genuine self-* behaviours (sometimes also referred to as meta-adaptation or 
“self-self” behaviours Bouchenak et al., 2011).

• Intentionality refers to the approach of capturing the intent (requirements as 
goals) of a domain system as well as AWaRE itself at a high level of abstraction, 
translating the resultant goal models appropriately, and employing goal reason-
ing to drive the decision-making relating to the adaptation strategies at various 
levels of adaptation.

The first three principles above relate to the externalized/internalized approaches 
discussed earlier; namely, AWaRE seeks to realize self-* properties in an external-
ized fashion by realizing these properties in an internalized fashion, i.e. AWaRE 
manages itself (and from the framework/system perspective, only itself) so that it 
can manage the given domain system.
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4.2  AWaRE Concepts

The AWaRE 2.0 architecture is underpinned by the AWaRE2-MM meta-model 
(Uzunov et al., 2021a). Below we provide a brief summary of how the core concepts 
of this model have been instantiated.

• Agent-service: AWaRE 2.0 adopts the concept of an agent-service (Baruwal 
Chhetri et al., 2019) as its realization of an S* agent. An agent-service abstrac-
tion combines the desirable characteristics of an intelligent software agent with 
the modularity and reusability of service-based interactions, following service- 
oriented architecture (SOA) style. Notionally, it has a core agent part and a ser-
vice interaction shell, so that it can indeed be regarded as an agent which can 
interact with other agents as well as services. The hybrid nature of an agent- 
service also enables it to have varying levels of autonomy, being more “agent- 
like” (proactive agent) or “service-like” (reactive agent).

• Requirement and Goal: Requirements for both the domain services and AWaRE 
agent-services, respectively, can be captured as goals using a domain-specific 
language called AGML (AWaRE Goal Modelling Language) – see Uzunov et al. 
(2021b). AGML supports design-time goals and two types of run-time goals: 
achieve and maintain (see (Van Riemsdijk et  al., 2008) for an explanation of 
these goal types). Goals can be updated, added and removed at run-time as a 
result of change events.

• Capability: Capabilities (henceforth a-caps) represent the skills or behaviours 
that an agent-service possesses, and hence mirror the relevant design concept 
discussed in the previous section. A-caps fulfil run-time achieve goals, either 
directly or by dispatching (achieve) goals to be handled by other capabilities. 
The matching of goals to capabilities is done at run-time as a form of dynamic 
means-end analysis. Every agent-service has a baseline set of a-caps encompass-
ing goal reasoning, contract formation, interaction, and others. A-caps are com-
posable and swappable at run-time, ensuring that an agent-service’s internal 
structure and control flow are flexible. Some a-caps are internal to the agent- 
service, while others – referred to as consumable capabilities – may be discov-
ered and utilized by other agent-services, just like “small-scale” services or 
functions.

• Role: In AWaRE, a role is an aggregation of a-caps that typifies an agent-service. 
Roles in AWaRE can be classified by domain or management concerns. 
Differently from our S* conceptual framework, there is only one core role per 
agent, for a given role type. A special management role type allows agent- 
services to aggregate arbitrary a-caps without regard for typification. The a-caps 
provided by a core (management or domain) role augment the baseline a-caps 
possessed by every agent-service.

• Team and Template: A team in AWaRE directly corresponds to the S* conceptual 
framework team concept, capturing the notion of a localized agent organization. 
Agent-service teams can be formed in one of two ways: (i) by deriving the 
required sub-goals from the top-level goals and contracting them out to 
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 agent- services that possess the required capabilities, or (ii) using a team template 
that maps teams of agent-services to goals/sub-goals in a given goal model.

• Contract: Like teams, contracts are the same as the corresponding contracts in 
the S* conceptual framework  – expressing peer-relationships between agent- 
services. Contracts support the principle of duality via meta-reasoning: one 
agent-service acts at a meta-level with respect to its contract-managing con-
tracted peer, and conversely.

• Change: A key requirement for AWaRE is that it should be capable of managing 
domain systems deployed in a variety of environments by managing itself (tran-
sitivity principle). As described before, AWaRE takes the hierarchical layers of 
adaptation approach, with the adaptation strategies captured as a-caps triggered 
via goal matching. Changes are not modelled explicitly, though they can gener-
ate change events on occurrence.

• Abstract Quality Metrics: Goals and capabilities in AWaRE are qualified by 
abstract quality metrics – qualities with an associated metric. This allows agent- 
services to reason about and manage themselves by matching not only functional 
descriptions of goals and a-caps but also corresponding quality (non-functional) 
specifications.

4.3  AWaRE Architecture

Conceptual View
A high-level conceptual view of the AWaRE 2.0 technical architecture is shown in 
Fig. 10.3. Note that only a sub-set of all viable contract links is represented, and 
team boundaries – as well as the number of services and agent-services – are purely 
illustrative.

AWaRE defines various core management roles, such as a Goalkeeper (G), 
encompassing a-caps for looking after goals for a team; a Team Commissioner 
(TC), encompassing a-caps for team management; an Architecture Optimizer (AO), 
which is responsible for analyzing the criticality of agents and any performance 
bottlenecks; a Replication Manager (RM), which is responsible for creating/destroy-
ing agents; and a Marketplace (not shown in the figure), which is connected to all 
other agent-services and acts as an a-cap registry supporting discovery and the goal 
reasoning process across all agents in a given team. There is a single core domain 
role, called a Double (Dn in the figure) for performing proxying/domain service 
virtualization in a one-to-one fashion.

At the time of this writing, AWaRE 2.0 supports a simple realization of the sens-
ing, interaction and adaptation response elements (SE, IE, ARE) in each agent- 
service as sets of a-caps, with sensing being restricted to contract monitoring and 
actuation being restricted to effecting adaptation actions via capability executions. 
The ARE of each agent-service currently consists of goal reasoning and adaptation- 
specific functionality, which also spans a separate Changemaster management role 
possessed by a single agent per team. Contract formation – partially supporting the 
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Fig. 10.3 AWaRE 2.0 Technical Architecture: Conceptual View (Illustrative)

organization design element (ODE)  – is realized via an implementation of the 
Contract-Net Protocol (CNP) and LAP+ (a light-weight extension of LAP – Lambert 
& Lambert, 2012), both distilled in baseline a-caps common to all agent-services.

Since AWaRE is a generic framework, semantic specialization is required to 
“attach” it to a domain system. There are several different elements of AWaRE that 
require this specialization (see Fig.  10.4). For example, plugins  – finer-grained 
modules associated with an a-cap – are used to interface with domain services and 
external technologies facilitating adaptation actions. As new domain services 
require management, or new technologies become available (e.g., Kubernetes 
instead of Nomad for orchestration), then new plugins would need to be written. At 
present, plugins are only associated with an a-cap belonging to a Double core 
domain role.

Execution View
AWaRE 2.0 employs the levels of adaptation approach to self-management (self- 

improvement is left for the next AWaRE iteration). After bootstrapping the system 
via an agent-service with a Bootstrapper core management role, a Goalkeeper 
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Fig. 10.4 AWaRE 2.0 Elements Requiring Semantic Specialization

agent-service ingests the AGML-specified goal models, disseminates them to team 
members, connects the domain services as required by the domain goal model, and 
begins monitoring all formed contracts. Adaptation is currently contract-driven, in 
that contract violations lead to associated maintain goals not being fulfilled, which 
in turn triggers change events that are first handled via L1 and L2 adaptation a-caps 
inside a given agent, and then via an agent-service with a Changemaster role, which 
possesses L3 and L4 adaptation a-caps.

Technology View
AWaRE 2.0 has been rapidly prototyped in Java on top of the Jadex/Active 

Components platform (Pokahr & Braubach, 2013), with the implementation of most 
(though not all) aspects of the AWaRE 2.0 architecture realized to a functioning 
level. HashiCorp’s Nomad can be used to (self-)deploy AWaRE by deploying Jadex 
platforms across a network. Apache Ignite is used for publish/subscribe messaging 
and reliable data storage. AGML, as well as a simple domain-specification language 
allowing a-caps to be specified outside of Java (useful when specifying Double 
a-caps that nominally belong to a domain service but do not actually carry any 
domain functionality – i.e. they merely enable discovery via Marketplace agents), 
are defined using Xtext. The whole technology stack used to realize AWaRE 2.0 is 
shown in Fig. 10.5.

4.4  AWaRE 3.0 – Micro-service Integration

Work is currently being undertaken on extending the AWaRE framework to a new 
version – AWaRE 3.0. Besides incorporating self-improvement and the remaining 
elements of the S* reference architecture, a core aim is to enable the integration of 
AWaRE with micro-service technologies (cf. Collier et al., 2019), thereby fully real-
izing the vision of agent-services adhering to both multi-agent and service-oriented 
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Fig. 10.5 AWaRE 2.0 Technical Architecture: Technology View

architectural styles (Baruwal Chhetri et al., 2019). Although they lack autonomy, 
micro-service systems are becoming the de-facto standard for developing highly 
distributed software systems. Micro-services are typically deployed independently 
on their own container that provides full-stack functionality. All inter-service com-
munications occur via network calls. This independence facilitates agile develop-
ment using DevOps methodologies and CI/CD (continuous integration/continuous 
deployment) toolchains (Newman, 2021). Micro-service deployment on containers 
can be orchestrated using tools such as Kubernetes,1 which not only provide flexi-
bility over how service instances are deployed across clusters of containers, but also 
support inherent reliability through capabilities such as load balancing, health 
checks and automated recovery. Service meshes such as Istio2 build on top of con-
tainer orchestrators to provide enhanced observability and control over the infra-
structure level via ‘sidecar’ proxies. It is precisely this observability and control that 
is needed in MAPE-K loops. Meshes also provide high-level control over service 
routing enabling ready reconfiguration of service networks (L3 adaptation as 
described earlier).

AWaRE 3.0 will provide the option of deploying agents as micro-services in an 
industry standard service mesh, in addition to using Jadex/Active Components. The 

1 https://kubernetes.io/
2 https://istio.io/latest/
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ability of agents to control their own deployment, as well as the deployment of other 
agents (as micro-services) and domain services, via powerful underlying technolo-
gies will provide a new dimension of flexibility, control and antifragility to both 
AWaRE and the target domain system(s) being managed. Service meshes also pro-
vide ready integration with application integration services such as routing, mes-
sage brokers, data services, DNS and Internet gateways. By abstracting away a lot 
of the complexity of the application integration code, we anticipate that service 
meshes will make the implementation of AWaRE agent control logic simpler, e.g., 
agents will be able to communicate via logical names rather than having to know 
each other’s service endpoints.

4.5  Applicability of AWaRE to AICA

Being a comprehensive framework, AWaRE can be applied to an AICA system as 
an S* management (sub-)system, thereby acting as an overlay. Alternatively, 
AWaRE could be used as an agent platform/middleware framework for AICA 
agents, in which case AWaRE agent-services would reside alongside AICA and 
would technically be special AICA agents. In both cases, changes to AWaRE would 
be required to incorporate the stealth communications middleware referred to ear-
lier. However, since AWaRE 3.0 is being designed to be as technology-agnostic as 
possible, this should not pose considerable difficulty. The greater challenge would 
be to incorporate more sophisticated self-* functionality into AWaRE (as per the 
next section), which requires maturation of the research ideas as well as ongoing 
development efforts.

5  Challenges and Recommendations

There are a number of R & D challenges associated with realizing externalized self- 
management and self-improvement. Many overlap with the challenges outlined in 
this book pertaining to AICA agents. In this section we focus on two sets of chal-
lenges associated with learning – related to realizing an S* agent’s LE – and agent 
coordination and teaming – related to realizing an S* agent’s CE and ODE, and 
outline recommendations on how they could be addressed.

5.1  Learning and Self-Improvement

Adversarial Search and Opponent Learning:
One challenge is to model the contested nature of an <AICA + S* > system and its 
adversaries. One recommended approach is viewing the system and its environment 
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as an adversarial game. There may be multiple adversaries in a contested environ-
ment, however, we can abstract all possible adversarial attacks as actions taken by 
“the environment player”. This abstraction enables us to view the cyber defense- 
versus- attack setting as a 2-player game between the AICA-based system and the 
environment player. This model enables the <AICA + S*> system to compute steps 
ahead of its adversaries by exploring possibilities of attacks and resilience path-
ways. The environment player’s behaviour is maximally adversarial in the worst 
case in that it seeks to impede the behaviour of the system as much as possible. The 
S* management (sub-)system computes the most robust and resilient responses to 
the environment player’s actions by deploying game-tree search techniques (e.g., 
Monte Carlo Tree Search).

This approach depends on building a model of the environment player’s behav-
iour (cf. Chap. 6 of this volume). As the adversaries’ action space is unknown to us, 
one solution is to model this behaviour in terms of effects on our system. This 
behaviour can be learnt from a history of interactions and observed effects. Given 
an ongoing interaction, this opponent learning model aims to answer three impor-
tant questions:

 1. Is this an unintentional event or a planned attack? Anomaly detection and clas-
sification techniques need to be developed to detect if an event is abnormal, and 
if it is unintentional or part of a plan underlying the attack.

 2. What would be the next effect on our system? We need to develop techniques that 
can learn from previous attacks and their effects on the system, and use this 
knowledge to predict, giving an ongoing attack, what the next impact would 
be (cf. the proactive antifragility paradigm introduced in (Uzunov et al., 2019)). 
This is related to policy reconstruction techniques in opponent agent modelling.

 3. If a planned attack, what would be the goal of this attack? What would be the 
plan underlying this attack? This is the most advanced and challenging form of 
opponent modelling. The emphasis is on predicting the intended end-effect 
(goal) and the sequence of immediate effects (plan). We need to develop plan 
recognition techniques that can predict the opponent agent’s top-level plans 
based on its observed effects on the system. An abductive-reasoning model 
would be needed to infer plans that best explained observed effects. Plan recog-
nition may also need the capability in Question (1) above to filter out non- 
intentional events from planned attack events.

This game-tree search approach requires a simulation that enables the system’s abil-
ity to “look-ahead” in the search, training/learning through, e.g., log mining, repre-
sentation learning and reinforcement learning, and testing.

Meta-Learning for Self-Improvement:
As we have discussed earlier, to be antifragile, an AICA system needs self- 

improvement. Self-improvement can be achieved through learning so that the sys-
tem can operate better in both known and unknown situations. Earlier in the chapter 
we discussed learning from adaptations caused accidentally (adverse events) and 
purposefully (in-system perturbations) across different levels. Another S* agent 
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skill-set that we suggest would support self-improvement is the ability of learning 
to learn (i.e., meta-learning), which is the process of improving a learning algo-
rithm over a number of learning episodes. Meta-learning will provide an <AICA + 
S* > system with a learning capability that can generalize across tasks such that 
each new task is learned better than the previous one. For example, meta-learning 
will enable the knowledge learnt from observed attacks to be used for adapting 
responses to unseen attacks. Meta-learning could also help improve the agent’s 
adaptation to maintain interoperability and/or shared understanding.

5.2  Agent Teaming and Negotiation

Another critical challenge for a combined <AICA + S*> system as outlined in this 
chapter is the coordination and organisation of the various agents, i.e., how they can 
cooperate and reach consensus agreements given their distributed, autonomous 
nature, with different agents having different (possibly conflicting) goals and main-
taining different beliefs about the world state. There are two major paradigms used 
to organize agents within multi-agent systems (Picard et al., 2009): (i) the top-down 
paradigm, in which the entire organisational structure and coordination patterns are 
designed by a system architect and the autonomous agents then coordinate their 
local behaviours and interactions with other agents according to the rules or norms 
imposed by the organisation; and (ii) the bottom-up (self-organization) paradigm, in 
which individual agents with local behaviours are capable of interacting with other 
agents via communication and possibly some pre-defined interaction protocols. In 
the bottom-up paradigm, the required global functions of the multi-agent system are 
supposed to emerge as a result of the individual agents’ interaction and the agents 
organise themselves into organisational structures, such as teams, accordingly.

As self-organisation is one of the important properties of a self-* system, S* 
agents should have the ability to autonomously form teams when there is a need for 
a complex global function that requires multiple agents to work together. Clearly, 
the challenges then lie in the roles each agent plays within the team and the relation-
ship between the agents. An equally challenging problem is how the agents collec-
tively evolve their roles and relationships within an organisation/team when there 
are changes to the environment, to the requirements, and/or to the agents’ availabil-
ity and capabilities. Nevertheless, we also recognise the importance of some pre- 
defined organisational structures such as a marketplace or registry to enable the 
discovery of agents’ services and capabilities as well as the requirements and goals 
an agent or organisation may have. Furthermore, pre-defined interaction protocols 
can enable the agents to successfully coordinate their local behaviours and to reach 
consensus.

As individual S* agents autonomously make adaptation-related decisions, their 
decisions and actions can make changes to the environment and subsequently affect 
the decisions and adaptation activities carried out by other agents. To prevent the 
agents (including both the AICA and S* agents) from making conflicting decisions, 
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they may need to engage in negotiations with other agents to reach agreements 
regarding goals, world and system states and execution of plans. Since contracts 
between agents are a fundamental construct employed by S* agents, the agreements 
between agents can be captured in the contracts. There are several research chal-
lenges associated with agent negotiations and contract-enabled agreement 
technologies:

 1. Many-to-many negotiation: Existing works on automated negotiation typically 
considers bilateral negotiations or one-to-many negotiation. However, in an 
<AICA + S* > system, an agent typically has to collaborate and negotiate with 
multiple other agents who in turn also engage with many other agents. This pres-
ents a non-trivial challenge as, on the one hand, an agent would like to reach an 
agreement quickly to finalise its contract with another agent; and on the other 
hand, it would also need to manage other contracts that might have some rela-
tions with the contract the agent is trying to finalise.

 2. Levelled commitment contracting: The simplest mechanism for contract-based 
agreement requires contracts to be binding. However, in self-adaptive systems 
changes can occur quickly, and binding contracts do not accommodate such 
changes. While contingency contracts (Raiffa, 1982) present a possible option, 
they are typically very complex and require the anticipation of potential future 
changes. Levelled commitment contracts (Sandholm & Lesser, 2001) that set 
penalties for different contract breaches can be considered an attractive option. 
While levelled commitment contracting is particularly suitable for agreements 
between self-interested agents, the agents in an <AICA + S* > system are gener-
ally cooperative and share common goals. Thus, the challenge is in adapting 
levelled commitment contracting mechanisms to enable S* and AICA agents to 
reach agreements that can accommodate future events.

6  Summary and Conclusions

The focus of this chapter was on endowing AICA systems with the qualities of 
resilience and antifragility through distributed self-management and self- 
improvement, which entails the realization of various self-* properties pertaining to 
autonomous adaptation, failure recovery, and refinement of individual agent or col-
lective functionality after encountering stressors. We explained that this could be 
accomplished by employing collections of S* agents that form an S* multi-agent 
system residing alongside, and interacting with, AICA agents. We discussed how 
these S* agents can be realized, and argued for an externalized approach where the 
self-management/improvement and business/cyber defence functionalities in a 
combined <AICA + S*> system are partitioned, with the former being the sole 
responsibility of S* agents, i.e., of a separate S* management (sub-)system.

Subsequently, we introduced a two-part conceptual framework providing the 
necessary design abstractions for developing an S* management (sub-)system/S* 
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multi-agent system. The first part of this conceptual framework encompasses a ref-
erence architecture for S* agents, which stipulates that S* agents must possess at 
least ten core skill-sets for enabling interaction, information sharing, awareness, 
adaptation and meta-adaptation reasoning and decision-making, and the coordi-
nated design of agent organizations. The second part of the conceptual framework 
encompasses a number of concepts for multi-agent system design across both a 
macro- and micro-level. We then presented an accompanying multi-scope/multi- 
level adaptation and learning approach for self-management/improvement.

As a concrete example of an S* multi-agent system realizing self-management/
improvement using an externalized approach, we outlined the AWaRE autonomous 
middleware framework, focusing on the architectural design of AWaRE’s current 
iteration, AWaRE 2.0. AWaRE can be applied to an AICA system as an overlay or 
be used as a middleware framework for AICA agents.

Going forward, we discussed two sets of R & D challenges related to incorporat-
ing advanced self-* functionalities in an <AICA + S*> system: one set pertaining to 
learning, and the other to agent organization and coordination. With respect to 
learning, a key challenge is to predict the next effect and the goal of an ongoing 
attack on an <AICA + S*> system. This will enable an <AICA + S*> system to 
deploy counter-measures before the full impact of the attack becomes manifest. The 
adaptation of an agent can be improved via meta-learning, where an agent learns a 
task by learning from the output of other tasks. With respect to agent organization 
and coordination, a key challenge is to define mechanisms for agents to negotiate 
with each other and reach consensus. These mechanisms need to support agents in 
forming teams and discovering their roles and relationships within a team structure 
in a dynamic environment.
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Chapter 11
Collaboration and Negotiation

Samrat Chatterjee, Arnab Bhattacharya, Ashutosh Dutta, Aowabin Rahman, 
Thiagarajan Ramachandran, Satish Chikkagoudar, and Ramesh Bharadwaj

1  Background and Objective

Collaboration and Negotiation is a critical high-level function of an Autonomous 
Intelligent Cyber-Defense Agent (AICA) in contested operational cyber defense 
environments. This function contributes to collaborative mission planning by 
enabling communication among agents, central cyber C2, and human operators. 
Since an AICA agent must be stealthy, solving problems autonomously, and col-
laborating as needed, maintaining the Confidentiality, Integrity, and Availability 
(CIA) triad is key during world state identification, planning, or action selection 
phases (Kott et al., 2018; Théron & Kott, 2019; Kott & Théron, 2020). Therefore, 
the underlying AICA infrastructure must enable rapid deployment and coordination 
of distributed processing elements and on-the-fly customization and 
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reconfiguration, in the face of changing situations and mission needs. Within the 
AICA context, the presence of multiple decision-making agents with possibly dif-
ferent goals, suggests that the domain of multi-agent autonomous systems learning 
may provide a strong foundation for operationalizing the collaboration and negotia-
tion functions (Shoham & Leyton-Brown, 2008; Russell & Norvig, 2010; Weiss, 
2013; Singh, 2015; Sutton & Barto, 2018; Bertsekas, 2021). Securing AICA agents 
includes maintaining the CIA triad against threats targeting the systems or agent 
(Hedin & Moradian, 2015). For example, system level threats may include the com-
promise of the central cyber C2 by an adversary (human or AICA agents) resulting 
in malicious information transfer among agents; however, agent level threats may 
include unauthorized access to AICA agents by an adversary (human or AICA 
agents) via compromise of communication links and/or message injection attacks. 
As a result, secure and trustworthy communication among AICA agents is para-
mount for mission success in autonomous cyber defense settings.

In a contested multi-agent environment, mission tasks may arise at the global 
level (e.g., involving coordination among multiple teams or platoons of AICA 
agents) and local level (e.g., confined to multiple AICA agents within a team or 
platoon), necessitating collaboration among agents under information uncertainties 
and/or partial knowledge. These information uncertainties may correspond to an 
AICA agent’s perception of the environment based on interaction with other agents, 
central cyber C2, and/or human operators, which may be limited by design and/or 
operational need to communicate. Since active response and recovery is key for 
cyber resilience – defined by the U.S. National Academy of Sciences as “the ability 
to prepare and plan for, absorb, recover from, or more successfully adapt to actual 
or potential adverse events” (National Research Council, 2012), an AICA agent 
must exhibit autonomy and intelligence with varying degree of information and 
knowledge, especially under attack while minimizing risks from unintended conse-
quences (Kott & Linkov, 2019; Kott & Théron, 2020; Ligo et al., 2021). Since AICA 
agents are designed to process information and collaboratively generate executable 
COA solutions, explainability and interpretability of autonomous actionable deci-
sions become important to assess trustworthiness (Linkov et al., 2020).

Figure 11.1 presents an overarching communication architecture among AICA 
agents, central cyber C2, and human operators. In this figure, bi-directional com-
munication links are depicted between pairs of entities among the AICA layer, cen-
tral cyber C2, and human operator (i.e., AICA-AICA, AICA-C2, AICA-Human, 
and C2-Human). Further, the AICA layer is decomposed into a two-tier hierarchical 
structure representing distributed levels of agents with different roles defined as: (1) 
level 1 learners that lead a team of agents in pursuit of high-level mission goals or 
sub-goals, and (2) level 2 learners that identify low-level actions supporting identi-
fied goals or sub-goals. Further, there may be an ensemble of AICAs pursuing vary-
ing mission objectives in a contested setting. As a result, jointly identifying and 
executing a Course of Action (COA) solution becomes extremely important. 
Negotiating to achieve consensus toward a COA solution is further complicated by 
the need for an AICA agent to remain stealthy, verify information received with 
possibly limited resources, and actively learn in contested mission environments. 
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Fig. 11.1 High-level 
communication 
architecture among agents, 
central cyber C2, and 
human operators

The two-tier hierarchical architecture within the AICA layer in Fig. 11.1 also poses 
challenges with handling information uncertainties associated with the environ-
ment. Thus, AICA agents must be able to generate actionable policies by solving 
multi-agent stochastic games with imperfect knowledge using robust optimization 
methods (Zhang et al., 2020).

The rest of this chapter is organized as follows. The next section discusses AICA 
agent levels and their learning objectives including goals and actions in support of 
mission tasks. This is followed by a discussion of AICA agent properties critical for 
enabling secure communication including policy optimization, safety verification, 
and deception techniques for stealthiness. Thereafter, promising algorithmic 
approaches for multi-agent coordination are outlined including resilience by design 
via federated learning and resilience by operational need via randomized informa-
tion sharing protocols. A representative simulation example comprised of a multi- 
agent navigation and communication environment is described next. Finally, 
thoughts for future development are discussed.

2  AICA Agent Levels

Within the AICA layer, levels of agents may be coordinated based on distributed 
and/or decentralized architectures. Distributed settings may involve centralized 
training at the global level followed by policy execution at the local level. After 
deployment on a distributed infrastructure, each AICA agent must be automatically 
notified of events of interest; thereafter, processing of an event by an agent or agents 
in turn may generate new events which are propagated to other (relevant) agents. 
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Fig. 11.2 Levels of AICA agents with goal and action learning objectives

Distributed agents may also rely upon the central cyber C2 to provide reliable and 
fault-tolerant services including virtual synchrony, data integrity, confidentiality, 
and provenance. However, in decentralized settings, both training and policy execu-
tion may occur at the local level. Depending on operational needs, hybrid learning 
architectures with distributed and decentralized training and action execution 
schemes may be needed to meet AICA agent goals.

Figure 11.2 presents an expanded overview of the AICA layer in Fig. 11.1 with 
a two-tier hierarchical structure comprised of a level 1 learner (i.e., teacher or 
leader) and level 2 learners (i.e., student or follower). In this case, level 1 learners 
learn mission goals to convey further to the level 2 learners. Thereafter, level 2 
learners learn optimal actions to meet the goals via collaborative goal and resource 
sharing. Execution of learned actions may result in changes to the environment state 
and rewards that are conveyed back to AICA agents for identifying future COA 
plans. Leader agents may also communicate as needed with other leader agents for 
goal sharing. Collective intelligence is demonstrated here via joint COA plans based 
on negotiation and consensus building across levels of AICA agents.

Given such an AICA layer architecture, multi-agent hierarchical reinforcement 
learning (HRL) provides a well-grounded mathematical foundation for developing 
autonomous and cooperative multi-level decision agents (Barto & Mahadevan, 
2003; Sutton & Barto, 2018; Nachum et  al., 2018). Reinforcement learning 
addresses one of the major challenges in agent design and development by affording 
the possibility of agent synthesis, based on actions and rewards. Moreover, learning 
can be dynamic, online, and self-directed. This is a major advance which may prove 
to be a game changer in agent creation and operation. In an HRL setting, AICA 
agents can learn atomic tasks through interaction with the environment and/or 
through experience acquired from observed data. Deep reinforcement learning 
(DRL) algorithms have been proposed recently to address challenges in developing 
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high-dimensional cyber defenses that are dynamic and adaptive (Nguyen & Reddi, 
2019). These DRL algorithms can be broadly categorized into model-free (i.e., learn 
direct mapping from states to actions) and model-based (i.e., learn predictive model 
of the environment and then derive actions) methods. To develop autonomous and 
assured cyber defense solutions for AICA at scale under uncertainty, additional 
research on combining elements from model-free strategies and model-based plan-
ning is needed with safety and security guarantees, especially across multi-modal 
system operational regimes. Furthermore, DRL with transfer learning may need to 
be employed to evaluate diverse hierarchical learning architectures via dynamic 
reconfiguration of agent interactions. This may require leveraging recent work on 
DRL-based autonomous cyber defense agent architecture and computational work-
flow with constraint satisfaction (Dutta et al., 2021) and explainable RL (Puiutta & 
Veith, 2020), as well as uncertainty-tolerant methods for data-driven sequential 
decision optimization and cybersecurity risk modeling (Chatterjee et  al., 2015, 
2016, 2021; Saha et  al., 2016; Tipireddy et  al., 2017; Bhattacharya et  al., 2019; 
Chatterjee & Thekdi, 2020).

3  AICA Agent Properties for Secure Communication

The objective of an AICA agent is to optimize decision-making while satisfying the 
safety and stability requirements of the environment. Modern cyber systems are 
complex and dynamic with numerous correlated and stochastically evolving factors. 
As a result, the agent cannot predict future environmental conditions from the 
beginning, which makes action planning infeasible. For computing context-aware 
optimal decisions in such a dynamic environment, an agent needs to understand the 
current environment condition prior to executing the next action. Therefore, we for-
mulate each AICA agent’s decision-making problem as a sequential decision pro-
cess (SDP) (Braziunas, 2003). In SDP, the agent divides the time-horizon into 
discrete time-steps, where, at each time t, the agent infers the current environment 
condition based on current observation, executes an action, and receives feedback 
from the environment.

Figure 11.3 illustrates the architectural components and workflow of an AICA 
agent. The inputs for an AICA agent are: (1) state space, S, consisting of all possible 
conditions of the environment, (2) action space, A, enlisting all possible actions, and 
(3) safety properties defining the business, mission, or operation related constraints 
and requirements. In general, human operators are responsible to provide these 
inputs. Our AICA agent aims to actively learn the optimal policy based on interac-
tive experience while satisfying all the safety constraints. Next, we will discuss how 
an AICA agent learns policy in an online/active manner and guarantees the satisfi-
ability of safety requirements by describing the different components of AICA 
agent depicted in Fig. 11.3.
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Fig. 11.3 AICA agent architecture and operational workflow for secure communication. (Note: 
Human Operators are a part of the environment and may change set of safety properties. Safety 
Verifier contains environment information such as network topology and device status)

3.1  Active Learning

To deploy context-aware optimal action, the AICA agent has two main capabilities: 
(1) sense-making, that tries to infer the current environment condition, currently 
adopted attack strategy, and others; and (2) decision-making, that tries to compute 
optimal action based on current sense-making.

 Sense-Making

In Fig.  11.3, the Sense-making module consists of a State Estimator and Action 
Evaluator. At the start of each time t, the agent observes the current symptoms of 
the environment, based on which, the State Estimator infers the current state, 
s ∈ S. For an environment where each agent has complete information of the rest 
(fully observable), the agent may directly map the current observation to the current 
underlying state (Braziunas, 2003). However, in case of partial observability, the 
current observation cannot be directly mapped to a specific state due to incomplete 
and imperfect information. In such cases, if the agent knows the correlations of 
observations and state, it can infer the current state probabilistically using a belief 
matrix that can address the incomplete and imperfect observability (Braziunas, 
2003). One example of such correlation is p(s| o) defining the likelihood of s as the 
current state for the current observation o. Otherwise (i.e., unknown p(s| o)), the 
policy optimization algorithm generally relies on the reward function to address 
such uncertainties (Schulman et al., 2017).

The other component, Action Evaluator, tries to compute the reward, R(s′, s, a), 
to quantify the payoff or consequences of the last executed action a ∈ A in state 
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s′ ∈ S and transitioning to a new state s ∈ S. Moreover, the Action Evaluator is 
responsible to provide reports which, for example, may describe the outcome of 
different actions in a specific condition. These reports help the human operators to 
modify, introduce, or remove safety properties; assuming that the operators may not 
certainly determine all safety properties initially due to not having complete knowl-
edge. As shown in Fig. 11.3, the Sense-making module pass the reward R(s′, s, a) 
alongside the current state to the decision-making module at each t.

 Decision-Making

The decision-making module consists of the Policy Optimizer and Safety Verifier. 
The Policy Optimizer aims to compute the optimal policy to recommend the optimal 
action for the current state. As mentioned before, the agent formulates the decision- 
making problem as SDP, to be deployed in a stochastic environment. Notably, if the 
agent knows the behavior (e.g., state transition probabilities) of the environment, it 
can apply Markov Decision Process (MDP) or partially observable MDP (POMDP) 
models for a fully or partially observable environment (Braziunas, 2003), respec-
tively. In this chapter, we assume that the AICA agent does not know the environ-
ment behaviors/dynamics initially; hence, the AICA agent solves the SDP using 
model-free deep reinforcement learning (DRL).

RL is an approach of learning the optimal policy in a stochastic environment 
through synchronously acting on and receiving feedback on action consequences 
from the environment (Kaelbling et al., 1996). In DRL, deep neural networks are 
used to optimize the RL policy. RL is a tuple of (S, A, O, R, γ), where S is the state 
space, A is the action space, O is the observation space, R is the reward function, and 
γ is the discount factor (weights the future impact of an action). At each time t, the 
agent executes an action at ∈ A on the environment for the current state st ∈ S, that 
induces new observations. The agent observes the current observation ot ∈ O to 
infer the next state st + 1 (by State Estimator) and computes the reward R(st, st + 1, at) 
(by Action Evaluator). Based on R(st, st + 1, at), the agent refines the current policy 
by tuning its policy parameters. One of the challenges of any RL algorithm is to 
balance the trade-off between exploration (i.e., executing less-explored actions to 
understand their consequences) and exploitation (i.e., executing actions based on 
the current policy). We apply ϵ-greedy algorithm which, as exploration, executes 
least-explored actions with the likelihood of ϵ (i.e., ϵ cases out of 100) that generally 
reduces with the passage of time.

Below are three primary approaches for policy optimization:

 1. Value Iteration: In value iteration, the agent estimates the value, V(st, at), of each 
action a ∈ A for state s ∈ S, which specifies the accumulated rewards when at is 
executed at st. V(st, at) is determined using the following equation:

 
V s a V s a R s s a V s at t t t t t t a t t, , , , ,� � � �� � � � � � � � � �� �� � �1
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(11.1)
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where, α is the learning rate.
 At any state s ∈ S, the action with maximum V(st, at) is chosen as the optimal 

action a∗. In DRL, the agent determines this value using a deep neural network, 
and Deep Q Network (DQN) is an example of such value iteration based DRL 
(Mnih et al., 2015). DQN incrementally updates its DNN parameters based on 
new experience, using the following loss function:

 
loss s , , , ,� � � � � �� � � � �� � �R s a V s a V s at t t a t t t t1 1 1

� max
 

(11.2)

In the loss function, the first term is called the target value, and the second term 
(Vt(s, a)) is the predicted value. Another DQN variant, Double DQN, uses sepa-
rate DNNs for the target and predicted value (Van Hasselt et al., 2016).

 2. Policy Iteration: In policy iteration based DRL, the DNN predicts the action 
distribution directly for the current state. REINFORCE is an example of policy 
iteration based DRL (Sutton et al., 1999). Based on new experience, the agent 
updates the DNN parameters, θ, based on policy gradients, ∇J(πθ), using the fol-
lowing equation:
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G(st, at) is the accumulated rewards, and πθ(at| st) defines the action distribution for 
the current state st.

 3. Actor-Critic Approach: This approach combines both value iteration and policy 
iteration. Here, an actor agent with a policy network determines the action dis-
tribution and updates the policy using policy iteration algorithm. Whereas a 
critic agent assesses the value of the recently computed action and updates the 
DNN using the value iteration algorithm. There can be multiple critics exploring 
different environment conditions/samples in parallel to expedite the training 
convergence. Advantage actor-critic (A2C) is an example of such RL algorithm 
(Mnih et al., 2016), which replaces the value function with the following advan-
tage function:

 
A s a V s a V st t t t t, ,� � � � � � � �  

(11.4)

In this advantage function, V(st) is the baseline value introduced to keep the vari-
ance low and make the DRL more stable.
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3.2  Safety Verification

The RL exploration in a real operational setting may cause devastating impacts due 
to the execution of undesired actions under specific environmental conditions, 
which makes active RL learning very challenging. To address this, our AICA agent 
deploys a Safety Verifier that verifies whether the RL-computed action violates any 
given safety property/constraint or not. If the action violates any constraint, the 
module interrupts the action and sends feedback to the optimizer, which can be in 
the form of a penalty (i.e., negative incentive/reward). Otherwise, the Safe Action is 
executed on the environment that triggers new observations. Thus, the AICA agents 
are guaranteed to avoid execution of irrelevant and dangerous actions despite the RL 
exploration or evolving operational safety requirements.

The safety verifier can be categorized into two different types based on their 
objectives and RL strategy. The objective of the first type is to find a configuration 
(fine-grained actions) that can deploy RL recommended action (generally coarse- 
grained) without violating any constraint. To clarify, let assume a scenario where the 
agent wants to monitor network communication to detect compromised devices. 
There are n number of detectors, where each detector represented by a Boolean vari-
able, di, can be enabled (di = 1) or disabled (di = 0). Notably, each enabled detector 
inspects traffic of a particular subset of communication links. A specific configura-
tion, C d d dk

o
k k

n
k� �� ��, , ,

1 1
, defines which subset of detectors to be enabled (e.g., 

d k
1 1= ) or disabled (e.g., d k

1
0= ). Let assume that at a specific time t, the RL rec-

ommends doubling the monitoring for each of the device, which imposes the 
constraint:

 
� � � � ��b V l l lb

t
b
t

b
M

, min ,2
1
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where, V is the set of network device, lb
M  is the number of links of the device b, and 

lb
t  is the number of b’s links monitored by enabled detectors at t. This constraint 

specifies that the number of monitored links for each of the device should be twice 
of the number of previously monitored links. Moreover, there is another constraint 
specifying that the consumed energy due to traffic inspection by enabled detectors 
must not exceed the user-given threshold. This constraint can be formalized using 
the following equation:

 i

D

i i
t

Id E T E
�
� � � � �

0  
(11.6)

where, D is the set of detectors, E Ti
t� �  is the power consumption a detector i due 

to inspecting traffic of its assigned links, and EI is the tolerable maximum energy 
consumption at any specific time.

Therefore, to deploy the RL recommended action (i.e., doubling the link moni-
toring), the first type of Safety Verifier aims to find a Ck that satisfies both constraints 
(Dutta et  al., 2021). By contrast, the second type of Safety Verifier just checks 
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whether the RL recommended action can be deployed without violating the maxi-
mum energy constraint (Alshiekh et al., 2018). Understandably, for the second type, 
the RL action must be fine-grained specifying which detectors to be switched on or 
off, which may make the RL action space unscalable. This module formulated as 
Constraints Satisfaction Problem (CSP) can be developed using satisfiability mod-
ulo theories (SMT) (Barrett & Tinelli, 2018). Importantly, this module decoupled 
from the policy optimizer enables the AICA agent to support multi-control cyber 
resiliency requirements or diversified user or business requirements without explod-
ing the problem space (Dutta & Al-Shaer, 2019a, b).

3.3  Stealthiness

In a collaborative and distributed setting, an attacker can utilize a compromised 
agent’s credibility to access or corrupt other agents’ data, send fake/bad messages, 
or hamper availability. Therefore, stealthiness is a critical feature of AICA to deter 
attack propagation. One possible approach for agent’s stealthiness is to impose the 
reachability constraint, specifying that an agent will always have to request to spe-
cific authoritative servers (e.g., C2 servers) to initiate communication with other 
agents. If permitted, the agent can reach to another agent only for a fixed interval or 
until ending the ongoing communication session. After that interval or session, the 
agent will have to request again to establish new communication session. This can 
be achieved by implementing IP-mutation with the help of a centralized/distributed 
C2 servers in a SDN network or using proxies. IP-mutation is a moving target 
defense (MTD) approach, where IP addresses of agents will be changed in a peri-
odic manner (Jafarian et  al., 2015). The advantage of this approach is two-fold; 
firstly, even if the attacker knows IP address of an agent by reconnaissance, it will 
become obsolete after a certain interval – that will compel the attacker to go to C2 
servers. Secondly, to propagate or initiate attack, the attacker will require to com-
municate with C2 servers, that may increase the detection likelihood due to abnor-
mal request patterns.

In the IP-mutation approach, agents’ communications are conducted using vir-
tual IP addresses (vIPs) instead of real IP addresses (rIPs). The agents will not know 
rIPs of itself and of other agents. At a specific time interval, the C2 servers will 
allocate an unique vIP for each of the agent from a pool of vIP, which will be 
changed again after the end of the interval. To initiate a communication a session, 
an agent will ask the C2 server about the vIP of the recipient agent (identified by 
unique name or ID). To prevent attacker’s sniffing of these replies, all communica-
tion can be encrypted or spatial mutation can be deployed (i.e., different vIPs for the 
same destination agent from different locations (Jafarian et al., 2014)). The C2 serv-
ers will send the mapping among vIPs and rIPs to all SDN switches or proxies, to 
transform vIPs to rIPs at source end and rIPs to vIPs at receiver end. To keep the 
ongoing long session (longer than the interval) alive, two possible approaches can 
be adopted: (1) vIPs of participant agents of that session will remain active until 
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terminating the session, or (2) these vIPs will be valid only for participating agents 
of this session. Therefore, IP-mutation can increase the attacker’s time-to- 
compromise by deterring the attack reachability or detection likelihood by forcing 
the attacker to initiate unusual request/access patterns.

In situations where agents have low communication bandwidths and the team 
cannot communicate with a central C2, then agents can enforce local stealthiness by 
executing a randomization strategy to decide who to communicate within its local 
communication neighborhood, as depicted in Fig. 11.4. This is a highly effective 
tactic in decentralized operational settings where an agent can reduce the impact of 
adversarial messages sent by some of its neighbors. Typically, in many multi-agent 
settings, the number and identity of neighboring agents constantly changes over 
time as a sequence of sub-tasks are completed to accomplish the final mission. If a 
team has already been compromised and communication with C2 is not available, 
then this random select and communicate strategy allow agents to reduce the impact 
of possible interference by adversarial agents in their neighborhood. While AICA’s 
performance will slightly degrade using this randomization strategy if there are no 
adversarial agents in the neighborhood, it will always be better than the case when 
an agent unknowingly communicates with adversarial agents in its neighborhood.

Fig. 11.4 AICA agent communication via randomization for stealthiness. Here, B indicates a 
friendly “blue” agent, R is an adversarial/compromised “red” agent and A is the agent under con-
sideration. This real-time stealthiness tactic is highly relevant in operational scenarios where the 
team has already been compromised and communication bandwidth is low
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Fig. 11.5 Federated learning architecture for AICA operations

Finally, stealthiness in AICA can be further enhanced by using a federated 
learning- based design architecture for communication and control, as depicted in 
Fig.  11.5. Federated learning distributes model training among a multitude of 
agents, who, guided by privacy concerns, perform training and inference using their 
local data but share only model parameter updates, for iterative aggregation at the 
central C2 coordination level. In such a setup, local agents do not share their obser-
vational data with any other agents but only shares their inference and model-update 
outcomes with the central coordinator, who maintains a global model used by agents 
for autonomous operations.

4  Algorithmic Approaches for Multi-agent Coordination

The key to collaboration between AICA agents lies in their ability to safely com-
municate, negotiate, and act in adverse operational settings. AICA agents with dif-
ferent capabilities can leverage system-wide complementarity, diversity, and 
redundancy to accomplish complex missions. However, not all agents interact in the 
same way as a variety of spatial, temporal, and functional dependencies arise during 
missions. We can classify the team-level decision-making behavior of agents into 
three main categories: coordination, cooperation, and collaboration.

 (i) Coordination achieves additive performance gains for a team of agents via 
communication. For example, the time it takes for a surveillance team to scour 
an area of interest decreases linearly as more agents join the team, provided the 
agents coordinate with a global objective in mind. In coordination strategies, 
agents at the same level need not always share goals amongst themselves 
(although a Level 1 learner can share goals to Level 2 learners) as agents are 
separately rewarded for their individual performance. However, team perfor-
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mance may suffer (exhibit sub-additive performance gains) if smaller coali-
tions of agents with different objectives are formed within the team.

 (ii) Cooperation considers teamwork that achieves super-additive performance 
(‘whole is greater than the sum of its parts’). Cooperating agents share their 
intentions amongst themselves at all levels (resulting in increased communica-
tion) to help improve team performance. However, the effect of cooperation on 
team performance becomes substantial only after a threshold is reached. For 
example, it may require a certain threshold fraction of interacting cooperating 
agents to communicate continually to execute a highly efficient search-and- 
rescue mission. Until this threshold is reached, performance may increase very 
slightly even with an increasing number of interacting agents.

 (iii) Collaboration involves interactions between a set of heterogenous agents with 
complementary capabilities that leads to super-additive performance. In con-
trast to cooperation, collaboration requires specific types of agents to work 
together due to task requirements. The resulting team performance is often a 
step function: performance only reaches a satisfactory level when all the differ-
ent capabilities are leveraged. For example, a search and rescue mission in a 
remote environment may leverage teamwork between aerial and ground agents. 
The aerial agents localize and map the geographical area from a birds-eye 
view, which is then communicated to the ground vehicles for target retrieval.

The desired team behavior can be accomplished using a control architecture that 
prescribes how agents should communicate and navigate in adverse conditions to 
accomplish their goals. The control architecture used often depends on the type of 
agent-agent interactions, mission goals, available communication resources, and 
operational conditions. Here, we will discuss three main categories of control archi-
tecture: decentralized, centralized and hybrid.

 (i) Decentralized control is used when an agent takes actions using local informa-
tion recorded by its sensing module and information received from other 
neighboring agents within a predefined communication radius. For example, 
two AICA agents heading towards their separate target locations interacts to 
avoid colliding when they are too close to each other. Decentralized control is 
also used when local information needs to be disseminated via repeated agent- 
agent interactions. One common example of such a scenario is the rendezvous 
problem, where different agents stationed at different locations in a geographi-
cal region seek to meet at a target location within this region. A common 
decentralized solution to this problem involves each agent moving consenting 
to move towards the centroid of its visible neighbors that leads to global con-
sensus (Amirkhani & Barshooi, 2021). Decentralized control is typically used 
in missions requiring coordination and in some special cases, even coopera-
tion. The main advantage of using decentralized control is the reduced need for 
sensing and communication as most decisions utilize only local information. 
However, decentralized control is prone to imprecise navigation trajectories 
and is vulnerable to information distortion by adversarial agents that can desta-
bilize global consensus.
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 (ii) Centralized control is used when global system-wide information is needed for 
agents to efficiently accomplish a mission objective. A key example of such a 
mission is consensus-based formation control, where local information is 
insufficient to maintain a strict formation even if an agent knows the shape of 
the formation beforehand. Such class of problems is typically solved using the 
well-known Hungarian method (Wang et al., 2018), where a central coordina-
tor assigns each agent a position in the formation that minimizes their travel 
time and fuel costs. A key advantage of centralized control is the increased 
efficiency obtained using a central coordinator that can access the local state of 
each agent to effectively coordinate their actions. Almost all multi-agent tasks 
can be deployed in a centralized manner and is, therefore, often the default 
choice when decentralized control is not feasible. However, the central coordi-
nation mechanism is susceptible to interference or sabotage of the communica-
tion channels between the agents and the coordinator (Hsu et al., 2020).

 (iii) Hybrid control systematically blends centralized and decentralized control 
mechanisms to a wide variety of tasks, such as coverage control, rendezvous to 
a target location, and search-and-rescue. For example, in coverage control, 
agents are responsible to optimally scour a given area using a probabilistic 
density measure that captures the importance of different locations within that 
area. This density measure is a global piece of information that is used by all 
the agents to decide their coverage strategy. However, once this global density 
is accessed, agents can identify regions they are responsible for by observing 
the behavior of their neighboring agents (Santos et  al., 2018; Huang et  al., 
2020). Leader-follower agent configurations also typically use a hybrid control 
architecture where certain agents, designated as the leader, obtain global infor-
mation by communicating with a central coordinator, while the follower agents 
coordinate their actions based on the leader’s behavior. A hybrid control 
approach blends the best attributes of both centralized and decentralized con-
trol with reduced communication requirements as most interactions occur 
between the agents rather than between the agents and the central controller. 
However, team performance can be severely affected in certain scenarios 
where critical agents in the team are prone to vulnerabilities.

5  Representative Multi-agent Navigation 
and Communication Simulation Example

We consider a simulation-based multi-agent navigation and communication exam-
ple of decentralized collaboration and negotiation between a set of AICA agents 
that have no access to a central C2 for path planning and action selection. Specifically, 
the agents are tasked to carry out a strategic search and rescue mission where they 
need to collectively scour a surveillance area of interest to locate missing assets 
whose locations are not known precisely at the start of the mission. The agents can 
be a team of unmanned ground or aerial vehicles (or both), but for this example, we 
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assume a homogenous team of agents with similar sensing and navigation capabili-
ties. The team’s mission is deemed to be successful when all the missing assets can 
be precisely located in the shortest possible time. It is assumed that the mission is 
carried out in a remote location where agents must autonomously navigate and 
bypass obstacles and uncertain terrain without any communication with C2 or 
human operators. However, agents can communicate with each other at regular 
intervals sharing relevant local information of the navigation environment and coor-
dinates of the missing assets, if located.

A key challenge here is the fact that the number of missing assets is usually very 
small compared to the size of the surveillance area. In the parlance of multi-agent 
systems and active learning, this is often referred to as the sparse rewards problem, 
where the team receives a joint reward (or utility) only when all the goal states 
(location of missing assets) have been explored. Therefore, for a successful mission, 
agents must strategically coordinate their local exploration strategies to avoid 
redundant visits to non-informative locations by different agents at different points 
in time. It would be much more sensible for the agents to execute a communication- 
based, “divide-and-conquer” collaboration strategy where local sensing information 
can be exchanged to determine estimates of where the missing assets can be found 
with high probabilities (Figura et al., 2021). Moreover, there is a need for negotia-
tion between the agents to optimize task allocation with regards to exploration of 
different regions of the surveillance perimeter in the shortest possible time. In our 
setup, it is assumed that the agents have inference capabilities that allow them to 
concurrently learn from past experiences (local observations, action selections) and 
agent-agent interactions in a decentralized fashion to inspect surveillance regions 
that are less explored.

5.1  Algorithmic Approach

To overcome the drawbacks of independent exploration by the agents, it is impor-
tant for agents to adaptively coordinate and learn different exploration modalities 
that can maximize their chance to locate the missing targets successfully. Such a 
strategy requires consistent communication between the agents and a mechanism to 
devise local rewards (or utilities) for agents to avoid visiting redundant and non- 
informative locations. The algorithmic approach we present here is based on the 
paper by Iqbal and Sha (2019), which used a soft actor-critic multi-agent reinforce-
ment (MARL) algorithm (Haarnoja et al., 2018). In reinforcement learning (RL) 
parlance, actor-critic models comprise of two learning components: (i) a critic that 
learns the expected long-term utility of executing a joint team action for a given set 
of local observations, and (ii) an actor that learns the action-selection strategy (or 
policy) of each agent in the team. Similar to other RL algorithms, actor-critic meth-
ods learn the optimal collaboration behavior by updating the actor and critic esti-
mates (represented by neural networks) iteratively from multiple simulations of 
possible agent-agent interactions, location visitations, and total team rewards 
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accrued over a surveillance period. The soft actor-critic algorithm, however, pro-
motes exploration of different states as it favors a probabilistic action-selection 
strategy for the entire team compared to standard actor-critic methods. To overcome 
the challenge associated with sparse rewards, one needs to characterize an intrinsic 
reward mechanism, which measures an agent’s implicit reward of exploring a given 
state (location). This intrinsic reward value is calculated based on other agents’ 
evaluation of how informative the state is based on their previous visits to that state. 
The mathematical form of the intrinsic rewards is chosen in a way that promotes 
coordinated team exploration. For example, if an agent on visiting a particular loca-
tion deems it to be non-informative (in the absence of any missing target), then the 
intrinsic rewards for other agents visiting that location should not increase to pre-
vent over-exploration. In a more extreme case, if a visiting agent labels a certain 
location (or areas close to it) to have no chance of finding missing targets (fully 
non-informative), then the agent’s intrinsic reward of visiting that location should 
be zero irrespective of what other agents broadcast; this prevents the agent to repeti-
tively explore the same region at the persuasion of other agents. In this example, we 
consider the following three types of agent exploration strategies for which the 
intrinsic rewards are defined:

 (i) Covering strategy rewards an agent more for exploring locations that it con-
siders more informative than an average agent. This strategy results in agents 
being more selective about exploring new locations; only exploring those areas 
where an agent believes have a higher chance of locating missing assets.

 (ii) Burrowing strategy rewards an agent for exploring locations that it considers 
less informative than the average agent. While this strategy may seem counter-
intuitive, such a reward scheme encourages agents to further explore areas that 
have been less visited with the hope that potential dead-ends can be identified 
quickly to reduce overall exploration time.

 (iii) Minimum strategy rewards an agent for exploring locations based on the 
most conservative agent’s estimate. This strategy is a more extreme version of 
the Burrowing strategy that leads to agents exploring locations that no other 
agents have explored.

However, for our search and rescue example, it is not immediately clear which type 
of exploration results in the mission being successful in the shortest amount of time. 
Moreover, as mentioned previously, agents may adaptively change their exploration 
strategies that result in different intrinsic rewards for different locations in the sur-
veillance area. To account for these challenges, a two-tier hierarchical learning 
strategy is proposed to simultaneously learn the team’s exploration strategy, where:

 (i) A collection of lower-level soft actor-critic RL models are trained to learn team 
strategies (joint action selection) for all different intrinsic reward types (and 
associated agent exploration strategies) using a common pool of observations 
from all the agents (global state of the system).

 (ii) An upper-level selection strategy that chooses the learnt lower-level team strat-
egy for different reward types to accomplish the mission in the shortest possible 
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time (i.e., reaches the target goal states in smallest time duration). The upper- 
level selection strategy, referred to as the meta-policy learning, provides team 
consensus in choosing among a set of possible exploration strategies (with dif-
ferent intrinsic rewards) to attain optimal collaboration leading to mission 
completion.

The algorithm considers that agents communicate their observations at time t, which 
consist of their own locations, information about the surrounding (in a grid-world, 
this will be whether a surrounding wall exists in each of the four edges) and whether 
an agent has found any missing asset at that location. Thus, the state of each agent 
is the global state containing the above-mentioned information. The rewards 
assigned to an agent could be “extrinsic” – when an agent achieves the main objec-
tive of locating missing asset; or “intrinsic”, when we assign rewards to an agent for 
exploring novel regions. The reward also contains a time penalty, to motivate the 
agents to complete the tasks quickly. The following steps are used to train the agents 
using the two-tier HRL algorithm:

• Set the initial locations (states) of the agents and the missing targets.
• Initialize the actor-critic model for each type of intrinsic-reward based team 

exploration strategy; also, initialize the upper-level meta-policy model.
• For each of the lower-level models, start a training episode (an episode refers to 

a temporal sequence of states, actions, and rewards of the agents observed at 
each time step until all goal states have been explored).

 – If the current episode has not terminated (i.e., the goal states have not been 
reached)

 ° Sample an action for each agent from their current exploration strategy
 ° Record the new locations of the agents after sampled actions are executed
 ° Determine the intrinsic rewards accrued by the agents at each time step
 ° Store the current state, action, reward, and next state for each agent in a set 

storing the history of agent-agent and agent-environment interactions for 
all the lower-level models

 ° Continue to the next time step

 – Once the current episode has terminated, update the actor-critic model param-
eters concurrently for a fixed number of iterations using data from the history 
set. This updates the action-selection strategy of each agent for a given intrin-
sic reward type.

• Once all the actor-critic models are updated, we update the upper-level policy 
selection model parameters and updates the policy choosing a combination of 
exploration strategies that minimize the time to find all the missing assets.

• Repeat the steps until the parameters of the upper-level model converge.

It is important to note that such a two-tier learning strategy belongs to the class of 
Centralized Training with Decentralized Execution (CTED) type RL algorithms. 
The CTED paradigm allows for agents to train while sharing information during 
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model training that is usually not available during online exploration, which depends 
only on agents’ local observations. A CTED based learning strategy may lead to 
emergent team behaviors in decentralized decision-making problems that maybe 
otherwise difficult to learn if only local observations were used during training.

5.2  Simulation Environment

For demonstrative purposes, we use a discrete 2D grid-world environment to repre-
sent the surveillance area. Specifically, we used a grid with 20 rows and 20 columns, 
where each row-column combination depicts a specific location or state. Some of 
the grid-world states cannot be reached by any agent, which denotes obstacles in the 
environment. It is assumed that the surveillance agents start from a common termi-
nal at the start of the mission. The missing assets are in one of the reachable grid- 
world states; however, their locations are not known a priori to the agents. Each 
state of the grid-world has an associated intrinsic reward that depends on the current 
exploration strategy pursued by the team. In this example, the agents have 4 poten-
tial actions to choose from to navigate around the grid: going left, right, up, or 
down. It is instructive to note that in this example, agents do not stay in one location 
in consecutive time periods. This is because surveillance is a time-sensitive opera-
tion, and agents seek to complete the mission as early as possible. In our setup, we 
have two surveillance agents (indicated by circles) and two missing assets (indi-
cated by stars). For discussion purposes, we will refer to the asset on the left-side of 
the grid as Asset A, while the other one is referred to as Asset B. Similarly, we will 
refer to the agent on the left as agent 1, and the agent on the right as agent 2. During 
model training, we keep the initial starting point of the agents fixed and run simula-
tions to iteratively learn the best collaborative strategy to find the unknown missing 
assets. The episodes end whenever both the missing targets have been discovered by 
the agents. The entire code was executed in Python and an OpenAI-Gym environ-
ment was used for both training and testing the algorithms. We trained the model on 
50,000 timesteps. Figure  11.6 describes the initial location of the agents before 
training and the final states of the agents once the model has been trained. For evalu-
ation, we considered the flowtime metric, which, in the context of this problem, is 
the average number of timesteps it takes for the agents to locate both missing assets.

5.3  Discussion

To assess the performance of the trained agents, we consider the same 20 × 20 grid- 
world with the same initial location of the agents but with new target locations of the 
missing assets. Figure 11.7 depicts the strategies used by the agents in this scenario. 
As observed from the state visits of the two agents, each agent starts to take a sepa-
rate path to a different missing asset. Now that we have trained the model, how does 
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Fig. 11.6 (a) Initial states of the agents (circle and triangle) in the 20 × 20 grid-world during train-
ing. The locations of the missing assets (stars) are unknown to the agents a priori; (b) final states 
of the agents at the end of training the RL model

Fig. 11.7 (a) Initial state of agents during testing. (b) and (c) show intermediate states; (b) shows 
that initially, the agents directly go to the original locations of the treasures, i.e., locations of the 
missing assets in the training phase, using a burrowing approach. (c) As the location of the trea-
sures have changed, the agents now switch to “covering” approach to maximize exploration. (d) 
shows the final state at which both missing assets have been found by the agents
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it generalize for a case in which the locations of the missing people/items are differ-
ent to those on which the model was trained on. Figure 11.7a presents the initial 
state of the agents for the evaluation scenario. In Fig. 11.7b, we see that the agents 
directly move towards the original locations of the missing assets in line with what 
was observed during training (Fig. 11.6b). As asset A is not in the original location 
used during training, the agents switch from a burrowing to a covering strategy, to 
minimize redundancy in exploration, as observed in Fig. 11.7c. While we do observe 
that there is small degree of overlap in the states visited by the two agents in 
Fig. 11.7c, mostly the sub-regions explored by the two agents are disparate. Finally, 
Fig. 11.7d shows the terminal states when both missing assets have been located. 
We observe that while agent 2 had discovered both missing assets, its collaboration 
with agent 1 was critical in retrieving the assets quickly. As the agents follow a 
covering strategy, agent 2 is more likely to visit a state that is less frequented by 
agent 1, resulting in a more efficient exploration. Across 12 parallel threads, the 
mean flowtime was computed to be 903 timesteps.

6  Summary and Conclusions

This chapter describes steps toward operationalizing the collaboration and negotia-
tion function of an AICA agent using multi-agent autonomous systems learning as 
a core foundational element. We start by representing a two-tier hierarchical AICA 
layer architecture with different levels of agent teams pursuing goal and action 
learning to collaboratively develop joint COA plans to support cyber defense mis-
sions. Key AICA agent properties including stealthiness, safety verification, and 
active learning for secure communication are presented in the context of a rein-
forcement learning paradigm. Promising algorithmic approaches are also outlined 
for multi-agent coordination and consensus with hierarchical and federated learning 
principles. Based on a representative simulation example for a search and rescue 
mission, we demonstrate the benefits of adaptive multi-agent collaboration within 
an autonomous and decentralized operational setting.

In this representative example, three types of multi-agent exploration strategies 
were considered: (1) covering — rewards an agent for being more selective about 
exploring new locations relative to an average agent; (2) burrowing — rewards an 
agent for being less selective about exploring new locations relative to an average 
agent; and (3) minimum — rewards an agent for exploring locations that no other 
agent has explored or are visited the least. A two-tier hierarchical learning strategy 
was implemented where a lower-level soft actor-critic RL model is used to learn 
team strategies (joint action selection), and an upper-level meta-policy learning 
scheme is adopted to determine consensus among a set of possible exploration strat-
egies. This two-tier learning strategy is a class of CTED type RL algorithms leading 
to emergent collaborative team behaviors among AICA agents. Simulation experi-
ments with a 2D grid-world environment involving a search and rescue mission was 
implemented in a customized Python-based OpenAI-Gym learning environment. 
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The simulation results reveal that stochasticity in asset locations can trigger changes 
in collaboration strategies among agents to improve overall mission performance.

Future development opportunities for further enhancing the AICA collaboration 
and negotiation function may include: (1) scalable multi-agent consensus methods 
to learn emergent behaviors within and across diverse AICA agent teams with het-
erogenous capabilities; (2) dynamic threat inference at system and agent levels to 
ensure secure information exchange while maintaining stealthiness and robust oper-
ations; (3) safe transfer of collaborative strategies learned in low-dimensional set-
tings to high-dimensional operational environments; (4) explainability of learning 
outcomes and algorithmic traceability to instill AICA agent trustworthiness via 
actionable information sharing; (5) blended data-driven and domain-aware learn-
ing to account for sparse communication with limited situational awareness in con-
tested settings; and (6) resilient response and proactive messaging schemes to 
maintain consensus under evolving system constraints and limited communication 
resources.
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Chapter 12
Human Interactions

Eric Holder, Jessie Y. C. Chen, Kristen Liggett, Phillip Bridgham, 
Neil Briscombe, Thomas Eskridge, Marco Carvalho, and Lavinia Burski

1  Introduction

Human interactions with an Autonomous Intelligent Cyber-defense Agent (AICA) 
need to be systematically considered across all stages of design and employment 
including: conceptual design; iterative design of software, hardware and interfaces; 
marketing and sales; system training; operational use; and the system updating and 
adaptation stages (Holder et al., 2021). The AICA system will include various occa-
sional cyber defender users such as analysts, updaters or system trainers, incident 
responders, maintainers, programmers and others, typically working in a remote 
and secure location and with some degree of cyber defense expertise and/or artifi-
cial intelligence or machine learning (AI/ML) expertise. What makes the AICA 
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conceptualization unique is that one of the primary users and stakeholders impacted 
by AICA actions, and the main focus of this chapter, is not really a cyber 
defender at all.

This unique user group is the frontline users that operate the equipment and sys-
tems with one or more embedded AICAs programmed to defend their systems from 
attacks. The autonomous agents will make decisions and take actions that can alter 
the frontline users’ operational capability and real-time decisions. The ACIA sys-
tem is an automated cyber defense system and the frontline user is unlikely to have 
dedicated cyber defense personnel embedded that really understand cyber defense 
and the nuts and bolts of AICA’s functioning or decisions (Kott et al., 2019). As 
argued by Kott et al. (2019) for the Department of Defense use cases, in the future 
battlespace, communication and reachback to these cyber defender stakeholders 
also cannot be assumed, or relied on either, leaving this frontline user group to inter-
act, interpret and decide largely on their own how to deal with AICA and AICA’s 
decisions and actions. This lack of anytime access to AICA experts or developers is 
expected for civilian and industrial applications as well. What the frontline users 
have training and expertise on is the employment of their systems in the operational 
context as it is, and predicted to be into the foreseeable future, and they need to 
maintain their ability to function and act, with the ACIA serving as an intelligent 
agent replacement for an embedded human cyber defender. In essence, this makes 
ACIA more like an embedded, mostly-automated, cyber defender teammate with 
some control over the functioning of their systems. One doesn’t have to look far to 
see how human cyber/network defender decisions, even simple things such as reset-
ting a service or unannounced outages, can impact the daily work of those on the 
systems impacted and the breakdowns and workarounds that this can create. The 
frontline users, such as military, safety critical, or emergency personnel, may also 
be operating in a context where these real-time matches and mismatches in goals 
and decision outcomes between humans and agents can mean mission success or 
failure and life or death. The effective design of AICAs with the human in mind can 
help to minimize these frictions and this user-centered process can’t wait until the 
later stages of the design process to be added.

A high-risk example to highlight the importance of human interactions would be 
a military unmanned aerial vehicle (UAV) with embedded AICA(s). Decisions and 
actions by the AICA might impact the unit’s ability to move, shoot and communi-
cate and the UAV’s ability to provide persistent surveillance or overwatch of humans 
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in danger zones or reliable weapons support. In time critical phases of combat there 
might be reasons to accept more or less temporary cyber risk in order to achieve 
overall mission success or complete a maneuver. Further, these risk assessments 
might be based on knowledge that humans uniquely possess. These operations typi-
cally can’t be halted for any extended period of time to sort out the automation. This 
chapter will argue that the design and employment of any AICA application will 
need to:

• Identify and understand its stakeholders, workflows, and information and deci-
sion requirements

• Leverage this information to design the AICA interdependencies, interactions 
and interfaces to support usability, transparency and explainability where needed 
across the design and operational use lifecycle

• Identify and employ measures and methods to evaluate design success and 
impact, and

• Manage expectations and perception of the AICA(s) and its capabilities and limi-
tations to ensure effective use and calibrated trust.

This introduction was intended to emphasize the importance of the human and 
human interactions for successful deployment of AICA on real-world applications, 
embedded in real-world equipment. This chapter will provide an overview of con-
siderations and methods to apply to ACIA design to help ensure that the ACIA- 
enabled equipment and systems put into use enable, rather than hinder, operational 
success. This chapter also provides a proposed approach to apply to AICA designs 
to synch human and agent mental models based on real-world examples, along with 
guidance on how to measure the impact.

2  Human Interaction Considerations and Techniques

2.1  Trust and Transparency

In recent years, various expert groups have consistently identified transparency as a 
key area of research that is critical to achieve trustworthy AI and effective human- 
agent teaming (e.g., the IEEE P 7001 Design Standard on Transparency, see Winfield 
et al., 2021). Indeed, empirical studies have shown that transparency information 
can help human operators properly calibrate their trust in machine agents (Stowers 
et al. 2020), although there is also evidence that high levels of transparency may 
lead to over-trust (Bhaskara et al., 2021). Furthermore, studies show that that there 
may be costs associated with greater system transparency (particularly information 
about uncertainty) in terms of increased operator workload and, additionally, deci-
sion response times could be impacted due to the large amount of information to be 
processed associated with transparent interfaces (Kunze et al., 2019). However, the 
same result of increased operator workload was not observed in other transparency 
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studies (Bhaskara et  al., 2021; Stowers et  al., 2020) suggesting that transparent 
design needs to be tailored to the users, the workflow and the information required 
for decisions. AICA design needs to find the optimal level of relevant transparency 
using human factors design and evaluation techniques.

As intelligent systems become increasingly sophisticated and are capable of 
learning/evolving either based on their learning algorithms or access to information 
from other networks, it is imperative to examine the implications of these agent 
capabilities/behaviors on operator trust in the systems. Since predictability is a criti-
cal aspect of trust development and maintenance, agent behaviors that change over 
time (e.g., because of learning, updates, or new inputs from another network) may 
prevent operators from properly maintaining accurate mental models of agent capa-
bilities, which are crucial for effective trust calibration. As a result, human- agent 
team performance can be negatively impacted due to the misalignment of human 
mental models and agent capabilities (Bansal et  al., 2019). Computation- driven 
trust modeling and update methods that ensure compatibility of updates with human 
mental models are promising approaches that promote effective joint human–agent 
system performance (Bansal et al., 2019).

Effects of individual differences on cognitive task performance and interaction 
with automation have been well documented in the literature (Chen & Barnes, 
2014), and research findings suggest that for human–technology interaction designs 
(including their associated training requirements), factors such as human variations 
in their characteristics and abilities should be taken into account. For example, 
Ingram et al. (2021) found that participants with a higher propensity to trust (as 
measured by their responses to the Propensity to Trust Machine Questionnaire) 
were more likely to trust an image classifying agent than their lower-propensity 
counterparts, particularly when the agent was incorrect or under uncertain situations 
(e.g., poor image quality). At the cultural level, Chien et al. (2020) found that agent 
transparency had an impact on the participants’ interaction with an intelligent agent 
(i.e. compliance with agent’s recommendations) in a simulation-based experiment, 
but the effects of agent transparency were significantly influenced by participants’ 
culture. These results suggest that when transitioning intelligent systems from one 
culture to another, user interface modifications and training interventions may be 
required due to the effects of cultural differences on system reliance related to agent 
transparency. AICA designers need to understand the target user populations and 
sub-populations to enable effective design.

2.2  Transparency-Based Approaches 
to Human-Agent Interaction

There are a number of agent transparency frameworks that have received attention 
since the 2010’s. While most of these frameworks are focused on robotic systems 
(e.g., the Human-Robot Transparency Model by Lyons and the Coactive System 
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Model by Johnson), the Situation awareness-based Agent Transparency (SAT) 
framework (Chen et al., 2018) is more general and has been applied to AI-based 
agents in numerous joint human-AI decision making contexts. The SAT framework, 
based on Endsley’s (1995) situation awareness (SA) model, consists of three levels 
of information requirements from one agent (e.g. an AI agent) to its partner (e.g. a 
human operator) to support the partner’s perception of the agent’s current actions 
and plans (Level 1), comprehension of its underlying logic (Level 2), and projec-
tions of future outcomes based on the agent’s predicted end-states of current actions 
and plans (e.g. likelihood of success/failure), and any uncertainty associated with 
the projections (Level 3). The SAT framework, after its initial introduction in 2014 
(Chen et al., 2014), was updated in 2018 (Chen et al., 2018) to incorporate bidirec-
tional communications and teaming-related aspects between human and machine 
agents (see Fig. 12.1). A number of research groups that conducted HAT research 
based on the SAT model use “what if” simulation as a Level 3 item, which can sup-
port humans’ prediction of future outcomes through interactive/bidirectional 
human-agent transparency (Cabour et al., 2021). The SAT model is one method that 
can be effectively used to capture the information that needs to be shared between 
the humans and agents to support AICA design.

An emerging area of research related to transparency is eXplainable AI (XAI). 
XAI systems can be delivered via various techniques (e.g., feature- or policy-based 
explanation, causal link, contrastive explanation, simplification and local explana-
tion techniques such as LIME, “what if” simulation, etc.) and modalities (e.g., 

Fig. 12.1 Updated SAT model. (Reproduced with permission from Chen et al., 2018)
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visual, language/dialogue, multimodal) (see review articles by Miller, 2019; Rawal 
et  al., 2021). While transparency and explainability are used interchangeably by 
some, it is important to note that transparency is a broader concept that can be 
achieved by various techniques such as XAI and interpretable models. Transparency 
is also inherently more proactive, while explainability implies post-hoc explana-
tions. Cabour et al. (2021) propose the Abstracted Explanation Space framework — 
with all three SAT (Chen et al., 2014) levels embedded in the architecture — and 
present a case study of a human-machine interface (HMI) design for an anomaly 
detection agent based on the architecture. In the cyber domain, Holder and Wang 
(2021) apply the SAT model in the HMI design of a “junior cyber analyst,” which is 
an XAI-based agent that can assist human analysts in cyber protection team mission 
planning (see Fig. 12.2 for an overview).

In high stakes environments such as cyber warfare, transparent HMIs capable of 
justifying recommendations are particularly beneficial for humans to determine 
whether to accept the agent’s input. It is critical to note that the transparency and 
explainability have to be translated or phrased in a way that each user can under-
stand. Indeed, the draft IEEE P 7001 Design Standard on Transparency (Winfield 
et al., 2021) identifies five categories of stakeholders (end users/operators; general 
public/bystanders; certification agencies; incident/accident investigators; legal per-
sonnel), each of whom may have similar yet distinct transparency requirements. In 
fact, even the user/operator group may include individuals with widely different 
backgrounds and expertise. AICA designers need to have a base understanding of 
the trust and transparency factors that will impact how the system interacts with dif-
ferent groups of stakeholders; they also need to identify the translation requirements 
that support each group’s needs given their task, information requirements and way 
of thinking and communicating. Methods such as SAT should be used early in the 

Fig. 12.2 Overview of the SAT modeling process used to define an XAI junior cyber analyst. 
(Reproduced with permission from Holder & Wang, 2021)
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design process to map out the information requirements. This analysis can guide 
design behaviors and even the algorithmic approaches that are optimal and valid for 
the application in terms of being able to provide the required information or 
explanations.

2.3  Human Factors Design Process

At the most basic level, the Human Factors Design Process is a user-centered design 
(UCD) process. UCD is a design approach that definitively places the user at the 
center of all design activities. According to William Hudson (2022) of the Interaction 
Design Foundation, UCD is “an iterative design process in which designers focus 
on the users and their needs in each phase of the design process. UCD calls for 
involving users throughout the design process via a variety of research and design 
techniques so as to create highly usable and accessible products for them” (see 
Fig. 12.3). The process starts with a deep understanding of the users, their needs for 

Fig. 12.3 User-centered design process
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performing their work, and their constraints and limitations from both a work per-
spective and a human capabilities perspective. This analysis feeds an iterative design 
and evaluation process that again requires working with users to obtain feedback. 
Keeping users involved throughout the design process helps ensure that the final 
product will be both useful and usable.

As shown in Fig. 12.3, the user-centered design process or human factors design 
process (HFDP) begins with analysis. Effective analysis is crucial to the success of 
the design process as it provides a foundation to support all subsequent design activ-
ities. The Analysis Phase establishes the relationship between the design team and 
the end-users of the product being developed. The design team employs human fac-
tors methods and techniques such as unstructured and structured interviews, obser-
vations, and specific techniques such as goal-directed task analyses in order to elicit 
information about the work and work context. Analysis techniques such as work- 
flow diagramming are used to validate the information and determine gaps in under-
standing for iterative knowledge elicitation. These activities supply the design team 
with a valuable understanding of the work domain that includes the overall goal of 
the work; tasks currently done to accomplish it; objectives, order, and dependencies 
of those tasks; information requirements; etc. The analysis enhances the team’s 
knowledge of stakeholders; tasks, information and decisions to be supported; 
sources of information; gaps in current processes and information; constraints of 
time and environment; and the objectives of the work. For example in the Holder 
and Wang (2021) work on XAI as a junior cyber analyst, the analysis phase pro-
duced tables of information requirements, based on SAT concepts, mapping the 
agent’s level 1, 2, or 3 SA with the data used, reasoning performed and human 
interactions expected mapped out for each information type (e.g., incidents, vulner-
abilities, threats, etc.).

An important requirement for supporting effective HAT is the identification of 
interdependence points that enable team members to support and assist each other 
in the accomplishment of the mission. This requires analyzing the structure of the 
HAT according to the information and task interdependencies that can be supported. 
The performance of HATs are defined by the interaction of cooperating entities 
tasked with common goals. These include not only the cyber offense/defense goals 
of the agent, but teamwork goals that support human situation awareness and sense- 
making such as observability, directability, and predictability (Johnson & Vera, 
2019). Hard interdependence describes the relationship where one teammate is 
waiting for the output of another teammate to continue: without the completion of 
the other teammate’s work, the current goal will not be reached. Soft interdepen-
dence holds when help from others could be used if offered but is not necessary to 
complete a task goal.

While identifying interdependencies is most often done at design time, Tummala 
and Eskridge (2022) describe a technique for interpreting an agent’s hierarchical 
task specifications to identify and exploit task interdependencies for improved team 
performance. These interdependencies are extracted from task sub goals and pre-
conditions found in a task analysis to determine how agents can assist and be 
assisted by other teammates. The interdependence information also constrains 
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information sharing among team members to be specifically relevant to those team 
members that can be of assistance in an interdependent task.

The most challenging step in the HFDP is the conversion of domain knowledge 
obtained during the Analysis Phase into initial design concepts (represented by the 
arrow from the Analysis Phase to the Iterative Design and Testing Phases in 
Fig. 12.3). This step requires the integration of information gathered in the Analysis 
Phase with foundational empirical knowledge of human perception (vision theory, 
color theory, etc.) and cognition (encoding theory, memory theory, information pro-
cessing theory, multiple resource theory, attention theory, etc.) guided by human 
factors design principles that represent decades of empirical research to determine 
the most effective ways to display information for different uses (see Fig. 12.3). 
This foundational knowledge and experience in applying it to design prevents the 
creation of complex designs that overtax users’ perception and cognition. For exam-
ple, Liggett and Thomas (2015) found that transforming thousands of rows of intru-
sion detection system (IDS) log files into a parallel coordinates visualization allowed 
IDS analysts to use their pattern matching skills to detect potential cyber attacks by 
looking for attack signatures versus reviewing the rows of raw data individually (see 
Fig. 12.4). Design teams must also determine sources of required data to support the 
interfaces and visualizations and consider methods of effectively accessing those 
data. Through these activities, a design team can provide an effective tool that will 
guide users to information they need when they need it, and training and documen-
tation needs will be minimal.

During the Iterative Design and Testing phase, products are tested, refined, and 
tested again as needed to ensure maximum utility and usability. The thoroughness 

Fig. 12.4 Parallel coordinates visualization of IDS log files
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of the analysis and the skill, experience and knowledge of the designer will affect 
the number of iterations that will be required. Later evaluations should include user- 
in- the-loop testing with operationally representative scenarios in order to verify that 
the design is effective. User involvement has the added advantage of ensuring user 
buy-in. Users often end up preferring things that are best for them when they feel 
they have been allowed an adequate amount of input into the design process.

Research supports that early consideration of work processes reduces situations 
in which unanticipated requirements are encountered by users at or after develop-
ment, requiring high-cost design adaptations or, worse yet, retrofitting or shelving 
of developed systems.

3  An Example Approach for AICA Applications

3.1  Applying Lessons Learned for Human Interactions 
in AICA-Relevant Systems

This section presents an applied approach for addressing some of the core chal-
lenges related to designing for human interaction in AICA-enabled systems and 
tailored to the AICA reference architecture currently available. The following guid-
ance has been curated through hands-on experimentation and includes lessons- 
learned, technical approaches, and multiple human interaction user interface 
techniques for supporting HATs (human-autonomy teams) from applied projects 
with agent-based interactions supporting various Intelligence, Surveillance and 
Reconnaissance (ISR) applications.

3.2  Implementation Strategies Aligning Human and Agent 
Mental Models

As described above the need to establish an alignment of a human mental model to 
the agent capabilities is paramount. This necessary alignment will enable both 
human and agent to perceive and comprehend events in the environment using the 
same criteria and vocabulary. Once the alignment is established, knowledge and 
decision making can be shared between humans and agents in a human-centric fash-
ion enabling the primary requirement of effective human-machine teaming. A strat-
egy for this alignment, selected for its applicability to AICA design and called the 
Human-Agent Mental Model, is presented in Fig. 12.5 below.

Reading from bottom to top, the Human-Agent Mental Model begins with a 
representation of the human mental model, indicated in blue. This layer of the con-
ceptual map aligns the levels of human situational awareness. As discussed above, 
the SAT model is proposed to capture the information required to enable 
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Fig. 12.5 Human-agent mental model: alignment of human mental model and agent capabilities

bidirectional transparency between humans and agents. Each SAT level represents 
an opportunity for synchronizing discrete levels of understanding across HAT mem-
bers. The underlying Situation AWareness (SAW) ontology model alignment is 
included as a means to capture the current mental state and to further illustrate the 
progression of mapping from human to agent and illustrate one mechanism of 
transparency.

Moving up to the agent layer, indicated in green, we show the corresponding 
computational and software design-oriented model. This mapping considers an 
agent’s capabilities of sensing and reasoning as its “mental model”. The Joint 
Directors of Laboratories (JDL) information fusion model (Steinberg & Bowman, 
2017) is applied here to provide a functional decomposition of the agent’s capabili-
ties. The reason for selecting an information fusion model is because agent-based 
architectures are sensor based and sensor-based architectures rely on information 
fusion techniques to establish and maintain situational knowledge, or state estima-
tion. Additionally, the latest JDL information fusion model is comprehensive and 
includes cognitive refinement (level 5 in Fig. 12.5) that is well suited for alignment 
of concerns for HATs. Using this model of agent information processing and 
decision- making, the conceptual mapping aligns the JDL information fusion levels 
to the SAT levels, completing the alignment of agent and human mental models. 
This alignment can be achieved through several different strategies, leveraging tech-
niques described in prior sections to gather the required information. These strate-
gies can be applied to agent design using techniques ranging from more simplistic 
agent processing implementation of classifying information as it is processed within 
a message or event based processing strategy, to more complex semantic classifica-
tion algorithms for alignment to semantic ontological knowledge representations.

The resulting alignment, in its entirety, not only provides a mental state mapping 
between agent and human, but also provides a mapping to specific agent functional 
elements, namely the agent’s ability to sense and reason with information fusion 
levels. We have successfully used this approach in past projects to orchestrate agent 
capabilities that work and interact in alignment with human mental models support-
ing usability and explainability (Allen & Steiner, 2018). The OODA Model 
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alignment at the bottom of the human layer, as well as the red markers, will be dis-
cussed in detail later in this chapter when addressing how to apply this approach for 
developing effective AICA solutions.

3.3  An Implementation Strategy Applied to the AICA 
Reference Architecture (AICA RA)

Now armed with an approach for human mental models and agent capabilities 
alignment, we modify the AICA reference architecture (Kott et al., 2019) to set the 
stage to design for effective human interactions. Using a sensemaking control loop 
model suitable for both human and machine cognition allows understanding and 
annotation of decisions within HATs. The OODA model (Boyd, 1987) is ideally 
suited as a human mental model that is also fit for autonomous agent capability 
alignment and has been demonstrated to provide agent capability orchestration 
(Allen & Steiner, 2018). Additionally, by applying the OODA model to a cognitive 
agent-based framework, agent capabilities of sensing, orienting/planning, deciding, 
and acting are able to drive specialized and concurrent development activities 
focused in these areas. The OODA loop occurring for human processing is shown 
on the bottom of Fig. 12.5 and is also now aligned to the AICA reference architec-
ture, including the mapping of the agent capabilities in terms of information fusion.

The red labels from Fig. 12.5 represent the agent capabilities from a conceptual 
perspective and are aligned and labeled here in Fig. 12.6 within the AICA RA’s func-
tional areas to provide guidance as to where and how they can be implemented and 
integrated into a working solution. The information Level 0 and Level 1, Level 2 and 
Level 3, and Level 4 (from Fig. 12.5) are mapped to the AICA reference architecture 
functions as indicated by the A, B, and C notations. The JDL information fusion Level 
4, process refinement and resource management, has been mapped to the AICA 
reference architecture collaboration and negotiation function. Additionally, 
information fusion Level 5, user/cognitive refinement, has been mapped to the AICA 

Fig. 12.6 Alignment of information fusion and OODA model within AICA RA
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reference architecture cognitive loop because this feature definition includes activities 
related to refining human-machine conceptual alignment and processes.

As indicated earlier, the OODA constructs provide an opportunity to support 
both human interaction and agent capability development in a transparent way 
based on common ground overlap of the OODA steps between agent and human 
tasks and understanding. A close look at the AICA reference architecture cognitive 
loop in Fig. 12.6 shows an alignment of the OODA constructs of Observe, Orient, 
Decide, and Act. These activities are shown loosely mapped within the agent cogni-
tive loop. The opportunity for establishing a more formal adoption of the OODA 
loop within the AICA reference architecture cognitive loop is expanded upon next 
to help address transparency and explainability requirements.

The functional diagram above is an extension of the AICA reference architecture 
with modifications indicated with red. The AICA Reference Architecture’s cogni-
tive loop is shown with the addition of the OODA loop constructs provided as the 
OODA Service. The OODA Service is a cross-functional capability that acts as a 
proxy between the core knowledge management and agent functions. In other 
words, the OODA service classifies interactions into bins that both the agent and 
human can relate to. This is illustrated in Fig.  12.7 by how it wraps around the 
knowledge management service and knowledge domains and mediates access to 
and from these knowledge sources. The OODA Service is event-oriented and pro-
vides opportunities for AICA core components to exchange events with cognitive 
context described as an OODA Trace (similar to an agent epoch). As an example, 
when a percept is received and processed by the core component “Sensing”, an 
OODA Trace instance will be created and the sensing information will be saved and 
categorized as “Observe” events within this OODA Trace. As the agent performs 
World State Identification and Planning, the resultant information gain and state 
estimations will be categorized as “Orient” events and recorded as part of the same 
OODA Trace. This OODA Trace processing continues with the resulting “Decide” 
and “Act” events. These OODA traces will be the key element of the human-agent 
interactions.

Fig. 12.7 Integrating the cognitive OODA loop within the AICA reference architecture

12 Human Interactions



266

This extended AICA Reference Architecture is now capable of exposing the 
details of OODA Traces through the “Collaboration & Negotiation” function illus-
trated at the bottom of Fig. 12.7. An additional modification of the AICA Reference 
Architecture is that the “Sensing” block (left side of diagram) has been changed to 
“Local Sensing” to distinguish between an agent’s ability to sense using its local 
sensing capabilities vs. exchanging knowledge using more advanced OODA Trace 
constructs via collaboration and communication. Due to the complexities inherent 
in cyber defense, as well as team coordination in general, the “Cyber Defense” and 
“Interdependencies” knowledge domains were added. It is expected that an agent’s 
knowledge domain requirements change depending on their tasking and so this por-
tion of the reference architecture is subject to change.

3.4  Example 1: Applying the OODA Trace Method 
as a Web Interface

The OODA Service within the AICA Reference Architecture provides opportunities 
for orchestration of agent capabilities when implemented as an events-driven solu-
tion. As an example, the Orient process may be implemented using complex event 
processing techniques where event filters can be defined to “look for event condi-
tions”. Such an approach would provide a natural way for humans to define condi-
tions of interest, while minimizing the agent complexity. This can support effective 
bi-directional interactions between the human and agent. Not only does the OODA 
Service enhance an agent’s cognitive process orchestration, but also helps to address 
some challenges associated with transparency, explainability, and trust in AI.

The ability to classify agent events and maintain OODA traces has substantial 
benefits for explainability. Because the OODA model is human-centric, it provides 
a natural way to structure communications between human and AICA team mates. 
With the OODA service enhancement to the AICA reference architecture and 
OODA Trace content accessible via the Collaboration & Negotiation service, there 
are new opportunities for implementing human-centric interfaces supporting ele-
ments of explainability (see Fig. 12.8 for examples of how a web-based interface 
could provide shareable common ground information items).

Fig. 12.8 Example 1: OODA trace supporting web-based human interaction
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Example 1 presented here is a screen shot of a proof-of-concept browser-based 
web interface that exposes OODA Traces to end-users for providing insight for 
humans to better understand agent-based decision making. The example here illus-
trates information that might be available to an operator controlling multiple AICA- 
enabled UAVs during their post mission debrief. Each construct of Trace, Observe, 
Orient, Decide, and Act are aligned to a unique swim lane. Each instance and rela-
tionships across individual traces are then presented as a horizontal graph, from 
left-to-right. There is a natural sequence of events occurring from top-to-bottom. 
The dataset used in this example and shown in the web-interface illustrates the fol-
lowing sequences of events for our autonomous UAV example in a debrief session 
after a mission:

 1. UAV1 Agent starts a new trace when anomalous CPU utilization is observed.
 2. UAV1 Agent elevates the risk level for this UAV platform and communicates this 

to the HAT.
 3. UAV1 Agent starts a new trace when it is observed that Camera-1 becomes 

unresponsive.
 4. UAV1 Agent confirms that this platform is already at high risk, searches for 

applicable recovery plans, and decides to restart the surveillance service and this 
will take 10 minutes.

 5. UAV1 Agent executes the service restart and communicates to the HAT of the 
capability loss.

 6. UAV2 Agent observes the UAV1 capability loss and compares target priorities 
and need for persistent surveillance on priority targets.

 7. UAV2 Agent notifies Commander of intent to change targets.
 8. Commander views data from UAV1 and the decision process from UAV2 in the 

web interface and approves the change of targets.
 9. UAV2 Agent receives approval from Commander and takes over UAV1’s target 

and begins navigation and surveillance activities.

This particular example captures HAT communication as a cognitive activity, mean-
ing that communication is integrated into the OODA cognitive loop and results in 
an action event, accessible in the updated world model for reasoning or review. This 
example also illustrates how agent collaboration and change in priorities may be 
explained across the HAT at a human-centric level.

3.5  Example 2: Applying to OODA Trace Method to Natural 
Language Interfaces

Effective human-machine teaming can be accomplished by leveraging and integrat-
ing into already established human-centric communication channels for seamless 
HAT interactions, especially natural language interfaces. Both voice and chat inter-
faces represent good candidates for providing natural human-centric interfaces on 
top of an OODA cognitive loop. It is envisioned that such techniques would interact 
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Fig. 12.9 OODA trace supporting a natural language interface

with the AICA’s OODA Trace Service to provide end-user interaction. These inter-
actions can be tailored to the intended user’s mental model, context, workflow and 
terminology. An illustration of how the UAV example may be explained using 
OODA Traces and a natural language interface is illustrated below.

As illustrated above in Fig. 12.9, reading right to left, the human operator may 
inquire about why an action was taken, or proposed, and receive an explanation 
from the agent with details regarding what was observed, how this was interpreted, 
and what decisions were made. This technique also works reading left to right to 
query the agent on what it would do in certain circumstances. This also allows the 
human to set pre-conditions in the OODA process to trigger confirmation by the 
human or other pre-conditioned behaviors. As an example, a human-in-the-loop 
condition may be able to set a condition that all target changes require human 
approval in the decision stage before acting. Using this technique, the human is able 
to explore the potential interaction space and HAT decision making process and 
criteria when time allows, as well as receiving tailored direct action messages when 
more appropriate for the context.

As mentioned above, communication and collaboration is a cognitive activity 
that takes advantage of the complete HAT cognitive loop. One of the advantages of 
this is that communication needs may be tracked and learned about and as the 
OODA loop refines the world model and assesses interdependency needs, informa-
tion may now be pushed vs. pulled. This technique results in effective proactive and 
team-oriented communication and collaboration.

4  Evaluating AICAs’ Operational Effectiveness

Measurement using meaningful and valid measures, metrics, methods, contexts and 
events (e.g., cyber threats or injects) is critical to the successful design and deploy-
ment of fielded systems regardless of the exact approach taken or nuances of that 
specific application. Establishing a continual measurement process is also essential 
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when the task requirements or context changes and/or system algorithms and behav-
iors are continually adapting, updating or learning as this impacts both how the 
system and its agents perform and the human’s interactions with those systems. 
Embedded AI systems, like the AICA, require a fundamental change to the typical 
evaluation approach to ensure both AICA cyber defense system test and evaluation 
factors, as well as measures of operational usability and utility of the AICA- 
embedded systems, are included and integrated.

Kott et al. (2019) do a good job of laying out many of the AICA use cases and 
system evaluation factors so the focus here will be on how to integrate those with 
human-centered operational measures. What this means is that the impact of AICA 
performance on team, or task, outputs and overall effectiveness for the teams using 
the industrial machine, military system, or other AICA-embedded systems needs to 
be evaluated and there is a need to bridge the approach and understanding of two, or 
more, typically disparate groups. The operational communities that are conducting 
system evaluation and human systems integration, or are training and evaluating 
individuals or teams on using these systems, often have established metrics and 
measures (e.g., Gunnery tables, task or productions standards) and scenarios they 
run to evaluate performance and qualify systems, students or users. What these 
communities typically lack is cyber-specific injects and data to be able to integrate 
and really test the ability of AICA to add value and support operational success dur-
ing scenarios that are realistically impacted by cyber and other electronic attacks.

In contrast, the groups that understand how to implement the cyber events of 
interest to AICA will typically lack the understanding of the operational require-
ments, scenarios and evaluation methods for the overall systems that AICA will be 
embedded in. These two groups will have to come together in order to create imple-
mentable, integrated test events where operational users perform their core tasks 
realistically while also dealing with realistic cyber threats, attacks and incidents by 
interacting with both AICA agents and the impact of AICA actions while complet-
ing their tasks. This will require a mechanism to force this integration, along with 
testing personnel and resources to see it through. See Li et al. (2022) for a relevant 
example for Platooning under cyber attacks to illustrate steps in the combined sce-
nario direction. The other AICA cyber-defender user groups can, and should, be 
integrated in some of these test cases as warranted but as noted are not the primary 
focus of this chapter.

A quick discussion of applicable measures should include consideration of both 
objective and subjective measures of performance and utility. At the core of objec-
tive measures are the impacts on process and task outcomes with, and without, 
AICA support and can include constructs such as efficiency (timing and process 
flow) and effectiveness (task success measures) and embedded measures of con-
structs, such as situation awareness or resilience among others. Subjective measures 
can include satisfaction and willingness to use measures, as well as the impact of 
AICA on situation awareness, trust, resilience, attention allocation, workload, mis-
sion success and other human factors and usability measures. See Charlton and 
O’Brien (2019) for more detailed discussion of various measures and note that there 
are some standard measures used but every evaluation usually requires adaptation 
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and tailoring to capture relevant performance measures for that application and con-
text. A hybrid set of measures involves creating, and confirming with operators, 
understandable AICA system performance specifications (e.g., readme files) that 
inform the frontline users on AICA capabilities and limits by contextual factors and 
result in informed use. This would be like the performance specification and toler-
ances sheets you’d expect for mechanical or weapons systems but tailored to the 
complex performance nuances of an AICA.

A number of organizations have published their guidance on designs of systems 
with transparent HMIs (Winfield et al., 2021). Specific assessment methods have 
also been proposed to evaluate system transparency levels. For example, multiple 
sets of metrics have been proposed by XAI researchers to assess the effectiveness of 
XAI systems (Rawal et al., 2021). The metrics largely focus on four aspects of the 
XAI systems: correctness and robustness; usefulness, understandability, and pro-
cessing difficulty for the human; congruity (congruence between human’s and 
machine’s mental models); generalizability, adaptability, and versatility (Miller, 
2019). A survey, the Explanation Satisfaction Scale, has been developed to evaluate 
XAI users’ experience (Hoffman et al., 2018) with a focus on assessing congruence 
between the AI systems output and the human’s mental model of the problem space. 
Sanneman and Shah (2022) propose the SA-Framework for XAI (SAFE-AI) to 
assess transparency of agents’ XAI-based explanations and how well they supports 
humans’ SA.

There are a few additional considerations for the measurement of human interac-
tion factors for the AICA-embedded systems. How will the systems be validated at 
various stages, to include before release to a user group, for any variations in sce-
nario or contexts, and any revalidation after algorithm learning and adapting based 
on experience with operations? Will there also be a way to learn from the cases 
where the system was destroyed or failed, or are we losing critical data and limiting 
the training pipeline? How will additional user feedback and context-relevant train-
ing data be fed back into the AICA learning process? It is also critical to understand 
that these testing and training events should not be solely based on canned data and 
cases where everything works perfectly as that is not likely the reality of how the 
operational use of the system will be. The users, and also evaluators, need to have 
realistic understanding and expectations of impacts, possible malfunctions or odd 
actions, and off normal conditions early in the process, rather than experiencing 
them after the system is in operational use. The need for realistic expectations 
extends beyond training and testing to include realistic marketing to the stakehold-
ers that buy the systems which are often not the actual end users. How the AICA is 
presented, framed and understood by the end users will also impact how they per-
ceive and interact with the system, particularly when it makes errors, and especially 
errors that a human would not make. It is important to align the user’s mental mod-
els and expectations with the realistic capabilities and limits of the AICA system 
(Holder et al., 2021).
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5  Future Interaction Considerations

We have identified key requirements for supporting human interaction with AICA, 
including human factors approaches; core HAT considerations such as transpar-
ency, bi-directional communication and interdependencies; the need for a structure 
to capture that information and guide design as shown with the Human-Agent 
Mental Model and OODA trace methodology; and suggested measurement options 
and approaches. In this final section, we forecast where advanced interaction tech-
niques may be used to enhance human interaction with AICA to heighten operator 
awareness and increase overall team performance.

There have been recent significant advances in technologies that enable viewing 
and interacting with software and automation outside of the typical computer desk-
top metaphor. Some of these advances include the viewing of information in uncon-
strained 3D space, utilizing Virtual Reality (VR), Augmented Reality (AR), and 
tangible interfaces, where users manipulate physical devices to interact with soft-
ware systems. These new technologies offer opportunities for the development of 
novel user interfaces that permit users to have richer interaction with complex infor-
mation while taking advantage of new techniques to make this information more 
accessible, meaningful, and retainable. This is relevant to HATs when considering 
that agents are capable of tracking, aligning, and analyzing much more data 
than humans.

We have mostly ignored the cyber defender stakeholders in AICA use. Future 
work needs to consider these users as well to include troubleshooting or improving 
AICA performance, as well as AICA algorithm training and updating the agents’ 
intended tasks and contexts. These users can be prime candidates for advanced visu-
alization techniques. The screen shot above in Fig. 12.10 shows a prototype 3D web 
view. This view extends an interface called Cyber Looking Glass (CLG) on top and 
adds an interactive 3D model of underlying interconnected information (Carvalho, 
et al., 2016). This is an example of increasing information sharing between human 
and agent for training, diagnostics, and with editing capabilities included, bi- 
directional information sharing.

Another area for future development is to expand on the ability for the ACIA 
Reference Architecture to support two-way OODA Traces not just for agents, but 
for human team members as well. An agent-sourced OODA Trace may be repre-
sented as a data set that is capable of being re-computed by another agent with simi-
lar domain knowledge representation that would result in the agent making the same 
decision. However, several challenges exist for capturing and using an OODA Trace 
that is human-sourced. The first challenge is capturing the OODA Trace elements in 
such a way that does not impede performance, so that the operator is not forced to 
create a diary of their actions. The second challenge is codifying the information 
that can lead to consistency and repeatability of reasoning across humans and 
agents. A third challenge is documenting those traces where one or more of the 
Observe, Orient, Decide, and Act steps are informed by the operator’s creativity and 
curiosity. In such cases, the operator may be exploring the space of possible 
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Fig. 12.10 Three dimensional data using 3D web technology

solutions within a cyber situation, but it would be difficult to precisely specify a set 
of repeatable conditions for the operator actions, making reproduction of their 
behavior by other AICA or human teammates difficult. One promising effort would 
be to establish at least human-to-agent OODA Traces such that HATs interfaces can 
provide reinforcement learning to agents in a seamless manner. Future techniques 
for automatically capturing natural language and human interface inputs into, and 
behaviors on, the system and the related context may also help automatically pro-
duce OODA traces from the human that the AICA agents can access and integrate.

6  Summary and Conclusions

This chapter laid out the base tool box AICA developers should bring in to explore 
and create effective human interactions and measure their success. This included an 
overview of the core human factors and iterative design considerations and a deeper 
dive into transparency and trust-related considerations. When AICA outputs and 
decisions are impacting the human user’s ability to operate their systems these trust 
and transparency factors will play a central role in informed use and utility. This 
foundational toolbox was then grounded in a practical example of how these 
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techniques might be applied to AICA design based on a modified version of the cur-
rent AICA reference architecture, with an embedded OODA service layer as the 
common ground between humans and agents.

The Human-Agent Mental Model approach was provided to capture the human 
“architecture” to set the stage to map out the information requirements for each 
AICA system that is developed, providing a framework to hang that information on 
to support the human-agent interactions and teaming using a common language. 
The core of this approach was to foster alignment and understanding on sensemak-
ing constructs across human and software agent models. It is recommended to use 
the techniques and considerations provided to create the information, interaction 
and interdependency understanding needed to build an architecture, such as the 
Human Agent Mental Model and OODA Trace proposed. This supports the approach 
of designing systems in a human understandable way rather than forcing humans to 
conform to the machines. The architecture can then be used to advance the design 
of the system, using iterative user-centered design techniques and measures as pro-
vided to ensure the system provides operational utility for its intended user popula-
tion dealing with realistic cyber threats.

The chapter also provided guidance on how to measure the success of the AICA 
design to support human interactions, grounded in operational context and scenar-
ios. The discussion also provided ideas on where some of the directions that interac-
tion concepts may expand towards in future use cases and design considerations for 
those as well. The exact application of each technique or approach listed may 
require some adaptation for any specific AICA application as is always the case but 
the core building blocks and knowledge to accomplish this goal are provided.
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Chapter 13
Testing and Measurements

Toby J. Richer and Maxwell Standen

1  Introduction

This chapter first discusses the aspects of performance that determine effective 
cyber defence agents. With any cyber defence system, the goals of confidentiality, 
integrity and availability must be balanced appropriately for the role of the system 
or systems being defended. The goal of preventing any access by an attacker is a 
simple clear goal which lends itself to a simple solution; blocking all potentially 
malicious inputs at the system boundary., However, blocking all possible attack vec-
tors is difficult if not impossible. This approach presents the end users with few 
options once an attacker does gain entry. Depending on the importance of the sys-
tem mission, a quality cyber defence agent may be required to respond appropri-
ately to an attacker who has gained access – by restricting further access, delaying 
and misdirecting an attacker, or balancing the attacker’s access against the need to 
keep critical systems operational.

Another key aspect of performance is robustness and reliability. Robustness 
requires a cyber-defence system to handle new attacks that it may not have seen in 
training. For an autonomous system to do this, it must first have some capacity to 
assess its performance independently of the model it has been trained on; as an 
example, a robust malware detection system would require methods of detecting 
software that was determined to be benign, but then has malicious effects on the 
system. Therefore the question of how to accurately measure the performance of 
autonomous systems is key to determining, and thus improving, robustness. 
Reliability, the ability of an autonomous system to consistently make appropriate 
decisions, is made more difficult with the increased use of techniques such as Deep 
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Learning, as it can be difficult to explain how such techniques arrive at a decision 
once they are trained. Given that subverting security tools is a common technique of 
cyber attackers, a human cyber defender may shut down an autonomous cyber 
defence agent that is acting in an unreliable or inexplicable manner rather than risk 
a compromised (or poorly functioning) agent taking actions that make the system 
more vulnerable.

A major obstacle to the widespread deployment of AICA is convincing cyber 
professionals that these agents will improve their work. While an advantage of 
autonomous cyber agents would be their ability to adapt to the cyber environment 
they are deployed to, it needs to be demonstrated that cyber agents trained and 
tested in synthetic environments can translate effectively to the complexity and vari-
ety of real-world networks and the abilities of their adversaries. This problem, 
known as the ‘reality gap’, has been addressed previously in autonomous research, 
but the gap between synthetic and real environments in cybersecurity is significant 
and unique. To design effective agents that have credibility with the professionals 
who will work with them requires that the testing and measurement processes for 
these agents must address the reality gap and demonstrate the potential to handle 
real-world problems in a broad range of cyber environments.

The chapter will discuss all of these issues, drawing upon real-world examples 
from cybersecurity to present some potential measures of performance. The defini-
tion of effective performance will be highly dependent on the type of system being 
defended, and the circumstances in which this is occurring, but this can hopefully 
act as a starting point for measuring the effectiveness of AICA.

The chapter then presents a summary of existing work in the field. Several test-
beds have been developed and released for testing autonomous cyber defence algo-
rithms, with significant differences in approach for the cyber problem being tested, 
the methods used to model or implement it, or the metrics currently used for suc-
cess. We will present a more detailed case study of the CybORG Cyber Operations 
Gym developed by DST Group and used in the TTCP CAGE Challenge. The chap-
ter ends with a summary of the current state of the field and proposals for important 
areas of future work.

2  Background

Cybersecurity presents unique issues of trust to the human users of autonomous 
systems, as discussed in previous chapters. For measurements of AICA systems to 
be useful, both the measurements themselves and the methods of measurement need 
to be designed with these issues of trust in mind.

Artificial Intelligence for Cyber Security combines issues of some of the most 
difficult problems in AI. In particular, it combines a complex action environment 
with clever adversaries. The cybersecurity environment can require information on 
the environment down to its physical components, as exploits such as Rowhammer 
(Kim et  al. 2020) exploit the physical properties and proximity of memory. 
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Autonomous cybersecurity systems need to work with human defenders, and also 
be able to respond to adversaries who can not only detect and make use of novel 
attacks, but employ deception to turn an autonomous cyber agent against the system 
it is intended to defend. An effective autonomous cyber system must be robust to 
both the vagaries of complex physical environments and the attempts of human 
adversaries to undermine them. Therefore, any attempt to measure the effectiveness 
of such systems must also address these factors.

Given that it is vital autonomous cyber systems be measured in terms of their 
resilience to adversaries, a key issue in measuring their effectiveness is the nature of 
the adversary their actions are measured against.

2.1  Robustness

Robustness is defined as the ability of cyber defence systems to respond to novel 
attacks. The leading approach in developing autonomous cyber systems, as with 
developing autonomous agents in other domains, is the use of deep reinforcement 
learning. While such systems are able to learn and implement complex strategies 
with minimal human involvement, a drawback of such systems is their brittleness. 
While they can be tolerant to changes in problem configuration, changes in goal 
often cause them to fail catastrophically (Stooke et  al., 2021). Given the rate at 
which computers and networks change configuration, an autonomous cyber defence 
system that is not robust, and able to respond to changes in environment or in adver-
sary, is simply not useful as an autonomous cyber agent.

There is a wide range of research in training agents to be reliable in complex 
environments, with two particularly promising areas of research being curriculum 
learning and domain randomization. Domain randomization adds randomness to 
either the data or the scenario that is used for agent training. Successful agents will 
be flexible enough to make correct decisions in spite of this randomness. Curriculum 
learning (Bengio et al., 2009) trains an agent on simple scenarios and then increases 
the complexity of the scenarios as training progresses.

2.2  The Reality Gap

The Reality Gap (Mouret and Chatzilygeroudis 2017) is a term from autonomous 
robotics, created to address a problem which is key to that field but also has applica-
tions to autonomous cyber. Deep reinforcement learning and other reinforcement 
learning approaches require large numbers of iterations through a scenario in order 
to build appropriate sets of behaviours to achieve a goal. Physical systems are not 
suited to the large amount of iteration required, so simulators have become a popu-
lar method in robotics of applying reinforcement learning in a feasible amount of 
time. The problem is that any simulation of the real world is not going to perfectly 
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match real world physics. The behaviours learned in such simulators may not per-
form as well when instantiated in physical robots, due to the ‘reality gap.’ In robot-
ics, a number of researchers have investigated methods of reducing the gap between 
simulations of motion and real motion (Zhao et al. 2020). Creating solutions to this 
for autonomous cyber is still very much an ongoing question, but this chapter will 
discuss some early attempts.

2.3  The CIA Triad

The CIA triad (Samonas and Coss 2014) defines the security of a system in terms of 
its confidentiality, integrity and availability. Key to effective cyber defence is the 
ability to weigh each of these against the others to result in a security posture that 
best matches the needs of the system. The most effective way of maintaining system 
confidentiality is to block all access to sensitive systems; an approach that will 
clearly have major negative effects on availability. Human cyber operators develop 
the ability to balance the triad through familiarity, both with the tools available to 
secure systems and the real-world usage of the system being defended. Being able 
to balance these goals is a requirement for an effective autonomous cyber defence 
agent, and therefore needs to be integrated into the measurement of such agents.

Confidentiality is the most straightforward part of the CIA triad to measure, as it 
can be measured purely in terms of an attacker’s access to systems. The more sys-
tems an attacker has access to, the less confidential the activities of the systems’ 
users are and therefore the worse it performs according to this metric.

Integrity is not generally addressed by existing research in AICA, as research 
into autonomous cyber agents has focused on the denial of access to attackers. The 
actions taken once access or control is established are not discussed in much detail, 
and in many current systems training runs end once a side has developed full control 
of the network. Therefore, while AICA systems may prevent attacks on system 
integrity by preventing unauthorised access, they do not directly prevent or cause 
integrity changes and therefore do not rely on integrity to measure the effectiveness 
of an autonomous system.

Availability is measured in some cases as part of the effectiveness of autonomous 
cyber agents. As stated above, most existing literature has focused on system access 
and control, though some work focused on autonomous network defence has pro-
posed Quality of Service as a metric of agent effectiveness.

2.4  Reliability

In terms of an autonomous cyber agent, reliability refers to the ability of an autono-
mous agent to consistently make effective decisions. One reason that a learning 
process can lead to inconsistent decisions is if the data set or scenario used to train 
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it, or the algorithms used for training, do not capture the complexity of the real- 
world problem. This is a key aspect of the ‘reality gap’ issue described above. 
Another reason that agents may not perform reliably in the cybersecurity domain is 
that an algorithm, while able to learn well, is susceptible to being deceived by input 
data that is manipulated by an attacker. A third aspect is the reliability of the data 
provided to an autonomous agent, and the ability of an agent to interpret that data 
effectively.

An approach to improve reliability is to ensure test scenarios or data sets are as 
close as possible to the scenarios or data dealt with in real systems. Some of the 
frameworks for training and testing autonomous cyber defence agents are described 
later in this chapter; several of these frameworks allow for agents to be tested on 
both models of a scenario and instantiations of scenarios in virtual infrastructure. 
The difference between results in each case can be used to refine models and develop 
more reliable agents.

(Bengio et  al. 2009)The area of Adversarial Machine Learning, or AML, is 
beginning to develop approaches for measuring the reliability of learning techniques 
used in machine learning or artificial intelligence in the face of attack. Researchers 
have proposed metrics such as CLEVER that measure the ease with which an adver-
sarial example can be constructed for a neural network (Nicolae et al., 2018).

However, there could be some issues in the application of these metrics to auton-
omous cyber defensive agents. The majority of this research focuses on adversarial 
examples for classifiers, such as those used in writing and image recognition. Such 
classifiers do not generally incorporate state over multiple observations, unlike an 
autonomous agent.

The complexity of the observations provided to an autonomous cyber agent may 
introduce obstacles to adversarial machine learning but can also undermine the 
effectiveness of the agent itself. The use of machine learning and analytics in the 
detection of malicious activity is a more mature field than the autonomous response 
field, with many companies releasing cyber threat intelligence tools that use machine 
learning (Samtani et al., 2020), but false positives still occur. Using a machine learn-
ing system as the input to an autonomous agent runs the risk of compounding errors 
introduced by the machine learning system.

A potential way around this problem is active defence, in which system defend-
ers present false information on system vulnerabilities or configuration (Zhang and 
Thing 2021). This false information is in areas that should be ignored by normal 
users, but may provoke a response from an attacker. This response is therefore an 
indication of malicious activity that is more reliable than attempting to infer mali-
ciousness from large bodies of ambiguous data. If incorporated in the input of an 
autonomous cyber defence agent, it should reduce the degree to which initial errors 
in sensing can lead to greater errors in response.
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2.5  Resilience

The definition of resilience, as applied to autonomous systems, is the ability of the 
system to respond to and recover from novel attacks. Unlike reliability, which indi-
cates that the system responds appropriately to threats with a high degree of confi-
dence, resilience covers the ability of the system to recover from and adapt to attacks 
that it is unable to block. An extension of resilience is the concept of antifragility, 
the ability for a system to become more effective in defence as the result of breaches.

Measuring resilience requires the testing of autonomous cyber systems in situa-
tions where they have already failed – where an attack has not been blocked and the 
systems they are defending have been compromised. A key issue in military focused 
AICA research is the ability for systems to ‘fight through’, or to continue to fulfil 
their mission in spite of interference or compromise. The traditional enterprise 
approach to compromise, to shut down systems and re-image, could have disastrous 
consequences if applied to mission critical military systems or military platforms. It 
is particularly important if military systems are in a conflict, as not only is this the 
situation in which systems are most likely to be under sustained cyber-attack, but it 
is also when there will be serious consequences if systems are not functioning. Part 
of a cyber defence agent’s resilience is its ability to deal with the consequences of a 
breach once it occurs and remediate compromised systems with minimal effect on 
the system mission.

In summary, since autonomous systems are designed to make decisions with an 
independence and flexibility that automated systems lack, the measurement of such 
systems needs to cover a broader range of scenarios. This includes the broadening 
of the inputs to the system, firstly by the favouring of interactive scenarios over 
static data sets and the randomization of starting conditions. It also includes the 
broadening of the metrics of success, by requiring agents to balance the different 
aspects of the CIA triad and to evaluate the ability of agents to both prevent compro-
mise and remediate compromised systems as appropriate. Finally, it requires the 
measurement of such systems to account for the ‘reality gap’, and test that the valu-
ation of an agent in training translates well to the application of that agent in a real- 
world scenario.

3  Existing Test Systems

Researchers have already developed a range of frameworks for the training of 
autonomous cyber defence agents. These frameworks attempt to measure the reli-
ability of autonomous agents by determining their behaviour in an interactive sce-
nario rather than against a static data set. Some of these frameworks address the 
reality gap through the use of full operating systems and real-world tools rather 
than, or alongside, lower-fidelity simulations.
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CyberBattleSim (Team 2021) is a simulation-only approach to developing red 
agents that can perform post breach lateral movement in a windows enterprise envi-
ronment. It measures the effectiveness of agents as a rate, based on a weighted 
percentage of the number of systems controlled by the red agent. The weighting 
applied to systems is based on an assessment of the system’s criticality. Full control 
of all systems counts as a ‘win’ for Red.

CyAMS (Brown et  al., 2016) is a tool for addressing the reality gap, via the 
development of frameworks to test cyber scenarios. In simulation, it uses finite state 
machines to model the program state whereas in emulation it uses real software. The 
intent of experimentation in it is to refine methods so that the simulation and emula-
tion match. The measurement used to compare simulation and emulation is a single 
scenario-relevant metric rather than a range of measures.

FARLAND (Molina-Markham et al., 2021) is a system for network-based simu-
lation and emulation of cybersecurity scenarios for the development of agents. 
While the valuation of agent effectiveness is based on whether the agent succeeds in 
its goals, similar to CyberBattleSim, FARLAND introduces a range of other fea-
tures that can measure reliability and resilience. They propose the use of domain 
randomization and curriculum learning. Domain randomization can serve as a 
method of measuring and improving reliability, as the performance of an agent can 
be measured for reliability in terms of its ability to maintain performance as the 
level of randomness in the domain is increased. Curriculum learning involves the 
gradual increase of problem complexity as an agent learns; measurements of agent 
effectiveness as a problem increases in complexity will serve as a measure of agent 
reliability.

GALAXY (Schoonover et al., 2018) uses full operating systems and finite state 
machines representing the state of these systems to test and train agents, thereby 
addressing the reality gap. One issue that is raised in the design of GALAXY is that 
the measurement of agent effectiveness in an emulated environment relies on net-
work traffic that itself may be observed and acted upon by an agent. This could 
potentially result in the measurement of agent behaviour affecting the agent behav-
iour, something to be avoided if measurement is to be accurate. In GALAXY’s case, 
this is addressed by using separate networks for measurements and network activity 
that is part of the scenario.

Vine (Eskridge et  al., 2015) is an emulation framework that allows the  
use of hardware in the loop, a unique feature not shared by the other frameworks for 
agent development. One particular use is for the attachment of traffic generators for 
use in testing. Traffic Generators can generally provide more detailed traffic  
more rapidly than software systems. Vine is designed as a framework for a wide 
range of cybersecurity scenarios, provides an example that measures the Quality of 
Service measure for a user, which is a reasonable method for measuring network 
availability.
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4  Case Study: CybORG

This section presents a detailed analysis of the Cyber Operations Research Gym or 
CybORG (Standen et al., 2021b). This framework is designed for simulation and 
emulation of military-relevant cybersecurity scenarios. One area that has been 
investigated in its design, both in the general framework and the scenarios created 
within it, is fight-through and maintaining mission success. This section presents a 
detailed discussion of the CybORG system and describe how the scenarios within it 
measure effectiveness.

4.1  CybORG Design

CybORG is designed to implement a cybersecurity scenario for the training or test-
ing of autonomous cyber agents. The CybORG tool implements a scenario based on 
a pre-generated description, initialises a set of agents to perform roles within that 
scenario, then implements their actions and assesses their effectiveness. CybORG 
runs the scenario in a series of discrete steps. At each step, each agent selects an 
action to perform from its action space. An agent’s action space is a subset of the 
overall available set of actions, dependent on the role of the agent and defined as 
part of the scenario. Once each agent has selected an action, it is performed. The 
agent receives an observation of the updated state of the scenario. The scenario is 
run until it reaches its termination condition, which is either a limit on the number 
of steps, or the achievement of an agent’s goal. At this point, the agents receive any 
final information on the state of the scenario. The scenario can be reset for further 
training or testing.

The same agent can interact with a scenario modelled in a finite state machine 
(defined here as simulation) or fully implemented in virtual infrastructure (defined 
here as emulation). To implement CybORG’s two levels of fidelity, the scenarios 
and actions used by CybORG are defined at two levels. The scenario definition 
contains the required information to simulate the scenario. It also contains the sys-
tem images required to emulate the scenario. Each action used by CybORG is 
defined twice. For simulation, each action is defined as a state transition. For emula-
tion, each action defines a command (with appropriate parameters) that can be exe-
cuted to achieve the desired effect.

4.2  Scenarios

A CybORG scenario defines the environment that agents are aiming to solve or 
compete in, and the means by which they succeed or fail. The scenario defines what 
agents exist, what actions they may perform, what information they begin the game 

T. J. Richer and M. Standen



283

with, and how their reward is calculated. It defines the configuration of each host 
and the network connections between them.

To deploy a particular scenario, the CybORG user must specify whether it will 
be simulated or emulated and provide a scenario description file in the data- 
serialization format YAML. The scenario description file includes details for config-
uring the environment including hosts, networking and subnet information, and the 
set of actions available to red and blue agents. The scenario files are deliberately 
simple, requiring a minimum of information and employing many default behav-
iours to reduce the burden on users when creating files.

The information provided for each host includes the host’s operating system, 
services, processes, users and other system information. The scenario file also con-
tains an identifier for a deployable image to be used in emulation. The process 
information includes the process id, the parent id, process network connections, the 
process owner and the process name. The user information includes usernames, 
UIDs, groups, GIDs, passwords, and password hashes. The system information 
includes the operating system type, distribution, version, and patches, and the hard-
ware architecture.

4.3  Simulation

The simulator represents the scenario as a finite state machine, where the current 
state represents the state of all systems and networks in the scenario. Actions use the 
values in the current state to determine the next state, update the values inside of the 
current state such that they match the next state, and then return the observable sub-
set of this updated state to the agent.

Simulated actions are defined by their preconditions and effects. The precondi-
tions of an action are the state conditions that must be satisfied for the action to be 
successful. The effects define how the action will change the state of the environ-
ment if the action is successful.

To reduce the chance of the simulator model diverging from the behaviour of the 
emulator (in particular, allowing actions to succeed where they would not in real 
systems) the state includes details such as the creation or deletion of individual files 
or the making and breaking of network connections.

The simulator provides a reward to agents at each step. Agents receive an overall 
valuation based on their cumulative reward over a run. For the scenarios that have 
been developed so far, the run has a fixed length rather than terminating when a 
particular condition has been met.
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4.4  Emulation

The emulator uses Amazon Web Services (AWS) with virtual machines to create a 
high fidelity cyber security environment with which an agent can interact.

The emulator uses the description of the scenario from the YAML scenario files 
to deploy and configure a virtual network in Amazon Web Services (AWS) (as well 
as for tearing them down). It does this by using SSH to access a virtual gateway 
server in a private AWS cloud and then deploying and configuring environments 
using AWS’s Command Line Interface (CLI) on that virtual (master) host. CybORG 
is capable of rapidly and concurrently deploying independent clusters of hosts and 
subnets, allowing multiple instantiations of a scenario to be run in parallel.

To implement actions, the CybORG emulator uses a series of actuator objects. 
These connect to VMs using SSH or specialised session handlers for third party 
tools. Third-party tools currently used in CybORG include the Metasploit 
Framework (Kennedy et al., 2011) and Velociraptor (Cohen, 2022). Other session 
handlers can be added as required. These actuator objects interact with security 
tools and systems either through APIs or terminal commands. The results of these 
actions are then filtered and merged to present a single observation back to an agent. 
This control method allows for multiple adversarial agents to act simultaneously in 
the environment, and will potentially allow human operators to interact within the 
emulator in parallel with agents.

Through the approach described above, CybORG is able to implement a novel 
capability for cyber autonomy;the ability to train and test the same agent, using the 
same body of code, at differing levels of fidelity. Agents can be trained, using stan-
dard learning approaches, in the simulator. The effectiveness of these agents can 
then be validated on virtual infrastructure. In the next section, we describe a sce-
nario implemented within CybORG for the development of an autonomous penetra-
tion testing agent using RL.

The initial experiments with CybORG were designed to test its ability to address 
the ‘reality gap’. Following this, CybORG formed the basis of a public challenge to 
develop blue agents to defend a set of connected networks. A second challenge, 
using the same scenario but with modifications to the available actions, was released 
in April 2022.

4.5  Experiment One: Reality Gap Test

Our initial test scenario is shown in Fig. 13.1. While only having three hosts for an 
attacker to access, it is of sufficient complexity and detail to capture examples of 
most attacker behaviours within the cyber kill chain, as first defined in (Hutchins 
et al., 2011).

The scenario consists of 3 hosts split into 2 subnets. The attacker host runs a 
Metasploit server that allows the agent to perform all parts of the kill chain. The 
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Fig. 13.1 Network for initial CybORG tests

attacker is in its own subnet, which does not block any traffic and allows packets to 
be sent to hosts in the other subnet.

The other two hosts are the Internal and Gateway hosts that sit in the internal 
subnet. The Gateway host is an Ubuntu 18 host that has an open SSH port. The 
Internal host is a Windows 2008 server with open SSH and SMB ports. The SSH 
services have sufficiently simple sets of credentials for the server to be vulnerable 
to a brute force attack; the Gateway host has the username “pi” and password “rasp-
berry”, and the Internal host has the username “vagrant” and password “vagrant”. 
The SMB service is vulnerable to the Eternal Blue (MS17–010) exploit.

There is a single red agent in the scenario. The goal of the red agent is to get a 
session on the Internal host as the System user, and thereby have full access to the 
internal host’s file system. In order to achieve this goal, the agent must be able to 
perform reconnaissance on hosts, exploit these hosts, establish meterpreter sessions 
and use a meterpreter session to pivot between machines. An effective red agent will 
be able to select appropriate actions, with correct parameters, to complete each of 
these sub-goals in the proper order.

To model these actions, and then implement these actions in the Emulator, we 
use the Metasploit Framework and Meterpreter as the actuators and sensors for the 
agent. The actions available to the red agent are: SSH Bruteforce, Portscan, 
Pingsweep, Upgrade to Meterpreter, IPConfig, MS17-010-PSExec, Autoroute, and 
Sleep. Each of these actions has associated parameters, for which the agent must 
learn the correct values.

The red agent receives a large reward for starting a session on the Internal host as 
the System user. The agent also receives moderate rewards for gaining user sessions 
on the Internal and Gateway hosts, and minor rewards for discovering new informa-
tion about the network. For this simple scenario the reward did not take into account 
any action costs.

In order to demonstrate the transferability of training from the simulator to the 
emulator, an RL agent is initially trained on the simulator then run on the emulator.

This RL agent uses a Deep Q-Network (Mnih et  al., 2015) to learn a policy 
which maps the current state of the environment to the discounted rewards for each 
action. Learning this policy, over a large series of training runs, allows the agent to 
select an action at each step that will produce the highest reward.

13 Testing and Measurements



286

For this scenario, the agent will be unable to learn an effective policy without 
remembering key features of the scenario. This memory is implemented through a 
Long Short Term Memory, as described in Hochreiter and Schmidhuber (1997).

For approaches such as Deep RL the observation and action space provided by 
CybORG require modification. We construct a suitable observation space for the 
agent using a wrapper around CybORG. This wrapper turns the elements of the 
observation into a single vector of floating point numbers with a fixed size. This is 
the input required for Deep Q-learning as used here. We also use a wrapper that 
takes a vector of integers from the RL agent and converts them into an action (and 
parameters, if required) that can be performed in CybORG.

To select the action and parameters, our agent uses a neural network that takes in 
an observation, constructs a feature vector from that observation, interprets it 
through an LSTM module, then splits into branches which each output a Q-value for 
either an action or a parameter. As some of the parameters, such as IP address, are 
discovered incrementally, we mask the parameter values that would be valid but the 
agent would have no method of discovering through their previous actions. This 
improves the realism of the scenario and the convergence rate of the agent.

Each RL agent was trained in the simulator for up to 2500 iterations. This was 
selected as it was well above the average number of iterations for a successful run 
in initial testing, but short enough for multiple training runs to be conducted on our 
hardware in a reasonable amount of time. Each iteration took a maximum of 20 
steps. An iteration was stopped if an agent could get access to the Windows host 
using the System account. If an agent was able to achieve this within 10 steps, then 
that agent was deemed to be successful and the training run was finished; otherwise 
the agent was deemed not successful. A minimum of 7 steps was required for an 
agent to get System access on the Windows host. With these parameters, we were 
able to generate an effective red agent on every training run.

To test the ability of these agents to transfer to the emulator, we took a selection 
of these trained agents and reran them on CybORG in emulation mode. In this case, 
they ran exploits using the Metasploit framework on virtual hosts within our testing 
network.

The initial training produced 21 independent RL agents. Each RL agent was 
evaluated in the emulator 10 times. The total number of successful tests was 139, 
giving a 66% rate of success.

Figure 13.2 shows the distribution of success rates across independently trained 
RL agents. Almost half of the trained agents were successful on every emulator run. 
Four trained agents were never successful on emulator runs, with the rest having a 
varying numbers of successes.

These results demonstrate that the underlying concept of CybORG is feasible; 
that a simulation can be used to train an agent which can then run effectively on 
virtualised infrastructure using professional security tools. While there were a sig-
nificant number of failures to transfer trained agents from simulator to emulator for 
this scenario, these failures were sometimes associated with deficiencies in the sim-
ulator model or in the emulator’s interface between the agent and the emulation 
environment. These deficiencies could be detected and used to refine CybORG for 
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Fig. 13.2 Distribution of success rates across independently trained agents

future training, thus demonstrating the feasibility of the approach of combining 
simulator and emulator in order to refine the simulator model or emulator interface.

4.6  Experiment 2: CAGE Challenge One

CAGE Challenge One was a public challenge run using the CybORG framework 
(Standen et al., 2021a). This challenge is designed for teams to create a blue (defen-
sive) agent to defend a set of connected networks against a red (offensive) agent. 
The network is illustrated below in Fig. 13.3. It is divided into three subnets. Subnet 
1 consists of user hosts that are not critical. Subnet 2 consists of enterprise servers 
designed to support the user activities on Subnet 1. Subnet 3 contains the critical 
operational server and three user hosts.

Each scenario run is a fixed number of steps representing a fixed period of time. 
An episode will terminate only once the time expires. At each step, the red and blue 
agents each choose one action from a set of high-level actions that are described in 
Fig.  13.2. CybORG will take the chosen action and select a context-appropriate 
low-level action, such as modelling the behaviour of an operating system-specific 
exploit in response to a high-level exploit action by the red agent. This is designed 
to reduce the action space and make a wider range of learning approaches tractable.

The red agent starts each scenario run with an initial foothold: access to one of 
the user machines in Subnet 1. The red agent can then choose actions to perform 
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Fig. 13.3 Network for CAGE challenge one

Fig. 13.4 Action set and transitions for cage challenge one

reconnaissance on hosts in the enterprise network (Subnet 2) and then exploit these 
hosts and perform privilege escalation. Once they have exploited the server in the 
enterprise network that has the operational server IP address on it, they can access 
the operational network (Subnet 3). The operational server maintains a service that 
is key to the system owners’ operations; the goal of the red agent is to disrupt this 
service for as long as possible through the Impact action (Fig. 13.4).

In order to create a more robust blue agent, two red agents have been imple-
mented, each with its own unique strategy. The first has prior knowledge of the 
network layout and compromises hosts that will enable it to reach and compromise 
the operational server in the shortest number of turns. The other explores the net-
work one subnet at a time, seeking to gain privileged access on all hosts in a subnet 
before moving on to the next one, eventually arriving at the operational Server.
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The blue agent is assumed to start each scenario run with monitoring tools 
installed on all the user and server hosts. It automatically receives data on new 
events that occur on these hosts. It can use actions to perform more detailed analysis 
of hosts, giving it improved knowledge as to whether particular activity on a system 
is due to malicious activities of the red agent or benign activities of a green agent. It 
can remove red access to hosts, or restore a system back to a standard configuration. 
Removing red access only works if the red agent has not escalated their privilege on 
the system, as at this point it is assumed the red agent has sufficient access and per-
sistence to recover from deleted processes or files. Restoring a system is guaranteed 
to remove red agent activity, but restoring a system from a previously-generated 
image is assumed to disrupt user activities on that system. The red agent cannot be 
removed from the initial foothold system, even by the restore action – this assump-
tion is made both as a means of ensuring the game lasts for the entire period, and to 
reflect the difficulty of eliminating a threat that has successfully phished 
credentials.

The Misinform action enables a decoy service, on a nominated host, which is 
vulnerable to exploitation by the red agent. The probability of a red agent exploiting 
the decoy service versus a real service is given a fixed value of 75%.

The decoy service is assumed to be monitored and secured such that an exploit 
of it does not allow further access to the host by the red agent. Privilege Escalation 
actions using an exploited decoy service will automatically fail and will result in the 
removal of the red agent from that host. To effectively exploit the system, the red 
agent must re-exploit the host via a non-decoy service.

The effect of each action on the state of a targeted host is summarised in Fig. 13.2.
The green agent only performs the discovery action, and does not exploit hosts. 

It should prevent the blue agent from assuming all network activity is due to the 
red agent.

The order in which the agents choose and enact actions is blue, then green then 
red. Before acting again, the blue agent receives an observation and reward based on 
the events that occurred as a result of the green and red actions.

The blue agent receives a negative reward any time the red agent gets administra-
tor access to a system. They continue to receive negative rewards as long as the red 
agent maintains administrator access. The amount of each reward is dependent on 
the relative importance of that host to the confidentiality or availability of the entire 
system: −0.1 and  −1.0 for low and high importance systems respectively (see 
Table 13.1). They also receive a negative reward if the red agent successfully uses 
the Impact action on the operational server (−10) or the blue agent uses the restore 

Table 13.1 Blue rewards for red administrator access (per turn)

Subnet Hosts Blue reward for red access (per turn)

Subnet 1 User hosts −0.1
Subnet 2 Enterprise servers −1
Subnet 3 Operational server −1
Subnet 3 Operational hosts −0.1
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Table 13.2 Blue rewards for successful red actions (per turn)

Agent Hosts Action Blue reward (per turn)

Red Operational server Impact −10
Blue Any Restore −1

action on any host (−1) (see Table 13.2). The final score for a blue agent is the 
cumulative reward received by the agent over the course of the scenario run.

The results of the challenge are available at http://www.github.com/cage- 
challenge/cage- challenge- 1/.

4.7  Analysis of Measurement in CybORG

One of the key goals behind the design of CybORG was to foster the development 
of cyber agents that will work in the real world. To work in the real world requires 
good performance across all the metrics described above – reliability, resilience, the 
CIA triad and the ability to translate all these qualities to a real situation.

The first experiment targeted the last of these factors by measuring the relative 
effectiveness of the same agent in simulation and emulation. The results of the 
experiment showed the potential of this approach as a means of measuring agent 
reliability. However, this scenario was for a simple red agent, and therefore the 
effectiveness of the CIA triad was not measured as part of this work.

Having established a methodology for measuring and bridging the reality gap, 
the scenarios tested within CybORG were extended to start addressing the other 
metrics. The first CAGE challenge was scored based on a mix of confidentiality and 
availability. This mix was determined based on an analysis of the system mission. 
While resilience and reliability were not explicitly measured as part of this chal-
lenge, aspects of the scenario were chosen to introduce concepts of resilience – in 
particular, the use of a scenario where the blue agent had to re-establish control once 
compromised, rather than ending the scenario once red established control.

5  Future Work

There is plenty of scope – and need – to expand the scenarios and metrics for cyber 
agent learning. The examples above are still on networks much smaller than real- 
world enterprise networks, and look at only a narrow slice of potential defensive 
actions. One simple method of expanding the applicability of these measurements 
is to expand them to enterprise scale, and to broaden the range of attacks and 
defences to match those used by cyber professionals.

One underlying assumption that was made for CybORG, which would need to be 
critically examined as the system develops, is the ability of blue agents to detect and 
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analyse attacks. The probabilities of detection require further empirical analysis, so 
that the agents work from real-world data. Even with these probabilities, the ability 
of a defensive system to effectively detect attacks is dependent on the attack itself 
and the detection pipeline.

One potential way to short-circuit this approach, and produce a more resilient 
system, is the use of active or deceptive defences such as canaries or honeypots. 
These defences replace numerous but low-probability indicators of attack with a 
single high-probability indicator of attack. These defences are also more resilient to 
zero-day attacks, as they detect the results of an attack rather than the attack itself.

The measurement of reliability or resilience of a blue agent is still a new field, 
with no agreement on what metrics accurately measure it. This is partly because the 
development of autonomous cyber defence agents is still new. At this stage, the 
quickest way to advance the field is to develop more advanced scenarios, then 
develop more advanced agents to succeed given the current metrics for those sce-
narios. The use of cyber defence agents in situations with increasing realism will be 
the best way of identifying shortcomings in the current approaches and bring the 
overall maturity of the field forward.

6  Summary and Conclusions

This chapter discusses the importance of appropriate testing and measurement tech-
niques to the development of autonomous cyber defence agents. Cybersecurity is a 
particularly difficult domain for reinforcement learning, as the domain is complex 
and evolving and requires autonomous systems to be effective against clever and 
innovative human adversaries. Testing and measurement of autonomous cybersecu-
rity systems must address the ‘reality gap’ – the differences between models on 
which an autonomous system is trained and the real system in which the system 
must be effective. It must also exhibit robustness to changes in the model or system 
it is instantiated in, as cyber-attacks often rely on the detection and exploitation of 
differences between the assumed behaviour of a system and its actual behaviour. 
The measurement of the effectiveness of a cyber-defence system is generally not a 
single metric, but a balance between opposed factors as described in the CIA triad. 
A system that preserves confidentiality at the expense of availability is unsuccess-
ful, as it cannot achieve its mission. Finally, a real-world cyber defence system must 
be resilient to failure, both because new breaches can be developed and because 
being able to recover from breaches is a key part of the role of human cyber defend-
ers. A range of frameworks for developing and testing autonomous cyber agents 
have been developed. Common amongst these are the twin use of simulation and 
emulation to address the reality gap. Other techniques used are hardware-in-the- 
loop, repeated use of simulation and emulation to refine both the model and the 
resulting agent behaviour, and use of scenario randomization in order to improve 
robustness.
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Finally, this chapter presents a case study of CybORG, a system intended to 
address these issues to develop effective cyber defence agents. CybORG has been 
used in initial experiments to develop agents in simulation and transfer them to 
virtual infrastructure. It has then been used as the basis for the TTCP CAGE 
Challenge to develop a range of approaches to autonomous cyber defence in a com-
petitive manner. The range of existing approaches are promising, and have settled 
on key methods to effectively measure and test the performance of autonomous 
cyber agents, but these methods require further refinement through the development 
and testing of cyber agents in more varied and realistic scenarios.
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Chapter 14
Deployment and Operation

Benjamin Blakely, William Horsthemke, Daniel Harkness, and Nate Evans

1  Introduction

Deploying and operating autonomous intelligent agents for cyber defense present 
unique opportunities and challenges for traditional network defenses. At the core of 
their utility is the premise that human operators and statically configured defensive 
systems (even if augmented with threat feeds and signatures) will increasingly be 
outpaced by malicious software, or even human adversaries, who act at “machine 
speed” with adaptive attack strategies. For this reason, Kott & Theron (2020) and 
others have suggested that a passive “observer” role is no longer sufficient for cyber 
systems in defending themselves. Anti-virus, logging, alerting, etc. are all cases 
where activity on a host or network is monitored and/or analyzed, but ultimately 
relies on some other human or system to respond as appropriate.

While systems such as heuristic-based anti-virus or increasingly intelligent 
boundary protection services (e.g., Cloudflare) are much more capable of taking 
preventive actions and potentially identifying threats through statistical analysis, 
they might still find it difficult to adapt to truly novel threats, or attackers who are 
engaged in an active back-and-forth with the defender. What is needed (or will be 
soon) are systems capable of defending themselves and their peers. However, 
deploying such systems creates concerns regarding how to ensure their behaviors 
are acceptable and “net-positive”, and how are they to be monitored and controlled.

In this chapter, we will discuss threat scenarios where an autonomous agent 
might have an advantage. We will then discuss how learning and cooperation are 
critical elements of deployments to combat those risks. Finally, we will consider 
several deployment scenarios and the operational implications of autonomous 
agents in each.
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2  Advantageous Scenarios

Most of the scenarios where an autonomous cyber defense agent might have an 
advantage relate to the potential advantages of systems that can operate without the 
delay introduced by needing to consult with a human operator or wait for approval 
to act. In these scenarios, if risk models can be built to account for these specific 
advantages, while accounting for the potential negative repercussions of autono-
mous action, the cost-benefit tradeoffs can be quantified and used to drive agent 
behavior (Booker & Musman, 2020). This approach has seen some success already, 
such as in countering botnets by treating them as an adversarial multi-agent system 
and responding with agents built in a MAS paradigm (Kotenko et al., 2012).

2.1  Interacting with an Adversary

The first category of advantages concerns the fact that cyber adversaries may be 
adaptive in nature. While simple attacks might simply be “fire and forget” – e.g., 
malicious email attachments, mass scans for vulnerabilities  – many attacks are 
likely better represented by a “game theoretic” framing. That is, attacks and defend-
ers are engaged in a back-and-forth interaction where each’s knowledge of each 
other’s actions has an impact on their subsequent responses. In such an exchange, 
being able to mask or misrepresent one’s intentions can lead to an advantage against 
an intelligent attacker. Unpredictability is an advantage, but misdirection is even 
more valuable (Huang & Zhu, 2018).

Pawlick et al. (2019) define six different types of deception that can be employed 
for protecting security and privacy: perturbation of data (e.g., differential privacy), 
moving target defenses (making the “attack surface” non-static to make it more dif-
ficult to find and exploit vulnerabilities), obfuscation (masking sensitive data with 
“noise” – i.e., distractors for the attacker), mixing of data (e.g., in the manner of 
traffic traversing the Tor network), honey-x (deploying apparently vulnerable sys-
tems to lure attackers into wasting their time and revealing their intentions), and 
attacker engagement (treating interactions with an attacker as multi-phased games). 
Though some of these approaches are more relevant to a dataset than a network or 
host, others are potential options for incorporation into interactions with an adver-
sary. An autonomous agent, or a collaborative “swarm” of them, could proactively 
create honeypot services or virtual hosts to collect data, make changes to network or 
host configuration on the fly in response to perceived or predicted threats, or return 
extraneous or misleading data to an attacker. These might also assist with situations 
where an attacker has compromised a system but not been detected (van Dijk et al., 
2013), by making the job of moving laterally, escalating privileges, or making heads 
or tails of discovered information more difficult.

Moving beyond just deception, one can of course consider situations in which a 
defender takes a more aggressive approach and launches a counterattack against the 
identified threat. These are potentially the highest-risk scenarios to consider for 
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deploying autonomous agents. It requires a very well-defined and -understood set of 
rules restricting the behavior of the agent(s) to ensure they don’t accidentally cause 
unintended harm, or unnecessarily escalate a situation. If we are to employ machine 
learning solutions, often assumed when discussing autonomous systems, it’s impor-
tant to be aware of the increasing sophistication of adversarial machine learning, as 
well as the potential for poisoning of training datasets in online learning systems or 
exploiting boundary regions in learned parameters.

A particularly interesting advantage that could be leveraged by autonomous 
agent deployments is the automated exploitation of vulnerabilities in an adversary 
system. This is clearly an offensive action, so is not a capability to add without due 
consideration. There have been early successes in this area. In 2016, MAYHEM 
won the DARPA Cyber Grand Challenge by finding a vulnerability in the source 
code used by it and its adversary, patching the vulnerability in its own code, and 
then exploiting it in the adversary (Avgerinos et  al., 2018). Granted, this was a 
highly constrained environment with a purpose-written programming language.

2.2  Dynamic Threat Environments

The second category of advantages pertain to the fact that many aspects of systems 
and networks are not static in nature, or at least might not be in some network envi-
ronments. Systems come and go (or turn on and off); software is installed, patched, 
and uninstalled; vulnerabilities are discovered and remediated; networks are recon-
figured and rearchitected; and attackers’ tools and tactics constantly shift. This 
means that yesterday’s vulnerabilities (and those of decades ago!) still need to be 
defended against, but defenders also need to concern themselves with undiscovered 
vulnerabilities and threats not in existing threat models and risk assessments.

This means defenders systems and networks need to be resilient and capable of 
adapting their defenses to new threats. Kott et al. (2021) referred to this as “Resilience 
by design” – the concept that systems should be built to account for the kinds of 
adaptability that will allow them to tolerate adversarial actions in a graceful manner, 
with minimal impact to their function or mission. Making systems “self- 
reorganizable” is one way proposed to do so. Autonomous agents can learn about 
their network environment, perceive threats, and “reorganize” themselves or their 
configurations to minimize the impact of an attack – even if it cannot be fully ren-
dered neutral. In fact, Hammar & Stadler (2020) had success in using reinforcement 
learning over Markov games for defending systems to automatically find effective 
security strategies to prevent intrusions. A challenge in doing so, as in many machine 
learning paradigms, is quickly or reliably converging to an optimal strategy, but the 
potential is there, nonetheless.

If we can connect this sort of adaptation to a changing environment with the 
adversarial interactions discussed above, we can then envision an agent capable of 
predicting future actions of the attacker and proactively deploying appropriate resil-
ience-building measures (Cam, 2020). Not only simple adaptations such as 
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proactively configuring network filtering devices but potentially staging purpose-
built deceptions, spinning up additional resources to soften the blow of a denial-of- 
service attack, rotating out a host for one using a different operating system or type 
of daemon, etc. In this way the defender could turn the dynamic nature of the threat 
environment to its advantage.

2.3  Human-in-the-Loop

Due to the inherent difficult in building and training autonomous systems that can 
make perfect cybersecurity decisions, it’s likely that human-in-the-loop strategies 
will continue to be important. This is especially true if we are allowing systems to 
take offensive actions (Ligo et al., 2021). However, this can be turned to an advan-
tage if systems are designed to appropriately complement automated reasoning with 
human analysis. If automated systems can do the major of the work of observing the 
network, correlating observed events, making friend or foe determinations, etc., 
then a human operator is freed up to make only those decisions that require human 
intuition, additional external analysis, or interaction with external systems (techni-
cal or non-technical, such as chains of command). However, for this to be effective, 
humans must be able to understand and trust their autonomous defender counter-
parts. We need to ensure that we can explain the way automated reasoning systems 
make decisions, can interpret what they learn and output, and have the information 
be sufficiently actionable to be worthwhile (Linkov et al., 2020).

3  Learning and Cooperation

As we deploy autonomous agents to different types of environments, it’s likely they 
will benefit from collaboration among themselves. Differing agents may have dif-
ferent perspectives on activity occurring, visibility of other agents on the network 
that others cannot see, heterogeneity in operations to avoid overtraining, and may be 
able to compensate if one agent becomes compromised and its observations or deci-
sions are no longer trustworthy. These might rely upon a centralized coordinator 
agent or be fully decentralized (Andreadis et al., 2014) but we are particularly inter-
ested in the resilience of fully decentralized agents. Two ways we might approach 
such collaborative efforts are federated machine learning and swarm intelligence.

3.1  Federated Machine Learning

Federated machine learning is an approach whereby computations are decentralized 
to avoid sharing of “raw” observations or data, leverage the collective local comput-
ing power and diversity of all participating systems, and share derived model 

B. Blakely et al.



299

parameters with the full community in a manner which allows convergence to a 
globally optimal solution. This allows for additional assurance regarding privacy of 
sensitive datasets, can minimize the computational load on any given participant, 
and broadens the reach of observations. It also helps avoid underfitting or overfitting 
by adding the natural variance that can come with differing systems generating local 
models that are then aggregated.

This can however create additional challenges. Primary among them is that we 
are not guaranteed that the community will converge to an optimal global model, or 
even converge at all. We might end up in a worse state upon trying to aggregate 
many locally trained models than if we had collected all the data and performed a 
centralized computation. Second is that even though we are reducing the computa-
tional requirements from a single, large-dataset training approach, even training 
small models can be intensive  – especially without a graphical processing unit 
(GPU). Deploying this sort of learning to low-powered devices such as found in 
SCADA networks or “Internet of Things” (IOT) scenarios might not be feasible or 
might require careful selection of algorithms suitable to such constraints. Third, is 
that an inherent level of trust in the contributing nodes must be held, otherwise we 
risk poisoning of the globally trained model. Last is the reliance upon a central 
coordinating agent to aggregate data from participating nodes. Work towards fully 
peer-to-peer methods of federated machine learning are needed for maximal 
resilience.

While these challenges do require research investment to overcome, there are 
still opportunities to be realized in using federated machine learning for AICA-like 
purposes. AICA agents are very likely to exist in a multi-agent environment, with 
differing configurations, attack surfaces, and environmental conditions. This makes 
them a natural fit for a collaborative learning model. Given the intended use cases, 
the observations of each agent are likely to be sensitive, and thus sending this to 
another system for analysis may present untenable security concerns (or the data 
might be too burdensome for a low power device, or a device with limited connec-
tivity, to transmit in this way). Building AICA agents to learn as much as they can 
locally, and then share those “learnings” with the broader network of agents, may be 
an optimal compromise in such environments.

3.2  Swarm Intelligence

Swarm intelligence algorithms are related to federated machine learning in that they 
seek to leverage multiple nodes in a collaborative manner. However, these methods are 
significantly different in that they rely on emergent behavior arising from varying lev-
els of simplistic local decision making. Holland (n.d.) categories these levels of agent 
complexity as type 0 (no emergent behavior), type 1 (nominal - local-to- global feed-
back, no coordination), type 2 (moderated – global to local feedback), type 3 (multi-
ple – combines stable and unstable type 2 behaviors to achieve global stability), and 
type 4 (evolutionary – agents can alter their own governing principles). Maier (2014) 
further classifies emergent properties into four levels: simple (readily predicted by a 
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simplified model of components), weak (readily reproduced in simulations of the sys-
tem), strong (consistent with known properties but not consistently reproduced in any 
simplified model of the system), and spooky (inconsistent with known properties of 
the system, not reproduced in models of the system of equal complexity). These two 
rating scales give a large variety of potential swarming algorithm possibilities, and 
indeed in algorithmic optimization literature many nature-inspired algorithms con-
tinue to be developed. The applications to an AICA- like multi-agent system, however, 
is not quite so straightforward. Rauf et al. (2019) suggest that biological inspirations 
might be useful for overcoming limitations current network security devices, includ-
ing: difficulty obtaining a global network picture, poor device self-awareness, a ten-
dency toward error-prone and time-consuming configuration, and multi-party 
management making diagnosing issues or resolving conflicts difficult.

On one hand, a properly constructed swarm intelligence multi-agent system 
would be able to respond to adversarial behaviors not envisioned by its designers. 
With the right set of local governing behavioral rules, a very low-powered device 
could make decisions that contribute to the security of the overall swarm and adapt 
if the environmental parameters change. Generalizing away from specific signatures 
or indicators toward patterns of activity can add resilience to such systems.

On the other hand, such behavior is inherently difficult to predict, and thus may 
not be well-suited for safety- or security-critical applications. Such simplistic rule-
sets, while they may serve biological entities well, might fail to capture and respond 
to the complexity and game-theoretic realities of a cyber conflict. Most challenging 
is determining what rules we should even build into our system. An approach akin 
to genetic algorithms may yield results here, but then under what conditions do we 
“train” our system?

4  Deployment Environments

We turn now to considerations of the different types of environments in which an 
AICA agent might be deployed. Exhaustively covering all possible environments is 
of course not a feasible undertaking, so we will start with a taxonomy under which 
we might consider possible environments, and then discuss several of particular 
interest that might be well-suited for further analysis and experimenta-
tion (Table 14.1).

Table 14.1 Deployment dichotomies

Non-ideal deployment environment Ideal deployment environment

Mobile Platform Stationary Platform
Safety-critical Environment Non-safety-critical Environment
Low-quality Connectivity High-quality Connectivity
Independent Nature Cooperative Nature
Resource-consumption Sensitive Resource-consumption Tolerant
Proprietary/Custom Platform Commodity Platform
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4.1  Dichotomies as Environmental Classifications

We will use a series of either-or distinctions as a simplifying approach to discussing 
the operational scenarios in which agents might be deployed. These are intended to 
capture those most salient considerations as regards the practicalities of using an 
AICA-like agent in a production system.

First, we can distinguish between platforms which are mobile in nature versus 
mobile. Mobile systems have additional constraints and considerations – for exam-
ple connectivity to other agents or broader networks, computational capability, 
power usage, dynamic exposure to hostile actors in the physical domain, and poten-
tial safety considerations on appropriate behaviors of the system. They are also 
more likely to use an operating system outside of a common consumer platform. 
Conversely, stationary systems are less likely to have these restrictions, but might 
present more of a “sitting duck” target for adversaries and might have more signifi-
cant stores of valuable data or computational capacity.

We can thus also consider whether agents are designed to operate in safety- 
critical environments versus non-safety critical. This not only has implications on 
the restrictions that must be placed on their behavior, but also on how they are 
designed and evaluated before deployment. Safety-critical systems may need to 
default more heavily to not intervening in otherwise-stable decision-making strate-
gies or performing more conservatively when detection potential attacks requiring 
retaliation. They may also be required to weigh the potential safety risks of inter-
vention against the safety or security risks of inaction.

Next, we can consider whether the agents have quality connectivity (low-latency, 
high-bandwidth, high-uptime) to each other and the outside world, or whether they 
must be able to operate independently. Some agents might have intermittent con-
nectivity, such as during certain windows (or not during certain windows). Other 
agents might have highly constrained connectivity due to physical limitations or 
cost. Agents that cannot rely on practically unfettered communication with other 
agents, human controllers, or central control systems must be designed quite differ-
ently from those than can.

To this point, we can consider whether agents are intended to operate in a coop-
erative manner, or in a more autonomous mode. While it is largely envisioned that 
AICA agents would be collaborative in nature, much of the automated situational 
awareness, decision making, and response capability could be deployed indepen-
dently but would lack the benefit of additional insight from other nodes or emergent 
defensive strategies. Independent agents, or those needing to operate for periods of 
time in an independent manner, might require additional “pre-training”, more com-
plex static rulesets, or more conservative decision parameters to compensate for a 
lack of possible human intervention.

The power consumption and computational capacity of agents is also of primary 
concern, as mentioned above. A system without restrictions on energy usage, and/or 
with high-capability CPU or GPU resources does not need to concern itself with 
performance beyond preventing mission impact through resource consumption. An 
agent on a low-energy or -capability system however must minimize 

14 Deployment and Operation



302

computationally intensive tasks, rely heavily on pre-computation or static rulesets 
as much as possible, and explicitly account for the resource expenditure of potential 
response actions in its decision-making calculus.

Likewise, we must consider the cross-platform compatibility of developed agent 
software. In typical Information Technology (IT) environments, it might be suffi-
cient to support Microsoft Windows, MacOS, and two or three common Linux dis-
tributions. Though this does create additional complexity, technologies such as 
containerization, abstracted languages such as Java, or large-degrees of cross- 
platform library availability (such as in the Python ecosystem) can make this feasi-
ble. However, if considerations are needed for highly customized, very simplified, 
or non-standard/proprietary operating systems AICA agent software will require 
additional development (or different architectural decisions) to be deployable.

Finally, a closely related consideration to the platform used in an environment is 
the cycle-time under which we can assume changes can be made to the running 
system. In conventional IT systems, systems are reasonably accessible – virtually or 
physically – should new versions of software need to be deployed, configuration 
changes made, etc. However, in many environments systems may not be frequently 
accessible, may have long cycle times for validation and testing of any changes, or 
may simply not be readily modified after deployment due to hardware or logistical 
practicalities. Such systems would need to rely much more heavily on collaborative 
and dynamic behaviors, and less on preconfigured rulesets or datasets.

We will now consider several deployment scenarios that illustrate the distinc-
tions above. For each we will discuss how the fit into this taxonomy, what sorts of 
threats are typical, what sorts of situational awareness are likely to be required or 
feasible, and how threats might be detected or countered.

4.2  Unmanned Aircraft Systems (UAS)

UAS and other autonomous vehicles have garnered much attention over the past 
decade. They have many advantages, primary among them keeping operators out of 
harm’s way, but also allowing increased speed of decision-making in real-time oper-
ations, and even enabling new missions that might not otherwise be possible (David 
& Nielsen, 2016). The environment in which they operate is unique, especially 
when deployed at a long distance from their operators or others capable of servicing 
them. From the list of dichotomies, we can consider these systems to be:

• Mobile (a given)
• Potentially disconnected for short periods of time from operators (or requiring 

safe return to operator functionality if connectivity cannot be restored)
• Currently they are often deployed solo but increasing interest has been show in 

cooperative swarms
• Safety-critical by nature – whether due to the vehicle-as-a-weapon/hazard con-

cerns or potentially the armaments or payloads they carry
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• Likely to be resource constrained due to mission priorities, on-board energy 
reserves, and/or the computational capacity of onboard systems

• Likely to use special purpose/proprietary operating systems
• Generally easy to modify or update between missions, though not during

The threats to a UAS are tightly coupled to the type of mission it is performing, but 
generally focused on the mobility and kinetic aspects. An attacker able deny or 
spoof positioning (e.g., GPS) information could cause the system to veer off course, 
deploy its capabilities to the wrong location, or trigger safety protocols causing the 
system to return to the operator or conduct an emergency landing. Similarly, denial 
of environmental sensing (e.g., LiDAR, visual, altimeters, compass) could have a 
similar affect or cause the system to impact terrain or structures. Any interruption to 
the communication signals with operators might have negative mission impacts, 
especially if conducted at critical times of the mission, worst-case being takeover of 
the system from the operators. In such a case, initiation of kinetic action (vehicle- 
as- weapon or ordinance) or theft of imagery, surveilled signals, location history, or 
other data from the system presents significant risk.

From a situational awareness perspective, environmental considerations are par-
amount, but network considerations are also important. Environmental inputs might 
include direct (e.g., visual, RADAR, thermal) detection of potential adversarial sys-
tems or forces, sensory information about the environment (e.g., LiDAR, acoustic, 
thermal), derived information (e.g., object recognition, mapping), and vehicle com-
munications and diagnostics through protocols such as CANBUS or 
OBDII. Correlating observations from these with in-built models of the environ-
ment or known-hazard indicators would be a valuable approach to an AICA agent 
detecting potential threats.

Network considerations would include observed wireless signals – whether ter-
restrial (e.g., cellular, point-to-point microwave/optical links, or Wi-Fi), from 
nearby deployed systems, or earth-to-satellite (and vice versa) communications. 
Most relevant is likely to be communications from nearby systems in terms of iden-
tifying potential inbound threats, but the others might serve a broader mission pur-
pose or allow monitoring of potential attackers in the network environment if 
appropriately targeted. Network traffic broadcasted on the same control network 
might be of interest, though this would require a compromise of that channel. More 
likely valuable is active scanning of the control network or other accessible net-
works to identify nodes and conduct friend-or-foe determinations.

4.3  Power Grids

The generation, transmission, and distribution of electricity relies heavily on instru-
mentation and control. This leverages a variety of SCADA systems, which are ubiq-
uitous but the degree to which they are kept up to date varies widely due to concerns 
about changes impacting stability of these critical systems. This makes approaches 
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that can mitigate vulnerabilities without having to make changes to the underlying 
systems particularly appealing (Davidson & Andel, 2016; Hu et al., 2021). However, 
applying an AICA-like multi-agent system must be done with great care due to the 
real-time constraints that must be met for the underlying system’s operation (Abbas 
et  al., 2015). Approaches such as reinforcement learning (Cao et  al., 2020) and 
moving target defenses (Pappa et al., 2017) have been applied to the programs of 
optimizing or protecting grid resources successfully. From the list of dichotomies, 
we can consider these systems to be:

• Stationary, due to their close coupling with energy systems mobility is not likely 
to be encountered

• Connected to a broader network, though the quality of that connection might 
vary based on deployment location. Older systems might have local communica-
tions that are performed through non-routable protocols that are then mediated or 
relayed by connected systems.

• Though there is potential for collaboration between nodes, their deployment to 
remote field sites (in many cases) means that the primary focus will be on “lone 
wolf” operation.

• Safety-critical, due to the potential for impacting operations of the grid
• Likely deployed on systems without problematic resource constraints, but this 

could vary when considering simpler IOT-type devices.
• A combination of commodity and special-purpose operating systems. For many 

of the SCADA controllers and human-machine interfaces, they are likely to run 
on Windows or a common Linux distribution. However, lower-level devices are 
likely to use embedded and/or real-time operating systems.

• Unlikely to be easily modifiable. This could be due to inaccessibility in particular 
remote sites, but more so the risks of making changes to these networks require 
very careful evaluation. This means cycle times between updates to an AICA 
agent are likely to be long.

Threats to these systems are primarily concerned with the control systems and 
safety aspects. Denial or spoofing of time signals (network-based, GPS-originated, 
etc.) could interfere with phase synchronization and reporting mechanisms. Denial 
or spoofing of phase, voltage, and amperage measurements back to a control center 
could prevent the grid from being appropriately calibrated – leading to unsafe or 
unstable conditions. Impeding the ability of an operator to interact with a system in 
the field could prevent the routine or emergency operations necessary to keep com-
ponents operating properly. Spoofing operator actions could cause faults such as 
tripped breakers, disconnected lines, imbalances in supply and demand, or other 
misconfigurations. Due to the stationary, exposed, and remote nature of many of 
these systems, we must also be concerned with potential physical threats.

Situational awareness once again is a combination of network and environmental 
inputs. Broadcasted traffic on the same network segment may give indications to 
online nodes or servers, and active scanning of local or non-local network segments 
can reveal additional information about what else is active. Appropriately posi-
tioned agents could also monitor traffic between nodes on the network, or between 
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the network and external hosts. Since these environments are likely to be more static 
in nature and configured according to common IT conventions, log files from the 
host(s) on which the agent resides or in an aggregated form can provide additional 
detail about ongoing activity. Environmental awareness can leverage the many sen-
sors required to monitor systems of this type. In addition to basic readings such as 
temperature, we could expect to have access to electrical information about the grid 
such as voltage, phase, current, or breaker/line status. Comparing such values with 
expected values or known anomaly threshold could be a valuable indicator of activ-
ity requiring attention.

4.4  Orbital or Deep-Space Platforms

An information systems domain that is particularly unique is that of communica-
tions to or between orbital or deep-space (beyond Earth orbit) systems. The number 
of systems deployed to outer space is growing exponentially as more nationally- 
and privately- funded programs mature their capabilities. These missions are enor-
mously expensive, high-risk by nature, and may have significant national security 
implications (or at least national reputation). From the list of dichotomies, we can 
consider these systems to be:

• Generally mobile, except for any future permanent/stationary operating bases on 
the Moon, Mars, or otherwise (and ground stations on Earth)

• Though these platforms typically do have connectivity to Earth (such as through 
NASA’s Deep Space Network), this connectivity may have extraordinarily high 
latency, very low bandwidth, and may have prolonged blackout periods. Thus, it 
is critical that AICA-like agents deployed to outer space (especially deep space) 
can operate in a disconnected state.

• Given this fact, it also follows that such system must be able to operate in a “lone 
wolf” mode. However, as the number of devices continues to expand, it’s possi-
ble that even without terrestrial connectivity collaboration between nodes could 
continue. This is challenged by the long cycle times and large deltas in system 
technologies between missions but may become more feasible as large constel-
lations of systems are deployed within shorter time spans.

• These systems are not safety-critical in most cases (the exception being when 
deployed as part of or near manned missions). They may require a similar level 
of diligence given the large potential loss if the system becomes in operable after 
deployment, but risk to human life is minimal. Special consideration must be 
given to systems which are deployed using nuclear power sources.

• There are likely to be very tight constraints on energy usage, computational 
capability (largely limited by weight and space considerations), and the critical-
ity of ensuring resources are allocated to the primary mission. In the current 
environment, it would be hard to justify sidelining any resources for the purpose 
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of detecting and responding to hostile actors, but we expect this to change as 
space becomes more crowded.

• The operating systems on these devices are likely to be highly customized or 
proprietary in nature, or they might be composed of multiple platforms/instru-
ments that function semi-independently. Software deployed for usage in these 
environments would need to be largely custom-built for a given mission profile.

• The cycle time on changes to the systems is essentially infinite insofar as it 
requires any physical interaction or high-bandwidth data transfer. Reusable 
launch vehicles have become common, but to date except for the Space Shuttle 
Orbiters there are no instances of a system deployed being returned, modified, 
and reused (and no such instances of deep space vehicles). Thus, the deployed 
configuration is very likely to be the final configure except for any small modifi-
cations, and focus must be given to adaptive responses in situ.

Like UASs, threats to these systems largely consist of impact to their mission, or 
theft of sensitive information collected. We can distinguish between threats that can 
be conducted from Earth versus those that require a presence in physical proximity 
(on a space scale, which is to say potentially still a significant distance). On Earth, 
threats consist of attacks on ground stations, communications between those ground 
stations, or tampering with control systems or signals sent to spacecraft. Interruptions 
to or modifications of communications with operators at vital times could have cata-
strophic effects on the ability of a craft to reach its intended destination or maintain 
a defined position – and subtle changes could potentially escape detection until the 
cost to correct them becomes large. Such instructions might interfere with maneu-
vers, deployment or operation of instruments, waste fuel or energy, or even be 
intended to cause collisions or other damage. As the value of these missions and the 
information they generate can be enormously valuable to the science or national 
security communities, even “hacktivist”-type activities might be of concern even if 
information is not stolen.

Threats that might require proximity to a deployed platform include interfering 
with instruments required for positioning or sensing, detecting the physical location 
of sensitive systems, surveilling communications to/from the platform, or obtaining 
sensitive information from this platform (this last could also be potentially achieved 
from Earth). One can consider the situation where a deployed platform in a com-
munications blackout is targeted by a hostile platform of an adversary. By the time 
a human operator even becomes aware of the encounter, it might be too late to do 
anything about it. The only indication something has happened could be the inabil-
ity to communicate with the system, or there might be no indication whatsoever. For 
this reason, it’s critical that future space systems have capabilities to detect and 
respond to hostile actions autonomously.

Situational awareness for these platforms will also look like UASs. For deep- 
space systems there is unlikely to be much of a demand for network-based observa-
tion, at least in the near future. Communications are largely point-to-point and the 
likelihood of another devices in close enough proximity to communicate via non- 
directional communications is minimal. However, orbital systems are increasingly 
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deployed in large constellations that might communicate not only with ground sta-
tions but with each other. Though optical point-to-point communications are a pri-
mary focus due to the bandwidth that can be achieved, there is still the possibility 
for a hostile device to be near enough to be detected through RF/microwave sensing. 
If work on permanent settlements and communication systems on the Moon or Mars 
advances significantly in coming years, this is likely to begin to look very similar to 
the UAS case.

For the time being, environmental sensing is probably a more important focus for 
space systems. Visual, RADAR, thermal, or other direct detection of nearby devices 
(and projection of their trajectories) is a vital element of maintaining situational 
awareness. Position, velocity, and acceleration data is also critical. Depending on 
the mission profile, other sensors might be available to conduct other direct mea-
surements  – but the degree to which they’re available for non-mission purposes 
might vary. Metrics regarding communication links with ground stations, relays, or 
other craft may also help a system detect the presence of possible threats.

4.5  Large-Scale Computational Arrays

The last deployment scenario we’ll consider is perhaps the most familiar for those 
in the information technology space. On varying scales, we can consider arrays of 
systems built for the purposes of cloud computing, high-performance computing, or 
even normal business/mission operations. Such systems might use technologies 
such as software-defined network (SDN) which can be protected via autonomous 
means with reinforcement learning (Han et  al., 2018), containerized workloads 
(e.g., Docker, Kubernetes) that lend themselves well to moving target defense 
approaches (Jin et al., 2021), or an easy traversable network architecture that could 
enable “roaming” agents (Prosser & Fulp, 2020). From the list of dichotomies, we 
can consider these systems to be:

• Stationary in nature, though potentially distributed across multiple geographic 
locations.

• Typically connected to the broader internet (except for high-security air-gapped 
systems) and with good connectivity to operators and other agents.

• Well-suited for cooperative agents due to the potential quantity and connectivity 
of systems on which agents could be deployed.

• In most deployments, excluding critical infrastructures such as power systems 
(as discussed above), these are not likely to be safety critical. Some ambiguity 
might exist in domains such as healthcare or emergency services.

• These systems are unlikely to be constrained in their energy usage (beyond cost 
and environmental considerations) and can essentially be built with whatever 
computational capacity is necessary to achieve their objectives with the scope of 
available budgets.
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• The vast majority of the time, these systems will use commodity hardware and 
operating systems. General purpose agents designed for these platforms are 
likely to have a high potential for reuse between environments. Some exceptions 
exist, such as very large cloud providers who build their own hardware or HPC 
environments with special purpose operating systems.

• It is likely to be comparatively easy to make modifications to these types of sys-
tems, and automation might even exist to do so at scale with minimal effort. 
More incremental approaches to deployment and configuration are possible.

Threats to these types of environments are reasonably well understood (if not always 
effectively combatted). Like any IT system, concerns regarding the theft of confi-
dential information from any of the constituent nodes is a concern. Additionally, 
deletion or corruption is often a concern – whether due to impact to business pro-
cesses or harm to consumers. In the HPC context, such modifications might require 
re-computation and impact overall performance, or could lead to incorrect or poor- 
quality results. Similarly, interruption of communications between system could 
impact the delivery of services or interfere with coordination of distributed work-
loads. Lower-level attacks might physically damage hardware, create anomalous 
power or cooling loads, or interfere with processing of other users on shared 
resources.

Situational awareness in such a context is largely limited to network-based con-
siderations. Though some basic environmental parameters such as local tempera-
tures, voltages, or the current draw of various components is typically accessible, 
there are not typically any other environmental sensors. Thus, awareness of network 
communications, reachable or adjacent nodes, and analysis of local or aggregated 
logs are the primary signals of interest.

5  Summary and Conclusions

Autonomous intelligent cyber-defense agents have great potential to enable new 
forms of defense and counter the types of attacks that may become common place 
soon – attacks that are automated, adaptive, and high velocity. Human defenders 
will be increasingly at a disadvantage, even beyond the current typical times to 
detect and respond to security incidents. However, it will be critical that such agents 
are designed for the appropriate deployment scenario to ensure that they take appro-
priate advantage of the environment, but also do not cause unnecessary risk or harm 
to the systems they are intended to protect. Further research and field trials are 
needed not only in the fundamental considerations of how to construct AICA-like 
agents and enable their reasoning and collaborative capabilities, but also to deter-
mine how to make it possible to deploy them effectively to a variety of environ-
ments. The considerations of mobility, safety-criticality, connectivity, independence, 
resource constraints, and platform uniqueness are perhaps not fully exhaustive, but 
are important aspects to consider as such work continues.
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Chapter 15
Command in AICA-Intensive Operations

Arne Norlander

1  Introduction and Challenges: The AICA-Inhabited 
Operational Environment Is Contested, Nonlinear, 
and Dynamic

Operating in a contested mission environment requires comprehensive operational 
awareness, with the ability to accurately and rapidly perceive and interpret relevant 
events and circumstances. In order to provide the context, insight and foresight is 
required for effective decision-making. Complex multi-domain operations are of 
particular concern; while some operational tasks necessarily would employ a human 
component, other tasks can only be accomplished through non-human intelligent 
entities, acting autonomously within the socio-technical enterprise, defined by Kott 
et  al. (2019) and in previous chapters in this volume as Autonomous Intelligent 
Cyberdefense Agents (AICA).

A complex system is any system in which the parts of the system and their inter-
actions together represent a specific behavior, such that an analysis of all its con-
stituent parts cannot explain the behavior. In such systems, the cause and effect 
cannot necessarily be related, and relationships are non-linear –a small change 
could have a disproportionate impact. In other words, as Aristotle said: ‘the whole 
is greater than the sum of its parts’. This requires adaptive and versatile principles 
and concepts for complex multi-domain operations along with high-performance 
human, technological and organizational architectures (Norlander, 2019a).

Operational success is strongly linked to effective interaction and collaboration 
within and between the physical, information and cognitive domains. Cyber- 
Physical Systems (CPS), different organizational cultures, people with different 
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backgrounds, education and experience rely heavily on collectively managing and 
maintaining operational availability, versatility and efficiency. In many situations 
the desired effects cannot be linearly planned and reliably predicted, but must be 
anticipated to emerge from shaping the Operational Environment (OE) and influ-
encing the agents operating in the OE.

There are several issues concerning the use of mission-specific and contextual 
information and knowledge for judgment, decision, and choice, as well as the 
information- coupled activities leading to supervisory control of a complex, partly 
or completely automated process, and the more obvious control of the involved 
technological systems. This also concerns the degree of automation needed to 
achieve flexible task and resource allocation, and relates to all kinds of Human-
Machine interaction concerns and management tasks at every organisational level. 
There is a monitoring or feedback portion of the efforts required to execute super-
visory control and the need for functions enabling learning and adapting over time, 
but also a feedforward part that is crucial to ensure rapid and reliable, autonomous 
response in routine decision situations. DARPA’s Mosaic Warfare concept 
(Congressional Research Service, 2022; DARPA, 2020) is an ambitious endeavor 
into Human- Machine capabilities in extensively, sometimes entirely, autonomous 
warfighting.

Additionally, success in AICA-intensive operations requires Comprehensive 
Operational Awareness. Cyber operations are of particular concern; while some 
cyberspace operational tasks necessarily would employ human agents, other tasks 
can only be accomplished through non-human intelligent entities, acting autono-
mously and with machine speed within the socio-technical enterprise. This requires 
adaptive and versatile principles and concepts for Joint Systems Operations along 
with high-performance human, technological and organizational architectures.

Finally, the turbulent environment in which AICA-intensive operations take 
place stresses the need for Organizational Agility (OA), to be adaptable and resilient 
without having to change (Dyer and Shafer, 1998). The goal is to keep internal 
operations at a level of fluidity and flexibility that matches the degree of turmoil in 
external environments, a principle known as requisite variety (Ashby, 1956). This 
requires adaptive and versatile principles and concepts for management and 
decision- making along with agile high-performance organizational structures, illus-
trated in Fig. 15.1.

The number and diversity of the entities required to interact and collaborate in 
AICA-intensive operations, the set of operational sub-domains in which these enti-
ties operate, the interdependencies between and among operations in these domains 
and the effects they create, all pose significant challenges not yet fully anticipated 
nor appreciated.

A. Norlander



313

Fig. 15.1 A model of agile 
organizational capability. 
(Adapted from Dyer & 
Shafer, 1998, p. 11)

2  Developing AICA Command Capabilities: A Command 
Layer of the AICA Architecture

In multifunctional and multi-organizational operations, we must have multiple per-
spectives and an ability to undertake missions in all environments, including the 
cyberspace domain (Norlander, 2019b). The Stuxnet worm that was spread in 2010 
marked a watershed in cyber warfare revealing a level of destructive power with 
computer code previously reserved for kinetic bombings and physical sabotage 
(Rosenbaum, 2012). Different types of offensive cyberspace operations threaten the 
cyber domain and defensive cyberspace operations are the tools to defend against 
these threats. It is important to develop capabilities for executing cyberspace opera-
tions. The problem with commanding cyberspace operations is already recognized; 
One example was formulated by Carvelli (2018), “The United States should dele-
gate cyber-attack authority to operational commanders, but it should impose restric-
tions on the authority based on the attack’s effects”. How does this new domain’s 
conditions affect our chosen command philosophy? This chapter examines the C2 
capability in general and especially for command in relation to AICA-intensive 
operations. A crucial factor in achievement of the objectives in AICA-intensive 
operations is that all actors and partners can be consolidated into an architecture 
that is:

 1. Generic – represents all relevant capabilities, artificial and human alike,
 2. Scalable  – across all capability categories (or business areas) and organiza-

tional levels,
 3. Shared – accepted and used by all agents, commanders and stakeholders.

Each one of the three requirements of the AICA capability architecture is fulfilled 
by a combination of operational characteristics, enabling development of the agile 
AICA-enabled force and its essential operational capabilities:

15 Command in AICA-Intensive Operations



314

• Efficiency defines the possibilities to both develop and operate AICA-enabled 
capabilities as well as to deploy and support them in theatre with optimal resource 
utilization.

• Versatility defines the possibilities to operate in all dimensions and operational 
levels of risk. Most operations include an, at times, unpredictable mix of offen-
sive, defensive and stabilizing elements.

• Availability defines the possibilities to deploy AICA-enabled capabilities at the 
right time and to carry out operational activities during the time required with 
regard to policy and operational objectives.

Primary and supporting fields of study are found in other chapters in this volume: 
Architectures; Machine Learning; Perception of threats in the Operational 
Environment (OE); Situational Understanding (SU); Defense, Response and 
Recovery planning; Adaptivity and Antifragility; Development, Deployment and 
Operation of AICA capabilities; Team formation and Human Interaction; Risk and 
Trust Issues; and several case studies. These studies are conducted in a multitude of 
organizations: government, industry, healthcare, education and aid organizations to 
name a few. What all have in common is the need for a strategy and vision for devel-
oping these capabilities. Based on these studies and with the support from other 
fields of study – Computerized Automation, Cognitive Systems, Complex Adaptive 
Systems, High-Reliability Organizations, Leadership and War studies  – we have 
devised a number of strategy elements as part of an essence of command for AICA- 
intensive operations.

3  Joint Cognitive Systems

The research field of cognitive systems engineering (CSE) (Rasmussen, 1983, 1986; 
Hollnagel & Woods, 1983, 2006; Smith & Hoffman, 2017) offers such a perspective 
in terms of “joint cognitive systems” (JCS) which, using concepts from cybernetics 
(Wiener, 1961; Ashby, 1956), cognitive psychology and perception (Neisser, 1976), 
and systems thinking (Senge, 1990) as points of departure, view purposeful constel-
lations of humans and technology as “joint systems” capable of adaptive behavior. 
The underlying logic of the Joint Cognitive Systems (JCS) perspective is to look at 
any constellation of humans and technology asking the questions “what goals are 
being pursued by this system?” and “what control relationships exist within the 
system and between the system and its environment?”

Originally, the JCS concept was developed to overcome the duality of traditional 
human-machine research, focusing on better understanding what people actually do 
with technology rather than what functions belong to the machine and what functions 
belong to the human. Instead, the JCS perspective suggests that the important issue is 
to understand whether the human-machine system can achieve its goal(s) by analyz-
ing in what way the JCS can affect or influence its target processes and in what way 
it is influenced or affected by its environment. Norlander (2014) developed a 
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theoretical and methodological foundation for analyzing Tactical JCS in military and 
emergency management missions, derived from the fields of CSE, Systems Theory/
Cybernetics, Command and Decision theory, and Psychophysiology.

A cognitive system operates by using knowledge about itself and its environment 
to plan and modify its actions based on that knowledge (Rasmussen et al., 1994). As 
for complex systems, such knowledge is imperative. For example, in military mis-
sions a multitude of autonomous and intelligent sensor systems, communication 
systems, together with human operators, and specific Tactics, Techniques and 
Procedures (TTPs) are all elements of a ‘wider’ (total) operational system 
(Norlander, 2014). The total operational capability is built from a set of capability 
elements: Doctrine, Organization, Training, Materiel, Leadership, Personnel, 
Facilities and Interoperability (abbreviated as DOTMLPFI).

Employing the cognitive systems paradigm also for AICA-intensive operations 
permits the integration of all capability elements into an adaptive distributed system 
that can achieve a mission safely and efficiently.

4  Complex Adaptive Systems (CAS)

The research literature describes the broader aspects of defense systems in terms of 
Complex Adaptive Systems (CAS) (Holland, 1995, 2006; Norlander, 2011) in the 
sense that military or crisis management organizations demonstrate CAS properties, 
and identify adaptive mechanisms at the levels of adaptive systems, capability 
development and collective/society, which adjust through learning, evolutionary 
development and cultural change to fulfill an externally imposed purpose. CAS has 
characteristics of self-learning, emergence, and evolution among the entities of the 
complex system. The entities or agents in a CAS demonstrate heterogeneous behav-
ior. The key characteristics for a complex adaptive system are:

• The behavior or output cannot be predicted simply by analyzing the parts and 
inputs of the system.

• The behavior of the system is emergent and changes with time. The same input 
and environmental conditions do not always guarantee the same output.

• The entities or agents of a system are self-learning and change their behavior 
based on the outcome of their previous experiences.

The CAS framework has its parallels of course, not only to the theoretical founda-
tion of cybernetics, but also to the field of neuroscience. The law of required model- 
regulatory identity stipulates that every good regulator of a system must be a model 
of that system (Conant & Ashby, 1970). It states that any regulator able to confine 
the variations in the system to be controlled, must not only have adequate amounts 
of variety available to control that system, but also be a homomorphic representa-
tion of that system. It is a more rigorous version of the law of requisite variety, origi-
nally formulated by Ashby (1956), which states that the variety of a controller of a 
dynamic system has to be equal to or greater than the variety of the system itself. 
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Homomorphisms are important for verifying whether one system is a model of 
another, and for investigating which original system properties are retained in the 
model. It means that the regulator must be a many-to-one mapping, representing a 
pattern in the mapping domain by a simpler pattern in its range.

5  Intelligent Collaboration: An Emergent Feature 
of Artificial and Human Agents

5.1  A Functional Perspective on Intelligent Collaboration

In the case of AICAs, we need to understand how a unit consisting of both humans 
and AICAs can reach their goals and how control, rather than functions, is allocated 
in the human-machine system. Further, both humans and AICAs are bounded in 
their rationality, although by different characteristics, deciding how control should 
be allocated between humans and AICAs depending on context and current goals.

The discussion benefits from this as it takes place in a hypothetical zone where 
the exact technical components cannot be described, as they do not yet exist. 
However, we can describe what an AICA is/should be in terms of what it can do (its 
functional properties), which is in line with the JCS perspective that emphasizes 
what a system does, rather than what it is. Below, we elaborate on why an AICA can 
be seen as a cognitive system in its own right, and how the JCS approach can be 
used to better understand the human-autonomy system in different situations and 
contexts.

The AICA concept is integrated with the central premise of the human operator 
and decision maker as a capability component in the cognitive domain, operating 
symbiotically within and between the physical and information domains through 
technological artifacts (Norlander, 2014). Human operators are constantly collect-
ing and building knowledge about themselves, other agents and the operational 
environment. They apply skills, rules and heuristics to plan and modify their actions 
based on that knowledge. Every commander and every human and artificial agent 
must develop a capability for sensemaking to enable a comprehensive detailed sys-
tem insight, leading to safe and efficient mission accomplishment (Weick 
et al., 2005).

AICA entities must possess corresponding inherent capabilities and characteris-
tics to successfully manage the mission spectrum. This involves an ability to inter-
act with human operators, operate effectively and create emergent effects through 
highly capable Human-AICA Command (HAC), illustrated in Fig. 15.2.

An AICA is, in this chapter, defined as an adaptive artificial entity that is capable 
of autonomously engaging with its environment in direct interaction and interde-
pendency with other artificial entities and human operators in order to meet a spe-
cific objective. Besides deciding and acting on an individual basis, both the human 
operators and the artificial entities complement each other’s decision-making 
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Fig. 15.2 A conceptual illustration of Human-AICA Command (HAC) as a Joint Cognitive 
System (JCS). (Adapted from Norlander, 2014)

processes and actions and jointly solve problems, in many respects analogous to the 
concept of cognitive work of Rasmussen et al. (1991). In order to do so, they must 
possess a sufficient level of Situation Understanding (Noel and Swarup, this vol-
ume) to enable effective and efficient collaboration through

 1. Understanding complex ideas and concepts (relative to the activity),
 2. Adaptation effectively to a dynamic environment, and
 3. Combining task related with social and interactive skills and capabilities.

5.2  Standardized Automation Concepts Do Not Capture 
Intelligent Collaboration

Previous research on autonomy has largely focused on understanding how different 
“levels” of automation changes the working conditions for human operators 
(Sheridan & Verplank, 1978; Parasuraman et al., 2000). This view largely prevails 
today, as can be seen in the development of self-driving cars. Future applications of 
robotics and autonomous capabilities suggest a world were different robotic or 
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software entities are integrated in society, fulfilling many tasks and even taking on 
responsibility for different managerial tasks.

As described later in this chapter, this calls for technologies that are able to 
autonomously engage with its environment, without continuous human surveil-
lance. In terms of perspectives that can provide some theoretical context for such a 
future, this can be seen as a case of a socio-technical system. Additionally, success 
in AICA-intensive Operations requires highly capable Mission Understanding 
(MU), based on an accurate perception and interpretation of the specific situation 
and circumstances in order to provide the context, insight and foresight required for 
effective decision-making, enabling a comprehensive appreciation of the situation. 
However, while socio-technical aspects of human-autonomy constellations are of 
importance, we need also to focus understanding towards the cognitive aspects of 
both AICAs and humans in order to better grasp the possibilities and limitations of 
joint human-autonomy system in terms of performance and the types of tasks that 
can be supported by AICAs.

6  Cognitive Systems and Autonomous Agents: Learning 
from Experience and Adapting to Circumstances

The concept of autonomy is important for AICAs, as they are assumed to have capa-
bilities for performing their tasks independently or interdependently and to have 
capabilities for reasoning and interaction that are needed for collaboration. The term 
“autonomy”, however, needs more clarification as it may be used in multiple ways. 
Autonomy in relation to robotics is sometimes conflated with automation. An 
autonomous/automated system, then, “performs its actions without human interven-
tion”. It can be fully pre-programmed and may have no choices about its action 
execution.

Nevertheless, from a more philosophical perspective, this interpretation of 
autonomy as automation is questionable. AI researchers have imposed requirements 
on autonomous systems regarding their internal reasoning, decision-making and SA 
dynamics (National Academies of Sciences, Engineering, and Medicine, 2022; 
Ziemke et  al., 2017; Endsley, 2015). Furthermore, an autonomous system is not 
necessarily independent; it may allow external influences (e.g. human guidance), as 
long as it explicitly accepts these influences. This notion is important in the context 
of AICAs, as it combines social and collaborative capabilities in autonomous sys-
tems. Lastly, autonomy of artificial systems, just as in the case of humans, is depen-
dent on operational circumstances. A physical autonomous system, such as a UAV, 
or a virtual one, like an AICA, may be autonomous in the sense that it can operate 
without guidance during conventionally planned and executed missions, much like 
a human being, but it will only be autonomous in certain operational contexts and in 
relation to specific goals. If these conditions are changed, then the system is no 
longer “autonomous” in any of perspectives presented above. From this point of 
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view, the idea of a “cognitive system” actually fits the description of what we gener-
ally refer to as “autonomous agents”.

In reality, no systems to be considered for military usage should be truly autono-
mous, as even when tasked to do something that requires autonomy in a specific 
situation and context, the autonomous unit should only present agency within the 
frames of the task given to it.

As pointed out above, an autonomous unit like an AICA fits the definition of a 
“cognitive system”. Hollnagel (1999) defines a cognitive system as a system that 
“can modify its pattern of behavior on the basis of past experience in order to 
achieve specific anti-entropic ends”. This definition fits any organism or system that 
is to prevail in a dynamic environment.

The conclusion from this is that an AICA must possess three fundamental capa-
bilities to act as a cognitive system, defined by Worm (2000) as cornerstones of 
modern complex cognitive systems science:

 1. A cognitive system is capable of adaptation to the varying conditions of the sur-
rounding environment;

 2. A cognitive system is capable of prediction of how the surrounding environment 
evolves over time;

 3. A cognitive system is capable of regulation in order to reach an equilibrium that 
matches the current conditions of the surrounding environment.

These capabilities are well in line with observed properties of any category of com-
plex systems. If we view the role of AICAs in the context of Multi-Domain 
Operations, the AICAs must be able to apply these capabilities in relation to a mul-
titude of organizational entities; human and artificial operators, sensor systems, 
communication systems, doctrine and networks are all elements of the total opera-
tional system. Analogous to the findings of Conant and Ashby (1970), the conclu-
sion of this is that an AICA has to be capable to adapt, predict and regulate to a level 
at least in line with human decision-making process and action to be able to comple-
ment each other.

The adaptive capability of an AICA can be understood in the light of the CSE 
definition provided above. Additionally, recent work by Prof. Tom Malone’s 
research group in the realm of Superminds (Malone, 2018), suggest that human and 
artificial entities can jointly utilize Artificial Intelligence and Hyperconnectivity to 
form learning loops, constituting strategic planning and decision-making capabili-
ties of business corporations, government agencies and global organizations. 
Combining the JCS, CAS, Autonomy and Superminds conceptual structures lead to 
four corollaries to the AICA capabilities definitions above, characterizing AICAs as 
Autonomous Adaptive Agents (AAAs), originally defined by Worm (2000):

 1. An autonomous adaptive agent can sense the environment through observation 
and measurement and act on the environment through its inherent actuators or 
other collaborating agents;
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 2. An autonomous adaptive agent has an internal information management and 
decision-making capability, and can classify and anticipate future states and pos-
sibilities, based on internal models;

 3. An autonomous adaptive agent’s internal models are often incomplete and/or 
incorrect due to the dynamic characteristics of the agent itself or the surrounding 
environment, and must be updated and restructured through observation and 
measurement;

 4. An autonomous adaptive agent’s anticipatory ability often significantly alters the 
aggregate behavior of the system of which an agent is part.

Besides constituting an autonomous intelligent adaptive agent, an AICA is also 
designed as a team member, meaning it is able when executing its tasks to comple-
ment the human decision-making process and task execution. Effective human- 
AICA teams are capable of exploiting the unique abilities of both humans and AI, 
while overcoming the known challenges and limitations of each team member. 
Recent advances in Human-AI Teaming (HAT) support the idea that an optimally 
balanced human-AICA team ultimately augments human capabilities and raises 
performance beyond that of either entity (National Academies of Sciences, 
Engineering, and Medicine, 2022). Hence, AICAs will, when integrated with 
humans in mission teams, be more perceived as team members than a collection of 
tools, algorithms and artifacts.

Mission success is strongly linked to effective interaction and collaboration 
within and between different organizational cultures, between people with different 
backgrounds, education and experience, and on managing and maintaining opera-
tional availability, versatility and efficiency (Norlander, 2019a).

In many business domains – industry or government, civilian or military – it is 
widely acknowledged that the principal drivers of evolution reciprocate between 
scientific progress and operational experience (Alberts & Hayes, 2006). Science 
advances theory, providing options for analysis and development. Theory advances 
technology, providing opportunities for future capabilities. Operational experience 
advances the state of the practice, improving adaptability and generating strategies 
for managing change in missions and environments. This experience can be formal-
ized into requirements for future AICA capabilities through an evidence-based ana-
lytical framework.

An integrative approach to studying this through the lenses of Systems Theory, 
Cognitive Systems Engineering and Psychophysiology was made by Norlander 
(2010), supported by findings in the areas of Complex Adaptive Systems; Cognitive 
Systems; Critical skills of individual operators and teams; Mission Critical resource 
management; Agile Command and Control and distribution of authority and respon-
sibility; Leadership, decision-making and operational performance.
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7  Executing High-Risk Missions with AICAs as Part 
of High-Reliability Organizations

In most day-to-day business operations, operational reliability, availability and high 
technical performance at the lowest possible cost are persisting overall objectives, 
and risk awareness in the organization is often limited. On the other hand, more 
specialized operational domains i.e. aviation, space, maritime, intensive care, 
nuclear power and military systems, require extraordinary risk awareness and risk 
management (Rasmussen, 1997). These cases can be classified as complex endeav-
ors, and the costs of incidents, attacks and breakdowns are valued not only in eco-
nomic terms but also in human lives.

Ligo et al. (2021) argued that human intervention should not include the direct 
operation of AICAs, but rather team up with autonomous cyber agents in a hierar-
chical command arrangement. Kott and Alberts (2017) conclude that the superior 
response time and data processing of cyber systems might be combined with human 
judgment of safety or ethical consequences. Ligo et al. (This volume) analyze risks 
associated with AICA inherent complexity, that might emerge when AICA are part 
of a defense strategy. They discuss three approaches to mitigating and managing 
complexity-induced risk, and where human operators cannot acquire the necessary 
Situation Awareness (SA) and/or react accordingly in the time and scale required:

 1. Human-centered strategies that shape AICA behavior before action selection and 
execution.

 2. Specific machine learning algorithms such as reinforcement learning and gen-
erative adversarial networks (GAN) applied to AICA behavior.

 3. General algorithmic principles that constrain AICA actions and outcome spaces 
(e.g. Asimov rules of robotics).

In a joint system the artificial components would quickly produce purely autono-
mous responses to attacks, and human operators could evaluate such responses 
(probably not in real time) and adjust the system to produce responses in the future 
with lower risk of negative outcomes.

Additionally, the concept of risk in joint systems is indivisibly unified with trust, 
a topic that is treated in depth by Reason (1997), Parasuraman et al. (2014) and in 
other chapters of this volume. For the AICA-intensive operational spectrum, there is 
an analogous concept for managing this type of risk and utilizing human perfor-
mance as a component of security, defense and other complex endeavors: High- 
Reliability Organizations (HRO), which rest on an organizational culture that aims 
to achieve error-free performance and safety in every procedure, every time—all 
while operating in complex, high-risk or hazardous environments, identifying and 
preventing potentially catastrophic incidents before they happen.

Weick and Sutcliffe (2015) identified five central principles for HROs that can be 
used to support development and implementation of a vision for AICA-enabled 
capabilities:
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 1. Sensitivity to operations (i.e. heightened awareness of the state of relevant sys-
tems and processes), achieved via monitoring);

 2. Reluctance to simplify (i.e. acceptance that work is complex, with the potential 
to fail in new and unexpected ways);

 3. Preoccupation with failure (i.e., to view ‘near misses’ as opportunities to 
improve, rather than proof of success and learning from incidents);

 4. Deference to expertise (i.e., to value insights from staff with the most pertinent 
safety knowledge over those with greater seniority);

 5. Practicing resilience (e.g., to prioritize training for many unlikely, but possible, 
system failures).

Finally, the concept of responsibility is a factor that cannot be ignored in AICA 
capability development. Responsibility is primarily a doctrinal and regulatory con-
cept influencing every dimension of high-risk operations.

Responsibility is a unique concept... You may share it with others, but your portion is  
not diminished. You may delegate it, but it is still with you... If responsibility is rightfully yours, 
no evasion, or ignorance or passing the blame can shift the burden to someone else.

– Admiral Hyman. G.  Rickover, United States Navy, known as the “Father of the 
Nuclear Navy” due to his role in developing the first nuclear-powered submarine.

8  Command Characteristics for AICA-Enabled Capabilities

The world is changing and so are the conditions for the command and execution of 
military, crisis management and business operations. Command approaches that 
worked well in the past may not be appropriate today (Alberts, 2018). The cele-
brated Mission Command concept evolved from high-intensity kinetic warfare (van 
Creveld, 1985; Lind, 1985), but its relevance to a wider spectrum of operations such 
as operations in the information and cognitive domains must be thoroughly 
examined.

8.1  Command in AICA-Intensive Operations Requires 
an Agility Mindset That Embraces Uncertainty

On Command and Leadership Under VUCA Circumstances
An Agility mindset represents adaptability to a variety of challenges and a readiness 
to act effectively and timely. It requires a global perspective with a focus on manag-
ing a wide range of interdependent agents and events, in remote, austere and hostile 
conditions (Norlander, 2019b; McChrystal et  al., 2015), and where Volatile, 
Uncertain, Complex and Ambiguous (VUCA) circumstances are the norm rather 
than the exception (Barber, 1992). AICA-intensive operations under these circum-
stances warrant the following command and leadership characteristics:
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• Volatility is amplified by accelerating change, in a world in which social, cul-
tural, and technological progress is exponentially increasing in ever-shorter 
intervals of time. In such an ecosystem, it is not enough to stay informed about 
the latest trends and data. Savvy commanders understand that there is now a 
mandate toward staying ahead of growth curves, and having the foresight to both 
know how to find breakthroughs to handle the inherent enterprise dynamics and, 
ultimately, create the future.

• Uncertainty pushes commanders to demonstrate more agility and active engage-
ment. In addition to technology driving the complexity of today’s environment, 
societal, economic, environmental, and political drivers converge to create new 
challenges and, more importantly, new opportunities. Progress in algorithmic 
technologies and cognitive systems enables a significant growth in the amount of 
information available for judgment and decision-making. Even the highest qual-
ity information will generally be associated with considerable uncertainty, ambi-
guity, inaccuracy and other deficiencies.

• Complexity compels commanders to remain focused on what’s next. To gain 
greater visibility about the future requires an instrument for building resilience, 
adaptability, and opportunity through recognition of emerging patterns. The 
number and diversity of the entities required to respond, the set of operational 
sub-domains in which they operate, the interdependencies between and among 
operations in these domains and the effects they create, all pose significant oper-
ational challenges is yet to be fully identified and appreciated.

• Ambiguity raises a number of leadership, trust and agency concerns regarding 
the needs, characteristics, interdependencies, and abilities of the involved human 
agents, AICAs, and joint systems. Ambiguity forces leaders to cope with poorly 
structured and imprecise knowledge, by employing a diversity of problem solv-
ing activities. In some cases the results are interpreted and converted into physi-
cal control signals to control and influence some physical process. In other cases 
the results are implemented as policy or directives (Tessensohn et  al., 2018), 
containing plans, orders, tactics, techniques and procedures for other human 
agents or AICAs to follow.

On Risk vs. Uncertainty
Risk is the probability of loss, injury or other negative results and this can be man-
aged by being quantifiable and controlled. This is the reason why the insurance 
industry exists, and the basis of all risk management and vulnerability assessment 
schemes, in industry as well as in government. Scholarly work on risk in the insur-
ance industry led to the development of the theory of asymmetric information by 
Joseph Stiglitz, who shared the Nobel Prize in economics in 2001 (Nobel Foundation, 
2001) with George Akerlof and Michael Spence.

An application of risk and probability theory that is of particular interest in the 
context of this volume is Bayes’ Theorem, and how it is utilized in Machine 
Learning. In short, Bayes’ Theorem is a method for calculating conditional proba-
bilities, or the likelihood of one event occurring if another has previously occurred. 
A conditional probability can lead to more accurate outcomes by including more 
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data. In order to obtain correct estimations and probabilities in Machine Learning, 
Bayesian classifiers are widely regarded as simple but high-accuracy approaches. 
Given their increasing prevalence across a wide range of domains, it’s critical to 
comprehend the importance of Bayesian inference algorithms in AICA-enabled 
operations, that are critically dependent on high-performance Machine Learning.

Uncertainty is a different animal, though, as it cannot be precisely quantified. 
The theory of uncertainty was not formalized until the twentieth century by Knight 
(1921). The central characteristic of Knightian uncertainty is: The higher the uncer-
tainty, the more possible outcomes, both positive and negative.

One thing that characterizes very successful entrepreneurs and innovators is the 
ability to identify the difference between uncertainty and risk, and exploit it for suc-
cess. They see value in uncertainty because they earn profits when the profits are 
significantly greater than what is generally expected. Information and influence 
operations, futures studies and forecasting are examples of exploiting and/or coun-
teracting uncertainty. This kind of information asymmetry is also a vital component 
in military operations, intelligence acquisition, and stock markets worldwide.

If higher uncertainty can provide strategic benefits, how will Human-AICA 
Command benefit from it? By exploring the uncertainty in domains that can have 
great potential while limiting possible losses. The essential point is that risk must be 
managed while uncertainty can be successfully explored, tested, validated and 
exploited. Another important thing is that this ability can be acquired through train-
ing and experience.

Cyber   defense and the agents that depend on cyber security can be considered as 
components of a very complex sociotechnical system. The socio-technical perspec-
tive spans studies of end-user security and integrity (where improving human inter-
action with software and hardware tools will improve security and reduce the 
likelihood of successful attacks), to the activities of business actors and government 
entities responsible for overall national cyber defense.

Closing the cognitive human-machine knowledge and performance gap – embed-
ding new behaviors, learning, and shared understanding as part of culture and nor-
mal activities – is a huge task, but it is ultimately the best defense against cyber 
attacks.

On Exaptation vs. Adaptation
Cognitive systems and agents employ different approaches to problems and the way 
in which they subjectively converge to a set of “useful” hypotheses forming the cur-
rent internal system model. Through this iterative procedure, adaptation to environ-
mental characteristics takes place as the agents or cognitive systems learn which 
hypotheses are most appropriate.

The conventional wisdom is heuristic search for an adaptive solution, searching 
for good combinations in a vast space of alternatives. An alternative approach is 
recursive, recombinant and multistage – or, in short, exaptive – driven by effectual 
behaviors that create a permissive local context that increases the likelihood for 
exaptation to occur (Weitzman, 1998). Exaptation has a direct bearing on the radical 
repurposing of artifacts, technologies, processes, skills, organizations, and resources 
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for emergent uses that they were not (initially) designed for. The potential for exap-
tation in AICA missions arises from the combination of heuristics, diversity and 
connectivity as influencing factors on the frequency and quality of exaptation.

Another aspect of exaptation is what really happens after an exaptive possibility 
arises (Dew et al., 2004; Dew & Sarasvathy, 2016), connecting technologies to mar-
ket niches by building those niches. This is a variant of organizational agility – how 
organizational entities shape their environments and create favorable circumstances 
for continued operations. This story of niche construction is theoretically less well 
developed however, particularly with regard to its behavioral aspects. These new 
advances offer exaptation opportunities for radical repurposing of theories and arti-
facts to new fields. Exaptation innovations can have considerable real-world impact. 
Innovation with an origin in exaptation would include autonomous intelligent agents 
and robotics in military missions and health care applications, nuclear energy opera-
tions, critical infrastructure and transportation technologies from the ocean floor to 
outer space.

The role of decision-making logic (effectual versus causal) and evolutionary 
morphology (exaptation versus adaptation) are critical drivers of disruptive innova-
tion since they influence organizational mindsets, operations and strategies. It would 
be worthwhile to study the logics and impact of these business models and evolu-
tionary forces on disruptive innovation. It is suspected here that disruptive opportu-
nity may be better created by ‘controlling’ uncertain future through effectuation 
strategies (where Knightian uncertainty is assumed) than ‘predicting’ the uncer-
tainty via causation strategies (where quantifiable risk is assumed).

The competing forces between adaptation (i.e. Darwinian natural selection) and 
exaptation.

(i.e. radical repurposing or unintended selection) create instabilities and disequi-
libria that result in Knightian uncertainty in the trajectory of the AICA mission. It is 
suggested here that the clash between the two main morphologies of evolutionary 
processes is an important causal mechanism that leads to disruptive innovation. The 
processes can also be described as the leveraging of existing knowledge to new 
applications, or “cross domain application”, with significant innovations as the 
result (Banerjee, 2008).

A New Agility Mindset – And New Policy to Support it
This change of mindset must be instilled at all levels: the individual agent, the col-
lective and the organisation/nation, utilizing this new mindset as an enabler of agile 
and adaptive behavior in AICA-intensive operations, and characterized by:

• Cognizance – Evidence-based, developed from both research, development and 
innovation with sufficient breadth and depth that coalesces into knowledge;

• Competencies – Based on quality, productivity and innovation;
• Context – Operational experience, domain understanding and an effects-focused 

value perspective;
• Creativity – Challenging established thought patterns and solves complex prob-

lems through adaptation, exaptation and learning.
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Building AICA-enabled capabilities requires a mental shift – striving towards an 
Agility mindset that permeates security and defence policy, legal and financial 
frameworks, science and technology agendas, strategy and operations. Visner (this 
volume) concludes that it will be necessary for policy makers and national security 
strategists to understand and be prepared for pursuing certain activities that will not 
be under their direct control, with consequences that may prove to be difficult to 
manage. Otherwise, this urgently required implementation of new methods, proce-
dures, technologies or organisational structures will not be sustainable.

8.2  Studies on Command, Systems Safety, Agents, Network 
Theory and Learning: A Foundation 
for AICA-Enabled Capabilities

Mission Command in Cyber Operations
Josefsson et al. (2019) explored the conditions for mission command in conducting 
cyber operations in two real-world cases: Stuxnet and NotPetya. They conclude that 
the distinction between war and peace has blurred and adversaries, both state and 
non-state, threatening the stability in many western countries. Mission command 
can be seen both as a philosophy and a method. The fundamental principles for mis-
sion command as a philosophy are trust, intent focus, initiative and common ground.

Dangerous Digitalization
Norlander (2019b) investigated four authentic cases ranging from vehicle accidents 
and natural disasters, to digitalized intensive care and antagonistic influence opera-
tions, all exacerbated or in some cases even directly enabled through dysfunction or 
failure of cyber-reliant safety, security and defence capabilities. Each case was ana-
lyzed with regards to agility characteristics and rated to what degree they were ful-
filled, and how human, technological and organizational agility influenced 
operational performance and consequences of systemic failure.

The AICA Reference Architecture
Kott and Theron (2020) formulate a vision of future opportunities of cyber defense 
tools, citing recent progress made by a NATO research task group IST-152, which 
developed an AICA reference architecture Kott et al. (2019) as a foundation for the 
way forward. This reference architecture is founded on the growing recognition of, 
and extensive use of, partially autonomous agents that actively patrol the friendly 
network, detecting and reacting to hostile activities far more rapidly than the reac-
tion time of a human operator. The suggested architecture framework for future 
cyber defense should be able to detect, decide and act before the hostile malware is 
able to inflict any major damage, evading or destroying friendly agents. This requires 
cyber-defense agents with a significant degree of intelligence, autonomy, self- 
learning, and adaptability. The report focuses on the following questions:
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• In what computing and tactical environments would such an agent operate?
• What data would be available for the agent to observe or ingest?
• What actions would the agent be able to take?
• How would such an agent plan a complex course of actions?
• Would the agent learn from its experiences, and how?
• How would the agent collaborate with humans?
• How can we ensure that the agent will not take undesirable destructive actions?

The cyber OE is a relatively new domain, with its unique characteristics. AICA- 
intensive operations that must counter the effects of cyber adversaries are forced to 
generate successful operational outcomes in milliseconds. Operating in the cyber 
OE amplifies the importance of joint operations, multiple perspectives, and collabo-
ration. Hybrid warfare, and the grey zone between peace and conventional war, has 
gained the western world’s attention for more than a decade (Pogoson, 2018; 
Wirtz, 2017).

The Power of Networks
The interconnectivity paradigm is ubiquitous, proven and resilient, in many domains 
apart from the cyber OE. According to Barabási (2009), the unarguable scale-free 
nature of networks of key scientific interest, from human-guided social networks, to 
evolution-originated protein interactions and interlinked documents that make up 
the WWW to the interconnected hardware behind the Internet, has been firmly 
established. Many robust, real-life networks, from the cell to the Internet, indepen-
dent of their origin, function, and scope, converge to similar, universal architectures. 
This has allowed researchers from different disciplines to embrace network theory 
as a common frame of reference. The evidence comes not only from better maps 
and data sets but also from the agreement between empirical data and analytical 
models that predict the network structure (Caldarelli, 2007; Dorogovtsev & 
Mendes, 2003).

Today the understanding of networks is a common goal of an unprecedented array of tradi-
tional disciplines: Cell biologists use networks to make sense of signal transduction cas-
cades and metabolism, to name a few applications in this area; computer scientists are 
mapping the Internet and the WWW; epidemiologists follow transmission networks through 
which viruses spread; and brain researchers are after the connectome, a neural-level con-
nectivity map of the brain. Although many fads have come and gone in complexity, one 
thing is increasingly clear: Interconnectivity is so fundamental to the behavior of complex 
systems that networks are here to stay.

– Albert-László Barabási

The Character and Composition of Human-AICA Command Capabilities
Human-AICA Command is contingent on policy, setting the framework for these 
contingencies and, not the least, for strategic, operational and tactical decision- 
making. In fact, decisions are only made within the realm of what is seen, under-
stood and accepted, and Norlander (2019b) asserts that decisions are made at policy 
level, as this is where the conditions and circumstances are determined, whereas 
decisions are taken within the organization, with adherence to the framework set by 
the policy level.
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Table 15.1 Characteristics of human-AICA command capabilities

Multiple 
Perspectives, 
Flexibly Managed 
Capabilities

Multifunctional, multi-organizational and multi-domain interaction 
towards a common objective
Working with intermittent teams and temporary coalition partners in joint, 
interagency, multinational and multi-dimensional operations
An ability to undertake missions and tasks in all operational environments, 
applying flexible methods and procedures for planning and execution
Understanding of the situation’s driving forces, and of the role of self 
and others in the overall campaign, its objectives, stakeholders and 
resources

Trusted, 
Distributed, 
Cognitive 
Capabilities

Trusted capabilities, where human and AICA entities and teams are vital 
components of an “Edge Organization” where decision rights and 
autonomy are granted to local operators to effectively cope with 
uncertainty, situational complexity and dynamics
Distributed capabilities, with a high degree of “Edge Computing”, i.e. 
local intelligence processing capability to provide data mining, data 
reduction, and reasoning from massive amounts of data
Cognitive capabilities, characterized by “Edge Cognition”, constituted by 
network-enabled information exchange, shared situational awareness, 
mission understanding and self-synchronization, when in a collective or 
coalition environment, to generate the intended effects

Adaptive, Exaptive 
and Learning 
Capabilities

Adaptation includes the ability to perceive, understand and deal with 
change requirements under time-, risk- and resource-critical conditions. 
This enables the force to develop during ongoing operations through its 
mission agility against variations in environment, mission, organisation 
and resource availability
Exaptation includes radical re-purposing under conditions of stress. driving 
an evolving, emergent system that is characterized by qualitative, structural 
change. It anchors success in the future on the tolerance and understanding 
of serendipitous perspectives, views, and ideas, since it is through the 
future implementation of some of these that survival will be achieved
Learning includes analysis of performance and conclusions of 
experiences from ongoing and completed campaigns are translated into 
action. Unexpected irregular threats and events are tackled through 
critical thinking, comprehensive analysis, rapid testing and experiments 
to improve efficiency and shorten the time from discovery to 
implementation

Operations in the grey zone are persistent and unending, and trusted cogni-
tive capabilities are essential for managing such elusive and adaptive threats in 
the information age. In multifunctional and multi-organizational operations, we 
must be able to adapt, learn and re-purpose on the fly to be able to undertake 
missions in all environments, including the cyberspace domain (Norlander, 
2019b). Table  15.1 illustrates the characteristics of Human-AICA Command 
capabilities, based on a modified analytical model originally developed by 
Norlander (2019a).
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9  Defining Command in AICA-Intensive Operations

To be able to define command in AICA-intensive operations, we must first decouple 
Command from Control, as was suggested by Pigeau and McCann (2002) and later 
by Teske et al. (2018). The fundamental distinction between Command and Control 
rests on two critically important and uniquely human characteristics: creativity and 
will. The central proposition in this chapter is based on the premise that only humans 
command, but that both artificial and human agents continuously control and exe-
cute mission and tasks. Pigeau and McCann suggested the following definition of 
Command:

The creative expression of human will necessary to accomplish the mission

Practical experience and historical examples suggests that creativity and anticipa-
tion is one of the most important requirements for Command. Control in the cyber-
netic sense involves perception, processing, action, and a feedback mechanism by 
which the real outcome is compared with the formulated goal, a mechanism that 
minimizes the difference. However, Control in military operations comprises more 
than such mechanisms. It implies the collaboration and interaction between person-
nel, facilities and procedures for planning, directing and coordinating resources in 
the accomplishment of the mission. In the context of AICA-intensive operations we 
find the definition of Control suggested by Pigeau and McCann to be well suited for 
supporting the development of AICA-specific command:

The act of enabling command and of managing risk using existing structures and processes

Because we assume that Command is performed by humans but supported by both 
human and artificial agents, we choose to define four fundamental components of 
Command capabilities in AICA-intensive operations separate from Control with its 
inherent dependencies on organizational structures, processes, technology, etc. The 
fundamental components of a Command capability for AICA-intensive operations 
are founded on original work by Pigeau and McCann (2000, 2001), further devel-
oped by Norlander (2011) and adapted for AICA-intensive operations by this author, 
comprising: Competency, Authority, Responsibility and Situation Awareness, illus-
trated in Fig. 15.3.

Competency
Commanders at all echelons need skills and abilities for accomplishing missions.

• Physical competency includes physical strength to fulfill the mission but also 
sophisticated sensory motor skills, good health agility and endurance.

• Intellectual competency includes using reasoning, critical thinking, creativity, 
flexibility, ability to constructive thinking and willingness to learn.

• Emotional competency includes resilience, hardiness and the ability to cope 
under stress. The ability to keep an overall emotional balance and perspective on 
the situation is critical.
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Fig. 15.3 The four 
fundamental components 
of Command in AICA-
Intensive Operations: 
Generating Effects through 
executing Missions in the 
Operational 
Environment (OE)

• Interrelational competency is essential for interacting effectively with subordi-
nates, peers, superiors, the media and other government organizations. It includes 
social skill with attributes of trust, respect, perceptiveness and empathy.

Authority
Authority is the degree to which a commander is empowered to act. There is a dis-
tinction between

• Legal authority, which is assigned from superior command and the degree of 
formal power given to an individual agent by the commanding organization, spe-
cifically, the formal power over resources and other agents.

• Individual authority, which is earned, for example, through reference or reputa-
tion, performance, integrity, experience, strength of character and example, by 
virtue of individual credibility; it is the degree of informal power given to an 
individual agents by other agents, including subordinates, peers and superiors.

Responsibility
Responsibility addresses the degree to which an individual agent accepts the legal 
and moral liability commensurate with command. As with authority, there are two 
components to responsibility, one externally imposed and the other internally 
generated:

• Extrinsic responsibility, involving the obligation for public accountability. 
Extrinsic responsibility is the degree to which an individual feels accountable 
both up to superiors and down to subordinates.

• Intrinsic responsibility, which is the degree of self-generated obligation that one 
feels towards the current mission. It is a function of the resolve and motivation 
that an individual brings to a problem — the amount of ownership taken and the 
amount of commitment expressed.
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Situation Awareness
To be able to project events, decide on course of action and exploit in situations, 
within an operational environment, commanders need Situation Awareness (SA). 
SA is basically about knowing what is going on around you (Endsley, 1995), indi-
cating that the commander has to be able to observe, assess, interpret and engage in 
operational objectives. Noel and Swarup (This volume) further explore Situation 
Understanding (SU) in AICA-specific environments and missions. We mean that 
SA or SU also means that the commander must understand the effects and conse-
quences of actions that are to be decided, through “action oriented understanding” 
as Brehmer (2006) defined it.

The principal concepts of the combined Pigeau-McCann-Norlander Command 
framework, including the concepts of explicit and implicit intent, the command 
dimensions, control support for command and the dependence on adequate SA have 
been assessed and applied in comprehensive cyber operations analysis (Josefsson 
et al., 2019). The framework has been proven to have excellent effectiveness for 
assessing command challenges, providing insights into contemporary and prospect 
command themes, and generating understanding of the command aspects of com-
plex multi-domain operations, like cyber defense. Also, the framework is consid-
ered to have wide-ranging validity for wide application to real world cyber defense 
situations, and thus would be useful to operators, policy makers, requirement ana-
lysts, training coordinators, boards of inquiry and strategic planners.

Communicating Intent Over Time, Space and Situational Dynamics
The significance of successful communication and understanding of the intent and 
standards of a mission, from the commander/manager to all subordinates/agents, is 
generally acknowledged in professional communities. Remote commanders have 
no other means to control a process except through the actions of local agents. Plans 
and procedures are too brittle to effectively guide the situation understanding and 
decision-making of these agents.

An on-site commander with high-level, systemic knowledge and a clear under-
standing of operational objectives would effectively adapt plans and procedures 
based on local conditions. Remote commanders, however, must remain in a position 
where they can retain a comprehensive system understanding and avoid exposure 
due to operational safety and security reasons (Shattuck & Woods, 2000). Since 
they cannot be physically present and execute with the same dynamics as local 
agents, they need to impart their presence to optimally influence the adaptation, 
exaptation and learning capabilities of all local agents.

When remote commanders impart their presence, they are equipping local agents 
with the strategic-level objectives, constraints, and tradeoffs of the system. Imparted 
presence empowers a local agent to make decisions similar to those that the com-
mander would make if the commander had been temporally and physically present. 
This interconnectivity also induces interdependence, a prerequisite for accurate col-
lective prediction of course of events, intra- and inter-unit co-ordination of actions 
and mission resource management. It is difficult to practice what is preached, 
however.
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Chatterjee, et  al. (this volume) present an overarching communication, multi- 
level architecture comprising AICA agents, central cyber Command & Control, and 
human operators. They propose two main architectural components for an 
AICA agent:

 1. A sense-making module, containing a state estimator and an action evaluator, and
 2. A decision-making module, containing a policy optimizer and a safety verifier.

The architecture approach proposed by Chatterjee et al. is an instructive example of 
how to develop communication architectures for AICA collaboration and negotia-
tion. Their Multi-Agent coordination and cooperation algorithms, and the related 
control architecture categories: decentralized, centralized, and hybrid, are of par-
ticular interest for studying, developing and implementing recursive Joint Cognitive 
Systems, containing both human and artificial intelligent agents, collaborating 
intensively but with a high level of autonomy. This is further elaborated upon from 
a AICA Command capability perspective below.

A Recursive Perspective of Command Dynamics in AICA-Intensive 
Operations
Rapidly unfolding events, actions by other (friendly or hostile) agents, and VUCA 
situational dynamics in the OE can jeopardize Human-AICA operations through 
loss of control. According to Worm (2000), situational dynamics are determined by 
large and transitory variations in the unit’s capability to accomplish its mission 
regarding:

 1. Gathering, processing, utilization and distribution of available and relevant 
information indicative of the mission, the actions taken and the operational envi-
ronment, i.e. observation, communication and interaction.

 2. Rapid and accurate generation and sustainment of a coherent and cohesive situ-
ation understanding at the individual agent and team levels resulting in an accu-
rate and shared mission model, i.e. situation assessment, state determination and 
system representation.

 3. How agents, control functions and commanders manage, anticipate and control 
the course of events during the mission, and construct and select alternative 
actions when the situation changes in an unanticipated way, i.e. adaptation, pre-
diction and co-ordination.

 4. Utilisation, deployment, protection and sustainability of available human, tech-
nological, organisational and logistical resources, and determination of outcome 
and effect of the mission related to the resources put into action, i.e. mission 
resource management and mission efficiency.

The previously referred case studies by Josefsson et  al. (2019) and Norlander 
(2019b), and the cases described in this volume represent different aspects of emer-
gent crisis dynamics in the command function, i.e. the commander and support 
functions temporarily losing their ability to think ahead and anticipate the forthcom-
ing course of events, disabling command and succumbing to risk due to existing 
structures and processes, to paraphrase Pigeau and McCann.
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According to Beer (1981), already the expectation of losing control counts as a 
crisis, requiring commander guidance and intervention. Beer (1981) defined a com-
prehensive recursive model called the Viable Systems Model (VSM) based on 
cybernetic principles and organization theory. VSM represents a system of systems 
perspective in different levels of Command and has a Control component on 
each level.

In this context we need to use a model that describes Command, Operational 
Environment, Missions and Emergent Effects at different echelons. We base our 
work on an execution and control model developed by Worm (2000, 2001) and 
Norlander (2011, 2014), which we further developed into a recursive multilevel 
Mission Execution and Command Model (MECOM), adapted to represent 
Command and generation of Emergent Effects through executing Missions in the 
Operational Environment in AICA-Intensive Operations. The model is depicted in 
Fig. 15.4. The recursive structure illustrates the fact that Command capabilities are 
used in a hierarchy with several echelons of Command.

Fig. 15.4 The recursive multilevel Mission Execution and Command Model (MECOM) of 
Command in AICA-Intensive Operations, generating emergent effects in the operational environ-
ment. (Adapted from Norlander, 2014)
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10  Recommendations: Developing an Essence of Command 
for AICA-Intensive Operations

A conflict situation within or with operational reach into the cyber domain can rap-
idly escalate or change character in fractions of a second, and this requires adequate 
response times. This is beyond the ability of humans, hence requiring the use of 
high-performance, automated cognitive cyber capabilities such as AICAs. 
Furthermore, without the appropriate distribution of information, and the necessary 
decision rights to the AICAs that match their required level of autonomy, the deci-
sions and actions needed for success in AICA-intensive operations will not be 
achieved in a timely manner. Reduction of response times enables losses of cyber 
capability to be minimized, or restored more quickly if degraded. This would indi-
cate that command approaches that can respond more rapidly to changes in circum-
stances (e.g., a loss of cyber capability or an unforeseen cross-domain system 
shock) would be more appropriate for operating in a contested operational 
environment.

In addition to the ability to act in a timely manner to exploit or manage rapidly 
changing circumstances, the requirement to interact and collaborate in Joint Systems 
Operations call for command approaches that:

 1. Utilize multiple paths for information dissemination,
 2. Adapt its interactions to changing circumstances, and
 3. Dynamically delegate decision rights between AICA and human agents.

We propose formulating a future-oriented essence of Multi-Domain Cognitive 
Command, with equal relevance and applicability on human operators and AICAs. 
The following is a first attempt, with six overarching conceptual mainstays:

 1. Command in future security and defense operations will be complex, laborious 
and in many cases mission-critical, requiring unprecedented vigilance, aware-
ness and determination. Decision-makers and operators will frequently encoun-
ter uncertainty, risks, time-criticalities and resource shortages.

 2. Operational characteristics will be highly dynamic and non-linear; Minor events, 
decisions and actions may have serious and irreversible consequences for the 
entire mission. Success in future security and defense operations requires 
extraordinary capabilities to operate in contested operating environments, and to 
master the Command challenges of complex systems and interdependencies.

 3. Mission success is strongly linked to effective interaction and collaboration 
within and between different organizational cultures, between people with dif-
ferent backgrounds, education and experience, non-human autonomous and 
intelligent systems, and on managing and maintaining operational availability, 
versatility and efficiency.

 4. Operating in a contested mission environment requires Comprehensive 
Operational Awareness, with the abilities to accurately and rapidly perceive and 
 interpret relevant events and circumstances in order to provide the context, 
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insight and foresight required for effective decision-making, enabling every 
commander and operator to develop a wide-ranging appreciation of the situation.

 5. Joint Systems Operations are of particular concern; while some operational tasks 
necessarily would employ human agents, other tasks can only be accomplished 
through non-human intelligent entities, acting autonomously within the socio- 
technical enterprise. This requires adaptive and versatile principles and concepts 
for Joint Systems Operations along with high-performance human, technologi-
cal and organizational architectures – cognitive mission architectures.

 6. The turbulent environment in which Joint Systems Operations play out stresses 
the need further for Organizational Agility, to be adaptable and resilient without 
having to change. The goal is to keep internal operations at a level of fluidity and 
flexibility that matches the degree of turmoil in external environments, a princi-
ple known as requisite variety.

The number, characteristics and diversity of AICA and human agents, the opera-
tional domains and sub-domains in which these entities operate, the interdependen-
cies between and among operations in these domains, and the emergent effects they 
create, constitute efficient performance-influencing factors on an operational unit’s 
tolerance of capability degradation before any significant loss of mission capability 
is manifested. However, maintaining performance through actively measuring, 
interpreting and regulating these factors pose significant challenges not yet fully 
anticipated nor appreciated  – a major Scientific, Technological and Operational 
challenge.

Based upon an analysis of the empirical evidence from case studies, and theoreti-
cal concepts from Human Factors, systems safety, risk management, autonomy and 
Machine Learning, and supported by organizational agility theory, we conclude that 
developing and implementing agile AICA Capabilities, with its inherent competen-
cies, methods, technologies, procedures and structures, depends heavily on adapta-
tion, exaptation, learning and collaboration (Cognition-Centric), traits that are at the 
core of AICA-intensive Operations.

Management commitment is required, all the way through policy and doctrine to 
Tactics, Techniques and Procedures. Organizations need to be able to employ a 
Multi-Domain Operational approach, understanding when different approaches are 
appropriate (Context-Centric), coupled with decision rights enabling timely and 
efficient transition between approaches (Decision-Centric).

Organizational Culture is the personality of the organization, and needs to be 
based on flexibility, deliberate risk-taking, openness to change and tolerance for 
error (i.e. a learning culture). We are advocating agility and adaptability as guiding 
principles since an adaptive organization requires a philosophy of leadership com-
prising curiosity, learning, boldness and dynamism, where initiative is rewarded and 
the bar is set high towards excellence.
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11  Summary and Conclusions

This chapter examines command capability in general and command in AICA- 
intensive operations in particular, and  emphasizes  three principal characteristics 
of Cognitive Command, with equal relevance and applicability for human opera-
tors  and artificial agents: A) Make Uncertainty and Awareness your Allies, B) 
Stagnation Equals Defeat, and C) Cognitive Command is Multi-Domain Joint 
Systems Command. A crucial factor in achievement of mission objectives in AICA-
intensive operations is that all actors and partners can be consolidated into an archi-
tecture that is:

 1. Generic – represents all relevant capabilities, artificial and human alike,
 2. Scalable  – across all capability categories (or business areas) and organiza-

tional levels,
 3. Shared – accepted and used by all agents, commanders and stakeholders.

Operating in a contested mission environment requires comprehensive situational 
awareness, with the ability to accurately and rapidly perceive and interpret mission- 
relevant events and circumstances, in order to provide the context, insight and fore-
sight required for effective decision-making and action. Complex multi-domain 
operations are of particular concern; while some operational tasks necessarily would 
employ a human component, other tasks can only be accomplished through non- 
human intelligent entities, acting autonomously within the socio-technical 
enterprise.

The Joint Cognitive Systems (JCS) body of research was utilized to overcome 
the duality of traditional human-machine research, focusing on better understanding 
what people actually do with technology rather than what functions belong to the 
machine and what functions belong to the human. The Complex Adaptive Systems 
(CAS) body of research contributed with characteristics of self-learning, emer-
gence, and evolution among the entities of the complex system, demonstrating het-
erogeneous and adaptive behavior. According to the body of research for Autonomous 
Adaptive Agents (AAAs), an agent is also viewed as a team member, meaning it is 
able to autonomously complement human decision-making when executing 
its tasks.

Building AICA-enabled capabilities requires a mental shift – striving towards an 
Agility mindset that permeates security and defence policy, legal and financial 
frameworks, science and technology agendas, strategy and operations. Employing 
the JCS, CAS and AAA paradigms for AICA-intensive operations permits the inte-
gration of all capability elements into an adaptive distributed system that can achieve 
a mission safely and efficiently. Based on these studies and with the support from 
other fields of study, we devised a number of strategy elements as part of an essence 
of command for AICA-intensive operations.

Finally, we brought together the above AICA-relevant body of knowledge into a 
recursive, multilevel Mission Execution and Command Model (MECOM), adapted 
to represent Command Competency, Authority, Responsibility and Situational 
Awareness in AICA-Intensive Operations.
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Chapter 16
Risk Management

Alexandre K. Ligo, Alexander Kott, Haley Dozier, and Igor Linkov

1  Introduction

Risk management is an important topic in research and practice of cybersecurity 
(Hubbard & Seiersen, 2016; Oltramari & Kott, 2018). One situation of interest 
involves the assessment of risks that a certain system or mission is exposed to, fol-
lowed by an analysis of possible strategies to mitigate those risks. For a given miti-
gation strategy, one can evaluate how much of the risks assessed initially are 
eliminated or reduced. However, we must not forget to account for new risks that 
might be introduced by mitigation strategy itself.
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This chapter is a discussion of risks that might emerge when AICA are adopted as 
part of a defense strategy. These risks can be associated with AICA inherent com-
plexity. The concept and reference architecture of AICA was developed by NATO for 
military missions. Earlier in this book, Norlander notes that the military and other 
critical domains require extraordinary awareness and management of risk. This is 
because in these domains a successful cyberattack can result in death, injuries, or 
catastrophic material damage – a well-known example is the impact that the Stuxnet 
malware caused on Iran’s nuclear program and its probable weapon capability (Kott 
& Linkov, 2019). In contrast, Norlander argues that in commercial operations objec-
tives such as operational reliability, availability, and high technical performance at 
the lowest possible cost have priority over risk mitigation. Nevertheless, even in such 
commercial applications the use of AICA-like defenses may become essential. For 
example, intrusion detection and prevention systems tend to be increasingly autono-
mous given the rise in sophistication and frequency of cyberattacks, as well as the 
potential financial loss these attacks cause. Manual or semi-automated defenses will 
not be able to respond in required time, scale, and accuracy.

The inherent complexities of AICA in military missions and AICA-like systems 
in commercial applications introduce new kinds of risk. Norlander’s chapter argues 
that AICA fits the definition of a cognitive system as one that can” modify its pattern 
of behavior on the basis of past experience in order to achieve specific anti-entropic 
ends”. This would introduce specific risks may be related to AICA malfunction or 
AI bias, unintended effects arising from swarm-like behavior, communications or 
coordination failures among agents, or even attacks targeting AICA themselves. 
In this chapter we introduce the types of new risks, their consequences, and possible 
ways to mitigate them while preserving the AICA mission.

2  Types of Risks Introduced by AICA

Vast amounts of historical data about cyber activity are increasingly available. 
These data include logs of login attempts, domain resolution or webpage requests, 
application programming interface (API) calls, network traffic, and other activities. 
It is expected that AICA make use of these data to enhance AI algorithms by train-
ing machine learning (ML) models that detect future attacks (Kott & Theron, 2020). 
The enhanced AI capability translate into unsupervised actions that bring both 
opportunities and new risks. Some of these risks include flawed AICA actions due 
to wrong AI predictions. “Black box” AI models (discussed earlier in this book by 
Fitzpatrick) make it hard to prevent AI errors (Linkov et al., 2020). Likewise, data 
that are biased or contaminated with measurement errors may also result in wrong 
AICA predictions or actions (see Drasar’s chapter on perception). Moreover, inten-
tional hacking or destruction of the AICA themselves is also a risk.

Another type of new risks is related to collective AICA action. First, multiple 
agents may be required to cooperate with each other to achieve the scale or scope 
required for a given defense. Communications failures due to packet loss, poor 
signal- to-noise ratio, or network congestion impair coordination and action. Second, 
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communications between AICA may be intentionally corrupted by malicious 
agents. Finally, a group of AICA might exhibit swarm behavior that differ from the 
action of individual agents in unpredictable ways.

3  Consequences of Risks Introduced by AICA

Risks arising from AICA may have harmful consequences of functional, safety, 
security, ethical, or moral nature. Such consequences can be imposed on parties 
who do not benefit from the AICA actions or do not agree to accept the respective 
risks (Morgan, 2017). Types of consequences from AICA-specific risks include:

• Functional consequences: AICA might inadvertently impair the system’s mis-
sion or functionality. One example is AICA needlessly shutting down service to 
avert an attack.

• Safety consequences: AICA might injury or kill system’s operators or communi-
ties. For example, AICA take action against a cyberattack on an oil refinery, but 
the defense might inadvertently disable critical control systems and cause an 
explosion killing residents nearby (Ligo et al., 2021a).

• Security consequences: AICA might inadvertently create vulnerabilities that 
enable unauthorized access or data breaches, with consequences similar to the 
breach of Equifax data in 2017 that followed from vulnerabilities in Apache 
software (Federal Trade Commission, 2022).

• Ethical, moral or unfair consequences: AICA algorithmic biases might result in 
defenses that produce questionable results or prioritize certain groups over oth-
ers. This includes considerations about whether AICA should maximize benefits 
for immediate stakeholders over social welfare at large. For example, should a 
self-driving car prioritize the safety of its occupants even if it exposes nearby 
pedestrians to increased risk?

The awareness of the nature of AICA-related risks or the possible consequences of 
these risks does not make AICA safer or more effective. Moreover, mitigating these 
risks is likely a challenging task. Nevertheless, understanding the nature and conse-
quences of new AICA-related risks is a required step towards an evaluation of the 
net benefit of deploying AICA.  In other words, are the risks mitigated by AICA 
more important than the new ones that are introduced? A different but related ques-
tion is how these new AICA-related risks can be mitigated, which you increase the 
net value of AICA.

In the next sections we discuss possible mitigation strategies in deploying AICA 
that enhance cybersecurity and cyber-resilience while minimizing new risks. In par-
ticular, we discuss the human role in the design and control of defenses, as well as 
design or algorithmic strategies. While this discussion is non-exhaustive, it provides 
possible directions of research in risk management for AICA.
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4  Human-Centric Approaches with Real-Time Cooperation

The natural remedy to mitigate the novel risks of harm caused by AICA is to have 
them team up with humans. This collaboration is essential not only from a risk per-
spective but also to ensure effective mission accomplishment, as noted by Norlander 
previously in this chapter for military operations – where he articulates the concept 
of Joint Cognitive Systems (JCS) for the interaction between humans and AICA.

However, having AICA depend on real-time human action may not help and in 
fact may cause other problems for certain cyber-defense scenarios. The vision for 
AICA includes their ability to respond faster than humans, or at a larger scale. 
Hence, human intervention may be detrimental to the autonomous defense. For 
example, intrusion prevention systems (IPS) may be able to autonomously avert 
data breaches in a fraction of a second. However, this is not the case if the IPS is part 
of a semi-automated workflow when human operators are required to review alerts 
or approve blocking of requests and addresses. Moreover, even a well-trained and 
alert human operator may slow down defenses against large scale attacks that target 
several points of the system simultaneously.

Another problem is that a human taking over during an attack (after AICA initi-
ated maneuvers) may not have the level of situational awareness required for ade-
quate defense and ruin it (Kott et  al., 2014). Consider the related and perhaps 
familiar context of autonomous driving described in (Ligo et  al., 2021a). The 
Society of Automotive Engineers defines a five-level scale of vehicle automation 
(Automated Vehicles 3.0 – Preparing for the Future of Transportation, 2018). In all 
but level 5, a human driver is expected to take control over the machine during an 
emergency. Consider the scenario of a self-driving car in level 3 or 4, thus having a 
human driver in stand-by, when a child runs into the street from between parked 
cars. If the human tries to retake control to swerve and miss the child in its path the 
vehicle could override the driver. If the vehicle senses the child and begins a 
collision- avoidance maneuver, then any human operator action may ruin the auto-
mated system’s plan for avoiding a collision, or the person’s reaction time may be 
dangerously longer than the time taken by the machine. If neither the human nor the 
vehicle does anything, there will be a dead child and liability for all involved. As 
long as the probability of error by the vehicle is sufficiently low, the best course of 
action is that the human driver does not interfere with the autonomous operation 
after the collision-avoidance maneuver starts.

The car example has similarities with autonomous cyber-defenses teaming with 
humans. For example, both types of systems require quick and accurate decision 
making. If machine action (either assisted by human or not) is not effective, nega-
tive consequences from AICA may follow. However, there is a key difference 
between driving and AICA action. Autonomous cars are designed to replace a 
human ability  – driving. Therefore, a trained human driver can usually take the 
wheel and achieve currently acceptable driving performance if enough time is avail-
able. On the other hand, autonomous cyber-defenses may need to perform “super- 
human” defenses with respect to response times, volume of data processed, or scale 
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of response. These attributes of AICA make it impossible for humans to intervene 
appropriately.

Therefore, humans should avoid interfering with the operation of AICA after 
they determine and start a course of action. This is especially true in situations when 
there is not enough time for the human to acquire situation awareness, decide, and 
respond.

Should we never have human-in-the-loop in real time? If humans should not 
interfere with AICA when a planned course of action is underway, are there any 
exceptions? There is no single solution that satisfies every situation. If AICA take 
risky or harmful action but the human alternative is not safer nor less damaging, 
then there is no value in overriding the AICA. However, in practice evaluating which 
action is preferred – machine or human – is not straightforward. Perhaps there is no 
time to evaluate because a cyberattack is already underway, or there is not enough 
information, or the AICA course of action is not entirely explainable. In these situ-
ations, it is not entirely clear when humans should override AICA, it at all.

5  Human-Centric Approaches 
with Data-Driven Intervention

With unknown risks and challenges of determining human-machine cooperation 
during cyber-defense operation, it is beneficial to consider some form of “offline” 
cooperation, or ways in which modelers can shape AICA behavior before agents are 
deployed. There are at least a few general approaches for such offline intervention. 
One is related to the data engineering processes involved in training machine learn-
ing models.

Machine learning algorithms are often categorized with three general types: 
unsupervised, supervised, and reinforcement learning. Unsupervised machine 
learning refers to the type of algorithms that identify patterns in data. For example, 
unsupervised learning algorithms such as k-means clustering could be applied to 
historical data from cyberattacks to learn classes of malware with respect to their 
signatures, impacts or other features that might be present in the data. This might be 
useful when AICA respond uniquely to different types of malware.

In contrast, supervised machine learning is a type of algorithms that depend on 
previously labeled data that represent an outcome of interest. These labels are often 
provided by humans to enable the algorithm to train a model that represents the 
relationship between features in the data and the outcome. For example, in email 
spam detection features may include the relative frequency of upper-case letters, 
number, symbols or other clues that distinct spam from legitimate messages. In this 
example the outcome is whether a given message is spam. The goal of the algorithm 
is to use labeled data (i.e., messages that were previously classified as spam or not 
spam, typically with human assistance) to fit the model’s parameters (Goodfellow 
et al., 2020).
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In general, the majority of AI algorithms is based on supervised learning. This 
prevalence is likely to be true in AICA as well, as supervised learning algorithms are 
building blocks of cybersecurity and autonomy to monitor user activity and traffic 
to detect malware and attacks. This is a major opportunity for humans to shape 
AICA behavior and mitigate their specific risks. Data scientists and engineers pro-
vide labeled training samples that ideally represent the population of individuals, or 
in our case, cyber-events of interest.

However, this opportunity is highly dependent on the availability of labeled data 
that is representative of the future scenarios of AICA action. Quality data is scarce 
or expensive. For AICA-induced risks of functional, safety and security conse-
quences, it is probably unknown the exact extent to which insufficient data increase 
such risks. Moreover, regarding AICA-specific risks of ethical, moral or unfair con-
sequences, there is a growing body of literature on how biased data can lead to 
algorithmic bias, or ML models that produce outcomes that are racist or otherwise 
exacerbate inequality (Ligo et al., 2021b; Linkov et al., 2020; Vincent, 2018). These 
biases are again caused by labelled examples that are insufficient or not 
representative.

Another challenge is measuring how much of AICA-specific risk is mitigated 
with improved labeling. In today’s systems, the influence of labeled data on perfor-
mance of machine learning models is assessed and the data updated on a regular 
basis. For example, an intrusion detection system may include a supervised learning 
algorithm trained with historical data from attacks. The trained model will probably 
have high classification precision – able to detect most of the intrusions with a small 
number of legitimate users flagged as malware (false positives). However, it is not 
uncommon for the precision of these classification systems to fade over time. This 
is because malware and attack characteristics change over time, as do legitimate 
applications, causing the number of misclassifications to increase over time (false 
positives of legitimate use being classified as intrusion and false negatives of attacks 
being classified as normal use). As AICA become more autonomous, it is likely that 
an increasingly greater number of more sophisticated supervised learning models 
will be deployed. This will imply that AICA will require more and more up-to-date 
labeled data to re-train the algorithms more frequently than today’s spam or fraud 
detection systems. Research will be needed to fully understand how much new 
labeled data and at what frequency will be needed by AICA, and how much risk 
mitigation can be achieved per byte of fresh data.

Besides, no amount of labeled data can account for “black swans.” Taleb defines 
those as events that are so unlikely and impactful that they are impossible to predict 
(Taleb, 2007) – think about 9/11. People naturally collects lots of data and derive 
conclusions after black swans occur, but their unique nature prevent the use of data 
about past black swans to accurately predict the next one. For example, the emer-
gence of the Internet is a life-changing but singular data point – knowing its history 
does not allow to predict when the next life-changing technology will emerge nor 
what its impact will be. Likewise, AICA based on supervised machine learning is 
good only to defend against attacks that are similar to previous ones.
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6  Human-Centric Approaches Based on Algorithm Design

Because of the challenges mentioned in the previous section, human intervention 
should go beyond providing labeled data for supervised machine learning. A second 
and perhaps more direct approach for human control of AICA relates to resilience 
by design (Kott et al., 2021) and refers to the choice and development of machine 
learning algorithms themselves.

One possibility is reinforcement learning (Sutton & Barto, 2020), which is a 
promising choice for AICA algorithms (Cam, 2020). Reinforcement learning (RL) 
is the category of machine learning algorithms that interacts with an environment or 
simulation in a recurrent way. This typically involves models that perform a series 
of tasks over time while managing a balance between long and short-term objec-
tives. In this way, an RL-based AICA can try a certain course of action and measure 
the outcome based on how well the objectives were met and relative to how “impor-
tant” those objectives are thought to be. If the outcome contributes to a long-term 
goal (for example, avert a cyberattack or restore service), then a relatively strong 
reward input is fed back to algorithm as a signal that the current course of action 
should be kept. On the other hand, if the outcome does not contribute to the long- 
term goal (e.g., there is no significant restoration), then the reward is relatively 
lower or negative to signal that the algorithm needs to change its course of action. 
As a cyber-defense example, consider a combat scenario in which AICA are 
deployed to defend a series of targets. The long-term and highest rewarded goals of 
such a scenario would be for all targets to remain intact as well as for the mission to 
be carried by the targets as planned. Additional goals may be set for desirable, but 
less important, outcomes (e.g., minimizing resource use) and when met, can be 
marginally rewarded.

Cam provides a conceptual model that is applicable to AICA, in which RL is 
used to predict actions from attackers and enable agents to counterattack appropri-
ately (Cam, 2020). However, the proposed model does not include mitigation of 
specific AICA-related risks. Nevertheless, RL opens the possibility for design 
choices in which the optimization of the long-term goal of the algorithm could 
include the minimization of AICA risks. If probability or consequence of these risks 
can be measured over time, then they can be incorporated into the reward of the RL 
algorithm to minimize long term AICA risk over time.

One possible design choice might be to have an RL-based agent to control AICA- 
specific risk as a separate agent from the AICA themselves. In other words, this 
would be a design of agents controlling other agents – AICA performing the main 
cyber-defense mission and coexisting with other agents specialized in monitoring 
AICA courses of action, estimating risk, and acting either to change AICA opera-
tion or to remedy whatever damage the AICA cause. This hypothetical architecture 
highlights another data challenge. Data about rare cybersecurity events is… well, 
rare. Data from autonomous agents that allow the inference of the incremental risk 
and negative impact of the agent’s actions should be even scarcer. Furthermore, to 
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our knowledge human-labeled data of actions, risks, and negative impacts of agents 
is probably non-existent.

Another possibility of human intervention with AICA to mitigate risk through 
algorithmic design could be inspired by generative adversarial networks (GAN). 
Conceptually, a GAN is a pair of “competing” machine learning algorithms 
(Goodfellow, 2016). One is a “generative” neural network that is trained to deter-
mine its parameters to approximate an unknown distribution of examples that are 
fed to the generative system; it then generates synthetic examples that are as similar 
as possible to the original data. The other algorithm is a “discriminative” neural 
network that is trained to classify whether given examples come from the original 
data or are synthetic examples output by the generative algorithm. The result of the 
classification by the discriminative system are fed back to the generative algorithm 
for improvement. The two networks are then trained simultaneously. Ideally, the 
networks interact until the generative model outputs examples for which the dis-
criminative network would assign the same probability as for real examples, mean-
ing that the discriminative network can no longer differentiate the output from the 
generative network from the original data.

We hypothesize that algorithms like GANs could be used for incremental risk 
mitigation. Data would be provided from a set of possible AICA courses of action 
that result in acceptable functional, safety, security, ethical, and moral consequences. 
AICA would play the role of the generative part of this GAN-like system, meaning 
that AICA would approximate acceptable courses of action as close as possible. On 
the other hand, a discriminative algorithm would be fed both the data on acceptable 
actions and data about AICA actions and try to discriminate the origin of the fed 
data. The output of the discriminative algorithm would be fed back to AICA in order 
to re-adjust their actions and make them as similar as possible to the acceptable 
courses of action (Ligo et al., 2021a). Once again, this concept implies a data chal-
lenge. Available data on acceptable actions needs to be collected and curated (prob-
ably by humans) to be fed both the AICA and the discriminative algorithms.

7  Simulation of Strategies

Most of the strategies discussed so far for mitigation of AICA-related risks involve 
gathering, labeling and/or curation of data by humans at some degree. AI algorithms 
in cybersecurity, computer vision, natural language processing and other applica-
tions are based on deep learning algorithms, which are particularly known to 
demand massive amounts of data (Goodfellow et al., 2016). What is worse is that 
data about risks, consequences and/or acceptable courses may simply not exist. 
Moreover, strategies based on historical data will not work for novel threats and 
situations.

This limitation in data urges the exploration of other opportunities. One general 
way to manage risk is to anticipate outcomes by simulation. AICA-specific risks 
could then be inferred by a simulation of outcomes that are synthetized and labeled 
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for supervised learning algorithms of AICA. There are advantages and disadvan-
tages with this approach. One advantage is that while real data is limited to histori-
cal events that were recorded and labeled, synthetic data is limited only by human 
imagination – new attacks, disasters or accidents can be conceived and simulated. 
Disadvantages of simulated data include simulation models that are simplistic or 
unrealistic representations of systems or attackers. For example, simulations of 
cyber events can be simple tabletop exercises where the scale and complexities of 
the real system, attacks and AICA are not considered. These exercises are useful to 
review human procedures, but the data resulting from the simulation may not be 
useful to train AICA’s supervised learning models.

Another possibility is if AICA have a built-in (or have remote access to) a simu-
lation system that estimates risks and likely outcomes of a given course of action 
before AICA triggers that action. Estimation the optimal course of action is likely to 
be extremely complex, as noted by Ma in the chapter about recovery planning using 
simulation. Therefore, it is probable that a simulation of outcomes needs to be a 
digital twin  – a high-fidelity and probably expensive representation of both the 
AICA and its environment (i.e., the system being defended). In any case, the reli-
ability of the simulated outcomes is a risk in itself – a wrong estimate of risks and 
outcomes would result in overconfidence about the chosen course of action, which 
may lead to negative consequences.

The feasibility of use of simulation with AICA depends on a trade-off between 
fidelity, scenario complexity, and computational cost. A “physical” example of the 
advantages and disadvantages of simulation for risk assessment and reduction is 
demonstrated in the Operational Analysis community through the use of simulation 
software, such as the Advanced Framework for Simulation, Integration, and 
Modeling, or AFSIM (Clive et al., 2015; Dozier, 2021). AFSIM is a framework that 
can be leveraged to develop and visualize either high or low fidelity combat engage-
ments (Fig. 16.1). For example, in a simulation an air combat platform can be rep-
resented simply as a point in space traveling along a vector or as a 

Fig. 16.1 An example of a simple (left) and more complex (right) simulation within AFSIM 
involving air and ground units. The computational expense of the simulation in the right figure is 
much higher due to many factors including the number of platforms in the engagement, missile 
tracking, communications between platforms, radar, and routing
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six-degree-of-freedom (6-DOF) model with the ability to realistically change speed, 
altitude, and direction using the AFSIM physics engine. With high fidelity models, 
AFSIM users are able to gain an accurate assessment of the success of the simulated 
mission, but this level of fidelity comes with a high computational cost. The expense 
of complex, high fidelity simulations and models prohibits the use of simulation in 
real-time, and therefore limits “on the spot” engagement outcome evaluation. 
Therefore, when simulation results are required quickly, lower fidelity simulations 
with less accurate outcomes must be utilized.

8  Software-Centric Strategies: Constraints 
to AICA Algorithms

We have discussed the use of several types of machine learning algorithms as ways 
for humans to intervene with AICA at design time, aiming to mitigate the risk of 
negative consequences arising from AICA actions. Another form of human inter-
vention through algorithmic design might involve an explicit design of constraints. 
The obvious analogy is Asimov’s three laws of robotics (Asimov, 2004): (1) robots 
may not injure humans; (2) robots must obey orders given by humans unless they 
violate (1); and (3) robots must protect themselves unless the protection violates (1) 
or (2). The analogy might look silly when considering the complexity of AI sys-
tems. However, it is illustrative of the use of rules explicitly defined by humans, as 
opposed to rules learned by AICA and derived from the data available, sometimes 
in a non-explainable way.

Constraints are imposed at the design phase in such a way that if the behavior 
learned from data by the AICA violates those rules, then the agent’s course of action 
is aborted or reversed. For example, the AICA might learn to shut down an oil pipe-
line in the event of unauthorized access. But what if that line is critical for heating 
to a certain community in a cold day? An explicit rule could cancel or remedy the 
action executed by AICA.

While the idea of constraints may look simple, rule-based programming can be 
challenging and has limitations. Defining rules for every single condition is imprac-
tical for certain applications. Consider a search engine, for example. If one imple-
mented it exclusively with rules like “if the search term is X then return Y”, they 
would need to code an “if” statement for every possible search term. This is imprac-
tical to code and maintain because the number of “if” statements would be in the 
order of billions, if not trillions (it is estimated that Google processes 1.2 trillion 
searchers per year) (Internet Live Stats, 2022). Nevertheless, it may be possible to 
design generic case-based rules or principles that can be coded to limit the degrees 
of freedom for the courses of action, preventing AICA to learn or execute actions 
that violate pre-defined functional, safety, security, ethical, or moral limits for the 
outcomes. Of course, no rule is able to avoid outcomes that are unknown, but this 
problem is present with any of the other approaches as well.
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9  Summary

In this chapter we discussed how AICA may introduce new risks. These risks might 
overshadow the cyber-defense improvement brought by the intelligent agents. Types 
of new risks include flawed AICA actions caused by faulty algorithms or training 
data that is biased or tampered, or flaws arising from collective AICA behavior that 
is not observed from individual agents. These AICA-introduced risks may produce 
harmful outcomes of functional, safety, security, ethical, moral or equity nature. 
Such consequences demand mitigation strategies that prevent AICA risks to surpass 
their benefits.

An intuitive approach is to consider human cooperation and oversight of autono-
mous agents. However, human intervention in real-time during AICA action or 
operation is not recommended in some situations because it may make the harm 
worse. This includes situations in which humans cannot respond within the time or 
scale required to absorb or recover from the attack or disaster, or when humans can-
not acquire the situational awareness required for the action.

There are options of human-centered strategies that allow humans to shape AICA 
behavior before they choose and execute a course of action. One option is to provide 
labeled data for the training of supervised learning algorithms of AICA that miti-
gates risk. One challenge is to determine the amount of training data required to 
mitigate risk, or even gather historical data that is representative of cyber-defense 
scenarios that are relevant for AICA training. Another challenge is how to measure 
risk mitigation itself, including the determination of how frequently the assessment 
of AICA-related risks should be executed. Finally, training AICA exclusively on 
historical data restricts their behavior to what has already happened in the past and 
is of no help to mitigate risks that are totally new.

A second strategy is to focus on the choice and design of machine learning algo-
rithms such as reinforcement learning and generative adversarial networks applied 
to AICA. Again, one likely challenge of this approach is the availability of data 
about risks and outcomes of each algorithm. Simulation might be possible approach 
to overcome the data limitations of both strategies above, as it may be able to help 
estimate risks (historical or not) and possible mitigation strategies before AICA 
perform any action on production systems. However, simulation approaches must 
consider the trade-off between fidelity and computational cost of simulation 
scenarios.

A third strategy is to focus on general algorithmic rules or principles that con-
strain AICA actions (e.g. Asimov rules of robotics), regardless of ML training. This 
could leverage the power of AI and machine learning while minimizing risks by 
explicitly constraining the space of possible outcomes.

AICA represent a necessary, and perhaps unique, response to cyber threats that 
have been increasing in frequency, scale, and autonomy. Therefore, AICA-related 
risks should not be an obstacle to their deployment. Rather, effective risk mitigation 
strategies must be developed and implemented such as the benefits of AICA can be 
fully experienced.
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Chapter 17
Policy Issues

Samuel Sanders Visner

1  Introduction – AICA and the Changing Information 
Technology Eco-System

This chapter contextualizes the use of the use of Artificial Intelligent Cyber-defense 
Agents (AICA) within today’s policy environment and the one taking shape around 
us. We try in this chapter to frame the overarching policy issues that AICA users and 
designers will face in the hope that their understanding of these policy issues will 
strengthen AICA effectiveness and safety, while enhancing their general acceptabil-
ity by the people they are meant to protect.

AICA should be considered within a rapidly changing global information eco- 
system, one in which digital technology and connectivity are almost ubiquitous. 
Over 62% of the world’s population of some 7.6 billion people have routine access 
to cyberspace, with Internet penetration rates ranging from 98% in Northern Europe, 
92% in North America, and 73% in East Asia, to a low of 24% in Middle Africa.1 
The growth rate of Internet traffic is astonishing; one estimate puts the growth of 
such traffic between 2000 and 2020 at 1266%, with some 332 billion emails sent per 
day in 2022.2 American alone are estimated to account for 3,138,420 GB of Internet 
traffic.3 By 2020, over 50% of Internet traffic originated from or was sent to mobile 

1 See: https://www.statista.com/statistics/269329/penetration-rate-of-the-internet-by-region/ 
Accessed March 21, 2022.
2 See: https://www.broadbandsearch.net/blog/internet-statistics Accessed March 21, 2022.
3 Ibid.
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devices,4 and the rise of global 5G networks, combined with the practically unlim-
ited number of Internet Protocol (IP) addresses being made possible by IP version 6 
(IPv6) is likely to expand the number of people and devices connected globally. 
SpaceX’s Starlink constellation is expected to comprise as many as 12,000 low 
earth orbiting (LEO) satellites, and possibly as many as 42,000 satellites to be 
lofted,5 connected to a global cloud infrastructure, creating a new kind of “hypers-
calar”. Similar plans exist for Blue Origin Plans to launch over 3,200 satellites,6 
connected to the Amazon Web Services cloud infrastructure. China plans to loft a 
similar, albeit smaller 5G orbital network,7 evidence of the continued expansion of the 
global information eco-system. One telecommunications carrier estimates that some 
24 billion Internet of Things (IoT) devices will be connected by 2030, with IoT densi-
ties likely of up to one million devices per square kilometer.8 This new information 
technology eco-system, and its massive connectivity, will service every industry, busi-
ness sector, and critical infrastructure. Civil government and military operations alike 
depend increasingly on either the global information infrastructure, or separate infra-
structures that share the same basic Internet architecture used globally.

In addition, new, “smart cities” and smart infrastructures will arise as the global 
information eco-system expands. While various architectures exist and have been 
offered for such smart cities, these architectures consist generally of:

• A common information technology infrastructure
• Numerous IoT devices to sense, capture, and transmit data relating to everything 

from water pressure to public transportation loading, from power consumption to 
the needs for policing resources

• Machine Learning (M/L) and artificial intelligence (AI) applications to recog-
nize activity patterns and make decisions about the allocation of resources (e.g., 
water, power, transport, policing)

• And the infrastructures themselves in which these IoT devices are embedded, 
allowing the decisions derived from AI applications to be realized.

The adoption of this smart cities architecture approach can be used a across a broad 
range of infrastructures, and possibly even for military operations.

Overall, the growth of the global information eco-system and the complex infra-
structures that inhabit them represent a growing challenge for cyber defense. Large, 
complex infrastructures serving millions, if not billions of IoT devices, present 
expanding and ever-changing attack surfaces in which new vulnerabilities can 
emerge without warning and can be difficult to detect.

4 Ibid.
5 See: https://en.wikipedia.org/wiki/Starlink Accessed March 21, 2022.
6 See: https://orbitaltoday.com/2021/11/19/jeff-bezos-kuiper-holding-llc-seeks-permission-to- 
launch-4538-more-satellites/ Accessed March 21, 2022.
7 See: https://techstory.in/china-to-start-building-5g-satellite-network/ Accessed March 21, 2022.
8 See: https://www.verizon.com/business/resources/articles/s/5G-device-density-and-the-industries- 
it-will-impact/ Accessed March 21, 2022.
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Such infrastructures represent important opportunities for the application of 
AICA, as well as policy challenges to their application. AICA can be used to detect 
anomalous behavior in complex networks; it can also be used to detect and possibly 
mitigate emerging vulnerabilities, and to adjust dynamically automated cyber 
defenses. AICA can be used also to detect prospective and actual malicious activity 
on adversary networks, and possibly to preempt or block such activity before it 
leaves those networks. Such approaches, known generally as “defend forward,” sig-
nals the use of AICA on network we do not own or control.

2  The Changing Concepts of Cyber-Defense

“Traditional” cybersecurity consists of three inter-related operational concepts per-
tinent to today’s integrated computer networks, the building blocks of the global 
information infrastructure:

• Computer Network Defense – the defense of a network, its data, its systems, and 
the infrastructures that depend on that data and those systems

• Computer Network Exploitation  – the penetration of a network, generally to 
steal data or otherwise gain access to its systems and the infrastructures that 
depend on that data and those systems

• Computer Network Attack – the ability to damage data, hold it at risk (possibly 
for ransom), or to damage information systems, or the infrastructures that depend 
on that data and those systems.

In other words, the defense of our systems includes both the ability to defend them 
and to intervene and interfere with adversaries, to disrupt their operations, and to 
hold at risk their data, systems, and infrastructures.

The convergence of such defensive and potentially offensive cyber defense con-
cepts continues to evolve. New approaches have been given impetus by the develop-
ment by the U.S. National Security Agency (NSA) of more active forms of cyber 
defense. According to the NSA:

Active Cyber Defense (ACD) is a component of the Department of Defense’s 
(DoD) overall approach to defensive cyber operations.

Its elements complement preventative and regenerative cyber-defense efforts by synchroniz-
ing the real-time detection, analysis and mitigation of threats to critical networks and sys-
tems. The concept is applicable to the defense of all U.S.  Government and critical 
infrastructure networks, not just those owned and operated by DoD. While ACD is active 
within the networks it protects, it is not offensive and its capabilities affect only the net-
works where they have been installed by network operators and owners.

Real-time detection and mitigation at every tier in every cyber environment require the 
seamless integration of cyber-defense services across program and network boundaries and 
the application of standards for messaging and Command and Control (C2). ACD elements 
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complement preventative and regenerative cyber-defense efforts by synchronizing the real- 
time detection, analysis, and mitigation of threats to critical networks and systems.9

The concept of “hunt forward,” which deploys “cyber warriors” overseas, allows 
U.S. military personnel to work overseas with foreign military personnel to hunt for 
cyber vulnerabilities and exploits on their networks. Hunt forward is related closely 
to the “Defend Forward” doctrine of the U.S.  Department of Defense, which is 
described by Dr. Erica Borghard of the Congressional Solarium Commission as:

the proactive observing, pursuing, and countering of adversary operations and imposing 
costs in day-to-day competition to disrupt and defeat ongoing malicious adversary cyber 
campaigns, deter future campaigns, and reinforce favorable international norms of behav-
ior, using all the instruments of national power.10

Overall, these approaches to cyber defense exist within the umbrella concept of 
“persistent engagement,” a concept defined by the United States Cyber Command 
(USCYBERCOM) as

continuously engaging and contesting adversaries and causing them uncertainty wherever 
they maneuver.11

In addition, the Deputy Commander of the United States Cyber Command 
(USCYBEROM) described persistent engagement in the following terms:

(W)e want to be in constant contact with our adversaries. We want to be in a proactive 
posture and not in a reactive posture.12

The Congressional Cybersecurity Solarium Commission, established in 2019, was 
directed to “develop a consensus on a strategic approach to defending the United 
States in cyberspace against cyber attacks of significant consequences.”13 The 
Commission described a comprehensive cybersecurity approach, one that calls for 
hunt forward, defend forward, and persistent engagement using a wide range of 
tools. For the United States, the Commission called for a wide range of ambitious 
goals, including:

 1. Reform the U.S. Government’s Structure and Organization for Cyberspace
 2. Strengthen Norms and Non-Military Tools
 3. Promote National Resilience
 4. Reshape the Cyber Ecosystem
 5. Operationalize Cybersecurity Collaboration with the Private Sector

9 See: https://apps.nsa.gov/iad/programs/iad-initiatives/active-cyber-defense.cfm Accessed March 
21, 2022.
10 See: https://cyber.forum.yale.edu/blog/2021/7/20/defend-forward-adapting-offense-and-  defense- 
strategy-to-cyberspace Accessed March 21, 2022.
11 “Achieve and Maintain Cyberspace Superiority,” Command Vision for US Cyber Command, 
April 2018.
12 See: https://www.defense.gov/News/News-Stories/Article/Article/2840284/persistent- engagement-  
strategy-paying-dividends-cybercom-general-says/ Accessed March 21, 2022.
13 See: https://www.solarium.gov/home Accessed March 21, 2022.
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 6. Preserve and Employ the Military Instrument of National Power.14

Several of these goals, particularly those relating to national resilience, reshaping 
the cyber eco systems, and operationalizing cybersecurity collaboration with the 
private sector, are likely to be fertile grounds for the use of AICA. AICA will surely 
prove promising in understanding and defeating adversary cyber activity, on the 
networks of the adversaries themselves. In addition, the Commission’s calls for 
stronger cyber deterrence requires both strong cyber defense, i.e., “deterrence by 
denial,” and the ability to detect, attribute, and respond appropriately to malicious 
cyber activity. Again, AICA will play a strong and increasing role.

3  Existing Policies and Considerations

The emergence of cybersecurity norms is likely to influence significantly the policy 
framework that shapes our use of AICA. Efforts to create cybersecurity norms have 
been sporadic, though progress in recent years has been noteworthy. The United 
Nations Ad hoc Panel of Experts has worked to create a consensus regarding the 
conduct in cyberspace of U.N member countries.15

Overall, policy- and decision-makers should understand current national and 
international policy and doctrine as it relates to the information technology eco- 
systems in which AICA will operate. While relevant, existing policy and doctrine 
relates principally to the conduct of military operations, the use of information tech-
nology for the private sector and critical infrastructure, and to safeguard citizens’ 
privacy, the development of policy and doctrine relating to the use of AICA in the 
information eco-system is nascent. Nonetheless, some existing policy and doctrine 
are instructive and may provide the framework for which AICA is employed ulti-
mately. In general, policy and doctrine exist in the following domains:

• Military operations and the laws of war
• US national security and foreign policy
• Personal privacy and Constitutional protections
• The safety and security of national infrastructure.

Responsibility for the use of most technology is vested generally with those that 
employ it. AICA, in contrast, presents a challenge to policymakers because its 
employment is affected – and perhaps determined – by the computer scientists and 
software engineers who create it. Their judgment, understanding of legal and other 
constraints, and (perhaps) their values may play an as important a role in the use of 
AICA as those who employ AICA directly. In fact, an important policy consider-
ation in the use of AICA will be to establish who is responsible for a tool’s behavior, 

14 Ibid.
15 See: https://www.un.org/securitycouncil/sanctions/2374/panel-of-experts/work-mandate Accessed  
March 21, 2022.
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as well as its ultimate effect, the designer, the user, or both, and for each party, to 
what extent. This concern looms over any policy consideration.

In broad terms, salient policy issues relating to AICA exist in the following areas:

• In wartime, for the defense of our systems and for offensive cybersecurity regard-
ing adversary systems

• In peacetime, where we practice “hunt forward” on adversary systems
• The effects on and possible disruption of US policy vis a vis allies, partners, and 

other countries
• Also in peacetime, where privacy frameworks such as Europe’s General Data 

Protection Requirements (GDPR) and the California Consumer Privacy Act 
(CCPA), which require accountability in relation to privacy and the relationship 
between a commercial enterprise and its customers

• And, in the context of the 4th Amendment of the Constitution of the United 
States, ensuring that AICA does not violate the Amendment’s protections.

In addition, one may consider also the question of policy as it relates to the contin-
ued development of Artificial Intelligence generally, and AICA specifically.

3.1  Wartime Policy Considerations – Some Examples

Perhaps the most salient question of policy relates to the use of AICA under war-
time conditions. Wartime conditions can be highly dynamic under which friendly 
(or “blue”) and adversary (or “red”) forces may be in proximity, operating in each 
other’s cyberspace, or in common cyberspace.

Military operations take place under conditions constrained by several policy 
components, including doctrine, proportionality, and international agreements, de 
jure and de facto that may constrain operations. AICA tools are designed to operate, 
in some cases without direct human supervision, in situations that are dynamic and 
may not conform to pre-determined doctrine, operational objectives, or even 
accepted international policies and practices. A particular potential complication 
arising from the use of AICA relates to attribution and proportionality. Proportionality 
in wartime (defined in international law as a component of jus in bello) relates to the 
need to observe:

the balance to be struck between the achievement of a military goal and the cost in terms 
of lives.16

Proportionality can also be used in the justification for armed conflict, balancing the 
grievance suffered with the intensity of the response (defined in international law as 
jus ad bellum).

16 See: “Proportionality and Force in International Law,” Judith Gail Gardam, The American 
Journal of International Law, Vol 87. No 3, July, 1993, Pages 391–413.
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We can regard proportionality as one of the most important challenges to the use 
of AICA, and possibly one of its strongest opportunities. Proportionality constrains 
attacks and armed responses, sometimes in conformance with the 1907 Hague 
Convention.17 Article 23(e) prohibits employing “arms, projectiles, or material 
 calculated to cause unnecessary suffering.” Article 25 apples the “principle of dis-
tinction,” which prohibits direct attacks against non-military targets. Article 27 
requires attacks to spare buildings with religious or cultural significance. More pre-
cision regarding conduct during wartime was conveyed by the Geneva Convention 
of 1977 which prohibits:

 (a) An attack by bombardment by any methods or means which treats as a single military 
objective a number of clearly separated and distinct military objectives located in a 
city, town, village or other area containing a similar concentration of civilians or 
civilian objects; and

 (b) An attack which may be expected to cause incidental loss of civilian life, injury to 
civilians, damage to civilian objects, or a combination thereof, which would be exces-
sive in relation to the concrete and direct military advantage anticipated.18

In other words, efforts should be undertaken to constrain operations, at least regard-
ing military objectives and regarding collateral damage. However, effective imple-
mentation of proportionality relies on attribution. AICA tools that may be used to 
respond “intelligently” to cyber-attacks or exploits, particularly in a world of “per-
sistent engagement” and “defend forward” must be informed by reliable attribution. 
Without such attribution, AICA responses could react to or even retaliate against the 
wrong target, causing inadvertent and possibly unjustified damage to information, 
information systems, and infrastructures. AICA developers, therefore, must bear the 
additional burden of building into their capabilities the means to relate attribution to 
the responses of which their tools may be capable.

Efforts are underway to improve our understanding of proportionality in cyber-
space. In recent years, the Tallinn Manual19 was developed by the NATO Cooperative 
Cyber Defence Centre of Excellence.20 The Tallinn Manual:

(h)as become an influential resource for legal advisers and policy experts dealing with 
cyber issues.21

While non-binding the Manual is intended:

(t)o provide an objective restatement of international law as applied in the cyber context.22

17 See: https://besacenter.org/proportionality-in-the-modern-law-of-war-an-unenforceable-norm-
or- the-answer-to-our-dilemma/ Accessed, March 27, 2022.
18 Ibid.
19 See: https://ccdcoe.org/research/tallinn-manual/ Accessed March 27, 2022.
20 See: https://ccdcoe.org/ Accessed March 27, 2022.
21 Ibid.
22 Ibid.
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The Tallinn Manual exists as an example of notional restraints on the use of cyber-
security tools, particularly regarding offensive cyber tools. For example, Section 1, 
Rule 10 of the Manual notes:

A cyber operation that constitutes a threat or use of force against the territorial integrity or 
political independence of any State, or that is in any other manner inconsistent with the 
purposes of the United Nations is unlawful.23

Other aspects of the Manual discuss prohibitions regarding attacks against civilian 
infrastructures or attacks that harm or kill non-combatants. While the Manual does 
not reflect international law, and cannot be enforced through legal means, the United 
State and other countries may adopt policies regarding the use of cybersecurity tools 
that conform to the Tallinn Manual’s precepts. For each wartime operation, those 
employing defensive and offensive cybersecurity tools must understand which 
Tallinn Manual rules are encompassed by current policy. They might ask, for exam-
ple, if their forces are required to abide by Tallinn Manual proscriptions against 
damage to civilian infrastructures. If so, AICA programming must reflect this pol-
icy, implying that such tools can recognize civilian cyber targets and avoid them. 
Conversely, AICA must also be able to identify friendly civilian infrastructure tar-
gets, and be prepared to defend them, should an adversary choose not to abide by 
policies that would avoid damage to such targets. In either case, AICA programmers 
would share with users responsibility for the performance of such tools, and the 
effects they achieve.

The cybersecurity operations of the United States Armed Forces have developed 
and continue to develop doctrines and operational concepts that will affect AICA. The 
U.S. Army (like the other Armed Services), both defends its own networks, conduct-
ing Defensive Cyber Operations-Internal Defense Measures (DCO-IDM), as well as 
operations external to Army networks, or Defensive Cyber Operations-Response 
Actions (DCO-RA). Again, the use of AICA requires an understanding on the part of 
operators and programmers of policy and doctrine associated with every operation, 
particularly those operations taken to defend the Army on networks it does not own or 
control necessarily. In this instance, desired effects must be calibrated carefully to 
conform to desired outcomes without, for example, causing collateral damage. As 
networks undergo increasingly convergence in which, for example, US forces rely on 
non-US networks, or energy and transportation networks are managed in common, 
the need for finely grained cyber defenses, including offensive cybersecurity, will 
require increasingly “intelligent” AICA.

Finally, national defense policy regarding AI generally continues to evolve. The 
Department of Defense adopted in 2020 a statement of principles for the use of AI, 
all of which are applicable to AICA. These principles include the need for AI appli-
cations to be:

Responsible. DoD personnel will exercise appropriate levels of judgment and care, while 
remaining responsible for the development, deployment, and use of AI capabilities.

23 Ibid.
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Equitable. The Department will take deliberate steps to minimize unintended bias in AI 
capabilities.

Traceable. The Department’s AI capabilities will be developed and deployed such that 
relevant personnel possess an appropriate understanding of the technology, development 
processes, and operational methods applicable to AI capabilities, including with transpar-
ent and auditable methodologies, data sources, and design procedure and documentation.

Reliable. The Department’s AI capabilities will have explicit, well-defined uses, and the 
safety, security, and effectiveness of such capabilities will be subject to testing and assur-
ance within those defined uses across their entire life-cycles.

Governable. The Department will design and engineer AI capabilities to fulfill their 
intended functions while possessing the ability to detect and avoid unintended  consequences, 
and the ability to disengage or deactivate deployed systems that demonstrate unintended 
behavior.24

Overall, these principles point to the need for AI tools development and use to be 
transparent, both in their development and in their use. AICA tools that adhere to 
these policies must reflect the ability of developers to adhere to policies regarding 
acceptable use, the need for users to employ these tools in a manner that does not 
exceed intended consequences.

3.2  AICA in the “Grey Zone”

AICA may be seen in the application of armed force prior to war, or in “grey zone” 
operations, situations that can be described as “not war” and “not peace.”25 Such 
operations represent intersecting and overlapping application of cyber, diplomatic, 
political, economic, and military power short of open armed conflict. Important to 
such operations is the careful calibration of the application of any instrument such 
that only specific effects are achieved, effects that do not lead to escalation or, in 
some cases, attribution. Within the realm of cybersecurity, the “defend forward” 
component of U.S. Department of Defense cyber strategy is an important aspect of 
such grey zone operations. As the Honorable Patrick J.  Murphy and Dr. Erica 
Borghard describe “defend forward:”

(d)efend forward rests on the premise that to deter and defeat adversary threats to national 
security, the US could not solely rely on responding to malicious behavior after the fact. 
Rather, the DoD should be proactive in maneuvering outside of US cyberspace to observe 
and understand evolving adversary organizations and, when authorized, conduct opera-
tions to disrupt, deny, or degrade their capabilities and infrastructure before they reach the 
intended targets.26

24 See: https://www.defense.gov/News/Releases/Release/Article/2091996/dod-adopts-ethical- 
principles-for-artificial-intelligence/ Accessed May 6, 2020.
25 Antulio J. Echevarria II, “Operating in the Gray Zone: An Alternative Paradigm for U.S. Military 
Strategy,” United States Army War College Press, United States Army War College, 2016.
26 Op cit. page 1.
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Overall, these tools are designed to both coerce another state’s compliance or, in 
some cases, to deter another state’s actions. In all cases, calibration of effects and 
outcomes must be considered carefully by those who use cyber tools and, in the case 
of AICA, those who program their “intelligence,” consistent with policymakers’ 
objectives.

3.3  US National and Economic Security Policy

Artificial intelligence is considered to be an important aspect of US national and 
economic security. A 2020 report27 from the National Science and Technology 
Council and the Office of Science and Technology Policy noted that artificial intel-
ligence is vital for the protection of United States critical infrastructure. According 
to the report, AI can be used to detect malicious code, find anomalous behavior in 
complex networks, and even “synthesize defensive patches.”28 The report also noted 
that AI systems can be evaded, or even fooled, through a variety of techniques, 
while also calling for the development of tools for autonomous cyber defense. From 
a policy perspective, the Final Report of the National Security Commission on 
Artificial Intelligence29 called for a comprehensive investment and organizational 
policy to advance the state of AI for cybersecurity, as well as the need to mitigate 
risks associated with autonomous cyber tools and weapons systems. In particular, 
the report notes that more must be done to establish confidence in AI systems. 
Specifically:

To establish justified confidence, the government should focus on ensuring that its AI sys-
tems are robust and reliable, including through research and development (R&D) invest-
ments in AI security and advancing human-AI teaming through a sustained initiative led by 
the national research labs.30

3.4  Consumer Privacy

The passage of the Cybersecurity Information Sharing and Protection Act (CISPA) 
of 2015, as part of the 2015 National Defense Authorization Act, signaled the need 
to balance the cybersecurity of the nation’s business and critical infrastructure with 

27 Artificial Intelligence and Cybersecurity: Opportunities and Challenges Technical Workshop 
Summary, a report by the Networking and Information Technology Research and Development 
Subcommittee and the Machine Learning and Artificial Intelligence Subcommittee of the National 
Science and Technology Council and the Office of Science and Technology Policy (Executive 
Office of the President), March 2020.
28 Ibid.
29 Final Report, National Security Commission on Artificial Intelligence, 2021.
30 Ibid.
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the privacy of its citizens. Passed after several years of vigorous debate between 
cybersecurity, intelligence, and civil liberties actors, the Bill encourages cybersecu-
rity reporting to the United States Government but constrains the scope and manner 
of reporting to safeguard personally identifiable information (PII).31 Civil liberties 
and privacy concerns regarding cybersecurity are important to the development of 
AICA, given the need to ensure that intelligent agents neither “invade” information 
technology infrastructures that contain PII, nor report PII by mistake to the United 
States Federal Government. Privacy concerns will likely become more acute. The 
General Data Protection Regulation (GDPR) of the European Union constrains the 
holding of PII by commercial enterprise. GDPR also requires such enterprises to be 
able to disclose to their customer how and where their data is held, while giving 
these same customers the right to have that data deleted and how such deletion can 
be verified. GDPR Article 25, paragraph 2, is illustrative, referring to a commercial 
enterprise’s “controller:”

The controller shall implement appropriate technical and organizational (sic) measures for 
ensuring that, by default, only personal data which are necessary for each specific purpose 
of the processing are processed. That obligation applies to the amount of personal data 
collected, the extent of their processing, the period of their storage and their accessibility. 
In particular, such measures shall ensure that by default personal data are not made acces-
sible without the individual’s intervention to an indefinite number of natural persons.32

The California Consumer Protection Act (CCPA) echoes GDPR-like concerns, 
defining:

• The right to know about the personal information a business collects about them and 
how it is used and shared;

• The right to delete personal information collected from them (with some exceptions);
• The right to opt-out of the sale of their personal information; and
• The right to non-discrimination for exercising their CCPA rights.33

GDPR and CCPA, and possibly other, similar policies in prospect will require AICA 
developers to ensure that the actions of autonomous cyber defense agent to not 
“scrape” PII unnecessarily, particularly when safeguarding complex business infra-
structures. The privacy concerns that underly GDPR and CCPA make incumbent 
that the automation of cyber defense be accompanied by the need to discriminate 
between network data, analysis of which is important to defending a network, and 
PII that may be associated with network data, but which would compromise the 
rights GDPR and CCPA attempt to defend.

31 See: National Institutes of Standards and Technology Special Publication 800–122 “Guide to 
Protecting the Confidentiality of Personally Identifiable Information (PII).”
32 See: https://gdpr-info.eu/art-25-gdpr/
33 See: https://www.oag.ca.gov/privacy/ccpa
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3.5  Constitutional Protections

The Constitution of the United States provides powerful protection for “United 
States Persons.” The Constitution’s Fourth Amend is short, but eloquent:

The right of the people to be secure in their persons, houses, papers, and effects, against 
unreasonable searches and seizures, shall not be violated, and no Warrants shall issue, but 
upon probable cause, supported by Oath or affirmation, and particularly describing the 
place to be searched, and the persons or things to be seized.34

While debate will likely continue regarding what constitutes “persons, houses, 
papers, and effects,” those who operate and design AICA must remain mindful con-
stantly that information needed to safeguard our citizens’ networks generally, and 
critical infrastructures specifically, cannot compromise Fourth Amendment protec-
tions. As our infrastructures become more complex, so too will be the intricacies of 
automating the monitoring of the networks on which these infrastructures depend, 
identifying anomalous behavior, mitigating breaches, while ensuring that the pri-
vate information of the people remain secure.

4  Policy Issues for the Future

4.1  National Security

From a national security perspective, AICA operators and developers are faced with 
complex issues. The examples above make clear that the design and use of AICA 
must conform to policy objectives, often situationally unique, as well as the doctrine 
that integrates the use of AICA specifically, and cyber defense generally with other 
instruments of state power, including military, diplomatic, political, economic, and 
other components. We will need, as the previous Army discussion shows, to be able 
to operate effectively on our own networks, and on networks we do not own or con-
trol necessarily.

What can we expect in the future?
First, we can expect our national security to be more dependent on complex 

information systems and the infrastructures that employ them. These information 
systems will reside and operate in environments heavily contested in wartime, 
peacetime, and during grey zone conflicts. The global information infrastructure 
will be characterized by increasing competition, likely to make necessary the use of 
AICA on dynamic networks not subject to “friendly” configuration control. The rise 
of IPv6, 6G and “NextG,” coupled with AI-mediated “smart infrastructures” will 
foster the emergence complex behaviors in which anomalies may be difficult to spot 
and mitigate without AICA. At the same time, such networks are interdependent; 

34 See: https://constitution.congress.gov/constitution/amendment-4/
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avoiding collateral damage may become even more difficult, particularly in inter-
connected, “smart” infrastructures. The ability to “defend forward” on such net-
work will require both effective AICA and programming that constrains the effects 
caused to specific policy objectives.

We can also expect that our competitive ability to develop and employ AICA will 
be regarded as an element of national power, a concept made clear by the National 
Security Commission on Artificial Intelligence.35 We should expect the emergence 
of more robust, and possibly better funded research agendas for the creation of 
AICA, as well as national guidelines for their employment.

4.2  Homeland Security and Privacy

Even as we seek to defend our own, increasingly complex, “smart” infrastructures, 
privacy concerns, both in the context of the relationship of citizens to commercial 
enterprises (evidenced by GDPR and CCPA), and for the preservation of our 
Constitutional protections, will continue to gain visibility and importance. 
Commercial enterprises may be engaged to managed critical infrastructures in 
smart cities. Such infrastructures, encompassing millions of IoT devices, will 
require AICA that is effective and inspires the confidence of those cities’ residents. 
As the intelligence and military services of other countries probe our critical infra-
structures for vulnerabilities they can exploit or attack, policy makers will be chal-
lenged to harden the cybersecurity of those infrastructures. To the extent that they 
do so, policies associated with the use of AICA that improves cybersecurity and 
protect privacy will likely emerge, even as the national discussion regarding the mix 
of security and privacy policies continues.

As we close this discussion regarding policy, we note that other countries may 
not share our policy concerns regarding AICA, nor adhere to the prohibitions we 
choose to impose on ourselves. As Caitríona H. Heinl noted at a 2014 workshop of 
the NATO Cooperative Cyber Defense Center of Excellence:

Cyber capabilities in particular are inherently difficult to prevent from being created and 
such regulatory solutions might not deter malicious actors. In addition, non-state actors 
will not necessarily feel morally or legally bound in the same way and state actors may not 
always play by the same “version of the rules.” A combination of technical and legal safe-
guards is required but further research is still needed to examine whether more could be 
done, while also ensuring that innovation is not suppressed disproportionately.36

35 Op cit.
36 Proceedings of the 6th International Conference on Cyber Conflict, P. Brangetto, M. Maybaum, 
J Stinissen (Eds.), NATO Cooperative Cyber Defense Center of Excellence, 2014.
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5  Summary and Conclusions

The use of AICA, while promising in terms of defending new, increasingly complex 
networks, poses important policy and doctrinal challenges. Emerging interdepen-
dent networks (serving, for example, energy and transportation systems) can make 
difficult identifying reliably a valid cyber threat or attributing that threat accurately. 
The interdependence of such networks, weaving together several critical infrastruc-
tures, will require that AICA actions that protect one infrastructure, while not leav-
ing vunlerable other infrastructures. The autonomous nature of AICA means that 
responsibility for safeguarding the privacy of our citizens, as well as for any unin-
tended consequences, will shift somewhat, and possibly decisively from the AICA 
users and operators to those who create and program AICA tools. Should AICA be 
used in pursuit of “persistent engagement,” “defend forward,” and “hunt forward” 
cyber defense activities, policy makers, and possibly national security strategists 
will need to understand and be prepared for possible activities, some extra-territo-
rial, they cannot control directly, the consequences of which may be difficult 
to manage.

The emergence of AICA should be accompanied by an active research agenda, 
one that constrains as much as possible the use of AICA to the consequences poli-
cymakers, decision-makers, and operators, intend. Such research should encompass 
an understanding of the rapid evolution of the global information technology eco- 
system, including the deployment of global 5G (and possibly next-G) networks, 
new, space-based telecommunications backbones, IoT device densities approaching 
and even exceeding one million devices per square kilometer, and new “smart” cit-
ies and other infrastructures that depend on machine learning and artificial intelli-
gence to mediate infrastructure resources and behavior. Research activities should 
include the participation of those charged with developing national and homeland 
security policy, and those charged with safeguarding our citizens’ privacy, given 
that their constitutional and operational concerns may set the boundaries in which 
AICA can be allowed to operate effectively.
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Chapter 18
AICA Development Challenges

Shouhuai Xu

1  Chapter Motivation

The envisioned potential of AICA has been described in (Kott et al., 2018; Kott & 
Théron, 2020; Théron & Kott, 2019) and earlier chapters (e.g., “Introduction and 
Overview”). Independent of (Kott et  al., 2018; Kott & Théron, 2020; Théron & 
Kott, 2019), the term of active cyber defense, which is essentially the same idea as 
AICA, and its associated active cyber defense dynamics, have been investigated in 
(Xu et al., 2015a, b; Lu et al., 2013; Zheng et al., 2015). The notion of active cyber 
defense dynamics is one indispensable pillar of the Cybersecurity Dynamics frame-
work (Xu, 2014a, b, 2019, 2020), on par with preventive and reactive cyber defense 
dynamics (Li et al., 2007, 2011; Xu et al., 2012a, b; Xu & Xu, 2012; Zheng et al., 
2018; Lin et al., 2019; Han et al., 2021; Chen et al., 2018), adaptive cyber defense 
dynamics (Xu et al., 2014), and proactive cyber defense dynamics (Han et al., 2014; 
Chen et al., 2021). These studies characterize the global (i.e., network-wide) effec-
tiveness of employing certain cyber defenses against certain cyberattacks. In par-
ticular, it is now known that active cyber defense is advantageous to the other kinds 
of defenses, where the advantage can be quantified by a factor that reflects the con-
nectivity property of a mathematical matrix corresponding to the preventive cyber-
security policies in question (more precisely, the factor is a function of the largest 
eigenvalue of the matrix) (Xu et al., 2015a, b; Lu et al., 2013). Nevertheless, active 
cyber defense may render cybersecurity unmanageable in terms of measuring and 
predicting the evolution of the global cybersecurity state because of the chaotic 
nature of active cyber defense dynamics under certain circumstances (Zheng et al., 
2015); fortunately, there are technical means to avoid such situations (Zheng et al., 
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2015). In order to capitalize on these advantages of AICAs or active cyber defense, 
we must materialize such systems. This turns out to be challenging. This chapter 
systematically explores the development challenges towards fulfilling the vision of 
AICAs and active cyber defenses.

Chapter Contributions Given the complexity of AICAs, we propose dividing its 
development challenges into engineering challenges and research challenges, fol-
lowing the methodology of “divide-and-conquer” in a sense. These two kinds of 
challenges are not necessarily complementary to each other; instead, tackling the 
engineering challenges requires to tackling the research challenges because engi-
neering often needs to leverage technological breakthroughs which typically come 
from fundamental research. More specifically, in this chapter we make three contri-
butions. First, we articulate and systematize the engineering challenges posed by 
AICAs, which must be adequately tackled before fulfilling the vision of AICAs. 
These engineering challenges are centered at what we call “the AICA engineering 
ecosystem”. We suggest approaches to tackling these engineering challenges. 
Second, we articulate and systematize the research challenges in a broader context. 
Addressing these research challenges will assure success of AICAs. We also sug-
gest approaches to tackling these research challenges. Third, we show how tackling 
the research challenges will help address the engineering challenges, by presenting 
a mapping between the former and the latter. It is worth mentioning that the map-
ping is not one-to-one because engineering and research often follow different ways 
of thinking; moreover, research often aims at a broader context so that the resulting 
knowledge can be widely applied.

Chapter Terminology To simplify terminology, we will use AICA to represent 
both AICA and active cyber defenses throughout the present chapter. AICAs are 
often employed into a network of interest, which is broadly defined to include enter-
prise Information Technology networks, networks of cyber physical systems, battle-
field networks, and national critical infrastructures. Such a network consists of 
many computers and networking devices, which are referred to as computers in 
general but include low-power Internet-of-Things (IoT) devices. These networks 
may employ traditional defense mechanisms, such as firewalls and intrusion detec-
tion systems, which are preventive and/or reactive defenses and therefore are com-
plementary to the defenses enabled by AICAs.

2  AICA Engineering Ecosystem

As shown in Fig. 18.1, we propose dividing the AICA engineering ecosystem into 
six components: design; implementation; individual test & certification; composi-
tion; composite test & certification; and deployment. We will use this ecosystem to 
guide the exploration of the engineering challenges associated with AICAs. The 
ecosystem-based approach is arguably systematic, so are the resulting challenges.

S. Xu
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Design
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Composite Test 
& Certification
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Engineering 
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Fig. 18.1 AICA engineering ecosystem

Design This deals with the design of AICA systems, including not only the AICAs 
themselves, but also the environments they interact with. The design should include 
the requirements and the constraints that must be accommodated while satisfying 
the requirements. This is important because existing systems, including their archi-
tectures, may need to be revisited to incorporate AICAs. It would be ideal to create 
a body of standardizations for the interfaces between the AICAs themselves and 
between the AICAs and the environment systems with which they interact.

Implementation This deals with the realization of the designs so that the resulting 
software, and hardware (if applicable), can be executed on various platforms. This 
includes the choice of programming languages or the design of new programming 
languages if necessary.

Individual Test & Certification This deals with the test and certification of indi-
vidual AICAs as a standalone entity in the environments specified by the design 
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requirements and constraints. This is important because pure theoretical analysis, 
simulation, and/or emulation would not be sufficient for demonstrating the effec-
tiveness of the AICAs and their environment systems, partly because the assump-
tions that are made in those studies may not be realistic. Given the potential impact 
of AICAs, their effectiveness must be tested and certified in real-world environ-
ments with realistic attack-defense experiments.

Composition The effectiveness of AICAs would grow possibly nonlinearly with 
the number of cooperating AICAs, assuming that they are well coordinated and 
orchestrated to accomplish missions. This is relevant because AICAs may have to 
be specialized, rather than making each AICA versatile. This calls for “optimal” 
composition of AICAs into “troops”, in a fashion similar to (for example) how 
many soldiers and what kinds of weapons should compose a squadron. The way of 
AICAs cooperating with each other matters because it determines the resulting 
emergent property, which cannot be derived from the behaviors of individual AICAs 
(Xu, 2014b).

Composite Test & Certification This deals with testing and certifying the capabil-
ity or effectiveness of a composition of AICAs which cooperate with each other. 
Unlike individual test & certification, which can be simply geared towards design 
specifications, this would be much more challenging because of the emergent prop-
erty (Xu, 2014b) mentioned above.

Deployment This deals with the employment of AICAs in real-world systems, 
such as DoD networks. We envision that deployment must be done in an automated 
or autonomous fashion. This also imposes a range of challenges, especially from a 
cybersecurity perspective.

3  AICA Engineering Challenges

The AICA engineering ecosystem guides us to characterize a range of engineering 
challenges, which are inspired by, and extend while re-structuring, the five engi-
neering challenges presented in Théron and Kott (2019), namely architecture; certi-
fication; test and simulation; compatibility; and assurance.

3.1  Challenges on AICA Design

A good design starts with a competent specification. However, there is no well- 
accepted specification for AICAs. This requires us to address the following prob-
lems, ranging from requirements (including metrics and constraints) to threat models.
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First, we must understand the requirements of AICAs. (i) One requirement deals 
with the functionalities of AICAs, including its purposes and security assurance. 
This provides a basis for test & certification. (ii) Another requirement deals with the 
specification on the support that must be provided by the environment for AICAs to 
function correctly and securely. Supporting AICAs may incur necessary changes to 
the current system and/or security architectures of the underlying infrastructures. 
Therefore, we must understand the impact of such changes. (iii) Another require-
ment deals with the interactions between AICAs and the interactions between 
AICAs and the environments where they execute. This would mandate the standard-
ization of interfaces between AICAs and the interfaces between AICAs and the 
environments with which they interact, such as the demand of computational sup-
port that should be provided by the environment. For example, an AICA may offload 
a certain computational task to the environment with a demand of a certain amount 
of CPU cycles, memory space, and possibly a hardware-assured trusted execution 
environment or TEE—such as Intel SGX or Arm TrustZone. (iv) Yet another 
requirement deals with the security properties of the communications between 
AICAs and the communications between AICAs and the environments where they 
execute. All these requirements need to be specified with well-defined and ideally 
quantitative metrics, which can be readily measured.

Second, we must have a clear definition of threat models against AICAs. There 
might be a hierarchy of threat models, each of which may be relevant under specific 
circumstances (e.g., dealing with cyber criminals vs. nation-state adversaries). This 
hierarchy of threat models justifies the need of a spectrum of AICA designs. The 
requirements and constraints mentioned above must be specified with respect to 
specific threat models.

The preceding discussion leads to:

Insight 1: We must deeply understand the requirements (including metrics and con-
straints) and threat models to design optimal, or at least cost-effective AICAs.

Pertinent to this challenge, the chapters entitled “Alternative Architectural 
Approaches”, “Perception of Environment”, “Perception of Threat”, “Situational 
Understanding and Diagnostics”, “Learning about the Adversary”, “Response 
Planning”, “Recovery Planning”, “Adaptivity & Antifragility”, “Negotiation and 
Collaboration”, and “Human Interactions” present detailed discussions on the state- 
of- the-art from specific perspectives.

3.2  Challenges on AICA Implementation

Having specified the requirements (including metrics and constraints) and the threat 
models, we need to implement or realize AICAs and the environments where they 
execute. There are many aspects that need to be considered, such as the following. 
(i) In what environment should AICAs execute? For example, should they execute 
in virtual machines, containers, or hardware-assured TEE such as Intel SGX or Arm 
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TrustZone? Alternatively, should we create a new kind of environment that is tai-
lored to satisfy the needs of AICAs? (ii) What programming language(s) should be 
used to implement AICAs? Different languages have different features and incur 
different vulnerability surfaces. Do we need to design new programming languages 
to accommodate the special requirements of AICAs? (iii) How should we secure the 
communications between AICAs and the communications between AICAs and the 
environments in which they execute? What kinds of cryptographic mechanisms are 
necessary and sufficient for assuring such secure communications? (iv) How can we 
minimize the trust that must be assumed when implementing AICAs, if not assuring 
zero-trust? This is important because many incidents demonstrate that a huge dam-
age can be caused when trust is intentionally or unintentionally abused; a recent 
example is the SolarWinds attack (US GAO, 2021). This is relevant to supply-chain 
security, for example when an implementation reuses some pieces of code from 
third parties, let alone the globalization in manufacturing computer hardware.

The preceding discussion leads to:

Insight 2: The implementation requirements of AICAs remain to be understood.

Pertinent to this challenge, the chapters on “Command in AICA-intensive 
Operations”, and “Case Study” present a discussion of the state-of-the-art from cer-
tain perspectives of implementation.

3.3  Challenges on AICA Individual Test & Certification

This deals with the test and certification of AICAs as if they will be used standalone. 
While we should pursue theoretical analysis and/or simulation and/or emulation 
(e.g., rigorously proving security properties of the employed cryptographic proto-
cols), we must admit that such an analysis often makes assumptions which may be 
hard to validate (Xu, 2021). Moreover, such an analysis is often conducted in an 
abstract model, while assuming away the implementation which however can intro-
duce vulnerabilities. Therefore, given the specification of requirements (including 
metrics and constraints) and a threat model, the AICA implementation or software 
can be tested and certified with respect to the requirements and the threat model.

The competency of test & certification depends on several factors: (i) the com-
pleteness of the requirements, which is important because failure in including a 
necessary requirement may render the certified assurance useless if not doing more 
harm than good; (ii) the accuracy of the threat model, which is important because a 
missed threat can render the certified assurance useless if not doing more harm than 
good; (iii) the completeness of testing scenarios, which is often a large space—pos-
sibly exponential—and thus infeasible to test each and every case. For example, 
when we use static analyses and/or dynamic analyses to test and certify that an 
implementation of an AICA does not contain vulnerabilities (because rigorously 
proving that a software of reasonable size contains no vulnerabilities is beyond the 
reach of the current technology), the static analysis approach (Li et al., 2018a, b, 
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2022a, b; Zou et al., 2021a, b) is limited by the representativeness of the training 
data. Whereas, the dynamic analysis approach may not be able to cover all possible 
execution paths (Li et  al., 2018a, b). These highlight that we must be conscious 
about the limitations of test & certification.

The preceding discussion leads to:

Insight 3: We must be aware of the limitations on the AICA properties that are being 
tested and certified.

3.4  Challenges on AICA Composition

The most useful scenarios of AICAs would not be that they are used standalone; 
rather, we should team AICAs to form “troops”. Indeed, there are two extremes in 
designing and implementing AICAs. One extreme is to make each and every AICA 
possess all possible functionalities. This has several weaknesses, such as: compro-
mising one AICA would expose the entire AICA design to the attacker; the AICA 
software is too large to remain stealthy. The other extreme is to make each AICA 
embody a single basic functionality. This may make it unnecessarily difficult to 
team AICAs to accomplish even relatively simple missions. We envision that there 
should be a good trade-off which resides somewhere in between these two extremes.

Given a specific set of AICAs with certain functionalities, it is important to team 
them up to accomplish a given mission. For example, the mission of defeating ran-
somware attacks may require one set of functionalities than the mission of defeating 
denial-of-service attacks. Moreover, different missions may require different kinds 
of collaborations between AICAs of different functionalities and different collabo-
rations between AICAs and their environments. This calls for “optimal” composi-
tion of AICAs into “troops”, which is similar to (for example) how soldiers and 
weapons should be composed to form squadrons. This is also reminiscent of the 
Joint All Domain Operations that have been pursued by the United States Department 
of Defense, which essentially aim to optimize the collective use of all kinds of forces.

Insight 4: Mission-driven optimal teaming between AICAs and optimal interactions 
between AICAs and environments are key to maximizing the usefulness 
of AICAs.

3.5  Challenges on AICA Composite Test & Certification

This extends the test and certification of individual AICAs (i.e., individual test & 
certification). We distinguish these two because they have different focuses, they are 
at different levels of abstractions, and they face different challenges. For example, 
composite test & certification would demand AICAs to make effective and autono-
mous decisions, possibly in scenarios where they cannot communicate with their 
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respectively trusted parties (e.g., their respective commanders or headquarters). 
This poses as a big challenge because of the notion of emergent property (Xu, 
2014b), which means that different kinds of interactions between AICAs and differ-
ent kinds of interactions between AICAs and their environments may lead to differ-
ent outcomes, such as success vs. failure in accomplishing missions. The problem 
becomes even more challenging when some AICAs or environments may have been 
compromised by the attacker. To the best of our knowledge, this problem is little 
understood. The preceding discussion leads to:

Insight 5: The problem of testing and certifying properties which are jointly assured 
by a set of AICAs and environments is yet to be systematically investigated, 
especially so when some AICAs and environments are compromised.

3.6  Challenges on AICA Deployment

The deployment process of AICAs themselves can be exploited by the attacker to 
compromise AICAs, as illustrated by the SolarWinds attack (US GAO, 2021). 
Therefore, it is critical to assure security of the AICA deployment process. We char-
acterize the deployment process from a security perspective, by focusing on two 
challenges corresponding to two orthogonal issues: cryptography assurance and 
software integrity. First, the deployment process must be done in an automated or 
autonomous fashion because for example, it is not feasible or even possible for sol-
diers to manually install AICAs in scenarios like battlefields. This means that there 
must be trustworthy mechanisms for authenticating AICAs. While cryptographic 
mechanisms can be used for such purposes, this assurance assumes that the crypto-
graphic keys in question or the corresponding cryptographic services are not com-
promised. Unfortunately, this assurance can be invalidated in realistic scenarios 
where compromises of cryptographic keys or services may not be detected until 
after a long delays (Xu & Yung, 2009; Xu et al., 2011, 2019; Dai et al., 2012; Dodis 
et al., 2003). Second, even if the cryptographic assurance is warranted, it does not 
necessarily guarantee that the AICA software cannot be compromised. Indeed, the 
SolarWinds attack (US GAO, 2021) demonstrates that software, and systems in 
general, can be compromised even though the cryptographic services (e.g., digital 
signatures) for attesting them are not.

The preceding discussion highlights the importance of practicing zero-trust, 
including cryptographic assurance and software integrity from legitimate sources. 
This leads to:

Insight 6: It is important and challenging to deploy AICAs while assuring zero-trust.

Pertinent to this challenge, the chapter entitled “Deployment and Operation” 
presents a state-of-the-art exploration.
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4  AICA Research Ecosystem

To tackle the engineering challenges outlined above, we must conduct research. 
However, research often has a different way of thinking than engineering. This 
prompts us to propose the AICA research ecosystem. As highlighted in Fig. 18.2, 
we divide the AICA research ecosystem into six components, which are different 
from the six components in the engineering ecosystem, including: models; architec-
tures; mechanisms; test & certification; operations; and social, technical, and legal. 
We will use this ecosystem to guide the exploration of research challenges.

Models In principle, we must adequately understand, and quantitatively character-
ize, the effectiveness or assurance of a new cybersecurity policy, architecture, or 
mechanism before employing it in the real world. This is important because it gives 
the decision-maker a sense on “what to expect”, at least in any scenario that is 
accommodated by the model in question. Putting into the context of AICAs, we 
must build models to quantify their cybersecurity effectiveness. As shown by what 
will be elaborated below, this imposes a range of challenges that must be adequately 
addressed.

Models

Architectures

Mechanisms

Test & 
Certification

Operations

Social, 
Technical, and 

Legal

AICA 
Research
Ecosystem

Fig. 18.2 AICA research ecosystem
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Architectures A competent architecture is necessary to make AICAs succeed in 
practice. Ideally, we should quantitatively and precisely characterize the effective-
ness of candidate architectures when incorporating certain mechanisms into archi-
tectures to build systems. Given the nature of AICAs, a good architecture should be 
scalable because AICAs in principle can be equally applied to tactical networks 
(e.g., Army Internet of Battlefield Things or AIoBT) or national critical infrastruc-
tures (e.g., financial networks or cyber-physical networks). As what will be elabo-
rated below, this imposes another range of challenges that must be adequately 
addressed.

Mechanisms Effective mechanisms must be designed by taking into consideration 
of the constraints and features that are inherent to the AICAs and the environments 
with which they interact. For example, the AICA mechanisms that are designed for 
employment in AIoBT might be very different from the AICA mechanisms that are 
designed for employment in national critical infrastructures because the latter can 
leverage rich compute resources and a large communication bandwidth. We will 
explore the challenges in designing AICA mechanisms.

Testing and Certification Pure theoretical analysis and/or simulation and/or emu-
lation would not be sufficient for characterizing the effectiveness or assurance of a 
new kinds of defenses, including AICA, partly because the assumptions that are 
made in those studies may not be valid. Given the potential impact of AICAs, its 
effectiveness or assurance must be tested and certified in real-world environments 
with realistic attack-defense experiments. This also imposes a range of research 
challenges.

Operations Since AICAs are inherently, and by default, autonomous, their opera-
tions should not demand human interferences. Nevertheless, the current Artificial 
Intelligence/Machine Learning (AI/ML) technologies may not be able to support 
100% autonomy, meaning that some kind of human-AICA interactions may be 
needed. In this case, as described in the chapter entitled “Human Interactions”, 
human operators may need to approve or amend the actions recommended by 
AICAs. Even if human-AICA interaction is not necessary, the autonomous opera-
tion of AICAs imposes yet another range of challenges.

Social, Ethical, and Legal AICAs inevitably encounter many social, ethical and 
legal challenges, simply because they may become the norm of future warfare and 
they must leverage AI/ML technologies as enablers. This means that the social, ethi-
cal and legal aspects of traditional kinetic warfare need to be revisited to accom-
modate AICAs. This also means that all the social, ethical, and legal issues associated 
with AI/ML naturally apply to AICAs. We will focus on exploring the challenges 
that are unique to AICAs, while referring the broader challenges to the literature 
(Vought, 2020; US DoD, 2020; Practical Law Intellectual Property & 
Technology, 2022).
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5  ACIA Research Challenges

The AICA research ecosystem guides us to characterize the challenges that are cen-
tered at it. The resulting challenges substantially extend, and restructure, the five 
decision-making challenges (i.e., modeling, individual agent decision-making, col-
lective agents decision-making, learning, and cooperation) and the two resilience 
challenges (i.e., stealth and resilience) described in Théron and Kott (2019). The 
ecosystem-based approach is arguably systematic, so are the resulting challenges.

5.1  Challenges on AICA Models

We use the term “models” (rather than “model”) to indicate that a single model 
might not be able to adequately accommodate all relevant aspects of AICAs, owing 
to their complexities. Moreover, a single kind of models (e.g., analytic models) may 
not be adequate because they may have limited capabilities in deriving rich results 
(e.g., analytic models are often difficult to analyze and may not lead to as many 
analytic results as we wanted).

As highlighted in Fig. 18.3 and elaborated below, the complexity is attributed to 
the involvement of the following components. (i) Operation Technology (OT) com-
ponents, which are often the physical systems that are integral to the networks in 
question, such as the Tanks in AIoBT and the various kinds of controllers in national 
critical infrastructures. (ii) Information Technology (IT) components, which are the 
computing and networking devices that are used in a network. This largely corre-
sponds to traditional network warfare. (iii) Psychological Technology (PT) compo-
nents, which, when applicable, are the human factors that can be exploited by 
attackers to manipulate the human operators to benefit the attacker, such as mis- 
operating devices (Rodriguez et al., 2020, 2022; Longtchi et al., 2022). This largely 
corresponds to what is known as information warfare, including the exploitation of 

Psychological Technology Information Technology

Decision-making Technology

Operational Technology
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Fig. 18.3 The components that should be adequately accommodated in AICA models
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misinformation and/or disinformation in Internet and social networks to influence 
operations. (iv) The Data components, which are the basis for AICAs decision- 
making and therefore their trustworthiness is key to the success of AICAs. (v) The 
Decision-making Technology (DT) components, which are the algorithms, AI/
ML-based or not, that are used by AICAs or human-AICA to make decisions in 
response to observed changes in the environment (e.g., adversarial behaviors). This 
is critical because decision-making often uses the observed data as input and a deci-
sion leads to actions by some OT, IT, and/or PT components.

The components mentioned above inherently interfere with each other. For 
example, the compromise of IT or OT components can cause that the Data collected 
by AICAs is misleading as the data reflects what the attacker wants the defender to 
see; this can cause the DT components to make wrong decisions to benefit the 
attacker. When applicable, this is also true when PT components are exploited to 
cause human operators to apply wrong operations. As another example, the DT 
components should be able to quantify the confidence of the decisions they recom-
mended (e.g., AI/ML trustworthiness) and explain why they make certain decisions 
(e.g., AI/ML explainability), so that human decision-makers, if applicable, can 
decide whether to adopt a recommendation or not.

There are a number of challenges associated with the modeling of AICA systems:

• Security quantification. This is to quantify the security of network defended by 
AICAs (Pendleton et al., 2017), which serves as a starting point. Our more recent 
research (Xu, 2021) puts it into a broader and more systematic context.

• Agility quantification. This is to quantify the agility of AICAs in adapting to new 
threats imposed by attackers and the agility for attackers to adapt to counter 
AICAs and other defenses (Mireles et al., 2019; Xu, 2021).

• Resilience quantification. This is to quantify how resilient AICAs are in resist-
ing attacks, which often attempt to disrupt the entire AICA defense system by 
compromising a small fraction of AICAs (Cho et al., 2016, 2019; Kott & Linkov, 
2021; Xu, 2021).

• Risk quantification. This is to quantify the risk associated with AICAs. This is a 
challenging task because risk is often associated with the inherent uncertainty 
regarding threats and limited defense or detection capabilities (Xu, 2021; Ligo 
et al., 2021). The chapter entitled “Risk Management” discusses the risks that 
may be encountered by AICAs and the approaches that may be leveraged to miti-
gate such risks.

• Trustworthiness quantification. This is to quantify the degree of trust one can 
put on the decisions or recommendations made by an AICA system. This brings 
a new dimension of challenges as discussed in (Cho et  al., 2016, 2019). The 
chapter entitled “Testing and Measurements” discusses some closely related 
matters, including that quality of defense and resilience must be tested and mea-
sured in a rigorous and quantitative manner. Trustworthiness can be leveraged to 
reduce the trust one has to assume, towards achieving zero-trust in 
decision-making.
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To quantify cybersecurity from these perspectives, there are many challenges (Xu, 
2014a, b, 2019, 2020), such as the scalability challenge encountered when dealing 
with large-scale networks, the transient behavior challenges (Chen et  al., 2018, 
2021) (in contrast to characterizing the asymptotic behavior of the global cyberse-
curity state of a network), the dependence challenge between random variables (Da 
et al., 2014; Fang et al., 2021; Xu et al., 2015a, b, 2017, 2018), rather than assuming 
away the due dependence as it can cause misleading results. One interesting future 
work is to analyze the four AICA prototype systems presented in the “Case Study” 
chapters according to the models mentioned above.

The preceding discussion leads to the following:

Insight 7: To adequately model AICAs and analyze their effectiveness or assurance, 
a model should be as holistic as possible in terms of accommodating the OT, IT, 
PT, Data, and DT components in both the system model and the threat model. 
Moreover, we might need to systematically and collectively use analytic, numer-
ical, simulation, emulation, and experimental models to quantify the effective-
ness or assurance (of combinations) of defense policies, architectures and 
mechanisms.

5.2  Challenges on AICA Architectures

While the chapter entitled “Alternative Architectural Approaches” provides a few 
alternative architectures and there has been some earlier investigation (Kott et al., 
2018; De Gaspari et al., 2016), we do not know what architecture would be ideal, 
meaning that we need to quantitatively compare the effectiveness of different AICA 
architectures. For this purpose, we need to build competent models, as described 
above, to quantify the effectiveness of each architecture. One promising approach is 
to adapt the analytic models described in the Cybersecurity Dynamics framework 
(Xu, 2014a, b, 2019, 2020), especially those active cyber defense dynamics models 
(Xu et al., 2015a, b; Lu et al., 2013; Zheng et al., 2015) to quantitatively character-
ize the effectiveness of AICA architectures. This approach is relevant because: (i) it 
explicitly considers the time dimension, which is important because the effective-
ness of AICAs evolves with time; and (ii) both cyber attacks and cyber defenses 
evolve with time because attackers and defenders frequently adapt their behaviors.

Another particular research direction we propose to pursue is what we call the 
“cyber neuroimmune system” architecture, which is inspired by, and mimics, the 
human neuroimmune system architecture. The subject of neuroimmunology studies 
how human-body’s immune system and nervous system interact with each other. It 
is known that the immune system and the nervous system work together to coordi-
nate in detecting and responding to dangers against human body (Steinman, 2004; 
Kraus et al., 2021). This analogy is appropriate because of the following interac-
tions between the central nervous system and the immune system as follows 
(Steinman, 2004; Schiller et  al., 2021): (i) The central nervous system acts 

18 AICA Development Challenges



380

reciprocally with the immune system, meaning that the immune system and the 
nervous system function in close association with each other. The nervous system, 
especially the brain, maintains the human-body’s homeostasis while the immune 
system restores the homeostasis after pathogenic attacks. (ii) The central nervous 
system drives immunity in response to recognized dangers or threats. The nervous 
system, especially the brain, predictively perceives and assesses threats against the 
human body before the threats actually hurt the human body, which enables the 
human body to proactively prepare for incoming challenges (e.g., behavioral or cel-
lular changes). (iii) The immune system regulates the central nervous system; for 
example, infection incurs the immune system to signal the brain to respond to 
threats or dangers that may be caused by bacteria, parasites, or viruses. (iv) The 
nervous system and the immune system operate at different speeds or time scales 
because the nervous system can react to situations swiftly (e.g., within millisec-
onds) but the immune system often reacts to situations slowly (i.e., taking minutes 
or even weeks to make defense take effect).

The proposed “cyber neuroimmune system” architecture is highlight in Fig. 18.4. 
The key idea is to (i) design and build a “cyber nervous system” to rapidly orches-
trate decentralized AICA defenses and (ii) design and build decentralized autono-
mous AICA defenses at individual computers. The envisioned “cyber neuroimmune 

Agent 1.1 Agent 1.2 Agent 2.1 Agent 2.2

Computer 1 Computer 2

Agent 3.1 Agent 3.2

Computer 3

Fig. 18.4 Illustration of the envisioned “cyber neuroimmune system” architecture for AICAs, 
where AICAs (i.e., the agents) mimic the human immune system, the solid curves illustrate the 
“cyber nervous systems” which connect AICAs for coordinating their activities, and the dashed 
curves represent the communication channels between the AICAs in a computer
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system” architecture needs to support or achieve the following set of challenging 
requirements or properties:

• Intelligent orchestration. The envisioned cyber nervous system needs to rapidly 
orchestrate defenses across multiple scales, such as: (i) orchestrating nation-state 
level defenses between autonomous defense systems at the enterprise levels; and 
(ii) orchestrating enterprise-level defenses between autonomous AICAs 
employed at individual computers.

• Swift detection. The architecture can swiftly detect new threats, like the human 
nervous system. Moreover, the architecture should equip AICAs with capabili-
ties in predicting incoming threats or provide early-warning to the largest extent 
possible.

• Quick response. The architecture can automatically and autonomously quaran-
tine compromised computers, and possibly the computers that are suspected to 
have been compromised. This means that the false-positives associated with the 
detection system should be controlled below a tolerable threshold; otherwise, 
this technique may be exploited by attackers to cause denial-of-service attacks.

• Adaptive defense. The architecture should facilitate AICAs’ capabilities in learn-
ing attacker’s evolution and adapting to the evolution of threats. This is funda-
mentally related to the notion of learnability. This adaptation capability is a 
salient characteristic of human immune system. As mentioned above, human 
immune system is slow in learning new threats (e.g., taking days to learn) and 
takes a longer period to eliminate threats (e.g., weeks). This means that AICAs 
must operate at a much smaller time scale to take effect.

• Proactive defense. The architecture should facilitate the AICA’s capabilities in 
predicting the evolution of attacks. This is fundamentally related to the notion of 
predictability. This prediction capability of AICAs may be able to go beyond the 
reach of human neuroimmunological system, in a fashion similar to how AI has 
defeated human Go players.

• Resilient defense. The architecture should be resilient, meaning that the compro-
mise of some AICAs should not render the other AICAs useless, let alone doing 
more harm than good. For this purpose, the architecture should naturally be 
decentralized and should embrace Byzantine fault-tolerance techniques. There 
are discussions on achieving resilience by design vs. dynamic adaptation (Kott 
et al., 2021; Bagchi et al., 2020). It is our position that both are needed because 
they are reminiscent of innate immunization and adaptive immunization, respec-
tively. One approach to resilience-by-design is to leverage program synthesis 
techniques to automatically generate software programs (Bagchi et al., 2020). 
One approach to resilience by dynamic adaptation is to detect anomalies and 
adapt to them (Bagchi et al., 2020).

• Autonomous defense. The architecture should support autonomous defense, 
meaning that each AICA should have its own OODA Loop, while a swarm or 
“troop” of AICAs can collectively run a virtual OODA Loop for joint intelligent 
decision-making.
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The preceding discussion leads to:

Insight 8: Cyber neuroimmune system, mimicking the neuroimmune system in the 
human body, might be the ideal architecture of AICAs, even though the details 
need to be investigated in future work.

5.3  Challenges on AICA Defense Mechanisms

AICA brings a range of challenges at the mechanisms level. We propose dividing 
AICA mechanisms into three categories: surviving, adapting, and fight. In what fol-
lows we explore these challenges.

The surviving mechanisms are those which can be employed to survive AICAs 
from malicious attacks. This is important because an attacker, once penetrating a 
computer, would attempt to disable or compromise the AICA(s) executing in the 
computer. We highlight three surviving mechanisms.

• Stealth mechanism. This mechanism is to make AICAs stealthy, which has been 
discussed elsewhere (Théron & Kott, 2019). The goal is to make it harder for the 
attacker to detect the presence of AICAs; even if the attacker knows the presence 
of AICAs (because they are widely employed), it is still hard for the attacker to 
figure out which process(es) and/or thread(s) and/or virtual machines are acting 
as AICAs. For this purpose, we propose leveraging the techniques that have been 
exploited by stealthy malware, possibly including adversarial example tech-
niques that can be used to evade malware detectors (Li et al., 2023). Our position 
is the following: We can leverage the stealth techniques to hide AICAs from 
malware and leverage the detection techniques that are exploited by attackers to 
detect stealthy AICAs to detect stealthy malware. To the best of our knowledge, 
this idea of “leveraging attack techniques to defend against attacks” has not been 
systematically investigated in the literature and therefore can become an effec-
tive mechanism for defending AICAs. Of course, the details of such mechanisms 
need to be investigated in future work.

• Attack-resistance mechanism. This mechanism is to leverage operating system 
and/or computer architectural features to help AICAs survive malware attacks. 
This is possible by making an operating system to pay special attention to the 
integrity of AICAs, for example by frequently checking that they are not com-
promised by malware. To make AICAs as stealthy a possible, this mechanism 
should not expose AICAs to malware, which may be monitoring the activities of 
operating systems. For this purpose, the operating system may act equally and 
frequently on evaluating the integrity (i.e., “health condition”) of programs 
including AICAs. Of course, care must be taken to deal with potential side- 
channel leakages that a malware can determine whether or not one program is an 
AICA (or contains the functionality of AICA).

• Agents diversification. This mechanism asks if there should be one kind of 
agents or multiple kinds of agents. We propose diversifying agents in two senses. 
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(i) There should be multiple kinds of agents, as mentioned above. This is partly 
inspired by how human immune system operates: B-cells, which are developed 
in human’s bone marrow, are charged with the functionality of recognizing 
harms (i.e., antigens or foreign materials), but T-cells specialize in attacking the 
cells that are infected with viruses; moreover, T-cells can be divided into multiple 
sub-categories (e.g., “killer” vs. helper T-cells) (Clark, 2008). Similarly, we 
advocate designing different kinds of agents. (ii) Even for the same kind of 
agents, the implementation should be diversified; otherwise, the compromise of 
a single agent will cause the compromise of all agents.

The adapting mechanisms are those which can be employed to make AICAs auton-
omously adapt to the evolution of threats. We highlight the following mechanisms:

• Dynamic learning. This mechanism is for AICAs to dynamically learn the evo-
lution of cyber threats and the environment to which they interact, as what have 
been described in the chapters entitled “Perception of Environment”, “Perception 
of Threats”, “Situational Understanding and Diagnostics”, and “Learning about 
the Adversary”. This is critical because cyber attacks, such as malware, are 
dynamically evolving with time to evade cyber defenses. Moreover, the learning 
function must be robust against deception which may be exploited by attacks.

• Self-adaptation. This mechanism is for AICAs to autonomously adapt to the 
evolution of cyber threats, as described in the chapter entitled “Adaptivity & 
Antifragility”. Ideally, this should be achieved without relying on assistance 
from the other defense systems. As an intermediate solution, this may be achieved 
by leveraging a non-AICA defense system; for example, there may be a network- 
wide defense system leveraging data collected from the entire network to learn 
the evolution of threats and then inform AICAs with the learned threats evolution 
and possibly strategies to adapt their defenses, so that the AICAs can leverage 
such “advice” to adapt.

• Autonomous defense-in-depth. This mechanism is for AICAs to achieve autono-
mous defense-in-depth. This is inspired by the human body defense system, 
which consists of the skin, the physiological conditions, the innate immune sys-
tem (for inheriting defenses against recognized threats), and the adaptive immune 
system (for building capabilities to defend against newly encountered threats).

The fight mechanisms are those which can be employed to disrupt attackers’ mal-
ware. We highlight the following mechanisms.

• Deception mechanism. This mechanism aims to deceive malware into making 
wrong decisions as described in the chapter entitled “Cyber Camouflage”, which 
is one form of cyber deception for hindering the attacker’s reconnaissance and 
other activities. Traditionally, cyber deception has been providing misleading 
environmental information to malware (Lu et al., 2020; Al-Shaer et al., 2019; 
Wang & Lu, 2018). In the context of AICAs, we propose leveraging AICAs to 
feed malware with misleading information. This is possible when malware of the 
same attacker or different attackers need to communication with each other to 
coordinate their attacks; in this case, it is possible to make AICAs impersonate 
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the malware that have been reverse-engineered to communicate with the yet-to- 
be-detected malware, feeding them with misleading information, and making 
them make the decisions that can benefit the defenders (e.g., revealing their 
attack intents or plans). This is another manifestation of “leveraging attack tech-
niques against attackers”.

• Friend or foe mechanism (Théron & Kott, 2019). For AICAs to form a squadron 
or corps of “soldiers”, they must be able to communicate with each other to coor-
dinate activities. As described in the chapter entitled “Negotiation and 
Collaboration”, it is important to make “friend or foe” mechanisms robust against 
malware which may attempt to exploit this mechanism to identify other AICAs. 
Two kinds of techniques can be used. The first technique is to preserve the ano-
nymity of AICAs until after being certain about the identity of two or multiple 
interacting AICAs; otherwise, malware could participate in unsuccessful “friend 
or foe” interactions to identify AICAs. For this purpose, the cryptographic notion 
of two-party or multi-party secret handshakes (Xu & Yung, 2004, 2007; Tsudik 
& Xu, 2006) can be used for this purpose. Even with such techniques, malware 
may still be able to identify AICAs by purely observing who is interacting with 
whom via such protocols, unless many programs adopt this paradigm of “inter-
acting agents” or “multiagent programming”. Since this paradigm of “interacting 
agents” has not been widely used in IT/OT/DT systems, hiding the presence of 
secret handshakes needs to be investigated in future work. This manifests one 
impact of AICAs on the environments where they execute, which is described as 
one engineering challenge above.

• Autonomous malware detection. This mechanism is to autonomously recognize 
malware. While malware detection has been investigated extensively in the lit-
erature, the problem remains largely open as evidenced by the prevalence of 
malware. This can be attributed to the endless “arms race” between malware 
writers and malware detectors, including the use of adversarial examples against 
AI/ML-based malware detectors (Li et  al., 2021a, b, 2023). This problem 
becomes even more challenging in the setting of AICAs because such detection 
functionalities may have to be conducted by AICAs, which are less powerful 
than the current generation of server- or cloud-based malware detectors. In order 
to tackle this challenge, new ideas need to be investigated, such as: How can 
AICAs leverage server- or cloud-based malware detectors without exposing 
themselves to malware (e.g., stealthy communications with server- or cloud- 
based malware detectors)?

• Autonomous cleanup. This mechanism is to autonomously eliminate malware 
that have been detected. This turns out to be a big challenge because the current 
cyber defense tools are mainly “watchers, rather than doers” (Kott & Théron, 
2020). That is, the cleanup of compromised computers and devices are largely 
manual rather than automated, let alone autonomous. To achieve this, we might 
have to resort to new operating system and/or computer architecture features, 
such that when an AICA detects a malware, it can trigger the operating system 
and/or computer architectural features to run some sort of “privileged instruc-
tions” to clean up the malware. We stress that this technique is a double-edged 
sword because once compromised, a malware can exploit it to remove legitimate 
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programs including AICAs. This highlights the importance of designing attack- 
resistant authentication mechanisms, ideally with minimal if not zero trust 
assumptions, for authenticating legitimate and uncompromised AICAs to such 
privileged instructions, while allowing the operating system to detect compro-
mised AICAs such that their requests will be ignored and these compromised 
AICAs may be removed from the system in an autonomous fashion.

• Leveraging attackers to cope with attackers. This mechanism is to leverage the 
presence of multiple attackers, namely leveraging one attacker against another 
(i.e., leveraging one attacker’s malware against another). This is possible when 
multiple attackers are competing against each other, as demonstrated in (Xu 
et al., 2012a, b). The intuition is the following: when the defender does not have 
technique to cope with attacker A’s malware, the defender may leverage attacker 
B’s malware to “kick out” attacker A’s malware (assuming it can indeed achieve 
it) and then cope with attacker B’s malware. This would go much beyond the 
current technology, which is that one attacker’s malware can “patch” the vulner-
ability it exploited so that the vulnerability cannot be exploited by another 
attacker’s malware anymore (Xu et al., 2012a, b).

The preceding discussion leads to:

Insight 9: There are many challenges when designing and developing mechanisms 
to support AICAs, for tackling which some technical directions are dis-
cussed above.

5.4  Challenges on AICA Testing and Certification

For AICAs to be successful in systems like national critical infrastructures and mili-
tary systems, there must be an adequate testing and certification process. This is 
important because the aforementioned modeling and quantification studies often 
assume away the other functionalities that are related to the mission of AICAs, 
which is natural in taming complex systems. However, these assumed-away assump-
tions may interfere with the missions of AICAs in a fashion that may not be related 
to AICA missions. For example, the crash of an operating system at a certain time 
may prevent it from providing the due support to AICAs, which may be exploited 
by a malware to compromise an AICA; this compromise may not be detected until 
after a significant delay. This highlights the importance of testing and certification.

Testing aims to evaluate the effectiveness of AICAs in realistic environments, 
which may go much beyond the analytic, simulation, and emulation models whereby 
effectiveness of AICAs is evaluated as mentioned above. Testing often conducts 
penetrations by red-teams that have the skills similar to what are possessed by 
attackers, including their malware planning and writing skills. Testing also evalu-
ates whether AICAs interfere with, or are interfered by, other software systems that 
will co-exist with AICAs. It is important to recognize that AICAs are a new approach 
to cyber defense, which cannot disrupt the functionalities of the computers or net-
works that are defended by them.
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Certification aims to decide whether AICAs comply with industrial standards 
before they can be considered for incorporation or employment. This is particularly 
relevant to governmental or military systems, largely owing to their complexity. As 
mentioned above, certification cannot be done without conducting extensive testing 
of AICAs in real-world networks. Certification of AICAs is expected to be a com-
plex task (Théron & Kott, 2019).

The preceding discussion leads to the following:

Insight 10: Both extensive testing and certification of AICAs are expected to be 
challenging tasks.

5.5  Challenges on AICA Operations

Once tested and certified, AICAs are deployed to operate in real-world systems. The 
chapter entitled “Deployment and Operation” discussed several scenarios of AICA 
deployment and operations. In general, the operation of AICAs poses a big chal-
lenge because they are essentially on their own in terms of surviving attacks from 
malware and fighting against malware, despite that they may receive some assis-
tance from the operating system and/or computer architectural features mentioned 
above. We propose equipping AICAs with their own Observation-Orientation- 
Decision-Action (OODA) Loop, which is inspired by the military notion of OODA 
Loop introduced by Air Force Colonel John Boyd. Figure 18.5 highlights the ACIA 
OODA Loop, which is elaborated below.

• Challenges on Observation. Observation aims to collect data to adequately 
reflect the situation awareness and the historic data over a past period of time. As 
hinted in the Modeling component of the AICA research ecosystem, there are 
multiple challenges associated with data. (i) The adequacy of the collected data 
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in reflecting the situational awareness. This is related to answering the following 
fundamental questions: What must be observed? How can the defender observe 
what must be observed? (ii) The adequacy of the collected data in reflecting the 
history and modeling purposes, such as the length of the past period of time dur-
ing which the data will be collected and maintained. For example, if statistical 
forecasting or predictive AI/ML models will be applied to historic data, a good 
trade-off will be made in terms of the time windows for modeling purposes; the 
longer the time window, the more resources will be needed to store the historic 
data and possibly a bigger challenge in securing and maintaining the historic 
data. (iii) The trustworthiness of the collected data. The collected data may be 
poisoned before being collected; for example, malware may compromise the 
sensors that read and/or collect data. The collected data may also be poisoned 
after being collected, for example during its storage.

• Challenges on Orientation. Orientation aims to process the collected data for 
understanding the current situation and the trend in the evolution of the situation, 
ideally also the evolution of attack strategies and tactics. This incurs a number of 
challenges. (i) How can AICAs correctly perceive the environment? How can we 
be sure the AICAs are not misled by malware when comprehending the environ-
ment? (ii) How can AICAs correctly perceive the threats and their evolutions, 
such as the attack strategies or tactics that are used by attackers? This is particu-
larly important for “knowing the enemy”. (iii) How can AICAs collaborate with 
each other in the orientation process? This is important because each AICA may 
only see some aspect of a system or network, meaning that they need to collabo-
rate with each other to “piece together” a holistic picture of the situation.

• Challenges on Decision. Decision aims to identify the best responses to threats, 
by leveraging the current situation and the historic evolution as reflected by the 
outcome of the Orientation process. In addition to what are described in the 
chapters entitled “Response Planning” and “Recovery Planning”, there are mul-
tiple challenges associated with the Decision process. (i) The decision-making of 
individual AICAs (Théron & Kott, 2019), including: How can we quantify the 
trustworthiness of a decision made by an AICA? To answer this question, we 
need to quantify the uncertainty associated with the decision-making process of 
an AICA. Some initial investigation has been conducted in the context of adver-
sarial malware detection in (Li et al., 2021a, b). How can we interpret why an 
AICA makes a particular decision or recommendation? In general, this relates to 
AI/ML explainability and interpretation. (ii) The decision-making of a group of 
AICAs (Théron & Kott, 2019). This is important because no single AICA sees 
the entire picture of the current situation or the historic information, which high-
lights the importance of collective decision-making by AICAs. This is nontrivial 
because of the following dilemma: If too many AICAs are involved in the collec-
tive decision-making process, the process may not be efficient enough while 
increasing the risk of exposing AICAs (to malware that may be observing 
 network communication activities); if few AICAs are involved in the collective 
decision-making process, the resulting decision may not be trustworthy because 
these AICAs collectively may not be able to see the entire situation. Identifying 
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an appropriate subset of AICAs is challenging, especially because AICAs are 
autonomous, meaning that we may not be able to pre-determine which AICAs 
should be designated as decision-making AICAs. This reiterates the importance 
of designing competent collaboration mechanisms for AICAs to securely iden-
tify their peers that have the right kinds of information for effective 
decision-making.

• Challenges on Action. Action includes cleaning up compromised computers or 
devices. As described above, this may require new operating system and com-
puter architectural features to help AICAs to autonomously clean up compro-
mised computers. Also as mentioned above and discussed elsewhere (Kott & 
Théron, 2020), our understanding on this matter is very limited because the cur-
rent defense technology is primarily “watchers, rather than doers” (Kott & 
Théron, 2020).

The preceding discussion leads to the following:

Insight 11: AICAs require the support of autonomous OODA Loop, which goes 
much beyond what can be achieved by the current generation of defense 
technology.

5.6  Challenges on Social, Ethical, and Legal Aspects

AICAs are fundamentally based on autonomy, which heavily uses AI/ML technolo-
gies. As a consequence, all of the social, ethical, and legal challenges associated 
with AI/ML technologies naturally apply to AICAs. Moreover, AICAs may become 
the norm in future warfare, this means that the doctrines for warfare might need to 
be revisited to accommodate this new form.

• The social challenges include the acceptance of AICAs to the society. This 
includes (Vought, 2020): assuring public trust in AI in the context of AICAs; 
assuring public participation; assuring scientific integrity and information qual-
ity; assuring adequate risk management; assuring fairness and non- discrimination; 
and assuring disclosure transparency.

• The ethical challenges include what AI/ML technologies may or may not be ethi-
cal to use. For example, the AI/ML technologies potentially harming privacy 
may not be used even for AICA purposes. The United States Department of 
Defense adopts the following principles for ethical AI/ML (US DoD, 2020): 
responsible AI; equitable AI; Traceable AI (for accountability); reliable AI; and 
governable AI.

• The legal challenges deal with both domestic laws and international laws. The 
former has a broad impact (Practical Law Intellectual Property & Technology, 
2022), concerning: (i) risk allocation provisions in commercial transactions 
when AI is involved; (ii) products liabilities when AI is involved; (iii) data pro-
tection and privacy issues when AI is involved; (iv) intellectual property protec-
tions when AI is involved; (v) bankruptcy issues when AI is involved; (vi) 
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discriminations and biases when AI is used in workplace; (vii) issues related to 
health plans, HIPPA compliance, and retirement plans when AI is involved; (viii) 
antitrust issues when AI is involved. The latter copes with international cyber- 
enabled warfare. This is particularly important when studies show that certain 
cyber attacks, such as the cyberspace counterpart of “atomic bombs”, cannot be 
adequately defended by cyber technological means, we may have to resort to 
international treaties to prohibit the use of such attacks, which is similar to the 
international treaties in prohibiting the use of atomic bombs.

The chapter entitled “Policy Issues” further discusses concerns from ethical, gover-
nance, social and legal perspectives. In general, we can draw the following:

Insight 12: Social sciences should play an important role in regulating the use of 
AICAs in cyberspace.

6  Mapping Between the Engineering Ecosystem 
and the Research Ecosystem

Having described the engineering ecosystem and the research ecosystem as well as 
their associated challenges, we now present a mapping between them to highlight 
how the engineering ecosystem can be supported by the research ecosystem, namely 
how the engineering challenges can be resolved by leveraging the results in tackling 
the research challenges.

The relationship between the AICA engineering ecosystem and the AICA 
research ecosystem are highlighted in Fig. 18.6. We make the following observa-
tions. First, investigating models in the research ecosystem is fundamental to the 

AICA Engineering Ecosystem AICA Research Ecosystem
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Individual Test & Certification Mechanisms
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Composite Test & Certification Operations

Deployment Social, Technical, and Legal

Fig. 18.6 Mapping between the AICA engineering ecosystem and the AICA research ecosystem, 
where “A → B” means that tackling A will contribute to tackling B
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success of AICAs, because it will contribute to tackling every aspect of the engi-
neering system. This is because models provide a clean way of thinking in coping 
with the complexity encountered when dealing with complex problems like AICAs, 
including the assumptions that need to be made (e.g., minimal if not zero trust 
assumptions). A good model would guide: (i) cost-effective, if not optimal, design, 
implementation, and composition of AICAs; (ii) both individual and composite test 
& certification in terms of what can be tested and certified; and (iii) the deployment 
while assuring the desired security properties. Second, investigating architectures 
will contribute to optimizing or fine-tuning the design, and will guide the imple-
mentation and the composition of AICAs. For example, it would automatically rec-
ommend an architecture with associated mechanisms with respect to a given 
mission. Third, investigating mechanisms will guide the implementation of AICAs 
because an AICA needs to use specific mechanisms, and will guide the composition 
of AICAs because different mechanisms may be employed together to accomplish 
a given mission. Fourth, investigating test & certification in abstract models and 
possible experimental environments will directly contribute to achieving both indi-
vidual and composite test & certification. Fifth, investigating operations will also 
contribute to the optimization of the design, implementation, composition, deploy-
ment, and individual and composite test & certification, because each of them has 
an impact on operations. Sixth, the social, technical, and legal aspect in the research 
ecosystem will have an impact on the design and implementation of AICAs. This is 
because, for example, certain technologies may be prohibited from being incorpo-
rated into AICAs as regulated by international treaties as mentioned above.

7  Summary and Conclusions

AICAs, or active cyber defenses, have a great potential to become a game-changer 
technology for cybersecurity. In particular, it can eliminate an asymmetry which 
benefits the attacker. The asymmetry is inherent to the following discrepancy: On 
one hand, the effect of attacks can be automatically amplified by the mathematical 
property (i.e., the largest eigenvalue) of a certain matrix, which encodes the network 
connectivity and the preventive cyber defense policies that are employed to defend 
the network (Xu et al., 2012a, b, 2015a, b; Lu et al., 2013; Zheng et al., 2015, 2018; 
Lin et al., 2019; Han et al., 2021); on the other hand, the effect of other kinds of 
defenses (i.e., preventive defenses, reactive defenses, adaptive defenses, proactive 
defenses (Xu, 2014a, b, 2019, 2020) are not amplified by any network effect as 
such. This highlights that AICAs must be employed when the other kinds of defenses 
are not effective against capable cyber attacks.

While attractive and promising, AICAs impose many development challenges, 
which we decompose into two kinds: the engineering challenges vs. the research 
challenges. The former are associated with the AICA engineering ecosystem we 
propose and the latter are associated with the AICA research ecosystem we pro-
pose. The AICA engineering ecosystem consists of six components: design; 
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implementation; individual test & certification; composition; composite test & cer-
tification; and deployment. The AICA research ecosystem also consists of six com-
ponents: models; architectures; mechanisms; testing and certification; operations; 
and social, ethical, and legal aspects. In order to tackle the engineering and research 
challenges, we draw insights into the gaps between the state-of-the-art technology 
and the desired ultimate goals and propose research directions to bridge them. 
Moreover, we make connections between the engineering challenges and the 
research challenges, by describing how tackling the research challenges would con-
tribute to tackling the engineering challenges.

Given the potential gain of AICAs, we strongly suggest that the academia, indus-
try, and government to work together to tackle the engineering and research chal-
lenges described above because these challenges cannot be tackled by any single 
community. We hope the research directions outlined in the present chapter will 
serve as a roadmap in guiding future development efforts towards making AICAs a 
full-fledged solution for real-world employment. One issue we want to highlight is 
that AICAs, or active cyber defenses, may render cybersecurity unmanageable in 
terms of measuring and predicting the evolution of the global cybersecurity state, 
which is attributed to the fact that active cyber defense dynamics can exhibit the 
chaos phenomenon under certain circumstances (Zheng et al., 2015). In principle, 
there are technical means to avoid such situations (Zheng et al., 2015), but more 
research needs to be conducted in taming the chaos phenomenon.
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Chapter 19
Case Study A: A Prototype Autonomous 
Intelligent Cyber-Defense Agent

Benjamin Blakely, William Horsthemke, Nate Evans, and Daniel Harkness

1  Introduction

Throughout 2021 an international group of collaborators, the AICAproto21 consor-
tium, collaborated under the auspices of the NATO NCIA to develop a prototype of 
the AICA architecture for demonstration purposes. This work succeeded, largely 
due to the focus on a “minimum viable” initial demonstration, and in this chapter, 
we will outline the considerations that went into it, the technical details of its con-
struction, the test scenario performed, and how such an agent prototype can be 
extended for use in supporting the research and innovation described in the remain-
der of this book.

2  Related Work

2.1  Frameworks and Methodologies

The question of how to approach the technical architecture of an autonomous agent 
has a number of potential answers, and in fact there are a number of works relevant 
to this topic. Our implementation is based upon the AICA Reference Architecture 
(Kott et al., 2018, 2020).

The first angle to consider is the methodologies behind designing the agents. A 
foundational concept is that of agent-oriented design, proposed as part of the GAIA 
framework in Wooldridge et  al., 2000. Similar work includes the FAME Agent- 
oriented Modeling Language (FAML), a generic agent-oriented metamodel 
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proposed as a candidate for an agent modeling language, akin to UML (Universal 
Markup Language). – a widely adopted modeling language in software engineering 
(Beydoun et al., 2009). Tropos is an object-oriented methodology spanning require-
ments analysis to implementation for developing agent-oriented software systems 
(Bresciani et al., 2004). It is constructed around models of key agent-related con-
cepts: actors, goals, plans, resources, dependencies, capabilities, and beliefs using 
existing standard tools and methodologies such as interaction diagrams and 
UML. The ASPECS holonic (agents composed of agents) organization metamodel 
proposes a recursive design methodology as the basis for an agent-oriented process 
for engineering complex systems (Cossentino et al., 2010). In this way agent func-
tionality can be recursively modeled as subcomponents to drive simplicity in the 
models. This is very similar to the methodology used to build out AICAproto21, 
though we have used the term “micro-agents” to indicate these “subagent” compo-
nents and generally only go to one level of recursion. Prometheus is a methodology 
for designing multiagent systems intended for use by non-experts (Padgham & 
Winikoff, 2003). It introduces the concept of a data coupling diagram showing 
where information is produced and consumed within the agent’s capabilities. This 
type of coupling serves as the basis for communication between the micro-agents in 
the AICA prototype.

There are a number of ways a testbed environment for these agents could be 
built. Standen et al., 2021 proposes the CybORG environment built atop Amazon 
Web Services (AWS), generating the environment and scenario from YAML files in 
an automated manner. Another focused on creating an environment with a focus on 
reinforcement learning for cyber defenses (Molina-Markham et al., 2021). Due to 
financial constraints, we were not able to leverage AWS until late in the prototype 
phase and thus our implementation was built in a containerized architecture. We 
were, however, able to successfully deploy this to AWS on a Linux Docker host. 
Utilizing AWS services (e.g., Elastic Container Registry (ECR), Elastic Container 
Service (ECS), and various database services) would have made the implementation 
simpler but would have required more in-depth architectural changes at a late stage 
of implementation.

We then turn to concepts that are relevant to AICAproto21, but perhaps not fully 
implemented in the initial demonstration. INGENIAS is a software development 
methodology composed of a visual language for multi-agent systems development, 
an integration with software development methodologies, and an analysis/design 
environment (Pavón & Gómez-Sanz, 2003). The overall design methodology is 
very similar to our approach, and at the conclusion of the prototype phase, we find 
ourselves thinking about the elements in the “elaboration” phase of the design 
workflow – specifically modeling tasks and goals and “mental state patterns” (i.e., 
decision making and reasoning). SEMMAS is an integration of intelligent agents 
and semantic web services based on a shared ontology for communication inter-
faces (García-Sánchez et  al., 2009). This is very similar to work to define the 
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knowledge and decision-making capabilities through software-development meth-
odologies (e.g., Shiang & Sterling, 2008). If all participants in an automated defense 
system had a shared ontology, it could ease some of the technical burdens of inter-
communication. This is the reason we propose STIX/TAXII as potential intercom-
munication and knowledge representation methods below. A framework has also 
been proposed for agents to cooperatively explore domain-specific and situational 
information and share it to the group’s mutual benefit (Kendrick et al., 2018).

2.2  Moving Target and Proactive Defenses

A related area of research is that of moving target and proactive defenses (MTD/
PD). These are mechanisms and algorithms built to allow information systems to 
take autonomous action to either make their “attack surface” (i.e., the profile of a 
system relevant to an interested attacker) more difficult to discern or respond to 
perceived attacks in a way that makes the attack more expensive or defeats it entirely. 
The overlap in this work — as can be seen in e.g., Briskin et al., 2016 — makes it 
worth considering various implementations of MTD/PD and their evaluation. A full 
coverage of the topics of designing (e.g., Blakely et al., 2019; Pawlick et al., 2019; 
Xu et al., 2014) or evaluating (Zaffarano et al., 2015) MTD/PD defenses is better 
left to more detailed works, but we will provide a high-level overview of the 
commonalities.

Zhuang et al., 2014 provides an overall theory of moving-target defenses. It dis-
cusses how we can change the configuration states of a system in response to (adap-
tion) or anticipation of (diversification) cyber-attacks. It also provides formal 
definitions for the problems that must be solved for an MTD: choosing the next 
configuration state or a series of adaptations to achieve it given constraints on time 
and cost. These problems are also relevant to automated cyber-defense agents, 
though perhaps in a more general form. Instead of just determining a configuration 
state, an AICA-like agent must determine a course of action that could be an adapta-
tion but could also be a direct response to an adversary or collaborator.

A challenge in MTD/PD that is likely to also be relevant to AICA-type agents is 
where to locate the agents. Should they run as “patrol” agents on networks of inter-
est, akin to white blood cells? Or should they be integral to the functioning of the 
protected systems, even if those systems are highly complex, run on proprietary 
operating systems, or are not open to additions of this kind without direct collabora-
tion with a manufacturer. The AHEAD architecture for active defense advocates 
instrumenting production systems in place of ancillary honeypot systems (De 
Gaspari et al., 2016). Though this adds complexity and cost to the system, it pro-
vides the best vantage point for observing attacker activity.
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2.3  Application Libraries

There has been a fair amount of existing work into developing software packages to 
evaluate the performance of various automated agent algorithms. Generally, these 
can be divided into those designed to allow for simulation of agent behavior and 
environment, and those intended to serve as the basis for operational usage (i.e., 
actual deployment of a functional agent).

Simulations of agent behavior may be useful in quickly evaluating alternative 
methodologies prior to fully implementing them in the operation agent. There are 
several well-known tools of this type. NetLogo is a Scala modeling environment 
used primarily for education and research purposes (Wilensky, 1999). MASON is 
another modeling environment of a similar type written in Java (Luke, 2019). Mesa 
is similar, but designed for the Python community (Kazil et al., 2020).

Actual agent development frameworks are also available. OsBrain is a Python 
implementation (OsBrain - 0.6.5 — OsBrain 0.6.5 Documentation, n.d.). JADE is a 
Java implementation that conforms to the FIPA (Foundation of Intelligent Physical 
Agents, IEEE Computer Society1) standards for agent-based technology (Bellifemine 
et al., 2001). PADE is another Python implementation developed for research into 
use on smart grids (Melo et al., 2019). SPADE is yet another Python implementa-
tion (no apparent relation to PADE) but utilizing XMPP (Jabber) for inter-node 
communication (2006). These agents vary greatly in their age, however at least a 
few appear to still be active projects. Ultimately, we chose to forgo tools such as 
these to permit a more flexible approach.

A key consideration for deciding to adopt an existing framework or develop a 
new one was whether it would be possible to quickly create a foundational proto-
type flexible enough to meet potentially unknown future needs. As discussed below, 
this led to the decision to use “stock” open-source components in a containerized 
architecture instead of an existing library. This will also allow for easier cross- 
platform compatibility and maximal ability to add, remove, or swap components as 
needed for experimentation. It does, however, mean that the agent is much heavier 
weight (i.e., resource requirements and installed footprint) than a monolithic pro-
cess or application. For that reason, and for the other advantages purpose-built 
application environments might provide, it might be desirable to move back to one 
of these later, likely one of the Python-based options given the desire to maintain 
any work done on the existing prototype. However, they did not provide enough 
capabilities for the prototype without significant additional work.

Standardization of the knowledge representation ontology and sharing inter-
faces, to the extent possible, will also increase interoperability and accelerate devel-
opment. For this reason, our intent (as the prototype continues to mature) is to 
leverage the STIX and TAXII standards for knowledge representation and threat 
intelligence sharing (Introduction to STIX, n.d.; Introduction to TAXII, n.d.).

1 http://www.fipa.org/
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3  Guiding Principles for Prototype Development

In building an initial demonstration prototype of the AICA reference architecture, it 
was important to define a manageable scope that would allow for successful com-
pletion in a reasonable amount of time. To this end, tradeoffs needed to be made 
between desired functionality and achievable outcomes. The following describes 
the primary objectives of the work, as well as the limitations on the scope that were 
defined.

The initial prototype, AICAproto21, was built for demonstration to the NATO 
Communications and Information Agency (NCIA) in collaboration with our part-
ners in the AICA International Working Group (https://www.aica- iwg.org). This 
was the first implementation of the AICA reference architecture, and the objective 
was to build a technical framework that demonstrated the basic concepts of “micro- 
agent” interaction and operation in a simulated environment, while providing a 
foundation for future research work that could also be grown into an operational 
system for use in production systems.

The group decided early on that the work developed under this working group 
would be licensed under the LGPL (https://www.gnu.org/licenses/lgpl- 3.0.en.html). 
It was desired that the AICA prototype be of maximum value to the research com-
munity and serve as a catalyst for future collaboration, and thus the group felt 
strongly that it should be open source in nature. However, the group did not want to 
prevent the use of developed technologies in future proprietary applications, should 
that become useful and appropriate. The code developed for this prototype is avail-
able at https://github.com/aica- iwg/aica- agent.

The group wanted to maximize time spent on innovative research topics, and 
minimize time spent on “solved” problems of architecture and intercommunication. 
Many of the available frameworks, as discussed above, are focused on simulation 
only and do not provide the sorts of interactions with external systems that are 
required for an operational agent. Additionally, using existing well-known compo-
nents decreases the time required for new contributors, who may not be familiar 
with the more simulation- and research-oriented tools available and rather may 
already have familiarity with common open-source tools, to become familiar with 
the agent. Combining these considerations, it was determined that the agent would 
be built in a containerized (Docker) architecture and would maximize the use of 
existing open-source components.

Building a fully functional autonomous cyber-defense agent, as can be inferred 
from the breadth of topics in this book, would have been much too ambitious of an 
undertaking for this single prototype. Accordingly, a few simplifying scope limita-
tions were adopted.

First, the intent of this prototype was to demonstrate the functioning framework 
of micro-agents. The intent was not to demonstrate a sophisticated attack detection, 
threat response, learning, or collaboration capability. For this reason, the demon-
stration scenario was constrained to a simple network-based port scan and firewall 
modification example. This is detailed in the section below. Additional scenarios, 
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such as malware detection or interaction with human adversaries, are saved for fol-
low- on work.

Second, though many types of platforms are relevant and of interest for eventual 
deployment, the prototype was only tested in a Linux (Ubuntu) x86 environment. 
The use of Docker maximizes options for cross-platform portability to other com-
modity operating systems, but considerations for non-consumer operating systems 
were not validated.

Third, though a primary research interest to the group is the application of auto-
mated learning, reasoning, and collaboration capabilities, this was scoped out of this 
initial demonstration. This demonstration focused on a static set of rules regarding 
detection and response.

4  Technical Details of Prototype

The selection of Docker as the basis of the prototype implementation allowed for 
maximal re-use of existing components with minimal effort. Combined with Docker 
Compose, it also allows for different contributors to quickly instantiate their own 
test instance on Linux, MacOS, or Windows base operating systems and reproduce 
the demonstration test cases with only a few commands. Last, it allowed for integra-
tion of the development process with a continuous integration and deployment (CI/
CD) pipeline so that each new change submitted by a contributor is tested and 
reviewed before being merged into the main branch, and then can be automatically 
deployed to demonstration instances.

The overall architecture of the agent and its simulated environment is show in 
Fig. 19.1. The left side of the diagram depicts the agent itself, and the right side 
shows the environmental components included in the demonstration. The 

HOST PLATFORM OPERATING SYSTEM & HARDWARE

CONTAINER HOST SYSTEM (Docker)

AICA AGENT SIMULATED ENVIRONMENT OF AICA

TASK QUEUE CONTAINER 
(RabbitMQ)

SQL DB CONTAINER
(PostgreSQL)

NO-SQLDB CONTAINER
(MongoDB)

CONTAINER NETWORK (Docker)

MANAGER CONTAINER
(Django)

MICROAGENT TASKS (Celery)

HMI COMMUNICATION INTERFACE ACTIVITY MONITORING INTERFACE

TARGET CONTAINER
(Linux/Nginx)

ATTACKER 
CONTAINER

(Linux/Nmap)
IDS

CONTAINER
(Suricata)

HONEYPOT
CONTAINER

(OpenCanary)

HMI

Fig. 19.1 AICAproto21 technical architecture. (Credit: Paul Theron and the AICA Prototype 2021 
Consortium)
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Human-Machine Interface (HMI) for the agent is built in the Django Python web 
framework (with a Gunicorn web frontend) and forms the basis of the Manager 
container. This is a commonly used framework with a broad community of con-
tributors and users, allows for integrations with a number of other components, and 
provides an overall model-template-view pattern that lends itself to easily building 
HMI components as necessary. It is integrated with the Celery task queue system (in 
the same container) for dispatching individual agent tasks as necessary in an asyn-
chronous and multi-threaded manner.

Micro-agents within the AICA architecture are defined as Python classes which 
are either called directly by the Manager or dispatched as Celery tasks (depending 
on whether asynchronous processing is required). Celery also supports scheduling 
of tasks for any repetitive actions that must be done without being explicitly invoked 
by the manager or another micro-agent. Upon startup of the agent, Gunicorn and 
Celery are started. The initial Celery task starts the Offline Loader micro-agent, 
which loads static configuration files (or eventually other data sources) and then 
calls the main Decision-Making Engine loop. This may instantiate other tasks (in 
our example monitoring for intrusion detection system (IDS) alerts), as required. 
Micro-agents defined include:

• Offline Loader – upon instantiation of an agent, this loads any pre-configured or 
cached information needed by the agent. For the prototype this read from a 
YAML file to configure an action of “honeypot” for any signature indicated in an 
IDS alert.

• Decision Making Engine – the primary task for the agent that instantiates other 
“startup” tasks and is notified by other agents when an important event is 
observed so that it can coordinate decisions about potential actions, evaluate 
their acceptability, and determine the best course of action.

• Behavior Engine – defines and/or adjudicates acceptable behaviors for the agent. 
In the prototype, this simply defines all responses as acceptable except for any 
activity which would break the prototype by blocking internal network 
communications.

• Knowledge Base – serves as the nexus for retrieving and storing information 
necessary to maintain world-state and configuration. In the prototype this inter-
acted with the NoSQL instance (see below) to retrieve acceptable actions for 
observed events.

• Online Learning – this will serve as the nexus for all dynamic attributes of the 
agent as pertains to updating “intelligent” behaviors based on observed events. It 
was only implemented as a stub in the prototype and no actual functionality was 
implemented.

• Collaboration – provides mechanisms to interact with external systems and other 
AICA agents. In the prototype, this was limited to monitoring IDS alerts and 
initiating honeypot redirect actions, but no inter-agent collaboration was 
implemented.

The manager relies on three other containers to perform agent tasks. The first is a 
task queue, which is closely integrated with the Celery system above. RabbitMQ is 
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used for this system, as it is again a common and well-supported tool for this pur-
pose. Though in this prototype it is used only for task queuing, it provides the ability 
to facilitate additional inter-agent message queues in the future as required. The 
second is a relational database, used both to support the Django application and for 
any other relational storage required to support the agent’s operations (i.e., storing 
configuration or knowledge data). In the prototype demonstration, the well-known 
database PostgreSQL was chosen. Third, as some types of data are more appropriate 
for storage without a relational structure (i.e., dictionaries or other key-value-type 
stores), a MongoDB “NoSQL” (or DocumentDB) container is instantiated. These 
three containers will also be complimented by a GraphDB mechanism such as 
Neo4J as the prototype continues to be developed.

5  Demonstration Scenario and Results

The AICA agent is written in a way to lend itself to external integrations, but for 
prototype demonstration purposes a self-contained environment was desired. The 
scenario to be used was an attacker port-scanning a target webserver, an IDS detect-
ing the scan, the AICA agent observing the IDS detection, and the agent informing 
the victim to redirect all traffic from the origin of the port scan to a honeypot system. 
This is a simple scenario, to be sure, but serves to demonstrate most of the compo-
nents of the AICA agent without requiring separate lines of inquiry into more specu-
lative or research-focused capabilities. This scenario is outlined in Fig. 19.2.
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To facilitate this scenario, as shown in Fig. 19.1, several additional containers 
were created in the containerized test environment. The attacker was an Alpine 
Linux container with nmap. This simply allows the operator to invoke a shell (from 
the Makefile) and manually run scans. While the invocation of scans could have 
been automated, it was desired to have control over this to ensure demonstrations 
could be paced appropriately.

The target was an Alpine Linux container with Nginx (an HTTP daemon), ipta-
bles, and ipset. Nginx merely hosted its default webpage; no customization was 
done. The iptables firewall served as the basis for the redirection capability, which 
was achieved by creating a group in ipset for origin hosts to be redirected that 
expired after 5 min. In this way, ipset can be used to add or remove hosts from redi-
rection without any changes to the iptables ruleset, which would be difficult to track 
and keep in a consistent state.

The IDS was an Alpine Linux container with the Suricata IDS. This was config-
ured to update its rules from the Emerging Threats database upon startup, as well as 
setting the HOME_NET variable in Suricata’s configuration file to include only the 
target host. This container shared a /var./log/suricata volume with the Manager con-
tainer. In this directory, the eve.json file contained any output from Suricata regard-
ing detected events, including signature alerts. In this way the Manager was able to 
watch for these alerts without any additional network configuration or application 
program interface (API) development.

The Honeypot was an Alpine Linux container with OpenCanary. Minimal con-
figuration changes were made to this instance for demonstration purposes, though 
this is a highly extensible tool. It could be configured to emulate several different 
types of hosts and services, instead of the Synology network-attached storage (NAS) 
presented by default. Upon initial startup, using Secure Shell Protocol (SSH) port 
redirection proxied via the Attacker container, the operator can browse to the Target 
container’s website and get the default Nginx webpage. After giving Suricata a cou-
ple of minutes to finish initializing, the operator then runs an nmap scan from the 
attacker. If the eve.json Suricata log is being observed manually during this time, 
the alert message can be observed (though it might require output filtering to catch 
due to the volume of output in this log!). When this alert is logged, the Collaboration 
micro-agent also sees it. It is configured to watch for any ‘alert’ events in this file 
and pass them on to the Decision-Making Engine via the handle_alert method.

The handle_alert method passes the alert object (which is formatted in JSON in 
the Suricata output and represented as a dictionary in Python) to the Knowledge 
Base micro-agent to query for available response actions for this type of event. For 
demonstration purposes, the only available action is defined as “honeypot” and is 
returned as the only recommendation action option for all signature identifications 
(IDs) presented from Suricata alert events. This could return multiple options in 
future iterations. The Decision-Making Engine receives this response and queries 
the Behavior Engine for each response option (only one here) to determine if it 
should proceed with that option. Based on the recommendation options that are 
approved, the Decision-Making Engine then determines the best among them. In 
future iterations this would likely interact with the online learning, knowledge base, 
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and collaboration micro-agents at this phase for determining the best option; for the 
demonstration it simply takes the first approved action – i.e., redirect the “attacker” 
to the honeypot. The Decision-Making Engine then invokes the Collaboration 
micro-agent redirect_to_honeypot_iptables tasks with the attacker and target inter-
net protocol addresses (IPs) indicated in the alert.

The Collaboration micro-agent creates an SSH connection to the target (authen-
tication keypairs are set up at startup of the agent), and then sends a single command 
to add the attacker’s IP address to the honeypot-redirect list using ipset. This will 
persist for five minutes unless triggered again. Although the realism of a target han-
dling redirection of an attacker is low, this avoided the need for a more complicated 
software-defined network configuration or intermediate router/firewall container. If 
the operator then browses to the Target again from the same attacker-proxied con-
nection, the Synology NAS website from OpenCanary is returned.

This level of functionality is what might be referred to as a “minimum viable 
product” in the software industry. It is still a long way from a fully functioning 
AICA implementation but provides the basis to validate the basic micro-agent inter-
actions, demonstrate the concept to collaborators and sponsors for feedback, and 
make architectural or implementation changes without incurring large losses of 
completed work. It also “stubs out” all of the interfaces where more advanced func-
tionality will be incorporated in a way that can be modularly developed by a com-
munity of collaborators with minimal interdependencies that might add friction to 
parallel lines of research and development. It is a foundation upon which future 
development can easily build.

6  Future Capabilities

As work on this prototype continues, there are three primary areas of focus. First is 
to expand beyond just commodity Linux (or, in theory Windows/MacOS given 
Docker compatibility) systems on consumer hardware and evaluate the functional-
ity of an AICA agent on different platforms. An easy next step would be “fleets” of 
endpoints or servers as it would be a direct extension of the existing functionality 
and provide ample opportunities for evaluation of collaborative strategies. However, 
the current container-based architecture might be too heavy to be reasonable 
installed on systems with other primary purposes, so a decision must be made as to 
whether to build a more monolithic and “lightweight” agent for deployment to these 
systems or focus on installing AICA “patrol agents” into key vantage points in 
defender networks.

A slightly further extension would be to critical infrastructure (CI) systems, 
including embedded systems. A portion of CI systems would run on platforms very 
similar, if not the same, as the endpoint and server devices above. Embedded devices 
present new challenges in terms of low resource availability but are likely to run on 
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Linux-based platforms, so compatibility is not a concern. Still, the prevention of 
impact to CI systems is paramount due to their safety-critical nature, so that would 
need to be a primary focus. Critical infrastructure networks might also lack reliable 
connectivity for agents to intercommunicate or communicate with human operators. 
Getting test hardware for these applications will require collaborations with manu-
factures due to cost and licensing, but simulation may also be a reasonable 
alternative.

A similar challenge would be deploying AICA agents to unmanned autonomous 
system (UAS) such as drones or automated vehicles. Again, they are safety-critical 
and have unreliable connectivity, but they might have higher processing capabilities 
than a CI-type (i.e., industrial control system (ICS) or internet of things (IOT) sys-
tem. This of course depends greatly on the type of device in question. A consumer- 
grade drone is unlikely to have much processing power (or energy storage) to spare, 
but a passenger vehicle, commercial vehicle, or military drone potentially could. 
Again, access to hardware is likely to be an obstacle to this line on inquiry. An 
extension of this area would be into weapons platforms which would have very 
similar needs, but of course much higher requirements for safe operation; and of 
course, the difficulty procuring such platforms is likely to be high as well.

A scenario that incorporates many of the challenges above but is of primary 
interest to the authors is that of space-based platforms. As the proliferation of gov-
ernmental, commercial, academic, and privately-owned devices in space continues 
to increase, the threat of adversarial action cannot be ignored. They combine mul-
tiple attributes of the systems above: they may have unreliable communications (or 
very high latency), may have very low resource availability or energy budget, might 
run on proprietary platforms, and are likely to be difficult to obtain and evaluate. 
However, lower-cost options such as “microsatellites” might be a good place to start 
to get an initial feeling for this area, and the communication oddities of space can 
be largely simulated.

The second major area of focus for additional development will be the incorpora-
tion of knowledge representation, learning and decision making, and more complex 
definitions of rules and objectives. In the current prototype, a static ruleset is used 
with a very simple decision-making process. Incorporating knowledge graphs and 
semantic reasoning capabilities will be a very valuable line of research. Investigating 
current frontiers in machine learning research such as graph-based neural networks 
and the application of convolutional neural networks (CNNs) to intrusion detection 
is also likely to pay dividends.

Third, a taxonomy of detection and response agents, their actions, and their inter-
faces is needed to build out the interfaces between an AICA agent and its environ-
ment. We desire to expand supported interactions beyond the IDS/Honeypot 
scenario to incorporate (e.g.) malware, user interaction, moving-target defenses, or 
active defenses. This will help overcome some of the integration challenges, namely 
that it is difficult to generalize from system to system when developing interfaces, 
and that one must have a tight definition of the interface and expectations for pos-
sible actions and responses.
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7  Summary and Conclusions

The development of this prototype, and a more full-featured testbed environment, 
will provide the basis for collaborative research into this area going forward. Early 
testing shows that commodity components can be readily combined to create a basic 
framework for this work, and simple, static cases of behavior rules and response 
behaviors can be constructed without great effort. A central question as the authors 
look ahead to production deployments is whether these savings in effort (and gains 
in flexibility) offset the potential performance and compatibility issues of running a 
multi-container deployment on defender systems or networks.

Examples of how this prototype can support research into other areas of this 
book are described in Table 19.1. To fully realize the potential of this prototype 

Table 19.1 AICAproto21 as a testbed for ideas in this book

Architectural Approaches AICAproto21 demonstrates just one potential architecture. The 
modular nature of its development and deployment into the 
containerized environment will allow alternate approaches to be 
evaluated.

Perception of 
Environment, Situational 
Understanding and 
Diagnostics

The virtualized nature of the AICA agent and the general framework 
including the online learning and collaboration micro-agents will 
allow for various environmental scenarios and co-resident systems to 
be tested and incorporated into the AICA agent’s capabilities.

Perception of Threat, 
Learning about the 
Adversary, Defense by 
Deception

The virtualized nature of the AICA agent and the CI/CD development 
methodology will allow for hostile and even destructive actions to be 
evaluated in the environment, with the ability to easily reset and 
rebuild the environment from scratch before each experiment.

Response Planning, 
Recovery Planning, 
Adaptivity & 
Antifragility,
Negotiation & 
Collaboration, Forming 
Effective Teams

The architecture of the AICA agent and its simulated test 
environment lends itself well to the execution of predefined 
scenarios – whether automatically or manually executed. The Django 
web frontend provides an easy foundation on which to build 
additional instrumentation for the agent itself, and a wide variety of 
other tools can be obtained from Dockerhub or installed onto a 
Linux-based container.

Human Interactions, 
Command in AICA-
intensive Operations

The developed prototype utilizes Django as a human-machine 
interface (HMI) framework. This will allow extensible 
implementations of input and output capabilities, as well as API 
integrations with other tools.

Development Challenges, 
Deployment and 
Operation

The developed architecture has been designed with extensibility and 
low-friction deployment in mind. It will lend itself well to 
incorporation with modern software development best practices and 
methodologies, and easily be extensible (even if through a fork) to 
enable deployments to different environments, as needed.

Risk Management, 
Developing Trust, Policy 
Issues

The key to developing the trust needed to allow policy formation 
around automated agents comes down to being able to quantify the 
risks of the technology through technical validation. Having this 
agent framework, and extending it overtime, will allow the types of 
experimentation needed to add clarity to these discussions and 
develop the appropriate standards, guidelines, and safeguards.
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technology, it will be necessary to example its capabilities to include more sophis-
ticated learning and reasoning, inputs and outputs, and evaluate its potential for 
varying deployment scenarios.
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Chapter 20
Case Study B: AI Agents for the Tactical 
Edge

Pierre Trepagnier and Allan Wollaber

1  Introduction to the Tactical Edge

What is the tactical edge? It is commonly described as the “tip of the spear (Joint 
Staff, 2005),” where combat actually takes place. The tactical edge is thus obviously 
of immense importance in warfighting. However, so far relatively little attention has 
been given in academic literature to the study of AI agents there. One can easily 
sympathize with this state of affairs. Academic research tends to take place in what 
we shall refer to as “the center,” as opposed to “the edge.” In the center, computing 
resources and network connectivity are both plentiful, and researchers are generally 
concerned with pushing forward the state-of-the-art rather than considering how to 
make do with limited resources. It is the purpose of this chapter to make a small 
effort to rectify the situation, by first considering the edge and its limitations as 
opposed to the center, and then presenting a specific example of an AI Agent which 
can be deployed there. We begin by contrasting “the edge” with “the center” in a 
number of relevant dimensions. Note that we will be using “the center” in this dis-
cussion in an overloaded sense, referring to both to “center-academic”, where aca-
demic research takes place, as mentioned above, and to “center-warfighter” where 
large scale units are based, as will be discussed below. In both cases, at the center 
resources are generally plentiful, and so there is no need to lift the degeneracy. 
When necessary, however, we will be careful to make the distinction clear.
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In warfare, the “center” is characterized large units (corps and above) and perma-
nent or semi-permanent bases and concomitant infrastructure, as opposed to the 
“edge,” which consists of smaller units, transient basing, and higher mobility. More 
important, from the point of view of AI agents, is the character of the computing 
resources on which they depend. We will explore these resources in greater detail.

MITRE has produced a Tactical Edge Characterization Network (Dandashi et al., 
2007) which, although somewhat dated, is still very valuable, as they pay close 
attention to the computational and networking issues which limit and define the 
roles of AI agents the tactical edge. MITRE enumerates the four major dimensions 
which constrain the environment as (Dandashi et al., 2007)

• Network characteristics

 – Connectivity fraction
 – Bandwidth
 – Latency

• Resource availability

 – Processing power
 – Storage capacity
 – Size, Weight, and Power (SWaP)

• Information assurance
• User interface considerations

However, MITRE’s scope is broader than ours; we will concentrate on the first 
two major dimensions, as they are the key drivers of AI agents’ characteristics at the 
edge, at the expense of the information assurance and user interface 
considerations.

1.1  Network Characteristics

The first key insight is that as one gets further from the center and towards the edge, 
all three network characteristics degrade. In a center environment with enterprise- 
type connectivity, connectivity will be >99%; outages will be exceptional events. 
Bandwidth will be at the gigabit/s level. Latency will be less than a millisecond. 
None of these levels will be present at the tactical edge. Connectivity and bandwidth 
will in general be dependent on radio frequency (RF) rather than wired physical 
layers, reducing both. Connectivity will be supplied by means such as satellite com-
munication, cell phones, point-to-point radio, or high frequency radio for over-the- 
horizon communications if satellite communication is not available. However, all of 
these methods of supplying communication to the edge will be degraded in each of 
the sub-dimensions of connectivity fraction, bandwidth, and latency as compared to 
what is available at the center.
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1.2  Computing Resources

Turning our attention to resource availability, we note the edge is in a similarly dis-
advantaged state relative to the center as was the case with network characteristics. 
The center has access to enormous amounts of processing power and storage capac-
ity, which can be scaled as necessary (for example AWS). Size, weight, and power 
(SWaP) is not generally an issue at all at the center; because of the high connectivity 
and bandwidth mentioned earlier, the actual resources can be located remotely in 
purpose-built data centers with access to cheap power. The edge’s disadvantages in 
network characteristics spills over into resource availability; because of spotty con-
nectivity and low bandwidth the edge needs to have its resources physically at hand 
in order to guarantee availability. Thus, compute power may be limited to a few rack 
units (U)s of server space in the case of mobile units, and even less for dismount 
(i.e. foot) units.

Another key aspect of the tactical edge is that, disadvantaged as it is in peace-
time, in terms of network characteristics it becomes even more so in times of actual 
combat. Connectivity, latency, and bandwidth may all suffer at the tactical edge in 
current stressing adversarial scenarios. As a prudential aspect of planning, connec-
tivity to the center should be assumed to be seriously impacted or eliminated entirely 
for substantial periods of time in the case of actual hostilities. In short, AI at the 
tactical edge is important to the warfighter, but the conditions there are far from 
ideal for AI, and are becoming more precarious over time. Figure 20.1, which is a 
re-work and simplification of work presented in (Schulz & Trepagnier, 2020), sum-
marizes the situation. Here it is necessary to lift the “center” degeneracy mentioned 
above. Note that we assume that hostilities are not taking place on US soil, and thus 
that network characteristics are unaffected for that part of the center, which included 

Evaluation
Category CONUS OCONUS Base Mobile Dismount

Connectivity High High Intermittent Poor
Bandwidth High High Medium Low
Latency Low Low Medium Higher
Processing Power Very Large Very Large Small Servers Handhelds
Storage Capacity Very Large Very Large Few Terabytes Few Gigabytes
SWaP Unlimited Unlimited Cu Yd/Small Generators Cu Ft/Batteries

Connectivity High Medium Poor Very Low/Zero
Bandwidth High Medium Degraded Very Low/Zero
Latency Low Medium Increased High
Processing Power Very Large Large Small Servers Handhelds
Storage Capacity Very Large Large Few Terabytes Few Gigabytes
SWaP Unlimited Limited Cu Yd/Small Generators Cu Ft/Batteries

Peacetime

CENTER EDGE

Increasing Tension to Active Hostilities

Fig. 20.1 Comparison of network and computing resources available to Tactical Edge vs. Center. 
Center is subdivided into CONUS and OCONUS Base, reflecting the fact that as tensions rise, 
even large bases outside the continental US may be impacted
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both the center-academic and part of the center-warfighter. However, bases outside 
of the US, even if normally considered as part of the center-warfighter, may be 
impacted as tensions rise. Thus, we break the center into CONUS (within the conti-
nental US) and OCONUS (outside it). The forgoing assumption of CONUS immu-
nity may be optimistic for adversaries with sophisticated offensive cyber capabilities, 
but the edge, not the center, is the focus of this chapter. We also assume that local 
computing resources at the edge, as opposed to network resources, remain 
unchanged.

2  AI Agents at the Tactical Edge

In order to design any autonomous agent at the tactical edge, it is useful to consider 
the framework of Fig.  20.2, which depicts a hierarchical framework building 
towards true AI autonomy (automated, consequence-informed decision-making) or 
human-machine teaming (HMT) and is an adaptation of the well-known DIKW 
(Data, Information, Knowledge, Wisdom) hierarchy. “Data” and “basic visibility” 
form the foundation of the problem and capability, and “AI” with “autonomy” or 
“HMT” form the peak. In the information age, it is easy to become seduced by the 
idea that one could jump from mission data to autonomy.

Fig. 20.2 Notional hierarchy relating human-centric capabilities (and corresponding operator 
questions) that are enabled by increasingly sophisticated technical approaches. The Situation 
Awareness (SA) levels on the right correspond to the 3-level Endsley model, which roughly signify 
an ability to discern elements in the environment, to comprehend the current situation, and to 
forward- project the current conditions, all of which require more sophisticated technical capabili-
ties, with an AI agent becoming possible no earlier than the “Models” or “Level 2 SA” level
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However, we believe that any tactical edge capability first needs to consider the 
potential impact to operators or stakeholders in that environment, as is evidenced by 
the “Operator Questions” at the right in Fig. 20.2. If operators at the tactical edge do 
not have deployed sensors and data collection, they are operating blind.

The first step in the technical approach is to instrument the environment and 
regularize the data, which is a task for data engineers. Achieving this step allows 
development to move up the pyramid into the realm of data science, which can 
begin to provide what is indicated as “Level 1 Situation Awareness (SA)”. The listed 
SA levels (Endsley, 1995) correspond to the 3-level Endsley model of situation 
awareness (SA) (Shakarami et al., 2020), in which level 1 signifies perception of 
elements in the environment, level 2 signifies comprehension of the current situa-
tion, and level 3 signifies an ability to project the current conditions into a 
future status.

From the perspective of the capabilities in Fig.  20.2, these capabilities corre-
spond to an ability to discern and track interacting entities from their data signals, 
assign them relevance and priorities, and forecast what may happen given the cur-
rent situation, respectively. Having achieved an ability to track entities, it then 
becomes possible to deploy mathematical models or train machine learning (ML) 
models to provide functions that can associate the entities with contexts, such as 
whether an entity has been seen before, whether it is has features that are known to 
be “good” or “bad”. This is the first level at which ML analytics or dashboards 
become useful, although operators retain full responsibility for taking any response 
actions.

At the next level, some form of “simulation” can enable level 3 SA, although this 
does not necessarily imply a full time-dependent model if consequences can reason-
ably be estimated by allowing discovered, “bad” entities from level 2 SA to persist. 
Arguably, this is the first level at which an AI agent (in the simplest sense) can begin 
to operate, and we will focus on capabilities from this level and up for the remainder 
of the paper. An example of this would be an antivirus software, pretrained on mal-
ware behaviors, detecting a suspicious executable and preemptively sandboxing it 
from access to the network.

Moving up one more level, having an ability to forward-project hypothetical 
scenarios with potential differences via simulation enables optimization approaches 
according to a mission-relevant metric. This can help the operator choose a best 
approach among several options and determine an optimal course-of-action (COA), 
either during a planning phase or in real time. Alternatively, this optimization 
approach can become the basis of a reinforcement learning (RL) procedure to train 
an AI agent that is equipped with an ability to perform response actions either on its 
own or alongside the operator in a human-machine team, which represents the peak 
technical approach in Fig. 20.2.
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2.1  AI Characteristics Relevant to the Tactical Edge

In general, one cannot develop and deploy the entire framework on the tactical edge 
given the resource and time constraints, and the alert reader should recognize that 
several assumptions are naturally embedded within the course of development from 
the base to the peak of this framework. One is that a substantial fraction of the data 
at the base level must be (in some sense) stationary or invariant, in order for any of 
the above structure to retain meaning between development time and deployment 
(Endsley, 1995). All models possess an inherent time constant, Δt, over which they 
can remain valid before they “go stale”; this property can be highly domain depen-
dent, particularly for cyber or EW applications. Returning to the example of mal-
ware, one can consider the time scale for a specific set of malware signatures as 
compared with models that label network protocols: new malware and software 
patches are developed every day, such that a months-old malware library could 
become mostly irrelevant, but network protocols tend to be developed over months 
or years. If Δt is sufficiently small (e.g., on the order of hours or days), it can 
become impractical or impossible to deploy a trustworthy AI agent, although one 
may still offer marginal utility.

Another factor is that the data and models used to build up the technical 
approaches needs to be transferable to the specific environment on the tactical edge, 
whether that be through transfer learning in the usual sense (Schulz et al., 2019) or 
fine tuning (Weiss et al., 2016). Note that transfer learning can be quite general in 
that networks trained on image classification tasks can be adapted for cybersecurity 
problems such as malware classification using ResNet50 (Guo et al., 2018). As an 
example of “fine tuning”, consider a deep neural network (DNN) classifier that 
accurately learns to associate radio-frequency (RF) signals with a large variety of 
specific devices; this would be considered a “pre-training” step. If the model were 
deployed to a location with novel RF emitters, it is necessary to add these labels and 
retrain a subset of the DNN weights, thereby fine-tuning the DNN to the new, but 
related task. Chen et al. (2019) elucidate an example of this approach for cyber- 
physical transportation systems (Rezende et al., 2017). However, deep neural net-
works (DNN)s can easily outstrip available compute resources for learning (and 
even inference) on the tactical edge, with recent pre-trained language models such 
as GPT-3 famously reaching hundreds of billions of parameters.

2.2  Tactical Edge Conditions and Resultant Needs

In considering deployment scenarios on the tactical edge, we envisage scenarios 
constrained by Space, Weight and Power (SWaP) limitations, an inability to operate 
at scale, and extremely limited connectivity to data centers. Examples include space 
and underwater applications, as well as networking equipment at remote outposts. 
It is worth pointing out that in certain scenarios, depending on the severity of these 
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constraints, it is possible to judiciously offload certain tasks to “cloud” or “fog” 
computing capabilities (Endsley, 1995), making use of internet-of-things (IoT) or 
mobile edge computing devices (Li et al., 2018), but we do not focus on those sce-
narios here. We also presume that we cannot defer tactical edge deployments until 
revolutionary technologies such as neuromorphic computing (with its potential to 
vastly reduce SWaP requirements) are extant (Marković et al., 2020). The funda-
mental requirements, then, are to design AI agents that are as robust and resilient as 
is achievable over their deployment period, require minimal compute resources, and 
degrade gracefully. Because these requirements can be at odds with each other, a 
balance must be struck.

By robustness, we consider the definition in the initial draft of the NIST frame-
work, which includes assessing a model’s “sensitivity in uncontrollable factors”, as 
well as “error measurements on novel datasets.”(NIST, 2022) In particular, we stress 
that any deployed edge model must also be trained to be aware of its uncertainties 
with respect to “out-of-distribution” (OOD) data, i.e. data it has never seen before 
and in-distribution data, i.e. data similar to those on which it has been trained. That 
is, the models must aware enough of their own ignorance to reduce the likelihood of 
over-confident predictions on novel data, and their predictions on in-distribution 
data should be accompanied with calibrated probabilities (Hüllermeier & Waegeman, 
2021). Recent advances in machine learning have made this possible. This is one 
mechanism by which a deployed AI agent can degrade gracefully, as it can signal to 
operators the prevalence of any drift due to data staleness or relevant examples of 
datapoints that are highly uncertain. Robustness also implies that there should be an 
ability to “move up the pyramid” in Fig. 20.2, which should help the model fine- 
tune in its deployed scenario, likely with human assistance in the near future to 
ensure model resilience.

Resilience refers to the ability of a model to withstand not only data drift or nov-
elty, but adversarial attack (NIST, 2022) Uncertainty quantification alone is likely 
insufficient to address this vulnerability. However, it is possible to “red team” a 
model before deployment with a suite of known adversarial attacks, which should 
enhance resilience. Fortunately, fewer-parameter models (i.e., models that are less 
susceptible to overfitting) tend to be more resilient, which also helps with SWaP 
constraints by reducing required memory and computation. Active or unsupervised 
learning implementations must be considered carefully in such environments as a 
motivated and patient adversary could eventually learn a way to poison the model.

2.3  Discussion

In general, if warfighters at the edge are to be confident that they have AIs they can 
depend on in times of conflict, they require AIs running on equipment also at the 
edge and under their direct control. Maximal resilience at the edge depends on not 
attempting to use AI agents that require significant compute power or any but the 
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most minimal communications. Cloud computing, for instance, is out of the 
question.

There are additional subtleties having to do with model training and stability as 
well as compute power. A stable model that requires large resources to train is not 
problematic if it can be trained at the center and then run at the edge with available 
data and compute power. The following technical illustration will provide a con-
crete example of many of these issues.

3  Technical Illustration: AI Agents for Blue Force RF 
Situational Awareness (BFSA)

3.1  Introduction

As a technical illustration of the concept of AI agents at the tactical edge, this sec-
tion will discuss the automation of Blue Force Spectrum Awareness (BFSA).1 In 
this context, we will use “BFSA” to refer to situational awareness in the radio fre-
quency (RF) domain. In many aspects of warfare, warfighters will communicate 
using RF, which adversaries can pick up and use against them. Thus warfighters 
require a real-time RF monitoring capability to effectively manage modern adver-
sary threats. Experience has shown that RF emissions can leak important informa-
tion about activities and plans to an adversary if not monitored. Questions of 
particular importance at the tactical edge include

• Are my actual emissions consistent with communication plans?
• Are anomalous emissions present?
• Am I under attack?

Before turning to our example, however, it behooves us to tie BFSA back to the 
concept of cyber AI agents. Consider the Cyber/Electronic Warfare (EW) matrix 
shown in Fig. 20.3.

AI agents in warfare are normally concerned with the lower right cell, in which 
the domains of action and effect are both cyber. In the case of BFSA, the cell of 
interest is lower left. AI agents will be having effects in the RF domain. As dis-
cussed in the first section, this approach is a consequence of the disadvantaged 
nature of the tactical edge, in which RF bears most or all of the communications 
burden. Accordingly, AI Agents need leave their natural realm in cyber to cause 
effects in the EW domain.

1 For those unfamiliar with US military terminology, “Blue” refers to our forces; “Red” refers to 
adversary forces. “Own Force Spectrum Awareness” is occasionally seen as a synonym for BFSA.
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Fig. 20.3 Cyber and EW matrix of possibilities

3.2  State of the Art Prior to AI

Current practice is to utilize specially trained personnel and special equipment to 
conduct BFSA.  It generally requires a combination of Signature Management 
(SIGMAN) and Signals Intelligence (SIGINT) personnel to gather energy across 
the RF spectrum and evaluate it for answers to the three questions outlined above. 
There are obvious limitations to this approach. The most important are

• It does not scale, as it requires manual operation and interpretation by limited 
numbers of trained personnel

• It is not suited to the tactical edge, which is characterized by limited numbers of 
warfighters in geographically separated units. These would be ill-served by a 
central SIGMAN platoon.

• In a tension to openly hostile situation, the SIGINT personnel’s attention will 
have likely shifted away from BFSA leaving the SIGMAN personnel unserved.

3.3  Program Goal

In order to mitigate this problem, MIT Lincoln Laboratory is currently participating 
in a program to automate BFSA, utilizing an AI–based approach. The goal of the 
program is to permit an inexperienced user to easily check for compliance with 
expected RF emissions, thereby getting rapid situational awareness of the RF space. 
The AI agent will convey the current status as compared to plan, plus indications of 
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Fig. 20.4 BFSA flow for unexpected emission

what is wrong if the current status is non-conformant. In this initial implementation, 
however, the AI agent will not take remediation actions on its own initiative. Rather 
the unit will report issues up the chain of command. The general flow of this busi-
ness process is shown in Fig. 20.4 for the interesting case when something unex-
pected is found.

The process begins at upper left with a two-step Classification action, first decid-
ing if the detection is military or not, then what kind of commercial emission it 
might be if not military. (Unintended commercial emissions in the unit may corre-
spond to illicit cell phone use). This is the key AI assisted action, as the inexperi-
enced user will not in general be in a position to classify observed radio emissions. 
The other aspect is reporting up the chain of command detected emissions. Rule- 
based AI agents can assist in this process as well by packaging the reports in a 
proper schema and adding technical details which the inexperienced user may mis-
interpret or get wrong. In our initial implementation, only the boxes with bolded 
verbs are done by the AI agent and roman text by the human operator. Italic text 
could be done by either, depending on the situation. To give some examples.

• The “Is it of concern” step depends on the emission control (EMCON) status. If 
radio silence is being kept, anything is of concern, and the step could be per-
formed by an AI Agent

• The domain of AI action could also be extended by adding a drone to perform the 
“Locate/isolate. Is it likely within my unit?” step.

3.4  Architecture

Having established the utility of AI agents for BFSA at the tactical edge, let us move 
on to discussing the architecture in a little more detail.

As shown in Fig. 20.5, the AI-agent-assisted BFSA can be conceptualized as a 
pipeline, but one with a hierarchy of levels. The levels incorporate varying levels of 
AI. The first level, Aggregation, is not dependent on AI, but consists of classical 
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Fig. 20.5 Architecture of AI-assisted BFSA

radio frequency engineering. At the bottom left, an antenna picks up incoming 
ambient RF. The signals are then conditioned and sent to both a real-time spectrum 
analyzer manufactured by ThinkRF2 and to a bank of software-defined radios 
(SDRs), manufactured by Ettus.3 Detections from the real-time spectrum analyzer 
are then prioritized, depending on inputs supplied by the operator and the expected 
emissions defined by a spectrum plan, and sent to the SDRs, which acquire signals 
as raw .iq files.

From the Aggregate level, the signals move up to the Analyze level, where they 
are classified by either “traditional” classifiers involving signal processing and rule- 
based AI, and/or deep neural net (DNN) based classifiers. The use of both types of 
classifiers is a design tradeoff caused by the intended austere tactical edge environ-
ment in which SWaP and compute power is at a premium. This tradeoff will be 
discussed in more detail below, but it may be quickly motivated by observing that if 
the BFSA is receiving a commercial radio station transmitting on its assigned fre-
quency, you wish to dedicate the minimum of scarce resources necessary to remove 
it from your compliance calculations. From the classifiers, the output moves to a 
database, and then compliance is assessed by comparing the detected signals with 
expected ones.

The result of the compliance assessment then goes finally to the Presentation 
level, where the naïve user is presented with the results of BFSA. The user will then 
correct anomalous emissions for which s/he is directly responsible, and report other 
ones up the chain of command utilizing metadata and formatting generated by 
the BFSA.

2 ThinkRF R5550. https://thinkrf.com/products/real-time-spectrum-analyzers/
3 Ettus X310. https://www.ettus.com/all-products/x310-kit/
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3.5  Software Methodology

Here we briefly mention the software methodology and tools which were used to 
develop the BFSA capability. These are not central to the AI agent issue but may be 
of interest to other practitioners and developers.

• Agile development methodology was employed, with two-week sprints
• Version control provided by git
• Analysis code generally written in Python; UI in Javascript
• Docker containers were employed to package the constituent applications

3.6  Tactical Edge Issues

Let us return to consider our previous discussion in Sect. 2 of how the general char-
acteristics of an AI agent are influenced by the environment of the tactical edge and 
see how it applies to the specific case of AI as developed for the BFSA solution. To 
put it in a more Darwinian way, how the evolutionary pressure of life at the tactical 
edge shapes the development of AI agents. We noted in Sect. 2 that life at the tacti-
cal edge was characterized by

• Lack of high-performance computing hardware
• Inability to operate at scale
• Poor connectivity to center
• Fuzzy borders between cyber, physical, and EW domains

and that these environmental pressures would cause the selection of AI agents char-
acterized by

• Robust and long-lived models (or models adapted to transfer learning)
• Models which do not require a lot of computing power at run time
• Modest ambitions
• Graceful degradation
• Graceful interactions with non-cyber

Let us consider each of the above predictions in turn.

• Robust and long-lived models (or models adapted to transfer learning)

Our BFSA DNN classifiers are trained on common commercial and military proto-
cols, which they can then recognize at run time. Training the classifier requires 
significant computing resources, but these can be applied at the center in advance. 
Military and commercial protocols change slowly, with characteristic times on the 
order of years.

In addition to the DNN classifiers, as indicated in Fig. 20.5, support for tradi-
tional signal-processing-and-ML-based classifiers is also included in the 
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architecture. These also take advantage of the stability of RF waveforms and can 
provide information even if the DNN classifier cannot be used, as will be dis-
cussed below

• Models which do not require a lot of computing power at run time

Although DNN classifiers require both significant compute power and extensive 
memory resources at training time, at run time they are much less demanding. GPU- 
enhanced embedded systems such as the Nvidia Jetson family of modules can run 
them4 and may draw as little as 40 watts. Of course, the development of these mod-
ules was driven by demand in the commercial marketplace for AI applications at the 
edge in fields such as robotics and transportation. However, they can find a home at 
the tactical edge as well.

• Modest ambitions

We wish to emphasize that the automated BFSA under development is only designed 
and intended to monitor and control own force tactical emissions. Although it may 
provide benefits by capturing adversarial emissions, these are out of scope as design 
requirements. Hence no provision is required for considerations such as novel 
adversarial war reserve RF modes, which would require model retraining on the fly 
and hence violate our assumption of poor or nonexistent connectivity to the center 
with its many resources.

• Graceful degradation and interactions with non-cyber

As shown above in Fig. 20.5, the signal analysis portion of the Analyze layer con-
tains room for both DNN and traditional (signal processing) ML based classifiers. 
The latter classifiers yield lower level information such as modulation type, as 
opposed to advanced DNN classifiers which use their greater breadth to reach higher 
up the stack and return protocol-level classifications. However, even in the event the 
DNN classifiers became unusable during action, the lower-level information would 
still yield helpful information on own force emissions, given the knowledge that 
forces have about their own plans and capabilities. Even more degradation is pos-
sible without losing all functionality. The energy/frequency detections which come 
from the ThinkRF scanner in the Aggregate layer and are entered into a database in 
the Analyze layer can give useful information about what is happening in the RF 
spectrum in the event that classification capability had been completely degraded. 
That is, because, energy detection and signal processing are less likely to be fooled 
than neural nets, degraded capabilities will still be present in case the neural net is 
somehow poisoned by a clever adversary. The DNN-dependent AI agent portion of 
BFSA could fail completely, but useful information is still available to be presented 
directly to the user via the UI.

4 See, for example. https://www.nvidia.com/en-us/autonomous-machines/jetson-store/ and https://
www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-orin/
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3.7  Technical Illustration Recapitulation

In this section we have both given a specific example of an AI agent working at the 
tactical edge, and demonstrated how this agent conforms and adapts to the limita-
tions on AI agents which arise from the particular conditions existing there, as intro-
duced in Sect. 1 and further developed in Sect. 2.

4  Thoughts and Recommendations

4.1  Thoughts on Future Evolution

Due to the disadvantaged nature of the tactical edge as compared to the center, it is 
reasonable to suppose that the evolutionary pressures previously mentioned will 
continue to shape AI there. In particular (barring revolutionary as opposed to evolu-
tionary developments), it will continue to have access to less compute power than 
state-of-the-art technologies in the center, and it will continue to require models 
with a larger time constant ΔT than is the case at the center. Nonetheless, although 
the tactical edge’s relative position will remain disadvantaged with respect to the 
center, its absolute position relative to what exists today will continue to advance.

In particular, technologies with commercial drivers, such as the Jetson embedded 
GPU systems developed for commercial edge applications mentioned in Sect. 3, 
and advances in battery technology driven by climate change considerations, as well 
as general improvements in compute power due to the workings of Moore’s Law, 
will increase the capabilities of AI agents at the tactical edge.

Let us return to the hierarchy of situational awareness presented in Fig. 20.2 to 
place the increased capabilities in context. As described, the BFSA project described 
in Sect. 3 has achieved Basic Visibility (“can we see the environment?”) and is 
working in Level 1 SA (“what/who/how much is there?”). The next level is Level 2 
SA (“Which of these things should I attend to?”). These possibilities are within 
sight, given the increased compute power and battery capacity currently on the hori-
zon. Thus, returning to the paradigmatic example shown in Fig. 20.4, one might 
predict that the activities in italic and Roman fonts could eventually be performed 
by AI agents, working in concert with human warfighters.

A key enabling technology for replacing simple, rule-based risk assessment gar-
nered from SME rules-of-thumb with more sophisticated modern ML approaches, 
however, is the availability of large training sets.   Large data sets generally precede 
AI breakthroughs, and are conspicuously lacking in the tactical edge context. We 
conclude this section, therefore, with a suggestion that obtaining them should be 
high priority in the cause of advancing AI at the tactical edge. Their scarcity is likely 
to be limiting factor relatively soon.
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4.2 Concluding Remarks

To conclude, up to now the tactical edge has been, due to its austere environment, 
largely an AI backwater. This situation is now changing. Recent advances in tech-
niques and equipment have made it possible to deploy effective AI there, and we 
have provided a specific example in BFSA. As technology brought about largely by 
commercial forces is deployed there and increases the scope for effective AI we 
expect continued improvement.  We must caveat our optimism with two observa-
tions, however. The first is that the disadvantaged nature of the edge relative to the 
center will persist and provide evolutionary pressure which developers cannot 
ignore. The second is that while relatively recent advances in AI technology have 
satisfied the preconditions for AI-assisted Level 1 Situational Awareness at the edge, 
advances beyond that will depend on gathering appropriate training data. Unlike the 
happy situation which obtained with Facebook and image recognition, it is difficult 
to imagine the relevant training data appearing organically; it will require effort and 
planning. Nonetheless, even without the AI breakthroughs which generally accom-
pany large data set, the AI agent sketched out in Sect. 3 represents a significant 
advance for warfighters at the edge over the current status quo, an advance which 
may be expected to increase as newer technology is deployed.

Distribution Statement A Approved for public release. Distribution is unlimited. This material is 
based upon work supported by the Dept of the Navy under Air Force Contract No. FA8702-
15-D-0001. Any opinions, findings, conclusions or recommendations expressed in this material are 
those of the author(s) and do not necessarily reflect the views of the Dept of the Navy.
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Chapter 21
Case Study C: Sentinels for Cyber 
Resilience

Peter A. Beling, Tim Sherburne, and Barry Horowitz

1  Introduction

This chapter describes an approach to cyber resilience-by-design in which the sys-
tem is engineered to include processes, called sentinels, that monitor for the symp-
toms of cyber-attacks. In the event of a detection, a sentinel will attempt to 
reconfigure the system by engaging alternate sets of hardware and software designed 
to permit continued operation in spite of the attack. Sentinel-based resilience finds 
most of its application in cyber-physical systems, such as vehicles and weapons 
systems, rather than in pure cyber and networking systems, such as enterprise infor-
mation technology systems.

Figure 21.1 provides a representation of a sentinel-based system architecture for 
resilience against cyber attack. In this basic design pattern, the sentinel monitors 
data associated with critical system functions, using rule-based or statistical meth-
ods to judge whether these functions are being performed at an acceptable level. In 
the event of anomalous or unacceptable function, the sentinel will initiate a system 
reconfiguration to engage a resilient mode of operation that uses different hardware 
and software to perform the affected function at an acceptable if not ideal level. 
Typically, resilient modes of operation are designed using components that are 
redundant in terms of function but come from different manufacturers, thus facilitat-
ing recovery from attacks that are idiosyncratic to a manufacturer.

Sentinels are typically implemented by adding to the system dedicated software 
and sensing, computing, and communication hardware. In some systems, internal 
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Fig. 21.1 Sentinel-based system for resilience against cyber atack

data may be available As such, sentinels can represent potential targets for attack 
and pathways that an attacker might use to access other subsystems. To minimize 
that risk, sentinels should be designed to be far more secure than their host system. 
While the sentinel-based cyber-attack detection process is expected to be auto-
mated, the level of reconfiguration automation may vary across system functions.

The following sections describe how sentinels detect attacks, what they do after 
detection, and how to choose where to put them. The discussion covers several spe-
cific engineering patterns for sentinels and resilient models of operation, as well as 
more general topics including operational and life cycle issues in sentinel-based 
cyber resilience and the roles of humans vs. autonomy (e.g. manual, semi- automated, 
automated) in controlling sentinels and reconfiguration actions. The chapter con-
cludes with a case study on a hypothetical weapons system.

Figure 21.2 provides a detailed representation of sentinel functions. As illus-
trated in the figure, the sentinel receives the data to support its monitoring function 
through interfaces to the system functions or sensors monitoring those functions. 
These interfaces may be wired or wireless. The sentinel must then condition the 
diverse sets of collected data so that they can be integrated and used as the basis for 
analysis and, ultimately, decision making. Data conditioning includes setting data 
rates and formats, as well as communication protocols for internal use in the senti-
nel. Once the data is conditioned, the sentinel analyzes the data to detect and local-
ize cyberattacks. A wide set of analytical methods might be employed, ranging from 
simple threshold mechanisms, to statistical methods that aim to detect anomalies in 
multivariate data based on deviation from mean, to machine learning methods. 
Upon detecting an attack, the sentinel must alert system users and provide informa-
tion on the detected attack and the steps required to reconfigure the system for 
continued operation. Depending on the level of automation designed into the 
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Fig. 21.2 Detailed representation of sentinel functions

resilience response, the sentinel may also engage in communication and computer 
control of the subsystems involved in the resilience-related reconfiguration solution. 
The level of automation will depend on system design that may vary across a spec-
trum, including the following cases:

• Totally automated: Sentinel determines reconfiguration to be performed and 
either directly engages with control elements or informs operators who will exe-
cute the reconfiguration.

• Semiautomated: System operators receive automated attack alerts and reconfigu-
ration recommendation(s) from the sentinel and select reconfiguration actions 
based on fusing that input with their own understanding of the system context, 
such as mission priorities or other information sources.

• Manual: System operators receive automated attack alerts from the sentinel and 
select reconfiguration actions using their own understanding of the system and 
its context.

In addition, the sentinel must prepare and disseminate its results for users engaged 
in more strategic roles such as forensics and systems adaptation related to managing 
resilience over longer time cycles.

There are a wide variety of possibilities for the hardware/ software design of 
sentinels that are dependent on the system being supported. For example, imple-
mentation can be through a single computing node or through a highly distributed 
set of nodes, and selection of the design should be highly dependent on the methods 
of security that can be applied for protection of the sentinel. To provide quality and 
cost advantages, the design approach ideally would be based on reusable design 
patterns. Examples of patterns for detecting cyberattacks include:

• Discovery of data inconsistencies within the system with no other explainable 
cause (e.g., operator system control inputs are different from the inputs received 
by the related controlled subsystems, diverse sensors provide inconsistent 
measurements).

21 Case Study C: Sentinels for Cyber Resilience



428

• Detection of changes of system operational parameters without authorized and 
operationally correct procedures, resulting in significant performance 
consequences.

• Recognizing significant unexplainable incompatibilities between internal system 
communication levels and the presentation of situation awareness information 
provided to system operators (e.g., air defense system operators are provided 
with low levels of traffic information, but sensors are observed to be communi-
cating information that should be presented at high rates).

• Rules and thresholds – physical principals, binary notions like tampering.
• Statistical anomaly detection based on deviations from mean values.
• Advanced methods for anomaly detection, such as machine learning models 

trained on data sets for which ground truth of attack status is known.

While each of these examples applies to a wide variety of physical systems, the 
implementation of specific solutions will vary across different systems. The authors’ 
own research has included development of prototype designs that employed some 
of the above patterns for detecting cyberattacks on UAVs, police cars, 3D printers, 
and military systems (Babineau et  al., 2012; Carter et  al., 2019; Fleming et  al., 
2021; Horowitz et al., 2017; Horowitz et al., 2018; Bakirtzis et al., 2022). Note that 
the consequences of a cyberattack can vary significantly depending upon the actual 
system being attacked, so risk-based decisions are required in terms of which design 
patterns reduce the risks of attack most significantly. Furthermore, as noted previ-
ously, resilient system efforts must be directed toward achieving designs that are 
highly secured.

The following sections describe how sentinels detect attacks, what they do after 
detections of an attack, where to put them, and how to test them. The chapter con-
cludes with a case study on a hypothetical weapons system.

2  How Sentinels Detect Attacks

A set of design patterns for sentinel detection of abnormal system behavior is 
defined in this section. Detecting abnormal system behavior is an indication of 
potential cyber attack. A logical architecture for each pattern is presented, a mes-
sage flow is described, as well as a discussion of the system architecture which is 
appropriate for the application of the sentinel pattern.

2.1  Changing Control Input

The logical architecture for the changing control input pattern is shown in Fig. 21.3. 
The sentinel monitors the control path through a hierarchy of controllers to ensure 
consistency of control actions. For example, Control Action B is logical given 
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Fig. 21.3 Changing 
control input pattern for 
detection of cyber attacks

previous Control Action A. This pattern is useful for detecting cyber tampering of 
Controller B or the control path for Control Action B. Cyber physical systems with 
hierarchical control structures can benefit from this detection pattern.

2.2  Resource Introspection

The logical architecture for the resource introspection pattern is shown in Fig. 21.4. 
The sentinel monitors controller/controlled process resource utilization (cpu, mem-
ory, link, etc.) to ensure consistency with current operating state/mode of the sys-
tem. For example, the throughput of feedback messages is consistent with the CPU 
utilization of the controlled process which is the expected source of the feedback 
messages. Cyber physical system architectures with well understood resource utili-
zation semantics can benefit from this detection pattern.

2.3  Attestation Using TPM

The logical architecture for the attestation using a Trusted Platform Module (TPM) 
is shown in the Fig. 21.5. During controller boot, secure hashes (SHA256) of parti-
tions of software and configuration are performed and extended to platform con-
figuration registers (PCR) of a trusted platform module (TPM) . Typically, the 
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Fig. 21.5 Attestation 
using a Trusted Platform 
Module (TPM) pattern for 
detection of cyber attacks

Fig. 21.4 Resource 
introspection pattern for 
detection of cyber attacks

firmware which performs the initial partition hash is from a write-once memory 
location. Upon completion of the boot sequence, if all PCR values hold correct 
SHA256 values a shared secret is released within the TPM that allows calculation 
of a time-based one-time-password (TOTP). The TOTP is reported to the Sentinel 
which attests (via prior knowledge of the controller shared secret) that all partitions 
of controller software and configuration have not been tampered. Cyber physical 
systems which include regular deployment or maintenance phases provide an 
opportunity for tampering of software or configuration and can benefit from this 
detection pattern.
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3  What Sentinels Do After Detecting an Attack

A set of design patterns for system resilience are described in this section. Upon 
detection of abnormal system behavior, a Sentinel will recommend a resilient mode 
of operation that remediates the abnormal system behavior. A logical architecture 
for each pattern is presented, a message flow is described, as well as a discussion of 
the system architecture which is appropriate for the application of the resilience 
pattern.

3.1  Example Sentinel Pattern: Diverse Redundant Controller

The logical architecture for the diverse redundant controller resilience pattern is 
shown in Fig. 21.6. Depending on mission requirements, the sentinel may automati-
cally initiate the switch of the active controller, or the operator may manually initi-
ate the switch. The diversity of implementation/supplier makes it unlikely that the 
detected abnormal system behavior will be propagated to the redundant controller. 
Cyber physical system controllers that support mission critical functions can benefit 
from this resilience pattern.

3.2  Example Sentinel Pattern: Path Diversity

The logical architecture for the path diversity resilience pattern is shown in Fig. 21.7. 
Depending on mission requirements, the sentinel may automatically initiate the 
switch of the active path, or the operator may manually initiate the switch. The 
diversity of the path technology makes it unlikely that the detected abnormal system 

Fig. 21.6 Diverse redundant controller resilience pattern
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Fig. 21.7 Path diversity resilience pattern

Fig. 21.8 Protected restore resilience pattern

behavior will be propagated to the redundant path. Cyber physical system control 
paths that support mission critical messaging can benefit from this resilience pattern.

3.3  Example Sentinel Pattern: Protected Restore

The logical architecture for the protected restore resilience pattern is shown in 
Fig. 21.8. Depending on mission requirements, the sentinel may automatically initi-
ate the restore of software/configuration for a controller, or the operator may manu-
ally initiate the restore. The restore of a protected backup can interrupt a cyber 
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attacker’s access into a controller and restore a controller to a known state of opera-
tion. Cyber physical systems which include regular deployment or maintenance 
phases provide an opportunity for tampering of software or configuration and can 
benefit from this resilience pattern.

The anticipated value of employing this type of resilience solution is that it 
requires the cyberattacker both to understand how the system to be attacked is 
designed and to develop and employ multiple attacks on diversely redundant sub-
systems to sufficiently disrupt the targeted system. This, in turn, should impact the 
cost, time, technical complexity, and risk for creating the desired cyberattacks, with 
the objective of deterring attackers from going ahead with their desire to be disrup-
tive. Of course, the resilience solution must be sufficiently low cost, timely, low 
risk, and effective to make it an attractive option.

As illustrated earlier in discussing reusable design patterns for cyberattack detec-
tion, designs that exploit diverse redundancy for continuing operation also are reus-
able, but implementation and risk reduction value depend upon the actual system to 
be protected. In addition, diverse solutions typically do not perform as well as the 
normal mode of system operation, although they are potentially acceptable for con-
tinuing operation. Examples of diverse redundancy opportunities include the 
following:

 1. use of diverse sensors for providing situation awareness information (e.g., radar, 
infrared, audio, video, and many other technologies that can potentially be used 
as the basis for surveillance subsystems)

 2. use of diverse navigation subsystems (e.g., GPS, inertial navigation)
 3. use of relatively common sub-systems, but designed and produced with different 

hardware and software by different manufacturers (e.g., different operating sys-
tems, application software, microelectronics components, communications 
switches).

As a result, designers of resilient systems must evaluate the losses in performance 
that could result when the protected system is reconfigured and the operational 
acceptability of such losses. Resilience can also be achieved through the integration 
of multiple approaches for achieving diversity that serve both detection of attacks 
and reconfiguration responses. For example, one of the design patterns derived from 
the authors’ research efforts is referred to as configuration hopping with voting 
(Babineau et al., 2012). An experimental application of this design pattern, utilizing 
multivariant programming via the use of three diversely manufactured communica-
tion switches and through comparison of message content going into and coming 
out of the switches, could determine if there was an inappropriately performing 
switch. If so, the improperly performing switch could be taken out of service while 
continuing system operation.

In addition, to make matters more complex for a cyber-attacker intent on chang-
ing message content, the design pattern included the use of a moving target tech-
nique, dynamically changing which switch is to be operationally employed once 
every few seconds, with the use of randomly selected times for moving the potential 
targets (Babineau et al., 2012). Since the diversely implemented switches were not 

21 Case Study C: Sentinels for Cyber Resilience



434

closely synchronized in terms of order of messages and their timing, use of moving 
target defense brought with it the potential to create problems due to the timing of 
message processing within the diverse switches. To address this problem, message 
content comparisons were done in a batched manner at sufficiently spaced intervals 
to reduce the percentage of deviating messages due to timing. The sentinel detection 
algorithms were designed to permit missing messages as a normal situation when 
the deviations occurred close to the switching times, and the operational system 
depended on its existing communication protocols to assure that missing messages 
due to dynamic changing of the switch in operation were either resent in a timely 
manner or were acceptable for loss at low rates. Operational prototype-based exper-
iments related to control of a ship’s propulsion system were conducted to measure 
message loss rates. Results indicated that the number of lost messages due to a 
20-hop/s resilience design was acceptably low (Babineau et al., 2012).

4  Where to Place Sentinels

Systems Theoretic Accident Model and Processes (STAMP) is a safety analysis 
method that is based on causation (Leveson & Thomas, 2018; Young & Leveson, 
2014; Young & Porada, 2017). Causation in STAMP is modeled through hierarchi-
cal control, which models each level of a system as a control process, where unsafe 
control actions can occur. This layered approach to safety has the advantage that 
unsafe control actions at each level percolate upwards or downwards in the hierar-
chy that in turn provides a notion of consequence within the safety model. STAMP 
works in contrast to linear failure modes, where unsafe actions form a chain of 
events. In STAMP, by contrast, safety violations emerge from the interacting control 
layers governing the system. Specifically, STAMP is a hazard analysis technique 
based on an extended model of accident causation. In addition to component fail-
ures, STAMP assumes that accidents can also be caused by unsafe interactions of 
system components, none of which may have individually failed. For this reason, 
STAMP further asserts that emergent properties, for example safety and security, 
cannot be assured by examining subsystems in isolation. As illustrated in Fig. 21.9, 
the System Theoretic Process Analysis (STPA) is one variant of STAMP modeling 
that is primarily used to proactively identify hazardous conditions and states. STPA- 
Sec is an extension of STPA with the intention of transitioning the benefits of loss- 
oriented safety assessment to security (Young & Porada, 2017).

The first step of STPA is to define the system boundary and purpose of the analy-
sis in the form of losses and hazards. The losses are prioritized by the mission/sys-
tem owners and are used to drive the system architecture tradespace analysis. The 
next step is to model the hierarchical control structure for the system’s key behav-
iors. Based on this control structure, a methodical analysis considers how unsafe or 
hazardous control actions could lead to hazardous states and system losses. Finally, 
scenarios are considered to understand reasons why unsafe or hazardous actions 
could occur including intentional cyber security attacks.
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Fig. 21.9 System Theoretic Process Analysis (STPA) overview. (Source (Leveson & Thomas, 
2018): STPA Handbook)

The identified scenarios are evaluated to determine remediation mechanisms 
which effectively minimize the loss using sentinel detection patterns and resilience 
architecture patterns. The architectural tradespace incorporates the set of sentinels 
and resilience modes which mitigate the most likely cyber attacks which could lead 
to the highest priority mission losses that are within the programmatic constraints of 
development time and budget.

5  How to Test Sentinels

Cyber resilience also presents special challenges with regard to test and evaluation. 
Typically, system requirements can be specified in terms of technology function and 
can be tested through manipulation of the systems operational environment, con-
trols, or inputs. Cyber resilience is a high-level property and lacks commonly 
accepted definitions in terms of system requirements and associated test metrics. 
Moreover, by design, resilience behaviors are exhibited only when the system has 
lost critical functions. The implication is that the test and evaluation of requirements 
for operational resilience will involve creating, emulating, or reasoning about the 
internal systems states that might result from successful attacks. The implication is 
that the definition, development, and test and evaluation of requirements for opera-
tional resilience will involve creating and emulating functional models, then reason-
ing about the internal systems states that might result from disruptions caused by 
system failures or successful attacks.

The Framework for Operational Resilience in Engineering and System Test 
(FOREST) is a process meta-model that provides a decomposition of operational 
resilience into the principal mechanisms, options, information flows, and decisions 
that arise as attacks and resilience responses play out in systems. As illustrated in 
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Fig. 21.10 Overview of the Framework for Operational Resilience in Engineering and Systems 
Test (FOREST)

Fig.  21.10, the framework is composed of eight elements known as Testable 
Requirements Elicitation Elements (TREEs) and are described in the table below. 
The first TREE embodies the notion that there is active sensing to detect loss of 
function or abnormal behavior in the system. Next, the framework considers the 
task of isolating a detected incident and the use of diagnostic information as the 
basis for choosing resilience mode responses. From that point, FOREST expands to 
include consideration of operator response and supporting technology. For instance, 
would an operator have confidence in resilience solutions being employed, or does 
the system provide the operator with the ability to run tests or exercise control to 
help in gaining confidence in resilience modes of operation. Finally, the framework 
considers decision support and archiving to allow for post-event analysis and adap-
tation (Table 21.1).

There is significant complexity to the TREEs, and many of them overlap inten-
tionally and deal with issues at the intersections of technology, doctrine, and people. 
As their name implies, TREEs provide a view of resilience that supports the devel-
opment of test plans, and associated measures and metrics, for both the technologi-
cal and operational aspects of the system.
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Table 21.1 Testable Requirements Elicitation Elements (TREE)

TREE ID Description

Attack Sensing T.1 This element of resilience provides the basis for discovering a 
successful cyber-attack and informing the system operators about 
the attack.

Attack Isolation T.2 This element of resilience solutions addresses identification of the 
part of the system that has been successfully attacked.

Resilience Options T.3 This element of resilience solutions addresses the reconfiguration 
solution(s) for the attacks under consideration as well as the 
immediate containment of safety-related consequences.

Evaluation of 
Resilience Options

T.4 This part of the framework calls for documentation that provides 
explanations for the selection of solutions, the anticipated 
performance of the reconfigured system (including time to 
reconfigure), and the basis for deciding that the resulting 
operational capabilities are satisfactory.

Operational 
Confidence in 
Executing Resilience 
Solutions

T.5 The framework calls for documentation of the basis for achieving 
high enough confidence and the related test and evaluation 
methods.

Readiness for 
Operational 
Execution (Real-time 
Mission Context)

T.6 The framework will expect explanation of the basis for the system 
design approach regarding test support for addressing operator 
roles and anticipated performance.

System Resilience 
Decision & 
Execution

T.7 The framework will look for the rationale for who decides on what, 
and the training and tech support required for decision-makers.

Post-Event and 
Lifecycle Test 
Responses

T.8 This portion of the framework addresses identification of 
information reporting and re-use of development test support 
capabilities to address system re-testing regarding potential 
improvements based upon actual results derived from executing 
resilience solutions in response to cyber-attacks.

6  Silverfish Case Study

This section describes the application of sentinel-based resilience concepts to 
Silverfish, a fictional system-of-systems (Beling et al., 2019, 2022). The use case 
shows from tabletop analysis exercises, requirements and functional architecture 
definition, design and test, and then developmental and operational test and 
evaluation.

6.1  Pre-resilience Architecture

As illustrated in Fig. 21.11, the Silverfish System is a rapidly deployable set of 50 
individual ground-based weapon platforms (referred to as obstacles) controlled by 
a single operator. The purpose of the system is to deter and prevent adversaries from 
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Fig. 21.11 Silverfish Case Study – Pre-Resilience Architecture

trespassing into a designated geographic area that is located near a strategically 
sensitive location. The system includes a variety of sensors to locate and classify 
potential trespassers as either personnel or vehicles. An internal wireless communi-
cation system is used to support communication between the sensors and the opera-
tor and supports fire control communications between the operator and the obstacles. 
The sensors include obstacle-based seismic and acoustic sensors, infrared sensors 
and an unmanned aerial vehicle-based surveillance system to provide warning of 
potential adversaries approaching the protected area. The operator, located in a 
vehicle, operates within visual range of the protected area. The operator is in com-
munication with a higher-level command and control (C2) system for exchange of 
doctrinal-related and situation awareness information.

6.2  MA – Cyber Tabletop

The SE team begins the cyber tabletop exercise by defining the Silverfish hierarchi-
cal control structure shown in Fig. 21.12.

Silverfish is built from a Control Station, Obstacles and IR Sensors. The Obstacle 
is built from Munitions and Sensors. External actors include the Operator, 
Technician, C2, UAV and the Physical Attacker. Control Actions & Feedback Items 
are shown on the arcs between components and Control Actions are summarized in 
Table 21.3.
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Fig. 21.12 Silverfish Hierarchical Control Structure (▼Control Action ▲Feedback)

Next the system operators/mission owners perform an operational risk assess-
ment. The Silverfish operational risk assessment identifies four losses with an 
assigned mission priority (see Table  21.4). Three hazards are identified (see 
Table 21.5) which can lead to the losses.

There are four ways (variation type) a control action can be hazardous:

 1. Not providing the control action leads to a hazard.
 2. Providing the control action leads to a hazard.
 3. Providing a potentially safe control action but too early, too late, or in the 

wrong order
 4. The control action lasts too long or is stopped too soon (for continuous control 

actions, not discrete ones).

Three examples of hazardous control actions are identified, which are variations of 
system control actions, and which can lead to a system hazard state (see Table 21.6).
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Table 21.3 Silverfish Control Actions

Control Action Description

CS:Position Technician request to set location during deployment.
CS:Upgrade Technician request to upgrade SW before deployment.
MUN:Fire Control Station message to Obstacle Munition to initiate firing.
OBS:Position Control Station message to set equipment field position.
OBS:Upgrade Control Station message to upgrade component SW.
OP:Disengage Command & Control voice instruction to disengage (hold fire) against physical 

attackers.
OP:Engage Command & Control voice instruction to engage (allow fire) against physical 

attackers.
OP:Fire Operator request to Fire one or more munitions.
PA:Blast Munition kinetic blast towards physical attacker.
TN:Deploy Command & Control voice instruction to deploy Silverfish.
TN:UnDeploy Command & Control voice instruction to un-deploy Silverfish.
UAV:Position Command & Control navigation control to position UAV at protected field 

location.

Table 21.4 Silverfish STPA Losses

Loss ID Title Priority is caused by: Hazard

L.1 Loss of life or serious injury to military. 1 H.1,H.2,H.3
L.2 Loss of life or serious injury to civilians. 1 H.1
L.3 Loss of protected area assets. 2 H.1,H.2
L.4 Loss of classified mission HW/SW. 3 H.3

Table 21.5 Silverfish STPA Hazards

Hazard 
ID Title Description

leads to: 
Loss

is caused by: 
Hazardous Action

H.1 Weapon 
Misfire

Incorrect, or no weapon, is 
fired.

L.1,L.2,L.3 HCA.1,HCA.2

H.2 Slow Deploy Excessive time and/or 
personnel to deploy the system.

L.1,L.3 HCA.3

H.3 Slow 
Un-Deploy

Excessive time and/or 
personnel to un-deploy system.

L.1,L.4

Next the cyber security experts perform a vulnerability assessment. The Silverfish 
vulnerability assessment identifies four example loss scenarios (see Table  21.7) 
which can lead to hazardous control actions and can be protected by a sentinel 
instance. The Silverfish case study includes two sentinels, one deployed within the 
operator vehicle and one deployed into the protected field.
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Table 21.6 Silverfish STPA Hazardous Control Actions (HCA)

HCA 
ID Title Description

Variation 
Type

leads to: 
Hazard

is variation of: 
Control Action

HCA.1 Incorrect 
Fire

Something other than the 
operator selected munition/
obstacle is fired.

Providing H.1 MUN:Fire

HCA.2 No Fire Operator does not fire 
munition/obstacle when 
physical attack is 
imminent.

NotProviding H.1 OP:Fire

HCA.3 Unable to 
set Location

During deployment, the 
location can not be set.

NotProviding H.2 OBS:Position

Table 21.7 Silverfish STPA loss scenarios

Loss scenario 
ID Title

leads to: Hazardous Control 
Action

is protected by: 
Sentinel

LS.1 Manipulated Fire 
Command

HCA.1 SEN.1: Vehicle

LS.2 Situational Injection HCA.2 SEN.2: Field
LS.3 Situational Delay HCA.2 SEN.2: Field
LS.4 Tampered Deployment HCA.4 SEN.1: Vehicle

6.3  MA – Resilience Analysis

Based upon the cyber tabletop, the SE team next considers system resilient modes 
(see Table  21.8), which provide reconfigure for the identified loss scenarios and 
alternate operation for affected components.

The process iterates until an acceptable baseline system description is achieved 
that is acceptable to the SE team, system operators/mission owners, and cyber secu-
rity analysts.

6.4  MA – Requirements Elicitation

Based on the identified loss scenarios and remediations (sentinels) a set of cyber 
resilience system requirements can be elicited. A set of Silverfish constraint and 
functional requirements, with reference to the elicited by loss scenario, are listed in 
Table 21.9. These requirements constrain the system structure to provide the identi-
fied monitoring mechanisms and related resilient modes. Additionally, system 
requirements are elicited that refine the system behavior to enable management 
(enable/disable/self-test, etc.) of the related resilient modes. Finally, a sample set of 
sentinel (Table 21.9) and test support system (Table 21.10) requirements are elicited 
that specify the performance for the FOREST quality attributes that achieve the 
Mission MOPs (Table 21.11).
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Table 21.8 Silverfish Resilient Modes

Resilient 
Mode ID Title

provides reconfiguration 
for: Loss Scenario

provides alternate operation 
for: Component

RM.1 Diverse Redundant 
Radio Relay

LS.2,LS.3 Control Station, IR Sensor, 
Obstacle, Radio Relay

RM.2 Diverse Redundant 
Control Station

LS.1 Control Station

RM.3 Diverse Redundant 
IR Sensor

LS.3 IR Sensor

RM.4 Obstacle Restore LS.4 Obstacle

Table 21.9 Silverfish Loss Scenario Elicited Requirements

Requirement Type elicited by: LS

SF.600.1 Silverfish shall provide fire control action 
monitor.

Constraint LS.1 Manipulated Fire 
Command

SF.600.2 Silverfish shall provide fire control timing 
monitor.

Constraint LS.5 Delayed Fire 
Command

SF.600.3 Silverfish shall provide situational sensor 
report consistency monitor.

Constraint LS.2 Situational Injection

SF.600.4 Silverfish shall provide situational sensor 
report timing monitor.

Constraint LS.3 Situational Delay

SF.600.5 Silverfish shall provide measured boot 
monitor.

Constraint LS.4 Tampered 
Deployment

SF.600.10 Silverfish shall provide component self test 
operations.

Functional LS.1 Manipulated Fire 
Command
LS.2 Situational Injection
LS.3 Situational Delay
LS.4 Tampered 
Deployment
LS.5 Delayed Fire 
Command

SF.600.11 Silverfish shall provide fire control 
redundancy management controls.

Functional LS.1 Manipulated Fire 
Command
LS.5 Delayed Fire 
Command

SF.600.12 Silverfish shall provide fire control self test 
operations.

Functional LS.1 Manipulated Fire 
Command
LS.5 Delayed Fire 
Command

SF.600.13 Silverfish shall provide IR sensor redundancy 
management controls.

Functional LS.2 Situational Injection
LS.3 Situational Delay

SF.600.14 Silverfish shall provide obstacle restore 
management controls.

Functional LS.4 Tampered 
Deployment

SF.600.15 Silverfish shall provide radio relay 
redundancy management controls.

Functional LS.2 Situational Injection
LS.3 Situational Delay
LS.5 Delayed Fire 
Command

SF.600.16 Silverfish shall provide situational aware self 
test operations.

Functional LS.2 Situational Injection
LS.3 Situational Delay
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Table 21.10 Sentinel Loss Scenario Elicited Requirements

Requirement Type elicited by: LS
refines: 
Requirement

SEN.602.1 Vehicle Sentinel shall sense 
LS.1: Manipulated Fire Command Loss 
Scenario within .5 seconds.

Performance LS.1 
Manipulated Fire 
Command

T.1.5 TREE.
Sense – Time 
Spec

SEN.602.2 Vehicle Sentinel shall sense 
LS.1 Manipulated Fire Command with 
99% accuracy.

Performance LS.1 
Manipulated Fire 
Command

T.1.6 TREE.
Sense – Accuracy 
Spec

SEN.602.3 Vehicle Sentinel shall isolate 
C.3.1:Fire Control Station as the source of 
LS.1: Manipulated Fire Control Loss 
Scenario within .5 seconds.

Performance LS.1 
Manipulated Fire 
Command

T.2.3 TREE.
Isolate – Time 
Spec

SEN.602.4 Vehicle Sentinel shall isolate 
C.3.1:Fire Control Station as the source of 
LS.1: Manipulated Fire Control Loss 
Scenario with 99% accuracy.

Performance LS.1 
Manipulated Fire 
Command

T.2.4 TREE.
Isolate – 
Accuracy Spec

SEN.602.5 Vehicle Sentinel shall abort 
SF.1.1: Fire Munition Function upon 
sensing LS.1: Manipulated Fire Command 
Loss Scenario.

Functional LS.1 
Manipulated Fire 
Command

T.3.2 TREE.
Option – Abort 
Unsafe

Table 21.11 Test support system elicited requirements

Requirement Type elicited by: LS refines: Requirement

TSS.603.1 Test Support System shall 
provide an operator 'composability' 
rating for RM.2: Diverse Redundant 
Fire Control

Performance LS.1 
Manipulated Fire 
Command

T.3.3 TREE.
Option – 
Composability 
Rating

TSS.603.2 Test Support System shall 
provide an operator 'failure 
transparency' rating for RM.2: Diverse 
Redundant Fire Control.

Performance LS.1 
Manipulated Fire 
Command

T.4.2 TREE.
Evaluate – 
Recoverability 
Rating

TSS.603.3 Test Support System shall 
provide and operator 'usability' rating 
for RM.2: Diverse Redundant Fire 
Control

Performance LS.1 
Manipulated Fire 
Command

T.4.3 TREE.
Evaluate – Useability 
Rating

TSS.603.4 Test Support System shall 
measure 'timeliness' of operator 
evaluation of RM.2: Diverse Redundant 
Fire Control.

Performance LS.1 
Manipulated Fire 
Command

T.4.4 TREE.
Evaluate – Time 
Spec

6.5  Post-Resilience Architecture

Based on the MA-Cyber Tabletop and MA-Resilience Analysis, the post resilience 
Silverfish architecture is shown in Fig.  21.13. Resilience artifacts are high-
lighted in red.
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Fig. 21.13 Silverfish case study – post-resilience architecture

7  Conclusions

The sentinel approach to resilience described in this chapter can be effective in pre-
serving critical system function under cyber attack. However, it is important to 
emphasize that attack detection is only part of the equation. The system must be 
able to mitigate the attack by reconfiguring its operation using diverse redundant 
subsystems or other techniques, as described in the chapter. Clearly, there are limits 
to scalability to an approach that involves adding hardware and software to a sys-
tem. Resilience engineers are advised to engage in structure processes, involving 
system owners and other stakeholders, to identify critical functions and to define a 
trade space between the monetary cost, operational impacts, and benefits of engi-
neered resilience responses.
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