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Abstract The Residual Stress Decomposition Method (RSDM) is an iterative
numerical procedure which has been developed to estimate, in a direct way, the
kind of asymptotic stress states under cyclic loading of inelastic structures. The
method was the basis to formulate another numerical procedure, which was named
RSDM-S, to establish safety margins for elastic shakedown under mechanical and/or
thermal loads. The method exploits the expected cyclic nature of the residual stresses
of the asymptotic cycle state. Starting from a load factor high above shakedown an
iterative procedure shrinks the loading domain until the conditions of the limit cycle,
which marks the shakedown state, are met. The procedure consists of two loops
an external incremental that reduces the load factor and an internal iterative loop
that establishes a cyclic state for the current load factor. The current work refers to
advancements of themethod in terms of robustness and fast convergence. It discusses
the efficiency of the numerical scheme used which is proved to have a continuous
descent towards the shakedown factor with superlinear convergence. Examples of
application of structures undergoing various kinds of cyclic actions like, mechan-
ical or thermomechanical loads or cyclic imposed displacements are presented, and
shakedown domains are constructed.

1 Introduction

The last decades, structures and structural components are designed to operate beyond
the elastic limit in favor of material savings. Especially in case of cyclic thermome-
chanical loadings the allowable stresses may be greater than the yield limit. The
amplitude of the cyclic load will determine the magnitude of the inelastic strains,
whichwill be responsible either for the failure due to alternating plastic straining (low
cycle fatigue) and/or incremental plastic straining (ratcheting), or for safety, through
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elastic shakedown. Thus, the post-elastic response of structures due to cyclic thermal
and mechanical loads is always a major concern for the designer engineer.

Apart from the thermomechanical loads, support excitations due to repeated acci-
dental loads, such as the earthquakes, may establish a pattern of cyclic imposed
displacements to the structures.

The induced stresses, due to seismic actions, undergo many complete reversals in
a small period like the duration of an earthquake. Designing such structures to behave
elastically during earthquakes, without damage, may render the project economically
unviable. Consequently, it may be necessary for the structure to suffer some damage
and therefore dissipate energy input, during the earthquake. Thus, the same question
arises whether after a sequence of imposed cyclic displacements, the post-elastic
response will lead to a long-term stabilization of the damage, with an effect to extend
the life cycle of a structure.

Previous years, in order to study the post-elastic response of a structure, one
should perform step-by-step inelastic analysis based on a specific time-history. In
this way one could be sure that, the structure would end up to a safe or unsafe
asymptotic state. Besides the fact that this approach is time consuming and may
have convergence problems, no general answer of safety will be given except for the
specific load history. However, a class of numerical methods, called Direct Methods
exists, (a most recent compilation of these methods may be found in [13], which
may provide safety margins for any load combinations. These methods have a much
lower computational cost as they bypass the transient deformation stages and search
the asymptotic states, in a direct way, right from the start of the calculations.

Most direct methods deal with the shakedown problem as being a constrained
optimization problem, described by the theorems of [11] and [6]. The structure
is discretized with many finite elements (FE) and large-scale nonlinear mathemat-
ical programming (MP) problems must be solved. Towards this direction, general-
purpose efficient optimization algorithms, like the interior point method (IPM) or
conic programming, are often employed, as part of the method. These may be
combined with other algorithms to assess the behavior of materials that require a
high degree of intensive computational burden (e.g. [3]).

A strain driven algorithm that converts theMP problem of the lower bound shake-
down theorem to an equivalent incremental-iterative problem of fictitious elasto-
plastic steps has been proposed and recently applied to the analysis of fiber-based
3D framed structures [10]

The linear matching method (LMM) is an iterative method that produces a
sequence of linear elastic solutions by modifying the elastic moduli of the various
parts of the structure so that the stress equals the yield stress. Thus, in this respect
each time it matches a linear problem to a plasticity problem. The method was devel-
oped in the context of shakedown [14]. The method was expanded and employed,
since then, to many applications in problems of structural mechanics, e.g. to find
ratcheting limits [2, 8], and more recently in shakedown with hardening and thermal
effects [9]

A simplified Direct Method originally conceived for creep problems [15, 16]
was further developed and applied to account for plastic behavior [18]. The metod
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was called Residual Stress Decomposition method (RSDM) [19]. It is an iterative
stress driven direct methodwhich can predict the final asymptotic state of a cyclically
loaded structure (either shakedown, or alternating plasticity or incremental collapse).
In this asymptotic stress state, the residual stresses have cyclic behavior, thus they
can be decomposed in Fourier series whose coefficients may be calculated in an
iterative manner by satisfying compatibility and equilibrium at time points inside the
cycle. The method was formulated to calculate the shakedown limit (RSDM-S) of
structures subjected to cyclic thermomechanical loads and multidimensional loading
domains [20–22].

An upgrade of the RSDM-S appeared quite recently [17]. The upgrade was both
in the robustness and the numerical efficiency. The robustness is guaranteed as the
sequence of the iterative steps is theoretically proved to be monotonically decreasing
towards the final solution. A numerical scheme that possesses a superlinear conver-
gence makes it a very fast procedure. The method was also formulated to cater for
cyclic imposed displacements.

In the present work, these issues of robustness and convergence are further
discussed and analyzed. The efficiency of the approach is further demonstrated
through new applications to structures under mechanical, thermomechanical, or
imposed displacements, simulating earthquake loading.

2 Theoretical Background

Let a body of volume V with surface S be subjected to mechanical load P, applied
on a part of the surface Sf, prescribed displacements u, applied on another part Spr
and fixed displacements on another part Su (Fig. 1).

The mechanical load and prescribed displacements are applied periodically with
period T. One may assume that the minimum values of the cyclic load or prescribed

V

Fig. 1 Body subjected to forces and imposed displacements. Reproduced from [17]. Copyright ©
Elsevier Masson SAS. All rights reserved
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(a)                                                               (b)

t
T

Fig. 2 Independent cyclic loading (mechanical (and/or) imposed displacement) variation over one
time period a in time domain, b in loading domain. Reproduced from [17]. Copyright © Elsevier
Masson SAS. All rights reserved

displacements are zero and the starred quantities represent the maximum values
(Fig. 2). It has been proved [7] that if a structure shakes down under a cyclic loading
program containing the vertices of the loading domain, then it will shake down for
any loading path contained in this domain. Such a cyclic program may be seen in
Fig. 2, in either the time domain (a), or the loading domain (b).

This domain may be isotropically varied if multiplied with a load factor γ. Thus,
the idea behind RSDM-S is to find the largest loading domain for which shakedown
occurs, by moving from a large value of γ to smaller ones.

In response to the cyclic loading program, the stresses in the structure at a cycle
point τ = t/T (where this point is either a point in the time domain or a vertex in the
loading domain) are decomposed into an elastic part σel , in response to the applied
external cyclic actions, and a residual stress part ρ. In the search for the shakedown
factor γ, the elastic stresses are themselves multiplied by this factor. Thus, the total
stress vector can now be written:

σ(τ ) = γσel(τ ) + ρ(τ ) (1)

The elastic response of the loads and the prescribeddisplacementsmaybeobtained
by separating the two actions and superposing their effects [17]. Two different finite
element (FE) problems are solvedwhich provide the corresponding to the two actions
elastic strain rates ε̇elL , ε̇

el
pr ; on the other hand, plasticity introduces residual strains.

Thus, one may write for the total strain rate ε̇:

ε̇ = ε̇elL + ε̇elpr + ε̇elr + ε̇ pl (2)

Where ε̇ pl are the plastic strains and ε̇elr is the residual elastic straining. Since both
terms ε̇ and ε̇elL + ε̇elpr in (2) are kinematically admissible, the sum:
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ε̇r = ε̇elr + ε̇ pl (3)

is also kinematically admissible. In a FE environment this may be expressed as
ε̇r = Bṙr , where B is the well-known FE compatibility matrix between strains and
FE nodal displacements.

The elastic term ε̇elr is related to the residual stress via the elastic material matrix
D. Thus, one may write:

ε̇r = D−1ρ̇ + ε̇ pl → ρ̇ = Dε̇r − Dε̇ pl (4)

Expressing residual strain compatibility and equilibrium of residual stresses with
zero loads, one may write, from the principle of virtual work (PVW):

∫

V

BT · ρ̇dV = 0

→
∫

V

(BTDB)dV ṙr =
∫

V

BTDε̇
pl
dV → KPrr =

∫

V

BTDε̇ pldV (5)

with K being the standard stiffness matrix.
The cyclic nature of the residual stresses at the asymptotic cycle (e.g., [4]) allows

their decomposition in Fourier series.

ρ(τ ) = 1

2
a0 +

n∑
k=1

{
cos(2kπτ) · ak + sin(2kπτ) · bk

}
(6)

with the values of the Fourier coefficients being given, [18–20].

ak = − 1

kπ

1∫

0

{[
ρ̇(τ )

]
(sin 2kπτ)

}
dτ (7)

bk = 1

kπ

1∫

0

{[
ρ̇(τ )

]
(cos 2kπτ)

}
dτ (8)

The basis of the RSDM-S are the Eqs. (6)–(8). Very good accuracy was attained
by keeping just three terms of the series, i.e. n = 3.

An upgraded numerical scheme of the RSDM-S has been very recently presented
[17]. It consists of an inner and an outer loop. The outer incremental type loop
updates the shakedown factor, which is then used in the inner loop to iteratively
update the Fourier coefficients found by performing time integration over the values
of ρ̇ evaluated (Eqs. (4) and (5)) at the vertices of the loading domain. The iterations of
the internal loop stop when a cyclic solution has been established. This is manifested
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when two successive values of ϕ, defined by (9), coincide within a certain accuracy:

ϕ =
n∑

k=1

∥∥ak
∥∥ +

n∑
k=1

∥∥bk
∥∥ (9)

If we denote by γ (μ), the value of the current shakedown factor inside an outer
iteration μ, the following formula is used to update it for the first two iterations:

γ (μ+1) = γ (μ) − ϕ(γ (μ)) (10)

whereas for the next outer iterations the following formula is used:

γ (μ+1) = γ (μ) − γ (μ) − γ (μ−1)

ϕ
(
γ (μ)

) − ϕ
(
γ (μ−1)

) · ϕ
(
γ (μ)

)
(11)

The proposed relationship is a regular falsi procedure for finding the zero of the
function ϕ(γ ), defined at the points of the convergence of the inner loops. Thus, the
convergence of the outer loops is superlinear (e.g., [5]).

Given that γ (μ) > γ (μ+1), for the corresponding values of ϕ, it will hold
that ϕ(γ (μ)) > ϕ(γ (μ+1)). This is an important assumption to prove that ϕ is a
monotonously descending function, as assumed in Fig. 3.

The proof of themonotonicitymay be found in [17] and is illustrated in the present
work (Fig. 4). It is related to the fact that because of (7) and (8) the norms of the
vectors of the coefficients of the Fourier series are directly related to the norms of
the residual stress rate vectors which in turn are directly related to the plastic strain
vector (Eq. (4)). The value of ϕ, on the other hand is proportional to the length of
this vector (Eq. 9), which, since it is measured through the radial return rule, is the
distance from the yield surface when the total stress exceeds it. Thus, the proof is
obvious, from Fig. 4, where one may see the total stress vectors OA and OB at the

Fig. 3 Convergent sequence
of solutions. Reproduced
from [17]. Copyright ©
Elsevier Masson SAS. All
rights reserved
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Fig. 4 Proof of the descending sequence of ϕ(γ )

end of iteration μ and at the start of iteration μ + 1, respectively, with both points A
and B located on the elastic stress vector σel .

Initial starting point of the descending algorithm may be considered as three or
four times the maximum elastic limit which is located at one of the vertices of the
loading domain.

3 Examples of Application

In the present work, the updated RSDM-S is used to evaluate load and displace-
ment shakedown limits in new examples. The results are validated either by
performing step-by-step analyses or by comparing with the corresponding results of
the bibliography. All examples highlight the speed and the accuracy of the RSDM-S.

3.1 The Simple Frame

The first example is the simple sway frame of Fig. 5a, as introduced in [12].
Two distributed loads (P1 and P2) act independently, varying from the value “0” to

themaximumvalues P∗
1 and P∗

2 , as shown in Fig. 5b. Themechanical properties were
E = 20,000 kN/cm2, ν =0.3, σy = 10 kN/cm2. The RSDM-S was run considering
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(a)                                                         (b)

P1

P2

230cm

23
0c
m

10cm
40cm

10cm

40cm

A B

C

Fig. 5 a Geometry and loads, b Loading cycle

five time points of the loading cycle (the vertices of the loading domain). 350 brick
elements were used for the discretization (Fig. 6).

Different shakedown limits were calculated, considering different ratios of P1/P2.
The shakedown domain is presented in Fig. 7.

In all the cases the convergence appeared quite smooth. In Fig. 8 one may see
such a convergence at point A, which was accomplished in twelve iterations.

It is pointed out that, the results are in good agreement with those presented [12].

(a)                                                                 (b)

Fig. 6. 2D view and 3D view of the frame using 350 brick elements. Reproduced from [17].
Copyright © Elsevier Masson SAS. All rights reserved
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Fig. 7 Shakedown domain
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3.2 The Slab with the Hole

The numerical efficiency of the upgraded RSDM-S is further demonstrated also in
the case of thermomechanical loading. The benchmark problem of the square plate
with a circular hole in its center is selected. The structure is subjected to both thermal
and distributedmechanical loads (Fig. 9a). Themechanical load is applied at the edge
of the slab and is uniformly distributed. The temperature ranges from the inner to
the outer edge according to the formulae:

θ(r, t) = θ0 + 	θ ∗ ln
(
2.5D
r

)
ln(5)

(12)
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(a)

(b)

Fig. 9 a Geometry, b loading Discretization of the slab

Due to the symmetry of the geometry and the loading, only one quarter of the
plate is discretized (Fig. 9b). Let D be the diameter of the circle, L the length of
the slab and d the thickness, then D/L = 0.2,d/L = 0.05. In the present work,
L is equal to 20 cm. The boundary conditions along the X-axis and the Y-axis are
considered rolled. Results for the cyclic thermal load θ and the cyclic load P varying
proportionally from 0 to θ∗ and P∗ will be investigated. The material properties are
E= 180 GPa, v= 0.3 and σy = 200MPa. The model consists of 220 brick elements.

The RSDM-S converged in 15 external iterations. The corresponding shakedown
domain for different ratios of θ∗/P∗ is presented in Fig. 10.
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Fig. 10 Shakedown domain
for the holed slab. The value
σt corresponds to the
maximum thermal stress
developed in the structure
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3.3 90o Pipe Elbow

Pipe elbows are met in almost all types of piping systems. Being parts of machinery
configurations, pipelines, and industrial facilities, they are often subjected to earth-
quake loads. Thus, these components usually undergo cyclic loads and/or imposed
cyclic displacements.

In the present example, the shakedown domain for a typical 90o steel pipe bend
subjected to cyclic out of plane-imposed displacement is investigated. The steel
elbow, of a yield stress of 360 MPa, consists of two straight pipes with an 8-inch
outer diameter, 8.18 mm depth and of an equal length of 1.10 m. The left end of the
pipe is considered fixed and the imposed displacement is applied at the right support
with direction along the horizontal axis Z, as shown in Fig. 11.

Fig. 11 The configuration of the pipe elbow
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Fig. 12 Convergence diagram of the RSDM-S in the case of imposed displacement

The cross section was divided into three layers along the thickness with the
structure being discretized with 10,528 hexagonal brick elements. The elbow is
subjected to horizontal cyclic imposed displacement varying from 0 to u*. The yield
displacement turned out to be uy = 18 mm.

According to the RSDM-S the shakedown displacement is equal to ush = 32 mm.
The convergence is quite good and the procedure is completed in 11 iterations, as
shown in Fig. 12.

The shakedown limit produced by the RSDM-S was validated with results
obtained by step-by-step analyses using the Abaqus software [1]. Two analyses were
run, considering the amplitude of the imposed displacement higher and lower than
the shakedown limit.

In the first case, the imposed displacement was equal to 60 mm and the plastic
strain was found to be always increasing (ratcheting). The most stressed point was
point A located near the fixed support. For this point, the accumulated plastic strain
at the end of the 16th cycle of loading is shown in Fig. 13.

The evolution of the equivalent plastic strain from cycle to cycle for the point A
may be seen in Fig. 14.

In the case where the imposed displacement was set equal to 20 mm, the plastic
deformation appeared and locked around 1%. 50 cycleswere used and the shakedown
condition met right from the first cycle as presented in Fig. 15.

4 Convergence Issues

To underline the numerical efficiency of the method, the following remarks can be
made concerning its convergence characteristics:
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POINT A

Fig. 13 Contour of equivalent plastic strain at the last loading cycle

Fig. 14 Plastic strain
diagram in case of 60 mm
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Both the internal and the external loops are controlled through the iterative values
of ϕ (Eq. (9)) [17]. Internal loop iterations stop when the relative difference between
two successive values of ϕ is of a tolerance of 10–3, whereas the external loop
iterations stop when the value of ϕ reaches the tolerance of 10–4.

Convergence evolution towards the shakedown factor is plotted against the
external loop iterations, where the load factor changes value. There is no standard
number of internal loop iterations (internal loops have linear convergence), but due to
the external superlinear convergence, the number of external incremental-like loops
limits the total number of iterations. For all the different loading cases of the exam-
ples considered herein, to reach the final shakedown factor, this total number never
exceeded 120 iterations (for example, for the elbow problem with the larger number
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Fig. 15 Plastic strain
diagram in the case of 20 mm
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of finite elements, it was 87). In each iteration, the number of elastic solutions (Eq. 5)
equals the number of vertices of the loading domain; the stiffness matrix used to find
these solutions is formed and decomposed only once (at the very beginning of the
procedure). Additionally, it should be noted that even with n = 1, as the number of
terms of the Fourier series, the results are almost identical.

5 Concluding Remarks

The RSDM-S is a direct method that is used to establish shakedown domains. In
the present work a recent update of the approach that appeared in the literature
is elaborated further. Closely linked to the robustness of the procedure, the proof
of the method’s continuous descent towards the shakedown load factor is demon-
strated graphically. At the same time, the superlinear convergence of the external
incremental-like outer loop which guarantees fast convergence is underlined. Further
structural examples to the already published ones, undergoing diverse cyclic loading
actions from thermomechanical loading to imposed displacements are discussed and
construction of corresponding shakedown domains are presented.
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