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Chapter 12
Platelet-Rich Plasma and Autologous 
Conditioned Serum: Non-Cellular Biologic 
Therapies for Neuroimmune Modulation 
and the Treatment of Arthritis Pain

Thomas Buchheit

Abstract  Osteoarthritis (OA) affects more than 50 million in the United States 
(Lawrence et al Part II Arthritis Rheum 58(1):26–35, 2008); however, most of these 
individuals are not considered surgical candidates. Alternative treatment options 
such as medications, intra-articular corticosteroid or hyaluronic acid injections, or 
radiofrequency nerve ablations can reduce pain and improve function in some indi-
viduals, but many others are left in a state of “orthopedic limbo”: conservative ther-
apies are insufficient, and surgery is not an option. Biologically based regenerative 
pain medicine therapies such as platelet-rich plasma (PRP) and autologous condi-
tioned serum (ACS) offer new options for these patients and are used with increas-
ing frequency in the United States. In this chapter, I will discuss the neuroimmune 
alterations that drive the development of osteoarthritis, the mechanisms of action of 
these biologically based, non-stem cell therapies, and clinical outcomes with the use 
of PRP and ACS.
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12.1 � Introduction: Current Treatments for Osteoarthritis

The non-surgical management of patients with osteoarthritis (OA) of the knee or 
other joints follows a common pathway: physical therapy (PT), analgesic medica-
tions such as non-steroidal anti-inflammatory drugs (NSAIDs for topical and/or sys-
temic uses) and acetaminophen, or procedures such as intra-articular corticosteroids 
(IA-C) and intra-articular hyaluronic acid (IA-HA). For patients with refractory 
pain, radiofrequency lesioning/destruction of the nerves that supply sensation to the 
joint is also considered. Of these modalities, PT and exercise remain critically 
important foundational therapies for any individual with degenerative joint disease. 
Exercise activates cartilage (chondrocytes) and tendon cells (tenocytes), increases 
collagen synthesis, and builds joint strength and stability (Hinterwimmer et  al. 
2004; O'Connor et al. 2015). Further, mechanical loading on joints has been shown 
to inhibit the production of inflammatory cytokines such as IL-1, reducing cartilage 
breakdown (Torzilli et al. 2010). For these reasons, PT and exercise should be part 
of all treatment plans.

Other treatments used for arthritis may not be as beneficial, however. For 
instance, NSAIDS carry significant risks: they have been shown to double the 
chances of kidney injury in individuals over the age of 65 and increase the risks for 
gastrointestinal bleeding and cardiovascular disease. Medication alternatives such 
as acetaminophen may be associated with lower kidney and GI toxicity but is often 
less effective than NSAIDS and may cause liver damage (Ong et al. 2007).

Injection techniques such as IA-C are performed several million times each year 
in the United States for the treatment of OA pain; although this procedure provides 
many patients with rapid analgesia, its benefits are generally short-lived, often last-
ing only a few weeks (Juni et al. 2015). When performed in a repeated fashion, IA-C 
also carries the risks of decreased bone density (Al-Shoha et  al. 2012), immune 
system dysfunction (Sytsma et al. 2018), and cellular aging (Poulsen et al. 2014); 
there is also now clear evidence that repeated IA-C injections will accelerate carti-
lage loss and worsen joint damage (McAlindon et al. 2017).

IA-HA is another procedure frequently used for patients with OA. Hyaluronic 
acid, a normal part of synovial fluid, breaks down into smaller, less viscous mole-
cules in arthritis. In efforts to improve joint viscosity, reinjection of HA has been a 
common procedure since the 1990s for these individuals (Temple-Wong et  al. 
2016). Hyaluronic acid, manufactured from rooster combs or bacterial sources, has 
been shown to be effective: a 2006 Cochrane review of 76 studies demonstrated 
improved pain and function for several months following IA-HA (Bellamy et al. 
2006). Subsequent meta-analyses support both the clinical effectiveness for up to 6 
months and the superiority to IA-C (Campbell et al. 2015a; He et al. 2017). IA-HA, 
however, often provides only modest improvements in pain and function for many 
patients, prompting major societies such as the American Academy of Orthopedic 
Surgeons and the American College of Rheumatology to recommend against the 
use of this procedure for the routine treatment of knee OA pain (Jevsevar 2013; 
Kolasinski et al. 2020). These guidelines, however, do not consider the beneficial 
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biological functions of IA-HA including the reduction of inflammatory cytokines 
such as IL-1β, TNFα, and IL-6, and a decrease in joint-damaging enzymes such as 
matrix metalloproteinases (MMP) (Nicholls et al. 2017). Further, HA increases the 
synthesis of beneficial cartilage proteoglycan, extracellular matrix proteins, and tis-
sue inhibitors of metalloproteinases (TIMPs) (Campo et al. 2012; Nicholls et al. 
2017; Waddell et al. 2007). These biologic activities appear to be magnified with the 
use of higher molecular weight products (Bowman et  al. 2018), and may confer 
longer-term health benefits to the joint.

The other non-surgical procedure that has gained popularity for the treatment of 
OA pain (particularly the knee) is the use of geniculate radiofrequency lesioning 
(RFL) to ablate and reduce the nerve supply to the joint. This procedure has been 
shown to provide better pain relief than IA-C at 3 months (Chen et al. 2020b) and 
IA-HA at 6 months (Chen et al. 2020a) but does carry limitations; nerve ablation 
may decrease joint position sense, one of the important goals of many physical 
therapy and rehabilitation programs. If effective, RFL may need to be repeated 
every 10–12 months to maintain analgesia. I generally recommend this procedure 
for patients with end-stage OA who are not surgical candidates or for those who 
have persistent pain after joint replacement surgery.

Although these interventions may help, they are insufficient to treat the millions 
of adults in the United States with functional limitations from OA who are not surgi-
cal candidates (Hootman et al. 2016). Many patients remain in “orthopedic limbo”: 
their pain is not significantly improved by traditional non-surgical treatments and 
their arthritis is not severe enough to require joint replacement surgery. Non-cellular 
biologic therapies such as PRP and ACS may offer additional analgesic benefits to 
these individuals through modulation of neuroimmune mechanisms.

12.2 � Dissociation of Pain and Degeneration

The diagnosis of OA is based on standardized radiologic criteria such as the 
Kellgren–Lawrence (K–L) scale that includes four different categories of x-ray 
findings:

Grade 1, doubtful narrowing of joint space and possible osteophytic lipping
Grade 2, definite osteophytes and possible narrowing of joint space
Grade 3, moderate multiple osteophytes, definite narrowing of joints space, some 

sclerosis, and possible deformity of bone contours; and
Grade 4, large osteophytes, marked narrowing of joint space, severe sclerosis, and 

definite deformity of bone contours

Although the K–L grading system has been used as the gold standard for OA 
diagnosis for over 50 years, almost ½ of individuals who meet these criteria for knee 
arthritis report little or no pain (Hannan et al. 2000). Similarly, while the prevalence 
of radiographic hip OA in individuals over the age of 50 is nearly 20%, only about 
4% experience significant symptoms (Kim et al. 2014). This dramatic disconnect 
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between anatomy and symptoms challenges the validity of traditional diagnostic 
criteria and necessitates that we revisit the drivers of pain in OA. Although central 
sensitization is clearly a factor in regulating the severity of pain with any degenera-
tive condition (Arendt-Nielsen 2017), central modulation is not sufficient to explain 
the diversity of symptom experiences, particularly in patients with bilateral disease 
but only unilateral pain (Barreto et al. 2019) or the absence of pain with advanced 
“bone on bone” OA. In these circumstances, peripheral biochemical alterations 
clearly play a dominant role in defining the severity of OA symptoms.

12.3 � The Link Between Neuroinflammatory Mediators 
and Pain

Overexpression of inflammatory cytokines such as IL-1β, IL-6, and TNFα plays a 
prominent role in the initiation of degenerative joint disease (Martel-Pelletier et al. 
1992), and the severity of pain in OA correlates with several of these proteins 
(Cuellar et al. 2009). Although cytokines likely play a diminished role for pain as 
OA advances (Orita et al. 2011), their early activities induce the production of cata-
bolic enzymes such as matrix metalloproteinase (MMP) and a disintegrin and 
metalloproteinase with thrombospondin motifs (ADAMTS) causing both joint ero-
sion and neural sensitization (Adams et al. 2015; Goldring and Otero 2011; Nicholls 
et al. 2017; Pujol et al. 2009; Vandooren et al. 2014). MMP has several subtypes 
(MMP-1, MMP-3, MMP-13) that are found in higher concentrations in patients 
with arthritis (Yoshihara et al. 2000); likewise, ADAMTS type 4 and 5 are particu-
larly damaging to joint cartilage (Yang et al. 2017). This catabolic cascade is further 
magnified by a parallel loss of growth factors such as TGF-β, FGF, IGF, HGF and 
protective cytokines such as IL-1 receptor antagonist (IL-1Ra) (Arend et al. 1998; 
Pujol et al. 2009). The composite of these biochemical activities ultimately leads to 
joint space narrowing, osteophyte overgrowth, and the radiographic diagnosis of 
OA (Blasioli and Kaplan 2014). The observed cytokine dysregulation in OA has led 
to several medication trials of disease-modifying antirheumatic drugs (DMARDs) 
in an attempt to slow or halt disease progression; unfortunately, these drugs have 
been largely ineffective in improving pain and symptoms (Chevalier et al. 2009; 
Chevalier et al. 2015). Effective, longer-term treatments for OA must address the 
complex biochemical alterations that lead to OA progression.

12.4 � The Biochemistry of a Healthy Joint

Although no single cytokine appears able to reverse the catabolic cascade of OA, 
several are capable of improving the inflammatory changes of early OA and reduc-
ing pain (Pujol et al. 2009). IL-1Ra binds to the IL-1 receptor but does not induce a 
intracellular response, thereby inhibiting the damaging effects of this cytokine 
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Fig. 12.1  Cytokines, growth factors, and MMP need to be in balance to maintain joint health. 
Cytokines such as IL-1 and TNF, and enzymes such as MMPs worsen cartilage damage; anabolic 
factors such as TGF-β and IL-1Ra augment the synthetic capacity of the synovial fluid and joint

(Arend et  al. 1998). IL-10 is released by exercise and can both reduce pain and 
resolve inflammation following injury (da Silva et  al. 2015; Grace et  al. 2016; 
Sloane et al. 2009). Growth factors are also a critical component of healthy joints, 
promoting both collagen and proteoglycan production. In particular, TGF-β plays 
an important role in additionally reducing neuroinflammation and pain (Chen et al. 
2015; Echeverry et al. 2009). The final category of proteins necessary for biochemi-
cal balance of the synovial fluid are TIMPS (the inhibitors of MMP and ADAMTS). 
TIMPS perform a vital role in controlling levels of enzymatic tissue breakdown, 
thereby offering joint and articular surface protection (Nakamura et  al. 2020; 
Yoshihara et al. 2000). The healthy joint needs these protective cytokines, anabolic 
growth factors, and enzyme inhibitors to work in concert to maintain (or re-establish) 
function and reduce pain. This balance is illustrated in Fig. 12.1.

12.5 � The Spectrum of Regenerative Therapies

Regenerative pain medicine encompasses a diversity of both “biologic” and “non-
biologic” treatments. Common non-biologically based therapies include procedures 
such as surgical microfracturing, tendon fenestration, and prolotherapy. In surgical 
microfracturing, multiple lesions are created in the bone surface at the site of carti-
lage injury; this procedure has been shown to induce both cartilage growth and 
clinical improvements in the treated joint (Bae et  al. 2006). Tendon fenestration 
employs a parallel process, where multiple needle passes create microinjury and 
induce the proliferative phase of healing in a chronic tendon injury (Jacobson et al. 
2016). Prolotherapy uses a combination of both chemical and mechanical processes 
to produce controlled inflammation and induction of endogenous healing 
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mechanisms in the target structure (Topol et al. 2011). In contrast, the biologically 
based treatments rely on neuroimmune mechanisms rather than physical or chemi-
cal methods to induce tissue recovery, and include both cellular (stem cells) and 
non-cellular (PRP and ACS) interventions. This chapter will present the non-cellular 
treatments, their mechanisms of action, and their clinical effects in the treatment of 
osteoarthritis.

12.5.1 � Platelet-Rich Plasma (PRP)

PRP has been used clinically since the 1980s when it was found that platelet con-
centrates stimulated wound healing after surgery (Alves and Grimalt 2018). Platelets 
contain over 300 growth factors such as transforming growth factor-β (TGF-β), 
platelet-derived growth factor (PDGF), insulin-like growth factor (IGF), fibroblastic 
growth factor (FGF), hepatocyte growth factor (HGF), epidermal growth factor 
(EGF), vascular endothelial growth factor (VEGF), and others (Blair and 
Flaumenhaft 2009; Hickey et al. 2003; Xie et al. 2014). In most PRP preparations, 
white blood cells (WBCs) such as neutrophils and monocytes are also present in 
varying concentrations. WBC concentrations may increase levels of pro-
inflammatory cytokines (Andia and Maffulli 2013), but also play a role in inducing 
the healing cascade after injection. This progression of cellular activities after tissue 
injury is shown in Fig. 12.2.

PRP contains additional anabolic factors such as tissue inhibitors of metallopro-
teases (TIMP-1, TIMP-2, TIMP-3, and TIMP-4) that promote cellular proliferation, 
matrix formation, and collagen synthesis (Rughetti et al. 2008). The secreted growth 
factors such as TGF-β, FGF, and IGF are also capable of recruiting endogenous 
hematopoietic stem cells and progenitor cells to the site, furthering tissue restora-
tion (Baay et al. 2011; Crane and Cao 2014; Le Blanc and Mougiakakos 2012). 
Several classification systems have been proposed to characterize the PRP products, 
describing platelet counts, neutrophil, monocyte and growth factor concentrations, 
and other variables (Lana et  al. 2017); ongoing research continues to define the 
optimal characteristics of PRP for various disorders. Two general methods of prepa-
ration include a “buffy coat” system and a “plasma-based” system. The buffy coat 
system is named after the appearance of plasma following centrifugation: there 
remains a “whitish” layer (the “buffy coat”) on top of the red cells. These systems 
typically use a single, longer centrifugation process to isolate the platelet layer and 
often contain a higher concentration of platelets and WBCs.

With a plasma-based process for PRP, two shorter centrifugation steps are often 
performed; the initial centrifugation (a “soft spin”) keeps platelets in plasma sus-
pension; this plasma suspension subsequently undergoes a second spin to isolate the 
platelets. This method often reduces the WBC concentrations in PRP (and the 
potential for post-injection inflammatory pain) (Braun et  al. 2014; Riboh et  al. 
2016); however, it also has the potential to reduce platelet counts and growth factor 
concentrations (Fig. 12.3).
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Fig. 12.2  Injury induces platelet activation and the release of growth factors and chemokines on 
the left. Neutrophils, the most common WBC in circulation initially respond; they are followed by 
monocytes/macrophages that migrate to the area and begin the transition to an M2 pro-resolving 
phenotype. This M2 macrophage is capable of releasing growth factors and anabolic cytokines that 
resolve chronic inflammation and induce tissue healing

Fig. 12.3  “Plasma” process for PRP. (a). Whole blood is collected with anticoagulant and briefly 
centrifuged with low centrifugal forces (a “softspin”). This process keeps many of the platelets in 
plasma suspension. (b). This plasma suspension then undergoes a second spin to concentrate the 
platelets. Most of the PPP is then removed, and the platelets re-suspended in the remaining plasma 
for the final PRP preparation

PRP-based growth factors such as TGF-β, PDGF, IGF, FGF, EGF, VEGF, and 
HGF have been shown to produce multiple beneficial effects including the reduction 
of inflammatory cytokines such as IL-1β. The activation of NFκB, a critical 
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transcription factor for immune and inflammatory processes, is also minimized in 
osteoarthritic chondrocytes through suppression of CXCR4  in surrounding 
monocytes/macrophages (Bendinelli et  al. 2010; Blair and Flaumenhaft 2009; 
Hickey et al. 2003; van Buul et al. 2011; Xie et al. 2014). TGF-β and other growth 
factors additionally promote collagen and proteoglycan production, and chondro-
cyte proliferation (Akeda et al. 2006; J.-P. Pujol et al. 2009; Sun et al. 2010; van 
Buul et al. 2011; Wu et al. 2011). PRP-based TIMPs suppress the activity of cata-
bolic enzymes such as MMP3, MMP 13, and ADAMTS, preserving cartilage 
(Rughetti et al. 2008; Sundman et al. 2014). Collectively, these activities have been 
shown to enhance cartilage and meniscal cell regeneration in animal models (Ishida 
et al. 2007; Kwon et al. 2012); however, radiographic restoration of cartilage does 
not appear to be significant when measured in in human trials (Hart et al. 2013). In 
addition to direct growth factor and cytokine effects, PRP has been shown to 
increase endogenous hyaluronic acid secretion in arthritis patients (Anitua et  al. 
2007), with presumptive improvements in synovial fluid viscosity (Detterline et al. 
2008). Overall, PRP appears to improve the health of existing cartilage and tissues 
by reducing concentrations of damaging cytokines and catabolic enzymes, aug-
menting beneficial cytokines and growth factors, and promoting endogenous hyal-
uronic acid production.

The majority of clinical trials of PRP have been in the treatment of knee osteoar-
thritis where reductions in pain and improvements in function have been demon-
strated by both cohort studies (Halpern et al. 2013) and randomized controlled trials 
(Patel et al. 2013; Sánchez et al. 2012; Vaquerizo et al. 2013). Meta-analyses and 
systematic reviews additionally support the use of PRP for mild to moderate OA, 
finding superiority of PRP to IA-HA at 12 months or greater and level I evidence for 
pain reduction at this period (Belk et al. 2020; Campbell et al. 2015b; Chang et al. 
2014; Dai et al. 2017; Johal et al. 2019; Meheux et al. 2016; Sadabad et al. 2016). 
However, the superiority of PRP over IA-HA has not been noted in all trials (Di 
Martino et  al. 2019; Filardo et  al. 2015), leading to an ongoing debate as to the 
optimal PRP preparation methods and WBC concentrations (Belk et al. 2020). It has 
been further demonstrated that low platelet PRP products have limited effectiveness 
in the treatment of knee OA (Bennell et al. 2021). The first randomized comparative 
trial between PRP and bone marrow stem cells was performed in 2020; the interven-
tions were both found to be effective at 12 months and no difference in outcome was 
seen between the treatment methods (Anz et al. 2020). The benefits of PRP appear 
to be greatest in younger patients with earlier stage disease (Chang et  al. 2014; 
Halpern et al. 2013; Patel et al. 2013), likely because of greater autologous growth 
factor concentrations and fewer senescent chondrocytes. Interestingly, although the 
impact of hyaluronic acid injection by itself may be modest, there is growing evi-
dence that IA-HA enhances the benefits of PRP by further inhibiting MMP and 
acting as a matrix for anabolic PRP activities (Chen et al. 2014; Dai et al. 2017;  
Privata et al. 2019; Zhao et al. 2020).

PRP has also been studied for the treatment of tendinopathy; pre-clinical data 
reveal that the injection of PRP-based growth factors such as TGFβ and VEGF 
increases the strength of healing tendons (Docheva et  al. 2015; Rodik and 
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McDermott 2016). Clinically, PRP demonstrates good longer-term outcomes for 
patients with lateral epicondylopathy (Gosens et al. 2011; Johal et al. 2019; Mishra 
et  al. 2014; Peerbooms et  al. 2010) faster recovery of ACL after surgery (Seijas 
et al. 2013), and evidence of improved tendon healing after injury (Gautam et al. 
2015). In a randomized trial, PRP was shown to be superior to dry needling in rota-
tor cuff disease (Rha et al. 2013); however, positive results with the use of PRP in 
rotator cuff tendinopathy are not universal (Kesikburun et al. 2013; Rha et al. 2013; 
Schwitzguebel et al. 2019). A 2016 meta-analysis of 18 studies further supports the 
use of ultrasound-guided PRP in the treatment of chronic tendinopathies of multiple 
locations (Fitzpatrick et al. 2017), although definitive conclusions and indications 
for PRP use with various tendinopathies are still being clarified.

12.5.2 � Autologous Conditioned Serum (ACS)

Whole blood incubation techniques have also been explored as a method to aug-
ment beneficial cytokines and anabolic growth factors. Initial research in this pro-
cess was performed in Germany and the United States in the 1990s, with the 
subsequent development of ACS (Evans 2005; Wehling et al. 2007). ACS is now 
used throughout Europe and in several sites in the United States (Evans et al. 2016). 
In contrast to PRP, ACS is a filtered serum product without platelets or other cellular 
components (Evans et al. 2016) (Fig. 12.4).

The ACS incubation process has been shown to significantly increase levels of 
anti-inflammatory cytokines such as IL-1Ra, IL-4, and IL-10, as well as TGFβ, a 
critical growth factor for cartilage and tissue health (Evans et al. 2016). When used 
in animal models, ACS produces thickening of tendons, higher concentrations of 
type I collagen, and decreases in synovial hyperplasia (Frisbie et al. 2007). In addi-
tion to the important induction of cytokines and growth factors in ACS, it also 
appears that extracellular vesicles such as exosomes may play a vital role in the 
prolonged analgesia that is observed after injection (Shirokova et al. 2020). The 
role of exosomes in biologically based therapies remains an active area of 
investigation.

Initial published use of ACS for the treatment of knee arthritis pain included 
1000 patients as part of a prospective, observational trial; WOMAC scores improved 
by 75% in >70% of patients (Baltzer et  al. 2003). A large, blinded, randomized 
controlled trial (RCT) in 2009 demonstrated superior clinical outcomes of ACS over 
IA-HA and placebo, and improvements were maintained for at least 2 years (Baltzer 
et al. 2009). A smaller RCT by Yang et al. was also performed in patients with knee 
OA; the primary outcome measure of this study did not reach significance; however, 
the investigators noted that KOOS scores were significantly improved in the ACS 
group at 12 months in comparison to the saline injections (Yang et al. 2008). The 
benefits of ACS are further supported by a 2-year observational trial of 118 patients 
who experienced a 62% decrease in VAS scores and a 56% decrease in WOMAC 
scores at follow-up (García-Escudero and Trillos 2015). Positive observational 
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Fig. 12.4  Autologous conditioned serum. Whole blood is incubated under controlled conditions, 
centrifuged, processed, filtered, and then used for injection

results have also been noted with the use of ACS for hip arthritis (Baltzer et  al. 
2013), rotator cuff pathology (Damjanov et  al. 2018), and Achilles tendinopathy 
(von Wehren et al. 2019). As a surgical adjuvant, ACS appears to improve outcomes 
of ACL reconstruction, providing superior WOMAC and IKDC scores compared to 
the control patients and significant decreases in the synovial fluid levels of IL-1 
(Darabos et al. 2011).

12.6 � Conclusions

It is increasingly clear that neuroimmune mechanisms drive symptoms in OA and 
the biochemical imbalance that leads to disease progression is significantly respon-
sive to regenerative pain therapies. Despite the multitude of processing techniques, 
there are common analgesic mechanisms that these therapies share, including the 
enhancement of growth factors and anabolic cytokines. PRP and ACS have been 
used for decades and demonstrate superiority to standard treatments such as steroid 
or IA-HA injection, not only reducing symptoms, but potentially modifying disease 
course. As research continues to clarify optimal processing methods and disease-
specific indications, the roles for these biologically based interventions will con-
tinue to expand in the non-surgical treatment of osteoarthritis.
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