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Abstract 

Fungi and Metazoa (animals) are two major 
multicellular kingdoms of life and both are 
positioned in the eukaryotic Opisthokonta. 
Within the supergroup Fungi and Metazoa 
fall into either side of the opisthokont root, in 
the major sub-groups Holomycota and 
Holozoa. In this chapter, we cover recent 
advances in the understanding of opisthokont 
biology, in particular looking at their diversity 
and where opisthokonts fall in the eukaryotic 
tree. Although much uncertainty remains over 
how different eukaryotic supergroups are 
related to each other, the closest relatives of 
Opisthokonta are now widely recognised. 

revised due to the discovery of new species, as 
well as the reassignment of taxa on the basis of 
phylogenetic analyses. We consider common 
traits and characteristics found in 
opisthokonts. The explosion of genomic and 
transcriptomic sequencing since the turn of the 
century has allowed the identification of genes 
involved in multicellularity in both Metazoa 
and Fungi; molecular phylogenies show mul-
ticellularity has independently evolved in 

multiple lineages across the opisthokonts. 
Annotated gene complements from species 
spanning the group highlight that gene loss 
and gain is a dynamic process in the 
opisthokonts. 
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1.1 Introduction 

Fungi and Metazoa constitute two of the major 
multicellular eukaryotic lineages and a large body 
of robust data confirms that they are close 
relatives (Brown et al. 2018; Derelle et al. 2015; 
Wainright et al. 1993). Together, along with a 
number of clades comprising unicellular taxa, 
Fungi and Metazoa make up the eukaryotic super-
group Opisthokonta (Adl et al. 2019). This chap-
ter sets out to describe our current knowledge on 
the species and biology of the opisthokonts, with 
a particular emphasis on the unicellular 
representatives. 

The composition of Opisthokonta has been 
disputed since the existence of the group was 
first proposed; however, a more settled view has 
emerged within recent years, with between seven 
to ten major lineages recognised. In addition to 
the multicellular Fungi and Metazoa, 
Opisthokonta also contains the unicellular
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lineages Choanoflagellates, Filasterea, 
Ichthyosporea, and Opisthosporidia, as well as 
the nucleariid amoebae (Adl et al. 2019). The 
monophyly of Opisthosporidia has been 
questioned (Karpov et al. 2014a, b), with 
Aphelida potentially forming a clade independent 
of the other opisthosporidians (Torruella et al. 
2018). A putative ninth taxon, Pluriformea, has 
also been proposed (Hehenberger et al. 2017), 
but, at present, the relationships between the two 
known pluriform species and other opisthokonts 
have not been resolved and recognition of the 
group is not universal (Torruella et al. 2015). 
The most recently discovered independent 
opisthokont group is the genus Tunicaraptor, 
currently only known by the type species 
T. unikontum (Tikhonenkov et al. 2020). 
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The relationships amongst the opisthokont 
groups, and of those of the opisthokonts with 
other eukaryotic supergroups, are slowly becom-
ing clearer. We discuss here the major taxonomic 
groups within Opisthokonta and their 
relationships with each other. It is now clear that 
the deepest bifurcation within the opisthokonts 
resulted in two major lineages, referred to as 
Holozoa and Holomycota (the latter has also 
been labelled by authors as the holofungi (Lara 
et al. 2009) and Nucletmycea (Brown et al. 
2009)). Holomycota is composed of the Fungi, 
Opisthosporidia, and nucleariid amoebae (Lara 
et al. 2009). Metazoa, choanoflagellates, 
filastereans, pluriformeans, Tunicaraptor, and 
the ichthyosporeans are collectively known as 
Holozoa (Lang et al. 2002; Shalchian-Tabrizi 
et al. 2008). 

The lack of any universal diagnostic 
characteristics means that membership of 
Opisthokonta is often based upon phylogenetic 
trees. Early molecular phylogenetic studies of 
eukaryotes were prone to generating erroneous 
topologies, which lead to conflicting theories on 
how groups were related to each other. In partic-
ular, in many studies there was a paucity of spe-
cies for which sequence data were available. 
Limited taxa sampling can lead to species being 
present on isolated long branches; this, in turn, 
may lead to problems when reconstructing 
phylogenies due to the phenomenon of long-

branch attraction (Felsenstein 1978; Hendy and 
Penny 1989). When distantly related sequences 
share a relatively high number of homoplasies 
(shared characters, present due to convergence 
rather than common ancestry) the true phyloge-
netic signal may be overwhelmed and long-
branched sequences incorrectly clustered 
together. Long-branch effects can also be pro-
duced by unequal rates of evolution; therefore, 
when possible, it is advisable to screen taxa and 
select those most suitable for phylogenetic recon-
struction. This is not always possible, particularly 
in the case of less well-studied eukaryotes where 
some lineages are only represented by a single 
species. A further problem was that early phylo-
genetic studies mainly relied upon single gene 
phylogenies. This was often the small subunit 
ribosomal (SSU) RNA gene, which had the 
advantages of being ubiquitous across all 
domains of life, present in multiple copies per 
genome and amplifiable with universal PCR 
primers (Medlin et al. 1988). Limitations 
associated with single gene phylogenies include 
insufficient phylogenetically informative sites 
and lineage-specific rate changes which have the 
potential to produce long-branch artefacts. 

Studies have subsequently shown that increas-
ing the length of alignments, through 
concatenating multiple gene sequences, can 
reduce long-branch issues (reviewed in Bergsten 
2005), as the effects of gene-specific homoplasies 
are diluted within the greater volume of data. 
Furthermore, increasing the number of taxa in a 
phylogenetic analysis reduces the average branch 
length across a tree, lessening the impact of long-
branch attraction by dispersing homoplasies 
which would otherwise be concentrated on long 
internal branches (DeBry 2005; Zwickl and Hillis 
2002). 

With the advent of high-throughput sequenc-
ing it is now comparatively inexpensive to 
sequence an organism’s genome or 
transcriptome, allowing the generation of phylo-
genetic datasets made up from hundreds of pro-
tein sequences (e.g. see Brown et al. 2018; 
Gawryluk et al. 2019; Derelle et al. 2016). This 
field of phylogenomics has resolved many previ-
ously unknown relationships within the



eukaryotic tree; however, artefacts remain a major 
issue (Betancur-R et al. 2014; Philippe et al. 
2011) and conflicting topologies are still regularly 
published in academic papers. The use of 
sequences from multigene families can be prob-
lematic unless the chosen genes are carefully 
screened. Members of gene families that diverged 
when species diverged, termed orthologues, are 
suitable for species phylogenetic reconstruction. 
In contrast, paralogues, which are the product of 
gene duplication events, have different evolution-
ary histories from the species that encode them. 
The inclusion of paralogues in datasets used to 
create species trees can therefore result in 
misleading topologies. Paralogy may be difficult 
to identify when gene duplication events are 
ancient, or in cases where a gene family is 
evolving under weak selective constraint. Further 
complications in phylogenetic analyses may arise 
due to the choice of the amino acid substitution 
model used, as well as the partitioning of 
alignments, with incorrect models resulting in 
both erroneous relationships and inaccurate node 
support values (Philippe et al. 2011; Young and 
Gillung 2020). 
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A well-resolved phylogeny is essential in 
order to determine how traits and characteristics 
have evolved within groups of species. Due to the 
presence of both Fungi and Metazoa, the 
opisthokonts have been intensively studied with 
regard to the origins of multicellularity. Two 
forms of multicellularity are known to have 
evolved within eukaryotes. In clonal multicellu-
larity a single initial cell undergoes rounds of cell 
division, with the daughter cells remaining 
adhered to each other, resulting in a multicellular 
organism made up from genetically identical 
cells. In aggregate multicellularity, exemplified 
by Dictyostelium discoideum (Schilde and 
Schaap 2013), genetically unrelated unicellular 
individuals of the same species assemble together 
to form a multicellular “superorganism”. 
Although both metazoans and fungi exhibit 
clonal multicellularity, they have fundamentally 
different developmental pathways and early 
opisthokont phylogenies confirmed that multicel-
lularity evolved independently in the two groups, 
as both groups are more closely related to 

unicellular relatives than each other (Ruiz-Trillo 
et al. 2004). As we will set out in this chapter, it is 
clear that multicellularity, both aggregate and 
clonal, has evolved independently in a diverse 
range of opisthokont lineages. 

1.2 Opisthokonta 

The original Opisthokont group, proposed by 
Vischer (1945), unified chytrid fungi with the 
choanoflagellates on the basis of both groups 
possessing a single posterior flagellum that 
pushes swimming cells through water. Gams 
(1947) subsequently expanded the group with 
the inclusion of Metazoa, under the name 
Opisthokonten. In contrast to modern views on 
opisthokonts, both Vischer and Gams placed 
uniflagellate algae with their groupings. Perhaps 
surprisingly, the next amendment of the group, 
proposed by Copeland (1956) under the phylum 
Opisthokonta, was not a further expansion but to 
restrict membership to only chytrid fungi. 
Copeland dismissed an evolutionary link between 
the chytrids with the choanoflagellates and 
metazoans as “far-fetched” and there was limited 
acceptance of the group, with debate continuing 
over the relationships between the multicellular 
kingdoms of animals, fungi, and plants for the 
next four decades. The taxon was revived, again 
on the basis of morphological characteristics, as 
the informal group Opisthokonta by Cavalier-
Smith (1987) to encompass fungi, metazoans, 
and the choanoflagellates. 

Molecular studies in the 1980s produced 
varied and equivocal results on the placement of 
both Fungi and Metazoa within the eukaryotic 
tree (Gouy and Li 1989; Sogin et al. 1986). 
Through a combination of a greater number of 
taxa and increasingly sophisticated phylogenetic 
analyses, robust molecular support for the 
opisthokont group emerged through a trio of 
papers in the early 1990s (Baldauf and Palmer 
1993; Hasegawa et al. 1993; Wainright et al. 
1993). The Wainright et al. (1993) study was of 
particular importance, as, in addition to 
highlighting the close relationship between fungi 
and metazoans, it confirmed, through the



phylogenetic position of choanoflagellates, the 
existence of unicellular opisthokonts. Whilst the 
Wainright phylogeny recovered a strongly 
supported Opisthokonta, the relationships 
between the three represented lineages remained 
unresolved. 
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As the volume of molecular data increased, it 
became clear that the opisthokonts harboured 
much greater diversity, with multiple unicellular 
lineages being closely related to the metazoans 
(Cavalier-Smith and Allsopp 1996; Herr et al. 
1999; Kerk et al. 1995). The first indications of 
unicellular holomycotans were discovered at a 
similar time (Edlind et al. 1996; Keeling and 
Doolittle 1996); however, clear evidence for uni-
cellular relatives of Fungi was later produced 
through the phylogenetic placement of species 
that were previously believed to belong to 
Amoebozoa and Holozoa (Amaral-Zettler et al. 
2001; Brown et al. 2009; Ruiz-Trillo et al. 2004). 

Early evidence for the existence of the 
opisthokont grouping was based upon morpho-
logical traits. However, as the depth of diversity 
in opisthokont lineages has been uncovered, it has 
become apparent that there are no recognised 
universal morphological characters unique to 
this group. The posterior flagellum is not present 
in all opisthokont groups; loss of the flagellum 
must have occurred on multiple occasions within 
both Holomycota and Holozoa (Adl et al. 2019; 
Galindo et al. 2021; James et al. 2006). Through-
out the opisthokonts, the morphology of mito-
chondrial cristae is predominantly flat, but this 
appears to be a plastic trait, with tubular and 
discoidal cristae also present (Adl et al. 2019; 
Amaral-Zettler et al. 2001; Ragan et al. 1996; 
Wylezich et al. 2012). Nonetheless, the posterior 
flagellum and flat cristae are widespread across 
the opisthokonts and point to the ancestral states 
of the group. The abilities to produce amoeboid 
cells and also to engulf particles by phagocytosis 
are present in most of the major lineages. More-
over, Metazoa is the only major opisthokont line-
age that does not contain species with cell walls, 
and it has been suggested that the last common 
ancestor of the opisthokonts also possessed the 
potential to produce a cell wall (Mendoza et al. 
2002). 

1.3 The Placement 
of Opisthokonta 
in the Eukaryotic Tree of Life 

The improvements in phylogenetic analyses set 
out in Sect. 1.2 have also led to a much greater 
understanding of the overall eukaryotic tree. For 
much of the last two decades, most eukaryotes 
were believed to fall into one of seven 
supergroups, namely the Alveolata, Amoebozoa, 
Archaeplastida, Excavata, Opisthokonta, 
Rhizaria, and the stramenopiles. In addition to 
the supergroups, a number of minor, or orphan, 
groups of uncertain phylogenetic position were 
recognised (reviewed in Adl et al. 2005, 2012, 
2019). Robust relationships between the 
supergroups have been less certain, but the 
stramenopiles, alveolates, and rhizarians were fre-
quently recovered as clade known as the SAR 
group (Burki et al. 2007). Furthermore, a close 
relationship between the amoebozoans and 
opisthokonts was also reported (Stechmann and 
Cavalier-Smith 2003a, b). As both groups contain 
uniflagellate species, the combined Amoebozoa 
+Opisthokonta taxon was defined as unikont, a 
term originally coined by Cavalier-Smith (2002) 
to describe species which possess a single flagel-
lum and single centriole. The remaining eukary-
otic supergroups, which predominantly contain 
biflagellate taxa, were labelled as bikonts. It is 
now clear that these terms are no longer appropri-
ate, since nested within the unikont grouping are a 
small number of biflagellate species such as 
Apusomonas proboscidea (Kim et al. 2006; 
Vickerman et al. 1974). 

Recent findings have cast doubt on the sim-
plicity of the supergroup system (Burki et al. 
2020), with neither Archaeplastida nor Excavata 
being recovered as monophyletic in large-scale 
phylogenomic studies (Cavalier-Smith et al. 
2014; Gawryluk et al. 2019; Heiss et al. 2018). 
Advances in phylogenetics have also resulted in 
the recovery of further novel lineages, such as 
Ancyromonadida, Hemimastigophora, and 
Malawimonadida, which appear to fall outside 
of the previously recognised supergroups 
(Fig. 1.1). The greatest issue currently hindering



eukaryotic deep phylogenetics is the unknown 
position of the root, or earliest branching point, 
of the eukaryotes. Until the position of the root is 
established, determining the order of divergence 
events and establishing sister groups cannot be 
confidently achieved. 
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Fig. 1.1 Representative 
cladogram of Eukaryota. 
The Amorphea and 
Diphoda are written in 
black font. Due to the lack 
of a resolved root for the 
eukaryotic tree, four 
lineages, shown by dotted 
grey branches, are of 
uncertain position. The 
topology is based upon 
phylogenies presented in 
Brown et al. (2018), Heiss 
et al. (2018), Lax et al. 
(2018), and Strassert et al. 
(2019) 
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Eukaryotes appear to have evolved from a 
symbiosis between an alphaproteobacterium and 
an Asgard archaeon (Gray et al. 1999; Zaremba-
Niedzwiedzka et al. 2017), with the eukaryotic 
crown group estimated to have arisen between 1.6 
and 2.5 billion years ago (Parfrey et al. 2011). 
This great antiquity leads to long branches posi-
tioned between eukaryotes and archaea in phylo-
genetic trees, with long-branched artefacts pulling 
rapidly evolving species to the base of the eukary-
otic group (Brinkmann et al. 2005; Williams and 
Embley 2014). Eukaryotic phylogenies created 
with bacterial genes tend to recover accepted 
eukaryotic supergroups but fail to find a 

consistent root (Derelle et al. 2015; He et al. 
2014). A particularly contentious issue with 
deep eukaryotic phylogenetics, highlighted in 
the He and Derelle studies, is the position of 
Excavata. The supergroup is proposed to consist 
of three lineages, in Discoba, Malawimonadida, 
and Metamonada, all of which contain 
multiflagellate species that possess a ventral feed-
ing groove (Adl et al. 2012, 2019). Multiple stud-
ies have both recovered (Hampl et al. 2009;  He  
et al. 2014) and rejected (Brown et al. 2018; Heiss 
et al. 2018) the monophyly of the excavates. 
Trees which fail to recover excavate monophyly 
often place excavate lineages on either side of the 
eukaryotic root (Derelle et al. 2015; Heiss et al. 
2018). This raises the possibility of the excavates 
being a paraphyletic grouping, with two flagella 
and a feeding groove being ancestral traits for all 
eukaryotes.
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Whilst the position of the eukaryotic root, as 
well as the monophyly of the excavate lineages, 
remains uncertain, two major domains are now 
recognised. The Diaphoretickes consists of the 
SAR group, now unified with Telonemia to 
form the TSAR clade (Strassert et al. 2019), 
Archaeplastida, Cryptista, and Haptista (Adl 
et al. 2012, 2019). The relationships between 
latter three lineages have yet to be resolved; how-
ever, a number of recent phylogenies suggest that 
Cryptista may in fact be a clade within the 
archaeplastids (Gawryluk et al. 2019; Strassert 
et al. 2019). Derelle et al. (2015) further unified 
Diaphoretickes with the excavate Discoba lineage 
under the name Diphoda (Fig. 1.1). 

The opisthokonts fall into the second major 
eukaryotic domain, Amorphea (Adl et al. 2012; 
Fig. 1.1). A clade of gliding, biflagellate 
heterotrophs termed Apusomonadida (Karpov 
and Mylnikov 1989) are robustly recovered as 
the sister group to the opisthokonts, highlighting 
that the flagellum loss to the uniflagellate state 
must have occurred in the opisthokont stem 
group. Breviatea (Cavalier-Smith et al. 2004) is  
a clade of gliding flagellated amoebae, which may 
possess either one or two flagella. The phyloge-
netic position of this group has had something of 
a troubled history, being placed initially with 
excavates (Cavalier-Smith et al. 2004) and then 
amoebozoans (Minge et al. 2009) before being 
finally recognised as an independent lineage 
related to both the opisthokonts and apusomonads 
in the taxon Obazoa (Brown et al. 2013). The 
earliest branching Amorphea lineage, and sister 
taxon to the Obazoa, is the Amoebozoa (Adl et al. 
2019). 

The recently proposed CRuMs supergroup, 
comprising free-swimming Collodictyonidae, 
amoeboid Rigifilida, and the gliding Mantamonas 
has been recovered as the putative closest relative 
to Amorphea (Brown et al. 2018; Lax et al. 2018); 
however, this proposition is controversial due to 
the use of unrooted phylogenetic trees and the 
uncertainty over the position of the 
eukaryotic root. 

1.4 Holomycota 

Molecular phylogenies in the early 1990s con-
firmed that Fungi is a member of Opisthokonta; 
however, it was later in the decade that unicellular 
close relatives of Fungi were identified. Due to 
weak phylogenetic support, early phylogenies 
could not differentiate between unicellular 
holomycotans being close relatives of, or being 
nested within, Fungi (Edlind et al. 1996; Fast 
et al. 1999; Gill and Fast 2006; Keeling and 
Doolittle 1996). The expansion of known unicel-
lular holomycotan diversity has been mainly 
driven by the phylogenetic analysis, and 
subsequent taxonomic reassignment, of previ-
ously known taxa, such as microsporidians, 
nucleariids, and aphelids. Whilst not universally 
agreed upon (Richards et al. 2017), there has also 
been a movement of groups from Fungi, into 
sister lineages of the group. Two groups of 
early-branching holomycotans are recognised, in 
the nucleariid amoeba and the opisthosporidians; 
however, the latter may be paraphyletic and not a 
true clade (Fig. 1.2). At present, there is also no 
consensus upon whether opisthosporidians 
should be considered members of an enlarged 
Fungi kingdom, or whether they should be classi-
fied as the sister group to “true” or “classical” 
Fungi. Within this chapter, we refer to 
Opisthosporidia as the closest protistan relatives 
to Fungi and not as members of the group. 

1.4.1 Nucleariid Amoebae 

The nucleariid amoebae is the informal name 
assigned, initially, to two distinct genera, 
Fonticula and Nuclearia, of holomycotans that 
were unified through multigene amino acid 
phylogenies (Brown et al. 2009). The group is 
also known under the formalised synonym 
Rotosphaerida, which was originally proposed 
as a taxon within Heliozoa (Rainer 1968). As is 
the case with numerous unicellular opisthokont 
groups, both genera were previously erroneously



assigned to other taxonomic groups before molec-
ular studies placed them within Holomycota. 
Nucleariids are slow grazers that can feed on a 
variety of organisms depending on the species; 
these include unicellular bacteria and algae. It is 
suggested that their growth rate may be directly 
proportional to the availability of their prey, with 
growth most observable after algal blooms 
(Dirren et al. 2017). 
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Fig. 1.2 Representative 
cladogram of Holomycota. 
The holomycotans are 
rooted with Holozoa. 
Polytomies highlight areas 
of uncertainty in fungal 
phylogenetic studies and 
Opisthosporidia is shown as 
paraphyletic. The topology 
is based upon phylogenies 
presented in Bauer et al. 
(2015), James et al. (2020), 
Tikhonenkov et al. (2020), 
and Torruella et al. (2018) 
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Discovered over 150 years ago (Cienkowski 
1865), to date fewer than 10 nucleariid species 
have been described (López-Escardó et al. 2017). 
Thriving in both eutrophic and polluted 
environments, Nuclearia species can feed on 
toxic cyanobacteria owing to their bacterial 
endosymbionts which are believed to provide 
toxicity protection (Dirren and Posch 2016; 
Dirren et al. 2017). All known species have 
been isolated from freshwater habitats; 
individuals floating within the water column pos-
sess a protoplast (cell body) that is spherical and 
non-flagellated, whilst cells in contact with a sub-
stratum become amoeboid. Both forms of proto-
plast exhibit thin filopodia, which are used to 
contact bacterial and algal prey prior to phagocy-
tosis (Yoshida et al. 2009). Mitochondrial cristae 
are either flattened or discoidal (Amaral-Zettler 

et al. 2001; Dyková et al. 2003), whilst species 
may be uninucleate, multinucleate, or capable of 
switching between the two states (Dirren and 
Posch 2016). 

Page (1987) and Cavalier-Smith (1993) both 
placed Nuclearia into the order Cristidiscoidida, 
as members of the amoebozoan phylum 
Rhizopoda due to morphological characteristics. 
This placement was questioned by Patterson 
(1999), on the basis that branching filopodia are 
likely to have evolved on multiple occasions 
within eukaryotes as well as the unexpected pres-
ence of three mitochondrial cristae morphologies 
in the group. Through the use of rRNA phyloge-
netic trees, Amaral-Zettler et al. (2001) placed 
Nuclearia within Opisthokonta; however, their 
phylogenies could not resolve whether the group 
was more closely related to either Metazoa or 
Fungi. Ruiz-Trillo et al. (2004) finally robustly 
placed Nuclearia as members of Holomycota, as 
the then recognised sister group to Fungi. 

Fonticula alba was isolated from dog faeces in 
1960, but was not named for almost two decades, 
until Worley et al. (1979) described the species as 
a bacterivorous acrasiomycete slime mold. Indi-
vidual cells are small (7–13 μm), enclosed in a 
mucosal glycocalyx, possess mitochondria with



discoidal cristae, and exhibit pseudopodia that 
may project several body lengths from the proto-
plast (Brown et al. 2009). Cells may produce 
either filose pseudopodia, when feeding, or a 
single lobose pseudopodium when migrating 
(Toret et al. 2022). Individual cells predominantly 
possess a single nucleus, but larger bi- and 
trinucleate cells are infrequently observed in lab-
oratory cultures (Worley et al. 1979). In a form of 
multicellularity superficially similar to that 
observed in dictyostelid amoebozoans, trophic 
cells may form aggregates when local prey 
becomes depleted (Worley et al. 1979). 
Aggregates become enveloped in a slime-based 
extracellular matrix and form into a mound; the 
height of the mound increases and subsequently 
develops into a globular sorocarp (fruiting body) 
on volcano-like stalk. The majority of cells in the 
aggregate migrate to the sorocarp and encyst to 
become spores; however, a small number of cells 
remain at the base of the stalk. After spores have 
germinated the stalk structure subsides, allowing 
juvenile amoeboid cells to disperse (Worley et al. 
1979). 
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It has recently been discovered that multicel-
lular aggregates also develop when F. alba is 
presented with a new prey source (Toret et al. 
2022). When encountering a bacterial biofilm a 
leader cell directs an elongated collective of 
connected cells into the prey. Cell-to-cell contacts 
are well defined with regions enriched with actin; 
however, individual cells may leave or join the 
predatory collective during its migration. 

The original description in Acrasiomycetes 
was problematic, as F. alba did not appear to be 
a member of any known acrasiomycete group 
(Worley et al. 1979). Cavalier-Smith (1993) 
placed F. alba alongside Nuclearia in 
Cristidiscoidia within Filosea; however, Brown 
et al. (2009) showed that Fonticula clusters with 
Nuclearia as the sister group to Fungi. Morpho-
logical studies have associated a number of other 
filose amoebae with the nucleariids (Mikrjukov 
1999; Patterson 1985; Patterson et al. 1987). The 
monotypic genus Vampyrellidum is similar to 
Nuclearia in that cells are surrounded by a muco-
sal glycocalyx. In contrast, species in the genera 
Lithocolla and Pompholyxophrys possess 

assemblages of scales surrounding the protoplast 
(Galindo et al. 2019); Pompholyxophrys taxa pro-
duce their own siliceous scales, whilst in 
Lithocolla cells acquire sand particles or diatom 
frustules (Gabaldón et al. 2022). Molecular 
phylogenies have confirmed Lithocolla and 
Pompholyxophrys, as well as Parvularia (origi-
nally deposited in the American Type Culture 
Collection as a Nuclearia taxon), as members of 
the nucleariid amoebae (Galindo et al. 2019). At 
present no sequence data are available for 
Vampyrellidum perforans so the taxonomic affin-
ity of this species remains unclear. 

Galindo et al. (2019) reconstructed states for 
ancestral nucleariid amoebae on the basis of a 
multigene phylogeny. They proposed that the 
ancestral opisthokont single flagellum was lost 
in the stem lineage of the nucleariids and that 
last common ancestor was a freshwater protist 
that possessed filose pseudopodia and a mucosal 
glycocalyx. Aggregate multicellularity evolved in 
the Fonticula lineage, whilst scale bearing 
evolved an ancestor of Lithocolla and 
Pompholyxophrys. 

1.4.2 Opisthosporidia 

The superphylum Opisthosporidia, which 
comprises three endoparasitic lineages in the 
Aphelida, Microsporidia, and Cryptomycota (the 
latter also described as Rozellida and the 
Rozellomycota), was only proposed in 2014 on 
the basis of molecular phylogenies (Karpov et al. 
2014a). The taxon is a controversial one, as its 
placement in Fungi or alternatively the sister 
group to Fungi is disputed. Furthermore, the 
validity of Opisthosporidia is unclear, as it has 
been recovered as paraphyletic in some molecular 
phylogenies; whilst Cryptomycota and 
Microsporidia are recognised as sister groups, 
Aphelida has been recovered in a variety of 
positions in Holomycota (Corsaro et al. 2014; 
Galindo et al. 2019, 2021; James et al. 2006; 
Karpov et al. 2014a; Torruella et al. 2018). 

Initially described in the 1880s by Balbiani 
(1882) microsporidians are a group of predomi-
nantly obligate intracellular parasites. Their



non-flagellated cells are distinguished by the 
presence of a unique structure, the polar tube, 
which is present within their spores. Upon 
infecting a new host the polar tube breaks through 
the chitin-based spore wall and penetrates the 
plasma membrane of a host cell, allowing the 
unwalled sporoplasm to pass down the polar 
tube and enter the cytoplasm of the infected cell. 
The sporoplasm, which may be uninucleate or 
binucleate, then proliferates within the new host 
cells, resulting in a new generation of infective 
spores (Franzen 2005; Wadi and Reinke 2020). 
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The first described microsporidians were 
parasites of metazoans, notable for their highly 
reduced nuclear genomes, small ribosomes, and 
lack of mitochondria (Fast et al. 1999). Cavalier-
Smith (1983) proposed that they were amongst 
the earliest branching eukaryotes and placed them 
in the kingdom Archezoa along with other 
amitochondriate eukaryotes. Rapidly evolving 
gene sequences appeared to confirm their antiq-
uity (Vossbrinck et al. 1987); however, the use of 
more functionally conserved genes showed that 
the phylogenetic recovery of Archezoa was an 
artefact due to long-branch attraction, with the 
microsporidia being either fungi or closely related 
to fungi (Edlind et al. 1996; Hirt et al. 1999). 

Microsporidians are now known to associate 
with non-metazoan hosts, acting as 
endosymbionts and hyperparasites for multiple 
species in the SAR eukaryotic supergroup (Bass 
et al. 2018). Phylogenetic studies including envi-
ronmental DNA (eDNA) have uncovered a far 
greater diversity of microsporidians than was pre-
viously known (Bass et al. 2018; Bojko et al. 
2022). It is now clear that many of the traits 
present in the “canonical” or long-branch 
microsporidians, which infect metazoans, are 
absent in other lineages. In particular, 
mitochondria are widespread outside of the 
canonical microsporidians. The derived 
Paramicrosporidium saccamoebae possesses a 
mitochondrion which has a genome similar to 
those of typical fungi (Quandt et al. 2017). In 
contrast, the early-branching Mitosporidium 
daphniae has lost the genes for the mitochondrial 
respiratory chain complex I, highlighting inde-
pendent mitochondrial reduction occurring across 
Microsporidia (Haag et al. 2014). 

Despite being recognised in 2011, the 
Cryptomycota remain an enigmatic group within 
Holomycota with the composition of the group in 
a state of flux (Bass et al. 2018; Corsaro et al. 
2014; Jones et al. 2011; Letcher et al. 2013). 
Rozella is the most extensively studied genus 
within Cryptomycota, with 27 species recognised 
by Letcher and Powell (2018). Species possess 
uniflagellated, unwalled zoospores and were for a 
long time considered to be chytrid fungi (Adl 
et al. 2005; James et al. 2006); however, rozellids 
differ from chytrids in that they employ phagocy-
tosis to consume the cytoplasmic contents of their 
hosts, rather than osmotrophic absorption of 
nutrition (Powell 1984). Host species include 
early-branching fungi, as well as green algae 
and oomycete stramenopiles (Letcher and Powell 
2018). Upon contact with a new host cell the 
Rozella zoospore withdraws its flagellum and 
forms a cyst which possesses a chitin-based 
wall. The infective cell then enters the host cell 
via a penetration tube (James and Berbee 2012). 
Sequencing of the R. allomycis mitochondrial 
genome revealed a 12 kb circular chromosome 
that has undergone extensive gene loss and a loss 
of functional constraint on the remaining genes 
(James et al. 2013), mirroring the reduction of 
mitochondrial genomes observed in the closely 
related microsporidians. 

The initial proposal of Cryptomycota by Jones 
et al. (2011) was based in part upon a phyloge-
netic analysis which contained a large number of 
eDNA sequences. This tree, as well as a number 
of others published in the 2010s, indicated that 
Cryptomycota possessed a high level of species 
diversity (Corsaro et al. 2014; Karpov et al. 
2014a, b, 2018). The inclusion of early-branching 
microsporidian sequences in phylogenetic trees, 
however, revealed that much of this diversity was 
not actually cryptomycotan but microsporidian 
(Bass et al. 2018; Bojko et al. 2022), suggesting 
that the diversity of the group may not be much 
greater than the Rozella taxa which have currently 
been described. 

The aphelids are parasites of archaeplastid and 
stramenopile algae and show a number of 
similarities with rozellids with regard to their 
infection of host cells. Infective propagules 
make contact with host cells and their



pseudopodia search for a break in the algal cell 
wall. The propagule subsequently forms a cyst 
with a chitin-based wall and develops a penetra-
tion tube at the site of the hole in the host cell 
wall. The alga is breached by the tube, allowing 
the amoeboid trophic stage to pass from the cyst 
into the host cytoplasm. The aphelid 
phagocytoses the alga cytoplasm, ultimately kill-
ing the host cell, and undergoes nuclear division 
to become a plasmodium. Multiple rounds of cell 
division subsequently occur to produce the next 
generation of uninucleate zoospores which then 
emerge through the host cell wall via the hole 
produced by the penetration tube (reviewed in 
Karpov et al. 2014a; Letcher and Powell 2019; 
Torruella et al. 2018). 
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The type species Aphelidium deformans was 
described by Zopf (1885) and subsequently 
14 further species have been described (Letcher 
and Powell 2019). Aphelid taxa have been 
assigned to four ecologically distinct genera: 
Amoebaphelidium and Aphelidium are freshwater 
genera and Paraphelidium and Pseudaphelidium 
form marine genera (Letcher and Powell 2019). 
Whilst all described rozellids possess flagellated 
zoospores, aphelid infective cells may be flagel-
lated, amoeboflagellated, or amoeboid cells with 
an immobile flagellum (Letcher and Powell 
2019). Studies suggest that mitochondrial cristae 
morphologies may vary across species and also 
between the different stages of lifecycles, with 
flat, tubular, and lamellar cristae reported (Karpov 
et al. 2014a; Letcher et al. 2013). 

The taxonomic placement of aphelids has 
proved to be controversial, with varying authors 
considering them to be members of Rhizopoda, 
Phycomycetes, Mesomyceteozoea, Rozellidea, 
and Cryptomycota (Gromov 2000; Karpov et al. 
2014a; Letcher et al. 2013; Letcher and Powell 
2019). Karpov et al. (2013) recovered 
Amoeboaphelidium protococcarum in a clade 
with the cryptomycotan Rozella allomycis and 
nine microsporidians, with the taxon 
Opisthosporidia erected the following year 
(Karpov et al. 2014a). More recent phylogenomic 
studies have placed Aphelida as the sister group 
to Fungi and on this basis Galindo et al. (2022) 
proposed two novel holomycotan taxa. 

Phytophagea unifies Fungi with Aphelida, whilst 
Cryptomycota and Microsporidia make up 
Opisthophagea. 

1.4.3 Fungi 

Fungi are a highly diverse group of heterotrophs, 
which may be saprotrophs, commensal 
symbionts, or parasites; species employ 
osmotrophy, gaining nutrition through absorption 
from their environment. Fungi often produce mul-
tinucleate hyphae and possess cell walls that com-
prise both β-glucan and chitin (Adl et al. 2019; 
Cavalier-Smith 1998a). In a process that appears 
to be mirrored in Metazoa and Microsporidia the 
mitochondrial genomes of fungi are reduced in 
comparison to the ancestral state of opisthokonts, 
typically encoding 30–40 genes. This reduction in 
mitochondrial genome size and gene content has 
been shown to have begun in the fungal stem 
group, but is a continuing process in the crown 
group (Bullerwell and Lang 2005). Within the 
early-branching Neocallimastigomycota the 
capacity for oxidative phosphorylation has been 
completely lost and the mitochondrion has 
evolved into a hydrogenosome; this organelle 
produces ATP anaerobically and has 
convergently evolved in eukaryotes on multiple 
occasions (Embley et al. 2003). Some members 
of Chytridiomyceta have also undergone tRNA 
gene loss in their mitochondria and rely upon 
extensive tRNA editing or the import of tRNA 
molecules into mitochondria in order to facilitate 
localised protein translation (Bullerwell and Lang 
2005). 

The taxonomy of Fungi has undergone sub-
stantial revisions since the turn of the century, due 
to molecular phylogenetic studies. In particular, 
the number of phyla has increased considerably 
from the four generally recognised in the 1990s, 
in the Ascomycota, Basidiomycota, 
Chytridiomycota, and Zygomycota, to between 
8 and 18 phyla (Galindo et al. 2021; James et al. 
2020; Tedersoo et al. 2018). The disagreements in 
the number of phyla are predominantly due to the 
taxonomic rank assigned, either phylum or 
sub-phylum, to fungal groups, rather than the



validity of the groups themselves. However, 
disagreements over phylum number are also due 
to classification systems, such as that proposed by 
Tedersoo et al. (2018), which include 
opisthosporidian groups as fungal phyla. 

1 The Protistan Origins of Animals and Fungi 13

The Ascomycota and Basidiomycota remain 
recognised as valid taxa, but the early-branching 
Chytridiomycota has now been split into 
Cryptomycota, Blastocladiomycota, 
Monoblepharidomycota, Neocallimastigomycota 
and Olpidiomyceta, as well as a reduced 
Chytridiomycota (James et al. 2020; Spatafora 
et al. 2016). The Chytridiomycota, 
Monoblepharidomycota, and 
Neocallimastigomycota have been shown to 
form a monophyletic grouping and make up the 
subkingdom Chytridiomyceta. The former 
Zygomycota has now been divided into the 
Mucoromycota and Zoopagomycota (Fig. 1.2; 
James et al. 2020; Spatafora et al. 2016). The 
branching order of the non-Dikarya fungi has 
yet to be resolved, with Blastocladiomycota, 
Chytridiomyceta, or a unified 
Blastocladiomycota+Chytridiomyceta clade 
being recovered as the earliest branching fungal 
lineage in different studies (Chang et al. 2015; 
Galindo et al. 2021; Tedersoo et al. 2018). 

The subkingdom Dikarya, also described as 
Neomycota (Cavalier-Smith 1998b), is defined 
by species that possess cells with unfused haploid 
nuclei called dikaryons. Dikarya contains the two 
major fungal phyla Ascomycota and 
Basidiomycota and encompasses ~98% of 
known fungal diversity (James et al. 2006). A 
recent phylogenetic study erected a third dikaryon 
phylum in Entorrhizomycota, a group which had 
previously been considered a member of the 
Basidiomycota (Bauer et al. 2015). The 
Mucoromycota are now recognised as the sister 
clade to Dikarya (James et al. 2020). 

A robust phylogeny of Fungi is vital in order to 
understand how the group evolved. Phagocytosis 
was ancestral to opisthokonts, and the trait is 
present in early-branching holomycotans, includ-
ing the opisthosporidians, but absent from all 
fungi, indicating it was lost in the stem lineage 

after the divergence of Fungi from Aphelida. The 
ancestral single flagellum is present in early-
branching fungi; however, it has been lost on 
multiple occasions across the kingdom. Within 
Chytridiomyceta, Hyaloraphidium curvatum 
appears to be aflagellate (Ustinova et al. 2000), 
highlighting a loss within early-branching taxa. 
Sanchytriomycota is a novel phylum erected to 
accommodate two recently discovered flagellated 
early-branching fungi (Karpov et al. 2018, 
2019b). Unusually, their flagella are non-motile, 
with evidence indicating that the structure has 
evolved to become a light sensing organelle 
(Galindo et al. 2021). Species within Dikarya, 
Mucoromycota, and Zoopagomycota all appear 
to lack a flagellum (James et al. 2006); however, 
their relationships with the flagellated 
Olpidiomyceta remain uncertain. As a result, it 
is not clear if the ancestral flagellum was lost 
within these species on one or two occasions. 

Whilst a comprehensive phylogeny of the 
deepest branches of Fungi has yet to be agreed 
upon, initiatives such as the Joint Genomes 
Initiative’s MycoCosm program are generating 
the data required for an accurate reconstruction 
of ancestral fungal and holomycotan metabolism 
as well as a resolved phylogeny of the group. 

1.5 Holozoa 

The second major lineage of Opisthokonta, 
Holozoa, was proposed in 2002, on the basis of 
the phylogenetic unification of Metazoa with two 
unicellular groups, in the choanoflagellates and 
ichthyosporeans, to the exclusion of Fungi (Lang 
et al. 2002). Since this initial proposal the known 
diversity of the clade has expanded, with the 
identification of the filasterean group (Shalchian-
Tabrizi et al. 2008). Two additional putative 
lineages have recently been described in 
Pluriformea (Hehenberger et al. 2017) and 
Tunicaraptor (Tikhonenkov et al. 2020); how-
ever, neither of these groups have robustly 
resolved phylogenetic positions and their validity 
has not been confirmed.
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1.5.1 Ichthyosporea 

The ichthyosporeans are an ecologically and mor-
phologically diverse group of predominantly par-
asitic, unicellular holozoans. The first reports of 
this clade came from Ragan et al. (1996) and 
Spanggaard et al. (1996), with the former naming 
the group the DRIP clade as an acronym based on 
the first known members—Dermocystidium, 
rosette agent, Ichthyophonus, and 
Psorospermium. Cavalier-Smith (1998a) 
described these species as Ichthyosporea, due to 
the four known species all infecting fish hosts. 
Herr et al. (1999) noted, however, that non-fish 
hosts had subsequently been discovered and so 
recommended the name Mesomycetozoa to 
reflect the phylogenetic position of the group, 
that is holozoans located between Fungi and 
Metazoa. Adl et al. (2005) expanded 
Mesomycetozoa to include unicellular holozoans 
and holomycotans; however, this status, as a 
paraphyletic dustbin taxon, was not widely 
accepted and the term Mesomycetozoa has gener-
ally reverted to being a synonym of 
Ichthyosporea. 

A lack of unifying morphological characters 
means that membership of Ichthyosporea is 
mainly based upon molecular phylogenies. Prior 
to the emergence of molecular phylogenetics, a 
number of ichthyosporean taxa, such as species in 
the Amoebidiidae and Eccrinidae, were consid-
ered to be trichomycete fungi; however, these 
earlier placements were considered somewhat 
controversial at the time due to the presence of 
amoeboid stages in their lifecycles and a lack of a 
chitinous cell wall (Lichtwardt 1986; Trotter and 
Whisler 1965). 

All known ichthyosporeans are symbionts of 
metazoans, with relationships varying between 
commensalism, mutualism, and parasitism; how-
ever, there has also been speculation that some 
species have saprotrophic stages within their 
lifecycles (Glockling et al. 2013; Mendoza et al. 
2002). Species are unicellular and frequently mul-
tinucleate, exhibiting a great variety of 
morphologies. Across the group mitochondrial 
cristae are flat, with a single known exception in 

Ichthyophonus hoferi which possesses tubular 
cristae (Ragan et al. 1996). Phylogenetic studies 
have consistently recovered the ichthyosporeans 
as comprising two robustly supported clades, 
labelled Ichthyophonida and Dermocystida 
(Cafaro 2005; Grau-Bové et al. 2017; Lohr et al. 
2010; Pereira et al. 2005) that are both morpho-
logically and ecologically distinct. 

Erected by Cavalier-Smith (1998a), the order 
Dermocystida has also been described as the fam-
ily Rhinosporidiaceae (Mendoza et al. 2001). 
Most described species are parasites of 
vertebrates; however, the host species and site of 
infection vary across dermocystid species. 
Dermocystidium and Sphaerothecum species 
infect fish, with the latter apparently restricted to 
infecting internal organs whilst the former may 
additionally be found on external structures, such 
as gills and fins (Glockling et al. 2013; Ramaiah 
2006). Rhinosporidium species cause 
rhinosporidiosis (Thompson 2016), a disease 
resulting in granulated polyps in the sinonasal 
tract, conjunctiva, and urethra in mammals and 
birds (Kennedy et al. 1995; Seeber 1900). Six 
genera of dermocystids are known to infect 
amphibians, predominantly infecting the skin 
but also being associated with the heart and liver 
(reviewed in Borteiro et al. 2018). 

The infectious agents of dermocystids are 
endospores. Fish parasites tend to have 
uniflagellate zoospores, whilst flagellum loss 
appears to have occurred in species with amphib-
ian hosts (Glockling et al. 2013). Upon infecting a 
new host the endospore encysts and produces a 
walled sporangium (cyst) in the host. The 
sporangia then increase in size to 200–400 μm 
in diameter, whilst cells undergo division to pro-
duce thousands of zoospores. Endospores range 
across 7–15 μm diameter (Herr et al. 1999) and 
are either released directly into the tissue of the 
original host or into the environment to infect a 
new host (for a review of the life cycle, see 
Mendoza et al. 2002). Whilst Dermocystida is 
consistently recovered as monophyletic, the inter-
nal relationships within the clade are poorly 
resolved (Fig. 1.3; González-Hernández et al. 
2010). As a result of this lack of phylogenetic
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Fig. 1.3 Maximum likelihoodphylogenyof Ichthyosporea. 
The phylogeny was created with RAxMLGUI 2.0 (Edler 
et al. 2020) from a SSU RNA alignment of 1538 sites 
sequences generated in MAFFT 7.309 (Katoh and Standley 
2013). The phylogenetic analysis used the TIM2 model 
(Posada 2003) with a four-category gamma distribution and 
a proportion of invariant sites. Support values were calcu-
lated as bootstrap percentages from 1000 replicates. A 
Bayesian inference phylogeny was created using the same 

alignment with MrBayes 3.2.6 (Ronquist et al. 2012)  The  
ichthyosporeans are rooted with SSU sequences from four 
choanoflagellates (Diaphanoeca grandis, Monosiga 
brevicollis, Savillea parva,  and  Stephanoeca diplocostata). 
Asterisks highlight nodes strongly supported with both 
methodologies (≥70% maximum likelihood bootstrap per-
centage, ≥0.97 Bayesian inference posterior probability). 
The scale bare represents the number of substitutions per 
site. Family names are taken from Reynolds et al. (2017)



definition, to date it has been difficult to recon-
struct the evolution of observed traits within the 
order.
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In contrast to Dermocystida, phylogenetic 
relationships within Ichthyophonida are well 
resolved and the order is made up from multiple 
recognised families (Fig. 1.3; Glockling et al. 
2013). Whilst vertebrate parasitism is prevalent 
in the dermocystids, only two genera of 
ichthyophonids are known to have vertebrate 
hosts. Anurofeca richardsi is a gut pathogen of 
frogs and toads and infection results in inhibited 
larval growth (Baker et al. 1999; Beebee and 
Wong 1992); Ichthyophonus species are also 
known to parasitise a range of amphibians, as 
well as both freshwater and marine fish hosts 
(Herman 1984; Raffel et al. 2006; Rowley et al. 
2013). The majority of the investigated 
ichthyophonids associate with arthropods and 
molluscs, although species also infect 
echinoderms, peanut worms, and tunicates 
(Lu et al. 2020; Marshall and Berbee 2011, 
2013; Reynolds et al. 2017). Not all 
ichthyophonids are believed to be parasitic; 
despite its name, the arthropodophilous 
Amoebidium parasiticum is a non-pathogenic 
symbiont which attaches itself to the external 
exoskeleton of its insect hosts (Benny and 
O’Donnell 2000). A further contrast to 
dermocystids is found in the morphology of the 
motile dispersal stage. Flagellated cells have yet 
to be reported, with all motile dispersal cells 
showing an amoeboid morphology (Mendoza 
et al. 2002). However, amoeboid dispersal cells 
are not universal across the group and appear to 
have been lost on multiple occasions (Lord et al. 
2012; Reynolds et al. 2017). 

The well-resolved phylogeny of 
Ichthyophonida allows the evolutionary recon-
struction of traits in the group. In particular, it 
can be seen that Anurofeca and Ichthyophonus, 
the two genera known to parasitise vertebrate 
hosts, are distantly related (Fig. 1.3), showing 
that ichthyophonids have undergone at least two 
transitions from non-vertebrate to vertebrate 
hosts. Based upon their phylogenetic trees, 
Reynolds et al. (2017) speculated that the 
ancestors of Ichthyophonus were externally 

attached commensals of non-vertebrate hosts 
that subsequently evolved into internal parasites 
of vertebrates. 

Whilst the monophyly of Ichthyosporea is 
widely accepted, the relationships of the group 
with other holozoans are far from resolved. Since 
the recognition of the group in 1996 many studies 
have recovered the ichthyosporeans as both an 
independent lineage and the earliest branching 
group in Holozoa (Hehenberger et al. 2017; 
Paps et al. 2013; Ragan et al. 1996; Torruella 
et al. 2012). However, discoveries of novel 
holozoans in recent years have clouded this 
view and the identities of the most basal holozoan 
group and the closest relatives of the 
ichthyosporeans are not presently clear (Grau-
Bové et al. 2017; Tikhonenkov et al. 2020; 
Torruella et al. 2015). 

1.5.2 Pluriformea 

One of two enigmatic holozoan taxonomic 
groups Pluriformea was only erected in 2017 
and, at present, contains two highly disparate 
species (Hehenberger et al. 2017). The first spe-
cies identified in the group, Corallochytrium 
limacisporum, is a unicellular saprotroph isolated 
from coral lagoons in the Arabian Sea (Raghu-
kumar 1987). To date flagellated cells have not 
been observed; however, transcriptome analyses 
have shown presence of the genes required for 
flagellum assembly (Torruella et al. 2015), 
suggesting that the C. limacisporum may possess 
more morphological diversity than that witnessed 
in laboratory cultures. Like most opisthokonts the 
mitochondria of C. limacisporum possess flat 
cristae (Mendoza et al. 2002). Mature cells are 
spherical, ranging from 4.5 to 20.0 μm in diame-
ter, and possess a filamentous cell wall that 
contains multiple pores (Cavalier-Smith and 
Allsopp 1996; Mendoza et al. 2002). Cell divi-
sion occurs within the cell wall, resulting in the 
release of up to 32 elongated, amoeboid daughter 
cells (Mendoza et al. 2002). The juvenile cells 
show motility via a slow rocking movement 
(Cavalier-Smith and Allsopp 1996). Unlike 
many eukaryotes, cell division is decoupled



a

from nuclear division and C. limacisporum is 
binucleate for most of the lifecycle as observed 
in laboratory cultures. The majority of binucleate 
cells undergo cell division to produce uninucleate 
daughter cells; however, approximately 1% of 
observed binucleate cells continue to undergo 
nuclear division to produce multinucleate 
coenocytes. Coenocytes eventually bud off 
daughter cells to return to a uninucleate state 
(Koźyczkowska et al. 2021). 

1 The Protistan Origins of Animals and Fungi 17

Upon its discovery C. limacisporum was 
described by Raghu-kumar (1987) as  
thraustochytrid. Cavalier-Smith and Allsopp 
(1996) disputed this classification, on the basis 
that C. limacisporum lacks any of the diagnostic 
morphological characters of either 
thraustochytrids or fungi. With a SSU rRNA 
phylogeny, they recovered C. limacisporum as a 
holozoan and a close relative of the 
choanoflagellates. Later multigene phylogenies, 
based upon three or four genes, provided 
conflicting positions with C. limacisporum recov-
ered as a close relative of either choanoflagellates 
or ichthyosporeans (Carr et al. 2008; Ruiz-Trillo 
et al. 2006; Steenkamp et al. 2006). Torruella 
et al. (2015) found a sister relationship between 
two strains of C. limacisporum and the 
ichthyosporeans, as the earliest branching group 
of Holozoa, and suggested the name Teretosporea 
(meaning “rounded spore”) for this basal clade. 

The discovery of Syssomonas multiformis, as a  
close relative of C. limacisporum in 2017, led to 
the proposal of the Pluriformea clade 
(Hehenberger et al. 2017). S. multiformis, a fresh-
water unicellular holozoan isolated from a pond 
in Vietnam, shares very little morphological or 
ecological similarities with C. limacisporum. 
S. multiformis can switch between amoeboid 
and amoeboflagellate cells, as well as form cysts 
and multicellular clusters. The species is a preda-
tor, which ingests the cytoplasmic content of 
eukaryotic prey cells (Hehenberger et al. 2017). 
A 225-gene phylogenetic analyses placed 
Ichthyosporea as an independent basal holozoan 
lineage, with Pluriformea being recovered in a 
more derived position; however, the authors 
acknowledged their datasets could not exclude 
the possibility of an enlarged Teretosporea clade 

made up from Ichthyosporea+Pluriformea 
(Hehenberger et al. 2017). 

1.5.3 Tunicaraptor 

The second, and most recently described, of the 
enigmatic holozoan lineages, Tunicaraptor, was 
only discovered in 2020 and is represented by a 
single species in T. unikontum (Tikhonenkov 
et al. 2020). Isolated from marine waters from 
the coast of Chile, T. unikontum is a small 
(3.5–5.1 μm in length) predator of unicellular 
eukaryotes. As with the pluriform 
S. multiformis, T. unikontum exhibits a broad 
range of morphologies. Observed cells are pre-
dominantly uniflagellate, with most of the cell 
enclosed in a rigid theca that possesses long 
hair-like structures. The flagellum protrudes 
from the posterior end of the theca, whilst an 
anterior aperture of the theca exposes a mouth-
like structure. To date no other unicellular 
opisthokonts are known to possess a feeding 
mouth, although superficially similar structures 
are widespread amongst biflagellate eukaryotes 
(Steinert and Novikoff 1960; Verni and Gualtieri 
1997). Short filopodia may exude from the proto-
plast and aggregations of 3–6 cells have been 
observed, particularly during feeding. 

Despite the availability of a full transcriptome, 
the phylogenetic position of T. unikontum has not 
been established. Indeed, the inclusion of 
T. unikontum genes into phylogenomic datasets 
leads to instability in phylogenetic 
reconstructions of Holozoa. Tikhonenkov et al. 
(2020) presented a consensus Bayesian inference 
tree placing the Tunicaraptor genus as a sister 
group to a clade comprising Metazoa, 
Choanoflagellatea, and Filasterea. However, the 
authors acknowledged that this position was not 
well supported and their own maximum likeli-
hood phylogeny using the same data united 
Tunicaraptor in a weakly supported clade with 
Filasterea, Ichthyosporea, and Pluriformea. Addi-
tional analyses by Tikhonenkov et al. (2020), 
varying both the number of genes and taxa, 
resulted in poorly resolved phylogenies with no 
consistent placement of T. unikontum.
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1.5.4 Filasterea 

As with most of the taxonomic groups within 
Holozoa, Filasterea is a clade based upon phylo-
genetic relationships, with member species 
harbouring a high level of morphological and 
ecological diversity. Erected in 2008 by 
Cavalier-Smith (Shalchian-Tabrizi et al. 2008) 
through the phylogenetic clustering of two 
incertae sedis holozoan genera, the group has 
expanded in recent years to its current member-
ship of six taxa. 

Capsaspora owczarzaki was the first species 
discovered, as an endosymbiont of the pulmonate 
snail Biomphalaria glabrata (Owczarzak et al. 
1980; Stibbs et al. 1979); however, the species 
was not named and described for a further 
23 years, when it was recognised as a member 
of Holozoa (Hertel et al. 2002). C. owczarzaki 
protoplasts are typically spherical and amoeboid 
(3–5 μm in diameter), possessing numerous thin, 
unbranching filopodia (Hertel et al. 2002; Stibbs 
et al. 1979). Cells encyst due to overcrowding 
(Hertel et al. 2002) and mature cells may form 
aggregates (Sebé-Pedrós et al. 2013). Flagellated 
cells have never been observed and the sequenced 
genome revealed the loss of over 80 genes neces-
sary for flagellum formation (Suga et al. 2013). 
As with all known filastereans, mitochondria pos-
sess flattened cristae (Amaral-Zettler et al. 2001; 
Urrutia et al. 2022). 

Within the B. glabrata host C. owczarzaki 
predates the sporocysts of the parasitic trematode 
flatworm Schistosoma mansoni, which uses 
B. glabrata as a vector in its lifecycle (Stibbs 
et al. 1979). A specialised filopodium extends 
from the protoplast and penetrates the sporocyst 
when C. owczarzaki comes into contact with 
S. mansoni (Stibbs et al. 1979). It is unknown if 
C. owczarzaki provides a pathogenic burden to its 
snail host, or if the symbiosis is one of mutualism; 
however, C. owczarzaki can be cultured in axenic 
media, highlighting the existence of nutritional 
mechanisms other than S. mansoni predation 
(Stibbs et al. 1979). 

Two further filastereans were discovered in the 
mid-1990s, prior to the recognition of the group. 

Ministeria marisola (Patterson et al. 1993) and 
M. vibrans (Tong 1997) are both cosmopolitan 
marine bacteriovores, which capture prey through 
phagocytosis. Both species are characterised by a 
small spherical protoplast (1.5–3.6 μm in diame-
ter) that possesses an array of straight, rigid 
microvilli (approximately 9 μm in length) that 
radiate symmetrically around the cell body 
(Mylnikov et al. 2019; Patterson et al. 1993). 
M. vibrans may attach to surfaces via a peduncle, 
previously believed to be a derived flagellum 
(Cavalier-Smith and Chao 2003); however, this 
appears to be a plastic trait with many M. vibrans 
cultures lacking the peduncle (Mylnikov et al. 
2019). The presence of unequivocally flagellated 
protoplasts has recently been confirmed in 
M. vibrans; however, less than 1% of observed 
cells in culture were observed to possess a flagel-
lum (Mylnikov et al. 2019). 

Three recently discovered species have further 
expanded the known morphological and ecologi-
cal diversity of filastereans. Hehenberger et al. 
(2017) isolated two freshwater unicellular, flagel-
lated eukaryovores from Chile and Vietnam, 
which they assigned to the novel genus 
Pigoraptor. Whilst being distinct from 
C. owczarzaki as a flagellated species, both 
Pigoraptor species show clear similarities to 
C. owczarzaki, as all three species feed through 
the capture of the cytoplasmic contents of their 
eukaryotic prey and have the capacity to encyst as 
well as form multicellular aggregates 
(Hehenberger et al. 2017). A second symbiotic, 
and potentially parasitic, filasterean was recently 
identified by Urrutia et al. (2022). In contrast to 
C. owczarzaki, which habituates the haemolymph 
of its snail host, Txikispora philomaios is an 
intracellular symbiont of multiple genera of 
amphipod crustaceans. Individual infected host 
cells may harbour up to 10 T. philomaios cells. 
Host cells become necrotic as a result of infection, 
with the host individuals becoming lethargic and 
unresponsive to stimuli (Urrutia et al. 2022). 
T. philomaios cells are typically spherical 
(2–4 μm in diameter) and frequently are enclosed 
within a cell wall. Multicellular groupings of 3–4 
cells are also observed within host cells; however, 
it is unclear if these are aggregates of unrelated
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cells or the result of clonal cell division. Naked 
protoplasts, lacking a cell wall, may produce 
microvilli and a flagellum (Urrutia et al. 2022). 
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Phylogenetic analyses have consistently 
recovered Filasterea as a robust clade. The amoe-
boid symbiont C. owczarzaki has been shown to 
cluster with the flagellated Pigoraptor predators, 
whilst the parasitic T. philomaios appears to be 
the closest known relative of the free-living 
Ministeria species (Hehenberger et al. 2017; 
Urrutia et al. 2022). 

1.5.5 Choanoflagellatea 

With approximately 300 species described in over 
50 recognised genera, the choanoflagellates are 
acknowledged as the most speciose group of uni-
cellular holozoans. The first records of 
choanoflagellates came in the mid-nineteenth 
century (Ehrenberg 1831, 1838; von Fresenius 
1858); however, due to the limitations of micros-
copy at the time, the microanatomy of the proto-
plast was not clearly visible. Choanoflagellate 
cells are characterised by a distinctive collar of 
30–40 actin-based microvilli that surrounds a sin-
gle apical flagellum (see Carr et al. 2008 for a 
review of choanoflagellate morphology). These 
features were not observed until the 1860s when 
James-Clark described three species, whilst also 
noting the morphological similarity between 
choanoflagellate cells and the choanocyte feeding 
cells of poriferans (James-Clark 1866, 1867). 
Independently Bütschli (1878), Kent (1878, 
1880–1882) and von Stein (1878) all recognised 
that the various species of recently described col-
lared flagellates could be assigned to a single 
taxonomic group, which they respectively 
named as Cylicomastiges, Choanoflagellata, and 
Craspedomonadina. The latter two names have 
both persisted in the literature, and Kent’s 
Choanoflagellata has been adapted to provide 
the group’s common name. In the most recent 
major taxonomic revision, Nitsche et al. (2011) 
raised the taxonomic rank of the group to the class 
Choanoflagellatea. 

The choanoflagellates are aquatic protists, 
although some species may also be present in 

heavily hydrated soils, where they play an impor-
tant role in microbial communities and food webs 
as filter feeders (Leadbeater 2015). The beating of 
their flagellum creates a water current that sweeps 
bacteria and eukaryotic picoplankton onto the 
collar of microvilli, which acts as a filter by 
trapping food particles on the outside of collar 
(Pettitt 2001). Pseudopodia, which emerge from 
the base of the collar, engulf trapped food 
particles; however, captured cells may also be 
translocated down the microvilli to be 
phagocytosed closer to the cell body. Food 
vacuoles formed within the pseudopodia move 
to the base of the cell where digestion occurs 
(Fig. 1.4; Leadbeater 1983). 

Despite the choanoflagellates showing a simi-
lar phylogenetic diversity to Metazoa (Richter 
et al. 2018), the morphology of their protoplasts 
shows very little variation. Cells tend to be spher-
ical or ovoid with a collar surrounding a posterior 
flagellum. All species have a periplast (extracel-
lular coat) that encloses at least some part of the 
protoplast. One function of the periplast in many 
choanoflagellate species is to secure the cell to a 
surface. In motile cells the beating of the flagel-
lum drives locomotion and reduces the volume of 
water flow over the collar (Lighthill 1976). As a 
result, swimming cells are less efficient feeders in 
comparison to sedentary cells, which can filter 
greater water volumes through each beat of the 
flagellum (Leadbeater 2008a). 

Kent’s description (1880–1882)  
Choanoflagellata contained three families, 
namely the Codonosigidae, Phalansteriidae, and 
Salpingoecidae; however, of these, only the 
Salpingoecidae remains accepted as a valid 
choanoflagellate taxon (Nitsche et al. 2011). In 
addition to Salpingoecidae, the Acanthoecidae 
and Stephanoecidae are morphologically distinct 
families (Nitsche et al. 2011). 

Three different forms of periplast have been 
described, which were traditionally the basis 
underpinning choanoflagellate taxonomy. Two 
forms of periplast are purely organic based in 
construction, in the glycocalyx and the theca 
(reviewed in Leadbeater 2015). The glycocalyx 
is a mucilaginous and flexible investment, which 
may be made from either one or two layers of fine



fibrils (Carr et al. 2017). Species across the 
known diversity of choanoflagellates possess a 
glycocalyx and the structure appears to be both 
a universal and ancestral morphological trait of 
choanoflagellates (Leadbeater 2008a). In many 
species the glycocalyx extends into a peduncle 
which secures the protoplast to a surface 
(Fig. 1.4). Species which exhibit a single cell 
per peduncle are referred to as monosigid, 
whereas in codosigid species multiple clonal 
cells share the same peduncle. Phylogenetic stud-
ies have shown that both the monosigid and 
codosigid morphologies are polyphyletic, with 

convergent evolution occurring across the 
choanoflagellate tree (Carr et al. 2017; Nitsche 
et al. 2011; Fig. 1.5). 
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Fig. 1.4 Feeding 
mechanism of a sedentary 
choanoflagellate cell. The 
protoplast (Pr) is secured to 
a surface by a peduncle 
(Pe) which extends from an 
external cell coat. The 
beating of the flagellum 
(F) creates a water current 
(grey dotted arrows) 
through the microvilli of the 
collar (C). Food particles 
(grey ovals) are trapped on 
the outside of the collar and 
are phagocytosed by 
pseudopodia (Ps) which 
extend from the protoplast 
at the base of the collar. 
Food vacuoles (Fv) are 
transported from the apical 
pole of the cell to the base 
of the cell for digestion. 
Figure based upon Lapage 
(1925) and Pettitt et al. 
(2002) 

F 

C C 

F 

Ps 

Pe 

Fv 

Fv 

Pr 

The theca is a more substantial and robust 
periplast than the glycocalyx, being composed 
of carbohydrate-based microfibrils (Leadbeater 
2008a). The theca exhibits sufficient morphologi-
cal variation across species for it to have been 
used as a taxonomic character, with cup, flask, 
ovoid, and tube shaped thecae being possessed by 
choanoflagellate species. However, species 
possessing particular thecae forms do not form 
monophyletic groups, indicating that theca
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Fig. 1.5 Maximum likelihood 14-gene cladogram of 
28 choanoflagellate species. The phylogeny was created 
with RAxMLGUI 2.0 using a mixed alignment of 4242 

nucleotide positions, from partial sequences of SSU and 
LSU, and 5941 amino acid positions from 40S Ribosomal 
Protein S8, 60S Ribosomal Protein L10-B, Ribosomal



Fig. 1.5 (continued) Protein S5, Rps15A, EFL, EF1A, 
Hsp70, Hsp90, RNA Pol, RNA Pol II, TubA, and TubB. 
Each gene was aligned individually in MAFFT 7.309 and 
then concatenated. For nucleotide sites, the TN93 model 
(Tamura and Nei ) was employed with maximum 
likelihood-derived base frequencies and proportion of 
invariant sites, as well as a gamma distribution of rate 
variation. For amino acid sites, the LG model (Le and 

1993

Gascuel ) was employed with maximum likelihood-
derived base frequencies, as well as a gamma distribution 
of rate variation. Parameters were calculated through opti-
mization in the RAxMLGUI. Craspedid species are shown 
in green and nudiform acanthoecid species are shown in 
red and tectiform acanthoecids are in blue. The key defines 
morphological and ecological traits 

2008

morphology is a plastic trait with multiple 
examples of convergent evolution and loss (Carr 
et al. 2017; Fig. 1.5). Whilst cell division may 
occur within the confines of the flexible 
glycocalyx, the rigid nature of the theca means 
that cells must become amoeboid and emerge 
before undergoing cell division outside of the 
thecae (Carr et al. 2008). After cell division, 
daughter cells from both glycocalyx and theca-
bearing species may undergo a motile stage, with 
collared, flagellated swimming cells (Carr et al. 
2008).
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Species presenting only a glycocalyx were 
traditionally assigned to the family 
Codonosigidae, with theca-bearing species placed 
into the Salpingoecidae. Molecular phylogenies 
indicated neither family was monophyletic (Carr 
et al. 2008; Medina et al. 2003; Steenkamp et al. 
2006), and Nitsche et al. (2011) subsumed the 
polyphyletic Codonosigidae into the paraphyletic 
Salpingoecidae. The Salpingoecidae is the lone 
recognised family within the choanoflagellate 
order Craspedida (originally described by 
Cavalier-Smith 1997), which contains all species 
that possess a purely organic-based periplast. 

Codonosigidae and Salpingoecidae were both 
described in Kent’s pioneering taxonomic work 
of the 1880s; however, the family Acanthoecidae 
was not described until 1965, under botanical 
nomenclature, with the name Acanthoecaceae 
(Norris 1965). Due to the diversity of species 
recognised within the group, the taxon was raised 
from a family to the order Acanthoecida by 
Nitsche et al. (2011). The order is characterised 
by the lorica, a distinctive periplast comprising 
two layers of silica costal strips which form a 
basket-like structure around the cell (Fig. 1.6a; 

Leadbeater et al. 2009). Organic microfibrils, 
similar to those present in the theca, are fre-
quently arranged between the costal strips; these 
facilitate the adhesion of the protoplast to the 
lorica and, in some species, act to funnel water 
over the collar (Leadbeater 2008a; Leadbeater 
et al. 2009). 

In contrast to the glycocalyx and theca, loricae 
show considerable morphological variation 
between species and are considered reliable diag-
nostic taxonomic characters (Nitsche et al. 2017; 
Schiwitza and Nitsche 2021). Loricate taxa can be 
divided into two groups based upon their 
mechanisms of cell division, as well as the struc-
ture of their loricae. Nudiform taxa are similar to 
craspedid species in that after cell division one 
daughter cell remains with the original periplast, 
whilst the second daughter cell will undergo a 
“naked” motile dispersal stage (Manton et al. 
1981). The motile stage is relatively brief in 
nudiform species, compared to that observed in 
craspedids, and swimming cells rapidly settle 
onto a surface and construct a new lorica from 
costal strips that have accumulated in membrane-
bound vesicles within the protoplast (Leadbeater 
2008b). The loricae of nudiform species possess 
both longitudinal and helical costal strips but lack 
transverse rings of strips (Leadbeater et al. 2008). 
In contrast to the nudiforms, tectiform species do 
not have a naked dispersal stage. Prior to cell 
division the parental cell exocytoses all of the 
costal strips required to produce a new, second 
lorica and stores the strips at the top of its collar 
(Manton et al. 1981). Cell division occurs within 
the parental lorica and immediately after cytoki-
nesis one daughter cell exits the lorica, taking the 
previously deposited costal strips and assembles



its own new lorica (Leadbeater 2010; Manton 
et al. 1981). Tectiform loricae are often more 
elaborate than nudiform loricae in their construc-
tion, with costal strips being organised in longitu-
dinal, helical, and transverse ring arrangements. 
The presence of transverse rings provides greater 
structural stability than helical strips, which has 
resulted in many tectiform species evolving light-
weight, open baskets, allowing species to become 
planktonic and free-floating within the water col-
umn (Leadbeater 2010). 
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Fig. 1.6 Morphological 
variation in 
choanoflagellates. (a) The 
acanthoecid 
choanoflagellate Savillea 
parva surrounded by a 
lorica of silica strips. (b) 
Clonal colony of the 
choanoflagellate 
Salpingoeca punica. The 
flagella and collars of all 
cells face outward to 
maximise prey capture. 
Pictures presented with 
kind permission from Barry 
Leadbeater 

An excess of 100 tectiform species have been 
described; however, fewer than 10 nudiform spe-
cies are recognised (Nitsche et al. 2017; 
Schiwitza and Nitsche 2021). Within 
Acanthoecida, the nudiforms and tectiforms 
have both been assigned family status, with the 
former described as Acanthoecidae and the latter 
as Stephanoecidae (Nitsche et al. 2011). Whilst 
both taxa are recognised as distinct families, the 
phylogenetic relationship between the two is far 
from clear. The use of nucleotide or amino acid 
datasets, as well as different phylogenetic 
methodologies, may result in either two mono-
phyletic sister families or a monophyletic 
Acanthoecidae being nested within a paraphyletic 
Stephanoecidae (Carr et al. 2008, 2017). Carr and 
Leadbeater (2022) proposed that the monophyly 
of Stephanoecidae is an artefact produced due to 
convergent phylogenetic signals present in syn-
onymous third codon positions and through a 
14-gene phylogeny showed that the nudiform 

species evolved within a lineage of tectiform 
choanoflagellates. 

Over 70 species of choanoflagellate have pub-
licly available gene sequences; however, the 
majority of described species lack sequence data 
and cannot be placed into molecular phylogenies. 
Environmental DNA studies have indicated that a 
number of diverse choanoflagellate clades exist 
that currently have no known representative spe-
cies (del Campo and Massana 2011; del Campo 
and Ruiz-Trillo 2013). However, as eDNA 
surveys tend to be based upon a single gene, the 
phylogenetic support for the novel groups is fre-
quently weak and fewer novel lineages are recov-
ered when more stringent analyses are undertaken 
(Carr et al. 2017). 

A large number of choanoflagellate species 
have been observed to switch from a unicellular 
state to colonial forms (Fig. 1.6b). The number of 
species known to have the capacity to form 
colonies is probably an underestimate of the true 
number, as environmental conditions appear to 
play a major role in colony formation and labora-
tory culture conditions may not always provide 
the necessary cues for coloniality (Carr et al. 
2017; Ireland et al. 2020). The morphologies of 
colonies vary between choanoflagellate taxa and 
may even vary within the same species (Dayel 
et al. 2011). Sedentary species possessing either a 
glycocalyx or theca may generate colonies on a 
single peduncle, whilst free-swimming species 
may produce spherical globular colonies or raft-



like chains of cells (Dayel et al. 2011). Such 
colonies are clonal, rather than aggregate, in 
nature (Dayel et al. 2011) and also show evidence 
for cellular differentiation (Laundon et al. 2019). 
The presence of a spacious, restrictive lorica 
appears to limit the capacity of acanthoecid spe-
cies to form connections between individual 
protoplasts (Carr et al. 2017). However, 
Diaphanoeca sphaerica and Parvicorbicula 
socialis produce colonies through the linkage of 
the loricae of individual cells (Leadbeater 2015; 
Thomsen 1982). 
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Whilst James-Clark (1867) speculated on a 
close relationship between choanoflagellates and 
metazoans, the exact relationship between 
choanoflagellates and other eukaryotic groups 
was a long source of considerable debate. Since 
their discovery, it has been speculated that the 
choanoflagellates may be highly simplified 
metazoans (Maldonado 2004), a paraphyletic 
grouping ancestral to both Metazoa and Fungi 
(Cavalier-Smith 1987), the sister group to 
Ichthyosporea or Corallochytrium (Cavalier-
Smith and Chao 2003; Medina et al. 2003; 
Mendoza et al. 2002), or even a form of algae 
(Bourrelly 1968; Chadefaud 1960). Early molec-
ular phylogenies lacked phylogenetic support or 
omitted important holozoan groups (Baker et al. 
1999; Jiménez-Guri et al. 2007; Medina et al. 
2003; Steenkamp et al. 2006; Wainright et al. 
1993). The first phylogenetic analysis to include 
the major recognised lineages within the Holozoa 
recovered the choanoflagellates as the sister 
group of Metazoa (Carr et al. 2008), and this 
relationship has been consistently recovered in 
subsequent phylogenomic studies (Hehenberger 
et al. 2017; Tikhonenkov et al. 2020). Molecular 
clock analyses indicate that the last common 
ancestor of choanoflagellates and metazoans 
existed approximately one billion years ago 
(Berbee and Taylor 2010; Parfrey et al. 2011). 

Based upon traits shared between both 
Choanoflagellatea and Metazoa, a number of 
putatively ancestral characteristics have been 
recovered. Carr et al. (2008) proposed the last 
common ancestor of both groups was a marine 
organism that possessed a microvilli collar and 
apical flagellum employed for filter-feeding. Due 

to the widespread nature of coloniality in 
choanoflagellates, it is also possible that the 
ancestor of both metazoans and choanoflagellates 
may also have been able to transition between 
unicellular and colonial states (Carr et al. 2008). 
The cytoplasmic bridges formed between cells in 
choanoflagellate colonies resemble those present 
between metazoan cells and similar bridges may 
have been present in a putative colonial ancestor 
of both groups (Dayel et al. 2011). 

Based upon 16 species, Carr et al. (2008) 
highlighted a marine origin of the 
choanoflagellates, with freshwater species falling 
into a single phylogenetic group. Subsequent 
phylogenetic studies have confirmed one major 
freshwater invasion occurred early in the evolu-
tionary history of choanoflagellates. There have 
been a limited number of more recent, minor 
freshwater incursions which appear to involve 
individual species (Carr et al. 2017; Nitsche 
et al. 2011; Paul 2012). Marine-freshwater 
transitions in the group appear to be rare, which 
is not uncommon in unicellular eukaryotes 
(Logares et al. 2009), with only a single species, 
Salpingoeca macrocollata, known to have 
reverted to a marine habitat from freshwater 
ancestors (Carr et al. 2017). 

1.5.6 Metazoa 

Uniquely amongst the opisthokonts, Metazoa 
only contains species that have multicellular 
stages within their lifecycles. Species exhibit 
multiple epithelial layers which are linked by 
connective tissue that generally contains collagen 
fibres (Cavalier-Smith 1998b). Mitochondrial 
cristae are flat and metazoans typically possess a 
13–19 kb circular mitochondrial chromosome 
which encodes a suite of 37 highly conserved 
protein-coding and non-coding RNA genes 
(Burger et al. 2003). The reduction in mitochon-
drial genome size must have occurred in the 
metazoan stem group and contrasts with the 
large genomes present in Choanoflagellatea, 
Filasterea, and Ichthyosporea (Burger et al. 
2003; Suga et al. 2013). As noted in Sect. 1.4,  a  
similar reduction in the mitochondrial genome



has also occurred within fungi; however, fungal 
mitochondrial genomes are far more variable in 
length and gene content in comparison to meta-
zoan genomes (Bullerwell and Lang 2005). 

1 The Protistan Origins of Animals and Fungi 25

Despite being highly conserved across most 
metazoans, the ancestral state of a reduced circu-
lar mitochondrial chromosome has been indepen-
dently lost in a number of cnidarian lineages. 
Linear mitochondrial chromosomes, with 
telomeres, have evolved in both medusozoan 
and anthozoan cnidarians (Smith et al. 2011; 
Stampar et al. 2019). Furthermore, the anthozoan 
Protanthea simplex has its mitochondrial genome 
divided into two circular mito-chromosomes 
(Dubin et al. 2019), whilst the myxozoan 
Henneguya salminicola possesses a 
mitochondria-related organelle but lacks both a 
mitochondrial genome and many of the genes 
required for aerobic respiration (Yahalomi et al. 
2020). 

The number of recognised phyla within 
Metazoa is disputed, with between 30 and 
35 being recognised (Erwin and Valentine, 
2013). A clear division in phyla is observed in 
the number of cell layers present within 
organisms. In four phyla, the Porifera (sponges), 
Ctenophora (comb jellies), Placozoa (a phylum 
consisting of three described marine species 
possessing highly simplified bodyplans), and 
Cnidaria (corals, jellyfish, sea anemones, and 
sea pens), species possess two layers of cells, 
generally referred to as the endoderm (internal 
layer) and ectoderm (outer layer), giving rise to 
the informal name diploblasts (Kobayashi et al. 
1996). 

All other metazoan phyla have body plans that 
contain a third cell layer, the mesoderm, located 
between the endoderm and ectoderm, resulting in 
them being referred to as triploblasts (Christen 
et al. 1991). In at least part of their lifecycles 
triploblasts show left:right (bilateral) symmetry 
across the sagittal plane of their body plans, 
resulting in an alternative, formalised, name of 
Bilateria (Hatschek 1888). Bilateral symmetry is 
also present in a number of anthozoan and hydro-
zoan cnidarians, whilst radial symmetry is 
observed in ctenophores, as well as some 

cnidarians and poriferans (Hyman 1940; 
Malakhov 2016). 

Within diploblasts, the internal and external 
cells layers are separated by a gelatinous matrix 
termed mesophyll in poriferans (Bonasoro et al. 
2001) and mesoglea in both cnidarians and 
ctenophores (Hyman 1940). The mesoglea of 
cnidarians and ctenophores contains both muscle 
cells and a simple neural network (Hyman 1940), 
but neither of these tissue types are present in 
either placozoans or poriferans (Burkhardt and 
Sprecher 2017). A further similarity between 
cnidarians and ctenophores is the presence of a 
blind gut, whereas both the placozoans and 
poriferans lack any form of gut (Hyman 1940). 
The Hox gene family plays a major role in body 
patterning during bilaterian development, 
establishing cell identity along the anterior-to-
posterior axis (Ferrier and Holland 2001). 
Cnidarians and placozoans also possess a limited 
repertoire of Hox or Hox-like genes, but 
orthologues have not been identified to date in 
any poriferan or ctenophore (Ramos et al. 2012; 
Moroz et al. 2014; Pastrana et al. 2019; Srivastava 
et al. 2010). 

Molecular phylogenetics has yet to produce an 
unequivocal tree of metazoan phyla; however, it 
is clear the bilaterians form a robustly supported 
clade. The Porifera, Ctenophora, Placozoa, and 
Cnidaria are recovered at the base of the meta-
zoan tree and, as such, can be described as early-
branching metazoans. The four early-branching 
phyla do not form a single clade and their 
branching order remains unresolved. Cnidaria is 
now recognised as the sister taxon to Bilateria 
(Philippe et al. 2019; Rouse et al. 2016; Cannon 
et al. 2016). Similarities in embryonic gene 
expression patterns between the groups, as well 
as the presence of bilateral symmetry in a number 
of cnidarian species, have led to speculation that 
the common ancestor of Bilateria and Cnidaria 
exhibited bilateral symmetry and that the condi-
tion has been lost on multiple occasions within 
cnidarians (Matus et al. 2006). Most phylogenies 
that contain Placozoa only include one of the 
three described species, in Trichoplax adhaerens; 
however, the phylum is consistently recovered in 
phylogenomic studies as the sister group to the



clade of Bilateria+Placozoa (Philippe et al. 2019; 
Pisani et al. 2015). 
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Molecular phylogenies of the earliest 
branching metazoan group have proved to be 
extremely controversial (Telford 2016; Moroz 
and Halanych 2016). Recent large phylogenomic 
studies have recovered either the poriferans 
(Kapli and Telford 2020; Pick et al. 2010; Pisani 
et al. 2015; Simion et al. 2017) or the ctenophores 
(Dunn et al. 2008; Moroz et al. 2014; Ryan et al. 
2013; Whelan et al. 2015) as the first branching 
metazoan lineage. The internal branch leading to 
Ctenophora in phylogenetic trees is considerably 
longer than the branches leading to other meta-
zoan phyla, giving rise to concerns that the recov-
ery of ctenophores at the base of the metazoans 
may be due to long-branch attraction (Kapli and 
Telford 2020; Simion et al. 2017; Telford 2016). 
The effects of long-branch artefacts can be weak-
ened through the use of more appropriate substi-
tution models in phylogenetic reconstruction. In 
general, site-homogenous amino acid substitution 
models tend to place ctenophores as the basal 
lineage, whilst more sophisticated site-
heterogenous models recover the poriferans as 
the first branching group. At present, however, it 
is not clear whether either the homogenous or 
heterogenous models more accurately estimate 
amino acid changes within deep metazoan 
evolution. 

This controversy is not simply one of taxon-
omy, as the correct identification of the first 
branching metazoan group has a considerable 
impact on the reconstruction of ancestral traits. 
The ctenophore-first scenario indicates either that 
neuronal cells, musculature, and possibly a gut 
were present in the metazoan last common ances-
tor (LCA) or that these characters have evolved 
independently in different metazoan phyla. The 
distinctive nature of neurons and striated muscle 
in ctenophores may indicate convergent evolution 
within metazoans (Moroz and Halanych 2016); 
however, such convergence could have occurred 
under both the ctenophore-first and poriferan-first 
scenarios. The poriferan-first model would sug-
gest that the metazoan LCA was a relatively sim-
ple organism which existed prior to the evolution 
of true tissue layers. The similar morphologies of 

choanoflagellate protoplasts and choanocytes 
have been argued to be homologous and therefore 
present in the metazoan LCA. However, a 
detailed study of cell ultrastructure and flagella 
beating, albeit based only upon two species, has 
raised the possibility that the collared flagellated 
cells may not be homologous but could have 
independently evolved in the ancestors of both 
extant choanoflagellates and poriferans (Mah 
et al. 2014). Furthermore, gene expression 
profiles across different poriferan cell types and 
unicellular holozoans also failed to recover evi-
dence for homology between choanoflagellates 
and choanocytes (Sogabe et al. 2019). However, 
as remarked upon by Laundon et al. (2019), the 
two cell types have been evolving under different 
evolutionary pressures since the choanoflagellate 
and metazoan lineages diverged; therefore, 
differences between choanoflagellates and 
choanocytes should not be unexpected even if 
they are homologous. 

The majority of metazoan diversity and phyla 
are assigned to Bilateria. Based upon embryonic 
development patterns, Grobben (1908) divided 
Bilateria in protostomes and deuterostomes. Dur-
ing gastrulation, in the former group the primary 
opening (blastopore) typically develops into the 
mouth, whilst in the latter group the blastopore 
develops into the anus. Multigene phylogenies 
have generally recovered both Deuterostomia 
and Protostomia as monophyletic (Bourlat et al. 
2008; Dunn et al. 2008; Laumer et al. 2019); 
however, a number of recent phylogenomic stud-
ies indicate that the deuterostomes may be 
paraphyletic (Kapli and Telford 2020; Kapli 
et al. 2021; Philippe et al. 2019). In these studies, 
the Chordata (metazoans that possess a noto-
chord) can either cluster with Protostomia, 
resulting in deuterostome paraphyly, or within a 
monophyletic Deuterostomia that is separated 
from Protostomia by a very short internal branch 
in trees. If the latter topology is correct, it 
indicates that the deuterostome radiation 
commenced only a very short time after the origin 
of Bilateria. In contrast, deuterostome paraphyly 
would point to the ancestral bilaterian possessing 
deuterostome traits, such as blastopore fate and 
the presence of pharyngeal slits, which would



have been subsequently lost in the derived 
protostomes. 
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1.6 Genomic Evolution 

The advent of high-throughput technologies has 
made sequencing whole genomes relatively rapid 
and low cost. RNA-Seq, the sequencing of 
transcriptomes, is an alternative approach that 
may be employed when obtaining pure genomic 
DNA is technically challenging or when sequenc-
ing intergenic DNA is not required. As a result, a 
large body of data now exists on the genomes of 
the unicellular relatives of both fungi and 
metazoans. These data are providing new insights 
into the origins of multicellularity. 

Fungi are characterised by the presence of both 
chitin and 1,3-β-glucan in their cell walls, and the 
gene complements of unicellular holomycotans 
have allowed the evolution of these cell wall 
components to be reconstructed. Chitin synthases 
are present in fungi and all opisthosporid 
lineages, indicating chitin walls are an ancestral 
character (James and Berbee 2012; Torruella et al. 
2018). The early-branching opisthosporids, 
Microsporidia and Cryptomycota, possess chitin, 
but only in the walls of their infective or resting 
cyst stages (Torruella et al. 2018). The infective 
cysts of aphelids also contain chitin and their 
genomes encode a broad range of genes involved 
in chitin synthesis, modification, and degradation, 
some of which may have been acquired through 
horizontal gene transfer (Torruella et al. 2018). 
Microsporidians and cryptomycotans lack 
1,3-β-glucan, as do chytrid fungi. However, the 
presence of 1,3-β-glucan synthase genes in the 
transcriptome of the aphelid Paraphelidium 
tribonemae (Torruella et al. 2018) indicates that 
1,3-β-glucan was present in the cell walls of the 
ancestor of fungi and aphelids, with its 
subsequent loss in the chytrids. Chang et al. 
(2015) highlighted a major expansion in pectinase 
gene diversity within fungal lineages, which they 
proposed occurred after the divergence of the 
Cryptomycota lineage in Holomycota. Their 
explanation for this expansion was that ancient 
fungi evolved to digest the cell walls of algae. The 

putative sister group to Fungi is Aphelida, a group 
made up of algal parasites, and the findings from 
the Chang et al. (2015) study would indicate that 
the last common ancestor of Aphelida and Fungi 
was a flagellated, freshwater parasite of 
archaeplastid algae. The aphelids have retained 
this ancestral nutritional mode, as have some 
extant fungal lineages, whilst other fungi have 
diversified to parasitise other host groups or 
become saprotrophs and symbionts. 

The parasitic lifecycles of microsporidians and 
cryptomycotans appear to have resulted in 
genome reduction; this is seen in terms of genome 
size and gene content, with both groups showing 
a loss of genes involved in metabolism (Bass et al. 
2018; James et al. 2013). Gene loss has occurred 
across the microsporidian crown group, with dif-
ferent lineages having lost different ancestral 
genes; genes involved in processes such as lipid 
metabolism, glycolysis, and mRNA splicing have 
been independently lost on multiple occasions 
across the group (Wadi and Reinke 2020). 
Microsporidian genomes have also undergone 
considerable expansions of copies in some gene 
families, through both individual gene and whole-
genome duplication events, resulting in species 
within the same genus having large numbers of 
different genes (Reinke et al. 2017). Despite 
being closely related parasites, the aphelids do 
not appear to have undergone a similar loss to 
those observed in cryptomycotans and 
microsporidians, with P. tribonemae showing a 
similar diversity of metabolic genes to fungi 
(Torruella et al. 2018); however, further genome 
sequences are required to determine if 
P. tribonemae is typical of aphelids. In general, 
holomycotan genomes are characterised by gene 
reduction, with notable losses of genes involved 
in signal transduction. The repertoire of metabo-
lism genes began to expand in the common 
ancestors of Fungi and Aphelida, a process 
which continued within the fungal stem lineage 
(Ocaña-Pallarès et al. 2022). 

Gene complements from all major holozoan 
lineages have been accrued over the last decade 
(Denbo et al. 2018; Fairclough et al. 2013; 
Hehenberger et al. 2017; López-Escardó et al. 
2019; Richter et al. 2018; Suga et al. 2013). One



striking finding from these studies is that many 
gene families previously believed to be 
metazoan-specific are now known to have much 
greater antiquity with origins deeper in Holozoa. 
Both the metazoan and choanoflagellate stem 
groups underwent considerable expansions of 
gene number, as both lineages gained approxi-
mately 2000 novel families (Richter et al. 2018), 
with a burst of innovation in genes involved in 
both gene transcription and signal transduction 
occurring in the metazoan stem group (Ocaña-
Pallarès et al. 2022). The expansion of the meta-
zoan gene complement appears to have been 
through both gene duplication and the rearrange-
ment of existing domains, rather than a result of 
evolving novel protein domains (López-Escardó 
et al. 2019; Richter et al. 2018). Holozoan 
genome evolution is a dynamic process, as, in 
addition to the large-scale gene gain that 
occurred, over 1500 gene families, including 
many involved in energy production, as well as 
the metabolism of amino acids, carbohydrates, 
and lipids, were lost in premetazoan genomes 
(Ocaña-Pallarès et al. 2022). Gene loss has 
continued in metazoans as, in a screen of crown-
group taxa, fewer than 40 of the novel genes that 
evolved in the stem group were found to be uni-
versally retained (Richter et al. 2018). As a result 
of these changes, extant metazoans, unlike fungi, 
have gene complements which are distinct from 
their protistan relatives (Ocaña-Pallarès et al. 
2022). As the number of genomes from early-
branching holomycotan and holozoan genomes 
increases, ancestral reconstructions of gene loss 
and gain will become more accurate and fine-
tuned in comparison to current studies. 
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The increased volume of genomic data now 
available has highlighted the role that horizontal 
gene transfer has played in the holozoan evolu-
tion. Hundreds of genes identified in 
choanoflagellates, filastereans, ichthyosporeans, 
and pluriformeans have been shown to be 
acquired from donor species outside of 
Opisthokonta (Betat et al. 2015; Carr et al. 
2010; Matriano et al. 2021; Southworth et al. 
2019; Yue et al. 2013). The identified donor spe-
cies consist of bacteria and algal alveolates, 
archaeplastids, haptophytes, rhizarians, and 

stramenopiles, all of which are prey items of 
predatory unicellular holozoans. Horizontal trans-
fer may occur if partially degraded chromosomal 
DNA escapes from the food vacuoles of holozoan 
predators, passes into the nucleus, and then 
integrates into chromosomes. Transferred genes 
have been shown to provide new functions to the 
recipient cell and, on some occasions, replace 
ancestral holozoan homologues (Carr and 
Leadbeater 2022; Yue et al. 2013). Highlighting 
the dynamic nature of genome evolution, hori-
zontally acquired genes may subsequently be 
lost in some descendent lineages whilst retained 
in others (Carr et al. 2010; Suga et al. 2013). 

1.7 Conclusions 

1.7.1 Molecular Phylogenetic 
Analyses of Opisthokonta 
and the Eukaryotic Tree of Life 

Advances in both DNA sequencing technology 
and phylogenetic methodologies have allowed 
many of the deeper branches in the eukaryotic 
tree to be resolved. This greater resolution has 
been somewhat offset by the discovery that a 
number of orphan lineages, such as 
Hemimastigophora and Malawimonadida, appear 
to fall outside of the generally recognised 
supergroups (Brown et al. 2018; Lax et al. 
2018). The ongoing failure to locate the root of 
eukaryotic tree means that the composition of the 
Amorphea clade, to which the opisthokonts 
belong, remains unclear. Despite this uncertainty, 
the placements of the biflagellate Apusomonadida 
and uniflagellate Breviatea as the closest relatives 
of Opisthokonta are now broadly recognised. 

Within Opisthokonta, the view that the root 
lies between Holomycota and Holozoa remains 
unchallenged, despite numerous novel lineages 
being identified since Holomycota and Holozoa 
were originally proposed. Areas of uncertainty 
remain in Holomycota, with the monophyly or 
paraphyly of Opisthosporidia still to be robustly 
resolved (Karpov et al. 2014a, b; Torruella et al. 
2018). As a result, the sister group to Fungi is not 
universally agreed upon. Despite major revisions



to the groups positioned in Holozoa, the 
choanoflagellates appear to be the closest 
relatives of Metazoa. The recent inclusion of the 
predatory Tunicaraptor in holozoan phylogenies 
disrupts the support for the deeper branches in 
Holozoa (Tikhonenkov et al. 2020); however, it is 
at present unclear if Tunicaraptor sequences are 
introducing phylogenetic artefacts or allowing a 
weak, but genuine, phylogenetic signal to be 
observed within trees. Furthermore, the earliest 
branching lineages in Metazoa and “classical” 
Fungi have not been identified, preventing reli-
able ancestral state reconstruction in both of these 
major multicellular kingdoms. 
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1.7.2 Determining Opisthokont 
Diversity 

Like most, if not all, eukaryotic supergroups, the 
phylogenetic diversity of the opisthokonts 
remains uncertain. Since the turn of the century, 
novel lineages have been identified in both 
Holomycota and Holozoa, with the discovery of 
small predatory holozoans and slowly evolving 
microsporidians (Bass et al. 2018; Hehenberger 
et al. 2017; Tikhonenkov et al. 2020). Further-
more, eDNA studies have highlighted putative 
enigmatic clades of opisthokonts that have no 
recognised representatives. Our increasing 
knowledge of opisthokont diversity is well 
exemplified by the class Filasterea. Since its 
description in 2008, the number of known species 
has doubled; however, phylogenies which 
include eDNA sequences have identified clades 
containing unknown aquatic and terrestrial 
filastereans (Urrutia et al. 2022), highlighting the 
presence of taxa that have yet to be isolated and 
described. 

The phylogenetic support of eDNA trees is 
however often weak; therefore, whilst such stud-
ies are useful for highlighting novel diversity, 
their potential for producing accurate phyloge-
netic placements is more limited. Novel 
approaches, such as the use of eDNA sequences 
as probes to identify cells of unknown species 
(Jones et al. 2011) and single-cell genomics 

(López-Escardó et al. 2019), may assist in 
expanding knowledge of opisthokont diversity. 

1.7.3 Reconstructing Opisthokont 
Evolution and the Multiple 
Origins of Multicellularity 

The last decade has seen an explosion in the 
sequencing of opisthokont genomes and 
transcriptomes. Whilst the emphasis has been on 
the multicellular Fungi and Metazoa, the increas-
ing data available from their unicellular relatives 
have begun to shine a light on the origins of both 
kingdoms. Candidates for the closest relatives of 
Fungi and Metazoa have now appear to have been 
identified, in the Aphelida and Choanoflagellatea, 
respectively (Carr et al. 2008; Galindo et al. 
2021). With two whole genomes and 
20 transcriptomes, a greater volume of gene data 
is currently available for the choanoflagellates 
(Richter et al. 2018), whilst at the time of writing 
only a single publicly available transcriptome, 
from Paraphelidium tribonemae, has been 
generated for the aphelids (Torruella et al. 
2018). Comparative genomic and morphological 
studies have highlighted previously unidentified 
ancestral traits (Booth et al. 2018; Karpov et al. 
2019a; Southworth et al. 2018; Torruella et al. 
2018); however, many uncertainties remain. For 
example, whilst coloniality is widespread across 
craspedid choanoflagellates it is not clear if this 
trait was ancestral to choanoflagellates. Morpho-
logical similarities between their cytoplasmic 
bridges, as well as choanoflagellate rosette 
colonies and metazoan larval blastulae, raise the 
possibility that the common ancestor of 
metazoans and choanoflagellates may have 
exhibited facultative coloniality (Carr et al. 
2008; Brunet and King 2017). Intriguingly, 
bacterial-mediated coloniality is observed in 
both Holomycota and Holozoa, whilst bacteria 
have been shown to be essential to the normal 
development of some metazoans (Fraune and 
Bosch 2010). Future work may uncover whether 
this was an ancestral character, or if similar 
mechanisms have evolved convergently in the 
two major branches of Opisthokonta.
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Functional studies are required to show if there 
are any common genetic pathways in the devel-
opment of metazoan bodies and choanoflagellate 
colonies. Furthermore, such studies may also 
identify shared developmental pathways across 
multicellularity in Choanoflagellatea, Filasterea, 
Fungi, Ichthyosporea, Metazoa, and nucleariid 
amoebae which may have evolved in the 
opisthokont stem. The advent of transfection 
techniques in unicellular opisthokonts (Booth 
et al. 2018; Koźyczkowska et al. 2021; Parra-
Acero et al. 2018) promises to reveal the function 
of fungal and metazoan multicellularity genes in 
their protistan relatives. 

The ongoing drive to sequence genomes 
across the eukaryotic tree of life will in the next 
few years provide accurate gene complements for 
the LCAs of Holomycota, Holozoa, and 
Opisthokonta. In combination with studies of 
gene expression and function, these gene 
complements can be expected to identify the 
origins of multicellularity in Fungi and Metazoa, 
as well as colony formation in opisthokont 
protists. 
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