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Chapter 1 
An Introduction to Mathematical Cognition 
and Understanding in the Elementary 
and Middle School Years 

Adam K. Dubé , Donna Kotsopoulos , and Katherine M. Robinson 

Abstract This volume focuses on the complex and diverse processes and factors 
affecting the mathematical cognition and understanding of elementary and middle 
school children, a critical time where they experience a range of developmental, 
pedagogical, and individual changes that impact their lifelong mathematics educa-
tion and experience. In this first chapter, we identify the central topics of the 
individual contributions in this volume, providing a broader framing for the chapters 
by organising them into two parts (Cognitive Factors, Mathematical Understanding), 
and highlight broader themes connecting the chapters. We also draw attention to 
how each chapter provides new theoretical contributions and practical recommen-
dations for teachers, paraprofessionals, parents, and policy makers, with the goal of 
improving children’s success in mathematics. 

Keywords Mathematical cognition · Mathematical understanding · Mathematics 
education · Middle school · Elementary school 

1.1 Introduction 

Studying the diverse processes and factors contributing to elementary and middle 
school children’s mathematical cognition and understanding requires combining 
theories and evidence from a broad range of fields. The elementary and middle 
school years, which are the focus of this volume, roughly correspond to the ages 
of 6–12 although variability exists between or even within a country’s states,
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provinces, territories, or areas. These school years are particularly complex given the 
vast developmental, pedagogical, and individual changes that occur and combine to 
affect children’s mathematics education and experience. Students make great strides 
during these years of formal schooling in their ability to attend, plan, and execute 
cognitive strategies (Xu et al., 2013). They likely experience diverse types of 
mathematics instruction on complex foundational concepts (e.g., Fazio, 2019; Parr 
et al., 2019), and they are apt to experience strong emotions and shifting motivations 
about mathematics as a school subject (Karamarkovich & Rutherford, 2021). As 
such, researchers, educators, and parents’ understanding of the factors that aid, 
impede, and motivate students to learn mathematics during elementary and middle 
school is critical and is the focus of this volume.
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This volume represents the work of international scholars bringing their perspec-
tives on children’s mathematical minds from intersecting areas of inquiry including 
mathematics education, educational psychology, cognitive development, develop-
mental psychology, mathematical cognition, cognitive neuroscience, and educa-
tional neuroscience who all have the goal of ensuring that all children in the 
elementary and middle school years succeed at mathematics. As it becomes ever 
more apparent how important early mathematics skills are for many areas of our 
lives, including academics, career choice, health and well-being, and financial 
literacy (Every Child a Chance, 2009; OECD, 2019; Parsons & Bynner, 2005; 
Statistics Canada, 2013), building knowledge about the cognitive factors involved 
in developing children’s mathematical minds and how children understand mathe-
matics is a keystone to ensuring our children’s lifelong success. 

Our book is designed to be read in a variety of ways. Each individual chapter 
makes a relevant contribution to how we understand mathematical cognition and 
understanding in the elementary and middle school years. Chapters are grouped to 
allow for connections and convergences to be made by readers with approaches that 
share topics, themes, approaches, and interests, and serve well as chapter focus 
clusters. These clusters fit within the broader conception of the volume’s two-part 
organization, and so each part is designed to highlight confluences between the 
chapters. Collectively, this volume’s contents provide a series of perspectives that 
move from pedagogy to research and application, which provides synthesis across 
the two parts. Further, because the book is uniquely conceived as a set of interna-
tional and disciplinary perspectives on mathematics and cognition and understand-
ing, a key element of its design is the way in which cumulative knowledge of how 
mathematics is taught and understood across and within various nations and disci-
plines develops across the entire volume. 

This edited collection is an extension of two other edited volumes, Mathematical 
Learning and Cognition in Early Childhood: Integrated Interdisciplinary Research 
and Mathematical and Teaching and Learning: Perspectives on Mathematical 
Minds in the Elementary and Middle School Years (Robinson et al., 2019, 2023). 
The former installment focused on early childhood and included theories and 
evidence ranging from mathematics education to neuroscience. The volume covered 
both the teaching and learning of mathematics in early childhood education and 
home environments, as well as the cognitive and neurocognitive underpinnings of



early numeracy ability. The latter installment, like the current volume, spanned the 
elementary and middle school years. It included perspectives from international 
scholars taking psychological and educational approaches to understand the process 
of mathematics pedagogy in Part 1 of the book and mathematics learning in Part 2 of 
the book. 
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The present volume also includes two parts. Part 1 focuses on critical cognitive 
factors underpinning mathematical thinking during the elementary and middle 
school years, ranging from domain general cognitive skills like attention and plan-
ning to motivation and achievement emotions. The chapters reflect key approaches 
to understanding more about the processes that impact children’s mathematics 
success including the examination of basic cognitive factors, the role of the brain, 
and the interaction between cognitive and affective factors. 

Part 2 engages with children’s understanding of important mathematical con-
cepts, including some persistently tricky topics for children such as word problem 
solving and fractions. The present volume, like its companion volumes, is aimed at 
both educators and scholars in the fields of mathematics education and numerical 
cognition. This is achieved by each chapter including theoretical contributions 
alongside practical recommendations for teachers, paraprofessionals, parents, and 
policy makers. Together, both parts present current thinking and research that inform 
readers on what is known and understood about elementary and middle school 
students’ understanding of mathematics and the cognitive factors related to their 
success in mathematics. Further, the authors of each chapter have outlined how 
knowledge gained through advances in theory and research can be translated into 
practice. 

Part 1: Cognitive factors in elementary and middle school mathematics. 

Part 1 is organized into three clusters of related chapters to form a strong under-
standing of three important approaches to investigating cognitive factors in elemen-
tary and middle school mathematics. The first approach investigates the key role of 
basic cognitive skills in mathematics. The second approach examines mathematics 
from a cognitive neuroscience perspective. Finally, the third approach broadens to 
include the critical role of affective processes and how they interact with cognitive 
factors in children’s mathematics learning. The first cluster of chapters in Part 
1 begins with a focus on specific and basic cognitive factors such as spatial cognition 
and domain-general cognitive skills such as attention and working memory which 
have long been identified as critical factors in ensuring children’s success in math-
ematics through the elementary and middle school years (Cragg & Gilmore, 2014; 
Hawes et al., 2019) and which are often of particular concern for children with or at 
risk of learning difficulties in mathematics (Yazdani et al., 2021). 

In Chap. 2, Hawes, Gilligan-Lee, and Mix examine spatial thinking and its 
connection to mathematics ability and instruction. The authors argue that mathemat-
ics education can be improved via a ‘spatializing’ of the curriculum. They identify 
and describe a range of spatial skills and review the literature to show how each of 
them relates to specific mathematics outcomes. They then engage with how to best 
introduce spatial instruction to mathematics education, comparing isolated and



integrated approaches, and conclude with recommending a mixed approach that 
transitions from isolated spatial skill training to increasingly embedded lessons that 
infuse spatial skills into mathematics instruction. 

4 A. K. Dubé et al.

The contribution of domain-general attention skills and their role in the develop-
ment of mathematics ability for typically developing children and those with 
neurodevelopmental conditions forms the focus of Chap. 3, by Clark, Perelmiter, 
and Bertone. They begin by demonstrating the combined contributions of attention, 
executive functions, working memory, and processing speed to mathematics ability, 
all framed within cognitive load theory, and argue that this complex contribution is 
not being addressed by interventions for mathematics remediation. This is supported 
by a systematic review of task-specific, function-specific, as well as indirect and 
direct attentional and working memory intervention studies. Their discussion calls 
for more research assessing the effectiveness of cognitive interventions but con-
cludes that the most promising interventions are ones that align with cognitive load 
theory and integrate different attentional functions. 

Domain-general skills are also of interest to Johnson, Stecker, and Linder in In 
Chap. 4. They examine the role of working memory in children’s arithmetic fact 
fluency which is a vital mathematical skill. The authors begin by outlining the typical 
developmental trajectories for fact knowledge acquisition and then go on to detail 
how working memory deficits are a risk factor for children developing mathematical 
learning disabilities. Having identified the process of fact fluency acquisition and 
working memory deficits as a potential limiter on fact fluency development, incre-
mental rehearsal is presented as an instructional intervention to support basic fact 
knowledge in elementary and middle school students. The chapter concludes with 
recommendations for practice for teachers, paraprofessionals, and parents on how to 
effectively implement this approach and identifies how technology could play a role 
in its success. 

In the next cluster of chapters in Part 1, the focus turns to a second important 
approach to investigating cognitive factors by examining the neuropsychological 
processes involved in mathematics. Neuroscience can yield critical information not 
only on the brain processes involved in mathematics (De Smedt & Grabner, 2015) 
but can also be used to identify the different brain processes used by children who 
are typically or atypically developing (Skeide et al., 2018). 

In Chap. 5, Declercq, Fias, and De Smedt describe how brain imaging research 
can provide unique insights into arithmetic strategy development. Arithmetic strat-
egies are necessary to developing more advance mathematics understanding and 
are hallmarked by learners’ gradual transition from calculation-based strategies to 
memory-based fact retrieval. Declercq and colleagues review the few studies pro-
viding insights into the brain regions potentially responsible for this transition, 
specifically looking at the effect of various mathematics interventions on children’s 
brain activity. Taking this approach, the chapter details the potential power of 
brain imaging research to unravel the fine-grained processes missed by studying 
behavioural data alone and, thus, builds a fuller understanding of how arithmetic 
develops.



1 An Introduction to Mathematical Cognition and Understanding in. . . 5

The influential Planning, Attention, Simultaneous, Successive (PASS) theory is 
used by Georgiou, Charalambos, and Sergiou in Chap. 6 to understand the role of 
neuropsychological processes in mathematics. The authors review pertinent litera-
ture and then detail data from a clinical case study of six children with mathematics 
giftedness and six with mathematics disabilities from three cultures. By examining 
the cognitive profiles of these children, they demonstrate the diversity in planning 
and simultaneous processing that exists in mathematics processes and go on to 
discuss how teachers can facilitate students’ planning. 

In the final cluster of chapters in Part 1, the focus turns to the interaction between 
cognitive and affective factors in the development of mathematics during the 
elementary and middle school years. Ensuring that children are engaged with 
mathematics is often key to success in mathematics (Wang et al., 2021). Research 
has examined not only how motivated children are but also how motivation and 
positive emotions can be increased (Hannula, 2006). 

Liu, Rutherford, and Karamarkovich describe research on the connection 
between motivation and cognition in Chap. 7. This is accomplished through a 
systematic review of works investigating both motivation and cognition. They 
provide an overview of how three dominant motivational theories (Situated 
Expectancy-Value Theory (SEVT), Self-Determination Theory, and Achievement 
Goal theory) are used to understand mathematics outcomes. Using SEVT as a lens, 
motivational theories are expanded by including cognitive processes to better under-
stand their relative contribution to mathematics achievement. The authors conclude 
by arguing that future research needs to expand even further, beyond the individual, 
to consider how environmental-level factors (school, family) affect cognitive and 
motivational processes. 

In Chap. 8, Wen and Dubé delve into how technology, specifically educational 
mathematics games, can elicit positive emotions critical to mathematics success and 
further, how these games can be designed to promote mathematics ability. Using 
control-value theory as a framework, a systematic review and meta-analysis are 
conducted to determine the effect of five game-based emotional design principles 
(i.e., Visuals, Music, Mechanics, Narrative, Incentives) on students’ achievement 
emotions and learning outcomes. The results show how design principles contrib-
uting to players’ control and value appraisals are more likely to generate positive 
achievement emotions and stronger learning outcomes and the discussion guides 
teachers and parents on which types of mathematics games to bring into their 
classrooms and homes. 

Part 2: Mathematical understanding in the elementary and middle school years. 

Part 2 shifts to elementary and middle school children’s understanding of important 
mathematics concepts. These chapters address central concepts identified in mathe-
matics education and mathematical cognition research and have been divided into 
two clusters. First, specific concepts have been identified as being core competencies 
such as the understanding of the number line (Schneider et al., 2009) and the 
understanding of the operations of addition, subtraction, multiplication, and division 
(De Corte & Verschaffel, 1981). Second, both educators and psychologists working



in the area of mathematical cognition have long been concerned about children’s 
understanding of fractions which constitute a particular hurdle for many children 
during the elementary and middle school years (Siebert & Gaskin, 2006; Siegler 
et al., 2013). The last cluster of chapters included in this volume illustrate how 
researchers are trying to alleviate this concern by attempting to not only understand 
the obstacles to elementary and middle school children’s understanding of fractions 
but to also address and surmount these obstacles. 
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In the first cluster of chapters in Part 2, the focus begins on the number line as a 
basic tool in the development of mathematical understanding and the innovate ways 
that the number line can be used to promote diverse mathematical knowledge. The 
focus then turns to how the understanding of arithmetic varies both across the 
elementary and middle school years but also from student to student. 

Pericleous begins in Chap. 9 by detailing how the number line can serve as a 
vehicle for children’s broader mathematical understanding. The chapter describes 
the naturalistic study of students who were taught how to use number lines as a tool 
for representing their own mathematical ideas and processes. The instructional 
approach incorporates puppets, narrative, and games, and encourages students to 
construct, create and interpret mathematics concepts. The richness of such an 
approach is captured and presented by the students’ own words and illustrations. 
The chapter culminates in Pericleous contending that number line understanding is 
influenced by more than just mathematics; it is also a product of the social and 
sociomathematical norms established in the classroom. 

In Chap. 10, Robinson and Buchko argue for and demonstrate the power of 
longitudinal methods for investigating students’ conceptual knowledge of arith-
metic. They begin by identifying what is known about children’s understanding of 
equivalence, inversion, and associativity and then highlight a) children’s relatively 
poor understanding for the multiplicative versions of these concepts; and b) that 
research on these concepts is largely informed by cross-sectional designs and that 
longitudinal work is needed. To this end, they report on a recent longitudinal study 
showing an overall increase in knowledge for all three concepts. However, analysis 
of student profiles shows how the larger trend masks considerable individual vari-
ability and the need for direct instruction to improve understanding of these key 
concepts. 

In the final cluster of chapters in Part 2, the focus now hones in on fractions to 
illustrate their particular importance during the elementary and middle school years. 
From learning how to share a pie amongst several friends to adding 1/4 to 2/5, 
fractions are crucial in children’s understanding of mathematics (Booth & Newton, 
2012). This set of chapters begins by identifying why fractions are such challenging 
concept for many students and how these challenges can be addressed, continues by 
showcasing the difficulties children experience moving from concrete to abstract 
reasoning, and concludes by describing an effective intervention approach to learn-
ing fractions for children with mathematics learning difficulties. 

In Chap. 11, Gabriel, Van Hoof, Gómez, and Van Dooren outline the most likely 
barriers preventing students from understanding the notoriously tricky concept of 
fractions. They begin by defining conceptual and procedural knowledge of fractions



and detail how they relate to and reinforce each other. The discussion then turns to 
how children’s natural number processing (NNP) both helps and hinders their 
understanding of fractions. They identify how children’s NNP is responsible for 
three common misconceptions that children hold about fractions and then conclude 
by detailing several promising interventions teachers and parents can employ to 
counter them. 
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Another tricky area of mathematics, word problems, and specifically word prob-
lems involving fractions is the target for Osana and colleagues in Chap. 12. Their 
investigation focuses on children’s word problem solving strategies for equal sharing 
problems and how they change as a function of the “groundedness” of the to-be-
shared object (cf., abstract) and whether the object is measured in units of area or 
length. Their discussion on the role of problem and object characteristics in world 
problem solving is illustrated by recent data. The results are complex, as it seems that 
children may use their experience with concrete objects to reason about abstract 
ones. The authors conclude that children’s word problem solving is informed by 
children’s word knowledge, linguistic competencies, and the specific mental repre-
sentations triggered by the problems themselves. 

Chen, Thannimalai, and Kalyuga in Chap. 13 combine the volume’s focus on 
cognition and understanding by demonstrating how worked examples, informed by 
cognitive load theory, can improve students’ understanding of fraction concepts. The 
chapter begins by reviewing both cognitive load theory and the worked example 
effect and by showing how cognitive load theory can be used to explain why worked 
examples are so effective. They then present new empirical evidence suggesting 
that worked examples, if properly designed, can be effective for teaching fraction 
understanding. 

Finally, in Chap. 14, Jordan, Dyson, Devlin, and Gesuelli present their creation of 
an evidence-based fraction intervention for students with mathematics learning 
difficulties (MLD). Their discussion on how to address children’s difficulties with 
fractions looks at domain specific causes, such as fraction magnitude, equivalence, 
arithmetic, common errors, and representations, as well as common techniques for 
supporting students with MLD. The authors explain how they combine literature on 
the source of fraction errors with literature on effective supports to create their 
‘fraction sense intervention.’ The chapter concludes by detailing the intervention’s 
components and providing evidence of its effectiveness. 

As these chapters so well illustrate, scholars from a wide range of perspectives, 
including across disciplines and countries, are necessary to gain a fuller understand-
ing of mathematical minds in the elementary and middle school years. Translating 
research and theory into practice is crucial to ensure that students of varying 
mathematical skills and abilities succeed both in their present and future mathemat-
ical endeavours. By targeting the cognitive factors involved in mathematics perfor-
mance as well as children’s understanding of mathematics, this volume aims to 
inform both researchers and practitioners to help develop elementary and middle 
school students’ mathematical minds. 

We would like to thank the exemplary scholars who have contributed to this 
collected work and who continue to grow our knowledge of mathematical cognition



and understanding, Springer for their steadfast support of this collective endeavor, 
and our readers who support these works. 

8 A. K. Dubé et al.

References 

Booth, J. L., & Newton, K. J. (2012). Fractions: Could they really be the gatekeeper’s doorman? 
Contemporary Educational Psychology, 37(4), 247–253. https://doi.org/10.1016/j.cedpsych. 
2012.07.001 

Crag, L., & Gilmore, C. (2014). Skills underlying mathematics: The role of executive function in 
the development of mathematics proficiency. Trends in Neuroscience and Education, 3(2), 
63–68. https://doi.org/10.1016/j.tine.2013.12.001 

De Corte, E., & Verschaffel, L. (1981). Children’s solution processes in elementary arithmetic 
problems: Analysis and improvement. Journal of Educational Psychology, 73(6), 765–779. 
https://doi.org/10.1037/0022-0663.73.6.765 

De Smedt, B., & Grabner, R. H. (2015). Applications of neuroscience to mathematics education. In 
R. C. Kadosh & A. Dowker (Eds.), The Oxford handbook of numerical cognition (pp. 612–632). 
Oxford University Press. 

Every Child a Change Trust. (2009). The long term costs of numeracy difficulties. www. 
nationalnumeracy.org.uk 

Fazio, L. K. (2019). Retrieval practice opportunities in middle school mathematics teacher’s oral 
questions. The British Journal of Educational Psychology, 89(4), 653–669. https://doi.org/10. 
1111/bjep.12250 

Hannula, M. S. (2006). Motivation in mathematics: Goals reflected in emotions. Educational 
Studies in Mathematics, 63, 165–178. https://doi.org/10.1007/s10649-005-9019-8 

Hawes, Z., Moss, J., Caswell, B., Seo, J., & Ansari, D. (2019). Relations between numerical, spatial, 
and executive function skills and mathematics achievement: A latent-variable approach. Cog-
nitive Psychology, 109, 68–90. https://doi.org/10.1016/j.cogpsych.2018.12.002 

Karamarkovich, S. M., & Rutherford, T. (2021). Mixed feelings: Profiles of emotions among 
elementary mathematics students and how they function within a control-value framework. 
Contemporary Educational Psychology, 66, 01996. https://doi.org/10.1016/j.cedpsych.2021. 
101996 

OECD. (2019). Skills matter: Additional results from the survey of adult skills. OECD Publishing. 
Parr, A., Amemiva, J., & Wang, M.-T. (2019). Student learning emotions in middle school 

mathematics classrooms: Investigating associations with dialogic instructional practices. Edu-
cational Psychology, 39(5), 636–658. https://doi.org/10.1080/01443410.2018.1560395 

Parsons, S., & Bynner, J. (2005). Does numeracy matter more? National Research and Develop-
ment Centre for Adult Literacy and Numeracy. 

Robinson, K. M., Osana, H. P., & Kotsopoulos, D. (Eds.). (2019). Mathematical learning and 
cognition in early childhood: Integrated interdisciplinary research. Springer. 

Robinson, K. M., Kotsopoulos, D., & Dubé, A. (Eds.). (2023). Mathematical teaching and 
learning: Perspectives on mathematical minds in the elementary and middle school years. 
Springer. 

Schneider, M., Grabner, R. H., & Paetsch, J. (2009). Mental number line, number line estimation, 
and mathematical achievement: Their interrelations in grades 5 and 6. Journal of Educational 
Psychology, 101(2), 359–372. https://doi.org/10.1037/a0013840 

Siebert, D., & Gaskin, N. (2006). Creating, naming, and justifying fractions. Teaching Children 
Mathematics, 12(8), 394–400. https://doi.org/10.2307/41198803 

Siegler, R. S., Fazio, L. K., Bailey, D. H., & Zhou, X. (2013). Fractions: The new frontier for 
theories of numerical development. Trends in Cognitive Sciences, 17(1), 13–19. https://doi.org/ 
10.1016/j.tics.2012.11.004

https://doi.org/10.1016/j.cedpsych.2012.07.001
https://doi.org/10.1016/j.cedpsych.2012.07.001
https://doi.org/10.1016/j.tine.2013.12.001
https://doi.org/10.1037/0022-0663.73.6.765
http://www.nationalnumeracy.org.uk
http://www.nationalnumeracy.org.uk
https://doi.org/10.1111/bjep.12250
https://doi.org/10.1111/bjep.12250
https://doi.org/10.1007/s10649-005-9019-8
https://doi.org/10.1016/j.cogpsych.2018.12.002
https://doi.org/10.1016/j.cedpsych.2021.101996
https://doi.org/10.1016/j.cedpsych.2021.101996
https://doi.org/10.1080/01443410.2018.1560395
https://doi.org/10.1037/a0013840
https://doi.org/10.2307/41198803
https://doi.org/10.1016/j.tics.2012.11.004
https://doi.org/10.1016/j.tics.2012.11.004


1 An Introduction to Mathematical Cognition and Understanding in. . . 9

Skeide, M. A., Evans, T. M., Mei, E. Z., Abrams, D. A., & Menod, V. (2018). Neural signatures of 
co-occuring reading and mathematical difficulties. Developmental Science, e12680, e12680. 
https://doi.org/10.1111/desc.12680 

Statistics Canada. (2013). Skills in Canada: First results from the programme for the international 
assessment of adult compentencies.. Catalogue no. 89-555-X. 

Wang, M.-T., Binning, K. R., Del Toro, J., Qin, X., & Zepeda, C. D. (2021). Skill, thrill, and will: 
The role of metacognition, interest, and self-control in predicting student engagement in 
mathematics learning over time. Child Development, 92(4), 1369–1387. https://doi.org/10. 
1111/cdev.13531 

Xu, F., Han, Y., Sabbagh, M. A., Wang, T., Ren, X., & Li, C. (2013). Developmental differences in 
the structure of executive function in middle childhood and adolescence. PLoS ONE, 8(10), 
e77770. https://doi.org/10.1371/journal.pone.0077770 

Yazdani, S., Soluki, S., Akbar Arjmandnia, A., Fathabadi, J., Hassanzadeh, S., & Nejati, V. (2021). 
Spatial ability in children with mathematics learning disorder (MLD) and its impact on exec-
utive functions. Developmental Neuropsychology, 46(3), 232–248. https://doi.org/10.1080/ 
87565641.2021.1913165

https://doi.org/10.1111/desc.12680
https://doi.org/10.1111/cdev.13531
https://doi.org/10.1111/cdev.13531
https://doi.org/10.1371/journal.pone.0077770
https://doi.org/10.1080/87565641.2021.1913165
https://doi.org/10.1080/87565641.2021.1913165


Part I 
Cognitive Factors



Chapter 2 
Infusing Spatial Thinking Into Elementary 
and Middle School Mathematics: What, 
Why, and How? 

Zachary C. K. Hawes, Katie A. Gilligan-Lee, and Kelly S. Mix 

Abstract Spatial thinking plays a critical role in the learning, doing, and commu-
nication of mathematics. Yet, spatial thinking remains an under-valued, under-
recognized, and under-instructed feature of mathematics education. In this chapter, 
we argue that the teaching and learning of mathematics can be improved through 
‘spatializing’ the curriculum—that is, taking a more explicitly spatial approach to 
mathematics instruction. The chapter is structured around three main questions, 
beginning with “What is spatial thinking?” We then discuss why spatial and math-
ematical skills are related, including a review of evidence that spatial training/ 
instruction may be causally related to mathematics performance. In the remaining 
sections of the chapter, we focus on how spatial thinking can be improved and 
leveraged to support mathematics learning in the classroom. In doing so, we provide 
a simulated spatial training progression appropriate for middle school mathematics. 
Altogether, we argue that spatial thinking represents untapped potential, a hidden 
strength in students that can be drawn from and further cultivated to achieve new 
disciplinary insights, understandings, and appreciation of mathematics. 
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2.1 Introduction 

Spatial thinking is fundamental to learning, doing, inventing, and communicating 
mathematics. Well known mathematical ideas and proofs, such as the Pythagorean 
Theorem, Pi, the area of a circle, seven bridges of Königsberg problem, and Pascal’s 
triangle are but a few examples of the entanglement of spatial and mathematical 
thought (Cain, 2019; Davis, 2015). To riffle through a mathematics text book is to 
further witness the countless diagrams, graphs, and other visualizations used to 
communicate mathematical ideas and encourage student understanding. The tools 
and manipulatives that spill from students’ desks and fill the shelves of classrooms 
offer further insights into the role of spatial thinking in mathematics. For example, 
the number line is a simple, yet elegant tool used to show how fractions relate to one 
another – using space as a way of grounding meaning through organizing, structur-
ing, and highlighting numerical relationships (Hamdan & Gunderson, 2017). Many 
other manipulatives serve a similar purpose such as the abacus, Cuisenaire/relational 
rods, algebra tiles, and so forth (Mix, 2010). Moving beyond everyday observations 
and anecdotes, there is over a century of empirical evidence indicating the robust 
relationship between spatial thinking and mathematics, such that people with stron-
ger spatial skills tend to also have stronger mathematical skills (Atit et al., 2021; 
Hawes & Ansari, 2020; Lourenco et al., 2018; Mix & Cheng, 2012). 

Despite such tight relations, research suggests that spatial thinking rarely plays a 
central role in mathematics education. In fact, in some places of the world, there are 
initiatives to remove spatial skill development from mathematics curricula. For 
example, in 2021, England revised their early years learning standards to reduce 
the focus on shape and space in favor of increased attention to early number skills. 
Furthermore, other research suggests that when spatial thinking is included in the 
curriculum, the instruction tends to focus primarily on verbal tasks (e.g., labeling and 
sorting shapes), rather than promoting dynamic spatial thinking such as spatial 
visualization and transformations (Clements, 2004; Moss et al., 2016). There is 
also the issue of teacher training. Elementary school teachers receive little to no 
professional development in the area of spatial thinking (Ginsburg et al., 2006). 
Furthermore, there is little evidence that teacher training programs prepare students 
to think about the importance of spatial thinking in mathematics education. 

Taken together, we are left with an interesting paradox. On the one hand, spatial 
thinking is fundamental to mathematics. And yet, on the other hand, spatial thinking 
appears to be a commonly neglected aspect of mathematics education. In this 
chapter, we will argue that the teaching and learning of mathematics can be 
improved through ‘spatializing’ the curriculum—that is, taking a more explicitly 
spatial approach to mathematics instruction. Although our focus is the spatialization 
of middle school mathematics (approximately ages 10–14 years), the ideas discussed 
are relevant across the PreK-12 curriculum. We begin by addressing the question, 
“What is spatial thinking?” We then discuss why spatial and mathematical skills are 
related, including a review of new evidence suggesting that spatial training/ 
instruction may be causally related to mathematics performance. In the remaining



sections of the chapter, we focus on how spatial thinking can be improved and 
leveraged to support mathematics learning in the classroom. In addition to providing 
an overview of evidence-based spatial approaches to improving mathematics, we 
also offer a simulated spatial training progression appropriate for middle school 
mathematics. 
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2.2 What Is Spatial Thinking? 

Defining spatial thinking is not easy. Although widely recognized as a critical 
component of human cognition – distinct from other key facets of intellect, such 
as verbal and numerical reasoning – spatial thinking represents a vast and varied 
construct (Hegarty & Waller, 2005). It comprises not just one skill, or subset of 
skills, but many (Newcombe & Shipley, 2015). We engage in spatial thinking when 
navigating familiar environments, such as our homes and immediate surrounding 
area, but also when navigating new and unfamiliar environments, such as exploring a 
new city. We also engage in spatial thinking when imagining the best way to pack 
the trunk of a car, using our visualization skills to rotate and fit objects together. 
Interestingly, the spatial skills in these examples, navigation and spatial visualization 
respectfully, are dissociable to some extent (Hegarty & Waller, 2004; for a similar 
distinction made between intrinsic and dynamic spatial skills see: Mix et al., 2018). 
Being an expert ‘trunk packer’ does not necessarily translate to being an expert 
navigator. 

That spatial thinking is multidimensional and used differently across different 
contexts has important implications for education. First, it means that we must be 
careful not to subscribe to the mantra that “I’m not a spatial thinker,” and, in turn, to 
label students, and indeed ourselves, as either possessing spatial ability or not. 
Binary interpretations of spatial thinking like this are common but potentially 
harmful, as they fail to recognize the breadth, complexity, and routine use of this 
key facet of human reasoning. Although spatial skills tend to be highly related to one 
another when measured with psychological tests (Mix et al., 2016, 2017), there is an 
emerging literature that suggests that the use and measurement of spatial thinking in 
real-world contexts is more variable and context-dependent (Atit et al., 2020). This 
leads to a second implication. When it comes to the classroom, spatial thinking is 
likely to present itself in many different ways and to vary in its use and importance 
across educational contexts. 

When learning mathematics, certain spatial skills appear more important than 
others. For example, there is little research indicating that large-scale spatial thinking 
skills, such as navigation, is associated with higher levels of mathematics achieve-
ment (Lourenco et al., 2018). There is, however, an extensive body of evidence to 
suggest the importance of small-scale spatial skills, namely, spatial visualization, in 
the learning and doing of mathematics (Lowrie et al., 2020). Defined as the capacity 
to recall, create, maintain, manipulate, and transform visual-spatial information, 
spatial visualization skills have been associated with performance across a wide



Spatial skill Assessment tool Task description

assortment of mathematics activities, ranging from foundational counting and arith-
metic skills all the way up to highly advanced mathematics topics, such as function 
theory and computational mathematics (Hawes & Ansari, 2020; Lohman, 1996; Mix 
et al., 2017). Table 2.1 provides examples of different spatial skill assessments, all of 
which have been found to correlate with mathematics performance. In the next
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Table 2.1 Examples and descriptions of different spatial thinking assessments and their associa-
tions with various mathematics outcomes 

Associations with math 
outcomes 

Spatial 
assembly 

Test of Spatial 
Assembly (TOSA) 
(Verdine et al., 
2014) 

Participants are asked to 
copy a model construction 
using physical bricks/ 
blocks 

Associated with numeracy 
skills (number, operation 
and counting skills) at 
3 years of age (Bower 
et al., 2020) 

Mental 
rotation 

2D Mental Rota-
tion Test 
(Neuburger et al., 
2011) 

Participants are required to 
identify which images/ 
objects are rotated versions 
of one another 

Associated with arithmetic 
and intro to algebra (miss-
ing term) problems in 
children aged 6–8 (Hawes 
et al., 2015) 

Spatial scaling Spatial Scaling 
Discrimination 
Paradigm (Gilligan 
et al., 2018) 

Participants must choose 
which of 4 choice maps 
shows a target in the same 
relative position as a scaled 
target map 

Associated with 
standardised mathematics 
performance, number line 
estimation, and approxi-
mate number sense in 
children aged 6–10 years 
(Gilligan et al., 2019) 

Mental 
transformation 

Children’s Mental 
Transformation 
Task (Levine et al., 
1999) 

Participants must choose 
which of 4 shapes can be 
created by mentally joining 
two component pieces 
together (requiring both 
mental translation and 
rotation) 

Associated with arithmetic 
and number-logic prob-
lems in kindergarten (chil-
dren around 6 years of age) 
and geometry in second 
grade children (Frick, 
2019) 

Perspective 
taking 

Level Two Per-
spective Taking 
Task (Frick et al., 
2014) 

Participants are required to 
imagine what photograph 
has been taken by a toy 
photographer who has a 
different viewpoint (per-
spective) than themselves. 

Associated with geometry, 
spatial functions, and 
number-logic problems in 
children aged 6–8 years 

Visuo-spatial 
working 
memory 

Visual Spatial 
Working Memory 
Task (Kaufman & 
Kaufman, 1983) 

Items are presented to par-
ticipants in a grid, for 5 sec-
onds. Participants are asked 
to draw an x on a 
corresponding grid to show 
where the items were 
displayed. Difficulty is 
increased by increasing the 
cells in the grid and number 
of items displayed 

Associated with overall 
mathematics performance 
(a composite of algebra, 
word problems, number 
line, fractions, geometry, 
place value, charts and 
graphs, and calculation) 
(Mix et al., 2016)



section, we explore why this is the case. We outline reasons why spatial visualiza-
tion, as well as other spatial skills, are believed to underlie and support mathematics 
learning and performance.
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2.3 Why Are Spatial Skills and Mathematics Related? 

There are several reasons why spatial skill might be related to the learning and doing 
of mathematics. First, there is emerging evidence that spatial and mathematical 
thinking both make use of the same brain regions. A 2019 meta-analysis found 
that mental rotation (a prototypical spatial skill), basic number processing (e.g., 
comparing the magnitude of different number symbols), and arithmetic all involve 
neural activity in and around the intraparietal sulcus (IPS) (see Fig. 2.1) 
(Hawes et al., 2019b; see also Hubbard et al., 2009). This suggests that spatial and 
mathematical thinking may rely on similar brain regions and shared neural 
mechanisms. 

Second, the affordances of spatial visualization may support mathematics prob-
lem solving. Spatial visualization may serve as “mental blackboard” on which 
various mathematical concepts, relations, and operations can be modeled and visu-
alized (Lourenco et al., 2018; Mix, 2019). For example, when confronted with a 
word problem, learners might create a mental model of the problem, organizing and 
structuring the problem accordingly. This capacity to mentally visualize and simu-
late mathematical relations (e.g., bringing sets of objects together or apart in one’s 
mind), is believed to play an especially important role for novel and unfamiliar 
mathematical problems (Hawes et al., 2019a, b; Mix et al., 2016; Uttal & Cohen, 
2012). Even for more practiced mathematics tasks, such as solving memorized 
arithmetic facts, individuals may rely on one’s mental blackboard to record and 
keep track of the question at hand. 

A third explanation for the space-math link relates to the ways in which space is 
used to represent and communicate mathematical meaning. Consider all the ways 
space is used to represent and communicate mathematical concepts in the classroom. 
Mathematical tools and manipulatives, such as number lines, rulers, and protractors, 
as well as manipulatives, such as relational (Cuisenaire) rods, base-ten blocks,

Fig. 2.1 Meta-analysis of fMRI studies examining brain regions associated with mental arithmetic 
(green), and mental rotation (blue), and basic numerical processing (red)



fraction bars, etc. are ubiquitous, and share in common the mapping of numbers to 
space to bear mathematical meaning (Mix, 2010). Space is also used to convey 
mathematical meaning through writing conventions. Place value, for example, is 
conveyed through the positioning of digits. Diagrams, graphs, and other visual 
representations that rely on spatial relations are commonly used to illustrate math-
ematical concepts, as are gestures (Lowrie, 2020; Novack et al., 2014).
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From these examples, a fourth, and perhaps the most obvious reason why space 
and mathematics are related emerges; certain domains of mathematics are inherently 
spatial. Indeed, the ‘study of space’ is a core feature of what it means to engage in 
mathematics. Geometry and measurement are two elementary and middle school 
mathematics topics where spatial reasoning lies central to disciplinary practice. And 
yet, as argued elsewhere, even overtly spatial branches of mathematics, such as 
geometry, are not as ‘spatial’ as they could be, with instructional efforts failing to 
recognize the potential use of spatial reasoning as a key approach to effective and 
efficient mathematical problem solving (Clements, 2004; Moss et al., 2016). This is 
an important point and one we will examine for much of the remaining chapter. That 
is, how might we further leverage the link between spatial and mathematical 
thinking, to give rise to improved spatial skills as well as mathematics understanding 
and performance? 

2.4 Does Spatial Instruction Improve Mathematics 
Performance? 

The idea that spatial instruction (also referred to as spatial training) should lead to 
improvements in mathematics is not new (e.g., see Bishop, 1980; Smith, 1964). 
However, only recently have researchers begun to empirically test this hypothesis. 
According to our own analysis, 95% of the published studies in this area have 
appeared in or since 2014 (more on this later). Why has it taken researchers so 
long to test these ideas? One reason might have something to do with the contro-
versies around the malleability of spatial thinking. Until recently, the question of 
whether spatial thinking can be improved with practice was still an open question 
(National Research Council, 2006; Sims & Mayer, 2002). There was, and in many 
cases, there still is, a belief that spatial thinking is a fixed trait – either you are a 
spatial thinker or not. However, as we have outlined above, spatial thinking is multi-
faceted and it is a gross oversimplification to categorize individuals’ as possessing 
uniformly ‘good’ or ‘bad’ spatial skills. Critically, the question of whether or not 
spatial skills can be trained and improved with practice has also been put to rest. 

There is now substantial evidence that spatial thinking is malleable. A meta-
analysis by Uttal et al. (2013) analysed a total of 206 spatial training studies across a 
25-year period (1984–2009) and found the average effect size (Hedges’s g) for 
training relative to control was approximately one-half standard deviation (0.47). 
To put this into context, the authors suggested that an improvement of this



magnitude would roughly double the number of U.S. citizens with the spatial skills 
of a trained engineer. Moreover, the results indicated that spatial thinking can be 
improved in people of all ages, through a variety of training approaches (e.g., video 
games, course training, spatial task training), and that the effects were durable (i.e., 
still present weeks and months later) and generalizable (i.e., training one type of 
spatial skill was associated with improvements in other aspects of spatial thinking). 
With the malleability of spatial skills established, the critical follow-up question of 
whether spatial training might also lead to benefits in mathematics emerged. 
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To address this question, we conducted a meta-analysis that focused on the effects 
of spatial training/instruction on mathematics (Hawes et al., 2022). We identified 
29 studies that used a controlled pre-post study design (N = 3765) with an assess-
ment of mathematics performance both prior to and following participation in a 
spatial intervention. Furthermore, all studies involved a control group who either 
completed no intervention (passive control group), or another kind of intervention 
(active control group; e.g., participating in another form or math instruction). We 
wanted to know whether people who completed spatial training demonstrated 
greater improvements in mathematics compared to people assigned to the control 
conditions. Our results showed that the average effect size (Hedges’s g) of spatial 
training on mathematics relative to the control conditions was 0.28. An effect of this 
magnitude is comparable to the annual gains that occur in Grades 6–10 on U.S.-
based nationally-normed tests of mathematics (see Bloom et al., 2008; Hill et al., 
2008). In comparison to younger grades (Kindergarten-Grade 5), our effect of 0.28 is 
comparable to about 25–50% of the annual gains that occur in mathematics. Against 
these benchmarks, the effects appear quite large. However, these benchmark esti-
mates are based on U.S. data only, suggesting the need for caution in drawing any 
direct comparisons. Another way of contextualizing the effect is to compare it to the 
effects of other cognitive training programs. For example, in comparison to the 
effects of working memory training on mathematics, our effects are about 2–3 times 
larger (Melby-Lervåg et al., 2016; Schwaighofer et al., 2015). Overall, the results of 
this study provided the most conclusive evidence to date that spatial training may 
indeed lead to gains in mathematics. 

Beyond this main effect, there were a few other noteworthy findings from this 
study. First, relevant to the focus of this book, 23 of the 29 studies (79%) were 
carried out with children aged 6–14 years; We know less about performance at the 
extreme ends of the K-12 age range, but our findings provide particularly strong 
evidence that spatial training may benefit mathematics outcomes in middle child-
hood and early adolescence. Another age-related finding was that as the age of 
participants increased from 3–20 years, so too did the effects of spatial training on 
mathematics performance. This might suggest that advanced mathematics is more 
reliant on spatial representations than basic mathematics and/or that as children 
mature, they become more skillful at applying spatial strategies. Moreover, this 
indicates that spatial skills should not exclusively be prioritised in the early years, 
but throughout elementary and middle school education. Third, spatial training that 
involved the use of concrete materials, such as manipulatives and other hands-on 
learning materials, was associated with significantly larger effects than training



offered through computers or worksheets. Although further study is needed, we 
might tentatively conclude that classroom-based efforts to improve mathematics 
through spatial instruction may be most potent in hands-on learning opportunities. 
We return to this idea in the next section. 
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Lastly, larger improvements in mathematics were observed when the spatial 
training and mathematics outcomes were closely aligned. That is, larger effects 
occurred when there was a clear link between the training and the type of mathe-
matics being assessed (e.g., training that targeted improving spatial transformation 
skills and a geometry assessment involving geometric transformations). This effect 
was quite pronounced, with effects of 0.65 on ‘near transfer’ measures compared to 
an effect size of 0.20 on ‘far transfer’ measures. While this result might seem fairly 
obvious, it is actually at odds with the larger correlational literature. For example, a 
review of this literature suggests that spatial thinking is related to both overtly spatial 
aspects of mathematics (geometry), but also less obviously spatial aspects of math-
ematics (basic understandings of number) (Mix & Cheng, 2012; Xie et al., 2019). 
Thus, based on correlational data, one might predict little difference in whether the 
spatial training and math outcomes were well aligned. By moving beyond correla-
tional evidence to focus on causal research designs, our meta-analysis suggested that 
space-math associations may be more dependent on task-specific shared processes 
and strategies than previously understood. It should also be noted, however, that 
even when the training and math outcome under question were not clearly linked, 
there was still a significant effect of spatial training on mathematics. This suggests 
that spatial thinking might be linked to mathematics through both domain-general as 
well as domain-specific shared processes, which has important implications for the 
design and implementation of spatial learning opportunities. 

2.5 How to Best Leverage the Space-Mathematics 
Association? 

We now arrive at the crux of this chapter – how to improve mathematics learning 
through spatial training and instruction. To begin, let us be clear that there is no 
single ‘right’ answer to this question, and researchers have approached this question 
from a variety of perspectives and methodologies. Confusing things further, there are 
cases in which one approach, such as computerized spatial training, benefits math-
ematics performance in one study (e.g., Hung et al., 2012), but not another (e.g., 
Cornu et al., 2019). The same spatial approach does not guarantee the same results 
across different settings and with different individuals. 

With that said, the literature review for our meta-analysis revealed two general 
approaches that researchers have used successfully to test whether and to what extent 
spatial training transfers to mathematics. The first approach, referred to hereafter as 
the ‘Isolated Approach to Spatial Training,’ involves a general and decontextualized 
approach to spatial training. The second approach, referred to hereafter as the



‘Embedded Approach to Spatial Training,’ involves a more math-focused and 
contextualized approach to spatial training. Importantly, there are some key theoret-
ical differences between these approaches with important implications for practice. 
In the following sections, we describe each approach in more detail, including an 
example of each type of training from the literature, discuss the strengths and 
limitations of each approach, and make connections to the theoretical assumptions 
underlying each approach. 
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It is important to note that these two categories are not static. However, our 
description of each approach represents a generalization of the current literature. 
Indeed, one of the central purposes of dichotomizing spatial training interventions is 
to highlight the current benefits and drawbacks of each approach. In doing so, the 
middle ground is exposed and we can begin to see and appreciate the many 
unanswered questions that may guide future efforts to improve mathematics learning 
through spatial instruction. 

2.5.1 Isolated Approaches to Spatial Training 

Isolated approaches to spatial training are defined here as repeated practice of a 
specific spatial skill, such as mental rotation, without any attention to the connec-
tions to mathematics. The isolated approach usually involves highly controlled 
experimental studies, often within the confines of a lab, with the intent of manipu-
lating only the key variable of interest (i.e., the spatial skill to be trained). The major 
strength of this approach is the high internal validity, allowing researchers to make 
stronger causal inferences about the effect of spatial training on mathematics. For 
example, in a study by Gilligan et al. (2020), 8-year-olds were trained on either 
mental rotation or spatial scaling. Training was delivered through instructional 
videos and involved solving various ‘puzzle’ tasks. Fig. 2.2 shows an example of 
each training task. 

At no point were children told how these spatial skills might relate to mathemat-
ics. Nonetheless, both training tasks shown in Fig. 2.2 led to improvements in spatial 
thinking, as well as training-related gains in mathematics. Relative to both an active 
control group and other forms of spatial training, children in the mental rotation 
group demonstrated gains on an assessment of missing-term problems (e.g., 
4  +  __  = 7). Children in the spatial scaling group demonstrated gains on an empty 
number line assessment (e.g., placing 67 on an empty line flanked by 0 and 100 at 
both ends), relative to the control group and the mental rotation group. These results 
suggest highly specific effects of spatial training on mathematics. Because the 
training targeted a single spatial skill, the changes in mathematics performance can 
reasonably be attributed to the specific skill trained. This in turn, contributes to a 
more refined theoretical model of the space-mathematics link.
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Fig. 2.2 In these activities, participants were asked whether the orange shape could be a rotated or 
scaled version of the missing piece needed to complete the puzzle shown. Instructional videos 
demonstrated how the orange shape could be rotated (a) or scaled (b) to complete the image 

2.5.2 Embedded Approaches to Spatial Training 

Embedded approaches to spatial training are defined here as spatial training that 
targets multiple spatial skills and includes more implicit and explicit links to 
mathematics. Research using the embedded approach usually occurs in the class-
room and as part or in replacement of regular mathematics class. Compared to the 
isolated approach, the classroom teacher assumes a more active role, often facilitat-
ing the spatial training. An example of this approach can be seen in the study by 
Lowrie et al. (2017). Researchers and a group of five sixth grade teachers collabo-
rated to design and implement a 10-week (20 hr) spatial reasoning program in 
replacement of the standard mathematics curriculum. The intervention program 
was designed to enhance a range of spatial skills, including spatial visualization, 
mental rotation, and spatial orientation. Relative to a ‘business as usual’ control 
group, those in the spatial group demonstrated improvements in spatial thinking as 
well as a broad curriculum-based assessment of mathematics (number, geometry, 
measurement). 

A closer inspection of the instructional activities used in the embedded approach 
reveals its key characteristics. Specific examples included teaching students rota-
tional symmetry, 2D rotation around a point, perspective taking (top, front, side 
views of 3D objects), nets of solids, and differentiating between rotations and 
reflections. Critically, although each one of these activities can be considered spatial, 
these activities are also directly related to the mathematics itself. For example, each 
of these activities are taught in the Ontario curriculum for students in Grades 5–8 
(https://www.dcp.edu.gov.on.ca/en/curriculum/elementary-mathematics). Because 
of the inherent overlap between spatial skills and mathematics in these activities, 
we see this type of spatial intervention as one that is embedded in school mathe-
matics. To be clear, the focus and emphasis of this program and other embedded 
approaches (e.g., see Hawes et al., 2017), is directed at the spatial reasoning inherent

https://www.dcp.edu.gov.on.ca/en/curriculum/elementary-mathematics


in these various mathematical tasks. This approach can also be considered 
‘spatializing’ the mathematics curriculum; taking mathematical content that is spatial 
in nature or can be approached in spatial ways and using this as a natural training 
ground for developing students’ understanding and skills in mathematics (as well as 
spatial reasoning). Perhaps the greatest strength of this approach is the clear con-
nection between the content of the spatial training and its applicability to various 
mathematics curriculum standards. This approach, to date, has capitalized on the 
natural links between spatial and mathematical thinking, doing so by employing 
ecologically valid, classroom-based interventions. An interesting question is 
whether embedded training—which improves both spatial and mathematics skills— 
would have the same kind of spontaneous transfer to non-spatial mathematics (e.g., 
addition) than isolated training. If so, this would suggest that even domain-specific 
training yield general improvements in mathematics. Another open question is 
whether embedded spatial training that happens to be more domain-general in nature 
(e.g., training on how to organize and structure/model word problems), transfers 
widely to domain-specific aspects of mathematics. That is, although embedded 
training interventions, to date, have focused on spatializing inherently spatial aspects 
of the curriculum (measurement and geometry), opportunity exists to study how 
other embedded approaches, such as instruction aimed at improving students’ ability 
to spatially represent mathematics, supports mathematical reasoning. 
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2.5.3 Strengths, Limitations, and Theoretical Underpinnings 

It helps to consider the strengths and limitations of each approach from both a 
research and practical standpoint. From a research perspective, the closely controlled 
study designs that are typical of the isolated approach lend themselves more easily to 
causal inferences. Indeed, randomized controlled study designs, in which a single 
variable is manipulated, are considered the ‘gold standard’ when it comes to 
establishing trustworthy claims about cause-and-effect relations. This research 
approach also is instrumental in developing solid psychological theories. A major 
limitation of this approach, at least to date, is that—as the name suggests—it is 
isolated from both the mathematical content, and the mathematical contexts, such as 
the classroom, in which mathematical learning takes place. The embedded approach, 
on the other hand, may lack internal validity but makes up for it in ecological 
validity. The embedded approach typically occurs within the classroom, with large 
groups of children, and under the guidance of a professional educator. Moreover, the 
embedded approach, thus far, has integrated and embedded spatial thinking training 
within and as part of mathematics instruction. In doing so, the link between spatial 
and mathematical processes is made more transparent. 

This is a critical distinction between approaches and one that has clear implica-
tions for practice. While the embedded approach ‘spatializes’ various mathematics 
content and makes explicit links between spatial and mathematical thinking, the 
isolated approach—at least to date—leaves it up to the learner to apply the training to



mathematics problems. This difference, in part, may have to do with one’s theoret-
ical position on how spatial training transfers to mathematics. For example, a 
distinction may be drawn here between transfer that occurs due to a shared under-
lying mechanism vs. transfer that occurs due to strategic recruitment of spatial skills. 
That spatial and mathematical thinking draw on a common cognitive resource need 
not involve explicit awareness of how to apply spatial training to mathematics. 
However, if transfer occurs as a result of intentionally recruiting spatial strategies 
to solve mathematics problems, then one’s awareness of such a connection between 
training and application clearly matters. We return to this point further below. 
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Perhaps the most pressing problem to date concerns both approaches. It remains 
unclear why or how spatial training supports mathematics understanding and per-
formance. Presently, specific theories of change remain scarce, poorly articulated, or 
more often than not, have to be inferred. For example, if one theorizes that spatial 
visualization improves mathematics through improving one’s ability to organize and 
model math problems, then one must look to evaluate and elucidate evidence of 
change at this level. To date, there is little indication that this is happening. Instead, 
researchers—including ourselves—have established a clear link between ‘input’ and 
‘output’ without necessarily testing and uncovering the transformations that occur 
between spatial instruction and mathematical learning. To gain further insights into 
the space-to-math link requires more detailed analyses of the processes theorized to 
underly such an association. Practically speaking, this means figuring out the ways in 
which spatial training changes how one approaches and/or understands the mathe-
matics in question. For example, this research might involve tracking changes in 
students’ problem-solving strategies before and after spatial training. Does spatial 
visualization training help students in drawing out and diagramming the structure of 
word problems? Does spatial scaling instruction encourage students to adopt more 
proportional reasoning strategies? Does spatial composition/decomposition instruc-
tion help students see how this sort of thinking can be used to solve and better 
understand a whole host of measurement problems? The answers to these sorts of 
questions are critical in better understanding the mechanisms that underpin space-to-
math transfer. 

2.6 Translating Theory to Practice: Infusing Spatial 
Training Into Mathematics Teaching 

Our analysis of these two approaches exposes a curious gap in the literature. Based 
on our review, there do not appear to be any studies that fit somewhere in the middle 
of these two extremes (embedded vs. isolated instruction). Furthermore, many 
questions remain about the particulars of implementing effective spatial training 
programs. Practically speaking, what might a classroom-based spatial intervention 
look like? How might it progress from start to finish? In an attempt to address both of 
these gaps, we end this chapter by offering a simulated model of a classroom-based



spatial training program. For this simulation, we target spatial transformation skills, 
namely composition and decomposition, and present a progression of instruction 
that starts with an isolated approach to training and continues with increasingly 
embedded instruction. Fig. 2.3 provides an overview of this progression, illustrating 
some of the natural connections and affordances that exist between training spatial 
transformation skills and middle school geometry and measurement. 
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Fig. 2.3 Example of spatial training program in the area of spatial transformations 

One of the ways researchers have trained spatial transformation skills is through 
isolated approaches that involve puzzle-like tasks. Fig. 2.3:1A provides one such 
example. Here, students are asked to use the three coloured shapes to complete the 
outlined shape on the right (like a jigsaw). This requires spatial transformation skills, 
such as mentally rotating the triangular piece into position, spatial translation 
(imagining sliding/moving the squares into place), and composition (putting all the 
pieces together to form the whole). Note the similarities of this sort of training to the 
mental rotation training highlighted earlier (see Fig. 2.1a). Such training is arguably 
more closely aligned with the isolated approach, in that any explicit connections to 
symbolic mathematics is absent. This is not to say that this approach is not mathe-
matical. We would argue it is, as evidenced by its presence in various mathematics 
curricula (e.g., the Ontario mathematics curriculum: https://www.dcp.edu.gov.on.ca/ 
en/curriculum/elementary-mathematics). However, without any explicit connections 
to formal, symbolic mathematics, this approach remains somewhat isolated. That is, 
training of this sort (e.g., mental rotation training), is quite general in nature, and for 
this reason, transfer may be expected to occur across a variety of other domains/skills 
that also require this general skill (e.g., Science, Technology, Engineering, and 
Mathematics (STEM) domains more generally). Whether or not the evidence sup-
ports such a prediction, remains an open question (for a detailed discussion on this 
issue see: Stieff & Uttal, 2015; Uttal & Cohen, 2012).

https://www.dcp.edu.gov.on.ca/en/curriculum/elementary-mathematics
https://www.dcp.edu.gov.on.ca/en/curriculum/elementary-mathematics
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This brings us to the theoretical question of why this relatively isolated approach 
might transfer to mathematics. As just alluded to, one reason has to do with the 
underlying relations that exists between spatial skill and mathematics. The argument 
goes something like this: spatial thinking is fundamental to mathematics. Those with 
higher spatial skills do better in mathematics. Therefore, improving spatial thinking 
has the potential to improve mathematics performance. This prediction rests on 
shared processes between space and math at very general level. Another possibility, 
and one that has much more to do with specific shared processes, involves strategy 
use. For some individuals, mere exposure and practice with spatial transformation 
tasks may be enough to prompt more widespread spatial strategy use during math-
ematical problem solving via priming existing spatial skills rather than improving 
them. Such transfer would be expected to occur across mathematical tasks that 
benefit from spatial transformation strategies. For example, rather than use a purely 
numeric approach to solve an area measurement problem, some individuals might 
recognize the usefulness of proving congruence, as one example of many, through 
spatially transforming the problem. However, for some students, making this leap 
from isolated training to application—may be too far. Indeed, for some students, 
especially those with little experience or skills in the area of spatial transformations, 
isolated spatial training offers an opportunity to build capacity and better master this 
fundamental spatial skill. Doing so may set up these individuals for later success in 
solving mathematics problems that benefit from the awareness and use of this skill. 
That individuals are likely to vary in both their baseline spatial skill as well as 
capacity to transfer isolated spatial learning to mathematical contexts, suggest the 
potential usefulness of a more scaffolded approach to spatial instruction. 

Indeed, there are a number of ways that spatial transformation instruction can be 
scaffolded to further reveal its mathematical value. For example, in Fig. 2.3:1B, 
students might be asked to transform one shape into another. While requiring similar 
cognitive processes to those used in Fig. 2.3:1A, there is now a need to directly 
compare areas and (dis)prove congruence (e.g., by simply moving the shapes 
around, can you prove that they occupy the same area?). Unlike Fig. 2.3:1A, there 
is also opportunity to integrate spatial and numerical reasoning, recognizing that the 
square and triangular pieces can be composed into like units to be counted and 
compared. Surprising to many, students are often quick to approach this sort of 
question through a pure counting approach, counting the total number of pieces that 
make-up each shape and reasoning that the shape with the most pieces has the larger 
area (e.g., see Kamii & Kysh, 2006; Moss et al., 2016). A similar reliance on 
counting discrete units, rather than reasoning about relative magnitudes, has also 
been observed for proportional reasoning problems (e.g., see Boyer & Levine, 2015; 
Boyer et al., 2008). A greater emphasis on spatial approaches to these and similar 
problems, may help prevent the impulse to immediately resort to rote counting 
strategies (e.g., see Newcombe et al., 2015). 

The introduction of the grid in Figs. 2.3:1C and 2.3:2A provide further opportu-
nity to integrate spatial and numerical strategies and understanding. The grid pro-
vides a structural element, allowing students to further see and prove congruence 
through multiplicative reasoning (i.e., through comparison of arrays). The grid



further suggests the need to assign a unit name to the area of the shapes being 
compared (e.g., square units). In this way, the grid serves as a critical link between 
more isolated training and training that occurs within and as part of routine mathe-
matics instruction (movement and locations on a grid). 
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It is at this point—after sufficient practice of proving congruence through com-
position/decomposition strategies—that students might be introduced to, or 
reminded of, more standard formulas for solving various area problems. For exam-
ple, experiencing problems like those presented in Fig. 2.3:1C provides a meaningful 
space to understand and apply the formula for a rectangle, Area = length x width. 
Through continued use of spatial transformation strategies and an understanding of 
how they connect to the formula for the area of a rectangle, students might be 
encouraged to generalize this knowledge to other shapes (e.g., parallelograms, 
trapezoids, triangles). For example, in Fig. 2.3:2A, learners can be encouraged to 
solve congruence through a spatial transformation strategy (decomposing the bottom 
figure and recomposing it to create a rectangle identical to the one above). This 
experience lends itself to understanding the formula for a parallelogram, Area= base 
x height, and its direct and identical relation to the formula for a rectangle, 
Area = length x width. In these examples, it can be seen how spatial transformation 
skills, developed and practiced in situ, provide plentiful opportunities to make sense 
of and ground the mathematical meanings of various measurement phenomena. 

The same approach—a combination of spatial and numerical strategies—can be 
used to structure and give meaning to increasingly complex ideas/proofs, including 
the Pythagorean Theorem (see inner white triangle in Fig. 2.3:2B). Whether one 
proves congruence through literally ‘squaring’ the sides of a right-angle triangle (see 
Fig. 2.3:2B for squares added on each side of a right-angled triangle) or engaging in 
various forms of proof through rearrangement (Fig. 2.3:2B offers one such exam-
ple), spatial transformation skills play a central role. Through engaging in and 
practicing one’s spatial transformation skills in meaningful mathematical contexts, 
such as this one, students may not only be improving their spatial thinking skills, but 
also their understanding of the underlying mathematics, and their ability to apply this 
type of spatial thinking to other mathematical contexts. 

One such extension is in proving and understanding the formula for the area of a 
circle. As shown in Fig. 2.3:2C, one way of making sense of the area of a circle is to 
relate it back to one’s prior knowledge of the area of a rectangle. Through spatially 
transforming a circle into a rectangle, one can see how the radius and circumference 
of the circle relate to the height and the width of the rectangle, respectively (for a 
detailed explanation see the animation: https://youtu.be/YokKp3pwVFc). Similarly, 
Pi can be better understood through taking the time to physically measure the 
circumference of a circle (with a string, for example) and comparing (dividing) 
this distance to the diameter of the circle. These ‘spatial’ approaches help ground and 
give meaning to Pi and the formula for the area of a circle. In both cases, powerful 
mathematical insights can be gleaned through the application of spatial transforma-
tions. These examples also highlight some of the many domain-specific relations that 
exist between spatial thinking and mathematics.

https://youtu.be/YokKp3pwVFc
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In the progression highlighted here, it has been shown that there are multiple 
ways in which spatial thinking might be infused into practice in the elementary 
school classroom. Opportunities to practice spatial thinking exist in isolation and/or 
embedded into mathematically-focused instruction, highlighting the ways in which 
spatial thinking can be leveraged and used as an effective tool for problem solving 
(for a more in-depth discussion see Casey & Fell, 2018). As revealed in the meta-
analysis described earlier (Hawes et al., 2022), there may be benefits to both 
approaches. The training regimens of professional athletes provide a useful analogy 
for this. There is much to be learned by practicing one’s sport in its entirety, but there 
is also much to be gained by practicing componential skills in relative isolation from 
the sport. Perhaps, what matters most, is the recognition of the skills and processes 
most useful to one’s domain. When it comes to leveraging space-math connections, 
we would argue that more needs to be done to recognize this potential. Through 
developing ‘spatial habits of mind,’ learners (and indeed instructors) can begin 
viewing spatial thinking as an integral part of mathematics. Learners might be 
helped to see how spatial reasoning can be used more widely across mathematics. 
For example, after sufficient practice of performing spatial transformations in 
two-dimensional contexts, learners are more prepared to see how spatial transfor-
mation skills can be used to solve both one-dimensional/linear measurement and 
three-dimensional problems. In the end, a spatial approach to mathematics, has the 
potential to provide students with new entry points into mathematics; new ways of 
seeing, doing, understanding, and connecting with mathematics. 

2.7 Conclusion 

In this chapter, we have argued the need to pay more attention to the natural 
connections and affordances that exist between spatial thinking and mathematics. 
Arguably, the first step towards this goal is learning to more readily identify spatial 
thinking, in all its forms, in practice. Although it can be difficult to define, and 
perhaps even notice at first, spatial thinking is omnipresent in the mathematics 
classroom. Once aware that such a construct exists, it becomes easier to recognize 
and label in practice. This is similar to the experience of learning a new word and 
suddenly hearing that new word on a regular basis. It makes you wonder how you 
hadn’t noticed it in the first place. A similar phenomenon appears to occur with 
spatial thinking (e.g., see Schwartz, 2017). 

However, it is not enough to simply recognize spatial thinking in practice, there is 
also a need to understand the reasons why spatial thinking is connected to 
mathematics. In this chapter, we highlighted potential explanations for spatial-
mathematical relations. These included shared neural resources, shared domain-
general and domain-specific processes, and the active recruitment of spatial strate-
gies during mathematical problem solving. By better understanding why spatial 
thinking is related to mathematics, teachers are prepared to optimize the space-
math link in the classroom.
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Moving beyond why, we ventured into the realm of how spatial instruction can be 
used in the classroom to improve mathematics. The results of our meta-analysis 
suggest that spatial training has an overall positive effect on mathematics learning. 
To date, researchers have approached spatial training in two main ways, through an 
isolated approach vs. an embedded approach. There are likely benefits to both 
approaches. Consequently, we ended this chapter by walking through a theoretical 
training program designed to highlight the various connections that exist between 
spatial transformation skills and middle school geometry and measurement. This 
simulation aimed to illustrate a progression from an isolated approach to increas-
ingly embedded approaches, highlighting the multiple opportunities to infuse spatial 
transformation skills into mathematics instruction (specifically geometry and mea-
surement). This is but one of many similar progressions that can be imagined (e.g., 
the natural connections/overlap between spatial scaling, proportional reasoning, and 
the broad range of mathematics that involve these skills offers other fertile ground). 
There is also the open question of whether general, but embedded, approaches to 
spatial instruction, such as training that involves learning to spatially structure 
mathematics problems, yields improved reasoning across a wide variety of mathe-
matical tasks where spatial structuring/modeling may assist the learner. 

The time is ripe to bring these ideas into the wild; designing, testing, and 
exploring the varied interventions and forms of instruction that seek to take advan-
tage of the natural connection between space and mathematics. It is also safe to 
assume that many educators are already taking advantage of the space-mathematics 
link in their instruction by conveying mathematical concepts through gesture, dia-
grams, and manipulatives. However, we argue that there remains much untouched 
potential for spatial reasoning in the classroom, and opportunities exist to further 
spatialize mathematics curricula, by explicitly leveraging spatial thinking to yield 
new mathematical skills and understanding. 

Teachers and other educational professionals are decidedly the foundational 
building blocks on which the future success of spatial interventions depend. Indeed, 
seeking and amplifying the voice of practicing educators as part of the design 
process is key to developing effective intervention. To close, we are only beginning 
to understand how to best leverage the space-mathematics link. However, as we have 
argued throughout, there are many reasons to be optimistic about the future of this 
undertaking. 
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Chapter 3 
Understanding the Relationship Between 
Attention, Executive Functions, 
and Mathematics: Using a Function-Specific 
Approach for Understanding 
and Remediating Mathematics Learning 

Emma Clark, Taryn Perelmiter, and Armando Bertone 

Abstract Mathematics learning and achievement are integral to academic success 
and have been shown to predict overall achievement at later grades. Methods for 
improving mathematics ability are therefore crucial. Domain-general attentional 
skills are important for the development of mathematical proficiency for typically 
developing (TD) children and children with neurodevelopmental conditions 
(NDCs). Despite this, most current methods for remediation are limited to task-
specific approaches of targeting and rehearsing specific mathematics skills. Given 
the evidence supporting the relationship between attentional abilities and mathemat-
ics learning and achievement, it is proposed that mathematics difficulties are 
function-specific and can be remediated as such. In this chapter, the relationship 
between attentional skills and mathematics learning and achievement in both TD 
children and those with NDCs will be presented. This literature will serve to 
contextualize the limited research that has evaluated cognitive training for mathe-
matics remediation; the effectiveness of such cognitive-based interventions will also 
be evaluated. The chapter will conclude with a discussion regarding practical 
implications of understanding the role of attention in mathematics learning. This 
conclusion will aim to inform clinicians and educators about effective identification 
and remediation of mathematics learning using cognitive-based assessments and 
interventions. Suggestions for future research and potential cognitive interventions 
will be discussed. 
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3.1 Introduction 

The development and mastery of school-entry mathematical skills are strongly 
related to later overall academic achievement (Duncan et al., 2007), suggesting 
early identification and remediation of mathematics difficulties are essential. How-
ever, to do so, an accurate understanding of the various factors that contribute to the 
development of mathematics proficiency in elementary and middle school is 
required. Commonly referred to as dyscalculia1 , mathematics learning disorders 
(MLDs) are characterized by a difficulty in acquiring arithmetic skills necessary to 
solve calculations or problems (Raja & Kumar, 2012). Specific impairments can 
include individual or combined deficits in number sense, memorization of arithmetic 
facts, fluent calculation, or mathematics reasoning (American Psychiatric Associa-
tion, 2013). Specific learning disorders become apparent as children enter elemen-
tary school, as their ability to learn foundational skills is impacted (American 
Psychological Association, 2013). It then follows that proper identification and 
intervention are integral during the elementary and middle school years. 

It is estimated that in the typically developing population (TD), 6–7% of 
school-aged children present with an MLD (Zentall, 2007). In children with 
neurodevelopmental conditions (NDCs), the rates of MLDs are almost three times 
that of TD individuals (Mayes & Calhoun, 2006). For instance, individuals with 
attention-deficit/hyperactivity disorder (ADHD) experience significant challenges in 
mathematics learning; in the ADHD population, the rate of MLDs is estimated at 
31% (Zentall, 2007). Though there has been recent research into the etiology of 
MLDs (see Butterworth et al., 2011; Bartelet et al., 2014; Price & Ansari, 2013), 
there is much less known about numerical cognition and numeracy mastery, com-
pared to our understanding of language acquisition and reading (Kwok & Ansari, 
2019; Geary et al., 2011; Gersten et al., 2007; Zentall, 2007). Mathematics difficul-
ties are associated with cognitive deficits that are not explicitly related to numerical 
processing (Peng et al., 2018). There is substantial empirical literature demonstrating 
a relationship between various attentional abilities and mathematics proficiency 
across the lifespan (e.g., Blair & Razza, 2007; Peng et al., 2018). Various types of 
attentional abilities and related executive functioning skills have been strongly 
related to mathematics learning across periods of development and clinical 
populations (Cragg & Gilmore, 2014). For example, inattention, attentional 
switching, and inhibition have been linked to the development of mathematics skills 
in early elementary school years (Kindergarten to Grade 3) (Blair & Razza, 2007; 
Fuchs et al., 2005; Gold et al., 2013). Additionally, studies have demonstrated a 
functional relationship between working memory and numeracy in 5-year-olds 
(Kroesbergen et al., 2014) that has been further evidenced in middle childhood-
aged samples by neuroimaging research (Dehaene et al., 1999; Kwok & Ansari, 
2019; LeFevre et al., 2010; Menon, 2016). The studies mentioned above provide 
evidence for a relationship between mathematics learning, attention, and executive 
functions in childhood and thereby indicate that these cognitive skills should be 
considered in the assessment and remediation of mathematics learning. However,



most remediation research centres around mathematics skill-based approaches such 
as repeated practice, exposure, and feedback (Mong & Mong, 2010; Templeton 
et al., 2008). While these interventions may be useful, it can be proposed that they 
are a task-specific approach to an arguably function-specific problem defined by 
deficits in attention and related executive functioning skills. Given the importance of 
mathematics to overall academic achievement (Duncan et al., 2007), and the 
increased rate of MLD amongst clinical populations, there is a need to understand 
the cognitive factors associated with mathematics learning to better inform function-
specific remediation for both typically and atypically developing individuals 
(Zentall, 2007). 
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In this chapter, we will analyze and summarize the key findings of the research 
that empirically demonstrate the relationship between attention, related executive 
skills, and mathematics. We will then compare these results to intervention studies 
and assess whether the mathematics-related components of attention are adequately 
addressed in mathematics intervention research. Finally, we will assess the results of 
the interventions qualitatively and argue why they were effective, or not, based on 
the attentional skill targeted or the outcome measures used. To conclude, we will 
make recommendations for the future of attention-based interventions for mathe-
matics remediation. 

3.2 Attentional Abilities and Mathematics Proficiency 

3.2.1 Attention 

Broadly defined, attention is the ability to orient and sustain one’s focus on stimuli 
while ignoring distracting information (Tsal et al., 2005). Various aspects of 
attention, including sustained attention, selective attention, and inattention have 
been related to mathematical abilities in students from third to eighth grade (e.g., 
Lindsay et al., 2001; Raghubar et al., 2009; Rueckert & Levy, 1995). For instance, 
numerosity, a fundamental skill in mathematics, is strongly related to both mathe-
matics achievement and attentional abilities in second-grade children, suggesting a 
unique contribution of attention to the development of numerosity (Child et al., 
2019). Furthermore, the development of attention from 4 to 6 years of age has been 
shown to contribute to mathematical proficiency above and beyond other vital skills 
such as visuomotor integration or fine motor coordination (Kim et al., 2018). These 
two studies provide initial examples of the integral role of attentional abilities in the 
development of key mathematical skills. While many more will be explored within 
the scope of this chapter, it is important to identify what is considered attention and 
related executive functioning skills. 

Understanding the relationship between attentional and mathematical ability is 
complicated because of the often-conflicting operational definitions of “attention” 
and what are considered as related or distinct executive functioning skills. Sustained 
and selective attention, working memory, executive functioning, and processing



speed are cognitive skills commonly associated with the general term “attention”. 
Many researchers consider attention, working memory (WM), and executive func-
tioning (EF) to be distinct skills that are related to mathematics ability (Peng et al., 
2018; Peterson et al., 2017). 
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WM can be considered as a mental storage unit that relies on the ability to focus 
one’s attention and integrate information from several sources, all while inhibiting 
irrelevant information (Dahlin, 2013). However, these latter processes involved in 
WM have been described by Miyake et al. (2000) as three interrelated executive 
functioning skills: shifting, updating, and inhibiting. The successful use of these 
executive function skills relies on attention being activated. 

In addition to shifting, updating, and inhibiting, EF includes processes for 
self-regulated, goal-directed behaviours including goal identification, planning and 
initiation, self-regulation, cognitive flexibility, allocation of attention, and using 
feedback (Anderson, 2002). Attention can be considered a fundamental skill to 
EF, such that disruption to attention leads to distractibility, impulsivity, forgetful-
ness, and poor focus (May et al., 2013). 

Finally, many studies consider processing speed (PS) as another factor that 
influences mathematics abilities (Peng et al., 2018). PS has been studied as a 
stand-alone variable, as well as a consideration within cognitive load theory (Conlin 
et al., 2005; Geary et al., 2007; Peng et al., 2018;). Cognitive load theory provides 
one method of conceptualizing the complicated relationship between attention, WM, 
EF, and PS. This theory proposes that an excess of information leads to inefficient 
processing of information, as attentional resources are being allocated to multiple 
pieces of information or processes (Paas et al., 2003). More efficient processing of 
information frees up cognitive space to perform higher-order functions encompassed 
by WM and EF (Paas et al., 2003). 

Just as there is variability amongst researchers’ beliefs about whether the afore-
mentioned skills are related or distinct, there are two different schools of thought 
regarding whether executive functions themselves are a set of distinct domain-
general skills, or a unilateral skill set. Conceptualized by Miyake et al. (2000), one 
school of thought proposes that WM, EF, PS, and attention are distinct but related 
skills whose success depends on a top-down approach. That is, WM is a mental 
workspace that is integral to mathematical processing (Raghubar et al., 2010). The 
successful use of that workspace relies on intact executive functions, namely 
shifting, updating, and inhibiting (Miyake et al., 2000). Lastly, these skills require 
efficient information processing as well as attentional activation and control. Thus, 
the role of various related cognitive factors involved in mathematics relies initially 
on attention. This conceptualization proposed by Miyake is widely cited and 
accepted in the literature. However, it’s main critique is being an adult-centric 
framework by those proposing a more unilateral framework of EF in childhood 
(ex. Doebel, 2020; Garon et al., 2008; Karr et al., 2018). Given our interest in 
exploring the effects of general attention and the implications it has to math learning, 
our overview aligns most closely with that of Miyake et al. (2000). However, it is 
important to highlight the alternative school of thought proposed by Doebel (2020), 
that is contextualized to a greater extent within a development framework.
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Doebel (2020) counters Miyake et al. (2000) by proposing that the development 
of executive function should be considered as related skills that emerge and coordi-
nate in pursuit of specific goals. There is some research to suggest that the EF system 
changes as a function of development, with younger children showing less differ-
entiation between skills, suggesting a unitary construct (Bull & Lee, 2014). Karr 
et al. (2018) suggest that a unidimensional approach is most appropriate for under-
standing EF in childhood particularly regarding isolating the skill of shifting (Karr 
et al., 2018). Along these lines, Garon et al. (2008) are also in agreement with a 
unilateral framework for conceptualizing EF in early childhood and proposes that the 
development of all EF can be attributed in part to development of the attention 
system. 

The research exploring the relationship between these cognitive skill sets, and 
mathematics does not always adhere to one framework of EF conceptualization. 
Thus, for the purposes of isolating and exploring various EFs and the relationships to 
mathematics skills, we will explore them in separate sections, adhering most closely 
to Miyake’s conceptualization. Following this top-down conceptualization, we will 
first explore the relationship between mathematics and attention (Sect. 3.2.1), 
followed by EF, WM, and PS (Sects. 3.2.2, 3.2.3, and 3.2.4, respectively). 

3.2.1.1 Attentional Abilities with Mathematics Learning Profiles 

Examining the attentional abilities of children with advanced mathematics skills, as 
well as those with MLDs, provides further insight into the math-attention relation-
ship. Mathematically gifted adolescents (11- to 15-years-old) show significantly 
faster responses with fewer errors on a selective attention task when compared to 
typically developing (TD) peers (Rueckert & Levy, 1995). Conversely, compared to 
TD peers, fifth- to eight-grade students with dyscalculia performed significantly 
worse on a clinical task of sustained attention (Lindsay et al., 2001). Specifically, 
students with dyscalculia made more omission errors and demonstrated more incon-
sistency in reaction times (Lindsay et al., 2001). Dyscalculia has also been associated 
with elementary school children making more errors on sustained attention tasks 
even when compared to individuals with ADHD (Kuhn et al., 2016). Inattention has 
also been related to the severity of mathematics learning difficulties in Grades 3 to 
4, with students with MLDs being rated as more inattentive than their low-achieving 
peers (Raghubar et al., 2009). 

3.2.1.2 Mathematical Abilities Within Attentional Profiles 

Further evidence for the relationship between attention and mathematics learning 
comes from assessing the mathematical abilities of individuals with impaired atten-
tion. Children in Grades 1–5 diagnosed with ADHD, without a comorbid learning 
disability, still demonstrate significant mathematics difficulties despite having intact 
numerical knowledge (Colomer et al., 2013). Elementary school children with



ADHD have been observed to perform significantly lower than TD peers on 
standardized tests of mathematics (McConaughy et al., 2011). There is potential 
for a profound impact on future achievement if these children do not receive early 
intervention. This is evident within ADHD samples, where the proportion of chil-
dren presenting with moderate to severe difficulties with mathematics increases with 
age (Colomer et al., 2013). However, for these children with ADHD, the nature of 
the difficulties shifts with age from counting errors and number dictation (Grades 
1 to 2), which rely on automaticity, to more procedural skills such as mental 
calculation and counting (Grades 3 to 5) (Colomer et al., 2013). 
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Even within samples of children with impaired attention, the severity of atten-
tional difficulties has an inverse relationship with mathematics performance. Third 
and fourth-grade students rated as more inattentive have been observed to answer 
fewer multi-digit computation questions correctly, perform more mathematics fact 
errors, and commit more procedural errors (Raghubar et al., 2009). Comparably, 
middle and high school students with lower ADHD-inattentive symptoms demon-
strate increased mathematics achievement (Mattison & Blader, 2013). Ross and 
Randolph (2016) argue that the mathematics deficits exhibited by 7- to 11-year old 
children with ADHD can be accounted for by their task vigilance, specifically how 
easily they are distracted and how well they can disengage from distractions and 
return to tasks. Yet another example of the inverse relationship between attention 
and mathematics comes from a sample of children with Mild Intellectual Disability 
(MID). Djuric-Zdravkovic et al. (2011) assessed mathematics and attention in a 
sample of 12- to 14-year-old students with MID and reported that impaired mathe-
matics learning was accounted for by difficulties with sustained attention, above and 
beyond what would be explained by general cognitive impairments. 

Thus, whether you examine the attentional abilities of individuals with distinct 
mathematics learning profiles, or the mathematics abilities of those with attention 
difficulties, the mathematics and attention relationship exists. This is further 
supported by relationships among various attentional abilities, such as sustained 
and selective attention, inhibition, and the development of mathematics skills in TD 
children. The argument in support of the function-specific mathematics difficulties 
becomes stronger when considering the relationship of cognitive skills that rely on 
attention activation, such as executive functions. 

3.2.2 Executive Functioning 

The perceived influence of multiple EFs on mathematical ability is robust, with 
planning, updating, and inhibition explaining 45% of the variance in childhood 
numeracy in 5- and 6-year-olds, after controlling for intelligence quotient 
(IQ) (Kroesbergen et al., 2009). Poorghorban et al. (2018) even observed that high 
and low mathematics achieving fourth-grade students did not differ in their perfor-
mance on sustained attention, but rather the difference in mathematics performance 
was accounted for by EF, specifically shifting. Compared to the skill-specific



relationship of WM to mathematics skills (e.g., visual WM and magnitude estima-
tion), Peng et al. (2018) conducted a meta-analytic review that identified more 
general EF deficits that have a global impact on mathematics learning for individuals 
with mathematics difficulties across the lifespan. Difficulties with inhibition and 
switching were identified amongst third-grade students with mathematics difficulties 
by Bull and Scerif (2001). Specifically, individuals with lower mathematical ability 
demonstrated significant difficulty inhibiting a learned strategy in favour of a new 
one (Bull & Scerif, 2001). Furthermore, these children were more impaired in their 
ability to inhibit prepotent responses (Bull & Scerif, 2001). This difficulty was 
thought to be accounted for by more irrelevant information being held in WM, and 
a lower WM span (Bull & Scerif, 2001). In addition, domain-general cognitive skills 
(i.e., inhibition, attention, and WM) were predictive of mathematics skills longitu-
dinally and predicted growth in mathematics in a sample of children aged 3- to 
4-years-old (Coolen et al., 2021). This suggests that executive skills serve as a 
predictor for foundational mathematics skills, before the onset of formal education. 
Aside from inhibiting and updating, attentional switching is a complex EF skill often 
impaired in individuals with neurodevelopmental conditions. 
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May et al. (2013) consider attentional switching to be integral to mathematics 
abilities. In a sample of 7- to 12-year-old children with an Autism Spectrum Disorder 
(ASD), they found that performance on an attentional switching task explained a 
significant amount of variance in mathematics achievement (May et al., 2013). 
A similar effect of attentional switching is observed in non-clinical samples, such 
that high mathematics achieving fourth-grade students perform significantly better 
on tasks of attentional shifting than their low mathematics achieving peers 
(Poorghorban et al., 2018). A meta-analytic review of the literature further supports 
the role that attentional shifting plays in mathematics ability, with an effect size of 
.33 (Yeniad et al., 2013). Alternatively, Bull et al. (2008) propose that skills such as 
attentional shifting, inhibition, goal planning, and monitoring influence learning 
more generally, as opposed to being specific to math. However, they do report that 
in early elementary grades, inhibition, planning, and monitoring provide some 
predictive power in addition to visual short-term memory (Bull et al., 2008). In 
contrast, the ability to shift attention may be critical in solving more complex 
mathematics problems in later elementary school (Bull et al., 2008). 

A final EF related to mathematics achievement in middle childhood is planning: 
the mental representation of problem-solving to reach a goal (Friedman et al., 2014). 
Furthermore, better planning abilities are predicted by stronger short-term memory, 
sustained attention, and inhibition (Friedman et al., 2014). This exemplifies the 
complex relationship between many different cognitive domains that can be consid-
ered under the term of attention. 

While general function-specific  deficits in EF are related to general mathematics 
deficits, there are also distinct connections between distinct EFs and task-specific 
deficits, particularly in problem-solving. This point brings us back to the debate as to 
whether or not EF can be considered as a domain-specific skill set or a unilateral 
skillset within childhood. The unilateral framework aligns well with the first argu-
ment that general deficits in EF are related to general deficits in mathematics.



However, considering EF as a set of distinct skills leads us to draw more nuanced 
conclusions between specific EF  deficits and impacted mathematics skills. These 
specific relationships can help support intervention development, discussed later in 
this chapter. For example, attentional shifting or switching is related not only to 
general achievement in both typically and atypically developing populations, but 
also specifically to complex problem-solving skills. Additionally, function-specific 
deficits in inhibition result in task-specific difficulty with response inhibition and 
strategy selection during problem-solving. Finally, planning is also explicitly related 
to problem-solving. The development of one’s planning abilities is directly 
connected to adequate ability in other attentional skills, demonstrating the interrela-
tion of these cognitive processes. Thus, whether in global learning or specific skill 
development, EF skills are integral to the development of mathematical proficiency. 
Most importantly, attentional activation and successful use of executive functions 
support WM, the mental workspace essential for mathematical processing. 
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3.2.3 Working Memory 

General mathematics competence requires the knowledge and flexible application of 
skills and procedures in different mathematical contexts (Raghubar et al., 2010). 
Furthermore, math-based problem-solving is dependent on the ability to hold and 
process information (Raghubar et al., 2010). Thus, WM skills are required to support 
the fundamentals of many mathematics tasks throughout life (Raghubar et al., 2010). 
In fact, visual WM has been shown to serve as a significant predictor of mathematics 
ability in 8- to 16-year-old students, even after controlling for reading and attentional 
difficulties (Peterson et al., 2017). 

An in-depth exploration of the literature suggests the relationship between WM 
and mathematics ability is complex, with WM’s impact on mathematics ability 
targeting specific mathematics skills only, as opposed to having a global effect on 
mathematics learning. For instance, Bull et al. (2008) noted that in TD school-aged 
children, visual short-term memory (VSTM) significantly predicted mathematics 
achievement, and by the end of third grade, visual WM was a unique predictor of 
mathematics skills. They suggest that the ability to represent visual-spatial informa-
tion in WM is integral for non-numerical skills such as estimation and visualization 
of magnitude (Bull et al., 2008). This is as opposed to other mathematics skills, such 
as numeracy. 

Further evidence for this complicated relationship comes from studies with 
participants presenting with atypical mathematics or attention abilities, or both. 
Elementary-school students with dyscalculia perform poorly on tasks of verbal, 
visual, and numerical WM (Kuhn et al., 2016; Peng et al., 2018). Peng et al. 
(2018) also noted that WM deficits seemed to be more strongly associated with 
calculation and comprehensive mathematics difficulties, as opposed to word prob-
lem-solving difficulties. Specifically, subtraction skills seem to be particularly 
impaired in elementary school students with dyscalculia and attention difficulties,



suggesting the shared role of inattention and WM in solving subtraction problems 
(Kuhn et al., 2016). Geary et al. (2007) discovered central executive deficits as a core 
component that characterized early-elementary school students with mathematics 
learning disabilities across tasks but noted the phonological loop and visuospatial 
sketch pad as contributing to more specific deficits; estimation, addition, and 
counting (Geary et al., 2007). Additionally, deficits in visual WM result in task-
specific difficulties with mathematics skills and non-numerical skills such as mag-
nitude estimation for kindergarten and elementary school children (Geary et al., 
2007; Raghubar et al., 2010). 
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Acknowledging the influence of many EFs in mathematics skills, including the 
important role of visual, but not verbal WM in mathematics processing, Szűcs et al. 
(2014) proposed an “executive memory function centric” (p. 518) model of math-
ematical processing in 9-year-old children. This model encompasses selective atten-
tion, shifting, updating, monitoring, and inhibition to be central executive memory 
processes involved during arithmetic tasks (Szűcs et al., 2014). Scűcs’s model fits 
well with the framework of conceptualizing EF in childhood as unilateral. However, 
this poses challenges when considering remediation, as interventions would have to 
address each of these central executive memory processes, as opposed to potentially 
isolating just one. 

As we have seen above, each distinct skill relies on attending and successful skill 
development and use for developing mathematical proficiency. Before exploring 
intervention, it is important to consider PS, a final cognitive skill related to attention 
that can impact attention, WM, and EF. 

3.2.4 Processing Speed 

Processing speed refers to the efficiency with which an individual perceives and 
processes information and produces a response (Forchelli et al., 2022). One possible 
explanation for the role of processing speed in mathematical learning is provided by 
the bottleneck theory. The bottleneck theory states that high-level cognitive skills 
such as WM and EF are supported by low-level cognitive skills such as processing 
speed and that deficits in the latter can constrict the information flow necessary for 
high-level processing during mathematics tasks (Peng et al., 2018). For example, for 
7- to 9-year old children, performance on memory-based tasks is most severely 
impaired in situations where processing activity demands attentional resources 
(Conlin et al., 2005). This theory is one proposed explanation for the role of 
processing speed impacting all domains of mathematics proficiency. In a sample 
of 8- to 16-year old students with mathematics difficulties (MD), reading difficulties 
(RD), and ADHD, processing speed contributed to the relationship between math-
ematics and attention (Peterson et al., 2017), and has been noted to be a salient 
cognitive deficit in students with mathematics difficulties (Peng et al., 2018). 
Furthermore, processing speed deficits were observed across ages and different 
types of mathematics difficulties, indicating a possible fundamental cognitive



correlate to all mathematics difficulties (Peng et al., 2018). The impact of more 
efficient processing of mathematics problems in the allocation of attentional 
resources has also been explored in cognitive neuroscience. It has been observed 
that in seventh-grade students, simple exposure to a “+” sign is related to increased 
activity in the hippocampus, a brain associated with spatial attention (Mathieu et al., 
2018). It is suggested that this elicits a priming effect, resulting in more efficient 
processing of subsequent information (Mathieu et al., 2018). More efficient 
processing implies that more cognitive resources can then be allocated to incoming 
information, mental manipulation, execution of operations, and problem-solving. 
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Evidentially, function-specific deficits in PS have the potential to impact general 
mathematics learning and achievement and have task-specific relationships to math-
ematics processing and fluency. Clearly, many cognitive skills related to attention 
are involved in mathematics learning and performance. The bottleneck theory is one 
explanation for the relationship between processing speed to previously mentioned 
skills (attention, WM, EF). In the next section, Cognitive Load theory will be 
discussed as another framework that integrates attention-related cognitive skills in 
a way that explains the dynamic interplay between attention-related skills and how 
they can be considered harmoniously in mathematics learning. 

3.2.5 Cognitive Load Theory 

Cognitive load theory proposes that individuals have a limited WM capacity (Paas 
et al., 2003). The less automatic the processing of a given task is, the more attentional 
resources one has to allocate to attending to and processing of information during 
task completion, thus using valuable cognitive space that would otherwise be used 
for holding, manipulating, or integrating information (Paas et al., 2003). This theory 
integrates the many functions accounted for by the aforementioned attention-related 
cognitive skills (e.g., attention, WM, EF, and PS), and can help explain their 
interrelated contribution to mathematics abilities. For example, 13- to 17-year old 
students with ADHD demonstrate a deficit in automatized retrieval of mathematics 
facts when their mathematics fluency is assessed (Zentall, 1990). In turn, their efforts 
to retrieve these mathematical facts consume already limited attentional resources, 
further impacting their mathematical performance (Zentall, 1990). 

John Sweller is a pioneer of cognitive load theory and has informed the direction 
of research and application since coining the term. In this section, we will explore 
some of his early work that influenced instructional design changes that we continue 
to see today. Then, we will briefly review recent research that supports the role of 
cognitive load theory in mathematics learning. Tarmizi and Sweller (1988) propose 
that automaticity, and thus, cognitive load is significantly reduced by schema 
acquisition. A schema is a cognitive construct that enables someone to recognize a 
problem as belonging to a specific category and thus requiring specific steps to a 
solution (Tarmizi & Sweller, 1988). However, the development of these schemas 
relies on attentional regulation. Furthermore, it is not just an individual’s inherent



attentional abilities that influence mathematics performance. The way that educators 
present material to elementary-school students can considerably change the atten-
tional demands of the task, suggesting that instructional design can greatly influence 
one’s achievement (Bobis et al., 1993; Tarmizi & Sweller, 1988). They argue that 
traditional problem-solving with well-defined goals (e.g., solve for angle A) imposes 
a high cognitive load because it requires attentional splitting between multiple 
sources of information, integration of different operations and strategies, and main-
tenance of a goal state (Tarmizi & Sweller, 1988). The addition of a clear end goal 
forces the student to maintain this goal state while backward planning necessary 
steps and calculations (Tarmizi & Sweller, 1988). Thus, compared to open-ended 
problem solving (e.g., solve for as many angles as possible), what appear to be 
straightforward problems with clear end goals actually impose a heavy cognitive 
load (Tarmizi & Sweller, 1988). This then interferes with effective schema acquisi-
tion that would facilitate more fluent problem-solving skills (Tarmizi & Sweller, 
1988). Additionally, providing students with redundant information to process, or 
presenting information in a way that physically separates information thus requiring 
split attention and mental integration of information, also increases extraneous 
cognitive load (Bobis et al., 1993). While the justification for providing this infor-
mation is often to improve comprehension, it is argued that the demands on cognitive 
load eliminate any potential comprehension benefits (Bobis et al., 1993). 
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Tarmizi and Sweller (1988) discovered that removing goal states, reducing the 
amount of extraneous information given, and providing a worked-example with 
numerically ordered steps resulted in significantly more problems being answered 
when compared to control groups. Therefore, while the intrinsic complexity of a task 
cannot be reduced, how educators present material can significantly impact cognitive 
load (Tarmizi & Sweller, 1988; Bobis et al., 1993). In fact, changing instructional 
design flaws results in faster processing and fewer errors (Bobis et al., 1993). 

Cognitive load theory has recently been used to explain more efficient problem-
solving skills in second- to fourth-grade students with strong calculation abilities 
(Watchorn et al., 2014). Specifically, a relationship was observed between atten-
tional flexibility, calculation skill, and the use of superior problem-solving strategies, 
but only for students with strong calculation skills (Watchorn et al., 2014). The 
proposed explanation is that better computation skills result in more attentional 
resources being available for evaluating and selecting more efficient strategies 
(Watchorn et al., 2014). There are also examples of instructional design being altered 
to reduce the demands on a child’s cognitive load, resulting in improved perfor-
mance in fourth grade and middle school students (Gillmor et al., 2015; Yung & 
Paas, 2015). 

Given the evidence discussed above, it seems clear that the cognitive domain of 
attention plays a substantial role in mathematics learning and performance. Whether 
broken down to relate specific cognitive skills to components of mathematics or 
integrated with theory to account for its general contribution to math, the relationship 
is clear. However, this strong relationship is not being addressed in the literature on 
mathematics remediation. The majority of current remediation methods take a task-
specific approach of targeting specific mathematics skills, as opposed to a function-



specific approach that addresses underlying cognitive skills, such as those related to 
attention. 
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3.3 Intervention for Mathematics Remediation 

A systematic approach was used to retrieve articles considered in this chapter. The 
studies reviewed were identified by searching electronic databases from the field of 
education and psychology (PsycINFO and Education Resources Information Center 
(ERIC)) and by conducting a backward search of relevant articles. Searches were 
limited to peer-reviewed materials. Two separate searches were conducted and are 
detailed below. 

To gather literature on interventions, the following keywords were used to search 
PsycINFO: Mathematics OR Mathematics Education AND Remedial Education OR 
Intervention OR School-Based Intervention AND Attention. This search provided 
7 results. In ERIC, the keywords Mathematics AND Attention were entered within 
the field of descriptors (SU) and the keyword Intervention with no specified search 
field was added. With the limit of <elementary education>, <elementary and 
secondary education>, <middle schools>, and <primary education>, the search 
produced 38 papers. 

For inclusion in this review, studies had to report on the relationship between 
sustained attention, selective attention, ADHD symptomology, executive function-
ing, working memory, processing speed, cognitive load, and mathematics learning 
or achievement. Correlational and experimental studies, as well as meta-analyses, 
were retained. Studies assessing populations with atypical mathematics or atten-
tional skills were also included. Intervention literature needed to have mathematics 
remediation as a noted goal to be considered in this review. The following exclusion 
criteria were also used: (a) self-monitoring or meta-cognitive literature; (b) studies of 
teacher knowledge and characteristics; (c) progress-monitoring (response to inter-
vention - RTI) program evaluation literature. After reviewing the titles and abstracts 
of all papers, 73 papers were retained based on the above criteria. After reviewing 
these 73 papers in more depth, a total of 34 papers were retained for the review of the 
relationship between attention and math, and 10 on mathematics remediation. 

3.3.1 Task-Specific Intervention and Remediation 

Despite overwhelming evidence for the role of attention in mathematical ability, 
many remediation methods are focused on mathematics instruction, as opposed to 
addressing the underlying cognitive mechanisms. Mathematics fluency has often 
been the target of intervention to improve mathematics proficiency. For instance, a 
program called Great Leaps was used as a supplemental intervention in addition to 
the daily mathematics curriculum for a small sample of 6 s and third-grade students



with various intellectual, learning, and attentional difficulties (Jolivette et al., 2006). 
The sessions were brief, individualized instruction of single-digit basic operations, 
and as the students’ fluency improved the tasks became more challenging. While 
three students made gains in their fluency for oral addition, only one student 
progressed to written fluency and began the oral subtraction component of the 
program. The other two students showed improvements in addition fluency how-
ever, they did not progress further in the program (Jolivette et al., 2006). It was noted 
that one of the students who did not progress to the next stage had significant 
attentional impairments that interfered with the one-on-one instruction. The authors 
noted that “attentional difficulties during any of the sessions would negatively affect 
student fluency performance” (Jolivette et al., 2006, p. 389). 
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Other evidence-based interventions, such as integrated dynamic representation 
(IDR), pose promising results for mathematics remediation for 6- to 9-year old 
students (González-Castro et al., 2016). While this intervention model appears to 
be math-knowledge-based, its instructional process addresses many components of 
attention. The IDR intervention involves a multilevel process carried out on a 
computer program that presents visual representations of concepts, links, questions, 
and processes that the participant must work through to reach the final solution of a 
situational mathematics problem. IDR attempts to remediate mathematics compe-
tencies and problem-solving skills using fragmented comprehension, representation, 
and integration of sets of representations (González-Castro et al., 2016). 

However, a closer examination of the levels of representation of IDR reveals how 
cognitive factors may explain its success. For instance, key concepts (relevant 
information to solve the problem) are presented in circles, eliminating the demands 
of selective attention to orient to relevant information while ignoring distractors. 
There are pictograms that children can select to signify an operation to complete or a 
relationship between two key concepts. For example, a whole circle around a key 
concept to suggest adding, whereas a circle with a dotted line reflects subtraction. 
This reduces the amount of information to be held in WM. Ultimately, the fragmen-
tation and reintegration of information in IDR reduce the demands of many attention 
skills, thus overall cognitive load. As such, more attentional resources can be 
allocated to solving the operation or word problem. Though IDR was effective in 
short-term remediation of mathematics competencies for children 6–9 years of age 
with MLD, ADHD, and MLD+ADHD, the most significant improvements were 
noted for children with MLD, followed by the comorbid group, and finally the 
ADHD group (González-Castro et al., 2016). We argue that the results can be 
accounted for by the degree to which cognitive strategies were made explicit. 
Specifically, mathematics knowledge was taught through the use of strategies that 
alleviated the demands of attentional skills; however, they did not directly intervene 
or train these skills. While IDR is a step in the right direction in addressing cognitive 
factors contributing to mathematics learning, the gains are likely to be short-lived 
without cognitive training.
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3.3.2 Function-Specific Intervention and Remediation 

As discussed, the research on cognitive interventions for mathematics learning 
difficulties is limited and often inconsistent. It is important to note that there is 
extensive literature on cognitive training in general, and while some studies report 
academic benefits, the goal of their interventions was not mathematics remediation 
(Peng & Miller, 2016). While they provide evidence for the effectiveness of cogni-
tive training and thus justification for its use in remediating math, this body of 
literature is not included in this review, as intervention goals were not math-based. 
Rather, we will explore the small body of research on cognitive interventions with 
the specific goal of improving mathematics proficiency. We will also examine some 
studies where it can be argued that cognitive skills were indirectly targeted in 
attempts to improve mathematics performance. As all intervention studies are 
explored below, it is important to note that there is a significant gap in cognitive 
studies that explicitly target sustained attention. Intuitively, one would presume that 
successful use of processing skills such as EF and WM rely on one’s ability to orient 
and sustain their attention to a task. We then must presume that the results are based 
on samples of students with relatively intact sustained attention skills. Alternatively, 
we could assume that results may have been more robust if interventions addressed 
sustained attention as well. This is certainly an area for future direction and will be 
discussed again later in this chapter. 

Another important consideration before reviewing this research is revisiting the 
previously discussed debate in the field as to whether EF in childhood should be 
considered as a set of distinct skills, or a unilateral skillset that works together in 
pursuit of a goal. As we will see below, the existing literature assessing cognitive 
interventions for mathematics remediation do not systematically target each compo-
nent of EF in the way that was previously outlined. In fact, the review did not return 
any studies that explicitly targeted distinct EF skills. As such, the sections below 
include studies that claimed to target attention-related skills and WM. This is 
perhaps a limitation on the existing research, and an area for future exploration 
that would provide significant knowledge to clinicians and educators working with 
these students. 

3.3.2.1 Indirect Intervention of Attention-Related Skills 

Though there are instances of successful cognitive-based interventions specifically 
for math, it can be argued that the cognitive skills were often addressed within the 
context of a mathematics task, and not directly. For instance, fourth-grade girls 
at-risk for ADHD showed decreased off-task behaviours and improved problem-
solving when given a mathematics task that had keywords highlighted for them 
(Kercood et al., 2012). The argument for this intervention was based on optimal 
stimulation theory and previous evidence that 8-year-old male students with ADHD 
benefited from having operation signs highlighted (Kercood & Grskovic, 2009).



While the intervention used tools to address cognitive factors such as selective 
attention, the approach did not facilitate any training or development of attention; 
instead, it aimed to remove a barrier. In neglecting to train the cognitive skill of 
selective attention, there are unlikely to be long-term gains to the intervention that 
will transfer to future academic experiences or translate to real-world applications. 
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Kang and Zentall (2011) proposed a similar means of intervention, where they 
increased the stimulation of a task by adding novelty to relevant features through 
graphic representations, aiming to increase mathematics performance for second- to 
fourth-grade students with ADHD. Though one could argue against such interven-
tion considering redundancy and split-attention effects (Bobis et al., 1993), the level 
of intensity was manipulated solely through visual input (e.g., contrast, shadows 
added to geographical shapes to provide light-source information) therefore not 
increasing cognitive load. It was noted that second- to fourth-grade students with 
diagnoses of ADHD and with at-risk inattentive behaviours performed significantly 
better than controls when questions were presented with high visual intensity (Kang 
& Zentall, 2011). However, similarly to Kercood et al. (2012), this study addressed 
cognitive factors related to mathematics performance in elementary school years 
without explicitly training any specific skill. Therefore, while this supports the 
effectiveness of cognitive-based interventions for remediating mathematics, these 
studies did not go further to evaluate more specific cognitive training. Given that 
children cannot manipulate or change the cognitive demands of real-world math-
based tasks, it is logical that we again consider the potential of cognitive interven-
tions to support cognitive load management. 

3.3.2.2 Direct Intervention on Attention 

As previously discussed, the intervention literature targeting sustained attention is 
limited. One exception to this is Barnes et al. (2016), who attempted to compare the 
effectiveness of task-specific mathematics interventions with and without attentional 
training (vigilance, switching) in very low mathematics performing pre-kindergarten 
students. They discovered that attention training provided near-transfer effects to 
improved attention but did not show far-transfer effects to math, as the intervention 
groups that received mathematics and attention training did not differ from the math-
only group (Barnes et al., 2016). However, it is important to note that the improve-
ments in attention that they noted were small (Barnes et al., 2016). The attention 
intervention was very low in intensity, with students only training once a week for 
8 min, which likely accounts for the minimal to null effects of this intervention and is 
a limitation recognized by the researchers (Barnes et al., 2016). 

Paananen et al. (2018) addressed the question of sustained attention in their Maltii 
intervention for grade one to six students that targets EFs such as inhibition and 
attentional control. However, their methods for training sustained attention was 
through a token system that provided external reinforcement and motivation for 
on-task behaviour. It is known that once external motivators are removed, then 
intrinsic motivation decreases (Bénabou & Tirole, 2003), calling into question the



long-term efficacy of this cognitive intervention. Furthermore, while the results 
indicated significant improvement for math, the effects were only seen in basic skills 
such as fluency, and not for more complex operations. One explanation for this is 
that post-testing was completed directly following the intervention; however, as 
previously discussed, the transfer effects of cognitive training to academic perfor-
mance should increase over time. Therefore, it is possible the transfer to more 
complex skills would be observed at a later post-test. This is particularly true of 
classroom and testing environments where children are expected to regulate their 
attention over a prolonged period. 
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Aligned with Miyake et al.’ (2000) conceptualization of EF, one needs to be able 
to effectively control their attention to adequately use WM and EF skills. The lack of 
research exploring the academic impacts of training attention is concerning, and has 
great potential to inform school-based interventions for elementary and middle 
school students. While we will continue to explore the interventions that target 
working memory, let us not forget that they may not be fruitful if the child has 
limited sustained attention capabilities. 

3.3.2.3 Direct Intervention on Working Memory 

Compared to the indirect studies explored earlier, transferrable gains are more likely 
when explicit strategies are taught, or when training is specific to cognitive skills. 
For example, embedding explicit instruction on WM strategies within a third-grade 
mathematics class (mean age = 8.5 years old) led to a significant increase in WM 
abilities, on-task behaviour, and therefore increased exposure to learning (Davis 
et al., 2014). While successful in training WM within the context of mathematics 
instruction, there was no explicit measure of pre- and post-test mathematics, making 
conclusions about the academic effectiveness speculative. 

Dahlin (2013) answered some outstanding questions in a more individualized and 
targeted approach to WM training for 9- to 12-year-old children with ADHD and 
saw significant improvements in mathematics ability immediately and at short-term 
follow-up for both males and females. For males, the positive effects were still 
present at the 7-month follow-up. The authors speculate that WM training resulted in 
increased activity in the prefrontal cortex, and this increased their efficiency of 
processing and ability to focus (Dahlin, 2013). Though not explicitly stated, the 
results and interpretation of this intervention can be best understood by cognitive 
load theory, which integrates the many aspects of attention described earlier. Spe-
cifically, it can be speculated that more efficient processing and ability to focus 
means that more attentional resources can be allocated to learning new information 
within the classroom context. As there is increased exposure to learning, this will 
have a cumulative effect over time, such that more advanced concepts can be 
learned, thus test scores improving at longer-term follow-up. 

Interestingly, whether or not WM training is domain-specific (numerically-based) 
or domain-general does not appear to impact the transfer to mathematics ability 
(Kroesbergen et al., 2014). For example, two groups of kindergarten children (mean



age = 5.78) played games intended to increase WM (one number-based, one 
domain-general), and both demonstrated significant improvements in WM and 
numeracy skills compared to controls (Kroesbergen et al., 2014). The lack of 
difference between the two experimental groups suggests the unique influence of 
WM, as opposed to numerical WM or exposure to numbers during cognitive 
training. Despite promising results, this intervention did not take into account 
individuals with attentional or mathematics difficulties, thus cannot be generalized 
to these populations. Furthermore, they did not include follow-up assessments to 
determine the long-term effects of cognitive training. These findings are interesting 
when compared to Ramani et al. (2017), who targeted the improvement of 5- to 
7-year-olds’ foundational mathematics skills by utilizing two approaches: a domain-
specific training of numerical knowledge and a domain-general training of WM. The 
results demonstrated that providing children with training on an iPad in both 
domain-specific knowledge and domain-general skills led to enhanced numerical 
magnitude knowledge, thus providing evidence for the conceptual framework of 
mathematics development proposed by Geary and Hoard (2005). These gains in 
numerical magnitude knowledge are proposed to support their mathematical profi-
ciency through middle childhood. According to this framework, mathematical 
achievement depends on conceptual understanding and procedural knowledge, 
which are both supported by an array of cognitive systems, such as attention, 
inhibition, language, and visuospatial systems. 
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Finally, more intensive intervention has demonstrated long-term transfer effects 
to mathematics (Holmes et al., 2009). Children in middle childhood (8- to 11-years-
old) who completed 35 min of WM training, for at least 20 days, over 5–7 weeks, 
showed marked improvements in mathematics performance at a 6-month follow-up 
(Holmes et al., 2009). Interestingly, these students did not show improvement in 
mathematics at immediate post-testing. However, it is argued that the effects of 
cognitive training for supporting learning take time to show significant improvement 
on standardized tests (Holmes et al., 2009). Thus, to have a more robust understand-
ing of the effects of training-based intervention studies, there is a need for longer-
term follow-up testing, as false conclusions could be drawn from only looking at 
immediate post-test. Such testing should be included in all intervention studies, not 
just cognitively based ones, to allow for meaningful comparisons of effects. 

While the interventions explored throughout Sect. 3.3.2 demonstrate potential 
for the utility of cognitive interventions to address mathematics learning difficulties, 
there is notably a substantial gap in addressing one cognitive skill: sustained 
attention. Intuitively, and in line with Miyake et al.’ (2000) conceptualization of 
EF, higher-order attentional abilities such as WM and other EFs rely on one’s ability 
to orient and sustain their attention to information over a prolonged period, espe-
cially in the classroom. 

Considering the interventions discussed above, it is evident that certain elements 
of a cognitive intervention increase the likelihood of success and should be clearly 
identified to develop successful interventions for clinicians and educators. Specifi-
cally, interventions should directly target and train a cognitive skill and the training 
should be relatively rigorous and intensive. Furthermore, the training should



ultimately result in more efficient processing of information and thus overall reduced 
cognitive load during mathematics tasks. The latter assumption rests on the success 
of cognitive load theory in not only conceptualizing the relationship of many 
attentional skills to mathematics learning and performance but also in explaining 
the success of the few cognitive interventions. 
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3.4 Discussion 

The relationship between attentional abilities and mathematics learning is supported 
by empirical studies. Despite the nuanced definition of terminology, whether ana-
lyzed as domain-general attentional abilities or broken down into parts, there is 
overwhelming support for the contribution of attentional cognitive skills to mathe-
matics proficiency in children. A large body of empirical work has demonstrated the 
unique and shared contribution of attentional control, selective attention, sustained 
attention, WM, EFs, and PS to performance on school-based mathematics tasks. 
Despite the evidence, the majority of literature and clinical practice still utilize a 
task-specific approach to remediation. However, with the awareness of mathematics 
difficulties in ADHD samples, as well as the attentional difficulties seen in mathe-
matics LD profiles and conversely, the superior attentional abilities of individuals 
gifted in math, it seems the remediation literature is neglecting to address underlying 
cognitive factors. In other words, there is a trend of using task-specific solutions to a 
function-specific problem. It can be argued that the risk in this approach is that a 
task-specific solution is a surface-level, short-term approach that addresses the issue 
in the here and now. Targeting the function-specific problem through cognitive 
training is essential because it addresses the underlying mechanisms. This approach 
has the potential to create long-term, meaningful changes that can impact mathe-
matics abilities, and thus, overall achievement. The question of how to target this 
function-specific problem becomes complicated by the debate within the literature as 
to whether EF is a unitary construct, or discrete skills, in childhood. Given the many 
links from specific EFs to mathematics skills, we argue that initial interventions 
should specifically target one skill. If these fail to be effective, then considering 
interventions that address EF as a unitary process should be explored. Most impor-
tantly, sustained attention should be the first skill addressed, as the adequate use of 
WM and EF relies on effortful control and sustained attention. 

Despite the significant amount of literature demonstrating a relationship between 
mathematics and attention, the research exploring cognitive interventions to address 
this relationship is quite small. There are very few studies that assess the effective-
ness of cognitive interventions for remediating math, and within those studies 
the results are mixed. That said, the interventions with the most immediate and 
long-term effects seem to align with cognitive load theory, which integrates many 
different attentional functions (see above, e.g., González-Castro et al., 2016; 
Kercood & Grskovic, 2009; Kang & Zentall, 2011; Dahlin, 2013). Unfortunately, 
there is still minimal investigation on the training of sustained attention on



mathematics ability, a skill fundamental to academic success. Interventions targeting 
WM and EF are necessary, and they should follow primary intervention into 
attentional control skills, as they serve little utility unless a child can sustain their 
attention to the necessary and relevant information. 
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3.4.1 Future Research 

Future studies should continue to explore and replicate interventions that target 
cognitive skills to remediate mathematics learning. Based on the review of 
the current literature, it is integral that the specific attentional skill is well 
operationalized. Furthermore, researchers should take careful consideration into 
selecting the means for their cognitive intervention, ensuring that it is adequately 
addressing the operationalized skill. The interventions should be intensive and 
should include immediate and follow-up testing to evaluate the impact of cognitive 
training over time. 

Future research should also compare the effectiveness of the same intervention 
for typically developing students, students with mathematics learning disorders, 
students with attentional impairments, and students with comorbid mathematics 
learning and attentional difficulties. Doing so will provide further insight into the 
profiles of these populations, as well as help in understanding if intervention should 
be differentiated for different presentations. Finally, this could justify whether 
mathematics instruction for all students could be improved by addressing attentional 
components of instruction design or supplementing some cognitive training into the 
regular curriculum for the general education population. 

3.4.2 Implications 

While the relationship between cognition and mathematics achievement is not novel 
to many, it is widely ignored in the intervention literature. For the most part, 
cognitive training research has been broad, and intended to improve symptomatol-
ogy for clinical populations (e.g., ADHD). This chapter highlights the lack of 
intervention training to follow up the empirically evidenced relationship between 
mathematics and attention. Understanding the unique relationship between attention 
and mathematics seen in multiple clinical and typically developing populations 
suggests an incredible potential for a new approach to mathematics remediation 
that is not being addressed. Furthermore, the implementation of such interventions in 
schools’ clinical practice will require considerable evidence from research. For 
instance, searching for evidence-based practices for mathematics remediations on 
What Works Clearinghouse (a public website that reviews and identifies studies to 
support education) yields 150 results. However once combined with the keyword



cognition, there are a total of 4 interventions, none of which are exclusively 
mathematics remediation programs. 
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For educators and clinicians, the research is strongly in support of early identi-
fication and intervention for students struggling with math, in support of their long-
term academic growth and success (Duncan et al., 2007). The literature would 
suggest that educators should be keenly aware of their students who may be 
struggling with foundational mathematical skills, and/or those showing difficulties 
with attention, working memory, and executive functions. Flagging these difficulties 
in childhood has the potential for efficient identification and thus proper early 
remediation. For clinicians, students presenting for assessment who are experiencing 
attentional challenges should strongly be considered for academic testing that 
explores the acquisition of fundamental mathematics skills. Though the presenting 
concern may be attentional challenges or difficulties with executive functions, as we 
have read throughout this chapter, there is a strong likelihood that this child is 
susceptible to falling behind in mathematics learning. In the same regard, students 
presenting for assessment to explore mathematics learning challenges should have 
sufficient testing to explore their attentional profile and related skills (WM/EF) to 
identify any skills deficits. In investigating these related skill sets through standard-
ized testing; it follows that at-risk students will receive thorough and individualized 
educational planning to support their immediate and long-term learning. 

When considering interventions to support students with mathematics learning 
challenges, educators are encouraged to reflect on whether their programming is 
task-specific, and whether this is in the long-term interest of the student’s learning. 
Teachers and school professionals should review the current practices in place for 
remediation and explore potential for introducing function-specific programming. 
That said, it is essential that more research is conducted in the field to provide 
evidence in support of such interventions and programming. Far too often, schools 
are expected to implement intervention programs with limited research into its 
effectiveness, and a lack of explanation for the rationale. We strongly encourage 
that schools have a transparent understanding of their intervention programs, and 
selected cognitive-intervention programs are based in sound evidence. 

3.5 Conclusion 

The evidence supporting a relationship between domain-general attentional func-
tions and mathematics learning and performance is clear. There are limited studies 
that look at using cognitive training as a means for mathematics remediation, despite 
the notable mathematics difficulties in children with ADHD, as well as attentional 
deficits in children with MLDs. Research on such interventions has the potential to 
inform and change current methods for clinical practice and remediation of mathe-
matics difficulties. The value of doing so is pertinent, as effective mathematics 
intervention has the potential to influence overall academic achievement in later 
years.
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Educators and clinicians are encouraged to use this framework in supporting their 
students, advocating for thorough assessment, and implementing evidenced-based 
interventions that address the underlying cognitive issues, as opposed to the observ-
able deficits in learning. 

Acknowledgements This work was supported by the Fonds de recherche du Québec – Santé 
(FRQS) doctoral fellowships awarded to Ms. Emma Clark. 

References 

American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders 
(5th ed.). American Psychiatric Publishing. 

Anderson, P. (2002). Assessment and development of executive function (EF) during childhood. 
Child Neuropsychology, 8(2), 71–82. 

Barnes, M. A., Klein, A., Swank, P., Starkey, P., McCandliss, B., Flynn, K., Zucker, T., Huange, 
C., Falla, A., & Roberts, G. (2016). Effects of tutorial interventions in mathematics and attention 
for low-performing preschool children. Journal of Research on Educational Effectiveness, 9(4), 
577–606. 

Bartelet, D., Ansari, D., Vaessen, A., & Blomert, L. (2014). Cognitive subtypes of mathematics 
learning difficulties in primary education. Research in Developmental Disabilities, 35(3), 
657–670. 

Bénabou, R., & Tirole, J. (2003). Intrinsic and extrinsic motivation. The Review of Economic 
Studies, 70(3), 489–520. 

Blair, C., & Razza, R. P. (2007). Relating effortful control, executive function, and false belief 
understanding to emerging mathematics and literacy ability in kindergarten. Child Development, 
78(2), 647–663. 

Bobis, J., Sweller, J., & Cooper, M. (1993). Cognitive load effects in a primary-school geometry 
task. Learning and Instruction, 3(1), 1–21. 

Bull, R., & Scerif, G. (2001). Executive functioning as a predictor of children’s mathematics ability: 
Inhibition, switching, and working memory. Developmental Neuropsychology, 19(3), 273–293. 

Bull, R., & Lee, K. (2014). Executive functioning and mathematics achievement. Child Develop-
ment Perspectives, 8(1), 36–41. https://doi.org/10.1111/cdep.12059 

Bull, R., Espy, K. A., & Wiebe, S. A. (2008). Short-term memory, working memory, and executive 
functioning in preschoolers: Longitudinal predictors of mathematical achievement at age 
7 years. Developmental Neuropsychology, 33(3), 205–228. 

Butterworth, B., Varma, S., & Laurillard, D. (2011). Dyscalculia: From brain to education. Science, 
332(6033), 1049–1053. 

Child, A. E., Cirino, P. T., Fletcher, J. M., Willcutt, E. G., & Fuchs, L. S. (2019). A cognitive 
dimensional approach to understanding shared and unique contributions to reading, math, and 
attention skills. Journal of Learning Disabilities, 52(1), 15–30. 

Colomer, C., Re, A. M., Miranda, A., & Lucangeli, D. (2013). Numerical and calculation abilities in 
children with ADHD. Learning Disabilities: A Contemporary Journal, 11(2), 1–15. 

Conlin, J. A., Gathercole, S. E., & Adams, J. W. (2005). Children’s working memory: Investigating 
performance limitations in complex span tasks. Journal of Experimental Child Psychology, 
90(4), 303–317. 

Coolen, I., Merkley, R., Ansari, D., Dove, E., Dowker, A., Mills, A., Murphy, V., von Spreckelson, 
M., & Scerif, G. (2021). Domain-general and domain-specific  influences on emerging numerical 
cognition: Contrasting uni and bidirectional prediction models. Cognition, 215, 104816.

https://doi.org/10.1111/cdep.12059


56 E. Clark et al.

Cragg, L., & Gilmore, C. (2014). Skills underlying mathematics: The role of executive function in 
the development of mathematics proficiency. Trends in Neuroscience and Education, 3(2), 
63–68. 

Dahlin, K. I. E. (2013). Working memory training and the effect on mathematical achievement in 
children with attention deficits and special needs. Journal of Education and Learning, 2(1), 
118–133. 

Davis, N., Sheldon, L., & Colmar, S. (2014). Memory mates: A classroom-based intervention to 
improve attention and working memory. Australian Journal of Guidance and Counselling, 
24(1), 111–120. 

Dehaene, S., Spelke, E., Pinel, P., Stanescu, R., & Tsivkin, S. (1999). Sources of mathematical 
thinking: Behavioral and brain-imaging evidence. Science, 284(5416), 970–974. 

Djuric-Zdravkovic, A., Japundza-Milisavljevic, M., & Macesic-Petrovic, D. (2011). Arithmetic 
operations and attention in children with intellectual disabilities. Education and Training in 
Autism and Developmental Disabilities, 46(2), 214–219. 

Doebel, S. (2020). Rethinking executive function and its development. Perspectives on Psycholog-
ical Science, 15(4), 942–956. 

Duncan, G. J., Dowsett, C. J., Claessens, A., Magnuson, K., Huston, A. C., Klebanov, P., Pagani, 
L. S., Feinstein, L., Engel, M., Brooks-Gunn, J., Sexton, H., Duckworth, K., & Japel, C. (2007). 
School readiness and later achievement. Developmental Psychology, 43(6), 1428–1446. 

Forchelli, G. A., Vuijk, P. J., Colvin, M. K., Ward, A. K., Koven, M. R., Dews, A., Doyle, A. E., & 
Braaten, E. B. (2022). What is a processing speed weakness? Importance of cognitive ability 
when defining processing speed in a child psychiatric population. Child Neuropsychology, 
28(2), 266–286. 

Friedman, S. L., Scholnick, E. K., Bender, R. H., Vandergrift, N., Spieker, S., Pasek, K. H., 
Keating, D. P., & Park, Y. (2014). Planning in middle childhood: Early predictors and later 
outcomes. Child Development, 85(4), 1446–1460. 

Fuchs, L. S., Compton, D. L., Fuchs, D., Paulsen, K., Bryant, J. D., & Hamlett, C. L. (2005). The 
prevention, identification, and cognitive determinants of mathematics difficulty. Journal of 
Educational Psychology, 97(3), 493–513. 

Garon, N., Bryson, S. E., & Smith, I. M. (2008). Executive function in preschoolers: A review using 
an integrative framework. Psychological Bulletin, 134(1), 31–60. 

Geary, D. C., & Hoard, M. K. (2005). Learning disabilities in arithmetic and mathematics: 
Theoretical and empirical perspectives. In J. I. D. Campbell (Ed.), Handbook of mathematical 
cognition (pp. 253–267). Psychology Press. 

Geary, D. C., Hoard, M. K., Byrd-Craven, J., Nugent, L., & Numtee, C. (2007). Cognitive 
mechanisms underlying achievement deficits in children with mathematical learning disability. 
Child Development, 78(4), 1343–1359. 

Geary, D. C., Hoard, M. K., & Bailey, D. H. (2011). How SLD manifests in mathematics. Essentials 
of specific learning disability identification (pp. 43–64). John Wiley & Sons, Inc.. 

Gersten, R., Clarke, B., & Mazzocco, M. (2007). Historical and contemporary perspectives on 
mathematical learning disabilities. In D. B. Berch & M. M. M. Mazzocco (Eds.), Why is 
mathematics so hard for some children? The nature and origins of mathematical learning 
difficulties and disabilities (pp. 7–29). Brookes Publishing Company. 

Gillmor, S. C., Poggio, J., & Embretson, S. (2015). Effects of reducing the cognitive load of 
mathematics test items on student performance. Numeracy: Advancing Education in Quantita-
tive Literacy, 8(1), Article 4. 

Gold, A. B., Ewing-Cobbs, L., Cirino, P., Fuchs, L. S., Stuebing, K. K., & Fletcher, J. M. (2013). 
Cognitive and behavioral attention in children with mathematics difficulties. Child Neuropsy-
chology, 19(4), 420–437. 

González-Castro, P., Cueli, M., Areces, D., Rodríguez, C., & Sideridis, G. (2016). Improvement of 
word problem solving and basic mathematics competencies in students with attention-deficit/ 
hyperactivity disorder and mathematical learning difficulties. Learning Disabilities Research & 
Practice, 31(3), 142–155.



3 Understanding the Relationship Between Attention, Executive Functions. . . 57

Holmes, J., Gathercole, S. E., & Dunning, D. L. (2009). Adaptive training leads to sustained 
enhancement of poor working memory in children. Developmental Science, 12(4), 9–15. 

Jolivette, K., Lingo, A. S., Houchins, D. E., Barton-Arwood, S. M., & Shippen, M. E. (2006). 
Building mathematics fluency for students with developmental disabilities and attentional 
difficulties using great leaps math. Education and Training in Developmental Disabilities, 
41(4), 392–400. 

Kang, H. W., & Zentall, S. S. (2011). Computer-generated geometry instruction: A preliminary 
study. Educational Technology Research and Development, 59(6), 783–797. 

Karr, J. E., Areshenkoff, C. N., Rast, P., Hofer, S. M., Iverson, G. L., & Garcia-Barrera, M. A. 
(2018). The unity and diversity of executive functions: A systematic review and re-analysis of 
latent variable studies. Psychological Bulletin, 144(11), 1147–1185. 

Kercood, S., & Grskovic, J. A. (2009). The effects of highlighting on the mathematics computation 
performance and off-task behavior of students with attention problems. Education and Treat-
ment of Children, 32(2), 231–241. 

Kercood, S., Zentall, S. S., Vinh, M., & Tom-Wright, K. (2012). Attentional cuing in mathematics 
word problems for girls at-risk for ADHD and their peers in general education settings. 
Contemporary Educational Psychology, 37(2), 106–112. 

Kim, H., Duran, C. A. K., Cameron, C. E., & Grissmer, D. (2018). Developmental relations among 
motor and cognitive processes and mathematics skills. Child Development, 89(2), 476–494. 

Kroesbergen, E. H., Van Luit, J. E. H., Van Lieshout, E. C. D. M., Van Loosbroek, E., & Van de 
Rijt, B. A. M. (2009). Individual differences in early numeracy: The role of executive functions 
and subitizing. Journal of Psychoeducational Assessment, 27(3), 226–236. 

Kroesbergen, E. H., van’t Noordende, J. E., & Kolkman, M. E. (2014). Training working memory 
in kindergarten children: Effects on working memory and early numeracy. Child Neuropsy-
chology, 20(1), 23–37. 

Kuhn, J.-T., Ise, E., Raddatz, J., Schwenk, C., & Dobel, C. (2016). Basic numerical processing, 
calculation, and working memory in children with dyscalculia and/or ADHD symptoms. 
Zeitschrift für Kinderund Jugendpsychiatrie und Psychotherapie, 44, 365–375. 

Kwok, F. Y., & Ansari, D. (2019). The promises of educational neuroscience: Examples from 
literacy and numeracy. Learning: Research and Practice, 5(2), 189–200. 

LeFevre, J. A., Fast, L., Skwarchuk, S. L., Smith-Chant, B. L., Bisanz, J., Kamawar, D., & Penner-
Wilger, M. (2010). Pathways to mathematics: Longitudinal predictors of performance. Child 
Development, 81(6), 1753–1767. 

Lindsay, R. L., Tomazic, T., Levine, M. D., & Accardo, P. J. (2001). Attentional function as 
measured by a continuous performance task in children with dyscalculia. Journal of Develop-
mental and Behavioral Pediatrics, 22(5), 287–292. 

Mathieu, R., Epinat-Duclos, J., Leone, J., Fayol, M., Thevenot, C., & Prado, J. (2018). Hippocam-
pal spatial mechanisms relate to the development of arithmetic symbol processing in children. 
Developmental Cognitive Neuroscience, 30, 324–332. 

Mattison, R. E., & Blader, J. C. (2013). What affects academic functioning in secondary special 
education students with serious emotional and/or behavioral problems? Behavioral Disorders, 
38(4), 201–211. 

May, T., Rinehart, N., Wilding, J., & Cornish, K. (2013). The role of attention in the academic 
attainment of children with autism spectrum disorder. Journal of Autism and Developmental 
Disorders, 43(9), 2147–2158. 

Mayes, S. D., & Calhoun, S. L. (2006). Frequency of reading, math, and writing disabilities in 
children with clinical disorders. Learning and Individual Differences, 16(2), 145–157. 

McConaughy, S. H., Volpe, R. J., Antshel, K. M., Gordon, M., & Eiraldi, R. B. (2011). Academic 
and social impairments of elementary school children with attention deficit hyperactivity 
disorder. School Psychology Review, 40(2), 200–225. 

Menon, V. (2016). Working memory in children’s math learning and its disruption in dyscalculia. 
Current Opinion in Behavioral Sciences, 10, 125–132.



58 E. Clark et al.

Miyake, A., Friedman, N. P., Emerson, M. J., Witzki, A. H., Howerter, A., & Wager, T. D. (2000). 
The unity and diversity of executive functions and their contributions to complex “frontal lobe” 
tasks: A latent variable analysis. Cognitive Psychology, 41, 49–100. 

Mong, M. D., & Mong, K. W. (2010). Efficacy of two mathematics interventions for enhancing 
fluency with elementary students. Journal of Behavioral Education, 19(4), 273–288. 

Paananen, M., Aro, T., Närhi, V., & Aro, M. (2018). Group-based intervention on attention and 
executive functions in the school context. Educational Psychology, 38(7), 859–876. 

Paas, F., Renkl, A., & Sweller, J. (2003). Cognitive load theory and instructional design: Recent 
developments. Educational Psychologist, 38(1), 1–4. 

Peng, P., & Miller, A. C. (2016). Does attention training work? A selective meta-analysis to explore 
the effects of attention training and moderators. Learning and Individual Differences, 45, 77–87. 

Peng, P., Wang, C., & Namkung, J. (2018). Understanding the cognition related to mathematics 
difficulties: A meta-analysis on the cognitive deficit profiles and the bottleneck theory. Review of 
Educational Research, 88(3), 434–476. 

Peterson, R. L., Boada, R., McGrath, L. M., Willcutt, E. G., Olson, R. K., & Pennington, B. F. 
(2017). Cognitive prediction of reading, math, and attention: Shared and unique influences. 
Journal of Learning Disabilities, 50(4), 408–421. 

Poorghorban, M., Jabbari, S., & Chamandar, F. (2018). Mathematics performance of the primary 
school students: Attention and shifting. Journal of Education and Learning, 7(3), 117–124. 

Price, G. R., & Ansari, D. (2013). Dyscalculia: Characteristics, causes, and treatments. Numeracy, 
6(1), 1–16. 

Raghubar, K., Cirino, P., Barnes, M., Ewing-Cobbs, L., Fletcher, J., & Fuchs, L. (2009). Errors in 
multi-digit arithmetic and behavioral inattention in children with mathematics difficulties. 
Journal of Learning Disabilities, 42(4), 356–371. 

Raghubar, K. P., Barnes, M. A., & Hecht, S. A. (2010). Working memory and mathematics: A 
review of developmental, individual difference, and cognitive approaches. Learning and Indi-
vidual Differences, 20(2), 110–122. 

Raja, B. W. D., & Kumar, S. P. (2012). Findings of studies on dyscalculia – A synthesis. Journal on 
Educational Psychology, 5(3), 41–51. 

Ramani, G. B., Jaeggi, S. M., Daubert, E. N., & Buschkuehl, M. (2017). Domain-specific and 
domain-general training to improve kindergarten children’s mathematics. Numerical Cognition, 
3(2), 486–495. 

Ross, P., & Randolph, J. (2016). Differences between students with and without ADHD on task 
vigilance under conditions of distraction. Journal of Educational Research and Practice, 4(1), 
1–10. 

Rueckert, L. M., & Levy, J. (1995). Cerebral asymmetry and selective attention in mathematically 
gifted adolescents. Developmental Neuropsychology, 11(1), 41–52. 

Szűcs, D., Devine, A., Soltesz, F., Nobes, A., & Gabriel, F. (2014). Cognitive components of a 
mathematical processing network in 9-year-old children. Developmental Science, 17(4), 
506–524. 

Tarmizi, R. A., & Sweller, J. (1988). Guidance during mathematical problem solving. Journal of 
Educational Psychology, 80(4), 424–436. 

Templeton, T. N., Neel, R. S., & Blood, E. (2008). Meta-analysis of mathematics interventions for 
students with emotional and behavioral disorders. Journal of Emotional and Behavioral Dis-
orders, 16(4), 226–239. 

Tsal, Y., Shalev, L., & Mevorach, C. (2005). The diversity of attention deficits in ADHD: The 
prevalence of four cognitive factors in ADHD versus controls. Journal of Learning Disabilities, 
38(2), 142–157. 

Watchorn, R. P. D., Bisanz, J., Fast, L., LeFevre, J.-A., Skwarchuk, S.-L., & Smith-Chant, B. L. 
(2014). Development of mathematical knowledge in young children: Attentional skill and the 
use of inversion. Journal of Cognition and Development, 15(1), 161–180.



3 Understanding the Relationship Between Attention, Executive Functions. . . 59

Yeniad, N., Malda, M., Mesman, J., van IJzendoorn, M. H., & Pieper, S. (2013). Shifting ability 
predicts mathematics and reading performance in children: A meta-analytical study. Learning 
and Individual Differences, 23, 1–9. 

Yung, H. I., & Paas, F. (2015). Effects of computer-based visual representation on mathematics 
learning and cognitive load. Educational Technology and Society, 18(4), 70–77. 

Zentall, S. S. (1990). Fact-retrieval automatization and mathematics problem solving by learning 
disabled, attention-disordered, and normal adolescents. Journal of Educational Psychology, 
82(4), 856–865. 

Zentall, S. S. (2007). Mathematics performance of students with ADHD: Cognitive and behavioral 
contributors and interventions. In D. B. Berch & M. M. M. Mazzocco (Eds.), Why is mathe-
matics so hard for some children? The nature and origins of mathematical learning difficulties 
and disabilities (pp. 219–243). Paul H Brookes Publishing.



Chapter 4 
Instructional Support for Fact Fluency 
Among Students with Mathematics 
Difficulties 

Friggita Johnson, Pamela M. Stecker, and Sandra M. Linder 

Abstract Fact fluency is a critical component for increasing mathematics profi-
ciency. Effortless and quick retrieval of number combinations reduces cognitive load 
and allows for more sufficient cognitive resources to execute higher order mathe-
matical problems. This chapter begins by reviewing the developmental trajectories 
for fact knowledge acquisition among children who are typically developing. Then, 
we discuss working memory deficit as a common characteristic experienced by 
children with or at risk of learning disabilities in mathematics in developing fact 
knowledge. Next, we explain the significance of building fact fluency and describe 
several effective instructional interventions or strategies to support basic fact knowl-
edge among elementary and middle school students experiencing mathematics 
difficulties. We focus particularly on incremental rehearsal as a strategy that involves 
interspersing a high percentage of already known items to unknown targeted items to 
promote better acquisition and retention of the targeted facts for children with 
mathematics difficulties who need intensive, individualized intervention. 

After reviewing research support for the efficacy of incremental rehearsal, we use 
a hypothetical vignette to describe an elementary student with mathematics difficul-
ties to illustrate intervention support that can be used for fact retrieval. Steps for 
teachers, paraprofessionals, and parents to implement incremental rehearsal as well 
as implications for practice are included. 
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4.1 Background 

Basic facts are number combinations where each addend in addition, the subtrahend 
and difference in subtraction, factors in multiplication, the divisor and quotient in 
division, are single-digit whole numbers (i.e., 0–9); or include numbers 1–9 for 
divisor and quotient in division (Stein et al., 2018). Fact fluency is the ability to 
retrieve and recall facts rapidly, accurately, and effortlessly (National Council of 
Teachers of Mathematics [NCTM], 2000). 

Effortless and quick retrieval of number combinations reduces cognitive load and 
allows for sufficient cognitive resources to execute more advanced mathematical 
skills (National Mathematics Advisory Panel [NMAP], 2008). Efficient recall of 
basic facts can be achieved via rote or meaningful memorization. Rote memorization 
involves repeating facts until remembered and may not involve understanding the 
pattern and relation among number combinations. However, more meaningful 
memorization activities include exploration of number combinations and their rela-
tions to better promote mathematical thinking and learning and perhaps making 
automatic recall easier for learners. Most important, meaningful memorization of 
facts is facilitated by acquiring conceptual and procedural knowledge when using 
counting and reasoning strategies prior to building fluency (Baroody et al., 2009). 

Balancing conceptual understanding (i.e., understanding mathematical concepts 
and relations) and procedural fluency (i.e., ability to execute procedures efficiently 
and flexibly and appropriately) instruction is required for developing mathematics 
proficiency (NCTM, 2000). When students acquire conceptual understanding, it 
allows them to recognize the relation among number combinations, know more 
than isolated facts, and learn new facts better by connecting them to known facts 
(National Research Council [NRC], 2001). Furthermore, the NRC suggests that the 
mathematical concepts and procedures learned with understanding aid long-term 
retention because facts forgotten may be more easily retrieved from memory if the 
individual is able to connect ideas and see an existing pattern between new and 
known facts. For example, knowing 4 + 4 = 8 (a doubles fact) may help a student 
calculate 4 + 5 = 9 quickly by adding 1 more to 4 to make the sum 9. Consequently, 
meaningful memorization activities may assist students in moving from mere recall 
of facts with accuracy to recall with fluency and application of facts when solving 
nonroutine problems. 

4.2 Typical Developmental Trajectories 

Knowing the typical developmental trajectories for fact knowledge acquisition has 
direct implications for how and what instructional supports and interventions are 
required to promote mathematical proficiency (Allsopp et al., 2007). Typically 
developing children follow a sequential developmental pattern, although all children 
do not progress at the same rate (National Association for the Education of Young



Children, 2009). According to Baroody et al. (2009), typically developing children 
progress through three developmental phases to attain proficiency in basic number 
combinations. These phases include counting strategies, reasoning strategies, and 
fluency mastery (for details, see Fig. 4.1). Baroody emphasized that children possess 
the skills to construct new ideas from already existing knowledge and, thereby, can 
make meaningful associations for fact recall rather than relying only on rote mem-
orization. Baroody’s work also confirms that children typically progress from using 
concrete objects and verbal counting to using reasoning strategies, both of which 
appear to be prerequisites or requisites for development of basic fact fluency. 
However, children with mathematics difficulties may not follow the same develop-
mental sequence due to their cognitive deficits in working memory or ineffective 
educational experiences (Baroody et al., 2009). Knowing more about the specific 
weaknesses in mathematics performance may assist educators in providing inter-
vention pertinent to student needs (Gersten et al., 2005). 
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4.3 Development of Fact Fluency Among Children 
with Mathematical Difficulties 

Children with mathematics difficulties (MD) commonly are those children with 
either a formal diagnosis of learning disabilities in mathematics or who are at risk 
of developing mathematics disabilities (Powell et al., 2013). Moreover, children with 
mathematics disabilities constitute a heterogeneous group with problems in different 
mathematical areas or have other comorbidities. Dyscalculia is a widely used term 
for children with mathematics disabilities. However, it primarily refers to children 
who have difficulty performing early mathematics skills, such as number sense, 
counting, and calculation, leading to long-term problems with mathematics facts 
recall (Geary, 2006). Mathematics disabilities may also co-occur with reading 
disabilities (Hanich et al., 2001), resulting in the slower acquisition of mathematical 
competence than children with mathematics disabilities only (Gersten et al., 2005). 
While reading disability is a broad term for students experiencing problems in 
reading individual words and understanding text, dyslexia is a type of reading 
disability affecting early reading skills, such as sounding out words, calling out 
words quickly, and understanding written words that can lead to problems with text 
comprehension (Hulme & Snowling, 2016). We use the term MD to refer to this 
larger group of students experiencing difficulties in the area of mathematics. Studies 
may not distinguish between participants with and without identified mathematics 
disabilities or comorbidities, or researchers may choose to combine participant 
findings, in part, because some students at risk may not yet have received a formal 
diagnosis. 

Many children with MD experience working memory deficits that may interfere 
with their ability to retrieve and recall facts fluently, thereby affecting their perfor-
mance on higher order mathematical skills (Geary, 2004). According to Baddeley
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Fig. 4.1 Three phases in typical fact knowledge acquisition. (Source: Adapted from Baroody, 2006 
& Baroody et al., 2009)



(1986), working memory is a system for temporarily storing information in the brain 
and associating it with some information for performing other cognitively demand-
ing tasks. For example, working memory involves keeping a basic fact or formula in 
mind and using it to solve a multistep word problem. Due to working memory 
deficits, children with MD may remain at a finger counting stage, rather than moving 
to reasoning stage to derive answers to number combinations and, consequently, 
may fail to retrieve basic facts effortlessly from memory (Jordan & Montani, 1997). 
Hence, when mathematics facts are timed, children with MD perform more poorly 
compared to typical achievers because they are expected to retrieve facts from 
memory quickly and accurately (Jordan & Montani, 1997) instead of being able to 
rely on immature backup strategies, such as finger counting (Geary, 2004). Recog-
nizing that a subgroup of students who are low achieving in mathematics have 
demonstrated deficits in fact retrieval similar to students with identified mathematics 
disabilities (Geary et al., 2012a), proficient fact retrieval remains a common concern. 
Similarly, children with comorbid mathematics and reading disabilities have trouble 
with basic mathematics fact retrieval when timed (Hanich et al., 2001).
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4.4 Importance of Developing Fact Fluency 

Improving fact fluency is significant for developing mathematics competency in 
advanced mathematics skills, such as solving multidigit computation and fractions 
(Hasselbring et al., 1987; NMAP, 2008). For children with MD due to working 
memory deficits, it may be cognitively challenging to connect ideas and see relations 
among number combinations, thus interfering with storage of information as declar-
ative knowledge (i.e., 5 × 3 = 15 & 15 ÷ 3 = 5) and affecting long-term retention, 
including recall of facts with automaticity (Hasselbring, 1988). Emphasizing the use 
of efficient strategies (e.g., commutative properties) to answer number combinations 
may make recall of basic facts more efficient and consistent in working memory, 
thus facilitating long-term retention for quick and effortless retrieval (Fuchs et al., 
2008; Goldman & Pellegrino, 1987). Consequently, children with MD may need 
intervention early in building fact fluency. Students lacking fact fluency may expend 
cognitive resources just to retrieve facts from working memory, which, in turn, 
makes demands on cognitive resources more daunting when performing complex 
tasks (Goldman & Pellegrino, 1987). Fact fluency may free up cognitive load for 
retrieving facts quickly and efficiently and for promoting transfer and generalization 
of skill to novel situations (NRC, 2001). Additionally, when students are able to 
retrieve facts quickly and accurately, their frustration and anxiety may be reduced 
when solving complex mathematics problems (Cates & Rhymer, 2003). Moreover, 
when students with MD have trouble recalling facts from memory, they rely overtly 
on immature strategies, such as finger counting or using concrete objects for 
retrieving facts; when they discover that deriving answers via counting strategies 
provides a correct solution, they may continue to use these inefficient and time-
consuming strategies to retrieve answers (Hasselbring, 1988). Most typically



developing children begin retrieving facts from memory automatically by third grade 
(Fuchs et al., 2008). When children experience challenges recalling facts with 
automaticity at the beginning of third grade, strategies for delivering fluency inter-
vention to prevent widening of the achievement gap between students with and 
without MD each year may need to be considered. 
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4.5 Evidence-Based Instructional Intervention Strategies 
for Fluency Building 

Fuchs et al. (2008) recommended that repetitive practice of basic skills (e.g., 
arithmetic facts) with feedback is an important mathematics intervention principle 
for developing automatic recall of basic mathematics facts. For students who 
struggle, intervening early with strategies that embed brief, frequent, and timed 
practice may facilitate the shift from concrete to mental representations to promote 
automaticity of basic mathematics facts (Gersten et al., 2005; Daly et al., 2007). 
Moreover, fluency activities that incorporate ample opportunities to practice are 
recommended for basic fact fluency (NMAP, 2008). However, Hasselbring et al. 
(1987) argued that efficient recall of basic facts often transpires when children 
develop reasoning strategies and understand the association between number pairs 
before engaging in practice activities. Because students with learning disabilities 
often are poor strategic learners, explicit instruction in using specific strategies may 
be beneficial in overcoming their strategic deficits (Montague, 2008). 

Evidence-based rehearsal activities or strategies that incorporate the critical 
components of an explicit instructional approach support basic fact knowledge 
acquisition at the student’s instructional level. Explicit instruction is an evidence-
based, systematic, direct, and concise approach to teach students through demon-
stration, guided practice, and independent practice (Archer & Hughes, 2011). Some 
critical components of effective practice strategies include multiple opportunities to 
respond with immediate corrective feedback (Pool et al., 2012), timed, distributed 
practice (Fuchs et al., 2019), and reinforcement (Daly et al., 2007). For example, 
fluency intervention strategies that incorporate these components include Cover, 
Copy, Compare; Taped Problems; and Detect, Practice, Repair (see Table 4.1 for 
additional information). The importance of incorporating these elements in inter-
vention is supported by a meta-analytic review conducted by Codding et al. (2011) 
on basic mathematics fact fluency interventions for students with mathematics 
difficulties. This review revealed that fluency interventions incorporating compo-
nents of repeated practice, corrective feedback, and reinforcement demonstrated the 
largest effect sizes. 

Although these fluency interventions have variations in procedures, they use an 
explicit instructional approach to practice new facts. These practice activities pro-
vide students with multiple practice opportunities to master the new facts, immediate 
error correction, and assessment to evaluate student response to intervention (Joseph 
et al., 2012b; Poncy et al., 2013).
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Table 4.1 Mathematics fact fluency interventions 

Intervention Cover, copy, compare Taped problems Detect, practice, repair 

Description An evidence-based, self-
monitoring strategy 
developed by Skinner 
et al. (1989). 

An evidence-based, self-
monitoring strategy orig-
inally developed by Free-
man and 
McLaughlin (1984). 

An evidence-based prac-
tice activity for improv-
ing fact fluency that 
focuses on a test-teach-
test strategy (Poncy 
et al., 2006). 

Procedure Student views the number 
combination and its 
answer, covers up the 
problem and the solution, 
writes the problem and 
the solution from mem-
ory, uncovers the prob-
lem and the solution, and 
compares the student’s 
response with the model. 
If the response is correct, 
the student moves to the 
next problem. If not, the 
student writes the prob-
lem and solution three 
times. 

Student (a) listens to the 
problem read, (b) writes 
the answer to the problem 
on a sheet of paper before 
the tape recorder answers, 
(c) listens to the answer 
provided by the audio 
tape that employs a time 
delay, (d) writes a slash 
on the response if incor-
rect and writes the correct 
response as heard on the 
tape, and (e) continues to 
listen to the next problem. 

Students complete a 
timed pretest containing 
a prescribed number of 
problems. They are 
given a short interval of 
time to answer each fact 
(i.e., 1 minute and 
30 seconds across the 
pretest). The first five 
unanswered items from 
the pretest are selected 
for practice using the 
cover, copy, compare 
method with both verbal 
and written responses. 
Then, students have the 
opportunity to repair 
their performance. 

Empirical 
support 

Findings from research 
studies (Joseph et al., 
2012b; Skinner et al., 
1997) reveal the efficacy 
of the intervention in 
improving fact fluency 
among struggling 
learners 7–14 years old. 

Data from McCallum 
et al. (2004) demon-
strated an increase in fact 
fluency among elemen-
tary students 8–10 years 
of age with MD. 

Studies (Parkhurst et al., 
2010; Poncy et al., 2006, 
2013) that investigated 
the efficacy of the inter-
vention demonstrated 
improved fact fluency 
among low-achieving 
students 8–10 years old 
in need of remediation in 
basic facts. 

In addition, these fluency interventions can be implemented in any educational 
setting, such as general education or special education settings, and especially 
among children who typically are practicing fact fluency. These strategies may be 
used independently by students who make a decision about fact accuracy based on 
the answer that is provided as a part of the materials. Elementary-aged students are 
expected to have memorized addition, subtraction, multiplication, and division facts 
(Common Core State Standards, 2010). However, some students enter middle school 
without sufficient fact retrieval, which may interfere with strategies used for problem 
solving. Fluency interventions may benefit these older middle or high school 
students with MD, as fluency in basic skills supports solving higher order mathe-
matical problems, such as problems involving fractions, decimals, ratios, algebra, 
and statistics.
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4.6 Incremental Rehearsal Strategy 

Although these fluency interventions described may be implemented feasibly in 
most educational settings among most school-age children, interventions vary based 
on their level of instructional intensity and implementation time. For example, 
standard fluency interventions that students may use independently, may not be 
sufficient for students with MD who experience severe and persistent mathematics 
difficulties. Students with greater difficulties may benefit from repeated, intensive, 
one-on-one practice, using evidence-based intervention (Powell & Fuchs, 2015). 

Incremental rehearsal (Tucker, 1989) is another evidence-based fluency interven-
tion strategy that incorporates essential components of the explicit instructional 
approach. The intensity of incremental rehearsal procedures makes it an appropriate 
strategy to highlight in this chapter focused more on students with intensive needs in 
mathematics. Studies of incremental rehearsal reveal consistent improvement in 
mathematics fact fluency among students with (e.g., Burns, 2005) and without 
disabilities (e.g., Burns et al., 2016) as well as contributions to better retention, 
efficiency, and generalization effects (e.g., Burns, 2005; Codding et al., 2010; 
MacQuarrie et al., 2002). 

Incremental rehearsal uses a simple flashcard technique and is unique and distinct 
compared to other practice strategies described because of the interspersal of a high 
percentage of known facts (i.e., facts already recalled accurately within 0–2 s) with 
new facts (i.e., facts not able to be recalled accurately in 2 s). Repetition and 
incremental spacing of the new facts during the practice session provide multiple 
opportunities for practice and feedback on only a few new facts. It also requires 
students to rehearse previously known facts to reduce cognitive load during 
rehearsal. This strategy appears to support the transfer of newly learned facts from 
short-term to long-term memory for automatic retrieval later (MacQuarrie et al., 
2002; Stein et al., 2018). This high percentage of known facts with only a few new 
facts targeted per practice session also may reduce potential student anxiety and 
frustration. In contrast, students typically work on only new, unlearned facts in other 
fluency drill methods (e.g., Cover, Copy, Compare). However, students with MD 
who have working memory deficits may require a more intensive, individualized 
intervention. Incremental rehearsal, which uses repeated and spaced practice with 
only a few new items presented and practiced one at a time, may be selected for more 
intensive practice to promote automatic retrieval of basic facts. 

4.6.1 Research Supporting the Incremental Rehearsal 
Strategy 

Many studies support the effectiveness of the incremental rehearsal strategy for 
developing automaticity in various academic areas, for example, in reading (letter 
identification, Bunn et al., 2005; sight words, Kupzyk et al., 2011), writing (spelling,



Garcia et al., 2014), and mathematics (basic facts, Burns, 2005). The effectiveness 
and efficiency of this strategy also have been investigated among children with and 
without disabilities and English language learners (e.g., DuBois et al., 2014; Haegele 
& Burns, 2015; Rahn, 2015) across different grades (e.g., preschool, Bunn et al., 
2005; elementary, Codding et al., 2010; middle, Zaslofsky et al., 2016), and using 
different delivery methods (e.g., flashcards, Nist & Joseph, 2008; computer-assisted 
instruction, Volpe et al., 2011a). 
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Some studies comparing incremental rehearsal to other flashcard techniques 
showed mixed findings. However, most studies in reading (Burns & Boice, 2009; 
Burns & Sterling-Turner, 2010; Joseph et al., 2012a) reported incremental rehearsal 
as an efficacious method for retention, maintenance, and generalization compared to 
the traditional drill model that focused solely on new words. Only a few studies 
(Mule et al., 2015; Volpe et al., 2011b) reported that the traditional drill model was 
effective. 

Compared to the number of studies using incremental rehearsal in reading, 
investigations for mathematics fluency building are far fewer. However, findings 
from mathematics studies (i.e., Burns, 2005; Burns et al., 2016, 2019; Codding et al., 
2010) suggest that incremental rehearsal is an effective strategy for building math-
ematics facts fluency for students with MD compared to the more traditional drill. 
Incremental rehearsal is effective because it integrates features that appear important 
for facilitating shorter latencies (i.e., the interval between fact presentation and 
student response), supporting long-term retention, and reducing frustration. These 
features include (a) providing multiple opportunities to practice on a small set of new 
facts critical for student accuracy and retention, (b) using a timing feature that 
supports faster fact retrieval, and (c) practicing with a high percentage of known 
facts to new facts presented in increments to help students maintain previously 
learned items while also providing the opportunity for many correct responses within 
the session, thereby increasing motivation and reducing frustration. 

The following hypothetical vignette illustrates when a teacher may select incre-
mental rehearsal as an intervention for a student with intensive needs in mathemat-
ics. Following the vignette is a description of the steps of the incremental rehearsal 
strategy. 

Derek is an 11-year-old, sixth-grade student at Beachside Middle School. He 
has an identified learning disability in mathematics and receives special 
education services. Derek’s special education teacher, Mrs. Valdez, recog-
nizes his need for intensive intervention. She initially was concerned about 
Derek’s lack of progress in solving multidigit addition, subtraction, multipli-
cation, and division calculations. She noted that Derek had acquired under-
standing of the operations but used finger counting and/or tally marks to 
derive answers to basic number combinations. Although he was generally 
accurate, he was very slow in figuring facts and continued to have trouble 

(continued)



solving multidigit problems (e.g., 2843–1962 =?). When solving multidigit 
problems, such as problems with renaming, Mrs. Valdez noticed that Derek 
reverted to immature strategies, such as finger counting, to recall facts instead 
of retrieving answers to basic facts from memory. Mrs. Valdez speculated that 
finger counting was interfering with Derek’s ability to solve complex problems 
accurately and that a more intensive one-on-one intervention to practice 
target facts may facilitate faster and more accurate recall of basic facts. 
Mrs. Valdez knew that repeated practice using evidence-based rehearsal 
strategies can increase accurate and fast recall, leading to better long-term 
retention. Mrs. Valdez decided to use the incremental rehearsal strategy to 
help Derek recall facts with automaticity, which, in turn, may lead to improve-
ment with solving multidigit computational problems. With incremental 
rehearsal, she knew that the design of a high percentage of already fluent 
facts interspersed with only a few target facts potentially may reduce anxiety, 
increase accuracy, and improve motivation, especially as compared to other, 
more typical rehearsal strategies. She thought that obtaining correct answers 
on his previously learned facts from prior practice sessions may motivate 
Derek to practice current new facts. 
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4.6.2 Steps for Implementing Incremental Rehearsal 

Implementation of the incremental rehearsal procedure takes approximately 12–20 
mins. Knowing the specific facts to present is essential, because the hallmark of 
intensifying intervention is tailoring instruction to meet the individual needs of the 
students. Prior to implementing incremental rehearsal, the teacher pretests the 
student by presenting each number combination from the relevant operation or 
operations to determine the facts to address. Each fact is printed on a flashcard 
without the answer, is shuffled with all the cards, and is presented one at a time. A 
two-second latency between the stimulus and response is allowed. When the student 
states the correct response within 2 s, the card is placed in the Fluent stack. If the 
student gives an incorrect response or fails to respond within 2 s, then the card is 
placed in the Target stack. 

An intentional, systematic approach can be used when selecting new facts for a 
practice session. For example, the teacher selects a few target facts by basing them 
on the student’s prior knowledge of related facts (e.g., 3 + 2, 2 + 3) and their 
reversals or using a specific series of facts (e.g., 3 + 2, 4 + 2, 5 + 2). Students with 
MD may benefit if a small set of target facts (i.e., not more than three or four) are 
introduced during each practice session to facilitate easy storage of number combi-
nations for efficient and accurate recall later (Hasselbring et al.,1988). When



selecting already fluent facts, the total number may vary and may be selected 
randomly from the Fluent stack. 
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During practice, a high percentage (i.e., 85% to 90%) of fluent facts (i.e., facts 
recalled accurately within 0–2 seconds) is presented with one target fact (i.e., 
difficulty recalling facts accurately within 2 seconds) during each session. Spacing 
the interval of fact presentation by gradually expanding the number of known facts 
between the presentation of the same target fact helps establish the student’s 
declarative knowledge. Studies that investigated incremental rehearsal with basic 
mathematics fact fluency used 7, 8, or 9 fluent facts interspersed with 1 target fact 
with success (Burns, 2005; Burns et al., 2016, 2019). Additionally, a recent disser-
tation study (Johnson, 2020) investigated the efficacy of incremental rehearsal for 
improving fact fluency using 6 fluent facts interspersed with one target fact and 
showed promising results. Thus, teachers may choose to alter the total number of 
fluent facts (i.e., 6–9 fluent facts) presented with a single target fact. One of the key 
features of incremental rehearsal is expanded practice using a less challenging ratio 
of known to new items (i.e., greater than 50% of known facts) to aid student retention 
(MacQuarrie et al., 2002). Thus, teachers may individualize instruction by varying 
the number of fluent facts presented depending on the availability of practice time 
and the functioning level of each student. 

Incremental rehearsal follows an explicit instructional approach that includes 
modeling the target facts one at a time, allowing multiple opportunities to rehearse 
the target facts, and providing corrective feedback. During modeling, the teacher 
models each target fact and its correct response. Then, the student is asked to repeat 
by stating the target fact and its correct response, first with a prompt (e.g., teacher 
said, “three minus two equals how many?” and the student said, “one”), and then 
without any prompt (e.g., the student said, “three minus two equals one”). Next, the 
longest part of the session is corrective practice. The teacher shows fact cards one at 
a time that have been sequenced according to incremental spacing between the target 
fact and already fluent facts. Initially, the student is expected to provide a correct 
response within 2 or 3 seconds (as set by the teacher) for each fact presented. The 
response time (i.e., the time between the presentation of the fact and the student’s 
response) may vary based on the performance level of the child. That is, the teacher 
may start with 3 s as the latency allowed during the first session. However, response 
time may be reduced from 3 s to 2 s in subsequent practice sessions to wean children 
away from using counting strategies and encouraging them to retrieve answers 
automatically (Hasselbring, 1988). Eventually, students should be able to respond 
within 1 s of seeing the flash card to demonstrate mastery of the fact. 

The practice session is completed after all the target facts (e.g., three or four target 
facts) have been practiced while being interspersed with the selected known facts. 
For example, if three facts are targeted, only one new fact is chosen to be practiced 
first and is interspersed with the known facts. Keeping to the same order of already 
fluent facts, the teacher presents the student with a target fact, then one known fact, 
then the target fact, then two known facts, the target fact again, then three known 
facts, and so forth until all 6–9 selected known facts have been used. When practice 
of the first target fact has concluded, another cycle of practice with the second new



fact occurs. Last, a cycle of practice occurs with the third new fact. When a student 
misses a fact or fails to recall accurately within the required seconds, the fact is 
modeled. The student repeats the fact with the correct answer and then rehearses it a 
few times without any prompt. 
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At the end of each practice session, a timed written assessment (e.g., a 2-minute 
test of all facts in the designated operation) is administered to determine overall 
fluency and generalization of facts. The total number of facts answered correctly 
within the specified time is recorded and graphed to determine whether overall 
fluency increases with incremental rehearsal practice across sessions. As students 
practice more and more new facts, they should see their progress on the total pool of 
facts increase. Because the assessment is written, latency is not evaluated for each 
fact. However, the purpose of the written assessment is to gauge overall fluency and 
progress over time. 

If a student has difficulty responding accurately, the target facts practiced in a 
session could be rehearsed again in subsequent sessions to improve automaticity. 
When new target facts are selected, the target facts rehearsed in previous sessions 
become labeled as fluent facts to be used in subsequent practice sessions. In this way, 
the initial target facts continue to get practiced in subsequent sessions until enough 
new facts replace the original fluent facts. Consequently, presentation of the same 
target facts across several sessions as well as repeated practice on the same facts 
within a practice session provide multiple, distributed opportunities for practice and 
feedback. This relatively brief but consistent timed practice 3–4 times a week may 
bridge the gap between fact accuracy and fact fluency. 

Figure 4.2 provides the specific steps and sequence for interspersing three target 
facts used with six fluent facts for one practice session. The incremental rehearsal 
procedure outlined in the figure is adapted from Tucker (1989) and Burns (2005) and 
was used in the Johnson (2020) dissertation study investigating the effectiveness of 
incremental rehearsal for improving subtraction fact fluency among elementary 
students with mathematics difficulties. Johnson selected subtraction facts because 
no other work had addressed subtraction fact fluency. Further, developing fluency in 
all four mathematics operations, including subtraction facts (Common Core State 
Standards, 2010) before entering middle school is critical for computing higher-
order mathematical problems, such as geometry, fractions, algebra, probability, and 
statistics. 

Johnson modified some features from the Tucker (1989) and Burns (2005) 
strategies. Although several of these features were explained more fully as a part 
of the incremental rehearsal procedures detailed above, they are outlined here. First, 
she used only six fluent facts to make the practice sessions briefer (i.e., rather than 
using 7–9 fluent facts). Second, she used an intentional, systematic approach for 
selecting new facts (i.e., rather than using random selection) to support more 
meaningful memorization. Third, she provided two days of practice on the same 
set of new facts, rather than changing facts each session. However, she altered the 
response time allowed during these two practice sessions by starting with 3 s for the 
first day and reducing the acceptable response time to 2 s on the second day. Last,



she included the same facts that had been presented previously as new facts as 
“fluent facts” in subsequent practice sessions. In this way, students were given 
additional opportunities to practice these newer facts across time (i.e., distributed 
practice across multiple practice sessions) rather than dropping them after their initial 
practice. These incremental rehearsal features appeared promising. Even though the 
study was not completed due to the school’s sudden transition to virtual instruction, 
positive trends in performance were observed across students. 
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T1-F1 
T1-F1-F2 
T1-F1-F2-F3 
T1-F1-F2-F3-F4 
T1-F1-F2-F3-F4-F5 
T1-F1-F2-F3-F4-F5-F6 

1. Present the first target fact, and the student answers aloud. 

2. Present the first fluent fact, and the student answers it correctly. 

3. Present the first target fact again, and the student answers it 

correctly. 

4. Present the first fluent fact. 

5. Present the second fluent fact. 

6. Present the target fact again. 

7. Present the first, second, and third fluent facts one after the other. 

8. Present the first target fact again. 

9. Present the first, second, third, and fourth fluent facts. 

10. Present the first target fact again. 

11. Complete this sequence of presenting the first target fact with 

all six fluent facts. 

………………………………………………………………………. 

T2-PT1 
T2-PT1-F1 
T2-PT1-F1-F2 
T2-PT1-F1-F2-F3 
T2-PT1-F1-F2-F3-F4 
T2-PT1-F1-F2-F3-F4-F5 

12. Replace the first target fact with the second target fact. The first 

target fact now becomes the first fluent fact; the first fluent fact 

becomes the second fluent fact, and the second fluent fact becomes 

the third fluent fact, and so on. Remove the last fluent fact. 

13. Model and practice the second target fact as the new first target 

fact. 

14. Complete this sequence of presenting the second target fact with 

the six fluent facts. 

………………………………………………………………………. 

15. Replace the second target fact with the third target fact. The 

second target fact is now the first fluent fact; the first fluent fact 

(i.e., the old first target fact) becomes the second fluent fact; 

remove the last fluent fact from the previous cycle. 

16. Model and practice the third target fact. 

17. Complete this sequence of presenting the third target fact with 

the six fluent facts. 

18. The process is repeated until all the target facts have been 

practiced in the session. 

•

•

Any time the student misses a fact or fails to answer 

within the allotted 3 or 2 seconds, the interventionist 

models the fact (statement and answer) and asks the 

student to read the statement and answer correctly. 

The total number of flashcards in the deck is always 7 

(i.e., six fluent facts and one target fact). 

T3-PT2 
T3-PT2-PT1 
T3-PT2-PT1-F1 
T3-PT2-PT1-F1-F2 
T3-PT2-PT1-F1-F2-F3 
T3-PT2-PT1-F1-F2-F3-F4 

Fig. 4.2 Incremental rehearsal procedure note. T1, T2, and T3 = target facts 1, 2, and 3; F = fluent 
fact; PT = previous target fact. (Source: Adapted from Tucker (1989) and Burns (2005))
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Mrs. Valdez worked with Derek for 15 minutes daily four times a week using 
the incremental rehearsal strategy. After a few weeks of this intensive indi-
vidualized intervention, Derek not only became more fluent on targeted facts, 
but he started to show improvement in solving multidigit computation prob-
lems. It appeared that incremental rehearsal helped Derek recall and retain 
the targeted facts. Further, due to the interspersing of the high percentage of 
already fluent facts, Derek had many opportunities to experience correct 
responses during the practice trials, providing both important review and 
appearing to motivate Derek to continue practicing using incremental 
rehearsal. Mrs. Valdez was pleased with Derek’s performance and progress 
over time and was excited about sharing his success using incremental 
rehearsal with her colleagues. 

4.6.3 Implications for Classroom Practice 

The incremental rehearsal strategy has several implications for classroom use. 
Teachers use an explicit instructional approach (Archer & Hughes, 2011) for 
practice, which is the most commonly recommended approach for teaching any 
content area effectively for students who need more intensive intervention, including 
both students identified with or who are at risk for mathematics disabilities. Some of 
the features of explicit instruction imbedded in incremental rehearsal include model-
ing the target fact prior to the target fact practice; scaffolding instruction, which 
appears, in part, through the interspersing of target facts during practice; practicing 
the same target facts multiple times, distributed across occasions, and providing 
corrective feedback. All these features likely contribute to improved fact fluency. 

Incremental rehearsal intervention is intensive because the new information is 
selected based on student performance and is practiced repeatedly across time in a 
systematic way. This distributed practice spaced over time promotes automatic recall 
of basic facts (Hasselbring, 1988). Specifically, the incremental nature of practice 
facilitates movement of the new item from short-term to long-term memory (Nist & 
Joseph, 2008). In addition, the intensive, individualized, and repeated practice used 
in incremental rehearsal is the hallmark of effective instructional practice used 
among students with severe and persistent needs. 

As suggested by Hasselbring (1988), the small number of facts used in the 
incremental rehearsal supports easy storage of facts for quick and accurate retrieval 
later. For students with MD who experience deficits in working memory, this 
practice strategy may be especially important. Incremental rehearsal implementation 
is cost-effective because it utilizes simple flashcards with an easy system for 
recording student responses. Thus, teachers, paraprofessionals, or parents could 
serve as an interventionist during individualized practice sessions. The



interventionist should understand the underlying principles upon which these treat-
ment procedures were developed if fidelity of implementation and similar positive 
results as those obtained in research are expected in classroom settings. 
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Although incremental rehearsal implementation is feasible and practical, inter-
ventionists implementing this rehearsal strategy may require some initial practice 
and training, so materials are prepared and sequenced accurately. Additionally, 
implementation potentially could be time-consuming when used across multiple, 
individual students. To mitigate this limitation, a technology-based application for 
implementing incremental rehearsal strategy could be developed. The use of digital 
mobile devices (e.g., smartphones, iPad®) in delivering mathematics instruction has 
gained attention (NCTM, 2000; NMAP, 2008), particularly in special education 
settings (Ok et al., 2019). In addition to portability and use with multiple students 
simultaneously, benefits of a digital system with incremental rehearsal may include 
the ability to more easily track student progress, provide immediate feedback, and 
enhance student motivation (Musti-Rao & Plati, 2015). Though we are not aware of 
current applications for incremental rehearsal, the potential advantages of using 
mobile digital devices for reducing teacher time during implementation and man-
agement of student data may prompt additional research and development. 

4.7 Summary 

Intervention support in basic skills, such as basic fact fluency, is imperative because 
it influences students’ mathematical outcomes later (Gersten et al., 2009). Given that 
approximately 7% of school-aged children have learning disabilities in mathematics 
and 10% of students are low achieving in mathematics (Geary et al., 2012b), 
mathematics disability is considered a high-incidence disability, and teachers in 
general education may have at least several students with MD in each class. Recent 
data from the National Center for Educational Statistics (2017) indicated no marked 
improvement in the fourth- and eighth-grade students’ mathematics proficiency 
compared to previous years; thus, instructional support and interventions to foster 
mathematics fact fluency appear vital. Moreover, research supports the benefit of  
using individualized, intensive intervention to improve basic mathematics facts 
fluency for students with MD. Fluency intervention strategies for promoting fact 
fluency, especially the incremental rehearsal strategy discussed in this chapter, may 
be beneficial for practitioners who seek resources for developing fact fluency and 
potentially improving a student’s overall achievement in mathematics. 
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Chapter 5 
The Development of Arithmetic Strategy 
Use in the Brain 

Merel Declercq, Wim Fias, and Bert De Smedt 

Abstract Arithmetic development is quintessential for learning more advanced 
mathematics. A key aspect of arithmetic development is a shift from calculation-
based procedural strategies to memory-based fact retrieval. For example, children 
start to learn 3 × 4 by adding 4 + 4 + 4, which is an example of a procedure. After 
enough repetitions, this becomes an arithmetic fact. This chapter will review the 
scarce but growing evidence on how arithmetic strategy development in primary 
school children is reflected in the brain and how its functional networks change over 
development. The brain network in children recruited for doing arithmetic includes 
frontal, parietal, occipital-temporal and medial-temporal areas, with different foci 
depending on the strategy. We discuss studies that have compared different ages as 
well as longitudinal research. We review the results of brain imaging research that 
has examined the effects of educational interventions and experimental manipula-
tions of arithmetic strategy on children’s brain activity. Such intervention and 
experimental studies are critical to unravel the brain mechanisms underlying the 
successful learning of arithmetic. On a broader note, such studies are able to assess 
the impact of real-world learning on brain activity patterns and therefore provide an 
excellent foundation to further the field of educational neuroscience. 
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5.1 The Development of Arithmetic Strategies 

Arithmetic skills are crucial to navigate through the grown-up world as adults are 
surrounded by numbers. For example, arithmetic skills are needed to manage a 
budget or to catch a train on time. To master arithmetic, children need substantial 
training during formal education to develop adequate arithmetic knowledge. As 
such, arithmetic skill development represents a core subject of the curriculum in 
primary schools. To support this skill acquisition, it is important to understand the 
development of these arithmetic skills not only at the level of behavior but also at the 
level of the brain, which is the key focus of the current chapter. This investigation at 
multiple levels of analysis has the potential to reveal a more complete theoretical 
understanding on how children acquire arithmetic knowledge. This knowledge may 
in turn serve as a ground for the design of effective educational interventions (e.g., 
Howard-Jones et al., 2016). 

Previous research has already taken great steps in understanding how children 
first learn to solve arithmetic problems (Siegler, 1996; Verschaffel et al., 2007). In 
general, children’s development in arithmetic is characterized by a change in 
strategy selection and efficiency (Lemaire, 2018; Siegler & Shrager, 1984). At 
first, children learn to solve basic arithmetic problems with simple counting strate-
gies (e.g., 1, 2 and 3, 4, 5 to solve 2 + 3, or counting-on). Within these counting 
strategies, children gradually develop more efficient strategies, such as counting on 
from the larger number (e.g., 3, 4, 5 to solve 2 + 3, or counting-on-larger), either 
using these counting strategies with or without the aid of finger-based numerical 
representations (Geary et al., 1992). These counting procedures pave the way to 
learn more complex procedural strategies also known as decomposition strategies, 
where advanced number manipulations are used to solve arithmetic problems. 
Common to these procedural strategies is that children use their understanding of 
numbers to decompose problems into smaller or more common ones that are easier 
to answer. Examples of such decomposition strategies include strategies to cross 
10 in addition and subtraction (such as 7 + 5 = 7 + 3 + 2) or derived fact strategies 
(e.g., 6 × 4 = 18 + 6, if the child knows already 6 x 3 and understands that it needs to 
add the remainder). 

While the abovementioned decomposition strategy can be used in all four oper-
ations, some of these more advanced procedural strategies are operation-specific. 
One example is that subtraction problems are sometimes solved using the indirect 
addition strategy (Torbeyns et al., 2009), where subtraction problems are answered 
by asking how much needs to be added to the subtrahend to arrive at the minuend 
(e.g., solving 71–59 through 59 + 12 = 71). Another example is the occurrence of 
repeated addition strategies (e.g., 6 × 4 = 6 +  6 (=12) + 6 = (18) + 6 = 24) in the 
context of multiplication. 

Because primary school education puts so much emphasis on being fluent in 
arithmetic (European Education and Culture Executive Agency et al., 2015), specific 
arithmetic exercises are repeated and rehearsed many times over the course of 
development. Through this frequent exposure, problem-answer associations are



formed and these are labeled as arithmetic facts when they are stored in long-term 
memory (Siegler, 1996; Siegler & Shrager, 1984). As a result of more frequent fact 
retrieval, less working memory is consumed, fewer errors are made and less time is 
needed to arrive at the solution of the arithmetic problem as compared to the more 
time-consuming procedural strategies (e.g., Bailey et al., 2012). Although this 
transition from procedure use to fact retrieval occurs for all arithmetic operations, 
there are differences in the frequency of retrieval between the different operations 
(Vanbinst et al., 2012), with multiplication being the operation where retrieval is the 
most common (Campbell & Xue, 2001; Imbo & Vandierendonck, 2008). This 
transition to arithmetic fact retrieval of single-digit arithmetic problems is a neces-
sary step to be able to execute more advanced and more difficult calculations, 
because fact retrieval relies less on cognitive systems, such as working memory, 
and allows more cognitive resources to be recruited for the added difficulty. 
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The change in children’s strategy use is not a sudden transition, but a slow and 
gradual evolution over time. This is summarized in the overlapping waves theory 
(Siegler, 1996), which posits that all strategies remain available over development, 
but that the frequency with which certain strategies are used changes across devel-
opment (Bailey et al., 2012; Jordan et al., 2003). When children advance to a new 
strategy, they do so because it improves the efficiency of arithmetic problem solving 
through increased accuracy and decreased response times (Barrouillet et al., 2008; 
Barrouillet & Fayol, 1998). The use of a new strategy does not mean that the old 
strategy is not being employed anymore. Rather, a new strategy allows for more 
efficient strategy selection for each individual problem. Over time, fact retrieval 
becomes the dominant strategy for single-digit arithmetic (Siegler, 1996), particu-
larly in multiplication. 

It is important to point out that this transition from procedures to retrieval use 
remains a hotly debated topic in the mathematical cognition literature. An alternative 
account posits that the repeated exposure to arithmetic problems does not necessarily 
lead to arithmetic fact retrieval but rather to the use of compacted fast procedures 
(Barrouillet & Thevenot, 2013; Uittenhove et al., 2016). Proponents of this account 
claim that the fast response times that are seen when solving arithmetic problems 
may not exclusively be explained by the emergence of fact retrieval (Baroody, 1983, 
1994). Instead, such automatization might also occur because the procedures that are 
used to solve a problem become fast and automatized, also leading to a decrease of 
response time and an increase in accuracy. These internally executed fast procedures 
happen so quickly and subconsciously that the person solving the problems is not 
aware of them and instead believes they retrieved the answer from memory. 

5.2 Arithmetic Strategies in the Developing Brain 

The ability to execute different arithmetic strategies relies on a plethora of 
neurocognitive systems and brain regions that need to work together and that require 
to be coordinated meticulously. These regions have already been extensively



described and summarized in adults (Arsalidou & Taylor, 2011; Menon, 2015). 
More specifically, brain imaging studies that have used experimentally manipulated 
transitions in strategy use via an arithmetic drill paradigm simulated the development 
of strategy use in adults (see Zamarian & Delazer, 2015 for a review). Combining 
this experimental strategy manipulation with brain imaging techniques, these studies 
are able to draw causal conclusions on the different neural systems that support 
different arithmetic strategies. It is critical to emphasize that these findings from 
adults cannot be merely generalized to children (Ansari, 2010). Previous research 
has already shown that it is not self-evident that similar neuronal structures will be 
active for similar tasks in adults and in children, as has been revealed for a range of 
other cognitive tasks, such as reading (Martin et al., 2015) or working memory 
(Thomason et al., 2009). It is therefore valuable to focus on the differences in the 
brain networks that support arithmetic between adults and children, and on the 
developmental changes that occur in these networks (Menon & Chang, 2021; Peters 
& De Smedt, 2018). Studies about arithmetic strategies in adults provide a valuable 
contribution to how arithmetic is carried out in a fully developed individual, but they 
are unable to explain how that individual has reached that point. Below, studies that 
focus on arithmetic strategy use in the brain in children are discussed and summa-
rized, with careful attention to the similarities and the differences between children 
and adults. 
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Regions that are typically activated during arithmetic (for an anatomical descrip-
tion, see Fig. 5.1) generally include the intraparietal sulcus in the posterior parietal 
cortex, the dorsolateral and ventrolateral prefrontal cortex, the anterior insula, the 
ventral temporal-occipital cortex, the supramarginal gyrus and the angular gyrus in 
the parietal cortex, and the hippocampus and parahippocampal gyrus in the medial 
temporal lobe (Arsalidou et al., 2018; Menon & Chang, 2021; Peters & De Smedt,

Prefrontal cortex 
working memory 

Anterior insula 
Cognitive control 

Domain
-general 

Domain
-specific 

Procedural 
strategies 

Arithmetic 
fact retrieval 

Medial temporal 
lobe 

Memory 
consolidation 

Intraparietal sulcus 
Numerical number 

processing 

Angular gyrus 
Fact retrieval 

Ventral temporal-
occipital cortex 
Visual number form 

processing 

Supramarginal 
gyrus 

Fact retrieval 

Fig. 5.1 Visual representation of brain regions important during arithmetic



2018). As apparent from these distinct regions in Fig. 5.1, there are many regions 
involved in the solution of arithmetic problems, with regions that are involved in 
more domain-specific processes (e.g., number processing), and other regions that 
support more domain-general processes (e.g., working memory). Activity in these 
regions is dependent on the specific arithmetic strategies that are being executed, and 
we organize our discussion of the brain regions that are involved in arithmetic along 
these strategies, i.e., the use of procedures and the use of fact retrieval.
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Figure 5.1 Dark grey regions are more domain-specific, light grey regions are 
more domain-general ones. Full-line boxes indicate regions that are more active 
during procedural strategies, dashed-line boxes indicate regions that are more active 
during arithmetic fact retrieval 

5.2.1 Brain Regions that Are Activated During Arithmetic 
Procedures 

Most of the existing body of studies have focused on the intraparietal sulcus when 
looking at arithmetic. This region is particularly active during the solution of 
arithmetic procedures and more broadly, the intraparietal sulcus is consistently 
active in a wider array of number processing tasks (Dehaene et al., 2003; Fias 
et al., 2013). This activation of the intraparietal sulcus occurs whenever numerical 
magnitudes are being processed (Fias et al., 2003; Piazza et al., 2007). This 
processing of numerical magnitudes is an important component of procedural 
strategies, as procedural strategies manipulate numbers to find the correct solution 
for the arithmetic problem. For example, when applying a decomposition strategy to 
solve 15–7, a child needs to know that 7 can be split in 5 and 2, which is a 
magnitude-based decision, such that the item can be solved by subtracting 15–5 
and subsequently – 2. Previous research in children (Mage = 8.8 years) has addi-
tionally shown that activity in the intraparietal sulcus during the processing of 
numbers is correlated with their arithmetic scores (Bugden et al., 2012), showing 
the important role of the intraparietal sulcus in children’s arithmetic. 

Together with the intraparietal sulcus in the parietal cortex, regions in the 
prefrontal cortex are often coactivated during arithmetic tasks (Arsalidou et al., 
2018). The involvement of the prefrontal cortex in cognitive processes in general 
is attributed to the need of working memory capacity to solve a particular task 
(Blankenship et al., 2018; Metcalfe et al., 2013). This happens very frequently 
during the execution of calculation procedures, during which intermediate results 
have to be maintained in working memory (e.g., keeping 20 in working memory 
while solving 17 + 8 through 17 + 3 + 5). Metcalfe et al. (2013) asked 74 children 
between 7 and 9 years perform a visuo-spatial working memory task outside the 
scanner, and asked children to solve addition problems (e.g., 3 + 4) during fMRI. 
Individual differences in visuospatial working memory were associated with 
increased brain responses during arithmetic problem solving in the prefrontal cortex,



more specifically in the left dorsolateral and right ventrolateral prefrontal cortex, 
showing the link between working memory, prefrontal activity and arithmetic 
problem solving in children. 
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Another region that shows increases in brain activity during the execution of 
arithmetic procedures, is the anterior insula. The anterior insula is a structure that 
connects the frontal and temporal lobes. It is known to be activated in a wide range of 
cognitive activities, including cognitive control (i.e., selecting the most efficient 
strategy for a specific item), and therefore is referred to as a domain-general region 
(see Uddin et al., 2014 for a meta-analysis). For example, Chang et al. (2018) studied 
the intrinsic functional connectivity (i.e., the degree of co-activation with other brain 
regions) of the anterior insula in 8- to 10-year-old children, specifically investigating 
the shared neural circuits associated with cognitive control in both arithmetic and 
reading. They found that there was both common network connectivity for the 
anterior insula for arithmetic and reading, as well as connectivity that was uniquely 
associated with arithmetic. They found correlations between subtraction perfor-
mance and the functional connectivity of the anterior insula with the prefrontal 
cortex (i.e., frontal operculum), supramarginal gyrus and the premotor cortex. 
Similar analyses for multiplication showed significant correlations between the 
multiplication performance and functional connectivity of the anterior insula with 
the medial temporal gyrus, the inferior frontal gyrus, and the supramarginal gyrus 
(Chang et al., 2018). Due to the general involvement of the insula across many 
cognitive domains and tasks, one has to be careful with attributing a specific role to 
the anterior insula in arithmetic. In the meta-analysis of brain areas associated with 
numbers and calculation in children by Arsalidou et al. (2018), insular activity is 
contended to be involved in the interaction between cognition, emotion, and 
interoception (i.e., the sense of the physiological condition of the body, Craig, 
2002), and is being linked with intrinsically motivated behaviors while learning. 
Thus, involvement of the insula in arithmetic tasks may additionally express the 
intrinsic motivation of children to learn these problems. 

Finally, the visual number form processing system, situated in the ventral 
temporal-occipital cortex, represents another important contributor to the brain 
network that is active during the execution of arithmetic procedures. At this location, 
the visual system has specialized areas for the processing of symbolic numerical 
information (Menon & Chang, 2021; Yeo et al., 2017), such as the different numbers 
in an arithmetic problem. Visual areas are often reported in studies with children 
(Peters et al., 2016; Polspoel et al., 2017; Rosenberg-Lee et al., 2015), although their 
roles are rarely discussed in detail. Some studies suggest that this activity is 
attributed to differences in visual input between the different experimental condi-
tions, because more difficult items often contain more characters (e.g., 53–21 versus 
6–3), which results is more visual input (Polspoel et al., 2017). Prado et al. (2014) 
found grade-related (second grade to seventh grade) differences of activity in small 
subtraction problems in the middle occipital gyrus, showing that this region also 
shows differential activation based on age. The precise role of these visual areas in 
the development of arithmetic needs to be further clarified.
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5.2.2 Brain Regions that Are Activated During Arithmetic 
Fact Retrieval 

Although the brain network that is active during arithmetic procedures in children is 
fairly consistent across studies and is comparable to what has been observed in 
adults, this is much less the case for fact retrieval. Several studies in adults, which 
have used trial-by-trial verbal strategy reports, found greater activation in the left 
angular gyrus during arithmetic fact retrieval (Grabner et al., 2009; Tschentscher & 
Hauk, 2014). A similar design was applied in a study with 26 typically developing 9-
to 10-year-olds (Polspoel et al., 2017). Greater activity was observed in the angular 
gyrus for items that were categorized as fact retrieval independent of their operation 
(i.e., multiplication or subtraction). There are several hypotheses on the exact role of 
the angular gyrus in arithmetic fact retrieval. First, it has been hypothesized that the 
left angular gyrus supports the retrieval of arithmetic facts from verbal memory 
through language-mediated processes (Dehaene et al., 2003). Another suggestion 
attributes the activation of the angular gyrus in arithmetic fact retrieval to its role in 
activating a semantic memory network (Ansari, 2008). This theory assumes that 
arithmetic facts are retrieved from an associative network of facts using a semantic 
representation of the problem. More recently, it has been suggested that the activity 
in the angular gyrus reflects an attentional process where the left angular gyrus is 
needed for the selection of the most efficient strategy to solve a particular problem 
(Bloechle et al., 2016). Taken together, the precise role of the angular gyrus in 
arithmetic remains unclear. 

It is important to note that many studies on arithmetic in children have not 
observed increased activity in the angular gyrus during arithmetic fact retrieval 
(see Peters & De Smedt, 2018 for a systematic review). On the other hand, structures 
in the medial temporal lobe, such as the hippocampus, show increased brain activity 
during arithmetic fact retrieval, a result that has not been observed in adults (for an 
exception, see Bloechle et al., 2016). Greater hippocampal activation has been found 
in children using different study designs (Cho et al., 2011, 2012; De Smedt et al., 
2011). In De Smedt et al. (2011), greater activity in the left hippocampus was found 
in children between 10 and 12 years, for small problems and addition problems, 
which are usually solved via arithmetic fact retrieval by children at that age. 
Similarly, Cho et al. (2011), found in younger children (7 to 9- years) that retrieval 
strategies elicited more distinct patterns of brain activity in the hippocampus as 
compared to counting strategies (Cho et al., 2011). Going a step further, they also 
showed that children who retrieved single-digit arithmetic items more frequently had 
greater activity in regions of the medial temporal lobe, including the hippocampus 
and the parahippocampal gyrus (Cho et al., 2012). 

By studying children in broad age ranges, one can examine the effect of age on 
the role of the medial temporal lobe during fact retrieval (Prado et al., 2014; Rivera 
et al., 2005). Rivera et al. (2005) showed decreased brain activation with age (in 8- to 
19-year-olds) during an arithmetic task where participants had to verify whether an 
addition or subtraction problem was correct or not. These decreases in activation



were found in several frontal regions, reflecting the decreasing involvement of 
working memory and attentional resources to solve these problems, and regions in 
the left hippocampus and parahippocampal gyrus. Interestingly, Prado et al. (2014) 
found that multiplication was associated with grade-related increases of activity in 
the medial temporal lobe in 8- to 13-year-old children in a similar verification task. 
At first sight, these results are seemingly opposites. However, it has been suggested 
that the involvement of the hippocampus in fact retrieval might be time-dependent 
(De Smedt et al., 2011). Against the background of adult data on learning ordered 
sequences (Van Opstal et al., 2008), De Smedt et al. (2011) suggested that fact 
retrieval might be a graded phenomenon. During the early stages of retrieval, that is 
the first phases of consolidation of arithmetic facts into long-term memory during 
elementary school, the hippocampus might play a prominent role. When the actual 
retrieval of arithmetic facts becomes more automatic during middle and secondary 
school and during adolescence, this is process is supported by other brain regions, 
such as the angular gyrus. This switch in region that supports fact retrieval makes the 
role of the hippocampus more and more obsolete during development. In other 
words, there might be different stages of retrieval which are less or more automatized 
and which are supported by different brain structures. This time-dependent role for 
the hippocampus and the idea that there are different stages of fact retrieval is in line 
with a study that combined a longitudinal design in young children with cross-
sectional data in adolescents and adults (Qin et al., 2014). This study showed that in 
9-year-old children more frequent use of retrieval strategy use was associated with 
increased hippocampal engagement after one year. The study further showed that 
although the use of retrieval strategies continued to increase throughout adolescence 
and adulthood, the reliance on the hippocampus to retrieve arithmetic facts 
decreased. Altogether, these results support the hypothesis of the time-dependent 
role of the hippocampus in children and also clearly show that the brain regions that 
support arithmetic fact retrieval differ in children versus adults. 
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5.3 The Use of Educational Interventions and Experimental 
Paradigms to Study the Development of Arithmetic 
Strategies in the Brain 

To further study the development of arithmetic, it is vital to focus on the transition 
from one strategy to the other, as this is a crucial developmental change in arithmetic. 
As advocated by Rosenberg-Lee (2018), a powerful way to do this is to couple 
studies that use an arithmetic intervention or a specific experimental manipulation of 
an aspect of arithmetic development (e.g., a particular strategy), with neuroimaging. 
In her discussion, she advocates for study designs that have four key components: 
(1) an initial behavioral assessment, (2) a pre- and post-neuroimaging assessment, 
(3) a measure of learning outside the scanning environment to supplement the 
limited assessment possibilities during functional scanning, such as a strategy



Study Sample (Mage)

assessment or standardized arithmetic tests that are not feasible to do during scan-
ning and (4) an intervention or experimental manipulation of arithmetic (Rosenberg-
Lee, 2018). This pre- and post-intervention neuroimaging assessment approach 
enables the learning of arithmetic to be studied by monitoring changes in the brain 
that occur as a consequence of learning. 
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In this chapter, we distinguish between two different approaches that can be used. 
The first approach that is discussed in this chapter focusses on arithmetic (educa-
tional) interventions. These interventions usually take place over a couple of weeks 
or months, and their content is based on real-life learning and practices. They are also 
explicitly designed to improve educational outcomes and they reveal how environ-
mental factors (e.g., education) change brain structure and function, thereby provid-
ing insights into the plasticity of the brain. Table 5.1 summarizes the main findings 
of different studies with the same educational intervention design. However, the

Table 5.1 Summary of intervention studies on arithmetic strategy use in the brain in children 

Intervention 
characteristics 

Neurological 
assessment 

Main neurological 
findings 

Supekar 
et al. 
(2013) 

24 intervention 
group (8.5)16 
control group 
(9.0) 

8 weeks3 times a 
week40–50 minutes 
per session1:1 
Increasing 
difficultybasic num-
ber 
propertiescounting 
Strategiesnumber 
families 

Addition task 
pre & post 
intervention 

" GMV of HC ~ " per-
formance efficiency 
after intervention" FC 
between HC and 
PFC ~ " performance 
efficiency after 
intervention 

Iuculano 
et al. 
(2015) 

15 TD children 
(8.54)15 MLD 
children (8.65) 

See Supekar et al. 
(2013) 

Addition task 
pre & post 
intervention 

After intervention, 
brain activity MLD = 
brain activity TD" 
intervention-induced 
brain plasticity ~ " 
tutoring-induced per-
formance efficiency 

Jolles et al. 
(2016) 

21 intervention 
group (8.61)21 
no-contact con-
trol group 
(9.02) 

See Supekar et al. 
(2013) 

Addition and 
subtraction 
task pre & 
post 
intervention 

" FC of IPS after inter-
vention ≠ " FC of AG 
after 
Interventiononly " FC 
of IPS ~ " intervention-
induced performance 

Rosenberg-
Lee et al. 
(2018) 

19 intervention 
group (8.5)15 
no-contact con-
trol group (8.8) 

See Supekar et al. 
(2013) 

Addition task 
pre & post 
intervention 

" activity HC after 
intervention" retrieval 
~ # 
Activation in AG and 
IFG" retrieval ~ " FC of 
HC with IPS 

AG angular gyrus, FC functional connectivity, GMV grey matter volume, HC hippocampus, 
IFG inferior frontal gyrus, IPS intraparietal sulcus, MLD mathematical learning difficulties, 
MRI magnetic resonance imaging, PFC prefrontal cortex, RS resting state, TD typically developing



Study Sample (Mage) characteristics findings

disadvantage of this more naturalistic approach, is that it includes a variety of 
manipulations and methods as happens in real classroom learning. This can make 
it difficult to determine which specific manipulation has causal effects on arithmetic 
performance.
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In contrast to arithmetic interventions, the second approach that are discussed 
here focus on controlled experiments that manipulate arithmetic strategy use. This 
allows researchers to draw more specific conclusions regarding causation. The use of 
a very specific experimental manipulation allows a more focused approach where 
only one particular aspect of arithmetic, such as strategy use, is manipulated. For 
example, arithmetic strategy use in adults has already been investigated through a 
short-term manipulation in which arithmetic items were drilled, forcing the partic-
ipants to learn new arithmetic problems by heart and to switch from decomposition 
procedures to arithmetic fact retrieval. Through this more controlled experimental 
approach, these studies are able to analyze mechanisms behind arithmetic develop-
ment. These studies are typically also short in time which allows them to eliminate 
maturational effects on the brain as much as possible. The main findings of studies 
applying an experimental approach in children are summarized in Table 5.2. How-
ever, these experimental manipulations are very different from the educational 
reality. They also are not designed to improve educational practices but only allow 
one to draw causal conclusions on the aspect that was manipulated during the 
experiment. These experimental designs do not reveal how arithmetic should be 
taught, but they do offer information on the mechanisms through which arithmetic 
development occurs. 

Taken together, the term intervention will be used to indicate studies that have a 
more naturalistic approach. These studies have provided an education-based inter-
vention that stretches out over a couple of weeks or months, where instruction is 
focused on broad concepts of arithmetic. These interventions have less power to 
infer the causal dimensions of a particular arithmetic process, but they are more 
ecologically valid. The term experimental manipulation or experiment will be used

Table 5.2 Summary of studies that involve experimental manipulations of arithmetic strategy use 
in children 

Experimental 
Neurological 
assessment 
Operation 

Main neurological 

Soltanlou 
et al. 
(2018) 

20 TD children 
(11.1) 

6 sessions over 2 weeks 
at home8 simple multi-
plication items8 com-
plex multiplication 
items 

Multiplication 
task pre & post 
experiment 

# activity R MFG at 
post-test 

Chang 
et al. 
(2019) 

22 for univariate 
analyses (9.46) 
17 for multivari-
ate analyses 
(9.42) 

5 sessions over 1 week, 
1:114 double-digit plus 
single-digit addition 
problems 

Addition post 
experiment 
only 

# activity fronto-
parietal network at 
post-test" activity 
AG and MLT at 
post-test 

AG angular gyrus, MFG middle frontal gyrus, R right



to indicate studies that used a controlled experimental arithmetic drill paradigm to 
only manipulate strategy use. As seen in the summary of the included studies in both 
Table 5.1 and Table 5.2, all studies have small sample sizes, mainly because of the 
inclusion of neuroimaging techniques. These are often time-consuming, expensive, 
and they are not straightforward to use in children. It is vital to emphasize that the 
number of both types of studies on arithmetic in children that use neuroimaging 
techniques is small, which is important to keep in mind when drawing conclusions.
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5.3.1 Arithmetic Educational Interventions 

The available studies that combine an arithmetic intervention with pre- and post-
intervention neurological assessment all used the same intervention protocol 
(Iuculano et al., 2015; Jolles et al., 2016; Rosenberg-Lee et al., 2018; Supekar 
et al., 2013). In this protocol, children underwent an 8-week math tutoring program 
focused on conceptual instructions with speeded retrieval of additions and subtrac-
tion. Full details of the intervention designs can be found in Table 5.1. 

All intervention studies reported improvements in arithmetic performance after 
intervention for the experimental group, either measured in increased accuracy, 
decreased response times, or in a performance measure that combined accuracy 
and response times. This improvement is usually interpreted as likely due to an 
increase in the use of arithmetic fact retrieval. It is important to note that only one of 
the studies included a specific strategy measure that was able to explicitly confirm a 
significant increase of fact retrieval (Supekar et al., 2013). It is therefore also 
plausible that improvements of response times as a consequence of the intervention 
are due to more efficient procedural strategy use. One possibility is that participants 
switch from slower procedures such as repeated addition (e.g., 3 × 7 = 7 +  7 +  7)  to  
derived facts (e.g., 3 × 7 = 14 + 7). Another possibility is that the execution of these 
procedural strategies becomes faster. This cannot be ruled out by the existing 
evidence and it emphasizes the need for future studies to carefully document how 
strategies change throughout the intervention. 

All studies included a neurological assessment before and after the intervention. 
Although the inclusion of a pre-test results in a strong design and the opportunity to 
directly see changes in brain activation post-intervention, only Rosenberg-Lee et al. 
(2018) directly contrasted the post-intervention fMRI with the pre-intervention fMRI 
to see where in the brain the intervention caused changes in brain activity. 
Rosenberg-Lee et al. (2018) showed increased activation in the left hippocampus 
after the intervention for the intervention group, while the control group did not 
show any increased activation. This increase in hippocampal activity is in line with 
the abovementioned cross-sectional studies in children that have shown increases in 
hippocampal activity during the acquisition of arithmetic facts (Cho et al., 2011, 
2012; De Smedt et al., 2011; Prado et al., 2014; Rivera et al., 2005). 

As we have elaborated above, many different brain regions are consistently active 
when performing arithmetic. These regions are not necessarily neighboring each



other and they need to communicate through functional connections or 
co-activations. For example, Jolles et al. (2016) focused on the functional connec-
tions of the intraparietal sulcus and angular gyrus before and after the intervention. 
Jolles and colleagues reasoned that, although that the intraparietal sulcus and the 
angular gyrus are two neighboring regions of the parietal cortex, they are assumed to 
have distinct roles in arithmetic and thus will have different functional connections. 
Before the intervention, the intraparietal sulcus showed connections with the dorso-
lateral fronto-parietal network, while the angular gyrus was connected with the 
default mode network. This latter network consists of medial and lateral parietal, 
medial prefrontal and medial and lateral temporal cortices, and is characterized by 
being active during rest when the person in not focused on a specific task (Raichle, 
2015). Thus, the functional segregation between the networks of the intraparietal 
sulcus and the angular gyrus during arithmetic is already present before intervention, 
which adds to the evidence that the intraparietal sulcus and the angular gyrus have 
distinct roles in mathematical cognition. This is further corroborated by the fact that 
the functional connections of the intraparietal sulcus and angular gyrus changed in a 
different way as a result of the intervention (Jolles et al., 2016). These findings by 
Jolles et al. (2016) are consistent with the interactive specialization hypothesis of 
brain function (Johnson, 2011). This theory posits that learning, with arithmetic as 
an example here, results in the differentiation of functional brain circuits. Interest-
ingly, the only intervention-induced change in connectivity that was common 
between the network of the intraparietal sulcus and the network of the angular 
gyrus was the change in the connectivity with the hippocampus (Jolles et al., 2016). 
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In Rosenberg-Lee et al. (2018) intervention-induced increases in retrieval use 
were also correlated with increases in connectivity between the intraparietal sulcus 
and hippocampus only in the intervention-group. Similarly, intrinsic functional 
connectivity of the hippocampus predicted individual differences in arithmetic 
skill acquisition after the 8 weeks of a mathematical intervention (Supekar et al., 
2013). These results strengthen the idea that the hippocampus, and by extension, the 
medial temporal lobe, supports learning through the integration of signals from 
different subdivisions of the posterior parietal cortex of which the intraparietal sulcus 
and the angular gyrus are both part of. The correlations between intervention-
induced increases in either performance or fact retrieval with more hippocampal 
connectivity with the intraparietal sulcus confirm that the hippocampus plays an 
important role in the consolidation of arithmetic facts (Jolles et al., 2016; Rosenberg-
Lee et al., 2018; Supekar et al., 2013). 

Insights into the plasticity of the brain and the circuits associated with learning 
can also be helpful for the development of remediation programs for children with 
mathematical learning difficulties. This is particularly relevant in view of the differ-
ences in brain activity in these children as compared to typically developing children 
(Peters & De Smedt, 2018). For example, studies indicate that children with math-
ematical learning difficulties typically show an overactivity in the abovementioned 
regions of the arithmetic brain network (Fias et al., 2013; Rosenberg-Lee et al., 
2015). Against this background, Iuculano et al. (2015) aimed to compare the effects 
of an intervention in typically developing children to the effects of the same



intervention in children with mathematical learning difficulties. This allowed 
Iuculano et al. (2015) to test different hypotheses on the effects of interventions in 
children with mathematical learning difficulties, i.e., the normalization hypothesis, 
the neural compensation hypothesis, and the neural aberration hypothesis. Following 
the normalization hypothesis, atypical brain responses in children with mathematical 
learning difficulties should disappear after an intervention. The neural compensation 
hypothesis predicts that interventions lead to the compensatory mechanisms or the 
activation of brain regions outside the arithmetic network. Finally, the neural 
aberration hypothesis predicts altered brain activity in the same regions after 
tutoring, even though behavior responses have normalized. Iuculano et al. (2015) 
reported that the intervention was able to normalize the brain activity of children in 
the mathematical learning disability group and that no compensatory brain activation 
was observed. These results support the neural normalization hypothesis, where 
atypical brain responses in children with mathematical learning difficulties disappear 
after an intervention. 
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5.3.2 Experimental Manipulations: Arithmetic Drill Studies 

As explained above, experiments that manipulate specific aspects of arithmetic have 
a different starting point than educational interventions. While interventions studies 
provide important information about brain plasticity during arithmetic development 
in general, they are too broad to detect precise mechanisms related to arithmetic 
development. In the following section, we discuss how a controlled experimental 
approach has been successfully used in brain imaging studies in adults (see Zamarian 
& Delazer, 2015, for a review) and has been adapted for children to study the 
transition from procedural strategies to arithmetic fact retrieval. 

In this approach, the experimental manipulation is the repeated presentation of 
specific arithmetic items that should lead to changes in strategy use. By keeping the 
manipulation short, researchers avoid potential confounding effects of (natural) 
maturational brain development on the observed findings. It is important to note 
that this is not an ecologically valid approach, and consequently it cannot be 
considered as an approach to improve education. On the other hand, it allows us to 
understand the mechanisms behind one very particular process, that is the transition 
from procedures to fact retrieval. The major logic of these short-term experiments, 
which manipulate the transition from calculation procedures to arithmetic fact 
retrieval, is to select items that are complex (e.g., multi-digit multiplication items 
or artificial operations) and are solved using procedural strategies first. Over the 
course of the study, usually only a few days long, these items are presented several 
times. Through repeated exposure to these complex arithmetic items, participants 
start to develop problem-answer associations or arithmetic facts. 

In adults, these short-term experiments have already been applied (see Zamarian 
& Delazer, 2015 for a review). They provide an important scaffold for similar studies 
that focus on arithmetic strategies in children. In one of the first fMRI studies by



Delazer et al. (2003), healthy adults practiced 18 complex (double-digit x single-
digit) multiplication problems daily over the course of a week. At post-test, all 
participants underwent an fMRI during which both the trained items and untrained 
items were presented. The untrained arithmetic items were still solved using proce-
dural strategies while the trained items changed strategy and became arithmetic facts. 
Note that, echoing current debates in the field of mathematical cognition, it could be 
that these items were solved via compacted procedures as well. Untrained items, 
which are expected to be solved using procedures, elicited greater activity compared 
with trained items in a large-scale network, including the intraparietal sulcus, the 
inferior parietal lobule and the inferior frontal gyrus. This reflects the involvement of 
number processing and working memory resources that are needed to execute pro-
cedures. Trained items, which are expected to be solved using fact retrieval, elicit 
greater activity compared to untrained items in the angular gyrus, reflecting the 
retrieval of facts from memory. These findings were replicated in a series of similar 
subsequent studies with different experimental paradigms, such as comparing rote 
learning with meaningful learning (Delazer et al., 2005), or using addition rather 
than multiplication (Ischebeck et al., 2006). 
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Such short-term experiments in children, although they have been suggested as a 
promising avenue for research (Rosenberg-Lee, 2018) are very scarce. To the best of 
our knowledge, only two studies have used this approach (Chang et al., 2019; 
Soltanlou et al., 2018). Details of these studies can be found in Table 5.2. The 
increased efficiency and fact retrieval frequency indicate that the short-term exper-
iment was successful in manipulating the arithmetic strategy in children (Chang 
et al., 2019; Soltanlou et al., 2018). 

Chang et al. (2019) identified experiment-related differences between problems 
in neural activity for children, as found in most studies with adults that are discussed 
above. The untrained problems showed greater activity in the fronto-parietal net-
work than the trained problems, while the trained problems showed greater activity 
in the medial temporal lobe and the angular gyrus compared to the untrained 
problems. The short-term study of Soltanlou et al. (2018) found similar reduced 
activation in the middle frontal gyrus for the trained items at the post-test, but did not 
replicate the shift from the intraparietal sulcus to the angular gyrus as in Chang et al. 
(2019). It is important to note that these studies differed in the brain imaging method 
they used. Chang et al. (2019) used fMRI to look at brain activity while Soltanlou 
et al. (2018) used a combination of electroencephalography and functional near-
infrared spectroscopy. One problem of these latter two methods is that they have a 
lower spatial resolution, making it more difficult to detect differences between 
adjacent brain areas, such as the intraparietal sulcus and angular gyrus. Another 
problem is that the methods used by Soltanlou et al. (2018) can only record cortical 
activity while brain activity of deeper sub-cortical structures such as the hippocam-
pus is more difficult to detect. These methodological differences might explain the 
differences between the two studies, particularly in their findings related to fact 
retrieval.
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5.4 Discussion 

Although the number of brain imaging studies on arithmetic has increased over the 
last decade, there is still a lot of work to be done to further establish the brain 
activations, patterns, and connections that play a role in arithmetic strategies. The 
results from previous cross-sectional and longitudinal studies have generally con-
verged to the same findings using different approaches or designs. Similar to adults, 
children recruit a fronto-parietal network during those items that are assumed to be 
solved using procedural strategies. This network includes regions that play a role in 
number magnitude processing and working memory, such as the intraparietal sulcus 
(Bugden et al., 2012) and the prefrontal cortex (Metcalfe et al., 2013) respectively. 
Next to these two regions, there also seem to be important contributions of the 
anterior insula (Arsalidou et al., 2018; Chang et al., 2018) and the ventral temporal-
occipital cortex (Menon & Chang, 2021; Prado et al., 2014), although their role in 
arithmetic strategies have been less investigated and their precise function in arith-
metic is not entirely clear. 

For arithmetic fact retrieval, children show greater activity in the hippocampus 
(Cho et al., 2011, 2012; De Smedt et al., 2011; Prado et al., 2014; Qin et al., 2014; 
Rivera et al., 2005). As the hippocampus is known to play a major role in the 
consolidation of information from short-term memory to long-term memory 
(Moscovitch et al., 2016), these studies attributed the role of the hippocampus in 
arithmetic fact retrieval, and specifically during development, to the consolidation of 
the association between a problem and its answer. During adulthood, most literature 
points to the left angular gyrus in fact retrieval, although the exact function of the 
angular gyrus in arithmetic fact retrieval remains debated. Some studies argue that 
the function of the angular gyrus during arithmetic fact retrieval is to retrieve verbal 
information (Dehaene et al., 2003), while others attribute the function of the angular 
gyrus to the involvement of semantic memory (Ansari, 2008) or to attentional 
processes (Bloechle et al., 2016). The differences between children and adults during 
arithmetic fact retrieval have paved the way for the idea of a time-dependent role of 
the hippocampus (Prado et al., 2014; Qin et al., 2014; Rivera et al., 2005). Once the 
associations between problems and their solutions become fully consolidated, other 
parts of the brain, potentially the angular gyrus, take over the retrieval from memory, 
and the involvement of the hippocampus disappears. So, activity first increases in the 
hippocampus during the acquisition phase, which might take place over elementary 
school. Later activity decreases again after consolidation, the process of which might 
take place over middle and secondary school and adolescents. In all, this indicates 
that even the basic acquisition of arithmetic facts continues during middle school and 
adolescence at the level of the brain, although these developments are not always 
detectable in behavior. 

An important topic for further research is the investigation of the time-frame for 
both the emergence of hippocampal activity, as well as how long it is sustained 
before the angular gyrus replaces the hippocampus in the role of supporting arith-
metic fact retrieval. The current literature points to an increased reliance of the



hippocampus starting around 7 or 8 years of age (Rivera et al., 2005; Rosenberg-Lee 
et al., 2011), with a peak between 9 and 15 years of age (Qin et al., 2014). 
Intervention studies as well as controlled experiments that use brain imaging tech-
niques are needed to unravel the precise time-course of hippocampal activity which 
is likely to change during middle childhood. 
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It is valuable to know how the change from early consolidation to more autom-
atized arithmetic facts takes place at the level of the brain. Many of the 
abovementioned studies found that the effects of the interventions were not specif-
ically reflected in behavioral measures such as accuracy or reaction times, but that 
these effects were only observed at the level of the brain (Iuculano et al., 2015; Jolles 
et al., 2016; Rosenberg-Lee et al., 2018; Supekar et al., 2013). This is also observed 
in longitudinal designs (Qin et al., 2014). As an example, in a detailed experimental 
study on fast learners and near transfer, Chang et al. (2019) were able to show that 
faster learners showed greater overlap in neural representations within the medial 
temporal lobe, as well as greater segregation of large-scale brain circuits between 
trained and novel problems. These effects were not observed at the level of behavior. 
Taken together, this illustrates that brain imaging studies can unravel subtle fine-
grained processes that cannot be gleaned from behavioral data alone (De Smedt, 
2018). These findings further add to a more complete understanding on how 
arithmetic develops. 

Understanding how these subtle neural processes lead to individual differences in 
typically developing children are an important gateway to studies on understanding 
atypical mathematical development. It remains to be determined whether the aber-
rant activation of the intraparietal sulcus, a critical region important for number 
processing, is the cause or consequence of mathematical learning difficulties (see 
Rosenberg-Lee, 2018, for a discussion). Iuculano et al. (2015) showed that an 
arithmetic educational intervention can normalize brain activation in children with 
mathematical learning difficulties, after overactivation was detected before the 
intervention. This finding suggests that the aberrant activation in the intraparietal 
sulcus in children with mathematical learning difficulties could be a consequence of 
lowered exposure or expertise in mathematics, although this should be validated in 
future studies. 

Although the sections above show the potential of brain imaging data in educa-
tional interventions or short-term experimental studies, some caution is needed. Such 
studies are not without challenges, both practically and theoretically. Practically, 
neuroimaging with children is more demanding than neuroimaging with adults. The 
duration of the neuroimaging sessions are more limited, as the environment is taxing 
(e.g., confined space, no movement allowed), and children’s focus needs to by high 
for the full duration of the assessment. Another practical consideration to make is 
that both interventions and experimental studies require a lot of contact moments, 
often one-on-one. It takes a lot of time and effort to plan and to execute these studies. 

Theoretically, one also needs to understand the limitations of these approaches. 
The studies reviewed in this chapter can help to uncover the mechanisms that



underlie the development of arithmetic, yet they cannot determine how arithmetic 
should be taught (De Smedt, 2018). It is also critical to distinguish between what we 
have called arithmetic educational interventions and experimental studies in this 
chapter. As already touched upon, these are two different research designs, with each 
approach having its own merits and with specific research questions that are more 
suitable for one or the other approach. For example, the educational interventions are 
more closely aligned with learning in real-life context than experimental studies. 
This adds to the ecological validity of the educational interventions but makes it 
more difficult to draw conclusions on how specific arithmetic processes, such as 
procedural strategy use, might have changed. The latter can be addressed by 
experimental studies, yet the ecological validity of such studies is low. 
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The current chapter has looked at these educational interventions and experimen-
tal studies through the lens of mathematical cognition and arithmetic, yet these 
approaches are relevant for research in other cognitive domains as well, especially 
in those domains that show processes of automatization upon which the transition 
from effortful procedures to fluent fact retrieval are dependent. In reading, for 
example, the acquisition of letter-speech sounds associations is considered a basic 
requirement for learning to read (Ehri, 2005), as the acquisition of problem-answer 
associations is necessary for fact retrieval. As in arithmetic, the accuracy of which 
letter-speech sounds are correctly matched increases throughout development and 
response times decrease steadily over the course of elementary and middle school 
reading instruction (Froyen et al., 2009). Short-term, highly controlled experiments 
can also be applied for other cognitive domains, such as reading, especially if there is 
a clear role for automatization. In general, these experiments can advance the field of 
educational neuroscience by providing deeper understanding of how the automati-
zation takes place in the brain. 

To combine the goals of both neuroimaging (i.e., understanding how the brain 
works) and education (i.e., understanding how learning can be improved), one can 
ask the question ‘how do we learn’ at multiple levels of analysis (Rosenberg-Lee, 
2018). Except for the few studies discussed in this chapter, the potential for this 
approach remains untouched to a great extent. There is a need for studies with 
pre/post neuroimaging designs and studies that examine the effect of educational 
interventions or experimental manipulations on brain activity. These studies should 
include a sufficient number of participants and robust designs in order to have better 
powered studies. This allows one to better understand the development of arithmetic 
fact retrieval with its switch from hippocampus to angular gyrus. There is a need to 
delineate the time frame, likely in middle school, in which this switch occurs and 
which individual differences influence this change. Such knowledge will serve as a 
ground to further understand how the development of arithmetic facts is altered in 
children with mathematical learning difficulties. 
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Chapter 6 
The Role of Neuropsychological Processes 
in Mathematics: Implications 
for Assessment and Teaching 

George K. Georgiou, Charalambos Y. Charalambous, and Sergios Sergiou 

Abstract What neuropsychological processes underlie mathematics performance? 
What cognitive strategies should we teach to boost mathematics performance? 
Undoubtedly, both questions lie at the heart of mathematics research and are critical 
for many teachers and practitioners. In this chapter, we aim to provide an answer to 
both questions by drawing readers’ attention to four separate but interrelated neuro-
psychological processes: Planning, Attention, Simultaneous, and Successive (PASS) 
processing. In the first section of this chapter, we review the literature on PASS 
neuropsychological processes and their relation to mathematics performance. In the 
second section, we present evidence on how information from assessing children on 
these neuropsychological processes (see Cognitive Assessment System; [Naglieri, 
J. A., Das, J. P., & Goldstein, S., Cognitive Assessment System—Second Edition: 
Brief, 2014]) can be used to describe children with mathematics difficulties or 
superior mathematics performance in three countries (Canada, China, and Cyprus) 
representing three different cultures (Western, East Asian, and European). These 
profiles clearly show that children have weaknesses (in the case of children with 
mathematics difficulties) or strengths (in the case of high achievers) in Planning and, 
to a lesser extent, Simultaneous processing, and this is irrespective of the cultural 
background of the participants. Finally, in the last section, we discuss the role of 
planning facilitation that can be used to enhance cognitive planning and mathematics 
performance. 
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Several studies have shown that intelligence – operationalized with IQ tasks – is a 
significant predictor of mathematics performance (e.g., Foster et al., 2015; Geary, 
2011; Kyttälä & Lehto, 2008; Manolitsis et al., 2013; Passolunghi et al., 2014). In a 
meta-analysis, Peng et al. (2019) showed that the average correlation between fluid 
intelligence and mathematics was .41. Despite this, researchers have expressed some 
concerns because some tasks in popular psychometric batteries of intelligence (e.g., 
Vocabulary and Arithmetic in the Wechsler Intelligence Scale for Children [WISC]) 
have a close resemblance with academic achievement tasks and partly measure what 
children already “know” (i.e., what they have learned at school or at home) than how 
children “think”, which is the ultimate purpose of assessing intelligence. In addition, 
a circular argument ensues when mathematics within an IQ assessment is used to 
predict mathematics. 

To bypass these problems, Das et al. (1994) proposed a neurocognitive theory of 
intelligence called PASS (for Planning, Attention, Simultaneous, and Successive 
processing) and a way to measure it (Cognitive Assessment System [CAS]; Naglieri 
& Das, 1997; see also Naglieri et al., 2014, for its second edition). The PASS theory, 
as operationalized by the CAS, emphasizes that: (a) a test of intelligence should 
be based on a theory of intelligence; and (b) the test should measure basic 
neurocognitive processes defined by the intellectual demands of the test, not the 
content of the questions. Thus, in this chapter we aim to introduce researchers and 
practitioners to the PASS theory of intelligence and how it relates to middle school 
mathematics performance. 

6.1 The PASS Theory of Intelligence 

Alexander R. Luria’s (1966, 1973) research on the functional aspects of brain 
structures formed the basis for the Planning, Attention, Simultaneous, Successive 
(PASS) theory initially described by Das et al. (1994). Das and colleagues used 
Luria’s work as a blueprint for defining the basic neuropsychological processes that 
underlie human performance. 

According to Luria (1973), human cognitive functions could be conceptualized as 
three separate but interrelated “functional units” that provide four basic neuropsy-
chological processes. These three functional units have been used by Naglieri and 
Das (1997) as the basis of Planning (third functional unit), Attention (first functional 
unit), and Simultaneous and Successive (second functional unit) cognitive pro-
cesses.1 The first functional unit provides regulation of cortical arousal and attention, 
while the second unit codes information using Simultaneous and Successive pro-
cesses. The third unit is responsible for strategy development, strategy use, self-
monitoring, and control of cognitive activities. Although Luria did not have the same

1 The acronym PASS does not follow the order of the three functional units. Das et al. (1994) chose 
PASS because it is easy to remember.



neuroimaging techniques that exist today, his conceptualization of how the brain 
functions is still valid. Studies using fMRI and EEG (Avram et al., 2013; McCrea, 
2009; Okuhata et al., 2009) have shown that each area of the brain participates in 
numerous large- and small-scale functional systems within and across cortical and 
sub-cortical brain structures.
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6.2 Operationalization of PASS Processes 

To operationalize the four PASS processes, Naglieri and Das (1997) developed the 
Das-Naglieri Cognitive Assessment System (D-N CAS). This first edition of D-N 
CAS had two forms: a Standard Battery with 12 subtests (3 for each PASS process) 
and a briefer version called Basic Battery with 8 subtests (2 for each PASS process). 
In 2014, Naglieri et al. published the second edition of CAS and along with it the 
CAS:2-Brief (4 subtests), the CAS:2 Rating Scale (4 subtests), and a Hispanic 
version (see Fig. 6.1, for CAS’s various versions). 

The CAS (both editions) can generate three types of scores: (1) a Full Scale score 
(expressed as a standard score with a mean of 100 and a standard deviation of 15), 
which is an index of an individual’s overall cognitive functioning, (2) a standard
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score for each PASS process (with a mean of 100 and a standard deviation of 15), 
which indicates the individual’s cognitive functioning on the specific cognitive 
process (e.g., Planning) and is used for the identification of specific strengths and 
weaknesses in cognitive processing, and (3) a scaled score (with a mean of 10 and a 
standard deviation of 3) for each CAS subtest. According to Naglieri et al. (2014), 
the maximum standard score is 160 and the maximum scaled score 19.
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The tasks used to assess each of the PASS processes in CAS:2 are the following: 
(a) Planning [subtests: Planned Connections, Planned Codes, and Planned Number 
Matching], (b) Attention [subtests: Expressive Attention, Number Detection, and 
Receptive Attention], (c) Simultaneous processing [subtests: Matrices, Verbal-
Spatial Relations, and Figure Memory], and (d) Successive processing [subtests: 
Word Series, Sentence Repetition–replaced by Sentence Questions in ages 8–17, and 
Visual Digit Span]. 

Test administration and scoring varies among the PASS processes depending on 
task demands. There are subtests, such as Planned Number Matching, Planned 
Codes, Expressive Attention, Number Detection, and Receptive Attention, in 
which scoring begins with recording the time and number correct (accuracy score) 
for each item. These are combined into ratio scores obtained from a table provided in 
the Record Form. The ratio scores are then summed across items to obtain subtest 
raw scores, which are converted to the subtest scaled score. In turn, the scoring for 
subtests such as Matrices, Verbal-Spatial Relations, Figure Memory, Word Series, 
and Sentence Repetition/Sentence Questions is the total number correct. Interpreta-
tion of CAS-2 for practitioners is detailed in Essentials of CAS-2 Assessment 
(Naglieri & Otero, 2017). 

6.3 The Relation of PASS Processes with Mathematics 
Performance 

Each PASS process is theoretically linked to mathematics performance (e.g., Das 
et al., 1994; Das & Misra, 2015). An obvious one is between Planning and problem 
solving. In problem solving, individuals must make decisions on how to solve a 
mathematics problem, monitor their own performance, and revise their initial plan as 
more information becomes available (Schoenfeld, 1994). All of these are character-
istics of cognitive planning. Attention is important for selectively attending to the 
important components of a problem and for suppressing irrelevant information (e.g., 
in a word problem asking students to find the difference between the cost of a 
computer in two different stores, the name of the stores is not that important to attend 
to while solving the problem). Simultaneous processing is relevant for tasks that 
consist of different interrelated elements that must be integrated into a whole, as in 
solving an equation with multiple operations (e.g., (3 + 5) × (4 + 4)/2 =?)) or in areas 
of mathematics that involve integration of visual-spatial information (e.g.,



geometry). Finally, Successive processing is relevant when information has to be 
processed in a certain order, as in counting. 

6 The Role of Neuropsychological Processes in Mathematics: Implications. . . 107

Three lines of research have generally confirmed these theoretical connections. 
First, several studies in different languages with typically-developing children have 
shown significant effects of these skills on mathematics performance (e.g., Best 
et al., 2011; Cai et al., 2016; Georgiou et al., 2015; Naglieri & Rojahn, 2004; 
Kroesbergen et al., 2010). Naglieri and Rojahn (2004), for example, found that the 
average correlations between PASS processes and Broad Math2 in a sample of 1559 
children aged 5 to 17 years range from .45 to .58 (the highest being between 
simultaneous processing and Broad Math). A recent meta-analysis by Georgiou 
et al. (2020) has reported similar correlations. More specifically, Georgiou et al. 
(2020) found the average correlation between PASS processes and mathematics to 
be .46. However, there were also significant interactions between the PASS pro-
cesses and the mathematics outcomes. Simultaneous processing produced signifi-
cantly stronger correlations with mathematics accuracy (r = .42) and problem 
solving (r = .48) than mathematics fluency (r = .18). In turn, Planning correlated 
more strongly with mathematics fluency (r = .42) than Simultaneous processing 
(r = .18). Finally, Simultaneous processing correlated more strongly with problem 
solving (r = .48) than Attention (r = .34). 

Second, some studies have examined the role of PASS processes in mathematics 
disabilities (e.g., Cai et al., 2013; Iglesias-Sarmiento & Deaño, 2011; Iglesias-
Sarmiento et al., 2017, 2020; Kroesbergen et al., 2003). Kroesbergen et al. (2003), 
for example, examined if children with mathematics disabilities (MD) have difficul-
ties in the PASS processes compared to their chronological-age (CA) controls. Their 
sample consisted of 137 students with MD (Mage = 8.9 years) recruited from general 
education classes, 130 children with MD (Mage = 10.5 years) recruited from special 
education classes, and 185 children without MD (Mage = 9.8 years). The results of 
multivariate analyses showed that the students with MD performed significantly 
lower than their CA controls on all PASS processes. Students with MD from special 
education classes also scored significantly lower than their MD peers from general 
education classes. Similarly, in a study with older students with MD, Cai et al. 
(2013) found that a group of 55 children with MD recruited from Grades 6, 7, and 
8 in Shanghai, China, performed significantly poorer than a control group of 
56 typically-developing children on all four PASS processes. However, the differ-
ences were more pronounced in Simultaneous processing and Planning. 

Finally, researchers have conducted intervention studies and examined the impact 
of training children in one or more PASS processes on children’s mathematics 
performance (e.g., Iseman & Naglieri, 2011; Naglieri & Gottling, 1997; Naglieri 
& Johnson, 2000; van Luit & Naglieri, 1999; see also Das & Misra, 2015, for a 
review). This line of research began with the work of Cormier et al. (1990) and Kar 
et al. (1992). In both studies, researchers used a dynamic assessment approach that

2 Broad Math is a cluster score derived from three subtests (Calculations, Math Fluency, and 
Applied Problems) from the Woodcock Johnson III (WJ-III; Woodcock et al., 2001).



required children (1) to describe carefully and systematically the task at hand, (2) to 
think-aloud as the problem was solved, (3) to explain why a particular answer is 
correct or incorrect, and (4) to explain why the non-chosen alternatives were 
incorrect. Children with poor planning skills benefited the most and even 
outperformed the group of good planners at post-test on tasks requiring planning 
and strategy use. This research was extended to mathematics by Naglieri and 
Gottling (1995, 1997) who found that the use of strategies by learning disabled 
children (Mage = 10.10 years) could be facilitated, rather than directly taught, 
resulting in improved performance in math calculation. Naglieri and Johnson 
(2000) further showed that Grade 6 to 8 children (age ranged from 12 to 14 years) 
with a cognitive weakness in Planning improved considerably over baseline rates 
both in Planning and in classroom mathematics performance following strategy 
instruction.
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6.4 Clinical Use of CAS 

In this section, we aim to further illustrate the role of PASS processes in mathematics 
(a) by examining with the help of a single case design the cognitive profile of six 
children with mathematics giftedness as well as six children with mathematics 
disabilities in three diverse cultures (North American, East Asian, and European) 
and (b) by examining associations between the verbal responses (i.e., retrospective 
think-aloud protocols) of the Cypriot children while solving the Planning and 
Simultaneous processing tasks and their responses when solving selected mathemat-
ics tasks. 

6.4.1 The Cognitive Profile of Children with Mathematics 
Giftedness 

The children with mathematics giftedness were selected from previous studies (e.g., 
Dunn et al., 2020; Sergiou et al., 2021; Wang et al., 2018), because they scored in the 
very superior range (standard score higher than 130) range in Woodcock-Johnson III 
Broad Math (for the sample from Canada and China).3 In Cyprus, children with 
mathematics giftedness were selected if they had scored more than 2 standard 
deviations above the group mean on two tests of mathematics performance

3 The children’s standard score in WJ-III Broad Math was as follows: George scored 142, Kate 
scored 134, Jiao scored 148, and Ming-tun scored 136. In Cyprus, the children’s z score for the 
mathematics achievement test was 1.4 (Gabriel) and 1.5 (Andreas), whereas their score in logits for 
the mathematics reasoning test was 1.8 (Gabriel) and 1.6 (Andreas).



(Mathematics Achievement Test [Kyriakides et al., 2019] and Mathematics Reason-
ing Test [Sergiou & Charalambous, 2019]).
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The two children from Edmonton (Canada), George (a Grade-4 male) and Kate 
(a Grade-6 female; all names are pseudonyms to protect privacy), were attending an 
enrichment program in a public elementary school. To attend an enrichment program 
in Alberta, children must be coded as gifted. Their age was 9.8 and 11.1 years, 
respectively, and both reported English as their native language. In turn, Jiao 
(female) and Ming-tun (male) were Grade 6 students from Hangzhou (China). 
Both were attending an enrichment program in an elementary school and reported 
Mandarin as their native language. Their mean age was 11.0 and 11.3 years, 
respectively. Finally, Gabriel and Andreas were both males attending Grade-6 
regular classes in pubic elementary schools in Cyprus. Both were Greek speakers 
and at the time of data collection they were 11.8 and 11.7 years old, respectively. 

To examine the cognitive profile of these children, we plotted their PASS scale 
scores (see Fig. 6.2). The findings were rather consistent across the three sites. First, 
all children with mathematics giftedness scored in the superior range (>120) in 
Planning and in the average range (90–110) in Successive processing. Second, the 
children from Canada and China scored in the superior range in Simultaneous 
processing and within average (with the exception of Jiao) in Attention. The pattern 
in Cyprus was a bit different in that both children scored in the high average range in 
Simultaneous processing, but in the superior range in Attention. This may relate to 
the fact that one of the mathematics tests used in Cyprus was speeded and this may 
have inflated the role of Attention that was operationalized with speeded tasks. 
Taken together, these findings suggest that in upper elementary grades, Planning 
and Simultaneous processing play a critical role in supporting a child’s superior 
mathematics performance (Dunn et al., 2020). This might be expected given that in
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these grade levels children engage more frequently in higher level mathematics tasks 
(e.g., word problems or tasks require mathematical reasoning) than in arithmetic 
calculations that may relate more to attention (in this case indicating automaticity in 
fact retrieval) and Successive processing (involved in tasks that require serial 
processing of information).
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6.4.2 The Cognitive Profile of Children with Mathematics 
Disabilities 

The children with mathematics disabilities were also selected from previous studies 
(e.g., Dunn et al., 2020; Sergiou et al., 2021; Wang et al., 2018), because they scored 
in the below average range (standard score lower than 85) in Woodcock-Johnson III 
Broad Math (for the sample from Canada and China).4 In Cyprus, children with 
mathematics disabilities were selected if they had scored at least 1SD below average 
in the two aforementioned tests of mathematics. 

The two children from Edmonton, Jasper (a Grade 4 male) and Alice (a Grade 
6 female) were attending a general education class in the same public school as the 
two children with mathematics giftedness. Their age was 9.9 and 11.1 years, respec-
tively, and both were native speakers of English. In China, Chiu (female) and Zhan 
(male) were attending Grade 6 general education classes and were also recruited 
from the same schools as the children with mathematics giftedness. Both reported 
Mandarin as their native language. Their mean age was 11.0 and 11.3 years, 
respectively. The two Cypriot students, Gregory (male) and Anna (female) were 
both native Greek speakers and both were attending Grade 6. At the time of data 
collection, they were 11.6 and 11.5 years old, respectively. None of these partici-
pants were experiencing any intellectual, sensory, or behavioral difficulties (based 
on school records) and none were coded for any learning disabilities 
(we acknowledge though that such diagnosis is rather rare in Cyprus and in China). 

Figure 6.3 presents the cognitive profiles of all six students with mathematics 
disabilities. As can be seen from this figure, all children performed in the low 
average or below average range (<90) in Planning and Simultaneous processing. 
Low average performance was also observed in Successive processing (with the 
exception of Jasper who scored 98). In contrast, in Attention, children scored mostly 
in the average range (see Gregory for an exception). This suggests that in the case of 
these children with mathematics disabilities almost all PASS processes are low (see 
Cai et al., 2013; Iglesias-Sarmiento & Deaño, 2011; Iglesias-Sarmiento et al., 2017; 
Kroesbergen et al., 2003, for similar findings). 

4 The children’s standard score in WJ-III Broad Math was as follows: Jasper scored 83, Alice scored 
80, Chiu scored 84 and Zhan scored 78. In Cyprus, the children’s z score for the mathematics 
performance test was-0.61 (Gregory) and- 0.55 (Anna); for the mathematics reasoning test, their 
score in logits was -0.69 (Gregory) and - 0.60 (Anna).
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Fig. 6.3 The profiles of the students with mathematics disabilities. (Note. Score classification: 
<70: very poor; 70–79: poor; 80–89: below average; 90–109: average; 110–119: above average; 
120–129: superior; ≥130: very superior) 

Because the children from Cyprus were also interviewed while solving the CAS 
and the mathematics tasks, we were also able to examine whether their performance 
in the CAS tasks was consistent with their mathematics performance.5 In the interest 
of space, below we focus on their performance in the planning and simultaneous 
processing tasks of CAS and their performance in selected mathematics-reasoning 
tasks which required pattern noticing and generalizing. We focus on these tasks 
because they more clearly indicate the association between planning and simulta-
neous processing on the one hand, and pattern noticing and generalizing, on the 
other hand. 

We first start with the planning task. This task consisted of six similar items. In 
each item, students were presented with four cards numbered from 1 to 4 (see Items 
1 and 3 in Fig. 6.4a). Each card was split into two columns and each column included 
either an X or an O. Students were asked to complete an 8X4 grid of cards, by 
noticing the number that appeared at the top of each of these 32 cards and replicating 
the arrangement of X’s and O’s in the original cards, accordingly. Because students 
were given only 60 seconds to complete each item, they needed to identify a pattern 
that would allow them quickly complete the cards. For example, in Item 1 shown in 
Fig. 6.4b, students could quickly complete the cards by noticing that same-number

5 Students were first asked to solve a task or a sub-task silently, and immediately after finishing, 
articulate their thinking. We preferred a retrospective as opposed to a concurrent think-aloud 
approach, because of the possibility of reactivity when students articulate their thinking as they 
work on a task and the excessive cognitive load often involved in this approach, as students try to 
both think and articulate their thinking (see more in Jaaskelainen, 2010; Someren et al., 1994; van 
den Haak et al., 2003). As suggested (Ericsson & Simon, 1993), the limitations of the retrospective 
approach can be minimized when students are asked to articulate their thinking immediately after 
having worked on a task.



x

cards were placed vertically; in contrast, in Item 3, the placement of same-number 
cards followed a “chair” shape.
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Fig. 6.4 (a) Two examples of cards. (b) Items 1 and 3 of the planning task 

A cross-examination of the four students’ performance in the planning task items 
suggested that whereas the two gifted students readily identified different patterns to 
complete the task, something that allowed them to answer the task items much 
quicker than their counterparts, the two students with disabilities mostly followed 
only a single pattern at best in solving all items. Specifically, as shown in Fig. 6.5, 
both Andreas and Gabriel figured out a number of patterns (e.g., moving vertically, 
moving diagonally) that allowed them to quickly complete the matrices. Even for the 
more complex matrices (Items 5 and 6), both were able to notice and capitalize upon 
certain patterns. For example, for Item 5, Gabriel commented that he noticed that the 
cards with the same number were forming the letter V; although working with a less 
refined pattern, Andreas commented that he “moved along the diagonal, and then 
completed what was left.” Similarly, for Item 6, both identified two diagonal 
movements, which helped them complete the item quickly and correctly. It is also 
informative to consider how these two students reflected on their work on this set of 
items as a collective. Andreas remarked that in “all items, there were 8 cards with the 
same number;” to solve each item, he was first trying to figure out a pattern and then



2

complete the item. Along the same lines, Gabriel remarked that he was always trying 
to first figure out “an easy way in order to move fast;” prompted to clarify what he 
meant, he explained that key in his work was to first find a pattern. 
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Fig. 6.5 The four Cypriot students’ solutions in solving the planning items 

Compare now these students’ performance with the corresponding performance 
of students with disabilities (last two columns of Fig. 6.5): their work suggests that at 
best they identified a more restricted pattern, mainly moving only horizontally and 
considering each row of matrices in isolation. For example, Anna remarked that in 
solving all the tasks, she was going row by row, simply identifying the cards with the 
same number. Even less developed was the approach employed by Gregory, who, in 
solving all tasks simply moved horizontally between adjacent cards. 

Students’ performance in the simultaneous processing task also suggested notable 
differences in how these two pairs of students approached the given items. From the



items given, here we focus on the last two in which students’ performance showed 
notable differences (see Fig. 6.6). The first item presented students with a 3 × 3 grid 
including circles, squares, and triangles, asking them to figure out the shape missing 
at the bottom right corner of the grid. The second item again presented students with 
a 3  × 3 grid, with triangles in different rotations; students were asked to choose 
among a set of six triangles with different rotations the one that best matched the 
missing triangle in the bottom right corner. Both Andreas and Gabriel answered the 
items correctly, after having identified and capitalized upon correct patterns. For 
example, in solving the first item, Andreas noted that in total there were 3 triangles, 
3 circles, and 2 squares, so the missing shape was a square. Approaching the task 
differently but still figuring out a correct pattern, Gabriel noticed that every row 
needed to include one triangle, one circle, and one square. Both students were also 
able to identify how the triangle in the second item was tilted, thus figuring out the 
correct answer. Neither Anna nor Gregory was able to answer either of the two items 
correctly. Gregory was totally baffled as to how he could solve either of the items, 
saying “I don’t know.” Anna gave an answer to the first item, but as her clarification 
suggested, she approached this item rather superficially: “[The missing shape] is a 
circle, because there is also a circle in the exact opposite corner.” 
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1 2 3 4 5 6 1 2  3 4 5 6 

Fig. 6.6 Two items of the simultaneous processing task 

Students’ performance and thinking in solving both the planning and the simul-
taneous tasks was remarkably aligned with their performance and thinking in solving 
mathematical reasoning tasks that required pattern noticing and generalizing. Here, 
we consider two such mathematical reasoning tasks (see Fig. 6.7). The first task 
presented students with a sequence of shapes following the ABC pattern “square-
triangle-star.” Students were asked to determine the 12th term in this sequence and 
explain how they worked to figure out the answer. The second task presented 
students with a sequence of triangular shapes in which each term included 3 N 
matchsticks (N being the number of the shape in the given sequence); students were 
asked to first complete a table specifying the number of matchsticks needed for 
different shapes. The table included the first five consecutive terms in the sequence, 
followed by the eighth and the tenth terms. To figure out these latter terms, students 
could not simply add three to the previous term, unless, they first figured out the 
seventh and ninth terms. The task was also asking students to figure out the number
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Item1: A necklace is made of three types of beads, following the pattern shown 
below. 

a)which type of bead will be in the 12th position? 

b) Explain your thinking. 

Item2: Nikos uses matchsticks to create the following pattern.Look at the patttern 
and answer the question that follow. 

a)How many matchsticks will be needed for the 4th shape; 

b)The following tables shows the shape number and the number of matchsticks 
needed for that shape.Fill in the table to show how many matchsticks are needed 
for different shapes. 

c)How many matchsticks will be needed for the 35th shape? 

d)Think about the relation between the number of the shape and the number of 
matchsticks needed to make this shape.Use words or letters (variables) to write the 
rule that describes this relation. 

e)Nikos claims that he will need 45 matchsticks for shape number 15.Do you agree 
with him? Explain your thinking. 

Shape 1 

Shape 

Shape 2 Shape 3 

Number of 
matchsticks 

1 

2 

3 

3 

4 

5 

8 

10 

Fig. 6.7 Two mathematics reasoning tasks



of matchsticks needed for the 35th term, which (again) called for identifying a 
general rule connecting the shape/term with the number of matchsticks, instead of 
moving consecutively by adding 3 matchsticks each time. Students were also asked 
to present such a general rule, as well as determine whether 45 matchsticks would be 
needed for the 15th term.

116 G. K. Georgiou et al.

Consistent with their performance in the CAS planning and simultaneous 
processing tasks, in approaching both of these tasks, both Gabriel and Andreas 
used more advanced ways of thinking, largely identifying the patterns and general-
izing from them. For example, Andreas explained how he worked on solving the first 
task as follows: “The star appears in the 3rd place and then in the 6th . Given that 12 is 
a multiple of 3, if the pattern continues, the star will again appear in the 9th and the 
12th place.” Gabriel also noted that 12 is a multiple of 3, thereby there will be a star in 
the 12th place.” Anna was also able to answer the first task correctly, but unlike her 
fellow-students, she simply “expanded the pattern” writing down all the terms till 
she reached the 12th one. Hence, instead of trying to identifying a general rule, this 
student worked more consecutively, finding the next term each time. Even worse, 
Gregory could not figure out the term, answering that he could not understand how 
to work on the task. These differences were even more prevalent in the second task. 

Both Andreas and Gabriel successfully answered all the questions of this task, by 
first figuring out the general rule (pattern)—although they were asked to do so in the 
fourth question of this task. Prompted to explain how he worked on the task, Andreas 
explained, “the first term has three [matchsticks], the second six [matchsticks], the 
third nine [matchsticks]; so, it goes up three each time, so, you multiply [the term/ 
shape] by three.” Prompted to further explain his thinking, he kept repeating that “I 
simply noticed that each time you multiply the shape with three to figure out the 
[number of] matchsticks; so, I followed this rule.” Similarly, Gabriel explained that 
“I was trying to find a relation between the number of the shape and the number of 
the matchsticks; I noticed that each time you multiply the number of the shape with 
three; hence, [the sequence] is the multiples of three.” Working more consecutively, 
as she was working on the CAS planning task, Anna first completed the table as 
shown in Fig. 6.6; her work suggested that she simply added three each time, a 
pattern that she continued even when moving from the fifth to the eighth term and 
from the eighth to the tenth term. Without being able to identify a general pattern, 
Anna failed to answer the remaining questions. Similarly, Gregory failed to answer 
all the task questions, mentioning that they were difficult, without, however, pro-
viding any additional clarifications. 

In sum, the four students’ performance and thinking in the planning and simul-
taneous processing tasks was consistent with their performance in the mathematics 
reasoning tasks, suggesting that students’ cognitive processing skills, as captured by 
the aforementioned CAS tasks, appear to have a critical role in how they approach 
cognitively challenging tasks in mathematics that require pattern noticing and 
generalizing.
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6.5 Interventions Based on PASS Theory 

In this last part of our chapter, we review intervention studies aiming to enhance 
cognitive planning and subsequently arithmetic calculations and problem solving 
(e.g., Iseman & Naglieri, 2011; Naglieri & Gottling, 1997; Naglieri & Johnson, 
2000). You will notice that even though cognitive planning is an integral component 
of PASS theory, the strategies used in these interventions are similar to those that 
target self regulated learning in mathematics problem solving (see e.g., Montague, 
2008). Recently, J. P. Das developed a mathematics intervention program called 
“Math Booster” that also trains successive and simultaneous processing but it targets 
early grades and, to our knowledge, no intervention studies have tested its effective-
ness yet. Clearly, this is an area of future research, particularly in upper elementary 
grades. 

Returning to the existing “planning facilitation” intervention studies, Naglieri and 
colleagues stated that the goal of their intervention sessions (10–21 sessions, 
10 minutes each) was to help children understand the need of setting plans and 
deploying effective strategies through self-reflection and verbalization of the strat-
egies employed to solve the problem. To help children achieve this general goal, the 
teachers encouraged them to (a) determine how they completed the different work 
sheets, (b) verbalize and discuss their ideas, (c) explain which methods worked well 
and which ones worked poorly, and (d) be self-reflective. Examples of teacher 
probes were the following: “Can anyone tell me anything about these problems?” 
“Let’s talk about how you did the work,” “What was the same or different about the 
problems?” “What could you do to make this seem easier?” “Why did you do it 
that way?” “How did you solve the problems?” “What did it teach you?” and “What 
will you do next time?” Discussions and further development of ideas followed from 
the responses of the students. For example, some students shared approaches with 
classmates including drawing columns in the multiplication problems to keep the 
answers more organized, and other students discussed strategies such as simplifying 
fractions before performing addition, subtraction, multiplication, or division. As 
mentioned earlier, Naglieri and Johnson (2000) found that Grade 6 to 8 children 
(age ranged from 12 to 14 years) with a cognitive weakness in Planning who 
received this kind of intervention improved considerably over baseline rates both 
in Planning and in classroom mathematics performance. 

Notably, these practices overlap to a large extent with the meta-cognitive prac-
tices included in Montague and Applegate’s  (1993) cognitive-metacognitive model 
of mathematical problem solving. More specifically, the three metacognitive strate-
gies in their model (i.e., self-instruction, self-questioning, and self-monitoring) are 
integral components of Planning (as described by Das et al., 1994). Metacognitive 
processes focus on self-awareness of cognitive knowledge that is necessary for 
effective problem solving. Successful problem solvers use self-instruction, self-
questioning and self-monitoring to gain access to strategic knowledge, guide exe-
cution of strategies, and regulate the use of strategies.
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6.6 Conclusion 

The role of intelligence in academic performance (particularly mathematics) is 
undeniable. In this book chapter, we tried to present an alternative way of looking 
at intelligence (i.e., PASS processes) and how it connects to mathematics perfor-
mance. The PASS theory – grounded on neuropsychology – has given us the 
opportunity to profile children with mathematics difficulties or strengths across 
cultures. The children in our study demonstrated cognitive weaknesses (in the case 
of children with mathematics disabilities) or strengths (in the case of children with 
mathematics giftedness) in Planning and, to a lesser extent, in Simultaneous 
processing. This is not to say that Attention or Successive processing are not 
important for mathematics. The contribution of all four processes likely depends 
on the type of mathematics outcome (and the demands of each mathematics task) and 
the grade level of the children. In upper grades (the focus of this handbook), 
Planning and Simultaneous appear to play a more important role in mathematics. 
Future studies could extend this line of work, by examining the association between 
different types of mathematical tasks—both tasks require reasoning and mathemat-
ical thinking, as well as more algorithmic tasks—with the four PASS processes. An 
examination of such associations in different educational contexts and with students 
of different ability levels—as attempted in the current chapter—is expected to help 
better understand how students’ cognitive processes contribute to their performance 
in mathematics. 
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Chapter 7 
The Interplay Between Motivation 
and Cognition in Elementary and Middle 
School Mathematics 

Allison S. Liu, Teomara Rutherford, and Sarah M. Karamarkovich 

Abstract Getting and keeping children engaged in mathematics is a critical but 
difficult aspect of mathematics education. This may be especially crucial during 
middle childhood, when children experience significant changes in cognitive devel-
opment and declines in mathematics motivation. A growing body of research has 
investigated motivation’s contribution to mathematics learning and achievement; a 
largely separate literature has researched cognitive and numeracy contributors. 
Understanding how motivation and cognition jointly contribute to mathematical 
performance during middle childhood can help to identify the intervention targets 
that may have the most impact on mathematics achievement. However, little 
research has investigated the interplay between motivation and cognition in middle 
childhood mathematics. This chapter reviews existing studies, including the authors’ 
own research, that concurrently investigate motivation and cognition in the context 
of mathematics, and discusses how these findings can be used to understand 
mathematics achievement during middle childhood with a focus on grades 3–5. 
The authors also illustrate how existing motivational theories can be expanded to 
include cognitive processes, using Situated Expectancy–Value Theory as an exam-
ple, and how such integration can inform instructional practice. Finally, the chapter 
recommends educational practices and discusses open questions and limitations 
within the field that future research can address. 
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Understanding how children learn mathematics is a key focus of mathematics 
education. Many studies have approached this question from a cognitive perspective. 
For example, the field of numerical cognition has researched domain-specific cog-
nitive factors in depth, such as the cognitive foundations of animal and human 
number representations, and how symbolic and non-symbolic numerical processing 
contributes to mathematical skills (De Smedt et al., 2013; Kadosh & Dowker, 2015). 
Studies have also found a relationship between a variety of domain-general cognitive 
skills and mathematics, including executive functions (e.g., Geary et al., 2017; 
Raghubar et al., 2010; Spiegel et al., 2021) and general intelligence or cognitive 
ability (e.g., Primi et al., 2010; Watkins & Styck, 2017). These cognitive-
mathematics relationships have been the basis of many instructional interventions 
and practices that aim to improve children’s mathematical achievement, with mixed 
success (e.g., Holmes & Gathercole, 2014; Karbach et al., 2015; Ramani et al., 
2017). 

An equally critical aspect of mathematics education is how to motivate children to 
want to learn mathematics. Evidence shows that higher mathematics motivation is 
associated with better mathematics learning and later STEM outcomes (e.g., Guo 
et al., 2015; Jiang et al., 2020; Musu-Gillette et al., 2015; Plante et al., 2013; Shanley 
et al., 2019). Mathematics motivation may be especially critical during middle 
childhood (defined here as ages 6–12), a time when children experience significant 
changes in cognitive development (National Research Council, 1984). During this 
period, children begin to develop mathematics-specific motivations (Bandura, 1997; 
Eccles et al., 1993; Marsh & Ayotte, 2003), but mean levels of these motivations also 
begin to decline (Fredricks & Eccles, 2002; Jacobs et al., 2002; Mullis et al., 2020; 
Peterson & Hyde, 2017; Wigfield et al., 1997) before stabilizing in high school 
(Jacobs et al., 2002; Musu-Gillette et al., 2015; Weidinger et al., 2017). These 
motivational declines are often faster in mathematics than in other subjects 
(Gottfried et al., 2007; Jacobs et al., 2002). This decline is likely related to transitions 
that occur during this developmental period. Children enter new schooling contexts 
with a stronger emphasis on external evaluation (Wigfield et al., 1998), which can 
influence their social and cognitive growth. Children are also developing their 
identities, self-concepts, and metacognitive skills (Eccles, 1999; Raffaelli et al., 
2005; Stipek & Mac Iver, 1989), allowing them to calibrate their beliefs about 
their skills more accurately and from more sources (Muenks et al., 2018). Because 
middle childhood is a tumultuous period for children’s motivational beliefs, it may 
be particularly key to support motivation for mathematics during these ages to keep 
children interested in pursuing mathematics. 

Understanding both mathematics-related cognition and motivation may be essen-
tial for supporting students’ mathematics learning. First, children with higher moti-
vation show greater gains from domain-general cognitive interventions (e.g., Jaeggi 
et al., 2011, 2014). Second, motivation is often theorized to be more malleable than 
cognition (Gutman & Schoon, 2013); thus, interventions that target motivational 
beliefs about mathematics may be more practical for improving mathematics 
achievement. However, to fully capitalize on interventions and practices that target 
motivational factors, it is first necessary to understand how motivation and cognition



individually contribute to mathematics performance during middle childhood to 
determine which targets may have the most impact. Although social-cognitive 
theories of learning exist (see Panadero, 2017 for a review), most prior research 
has largely investigated motivational and cognitive factors separately, rather than the 
interplay between motivation and cognition. Precisely how these two factors jointly 
contribute and interact to influence mathematics outcomes remains unclear. Answer-
ing these questions can inform the design of more effective holistic supports for 
children’s mathematics development, as well as validate and revise existing cogni-
tive and motivational theories. 
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In this chapter, we conduct a systematic review of existing studies, including our 
own research, that concurrently investigate cognition and motivation in the context 
of mathematics learning in middle childhood, with a focus on grades 3–5 (see 
Appendix A for details about our review methodology). Our goal is to provide a 
comprehensive overview of the current research, and to recommend instructional 
practices and future research directions that can support mathematics achievement 
during middle childhood. We focus on three motivational theories that are com-
monly used in educational research to understand how instruction relates to aca-
demic outcomes: Situated Expectancy–Value Theory, Self-Determination Theory, 
and Achievement Goal Theory. We further show how existing motivational theories 
can be expanded to include cognitive processes to better describe mathematics 
learning, using Situated Expectancy–Value Theory as an example. We chose to 
use Situated Expectancy–Value Theory because it broadly theorizes how motiva-
tional, cognitive, and social processes may relate to academic achievement (com-
pared to Self-Determination Theory and Achievement Goal Theory which primarily 
focus on motivational processes) and can more easily illustrate the relations between 
cognition and motivation based on their relative contributions to mathematics 
achievement. Finally, we discuss open questions and recommendations for instruc-
tional practices and future research studies regarding cognitive and motivational 
processes in mathematics. 

7.1 Situated Expectancy–Value Theory 

Situated Expectancy–Value Theory (SEVT) posits that people’s achievement-
related choices and performance are influenced by their expectancies for success 
on a task and the value they place on the task (Eccles & Wigfield, 2020). Expectan-
cies are defined as children’s beliefs about how well they will do on upcoming tasks 
in the immediate or long-term future (e.g., “I think I will do well in my mathematics 
class this year”). Values are conceptualized based on three sub-components: attain-
ment value (how important it is to the individual to do well on the task), intrinsic 
value (how much enjoyment the individual gains from doing the task), and utility 
value (how useful the individual finds the task, based on personal or societal 
standards). For example, a child who places high value on their mathematics 
performance may consider it important to do well in their mathematics classes,



find it enjoyable to engage with mathematics-related activities, or believe that 
mathematics will help them in a future career. Academic self-concepts are another 
related construct, defined as children’s perceptions of their current competence for 
an academic subject (e.g., “I usually do well in mathematics”); these beliefs are 
generally thought to be more stable dispositions compared to expectancies or values. 
The full SEVT model considers the broader social and cognitive contributors that 
shape children’s expectancies and values, including the environments in which 
individuals are situated, the developmental processes that transform individuals’ 
experiences into self-perceptions, and more proximal social-cognitive aspects that 
influence decision making. Thus, SEVT provides a theory of motivation that inte-
grates social and cognitive factors, making it a popular framework for studies that 
investigate motivational and/or cognitive factors in learning. 
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In line with SEVT’s conceptualization, we discuss research that investigates 
expectancies, values, and/or academic self-concepts in combination with cognitive 
factors. Because SEVT is a recent re-conceptualization of Wigfield and Eccles’ 
(2000) Expectancy–Value Theory (EVT), many of the studies described in this 
section utilize EVT as their theoretical framework rather than SEVT; however, the 
main constructs of interest (i.e., expectancies, values, academic self-concepts) 
remain the same across EVT and SEVT so that these studies can still be compared. 
We also include studies that measure mathematics self-efficacy (individuals’ beliefs 
in their ability to succeed on mathematics-related tasks; Bandura, 1997) because it is 
conceptually similar to mathematics expectancies, and can thus further inform how 
beliefs about one’s abilities influence mathematics learning; however, we acknowl-
edge that mathematics self-efficacy and expectancies may differ in important ways, 
such as their theoretical roots and specificity (Bong & Skaalvik, 2003; Marsh et al., 
2019; Wigfield & Eccles, 2000). We first review research that included expectancies, 
values, and/or self-concepts with domain-specific cognitive factors, followed by 
research on domain-general cognitive factors. 

7.1.1 Domain-Specific Cognitive Factors and Situated 
Expectancy–Value Theory 

Few studies on expectancy–value include domain-specific cognitive factors. Of 
those that do, a trend emerges in which domain-specific cognition appears to be 
important for mathematics learning earlier on in middle childhood (e.g., 4th grade 
and below), and mathematics expectancy appears to be separately important 
throughout the period. There is also some early evidence that expectancy’s impor-
tance may increase as children grow older. One study used a sample of 6435 Turkish 
4th grade students from the Trends in International Mathematics and Science Study 
(TIMSS) 2015 database to investigate how students’ confidence in mathematics



(comparable to expectancies), interest in learning (comparable to intrinsic value), 
and performance on early numeracy tasks predicted mathematics scores on the 
TIMSS, an international mathematics and science assessment given to 4th and 8th 
grade students across the world (Tomul et al., 2021). Both confidence in mathemat-
ics (average β = 0.34) and early numeracy tasks (average β = 0.20) significantly 
predicted mathematics scores across four types of school locations (urban, suburban, 
medium-sized city, and village). Interest in learning mathematics was also a signif-
icant predictor, but only for urban school locations, and the effect size was small 
(β = 0.06). 

7 The Interplay Between Motivation and Cognition in Elementary and. . . 127

In our own work, we investigated how numerical processing, executive functions 
(updating, inhibitory control, shifting), visuo-spatial ability, mathematics expec-
tancy, and mathematics value (as two subcomponents of importance-utility and 
intrinsic value) predicted performance on a standardized state test in a majority-
Hispanic sample of 3rd to 5th grade students in the U.S. Further, we looked at 
whether contributions differed depending on grade level or type of mathematics 
being tested (Liu et al., 2022). We found that mathematics expectancy (average 
β = 0.12) was one of two factors that significantly predicted general mathematics 
scores for all three grades (the other being updating, average β = 0.09). We also 
looked at the contributions of these factors across five types of mathematics content 
to understand which factors showed the broadest reach across a variety of mathe-
matics subjects. Numerical processing (average β = 0.15 across five subtests), 
updating (average β = 0.13), and shifting (average β = 0.12) were most predictive 
for 3rd grade students (predicting scores on four of the five content areas), whereas 
mathematics expectancy was most predictive for 4th grade students (average 
β = 0.11, significantly predicting scores on four of the five content areas) and 5th 
grade students (β = 0.19, significantly predicting scores on all five content areas). 
Similarly to the TIMSS study (Tomul et al., 2021), neither subcomponent of 
mathematics value were significant predictors of broad-level mathematics 
performance—in our work, value was only predictive of one subtest for 5th grade. 
Though we cannot make any causal claims due to the nature of our data, these 
findings suggest that 3rd to 4th grade students may benefit from instruction that 
teaches numerical processing skills. In parallel, supplementing this instruction with 
practices that build students’ confidence in their mathematics abilities may support 
students’ mathematics performance during these grades and beyond. 

Although educators may feel pressure to emphasize the importance of learning 
mathematics to their students, mathematics value actually appears to have a very 
small association with mathematics performance at this age compared to domain-
specific cognition or mathematics expectancies, so prioritizing these other factors 
may have a more immediate impact on mathematics performance. However, it 
should be noted that these studies are cross-sectional, and thus strong conclusions 
cannot be made about the development of expectancy and domain-specific cognitive 
factors, or their contributions to mathematics learning over time.
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7.1.2 Domain-General Cognitive Factors and Situated 
Expectancy–Value Theory 

A greater number of studies have investigated expectancy–value together with 
domain-general cognitive factors, particularly executive functions, general intelli-
gence, and general cognitive ability. Domain-general cognitive factors are regularly 
found to be stronger predictors of mathematics achievement than expectancies or 
values, but expectancy often still explains a significant amount of additional vari-
ance. As is found with domain-specific cognitive factors, value is a less consistent 
predictor of mathematics performance compared to expectancy. 

Most studies involving executive functions only include working memory capac-
ity (the amount of short-term information that can be held and actively manipulated 
in one’s mind for a task), usually finding that working memory and mathematics 
expectancy separately and significantly contribute to mathematics performance (e.g., 
Prast et al., 2018; Weber et al., 2013). For example, in 2nd to 6th grade students from 
the Netherlands, Prast et al. (2018) found that mathematics achievement positively 
predicted perceived competence in mathematics (measured as self-efficacy and self-
concept combined; β = 0.51) and task value (β = 0.19) three months later. Of these 
factors, only perceived competence significantly predicted mathematics achieve-
ment five months later (β = 0.12) after controlling for prior mathematics achieve-
ment and working memory, but perceived competence still explained a much lower 
amount of variance in mathematics achievement compared to working memory 
(β = 0.71). Further, when the sample of students was split by achievement level, 
this relationship between perceived mathematics competence and mathematics 
achievement only held for low- and high-achieving students, not average-achieving 
students, whereas working memory continued to be predictive for all levels of 
achievement. 

In our work described above that included three executive functions (updating, 
inhibitory control, and shifting), we also found that updating (comparable to others’ 
measures of working memory) and mathematics expectancy significantly predicted 
broad-level mathematics scores across 3rd, 4th, and 5th grade students, though 
expectancy had a larger average effect size than updating in our sample (Liu et al., 
2022). Thus, similarly to numerical processing, improving students’ working mem-
ory along with their mathematics confidence may have benefits for students’ math-
ematics performance. The effectiveness of training working memory is still under 
debate (e.g., Simons et al., 2016; von Bastian et al., 2022), but instructional practices 
can still provide supports that reduce working memory loads to ensure that students 
are not limited by their working memory capacities (e.g., providing visual tools for 
students to offload important information instead of holding it in working memory). 
The relationship between mathematics expectancies and mathematics performance 
also provides promise for a more malleable pathway toward improving mathematics 
performance. 

General intelligence (typically measured as one’s ability to reason abstractly, 
using problems that require minimal prior knowledge) also largely contributes to



mathematics performance, separate from mathematics expectancy and value. Similar 
to executive functions, intelligence typically explains a larger amount of unique 
variance compared to the two motivational factors across various measures of 
intelligence and mathematics outcomes and across countries (e.g., Chamorro-
Premuzic et al., 2010; Orbach et al., 2019; Spinath et al., 2006, 2008). For example, 
in a sample of 9-year-old children from England and Wales (Spinath et al., 2008), 
intelligence explained 20% of variance in teachers’ assessments of student mathe-
matics achievement (β = 0.38), and mathematics self-perceptions explained an 
incremental 7% of variance (β = 0.32). Meanwhile, intrinsic value only explained 
an additional 0.1%, and this was likely inflated due to the study’s large sample size 
(N = 4464). Other studies have also found that intelligence contributes more to 
mathematics outcomes (with β estimates ranging from approximately .30 to .50), 
whereas expectancy contributes a significant but smaller amount (with β estimates 
ranging from approximately .20 to .40) (e.g., Chamorro-Premuzic et al., 2010; 
Orbach et al., 2019). The relation between mathematics expectancies and mathe-
matics achievement also appears to hold up to 3 years later (Chamorro-Premuzic 
et al., 2010) and across all levels of cognitive ability (Tracey et al., 2020), suggesting 
that the relation of mathematics expectancy is relatively stable and separate from the 
relation of cognition. Again, mathematics value is rarely a statistically significant 
predictor of mathematics performance when cognitive factors are controlled, and 
may even have the opposite directional relationship, such that mathematics achieve-
ment is a predictor of subsequent interest rather than vice versa (Jōgi et al., 2015). 
These findings are consistent with a meta-analysis of 74 studies (N = 80,145) 
showing that intelligence is a larger contributor to school achievement than expec-
tancies or values, explaining approximately 66.6% of unique variance as compared 
to 16.6%, and that school achievement has a stronger association with expectancies 
than with values (Kriegbaum et al., 2018). 
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A neuroimaging study may provide insight into a potential mechanism through 
which mathematics expectancies and values can impact mathematics achievement 
(Chen et al., 2018). Positive mathematics attitudes (a composite measure of math-
ematics expectancy, mathematics intrinsic value, and general academic attitudes) 
were associated with greater activation in the hippocampus and more frequent use of 
efficient memory-based strategies, controlling for IQ. Hippocampal activation and 
strategies also partially mediated the relation between positive attitudes and mathe-
matics achievement. As with working memory, intelligence is generally considered 
less plastic as a skill than motivation (Gutman & Schoon, 2013, though see 
Blackwell et al., 2014 for evidence of intelligence’s malleability), and attempts at 
improving general intelligence have met with mixed results (Au et al., 2015; 
Buschkuehl & Jaeggi, 2010). These findings emphasize that mathematics expec-
tancy may be a more effective way to directly support mathematics performance at 
these ages and may potentially do so by influencing the types of strategies that 
students utilize during problem solving. 

When both working memory and intelligence are included as predictors of 
mathematics achievement, the contribution of mathematics expectancy is less 
clear. For example, Weber et al. (2013) found that working memory and intelligence



(combined into one “cognitive ability” measure) and self-perceived mathematics 
ability and intrinsic value (combined into one “motivation” measure) all explained 
unique amounts of variance of German 4th grade students’ mathematics grades 
(together explaining 71% of variance), though the cognitive ability measure was a 
stronger predictor (β = 0.59 compared to 0.49 for motivation). In contrast, Lu et al. 
(2011) found that only working memory (β = 0.59) and intelligence (β = 0.37) 
significantly predicted 36.4% of variance in Chinese 4th grade students’ mathemat-
ics exam scores, whereas self-perceived mathematics ability and intrinsic values 
explained a non- significant 2.2% of variance. The authors suggested that the 
inconsistencies between their and other studies’ findings regarding self-perceived 
mathematics ability may stem from differences in the cultural specifics in parental 
attitudes in their Chinese sample compared to other studies’ Western samples (i.e., a 
stronger emphasis on effort as the main source of academic success, as opposed to 
inherent ability). 
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As would be theorized by the Expectancy–Value model, parental attitudes should 
influence students’ self-perceptions, and consequently, their relation to mathematics 
achievement. Thus, although mathematics expectancies may be a pathway to 
supporting mathematics performance, it is important to remember that students’ 
motivations are inseparably situated within their broader lives in and outside of the 
school environment, such that effective approaches for supporting their mathematics 
expectancies may differ depending on students’ particular circumstances. For exam-
ple, a student who enters the classroom believing that their mathematics skills are 
unchangeable may be less impacted by interventions that encourage them to be 
confident in their mathematics skills, at least until their beliefs about the malleability 
of their mathematics abilities are changed first. 

Mathematics self-beliefs also appear to contribute directly and indirectly to 
immediate mathematics outcomes, when working memory is considered. One 
study of 3rd grade classes in Germany found that mathematics self-concept 
(β = 0.14) and working memory (β = 0.32) directly predicted concurrent mathe-
matics performance, though only working memory predicted mathematics perfor-
mance six months later (β = 0.25) (Gunzenhauser & Saalbach, 2020). Mathematics 
self-concept and working memory were also associated with self-regulation, which 
contributed to concurrent mathematics performance, providing another indirect 
pathway through which both self-concept and working memory influenced mathe-
matics performance. However, it should be noted that the Gunzenhauser and 
Saalbach study only measured affective components of mathematics self-concept 
with items that may be considered more aligned with intrinsic value rather than self-
concept (e.g., “I am interested in math”); as shown above, mathematics value had a 
generally weak relationship with mathematics performance. Another study of 3rd 
and 5th grade students also found that mathematics self-concept and working 
memory fully mediated the relationship between mathematics anxiety and mathe-
matics performance across three mathematics measures (teacher ratings of mathe-
matics achievement, scores on a standardized assessment of mathematics fluency, 
and scores on a standardized assessment of mathematics problem solving) (Justicia-
Galiano et al., 2017). Although self-beliefs are characterized as more stable



motivational dispositions (Eccles & Wigfield, 2020), these findings continue to 
emphasize the potential importance of students’ mathematics confidence for their 
mathematics achievement. 
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7.1.3 Summary of Situated Expectancy–Value Findings 

In summary, mathematics expectancy and self-concepts uniquely contribute to 
various mathematics outcomes, separately from domain-specific and domain-
general cognitive factors during middle childhood. Domain-general cognitive fac-
tors consistently have a larger influence on mathematics outcomes than mathematics 
expectancy or self-concepts, but both motivational constructs still predict an addi-
tional and meaningful amount of variance. The contributions of domain-specific 
cognitive factors may be limited to younger ages within this developmental period, 
but research that includes domain-specific cognitive factors, expectancies, values, 
and/or self-concepts is still limited. Because expectancies are thought to be more 
malleable than most domain-general cognitive factors (Gutman & Schoon, 2013), 
educators may want to build students’ confidence in their ability to succeed at a 
given mathematics task. Potential instructional practices include providing incre-
mental opportunities for students to feel that they have mastered skills and succeeded 
at challenging assignments (Usher & Pajares, 2009). 

In contrast to mathematics expectancy and self-concepts, mathematics value was 
rarely a significant contributor to mathematics outcomes when cognitive factors 
were controlled. Mathematics value is thought to primarily affect mathematics 
performance indirectly by encouraging students to pursue mathematics activities 
(e.g., joining after-school mathematics programs or enrolling in optional advanced 
mathematics classes) (Lauermann et al., 2017; Simpkins et al., 2006). During middle 
childhood, mathematics opportunities at this age are largely provided by formal 
classes and assigned classwork, such that children’s choices will have less of an 
influence on mathematics performance. If mathematics value becomes more impor-
tant when children have fewer required mathematics experiences and greater auton-
omy over their selection of mathematics opportunities (Updegraff et al., 1996), then 
mathematics value would not be expected to be a large contributor for this age range 
until students complete their requisite mathematics courses and have to seek out 
additional mathematics learning through optional experiences. 

7.2 Self-Determination Theory 

Self-Determination Theory (SDT) is a social cognitive theory that explains people’s 
choices based on the source of motivation (Adams et al., 2017; Deci & Ryan, 2012). 
The theory distinguishes between intrinsic and extrinsic motivation, defining intrin-
sic motivation as doing a task because it is interesting or enjoyable to the individual,



and extrinsic motivation as doing a task because of external pressures or rewards. At 
a broad level, SDT treats intrinsic motivation as a malleable construct that can be 
fostered by meeting an individual’s need for autonomy (control over whether to act 
or not), competence (ability to master their environment), and relatedness (sense of 
social belonging) during a given task. In contrast to intrinsic motivation, extrinsic 
motivation is generally fostered when individuals feel that they are being forced to 
act in ways that are out of their control (though there are also more autonomous 
forms of extrinsic motivation). Few studies have investigated intrinsic and/or extrin-
sic motivation in combination with domain-specific cognition as contributors to 
mathematics outcomes; as such, we focus our review on studies involving domain-
general cognitive factors. 
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7.2.1 Domain-General Cognitive Factors 
and Self-Determination Theory 

Studies investigating domain-general cognitive factors with SDT have primarily 
involved general intelligence or general cognitive ability. Findings suggest that 
intrinsic motivation may be a less important construct for mathematics achievement 
during middle childhood. It may still have long-term benefits, as intrinsic 
motivation—much like mathematics value (Lauermann et al., 2017; Simpkins 
et al., 2006)—is likely to influence individual choice to participate in certain 
activities (Lavigne et al., 2007; Ryan et al., 1991). 

In one cross-sectional study, Stevens et al. (2006) investigated how general 
mental ability and intrinsic motivation, as well as mathematics self-efficacy, math-
ematics interest, sources of self-efficacy, and prior mathematics achievement, 
predicted performance on standardized mathematics assessments in White and 
Hispanic youth from ages 8 to 18. Intrinsic motivation did not significantly predict 
mathematics performance for either White or Hispanic children (though the model 
was a poor fit for the Hispanic sample’s data). Instead, general mental ability 
(β = 0.21 for the White sample, β = 0.18 for the Hispanic sample), emotional 
feedback (β = .23 for the White sample), and mathematics self-efficacy (β = .27 for 
both samples) predicted mathematics performance. These findings continue to 
emphasize the importance of domain-general cognitive factors and beliefs in one’s 
mathematics skills for mathematics performance at this age—again, with the latter 
being the more malleable of the two (Gutman & Schoon, 2013). 

Longitudinal studies provide context around intrinsic motivation’s missing rela-
tionship with mathematics achievement—as discussed above regarding mathematics 
value, choices about mathematics opportunities may simply be less common in 
middle childhood. For example, a sample of elementary school children in Quebec 
were assessed on cognitive and motivational factors in 1st, 2nd, and 4th grade 
(Garon-Carrier et al., 2016). After controlling for general cognitive abilities, cross-
lagged models found that achievement on standardized mathematics tests in 1st



grade predicted intrinsic motivation in 1st and 2nd grade, and achievement in 2nd 
grade similarly predicted intrinsic motivation in 2nd and 4th grade. However, 
intrinsic motivation did not predict subsequent achievement at any time, suggesting 
a unidirectional relationship opposite from other studies. The authors proposed that 
at this age, mathematics learning in school may be primarily driven by external 
forces (e.g., classroom requirements or teacher-assigned activities), meaning that 
intrinsic motivation has less opportunity to influence learning behaviors and subse-
quent mathematics achievement (Garon-Carrier et al., 2016). 
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In support of this conclusion, a longitudinal study on German students assessed 
from 5th to 10th grade found that intrinsic and extrinsic motivation related to initial 
performance on a standardized mathematics assessment at 5th grade, but neither 
predicted change in mathematics performance. In contrast, intrinsic motivation was a 
significant predictor of change at 7th grade (Murayama et al., 2013), which may 
signify that 7th grade children had more opportunities for autonomy regarding their 
mathematics learning. By 6th grade, another study found that autonomous motiva-
tion (in which one voluntarily invests effort into a task because of inherent interest or 
identified importance) positively predicted initial mathematics achievement 
(β = 0.09), as well as a year’s mathematics growth (β = 0.12); intelligence 
(measured in 3rd grade) also predicted both initial achievement (β = 0.61) and 
growth (β = 0.40). Increases in autonomous motivation were also related to 
increases in mathematics achievement (β = 0.08). The opposite was found for 
controlled motivation (in which one invests effort into a task because of external 
or internal pressures), which was unrelated to initial levels of mathematics achieve-
ment, negatively related to change (β = -0.08), and increases in controlled moti-
vation were negatively related to change in mathematics (β = -0.07) (Boncquet 
et al., 2020). Still, this pattern is not completely straightforward. 

Another longitudinal study looking at 1st to 3rd grade students found that 
intrinsic motivation significantly predicted mathematics outcomes in addition to 
IQ. However, the mathematics outcome measures included both mathematics report 
card grades and teacher ratings of mathematics achievement rather than standardized 
mathematics tests (Gottfried, 1990). It is possible that intrinsic motivation still has a 
notable influence on others’ perceptions and ratings of students’ mathematics 
achievement even at these younger ages, even if it has less immediate influence on 
standardized measures. It should be noted that the amount of variance explained by 
intrinsic motivation was still relatively small, ranging from 3% to 6% compared to 
IQ’s explanation of 14–33% (Gottfried, 1990). Intrinsic motivation’s influence on 
mathematics achievement may grow stronger as grade increases and choices regard-
ing mathematics opportunities become available (e.g., Gottfried et al., 2013; Taylor 
et al., 2014). 

Group and profile analyses provide further information about potential long-term 
benefits of intrinsic motivation, as well as ways in which intrinsic and extrinsic 
motivation may interact to promote mathematics outcomes. Lv et al. (2019) identi-
fied five profiles in 4th to 6th grade students based on levels of intrinsic motivation, 
identified motivation (in which individuals identify with reasons for a behavior or 
personally find a behavior important), and controlled motivation. After controlling



for IQ, the profile characterized by high intrinsic and identified motivation and low 
controlled motivation showed the highest levels of mathematics achievement com-
pared to the other four profiles. The lowest mathematics achievement was shown by 
profiles with average to high levels of controlled motivation, regardless of their 
levels of intrinsic or identified motivation. 
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Gottfried et al. (2005) also found that, in a longitudinal study of children from 1 to 
17 years of age, the children with extremely high levels of intrinsic motivation were 
more likely to have higher mathematics achievement and cumulative GPAs, be rated 
more highly by teachers and parents regarding achievement and engagement, take 
the SAT and score higher on the Quantitative and Verbal sections, score higher on 
intelligence tests, report higher academic self-concepts, and pursue college degrees 
directly out of high school. Both intrinsic motivation and IQ also significantly and 
uniquely contributed to predicting GPA. These findings highlight the potential 
detriments of extrinsic motivation on immediate mathematics achievement, which 
may even override benefits gained from high intrinsic motivation. In contrast, 
although fostering intrinsic motivation during middle childhood may not have 
immediate mathematics benefits at this age, it may still be worthwhile if it supports 
positive future outcomes. 

7.2.2 Summary of Self-Determination Theory Findings 

In sum, studies on Self-Determination Theory show somewhat mixed results on 
whether intrinsic motivation separately contributes to mathematics outcomes when 
domain-general cognitive factors are included (and more research is needed on 
domain-specific cognition). Similar to what was found with mathematics value, 
intrinsic motivation may be less important during middle childhood because children 
have few meaningful ways to exercise mathematics-relevant autonomy. Still, there is 
evidence that intrinsic motivation can have long lasting effects if developed during 
this period. Thus, it may be constructive to support intrinsic motivation by meeting 
children’s needs of competence and relatedness, or providing small ways for chil-
dren to act autonomously. For example, educators can present opportunities for 
students to acknowledge their progress toward important mathematics goals (com-
petence), to work collaboratively on mathematics problems (relatedness), or to 
choose from a set of pre-planned activities during mathematics classes (autonomy). 
Supporting these needs may also have the added benefit of protecting against high 
levels of non-autonomous extrinsic motivation, given consistent evidence that 
extrinsic motivation has a negative relationship with mathematics achievement 
even in middle childhood.
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7.3 Achievement Goal Theory 

Achievement Goal Theory (AGT) focuses on individuals’ purposes for engaging in 
achievement-related behavior. There are several variations of achievement goal 
models that differ in the number of achievement goals and how the goals are 
distinguished. The dichotomous model only considers two broad types of achieve-
ment goals based on the aim of the behavior: mastery goals, in which the aim is to 
gain competence; and performance goals, in which the aim is to demonstrate 
competence (Ames, 1992; Nicholls et al., 1989). Other models (e.g., the trichoto-
mous and 2 × 2 models; Elliot, 1999, Elliot & Harackiewicz, 1996) further separate 
mastery and performance based on how an individual tries to attain these goals: 
mastery- or performance-approach goals, in which individuals are motivated to 
demonstrate they can master a task or perform better compared to others; and 
mastery- or performance-avoidance goals, in which individuals are motivated to 
avoid showing that they cannot master a task or perform more poorly than others. 
Each type of achievement goal is thought to have its own pattern of antecedents and 
consequences. Achievement goals are often conceptualized as being couched in 
stable self-schemas similarly to academic self-concepts (Tuominen-Soini et al., 
2011), but stability may vary depending on the type of goal and task (Fryer & Elliot, 
2007; Muis & Edwards, 2009). 

Two general hypotheses have been proposed on how achievement goals relate to 
cognition (Linnenbrink & Pintrich, 2000). The “working memory” hypothesis 
suggests that achievement goals influence the information held within working 
memory, as well as the processes involved in manipulating this information. They 
may also affect the amount of effort that individuals are willing to expend to 
maintain high levels of performance, which may be reflected in one’s executive 
functions during a task. The “self-regulated learning” hypothesis suggests that 
achievement goals influence the use of cognitive or self-regulation strategies. 
Based on these hypotheses, much of the existing work on Achievement Goal Theory 
and cognition has focused on domain-general factors of executive functions and 
general intelligence or cognitive ability, as well as cognitive and meta-cognitive 
strategy use. We review this research below. 

7.3.1 Domain-General Cognitive Factors and Achievement 
Goal Theory 

There is some evidence that working memory mediates the relationship between 
achievement goals and mathematics outcomes. In a sample of children ages 10 and 
12, Lee et al. (2013) compared three models on how working memory, mastery and 
performance goals, and standardized mathematics assessment scores related. They 
found that a model in which working memory partially mediated mastery and 
performance goals’ relation to standardized mathematics assessment scores provided



a better fit to their data compared to either a model in which working memory and 
achievement goals independently related to mathematics scores or a model in which 
working memory’s relation to mathematics scores were partially mediated by goal 
orientation. Working memory (β = 0.66) and mastery goals (β = 0.16) had positive 
effects on mathematics scores, whereas performance goals (β = -0.23) had a 
negative effect on mathematics scores. Mastery and performance goals also both 
had indirect effects on mathematics scores via working memory (β = 0.13 for 
mastery goals, β = -0.10 for performance goals). There were significant two-way 
interactions between performance goals and working memory, in which children 
with low working memory and high-performance goals had lower mathematics 
scores, and between mastery goals and performance goals, in which children who 
reported high performance goals plus low mastery goals also had lower mathematics 
scores. These findings suggest that fostering students’ desires to master tasks is 
broadly beneficial for mathematics achievement. Further, the types of achievement 
goals may affect how working memory is used during mathematics learning, and 
one’s achievement goals and working memory capacity may influence one’s subse-
quent mathematics achievement. Understanding students’ achievement goals and 
working memory capacities may serve as a basis for identifying meaningful, qual-
itative differences in student approaches to mathematics learning, which educators 
can use to guide their instructional planning. 
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In contrast to achievement goals’ relation with working memory, achievement 
goals generally make unique contributions to mathematics achievement separate 
from general intelligence and cognition (e.g., Moyano et al., 2020; Zhang et al., 
2016). When intelligence or general cognitive abilities are controlled, mastery goals 
are found to have a positive association with mathematics achievement (e.g., 
Moyano et al., 2020; Orbach et al., 2019; Zhang et al., 2016). However, performance 
goals’ influences on mathematics outcomes are more mixed when intelligence is 
included. Sometimes, performance goals show an association with lower mathemat-
ics scores (Kikas et al., 2009) even in students who hold high mastery goals (Zhang 
et al., 2016). Other times, they show no association with performance at all (e.g., 
Jōgi et al., 2015; Moyano et al., 2020; Orbach et al., 2019). For example, in an 
Estonian sample of 2nd and 3rd grade students, researchers found that performance-
approach and performance-avoidance goals predicted mathematics interest a year 
later (positively and negatively, respectively), but were not predictive of mathemat-
ics skills in calculation, word problems, or geometrical tasks. Instead, prior mathe-
matics skills had a significant association with children’s performance goal 
orientations. 

Performance-approach goals in turn had a particularly strong relation with math-
ematics interest for low ability students (Jōgi et al., 2015). These findings build on 
the working memory studies that primarily utilized the dichotomous achievement 
goal model, showing that performance goals are not uniformly negative for mathe-
matics achievement—a strong desire to demonstrate competence may actually 
bolster students’ interest in mathematics tasks despite lower achievement, or vice 
versa. This hypothesis fits well within SEVT’s broader model, which theorizes that 
students’ goals may influence students’ mathematics expectancies and values



(Eccles & Wigfield, 2020). As such, targeting students’ achievement goals may be 
another viable target on the path to better mathematics achievement. In addition to 
providing information about achievement goals’ unique contribution to mathematics 
achievement, these findings further support the working memory hypothesis by 
showing that achievement goals can relate to mathematics achievement specifically 
through working memory processes, not just broad cognitive ability. 
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7.3.2 Cognitive and Meta-cognitive Strategy Use 
and Achievement Goal Theory 

As with the working memory hypothesis, there is also some evidence for the self-
regulated learning hypothesis. Several studies suggest that achievement goals are 
related to cognitive and meta-cognitive strategy use (e.g., Meyer et al., 1997; Ocak & 
Yamac, 2013; Seo & Taherbhai, 2009). For example, in 5th grade Korean students, 
Seo and Taherbhai (2009) found that performance-avoidance goals had a direct 
negative association (β = -0.11) with province-ordered mathematics exam scores. 
Further, mastery goals (β = 0.41) and performance-approach goals (β = 0.12) both 
indirectly associated with mathematics performance through the use of cognitive and 
meta-cognitive strategies (β = 0.09). Another study found that children’s percep-
tions of their classroom achievement goal structures influenced their strategy use 
more than their own goal orientations, as there was no direct relationship found 
between children’s held achievement goals and strategy use (Young, 1997). One 
type of cognitive strategy that achievement goals promote may be retrieval strate-
gies. Neuroimaging studies have found greater activation in the left inferior frontal 
gyrus (associated with retrieval strategies use) among low-ability children with more 
positive mathematics attitudes (a composite measure that included avoidance goals, 
as well mathematics intrinsic value, utility, and self-efficacy) (Demir-Lira et al., 
2020). However, one study showed that although students with approach-oriented 
achievement goals showed more effort on tasks (controlling for general cognitive 
ability), this effort did not translate into higher mathematics achievement (Hornstra 
et al., 2017). In other words, achievement goals may encourage students to work 
harder, but not necessarily more effectively, and outside support is likely still needed 
to push students toward appropriate learning strategies. Together, these findings 
suggest that targeting students’ mathematics strategies may be a more direct way of 
supporting mathematics achievement rather than changing their achievement goals. 

7.3.3 Summary of Achievement Goal Theory Findings 

In sum, mastery goals appear to have a positive relation with mathematics achieve-
ment, whereas performance-avoidance goals generally have a negative relation with 
mathematics achievement. There is also evidence supporting both the working



memory and self-regulatory hypotheses regarding achievement goals’ connections 
to cognition and mathematics achievement: achievement goals may partly influence 
working memory processes, as well as cognitive and meta-cognitive strategy use, 
which may then influence subsequent mathematics achievement. Encouraging stu-
dents’ mastery goals is most likely to improve mathematics achievement. Classroom 
practices such as assigning fewer or more diverse homework assignments, offering 
students more choices about their learning, and allowing more time for classroom 
activities may be perceived by students as more mastery-oriented and encourage 
them to adopt mastery-oriented learning goals (Vedder-Weiss, 2017). This may also 
influence students’ mathematics expectancies and values to provide further benefit 
for mathematics achievement (Eccles & Wigfield, 2020). Understanding students’ 
achievement goals, or their perceptions of their classroom achievement goals, may 
also provide insight into the types of strategies and thought processes that students 
engage in during mathematics learning, which educators can use as a starting point 
for their instructional plans. 
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7.4 Combining Cognition and Motivation: An Example 
Using Situated Expectancy–Value Theory 

To demonstrate how existing motivational theories can be expanded to include 
cognitive processes and aid in understanding mathematics learning, we use Eccles 
and Wigfield’s (2020) SEVT as an example (see Fig. 7.1). Because SEVT encom-
passes a broad number of influences on general achievement, the theory provides a 
useful base for mapping motivational, cognitive, and social processes to create a 
mathematics-specific model, based on current and future research involving cogni-
tion and expectancy–value, as well as research on self-concepts, intrinsic and 
extrinsic motivation, and achievement goals. 

Several studies on domain-specific and domain-general cognition offer informa-
tion that is relevant to the middle and right sections of the SEVT model, which 
illustrate how expectancies and values directly influence mathematics achievement, 
as well as the more distal factors that shape individuals’ expectancies and values. 
First, there may be a bi-directional relationship between affective reactions and 
memories and subjective task values, rather than the unidirectional connection 
illustrated in the current model, and there may also be a direct connection between 
affective reactions and memories and expectancies. A study on 3rd to 6th grade 
students found that expectancy and value interact to influence affective states, 
controlling for general cognitive ability: children with low self-perceptions of their 
mathematics ability but high ratings of mathematics’ utility and importance 
predicted higher levels of worry when doing mathematics (Lauermann et al., 
2017). Second, the link between task values and goals/self-schemata may also be 
bi-directional, as subjective values have been shown to influence goal orientations 
(Seo & Taherbhai, 2009). Within a classroom, this may manifest in changes in



students’ affective states as a result of their expectancies, values, and feedback about 
their mathematics performance. For example, a student with high worries about 
mathematics, high mathematics value, and low mathematics expectancy may 
increase their worry and adopt more avoidance goals if they encounter setbacks 
during mathematics tasks. Meanwhile, a comparable student with high worries about 
mathematics but low mathematics value and high mathematics expectancy may 
eventually worry less and adopt more approach goals if their motivations bolster 
their mathematics confidence in the face of failure. This also has implications for 
interventions that target such motivations, suggesting that a uniform increase in 
mathematics expectancies and values may not necessarily work well for all students, 
depending on other personal and situational variables. 
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Fig. 7.1 Situated expectancy–value theory model. (Reprinted from Eccles and Wigfield (2020) 
with permission from Elsevier) 

Additional cognitive constructs could also be mapped onto to the SEVT model to 
describe how expectancies and values influence mathematics achievement. For 
example, several neuroimaging studies have found that higher expectancies and 
values promote greater use of efficient retrieval strategies in children, as indicated 
by greater activation in the hippocampus and left inferior frontal gyrus (e.g., Chen 
et al., 2018; Demir-Lira et al., 2020; Suarez-Pellicioni et al., 2021). Behavioral 
studies further show that expectancy and value may relate to slightly different 
strategies. For example, a study of Greek 5th and 6th grade students found that the 
use of rehearsal, elaboration, and organizational strategies mediated self-efficacy and 
task value’s relation to teachers’ ratings of student mathematics achievement. In



contrast, strategies involving planning and monitoring only mediated task value’s 
relation to mathematics achievement (Metallidou & Vlachou, 2007). Research on 
achievement goals also suggest that the use of these strategies and available working 
memory mediates the relationship between children’s goals and achievement-related 
outcomes (e.g., Lee et al., 2013; Seo & Taherbhai, 2009). Thus, including these 
processes as components within the model may help to further detail how self-
schemata, expectancies, and values work to influence mathematics outcomes. 
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Adding these cognitive processes and revisions into an SEVT model created 
specifically for the mathematics domain can provide a reference for how to support 
mathematics achievement. For researchers, the model illustrates relationships 
between both individual and broad level factors that may be worth evaluating (and 
revising as needed based on one’s findings). For instruction, the model could act as a 
quick guide on targets to influence mathematics achievement, as well as the broader 
factors that one may need to consider when determining how motivational and 
cognitive supports will affect mathematics development. 

7.5 Open Questions and Recommendations 
for Instructional Practice and Future Research 

The existing research reviewed here shows a consistent association between moti-
vational constructs and mathematics achievement, separate from domain-specific 
and domain-general cognitive factors. Mathematics expectancies and approach-
oriented achievement goals may have the most potential for improving immediate 
mathematics performance during the elementary and middle school years, in addi-
tion to domain-general cognitive factors of working memory and general intelli-
gence. Educators may wish to take advantage of the malleability of these 
motivational factors to build students’ mathematics confidence and self-beliefs. 
For example, assignments can be scaffolded to provide small successes that gradu-
ally build in difficulty. Mastery- and performance-approach achievement goals may 
also be fostered through practices such as modeling how to learn from mistakes, 
giving targeted feedback to help students master skills, or laying out clear and varied 
criteria for students to demonstrate mathematics success. In the longer term, 
supporting mathematics values and intrinsic motivation may also support future 
mathematics achievement through students’ math-related choices. Although these 
factors may be less of an immediate priority during the elementary and middle 
school years, educators can still prepare students for the future by providing space 
for students to practice autonomy, approval to build feelings of competence, and 
collaborative assignments that mimic real-world tasks to build relatedness and value. 

Although research that involves both motivational and cognitive factors is grow-
ing in number, there is still much work to be done to fully understand the interplay 
between motivation and cognition for mathematics learning in the elementary and 
middle school years. First, future studies may want to include a larger range of



factors to gain a broader understanding of children’s mathematics achievement. 
Within this chapter, we focused on work that included domain-specific cognitive 
or domain-general cognitive factors, in conjunction with motivational factors. How-
ever, few studies have investigated all three types of these factors together, even 
though our work suggests that all three types jointly contribute to mathematics 
performance (Liu et al., 2022). There are also other types of factors (as shown by 
the SEVT model) that influence mathematics achievement that were not included 
here, such as other motivational constructs or affective factors (e.g., mathematics 
anxiety). Many of these other factors are likely to have an influence on or be 
influenced by cognition and motivation. Another important factor when considering 
cognitive and motivational measures together may be test motivation; that is, 
students who are more highly motivated in mathematics may also be motivated to 
try harder on general cognition tests, which may inflate the predictive validity of 
general intelligence on mathematics achievement (Duckworth et al., 2011). We also 
focused primarily on individual-level factors in this chapter, but it is important to 
consider broader environmental-level factors, such as school or family influences, 
and how these more distal factors influence cognitive and motivational processes. 
Investigating more varied factors concurrently will provide a better understanding of 
their unique and overlapping influences on mathematics achievement and inform 
which factors may be most effective and malleable to interventions for improving 
mathematics achievement. 
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Future studies should also consider investigating the relationships between moti-
vation and cognition within a broader variety of samples. Many existing studies 
involve participant samples that are predominantly White. These “WEIRD” 
populations—Western, educated, industrialized, rich, and democratic—have been 
shown to be unrepresentative on measures of many psychological phenomena, and 
the same is likely true for motivational theories (Henrich et al., 2010). Indeed, there 
is evidence in a couple of studies reviewed here that models that fit these convenient 
participants may not fit as well with other samples of participants (e.g., Lu et al., 
2011; Stevens et al., 2006). It is an open but important question to understand how 
motivational processes work for different children and contexts, especially consid-
ering the broader social constructs that may impact cognitive and motivational 
functioning. Models such as SEVT can help researchers to identify potential sample 
characteristics that may lead to significant differences in motivation, and guide the 
recruitment of participants. This practice can ensure that interventions and practices 
based on cognitive and motivational processes can benefit all students. Other useful 
methods for researchers may be to report sample characteristics in more detail, 
justify the sample used in one’s study, and be explicit about the generalizability of 
findings based on one’s given sample (Rad et al., 2018). 

Finally, we encourage researchers working within the motivational and cognitive 
space to situate their studies within motivational frameworks and models. These 
models can provide guidance on how cognitive variables and processes may fit with 
motivational ones, driving research questions and analytical choices (e.g., what 
pathways, mediations, or interactions to expect and test). Framing analyses within



these models can further help to refine existing theories so that models can be revised 
to better illustrate mathematics learning and inform theory and practice. 
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Overall, the research space involving the intersection of cognition and motivation 
is an open and growing area with implications for instructional practices that 
influence mathematics achievement. Current and future work can elucidate a holistic 
understanding of mathematics development during the elementary and middle 
school years, informing future research and effective practices for supporting chil-
dren’s mathematics achievement and future outcomes. 
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Appendix A: Review Methodology 

Inclusion & Exclusion Criteria The review only included studies that investigated 
relations between at least one motivational construct, at least one cognitive con-
struct, and at least one mathematics achievement outcome. We required studies to 
use motivational constructs that fit within the frameworks of Situated Expectancy– 
Value Theory (SEVT), Self-Determination Theory (SDT), or Achievement Goal 
Theory (AGT). Cognitive constructs also had to fit within domain-specific cognition 
(e.g., number sense) or domain-general cognition (e.g., executive functions, general 
intelligence or cognition). At least part of the study’s participant sample had to 
include 3rd to 5th grade students (8–11 years old). We only included studies written 
in English. 

Literature Identification We conducted three sets of literature searches, based on 
our three motivation theories of interest. All literature searches began with the 
keywords “math” and “elementary,” combined with additional keywords that were 
specific to one of our three motivational theories of interest: (1) “expectancy value”; 
(2) “self determination,” “intrinsic motivation,” and “extrinsic motivation”; and 
(3) “achievement goal theory,” “performance goal,” and “mastery goal.” We also 
included one more keyword about either domain-specific (i.e., “number,” “number 
sense,” “domain specific”) or domain-cognitive factors (i.e., “cog*,” “domain gen-
eral,” “executive function,” “intelligence”). For each manuscript, we used the title to 
determine preliminary relevance. We utilized the Google Scholar database for the 
search. We reviewed the first ten pages of search results for each of the searches, 
finding a total of 207 (89 SEVT, 48 SDT, and 70 AGT) potentially relevant articles. 

Inclusion Screening We read the abstracts and methods of the 207 studies to 
decide on their inclusion for the literature review. 175 (74 SEVT, 42 SDT, 
59 AGT) studies were excluded for not meeting our inclusion criteria upon closer



review (e.g., outside of the intended age range, missing a cognitive and motivational 
construct in one of the three theories of interest, no mathematics achievement 
outcome). The remaining articles were then skimmed in full to screen for quality, 
and additional studies were identified through backward and forward citation 
searches (8 SEVT, 2 SDT, 3 AGT), for a final total of 32 relevant studies 
(15 SEVT, 6 SDT, 11 AGT). 
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Chapter 8 
Design Principles for Digital Mathematical 
Games that Promote Positive Achievement 
Emotions and Achievement 

Run Wen and Adam K. Dubé 

Abstract Digital educational games can be an enjoyable way to improve students’ 
mathematics achievement. However, players may experience other emotions besides 
enjoyment when learning about mathematics, such as anxiety and boredom. These 
emotions are also important as they affect learning outcomes via multiple pathways. 
Loderer et al.’ (Emotional foundations of game-based learning. In Plass JL, Mayer 
RE, Homer BD (eds) Handbook of game-based learning. The MIT Press, 111–152 
(2020)) propose five foundational emotional design principles for use in digital 
game-based learning. However, empirical evidence to support these principles is 
lacking. This paper conducted a meta-analysis on the effects of emotional design 
principles. The results showed that among the studies reviewed (n = 17), most of 
games applied multiple principles. In general, emotional design principles had a 
medium effect size on both achievement emotions (g = .50) and learning outcomes 
(g = .66). Principles that influence control and value appraisals had stronger effects 
(g = .60/.63 respectively) compared to those that did not contribute to control and 
value appraisals. These principles should be adopted for a better emotional experi-
ence and learning outcome. 

Keywords Achievement emotions · Mathematical games · Digital games · Game 
design 

8.1 Introduction 

A great deal of research has been conducted on the effectiveness of digital mathe-
matical games and their ability to improve learning outcomes. In Byun and Joung’s 
(2018) meta-analysis of 17 studies on K-12 mathematics education, digital games 
are shown to have a positive effect on mathematics learning outcomes (d = .37). In a 
narrative review of 25 studies, Dubé et al. (2019) similarly conclude that digital
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mathematical games can be effective learning tools for engaging students with 
learning content, increasing performance, and improving attitudes. However, digital 
games are not equally effective in all domains of learning and some learning 
outcomes are more studied than others (Ke, 2009). This chapter discusses why 
digital mathematical games are effective tools for students in the elementary and 
middle school years by investigating which emotional design features contribute to 
better mathematics learning experience and outcomes.
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8.2 Why Are Digital Mathematical Games Effective? 

Dubé et al. (2019) argue that digital educational games are often designed to be 
“interactive” and “fun”, and these characteristics of games may have the potential to 
overcome the “boring” mindsets and anxious feelings students hold towards math-
ematics. Students start to develop mathematics anxiety (fear and tension towards 
mathematics) at an early age, and it grows over time (Aiken, 1970). The level of 
mathematics anxiety students experience does not differ as a factor of mathematical 
ability as high performing students also report feeling stressed and anxious towards 
mathematics (OECD, 2018). Mathematics anxiety matters because it can affect 
students’ performance during assessment as well as their willingness to pursue 
mathematics as a field of study (Ashcraft & Faust, 1994). In fact, a negative 
relationship between anxiety and mathematics performance has been reported in 
different studies spanning all grades (Brassell et al., 1980; Hembree, 1990; Lee, 
2009; Ma, 1999; Zakaria & Nordin, 2008). 

In contrast to the anxious feelings experienced with mathematics, students report 
having fun and enjoyment during digital educational games regardless of academic 
subject (Mekler et al., 2014). Mekler et al.’s (2014) systematic review of 87 digital 
game studies find that descriptors such as “enjoyable”, “enjoying”, “fun”, and 
“interest” have appeared in 89% of studies. For mathematics, enjoyment is often 
reported by students themselves when interacting with mathematical games (Chen 
et al., 2012). Putwain et al. (2018) further report a reciprocal relation between 
enjoyment and mathematics achievement among 5th to 6th grade students. Their 
finding suggests that higher levels of enjoyment experienced during mathematical 
game learning leads to better learning outcomes (Putwain et al., 2018). Therefore, it 
seems that the fun part of digital mathematical games not only offset the boring and 
anxious feelings students experience with mathematics but can also generate positive 
emotions and lead to better mathematics performance. 

8.3 Emotions 

Besides enjoyment, there are a range of emotions students may experience during 
game-based learning and how they affect the learning process is complex. Emotions 
refer to affective states, either positive or negative (Lazarus, 1993). Ekman et al.



(1987) propose six basic emotions: fear, anger, joy, sadness, disgust, and surprise. 
However, these general emotions are insufficient to capture the complex roles of 
emotions in learning (Kapoor et al., 2001; Kort et al., 2001). Since this earlier work, 
there are a broad range of emotions that researchers consider when studying learn-
ing. Craig et al. (2004) includes confusion, frustration, boredom, flow/engagement, 
interest, and being stuck as affective sates that learners may encounter. Similarly, 
D’Mello and Graesser (2007) argue that confusion, frustration, and boredom are 
inevitable emotions during learning. Woolf et al. (2009) adapt Ekman’s (1999) basic 
emotions, while focusing on learning-related subsets of emotions such as pleasure, 
frustration, boredom, anxiety, novelty, and confidence. 
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8.3.1 Achievement Emotions 

Pekrun and Perry’s (2014) three-dimensional taxonomy of achievement emotions is 
a systematic way to organize and define learning related emotions. They defined 
learning related emotions as achievement emotions, which are “emotions that are 
tied to achievement activities (e.g., studying) or achievement outcomes (success and 
failure)” (Pekrun, 2017, p. 143). There are 17 types of achievement emotions that 
can be categorized according to three dimensions: object focus, valence, and acti-
vation (Pekrun & Perry, 2014). The object dimension distinguishes achievement 
emotions by activity and outcome (both prospective and retrospective). For example, 
enjoyment is an activity achievement emotion that occurs during learning, hope is an 
outcome prospective achievement emotion that occurs before learning, and pride is 
an outcome retrospective achievement emotion. The valence dimension groups 
achievement emotions into positive achievement emotions (joy) and negative 
achievement emotions (sadness). The activation dimension distinguishes the acti-
vating achievement emotions (anger) from deactivating achievement emotions 
(boredom). 

Therefore, we adopted Pekrun and Perry’s (2014) definition of achievement 
emotions and refer to learning related emotions as achievement emotions. Achieve-
ment emotions can manifest themselves overtly or be internalized. Moreover, they 
have the potential to impact learning and the pleasure of learning, which is 
described next. 

8.3.2 Importance of Achievement Emotions 

Mathematics attitude is closely related to mathematics achievement (Ma & Kishor, 
1997; Ma & Xu, 2004). It contains cognitive (beliefs towards mathematics), affec-
tive (emotions associate with mathematics), and behavioural (intentional behaviours 
towards mathematics) components (Wen & Dubé, under review). Achievement 
emotions are considered as affective components of mathematics attitudes and



believed to play an important role in learning as suggested by Pekrun and Perry’s 
(2014) control-value theory. Control-value theory argues that achievement emotions 
are products of cognitive appraisals of learning events and predictors of students’ 
performance and achievement (Pekrun, 2006; Pekrun et al., 2007). 
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There are two types of appraisals that play vital roles in arousing achievement 
emotions: (1) control-related and (2) value-related appraisals. Control-related 
appraisals refer to the evaluation of one’s controllability over achievement activities 
and achievement outcomes. Value-related appraisals refer to one’s value of both 
achievement activities and achievement outcomes, which can be either intrinsically 
or extrinsically valued. Achievement emotions are products of control-/value-
related appraisals, with high control and value resulting in positive achievement 
emotions (e.g., enjoyment) while high value but low control leading to negative 
achievement emotions (e.g., anxiety; Pekrun, 2006). 

Achievement emotions are not only the results of control and value appraisals, but 
also indicators of students’ mathematics achievement (Pekrun, 2006). In fact, 
achievement emotions have an impact on academic performance through motiva-
tional factors (Pekrun & Perry, 2014). For example, students with positive achieve-
ment emotions (e.g., enjoyment) are more likely to reengagement in the activity and 
are more likely to have a better performance. Students with negative achievement 
emotions (e.g., anxiety), on another hand, are more likely to avoid the task and 
underperform in their learning (Pekrun, 2006). This relationship between achieve-
ment emotions and learning achievement proposed by control-value theory is 
supported by empirical evidence. A study of 3425 5th to 9th grade students find 
strong evidence for a reciprocal relationship between the two (Pekrun et al., 2017). 
From a control-value lens, achievement emotions are critical in learning as they 
reflect student’s appraisals and predict their achievement. 

So, how do digital mathematical games affect students’ achievement emotions, 
and hence, influence their learning? Given the aforementioned theoretical lens, there 
must be features/design elements of digital mathematical games that affect students’ 
control and value appraisals, which result in different achievement emotions, and 
further influence students’ mathematics ability. To be specific, game features that 
contribute to students’ control/value appraisals are assumed to lead to positive 
achievement emotions and better learning outcomes. The next step is to identify 
what these potential game features could be, and to test if these features lead to better 
mathematics learning experience and outcomes. 

8.4 Emotional Foundations of Digital Game Design 

Though achievement emotions have been widely studied in the field of psychology, 
few researchers have explored achievement emotions in the context of digital 
mathematical games. Loderer et al.’s  (2020) recent study explored the emotional 
design of digital learning environments resulting in a model that explores the design 
of emotional foundations for game-based learning. Loderer et al. (2020) argues that



emotional support can improve learning for all individuals and identifies five general 
principles for game design from an emotional design perspective: visual aesthetic 
design, musical score, game mechanics, narrative, and incentive system. 
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8.4.1 Visual Aesthetic Design 

Loderer et al. (2020) propose that visual aesthetic design elements contain bright 
colours, round shapes, and the presence of learner-resembled avatars. Bright colours 
are saturated warm colours (e.g., orange, pink) (Loderer et al., 2020). Round shapes 
refer to graphic images and user interfaces that adhere to a rounded form (cf., square) 
(Loderer et al., 2020). Avatars are graphical representations of certain characters, 
whose faces and expressions evoke learners’ emotions (Loderer et al., 2020). 
Generally, bright colours, round shapes, and avatars are connected with positive 
achievement emotions (Arroyo et al., 2013; Boyatzis & Varghese, 1994; Kao & 
Harrell, 2015a, b; Mayer & Estrella, 2014; Plass et al., 2014; Um et al., 2012). 
Particularly, avatars are better at inducing learners’ positive achievement emotions 
compared to bright colours, which likely occurs because the control over avatars 
provides players a sense of power, and increased control-related appraisals further 
arouses positive achievement emotions. 

8.4.2 Musical Score 

Music has a direct impact on a learner’s emotions via tones and rhythms (Loderer 
et al., 2020). Musical score includes emotional tones, vocal sound, and sound 
feedback in the game (Loderer et al., 2020). Studies on tones indicate that higher 
brightness of tones are associated with positive emotions such as happy and joyful 
(Wu et al., 2013). Human generated sounds are also more likely to evoke positive 
emptions compared to computer-generated sounds, due to a sense of social presence 
or connection they provide (Baylor, 2011). Sound feedback occurs when sounds are 
provided based on learners’ performance (e.g., recognize mistakes or celebrate 
success, Loderer et al., 2020). It is a particularly important complementary source 
to visual feedback, and both are essential for learning (Fiorella et al., 2012). 

8.4.3 Game Mechanics 

Game mechanics are “methods invoked by agents for interacting with the game 
world” (Sicart, 2008). A well-designed game mechanic should (1) match with 
learning goals, (2) have a clear task, (3) have learner-appropriate difficulty, (4) pro-
vide social interaction, and (5) provide scaffolding (Loderer et al., 2020). Loderer



et al. (2018) suggest that good game mechanics provide students with a sense of 
control over the challenges, and thus are more likely to produce positive achieve-
ment emotions like enjoyment. 
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8.4.4 Narrative 

Narrative means that a game has a storyline that contextualizes the gameplay 
situation and provides a sense of belonging to a world (Dickey, 2007). Narrative 
can be either relevant or irrelevant to learning mechanics. Relative storylines make 
learning part of the story, with the goal of increasing motivation, engagement, and 
learning gains (Cordova & Lepper, 1996). Though a meta-analysis found that most 
games adopting irrelevant storylines had better learning outcomes (Clark et al., 
2016). Clark et al. (2016) suggests that games with overly developed, or ‘thick’ 
narratives distract players from learning. Therefore, games with relevant narratives 
to learning should avoid complex storylines as they may make it hard for learners to 
follow and understand. 

8.4.5 Incentive Systems 

Incentive systems contain rewards, unlocking mechanisms, and learner choice that 
keeps them motivated (Loderer et al., 2020). The basic incentives are rewards, which 
could be in the form of points, scores, stars, or badges. More advanced incentives 
include unlocking mechanisms, which allow learners to get access to game levels 
(new levels or new mini games). The opportunity to unlock an unknown game level 
acts as an intrinsically motivating factor, that captures learners’ curiosity (Malone, 
1981). Another incentive is learner choice, which gives learners the ability to choose 
rewards. For example, learners can choose which gifts are earned or change the 
avatar used in the game. Learner choice provides learners a sense of control over the 
game (Loderer et al., 2020). Thus, incentive systems link directly to learners’ control 
and value appraisals of the learning activity (McNamara et al., 2010). However, the 
number of incentives has to be considered carefully as overly frequent rewards can 
undermine learner’s intrinsic value of learning (Abramovich et al., 2013). 

8.5 Do Emotional Design Principles Promote Positive 
Achievement Emotions and Learning Outcomes? 

There is limited evidence to support the effectiveness of a particular emotional 
design principle and whether these five principles facilitate positive achievement 
emotions during mathematical game-based learning needs to be systematically



investigated. Further, control-value theory holds that emotional design principles 
that contribute to control/value appraisals are more likely to result in positive 
achievement emotions, but this assumption also needs empirical support. To address 
this gap, we developed a coding scheme based on Loderer et al.’ (2020) five 
emotional design principles and conducted a meta-analysis of digital mathematical 
game research to explore (1) which emotional design principles are used in digital 
mathematical game research and (2) how effective each emotional design principle is 
at improving achievement emotions and learning outcomes. 
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8.5.1 Review Process 

First, a systematic review was conducted using keywords combinations of mathe-
matics, game, and emotions searched in three databases: PsycINFO, ERIC EBSCO 
and Scopus (see Table 8.1). The initial search returned 171 articles. After removing 
duplicates, 144 articles were entered into a two-stage screening process. 

Second, selected articles were then coded for the following: study (authors and 
publication year), grade level, sample size, intervention duration, study design, and 
emotion measured (see Table 8.2). 

Third, a content analysis was conducted to categorize games in the selected 
studies based on Loderer et al.’s emotional design principles (2020). Table 8.3 
shows the coding framework. 

Fourth, effect sizes were calculated to compare the effect of the different princi-
ples on mathematics achievement emotions and outcomes across studies. This was 
done due to the advantages effect sizes provide in representing true effects and 
comparing across studies (Cohen, 1988; Ellis, 2010). Effect size for each study was 
calculated by using the data provided in the study. 

Table 8.1 Keywords for 
information retrieval 

Mathematics Game Emotions 

Math* Game* Emotion* 

Educational game* Enjoy* 

Digital game* Hop* 

Serious game* Anxi* 

Video game* Boredom* 

Mobile game* Frustrat* 

Mobile app* Sad* 

Tablet game* Anger* 

Tablet app* Relief* 

Relax* 

Shame* 

Note: The asterisk at the end of each keyword indicates truncation 
searching, allowing researchers to search for a term and its various 
spellings



Studies Durations Design

7

)

)
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Table 8.2 Summary of reviewed studies 

Grade 
level 

Sample 
size 

Achievement 
emotions 

g on 
Emo 

g on 
Achi 

Adamo-Villani 
and Dib (2013) 

1–5 13 No data Qualitative Enjoyment NA NA 

Beserra et al. 
(2019) 

2 110 14-week Mixed Enjoyment NA 1.7 

Chen et al. 
(2012) 

4 53 Quantitative Enjoyment .45 .43 

Chiang and Qin 
(2018) 

7 89 4-week Mixed Enjoyment .25 .52 

Conati and 
Gutica (2016) 

6– 15 1–2 h Mixed Enjoyment NA .64 

Gilliam et al. 
(2017) 

9–12 133 5-week Mixed Enjoyment 
Boredom 

NA 
NA 

NA 
NA 

Godfrey and 
Mtebe (2018) 

1–3 111 6-week Mixed Enjoyment 
Frustration 

NA 
NA 

NA 
NA 

Gresalfi et al. 
(2018) 

3 95 3-day Mixed Enjoyment .69 .43 

Hensberry et al. 
(2015) 

4 46 4-day Mixed Enjoyment NA 1.2 

Hill et al. (2016 8–11 322 3-week Quantitative Enjoyment .09 .34 

Howard-Jones 
and Demetriou 
(2009) 

5–6 50 1 session Mixed Frustration NA NA 

Huang et al. 
(2014) 

2 56 8-week Quantitative Reduced 
anxiety 

.02 .32 

McLaren et al. 
(2017) 

6 153 No data Quantitative Enjoyment .95 .37 

Pareto et al. 
(2012) 

3 47 9-week Mixed Enjoyment NA NA 

Plass et al. 
(2013) 

6–8 58 1 session Quantitative Enjoyment 1.27 .86 

Sedig (2008) 6 58 1 session Quantitative Enjoyment NA .72 

Van Eck (2006 7–8 123 1 session Quantitative Reduced 
anxiety 

.36 NA 

8.5.2 Which Emotional Design Principles Are Used 
in Mathematical Game Research? 

Among the 17 reviewed studies, many (71%) used more than one emotional design 
principle, while only one study adopted all five (see Table 8.4). Among the five 
emotional design principles, visual aesthetic design was the most applied (71%). 
These studies were more likely to use bright colours and avatars in their games. 
Three types of avatars controlled by players were found in the reviewed studies, 
expert avatars (e.g., a scientist agent or a teacher agent), peer avatars (e.g., a student



Operationalization instructions

or boy agent), and animal avatars (e.g., a monkey agent). The second most common 
principle was game mechanics (65%). These included having a clear task, relevant 
difficulty, social interactions, and scaffolding. For social interaction, two of the five 
studies with this principle used collaboration, one study used competition, and the 
remaining two used both. Incentive systems were found in 53% of the reviewed 
studies. The most common incentive system was rewards, while unlocking mecha-
nism and learner choice were seldom provided. 
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Table 8.3 Operationalization of Emotional Design Principles 

Emotional 
design 
principles 

Operationalized keywords and 

Visual aes-
thetic 
design 

Basic emotional related visual designs, such 
as warm colors and round shapes. Avatars or 
agents that resemble players in the game. 

Shape, round, face-liked 
shapes, oval. 
Warm, bright, red, yellow, pink, 
orange. 
Agents, avatars, peers, experts, 
virtual selves. 

Musical 
score 

Musical score refers to auditory stimulus in 
the game. Higher musical tempo, vocal 
sound, and sound feedback promote positive 
emotions. 

Rhythms, tones, higher musical 
tempo, vocal sound, human voice, 
volume, pitch, prosody, rate of 
speech, sound feedback. 

Game 
mechanics 

Game mechanics that align with learning 
goals, task clarity, task demands, scaffold-
ing, and social interaction. 

Learning activity matches with 
learning goals/skills. 
No extraneous content in the 
game. The task is simple and clear. 
The difficulty level matches with 
players’ competencies. 
Scaffolding is provided such as 
providing examples, adjusting 
difficulty, providing hints, offering 
explanations, repeating contents. 
Social interactions are allowed 
between players in the game. 

Narrative Narrative refers to a story in the game. Well-
structured narratives have compelling story 
lines. 

Storyline contextualizes the skill 
to be learned. 

Incentive 
system 

Incentives such as rewards and other sys-
tems that provide extra control over game 
progression. 

Reward, punishment, progress 
bars, scores, badges, access to 
game levels, unlock game levels, 
trade for gifts. 

Musical score (29%) and narrative (24%) were the least applied principles in the 
reviewed studies. Studies that applied musical score mostly did so by providing 
sound feedback while fewer used vocal sounds. Notably, all studies that 
implemented musical score also adopted visual aesthetic design. This is likely 
because the combination of sound and visuals are more effective at engaging 
students than sound alone (Wolfson & Case, 2000). Finally, studies applied narrative 
all used simple narratives that were relevant to the learning content (cf., complex
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ones that distract). For example, in Beserra et al.’s (2019) work, the story involves an 
avatar progressing forward by building a bridge with stones, each stone has a number 
on it, and the avatar needs to choose the correct number to progress. No other 
distracting elements were presented and there was a central story that was linked to 
the game mechanic.
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8.5.3 How Effective Are Emotional Design Principles 
at Improving Achievement Emotions and Learning 
Outcomes? 

Both qualitative and quantitative studies were considered when exploring game’s 
effectiveness, as Ke (2009) suggests. Among the reviewed studies, one was quali-
tative, nine were mixed methods, and seven were quantitative. For the studies that 
did not have statistical data to calculate effect size, a meta-thematic analysis was 
conducted based on the themes that students used to describe game-based learning in 
the interview (Mekler et al., 2014; Talan et al., 2020) (see Table 8.5). Meta-thematic 
analysis indicated that students enjoyed learning with mathematical games, with 
“fun” and “interesting” being reported in multiple studies (Adamo-Villani & Dib, 
2013; Beserra et al., 2019; Chiang & Qin, 2018; Conati & Gutica, 2016; Gresalfi
et al., 2018). Not only did games generate positive achievement emotions, but 
students believed the game also helped their learning, fostered collaboration, and 
increased interests in the subject (Chen et al., 2012; Gilliam et al., 2017; Gresalfi
et al., 2018). 

For quantitative studies, effect sizes were calculated. Below, we provide forest 
plots that visualize the results as well as report key results (overall average effect 
size, heterogeneity, and predicted interval range). Forest plots can be interpreted as

Table 8.5 The most frequently used terms regarding games 

Emotion-related themes Examples N 

Fun “It was fun to play the game every session.” 3 

Interesting “Scratch is interesting.” 2 

Enjoyable/enjoying “I enjoyed participating in the activities using the game.” 1 

Awesome “This is awesome because you feel like you are really in a 
bakery. . .” 

1 

Future play intention “I would want to play this app again” 1 

Learning-related terms Examples N 

Helpful “I think it’s helpful” 
“I like this game ‘cause it helps you learn, for strugglers.” 

1 

Collaboration “. . .it was all about collaboration and helping with the group. . .” 
“All that collaboration between eight of us, that really helped” 

1 

Increased interest in 
learning 

“It makes me feel like I want to know more about things” 1



follows: boxes depict the effects of individual studies while the diamond at the 
bottom of each plot depicts the average effect for all studies combined. The hori-
zontal lines for each study depict 95% confidence intervals, with narrow ones 
represent more precision effect sizes. A narrative explanation and interpretation for 
these results is presented in the subsequent discussion. First, we report the overall 
effect of mathematical games on achievement emotions and achievement.
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Fig. 8.1 Forest plot for overall digital mathematical game effect on achievement emotions 

Overall, emotional design principles in digital mathematical games had a medium 
effect on achievement emotions (see Fig. 8.1) (n = 9, g = .50, 95% CI [.19, .80], 
p = .006). The between-study heterogeneity variance was estimated at τ2 = .11 
(95% CI [.03, .59]), with an I2 value of 81.6% (95% CI [.66–.90]). The prediction 
interval ranged from g = -.34 to 1.33, indicating that negative intervention effects 
cannot be ruled out for future studies. Similarly, a medium effect on mathematics 
achievement was found (see Fig. 8.2) (n = 12, g = .66, 95% CI [.38, .94], p < .001). 
The between-study heterogeneity variance was estimated at τ2 = .16 (95% CI [.06, 
.48]), with an I2 value of 88% (95% CI [.80–.92]). The prediction interval ranged 
from g = -.28 to 1.6, indicating that negative intervention effects may occur for 
future studies. 

Second, we explore each design principles’ effect on achievement emotions and 
learning outcomes. This was achieved by grouping studies based on their design 
principles and calculating effect sizes for each grouping. 

8.5.3.1 Visual Aesthetic Design 

Visual aesthetic design had a small to medium effect on enjoyment and reduced 
anxiety (see Fig. 8.3)  (n = 6, g = .44, 95% CI [.11, .77], p = .02). The between-
study heterogeneity variance was estimated at τ2 = .08 (95% CI [.02, .56]), with an 
I2 value of 84% (95%CI [.67–.92]). The prediction interval ranged from g =-.43 to 
1.31, indicating that negative intervention effects cannot be ruled out for future



studies. Similarly, a slightly higher medium effect on mathematics achievement was 
found (see Fig. 8.3) (n = 8, g = .54, 95% CI [.31, .78], p < .001). The between-study 
heterogeneity variance was estimated at τ2 = .05 (95%CI [0.01, 0.30]), with an I2 

value of 66% (95%CI [.28–.84]). The prediction interval ranged from g = -.05 to 
1.13, indicating that negative intervention effects may occur for future studies. 
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Fig. 8.2 Forest plot for overall digital mathematical game effect on mathematics achievement 

8.5.3.2 Musical Score 

Musical score had a small but non-significant effect on enjoyment (see Fig. 8.3) 
(n = 3, g = .29, 95% CI [-.43, 1.02], p = .22). The between-study heterogeneity 
variance was estimated at τ2 = .06 (95%CI [.01, 3.85]), with an I2 value of 77% 
(95%CI [.25–.93]). The prediction interval ranged from g = -3.46 to 4.05, indicat-
ing that negative intervention effects cannot be ruled out for future studies. Mean-
while, a significant small to medium effect on mathematics achievement was found 
(see Fig. 8.3) (n = 6, g = .43, 95% CI [.28, .59], p < .001). The between-study 
heterogeneity variance was estimated at τ2 = .01 (95%CI [.00, 0.18]), with an I2 

value of 3% (95%CI [.00–.75]). The prediction interval ranged from g = .15 to .72, 
indicating that negative intervention effects can be ruled out for future studies. 

8.5.3.3 Game Mechanics 

Game mechanics had a small to medium effect on enjoyment and reduced anxiety 
(see Fig. 8.3)  (n = 8, g = .42, 95% CI [.11, .73], p = .02). The between-study 
heterogeneity variance was estimated at τ2 = .07 (95%CI [.01, .66]), with an I2 value



of 73% (95%CI [.45–.87]). The prediction interval ranged from g = -.32 to 1.15, 
indicating that negative intervention effects cannot be ruled out for future studies. 
Meanwhile, a medium effect on mathematics achievement was found (see Fig. 8.3) 
(n = 10, g = .55, 95% CI [.35, .75], p < .001). The between-study heterogeneity 
variance was estimated at τ2 = .04 (95%CI [.00, .22]), with an I2 value of 60% (95% 
CI [.19, .80]). The prediction interval ranged from g = .02 to 1.08, indicating that 
negative intervention effects can be ruled out for future studies. 
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Fig. 8.3 Forest plots for effect size on achievement emotions and mathematics achievement. Note 
the diamond for the overall effect size of narrative is so large because too few studies use this 
principle. This is not a graphical error, but rather a sign that the effect is highly suspect



166 R. Wen and A. K. Dubé

8.5.3.4 Narrative 

There was not enough statistical data to estimate narrative’s effectiveness on 
achievement emotions. A large non-significant effect size on mathematics achieve-
ment was found (see Fig. 8.3) (n = 2, g = 1.2, 95% CI [-5.53, 7.92], p = .27). The 
between-study heterogeneity variance was estimated at τ2 = 0.51, with an I2 value of 
91% (95%CI [.67, .97]). 

8.5.3.5 Incentive System 

Incentive system had a medium effect size on enjoyment (see Fig. 8.3) (n = 5, 
g= .60, 95% CI [.14, 1.06], p = .02). The between-study heterogeneity variance was 
estimated at τ2 = .08 (95%CI [.00, 1.21]), with an I2 value of 65% (95%CI 
[.09–.87]). The prediction interval ranged from g = -.43 to 1.64, indicating that 
negative intervention effects cannot be ruled out for future studies. Meanwhile, a 
medium effect size on mathematics achievement was found (see Fig. 8.3) (n = 7, 
g= .63, 95% CI [.35, .92], p = .002). The between-study heterogeneity variance was 
estimated at τ2 = .06 (95%CI [.00, .40]), with an I2 value of 56% (95%CI [.00, .81]). 
The prediction interval ranged from g = -.04 to 1.31, indicating that negative 
intervention effects may occur for future studies. 

8.6 Summary of Design Principles of Digital Mathematical 
Games’ Impact on Achievement Emotions 
and Achievement 

Most games from reviewed studies applied more than one emotional design princi-
ple, indicating that students’ emotional experience during digital game-based learn-
ing is being considered by mathematics researchers. The most used principles were 
visual aesthetic design, game mechanics, and incentive system, while musical scores 
and narrative were the least used. Though multiple emotional design principles were 
employed to some extent, most games adopted features that are easier to integrate 
(e.g., bright colours, avatars) while neglecting ones that should be just as important 
to learning but are difficult to integrate. For example, features such as narratives, 
unlocking mechanisms, and learner choice were largely neglected in the reviewed 
studies. The possible reasons could be that writing a simple story that aligns with 
learning goals is more challenging than presenting the learning content alone (Clark 
et al., 2016); having levels that unlock requires building a larger game world and 
system in addition to the core game; and providing learner choice requires develop-
ing and designing content that is not absolutely necessary. These design principles 
should be included in future mathematical game studies as they have the potential to



intrinsically motivate learners and give them a sense of control over games 
(Habgood & Ainsworth, 2011). 
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Both the qualitative and quantitative studies indicate that digital mathematical 
games have a positive impact on achievement emotions and mathematics achieve-
ment. Incentive systems had the highest effect on both achievement emotions and 
learning outcomes, followed by visual aesthetic design and game mechanics. Nar-
rative had a large but non-significant effect on achievement. However, due to small 
sample size, more studies are needed to draw further conclusions. Musical score 
showed the least effect on achievement emotions and mathematics achievement. 

From a control-value theory lens, design principles that contribute to players’ 
control and value appraisals are more likely to generate better achievement emotions 
and learning outcomes (Pekrun, 2006). Emotional design principles that had stronger 
effects (incentive system, visual aesthetic design, and game mechanics) likely 
provide learners with a sense of control over the task (control of avatars, adjusted 
difficulty level) or add extra value (rewards) to the task (Chen et al., 2012; Gresalfi
et al., 2018). Similarly, narrative sets up challenges or goals in the game (Lindley, 
2005), which offers extrinsic value to players. In contrast, emotional design princi-
ples that showed small effect size (i.e., musical scores) may not impact control 
appraisals (Beserra et al., 2019; Conati & Gutica, 2016), as sound and music are 
either pre-set or reflect in-game actions and cannot be predicted or determined by 
players. 

All five emotional design principles had larger effects on learning outcomes than 
achievement emotions. One possible reason is that fewer studies measured achieve-
ment emotions than performance. Therefore, future works not only need to explore 
the effect of mathematical games on learning, but also need to examine their effect 
on achievement emotions, and how achievement emotions mediate the effects on 
achievement (Pekrun, 2006). The results provide guidance on choosing mathemat-
ical games for educational purposes. Teachers and parents should pick games that 
embed more than one forementioned emotional design principle, particularly those 
that provide a sense of control to players and add value to the activities. For instance, 
games that have avatars for learners to control or adjust difficulty level to different 
learners can give learners a sense of control whereas games with rewards add extra 
value for learners. This increased control and value may potentially lead to better 
learning experience and outcomes. A good digital educational game not only points 
out the mistakes made by players (e.g., sound feedback), but also scaffolds them 
with proper hints and adjusted difficulty levels, while motivating them with appeal-
ing visuals, an integrated narrative, and rewarding systems. 

Research on achievement emotions and the effects of emotional design principles 
on game-based learning is lacking. This meta-analysis systematically examines each 
emotional design principles’ impact on both achievement emotions and mathematics 
achievement. The findings show good evidence that adopting emotional design 
principles which promote control and value of the achievement activity can lead to 
positive achievement emotions and better learning outcomes. One limitation of the 
current work is that games in the reviewed studies covered more than one emotional 
design principles, thus the reported effect could be the result of an interaction. To



better distinguish individual principle’s effects, future work needs to adopt a value-
added approach that systematically integrates and evaluates one principle at a time 
(Mayer, 2019). The current results not only provide insights to developers, educa-
tors, and parents on how to design and identify digital mathematical games that 
better facilitate students’ learning but also provide a direction for future researchers 
to investigate the effect of different types of achievement emotions on game-based 
learning. 
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Part II 
Mathematical Understanding



Chapter 9 
The Number Line in the Elementary 
Classroom as a Vehicle for Mathematical 
Thinking 

Maria Pericleous 

Abstract This chapter builds on research related to the number line by exploring it 
as a vehicle for mathematical understanding in the naturalistic setting of Grade 2 and 
Grade 3 elementary classrooms. Starting from pupils’ embodiment of the number 
line, and explicitly giving emphasis on the nature of the number line, an instructional 
sequence was designed and organized around number sequence and recognition, 
addition and subtraction in the domain from 1 through 1000. Using evidence from 
pupils’ own productions, this chapter points to the role the number line plays in 
supporting pupils’ sense making, the elaboration of informal strategies, leading to 
the development of more sophisticated ones. 

Keywords Number line · Computation strategy · Mathematical understanding · 
Addition · Subtraction · Mental arithmetic 

9.1 Introduction 

In recent decades, important research in mathematics education has been devoted in 
identifying, understanding and fostering pupils’ strategies and approaches for 
performing addition and subtraction (Beishuizen, 2010). In this context, through 
mathematical models, manipulatives and representations of mathematical ideas and 
concepts are described and assessed. Representations are significant tools in think-
ing, reasoning and communicating about mathematical ideas and operations 
(Kilpatrick et al., 2001). A representation that plays an important role in facilitating 
pupils to actively construct mathematical meaning, number sense, and understand-
ings of number relationships is the number line (Frykholm, 2010). 

The understanding of and ability to use the mathematical number line constitutes 
an essential facet of pupils’ mathematics understanding. Consequently, the number 
line is an area of interest in cognitive psychology (Booth & Siegler, 2008; Siegler &
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Booth, 2005) and in cognitive neuroscience (Umiltà et al., 2010). There is a large 
body of literature that discusses the number line and its crucial role in teaching and 
learning elementary mathematics (Ball, 2003). Despite the widespread use of the 
number line, doubts about its appropriateness have been raised, with studies 
reporting difficulties and limitations in its use (Van den Heuvel-Panhuizen, 2008). 
Hence, there is a need to further our understanding regarding the conditions under 
which the number line in the elementary classroom is to be a vehicle for mathemat-
ical understanding.
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This chapter contributes to a growing body of research in mathematics education 
related with the number line. The aim of this study was to explore the idea of the 
number line as a vehicle for mathematical understanding in the naturalistic setting of 
the elementary classroom. To be more descriptive, it sought to examine the use of 
the structured and empty number line (ENL) as a tool to support and develop Grade 
2 and Grade 3 pupils’ mathematical thinking specific to addition and subtraction in 
the number domain 0–1000. 

In the first section of this chapter, the theoretical background pertaining to the 
number line is outlined. The argument is developed and synthesized by focusing on 
the structured and the ENL in relation to addition and subtraction. In the following 
parts of this chapter, this general information is made more concrete by concentrat-
ing on how this particular study utilised the structured and ENL to foster connections 
and relations between representations of mathematical ideas concerning quantities, 
the ways to decompose quantities and how to regroup them, illustrated by examples 
from the elementary classrooms. 

9.2 The Number Line 

According to Herbst (1997), a number line is formed by the consecutive translation 
of a specified segment U, as a unit from zero that can be partitioned in an infinite 
number of ways. He suggests that the number line is a metaphor of the number 
system; all kinds of numbers can be represented on the number line. The number line 
is also considered a geometrical model, involving a continuous interchange between 
a geometrical and an arithmetic representation (Gagatsis et al., 2003). That is, the 
numbers presented on the line correspond to vectors and to the set of the discrete 
points of the line. Simultaneously, points on the line are numbered so that the 
distance between two points depict the difference between the corresponding num-
bers. Furthermore, Teppo and Heuvel-Panbuizen (2014) argue that the number line 
is a figural device, representing particular mathematical abstractions that make it 
possible to think about and operate with different types of number. 

The number line is currently an extensively used model in the teaching of 
mathematics (Lemonidis, 2016; Reys et al., 2012). The number line is used for 
estimation (Onslow et al., 2005), measuring time (Moone & Groot, 2005) and 
length, extending students’ knowledge, giving access to possible solution strategies 
(Thompson, 2010). It allows the representation of numbers and the forming of



geometric knowledge for the operation of arithmetic (Herbst, 1997; Kilpatrick et al., 
2001). It can be used as a model for teaching percentages (Van de Heuvel-
Panhuizen, 2003) and algebra for teaching linear equations (Dickinson & Eade, 
2004). It is also employed for the development of the concept of fractions (Sidney 
et al., 2019). 
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Within the literature, two major types of number lines can be identified; the 
structured number line and the ENL (Diezmann et al., 2010; Teppo & van de 
Heuvel-Panhuizen, 2014). The filled or structured number line is characterized by 
equidistant points or tick marks, representing whole numbers. Diezmann and Lowrie 
(2007), elaborate the potential cognitive benefits of the number line for understand-
ing various aspects of mathematics. When pupils experience many variations linked 
to a mathematical concept and are exposed to the concept through a variety of 
representations, then abstraction and generalisation, both of which constitute essen-
tial aspects of conceptual development is promoted. For instance, the number line 
can show the continuity of rational numbers. Furthermore, a fraction can be 
represented on a circular or rectangular area model, an array, and on a number 
line. The number line can also be considered as a tool for representational transfer, 
the goal of which is knowing how to use a common representation and deriving the 
solution procedure on a novel task from this representation (Novick, 1990). For 
example, the knowledge of sequencing whole numbers on the number line may be 
transferred when requested to sequence decimal numbers on another number line. 

The ENL is a blank line presented without numbers or markers. It is a horizontal 
line acting as a visual representation for recording and sharing students’ thinking 
strategies during mental computation. Gravemeijer (1999) explicates the didactical 
and psychological advantages for using the ENL in mathematics education. Initially, 
he outlines the need for a linear representation of numbers. While models such as 
blocks reflect situations dealing with quantities, and thus representing the 
numerosity aspect of number, in situations involving distance or measurement, the 
number line, which is considered as a linear representation of number, seems more 
appropriate. Furthermore, he outlines the flexibility the ENL provides in being 
adapted to fit students’ thinking and informal solution strategies (van de Heuvel-
Panhuizen, 2008). That is, the ENL reflects students’ intuitive mental strategies, 
from counting-on or counting down to compensation and partitioning strategies. 
Furthermore, the natural and transparent character of the ENL, may stimulate a 
mental representation of numbers and number operations, and thus can be exploited 
for the representation and solution of non-standard context of word problems. The 
ENL relieves the working memory, as preliminary results can be put down relatively 
fast (Selter, 1998, p. 6). 

The ENL may function as a way of scaffolding by fostering the development of 
more sophisticated strategies. To be more precise, as students record their thinking 
strategies, the number line shows which parts of the operation have been completed 
and which parts remain, the level of thinking as well as any possible errors. The 
students are cognitively involved in the actions undertaken on the number line. 
Making students’ thinking visible provides opportunities to encourage the develop-
ment of more efficient and sophisticated strategies. Building on this, it may also



stimulate classroom discussion and expression and communication of mental strat-
egies (Bobis, 2007). 
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In reviewing the research literature that focuses on the strategies adopted by 
pupils to perform mental arithmetic for numbers up to 1000, a wide range of 
strategies have been documented and classified. There is a broad consensus in 
mathematics education that three main strategies for mental addition and subtraction 
of are identified when using the ENL; (i) splitting where the numbers are divided by 
multiples of ten and units and processed separately when operations are carried out, 
(ii) stringing or compensation strategy which refers to keeping the first number intact 
while splitting the second number into tens and ones, which are then added or 
subtracted separately from the first number, and (iii) bridging, where the second 
number is split to facilitate a bridge to the nearest decade and the balance of the 
number is added or subtracted from the previous set (Beishuizen, 1993, 2010; 
Beishuizen et al., 1997). Variations of these strategies are also identified in the 
literature (Hartnett, 2007; Van den Heuvel-Panhuizen, 2008). 

A consideration of the aforementioned, points to the crucial role the number line 
plays in mathematics education. However, whilst generally effective, research find-
ings often raise doubts about the usefulness of the number line as a didactical model. 
Studies have investigated students’ performance on number line tasks of various 
grade levels either at a single point in time (Skoumpourdi, 2010); over a small period 
of time (Hartnett, 2007) or through a longitudinal study (Diezman & Lowrie, 2007). 
These studies point both to instances where the number line functioned as an 
auxiliary means, as well as instances where students encountered difficulties in 
utilizing the number line. Common errors on number line items point to difficulties 
with distance, position, counting or misreading the diagram (Diezmann et al., 2010). 
Errors in problems originating from the dual nature of the number line may be 
persistent over time (Pelczer et al., 2011). Thus, neglecting one of the main features 
of the number line (direction, origin and unit measure) may lead to misconceptions. 

Adding to the above, Lemonidis and Gkolfos (2020), argue that some of the 
difficulties students encounter when using the number line may be interpreted as 
epistemological obstacles related with; the separation between the numbers and the 
magnitude or the separation between the numbers and the straight line; the negative 
numbers and the orientation on the number line in the positive or negative direction; 
the density of rational numbers and the extra unit intervals needed to place them on 
the number line and irrational numbers. While they outline that more research is 
needed in clarifying the nature of these difficulties, they stress that these difficulties 
should be explicitly addressed by the teaching procedure. 

Some of the difficulties students may face in effectively utilizing the number line 
may be attributed to the level of difficulty of number line problems. Other factors can 
be associated with the way the number line in presented in the mathematics text-
books and other curriculum resources and the way the teachers use it (Gray & 
Doritou, 2008; Murphy, 2011). These studies point towards a coherent treatment 
of the number line throughout the years of mathematics education and presentation 
of the number line in the school official documentation by focusing on the



simultaneous presence of the geometric and the arithmetic conceptualization of 
number on the number line. 
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Keeping in mind both the affordances as well as the constraints of the number 
line, it is argued that the number line should be introduced in early grade instruction. 
However, it is acknowledged that it is superficial to simply recommend the use of the 
number line for the students’ mathematical development or include it in curriculum 
materials and other recourses (Van den Heuvel-Panhuizen, 2008). If emphasis is 
given on the nature of the number line and its use as a representation of sophisticated 
ideas, then a conceptual way of teaching and learning should be encouraged, 
contributing to addressing students’ difficulties. Various learning strands, didactical 
models and approaches have been proposed in the literature for the use of the number 
line in the learning and teaching process of mathematics (Selter, 1998; Thompson, 
2010). 

9.3 Methodological Considerations 

The study was undertaken in a public primary school in Cyprus. The participants of 
this study were 19 Grade 2 students (11 boys and 8 girls) and 18 Grade 3 students 
(10 boys and 8 girls). The pupils were of a wide range of abilities and represented a 
broad spectrum of socioeconomic backgrounds. 

An instructional sequence, described in full shortly, was designed to support the 
use of the number line as a vehicle for making visible mathematical understanding. 
Informed by a socio-constructivist approach to teaching and learning (Gravemeijer, 
2020), pupils’ learning processes were viewed from both the individual perspective 
and the social perspective. To be more elaborative, this instructional sequence gives 
the pupils a guided opportunity to invent the intended mathematics themselves and 
build up the targeted mathematics by modelling their own informal mathematical 
activity (Gravemeijer, 2004, 2020; Van den Heuvel-Panhuizen, 2003). Such a model 
is the number line, fostering the transition from a model of pupils’ informal solution 
strategies to a model for mathematical reasoning (Freudenthal, 1973). 

The instructional sequence was carried out as part of the ordinary mathematics 
classroom with the teacher as the researcher and author of this chapter and during 
the regular class time. A variety of data were gathered; audio recordings from the 
instructional sequence, the field notes of the researcher, and pupils’ written work 
(worksheets, Concept Cartoons, and mathematical journal). The analysis of collected 
data started simultaneously with the data collection process, in order to identify 
pupils’ thinking, strategies and procedures and their development, as well as further 
organise the instructional sequence. The ongoing analysis being conducted while the 
study was in progress led to a focus on several issues and events, which were then 
placed in a broader theoretical context by conducting a retrospective analysis 
(Gravemeijer, 2004).
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9.4 The Instructional Sequence 

The goal of the instructional sequence was to support and develop Grade 2 and 
Grade 3 pupils’ sense making and calculation strategies specific to addition and 
subtraction in the number domain 0–1000. Considering the previously discussed 
elaboration, the instructional sequence aimed at creating opportunities for the pupils 
to build connections or relations between representations of mathematical ideas, to 
have the freedom to come up with their own notations, find their own ways to 
decompose quantities and regroup them and express and discuss their ideas. In this 
process, the number line would be utilized as a means for support, fostering the 
transition from a model of pupils’ informal solution strategies to a model for 
mathematical reasoning. However, the interpretation of the number line is not self-
evident. Thus, the instructional sequence was also focused on providing pupils with 
the opportunity to appreciate the number line as a rich model that can have different 
manifestations, by giving them as much initiative as possible, and simultaneously 
reducing the leading role of the teacher. In doing so, the pupils had the opportunity to 
understand the nature of the structured and ENL before acting on them and model-
ling their mental computation strategies. 

The instructional sequence started with a story where the classroom’s puppet 
converted its name into a number. The pupils followed the puppet’s step. By 
assigning each letter of the alphabet a number value that is equal to its place in the 
alphabet, the pupils took each letter in their name, converted it to a number and 
added up the numbers. In the context of the story, the classroom’s puppet invited the 
pupils to play a board game involving these numbers on a number line. However, 
what was missing from the game box was the number line. The pupils were to 
construct a physical number line. Even though they did not invent the tool for 
themselves, they were involved in the invention process. The pupils were encour-
aged to construct a definition regarding the structured number line and develop key 
understandings underpinning the conventions considered to interpret, create, and 
use structured number lines. After constructing the structured number line, the pupils 
plotted everyone’s name number, engaging in number sequencing and comparing 
activities. The game cards created opportunities to support pupils’ understanding of 
math processes, by inviting them to act on the structured number line, use their own 
strategies, and became familiar with different strategies, by explicitly discussing and 
reflecting on these strategies. The flexibility in the ways of recording results and the 
flexibility in the jumps pupils make to solve problems was stressed. 

The instructional sequence was followed by Concept Cartoons the aim of which 
was to explicitly explore the dual nature of the number line (Pelczer et al., 2011). The 
Concept Cartoons involved problems and possible answers which included pupils’ 
misconceptions. Comparing and contrasting ideas facilitates learning and interpre-
tation of knowledge, revealing and eliminating misconceptions (Dabell et al., 2008; 
Naylor & Keogh, 2013). Similar Concept Cartoons were utilised when the ENL was 
introduced in the classrooms.
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When the pupils reached the stage of becoming familiar with a linear represen-
tation of number and understanding and effectively using counting skills, the ENL 
was introduced in the classroom. In the sequel to the story, the classroom puppet 
discovered a different number line, and wandered whether this ENL could be utilised 
as a model of scaffolding and communicating the solution procedures the pupils use. 
The pupils were encouraged to construct a definition regarding the ENL. Emphasis 
was put on discriminating between the structured number line and the ENL. By 
drawing upon the pupils’ own informal strategies, Concept Cartoons provided the 
opportunity to gain insight into pupils’ calculation strategies as well as providing 
pupils with the opportunity to experience and develop a range of calculation 
strategies and discuss the flexibility of the ENL (Sexton et al., 2009). Speech bubbles 
proposing various solution procedures encouraged pupils to identify the name of the 
character that best matched their personal strategy choice for calculating the result, 
and providing reasons for choosing the specific strategy. The calculation strategies 
were introduced as possibilities, in an atmosphere of invention. 

Three main calculation strategies were explored in both classrooms: splitting, 
stringing and bridging. When a new strategy for computation was introduced, the 
discussion was built on examples produced by the pupils. The pupils were involved in 
situations of adding to, taking from, putting together, taking apart, and comparing, 
with unknowns in all positions. Furthermore, the pupils were encouraged but not 
forced to use the number line, methods or strategies that were being introduced and 
discussed in the classroom. The pupils would ‘try’ the strategy introduced in the 
classroom, but use the methods they felt comfortable with when solving problems. 
Thus, the pupils had the freedom to choose the materials and models (hundred chart, 
arithmetic blocks, dot-fields, money model) that supported their calculation. Through 
continuous discussion, strategies and procedures were presented, explained and 
contrasted. Pupils reflected upon the quality of their solution strategies and whether 
they could make them more manageable and efficient. Even though, no formal 
labelling was given to the computation strategies that were explored in the classrooms, 
the pupils were able to create general categories that supported them in communicat-
ing with each other and the teacher. At the end, a repertoire of strategies and methods 
was produced by each classroom in regards both to addition and subtraction. 

Throughout the instructional sequence, the pupils also engaged in mathematical 
diary writing (Burns, 2004). It allowed pupils that are uncomfortable in oral situa-
tions to express understanding in a less public form (Yang, 2005). Including pupils 
in meaningful communication, mathematical diary writing also encouraged pupils to 
reflect on their own computation strategies (Selter, 1998). 

9.5 Results and Discussion 

In the following paragraphs, snapshots from the enacted instructional sequence 
reflect a small proportion of evidence illustrating the way the number line was 
utilized by Grade 2 and Grade 3 pupils, by concentrating on the development of



pupils’ computation strategies throughout the year. These snapshots followed the 
introduction of the ENL in the classroom. It should be emphasized that providing 
pupils with ongoing opportunities for revisiting, reviewing, engaging and mastering 
was not a straightforward process. 
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Initially, the pupils were presented with a context problem introducing the 
addition of two-digit numbers and three-digit numbers (64 + 30 and 264 + 30 for 
Grade 2 and 3 pupils accordingly), where the second number is multiple of 10. When 
the pupils were asked to share their mathematical thinking used for this calculation, 
they referred to counting-based strategies to calculate, calculating by utilising 
models. 

While no pupil perceived the calculation as difficult, the reliance on counting 
materials (arithmetic blocks) was evident (seven Grade 2 and seven Grade 3 pupils). 
Grade 2 pupils’ computation strategy was to split 64 into tens and ones and 
processed separately. These pupils modelled their thinking using the structured 
number line (four pupils) and the hundred chart (two pupils). When the pupils 
modelled their thinking on the structured number line, it was observed that three 
pupils utilised the structured number line for counting. No Grade 2 pupil referred to 
the ENL, even though it had been introduced in the classroom. The pupils’ hesitation 
in utilising the ENL was related with its recent introduction in the classroom, 
revealing the need for more opportunities to build up familiarity with the ENL as a 
supportive model to carry out calculations. Grade 3 pupils referred to both splitting 
and compensation when working the calculation either mentally (seven pupils) or 
with the support of the ENL (five pupils). 

Pupils were encouraged to record on paper the strategies chosen, Grade 2 pupils 
made drawings (e.g., iconic representation of arithmetic blocks, money model). This 
may be explained by the fact that the pupils had not been introduced to written 
symbolic representations. Three Grade 3 pupils described in writing their underlying 
pathways that led to how they determined the answer. Four pupils did not know what 
to do. The need for all pupils to be provided with more opportunities to draw upon 
number sense, and develop both written and mental computation was evident. 

Successively, the instructional sequence was followed with a context problem 
introducing the addition of two and three-digit numbers without bridging (45 + 32 
and 256 + 143 for Grade 2 and 3 pupils accordingly). Various methods of compu-
tation were discussed by the pupils. Two Grade 2 pupils chose arithmetic blocks, 
revealing that pupils would gradually rely less on manipulatives to solve a calcula-
tion task. In the same way, three Grade 3 pupils stated that as the numbers are bigger, 
the arithmetic blocks would assist them in solving correctly the calculation task. 
Nevertheless, modelling the problem with arithmetic blocks highlighted partitioning 
and regrouping of numbers. Two Grade 2 pupils and three Grade 3 pupils referred to 
the standard algorithm. Even though the algorithm had not been introduced in the 
classroom, it was mentioned previously by the pupils, as knowledge they had 
acquired either outside school (Grade 2 pupils), or during the previous school year 
(Grade 3 pupils). It was explicitly discussed, but without expecting pupils to use it as 
a way of working. The other pupils’ strategies were divided between splitting and 
stringing (using either the ENL or a written computation), with four Grade 2 and



3 pupils commenting that they did not need a written externalisation because they 
worked the calculation mentally. These pupils’ mental computation was previously 
supported by the ENL and may suggest the success of the ENL as a mental model. 
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Fig. 9.1 Grade 2 pupils’ informal strategies for computing an addition calculation mentally 

Figures 9.1 and 9.2 demonstrate Grade 2 and 3 pupils recording their mental 
computation on the ENL. The written work on the ENL was generated almost 
simultaneously with the pupils’ thinking process revealing the solution procedures 
and at the same time disclosing the cognitive evidence included in this process. They 
constitute an indication of how the ENL is adapted by the pupils to fit their thinking 
and the pupils’ increased confidence in their ability to use numbers flexibly. 

Grade 2 pupils’ strategy was compensation (see Fig. 9.1). The main procedures 
for implementing compensation, was that of separation from left to right (P2–4) or 
from right to left (P1). The structure of the calculation sequence involved either 
calculating in groups of tens and ones (P1 and P3) or a combination of groups of tens 
or ones and whole tens or ones (P2 and P4). 

Accordingly, Fig. 9.2 demonstrates Grade 3 pupils modelling their mathematical 
thinking on the ENL, with some also providing a written description of their work. 
The splitting (P2 and P4) and compensation (P1 and P3) strategy used by the pupils 
led to a correct result. The pupils argued that their recordings on the ENL assisted 
them in providing an informal written method. This was quite unexpected consid-
ering that written work on the ENL has only a secondary function, and that the ENL 
does not easily lead to an informal written method. It shows that introducing the 
ENL, may also encourage pupils to invent and develop informal symbolic 
representations. 

The instructional sequence was followed by an addition problem involving 
bridging (46 + 37 and 248 + 136 for Grade 2 and 3 pupils accordingly). The pupils 
were again encouraged to generate strategies based on their intuitive understanding 
of the numbers and actions needed. Initially, it should be explicated that no pupil 
relied on physical material, suggesting a shift from lower order strategies such as 
counting to more sophisticated strategies. Concerning the two-digit addition



problem, while not all methods led to a correct result, the classroom’s documented 
work included the ENL as a mental model, language and written symbols. 
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Fig. 9.2 Grade 3 pupils’ informal strategies for computing an addition calculation mentally 

To be more elaborative, in proposing computation strategies and procedures to 
calculate the result, six Grade 2 pupils commented that they could solve the 
calculation mentally by picturing the ENL in their heads. However, they expressed 
their preference for flexible and mental steps beyond the number line. The discussion 
led to the informal written computation illustrated in Fig. 9.3. In this occasion, the 
number line was used with other strategies to solve the problem. 

The strategies pupils adopted to perform mental addition was splitting (see 
Fig. 9.3) and compensation (see Fig. 9.4). Even though this computation entails a 
calculation demand, no pupil referred to bridging, despite the fact that they engaged 
in bridging situations with numbers up to 20. While a bridging through ten approach 
would seem more appropriate, it did not offer a foundation for strategic choice. The 
pupils’ decision about how to calculate was related with their familiarization with 
the alternative strategies. Closer examination of the pupils’ methods indicated that 
compensation and splitting were combined with counting the remaining units 
(instead of bridging). 

Further discussing the proposed strategies, a pupil commented ‘I think there is 
another way to do it. 46 need 4 to become 50. We can take the 4 from 7 and then add 
the remaining 3. And then add 30.’ The pupils were encouraged to discuss, get 
familiar with and reflect on bridging through ten as a strategy for mental



computation. Figure 9.5 demonstrates the ENL supporting pupils’ understanding of 
bridging. In this occasion, the pupils were also encouraged to provide a written 
computation that had been proposed in the classroom by their classmate. It is noticed 
that in the third example, the pupil used splitting stating that ‘I understand what to 
do, but I feel more comfortable with this strategy (splitting)’. 
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Fig. 9.3 Grade 2 pupils’ informal written computation 

Fig. 9.4 Grade 2 pupils’ informal written computation 

Concerning Grade 3 pupils approaching the addition problem involving bridging, 
the following extract from the classroom discussion shows pupils sharing the way 
they worked to calculate 248 + 136. Pupils 1–3 had modelled their calculation on the 
ENL. 

P1: I started from 136. Then I added 40. 176. 176 + 200 = 376. And then I added 
8. 376 plus 8 equals 384. 

P2: I did it like P1, but I started from the biggest number. 248. First I added 100, then 
30 and then 6. 378 plus 6 is 384. 

P3: I am thinking 248 is 200 plus 40 plus 8 and 136 is 100 plus 30 plus 6. I add the 
hundreds, then the tens with the tens and the ones with the ones. 200 plus 100 is 
300. 40 plus 30 is 70 and 8 plus 6 is 14. 300 plus 70 plus 14 is 384. 

P4: In my head I worked it differently. 248 + 2 = 250. I took 2 from 6. Then I did 
250 plus 130 equals 380. And the 4 that are left . . .  384.



Grade 2, 84-57

Grade 3, 584-257
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Fig. 9.5 Grade 2 pupils becoming familiar with different calculation strategies 

Grade 3 pupils’ calculation strategies involved splitting (P3), stringing (P1 and P2) 
and bridging (P4). The pupils’ explanations constitute an indication of the numbers 
being treated as mathematical entities. This discussion also shows how pupils would 
engage in a discussion where computation strategies are shared and contrasted. P2 
understood that he utilised the same strategy as P1, but commented that instead of 
starting the process from right to left, his process progressed from left to right. 
Similarly, P3 and P4 shared different strategies. 

As a final example, the following extracts illustrate Grade 2 and 3 pupils sharing, 
towards the end of the instructional sequence, how they calculated a subtraction 
mentally. 

P5: I started from 57. I am thinking 57 + 3 = 60. We need 24 to reach 84. Then I 
added the 3, 24 + 3 = 27. 

P6: It is like the number line is in my head. 84–50 = 34, then I subtracted the 
7. 27. 

P7: I worked in out in my head. I started from 84 as well, but I subtracted fist the 
ones, then the tens. 

P8: I started with the hundreds. 500–200 = 300, 84–57 = 27, 300 + 27 = 327. 
P9: I worked differently. 584 minus the hundreds, then minus the tens and at the 

end I subtracted the ones. 327. It is easier. 
P10: I also started from 584, but I subtracted fist the ones, then the tens and then 

the hundreds. 
P11: I worked in out in my head with addition. I started from 257.Pupils 8–10 
recorded their mathematical thinking as written computation (vertical equations), 
commenting that they did not need to use the ENL as a tool to support their mental 
computation. It is acknowledged that when the calculation involves bigger



numbers the need to record the successive stages of the calculation arises. The 
pupils’ mental computation strategies involved splitting (P8), bridging 10 to 
subtract with varying procedures (P6, P7, P9, P10) and subtraction as addition 
using bridging (P5 and P11). The pupils show a high degree of flexibility in their 
explaining. Compared to previous illustrations of pupils’ work, it can be argued 
that the pupils’ mathematical thinking became more elegant and sophisticated, 
involving fewer steps. The above extracts, indicate pupils having a grounded 
understanding of number and place value and are able to utilize this understand-
ing to successfully complete simple tasks mentally. It can be concluded that the 
pupils developed computational fluency and deeper sense of number. An addi-
tional remark constitutes that fact that the pupils were eventually able to share and 
discuss their calculation strategies verbally without having to write them down. 
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It is important to note that Grade 2 and 3 pupils who were able to perform mental 
computation strategies flexibly, would only use the ENL to document their strategy 
so as to ensure they reached the correct result, to demonstrate their method to their 
classmates or as a way to assist them in moving into more appropriate and efficient 
methods. It should also be noted that there were also instances were pupils from both 
year groups that struggled to model their mathematical thinking on the ENL. 
Nevertheless, if students struggle on number line problems, it does not automatically 
mean that they struggle in understanding the mathematical operation involved. This 
may be translated into the fact that they do not yet have the specific knowledge and 
skills necessary for translating the numerical expression into a number line repre-
sentation (Ernest, 1985). Indeed, these pupils did not struggle in understanding the 
mathematical operation involved. The errors identified in translating the numerical 
expression into a number line representation, were related with the fact that they did 
not understand the flexibility of the ENL, and instead treated it as a structured 
number line. Despite this, no difficulties were observed when the pupils were 
asked to explore and discuss an addition or subtraction modelled on the ENL. The 
pupils were able to understand the conventions used in interpreting the diagram, and 
thus, reading and identifying the strategy being modelled on the ENL. This is an 
indication of the number line being a powerful tool in enhancing communication in 
the classroom (Bobis, 2007). 

9.6 Conclusion 

In this chapter, I have described an instructional sequence that attempted to provide 
pupils with the opportunity to appreciate the number line as a rich model that can 
have different manifestations. Findings from this study show the number line 
offering pupils the opportunity to develop, express and share their thinking. Evi-
dently, the number line representation functioned as a vehicle for mathematical 
understanding. It allowed pupils, through the gradual development of both cognitive 
and metacognitive strategies, to construct and develop their own strategies for



accurate and flexible mathematical thinking. Simultaneously, the ENL supported 
pupils in making sense of numbers and operations, enhancing mathematical reason-
ing and communication. Associating actions with the number line and communicat-
ing mathematical meaning may contribute towards a comprehensive picture of its 
conceptual structure and complete development of understanding of the number 
system. 
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A contribution of this research is to the existing scholarship on whether pupils 
should be given the opportunity to discover strategies based on their own knowledge 
and skills (Threlfall, 2000). Additionally, through a classroom discourse encourag-
ing invention, the number line acted as a bridge between mental and written 
computation. This chapter contributes to the concerns raised by the mathematics 
education community, regarding the ENL not easily leading to informal written 
methods. It illustrates that pupils may build on their strategies through the support of 
the ENL. 

For the enactment of such an instructional sequence, the significance of the 
classroom culture must be stressed (Gravemeijer, 2004). As the pupils’ understand-
ing of the number line and development of strategies and procedures is influenced by 
social and sociomathematical norms negotiated and established in the classroom, the 
classroom environment encouraged communication, exploration, discussion and 
reasoning (Kilpatrick et al., 2001; Selter, 1998; Threlfall, 2000). In this respect, 
the proactive role of the teacher is highlighted in promoting a non-threatening 
classroom culture that encourages even reluctant or less confident pupils to create, 
formulate, express and extent their mathematical understanding. 

Three paths for further investigation are emerging. Treating the number line in a 
coherent way by focusing on the simultaneous presence of the geometric and the 
arithmetic conceptualization of number on the number line is not a straightforward 
process. The structured and ENL, constitute fundamentally different models that 
may function in different ways in the learning environment. The number line may 
foster the transition from a model of pupils’ informal solution strategies to a model 
for higher levels of mathematical understanding. New manifestations of the model 
also encompass previous manifestations of the model. The shift in applying the 
model on a progressively higher level is not always successful. The relationship 
between knowledge of the structured and ENL and their compatibility seems like a 
valuable avenue for further exploration. This is imperative as learning the number 
line is considered critical both for current and future success in mathematics (Booth 
& Siegler, 2006). Secondly, it is acknowledged that the instructional sequence was 
designed considering natural numbers up to 1000. Thus, the notion of the number 
line evolving from a unit that could be repeated and partitioned has not been fully 
explored. The number line is considered a metaphor of the number system (Herbst, 
1997). Thus, more research is necessary to further investigate how such a local 
instruction theory can be realised regarding other number sets. 

Finally, the snapshots presented in this chapter, provide an indication of the 
repertoire of strategies being developed by the pupils. The pupils extended their 
awareness of possibilities. Regarding strategy selection, differences emerge between 
the year groups. Grade 2 pupils used mostly the splitting strategy, whereas Grade



3 pupils used most frequently the compensation strategy. It is acknowledged that it is 
not only important to determine pupils’ strategies, but also to identify how these 
strategies are interrelated, and which might need further instruction. In order to gain 
a more detailed insight in the development strategies in relation to pupils’ mathe-
matical thinking conceptual understanding, future research should further investigate 
the constituents that influence the flexibility in strategy use. 
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Chapter 10 
Longitudinal Approaches to Investigating 
Arithmetic Concepts Across the Elementary 
and Middle School Years 

Katherine M. Robinson and Denée M. Buchko 

Abstract Understanding of arithmetic concepts in the elementary and middle 
school years is not only essential for developing current mathematical skills and 
knowledge but also as a foundation for later mathematical skills. Researchers are 
increasingly interested in arithmetic concepts and valuable knowledge has been 
gained. However, much of the research has taken a cross-sectional approach and 
studied and compared different groups of children of different ages or grades. An 
alternative but less frequently used approach is a longitudinal design in which the 
same children are studied across several years or grades. In this chapter we discuss 
the pros and cons of both approaches and focus on some recent longitudinal findings 
on the development of conceptual knowledge of arithmetic. Research and practical 
implications for educators and parents are discussed and outlined for promoting the 
development of children’s understanding of arithmetic concepts. 

Keywords Arithmetic · Conceptual knowledge · Longitudinal research · Inversion · 
Associativity · Equivalence 

10.1 Introduction 

Across the elementary and middle school years, children’s understanding of the 
arithmetic operations of addition, subtraction, multiplication, division, the relations 
between operations, and the understanding of the equal sign are essential to the 
development of their current arithmetical knowledge and skills as well as later 
mathematical knowledge and skills (National Mathematics Advisory Panel, 2008). 
Researchers have recognized the importance of this understanding and have
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increasingly turned their attention to investigating the development of children’s 
conceptual knowledge of arithmetic. The majority of these research efforts have 
relied on a cross-sectional research design which compares children of different ages 
or grades to derive conclusions about development. In this chapter, key findings 
from these cross-sectional studies are discussed as well as the pros and cons of the 
cross-sectional design. The pros and cons of a less frequent design, the longitudinal 
design which follows the same children across development or grades, are then 
examined and followed by an overview of recent longitudinal findings on the 
children’s development of conceptual understanding of arithmetic. Finally, the 
implications of these longitudinal findings for researchers, educators, and parents 
are discussed.
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When children start elementary school, one of the key mathematical tasks is to 
learn basic addition and subtraction (Bisanz & LeFevre, 1990). As they move to 
middle school years, this extends to simple multiplication and division. Learning 
basic arithmetic facts is essential to free cognitive resources for when children need 
to deal with more complex or advanced mathematical tasks introduced in the later 
elementary and middle school years (Siegler, 1996). Although the emphasis in the 
elementary school years starts with a focus on learning basic arithmetic facts or 
factual knowledge, children eventually need to deal with more complex arithmetic 
problems such as 58 × 326 or algebra problems such as 5x + 3 = 7x – 1. At that 
point, two other forms of arithmetic knowledge will be required: procedural knowl-
edge and conceptual knowledge. 

Procedural knowledge refers to the procedures, steps, or problem-solving strate-
gies that are used by children to solve a problem other than the direct retrieval of the 
answer from memory (Gilmore et al., 2018). Before children are able to encode 
arithmetic facts into memory, they are taught procedures for answering basic 
arithmetic questions such as 2 + 3. Procedures that children might use to solve 
such a problem include counting on their fingers, using concrete objects to represent 
2 and 3 and then counting up the total number of blocks, starting at 2 and then 
counting up by 3, using previous knowledge that 2 + 2 = 4 and then adding one 
more, and so on. Children’s procedural knowledge therefore starts developing early. 

Over time, children start building their repertoire of problem-solving procedures 
and start developing conceptual knowledge of arithmetic. Conceptual knowledge of 
arithmetic is the general understanding of the concepts or principles needed to 
understand mathematics (Bisanz & LeFevre, 1990) and, more specifically, to under-
stand the concepts and principles needed to implement specific problem-solving 
procedures (Crooks & Alibali, 2014), thereby demonstrating the strong connections 
between procedural and conceptual knowledge (Schneider et al., 2011). For exam-
ple, if a child has conceptual knowledge of commutativity, i.e., that numbers in an 
addition or multiplication problem can be solved in any order, then that child can use 
this knowledge when problem solving. On a problem such as 5 + 428, instead of 
starting with 5 and adding 428 more, children can use what is known as the 
min-counting strategy and instead start with 428 and add 5 more which is a faster 
and less error prone problem-solving procedure and can then lead to better factual 
knowledge of arithmetic as well (Canobi, 2009).
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10.2 The Importance of Conceptual Knowledge 
of Arithmetic 

Conceptual knowledge of arithmetic, unlike factual and procedural knowledge, is 
somewhat ephemeral and not as easily taught. For example, children can often learn 
their times tables through repetitive, rote rehearsal (factual knowledge), or be taught 
how to use a decomposition strategy (e.g., for a problem such as 4 + 5, recall the 
memorized fact of 4 + 4 and then add 1) (procedural knowledge). In contrast, 
teaching students why on a problem such as 4 + 5–5 there is no need to add or 
subtract the 5 s because addition and subtraction are inverse operations can be a 
conceptually a more difficult task to teach and learn. 

Similarly, equivalency is also conceptually difficult for students. On a problem 
such as 4 + 5 + 6 = 4 +?, children often interpret the equal sign as “do something” 
and proceed to add 4 + 5 + 6 + the second 4 on the right side of the equation instead 
of making both sides equal. For those with an understanding of the equals sign, they 
would instantly recognize the need to make both sides equal. Unfortunately, the 
conceptual understanding of the equal sign is not obvious to all children and takes 
time and or explicit instruction to be developed (McNeil et al., 2017). 

But why does conceptual knowledge of arithmetic matter so much if children 
have both factual knowledge and procedural knowledge of arithmetic to rely on in 
most mathematical situations? As can be seen by the example above of an inversion 
problem (4 + 5–5  or  4  × 5 ÷ 5), knowing that you do not need to add or subtract the 
5 s (or multiple or divide by the 5 s) has the benefit of freeing up cognitive resources. 
As can be seen by the example above of an equivalence problem, knowing that you 
need to make both sides equal will be essential when dealing with algebra problems. 
Indeed, researchers have proposed that the understanding of basic arithmetic con-
cepts is critical for the development of more complex mathematical skills, above and 
beyond factual and procedural knowledge (Kieran, 1981; Nunes et al., 2008; Rittle-
Johnson, 2017). Further, reports have highlighted that children’s understanding of 
both additive concepts (those involving either addition &/or subtraction) but partic-
ularly multiplicative concepts (those involving either multiplication &/or division) is 
concerningly weak and therefore does not prepare children adequately for future 
mathematical success (National Governors Association Center for Best Practices and 
Council of Chief School Officers, 2010; National Mathematics Advisory Panel, 
2008). This is a concern as basic arithmetic skills are a strong predictor of long-
term mental and physical health, employment opportunities, and even the likelihood 
of incarceration (Every Child a Chance Trust, 2008). The focus of this chapter will 
be on inversion, associativity, and equivalence as there is an extensive body of 
research on these three.
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10.3 How to Measure Conceptual Knowledge of Arithmetic 

Conceptual knowledge is hard to define, hard to teach, and so it is probably not 
surprising that it is also challenging to measure. This chapter will not go into detail 
about all these challenges but there are excellent discussions available on the topic 
(e.g., Prather & Alibali, 2009). For the purpose of this chapter, the focus will be on 
what can be considered the most common method of assessment of conceptual 
knowledge which is via problem solving. This is an indirect method for assessing 
conceptual knowledge as it uses procedural knowledge to gain insights into chil-
dren’s understanding of arithmetic. For example, as previously mentioned, on an 
inversion problem such as 8 × 32 ÷ 32, multiplication and division are inverse 
operations so children who apply this understanding during problem solving will 
often verbally report that “the answer is 8 as the 32s cancel each other out leaving 
just the 8.” Children are inferred to understand inversion when they state that the 
answer is 8, often have a very fast problem solution times as they did not perform 
any calculations, and/or verbally report that they did not perform any calculations 
(Bisanz & LeFevre, 1990; Robinson et al., 2006). 

Similarly, it is also possible to assess children’s understanding of the associative 
relation between the operations of addition and subtraction or between multiplication 
and division which means that the operations within the problem can be solved in 
any order (Eaves et al., 2021). For example, on an associativity problem such as 8 × 
32 ÷ 16, multiplication and division are associative operations so children who apply 
this understanding during problem solving will often verbally report that they first 
solved “32 ÷ 16 is 2 and then 2 times 8 makes 16 so the answer is 16.” This is a much 
easier and faster approach to problem solving than using a left-to-right procedure of 
multiplying 8 × 32 to get 256 and then dividing 256 by 16. Children are inferred as 
understanding associativity when they state that the answer is 16, often have fast 
solution times, and verbally report that they started by dealing with the second and 
third numbers in the problem and then multiplied that number by 8 (Robinson et al., 
2006). 

Finally, on equivalence problems, children’s understanding of the equal sign can 
be assessed. If children understand that the equal sign is used to indicate that two 
sides of an equation are equivalent then on the problem used above of 4 × 5 × 6 = 4 
×?, they will understand that the missing number has to result in the same number on 
both sides of the equation. If children understand this, there are two ways in which 
children can accomplish this task via problem solving. First, some children will 
report that they “cancelled out the 4s on each side of the equation and then figured 
out that 5 times 6 is 30”. Second, other children will report they “multiplied 4 × 5 × 6 
and got 120 and then figured out what number multiplied by 4 would also equal 
120.” In both of these problem-solving procedures, children are applying their 
understanding of equivalence (Hornburg et al., 2018; Robinson et al., 2018). 

There are a number of pros and cons for using procedural knowledge to assess 
conceptual knowledge. The first positive of this assessment method is that it does not 
require children to verbalize their understanding of inversion, associativity,



equivalence, and so forth as this verbalization may be too be challenging, particu-
larly for children (Prather & Alibali, 2009). The second positive is that accuracy, 
solution times, and/or verbal reports of problem-solving procedure can all be used to 
infer and support the conclusion that a child has demonstrated conceptual knowl-
edge. This means that if a child reports the correct answer on a problem such as 
3 + 578–572, does so quickly, and reports subtracting the 578–572 first and then 
adding the 6 to the 3, there is corroborating evidence that the child did use a 
conceptually-based strategy to solve the problem (Robinson et al., 2006). The 
third positive is that children rarely encounter these three-term inversion, associa-
tivity, and equivalence problems in or outside the classroom and therefore these 
problems are considered to be novel (Robinson, 2017). This is important as it means 
that children have not had the opportunity to be taught a specific problem-solving 
procedure (e.g., when you see a problem with two numbers that are both added and 
subtracted then the answer will be the first number) and must discover and imple-
ment the conceptually-based strategy themselves if they have the needed conceptual 
understanding. This latter point leads to the biggest con of using problem solving to 
assess conceptual knowledge, which is that even though children might understand 
inversion, associativity, or equivalence, that does not mean that they will use that 
knowledge when problem solving. For example, some students may feel that 
skipping the calculations in an inversion or associativity problem is a form of 
cheating as they have been taught to always solve problems from left-to-right and 
to not skip any steps (Robinson & Dubé, 2012). Therefore, studies that use problem 
solving to infer conceptual knowledge may underestimate conceptual knowledge. 
Nevertheless, because of the advantages of this approach, many researchers opt to 
use problem solving to assess conceptual knowledge. 
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10.4 The Development of Conceptual Knowledge 
of Arithmetic: Part I 

What is currently known about children’s understanding of inversion, associativity, 
and equivalence? This is of particular interest in Grades 4 and beyond when it is 
possible to assess children’s understanding of both additive and multiplicative forms 
of all three (for a discussion of the understanding of additive concepts in the early 
elementary years see Robinson, 2019). Several researchers have been studying 
children’s understanding of inversion, associativity, and equivalence and a number 
of key findings have emerged. 

First, we know that children (and adults) have a much stronger understanding of 
additive versions of inversion, associativity, and equivalence than multiplicative 
ones (Robinson & Ninowski, 2003; Robinson et al., 2006). For example, Robinson 
et al. (2018) in a study of Grade 5 to 7 students found that students were more likely 
to use their conceptual understanding of arithmetic when solving additive versus



multiplicative inversion (40 vs. 18%), associativity (20 vs. 8%), and equivalence 
(56 vs. 44%) problems. This finding has been replicated in other studies of additive 
and multiplicative versions of inversion and associativity in Grades 6 to 8 as well 
(Robinson et al., 2006) and suggests that the concepts of inversion, associativity, and 
equivalence are not equally understood and applied across operation. 
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Second, we know that understanding one concept does not mean that a child will 
understand other concepts (Canobi et al., 2003). For example, Robinson et al.’s 
(2017) study of Grade 4 to 6 students’ understanding of additive concepts found that 
even though 41% of children understood inversion, only 14% and 15% understood 
associativity and equivalence, respectively. A similar finding with Grade 5 to 7 stu-
dents also showed more understanding of inversion than associativity and equiva-
lence (Robinson et al., 2018). These findings suggest that conceptual knowledge of 
arithmetic develops in a piecemeal fashion rather than as a whole. 

Third, conflicting findings have been found as to whether children’s conceptual 
understanding of arithmetic increases across grade. A number of studies have 
examined grade differences on inversion, associativity, and equivalence. For inver-
sion, a meta-analysis by Gilmore and Papadatou-Pastou (2009) suggests a lack of 
grade-related differences in children’s understanding of additive inversion, a finding 
also replicated by some studies (e.g., Robinson et al., 2017, 2018) but not by others 
(e.g., Wong et al., 2021). Although there is less research on multiplicative inversion, 
results are also mixed (e.g., Dubé & Robinson, 2018; Robinson et al., 2018). For 
associativity, results are also mixed with some studies finding grade differences in 
additive (Robinson et al., 2017) and multiplicative (Dubé & Robinson, 2018) 
associativity and others finding no grade differences for both additive (Robinson 
et al., 2018) and multiplicative associativity (Robinson et al., 2018). For equiva-
lence, similar mixed findings have been found for additive equivalence with some 
studies finding grade differences (Knuth et al., 2005) and others not (Knuth et al., 
2016). In the one study we are aware of that examined grade differences in 
multiplicative equivalence, no grade differences were found (Robinson et al., 
2018). Given the contradictory findings, it is currently impossible to make any 
strong conclusions about how conceptual knowledge of arithmetic may or may not 
increase as a function of children’s education. 

A number of factors may explain this lack of clarity, but one notable commonality 
exists amongst all of the studies discussed so far and that is that they all used a cross-
sectional study design. This means that in all the studies above, not a single study 
actually followed the same children across several grades to investigate how their 
conceptual understanding developed. Instead, by using cross-sectional designs, 
researchers relied on different groups of children, in different grades, to draw 
conclusions on how conceptual knowledge of arithmetic developed. As discussed 
in the next section, although there are many good reasons for why most studies use a 
cross-sectional design, there are limitations that need to be considered.
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10.5 Study Designs for Assessing Conceptual Knowledge 
of Arithmetic 

10.5.1 The Cross-Sectional Design 

The use of a cross-sectional design not only predominates in the examination of the 
development of conceptual knowledge of arithmetic but in research on development 
in general. The cross-sectional design allows researchers to examine age-related 
developmental changes by collecting data from participants of different age groups, 
and comparing their average performance/score on measures of interest (Leary, 
2017). This design is popular for a number of key reasons: age-related differences 
can be studied at one point in time, making it both time and cost efficient, and also 
minimizing loss of data due to withdrawal of participants over time, since all data is 
captured at one point in time (Spector, 2019). 

This design is not without flaw, however. When separated by age, each of the 
participant groups in a cross-sectional design come from their own cohort experi-
ences. So, while we can compare the average outcomes of one age group to another 
age group, and efforts should be made to choose appropriate and comparable 
samples, there still may be differences between individuals that impact the outcome 
of the study (Leary, 2017). For example, Robinson et al. (2002) found that older 
adult participants were more likely to use retrieval when solving basic division 
problems than younger adult participants. This age difference was most likely due 
to changing mathematics curricula differences in the use of arithmetic drills and 
practice rather than to developmental differences. 

Since cross-sectional studies take, more or less, a snapshot of a phenomenon of 
interest, they are limited in the ability to identify causal relationships and make 
definitive conclusions, which can cast doubt on the external validity of the findings. 
Since the studies are done at a single time point, there is no room to identify 
developmental changes as they appear, and no way to know if they develop in a 
continuous and gradual pattern, in stages with periods of stagnation, or in some other 
way. The cross-sectional research design has its benefits, especially to establish 
worthy research directions, but another research design better serves to identify 
developmental patterns. 

10.5.2 The Longitudinal Design 

The phrase “let’s do a longitudinal study” has long been a daunting thought for many 
researchers. However, the drawbacks of longitudinal research are abated when 
considering the potential benefits longitudinal research offer to our understanding 
of the intricacies of human development. 

Longitudinal research typically involves the testing, and retesting of one group of 
participants over a longer period of time, allowing the researcher to re-examine the



same individuals at different points of development (Leary, 2017). The results in 
longitudinal research can be examined both by comparing averages of the data taken 
at different times, effectively comparing different age groups, as well as by com-
paring individual scores to their own previous scores (Crone & Elzinga, 2015). This 
last method allows for the identification and examination of individual differences in 
development, which can occur in both the how and the when in any developmental 
phenomenon of interest. Examining individual differences is especially relevant in 
measures that examine learning, as this is one area of development where individual 
differences are well documented (Harring & Hancock, 2012). 
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Longitudinal research also better captures not just the instances but the journey of 
development as well. The when and the how of a developmental process provide a 
depth of understanding to the area of interest that the “if” provided by cross-sectional 
design simply does not cover (Farrington, 1991). For example, children might 
gradually acquire conceptual knowledge of arithmetic between ages 9 and 12 or 
acquire it very rapidly during a short window of time at 10 years of age. Supplying 
learning resources would not be useful if given after the conceptual knowledge has 
already developed. 

So, while cross-sectional research can narrow down an age range in which this 
occurs, only longitudinal research can provide the depth of information that informs 
educational decision making. Other patterns of development, like those which 
develop and then recede, may be mistakenly identified without longitudinal design. 
Thus, the longitudinal design is an especially good candidate when researchers need 
more precise information about the development of concepts or phenomena if they 
are able to watch them unravel over time. 

Despite the advantages, collecting data over longer periods of time comes with 
complications. Much lengthier times for data collection and publication, higher costs 
for conducting research over a prolonged period of time, and higher participation 
attrition rates (e.g., due to boredom, moving locations) are all significant disadvan-
tages for researchers. 

Another potential limitation of the longitudinal design is that the findings may 
also be influenced by period effects (Farrington, 1991). For example, if a study on 
children’s understanding of arithmetic concepts was conducted from 2015–2025, a 
‘period’ of time within those years would need to be considered and accounted for as 
factors such as remote learning as well as the myriad stressors from the covid-19 
pandemic could certainly result in changes in the measures of interest. Overall, 
despite the potential drawbacks, a well-designed longitudinal study can result in 
rich, useful data in which causal and developmental conclusions are well supported. 

10.6 Development of Conceptual Knowledge: Part II 

Having argued for the merits of using a longitudinal design to better understand 
developmental phenomena, we now turn to the issue of what has been learned about 
the development of conceptual knowledge of arithmetic from longitudinal designs.



Unfortunately, very few such studies exist, presumably due to the concerns raised 
above. We are aware of only two longitudinal studies investigating our three 
concepts of interest and both of these focused on additive equivalence problems. 
First, in their 5-year longitudinal study of children from Grades 2 to 6, Hornburg 
et al. (2022) found that even by Grade 6 approximately 14% of their participants had 
only minimal understanding of additive equivalence and almost 18% still had no 
understanding of equivalence. Second, Alibali et al. (2007) found that understanding 
of additive equivalence became increasingly sophisticated from Grades 6 to 
8 suggesting that this period might be critical for developing a strong understanding 
of equivalence. The use of conceptually-based strategies to solve additive equiva-
lence problems increased by 25% which is a large improvement over time but is still 
concerning as the improvement was only from approximately 15% to 40%, indicat-
ing that even by Grade 8 many children are still struggling with understanding the 
meaning of the equal sign. Thus, these two longitudinal studies suggest that when 
following children across grade, it does appear as though there are grade-related 
changes, at least for the understanding of equivalence on additive equivalence 
problems, but that these improvements are slow and gradual. These results together 
support the earlier point that longitudinal studies can yield important information not 
only on whether there are grade-related improvements in conceptual understanding 
but also whether there are individual differences in the development (or not) of 
conceptual understanding of arithmetic. We next turn to the first, to our knowledge, 
longitudinal study of both additive and multiplicative inversion, associativity, and 
equivalence. 
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10.7 A Longitudinal Study of Additive and Multiplicative 
Inversion, Associativity, and Equivalence 

In a recent study, we examined the use of conceptually-based strategies when 
solving additive and multiplicative inversion, associativity, and equivalence prob-
lems in a group of children we followed from Grades 4 to 6. We started with 
49 students (mean age = 9 years and 6 months) in the Fall of Grade 4 and we had 
them problem solve every six months until the Spring of Grade 6. As anticipated, we 
lost some participants due to attrition (a few dropped out, moved schools and could 
not be contacted, or moved out of the province or country) and so our final sample 
was 42 students. In each of the six sessions, students were asked to solve two sets of 
problems: additive inversion, associativity, and equivalence problems and multipli-
cative inversion, associativity, and equivalence. 

We first sought to determine how the use of conceptually-based strategies would 
change from the beginning of the study to the end of the study. When examining 
conceptual understanding in the Fall of Grade 4 and the Spring of Grade 6, students’ 
conceptual understanding of arithmetic did improve overall, F (1, 41) = 45.31, 
p < .001, ηp 2 = .525. Interestingly, and contrary to previous findings, conceptual 
understanding increased globally. Conceptually-based strategy use increased by



approximately 20% on each of the additive and multiplicative versions of all three 
concepts. In contrast, cross-sectional design studies have not found a global increase 
but instead found that different groups of students in different grades have differing 
understanding of the three concepts which can vary widely from each other 
depending on whether additive or multiplicative problems are used. Figure 10.1
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Fig. 10.1 Percentage of conceptually-based strategy use in the fall of Grade 4 and in the Spring of 
Grade 6 on additive (top panel) and multiplicative (bottom panel) problem



shows the use of conceptually-based strategies on additive (top panel) and multipli-
cative (bottom panel) inversion, associativity, and equivalence problems from all six 
data collection points between the Fall of Grade 4 and the Spring of Grade 6. It is 
clear from Fig. 10.1 that previous cross-sectional findings were replicated. First, 
some concepts are easier to grasp than others with equivalence being better under-
stood than associativity. Second, additive versions tend to be better understood than 
multiplicative versions of the concepts as is the case with inversion and associativity.
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Overall, Fig. 10.1 suggests a global increase for all of the students in conceptual 
understanding across the longitudinal study but the longitudinal design also permit-
ted the examination of the development of conceptual understanding for individuals. 
Individual differences in the development of conceptual knowledge of arithmetic 
are, as discussed earlier, best done by following the same children over a period of 
time. Doing so reveals how strikingly different children are in how they develop 
their conceptual understanding of arithmetic. In Fig. 10.2 we illustrate these differ-
ences by showing how four children in study: Siham, Penelope, Angus, and Kareem 
(all pseudonyms) developed (or did not develop) their understanding of additive and 
multiplicative inversion (the two top panels), of additive and multiplicative associa-
tivity (the two middle panels), and of additive and multiplicative equivalence (the 
bottom two panels). These four children were selected as they exemplified the wide 
individual differences across the entire group of children. 

Figure 10.2 demonstrates the difficulties in trying to characterize how children 
develop their conceptual knowledge of arithmetic as it depends not only on the 
individual child but also upon the specific concept they are being assessed on and 
what operations are involved. For example, Penelope’s use of conceptually-based 
strategies on additive inversion problems remained unstable across the study and 
remained at zero on multiplicative inversion problems across the study. In contrast, 
Angus and Kareem’s use of conceptually-based strategies steadily increased across 
the longitudinal study regardless of whether the problems were inversion, associa-
tivity, or equivalence and their performance on the multiplicative versions of the 
problems was not as negatively impacted as it was for the other children. However, 
Angus moved more quickly than Kareem to predominantly using conceptually-
based strategies use on additive inversion and associativity problems. Siham used 
some conceptually-based strategies on additive inversion and associativity problems 
as the study progressed but never used conceptually-based strategies on any of the 
multiplicative problems and struggled with both additive and multiplicative equiv-
alence problems. As a whole, these findings highlight the importance for future 
research to investigate why these marked individual differences exist and the 
continued need for more longitudinal studies to both determine the predictors of 
conceptual understanding (Ching & Nunes, 2017) and to identify if interventions 
could effectively address some of the struggles that individual children are having 
with conceptual understanding of arithmetic.
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Fig. 10.2 Percentage of 
conceptually-based strategy 
use across the longitudinal 
study for inversion (top two 
panels), associativity 
(middle two panels), and 
equivalence (bottom two 
panels) problems. 
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10.8 Future Directions and Practical Implications 

Researchers interested in the development of arithmetic concepts have long recog-
nized the need for longitudinal studies. However, that need has yet to be adequately 
addressed as few longitudinal studies have been conducted, presumably for practical 
reasons due to their high cost in time and effort. The results of the few longitudinal 
studies do indicate that the cost may be worthwhile as the longitudinal findings have 
revealed the intricacy and complexity involved in how children’s understanding of 
arithmetic concepts develop. Because conceptual understanding of arithmetic is 
considered so critical for later mathematics, and researchers are increasingly inter-
ested in both examining individual differences in that understanding as well as the 
predictors of individual differences, longitudinal designs are essential for moving 
this area of inquiry forward. 

For educators and parents, the findings suggest that children may profit from 
direct instruction and discussion about the properties of addition, subtraction, mul-
tiplication, and division, the relations between the operations, as well as the meaning 
of the equal sign. Past research has indicated that teachers often underestimate 
children’ understanding of the equal sign (Asquith et al., 2007; Sherman, 2007). 
The same may be true of parents and teachers when it comes to estimating children’s 
understanding of inversion and associativity as well as estimating how many more 
difficulties children have with multiplicative versions compared to additive versions 
of the concepts. Therefore, periodically assessing children’s understanding via 
problem-solving, which was the focus of this chapter, as well as other methods to 
assess understanding discussed elsewhere (e.g., Crooks & Alibali, 2014; Prather & 
Alibali, 2009; Wong et al., 2021) may be helpful as a check to see how children’s 
understanding is (or is not) developing, and can provide an opportunity for the 
necessary direct instruction. 

Instruction and practice with varying forms of equivalence, inversion, and asso-
ciativity problems (both additive and multiplicative) may be helpful in increasing 
conceptual understanding (e.g., Alibali et al., 2009). One potential approach which 
continues this chapter’s focus on problem-solving to measure conceptual under-
standing, is to use several different equivalence problems (e.g., 4 + 2 + 3 = 4  +?  or  
4  +  2  = 3  +?  or  4  +  2  =? + 3, Hornburg et al., 2018), inversion problems (e.g., 
4  +  22–22 -? or 22 + 4–22, Robinson & Ninowski, 2003), or associativity problems 
(4 + 25–22 or 25 + 4–22, Eaves et al., 2020). Researchers have primarily focused on 
increasing children’s understanding of equivalence using different instructional 
methods and interventions (e.g., Fyfe et al., 2015; McNeil et al., 2017) but far less 
research has focused on inversion and associativity (but see Nunes et al., 2012) and 
none, to our knowledge, has looked at multiplicative versions of inversion, associa-
tivity, or equivalence. One promising way to determine if children have a solid 
conceptual understanding is to see if they can transfer that understanding to different 
types of problems assessing the same concept (Gaschler et al., 2013; Godau et al., 
2014) or, as found in adults, even different concepts (Eaves et al., 2019).
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Overall, the examination of the development of arithmetic concepts in the 
elementary and middle school years continues to yield exciting new information 
on the rich individual variability in children’s understanding and the call to conduct 
longitudinal examinations is becoming increasingly more pressing and important. If 
we want children to have solid factual, procedural, and conceptual knowledge of 
arithmetic, longitudinal studies of conceptual arithmetic will fill a significant gap in 
current knowledge and provide the much-needed foundation to help prepare our 
elementary and middle school students not only for future success in more complex 
mathematical tasks but, even more importantly, success in life (Every Child a 
Chance, 2008). 
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Chapter 11 
Obstacles in the Development 
of the Understanding of Fractions 

Florence Gabriel, Jo Van Hoof, David M. Gómez, and Wim Van Dooren 

Abstract Fractions are fundamental in students’ mathematical development. How-
ever, for many students, they are known to be a major stumbling block. In this 
chapter, we examine the obstacles elementary school children face when they learn 
fractions, through the lens of numerical cognition. We start by discussing the 
discrepancy between children’s conceptual and procedural knowledge of fractions, 
and we review studies showing that the concept of fraction magnitude is particularly 
difficult to learn. This has wider implications as understanding fraction magnitude 
has been shown to be a strong predictor of achievement in algebra and overall 
mathematics achievement in later years. We then discuss the natural number bias 
(NNB), a well-characterised misconception linked to fraction learning whereby 
learners are inclined to apply natural number characteristics when reasoning about 
fractions without considering whether it is appropriate. The NNB is persistent, 
appearing early in the fraction learning process and lasting through secondary school 
and beyond. We conclude this chapter by describing interventions aimed at improv-
ing fraction learning and we provide suggestions on how to introduce the concept of 
magnitude more intentionally when teaching fractions. 
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11.1 Introduction 

In the research literature, there is a general agreement that a good understanding of 
rational numbers is foundational for more advanced mathematics. For example, 
Siegler et al. (2012) showed that – controlling for natural number knowledge, 
reading achievement, IQ, working memory, family income and family education – 
fifth graders’ fraction knowledge predicts algebra and overall mathematics scores in 
high school. Despite their importance, rational numbers are found to be a huge 
stumbling block in education for a large group of learners (Depaepe et al., 2015; 
Gabriel et al., 2013; Gómez et al., 2014; McMullen & Van Hoof, 2020; Siegler et al., 
2012; Vamvakoussi et al., 2013; Vamvakoussi & Vosniadou, 2010; Van Hoof et al., 
2017). 

While rational numbers are harder to understand than natural numbers, it seems 
that within the category of rational numbers, fractions are the most difficult ones 
(e.g., DeWolf et al., 2015; Iuculano & Butterworth, 2011; Resnick et al., 2019; 
Wang & Siegler, 2013). Like natural numbers, decimal numbers are written in a 
place value-based notation system: each digit in its particular place is ten times 
smaller than the digit preceding it; the structure of the notation fits within a system of 
ones, tens, hundreds, etc., in the case of natural numbers, and tenths, hundredths, 
thousandths, etc., in the case of decimals. For fractions, however, this is not the case. 
They convey a multiplicative relationship between two natural numbers (the ratio 
between the numerator and the denominator). 

Before the insight that rational number understanding was predictive of later 
mathematical achievement, cognitive (neuro)psychologists had long stressed the 
importance of a “number sense” for learning mathematics (Schneider et al., 2017). 
This number sense was assumed to be present from early childhood and it was 
conceived as the fast, accurate perception of small numerosities along with the 
ability to compare them and to conduct simple arithmetic operations (e.g., Barth 
et al., 2003). Using this early conception, the number sense was considered to be 
natural-number based and was found to predict later general mathematics achieve-
ment (e.g., De Smedt et al., 2009, Halberda et al., 2008). However, more recent 
research indicates that from early childhood onwards, people are also able to quickly 
and accurately perceive and compare ratios between numerosities (e.g., Denison & 
Xu, 2014; Matthews et al., 2016). The idea of a number sense has thus been extended 
to rational numbers (Clarke & Beck, 2021). 

So why do learners struggle to understand rational numbers – particularly 
fractions – more than natural numbers? As argued by Vosniadou, Vamvakoussi, 
and Skopeliti (2008), in their first years of life, children’s intuitions about natural 
numbers are much more often externalized and systematized in social interaction 
than any intuitions about rational numbers. Natural numbers are given specific labels 
and children regularly engage in activities like finger counting. The development of 
natural number knowledge is further supported and systematized by elementary 
mathematics instruction, while children’s sense of ratios is not necessarily 
addressed. This means that, long before children are introduced to rational numbers



at school, they have already constructed a rich, extended and persistent understand-
ing of numbers grounded almost exclusively in knowledge of natural numbers 
(Gelman, 2000; Smith et al., 2005, Vamvakoussi & Vosniadou, 2010). Therefore, 
when rational numbers are then introduced in the curriculum, typically in the middle 
years of elementary school, several expectations about the features and behaviour of 
numbers are violated. 
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We have come to understand that the extension of children’s number concept 
from natural to rational numbers is not a smooth, continuous process. Mathemati-
cally speaking, natural numbers are just a subset of the rational numbers, so the same 
principles apply, but developmentally (and educationally), this connection is often 
not made (Vosniadou et al., 2008). 

This chapter addresses the various implications of having a good understanding 
of fractions. It brings together research from a range of perspectives, including 
numerical cognition, cognitive development, and mathematics education. First, 
fractions come with specific concepts and procedures, and a good conceptual and 
procedural understanding and a strong link between both types of knowledge is 
important. While the distinction between and the importance of both knowledge 
types is widely acknowledged in the literature, we bring together insights on this 
topic specifically for the topic of fractions, and we identify the questions that require 
further investigation. Second, recent research has shown that the prior knowledge 
that learners bring (i.e., experience with natural numbers) may interfere in the 
development of the understanding of rational numbers, and of fractions in particular. 
As such, this issue has been studied for many years now. The current chapter 
synthesizes the different ways in which prior knowledge may interfere (but also 
facilitate) the learning of fractions (i.e., in terms of understanding the size of 
fractions, operations with fractions, and their density). Third, the chapter addresses 
how instruction may be shaped in order to enhance fraction understanding, building 
on the ideas developed in the preceding sections. We specifically address research-
based interventions aimed at enhancing the understanding of fractions as magnitudes 
(as opposed to the more typical idea of fractions as part of a whole), as well as 
interventions that address the natural-number based prior knowledge that learners 
bring to the classroom. 

11.2 Conceptual and Procedural Knowledge of Fractions 

As in many areas of mathematics, understanding fractions involves learning a 
constellation of elements. One widely used categorization of mathematical knowl-
edge splits it into (a) knowledge of mathematical objects, definitions, and their 
relations, and (b) knowledge of mathematical procedures, algorithms, or heuristics 
that can be used to solve problems. The former knowledge type is named conceptual 
knowledge, sometimes described as “knowing that”, whereas the latter type is called 
procedural knowledge,  or  “knowing how” (Byrnes & Wasik, 1991; Hiebert & 
Lefevre, 1986; Rittle-Johnson & Schneider, 2015). Many studies in mathematics



education and cognitive psychology have investigated these knowledge types in 
diverse areas of mathematics both with children (e.g., Bempeni & Vamvakoussi, 
2015; Byrnes & Wasik, 1991; Gabriel et al., 2013; Hallett et al., 2010, 2012; Hecht 
& Vagi, 2012; Li, 2014; Özpınar & Arslan, 2021; Rittle-Johnson et al., 2001) and 
adults (e.g., Engelbrecht et al., 2017; Forrester & Chinnappan, 2010; Van 
Steenbrugge et al., 2014). 
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In the domain of fractions, several examples of conceptual knowledge can be 
inferred from Kieren’s (1976) interpretations of rational numbers. These include the 
understanding that fractions represent numerical relations between quantities based 
on their ratio, have multiple interpretations such as parts of a whole or points on the 
number line, are numbers with a given magnitude, and can be presented in infinitely 
different equivalent forms (e.g., 1 2, 

2 
4, 

5 
10, 

1234 
2468, etc.). In contrast, procedural knowledge 

of fractions typically includes tasks for which students know a “series of steps, or 
actions, done to accomplish a goal” (Rittle-Johnson & Schneider, 2015), such as 
deciding whether two fractions are equivalent by using cross-multiplication, adding 
and subtracting fractions, and judging whether a fraction is written in its simplest 
form. This distinction between these two knowledge types may explain many 
observations of school children’s struggles with fractions. For instance, a child 
may be proficient in comparing fractions, but fail when asked to identify a fraction 
between 1 3 and 

2 
3 (Van Hoof et al., 2015a). This pattern of performance suggests that 

their success in comparing fractions stems from the use of memorized procedures, 
and not from a conceptual understanding of fractions’ numerical magnitude. 

A common topic in research has been how conceptual and procedural knowledge 
relate to one another, and whether the learning of one of them precedes — or should 
precede in terms of instructional design — the other one (e.g., Byrnes & Wasik, 
1991; Castro et al., 2016; Rittle-Johnson et al., 2001). Conceptual and procedural 
knowledge are deeply related, and many studies have reported that these two types of 
knowledge are highly correlated (Bailey et al., 2015; Gabriel et al., 2013; Jordan 
et al., 2013). Moreover, some longitudinal studies have found that both types of 
knowledge influence one another (Rittle-Johnson & Koedinger, 2009; Rittle-
Johnson et al., 2001). These findings have led to a wide agreement that conceptual 
and procedural knowledge reinforce one another and develop in tandem (Rittle-
Johnson et al., 2001; Rittle-Johnson & Schneider, 2015), with researchers calling 
into question the advantage of teaching approaches that focus extensively on fraction 
concepts before moving onto procedures (Rittle-Johnson et al., 2015). 

Despite all the advances in this topic, a number of relevant issues remain to be 
addressed by further research. A first issue regards whether and how conceptual and 
procedural knowledge can be independently and reliably measured. There is broad 
agreement about the difficulty of classifying specific fraction tasks as conceptual or 
procedural (Vamvakoussi et al., 2019; Rittle-Johnson & Schneider, 2015). Some 
fraction tasks are widely believed to be mostly conceptual (e.g., locating a fraction 
on a number line) and others mostly procedural (e.g., adding fractions with different 
denominators). Nonetheless, it is likely that different learners approach these tasks 
with conceptual or procedural strategies (Faulkenberry, 2013). Deciding which one



of two fractions is numerically larger is a task believed to reflect children’s concep-
tual knowledge, but it can be successfully solved by either conceptual or procedural 
means. For instance, a child can judge whether 7 6 is larger or smaller than 5 8 by 
reasoning in at least two different manners. On the one hand, this can be done by 
recognizing that 7 6 is larger than one and 

5 
8 is smaller than one. This solution taps into 

conceptual knowledge. On the other hand, the question can also be solved by cross-
multiplying the fractions and noting that 7 × 8 is larger than 5 × 6. This solution 
involves procedural knowledge. Therefore, conceptual and procedural knowledge 
lie not on the task itself but on children’s reasoning. 
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A second, related issue concerns individual differences. Children’s conceptual 
and procedural knowledge may vary independently from one another, which opens 
the possibility that some children may be very strong in one type while being weak in 
the other (Hallett et al., 2010, 2012; Hecht & Vagi, 2012; Bempeni & Vamvakoussi, 
2015). Hallett et al. (2010) studied 4th- and 5th-grade children, discovering groups 
of children with distinct patterns of relative strength in conceptual and procedural 
knowledge (see also Hallett et al., 2012; Hecht & Vagi, 2012). Bempeni and 
Vamvakoussi (2015) claimed that the imbalance between the degree of development 
of the two knowledge types can be very extreme, showing data from 9th-grade 
students who are conceptually very strong but procedurally very weak, and vice 
versa. Interestingly, these authors provided further evidence that children with strong 
or poor conceptual knowledge seem to also differ in their approach to mathematics 
learning. This approach can be deep, with an intention to understand, or superficial, 
with an intention to reproduce (Entwistle & McCune, 2004). According to Bempeni 
and Vamvakoussi (2015), strong conceptual knowledge appeared linked to a deep 
approach to learning, whereas a pattern of weak conceptual knowledge and strong 
procedural knowledge was associated with a superficial approach. That is to say, 
children with strong concepts focused on learning for understanding, whereas 
children with weak concepts and strong procedures focused on learning for 
obtaining good grades. 

A third issue is the need for a deeper study of mathematical procedures, and of the 
relation between conceptual and procedural knowledge. While procedures are often 
defined as sequences of steps to be executed in an automatized manner, authors like 
Star (2005; see also Star & Stylianides, 2012) argue that procedures can be under-
stood at different depths. A deep understanding of the fraction addition procedure is 
evident in a student who understands why the procedure starts by converting the two 
fractions to a common denominator. This understanding allows the student to decide 
to skip this initial step, for example, when the task calls for an approximate rather 
than an exact answer. Another case is that of a student who chooses flexibly among 
different strategies to judge which of two fractions is larger, such as comparing 
denominators when the fractions share the same numerator (e.g., 2 7 vs. 

5 
7 ) and 

attempting to compare against 1 2 when the fractions share no common component 
(e.g., 2 9 vs. 

5 
7). From a different perspective, this issue acknowledges that procedures 

are also mathematical objects, and a learner can therefore acquire conceptual knowl-
edge about them (such as why they work the way they do). This relation between



conceptual and procedural knowledge can be used in the design of students’ 
procedural practice, favouring students’ noticing of number patterns or solution 
patterns (an example in the domain of arithmetic has been studied by McNeil 
et al., 2012). 
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In summary, a successful learning of fractions requires comprehending concepts 
and procedures. While some tasks seem naturally conceptual or procedural in 
essence, it is possible that students solve them in different ways, using their strength 
in one type of knowledge to hide a weakness in the other type. Therefore, assessing 
fraction knowledge requires using a diversity of tasks of both types. 

11.3 How Natural Number Knowledge Both Facilitates 
and Hinders Fraction Learning 

At the point where fractions are introduced in the classroom, learners have a lot of 
new and highly complex information to process and understand. The literature 
distinguishes several reasons explaining why learners struggle so much with the 
understanding of fractions – and rational numbers more generally (e.g., Moss, 2005; 
Vamvakoussi, 2015). For example, fractions have several different conceptual 
meanings that need to be understood. They can be seen as ratios, or as measure-
ments, or as parts of a whole, etc. Moreover, fractions are just one type of represen-
tation of rational numbers, and the same rational number has infinitely many 
different representations: learners need to understand that even though they look 
very different; 1 4, 0.25, 2/8, 25% all represent the same numerical magnitude. On top 
of this, the concept of a ‘unit’ needs to be reconceptualized (e.g., Moss, 2005; 
Vamvakoussi, 2015). 

There is a large group of learners who struggle with fractions, thinking about 
them using the properties of natural numbers whether or not it is appropriate (e.g., 
Christou et al., 2020; Gómez & Dartnell, 2019; McMullen & Van Hoof, 2020; 
Vamvakoussi et al., 2011; Van Hoof et al., 2015a, b). This phenomenon is called the 
natural number bias (NNB; see for example Ni & Zhou, 2005), and has been the 
focus of a vast amount of research over the last couple of decades (for an overview, 
see Van Hoof et al., 2017). For example, learners who fall into the trap of the NNB 
tend to think that 3 4 is smaller than 7 12, since 3 and 4 are each smaller than 7 and 
12, respectively. While there is still a debate on the origin of the NNB (Ni & Zhou, 
2005; Van Dooren et al., 2016), a large body of research explains the NNB starting 
from the conceptual change theory, and more specifically the framework theory 
approach towards conceptual change (e.g., Vosniadou, 1994; Vosniadou 
et al., 2008). 

As stated by Vosniadou (2013) “research on conceptual change investigates how 
concepts change with learning and development in different subject matter areas 
with a focus on explaining students’ difficulties in learning the more advanced and 
counterintuitive concepts in these areas” (p. 1). The gist of the interpretation of the



conceptual change theory applied to rational numbers is as follows: Both in chil-
dren’s daily life as in their first years of mathematics education, children encounter 
natural numbers much more frequently than fractions. Therefore, before fractions are 
introduced in the classroom, children have already created an initial concept of 
number, based on their experiences with natural numbers (Vosniadou, 2013). 
When fractions are then introduced in the classroom, the rules and characteristics 
of natural numbers are no longer always applicable, leading to misconceptions. 
Indeed, learners have been found to make systematic mistakes in those fraction 
tasks where reasoning purely in terms of natural numbers results in an incorrect 
solution (incongruent tasks; e.g., which is larger: 1 3 or 

1 
4? Although 4 is larger than 

3, the correct answer is of course 1 3) while much better performance is found in those 
fraction tasks where natural number reasoning leads to a correct solution (congruent 
tasks, e.g., which is larger: 4 10 or 

7 
10? 7 is larger than 4, just as 

7 
10 is larger than 

4 
10) (for 

an overview, see Van Hoof et al., 2017). For examples of congruent and incongruent 
items, see Table 11.1. 
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In this sense, the natural number bias can be seen both as a hindrance (systematic 
errors in incongruent tasks) as a facilitator (high accuracy levels in congruent tasks) 
when learners solve fraction tasks. However, it should be noted that previous 
research showed that learners do not detect a conflict between incorrect intuitive 
natural number-based reasoning and mathematically correct reasoning (Van Hoof 
et al., 2013). This indicates that the high accuracy levels on congruent tasks are the 
result of the misapplication of natural number-based reasoning instead of being the 
result of good conceptual knowledge of fractions. 

The research field distinguishes three main aspects where misconceptions arise in 
fractions as a consequence of natural number prior knowledge interfering. The first 
aspect is fractions’ numerical magnitude. A common misconception is that the 
numerical value of a fraction increases when its denominator, numerator or both 
increase; for example, 3 7 is judged larger than 

3 
5, because 7 is larger than 5 (e.g., 

Gómez & Dartnell, 2019; Stafylidou & Vosniadou, 2004). The second aspect is their 
dense structure: unlike natural numbers, which have a discrete nature (i.e., you can 
always point out the next natural number: after 5 comes 6, after 6 comes 7, etc), 
fractions have a dense structure (i.e., it is not possible to point out the “next’‘rational 
number because there are always infinitely many numbers between two rational 
numbers). This difference leads to the misconception that there are no other numbers 
in between two “pseudo-consecutive” fractions such as 4 9 and 

5 
9 (e.g., McMullen & 

Van Hoof, 2020; Merenluoto & Lehtinen, 2004; Vamvakoussi et al., 2011). The

Table 11.1 Examples of congruent and incongruent items 

Aspect Congruent Incongruent 

Numerical 
magnitude 

Which is the larger fraction? 2 7 or 
4 
7 Which is the larger fraction? 2 7 or 

2 
9 

Structure Write a number between 3 8 and 
6 
8. Write a number between 3 8 and 

4 
8. 

Effect of 
operations 

Is the outcome of 5 × 3 2 bigger or 
smaller than 5? 

Is the outcome of 5 × 2 5 bigger or 
smaller than 5?



third aspect is the effect of operations. Studies demonstrated learners’ misconception 
that, just like with natural numbers, multiplication with a fraction should always lead 
to a larger outcome, and vice versa, division with a fraction should always lead to a 
smaller outcome (Christou et al., 2020; González-Forte et al., 2020). Moreover, the 
fact that learners struggle to see fractions and decimals as representations of the same 
numerical magnitude constitutes an additional difficulty that intersects with the three 
aforementioned aspects of the natural number bias. Previous research showed for 
example that while some learners already fully understand the dense structure of 
decimals, they still have a naïve idea of the structure of fractions or vice versa (e.g., 
Vamvakoussi & Vosniadou, 2010).
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The NNB is especially found in the beginning stages of fraction instruction and a 
clear decline of the strength of the NNB is seen between the beginning years of 
rational number instruction and adulthood (see for example Siegler & Braithwaite, 
2016; Van Hoof et al., 2015a, b, 2018). However, it should be noted that traces of 
this NNB are still present in secondary school students and even in pre-service 
teachers (Depaepe et al., 2015) and mathematics experts (Obersteiner et al., 2013). 
To illustrate this, results from Depaepe et al.’s (2015) study with 158 prospective 
elementary school teachers and 34 prospective lower mathematics secondary school 
teachers showed that only a bit more than half of the pre-service teachers could 
accurately answer that there are infinitely many numbers between 7.2 and 7.4. The 
most typical wrong answers were: “There is only one (7.3)”, “There are 19 (7.21, 
7.22, 7.23, . . .), and “There are 20 (7.20–7.40)”. 

11.4 Educational Interventions and Implications 
for Teaching 

Fractions are complex to learn and to teach. In the early stages of fraction instruction, 
the focus is often narrow, with teachers and textbooks concentrating on the concept 
of fractions as parts of a whole. The emphasis on this aspect of fractions is quite 
common across many different countries and cultures, including Cyprus, Kuwait, 
USA and the UK among others (Alajmi, 2012; Fuchs et al., 2013; Küchemann, 
2017; Pantziara & Philippou, 2012). Consequently, less time is allocated to teaching 
other conceptual aspects of fractions, leading to students having less opportunity to 
develop a sound understanding of perhaps the most important concept relating to 
fractions: magnitude. Emphasising the concept of magnitude in elementary educa-
tion promotes students’ understanding that fractions have different properties to 
natural numbers, helping counter the NNB. 

Although there are few studies that have looked at pedagogical interventions to 
help learners overcome the NNB (e.g., Gómez & Dartnell, 2015; Van Hoof et al., 
2021), they provide a number of implications and suggestions for how to introduce 
the concept of magnitude more intentionally when teaching fractions.
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11.4.1 The Concrete-Representational-Abstract Sequence 

The Concrete-Representational-Abstract (CRA) sequence is commonly used in 
intervention studies aimed at improving children’s understanding of fraction mag-
nitude. CRA has been shown to be an effective way to teach mathematics and is 
particularly suited to teaching fractions (Butler et al., 2003; Chang et al., 2017; Ennis 
& Losinski, 2019; Gabriel, 2016; Purwadi et al., 2019). Moreover, it is currently 
included in Singapore’s mathematics curriculum on teaching fractions (Chang et al., 
2017). The basic approach of the CRA sequence is to present children with different 
representations of the same problem – from more concrete to more abstract – to 
improve students’ conceptual understanding and learning outcomes in mathematics 
(Witzel et al., 2003; Purwadi et al., 2019). The first stage of the CRA sequence is the 
concrete stage where students learn by using manipulatives to model and solve 
problems. The second stage introduces various pictorial or representational ele-
ments. The third and final stage brings in mathematical notation to help children 
think of fractions as abstract mathematical concepts (i.e., numbers with magnitudes; 
Morano et al., 2020). 

Gabriel et al. (2012) used the CRA sequence to improve elementary students’ 
understanding of fraction magnitude. In this intervention, students were asked to 
play adaptations of simple card games. For instance, they played a version of the 
game Memory where cards were laid down in a grid face down and players took 
turns flipping pairs of cards over. The aim of this game was to identify pairs of 
fractions representing the same magnitude. If a student identified a matching pair, 
they had to show it to the other students and make sure they all agreed. In case of 
disagreement between students, they could use wooden disks cut into different 
fractions going from halves to twelfths to compare both cards. These wooden 
disks were used as the concrete manipulative element, cards with multiple pictorial 
representations of fractions as the representational element and numerical fractions 
as the abstract element. After ten weeks, the intervention led to a 15 to 20% 
improvement in students’ conceptual understanding of fraction magnitude, and 
they made fewer NNB-related mistakes when compared to the control group who 
followed their traditional lessons. 

Other studies have investigated using CRA to teach students with learning 
disabilities. For example, Morano et al. (2020) worked with Grade 5 and 6 students 
with disabilities. Again, they used a CRA-based intervention to improve students’ 
understanding of fraction magnitude. Fourteen intervention lessons covered the 
topics of unit fractions, fraction equivalence and the use of equivalent fractions to 
solve addition and subtraction of fractions with different denominators. There were 
two concrete lessons (including the use of plastic fraction blocks), two representa-
tional lessons for each topic (including number lines and rectangle representations), 
followed by two abstract lessons covering all three topics (including word problems 
with no visual representations). Students showed an improved understanding of 
fraction magnitudes after the intervention and made fewer mistakes linked to the



NNB when performing calculations on fractions. There were limitations to this study 
(e.g., small sample size and no control group), but it showed promising results. 
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11.4.2 Playful and Game-Based Interventions 

Playful and game-based interventions have also shown great potential to improve 
students’ understanding of fractions. A playful approach to teaching fractions 
increases children’s enjoyment of fractions as well as their motivation and self-
efficacy (Riconscente, 2013). And when children are motivated, they are more likely 
to enjoy learning and see themselves as capable learners. Play also actively encour-
ages students to interact with each other in a way that is not possible with more 
traditional procedural instruction. This approach gives teachers more opportunities 
to listen to the children’s thoughts, ideas and comments, and so better assess how 
their understanding develops. Using play also allows teachers to include more open-
ended questions in their feedback (e.g., “So, what do you think?” “Is it always the 
right answer?” “What do you think would happen if. . .?”), thus creating an envi-
ronment that encourages children to construct their own understanding (Gabriel, 
2016). 

Games are a powerful tool for increasing student engagement, and they have the 
added benefit of being easily implemented in digital environments (Gresalfi et al., 
2018; Kiili et al., 2018). Digital games present several advantages when teaching 
mathematics. They can increase students’ engagement and attention (Garris et al., 
2002). They can also be used to provide immediate feedback (Vogel et al., 2006) and 
support active learning (Gee, 2003), which will eventually improve learning and 
achievement (Shin et al., 2012). 

In a recent study, Kiili et al. (2018) developed a digital rational number game 
aimed at improving 4th grade students’ conceptual understanding of fractions. The 
digital game included estimation tasks on number lines where students control a 
character called Semideus who tries to collect gold coins that were stolen from Zeus 
by a goblin. The player directs Semideus to the point on a number line where they 
believe the coins are located based on a fraction given in pictorial, fractional or 
decimal notation. For every incorrect estimation, Semideus is struck by lightning and 
the player loses “virtual energy”. The game also includes magnitude comparison and 
ordering tasks where students are asked to arrange stones in ascending order 
according to the numerical magnitudes depicted on them. The levels are ordered in 
ascending levels of difficulty and students can track their performance on an 
analytics page. The game also generates hints to address some common misconcep-
tions about fractions. The intervention group played five 30-minute sessions of the 
game while the control group attended their regular mathematics lessons. Their 
results showed that the conceptual understanding of the magnitude of fractions 
improved more in the intervention than in the control group. While there are 
limitations linked to the study design and the small sample size, the results are 
encouraging.
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11.4.3 Improving Pre-service Teachers Pedagogical Content 
Knowledge 

As previously discussed, learners’ natural number based prior knowledge often 
interferes with their ability to reason about fractions. This poses serious challenges 
for teachers, particularly as teachers themselves may be prone to the NNB (Depaepe 
et al., 2015). Depaepe et al. (2018) developed a lesson series for pre-service 
elementary teachers aimed at improving not only their content knowledge regarding 
fractions (based, among others, on the CRA sequence), but also at improving their 
pedagogical content knowledge (i.e., teachers’ knowledge of learners’ misconcep-
tions and of possible instructional strategies and representations to address them). As 
part of the lesson series, the NNB (and its origin in conceptual change theory) was 
explicitly introduced as a cause for children’s difficulties with fractions. The lesson 
series used a wide range of mathematical representations and strategies to enhance 
preservice teachers’ conceptual understanding. It also included a range of video 
vignettes showing real classroom situations in which learners exhibited incorrect 
reasoning. Pre-service teachers were asked to reflect on these videos to find possible 
ways to react to the classroom situation. The intervention successfully enhanced 
preservice teachers’ content knowledge, while also having a positive impact (albeit 
limited) on their pedagogical content knowledge. 

11.4.4 What Can Parents Do to Help Their Children Learn 
Fractions? 

Parents can play an important role in their children’s mathematical development and 
parental engagement has been shown to have a positive impact on children’s 
achievement in mathematics (Desforges & Abouchaar, 2003; Muir, 2012). Day-to-
day activities at home can provide rich contexts for children to learn and apply 
mathematical concepts (Winter et al., 2004). Parents can explain to their children that 
fractions are numbers in and of themselves, by emphasising the numerical magni-
tude of fractions, as some children treat the denominator and numerator as separate 
entities and never connect them into a unique quantity. One way of doing this is to 
encourage estimation and to compare fractions to key benchmarks (e.g., 1 2, 

1 
4, 

3 
4, etc.) 

(Clarke et al., 2008). Parents could also use Lego as a concrete hands-on activity that 
incorporates elements of play, as Lego bricks can be used to create a number line or 
to compare different fractions for example. Getting children to do simple mathemat-
ics when cooking can be another easy way to introduce fractions in daily activities. 
For instance, children can be encouraged to recognize fraction equivalence (e.g., 1 2= 
3 
6) by comparing the size of measuring spoons when baking. Another activity that can 
be useful to introduce fractions as abstract numbers would be to measure and 
compare quantities when scaling recipes up or down.
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11.5 Conclusion 

It is important for children to understand fractions as doing so predicts future 
achievement in mathematics (Booth & Newton, 2012; Siegler et al., 2012). Gains 
can be made in improving children’s conceptual understanding of fraction magni-
tude and studies have shown this to be a crucial step in reducing errors related to the 
NNB. The challenge for teachers is to balance the need to teach children the 
procedural knowledge necessary for using fractions against making sure they are 
instilled with the conceptual knowledge needed to truly understand how, when and 
why to use fractions. Teachers also need the relevant pedagogical content knowledge 
to address the natural-number based prior knowledge that learners bring to the 
classroom and to use it productively to develop an adequate and deep understanding 
of fractions. 
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Chapter 12 
The Role of Groundedness and Attribute 
on Students’ Partitioning of Quantity 

Helena P. Osana, Emmanuelle Adrien, Anne Lafay, Katherine Foster, 
Kiera K. Vaccaro, Vera Wagner, and Rebecca MacCaul 

Abstract Equal-sharing word problems involve sharing a quantity among a spec-
ified number of groups (e.g., four people share ten brownies equally). The nature of 
the specific object to be partitioned (e.g., pizzas, ribbons) may differentiate the 
strategies children use to solve such problems. The present chapter reports an 
investigation of how children’s solutions are impacted by (a) “groundedness,” 
namely whether the problem refers to the to-be-shared object as a concrete, real-
world object, and (b) the attribute of the object described in the problem (i.e., 
length vs. area). Fourth graders (N = 88) were randomly assigned to three conditions 
that differed according to the problems they solved: (1) grounded-area: problems 
describing objects with area attributes (e.g., brownies), (b) grounded-length: prob-
lems describing objects with length attributes (e.g., ropes), and (c) abstract: problems 
that referred to the object using nonwords (e.g., “porams”). No condition differences 
in the quality of the students’ partitioning strategies were found, but a measure of the 
students’ mental representations of the to-be-shared objects revealed that the partic-
ipants in the abstract condition imagined the nonwords as objects with physical 
characteristics, which could account for the comparable strategy performance across 
problems. 

Keywords Equal sharing · Partitioning strategies · Problem solving · Problem 
features · Mental representations 
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12.1 Introduction 

In North America and elsewhere, word problems are commonplace in school 
mathematics at both elementary and secondary levels (Verschaffel et al., 2020). 
Educators and curriculum designers argue that when students solve word problems, 
they learn how to reason mathematically, develop conceptual understanding, and 
transfer their knowledge to novel situations (Hiebert et al., 1996; Liljedahl et al., 
2016; Pape, 2003). This chapter focuses on the features of word problems that may 
influence the types of strategies children use in their solutions. For example, a 
problem about cookies, objects with which many children have real-world experi-
ence, may elicit prior knowledge that could support their strategies. On the other 
hand, a problem about litchi, a fruit that is relatively less familiar to children in North 
America, may result in lower performance because children’s lack of knowledge and 
context may make it difficult for them to apply meaningful strategies. 

In this chapter, we examine children’s solution strategies to equal-sharing word 
problems. Equal-sharing problems are partitive division problems with fractional 
remainders (e.g., Four students want to share 13 cookies equally. How many cookies 
will each student get?). Empson and Levi (2011) argued that equal-sharing word 
problems are pedagogically effective because students have previous experience 
with the situations depicted; that is, children have experience sharing objects such as 
pancakes or brownies among friends and siblings. The authors’ claim is that these 
familiar experiences activate prior knowledge that helps students grasp the problem 
structure and make sense of fundamental fractions concepts, including the quotient 
interpretation of fractions (see also Fazio & Siegler, 2011; Steffe & Olive, 2010). 

We focus our examination of children’s strategies as a function of the type of 
object that requires partitioning in equal-sharing problems. Specifically, the two 
factors we tested were (a) the extent to which the to-be-partitioned object is 
“grounded,” or refers to concrete, real-world objects, and (b) the specific attribute 
of the object, namely whether the object is measured in area or length units. An 
additional objective of the research was to explore children’s mental representations 
of the objects they are partitioning, which would provide additional insight into the 
role of groundedness and attribute in their strategies. A deeper understanding of 
solution strategies in the context of equal sharing has important implications for 
practitioners, who can modify instructional materials as needed depending on their 
students’ learning needs, world knowledge, and background experiences. 

12.2 The Role of Problem Characteristics in Word Problem 
Solving 

Thevenot and Barrouillet (2015) presented three primary approaches to studying 
children’s strategies when solving word problems. The first approach is the exam-
ination of problem characteristics, such as the mathematical structure of the problem



and ways in which the problem situation is described in the text. The second focus is 
on individual factors, such as working memory and text comprehension abilities. 
The third approach seeks to uncover the instructional factors that can enhance 
children’s performance on word problems in mathematics. Results of research 
emanating from the latter perspective can be used to support the cognitive and 
instructional theories upon which the instructional interventions are based. Beyond 
cognitive approaches are those that take an ethnomathematical view, which focuses 
on the intersection between culture and mathematics (e.g., D’Ambrosio, 2001; 
Katsap & Silverman, 2016). 
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We frame our research in the approaches outlined by Thevenot and Barrouillet 
(2015), with particular attention to the first, namely the effect of problem character-
istics on children’s problem-solving strategies. Much of the research adopting this 
perspective focuses on how problem features influence the construction of mental 
models that guide children’s problem-solving efforts (e.g., De Corte & Verschaffel, 
1987; García et al., 2006). In one such study, Coquin-Viennot and Moreau (2003) 
compared the strategies of third and fifth graders on problems such as, “For a prize-
giving, the florist prepares for each of the 14 candidates 5 roses and 7 tulips. How 
many flowers does the florist use in total?” (p. 272) to a problem with the same 
structure, but reformulated using a so-called “structuring element,” namely the word 
bouquet: “For a prize-giving, the florist prepares for each of the 14 candidates a 
bouquet made up of 5 roses and 7 tulips. How many flowers does the florist use 
in total?” (p. 272). The authors found that the children’s strategies were 
different depending on the presence or absence of the structuring element. Specif-
ically, the first problem was more often solved using the distributive strategy 
(14 × 5) + (14 × 7), and the second using the factorizing strategy, 14 × (5 + 7). 
The authors concluded that such reformulations can prompt children to construct ad 
hoc, intermediate representations that are based on real-world knowledge (in this 
case, of bouquets), which in turn influence the strategies they use in the problem-
solving process (see also Thevenot & Oakhill, 2005). 

12.3 External Representations in Problem Solving 

The finding that certain problem features, such as the semantic structure of a word 
problem, can prompt children to construct representations based on their real-world 
knowledge and experience, is related to another body of research that is relevant to 
the current discussion. Researchers who study the affordances of external represen-
tations have argued that intentionally and explicitly “grounding” mathematical tasks 
in real-world contexts can influence performance (see Belenky & Schalk, 2014, for 
an overview). Germane to the present chapter, evidence shows that problem solving 
is enhanced when mathematical tasks, including word problems, make explicit 
references to concrete objects and events (e.g., De Bock et al., 2011; Goldstone & 
Sakamoto, 2003; Goldstone & Son, 2005; Koedinger & Nathan, 2004; Kotovsky 
et al., 1985). We borrow Koedinger et al.’s  (2008)  definition of “grounding” in



our work: Word problems that are grounded incorporate references to concrete and 
specific real-world objects and everyday events. Scholars have suggested that 
references to real-world objects in word problems activate their prior knowledge; 
access to information stored in long-term memory serves to support and verify 
domain-relevant inferences, which, in turn, assists in generating appropriate solu-
tions (e.g., Belenky & Schalk, 2014). 
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There is empirical support for the benefits of grounding on students’ immediate 
learning and performance in mathematics. Koedinger and Nathan (2004) found that 
when high-school students solved simple algebra problems couched in verbal 
descriptions of real-world situations, their performance was higher than when they 
worked on analogous problems presented in algebraic symbols. These effects were 
replicated with undergraduate students (Koedinger et al., 2008). Problems couched 
in abstract contexts, such as those that are presented in symbolic notation, can 
present more of a challenge because students have fewer existing knowledge 
representations to draw on (Fyfe et al., 2014; Weyns et al., 2016). 

In a series of studies by Glenberg et al. (2007), third and fourth graders who used 
realistic figurines (i.e., those that resembled the characters and objects described in 
the text) solved more word problems correctly, used a larger number of correct 
strategies, and used less irrelevant numerical information in their solution attempts 
than those who did not use figurines. Thus, Glenberg and colleagues found support 
for their “indexing hypothesis,” which posits that the realistic figurines serve to 
ground the symbols (i.e., defined in their theory of embodied cognition as words and 
phrases in a problem text) to real-world situations. 

Other research has shown that grounding problems in real-world contexts can 
have positive impacts on transfer as well. For instance, McNeil and Fyfe (2012) 
tested the effects of concreteness fading, an instructional approach where grounded 
(or “concrete”) representations are gradually replaced with more abstract ones. The 
participants who received the concreteness fading instruction were more successful 
on learning and transfer tasks than those who had received instruction with abstract 
representations only. The authors claimed that the students in the fading condition 
were able to ground their learning of new concepts in real-world contexts with which 
they had previous experience, which eventually allowed them to make meaningful 
connections to more abstract representations, thereby promoting transfer. 

12.4 Groundedness and Equal-Sharing 

Our interest in children’s strategies as a function of the type of objects that are 
partitioned in equal-sharing problems stems from a years-long professional devel-
opment initiative in a large urban school board in Canada. As part of the professional 
development, we collected pilot data with fourth-grade children in classrooms and in 
individual interviews to assess and support their conceptual understanding of frac-
tions (Foster & Osana, 2017; Osana et al., 2017). Our work with the students and



their teachers focused on equal sharing as a context in which fractions concepts and 
their interpretations can be meaningfully explored in the classroom. Our informal 
observations revealed that some children struggled to accurately represent fractional 
quantities in their own depictions and to appropriately apply fractions concepts in 
their partitioning actions. Moreover, we observed that some objects were more 
difficult to partition than others. In one case, for example, a fourth grader struggled 
to evenly share the milk in a carton because the child did not know what a milk 
carton was. 
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Together, our observations led us to conduct a systematic study the following 
year (Foster, 2018) to test the degree of groundedness of the to-be-partitioned objects 
in equal-sharing problems on the quality of children’s problem-solving strategies. 
With 114 fourth-grade students from nine classrooms, we manipulated the objects 
being shared to create three problem types: (a) grounded, (b) semi-grounded, and 
(c) abstract. The objects in the grounded problems referred to concrete, real-world 
objects that we assumed would activate their prior knowledge (e.g., brownies). 
Objects in the semi-grounded problems involved measures of length in standard 
units, such as a rope measured in centimetres. While ropes are real-world objects, we 
predicted that students generally have relatively less everyday experience sharing 
lengths of rope than sharing food. Finally, the objects being shared in the abstract 
problems were nonwords and therefore made no reference to actual objects in the 
real world (e.g., “porams”). We predicted that the degree of grounding would be 
positively associated with problem-solving performance, which was measured in 
terms of appropriateness of strategy use. 

We found partial support for our prediction. Specifically, equal-sharing problems 
that involved real-world objects, such as cookies, were associated with more sophis-
ticated strategy use (e.g., Empson et al., 2005) relative to problems that involved 
partitioning a piece of rope measured in centimetres, an action with which students 
had relatively less prior experience. What we had not predicted, however, was that 
the abstract objects did not hinder performance relative to the fully-grounded 
problems. Our ability to draw definitive conclusions, however, was compromised 
by the confounding of groundedness and unit type: The grounded objects in the 
problems involved arbitrary units of measure (e.g., the unit was a brownie), but the 
semi-grounded objects involved standard units (e.g., the unit was one centimeter). 
Thus, potential differences in interpreting the unit may have accounted for the 
observed strategy differences rather than groundedness itself (Mack, 2001). 

In this chapter, we describe a third investigation of children’s strategies, this time 
when we removed the unit type confound. This design modification allowed us to 
better compare grounded problems (those describing objects with area attributes, 
such as brownies, and those with length attributes, such as rope) to problems with 
abstract objects. By removing the confound of unit, the improved design also 
allowed for a more controlled comparison of the effects of object attribute (i.e., 
area vs. length), which has been shown to influence the strategies children use to 
solve tasks involving measurement and fraction concepts (Lehrer et al., 1998).
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12.5 Role of Object Attribute in Partitioning Strategies 

By definition, equal-sharing problems involve the partitioning of objects described 
in the text. Dividing wholes into parts is a fundamental concept underlying rational 
number (Empson, 1999; Mack, 2001; Pothier & Sawada, 1983; Streefland, 1997), 
and partitioning actions can look different depending on the attribute (i.e., length, 
area, volume) that defines the unit used to quantify the to-be-partitioned object (e.g., 
Hiebert & Tonnessen, 1978). Therefore, success in solving equal-sharing problems 
is in part dependent on children’s understanding of fundamental measurement 
concepts, including those related to different types of units and those involving the 
partitioning of units. 

In particular, children should be aware that area units must be used to measure 
quantities with area attributes and length units for objects with length attributes 
(Clements & Stephan, 2004; Lehrer, 2003). Furthermore, with respect to partitioning 
actions specifically, children must know that to measure a surface with an area 
attribute, for example, one must partition the surface into equal parts (or partitions) 
and then count them as units to assign a number to the quantity (Curry et al., 2006; 
Goldenberg & Clements, 2014; Lehrer et al., 1998). Theoretically, therefore, mea-
surement concepts and children’s knowledge of different measurement systems are 
centrally involved in the strategies they use to solve equal-sharing problems. 

Evidence suggests that children’s application of measurement concepts and their 
partitioning strategies vary across attributes (e.g., Curry et al., 2006; Hiebert & 
Tonnessen, 1978). First, Sisman and Aksu (2016) found that children possess 
numerous misconceptions when measuring objects with area, length, and volume 
attributes, and that their errors vary depending on the attribute in question. More-
over, children’s understanding of measurement principles (e.g., understanding the 
structure of repeated units, judging the appropriateness of a selected unit) does not 
develop at the same time or at the same rate for length, area, and volume attributes 
(Curry et al., 2006). Finally, Nunes et al. (1993) found that children were more 
successful at measuring lengths with a conventional ruler than with individual pieces 
of string. In contrast, when measuring quantities with area attributes (i.e., rectan-
gles), the reverse was observed: arbitrary units of individual “bricks” rendered the 
task more accessible to children than a conventional ruler, which would require a 
multiplicative strategy, such as applying the length x width procedure. Thus, Nunes 
et al.’s results suggest that children’s measurement strategies are dependent not only 
on the attribute of the quantity being measured, but also on the attribute of the tools 
they use (i.e., length vs. area units). 

Children’s understanding of fraction concepts and operations also appears to be 
influenced by the type of attribute of the pictorial model they use. Hamdan and 
Gunderson (2017), for example, found that when second and third graders were 
trained to represent fractions with a circular representation (i.e., area model), they 
improved at representing fraction magnitudes with area models. Similarly, children 
who were trained to represent fractions with a number line (i.e., length model) 
improved at representing fraction magnitudes on a number line. Interestingly,



children who received number line training were able to transfer their knowledge to a 
fraction magnitude comparison task (using symbols only), but children who received 
area model training were not. In terms of accuracy and conceptual understanding, 
Sidney et al. (2019) also found an advantage to using a number line compared to 
using an area model or no model at all when it comes to solving fraction division 
problems presented symbolically. 
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More recently, Osana et al. (2022) asked undergraduates to solve equal-sharing 
word problems with pictorial models -- that is, the to-be-shared quantities were 
presented visually with abstract area models (i.e., circles, with the same number of 
circles as the total quantity described in the problem) or with a number line model, 
where the number of to-be-shared objects were presented as hash marks on a number 
line. Performance was superior when the quantities in the problems possessed area 
attributes (e.g., chocolate bars) than when they possessed length attributes (e.g., 
ropes), but the difference emerged only when the participants used area models 
during problem solving. In sum, various features of the quantities involved in 
fractions and measurement problems, including the attribute of the to-be-partitioned 
objects, can influence student performance. 

12.6 An Investigation of Children’s Partitioning Strategies 
as a Function of Problem Features 

Although the nature of children’s partitioning strategies in equal-sharing contexts 
has been examined in previous work (e.g., Charles & Nason, 2000; Empson et al., 
2005; Lamon, 1996), questions remain about the affordances of equal-sharing 
problem features, namely the extent to which the problems refer to real-world objects 
and the attribute of the to-be-partitioned objects. In the present chapter, we present a 
description of children’s partitioning strategies as a function of the type of objects 
that require partitioning in equal-sharing word problems. We compared students’ 
strategies on (a) grounded and abstract problems, and (b) problems describing 
objects with area and length attributes. Eighty-eight fourth-grade students 
(Mage = 10.13 years, SD = 0.35; 49% female) were recruited from 10 classrooms 
in four public schools in a large school board in the greater Montreal area in Quebec, 
Canada. 

In a between-groups experiment, participants were randomly assigned to three 
conditions that were equivalent in terms of age, F(2, 85) = 2.50, p = .09, and gender 
distribution, χ2 (2, N = 88) = 1.23, p = .54, but differed according to the types of 
problems they were assigned to solve: (a) grounded-area (n = 22), in which 
participants partitioned rectangular real-world objects with area attributes, such as 
chocolate bars, (b) grounded-length (n = 22), with problems that required 
partitioning objects with length attributes, such as ropes, and (c) abstract (n = 44), 
in which the problems contained nonwords couched in an equal-sharing context. The



nonwords served as abstract objects because they made no reference to concrete, 
real-world objects with pre-existing physical attributes. 
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We first predicted an effect of groundedness: Based on previous research 
highlighting the benefits of grounded contexts for problem solving (e.g., Koedinger 
& Nathan, 2004; Koedinger et al., 2008), students’ performance on both grounded 
problems (area and length) would be superior to that on abstract problems. We also 
predicted differences in the quality of the strategies used to solve the grounded-area 
and grounded-length problems, but because previous research is inconclusive on the 
role of attribute type in children’s partitioning strategies, we made no prediction 
about the direction of the difference. 

We speculate that the students in Foster (2018) may have constructed their own 
meanings for the abstract objects, perhaps imagining real-world objects that would 
serve their problem-solving goals (in the pilot study, Foster & Osana, 2017, 
observed students uttering statements such as, “What’s a wog? I am going to pretend 
a wog is a log”). If so, their mental representations may have attenuated the expected 
grounding effects. To test this possibility, we included a measure to assess the 
students’ mental representations of the objects in each problem to determine how 
the students would visualize the abstract to-be-partitioned objects. Data on the 
participants’ internal representations would provide additional insight on the role 
of groundedness and object attribute in their partitioning strategies. Further, the 
mental representation measure allowed for a manipulation check that the desired area 
and length attributes were indeed activated for the grounded-area and grounded-
length problems, respectively. 

12.7 Documenting Children’s Partitioning Strategies 

Children’s strategies were documented using two tasks: a series of equal-sharing 
problems and the Picture Perception Task, both of which were administered in 
individual interviews with a researcher. All interviews were video recorded for 
subsequent coding and analysis. 

12.7.1 Equal-Sharing Problems 

The objects, quantities, and number of sharers in all the equal-sharing problems by 
condition are listed in Table 12.1. The grounded-area problems required partitioning 
real-world objects that were rectangular in shape, such as chocolate bars. The 
grounded-length problems involved objects such as ropes. We replaced the standard 
units of measure in Foster (2018) with arbitrary units: For example, rather than 
sharing 9 meters of rope, the problem involved sharing 9 ropes. Abstract problems 
involved partitioning objects that were referenced by nonwords, such as “feeloos” 
and “figlias.” All problems had answers greater than one, with fractional remainders



equivalent to either 1/2 or 1/4. Administration of the equal-sharing problems was 
counterbalanced to control for possible order effects. Students were asked to use 
paper and pencil to supplement the verbal explanations of their strategies. 
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Table 12.1 Equal-sharing 
problems in each condition 

Condition Object Quantities Sharers 

Grounded-area Brownies 9 4 

Sandwiches 10 8 

Toasts 3 2 

Chocolate bars 15 6 

Grounded-length Ropes 3 2 

Strings 10 8 

Ribbons 9 4 

Straws 15 6 

Abstract Bamoes 9 4 

Porams 3 2 

Figlias 10 8 

Feeloos 15 6 

We developed a coding rubric based on the development of children’s strategies 
for solving equal-sharing problems as described by Empson et al. (2005) and 
Empson and Levi (2011). In particular, Empson and colleagues argued that when 
children begin thinking about equal-sharing situations, they typically do not coor-
dinate the number of sharers in the problem with the number of partitions that are 
necessary. As such, the coding of the participants’ strategies was centred on the 
developmental hallmark of coordinating the quantity with the number of sharers. 

The coding rubric was based on four criteria: (a) partitions had to match the 
numbers in problem, (b) all objects in the problem had to be used, and (c) shared with 
all sharers, and (d) objects needed to be distributed equally among the sharers. In line 
with Empson and Levi (2011), we considered criteria (b) and (c) as essential 
elements of partitioning (i.e., the coordination of quantity with the number of 
sharers). Points were awarded according to specific combinations of the four criteria 
listed above. Table 12.2 presents all the strategies observed in the sample and the 
corresponding number of awarded points. 

Five points were assigned to strategies where all four criteria had been met. Four 
points were assigned when all criteria had been demonstrated except for the parti-
tions matching the numbers in the problem. For example, a score of 4 was awarded if 
a student responded that a group of children would share the leftover objects without 
showing the fractional portion that each child would receive. Students whose 
strategies contained only the two essential elements of partitioning were given a 
score of 3. Students who were only able to show one of the two essential elements in 
their representations were given a score of 2, regardless of how they had fared on the 
other three criteria. Lastly, a score of 1 was awarded to representations based on the 
wrong problem structure (e.g., adding the two numbers presented in the problem), 
and a score of 0 when no strategy was produced to solve the problem (e.g., “I don’t



✔
✔

✔
✔
✔

know”). Total strategy score was the mean number of points on each item, for a 
minimum score of 0 and a maximum score of 5 points. 
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Table 12.2 Strategy coding rubric 

Coding Criterion 

Points A 

Partitions match numbers in 

problema 

B 

Uses all 

objects 

C 

Shares objects to all 

sharers 

D 

Distribute objects equally 

among sharers 

5 ✔ ✔ ✔
4 ✔ ✔
3 ✔ ✔ 

2 ✔
2 ✔
2 ✔ ✔
2 ✔ 

2 ✔ 

1 Wrong problem structure 

0 Problem not attempted 

 

 

 

 

 

Note. The region shaded in grey indicates the strategies that coordinate quantity with the number of 
sharers 
a If the number of partitions does not match the number of sharers, this criterion is still met if the 
strategy is appropriate. For example, in the situation where 6 share 2: A child could partition each 
whole into thirds and distribute one of the six thirds to each of the six sharers. 

12.7.2 Picture Perception Task 

The Picture Perception Task (PPT), designed by the authors, assessed students’ 
mental representations of the to-be-shared object in each problem. The task was 
composed of five items (see Fig. 12.1 for a sample item). The participant was 
required to choose between two images – one a closed figure and the other either a 
curved or straight line – in response to the question, “Please point to the picture that 
looks most like a [e.g., brownie/rope/feeloo].” All five items of the task were 
administered after the child solved each equal-sharing problem, and the number of 
times the participant chose the area model was determined for each problem. The 
Picture Perception Task score was the mean number of times the participant chose



the area model across all five problems, for a minimum score of 0 and a maximum 
score of 5. 
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Fig. 12.1 Sample item 
from the picture 
perception task 

12.8 Results 

12.8.1 Mental Representations 

A one-way ANOVA was conducted to determine if students’ mental representations 
for the objects in the problems (as assessed by the PPT) were different for grounded-
area, grounded-length, and abstract conditions. The data for two participants (one 
from the grounded-area condition and one from the abstract condition) were 
excluded because they did not complete the task. Recall that PPT scores reflected 
the extent to which the area items were selected over the length items. PPT scores 
were significantly different between the three problem types, F(2, 83) = 124.56, 
p < .001, partial eta-squared = .75. Follow-up Fisher LSD comparisons (Levin 
et al., 1994) revealed that PPT scores for the grounded-area problems (M = 4.63, 
SD = .56) were significantly higher than those for the grounded-length problems 
(M = 0.82, SD = .63), t(83) = 15.44, p < .001, d = 14.89, and for the abstract 
problems as well (M = 3.26, SD = .97), t(83) = 6.37, p < .001, d = 5.37. PPT scores 
on the abstract problems were significantly higher than on the grounded-length 
problems, t(83) = 11.50, p < .001, d = 9.52. These results suggest that the desired 
attributes were activated on the area and length problems and that the students were 
more likely to mentally represent the nonwords as possessing area attributes than 
length attributes. 

12.8.2 Partitioning Strategies 

Means and standard deviations for the strategy scores by condition are presented in 
Table 12.3.



M SD
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Table 12.3 Means and stan-
dard deviations on strategy 
scores by condition 

Condition 

Grounded-area 4.13 1.06 

Grounded-length 3.78 1.19 

Abstract 3.85 1.17 

Orthogonal contrasts were constructed to test the effects of problem features on 
students’ partitioning strategies. The groundedness contrast compared the abstract 
condition (-2) against the grounded-area (+1) and the grounded-length (+1) condi-
tions. The attribute contrast compared the grounded-area condition (+1) against the 
grounded-length condition (-1). Results revealed no significant effects for either 
contrast – that is, students’ strategies on grounded problems did not differ signifi-
cantly from the strategies they used on abstract problems, t(85) = 0.42, p = .68, and 
their strategies for solving grounded-area problems were not significantly different 
from the ones used to solve grounded-length problems, t(85) = 0.99, p = .33. These 
data suggest that problems containing references to real-world objects provided no 
benefits to the quality of the students’ partitioning strategies and that strategy quality 
was comparable regardless of object attribute. 

12.9 Discussion 

Some scholars have argued that an effective way to introduce fractions to young 
children is through the introduction of equal-sharing situations (e.g., Charles & 
Nason, 2000; Empson, 1999). By applying intuitive strategies to partition quantities, 
children can learn fundamental fractions concepts that are potentially more difficult 
to learn from traditional instruction emphasizing part-whole interpretations of frac-
tions (e.g., Hamdan & Gunderson, 2017). For example, children can learn that 
wholes can be divided into parts and that the parts must be the same size. They 
can also learn that fractional quantities can only be interpreted in the context of the 
unit (Empson, 1999). Finally, Empson and Levi (2011) argued that through class-
room conversations and practice solving equal-sharing problems, children can learn 
the quotient interpretation of fractions, which is foundational for a flexible concep-
tual understanding of rational number (Barnett-Clarke et al., 2010). 

Our objective was to explore how the features of the to-be-partitioned objects in 
equal-sharing problems can impact children’s partitioning strategies. We first inves-
tigated the role of groundedness, operationalized as word problems with references 
to concrete, real-world objects. The quality of the children’s partitioning strategies 
on grounded problems was compared to their strategies on abstract problems, in 
which the to-be-partitioned quantity was referenced using nonwords. We also 
investigated whether the attribute of the objects in the grounded problems (i.e., 
area, length) made a difference in terms of students’ partitioning strategies. A 
secondary objective was to examine students’ mental representations when they 
attempted to solve equal-sharing problems with abstract quantities. The ways in



which the students imagined, or in other ways represented, the abstract objects could 
assist in the interpretation of the results on the role of groundedness and attribute. 
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12.9.1 The Role of Object Groundedness 

Our hypothesis about the effects of groundedness was not supported. No differences 
were found in the quality of students’ partitioning strategies on the grounded 
problems and the abstract problems. The data on students’ mental representations 
can shed some light on the reasons for this unexpected result. When students were 
confronted with objects in equal-sharing problems that made no references to 
specific real-world objects, they nevertheless represented those objects as possessing 
specific physical attributes, and in particular, were more likely to imagine objects 
with area attributes than length attributes. This suggests that even in abstract 
contexts, students constructed meaning in ways that supported their problem solv-
ing, in line with Thevenot and Barrouillet (2015)‘s contention that problem features 
alone cannot account for children’s problem-solving performance. Therefore, it is 
possible that the objects in all three conditions were in fact “grounded,” perhaps 
contributing to the similarities observed in the quality of the students’ strategies. 

Another possible reason that our results differed from what has been reported in 
previous research is related to the way we grounded the equal-sharing problems. In 
Koedinger and Nathan (2004), for example, the effects of grounding were tested by 
manipulating the number of explicit references to concrete objects and events in 
mathematical problems. Their grounded problems made several references to con-
crete objects and situations, such as winning money in a lottery and buying jeans at a 
discount. Their semi-grounded problems were so-called “word equations,” which 
preserved the mathematical structure of the grounded problems, but removed the 
situational effects present in the text. The abstract problems were presented using 
only algebraic symbols and numerals. 

In contrast, we tested the effects of groundedness by manipulating only the to-be-
partitioned object described in the problem, while maintaining the description of the 
partitioning situation in the problem text (e.g., “Emma wanted to share 9 brownies 
evenly among four friends.”). The mental representation data demonstrated that the 
abstract objects appeared to be as grounded to the participants as the real-world 
objects with area attributes. This may suggest that the reference to the object itself 
(in this case, the word used to refer to it) may not play as prominent a role in the 
students’ strategies as the partitioning context described in the problem. It is possible 
that students activated known partitioning schemas, which may have served as the 
primary grounding mechanism that drove their solution strategies. Thus, students’ 
knowledge of the meaning of the words themselves (e.g., “liquorice”), or their 
previous experiences with the objects that were referenced, may have had less of 
an impact on performance than the type of schemas that were activated while 
problem solving (Čadež & Kolar, 2015).
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The types of schemas and representations that are activated when children engage 
with mathematical word problems, and in particular, the level of abstraction and the 
ways in which they are constructed, is still not well understood. The research 
reviewed by Thevenot and Barrouillet (2015), however, provides rather compelling 
evidence that children construct transient mental models that incorporate their 
previous experiences and knowledge about the real world, such as partitioning 
actions in equal-sharing problems. In fact, the authors suggested that the degree of 
“imageability” of the nouns described in word problems may be related to the extent 
to which problem solvers bring real-world knowledge to bear. Our data suggest that 
nonwords were as easily “imagined” as real-world objects with area attributes. As 
such, the children’s mental representations of objects with physical attributes may 
have facilitated, or at least not interfered with, the partitioning schemas that 
governed their strategies. 

We do not intend to diminish the role of language in the solving of mathematical 
word problems, however. It has been established that language plays an important 
role in children’s mathematics achievement, particularly on tasks that are language 
dependent, such as word problems. For example, mathematical vocabulary and 
receptive vocabulary contribute to word-problem solving accuracy of second and 
third graders (Xu et al., 2022), and syntactic awareness (i.e., the ability to manage the 
grammatical structure of language) affects the word-problem solving of 8–9-year-
olds (Peake et al., 2015). Indeed, Bale and Barner (2018) posited that if children’s 
quantity judgments of count nouns (e.g., “stones”) and mass nouns (e.g., “stone”) are 
based on world knowledge, their performance is at least mediated by the language 
and syntax in the problem text. 

Therefore, despite the need for more research on the relation between problem 
features and children’s sharing strategies, we also suggest that future lines of inquiry 
focus on the interactions between problem characteristics and individual factors, 
including children’s world knowledge, linguistic competencies, and the types of 
mental representations that are triggered by the problems themselves. Consistent 
with this suggestion, Thevenot and Barrouillet (2015) maintained that problem 
characteristics cannot by themselves account for children’s problem solving: Indi-
vidual factors are responsible for the processes that take place between the presen-
tation of the problem text and the “pure mathematical mental representation” 
required for computation (Thevenot & Barrouillet, 2015, “Situation Model and 
Word Problem” section), suggesting an interaction between problem features and 
cognitive factors. 

12.9.2 The Role of Object Attribute 

The data also revealed that the students’ partitioning strategies did not differ as a 
function of the attribute of the objects in the problem. That is, the quality of the 
strategies used was similar whether the object in the problem has a length attribute or 
an area attribute. This finding was also unexpected, and at first glance, does not align



with previous research on children’s measurement strategies. A closer look at 
previous studies on children’s measurement, however, revealed that several 
researchers used tasks that were decontextualized (i.e., not grounded). Like many 
school-based measurement tasks in American textbooks (Hong et al., 2018), the 
tasks used by Curry et al. (2006), Sisman and Aksu (2016), and Lehrer et al. (1998), 
for example, examined measurement tasks that involved finding the length of lines, 
the area of polygons or circular regions, or the volume of rectangular prisms, none of 
which were embedded in real-world contexts. In their study on the strategies children 
use to solve fraction division problems, Sidney et al. (2019) also used 
decontextualized tasks (e.g., 18 ÷ 2/3) to show differences in performance when 
using area and length models. Therefore, while more research is warranted to 
disentangle the sources of children’s challenges with different attributes in fractions 
and measurement contexts, it is difficult to interpret our findings given the method-
ological differences between our work and what currently exists in the literature. 
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One of the few studies that assessed children’s responses to different attributes in 
contexts that more closely approximated real-world situations was conducted by 
Hiebert and Tonnessen (1978), who compared the strategies used by children who 
shared physical objects evenly among a number of stuffed animals seated around a 
table. The objects were a stick of liquorice (length attribute), a circular piece of clay 
to represent a pie (area attribute), and individual pieces of candy (discrete objects). 
The authors observed differences in the children’s strategies when they partitioned 
length and area. For instance, children easily engaged in repeated halving (i.e., 
dividing first into halves and then into quarters) when working with area, but 
could not use the same strategy when dealing with thirds. In contrast, when working 
with length, the challenges came from a different source: Creating equal partitions 
become increasingly difficult as the number of parts (i.e., the number of sharers) 
increased. Hiebert and Tonnessen (1978) only assessed the strategies of nine chil-
dren, however, reducing the confidence one can place in their conclusions. Thus, we 
contribute to the literature by showing that the children’s measurement strategies 
may look different in real-world contexts than those used in traditional school-based 
tasks. It is possible that by grounding partitioning and other measurement actions in 
schemas that are based on real-world experience, the effect of attribute may be less 
pronounced, or at least different from what is reported in the literature. 

12.9.3 The Role of Unit Type 

The type of unit used to measure continuous objects may also play a role in 
children’s work with different attributes in equal sharing contexts. One of our 
methodological decisions was to remove any reference to standard units of measure 
in the stimuli used. For example, when partitioning brownies, the unit is arbitrary; 
that is, the brownie is the unit, regardless of its actual size in standard units of 
measure. When measuring length, in contrast, the units are contiguous, such as in 
measuring the length of one rope or the length of a desk. In the equal-sharing



problems we administered to the participants, we attempted to make the problems as 
similar as possible except for the attribute to avoid introducing any confounds. Using 
arbitrary units to measure one rope, however, would have required additional 
information about the unit (e.g., Sarah would like to evenly share a length of ribbon 
that measures 10 paperclips with 4 children), which was not necessary in the case of 
brownies because each brownie was its own, discrete unit. Alternatively, we could 
have used standard units to quantify the length of the rope, but this would have 
introduced the confound of unit type, as was the case in Foster (2018). 
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To circumvent these methodological issues, we used several pieces of rope in the 
grounded-length problems, which rendered the objects in all problems – area, length, 
and abstract – discrete (or “discretized,” meaning that the objects were themselves 
continuous in nature, but the quantities were represented as a collection of individual 
objects; Rapp et al., 2015). That is, all the objects described in the problems were 
unattached, countable objects that themselves served as arbitrary units that could be 
partitioned. It is thus possible that by reducing all objects to discretized units could 
possibly account for the levelling of strategy performance across all three conditions. 
More specifically, using individual lengths of rope in the problems may mask the 
true nature of children’s difficulties when partitioning continuous lengths, an issue 
that does not appear when partitioning discrete objects with area attributes. Indeed, 
partitioning one object measured in length units is arguably more often encountered 
in school tasks and in everyday contexts than evenly sharing individual pieces of 
rope. As such, using individual pieces of rope rendered the grounded-length prob-
lems more contrived than the grounded-area problems, but was required for exper-
imental control. 

12.10 Practical Implications and Conclusion 

Many questions remain regarding the role of problem features and children’s mental 
representations on their partitioning strategies in equal-sharing contexts. As such, it 
is premature at this stage to prescribe specific instructional strategies for teaching 
fractions and measurement concepts in the classroom. Nevertheless, our findings 
imply that teachers should be aware that children are active meaning makers (see 
Thevenot & Barrouillet, 2015), even when learning about a new number system (i.e., 
rational number) and grappling with representations of quantities that have no real-
world referents. Thus, in addition to considering task characteristics, it is paramount 
that teachers probe their students’ reasoning to gauge how the problems and 
representations are being interpreted. Gaining a deeper understanding of students’ 
conceptions, particularly as they relate to problems features, such as references to 
real-world objects, the attributes of those objects, and the types of units used to 
quantify them, would provide teachers with tools for moving children’s learning 
forward. 

In conclusion, the work reported in this chapter, together with prior research in 
children’s problem solving, fractions understanding, and measurement knowledge,



allow us to take the first steps in constructing a theoretical picture of the factors that 
may impact children’s solutions to equal-sharing problems. Problem-related fea-
tures, such as the extent to which the problems are grounded in real-world contexts, 
the attribute of the objects that are measured and partitioned, and the nature of the 
quantities described (discrete versus continuous), likely interact to influence chil-
dren’s thinking in complex ways. A coherent theoretical model that identifies the 
types of equal-sharing problems that optimize the development of students’ strate-
gies would be useful for classroom teachers. A deeper understanding of the factors at 
play can guide educators in the design of appropriate problems and in tailoring their 
classroom interactions to their students’ specific needs and experiences. 
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Chapter 13 
Designing Worked Examples to Teach 
Students Fractions 

Ouhao Chen, Arunachalam Thannimalai, and Slava Kalyuga 

Abstract Cognitive load theory is an instructional theory which aims to generate 
innovative instructional methods based on the known characteristics of human 
cognitive architecture. The worked example effect is a well-established phenomenon 
in cognitive load theory, indicating advantages of explicit instruction over pure 
problem-solving activities for novice learners. However, it has been mostly inves-
tigated with secondary and high school students rather than younger students, such 
as lower primary school students. This chapter reviews the worked example effect 
and provides empirical evidence of applying it in teaching fractions to lower primary 
school students. 

Keywords Cognitive load theory · Human cognitive architecture · Worked example 
effect · Age · Lower primary mathematics · Fractions 

13.1 Introduction 

Cognitive Load Theory (CLT) is an instructional theory, aiming to generate inno-
vative instructional methods to reduce working memory load in learning (Sweller 
et al., 2011). The base of CLT is human cognitive architecture, dealing with relations 
between working memory (i.e., where information is processed and temporarily 
stored) and long-term memory (i.e., knowledge base) (Sweller & Sweller, 2006), and 
the five principles of its operation have valuable instructional implications. Within 
CLT framework, the worked example effect suggests that providing explicit
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instructional guidance to novice learners is superior to engaging them in solving 
problems, especially at the initial learning stage (Sweller & Cooper, 1985).
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There is no agreed definition of a worked example, but atypical worked example 
normally includes a problem statement and step-by-step solution (Sweller et al., 
2011). Novices engaging in solving novel problems must generate possible solutions 
moves in a rather random way based on their minimal (if any) problem-specific 
knowledge structures and test the effectiveness of these moves, resulting in a 
potentially heavy cognitive load. In contrast, studying with worked examples avoids 
such random search processes, thus reducing the unnecessary cognitive load. How-
ever, the effectiveness of worked examples may disappear when dealing with more 
knowledgeable learners and simpler materials with low levels of interrelations 
between elements of information, indicating the expertise reversal effect. 

Worked examples have been mostly investigated with secondary and high school 
students, with no clear conclusions for younger children, such as lower primary 
school students. Therefore, the main goal of this chapter is to provide a review of 
research related to the worked example effect for younger students. Another goal is 
to provide some guidance to primary mathematics teachers in how to design worked 
examples for teaching fractions to this category of learners. The first section of this 
chapter introduces CLT and human cognitive architecture. The second section pro-
vides a review of relevant studies of the worked example effect and its moderators, 
with a particular focus on the age of participants, followed by the description of two 
experiments in using worked examples for teaching fractions to lower primary 
school students. The chapter concludes with implications for teaching primary 
school mathematics and future research directions. 

13.2 Human Cognitive Architecture 

Human cognitive architecture, outlining the relations between working memory and 
long-term memory, serves as the base of CLT. This architecture also informs us how 
information is processed, stored, and retrieved in human memory systems. There are 
multiple ways to acquire new knowledge (Sweller & Sweller, 2006). The most 
efficient way is to borrow the knowledge from other sources and reorganize it for 
storage, suggesting the borrowing and reorganizing principle. If new knowledge is 
not available for borrowing, humans could randomly generate new knowledge by 
using and combining elements of prior knowledge (i.e., trial and error technique), 
suggesting the randomness as genesis principle. However, as working memory has 
very limited capacity (Cowan, 2001; Miller, 1956) and duration time (Peterson & 
Peterson, 1959), only very limited amount of new knowledge components could be 
generated and processed in working memory, suggesting the narrow limits of 
change principle. Only new information that was tested as being effective for 
solving problems could be transferred and stored in long-term memory (the infor-
mation store principle), with ineffective information discarded. Long-term memory 
unlike working memory has unlimited capacity and could store information for a



very long period. By applying the environmental organizing and linking principle, 
the relevant stored information could be retrieved from long-term memory to solve 
externally presented problems. Worked example effect, one of classic cognitive load 
effects, was generated based on the human cognitive architecture. The next sections 
will discuss this effect in detail. 
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13.3 The Worked Example Effect 

In the framework of CLT, the worked example effect indicates that using worked 
examples to teach novices is superior to engaging these learners in unguided 
problem-solving activities. The principles of human cognitive architecture provide 
a general explanation of the advantage of using worked examples for teaching 
compared to problem solving. Learners directly borrow worked-out steps from 
others using the borrowing and reorganising principle. Engaging in problem solv-
ing, particularly for novice learners, may require great mental effort to generate 
suitable solution moves and test their effectiveness according to the randomness as 
genesis principle. In the latter case, learner working memory capacity is highly likely 
to be overloaded. 

A great number of research studies have provided empirical evidence for the 
effectiveness of using worked examples in different domains. Sweller and Cooper 
(1985) firstly investigated the worked example effect in the domain of linear algebra 
equations in both secondary school and undergraduate mathematics. The worked 
example followed by solving a similar problem was used to test the worked example 
effect. In accordance with this paradigm, the participants in the experimental group 
received a worked example followed by a similar problem to solve, whereas 
participants in the conventional problems solving group (i.e., problem solving – 
problem solving paradigm) solved the equivalent number of the same problems 
without worked-out solutions. Results indicated advantages of using worked exam-
ples for teaching: novices (Year 9, Year 11 and undergraduate mathematics students) 
in the experimental group used less time to solve problems and made less mistakes in 
the post test, compared to novices in the conventional problems solving group. 

In teaching physics, researchers presented secondary school students 
malfunctioning parallel electrical circuit designs, and students needed to apply 
their knowledge of electrical circuits to diagnose the faults. Students in the worked 
example group could study the provided optimal solutions, whereas students in the 
conventional problems solving group had to answer questions by themselves (Van 
Gog et al., 2011). In this study, the worked example – problem solving sequence was 
compared with the problem solving – worked example sequence. The results 
suggested that using the worked example – problem solving sequence was superior 
to using problem solving – worked example sequence for students’ learning. In other 
words, learning with instruction before engaging in problem solving was more 
effective for learning, compared to learning with problem solving before instruction.
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Beside well-structured problem domains, such as mathematics and physics, the 
worked example effect has been also found with ill-structured problems in arts 
design (Rourke & Sweller, 2009). Participants were taught unique characteristics 
of five design artists and were randomly assigned to either studying the features of a 
designer’s work and the name of the designer by examples or figuring out the 
features of a designer’s work and the name of the designer on their own. The results 
were in line with the worked example effect, suggesting that novices who had 
moderate levels of visual literacy were more successful at recognising the designers’ 
work by learning from examples compared to those who solved problems by 
themselves. 

The worked example effect was found effective not only in individual learning 
but also in group learning settings. Participants from Year-7 (around 13 years old) in 
the study by Retnowati et al. (2010) either engaged in problem solving or studied 
examples individually or in groups. The worked example effect was found in both 
individual and group learning conditions, thus extending the worked example effect 
to group learning. 

Although using worked examples is effective and superior to engaging in 
unguided problem solving, a number of factors may moderate the effectiveness of 
worked examples. The most important of those factors are levels of learner expertise 
and levels of element interactivity of learning materials. The concept of element 
interactivity is essential and fundamental within cognitive load theory. It indicates 
the degree of inter-connectiveness of elements in learning materials (Sweller et al., 
2011). An element could be a concept or a symbol. Based on the nature of learning 
materials, they could be high or low in element interactivity. For example, learning 
mathematics symbols, such as x, y, or  sin, is a low element interactivity task, as each 
symbol (e.g., x) could be learned without referring to another one (e.g., y). Therefore, 
these symbols could be treated separately and individually, imposing low levels of 
cognitive load on working memory. However, when solving an equation, such as 
5x - 8 = 3 for x, the task is high in element interactivity. There are at least six 
elements that must be processed in working memory simultaneously, and they could 
not be treated separately. In other words, to successfully solve the problem, learners 
must process these six elements together in working memory, imposing high levels 
of cognitive load on working memory. However, high element interactivity could 
become low in element interactivity if the learners’ expertise in a task domain is 
increased. 

Another factor is expertise which is closely associated with the amount and 
structure of knowledge stored in log-term memory (Sweller et al., 2011). The 
same material which is high in element interactivity for novice learners could be 
low in element interactivity for more knowledgeable learners. For example, the task 
of solving the eq. 5x- 8 = 3 for x, involves six interactive elements for novices, but 
more knowledgeable learners (experts) could retrieve a relevant schema as an entity 
from long-term memory (i.e., the combined procedure (3 + 8)/5 could be retrieved 
immediately providing the answer), rendering only effectively one element to be 
processed in working memory. Therefore, the concept of element interactivity is 
closely related to levels of learner expertise (Chen et al., 2017).
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Chen et al. (2015, 2016a, b, 2019, 2020) conducted a series of experimental 
studies to investigate the relations between expertise and element interactivity, and 
their influence on the effectiveness of using worked examples. Participants in those 
studies were from Year-4 (around 10 years old) to Year-8 (around 14 years old). In 
the early experiments, Chen et al. (2015, 2016a, b) compared the generation effect 
with the worked example effect with novices and knowledgeable students in the 
domain of mathematics. The generation effect suggests that encouraging students to 
generate the solutions by themselves (i.e., engaging in problem solving) is more 
beneficial for learning than presenting worked-out solutions to them (Slamecka & 
Graf, 1978), whereas the worked example effect indicates that presenting solutions 
to students is superior to engaging them in self-generating solutions. 

The contradiction between the studies was assumed to be resolved by considering 
materials with different levels of element interactivity. For example, the tasks that 
were low in element interactivity involved memorising some mathematical formulas 
(as they could be memorised separately and individually), whereas the learning tasks 
that were high in element interactivity required applying those formulas to calculate 
the areas of compound shapes. When testing these materials with novice learners, the 
generation effect was found for materials low in element interactivity, while the 
worked example effect was observed for materials high in element interactivity. 
However, when the same learning tasks were used with more knowledgeable 
learners, the generation effect was found for all sets of materials, as all of them 
turned out to be low in element interactivity for these learners. Therefore, the 
apparent contradiction between the worked example effect and the generation effect 
could possibly be resolved by taking into account different levels of element 
interactivity of learning tasks and levels of learner expertise. 

Given that learners’ expertise and levels of element interactivity moderate the 
effectiveness of the worked example effect, Chen et al. (2019, 2020) extended the 
experiments to mathematical problems with multiple steps and tested different 
instructional sequences (i.e., worked example – problem solving vs. problem 
solving – worked example). Chen et al. (2019) compared the performance of worked 
example and problem-solving groups on the 1st step and 3rd step of opening across 
bracket problem (Fig. 13.1). A worked example effect was found on the 1st step but 
no worked example effect on the 3rd step for novices, and no worked example effect 
was found for more knowledgeable learners. The suggested explanation was that the 
students had difficulty in successfully accomplishing the 1st step of the solution, as it 
was high in element interactivity (i.e., when opening across the brackets of (x + 4)  
(3x- 2), students needed to conduct 4 pairs of multiplications involving 8 interactive 
elements, such as x and 3x, 4 and 3x, simultaneously in working memory), whereas 
for the 3rd step as the last step of the solution, the element interactivity was lower 
(i.e., students only needed to do an addition -2x + 12x, which is much simpler 
compared to the 1st step), therefore, worked examples were not superior any more to 
unguided problem solving. 

Similarly, when comparing the two-alternative example-problem instructional 
sequences with novices for whom the materials were high in element interactivity, 
the worked example – problem solving sequence was superior to the problem



solving – worked example sequence, but no differences were found between these 
two sequences for more knowledgeable learners for whom the materials were low in 
element interactivity. 
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Fig. 13.1 Opening across 
bracket problem 

Task 1: Calculate (x+4)(3x–2) 

(x + 4) (3x – 2) 

= x3x + x(-2) + 4(3x) + 4(–2) 

= 3x2 – 2x + 12x – 8 

= 3x2 + 10x – 8 

To summarise the general pattern that has emerged from the above studies, the 
worked example effect is more likely to be found with materials high in element 
interactivity, whereas problem solving/generation effect is more likely to be 
observed with materials low in element interactivity. Worked examples are effective 
for novices, but their effectiveness disappears or even reverses for more knowledge-
able learners, indicating the expertise reversal effect (Kalyuga, 2007). 

13.4 The Worked Example Effect and Age Differences 

Based on a systematic review conducted by Education Endowment Foundation 
(UK), the worked example effect has been largely investigated with secondary and 
above cohort (Perry et al., 2021). Very few studies on the worked example effect 
have focused on younger learners. Two research studies tested the worked example 
effect with Year 4 students (the youngest cohort) (Chen et al., 2015; Van Loon-
Hillen et al., 2012). Chen et al. (2015) experiments compared the worked example 
effect with generation effect in geometry, supporting the worked example effect, 
whereas Van Loon-Hillen et al. (2012) compared lessons using worked examples 
with lessons taught using RekenRijk method (four teaching lessons, six self-study 
lessons, one repetition lesson, and one “deepening understanding” lesson) in algebra 
in a quasi-experiment, with no worked example effect found. Therefore, one of the 
goals of this chapter was to report new, recently obtained experimental results of 
studies in the worked example effect with lower primary school students.
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13.5 Empirical Evidence of the Effectiveness of Worked 
Examples with Lower Primary School Students 

The schools we collaborated with were interested in improving fraction learning 
which started from Year 2. Therefore, two experiments were conducted to investi-
gate the effectiveness of worked examples for Year2 (around 8-year-old) students 
learning fractions in two Singaporean schools. In both studies, participants were 
novices in the subject matter of interest, and two types of instruction were compared: 
a set of example-problem pairs against an equivalent set of problem-solving tasks. 
The worked examples incorporated worked-out solutions of the problems, while the 
problem-solving tasks had the same problems but did not contain any worked-out 
solutions. 

It was hypothesized that learners who study worked examples would outperform 
those engaging in problem solving only on post-tests, as using worked example 
imposes lower level of cognitive load than problem solving. Based on power 
analysis, to obtain a large effect size (d = .8) with power of 0.8 and α error at .05, 
the sample size should be 42 or higher for both experiments. 

Participants in the first experiment were 42 Year 2 students recruited from a 
registered private primary school in Singapore. The average age of participating 
children was 8 years old. The learning tasks involved subtraction of two unlike 
fractions which was a challenging topic for both adults and children (Lortie-Forgues 
et al., 2015). All participants were novices to this task area. Before the experiment, 
22 children were randomly assigned to the worked example group and 20 children 
were assigned to the problem-solving group. 

A sample problem is 3/5-2/10, with its solution provided in the corresponding 
worked example (only abstract mathematical expressions were included) 3/5-
2/10 = 6/10-2/10 = (6-2)/10 = 4/10. In the worked example group, two worked 
example – problem solving pairs were designed based on four chosen task problems. 
Tasks 1 and 3 were worked examples, while tasks 2 and 4 were just similar problem 
statements without any worked–out solution steps and final answers, allowing 
participants to solve on their own after studying the corresponding examples. 
Thus, task 1 – task 2 were paired together as the first example – problem pair, and 
tasks 3 and 4 – the second example – problem pair. In the problem–solving group, all 
four tasks were just problem statements without any worked–out steps and final 
answers. They were meant for participants to try out solving problems on their own. 
All the materials in the study were paper based. 

After being seated at the assigned place, each child had 16 min to study examples 
and/or solve problems designed for the learning phase. Immediately following the 
learning phase, they had 10 min for the post-test. The post-test contained five 
problems similar to problems used during the learning phase (a sample problem 
2/5-3/10). The internal reliability of the post-test (Cronbach α = .33) was rather low 
due to a wide range of scores (while some students were able to solve all problems 
correctly, others struggled to solve even one).
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The raw scores obtained in the post-test were converted to the percentage correct 
scores for the analysis. There was no significant difference found between the 
worked example (M = 20.91, SD = 31.49) and problem-solving (M = 31.33, 
SD = 32.45) groups, t(40) = -1.06, SED = 9.87, p = .297. Thus, no evidence of 
the worked example effect was obtained in this experiment. A plausible explanation 
for this could be that the tasks involving subtraction of two unlike fractions were too 
difficult for Year 2 students (a ‘floor effect’ with only around 25% overall success 
rate in the post-test). Even the students who were studying the worked examples 
could have found it difficult to decipher the links between worked-out steps shown in 
the examples to fully understand and make use of these worked examples to benefit 
their learning. 

Thus, no worked example effect was found in this experiment, probably due to 
the learning materials being too abstract and difficult for lower primary school 
students. Therefore, in the follow-up experiment, a form of visual support was 
implemented in worked examples to help children identify the links between 
worked-out steps, particularly the mapping between abstract fractions and their 
visual representation, which made the learning materials easier for students. 

The second experiment involved 48 Year 2 students from a public primary school 
in Singapore. The mean age of participants was 8. The learning tasks used for this 
experiment involved addition of two likely fractions. All students were novices to 
this task area. Before the experiment, all students were randomly assigned to the 
worked example (N = 24) and problem-solving (N = 24) groups. A sample problem 
statement was 2/6 + 3/6 (Fig. 13.2). In addition to the numerical form, 2/6 was 
represented by a circle divided by six equal pieces, with two pieces coloured in 
yellow, and 3/6 was represented by a circle divided by six equal pieces, with three 
pieces coloured in green. To obtain the answer for 2/6 + 3/6, it was sufficient to add 
the two yellow pieces and three green pieces together as five coloured pieces out of 
six. In this way, using the addition (instead of subtraction) task together with the 
visual representation was expected to make the material easier for Year 2 students 
compared to the materials used in the previous experiment. 

The sequences of two example problem pairs (for the worked example group) and 
four problems (for the problem-solving group) were designed similarly to the first 
experiment. The procedure was also identical to the previous study, with 16 min 
allocated to the learning phase and 10 min – to the post-test phase. The test paper 
also contained five problems that were similar to the problems used during the 
learning phase (Cronbach α = .82). This time, there was a significant difference 
found between the worked example (M = 93.89, SD = 17.02) and problem-solving 
(M = 33.06, SD = 35.47) groups, t(46) = 7.58, SED = 8.03, p < .001 (1-tailed), 
d = 1.47, indicating a strong worked example effect. 

In this experiment, a clear and strong worked example effect was found. Com-
pared to the first experiment, abstract numerical mathematical expressions were 
represented by concrete geometrical objects, such as pie charts representing frac-
tions, which apparently helped lower primary school students process abstract 
fractions. When performing likely fractions’ addition operations, they could count



the coloured areas rather than deal with abstract numerical symbols in working 
memory. Therefore, helping learners visualise abstract mathematical concepts could 
be beneficial when designing worked examples for lower primary school students. 
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[Problem 2] Please use the above method to calculate 36+16 

[Problem 3] Calculate 38+48 

[Problem 4] Please use the above method to calculate 28+58 

Fig. 13.2 The examples and problems used in Experiment 2
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13.6 Conclusion and Future Research 

The worked example effect within the framework of cognitive load theory has been 
well-documented for over 30 years, indicating that teaching novices with worked 
examples would be superior to engaging them in problem solving. The explanation 
is based on the reduced cognitive load when teaching novices with worked exam-
ples. However, the worked example effect has been largely investigated with 
secondary and above students with only a few studies for younger children. There-
fore, this chapter reported two experiments testing the worked example effect with 
Year 2 students in learning fractions. 

In the first experiment, the failure in obtaining the worked example effect was 
likely due to the difficulty of learning materials for both experimental conditions. For 
Year 2 students, processing abstract mathematical concepts in working memory 
could impose too much cognitive load, which would result in failed learning. In the 
second experiment, using pie charts to help children visualise abstract mathematical 
concepts apparently reduced the heavy information processing burden in learner 
working memory, leading to more successful learning in the worked example group. 

The results supported the worked example effect (Sweller & Cooper, 1985) in  
teaching fractions to novice primary school students, namely, providing explicit 
guidance for novice learners in calculating the addition of fractions was superior to 
engaging them in unguided generation of solution steps, due to reduced cognitive 
load (Sweller et al., 2011). More importantly, the results indicate that worked 
examples could be effectively used with much younger children than Year 4 students 
for whom the worked example effect was found in previous research (Chen et al., 
2015). When teaching older students with worked examples, abstract mathematic 
expressions would be effective, however, the worked examples designed for youn-
ger students need to include some visual support, such as diagrams, to make abstract 
mathematic expressions (i.e., fractions) more concrete. 

Using visual representations (i.e., diagrams) in teaching mathematics is in line 
with the idea that employing more than one representation would promote learning 
(Ainsworth, 1999). Translating abstract mathematical symbols and relations into 
supplementary graphs enhances learning (Brenner et al., 1997). Therefore, when 
designing worked example for teaching primary school students, merely giving 
numerical solutions might not be effective enough to reduce cognitive load for 
novice learners. It would be necessary to consider other approaches, such as using 
multiple representations (Ainsworth, 1999) or adaptive (for learners with different 
levels of prior knowledge) highlighting of solutions in worked examples (Neubrand 
et al., 2016). These approaches are consistent with the role of pictorial representa-
tions and levels of learner prior knowledge in general principles of cognitive theory 
of multimedia learning (see Mayer & Fiorella, 2022 for a comprehensive overview). 

As a practical implication, worked examples could be an effective tool in teaching 
mathematics to lower primary school students, if the examples are designed to be 
understandable to this category of learners (e.g., implementing suitable forms of 
visual support to represent abstract concepts using concrete objects). Although using



worked examples to teach mathematics is a common practice by teachers, some 
design factors may need to be carefully incorporated to reach its maximum 
effectiveness. 
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Future research in the effectiveness of worked examples for teaching lower 
primary school students’ mathematics needs to investigate the effects of 
implementing various specific forms of visual support (e.g., pie charts) or prompts 
(e.g., cues or highlights) in worked examples. Such techniques should be an essential 
aspect of the design of worked examples for lower primary school students. Finally, 
investigating the effectiveness of worked examples for different categories of lower 
primary school students should be an important research direction in cognitive load 
theory, considering the lack of empirical studies in this area. 
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Chapter 14 
Developing Fraction Sense in Students 
with Mathematics Learning Difficulties: 
From Research to Practice 

Nancy C. Jordan, Nancy I. Dyson, Brianna L. Devlin, 
and Kelly-Ann Gesuelli 

Abstract Despite considerable investment in research in mathematical cognition 
and learning over the past decade, students with mathematics learning difficulties are 
losing ground. Fractions are a particular barrier for many of these learners. Devel-
opment of evidence-based fraction interventions for students who are still struggling 
in middle school is essential to help prevent cascading difficulties, particularly when 
algebra becomes a primary focus. Addressing this need, our research team developed 
a fraction sense intervention (FSI) for low-performing middle schoolers. To make 
learning last, the FSI explicitly incorporates general techniques backed by evidence 
from cognitive science. In this chapter, we address fraction intervention for low 
achievers in three areas: (a) domain specific concepts, procedures, and representa-
tions; (b) general techniques that support learning across domains; and (c) lesson-
specific details about how information is presented in the FSI. We describe the 
iterative development of the FSI and discuss its effectiveness in two contexts: small 
and larger group settings. 
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Despite considerable investment in research in mathematical cognition and learning 
over the past decade (Rittle-Johnson & Jordan, 2016), low-achieving students are 
losing ground. As an example, the most recent U.S. National Assessment for 
Educational Progress Report Card in mathematics (NAEP, 2015) reports that 
lower-performing eighth grade students (i.e., those performing at the 10th and 
25th percentiles) scored significantly worse than did a similar cohort of lower-
performing students in the previous assessment two years earlier. The loss was 
greater for students scoring at the 10th percentile. In contrast, mathematics scores 
of students performing in the higher percentiles (50th, 75th, and 90th percentiles) 
held steady during this same period, yet only 34% of eighth graders overall met the 
proficiency criterion. These trends are consequential. Students who show low 
proficiency in mathematics at the end of secondary school are much less likely to 
receive a college degree than students with middle to high proficiency (Mamedova 
et al., 2021). 

Educational researcher Tom Loveless (2021) argues that rather than focusing on 
detailed sets of standards, as has been done in the U.S., more attention should be 
devoted to developing powerful teaching approaches in crucial components of 
mathematics proficiency. One content strand of particular importance in the middle 
grades is fractions. Fractions are typically a student’s first introduction to rational 
number topics, making them foundational to rational number learning more gener-
ally; yet fractions are difficult to learn for many students (Jordan et al., 2017). 
Fraction interventions for students who are still struggling in middle school are 
especially important because these students experience cascading mathematics dif-
ficulties, particularly when algebra becomes a primary focus (Siegler et al., 2012; 
Siegler & Pyke, 2013). Loveless (2021) observes: 

Fractions are like a gigantic wall that kids hit in fourth, fifth, and sixth grades; some crawl 
over but many do not. What if the Bill and Melinda Gates Foundation money that went to 
Common Core, estimated at $300 million, had instead funded dozens of experiments to 
discover new curricular materials and new ways of teaching fractions, field tested these 
programs in randomized trials, and then disseminated the findings broadly? (p. 369). 

Within multi-tiered system of supports (MTSS) that are common in the U.S., middle-
school mathematics teachers are often called on to deliver evidence-based interven-
tions for students with mathematics learning difficulties (MLD), but relatively few 
such interventions are available, and many teachers do not have specialized training 
in teaching students who struggle with mathematics. Addressing this need, our 
research team developed a fraction sense intervention (FSI) for low-performing 
middle schoolers who have not scaled the fraction “wall”, despite conventional 
instruction and intervention based on national benchmarks. To make learning last, 
the FSI explicitly incorporates general techniques backed by evidence from cogni-
tive science (Dunlosky et al., 2013). 

In the present chapter, we address fraction intervention for low achievers in the 
context of three instructional categories (Alibali, 2021): (a) domain specific con-
cepts, procedures, and representations; (b) general techniques that support learning 
across domains; and (c) lesson-specific details about how information is presented in



the FSI. We describe the iterative development of the FSI and discuss its effective-
ness in two contexts: small and larger group settings. 
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14.1 Domain Specific Concepts, Procedures, 
and Representations 

14.1.1 Why Are Fractions Hard for So Many Students? 

Fractions are complex, and it is not surprising that many students find them hard to 
learn and teachers find them challenging to teach. Students with fractions difficulties 
often assume incorrectly that properties of whole numbers or integers apply to all 
numbers. This phenomenon is referred to as a whole number bias (WNB; Ni & 
Zhou, 2005; Siegler et al., 2011). Fraction concepts can be challenging to learn when 
they seem incompatible with the student’s existing framework about integers 
(McMullen et al., 2014; Van Hoof et al., 2015; Vosniadou, 2014). For example, 
the size of a fraction does not change in ways consistent with the absolute value of its 
numerator and denominator (Schneider & Siegler, 2010). For example, 4 12 is less than 
5 
6 and 

1 
3 is more than 1 5. Moreover, operational rules with integers do not always apply 

to fractions (e.g., multiplying a fraction by a proper fraction, which is less than one, 
always makes the product smaller, while multiplication of integers always makes the 
product larger). Another source of confusion is that multiple fractions have the same 
location on the number line 2 

4 falls at the same place as 1 2 and 
4 
8), whereas only one 

integer falls at a given location. 
Many students also fail to grasp that the amount a number represents depends on 

the measuring unit or the “whole” (Dyson et al., 2018). The whole can be a distance 
(e.g., miles), an area (e.g., a rectangle), or a group of objects (e.g., pieces of candy). 
Whole number units can be easily counted but finding fractions of the whole requires 
equal partitioning skills. For example, if students need to find 1 3 on the number line, 
they must be able to partition the distance between 0 and 1 into three equal parts – a 
difficult task for many students with MLD (Rodrigues et al., 2016). If the whole is 
already partitioned, students may successfully identify the correct fraction when the 
number of parts matches the denominator (e.g., circle 2 5 of five objects). However, 
when asked to indicate 2 5 of a whole partitioned into 10 equal parts, many students 
still choose 2 rather than 4. 

Another characteristic of fractions that eludes many students is that the number of 
fractions between any two consecutive integers and any two fractions is infinite – a 
concept referred to as density (McMullen & Van Hoof, 2020). Although students 
may recognize there are numbers between zero and one, they often see only familiar 
unit fractions, such as 1 2 and 

1 
4 . These students often misconstrue all fractions as 

being small – and always less than one (Resnick, et al., 2016). Working with 
fractions also requires multiplicative reasoning (e.g., 2, 3, 4, and 6 all are factors 
of 12) to find equivalent fractions. Fluency with multiplication facts helps students



find equivalent fractions (e.g., 3 4 = 9 12). Slow fact retrieval, however, is a signature 
characteristic of students who struggle with mathematics (Jordan, et al., 2003), 
making fraction problem solving especially laborious for these children. 
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To help students with MLD, the FSI emphasizes three inter-related domain 
specific areas that are foundational to fraction success: (a) Fraction magnitude, 
which refers to understanding that fractions are numbers that have a place on the 
number line and that the fraction’s numerator and the denominator work together to 
determine its size; (b) Fraction equivalence, which refers to the ability to find 
fractions that are the same size even though they have different numerators and 
denominators (e.g., 3 5 = 6 

10 ) and to order them on the number line; and (c) Fraction 
arithmetic, which involves conceptual understandings for operating with fractions 
(e.g., why a common denominator is needed to add fractions but not for fractions 
multiplication), multiplicative reasoning and fluency, and knowledge of calculation 
procedures. 

14.1.2 Fraction Magnitude and Equivalence 

All real numbers have magnitudes that can be assigned specific locations on number 
lines (Siegler et al., 2011; Siegler & Lortie-Forgues, 2014). The ability to reason 
about magnitudes of fractions as well as whole numbers is fundamental to working 
with fractions, predicting both fraction arithmetic proficiency and overall mathemat-
ics achievement (Resnick et al., 2016; Siegler et al., 2011). To determine a fraction’s 
magnitude, or size, students must consider the relation between the numerator and 
the denominator, rather than thinking about each number separately. 

The ability to locate fractions on the number line is a reliable indicator of fraction 
magnitude knowledge. Resnick et al. (2016) investigated the development of stu-
dents’ abilities to estimate the locations of fractions on number lines, ranging from 
zero to one and zero to two, over multiple longitudinal time points. The data revealed 
three empirically distinct growth trajectories: One group of students began fourth 
grade with relatively accurate estimates and became even more accurate over the 
three-year time period; a second group started with inaccurate estimates but became 
accurate over the time period, most likely due to instruction; and a third group started 
with inaccurate estimates and showed little growth over time. Analysis of perfor-
mance showed that students who fell into the inaccurate, low growth group tended to 
interpret both proper and improper fractions as having quantities less than one, 
failing to consider how the numerator and denominator work together to form a 
magnitude that can be any size. Weak calculation fluency, poor classroom attention, 
and inaccurate whole number line estimation skill at the start of the study signifi-
cantly increased the odds of being in the low accuracy and growth group. Conse-
quentially, in sixth grade, about two-thirds of these children failed to meet state 
mathematics standards versus just 5% of the highly accurate group and 17% of the 
steep-growth group.
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Performance on fractions comparison tasks (e.g., which of two fractions is 
larger?) also reveals specific information about students’ magnitude understanding. 
Rinne et al. (2017) analyzed student errors and found that many fourth graders show 
a typical whole number bias – thinking that larger numbers in numerators and 
denominators produce larger fraction values. Interestingly, however, some children 
also showed the reverse bias, that fractions with smaller numerators and denomina-
tors are larger, suggesting at least a partial understanding that smaller numbers can 
yield larger magnitudes. Children with this partial understanding were more likely to 
become accurate over time on fraction comparison tasks than were those who 
persisted with larger number biases. Recognizing that fractions with integers that 
are larger in the denominator (more equal parts) can be smaller in magnitude than 
those with smaller integers (fewer equal parts) in the denominator, as is the case with 
unit fractions where the numerator is always 1, is a crucial understanding (Empson 
et al., 2020). 

Mathematical equivalence refers to understanding of the equal sign, which is an 
important foundational concept for algebra learning (Knuth et al., 2016). The equal 
sign can be viewed as “is the same amount as” or “is the same distance as” to 
promote the relational interpretation. In the case of fractions, students must be able to 
think about multiple fractions that are the same value, regardless of their numerators 
and denominators. Multiplicative reasoning helps students find equivalent fractions 
(e.g., multiplying the numerator and the denominator by the same number; Hansen 
et al., 2015; Ye et al., 2016). Equivalent fractions can be simplified to find a fraction 
that has no common factors other than one (e.g., 3 6= 1 2 ). Fluency with multiplication 
facts frees up students’ cognitive resources to focus on fraction understandings 
(Hecht et al., 2003; Seethaler et al., 2011). Overall, students need to be able to 
recognize equivalent fractions, which is greatly facilitated by fluent multiplicative 
reasoning. 

14.1.3 Fraction Arithmetic 

Fraction arithmetic presents added challenges for many students, especially those 
with MLD who often have weakly grounded knowledge of fraction concepts (Jordan 
et al. 2017). These arithmetic difficulties persist into secondary school and even 
adulthood (Calhoon et al., 2007; Kelly et al., 1990; Siegler et al., 2011). For 
example, Braithwaite et al. (2017) showed that when asked to choose estimated 
solutions to fraction arithmetic problems, eighth graders, on average, performed near 
chance level (50%); students’ often selected answers that violated basic fraction 
magnitude principles, providing an estimated sum that was smaller than one or both 
addends. Given that students struggle with arithmetic estimation, it is not surprising 
that they go on to have significant difficulties when asked to solve specific fraction 
arithmetic problems (e.g., Braithwaite et al., 2019; Gabriel et al., 2013; Siegler et al., 
2011).
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Concepts of operations with whole numbers can be applied to fractions. For 
example, repeated addition of fractions can be represented as multiplication, and 
division by a fraction can be modeled as the number of copies of the fraction that fit 
in to the dividend (Sidney & Alibali, 2015), although those outcomes can be 
different. Multiplication of whole numbers never leads to an answer smaller than 
either factor and division by a whole number never leads to an answer larger than the 
number being divided, but multiplication and division with fractions less than one 
always produce such outcomes. However, fraction arithmetic requires additional 
procedural knowledge (Gabriel et al., 2013; Hecht et al., 2007; Lortie-Forgues et al., 
2015). For instance, procedures for fraction addition and subtraction vary depending 
on denominator equality (i.e., common versus uncommon) but remain invariant for 
whole numbers. Additionally, common denominators are required to operate across 
fractions for addition and subtraction, but not for multiplication or division. Students 
must also keep track of multiple components (i.e., numerator and denominator) and 
perform numerous steps (e.g., finding a common denominator, generating equivalent 
fractions, and simplifying) which increases cognitive load (Lortie-Forgues et al., 
2015). 

Many students with MLD show little improvement in their fraction arithmetic 
skills during the critical intermediate grades (Hansen et al., 2015). Even more 
concerning, a sizeable portion of students remain highly inaccurate on common 
denominator addition and subtraction problems in sixth grade (Gesuelli & Jordan, 
2021), a basic fraction arithmetic skill that is typically learned by the end of fourth 
grade (Common Core State Standards in Mathematics (CCSSM); 2010). Siegler and 
Pyke (2013) found sixth grade students with low mathematics achievement overall 
possess poorer fraction arithmetic skills than their typically achieving peers; this gap 
widened by eighth grade with typically achieving students demonstrating gains in 
their fraction arithmetic skill while low-achieving students’ skills remained stagnant. 

14.1.4 Common and Persistent Fraction Arithmetic Errors 

When operating with fractions, students with MLD make both strategy and execu-
tion errors (Bottge et al., 2014; Newton et al., 2014; Schumacher & Malone, 2017). 
Strategy errors reflect fraction misconceptions, whereas execution errors primarily 
entail computation errors related to poor number fact skills. Strategy errors include 
those associated with (a) whole number bias and (b) misapplication of fraction 
procedures. WNB errors involve the add/subtract across strategy (e.g., 1 2 + 

3 
8 = 4 10 ) 

where the student treats the numerators and denominators of fractions as indepen-
dent whole numbers. Students may also add the fraction numerators and denomina-
tor and then sum together to generate whole numbers (e.g., 3 

4 + 5 
6 = 

3 + 4  + 5 + 6  = 18) (Bottge et al., 2014; Schumacher & Malone, 2017). 
Students also overgeneralize a correct fraction procedure to other arithmetic 

operations (Braithwaite et al., 2017; Braithwaite et al., 2019; Kelly et al., 1990; 
Newton et al., 2014; Siegler et al., 2011; Siegler & Pyke, 2013). Examples include



applying fraction multiplication procedures to addition and keeping a common 
denominator for multiplication (e.g., Newton et al., 2014). Students sometimes 
disregard the fraction arithmetic operation and instead focus on denominator equal-
ity when choosing a procedure (Braithwaite et al., 2017; Newton, 2008). Alterna-
tively, they may also overgeneralize the use of the same procedure regardless of the 
fraction operation and denominator equality (Braithwaite et al., 2019). As a result, 
students may be highly accurate on certain problems and inaccurate on others. For 
example, students who consistently operate across the numerators and denominators 
of fractions were found to be accurate for multiplication problems but inaccurate on 
addition and subtraction (Braithwaite et al., 2019). 
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Additional systematic errors also exist for addition and subtraction with uncom-
mon denominators that reflect students’ partial understanding of fraction arithmetic 
(Bottge et al., 2014; Newton, 2008; Schumacher & Malone, 2017). The student may 
choose the correct common denominator but fail to generate equivalent fractions by 
adjusting the numerator (e.g., 1 2 + 

2 
5 = 1 10 + 

2 
10= 3 10; Bottge et al., 2014; Newton, 2008; 

Schumacher & Malone, 2017). These transitional errors suggest students are moving 
away from the overgeneralization of whole number properties and are beginning to 
solidify their ability to discriminate between certain portions of fraction procedures 
(Bottge et al., 2014; Schumacher & Malone, 2017). 

Students also commit various execution errors where they use the correct fraction 
procedure but make calculation or equation errors (e.g., performing fraction sub-
traction instead of addition). Basic computation errors include making a whole 
number arithmetic error while employing the correct fraction procedure (e.g., 1 2 + 

2 
5 

= 5 10 + 
4 
10 = 8 10 ; Braithwaite et al., 2017; Newton, 2008; Siegler & Pyke, 2013). 

Students also make whole number calculation errors when working with mixed 
numbers or changing a mixed number to an improper fraction (e.g., Bottge et al., 
2014; Newton et al., 2014). These errors are observed both independently and in 
combination with strategy errors. Nevertheless, most students’ fraction arithmetic 
mistakes include strategy rather than calculation errors (e.g., Braithwaite et al., 2017; 
Hecht, 1998; Newton et al., 2014; Siegler et al., 2013), indicating fundamental 
fraction misconceptions. 

14.1.5 Representations to Build Fraction Knowledge 

Research on evidence-based instruction in intervention settings for students with 
mathematics difficulties suggests that number line representations are essential for 
preparing students for advanced mathematics (Fuchs et al., 2021). Number lines 
allow students to view the magnitude of fractions more directly than common part-
whole “pie” models of fraction representation, which often are over-used for stu-
dents with MLD. Although students should be exposed to different types of fraction 
models (e.g., linear, area, and set models), number line representations of fractions 
help students see that there are fractions between whole numbers and fractions can 
be less than, equal to, or greater than one (Resnick et al., 2016). Number lines also



allow students to see linear relationships between equivalent fractions. For example, 
they can visualize equivalent values that have different partitions that 8 8 = 4 4 = 2 2 = 1 
and that the same distance can have an infinite number of numerical representations. 
Concrete representations of length, such as fraction bars, can be mapped directly 
onto number line partitions to show, for example, that one half of a fraction is 
equivalent to two fourth bars and four eighth bars. It is east to see that the whole 
(from 0 to 1) partitioned into eight equal unit bars has smaller individual parts than 
when it is divided into 4 equal unit bars, thus making 1 8 smaller than 1 4. 

266 N. C. Jordan et al.

14.2 Techniques That Support Learning Across Domains 

In addition to considering domain specific fractions content, interventions for stu-
dents with MLD should incorporate general techniques backed by evidence from 
cognitive science. These techniques include (a) using integrated models, 
(b) connecting concrete and abstract representations of concepts, (c) using gestures 
to promote learning, (d) distributing and interleaving practice, (e) providing retrieval 
practice with corrective feedback, and (f) presenting side by side comparisons to 
promote relational thinking. 

14.2.1 Using Integrated Models 

Attention splitting occurs when instructional materials present visual and verbal/ 
textual information separately or spaced far apart (Sweller et al., 1998; Mayer, 
2005). Using an integrated presentation (i.e., presented at the same time and near 
to each other) reduces attention splitting (Renkl & Scheiter, 2017) and decreases 
extraneous cognitive load (Ayres & Sweller, 2005). Direct relations between textual 
and visual information are highlighted by close proximity (Schroeder & Cencki, 
2018). Both the visual and auditory channels of working memory are activated to 
process new information, so that neither channel is overloaded (Clark & Mayer, 
2016). Supporting working memory is especially important when designing instruc-
tion for struggling learners, as students with MLD often have diminished working 
memory capacity (Fuchs et al., 2005; Geary, 2004; Swanson, 2011). 

14.2.2 Connecting Concrete and Abstract Representations 
of Concepts 

Mathematical concepts can be introduced through representations ranging from 
concrete (e.g., fraction blocks, pictures of objects) to abstract (e.g., fraction notation 
on the number line). Although interventions for students with MLD often rely



heavily on concrete materials, integrating concrete and abstract representations of 
mathematical concepts positions students for problem solving with symbols (Pashler 
et al., 2007). Concreteness fading is a validated instructional practice that links 
concrete to abstract representation through a multi-step progression, in which con-
creteness is faded gradually into the abstract representation (Fyfe & Nathan, 2019). 
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Concreteness fading increases learning and transfer across age groups and math-
ematics topics (Braithwaite & Goldstone, 2015; Braithwaite & Siegler, 2021; Fyfe 
et al., 2015). Fyfe et al. (2015), for example, tested the effectiveness of a concrete-
ness fading technique to teach students how to solve mathematical equivalence 
problems (e.g., 3 + 2 = 4 + __). Students in the concreteness fading condition 
were first introduced to the equivalence concept in a concrete scenario by making 
the two sides of a physical balance scale even. Next, a pictorial representation of the 
scale was presented and labeled with numerical symbols. Finally, students solved the 
equations with just the symbols but were asked to imagine the scale. Students in the 
concreteness fading condition correctly solved more transfer problems at posttest 
than those who were taught with concrete or abstract materials alone, as well as those 
who were taught using an inverse fading progression that moved from abstract to 
concrete. 

14.2.3 Using Gestures to Promote Learning 

When students and teachers discuss mathematics ideas, they often gesture with their 
hands to direct attention to learning materials, to emphasize their spoken words, or to 
convey additional information (Alibali et al., 2014). Encouraging students to gesture 
is a type of embodied cognition that externalizes thought and helps them retain new 
information (Alibali & Nathan, 2012; Ping & Goldin-Meadow, 2008). Learners 
produce more spontaneous gestures when task demands are high, in turn leading 
to better performance (Chu & Kita, 2011). Teachers’ gestures also facilitate student 
learning (Alibali et al., 2014; Ping & Goldin-Meadow, 2008), especially when they 
simultaneously accompany speech (Congdon et al., 2017). Congdon et al. (2017) 
found that third graders who learned a problem-solving strategy through teacher 
instruction that included simultaneous speech and targeted gesture learned more 
material and showed greater transfer than those who learned through speech alone or 
speech and gesture presented sequentially. 

14.2.4 Distributing and Interleaving Practice 

Studying or practicing learned information across two or more sessions that are 
separated by time leads to better learning and retention than studying for the same 
amount of time in a single session (Dunlosky et al., 2013). This spacing effect has 
been reliably demonstrated in lab studies across populations of learners, from



elementary to college-aged students (see Carpenter et al., 2012 for review) as well as 
studies conducted in the classroom (e.g., Powell et al., 2020; Schutte et al., 2015). 
For example, Schutte et al. (2015) split third graders into three groups to practice 
math facts fluency. Students completed either (a) four back-to-back administrations 
in one session; (b) two back-to-back administrations in the morning and two in the 
afternoon; or (c) four separate administrations throughout the day, spaced two hours 
apart. Students in the two distributed or spaced practice conditions grew more in 
their fact fluency across the administrations than those who practiced all at once. 
Distributed practice benefits learning more complex mathematical concepts (e.g., 
fraction arithmetic) as well as more simple material (Rohrer & Taylor, 2006, 2007). 
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Teachers often block mathematics practice problems by common problem-type or 
content matter (e.g., solving all fraction addition problems followed by all fraction 
subtraction problems). However, interleaving or mixing problem types is more 
effective than blocked practice alone for retention of skills over time (Dunlosky 
et al., 2013). Solving interleaved problems takes increased cognitive effort, as it 
forces students to think about the type of problem to be solved (Rohrer et al., 2014). 
An important caveat to the effectiveness of interleaved practice is that it may be 
better to use blocked practice when first introducing concepts and then employ 
interleaved concepts and procedures over time (Rau et al., 2010). Despite the 
effectiveness of interleaving practice, a recent analysis of six middle-school math-
ematics textbooks frequently used in the United States found that many textbooks 
rely mainly on blocked practice, and students typically only see an average of one or 
two interleaved problems per school day (Rohrer et al., 2020). 

14.2.5 Providing Retrieval Practice with Corrective Feedback 

Retrieval practice can be viewed as an instructional technique, rather than a means of 
passive assessment (see Rowland & DeLosh, 2014; Yang et al., 2021 for reviews). 
Students who spend learning time retrieving information (e.g., self-testing) learn and 
retain more than those who focus the same amount of time on studying information 
(e.g., highlighting information; Roediger & Karpicke, 2006; Roediger et al., 2011), a 
phenomenon known as the testing effect. Although there are multiple potential 
mechanisms behind the testing effect, one prevailing account posits that the effort 
involved in successfully retrieving information from memory boosts long-term 
retention by creating multiple retrieval routes (Roediger & Butler, 2011; Rowland & 
DeLosh, 2014). 

Providing corrective feedback during retrieval practice enhances the benefits of 
the testing effect (Roediger & Butler, 2011). That is, students should provide the 
correct response so that retrieval practice does not solidify an incorrect response in 
long-term memory, especially when working with students with learning difficulties. 
Feedback can also focus on the process or how a student solves a task (e.g., using a 
strategy for determining equivalence), in addition to whether a solution or answer is 
incorrect (Hattie & Timperley, 2007).
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14.2.6 Presenting Side by Side Comparisons to Promote 
Relational Thinking 

The ability to see connections between related concepts (e.g., fraction 
addition vs. fraction multiplication) improves mathematical proficiency (Richland 
& Hansen, 2013). However, drawing connections is a large cognitive undertaking 
that requires instructional scaffolds (Richland et al., 2017). Presenting examples side 
by side encourages comparison of concepts and strategies. Specifically, comparing 
more than one example leads learners to create an analogy between the two 
instances, highlighting the shared relational structure by noting similarities as well 
as differences (Rittle-Johnson et al., 2020). When using analogy as a teaching tool, it 
is beneficial to use a familiar concept as the source analog to clarify the relationships 
of a less familiar target concept (Gray & Holyoak, 2021). For example, Rittle-
Johnson (2009) found an interaction between prior knowledge and condition, such 
that comparing two problem-solving strategies side by side was more effective than 
studying each strategy separately when students were already familiar with one of 
the strategies. However, students can also learn from comparing two unfamiliar 
examples, if they are sufficiently supported (e.g., given more time and less material 
to cover; Rittle-Johnson et al., 2012). As children are highly susceptible to focusing 
on irrelevant perceptual features when making comparisons (Richland et al., 2006), 
it is critical for instructors to link explicitly the two analogs. This can be done 
through structured questioning, relational language, and gesturing between the 
examples (Vendetti et al., 2015). 

14.3 Development of the FSI 

We designed the FSI for middle-school students who struggle with fractions. In the 
following section, we discuss the efficacy of the FSI across different stages of 
development and highlight key intervention components. 

14.3.1 Description of the FSI 

The FSI anchors instruction within the meaningful narrative of a color run race for 
charity (Bottge et al., 2014). The racecourse incorporates a 0 to 3 number line and 
helps students see fractions as numbers that have a unique position on the number 
line, just as whole numbers do. Through a variety of activities, such as placing a 
drink station at each half mile, a color throw station at each fourth mile, and a marker 
at every eighth mile, students explore fraction magnitude, fraction equivalency, and 
ordering of fractions. The story line also provides a context for fraction word



problems and helps students make sense of fraction arithmetic apart from 
procedures. 
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Consistent and precise mathematical language is used throughout FSI lessons 
(Fuchs et al., 2021; Karp et al., 2014). For example, using the term “simplifying” 
fractions rather than “reducing”; using the words “numerator” and “denominator” 
rather than the “top” and “bottom” when discussing fraction notation; and saying 
“one fourth” of the whole rather than “one out of four” to emphasize fractions as a 
number. In order to develop the concept of equivalency, the equal sign is read, “is the 
same amount as” or “is the same distance as.” 

When designing the FSI, we sought to integrate verbal explanation with visual 
models and placed both in close proximity on the slides to avoid splitting students’ 
attention. Consistent mathematics vocabulary is paired with visual animations to 
emphasize the meaning of the word and help students generalize the associated 
concept across contexts and problems. Multiple visual models are used in the FSI to 
help students ignore irrelevant properties of the models and abstract the underlying 
fraction concept shared by all the models (Dienes, 1971). For example, students have 
a deeper understanding of what it means to find one-fourth by finding one-fourth 
using a racecourse, a number line, a fraction bar, a ruler, a measuring cup, and a 
group of marbles. Linear models are favored over part-whole (pie) models to help 
students think about fractions as numbers (Fuchs et al., 2021). 

It is often difficult for teachers to model use of manipulatives and drawings when 
working in a classroom setting as opposed to small groups or one-on-one. FSI slides 
make it easy for teachers to model each of the three steps of concreteness fading 
(Fyfe & Nathan, 2019), and even to compare them side by side, as students move 
from concrete manipulatives, to drawings, and then to fraction symbols. For exam-
ple, students are given a metal sheet with fraction bar magnets, which show three 
whole units and the corresponding number of halves, fourths, and eventually eighths 
(Fig. 14.1). The sheet also has a number line racecourse with a magnetic racer the 
student can use to show the racer’s movement along the racecourse. The fraction 
bars are sized so that they can be placed on the racecourse to connect the bars to the 
number line. Students use fraction bars and the racecourse to develop fraction 
concepts and solve arithmetic word problems. 

To address procedural difficulties found with fraction arithmetic in earlier itera-
tions of the FSI (e.g., Barbieri et al., 2020), students now begin modeling the action 
in an arithmetic or word problem using concrete representations (fraction bars or the 
racecourse number line with the magnetic racer). Concrete models are faded to 
model drawings. Students “see” the solution in their model and do not need to rely 
on procedures. We piloted this approach with a group of students with MLD and 
produced promising results. Not only were students successful in solving both 
arithmetic and word problems, but they also intuitively simplified their answers 
(wrote 1 2 instead of 

2 
4 ) because the simplified answer was easily seen in the model. 

Using concreteness fading in this way helped to accomplish our goal of developing 
fraction sense in students rather than misapplying procedures based on whole 
number bias or other learned misunderstandings. After 24 lessons, students were



beginning to picture the solution in their head and had dropped nonsensical solutions 
such as 2þ 3 

4 = 5 6 : Figure 14.2 shows pretest and posttest solutions for three simple 
arithmetic problems. At pretest, students misapplied erroneous versions of proce-
dures, but at posttest, students were able to use drawings on paper along with fraction 
sense to solve these same problems correctly. 
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Fig. 14.1 Metal pan with concrete manipulatives: Fraction bar magnets and racecourse number 
line with racer magnet 

As noted previously, students with MLD often confuse operations and their 
associated procedures. In order to bring these confusions to the students’ attention, 
we present these problems side by side. For example, using both the number line 
racecourse and fraction bars, problems such as 2 + 3 4 and 2× 

3 
4 are presented 

simultaneously, and the solutions placed side by side for comparison (Fig. 14.3). 
Attention is drawn to the role of “2″ in each of the problems. In the addition problem, 
it is a quantity that needs to be “joined” to 3 4. In the multiplication problem, it is an 
operator that tells “how many groups” of 3 4 . Several such problems are presented 
sided by side to give students practice in noticing the difference. 

The FSI incorporates gestures in three ways: gestures as animations on the slides, 
teacher gestures, and student gestures. Gestures are used to highlight important 
information, represent an action, or emphasize a mathematical concept. For example, 
while moving a racer along the number line racecourse, the animated slide produces 
curved arrows or “loops” on the racecourse to show that distance is the space from 
one point to the next and not a single point on the line (an important concept often 
misunderstood). The teacher mimics this gesture by moving her hand in a looping 
motion from point to point. Students mimic the gesture as they move their magnetic 
“racer” along their racecourse or draw loops on their workbook racecourse. Other 
gestures used repeatedly throughout the intervention are arrows that point to or 
circles that encircle important information, sweeping vertical bars that show
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Fig. 14.2 Examples of student solution strategies for pre- and posttest arithmetic 

Fig. 14.3 Side by side solutions of similar addition and multiplication problems



equivalence of fractions on the number line, and rectangles that encircle quantities to 
show sums and products.
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The structure of the FSI lessons provides many opportunities for practice. Each 
lesson begins with retrieval practice of multiplication facts to bolster multiplicative 
reasoning with fractions. The same problems are presented in various formats (i.e., 
missing the product, missing either of the two factors, product on the right, product 
on the left). The instructor scores the practice before the next lesson by circling 
incorrect numbers and writing the number correct. The number correct from the 
previous lesson has already been recorded on the top of the page allowing students to 
track their progress. Next, an activity reviews previously learned material to provide 
distributed practice, which activates prior knowledge needed. As students learn new 
fraction concepts and problem-solving strategies, they are given process-oriented 
feedback (e.g., saying, “Multiplying 3 times three-fourths means making three 
groups of three-fourths. It is not modeled as the whole number 3 and three-fourths.”). 
Speeded games follow instruction in new concepts and strategies, giving students 
opportunities to solve problems quickly to develop fluency in equivalency and 
simple arithmetic operations. Fraction operations are interleaved so students must 
focus their attention and quickly retrieve the correct procedure for the operation (e.g., 
2þ 1 

2 vs:2 × 
1 
2). Each lesson concludes with a quick written assessment, which uses 

both distributed and interleaved practice to make learning last and help instructors 
monitor progress. 

14.3.2 Efficacy of the FSI 

We created and refined the 24-lesson FSI over multiple iterations. The result is a 
series of lessons that can be implemented by intervention teachers, who may not 
have training in mathematics difficulties. Table 14.1 summarizes effects (g) from a 
series of randomized studies. All trials were randomized at the student level and used 
a pre/posttest/delayed posttest design. 

In our initial study (Dyson et al., 2018), we examined the effectiveness of the FSI 
when presented in small groups of children and carried out by trained researchers. 
Students were randomly assigned to the FSI or a business-as-usual intervention 
control (which often consisted of computer-based instruction). FSI delivery was 
supplemental to students’ general mathematics instruction. The FSI group demon-
strated significantly more learning than the control group from pretest to posttest, 
with meaningful effect sizes on all fraction measures. The intervention also brought 
students to a performance level close to average-achieving sixth graders on tasks that 
required them to estimate the locations of different fractions on the number line. 
Jayanthi et al. (2021), who tested the efficacy of a similar number-line focused 
fractions intervention for fifth graders – also carried out in small groups of children – 
found comparable effects (although their intervention was twice as long and did not 
examine performance at delayed posttest).



Study Sample
Instructional
format

Fraction
measures
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Table 14.1 Summary of Finding from Randomized Studies Assessing the Efficacy of the FSI 

Effect 
Size 
post 
test 

Effect 
size 
delayed 
post test 

Dyson 
et al. 
(2018) 

52 sixth graders 
screened for participa-
tion on a validated frac-
tion screener 

Small groups of 
four; carried out 
by researcher 
teachers 

Concepts 
number line 
arithmetic 

.99 .63 

.90 1.02 

.48 .35 

Barbieri 
et al. 
(2020) 

51 sixth graders 
screened for participa-
tion on a validated frac-
tion screener 

Small groups of 
four; carried out 
by researcher 
teachers 

Concepts 
number line 
comparisons 
arithmetic 

1.09 .66 

.85 .60 

.82 .61 

.17 .11 

Dyson & 
Jordan 
(2019) 

81 sixth graders 
screened for participa-
tion on a validated frac-
tion screener 

Large groups of 
12–15; carried out 
by researcher 
teachers 

Concepts 
number line 
comparisons 
arithmetic 

.68 .58 

.42 .53 

.52 .62 

.13 .11 

In a second study (Barbieri et al., 2020), again with small groups of students and 
researcher instructors, we examined a more impaired population of students than in 
our initial study (i.e., we used a more stringent screening cut point for participation 
based on a lower-performing pool of students overall). Nevertheless, both at posttest 
and delayed posttest, there were medium to large effect sizes for all fraction 
measures except fraction arithmetic where effect sizes were low and insignificant. 

The third study evaluated the effectiveness of the FSI with larger groups of 
students (Dyson & Jordan, 2019) taught by researcher instructors, still using the 
more stringent screening cutoff. The format for presenting the lesson visuals was 
changed from a small tabletop magnetic whiteboard easel to PowerPoint slides with 
animations. Middle school mathematics interventions in the U.S., unlike those for 
younger students, are often delivered in classes of 12–16 students. Although effect 
sizes for this study were smaller due to the increased student/teacher ratio, findings 
were similar to our second study. Analysis of student arithmetic errors and strategies 
showed that experimental students in both studies continued to misapply procedures 
(errors such as 2 × 3 4 = 11 4 , where the student multiplied 2 times 4 and then added 3 to 
find the numerator- the procedure for changing the mixed number 2 3 

4 to a fraction). 
Moving forward, we increased FSI emphasis on fraction arithmetic and refined 

our animated slides to allow implementation in both smaller and larger groups of 
students. Another advantage is that slides allow teachers to carry out the FSI



remotely for distance education, in the event of school closures or other special 
circumstances. A tryout of the slide-based FSI with teachers (rather than researcher 
instructors) produced encouraging results. School intervention teachers remarked 
how the on-slide scripts and consistent approaches across lessons reduced prepara-
tion time. Even teachers with little training in mathematics difficulties carried out the 
lessons accurately with minimal support from our research team. 
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14.4 Concluding Remarks 

Many students with MLD struggle through successive years of fractions instruction 
that does not meet their needs. After sixth grade, students’ chance of succeeding with 
more advanced mathematics topics diminishes (Siegler & Pyke, 2013). As a result, 
students may develop math anxiety or learn to avoid math altogether (Choe et al., 
2019). Evidence-based interventions based on linear representations and grounded 
in techniques from cognitive science help under-achieving students master funda-
mental yet elusive fraction concepts and procedures, which in turn, will help redirect 
their math trajectories in school and improve their vocational opportunities. The FSI, 
which was described in this chapter, has the added benefit of highlighting to 
teachers’ ways in which principles from cognitive science can be incorporated 
directly into mathematics instruction to improve understanding and retention. With 
a grant from the Institute of Education Sciences of the U.S. Department of Educa-
tion, we are currently testing the efficacy of the FSI carried out by classroom teachers 
(as opposed to researcher instructors) with a large number of classrooms. 
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