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Abstract. Strong product is an efficient method to construct large net-
works from small networks. Fault diameter is an important parameter to
measure the fault tolerance and effectiveness of interconnection networks.
In this paper, we first determine the vertex fault diameter of the strong
product graph of two paths by constructing the internally vertex-disjoint
paths between any two vertices in the graph, then we determine the edge
fault diameter of the strong product graph of two paths by constructing
the edge-disjoint paths between any two vertices in the graph. In addition,
we propose an improved mesh network, whose model composed of strong
product graph of two paths and has many excellent characteristics.
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1 Introduction

All graphs considered in this paper are simple and undirected graphs with neither
loops nor multiple edges. Let G be a graph with vertex set V (G) and edge set
E(G), we use v(G) to denote the order of G. Let R be a path in G, the length of
the path R is v(R) − 1 and denoted by L(R). If G is a path, we denote it by P .
Let x and y be any two vertices in G, we use (x, y) denotes the edge connects x
and y. The length of the shortest path between x and y in G is called the distance
between x and y, which is denoted by d(G;x, y). Then the diameter of G is the
maximum length of all distances between any two vertices in G, denoted by
d(G). The connectivity of G is the minimum cardinality of all vertex subsets in
G which are deleted from G to obtain a unconnected or a trivial graph, denoted
by κ(G). Similarly, the edge connectivity of G is the minimum cardinality of all
edge subsets in G which are deleted from G to obtain a unconnected or a trivial
graph, denoted by λ(G). We use δ(G) denote the minimum degree of G. A graph
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G is called maximally connected graph, if κ(G) = δ(G). We can get that a path
P is a maximally connected graph with κ(P ) = λ(P ) = δ(P ) = 1. In addition,
the definitions of strong product, vertex fault diameter and edge fault diameter
are given below.

Definition 1. Let G1 = (V (G1), E(G1)), G2 = (V (G2), E(G2)), the strong
product of G1 and G2 is denoted by G1�G2 and the vertex set is V (G1)×V (G2).
Any two distinct vertices x1y1 and x2y2 in G1 � G2 are adjacent, if and only
if x1 = x2 and (y1, y2) ∈ E(G2), or y1 = y2 and (x1, x2) ∈ E(G1), or
(x1, x2) ∈ E(G1) and (y1, y2) ∈ E(G2).

In this paper, we mainly consider such a class of strong product graph Pm �Pn,
where Pm � Pn denotes the strong product graph of a path with order m ≥ 2
and a path with order n ≥ 2. The strong product graph P3 � P7 is shown on
Fig. 1.

Fig. 1. The strong product graph P3 � P7.

Definition 2. Let G be a w-connected graph, and the faulty vertex set of G is
denoted by F with |F | < w. The (w − 1)-vertex fault diameter of a graph G is
defined as

Dw(G) = max{d(G − F ) : F ⊂ V (G), |F | < w}.

In the worst case, we can get |F | = w − 1. Therefore, for any w-connected graph
G, the relation between diameter and vertex fault diameter holds

d(G) = D1(G) ≤ D2(G) ≤ · · · ≤ Dw−1(G) ≤ Dw(G).

Definition 3. Let G be a t-edge connected graph, and the faulty edge set of G
is denoted by F with |F | < t. The (t − 1)-edge fault diameter of a graph G is
defined as

D
′
t(G) = max{d(G − F ) : F ⊂ E(G), |F | < t}.

In the worst case, we can get |F | = t − 1. Therefore, for any t-edge connected
graph, the relation between diameter and edge fault diameter holds

d(G) = D
′
1(G) ≤ D

′
2(G) ≤ · · · ≤ D

′
t−1(G) ≤ D

′
t(G).

The concept of strong product was first proposed in [1]. It is an efficient prod-
uct method of constructing large graphs from small graphs, and the constructed
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strong product graphs retain many properties of subgraphs. Among them, there
are many important results in the research on the connectivity and edge connec-
tivity of strong product graphs. The lower bound of the connectivity of strong
product graphs was first given in [2]. Then in [3], the edge connectivity of strong
product graphs of two nontrivial connected graphs was determined, and the
connectivity of strong product graphs of two maximally incomplete connected
graphs was given. Later, the connectivity of strong product graphs was deter-
mined in [4]. There are also some recent results about product graphs in [5–7].

The topological structure of interconnection network is a graph, with its
processors represented by vertices and links represented by edges. Especially, the
diameter is used to indicate the transmission delay of interconnection network.
In the network, if vertices or edges work for a long time, they will inevitably
be faulty. After they are faulty, the information transmission of the network
will be affected. Therefore, the network must have high fault tolerance and high
effectiveness to reduce this impact as much as possible. The fault diameter is
an important parameter to measure these properties, which includes vertex fault
diameter and edge fault diameter. However, it is extremely difficult to determine
the fault diameter in the actual network, so the compact upper bounds of the
fault diameter of a general graph are given in [8,9]. But for some well-known
networks, the fault diameter can be determined. The vertex fault diameters
of kautz network and debrujin network are given in [10,11], the vertex fault
diameters of pyramid network and star graph are determined in [12,13], and the
edge fault diameter of hypercube network is given in [14]. There are also some
recent results in [15,16].

Although many important results of the fault diameter of Cartesian product
graphs are given in [17–19], for the fault diameter of strong product graphs, there
are no relevant results. In this paper, we will start with a special class of strong
product graph and give the determined vertex fault diameter and edge fault
diameter. The vertex fault diameter of the strong product graph of two paths is
first determined by constructing the internally vertex-disjoint paths between any
two vertices in the graph, then we determine the edge fault diameter of the strong
product graph of two paths by constructing the edge-disjoint paths between any
two vertices in the graph. In addition, we propose an improved network model
composed of the strong product graph of two paths, and compare it with the
mesh network widely used in parallel computing systems.

2 Main Results

In order to prove the following results, we first specify the representation of
the paths. Let G = Pm � Pn, xhyg and xpyq are any two vertices in G, where
xh, xp ∈ V (Pm) and yg, yq ∈ V (Pn). The path R1 from vertex xh to vertex xp

in Pm and its edge set is E(R1) = {(xi, xi+1) : i = h, · · · , p − 1}, which can be
expressed as R1 : xh → · · · → xp. The path R2 from vertex yg to vertex yq in Pn

and its edge set is E(Pn) = {(yj , yj+1) : j = g, · · · , q−1}, which can be expressed
as R2 : yg → · · · → yq. If xh = xp, then the path xhR2 connects vertex xhyg
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and vertex xhyq in G and its edge set is E(xhR2) = {(xh, yj) : j = g, · · · , q −1},
which we express here as xhyg → · · · → xhyq. Similarly, if yg = yq, then the path
R1yg connects vertex xhyg and vertex xpyg in G and its edge set is E(R1yg) =
{(xi, yg) : i = h, · · · , p − 1}, which we express here as xhyg → · · · → xpyg. If
xh �= xp and yg �= yq, then the path R3 connects vertex xhyg and vertex xpyq
in G and its edge set is E(R3) = {(xi, yj) : i = h, · · · , p − 1, j = g, · · · , q − 1},
which we express here as xhyg → · · · → xpyq. For convenience of expression, the
path Ri can also be directly denoted by the label (i). For undefined symbols and
terms, refer to [20].

The connectivity and diameter are the basic parameters necessary to discuss
the vertex fault diameter of interconnection networks, we must first give the con-
nectivity and diameter of the strong product graph of two paths. The following
lemmas provide a solution.

Lemma 1 ([3]). Let G1 and G2 be two maximally incomplete connected graphs
with orders n1, n2 ≥ 2, respectively. Then

κ(G1 � G2) = min{δ1n2, δ2n1, δ1 + δ2 + δ1δ2}.

A path is a maximally connected graph. In particular, when the order is greater
than 2, the path is a maximally incomplete connected graph.

Lemma 2. Let Pm and Pn be two paths with orders m,n ≥ 2, respectively. Then

κ(Pm � Pn) =

{
2, if m = 2, n > 2 or m > 2, n = 2,

3, otherwise.

Proof. Let G = Pm�Pn with V (Pm) = {x1, · · · , xm} and V (Pn) = {y1, · · · , yn},
xhyg and xpyq are any two vertices in G, where xh, xp ∈ V (Pm) and yg, yq ∈
V (Pn). We discuss the following three cases.

Case 1. m ≥ 3, n ≥ 3. Since Pm and Pn are maximally incomplete connected
graph, by Lemma 1, we have κ(Pm � Pn) = min{m,n, 3} = 3.

Case 2. m = 2, n = 2. Since P2 is a complete graph with order 2, we can get
that κ(P2 � P2) = κ(K2 � K2) = κ(K4) = 3.

Case 3. m = 2, n > 2 or m > 2, n = 2. Without loss of generality, we assume
that m > 2 and n = 2, then V (P2) = {yg, yq}. If we remove the vertex xh+1yg
and the vertex xh+1yq from G, then we can get G − {xh+1yg, xh+1yq} is not
connected. Therefore, there have κ(Pm � P2) ≤ 2. We consider the internally
vertex-disjoint paths between any two vertices xhyg and xpyq in G. According
to the positional relationship between the two vertices, it can be divided into
the following three subcases.

Subcase 1. xh = xp. we can get that there are two internally vertex-disjoint
paths R1 and R2 from xhyg to xhyq in G.

xhyg → xhyq. (1)

xhyg → xh+1yg → xhyq. (2)
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Subcase 2. yg = yq. we can get that there are two internally vertex-disjoint paths
R3 and R4 from xhyg to xpyg in G.

xhyg → · · · → xpyg. (3)

xhyg → xh+1yq → · · · → xp−1yq → xpyg. (4)

Subcase 3. xh �= xp and yg �= yq. we can get that there are two internally vertex-
disjoint paths R5 and R6 from xhyg to xpyq in G.

xhyg → · · · → xp−1yg → xpyq. (5)

xhyg → xh+1yq → · · · → xpyq. (6)

There are always two internally vertex-disjoint paths from xhyg to xpyq in G.
Therefore, there have κ(Pm � P2) ≥ 2. We can get κ(Pm � P2) = 2. �	
Lemma 3 ([20]). Let xhyg and xpyq be any two vertices in strong product graph
G1 � G2, where xh, xp ∈ V (G1) and yg, yq ∈ V (G2). Then

d(G1 � G2;xhyg, xpyq) = max{d(G1;xh, xp), d(G2; yg, yq)}.

Lemma 4. Let Pm and Pn be two paths with orders m,n ≥ 2, respectively. Then

d(Pm � Pn) = max{m,n} − 1.

Proof. Let G = Pm�Pn with V (Pm) = {x1, · · · , xm} and V (Pn) = {y1, · · · , yn},
xhyg and xpyq are any two vertices in G, where xh, xp ∈ V (Pm) and yg, yq ∈
V (Pn). By Lemma 3, we have

d(G;xhyg, xpyq) = max{d(Pm;xh, xp), d(Pn; yg, yq)}
= max{|p − h|, |q − g|}
≤ max{m − 1, n − 1}
= max{m,n} − 1.

From the above formula, we can get that the distance between any two vertices
in G is no more than max{m,n} − 1. Therefore, we get the diameter of G is
max{m,n} − 1. �	

Under the previous lemmas, we prove the following result by constructing the
internally vertex-disjoint paths between any two vertices in the strong product
graph of two paths.

Theorem 1. Let Pm and Pn be two paths with orders m,n ≥ 2, respectively.
Then for any 1 ≤ w ≤ 3, we have

Dw(Pm � Pn) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

max{m,n} − 1, for w = 1,

max{m,n} − 1, for w = 2 and m �= n or m = n = 2,

max{m,n}, for w = 2 and m = n > 2,

max{m,n}, for w = 3 and m �= n or m = n > 3,

1, for w = 3 and m = n = 2,

4, for w = 3 and m = n = 3.
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Proof. Let G = Pm�Pn with V (Pm) = {x1, · · · , xm} and V (Pn) = {y1, · · · , yn},
xhyg and xpyq are any two vertices in G, where xh, xp ∈ V (Pm) and yg, yq ∈
V (Pn). Let F be the faulty vertex set of G with |F | < w.

By Lemma 2, we can get the connectivity of G. If only one of m and n is 2,
κ(G) = 2, otherwise κ(G) = 3. By Lemma 4, we can get the diameter of G is
max{m,n} − 1. For w = 1, there is no faulty vertex in F , we have D1(G) =
d(G) = max{m,n} − 1. Consider only w > 1, there are four cases that need to
be discussed.

Case 1. m = 2, n > 2 or m > 2, n = 2. For any 1 ≤ w ≤ 2, we have G − F
is connected. Without loss of generality, we assume that m > 2 and n = 2. The
diameter of G is m − 1 ≥ 2. By the Case 3 of Lemma 2, there are also three
subcases.

Subcase 1. xh = xp. There are two internally vertex-disjoint paths R1 and R2

from xhyg to xhyq in G, we can get L(R1) = 1 < L(R2) = 2 ≤ m−1 = d(G). For
w = 2, |F | = 1. Even in the worst case, we have d(G − F ;xhyg, xhyq) ≤ d(G).

Subcase 2. yg = yq. There are two shortest paths R3 and R4 whose interior
vertices are disjoint from xhyg to xpyg in G, we can get L(R3) = L(R4) =
p − h ≤ m − 1 = d(G). For w = 2, |F | = 1. Even in the worst case, we have
d(G − F ;xhyg, xpyg) ≤ d(G).

Subcase 3. xh �= xp and yg �= yq. There are two shortest paths R5 and R6 whose
interior vertices are disjoint from xhyg to xpyq in G, we can get L(R5) = L(R6) =
p − h ≤ m − 1 = d(G). For w = 2, |F | = 1. Even in the worst case, we have
d(G − F ;xhyg, xpyq) ≤ d(G).

In this case, we can conclude that D2(G) ≤ d(G). For 1 ≤ w ≤ 2, since
D2(G) ≥ d(G), we have Dw(G) = d(G).

Case 2. m = 2, n = 2. For any 1 ≤ w ≤ 3, we have G − F is connected. Since
P2 �P2 = K4, the diameter of G is 1. For 1 ≤ w ≤ 3, |F | = 2. Even in the worst
case, the two vertices xhyg and xpyq in G are still adjacent. Therefore, we can
get d(G − F ;xhyg, xpyq) = 1 = d(G), such that Dw(G) = d(G).

Case 3. m > 3, n > 3. For any 1 ≤ w ≤ 3, we have G − F is connected. The
diameter of G is max{m,n}−1. According to the positional relationship between
the two any vertices xhyg and xpyq in G, we discuss the following two subcases.

Subcase 1. xh = xp or yg = yq. Without loss of generality, we assume that
yg = yq. According to the value range of g, there are two subcases.

Subsubcase 1. g = 1 or g = n. Without loss of generality, we assume that g = 1.
Consider p − h �= 2, we construct the internally vertex-disjoint paths which pass
through all three neighbors of the vertex xhyg. For w = 2, |F | = 1. There are
two shortest paths R7 and R8 whose interior vertices are disjoint from xhyg to
xpyg in G.

xhyg → xh+1yg → · · · → xp−1yg → xpyg, (7)
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xhyg → xh+1yg+1 → · · · → xp−1yg+1 → xpyg, (8)

with L(R7) = L(R8) = p − h ≤ m − 1 ≤ max{m,n} − 1 = d(G). Even in the
worst case, we have d(G − F ;xhyg, xpyg) ≤ d(G). For w = 3, |F | = 2. There are
three internally vertex-disjoint paths R7, R9 and R10 from xhyg to xpyg in G.

xhyg → xhyg+1 → xh+1yg+2 → · · · → xp−2yg+2 → xp−1yg+1 → xpyg, (9)

xhyg → xh+1yg+1 → · · · → xp−2yg+1 → xp−1yg+2 → xpyg+1 → xpyg, (10)

with L(R9) = L(R10) = p − h + 1 ≤ m ≤ max{m,n} = d(G) + 1. Even in the
worst case, we have d(G − F ;xhyg, xpyg) ≤ d(G) + 1. There is also one special
case where the previous method of constructing paths is not applicable. Consider
p − h = 2, we construct three new internally vertex-disjoint paths R11, R12 and
R13 from xhyg to xpyg in G.

xhyg → xh+1yg → xpyg, (11)

xhyg → xh+1yg+1 → xpyg, (12)

xhyg → xhyg+1 → xh+1yg+2 → xpyg+1 → xpyg, (13)

with L(R11) = L(R12) = 2 and L(R13) = 4. Since m > 3 and n > 3, d(G) =
max{m,n} − 1 ≥ 3. So we have L(R11) = L(R12) < L(R13) ≤ d(G) + 1. For
w = 2, |F | = 1, we can get d(G − F ;xhyg, xpyg) < d(G). For w = 3, |F | = 2.
Even in the worest case, we can get d(G − F ;xhyg, xpyg) ≤ d(G) + 1.

Subsubcase 2. 1 < g < n. There are three shortest paths R7, R14 and R15 whose
interior vertices are disjoint from xhyg to xpyg in G.

xhyg → xh+1yg+1 → · · · → xp−1yg+1 → xpyg, (14)

xhyg → xh+1yg−1 → · · · → xp−1yg−1 → xpyg, (15)

with L(R7) = L(R14) = L(R15) = p − h ≤ m − 1 ≤ max{m,n} − 1 = d(G). For
1 ≤ w ≤ 3, |F | = 2, we have d(G − F ;xhyg, xpyg) ≤ d(G).

Subcase 2. xh �= xp and yg �= yq. According to whether the distances of any two
vertices xhyg and xpyq on two factor graphs are equal, we can divide into the
following two subcases.

Subsubcase 1. p−h = q−g. There are three internally vertex-disjoint paths R16,
R17 and R18 from xhyg to xpyq in G.

xhyg → xh+1yg+1 → · · · → xp−1yq−1 → xpyq, (16)

xhyg → xhyg+1 → · · · → xp−1yq → xpyq, (17)

xhyg → xh+1yg → · · · → xpyq−1 → xpyq, (18)

with L(R16) = p − h ≤ m − 1 ≤ max{m,n} − 1 = d(G) and L(R17) = L(R18) =
p − h + 1 ≤ m ≤ max{m,n} = d(G) + 1. For w = 2, |F | = 1. Even in the worst
case, we have d(G − F ;xhyg, xpyq) ≤ d(G) + 1. For w = 3, |F | = 2. Similarly,
we can also get d(G − F ;xhyg, xpyq) ≤ d(G) + 1.
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Subsubcase 2. p − h �= q − g. Without loss of generality, we assume that p − h >
q − g. Consider q = n, the vertex xpyq has no neighbors above, we can only
construct the internally vertex-disjoint paths which pass through the neighbors
at the same level or below xpyq in G. For w = 2, |F | = 1. There are two shortest
paths R19 and R20 whose interior vertices are disjoint from xhyg to xpyq in G.

xhyg → xh+1yg → · · · → xp−q+gyg → · · · → xp−1yq−1 → xpyq, (19)

xhyg → xh+1yg+1 → · · · → xh+q−gyq → · · · → xp−1yq → xpyq, (20)

with L(R19) = L(R20) = p − h ≤ m − 1 ≤ max{m,n} − 1 = d(G). Even in the
worst case, we have d(G − F ;xhyg, xpyq) ≤ d(G). For w = 3, |F | = 2. There are
three internally vertex-disjoint paths R21, R22 and R23 from xhyg to xpyq in G.

xhyg → xh+1yg+1 → · · · → xh+q−g−1yq−1 → · · · → xp−1yq−1 → xpyq, (21)

xhyg → xhyg+1 → · · · → xh+q−g−1yq → · · · → xp−1yq → xpyq, (22)

xhyg → xh+1yg → · · · → xp−q+g+1yg → · · · → xpyq−1 → xpyq, (23)

with L(R21) = p − h ≤ m − 1 ≤ max{m,n} − 1 = d(G) and L(R22) = L(R23) =
p − h + 1 ≤ m ≤ max{m,n} = d(G) + 1. Even in the worst case, we have
d(G − F ;xhyg, xpyq) ≤ d(G) + 1.

Consider g < q < n, we construct the internally vertex-disjoint paths which
can pass through the neighbors above xpyq. Different from the previous con-
struction, we replace the neighbor xpyq−1 of xpyq with xp−1yq+1. There are
three internally vertex-disjoint paths R19, R20 and R24 from xhyg to xpyq in G.

xhyg → xhyg+1 → · · · → xh+q−gyq+1 → · · · → xp−1yq+1 → xpyq, (24)

with L(R19) = L(R20) = p − h ≤ m − 1 ≤ max{m,n} − 1 = d(G) and L(R24) =
p − h + 1 ≤ m ≤ max{m,n} = d(G) + 1. For w = 2, |F | = 1. Even in the worst
case, we have d(G − F ;xhyg, xpyq) ≤ d(G). For w = 3, |F | = 2. In the worst
case, we have d(G − F ;xhyg, xpyq) ≤ d(G) + 1.

In this case, we can conclude two results through analysis. If m = n, we can
get D2(G) ≤ d(G)+1 and D3(G) ≤ d(G)+1. If m �= n, we can get D2(G) ≤ d(G)
and D3(G) ≤ d(G) + 1. Consider their lower bounds, we give a specific set of
faulty vertices. If m = n, let F = {xh+1yg+1}, we can get D2(G) ≥ d(G) + 1.
Let F = {xh+1yg+1, xhyg+1}, we can get D3(G) ≥ d(G) + 1. Therefore, we have
D2(G) = D3(G) = d(G) + 1. If m �= n, let F = {xh+1yg, xh+1yg+1}, we can get
D3(G) ≥ d(G) + 1. Therefore, we have D2(G) = d(G) and D3(G) = d(G) + 1.

Case 4. m = 3, n = 3. For any 1 ≤ w ≤ 3, we have G − F is connected. The
diameter of G is 2. For w = 2, |F | = 1, the result is the same as Case 3. For w = 3,
|F | = 2. The construction method is the same as Case 3, we also can get that
there are three internally vertex-disjoint paths of length at most 4 between any
two vertices in G. So we have D3(G) ≤ d(G)+2 in this case. Consider the lower
bound, let F = {x2y1, x2y2}, we can get d(G − F ;x1y1, x3y1) = 4 = d(G) + 2,
such that D3(G) ≥ d(G) + 2. Therefore, we have D3(G) = d(G) + 2 = 4. �	
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The edge connectivity is the basic parameter necessary to discuss the edge
fault diameter of interconnection networks, we give the edge connectivity of the
strong product graph of two paths by the following lemma and corollary.

Lemma 5 ([3]). Let G1 and G2 be two nontrivial connected graphs with orders
n1, n2 ≥ 2, edges c1, c2, the minimum degrees δ1, δ2 and the edge-connectivity
λ1, λ2, respectively. Then

λ(G1 � G2) = min{λ1(n2 + 2c2), λ2(n1 + 2c1), δ1 + δ2 + δ1δ2}.

If G1 and G2 are two paths, we have ci = ni − 1 and δi = λi = 1 for i = 1, 2,
the following corollary can be directly determined.

Corollary 1. Let Pm and Pn be two paths with orders m,n ≥ 2, respectively.
Then

λ(Pm � Pn) = 3.

Under the determined edge connectivity, we prove the following result by con-
structing edge-disjoint paths between any two vertices in strong product graph
of two paths.

Theorem 2. Let Pm and Pn be two paths with orders m,n ≥ 2, respectively.
Then for any 1 ≤ t ≤ 3, we have

D
′
t(Pm � Pn) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

max{m,n} − 1, for t = 1,

max{m,n} − 1, for t = 2 and m �= n,

max{m,n}, for t = 2 and m = n,

max{m,n}, for t = 3.

Proof. Let G = Pm�Pn with V (Pm) = {x1, · · · , xm} and V (Pn) = {y1, · · · , yn},
xhyg and xpyq are any two vertices in G, where xh, xp ∈ V (Pm) and yg, yq ∈
V (Pn). Let F be the faulty edge set of G with |F | < t.

By Corollary 1, we can get the edge connectivity of G is 3. By Lemma 4, we can
get the diameter of G is max{m,n} − 1. For w = 1, there is no faulty edge in
F , we have D

′
1(G) = d(G) = max{m,n} − 1. We can discuss the following three

cases.

Case 1. m = 2, n = 2. For any 1 ≤ t ≤ 3, we have G − F is connected. Since
P2�P2 = K4, we can get the diameter of G is 1 in this case. For a complete graph
of order k, there are k−1 edge-disjoint paths of length at most 2 between any two
vertices. Among them, one edge connects the two vertices, and there are k − 2
paths of length 2 with the remaining k − 2 neighbors as intermediate vertices.
Through this, we can get that there are three edge-disjoint paths between any
two vertices in G. Among them, one path of length 1 and two paths of length
2. For 2 ≤ t ≤ 3, |F | = 2. Even in the worest case, there is at least one path of
length 2 connects the two vertices in G − F , we can get D

′
t(G) ≤ 2 = d(G) + 1.

Consider the lower bound, if we remove the edge which connects the two vertices,
we can get D

′
2(G) ≥ 2 = d(G) + 1. Therefore, we have D

′
t(G) = 2 = d(G) + 1.
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Case 2. m �= n or m = n > 3. It is easy to know that the internally vertex-
disjoint paths are also edge-disjoint, and the reverse is not true.

If m �= n, by Theorem 1, we can also get D
′
2(G) ≤ d(G) and D

′
3(G) ≤ d(G)+

1. Let F = {(xhyg, xh+1yg), (xhyg, xh+1yg+1)}, we can get D
′
3(G) ≥ d(G) + 1.

Therefore, we have D
′
2(G) = d(G) and D

′
3(G) = d(G) + 1.

If m = n > 3, by Theorem 1, we can also get D
′
2(G) ≤ d(G) + 1 and

D
′
3(G) ≤ d(G) + 1. For t = 2, |F | = 1, let F = {(xhyg, xh+1yg+1)}. If remove

this edge, we can get the lower bound D
′
2(G) ≥ d(G) + 1. For t = 3, |F | = 2, let

F = {(xhyg, xh+1yg+1), (xhyg, xhyg+1)}. If remove the two edges, we can get the
lower bound D

′
3(G) ≥ d(G)+1. Therefore, we have D

′
2(G) = D

′
3(G) = d(G)+1.

Case 3. m = 3, n = 3. For t = 2, |F | = 1, the result is the same as Case 2. For
w = 3, |F | = 2. Consider the worst case of yg = yq and p − h = 2. we construct
three edge-disjoint paths R11, R25 and R26 from xhyg to xpyg in G.

xhyg → xhyg+1 → xh+1yg+1 → xpyg, (25)

xhyg → xh+1yg+1 → xpyg+1 → xpyg, (26)

with L(R11) = 2 and L(R25) = L(R26) = 3. Since the diameter of G is 2,
we can get L(R11) < L(R25) = L(R26) = 3 = d(G) + 1. For 2 ≤ t ≤ 3,
|F | = 2. Even in the worst case, we have D

′
t(G) ≤ d(G)+1. By Case 2, the lower

bound is D
′
2(G) ≥ d(G) + 1 and D

′
3(G) ≥ d(G) + 1. Therefore, we can also get

D
′
2(G) = D

′
3(G) = d(G) + 1. �	

3 Model Comparison

The mesh network is a kind of static interconnection network, in which processors
communicate directly through point-to-point connection [21]. It is widely used
in system on chip, high-performance parallel and distributed systems [22]. The
topology model of the mesh network is a Cartesian product graph of two paths,
which is denoted by G(m,n) = Pm�Pn. In [21], we can get the connectivity and
edge connectivity of the mesh network are 2. The diameter of the mesh network
is m+n−2. For w = 2, |F | = 1. There are two internally vertex-disjoint paths of
length at most d(G) between any two vertices in the mesh network. Therefore,
we have D2(G(m,n)) = D

′
2(G(m,n)) = d(G) = m + n − 2. The maximum

diameters of the mesh network G(4, 4) with one faulty vertex and one faulty
edge are shown on Fig. 2.

Based on the mesh network, we give an improved mesh network. Its topology
model is the strong product graph of two paths, which is denoted by S(m,n) =
Pm � Pn. In the previous results, we can get the connectivity of the improved
mesh network is 2 or 3 and the edge connectivity of the improved mesh network
is 3. The diameter of the improved mesh network is max{m,n} − 1. In order to
compare the mesh network equally, we just consider the worst case of m = n
and w = 2. Therefore, we have D2(S(m,n)) = D

′
2(S(m,n)) = d(G) + 1 =

max{m,n}. The maximum diameters of the improved mesh network S(4, 4)
with one faulty vertex and one faulty edge are shown on Fig. 3.
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Fig. 2. The network G(4, 4) with one faulty vertex and one faulty edge.

Fig. 3. The network S(4, 4) with one faulty vertex and one faulty edge.

According to Fig. 2 and Fig. 3, we can directly get that the two networks have
the same number of vertices, but the improved mesh network has more edges
than the mesh network. This means that the link cost is higher when build-
ing the improved mesh network than when building the mesh network. Since
κ(G(m,n)) ≤ κ(S(m,n)) and λ(G(m,n)) < λ(S(m,n)), the improved mesh
network also has higher fault tolerance than the mesh network, which can allow
more vertices or edges to fail and still ensure the normal operation of the network.
From the previous results, we can get d(S(m,n)) < d(G(m,n)), the improved
mesh network has a smaller transmission delay than the mesh network. This
means that in the process of data transmission, the improved mesh network has
higher effectiveness than the mesh network.

Compare the transmission delay of the two networks in the case of vertex
failure, from the previous results, we can get D2(S(m,n)) ≤ D2(G(m,n)). In
this case, the transmission delay of the improved mesh network is smaller than
that of the mesh network. This means that when the two networks have vertex
failure, the improved mesh network still maintains a higher effectiveness than the
mesh network. Compare the transmission delay of the two networks in the case of
edge failure, we can also get D

′
2(S(m,n)) ≤ D

′
2(G(m,n)). Similarly, this means

that when the two networks have edge failure, the improved mesh network still
maintains a higer effectiveness than the mesh network. We define the difference
between the vertex fault diameters of the mesh network and the improved mesh
network as Δ1 = D2(G(m,n)) − D2(S(m,n)), and the difference between the
edge fault diameters of the mesh network and the improved mesh network as
Δ2 = D

′
2(G(m,n)) − D

′
2(S(m,n)). Then we can get
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Δ1 = Δ2 = m + n − 2 − max{m,n} = min{m,n} − 2.

Through formula, we can find that with the expansion of the two networks scale,
the two differences are also increasing, the advantage of information transmission
effectiveness of the improved mesh network is more obvious than that of the mesh
network.

Compared with the mesh network, the improved mesh network also has its
own application characteristics. In the topology model of the improved mesh
network, all edges are required to be independent of each other, there is no
case that one edge fails and affects the information transmission of other edges.
Therefore, the edge intersection is not allowed in the hardware design of the
improved mesh network. Moreover, we can also find that there are two kinds of
edges in the topology model of the improved mesh network. If the two endpoints
of an edge have a pair of equal coordinates and a pair of coordinates whose values
differ by 1, it is called a common edge. If the two endpoints of an edge have two
pairs of coordinates whose values differ by 1, it is called a bevel edge. Obviously,
the bevel edge is longer than the common edge. From this, the construction cost
of bevel edge is higher, if it wants to keep the synchronization of sending and
receiving information between adjacent vertices in a longer transmission distance
than the common edge. In order to better handle edges with different costs, we
define an edge as a unit, let the unit cost of common edge be a1 and the unit
cost of bevel edge be a2, where a1 < a2. In the topology model of the improved
mesh network, the number of common edges is m(n − 1) + n(m − 1) and the
number of bevel edges is 2(m − 1)(n − 1). When building a large-scale improved
mesh network S(m,n), the link cost function Cl is

Cl = (2mn − m − n)a1 + 2(m − 1)(n − 1)a2.

Through the link cost function Cl, for an improved mesh network of a given
size, no matter how large, the link cost is easy to obtain. However, there are still
some limitations on the application of the improved mesh network. The improved
mesh network requires that the processor can process data in up to 8 links at
the same time. Compared with the parallel processing ability of data in up to 4
links of the mesh network, the improved mesh network requires higher processor
performance, this also increases processor cost. For the number of edges ε, there
is also an upper limit.

ε ≤ 4mn − 3m − 3n + 2.

In this range of the number of edges, the advantages of the improved mesh
network can be fully exerted.

When the size of the topology model of the improved mesh network is very
large, the corresponding link cost is very high. However, with the expansion of
the scale, the improved mesh network will have greater advantages in normal
transmission efficiency, fault transmission efficiency, fault tolerance and reliabil-
ity. So even for large-scale structures, the topology model of the improved mesh
network is also applicable, especially for large-scale parallel computer systems.
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4 Conclusions

With the development of supercomputers and parallel computing systems, high
requirements are put forward for the fault tolerance capability and the informa-
tion transmission capability under fault of network models. In this paper, the
vertex fault diameter and edge fault diameter of strong product graph of two
paths are given. Through the results, we find that the strong product graph of
two paths have small vertex fault diameter and small edge fault diameter. Then
we propose an improved mesh network, whose model is the strong product graph
of two paths and has high fault tolerance and high effectiveness, this provides a
new method for designing the topological structure of large-scale interconnection
networks.
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19. Banič, I., Erveš, R., Žerovnik, J.: The edge fault-diameter of Cartesian graph bun-
dles. Eur. J. Combin. 30(5), 1054–1061 (2009)
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