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Abstract The novel probabilistic Linear Matching Method (pLMM) framework is
developed by extending the current direct method, the Linear Matching Method
(LMM), to deal with the probabilistic structural integrity assessment for engi-
neering components under uncertain operating conditions. The pLMM framework
covers several physics-based failure evaluation modules related to cyclic loads at
elevated temperatures, including shakedown analysis, ratcheting analysis, low cycle
fatigue (LCF) analysis and creep-fatigue analysis. To further improve the predic-
tion efficiency, artificial neural network (ANN) technology is employed to build
the data-driven surrogate relationship between the design parameters and the key
responses regarding specified failure behaviour, with a series of probabilistic eval-
uation boundaries and assessment diagrams of engineering structures established to
describe the uncertainty of the structural resistance. The reliability analysis tech-
niques are involved as well, by which the failure probability is estimated consid-
ering the randomness of engineering problems. The pLMM framework is conducive
to getting rid of the excessive dependence on the conventional safety factor with
conspicuous conservativeness during risk management, enhancing the robustness of
critical infrastructure.

1 Introduction

Structural integrity assessment provides a fundamental investigation of structural
resistance against a certain failure mechanism by a series of deterministic experi-
mental analyses and numerical simulations. To further reflect the uncertainty in the
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material properties, geometric parameters, boundary conditions and loads condi-
tions of engineering infrastructures, the most commonly used strategy is to set an
appropriate safety factor which is able to consider the adequate redundancy in the
design process. [1–3]. Inevitably, this experience-based arbitrary decision-making
may result in unreasonable conservativeness introduced due to the limited statistical
information on the important structural responses. The feasible probabilistic struc-
tural integrity assessment technology contains two main prerequisites: the concise
but accurate deterministic evaluation approach and the proper probabilistic analysis
method, and integrating the two sections into a unified frame system is a challenging
engineering problem to which enormous endeavour has been devoted in academia.

The case study of the reliability-based shakedown analysis for a high-pressure
chamber is given out by Andrzej [4], where the shakedown analysis procedure
(CYCLONE), Response SurfaceMethod (RSM) andMonteCarlo Simulation (MCS)
sampling method were adopted to address the randomness of the cyclic inner pres-
sure and radius. Staat and Heitzer proposed a stochastic FEA procedure that is dedi-
cated to implementing probabilistic shakedown analysis, and the benchmarks of the
central holed plate, pipe junction and plate with mismatched weld and a crack were
elaborated [5–7] and verified by related analytical studies.

The reduced-order model technique, as well as the surrogate model, is applicable
to implicitly expressing the estimation of structural fatigue life [8, 9] under compli-
cated operating environments with fewer computational resources. For instance, the
artificial neural network (ANN) is widely applied to reliability-based fatigue evalua-
tions [10], and the feedforward backpropagationmultilayer perceptron (MLP) neural
network was employed by Durodola [11], where the non-linear effect of mean stress
on the fatigue life was examined in the probabilistic fatigue analysis. Another appli-
cation was reported by Ref. [12], with the probabilistic fatigue damage of subsea
pipe derived by the dynamic Bayesian network. A similar analysis scheme was also
extended to investigate the probabilistic fatigue crack growth and propagation [13].

Concerning the components under the creep regime, Zhang [14] provided compar-
ative research, where the abilities to predict the creep-fatigue life of 316 stain-
less steel of three neural networks were compared, revealing the superiority of
physics-informed neural network for providing the creep-fatigue life approximation
with better fitting quality. The machine learning-based creep-fatigue life prediction
scheme of low-alloy steel 42CrMo4 specimen was constructed in Ref. [15], and
the ANN-based damage model by the long short-term memory network and gated
recurrent unit neural network was proved to be suitable for creep-fatigue life esti-
mation under complicated conditions with non-linearly changing temperatures and
mechanical strain rates.

Therefore, the plausible probabilistic analysis framework for structural integrity
should satisfy the prerequisites in terms of three different levels. Firstly, the deter-
ministic structural integrity evaluation program should keep a good balance between
computational accuracy and efficiency. Next, the effective prediction model should
be able to capture the pertinent nonlinear relationship between the design parameters
and output, without depending on unaffordable computational resources. Finally, the
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universal probabilistic analysis tool should be applicable for solving the structure-
level problems, providing comprehensive statistical information and the failure
risk.

The LMM procedures have been proven to be able to deal with a wide range
of structural integrity assessments (as shown in Fig. 1) by adopting a series of
linear calculation approaches to precisely match the structural non-linear responses,
including shakedown analysis [16], ratcheting analysis [17], low cycle fatigue (LCF)
analysis [18] and creep-fatigue analysis [19]. The LMM shakedown analysis proce-
dure is developed to calculate the structural shakedown limit leveraging the time-
independent residual stress [20], according to the upper bound shakedown theory.
When tackling the load conditions leading to alternating plasticity, the structural
plastic response and the related Low Cycle Fatigue (LCF) evaluations are able to be
implemented by the Direct Steady Cycle Analysis (DSCA) procedure [21], with the
varying residual stress determined iteratively. Based on the time-dependent residual
stress field by the DSCA procedure, the LMM ratcheting analysis procedure is dedi-
cated to assessing the structural resistance to progressive plastic behaviour, where the
limit of the additional constant load condition is acquired [18]. In order to further take
the creep effect into consideration during LCF analysis for high-temperature compo-
nents, the latest extendedDirect SteadyCycleAnalysis (eDSCA) procedure [19], can
analyse the creep-fatigue interaction in terms of both stress–strain response level and
the damage level, providing an accurate prediction of the lifetime to creep-fatigue
crack initiation.

In this study, the deterministic analysis procedures are extended to address the
probabilistic assessment for engineering components under cyclic load conditions
and elevated temperature, and the recent research benchmarks and engineering
applications by means of the proposed pLMM methodology are delivered.

Fig. 1 Linear Matching Method (LMM) framework for structural integrity assessment regarding
different failure mechanisms
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2 Probabilistic Shakedown Analysis Under the pLMM
Framework

2.1 Probabilistic Shakedown Boundary
and the Implementation of Reliability-Based Shakedown
Analysis

Establishment of the probabilistic shakedown boundary.The probabilistic shake-
down boundary is conducive to visualizing the shakedown boundary affected by
the uncertainty in design parameters, which can be built by implementing MCS
samplings to estimate the statistical distribution of the LMM shakedown multipliers.
As shown in Fig. 2, with the load ratio between Load 1 and Load 2, the envelope
of probabilistic shakedown boundary and the associated statistical significance are
displayed. And the failure risk against shakedown conditions raised by load condi-
tions lying on the boundary is equal to the probability of the occurrence of the
shakedown boundary.

Reliability-based shakedown analysis procedure. In order to perform the
reliability-based shakedown evaluation and further examine the structural failure
probability against shakedown conditions, a simplified governing function, the
shakedown limit state indicator function (SLSIF), is expressed by Eq. (1) below.

G(X) = λ(X) − 1

⎧
⎨

⎩

< 0,Failed
= 0, Limit state
> 0,Survival

(1)

Here, the LMMshakedownmultiplierλ functions as a state indicator, if themultiplier
is equal to 1, it implies that the applied load condition lies on the shakedownboundary.
Amultiplier which is less than 1 always results in the current caseworking outside the
shakedownboundary.On the other hand, for a survival case, the shakedownmultiplier
should be strictly guaranteed larger than the threshold value, λ = 1. The proposed

Fig. 2 Scheme of
probabilistic shakedown
boundary by different load
ratios
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SLSIF is then utilized directly by the First Order Reliability Method (FORM) [22]
to acquire the structural failure probability and shakedown reliability index.

Description of deterministic FEAmodel. The benchmark of probabilistic shake-
down analysis is demonstrated by the holed plate displayed in Fig. 3, which is
discretized by the 20-node quadratic brick element C3D20R with reduced inte-
gration. And the ratio between the hole diameter D and the length L of the plate
is 0.2, and the ratio between the depth d of the plate and the length L is equal to
0.05. Through the mesh convergence check, the total element number and minimum
element size are determined to be 721 and 1.25 mm. Besides, Young’s modulus E
and the Poisson’s ratio ν of the elastic-perfect plastic (EPP) material are assumed to
be 2 × 105MPa and 0.3 respectively, and the material yield strength σy is defined to
be 200MPa. The shakedown analysis is implemented considering the biaxial tensile
load shown in Fig. 3, where the horizontal component P1 is a constant uniform load
and the vertical component P2 is cyclic one. Detailed cyclic load pattern is depicted
in Fig. 4.

Probabilistic shakedownboundary of the holed plate. Considering two random
variables, the diameter of the central hole D and the material yield strength σy , the
probabilistic shakedown boundaries of the holed plate are plotted in Fig. 5. This
probabilistic shakedown assessment diagram is constructed by a series of random
variables λi , and the statistical distributions of the LMM shakedown limit multiplier
with different load ratios are displayed in Fig. 6. It is worth noting that the actual
shakedown boundary should occur stochastically inside the envelope surrounded by
a certain curve with corresponding probability.

Reliability-based shakedown analysis for the holed plate. According to the
proposed shakedown limit state indicator function (SLSIF), the gradient vector of
the SLSIF is generated during each iteration by calculating the convergent numer-
ical partial derivatives of each random variable at the current design point. In
the reliability-based shakedown analysis, there are two typical examples, with the

Fig. 3 FEA model of the central holed plate
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Fig. 4 Description of the time-dependent load conditions: a cyclic mode of the applied load path;
b detailed spectrum of the applied load conditions

Fig. 5 Probabilistic
shakedown boundaries of the
central holed plate under
predefined load path

load conditions on the deterministic shakedown boundary and inside the boundary
involved (as shown in Fig. 7), respectively. The results of reliability analysis with
different load conditions are listed inTable 1, anddue to the uncertainties of geometric
dimension and material property, even though the load condition (points 1 in Fig. 7)
is located on the deterministic shakedown boundaries, the survival probability is only
70.45%, which is still much lower than 100%. The failure probability derived from
pLMM-based reliability analysis is comparedwith the verifications with directMCS,
with all random variables remaining consistent with Table 1. The comparison shows
that the results of the proposed probabilistic shakedown analysis are consistent with



An Introduction to the Probabilistic Linear Matching Method … 75

Fig. 6 Probabilistic distribution of LMM shakedown limit multiplier with different load ratios: a
ratio = 0.6; b ratio = 0.84; c ratio = 1.3; d ratio = 3

the exact solutions provided by MCS (3,000 sampling points involved), with the
relative error controlled within an acceptable range.

3 Probabilistic Low Cycle Fatigue and Ratcheting Analysis
Under pLMM Framework

3.1 Linear Matching Method-Driven Neural Network
(LDNN) for LCF Life and Ratchet Limit Predictions

The Linear Matching Method-driven neural network (LDNN) is built and employed
as the multi-layer perceptron (MLP) for modelling and prediction [23], and the
general network structure contains three layers: the input layer, the hidden layer and
the output layer, as displayed in Fig. 8.
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Fig. 7 Deterministic
shakedown boundaries of the
holed plate and the load
conditions for reliability
analyses

Table 1 Results of
reliability-shakedown
analysis by pLMM and the
verifications with MCS

Load point
index

Failure
probability Pf

Verification by
MCS

Error %

1 0.2954518037 0.2990909091 1.2167

2 0.04034325841 0.042962963 6.0976

Fig. 8 General structure of a three-layer artificial neural network (ANN)

The data flow commences with the input data vector x passed in through the input
layer to the hidden layer, during which the weight of each parameter is also added.
Next, in the middle or hidden layer, the ellipsoidal basis function (EBF) [24] existing
in each neuron plays the key role in the activation function, leading to the non-linear
mapping process which is dependent on the summation of input with weights and
bias. For implementing LCF lifetime and ratchet limit modelling, the interpolating
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functions are formulated by Eqs. (2) and (3), where φi (x) is the basis function of EBF
neural network [24], αi and αN+1 are the weight and bias terms, respectively, and
the L f and λ represent the approximations of LCF life and ratchet limit multiplier.

L f (x) =
∑N

i=1
αiφi (x), for LCF lifetime modelling (2)

λ(x) =
∑N

i=1
αiφi (x) + αN+1, for ratchet limit modelling (3)

The working flow of LDNN-based probabilistic LCF and ratcheting analyses
under the pLMM framework is illustrated by three main steps included:

Step 1. Generating the training dataset by Latin Hypercube Sampling and
processing the input dataset with LMM to acquire the structural response;

Step 2. Training [25] and testing the LMM-driven neural network (LDNN);
Step 3. Performing the probabilistic LCF or ratcheting analysis with surrogate

models to predict the distribution of key output and the failure probability.

3.2 Benchmark of Probabilistic Low Cycle Fatigue Analysis

Description of the FEA model. To illustrate the applicability of the proposed prob-
abilistic analysis scheme for LCF life assessment, a benchmark of the elbow pipe
bend is investigated, and detailed descriptions of the geometry are given out in Fig. 9.
Firstly, the structure of the elbow pipe bend is characterized by the dimension param-
eters in Table 2. The parameters RO , tn , R and L denote the outer radius of elbow
pipe, nominal pipe wall thickness, bending radius and straight length, respectively.
Besides, the bending characteristic, h, is defined as Rt/rm2, where rm refers to the
nominal mean radius of the pipe. The FEA model is discretized by ABAQUS, with
the 20-node quadratic brick element C3D20R adopted, which keeps a good balance
of numerical precision and computational efficiency by reduced integration tech-
nology. And inside the black dotted box, the elbow zone is refined so as to satisfy
the requirements of mesh convergence and to capture the prominent stress gradient
around this local region, with 4,760 elements created in total.

Adopted material properties and boundary conditions (BCs). The elbow pipe
bend is made of austenitic stainless steel 316L, and the temperature-dependent mate-
rial properties are provided [26] in Table 3, including Young’s modulus E , Poisson’s
ratio ν, the average coefficient of linear thermal expansion αm and thermal conduc-
tivity k. In addition, the temperature-dependent cyclic stress–strain relationship is
described by Eqs. (4) and (5) in Ramberg–Osgood (R-O) form, where εta is the total
true strain amplitude, σa is the total true stress amplitude, E is themulti-axial Young’s
modulus, and K and n are the strength coefficient and plastic hardening parameters
controlling the cyclic responses.
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Fig. 9 Descriptions of the geometry and FEAmodel of the elbow pipe component for probabilistic
LCF life and ratchet limit analyses

Table 2 Geometric dimensions of the elbow pipe bend

Outer radius
RO (mm)

Wall thickness
tn(mm)

Bending radius
R(mm)

Length
L(mm)

Bending characteristic
h

180 60 500 1500 1.33

Table 3 Adopted temperature-dependent material properties of austenitic stainless steel 316L

Temperature (◦C) 20 100 200 300 400

Young’s modulus

E
(
103MPa

)
200 193 185 176 168

Poisson’s ratio
ν

0.3

Coefficient of thermal expansion

αm
(
10−6/◦C

)
15.3 15.9 16.6 17.2 17.8

Thermal conductivity
k(W/mm · K)

0.01428 0.01548 0.01698 0.01849 0.01999

K (MPa) 2286 2082 1860 1650 1650

n 0.351 0.339 0.325 0.31 0.31
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εta = σa

E
+

(σa

K

) 1
n

(4)

E = 3E

2(1 + v)
(5)

The half model of the elbow pipe bend is created with the symmetric BCs exerted
on the symmetric surfaces, and the displacement constraints are also applied along
with the horizontal and vertical directions at each end of the elbow pipe, which
are shown in Fig. 9. Besides, on the inner surfaces lies the constant inner pressure,
and between the inner and outer surfaces of the pipe wall, there exists the cyclic
temperature difference.

Deterministic ratchet limit boundary and alternating plastic response region.
By means of the deterministic LMM procedures, the limit boundaries of the elbow
pipe bend are established in Fig. 10, by which the structural responses are divided
into two different sections: the ratcheting region and the reverse plasticity region.
And the typical failure mechanisms in terms of LCF crack initiation and progressive
plastic collapse (ratcheting) are compared in Fig. 11. Here, the horizontal and vertical
coordinates are normalized by the limit load of the elbow pipe bend, 112.4MPa, and
the applied reference temperature difference, 225◦C, respectively.

Probabilistic LCF lifetime prediction by LDNN. Considering the uncertain
design parameters, including the Material parameters K and n, Nominal thickness
tn, constant inner pressure P/P0 and cyclic temperature difference �T/�T 0, the
statistical distribution of the elbow pipe LCF life, visualized by the plots in Fig. 12,
is investigated by employing the proposed LDNN-based surrogate model with 120
neuron pathways inside the hidden layer. Under the existence of random variables,
including material property parameters (K and n), elbow pipe thickness and the inner
pressure, the LCF life of elbow pipe bend tends to show the Lognormal distribution.

Fig. 10 Deterministic
ratchet limit boundary and
the reverse plasticity load
region for the elbow pipe
bend
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Fig. 11 Typical failure mechanisms in terms of LCF crack initiation and ratcheting for the elbow
pipe bend

Fig. 12 Statistical
distribution of LCF life of
the elbow pipe

3.3 Benchmark of Probabilistic Ratcheting Analysis

Probabilistic ratchet limit prediction by LDNN. The probabilistic ratchet limit
of the elbow pipe bend is estimated by the LDNN-based surrogate model (with 100
neurons set in the hidden layer) andMCS sampling in terms of the predefined random
variables, and the 3D statistical distribution curves are plotted in Fig. 13. Definitely
different from the distribution types (Lognormal and Weibull) to depict the proba-
bilistic LCF life, here the probabilistic ratchet limit considering the random variables
(including nominal thickness and material property parameters K and n) obey the
Normal distribution, with the detailed statistical information provided in Table 4. As
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the level of cyclic temperature difference gradually increases, the mean values of the
ratchet limit decrease from 79.04 to 69.42 MPa, whereas the standard deviations,
accounting for the dispersion degree of the random variable, reduce slightly and
remain stable at high-temperature conditions (for the cases where the normalized
temperature difference ranges from 1.1 to 1.3).

Fig. 13 Statistical distribution of ratchet limit of the elbow pipe under constant inner pressure and
various cyclic temperature differences

Table 4 Statistical
distribution information of
ratchet limit of the elbow pipe
under constant inner pressure
and various cyclic
temperature differences

�T/�T 0 Statistical distribution of ratchet limit

0.9 N ∼ Normal (76.446, 4.450)

1.0 N ∼ Normal (74.162, 4.564)

1.1 N ∼ Normal (72.389, 4.667)

1.2 N ∼ Normal (70.7137, 4.753)

1.3 N ∼ Norma l(69.416, 4.742)
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3.4 Reliability-Based LCF and Ratchet Analyses
for the Elbow Pipe Bend

Definition of the unified limit state indicator (ULSI) function. Under the pLMM
framework, the unified limit state indicator (ULSI) function is proposed to simplify
the subsequent reliability analysiswith a concise formbyEq. (6). For the probabilistic
LCF life assessment, the LCF multiplier λLCF in the ULSI function is expressed
by the proportion of the predicted structural lifetime to the design life to satisfy
the operation requirement (which is predefined as 2,000 cycles in this reliability
analysis for the elbow pipe bend). Concerning the probabilistic ratcheting analysis,
the ratcheting multiplier λratcheting is directly generated by the LMM ratcheting
procedure, which refers to the amplification factor from the current load level to the
ratchet limit when λratcheting > 1.0.

G(X) = λ(X) − 1 =
⎧
⎨

⎩

λLCF (X) − 1 = LCF(X)
Ldesign

− 1, for probabilistic LCF life assessment

λratcheting(X) − 1, for probabilistic ratcheting analysis
(6)

Reliability-based LCF life and ratchet limit evaluations. Based on the deter-
ministic structural ratcheting boundary in Fig. 10, the load combination located in the
reverse plasticity region (in purple colour) is reinvestigated by reliability analysis,
where the design parameters are set as random variables. To verify the effectiveness
of the pLMM framework, there are two comparison sets employed: the first one is
given out by the response surface model (RSM), with the quartic order polynomial
leveraged to fit the least-squares regression of the LCF life and the ratchet limit.
Another is the step-by-step elastoplastic analysis, during which the LCF life and
ratcheting state are determined by either the cyclic plastic strain range or the accu-
mulative plastic strain, respectively. The failure probability regarding a certain cyclic
plastic response is calculated via the direct MCS.

The reliability analysis results of the proposed LDNN surrogate model and the
RSM-based method are shown in Table 5, with the failure probability compared to
the detailed MCS. It can be observed that with the lowest training points involved,
the failure probability of the proposed LDNN-based approach is much closer to
validation than the RSM-based method for the probabilistic fatigue and ratcheting
evaluations. The error generated by the RSM-based method is mainly caused by
insufficient training data, which means to guarantee adequate estimation quality,
much more training points should be prepared and input during the fitting process of
the RSM model.
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Table 5 Results of reliability analyses for LCF and ratcheting failures by LDNN surrogate model,
RSM model and MCS validation

Failure mode LDNN-based method RSM-based method Verification of MCS
with elastoplastic
analysis

Pf NLDNN Pf NRSM Pf NMCS

LCF 0.1048 120 0.1079 250 0.0819 4452

Ratcheting 0.6635 100 0.6802 220 0.6679 4351

Noting that NLDNN and NRSM indicate the gross number of training points used in the training
process of the LDNN and RSM surrogate model respectively, and NMCS refers to the total number
of elastoplastic simulations during MSC

4 Probabilistic Creep-Fatigue Analysis Under pLMM
Framework

4.1 Linear Matching Method-Driven Neural Network
(LDNN) for Creep-Fatigue Life Prediction

The probabilistic creep-fatigue assessment under the pLMMframework is performed
by using the Linear Matching Method-driven neural network (LDNN), where the
basic interpolating function of creep-fatigue lifetime L is given out by Eq. (7). And
the numerical implementation process of this proposed probabilistic creep-fatigue
analysis is carried out by using the conjunction of ABAQUS and Isight.

L(x) =
N∑

i=1

βiϕi (x) + βN+1 (7)

4.2 Benchmark of Probabilistic Creep-Fatigue Analysis

Random variables in the probabilistic creep-fatigue analysis. In this case study,
the same FEA model, the elbow pipe bend operating under a high-temperature envi-
ronment, is utilized to introduce the applicability of the proposed probabilistic creep-
fatigue analysis under the pLMM framework when solving engineering problems.
The uncertain design parameters cover the cyclic yield strength Rp0.2(T ), the creep
Norton law coefficients A and n, Nominal thickness tn, cyclic inner pressure P/P0,
the cyclic temperature difference �T/�T 0, and creep dwell time t.

Creep-fatigue failure mechanism of the elbow pipe. Based on the mean values
of the design parameters, the typical failure mechanism of the elbow pipe component
is plotted in Fig. 14. Due to the effect of geometric discontinuity at the elbow location,
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the inner surface of the intrados exhibits the maximum strength of fatigue damage
and creep damage simultaneously.

Probabilistic creep-fatigue lifetime prediction. Considering the uncertainty in
design parameters of the elbowpipe, the proposed probabilistic creep-fatigue analysis
is able to measure the statistical distributions of the creep-fatigue lifetime, as well
as the estimation of the statistical information by the proposed LDNN with 120
neurons in the middle layer, as plotted in Fig. 15. The creep-fatigue lifetime follows
the log-normal distribution [27], with the logarithmicmean value and the logarithmic
standard deviation also fitted.

Fig. 14 Creep-fatigue
damage increment per cycle
of the elbow pipe under the
mean values of the design
conditions

Fig. 15 Statistical
distribution of the
creep-fatigue responses: a
damage increment of the
elbow pipe; b lifetime of the
elbow pipe
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5 Conclusions

Traditional safety factors are dedicated to pursuing extremely safe designs under
uncertain conditions with deterministic assessments, which, inevitably, is an obstacle
to achieving precise design and risk management. In this study, a series of prob-
abilistic structural integrity assessment strategies are elaborated under the proba-
bilistic Linear Matching Method (pLMM) framework to consider the uncertainty
of the design conditions, where different structural failure behaviours, including
shakedown, ratcheting, low cycle fatigue (LCF), and creep-fatigue, are taken into
consideration. Detailed benchmarks are also provided, showing the effectiveness
and comprehensive applicability of the pLMM framework in engineering problems.
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