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Foreword

Genesis of Direct Methods: Exploration and Breakthroughs

Without going all the way back to Leonardo da Vinci, who analysed in his pioneering
work published in 1493 the bending of a beam but did not provide a way of assessing
its strength, the first attempt to evaluate the collapse load of a cantilever beam is due
to Galileo Galilei in 1638. Although the value was overestimated due to the lack of
knowledge of the material behaviour, it paved the way for the modern methods of
structural analysis and may be considered as a premise of what will become the limit
analysis and more broadly the Direct Methods.

An important breakthrough is Charles-Augustin Coulomb’s contribution to the
stability of earth retaining walls. He spent the years from 1764 to 1772 in the French
colony of Martinique where he supervised the construction of new fortifications. On
his return to France, studying the role of friction and cohesion, he proposed a rupture
surface in the stress space. His idea is that even though the wall just shifted forward
slightly, a sliding plane will form between a soil wedge at the back of the wall and
the remaining soil at rest. It is the starting point of the scientific soil mechanics but
also an important milestone for the limit analysis theory.

For metals, the first plasticity criterion was proposed by Christian Mohr in 1882,
based on his famous graphical method of stress analysis by a circle and the concept
of maximum shear stress. The next major contributions date back to the beginning
of the twentieth century. Although the original idea is due to Tytus Huber and was
published in Polish in 1904, the plastic yielding criterion and the flow rule was
rigorously formulated by Richard von Mises in 1913 and independently by Heinrich
Hencky in 1924. One of the strengths of the plasticity theory is that, thanks to a
unified mathematical model, it encompasses a wide class of ductile materials such
as metals, soil, rocks, concrete, granular materials, and many yielding criteria were
proposed in the footsteps of pioneers.

The formulation of constitutive laws of plasticity was an essential element that
allowed to develop the corresponding methods of structural mechanics.

v
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Among them, the limit analysis is an elegant method of calculation of the strength
of structureswhich skips the elastoplastic loading by considering directly the collapse
mechanism. The exact value of the collapse load can be reached by the static and
kinematic approaches thanks to the so-called lower and upper bound theorems. A key
point is that it allows to assess by dual analysis the errors when only approximate
values are obtained. The static method was published in Russian first by Alexeï
Gvozdev in 1938. It was completed by the dual kinematic approach and formalized
in a general way by Rodney Hill, William Prager and Daniel Drucker in the 1950s. It
should be noted that the yield-line theory proposed by Knud Johansen in 1962 was
recognized later on as an application of the kinematic approach to concrete plates.

A powerful extension of the previous method is the shakedown analysis when the
structure is subjected to repeated variable loads, in particular to cyclic loads. Hans
Bleich in 1932 and Ernst Melan in 1936 emphasized the crucial role played by the
time-independent residual stress fields in the stabilization of the plastic strains and
laid the way to the static approach. Warner Koiter gave in 1955 a rigorous proof of
the static and kinematic theorems.

Developments and Maturity

All these seminal works gave rise to a wealth of research works owing to the experi-
mental testing as well as the development of computers. The original framework was
based on the elastic-perfectly plasticmodel in quasi-static conditions. The growth and
refinement of knowledge about the material behaviour led to the need of extensions
of the bound theorems to more sophisticated constitutive laws. The generalization of
the shakedown theorems to the plastic materials with linear hardening was proposed
by Prager in 1974, to the thermo-mechanical loading by Giulio Maier in 1969, to
the dynamical loading by Corradi and Maier in 1973, to the elasto-visco-plasticity
by Bernard Halphen in 1978 and Alan Ponter in 2000, to the geometrical nonlin-
earities by Dieter Weichert in 1986. Despite some attempts, the extension to the
non-associated plasticity remains an open topic of research.

On view of the fast growth of the computer powers and the computing algorithms
after the second world war, numerical approximations of the limit states of structures
by Direct Methods have been extensively developed from the 1960s in parallel with
the classical step-by-step method. The basic idea is to combine the finite element
method to discretize the structure and the solvers of mathematical programming to
find the upper and lower bounds. The advantage of the Direct Methods is especially
strong for variable repeated loads.Acomplete step-by-step computation of the overall
history up to the limit state can be very time-consuming or even exceed the capacity
of the computer. Moreover, if only the extreme values of the loads are known but
not the exact loading path, then shakedown analysis must be used. The main aspects
characterizing the Direct Methods are the variational principle, the discretization of
the fields, the analytical form of the yielding criterion, the way it is enforced and the
choice of the solver, notably the simplex or more recently the interior point method
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and the conic programming. It is noteworthy to mention a physically-based solver
algorithm, the Linear Matching Method of Ponter and Carter.

The displacement finite elements are very popular because of their simplicity and
the first works using them for limit analysis are due to Hodge and Belytschko in
1967, Anderheggen in 1976, Hutula in 1976, Biron in 1976 and Nguyen Dang Hung
in 1976. Although the equilibrium finite elements are not so easy to build, they are
well adapted to the Direct Methods because the yielding criterion is expressed in
terms of stresses. The first works based on the static approach are due to Hodge
and Belytschko in 1967 and 1970, Lymer in 1970, Casciaro and Di Carlo in 1970,
Zavelani-Rossi in 1974. It should be noticed that the bound properties are often lost
because of the difficulty to integrate exactly the power of dissipation in the kinematic
approach and to enforce anywhere the nonlinear yielding criteria in the static one.
An alternative is to use two-field variational principles and mixed finite elements as
in works by Christiansen in 1981 and Casciaro and Di Carlo in 1974, or hybrid finite
elements as Nguyen Dang Hung in 1976.

The extensions of these powerful numerical methods to the shakedown analysis
were natural and is due for displacement finite elements to Nguyen Dang Hung
and Morelle in 1984 and 1986, to Karadeniz and Ponter in 1984, for equilibrium
finite elements to Belytschko in 1972, to Corradi and Zavelani in 1974, to Nguyen
Dang Hung and Palgen in 1980, to Morelle and Nguyen Dang Hung in 1983, to
Weichert and Gross-Weege in 1987, to Franchi and Genna in 1983, and for hybrid
finite elements to Morelle in 1984.

New Challenges

The Direct Methods are now a powerful tool for engineers and researchers not only
to solve problems of structural engineering, but also to understand the mechanical
behaviour of the materials through the homogenization techniques. This is the epis-
temological reversal: while the advances in the mechanical modelling of materials
had led to the development of the Direct Methods for the structural analysis, these
methods permit in return tomake progress in the domain of constitutive laws. Thanks
to the limit analysis, macroscopic plasticity criteria of composite and porous mate-
rials can be obtained in terms of the stresses and microscopic parameters such as
volume fraction and material parameters of the different phases. For materials under
cyclic loading, the shakedown analysis gives new insights to propose theoretically-
based fatigue criteria. Recent advances in thematerial design, especially thanks to the
additive manufacturing, open new horizons for the mechanical analysis of new archi-
tecturedmaterials andmetamaterialswith highperformances or surprisingproperties.
Another challenge to face is the increasing need to take into account the interactions
between the solid mechanics and other physical effects, notably dynamic, thermal,
hydraulic, electric and magnetic. Even if these couplings were already considered in
the literature, there is no doubt that in the future they will grow in importance.
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To face these appealing but also difficult challenges, researchers need places for
exchange of experiences, debates, pooling of efforts to plan joint projects. Recently,
a scientific community around these research topics have progressively emerged and
began to structure itself. The first Workshop on Direct Methods held at Aachen in
2007. Under the initiative of Alan Ponter and Dieter Weichert, the idea to found a
scientific association is launched in Reggio Calabria during the fourth workshop in
2013. The “International Association on Direct Methods” (IADiMe) was born. This
volume gives a State of the Art of the most recent research and results in this field
presented in the seventh edition of theWorkshop on Direct Methods held at Cosenza.

This volume gives a State of the Art of the most recent research and results in
this field presented in the seventh edition of the Workshop on Direct Methods held
at Cosenza.

Lille, France Géry de Saxcé



Preface

An important task for civil and mechanical engineers is the estimation of the limit
states of structures and materials for the evaluation of safety and durability under
any type of loading, which can cause severe inelastic deformations. Typical exam-
ples of such loads can be due to thermo-mechanical actions or loads induced by
displacement, such as earthquakes, traffic, etc.

“Directmethods,” spanning limits and shakedown analysis, evaluate safety factors
by avoiding cumbersome and time-consuming step-by-step analyses. They are non-
evolutionary and applicable to the optimal design of structures and materials. Nowa-
days, there is a growing interest among scientists and researchers in newmathematical
formulations and high-performance numerical solution tools, which make reliable
analyzes of conventional and new generation materials and structures possible.

The papers in this volume provide a state of the art on the topic and grew out of an
international seminar on direct methods held on June 28, 2022 at the University of
Calabria, Italy, providing insights into the latest developments in this rapidly evolving
field of research. It is in line with similar books on the same topic which have been
published as documentation of previous workshops, held regularly since 2008 in
Aachen, Lille, Athens, Reggio Calabria, Oxford and Krakow.

Most of the contributions are related to new numerical developments thatmake the
methods attractive for industrial design in a large panel of engineering applications.
Extensions of the general methodology to new application horizons and specific
technological problems are presented.

The contributions are arranged in the same format as theworkshop sessions,where
groups of articles cover similar topics. The chapters have all undergone a rigorous
review process before being accepted for publication.

The editors warmly thank all scientists who have contributed their outstanding
papers to the quality of this edition. We are also grateful to the Springer editors for
their patience and guidance during the production of this volume.

Aachen, Germany
Rende, Italy

Dieter Weichert
Giovanni Garcea
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Direct Methods: History, Present 
and Future

Dieter Weichert

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 
G. Garcea and D. Weichert (eds.), Direct Methods for Limit State of Materials 
and Structures, Lecture Notes in Applied and Computational Mechanics 101, 
https://doi.org/10.1007/978-3-031-29122-7_1

Abstract This chapter spans the arc from the first developments of Direct 
Methods in modern times to current tendencies in this field of research. Emphasis 
lies on the great lines of development and on the personal contributions of out-
standing scientists. Examples of general interest illustrate the scientific and techni-
cal importance of the according methodologies.

1  Milestones and the Scientists Behind

1.1  Early Developments

The question whether a mechanical structure may fail or not due to variable or 
dead loads is as old as engineering activity itself and it is difficult to pinpoint the 
instant when mathematical models were first used to predict if a structure will 
resist to the acting forces or collapse. Edoardo Benvenuto’s paper from 1991 [1] 
gives an excellent view on early developments, going back to antiquity; other 
information is found in e.g. Weichert and Ponter [2], or from a more general point 

of view, in Kurrer [3]. Here we focus on developments since the 
beginning of the twentieth century, when steel was increasingly 
used in Civil Engineering. Elastic design, commonly used at that 
time, was very conservative and therefore, plastic design became 
interesting for structural engineering. The notion of plastic hinges, 
of utmost importance for the plastic analysis of skeleton structures 
and beyond, goes back to Gábor Kazinczy (Fig. 1) [4], who is one 
of the founders of Limit Analysis (LA) in modern times. In Fig. 1

D. Weichert (*) 
RWTH-Aachen University, Aachen, Germany
e-mail: dieter_weichert@hotmail.com
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2 D. Weichert

particular methods to determine the load carrying capacity of beams and trusses 
under monotonically increasing loads, a typical LA issue, were investigated both 
from experimental and theoretical point of view (Maier-Leibnitz [5], Schaim [6], 
Fritzsche [7]). Other important contributions, in particular on limit 
loads for frames are due to Gvozdev [205] and Girkmann [3]. 

But as early as 1926, Martin Grüning (Fig. 2) 
discussed the influence of plasticity in hyperstatic 
truss systems under repeated loading, a kind of 
starting point for Shakedown-Analysis (SA), 
where in contrast to LA the elastic properties of 
the material play a role. Hans Bleich (Fig. 3) 
picked up and generalised in 1932 Grünings find-
ings [8, 9], whose studies concerned only locally stationary 

repeated loads. This restriction was removed by Bleich [10], who also introduced 
the notion of “Selbstspannung”, nowadays commonly used in its English equiva-
lent “eigenstress”. But it was Ernst Melan (Fig. 4), inspired to his path-breaking 

works in 1936 and 1938 by Grüning and Bleich, who formulated 
the general lower bound shakedown theorem in his key contribution 
“Der Spannungszustand eines Mises-Hencky’schen Kontinuums bei 
veränderlicher Belastung” [11]. 

This was, theoretically, the kick-off for modern Direct Methods. 
However, not practically: It may surprise that Melan’s powerful 
general theorem from 1938 remained with little resonance in the 
scientific community for many years. However, one must not forget 

the atrocious situation in Germany and, after WWII had started, in the entire 
world, at that time. Many brilliant German-Jewish scientists in mechanics had to 
struggle for their lives and to find new places to live for themselves and their fami-

lies, if they had the chance to survive. In addition, the relevant 
papers had been published in German language, which was evi-
dently not very popular in these and the coming years. It was Prager 
(Fig. 6), at that time at Brown University, who 
came back to the problem in his contribution 
“Problem Types in the Theory of Perfectly 
Plastic Materials” [12], presented at the 
Symposium on Plasticity held at Brown 
University in 1948, where he refers to Melan’s 

less far reaching formulation of the lower bound theorem [13]. 
It was also Prager, at that time funded by the US Office of 
Naval Research, who introduced the denomination 
“Shakedown”, which is known in shipyards to describe the 
process of accommodation of parts in new ships due to dynamic loading by engine 
vibration after putting them into operation for the first time (O. Mahrenholtz, pri-
vate communication).

Fig. 3

Fig. 2

Fig. 4

Fig. 5

Fig. 6

Fig. 7
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Brown University can be considered as a kind of cradle for 
the further development of Direct Methods and shakedown 
theory in particular at that time. Besides Prager, also should 
be mentioned Paul S. Symonds (Fig. 7) and B.G. Neal as par-
ticularly active in the field of determination of limit loads for 
frame structures [14–19]. Special importance has their paper 
“Recent Progress in the Plastic Methods of Structural Analysis” 
[17] as it anticipates the upper bound theorem of shakedown. 

In his contribution [20], Paul Symonds gives an enlightening personal insight 
into the developments of shakedown theory at that time at Brown University and 
Cambridge University. Generally, in the U.K. to our knowledge, it was basically 
the group by John Baker working in structural plasticity in the same period and 
their interest was mainly limit analysis (see also the multi-volume work “The Steel 
Skeleton”, by Baker et al. [21]).   

W. T. Koiter (Fig. 5), who had been visitor to Brown University at that time, 
has the merit of not only formulating the upper bound theorem of shakedown in 
a general form in 1956 in his paper “A new general theorem on shakedown of 
elastic–plastic structures” [22], but also to revalue shakedown theory as a whole 
through his fundamental work “General Theorems for Elastic–Plastic Solids” [23] 
that summarises the state of the art at that time in a very accessible manner. We 
stress however that the contribution by Paul Symonds concerning the upper bound 
theorem should not be undervalued [24]. He formulated in fact the first time an 
upper bound approach in shakedown theory, not in general form, as Koiter did, but 
for frames. Symonds also greatly simplified the proof of Melan’s lower bound the-
orem [15] in the general case in a form adopted by Koiter [23].

One can say that with Koiter’s formulation of the lower and the upper bound 
theorems of shakedown theory in the context of continuum mechanics the first 
chapter of development was closed.

Although well known, for completeness, the two theorems are briefly reminded:

Lower bound theorem:

An elastic-perfectly plastic body shakes down if there exist a real number α > 1 
and a time independent field of self-equilibrated stresses ρij with

such that the superposition of the elastic stresses σ E
ij  with ρij constitutes a safe state 

of stresses:

If this relation is valid at all points of the body B and at any instant of time, then 
the total dissipation is bounded. Here, C is the convex elastic domain and σ E

ij  is the 
solution of a reference problem, differing from the original one only by the fact 

ρij,j = 0 in v

njρij = 0 on Sp

ασ E
ij + ρij ⊂ C
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that the material behaves purely elastically. This way, σ E
ij  represents the external 

loads.

Upper bound theorem:

The body will not shake down over a load path contained within the load 
domain D if there exists a plastic strain rate cycle ε̇pij(x, t) resulting in compatible 
increments of plastic strains over this time interval

with

and such that the work of the external forces represented by the purely elastic ref-
erence solution σ E

ij  exceeds the plastic dissipation in this motion over one cycle

On the other hand, the body will shake down if there exists a real number α > 1 
such that for all loads and for all kinematically admissible strain rate cycles ε̇pij (i.e. 
which result in compatible strain increments) the following inequality holds

1.2  The Next Generation; Theoretical Advances 
and Development of Numerical Methods

The questions to be answered in the follow-up of these foundations can be roughly 
summarized as follows

(i) How these powerful theorems can be applied in practical engineering?
(ii) How to get rid of the coercive assumptions on which the classical proofs, in 

particular in shakedown theory (linear elastic, perfectly plastic or linear, 
unlimited plastic hardening) are based on?

To answer these questions, several lines of research had been followed: General 
theoretical/mathematical developments; application to specific structural elements; 
extensions to complex material laws and nonlinear geometrical effects; develop-
ment of numerical methods. –Naturally, these lines of development are interwoven 
and not strictly separated. It is impossible to honor here all important contribu-
tions in this field and the scientists behind. Only a short and by no means complete 
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overview can be given. An extended review can be found e.g. in Ponter and 
Weichert [2] or, from a more general point of view. Kurrer [3].

As stated before, the group around Prager at Brown University played an 
important role and many young scientists on visit at Brown University in the 50 
and 60ties had there been inspired and carried on their research after returning 
home. Among them, Giulio Maier (Fig. 8) continued his work in Milano, focusing 

together with his co-workers on the problems of non-associated 
flow rules [25], geometrical non-linearities [26] and dynamic 
effects [27]. Non-associated flow rules are particularly important 
for frictional materials such as soils, masonry, but also, more 
recently investigated, porous and heterogeneous materials. Also, 
accounting for the progress in numerical methods and in view of 
industrial applications, Maier adapted shakedown theory to the 
so-called linear programming methods. His rich scientific oeuvre 
in the field of DM was initially motivated by problems in civil 

engineering but went far beyond and triggered research activities with worldwide 
impact [28–40]. To mention, from Italian side, are contributions e.g. by L. Corradi, 
R. Contro, F. Genna, A. Corigliano, U. Perego, and in recent years, V. Carvelli and 
G. Cocchetti.  

Also back from Brown University, Alan Ponter (Fig. 9) was interested in 
mechanical engineering design including high temperature problems and extended 
the lower bound theorem to creep behaviour of materials [41–43].

In cooperation with Fred Leckie, John Martin and others he derived displace-
ment bounds in shakedown conditions and general bounding theorems in plasticity 

[44–49]. More recently, Ponter focused on rolling contact prob-
lems, composites and the development of methods of how to 
solve most efficiently shakedown and related problems by numer-
ical methods. He introduced the so-called “Linear Matching 
Method” and implemented it successfully into commercial soft-
ware for design purposes. As well as shakedown limits, ratchet 
limits in excess of shakedown are obtained [50–58]. This work 
continues at the University of Strathclyde by a research group led 
by H. F. Chen.

“Variable thermal loads” was also the field of D. A. Gokhfeld (Fig. 10) from the 
South Ural University, USSR. He studied in the beginning of the 60ties of the last 
century ratchetting of mechanical parts in furnaces and observed that under mov-
ing thermal loads even without any mechanical loading large deformations may 
occur that render the considered part unusable [59] These studies, joining theoreti-
cal and experimental work, were extended to other types of elements such as tur-
bine blades, parts in nuclear reactors and pressure vessels in chemical processing. 
Aware of the work of Ponter, Williams and Leckie on creep, he and his co-workers 
developed an alternative way of taking creep into account by adjusting appropri-
ately the yield limit of the material [59–62]. Numerous papers Gokhfeld, O. F. 
Cherniavsky and co-workers were almost all published in Russian language and 
remained largely unknown outside of the Russian speaking scientific community. 

Fig. 8

Fig. 9
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Special mention deserves the book “Theory of shakedown and strain accumulation 
under thermal cycling” from 1980 in English which is still today 
an important source of information.– The work from this group is 
today successfully continued in a modern computational environ-
ment by A. Cherniavsky and co-workers, with new fields of appli-
cation like hydrogenated metals, crack forming and use of 
traveling heat sources for controlled metal forming. 

Another question, not addressed by classical theory is the prob-
lem of dynamic (inertia) effects. Here also, in a different way than 
in case of viscoplasticity, time enters the formulation of the prob-
lem explicitly. This subject was addressed first by Giulio Ceradini from Rome in 
his theorem on dynamic shakedown in 1969 [63], still of great importance in par-
ticular in earthquake engineering. Equally active in Rome and for some time under 
his guidance, Raffaele Casciaro (Fig. 11) has contributed significantly to the devel-
opment of DM. Particularly important was his approach to lower bound LA of 
plates, formulated as minimax problem and based on the discretization of the 
structure into triangular finite elements described in terms of 
stresses (moments).They are equilibrated in the interior of the 
element, while global equilibrium is enforced at the nodes of the 
elements. The works represent one of the first implementations 
regarding the use of mixed equilibrated finite elements in the 
evaluation of limit analysis multiplier. See also the extension to 
2D structural and soil mechanics problems in [67] with Cascini. 
More recently, he proposed together with G. Garcea, L. 
Leonetti, G. Armentano and S. Petrolo [64–70] innovative meth-
ods for the numerical solution of shakedown problems. Among his pupils we men-
tion here Giovanni Formica, Giovanni Garcea, Emilio Turco, Antonio Lanzo, 
Ginevra Salerno, Vittorio Sansalone and Antonio Madeo. Similarly active in Italy, 
Castrenze Polizzotto (Fig. 12) from Palermo comes from a both mathematically 
and engineering-driven background. He contributed and still contributes to the 
development of DM [71–80]. The most important topics are: 
structural optimization; energetic formulation of the boundary 
element method; elastoplastic structures under cyclic loads; var-
iational characterization of elastic–plastic-damaging structures; 
non-local and gradient approaches in elasticity and plasticity. 
Among his pupils are Cesare Mazzarella, Teotista Panzeca, 
Francesco Giambanco, Santi Rizzo, Guido Borino, Paolo 
Fuschi, Aurora Pisano.  

Very important for the development of DM was the Polish 
Academy of Sciences: The long Polish tradition in the field of Plasticity since the 
times of T. M. Huber was continued after WWII in particular related to limit states 
of plastic structures and phenomenological modeling of plastic behavior. Since 
1955 W. Olszak (Fig. 13) initiated weekly scientific seminars at the 
Polish Academy of Sciences. The principles of limit state analysis, metal forming, 
yield conditions, anisotropy, inhomogeneity and flow rules were the main topics of 

Fig. 10

Fig. 11

Fig. 12

Fig. 13
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Fig. 10

Fig. 11

Fig. 12

Fig. 13

discussion and research. In 1957 Koiter gave a set of lectures on 
his kinematic approach to shakedown and the upper bound theo-
rems. Olszak, who hold his Ph.D. from Vienna Polytechnic in 
1935, knew well Melan and was familiar with his theorem on 
shakedown. It can be supposed that this was the main inspiration 
to develop more intensive study of cyclic loading and shakedown 
as fundamental for application in structural mechanics. 

In the sequel, A. Sawczuk (Fig. 14), primarily working on LA and SA of plates 
and shells, wrote several papers on application of kinematic theorem to specify 
upper bounds on load amplitudes [81–84]. It was however Jan Andrej König 

(Fig. 16), his doctoral student, who contributed most significantly 
to the advancement of shakedown theory by a large number of the-
oretical papers on hardening material behavior, thermal problems, 
bounding methods, structures and numerical meth-
ods [85–90, 95, 97–102]. His book “Shakedown of 
Elastic–Plastic Structures” [90] from 1987 is still of 
great actuality and a prime reference; it is concise 
and easy to read. Among the great number of Polish 

scientists working successfully in the field of shakedown between 
roughly 1960 and 2000, we only mention A. Borkowski, M. 
Kleiber, Z. Mróz, A. Sawczuk, M. Janas, St. Dorosz, A. Siemazsko, 
S. Pycko, J. Skrzypek, B. Skoczeń, J. Orkisz, J. Zwoliński, B. Bielawski, among 
others [81–109]. The book by Michał Życzkowski (Fig. 15) “Combined Loadings 

in the Theory of Plasticity” [110] gives an excellent account on 
research on plastic structures with more than 3000 entries of 
references.  

 It was also König who brought shakedown theory back to 
Germany: In the beginning of the 80ties, Oskar Mahrenholtz 
(Fig. 17), then at Hannover University, was involved in studies on 
failure of zirconium tubes under variable thermal and mechanical 
loads, which is a typical problem from nuclear power engineering. 

König, at that time visiting scholar in Hannover, suggested solving this problem 
by applying the upper bound shakedown theorem and to carry out validating 

experiments. The experimental and numerical results they obtained 
were in agreement [111–113]. Some years later, König stayed again 
at Hannover University, this time with Erwin Stein (Fig. 18). There 
he initiated a series of studies focusing on the development of 
numerical shakedown analysis involving material 
hardening, cracks and structural optimization [114–
121]. These works were successfully continued by 
Stein, Zhang, Mahnken, Wiechmann and others in the 
following years. (It should be noted that in the German 

community of civil engineers, to which Stein belonged, the applica-
tion of shakedown theory was even in the 90ties far from being com-
monly accepted and discussed controversially [122]). Of particular interest is the 

Fig. 14

Fig. 15

Fig. 16

Fig. 17

Fig. 18
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“reduced base”-technique, developed by Stein and co-workers, a technique that 
reduces significantly the numerical efforts to construct numerical solutions.  

The initial boundary value problem of plasticity was the entry point for 
Weichert to discover indirectly shakedown theory through the influence of Pawel 
Rafalski [123–125], a Polish scientist from Warsaw, visiting Bochum University 
in the beginning of the 80ties. Weichert studied in the sequel first the problem of 
geometrical non-linearities in the context of shakedown theory in the framework 
of continuum mechanics [126], investigated then the problem of generalized mate-
rial laws according to the standard material model by [127] with applications to 
thin-walled structures. During his stay at the American University of Beirut, he 
started to work with Lutfi Raad and others on problems in pavement mechanics 
[128–132]. Later, at Lille University in France, Weichert carried out a number of 
studies on numerical methods, dynamic shakedown and the problem of shakedown 
including material damage and cracked bodies [133–138]. He continued this work 
in Germany at Aachen University with applications to composites and with the 
aim to apply shakedown theory to large scale industrial problems [139–148]. He 
and his co-workers concentrated on the lower bound theorem. They used in the 
beginning stress-based numerical approaches, which delivered good results, but 
then moved to displacement-based methods for better compatibility with commer-
cial finite element codes.

Force and stress-based methods have been intensively developed at Liège 
University, starting in the 60ties. There was a strong group around Baudouin 
Fraeijs de Veubeke (Fig. 19), Ch. Massonnet, G. Sanders, C. Fleury, mainly 
involved in general mechanics, limit analysis of plates and shells, and optimiza
tion. M. Save and G. Guerlement continued the work at the Polytechnic School of 
Mons. Later, in particular Nguyen Dang Hung and Patrick Morelle applied the 
tools that had been developed in the innovative scientific environment of Liège 
University to shakedown analysis [149–154]. Their efforts were aimed at the 
numerical exploitation of duality principles. Manfred Staat from Jülich Research 

Center together with Duc Khôi Vu, coming from Liège, and oth-
ers continued successfully this work in recent years [155–159]. –
The path of force methods has been followed in an original 
manner by Kostas Spiliopoulos, with application to frame struc-
tures, however based on graph theory and linear programming 
[160–162]. More recently, he introduced the so called “Residual 
Stress Decomposition Method”, which is theoretically new and 
numerically efficient Direct Method [163–165]. 

Géry de Saxcé (Fig. 20), who had also started his career at 
Liège University before moving first to the Polytechnic School of Mons and then 
to Lille University, introduced the so-called bi-potential theory [166–168] as gen-
eralization of Fenchel’s inequality, opening new doors to take into account more 
complex, friction-type material laws in limit analysis and shakedown theory. This 
novel approach has a high potential and is far from being fully exploited at the 
time being. The research by de Saxcé is therefore linked to the scientific tradition 
of the Belgian group, but also to the French, mathematically inclined community 

Fig. 19
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of mechanics, strongly involved in the 70 and 80s of the last century in the devel-
opment and application of Convex Analysis based on the Fenchel inequality and 
so carries further the idea of classical potential-based principles. Convex Analysis 
had been developed in the 70s by T. Rockafellar in the context of operational 
research and by Moreau [169] in the context of mechanics. B. 
Nayroles together with O. Debordes and later D. Weichert 
applied this to the shakedown problem [170–172] and contributed 
essentially to the strengthening of the mathematical basis of the 
theory. Here, the important work by Quoc-Son Nguyen has to be 
mentioned, who contributed essentially to the understanding of 
the effect of hardening from mathematical point of view [173–
175]. Very fruitful because well suited to extend the classical theorems to larger 
classes of material behavior was the introduction of the so-called Standard 
Material Model by Bernard Halphen and Nguyen Quoc Son [176] as had already 
been shown by Mandel in 1976 [177]. Radenkovic’s work on non-associated flow 
rules from 1961 [178], although basically related to limit analysis played an 
important role in the sequel also in shakedown theory and should be mentioned in 
this place. 

Independently and application oriented, Joseph Zarka and his group developed 
the so-called Simplified Method [179, 180], particularly useful for applications 
involving alternating plasticity and fatigue problems in mechanical engineering as 
has been shown by Geneviève Inglebert and her coworkers [181]).

Coming back to typical problems of civil engineering (which, as mentioned in 
the beginning, in some sense has triggered limit- and shakedown analysis), there 
were some important but for long time spared-off areas, which are mechanics of 
soils, foundations and pavements. Here, just as in case of concrete and reinforced 
concrete structures, the complexity of the material behavior and the difficulty to 
develop realistic material models that fit the framework of shakedown theory are 
important obstacles. In particular for pavements, other effects like rutting, crack 
development, moisture, freezing and thawing cycles are very important aside of 
plasticity as to their long-time behavior; in case of foundations, mostly the fluctua-
tion of loads is less important than gravitational “dead loads”.

Apart from the groups mentioned before, there is a long tradition in the field of 
soil and pavement mechanics in Australia and New Zealand. John Robert Booker 
(Fig. 21) from Sydney University is one of the pioneers in the field and the path 
breaking work on shakedown analysis of pavements goes back to him and R.W. 

Sharp in 1984 [182], basing their approach on the particular 
stress pattern that develops in the rolling contact on roads. 
Similarly, at Newcastle University the group around Scott Sloan 
(Fig. 22), with K. Krabbenhøft, A.V. Lyamin and others [183–
189] contributed and still contribute significantly to the develop-
ment of DM. The same holds for Ian Collins from Auckland 
University New Zealand [132, 190, 191]. In his later work, there 
was a link to Ponter, Weichert and Raad through the fact that 
Mostapha Boulbibane, had been active in all three groups. But 

Fig. 20

Fig. 21
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also shakedown of structures such as bridges has been widely investigated in 
Australia: It was Paul Grundy from Monash University who 
started as early as 1969 to study in many papers the shakedown 
behavior of mechanical elements, in particular linked to bridge 
constructions [192, 193]. His work is continued by Francis Tin Loi 
and his coworkers at the University of New South Wales. –It is 
from Australia, Newcastle University, that from Sloans group Hai-
Sui Yu brought back shakedown to the U.K. at Nottingham 
University. Yu and his coworkers concentrate on the numerical 
application of Melan’s theorem to compute lower bounds to the shakedown limit 
for rolling contact problems for Mohr–Coulomb type yield conditions for road 
pavement design [194–198].  

Back to Northern Europe, Lithuania, another 
strand of development, combining shakedown anal-
ysis and structural optimization, has been followed 
by Aleksandras Čyras (Fig. 23), Juozas Atkočiūnas 
(Fig. 24) and co-workers from Vilnius Gediminas 
Technical University (Lithuania) [199–202]. It should 
be noted, that this group has achieved outstanding 
results by combining classical structural mechanics with advanced 

numerical methods. They can be considered as forerunners in this field.  
We can however have another way to look at the historical evolution of shake-

down analysis, detached from the individual researcher and research groups 
and their connections and relations: The onset was the observation that residual 
stresses due to plasticity in redundant elements of hyperstatic bar-structures are 
beneficial for their survival under variable loads, what differentiates shakedown 
theory essentially from limit load theory, where the elastic properties of the mate-
rial do not interfere. Applications were rare for long time due to the lack of means 
how to translate the theory to calculation methods. First applications appear for 
special types of structures like beams, plates and shells, where by appropriate 
assumptions and semi-analytical methods the complexity of the problem can be 
reduced. As the theory of plasticity is genuinely linked to metals, the fields of 
application were on the side of mechanical engineering pressure vessels and pipes, 
on the side of civil engineering steel frame structures. This first “bifurcation” was 
not methodological, but naturally imposed by engineering practice. In the sequel, 
on both sides, application-driven theoretical extensions were carried out: More 
complex material models for metals, for concrete and for soil-like materials, mate-
rial damage and cracks, temperature influence, geometrical non-linearity are the 
major strands, accompanied by the development of appropriate and more rigor-
ous mathematical foundations, such as the proper formulation of the theorems as 
optimization problems. The break-through to modern engineering however is due 
to the tremendous development of numerical methods and computer technology: 
Discretization of structures of almost arbitrary shape connected with fast linear 
solvers and highly performing optimization algorithms render the theorems of 
shakedown today easily applicable in practical engineering.

Fig. 22

Fig. 23
Fig. 24
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And it is the modern formulation of the theory which makes that the differ-
ences between shakedown theory and theory of limit analysis in practice almost 
vanishes: Limit analysis became a particular case of shakedown analysis and today 
both are subsumed under the notion of “Direct Methods”.

2  Illustrative Examples of Applications

Among the numerous examples of problems solved by Direct Methods, here only 
few are presented to illustrate the broadness of the field of application and the per-
tinence of the methods from practical point of view. All examples presented are 
citations from published material.

Problem: A drumhead with nozzle. Determine the safe loading domain for 3 
independently varying loads (internal pressure, temperature difference and axial 
force on the nozzle) allowing for limited local plastic deformations. This is a very 
common problem in process- and power engineering. Example from [148].

Solution: The problem has been solved using the lower bound theorem by the 
interior point method in connection with conventional FE methods. The drumhead 
was numerically discretized with 2.09 106 variables, 1.8 106 equality constraints, 
0.4 106 inequality constraints (Figs. 25 and 26).

The graph shows that taking limited plastic deformation into account, the 
admissible space of independently varying load parameters is considerably larger 
than the load space if only purely elastic deformations are admitted.

Fig. 25  Drumhead 
with nozzle loaded by 3 
independent variable loads 
(Simon et al. [148])
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Problem: Shakedown- and Limit Analysis (SDA, LA) to determine strength 
limits for heterogeneous composites. Example from [203].

Solution: Based on scanning electron microscopy (SEM) images, representative 
volume elements (RVE) are randomly created. These RVEs undergo SDA and LA, 
which are statistically evaluated. (Lower bound theorem, interior point method) 
(Figs. 27, 28 and 29).

Interpretation: The influence of particle size on the ultimate strength (LA) is 
significant as fine particles lead to a higher ultimate load. This influence is smaller 
in case of variable loading (SDA).

Problem: Design of a reusable spacecraft capsule allowing for limited plastic 
deformation; determination of admissible internal pressure variation. Example 
from [204, 207].

Solution: Shakedown analysis, lower bound theorem, combination of conven-
tional FEM for the elastic reference solution and commercial optimisation solver 
Gurobi.

The calculated SD-limit was successfully used for tests on reduced-size model 
(Figs. 30, 31 and 32).

Fig. 26  3-D shakedown domain (SD-domain (blue), compared to elastic domain (grey))
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3  Perspectives

Founded independently, Limit- and Shakedown Analysis are distinct through the 
fundamental importance of the concept of residual stresses in SA in contrast to 
LA, where they do not interfere. According to the great variety of applications, dif-
ferent methods for calculus have been developed in both areas. Nevertheless, LA 
and SA have converged today from theoretical and numerical point of view, and it 
has been shown by Kamenjarzh [206], that LA can be regarded as particular case 
of SA and, vice verse, SA as an extension of LA. This is the reason why they both 
are subsumed as “Direct Methods”.

Both, LA and SA, have theoretically bounding properties and in particular 
when it comes to modern numerical methods, the great majority of numerical 
schemes for DM rely on the combination of finite element analysis and linear or 
non-linear optimisation procedures.

The tremendous evolution of computing power allows now to solve problems 
by DM with millions of variables. This enables DM to handle industrial-scale 

Fig. 27  Transformation of a scanned image (a) into a FE model (d). From 50 SEM images the 
geometric characteristics are extracted in order to create randomly 500 “virtual” RVEs
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Fig. 28  Failure probability as function of ultimate stress of the composite under monotonous 
load (LA). Three groups: Scanned (real), coarse particles (Large), fine particles (Fine)

Fig. 29  Failure probability as function of relative ultimate stress of the composite under variable 
loading (SDA). Three groups: Scanned (real), coarse particles (Large), fine particles (Fine)
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Fig. 30  The space capsule with key dimensions (unit: mm)

Fig. 31  Elastic stress field in the cabin model

Fig. 32  Evolution of the plastic dissipation in the cabin composed of elastic perfectly plastic 
material (blue: load cycles, red: accumulated dissipation
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problems, which was not so 2 or 3 decades ago. Their strong points are the direct 
access to limit states in general and, in case of SA, the possibility to find solutions 
for multiple, independent load combinations without information about the path of 
loading.

The price to pay for this is loss of information about the evolution of local 
quantities during the process and, most important, about deformation, although 
certain bounding properties have been proven. This comes along with rather harsh 
assumptions about material behavior, in many cases too rough for sophisticated 
investigations and, if one applies the theorems directly, a rather complex resolution 
methodology. And here is the risk of overstretching: If the evolution of a system 
inherently depends on the evolution of local quantities, it becomes very tricky, if 
not impossible, to find adequate theoretical extensions of DM. So, to find the bor-
der line of usefulness is an important issue.

DM are therefore complementary to step-by-step methods. They are well suited 
for pre-dimensioning of structures, to get an overview about ultimate load carry-
ing capacities for multi-dimensional thermo-mechanical loading spaces, before a 
combersome step-by-step calculus with sophisticated material laws is carried out. 
To take advantage of these unique and valuable features, DM algorithms should 
be offered in a user-friendly form as easy handable complement to conventional 
design-packages. Then, the designer confronted to a concrete problem, has to 
decide about the adequate methodology to be used.

The author underlines, that this short paper does not pretend to be comprehen-
sive. He apologises for having, unintentionally, certainly omitted many valuable 
contributions by individuals and groups working in this vast and fascinating field 
of scientific research.
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A Unified Shakedown Limit Equation
for Pavements and Railways Under
Repeated Traffic Loads

Juan Wang and Hai-Sui Yu

Abstract In 1943, Terzaghi proposed a simple, unified equation for determination
of the bearing capacity of soils considering static surface loads. From then, this clas-
sical equation and its later extensions have been widely used in the design of various
foundations against instantaneous failure. With the fast development of transporta-
tion industry, researchers have been interested in the evaluation of shakedown limits
of pavements and railways under repeated traffic loads, which are much smaller
than Terzaghi’s bearing capacity. Noting that various shakedown limits for different
problems share some common trends and key factors, this paper proposes a simple,
unified shakedown limit equation, in a format analogous to Terzaghi’s equation. The
shakedown limit equation includes three terms, which represent the contributions
from cohesion, self-weight of the underlying soil, and self-weight of any superfi-
cial rigid layers, respectively. Numerical results indicate that the coefficient in the
cohesion term Nsd

c depends on the soil friction angle; while the coefficient in the
self-weight term Nsd

γ is controlled by soil friction angle and a dimensional factor
γ a/c. Values of Nsd

c and Nsd
γ for a typical rolling point contact problem also explain

the different contribution ratios from the soil self-weight to the shakedown limits of
pavement and railway problems.

1 Introduction

Pavement and railway investment is considered as a key driver of economic growth
in many countries. For example, China has seen a continuous growth in pavement
and railway mileages in the past 15 years, reaching 5280 K km for pavements and
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150 K km for railways including 41 K km of high-speed railways, as shown in Fig. 1.
Meanwhile, the increase of traffic volume and the shortage of natural resources (e.g.
granular fill for embankments) arise more challenges in transportation infrastructure
industry. The design of pavements and railways has to be performed in an efficient
way, structurally andfinancially. Existing designmethods for pavements and railways
are based on elastic theory and/or empirical equations, and therefore potential benefits
from plasticity of soils and granular materials were not well recognized or fully
utilized [1, 2].

Recently, shakedown theory, based on elastic–plastic theory, has attracted lots of
attentions from researchers in fields of pavement and railway engineering. A number
of laboratory tests and field data has demonstrated shakedown and non-shakedown
phenomena of pavements and railways due to different load levels [3–8]. Mean-
while, different shakedown analysis methods based on lower-bound or upper-bound
shakedown theorems have been developed to obtain shakedown limits of different
pavement and railway structures, someofwhich have beenwell validated [5, 6, 9–33].
Various factors that influence the shakedown solutions have also been investigated
in detail. Despite those studies, many works were dedicated to very specific cases,

Fig. 1 Pavement and railway mileages in China
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leading to distinct shakedown solutions for different problems; and some common
trends and key factors shared by the problems were overlooked. Moreover, there
have been no general equations that would consider various contributing factors and
explain their different contributions to the final shakedown limit.

In this paper, a new, simple, unified equation for shakedown limits of soils under
repeated moving surface loads will be proposed. This equation will consider the
contributions from several key factors. It can be used to interpret the reason for
the different shakedown limits for pavement and railway problems. It can also be
employed to guide the improvement of designs.

2 Key Factors for Pavement and Railway Shakedown
Solutions

Wang and Yu [25] reviewed the development of shakedown analysis methods for
pavements and railway engineering problems and summarized different key factors
for shakedown solutions of pavement and railway problems, respectively. Table 1
present the key factors. It has been noticed that the effects of unit-weight, depth-
dependent properties, and traffic moving velocity on shakedown limit are significant
in railways but not in pavements. Meanwhile, temperature plays an important role
only in pavement shakedown.

Table 1 Different key factors
for pavement and railway
engineering problems

Category Item Pavement Railway

Material properties Elastic
parameters

√ √

Plastic parameters
√ √

Unit weight
√

Depth-dependent
properties

√

Load Contact
area/shape

√ √

Load
spacing/pressure
profile

√ √

Frictional
coefficient

√ √

Moving velocity
√

Configuration Layer thickness
√ √

Other structural
components

√ √

Environment Temperature
√

Water
√ √
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3 Terzaghi’s Bearing Capacity Equation and Correction
Factors

Terzaghi’s bearing capacity equation gives the ultimate capacity qult of a shallow
foundation under static loading. It was derived by Terzaghi in 1934 considering
general shear failure of soil. As shown in Fig. 2, the foundation in the analysis was
a strip footing of width 2a (i.e., shallow continuous footing), embedded at a depth
D. The soil above the foundation level was replaced by a surcharge q0, since the
shearing resistance of the soil above the foundation level was neglected. The soil
beneath the footing was a homogeneous semi-infinite mass with a unit weight γ . Its
shear strength was described by the Mohr–Coulomb failure criterion, in which the
cohesion and the friction angle of the soil were denoted as c and φ, respectively. The
load Q was applied in the vertical direction through the center of the footing, and
it could be converted into a uniform pressure on the contact area. Based on these
assumptions, Terzaghi found the ultimate capacity of the strip foundation per unit
length can be written as [34]:

qult = Ncc + Nqq0 + Nγ γ a (1)

where Nc, Nq , and Nγ are bearing capacity coefficients, giving the resistances due to
the material cohesion c, the overburden stress q0, and the self-weight of the material,
respectively. Their values are dependent on friction angle of soil, as exhibited in
Fig. 3.

Although this equation was initially developed for strip footings, it can be modi-
fied by multiplying each term by a shape factor, to consider the influence of the
shape of the contact area for circular, square or rectangular foundations. Similarly,
for cases where the load is applied at an inclined angle, inclination factors can be
introduced. Other extensions of Terzaghi’s bearing capacity equation can be also

Fig. 2 Idealisation of a shallow foundation problem
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Fig. 3 Bearing capacity coefficients for shallow foundations [35]

found in many literatures. Based on those works, Terzaghi’s bearing capacity equa-
tion and its extensions have been used in the design of shallow foundations in many
countries. Overall, Terzaghi’s bearing capacity has successfully brought together the
contributions of different key factors in a concise manner. It is basic and powerful,
each term of which has a clear physical meaning.

4 A Unified Shakedown Limit Equation

Fundamentally, the shakedown limit of a pavement or a railway is the bearing capacity
of the foundation under the action of one or more repeated moving surface loads.
For pavement problems, a moving wheel load can be converted into a moving Hertz
pressure on pavement surface, as shown in Fig. 4, where q0 is zero. For slab track
problems, all superstructure components (i.e., rails, track slab and concrete base) can
be simplified as aEuler–Bernoulli beam; and thus the four axle loads belonging to two
adjacent bogies on two carriages can be converted into a bimodal pressure distribution
on its substructure surface [22, 31], while the self-weight of the superstructure can
lead to a surcharge q0, as shown in Fig. 5. Those pressure distributions in Figs. 4 and
5, though in different profiles, are comparable to that in Fig. 2. Therefore, a natural
choice of the format of the unified equation for shakedown limit qsd

ult of the problems
would be the one that is analogical to Terzaghi’s bearing capacity equation.Assuming
yield criterion of the underlyingmaterial can be also described by theMohr–Coulomb
model, the unified shakedown limit equation can be expressed as [26]:
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Fig. 4 Idealisation of a pavement problem

Fig. 5 Idealisation of a slab track problem

qsd
ult = Nsd

c c + Nsd
q q0 + Nsd

γ γ a (2)

where Nsd
c and Nsd

γ stand for the resistances from the cohesion and the self-weight of
the underlying material, respectively; Nsd

q represents the resistance from overburden
stress due to self-weight of any structural components above the cohesive-frictional
materials. The overburden term only applies if there exists one or more layers of rigid
materials on the top of the cohesive-frictional materials, such as slabs and concrete
base on the top of the substructure in a slab track, or a concrete layer above a granular
layer in a pavement structure.

Similar to Terzaghi’s bearing capacity equation, by including a set of correction
factors, this equation can be extended to consider the effects of other factors, such as
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the shape of the contact area, the distribution of the pressure, the horizontal compo-
nent of the load, anisotropic property of soil and so on. Consequently, it can be readily
used to estimate the shakedown limit (or cyclic capacity) of various pavements and
railways under traffic loads.

5 Coefficients for a Rolling Contact Problem

The coefficients in the unified shakedown limit equation can provide information of
the contribution of each factor. In this section, one basic rolling point contact problem
will be used as an example to illustrate the procedure to determine the coefficients
and to reveal the contributions of key factors.

5.1 A Rolling Contact Problem

Figure 6 shows the rolling contact problem. In this problem, the soil is assumed to be
homogenous and isotropic with a unit weight γ . This unit weight will lead to at-rest
stresses (vertical stress σ 0

zz , and horizontal stresses σ 0
xx and σ 0

yy) in the soil prior to any
load applications. Commonly, an at-rest coefficient of lateral earth pressure k is used
to correlate the horizontal stresses with the self-weight induced vertical stresses:

k = σ 0
xx

σ 0
zz

= σ 0
yy

σ 0
zz

(3)

A three-dimensional (3D) vertical contact loading is moving in the x-direction
on the soil surface. The contact loading, limited within a circle of radius a, is in
Hertz distribution (Eq. 4) with a maximum pressure p0 = 3P/2πa2 at the center of

Fig. 6 A rolling contact problem
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contact area. It is also assumed that the soil is an elastic-perfectly material following
Mohr–Coulomb model.

p = 3P

2πa3
(
a2 − x2 − y2

)1/2
(4)

In this problem, there is no superstructure above the semi-infinite soil mass, so
the term due to surcharge in Eq. 2 will be zero. Therefore, only Nsd

c and Nsd
γ will be

calculated and discussed.

5.2 Lower-Bound Shakedown Analysis

Based onMelan’s lower-bound shakedown theorem [36],Yu andWang [16] proposed
a shakedown analysis method for a rolling and sliding point contact problem with
zero unit weight. This method can be extended to consider the influence of the at-rest
stresses. According to the lower-bound shakedown theorem, shakedown occurs if
the total stress at every point satisfied yield criterion. For the problem considering
soil unit weight, the at-rest stress fields should be included in the total stress, so that
Melan’s static shakedown theorem can be written as:

f (λσ e
i j + σ r

i j + σ 0
i j ) ≤ 0 (5)

where f ≤ 0 is the yield criterion for thematerial;σ e
i j is the elastic stress field induced

by a unit load; λ is a dimensionless load multiplier; σ r
i j is the time-independent self-

equilibrated residual stress field; σ 0
i j is at-rest residual stress field which is also

self-equilibrated.
Following themethod ofYu andWang [16] and the numerical studies of Shiau [37]

and Liu et al. [38], the symmetry and other considerations impose some constraints
on the residual stresses: (1) all residual stresses must be independent of x ; (2) σ r

zz
and σ r

xz must be zero; (3) residual stresses in combination with at-rest stresses must
satisfy yield condition, i.e., f (λσ r

i j + σ 0
i j ) ≤ 0. Assuming that the critical planes are

x–z planes, Eq. 5 and the Mohr–Coulomb yield criterion will lead to the following
shakedown condition (Eqs. 6–8):

f = (
σ r
xx + M

)2 + N ≤ 0 (6)

M = λσ e
xx + σ 0

xx − λσ e
zz − σ 0

zz + 2 tan φ
(
c − (

λσ e
zz + σ 0

zz

)
tan φ

)
(7)

N = 4(1 + tan2φ)
[
(λσ e

xz)
2 − (c − (λσ e

zz + σ 0
zz)tanφ)

2
]

(8)

where σ r
xx is a time-independent and self-equilibrated residual stress field in the travel

direction; σ 0
zz is at-rest stresses in the z direction, which is γ z; σ 0

xx is at-rest stress
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in the x direction, which is equal to kσ 0
zz . Then the horizontal residual stress at any

point in the half-space must satisfy Eq. 9.

−Mi − √−Ni ≤ σ r
xx ≤ −Mi + √−Ni (9)

Since σ r
xx must be independent of x when the applied load is no larger than the

shakedown limit, all possible σ r
xx must be bracketed by two critical stress fields σ r

xx−l
(denoted as ‘maximum smaller root’) and σ r

xx−u (denoted as ‘minimum larger root’):

σ r
xx−l = max−∞≤x≤∞

z= j

(
−Mi − √−Ni

)
(10)

σ r
xx−u = min−∞≤x≤∞

z= j

(
−Mi + √−Ni

)
(11)

where i represents a point in the half-space; and j represents a depth. When the
applied load is the shakedown limit, the critical point of the half-space is located at
the depth where the two critical residual stresses just intersect.

By substituting Eq. 10 or Eq. 11 into Eq. 6, the shakedown problem can be
converted into the following optimization mathematical formulation:

λsd = max(λ)

s.b.

{
f
(
σ r
xx (λσ e), λσ e

) ≤ 0 for all points
σ r
xx (λσ e) = σ r

xx−l or σ
r
xx−u

(12)

In this formulation, since the elastic stress fields σ e and the critical residual stress
fields all depend on the load multiplier λ, Eq. 12 can be easily solved by using the
procedure suggested in Wang [39] and Yu and Wang [16].

In order to obtain the two coefficients Nsd
c and Nsd

γ , shakedown limit calculation
were conducted using the method considering two different situations: (1) zero unit
weight; (2) non-zero unit weight. By applying a zero unit weight in the calculation,
the obtained shakedown limit λsd is Nsd

c c; and therefore the coefficient Nsd
c can

be determined. When a unit weight is considered, the calculated shakedown limit
includes the resistances from both terms:

qsd
ult = λsd = Nsd

c c + Nsd
γ γ a (13)

The contribution of the self-weight then can be determined by deducting the
contribution of cohesion from the obtained shakedown limit, as follow:

Nsd
γ = (

qsd
ult − Nsd

c c
)
/γ a (14)
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5.3 Coefficients Nsd
c and Nsd

γ

Figure 7 shows the coefficient Nsd
c is increased at an accelerate ratewith rising friction

angle, similar to the trend of the bearing capacity coefficient Nc. However, the values
of Nsd

c is much smaller than those of Nc at the same friction angle. For example,
when the friction angle is zero, Nc = 5.14 and Nsd

c = 4.0. Also, the increase rate
of Nc is much more significant, leading to Nc = 133.87 when the friction angle is
45°. At this friction angle, Nsd

c is only 25.88. Figure 8 present the numerical results
demonstrating the dependence of the coefficient Nsd

γ on material friction angle and
a dimensionless factor γ a/c. This is distinct from the results of Nγ , which are only
dependent on the friction angle.

A direction comparison of Figs. 7 and 8 reveals that Nsd
γ is only one fifth of Nsd

c
at its maximum. Since typical asphalt mixtures have high values of cohesion, say
200~1000 kPa, the contribution of the self-weight term will be very small compared
to the cohesion term. This explains why self-weight is barely considered in the shake-
down solutions of asphalt pavements. Railways normally do not have any asphaltic
layer, so the contribution of the self-weight term should have similar order of magni-
tude to the cohesion term. And therefore, the influence of self-weight needs to be
considered in railway problems.

It can also be deduced from Fig. 8, when material cohesion c is equal to zero, no
resistance can be provided by the self-weight of the material (i.e., Nsd

γ = 0 when
γ a/c = infinite). Meanwhile, the resistance from cohesion is also zero according to
Eq. 13. As a result, the shakedown limit is zero at c = 0. This means, theoretically
speaking, purely frictional soils will always fail if it is directly under a repeated

Fig. 7 Variation of Nsd
c
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Fig. 8 Variation of Nsd
γ

moving load. Therefore, a layer of bound materials on the surface could be beneficial
as it contributes to the surcharge term.

For a certain homogenous soil, the size of the contact area affects the self-weight
term but not the cohesion term, according to Eq. 14 and Fig. 8. Shakedown limit
of an enlarged contact area is competitively affected by increasing a (Eq. 14) and
decreasing Nsd

γ (Fig. 8). When a is very large, its effect on Nsd
γ becomes negligible;

and therefore shakedown limit tends to increase proportionally with a if the contact
area is very big. This also explains that the shakedown limits of slab track problems
are much more significant than those for pavement problems. Apart from that, the
self-weights of superstructure components in slab tracks will also contribute to the
surcharge term in Eq. 2 and thus a higher shakedown limit.

5.4 Effect of At-Rest Lateral Earth Pressure Coefficient

It is worth noting that, theoretical shakedown limits will not be affected by the
at-rest lateral earth pressure coefficient k. Nevertheless, the critical residual stress
fields (Eqs. 10 and 11) are dependent on k. Figure 9 shows the distributions of critical
residual stress fields at an identical shakedown limit. A relatively small k leads to a
smaller value (i.e., more compressive) of σ r

xx . When the critical residual stress fields
are combined with the at-rest horizontal stress fields σ 0

xx = kγ z, the distributions
are identical, as shown in Fig. 10. This explains why the shakedown limits are not
changed by k. It indicates that soil always tends to deform in a way that facilitates
structural shakedown.
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Fig. 9 Distributions of critical residual stress at shakedown limit qsdult = 25.4 kPa

6 Conclusion

A unified equation for shakedown limit (or cyclic capacity) of soils under repeated
moving surface loads is proposed, which is in a form analogous to Terzaghi’s bearing
capacity equation. The contributions from cohesion, self-weight of the underlying
soil, and self-weight of any superficial rigid layers are combined in the equation. It
can be applied in a similar manner to Terzaghi’s bearing capacity equation, to provide
shakedown capacities for different pavement or railway problems.

By using the low-bound shakedown analysis method of Wang and Yu [16] while
considering weight-induced at-rest stresses in soil, numerical static shakedown solu-
tions for a rolling point contact problem are obtained. Based on the numerical results,
the coefficients Nsd

γ in the self-weight term and Nsd
c in the cohesion term are calcu-

lated. It is found that both coefficients increase with rising friction angle, and they
are much larger than the bearing capacity coefficients Nγ and Nc. Different from
Terzaghi’s equation, Nsd

γ also depends on the dimensionless factor γ a/c, and it is
much smaller than Nsd

c . The lateral earth pressure coefficient k does not change the
shakedown limit, because the sums of residual stresses and at-rest stresses remain
identical.
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Fig. 10 Distributions of critical residual stress plus at-rest horizontal stress at shakedown limit
qsdult = 25.4 kPa
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Elastic–Plastic Optimisation
of a Cable–Rib Satellite Antenna

Giuseppe Cocchetti , Ruiwei Liu , Aram Cornaggia , Rosalba Ferrari ,
and Egidio Rizzi

Abstract Cable–rib satellite antennas are facing a growing challenging quest of
technological operation and connected structural performance, specifically in the
context of large–scale, deployable aerospace applications. In the framework of Limit
Analysis, as a specific tool of structural modelling, within the Theory of Plastic-
ity, accounting for potential material non–linearity, up to structural collapse, as an
assumed general paradigm of structural resilience, the present contribution analyses
a specific cable–rib satellite antenna through a novel evolutive algorithm, in order to
assess possible activations of plastic joints, under perfect–plasticity conditions, and
to consistently estimate static and kinematic features at incipient collapse.Modelling
both beam elements (with a tubular cross–section) and cable elements, the under-
lying elastic–plastic analysis is then coupled to an optimisation process, toward the
minimisation of displacements at incipient collapse, with respect to initial cable
shortenings or, in an equivalent manner, cable pretensions. Further investigations are
also developed, within the optimisation tool, re–joining dynamic modal properties
with elastic–plastic outcomes, in order to minimise the total mass of the structure, at
varying cross–section properties for each structural element, at given material fea-
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tures, under plastic admissibility constraints. The adopted evolutive elastic–plastic
algorithm, combined with optimisation tools, is proven to constitute an efficient
structural modelling paradigm and computational strategy, both from numerical and
design standpoints, allowing for general effective analyses of deployable satellite
antennas, even beyond the scopes of the investigation on the characteristic structural
sample here targeted.

Keywords Limit Analysis · Evolutive perfectly–plastic structural analysis · 3D
truss–frame structures · Non–linear elastic–plastic FEM model · Structural
optimisation · Satellite antenna · Deployable structure

1 Introduction

Space antennas nowadays constitute important physical platforms for specific given
missions of satellites, such as Earth observation, deep space exploration and telecom-
munications (see, e.g., [6, 25, 35]). Typical needed characteristics, such as large
diameter, reduced weight and high technological precision have made deployable
antennas significantly attractive in the application of satellite antennas in the last
decades [5]. Representative examples of space deployable antennas, currently oper-
ating in orbit, include the AstroMesh antenna of TRW Astro Aerospace [43], the
ETS–VIII antenna of the JapanAerospace ExplorationAgency [32] and the TerreStar
and SkyTerra antennas of Harris [38]. The deployable structure, as a fundamental
component of deployable space antennas, has always constituted a key subject of
research investigation, both from design and technological engineering standpoints.

With the rapid development in aerospace applications, space antennas with a large
diameter are demanded to meet the increasing requirements for high–gain, high–
resolution and long–distance space communications. Several concepts of large–scale
deployable structures have recently been proposed. In [19, 37], a novel large–ring
deployable structure, based on six–bar linkages, has been developed, providing a
detailed design and a consistent kinematic analysis of the ring deployable structure,
validated by a 3.9m prototype, processed for test deployment repeatability. A new
lightweight deployable structure for communication satellites, based on the ETS–
VIII antenna, has been proposed in [33, 34], following the construction of a 30m
diameter structure, using tri–fold deployable truss modules, and providing a deploy-
ment analysis, in order to verify the practical feasibility of the innovative structure.
A new double–pantograph concept, based on a ring design, has been proposed in [9],
allowing for buckling and modal analysis checks, on the basis of parametric finite
element models. Such double–pantograph structural design has been proven suit-
able to be applied for deployable structures with large antennas, covering a diameter
range from 4 to 50m. In order to further extend the applicability field, namely to
construct novel deployable antenna structures with a diameter larger than 100m,
in [39], a structural topology optimisation has been proposed, based on graph theory,
gathering a series of novel double–ring deployable structures, appropriate for use
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as structural modules of large–scale antennas. Other deployable structures, such as
those of Bennett [17, 26], Myard [23, 36], Bricard linkages [4], Tensegrity [44] and
Origami [2] have also been investigated, to assemble large–scale space antennas.
However, a space mesh antenna consists of a self–balancing prestressed structure
that frequently experiences large displacements, particularly for large–scale anten-
nas. Given that a large number of tensioned cables and membranes are employed to
achieve lightweight, the increase in stress level may exacerbate the deformation of
deployable antennas and may even lead to potential collapse. Therefore, further than
technological and design issues, determining how to maintain structural stability and
reliability, under diverse loading configurations, appears to assume an essential role.

Some literature studies, not limited to satellite antennas, have considered the
effects of deformations in deployable structures. In [41], a modelling approach has
been proposed by combining cable and beam elements, for the analysis of the static
behaviour of complex structures, providing a deformation analysis of the support
structures, under the tension of cable networks, through a finite element model.
Aiming at achieving a high–accuracy cable net, a mesh shape design method has
been proposed in [24], by iteratively calculating the deformation of a deployable
structure, toward the shape finding of the cable net; the comparison of the discussed
results has shown that the accuracy of cable nets can substantially be improved
by considering the consistent deformability of deployable structures. Moreover, the
mechanical properties of deployable cable–rib structures have been studied in [1, 3],
by investigating displacement and axial force fields under different loading levels and
globally examining the strength of cable–rib structures. However, the main focus of
the existing research on the structural analysis of satellite antennas has been centred
on linear elastic analyses, with only a few studies regarding the discovery of potential
(material) non–linearities in deployable structures. Therefore, a mechanical analysis
of large–scale antennas, particularly with respect to accounting for an elastic–plastic
behaviour and assessing the corresponding collapse configurations, appears to be of
a wide interest for the present conceptual and practical development of such peculiar
structures.

In the broad field of non–linear structural analysis and Limit Analysis (LA)
approaches (see, e.g., [7, 8, 27, 28, 30]), in order to re–promote Limit Analysis as a
modern and functional computational tool serving increasingly ambitious purposes
in the current structural engineering panorama, step-by-step elastic–plastic methods
have successfully been applied to the analysis of the mechanical characteristics of
large–scale structures. Resting on a unifying basis provided by the Linear Comple-
mentarity Problem (LCP), an evolutive algorithm for the LA of structures able to
reconstruct, during the loading path, the whole sequence of activation of localised
plastic joints and to trace the corresponding piece–wise linear load–displacement
curve of the structure has first been proposed [10]. It proved rather successful, in
performing the elastic–plastic analysis of large 3D truss–frame structures with a
considerable complexity, involving up to more than thirteen thousand degrees of
freedom [11, 13, 14].

Next, a “direct” non–linear programming algorithm for the LAof 3D truss–frames
has been developed, as derived from an efficient approach originally presented by
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Mechanical Solver
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(structural performance optimisation)
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Fig. 1 Nested loop of structural optimisation, relying on effective Limit Analysis

Zhang et al. [45] for the LA of continua, then thereby tailored and enhanced for the
analysis of discrete systems. The procedure deserves a particular attention for its both
straightforward implementation and elevated speed of convergence, which allow for
the algorithm to be proposed as a handy tool in dealingwith 3D truss–frame structures
endowed with several degrees of freedom [12, 13]. The evolutive LA algorithm was
initially developed by considering a piece–wise linear uncoupled behaviour adopted
for the internal static variables (i.e. a Rankine–type boxed–form yield domain was
assumed in the spaceof the static variables). Then, recent improvements are extending
the procedure tomake it employable in general and real specific cases, by considering
the yield domain of the plastic joint to be modelled through a smooth ellipsoid [15].

Such methodological formulations and implementations display efficient and
robust features, which allow for expedited utilisation also in the mechanical anal-
ysis of satellite antennas. To address the requirements for large–scale lightweight
deployable space antennas, several developments, such as deployable structure syn-
thesis [17, 39], dynamic analysis [16] and optimisation design [20–22], have been
investigated in previous studies. To further analyse themechanical behaviour of space
antennas and optimise their structural design, specifically with respect to elastic–
plastic and collapse behaviours, the present investigation employs a devoted imple-
mentation of the above–mentioned evolutive algorithm [10] and achieves related
results on the specific case study of an instance of a prototype large deployable
antenna. Consistently, the developedmethodology, based on elastic–plastic andLimit
Analysis approaches, highlights its advantageous design features, in combination
with optimisation loops (Fig. 1), being suitable to be extended and applied to other
structural schemes of large–scale space antennas, as it will be illustrated by results
and comments delivered in the manuscript.

The present contribution indeed states a general paradigm, of structural resilience,
based on Limit Analysis. Beyond classical static elastic analysis, devoted to identify
basic characteristic features, such as stiffness, in the usual range of daily opera-
tion under standard loading, a mechanical criterion may be stated, to express the
margins of safety toward pushing the load bearing capacity, and monitoring the
corresponding increasing deformation, up to potential collapse. LA shall become
useful for that, within the assumption of local and global ductile behaviour, once it
may be declined in practical forms, translating theoretical formulations into effective
computational tools, specifically in the realm of large–scale structures. This may be
achieved either by “evolutive methods”, able to trace the whole non–linear force–
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displacement response of the structure or even by more immediate “direct methods”,
focussing just on the determination of the static and kinematic features at incipient
plastic collapse.

Once this shall properly be achieved, as a general “mechanical solver”, within
the assessment of assumed paradigm of structural resilience, for a given structure,
it could be coupled to appropriate “optimisation tools”, in looped routines, in view
of seeking a structural optimisation of the resilience quest, at variable underlying
parameters and features of the structure (Fig. 1). Of course, a key feature shall be
that, computationally, the two steps of the loop be truly effective, specifically that of
the mechanical solver (even meant for descriptions with several degrees of freedom,
in particular for 3D large–scale structures), especially once representing the outcomes
of a non–linear analysis. If this is truly achieved, LA may be brought up to assume
a general role of structural resilience assessment, far beyond that of classical elastic
analysis, and to lead down pure academic research endeavours, to real and practical
design scenarios, even in the current practices of the engineering profession.

This paper aims to state that, and showing the feasibility and effectiveness of
such a general paradigm of structural resilience, in the considered peculiar context
of the analysis of aerospace antennas, whereby a specific sample prototype is taken
under target of investigation. Thus, assuming the concept of structural resilience,
via LA, optimisation is right–away concatenated, in two ways, by looking at plain
elastic–plastic response up to plastic collapse and also at concomitantmodal dynamic
properties, to interpret achievable stiffness and basic vibration features, and desired
light–mass.

The outline of the paper is as follows. Section2 briefly describes the specific struc-
tural model and relevant features adopted for the selected case study of a deployable
satellite antenna; moreover, specifically in Sect. 2.2, the formulated numerical pro-
cedure for the elastic–plastic analysis of the structure, with specific adaptations and
evolutions to the present particular structural contest, is illustrated. Section3 presents
the main results out of various elastic–plastic analyses on the investigated antenna,
as employed as well within optimisation algorithms, either for static elastic–plastic
loading configurations and for modal dynamic analyses, respectively in Sects. 3.1
and 3.2. Section4 gathers the salient collected results, showing their further general
validity toward the potential adoption of the proposed analysis and design concept
and computational strategy, in the case of other structural schemes of cable–rib space
antennas.

2 Structural Modelling and Analysis of a Space Antenna

A typical satellite system displays a configuration built by the satellite body, two
solar array paddles and a deployable antenna. In the present study, only the latter is
considered for the structural analysis, proposing a structural configuration of a 18m
cable–rib tension deployable antenna, consistently with a previous similar design
discussed in [22]. The space antenna consists of three main elements: a deploy-
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able structure, a cable network and a metal mesh surface. The latter, together with
technological detailing such as deployable joints, is not considered as a structural
component, in the model described in the following subsection, due to its expected
lack of salient influence in the global structural behaviour of the whole antenna.

The selected cable network is composed by a series of tied cables, aiming at defin-
ing and maintaining a specific shape for the structure in the deployed configuration
and for the metal mesh for its functionality. The deployable structure is configured
as a setup of tubular beams (ribs) creating the supporting structure, suitably stiff-
ened by tied cables. The combination of a supporting structure and a cable system
can advantageously provide an improved structural stiffness, together with a reduced
total weight (mass), also ensuring, through the pretension of cables, an optimal shape
accuracy of the antenna surface. Referring, for conceptual design and geometry, to a
previously designed configuration (see [20–22]), a systemwith six evenly distributed
radial ribs is herein considered.

In the following paragraphs, a specific description of the model of the selected
space antenna adopted for the present case study and a general illustration of the
specific devised approach for the elastic–plastic analyses are provided.

2.1 Finite Element Modelling of the Antenna

The structural model of the antenna, composed of the supporting rib structure and the
cable system, is implemented by a self–assembled FEM code within a Matlab envi-
ronment, as depicted in Fig. 2. The elastic background is formulatedwith the adoption
of classical Euler–Bernoulli beam finite elements, with tubular cross–sections, for
the supporting structure, and of cable–truss elements for the cable system network,
not allowing for compression in such elements, while providing possible pretensions
by initial shortenings. The global size of themodel is represented by 50 nodes, 79 ele-
ments and 300degrees of freedom, although the self-made modelling tool could also
run for more refined analyses with an increased size of the numerical problem (see,
e.g., [13, 14]).

Consistently, the non–linear mechanical behaviour of the structure, i.e. the con-
centrated plasticity spreading, is localised at potential plastic joints placed at the
finite element edges, as described in details in following Sect. 2.2. It is worth observ-
ing that the desired level of refinement, namely the number and location of adopted
plastic joints, to be possibly activated toward developing localised plastic deforma-
tion, can be selected at the implementation stage of the model, therefore without
any real limitation, on the achievable accuracy of tracing the true local and global
elastic–plastic behaviour description and response results, within the elastic–plastic
range, up to structural plastic collapse.

The mechanical constitutive properties of the structure of the antenna are selected
for an aluminium alloy material, consistently with some previous design choices
available in the literature (see, e.g., [20–22, 42]); therefore, by assuming Young’s
modulus E equal to 75000N/mm2, Poisson’s ratio ν equal to 0.3,mass densityρ equal
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Fig. 2 Structural modelling of the space antenna (black lines—beam elements, blue lines—cable
elements, red labels—node number); coordinates in mm; self–implementation within Matlab

to 2700kg/m3 and yield limit σy equal to 250N/mm2, with no hardening behaviour
(perfect plasticity hypothesis). Although sometimes considered in the literature, an
alternative design configuration based on carbon fibre and kevlar materials (see,
e.g., [20–22, 40]) is not here implemented, due to the expected reduced material
ductility, regarding the plastic behaviour, as a peculiar key feature of the proposed
underlying design concept herein considered.

The model is completed by the definition of the boundary conditions, providing
a clamping constraint at the base of the central vertical tubular beam of the antenna,
namely at Node 1, in the scheme depicted in Fig. 2. The relevant loading configura-
tion, in the absence of self–weight, as for space applications, is obtained by a system
of distributed beam loads produced by the upper mesh tensioning, combined with
cable shortenings. Such loading system is consistently assumedwith reference to pre-
vious works, as in [22]. Namely, the distributed loading is applied as vertical upward
uniformly distributed line loads to the upper branch beams of the satellite antenna
(specifically, beams 2–7, 10–15, 18–23, 26–31, 34–39 and 42–47, with reference to
Fig. 2), equivalently transferred to concentrated nodal actions.
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2.2 Evolutive Algorithm for Elastic–Plastic Analyses

The present section provides, in the framework of the Theory of Plasticity and Limit
Analysis, a brief description of the proposed evolutive algorithm for the step–by–step
elastic–plastic analyses. Complete details, and various applications, also devoted to
describe large–scale space antenna structures, may be found in [10–14] and, more
generally, in [7, 8, 45]. Such a general 3D truss–frame formulation has here been
adapted and tuned to the specificneeds of the presentmodelling strategy,with peculiar
modifications and evolutions that will be outlined in the following, by making it a
general purpose LA computational tool for space antennas, within the elastic–plastic
range, up to plastic collapse.

The underlying evolutive LA formulation, which constitutes the engine, of the
“Mechanical Solver”, in the foreseen above–mentioned coupled optimisation loop
(Fig. 1), needed to result extremely reliable and computationally efficient, has earlier
been expressed for general–purpose 3D truss–frame structures, with localised plastic
joints (as generalised plastic hinges). The formulation, and corresponding imple-
mentation, allows to trace the true piece–wise linear structural load–displacement
response up to plastic collapse, according to the “exact” solution from the classical
theory of LA [10, 11, 14]. Such an evolutive (step–by–step) computational proce-
dure, in the spirit of LA, has earlier been assessed and compared to a competent
“direct method”, on the side of the kinematic theorem of LA, meant to achieve,
directly, just the characteristics at incipient collapse [12, 13]. It has been shown that
collapse features truly match and that fastness and convergence, of the kinematic
algorithm, is truly dramatic, in precipitating from above on the collapse mechanism,
and associated load multiplier, showing that it may constitute an ideal choice, for the
mechanical solver, in the afore–mentioned optimisation loop.

Despite, and even since more challenging, in the present effectiveness assessment
endeavour, of the above–stated structural resilience paradigm, the evolutive infor-
mation is more costive, but also far more richer, in as well providing the amount of
deformation achievable before collapse, which is meant to constitute a characteristic
quest, in the context of space antennas resilience. Thus, the present calculations have
been developed just with the adoption of the evolutive algorithm, as per the under-
lying mechanical solver, within the assembled optimisation loop (Fig. 1). The main
features of the underlying evolutive procedure are resumed below.

The constituting FEM approach is based on classical Euler–Bernoulli beam finite
elements (linear straight elements, constant cross–sections, isotropic homogeneous
material properties, neglected shear strain effects, cubic shape functions for trans-
verse displacements and linear functions for axial displacements), while possible
plastic deformations are conceived to arise only at pre–selected nodes, modelled as
plastic joints (as generalised plastic hinges), located at the finite element edges (see,
e.g., [7, 18, 29, 31]).

The LA algorithm is based on an evolutive elastic–plastic formulation developed
by ruling a step–by–step analysis. The procedure exploits very simple relationships
that exist between static and kinematic variables of a beam element (Fig. 3), also
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Fig. 3 Schematic
description of a (2D) beam
finite element with plastic
joints: a) static (external)
variables H and kinematic
(external) variables u;
b) static internal variables
N; c) kinematic plastic
internal variables η at
localised plastic joints.
Redrawn from [10]

(a)

(b)

(c)

considering the onset of possible localised plasticisations, here resumed in following
Eqs. (1–5).

H = ku + Dη (1)

Pext = HT u̇ = NTη̇ = Pint ∀ H self-equilibrated (2)

N = QH (3)

D = −kQT (4)

ΔH =
[
k − kQTnnT Qk

nT QkQTn

]
Δu = kepΔu (5)

With reference to a beam element, in Eq. (1), H represents the self–equilibrated
nodal forces associated to nodal displacements u, k is the elastic stiffness matrix, and
D represents the plastic stiffness matrix, obtainable as in Eq. (4), through straightfor-
ward mathematical steps related to the relationships described in above Eqs. (2–3)
(see [10] for the details). InEq. (2), nodal displacements u (associated to H) and static
internal variables N (associated to plastic internal variables η) are related to each
other through theVirtual Power Principle; in Eq. (3), N is related to H by equilibrium
through a Boolean matrix, represented by Q. Finally, Eq. (5) gives an incremental
form of governing Eq. (1), in particular through a direct force/displacement (linear)
incremental relationship governed by a symmetric (associativity is assumed, where
n gathers the gradients of the yield functions) elastic–plastic stiffness matrix kep,
related to a generic finite element. Given the elastic–plastic stiffness matrix of a spe-
cific beam element, the global stiffness matrix of a structure is then obtained by an
appropriate assembly procedure, in the classical spirit of a finite element analysis.

The algorithm employed in this contribution develops an iterative procedure in
which global elastic–plastic stiffness matrix K ep is iteratively updated, based on
the plastic modes that became active during the increment of the applied loads (F).
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LA evolutive tool

Initial conditions
(undeformed and unloaded structure Kel)

Setting of load increment α F , α > 0
to achieve a new plastic activation

Determination of (elastic–plastic)
stiffness matrix Kep

Kep singular?

Determination of incremental solution in terms of
displacements (u), static internal variables (N), plastic deformations (η)

STOP
Incipient Collapse

no

yes

Fig. 4 Flow chart of the evolutive LA algorithm. Adapted from [10]

The macroscopic steps of the algorithm are synoptically depicted in the flow chart
represented in Fig. 4. Basically, at the first step of the analysis the stiffness matrix
of the structure of interest is elastic (K el). Then, the second step is calibrated, in
order to achieve the first plastic activation within the structure; the (global) stiffness
matrix is then updated, becoming elastic–plastic (K ep). Each of the subsequent steps
is still calibrated, in order to achieve a new plastic activation within the structure,
until collapse is reached, namely, from the computational point of view, when the
minimum eigenvalue of global (updated) matrix K ep vanishes.

As a characteristic feature, the procedure does not involve plastic multipliers
as primarily variables, which generally imply the presence of a densely–populated
governing matrix. Instead, a narrow–band K ep governs the problem, thus improving
the computational efficiency of the procedure and making it truly employable for the
analysis of large–scale structures (see, e.g., [10–12]).

Moreover, toward the present context, of the Limit Analysis (and optimisation)
of space antennas, the above–mentioned general formulation has been tailored, to
specific needs, to formulate a novel dedicated implementation for the computational
evolutive analysis of cable–rib space antennas, subsequently coupled within opti-
misation nested loops (Figs. 1 and 5). The following characteristic strategies and
features have then been implemented.

– Cables are described by special truss elements. Such an element is kept when
in the current step the axial force is of a pulling type. Otherwise, the element
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is eliminated (i.e. its stiffness matrix is not assembled within the global one).
This procedure represents a complementarity condition, enforced in finite terms,
between the axial force (N ) and the fictitious “permanent” shortening (ΔL f ict ),
used to keep the axial force to zero in a “potential” compressive condition, “−ΔL0”
being the initial given pre–tensioning of the cable:

N = E A

L0
(ΔLtot − ΔL0 − ΔL f ict ), N ≥ 0, ΔL f ict ≤ 0, NΔL f ict = 0 (6)

If N > 0, it results: ΔLtot = N
E A L0 + ΔL0.

If N = 0, it results: ΔL f ict = ΔLtot − ΔL0 ≤ 0.
In this way, the truss element can transmit only a tensile axial force, as expected
from a cable element.

– According to the real sequence, in which the antenna is unfolded from the initially
straight configuration, the cable shortenings (producing tensile pre–stresses in the
cables) or elongations (producing no pre–stresses in the cables and ΔL f ict < 0)
are applied as a first step. It is worth noting that each initial shortening (ΔL0 < 0)
(or elongation, ΔL0 > 0) represents a reduced (or augmented) initial length of
the cable (then computed by the optimisation procedure, discussed in the sequel,
in order to minimise the maximum displacements due to permanent distributed
loads). Then, from the computational viewpoint, the application of subsequent
increasing distributed loads follows.

– The structural collapse mechanism is not formally activated, because of the large
number of tensioned (elastic) cables, preventing rigid–body motions. However,
when a first set of plastic joints is simultaneously activated (more than a single
joint, as a consequence of the symmetry of the structure and of the applied loads),
the correct functionality of the antenna is assumed to be lost, in the control of
the algorithm, and the analysis is stopped, although in principle it may further
continue, within the elastic–plastic range.

– The algorithm, previously developed by the Authors for other structural analyses
in the context of 3D truss–frames (see, e.g., [10, 11, 13]), performs a check on the
positive power dissipation at each plastic joint. Instead, according to the previous
remark, in the current dedicated version of implementation, employed for the
analyses of the cable–rib antenna, the check on the positive dissipation in the
plastic joints can be avoided. This computationally speeds up thewhole processing,
within the mechanical solver of the stated optimisation loop.

As that assembled, for the specific use of the mechanical analysis of cable–rib
space antennas, the conceived LA evolutive tool can now be coupled, as a proper
“Mechanical Solver”, to appropriate optimisation routines, in view of forming a
nested loop toward structural optimisation, as earlier stated in the Introduction
(Fig. 1).
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3 Structural Optimisations of the Space Antenna

The elastic–plastic modelling concept of the space antenna structure, through the
methodological and computational procedure outlined in previous Sect. 2, is here
adopted toward formulating an innovative design tool to achieve an optimised solu-
tion of the antenna configuration, in terms of mechanical response. Although several
optimisation criteria may be considered, for different goals within the design proce-
dure, in the current section, twomain strategies are adopted, further fulfilling the aims
of the present research, with a specific concern placed on the structural characteristics
and on the achievable non–linear and collapse behaviour of the conceived antenna.
Therefore, an optimisation approach based on an elastic–plastic analysis and an opti-
misation strategy centred on combined dynamic modal analysis and elastic–plastic
analysis are herein discussed, respectively in following Sects. 3.1 and 3.2.

The present optimisation steps refer to the general paradigmof structural resilience
optimisationwidely stated in the Introduction. Here, then, the “Mechanical Solver” is
coupled to an optimisation routine, in view of deciphering global optimum solutions,
leading to the best choice of the underlying structural parameters (see Fig. 1). In this
step, either a classical Trust Region Algorithm (Sect. 3.1) or a Genetic Algorithm
(Sect. 3.2) is employed, within the context of plain resilience assessment (Sect. 3.1)
or concomitant also to modal dynamic evaluation toward light–mass and appropriate
stiffness achievement (Sect. 3.2). The optimisation process (see charts sketched in
Fig. 5) is shown to deliver consistent results, in terms of force–displacement response
and final resilience, of the sampled space antenna, and to outline a set of liable opti-
mum parameters that shall be useful for first–range tuning or end–use employment,
in terms of practical applications and design.

3.1 Elastic–Plastic Optimisation Strategy

A first approach is proposed in the design of the space antenna as a constrained
optimisation process to minimise the amount of structural displacements at incipient
collapse, as a function of cable initial shortenings, namely equivalent to cable pre-
tensions. Such a strategy involves the elastic–plastic analysis of the structure with a
self–implemented code within a Matlab environment, according to the LA evolutive
algorithm earlier presented in Sect. 2.2, while the minimisation problem is solved
by a classical Trust Region Algorithm approach, still within an autonomous Matlab
implementation (Fig. 5a).

The results of the proposed optimisation criterion, minimising the objective func-
tion expressed in the following equation, are reported in Table1 (and later in Fig. 8,
where it is also possible to observe the obtained type of collapse mechanism):

ω(ΔL1,ΔL2,ΔL3,ΔL4) = max{|U(ΔL1,ΔL2,ΔL3,ΔL4)|} (7)
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Initial conditions

Trust Region Algorithm
Evaluation of the objective function

Finding the updated parameters

LA evolutive tool

Evaluation of maximum
displacement at incipient collapse

Check stopping
criteria

OPTIMUM SOLUTION

false

true

(a)

Initial conditions

Genetic Algorithm
Evaluation of the objective function

Finding the updated parameters

Constraining on plastic admissibility

Check stopping
criteria

OPTIMUM SOLUTION

LA evolutive tool

Evaluation of maximum
displacement at incipient collapse

false

true

(b)

Fig. 5 Flow chart of the nested optimisation strategy: a) elastic–plastic optimisation; b) combined
dynamic modal analysis and elastic–plastic optimisation

In Eq. (7), ω refers to the objective function, to be minimised, ΔLi are the initial
shortenings for the cable sets, U is the global displacement field of the structure
and |·| means absolute value. Therefore, in the current optimisation strategy, a four–
dimensional parametric space is adopted, assuming as free variables the initial cable
shortenings, given, according to symmetry, four types of cables, namely the cables
connecting the base node to the lower external nodes, the cables connecting the
base node to the lower internal nodes, the vertical bracing cables and the inclined
bracing cables. Consistently, the other geometrical features of the antenna are a priori
selected, according to a previous design configuration [22], in particular regarding the
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Table 1 Data/Optimum solution for elastic–plastic optimisation

Data/Optimum solution Units Values

Radius of cable elements [mm] 2.50

Inner radii of beam element cross–sections
(outer radii proportionality factor: 1.07)

[mm] 53.00, 24.44, 20.00

Initial cable shortenings [mm] 78.65, 18.98, 13.49, 13.32

Max. displacement at incipient collapse [mm] 2.004

Resulting max. load multiplier [–] 23.03
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Fig. 6 Normalised value of the objective function Eq. (7) in the iterative looped optimisation
process, for three different starting points in the parametric space

inner cross–section radii of beam tubular elements (respectively, vertical base beam,
horizontal branch beams and inclined branch beams), the proportionality factor for
beam outer radii and the radius of cable elements, as also reported in Table1.

The results further reported in Figs. 6 and 8, in terms of optimisation iteration
loops and incipient collapse configuration, highlight the efficiency of the proposed
algorithm, both for understanding the structural behaviour of the satellite antenna and
for coupling the approach within an optimisation loop. In particular, Fig. 6 displays
that, for diverse starting points of the optimisation loop, the whole process converges
to the identified optimum solution, although the large number of iterations and the
presence of abrupt jumps in the evaluation of the objective function may highlight
a possible lack of robustness within the optimisation strategy, for the adopted TRA
routine, in the present implementation. This may point out to further inspect other
optimisation routines.

The activation of the plastic joints involves the lower branch of the top antenna
beams, as an effect of the combination between the geometrical features of the
optimum solution for the structural design and the cable pretensions. As previously
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Fig. 7 Load–displacement response curve (load amplification factor versus displacement) for the
optimum design configuration of the antenna, according to the elastic–plastic optimisation strategy,
compared with standard (non–optimised) solution

observed in Sect. 2.2, although the structural collapse mechanism is not formally
activated, the analysis is ended when the functionality of the antenna is meant to be
lost. Such a stage, due to the lack of redundancy in the antenna beam substructure
(ribs) and to the presence of several tensioned (elastic) cables, occurs at the activation
of a first set of plastic joints. This is consistently displayed also by the resulting
load–displacement curve depicted in Fig. 7. Thereby, the comparison to the standard,
non–optimised, configuration shows improved characteristics, in terms of reduced
maximum displacement and augmented resulting global stiffness of the structure.

The present optimisation procedure, coupled to evolutive computational LA, has
demonstrated the possibility to implement the conceptual paradigm meant in the
scopes stated in the Introduction and delivered consistent results, resumed as follows.

– The load–displacement curves of the space antenna are conveniently traced, and
display a rather acceptable yield capacity, for the assumed and calibrated material
properties, which is optimised, through the devised procedure.

– On the morphological features, the first that may be considered, in terms of radii
of the rib tubular elements and callipers of the tensioning cables, they may be fixed
or also be involved in the conceived optimisation strategy, fixing the values that
may be assumed or possibly tuned, within a range of practical applications that
may be confined by empirical rules or experience, in tiding them down, to specific
values that shall maximise the structural performance, in terms of resilience.

– On the tiding of wires (initial cable shortening), a rather subtle issue, to be tuned
for the specific space antenna configuration, which here has been taken as a chal-
lenging task in the optimisation process, the optimisation tool provides a clear
guideline, amongst the multiple possible ways that may be attempted for the tun-



58 G. Cocchetti et al.

Fig. 8 Incipient collapse configuration for optimum elastic–plastic solution (magenta lines—
deformed shape, green labels—plasticised elements, red dots—active plastic joints); coordinates in
mm; scale factor 100

ing. Specifically in this respect, the potential implications of the present approach
seem worthwhile to be pursued, and inspected.

– On the amount of maximum deformation at incipient collapse, the procedure is
rather useful, to effectively arriving at marking the most possible reduced value of
larger structural displacement, as targeted in the objective function, and resulting
higher stiffness.

– Overall, the general process, of structural optimisation, relying on a LA tool as a
mechanical solver, is able to deliver consistent optimum solutions, in the sought
range of structural parameters. This looks crucial, in sharpening down various
possible choices, which may appear as multiple possibilities or anyway uneasy
to be set from scratch, at design and verification stages, of the targeted cable–rib
space antenna.

3.2 Combined Dynamic Modal Analysis and Elastic–Plastic
Optimisation Strategy

To further improve the design approach and to deepen possible alternative opti-
mised solutions, a second optimisation strategy is herein proposed, combiningmodal
dynamic analyses of the antenna with elastic–plastic analyses, in order to define a
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procedure meant to minimise as well the total mass of the structure, as a function of
cross–section radii, under plastic admissibility constraints. Namely, while the evalua-
tion of the objective function to beminimised is obtained by the solution of a dynamic
modal analysis, (part of) the elastic–plastic analysis of the antenna is adopted within
the optimisation constraints, in the constrained optimisation process, to guarantee
that plastic admissibility is never violated within the structure, at each iteration stage,
and also, in the end, at the final optimum configuration.

Such an approach assumes as objective function ω to be minimised the quantity
expressed as:

ω(r1, r2, r3) = Mt (r1, r2, r3)

fmin(r1, r2, r3)
(8)

where, r1, r2 and r3 are the cross–section inner radii of the ribs, Mt represents the
total mass of the structure, and fmin is the lowest structural frequency, accounting
for a compromise effect between achieving a lightweight solution and preserving
a proper required stiffness of the structure. It should be noted that in the current
optimisation strategy, the set of sought parameters (free optimisation variables) is
composed by the three cross–section inner radii of the beam structural elements
(namely, vertical base beam, horizontal branch beams and inclined branch beams),
while the other geometrical features of the antenna are kept constant within the opti-
misation loop (Table2). Moreover, considering design data of a previously proposed
solution for an antenna structure [22] and the results of several optimisation tests,
the initial cable shortenings are adjusted to a new set of values, with respect to the
optimised solution from the earlier elastic–plastic strategy, then kept at such fixed
values during the optimisation loop. Furthermore, it is worth to mention that, within
the optimisation process, the elastic–plastic analysis of the structure is employed just
for enforcing optimisation constraints, within the optimisation loop, ruled by plastic
admissibility, and determining, in the end, load factor and displacement at incipient
collapse stage, while the objective function is evaluated only based on the dynamic
modal analyses of the space antenna (Fig. 5b).

Table 2 Data/Optimum solution for combined modal dynamic analysis and elastic–plastic optimi-
sation

Data/Optimum solution Units Values

Radius of cable elements [mm] 2.50

Inner radii of beam element cross–sections
(outer radii proportionality factor: 1.07)

[mm] 58.27, 26.82, 13.11

Initial cable shortenings [mm] 7.55, 6.78, 0.04, 91.57

Max. displacement at incipient collapse [mm] 1.796

Resulting max. load multiplier [–] 23.54

Total mass of the structure [kg] 79.91

First structural frequency [Hz] 0.3637
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Fig. 9 Contour maps of normalised objective function ω, as in Eq. (8). Each slice is obtained as
normalised contour plot, in the space of cross–section rib inner radii r1 and r2, for a fixed value of
inner radius r3
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Fig. 10 Load–displacement response curve (load amplification factor versus displacement) for the
optimum design configuration of the antenna, according to the modal dynamic and elastic–plastic
optimisation strategy, compared with standard (non–optimised) solution and elastic–plastic strategy
optimum solution
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Given the more complex shape of the new objective function to be optimised,
the present optimisation process is herein tackled by a Genetic Algorithm approach
(always withinMatlab), which has been observed to provide more robust results with
respect to the specific analysed problem. The second optimisation strategy leads to
a novel design solution of the space antenna, as reported in Table2 (and later in
Fig. 11).

The objective function to be optimised, despite its appreciable smoothness fea-
tures, highlights several difficulties in the optimisation loop analysis, due to the
competing roles of lightweight, stiffness and strength quests (Fig. 9), partially over-
come by the adoption of a Genetic Algorithm approach, here preforming more effec-
tively than a Trust Region Algorithm, and partially acceptable at a design stage,
among various optimum design strategies, namely without a strict formal request to
identify a true “global” minimum of the objective function. In particular, the sliced
contour maps of the objective function, reported in Fig. 9, display a lack of clear
identification for a “global” minimum, with respect to the ranges assumed into the
(three–dimensional) parametric space, observing diverse minimum points at varying
slice and/or minimum points at the domain borders.

The second here proposed optimisation strategy confirms the aforementioned (see
Sects. 2.2 and 3.1) observations about collapse configuration and structural behaviour
of the space antenna. Newly, the structural collapse mechanism is not directly acti-
vated as an effect of the presence of several tensioned (elastic) cables. However, at the
activation of a first set of plastic joints, the structure shall exhibit, in practice, a clear
loss of functionality, basically equivalent to a collapse condition. Nevertheless, it is
worth to observe that the load amplification factor, for a monotonically increasing
load, results quite large at the first activation of the plastic joints (Fig. 10), ensuring
a robust design of the space antenna.

The activation of plastic joints, at the achieved optimum solution (Fig. 11), here
involves the upper branch beams of the satellite antenna, as an effect of a diverse
combination of the geometrical properties of the structure and the cable tidings, with
respect to the solution discussed in Sect. 3.1. From a purelymechanical standpoint, in
consideration of the elastic–plastic analysis outcomes, no specific preference can be
selected between the two proposed optimisation strategies, providing in both cases
a quite consistent structural design of the satellite antenna. Although the combined
dynamic modal and elastic–plastic optimisation strategy exhibits larger numerical
difficulties within the minimisation process, it shall appear as the preferred one, from
an engineering design point of view, according to multiple analysis criteria of the
structural behaviour of the satellite antenna.

Moreover, Fig. 10 globally shows and resumes the outcomes of the attempted
optimisation processes, from the standard configuration, to the two optimised solu-
tions, demonstrating a considerable improvement in the global load–displacement
response and associated resulting stiffness. Further, this is here achieved together
with a lighter mass and a higher first natural frequency, in this last optimum config-
uration, as discussed below.

Comparisons among the various solutions are indeed finally elucidated in Table3,
where it is observed that both optimisation strategies provide an improved design of
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Fig. 11 Collapse configuration for modal dynamic analysis and elastic–plastic optimum solu-
tion (magenta lines—deformed shape, green labels—plasticised elements, red dots—active plastic
joints); coordinates in mm; scale factor 100

the antenna,with respect to the standard configuration, obtaining a reducedmaximum
displacement at incipient collapse (namely a higher global stiffness) and a lowered
mass (globally connected to a maximised first natural frequency of the structure).
The resulting maximum load multiplier, with a limited variation among the diverse
solutions, appears sufficiently large, for structural safety assessment, also in consid-
eration of space satellite antenna scopes and functionality/robustness requirements.
Moreover, the combined optimisation strategy, involving all together modal dynamic
analysis and elastic–plastic analysis, globally appears to perform in a more effective
way, pointing out to an improved solution, with a further gain, regarding a lowermax-
imum displacement at incipient collapse (and increased loadmultiplier/displacement
ratio, as global stiffness of the structure) and an augmented first natural frequency
of the antenna.

Adding to the previous ending comments in Sect. 3.1, the present further attempt
extends the optimisation analysis in also delivering, at the same time, information
regarding basic modal dynamic properties, mainly read in terms of total structural
mass and lowest natural frequency of vibration of the antenna. The following main
remarks are then in order.

– The estimations of morphological parameters (radii) keep consistent, with the
values in the preceding elastic–plastic optimisation analysis, showing a somehow
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Table 3 Comparison of characteristic solution values between standard (non–optimised) design,
elastic–plastic optimised (ep) design and modal dynamic and elastic–plastic optimised (mdep)
design of the cable–rib antenna

Optimum solution Units Standard sol. ep sol. mdep sol.

Max. displacement at incipient
collapse

[mm] 4.480 2.004 1.796

Resulting max. load multiplier [–] 23.57 23.03 23.54

Load multiplier/displacement ratio [1/mm] 5.261 11.49 13.11

Total mass of the structure [kg] 226.2 88.40 79.91

First structural frequency [Hz] 0.2337 0.2793 0.3637

different inner radii distribution that allows, at the same time, to address the concept
of light–mass.

– The setting of cable shortenings locate a rather different best solution, for the
integrated scopes of resilience and light–mass, showing the need of a guideline,
in a tensioning tuning that may display a wide variability, at design stage.

– The total mass of the structure is confined to a value of 79.91kg, for the considered
material to be employed (aluminium), providing a lighter solution with respect to
the one gathered by the previous optimisation strategy (88.40kg; thus, with about
a 10% saving). Different material properties, then, may be inspected, to foresee
further solutions (and possibly structural schemes) that may help in lowering down
this final characteristic feature (total mass), which shall always display a crucial
role in space transportation and handling. This could lead to further coupling and
iterations, on the practical side, with interaction among real quests and modeli-
sation/optimisation running. In other words, the prototype antenna could then be
further analysed, and optimised, even beyond the present demonstration purposes
ofmethodological optimisation context,which has already advanced basic solution
features and final structural properties.

– The lowest structural frequency, in terms of a main vibrational feature, for the
linear dynamic response, shows a quite well–defined value. This may actually be
targeted, for a further attention, if needed, in the design process, if felt, a posteriori,
as a significant structural feature, in the process of mounting and regular operation
on field, especially toward confining vibrational ranges.

4 Conclusions

The present attempt has stated, and demonstrated, a general paradigm of structural
resilience, based on effective Limit Analysis computational tools, as possibly cou-
pled to efficient optimisation loops, in the structural application field of large–scale
deployable cable–rib aerospace antennas, with a specific prototype sample being
analysed, as a perspective application, in terms of conceptual and practical design,
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seeking further high–performance and optimised solutions. Once the present princi-
ple shall be established, communicated and inherited, here by the aerospace structural
engineering community, it should take off, in a flight bringing the above–mentioned
computational tools in constituting an essential modelisation counterpart, for tun-
ing design and practical solutions. In all that, LA should regain modern momentum
and visibility, on the side of engineering practice, in specific fields, once released
through effective and reachable algorithms. This project shall have contributed to
that, in delivering various outcomes and considerations, as ruled down in the body
of the paper and briefly resumed below.

In this investigation, a devoted numerical LA algorithm has been implemented,
for performing the evolutive elastic–plastic analysis of deployable cable–rib satellite
antennas. To significantly improve the design of the analysed structure, the com-
putational tool has then been employed as looped to optimisation strategies, taking
advantage of the underlying achieved efficiency of the LA algorithm, toward locat-
ing optimum design solutions. From the collected results, some conclusions can be
derived, specifically related to the considered application case study and, besides
the problem–driven implementation, regarding the general validity of the present
methodology, as a design tool, in the framework of non–linear analysis and Limit
Analysis of lightweight structures, such as space antennas.

In particular, it is possible to observe that the evolutive algorithm for elastic–plastic
analysis truly identifies the activations of the plastic joints and consistently estimates
displacements, and load bearing capacity, up to incipient collapse. Therefore, the
approach displays significant advantages, being able to fully trace the evolutive non–
linear (piece–wise linear) mechanical behaviour of the structure, both from evolution
and collapse standpoints, computing all together internal action distribution and
displacement field.

The robustness and efficiency of the elastic–plastic strategy has actively been
explored within diverse optimisation criteria and objective functions, allowing for a
suitable design perspective, considering non–linear structural behaviour and collapse
configuration toward serviceability conditions. Such a procedure has been fundamen-
tal, in order to highlight different possible design outlines of the antenna, according
to various optimisation strategies and features to be observed and expected. At the
same time, this is meant to define a novel conceptual approach in the specific appli-
cation field, within an advancement with respect to the classical computational tools
of static elastic analysis.

From a more general point of view, further extending the obtained conclusions
than for the specific problem–driven development, an efficient computational Limit
Analysis, possibly combined with structural optimisation loops, shall newly lead to
a convenient paradigm for structural design (see Introduction), once the algorith-
mic implementation is truly effective, in tracing down the non–linear mechanical
response, as a structural behaviour, even for large–scale and peculiar structures, such
as for cable–rib space antennas. The proposed algorithm, as a robust and practical
design approach, may rapidly be extended to various structural application fields,
both in research approaches and engineering design prospects.
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This last observation allows to prompt out some perspectives of future devel-
opments and applications, toward further implementations of devoted specific algo-
rithms, such as for those based on a general Linear Complementarity Problem formu-
lation, and toward the employment of the devised methodologies for “form–finding”
and design purposes, in the combination of classical structural analysis, Limit Anal-
ysis and optimisation strategies.
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An Introduction to the Probabilistic
Linear Matching Method Framework
for Structural Integrity Assessment
Under Uncertain Design Conditions

Xiaoxiao Wang and Haofeng Chen

Abstract The novel probabilistic Linear Matching Method (pLMM) framework is
developed by extending the current direct method, the Linear Matching Method
(LMM), to deal with the probabilistic structural integrity assessment for engi-
neering components under uncertain operating conditions. The pLMM framework
covers several physics-based failure evaluation modules related to cyclic loads at
elevated temperatures, including shakedown analysis, ratcheting analysis, low cycle
fatigue (LCF) analysis and creep-fatigue analysis. To further improve the predic-
tion efficiency, artificial neural network (ANN) technology is employed to build
the data-driven surrogate relationship between the design parameters and the key
responses regarding specified failure behaviour, with a series of probabilistic eval-
uation boundaries and assessment diagrams of engineering structures established to
describe the uncertainty of the structural resistance. The reliability analysis tech-
niques are involved as well, by which the failure probability is estimated consid-
ering the randomness of engineering problems. The pLMM framework is conducive
to getting rid of the excessive dependence on the conventional safety factor with
conspicuous conservativeness during risk management, enhancing the robustness of
critical infrastructure.

1 Introduction

Structural integrity assessment provides a fundamental investigation of structural
resistance against a certain failure mechanism by a series of deterministic experi-
mental analyses and numerical simulations. To further reflect the uncertainty in the
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material properties, geometric parameters, boundary conditions and loads condi-
tions of engineering infrastructures, the most commonly used strategy is to set an
appropriate safety factor which is able to consider the adequate redundancy in the
design process. [1–3]. Inevitably, this experience-based arbitrary decision-making
may result in unreasonable conservativeness introduced due to the limited statistical
information on the important structural responses. The feasible probabilistic struc-
tural integrity assessment technology contains two main prerequisites: the concise
but accurate deterministic evaluation approach and the proper probabilistic analysis
method, and integrating the two sections into a unified frame system is a challenging
engineering problem to which enormous endeavour has been devoted in academia.

The case study of the reliability-based shakedown analysis for a high-pressure
chamber is given out by Andrzej [4], where the shakedown analysis procedure
(CYCLONE), Response SurfaceMethod (RSM) andMonteCarlo Simulation (MCS)
sampling method were adopted to address the randomness of the cyclic inner pres-
sure and radius. Staat and Heitzer proposed a stochastic FEA procedure that is dedi-
cated to implementing probabilistic shakedown analysis, and the benchmarks of the
central holed plate, pipe junction and plate with mismatched weld and a crack were
elaborated [5–7] and verified by related analytical studies.

The reduced-order model technique, as well as the surrogate model, is applicable
to implicitly expressing the estimation of structural fatigue life [8, 9] under compli-
cated operating environments with fewer computational resources. For instance, the
artificial neural network (ANN) is widely applied to reliability-based fatigue evalua-
tions [10], and the feedforward backpropagationmultilayer perceptron (MLP) neural
network was employed by Durodola [11], where the non-linear effect of mean stress
on the fatigue life was examined in the probabilistic fatigue analysis. Another appli-
cation was reported by Ref. [12], with the probabilistic fatigue damage of subsea
pipe derived by the dynamic Bayesian network. A similar analysis scheme was also
extended to investigate the probabilistic fatigue crack growth and propagation [13].

Concerning the components under the creep regime, Zhang [14] provided compar-
ative research, where the abilities to predict the creep-fatigue life of 316 stain-
less steel of three neural networks were compared, revealing the superiority of
physics-informed neural network for providing the creep-fatigue life approximation
with better fitting quality. The machine learning-based creep-fatigue life prediction
scheme of low-alloy steel 42CrMo4 specimen was constructed in Ref. [15], and
the ANN-based damage model by the long short-term memory network and gated
recurrent unit neural network was proved to be suitable for creep-fatigue life esti-
mation under complicated conditions with non-linearly changing temperatures and
mechanical strain rates.

Therefore, the plausible probabilistic analysis framework for structural integrity
should satisfy the prerequisites in terms of three different levels. Firstly, the deter-
ministic structural integrity evaluation program should keep a good balance between
computational accuracy and efficiency. Next, the effective prediction model should
be able to capture the pertinent nonlinear relationship between the design parameters
and output, without depending on unaffordable computational resources. Finally, the
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universal probabilistic analysis tool should be applicable for solving the structure-
level problems, providing comprehensive statistical information and the failure
risk.

The LMM procedures have been proven to be able to deal with a wide range
of structural integrity assessments (as shown in Fig. 1) by adopting a series of
linear calculation approaches to precisely match the structural non-linear responses,
including shakedown analysis [16], ratcheting analysis [17], low cycle fatigue (LCF)
analysis [18] and creep-fatigue analysis [19]. The LMM shakedown analysis proce-
dure is developed to calculate the structural shakedown limit leveraging the time-
independent residual stress [20], according to the upper bound shakedown theory.
When tackling the load conditions leading to alternating plasticity, the structural
plastic response and the related Low Cycle Fatigue (LCF) evaluations are able to be
implemented by the Direct Steady Cycle Analysis (DSCA) procedure [21], with the
varying residual stress determined iteratively. Based on the time-dependent residual
stress field by the DSCA procedure, the LMM ratcheting analysis procedure is dedi-
cated to assessing the structural resistance to progressive plastic behaviour, where the
limit of the additional constant load condition is acquired [18]. In order to further take
the creep effect into consideration during LCF analysis for high-temperature compo-
nents, the latest extendedDirect SteadyCycleAnalysis (eDSCA) procedure [19], can
analyse the creep-fatigue interaction in terms of both stress–strain response level and
the damage level, providing an accurate prediction of the lifetime to creep-fatigue
crack initiation.

In this study, the deterministic analysis procedures are extended to address the
probabilistic assessment for engineering components under cyclic load conditions
and elevated temperature, and the recent research benchmarks and engineering
applications by means of the proposed pLMM methodology are delivered.

Fig. 1 Linear Matching Method (LMM) framework for structural integrity assessment regarding
different failure mechanisms
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2 Probabilistic Shakedown Analysis Under the pLMM
Framework

2.1 Probabilistic Shakedown Boundary
and the Implementation of Reliability-Based Shakedown
Analysis

Establishment of the probabilistic shakedown boundary.The probabilistic shake-
down boundary is conducive to visualizing the shakedown boundary affected by
the uncertainty in design parameters, which can be built by implementing MCS
samplings to estimate the statistical distribution of the LMM shakedown multipliers.
As shown in Fig. 2, with the load ratio between Load 1 and Load 2, the envelope
of probabilistic shakedown boundary and the associated statistical significance are
displayed. And the failure risk against shakedown conditions raised by load condi-
tions lying on the boundary is equal to the probability of the occurrence of the
shakedown boundary.

Reliability-based shakedown analysis procedure. In order to perform the
reliability-based shakedown evaluation and further examine the structural failure
probability against shakedown conditions, a simplified governing function, the
shakedown limit state indicator function (SLSIF), is expressed by Eq. (1) below.

G(X) = λ(X) − 1

⎧
⎨

⎩

< 0,Failed
= 0, Limit state
> 0,Survival

(1)

Here, the LMMshakedownmultiplierλ functions as a state indicator, if themultiplier
is equal to 1, it implies that the applied load condition lies on the shakedownboundary.
Amultiplier which is less than 1 always results in the current caseworking outside the
shakedownboundary.On the other hand, for a survival case, the shakedownmultiplier
should be strictly guaranteed larger than the threshold value, λ = 1. The proposed

Fig. 2 Scheme of
probabilistic shakedown
boundary by different load
ratios
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SLSIF is then utilized directly by the First Order Reliability Method (FORM) [22]
to acquire the structural failure probability and shakedown reliability index.

Description of deterministic FEAmodel. The benchmark of probabilistic shake-
down analysis is demonstrated by the holed plate displayed in Fig. 3, which is
discretized by the 20-node quadratic brick element C3D20R with reduced inte-
gration. And the ratio between the hole diameter D and the length L of the plate
is 0.2, and the ratio between the depth d of the plate and the length L is equal to
0.05. Through the mesh convergence check, the total element number and minimum
element size are determined to be 721 and 1.25 mm. Besides, Young’s modulus E
and the Poisson’s ratio ν of the elastic-perfect plastic (EPP) material are assumed to
be 2 × 105MPa and 0.3 respectively, and the material yield strength σy is defined to
be 200MPa. The shakedown analysis is implemented considering the biaxial tensile
load shown in Fig. 3, where the horizontal component P1 is a constant uniform load
and the vertical component P2 is cyclic one. Detailed cyclic load pattern is depicted
in Fig. 4.

Probabilistic shakedownboundary of the holed plate. Considering two random
variables, the diameter of the central hole D and the material yield strength σy , the
probabilistic shakedown boundaries of the holed plate are plotted in Fig. 5. This
probabilistic shakedown assessment diagram is constructed by a series of random
variables λi , and the statistical distributions of the LMM shakedown limit multiplier
with different load ratios are displayed in Fig. 6. It is worth noting that the actual
shakedown boundary should occur stochastically inside the envelope surrounded by
a certain curve with corresponding probability.

Reliability-based shakedown analysis for the holed plate. According to the
proposed shakedown limit state indicator function (SLSIF), the gradient vector of
the SLSIF is generated during each iteration by calculating the convergent numer-
ical partial derivatives of each random variable at the current design point. In
the reliability-based shakedown analysis, there are two typical examples, with the

Fig. 3 FEA model of the central holed plate
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Fig. 4 Description of the time-dependent load conditions: a cyclic mode of the applied load path;
b detailed spectrum of the applied load conditions

Fig. 5 Probabilistic
shakedown boundaries of the
central holed plate under
predefined load path

load conditions on the deterministic shakedown boundary and inside the boundary
involved (as shown in Fig. 7), respectively. The results of reliability analysis with
different load conditions are listed inTable 1, anddue to the uncertainties of geometric
dimension and material property, even though the load condition (points 1 in Fig. 7)
is located on the deterministic shakedown boundaries, the survival probability is only
70.45%, which is still much lower than 100%. The failure probability derived from
pLMM-based reliability analysis is comparedwith the verifications with directMCS,
with all random variables remaining consistent with Table 1. The comparison shows
that the results of the proposed probabilistic shakedown analysis are consistent with
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Fig. 6 Probabilistic distribution of LMM shakedown limit multiplier with different load ratios: a
ratio = 0.6; b ratio = 0.84; c ratio = 1.3; d ratio = 3

the exact solutions provided by MCS (3,000 sampling points involved), with the
relative error controlled within an acceptable range.

3 Probabilistic Low Cycle Fatigue and Ratcheting Analysis
Under pLMM Framework

3.1 Linear Matching Method-Driven Neural Network
(LDNN) for LCF Life and Ratchet Limit Predictions

The Linear Matching Method-driven neural network (LDNN) is built and employed
as the multi-layer perceptron (MLP) for modelling and prediction [23], and the
general network structure contains three layers: the input layer, the hidden layer and
the output layer, as displayed in Fig. 8.
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Fig. 7 Deterministic
shakedown boundaries of the
holed plate and the load
conditions for reliability
analyses

Table 1 Results of
reliability-shakedown
analysis by pLMM and the
verifications with MCS

Load point
index

Failure
probability Pf

Verification by
MCS

Error %

1 0.2954518037 0.2990909091 1.2167

2 0.04034325841 0.042962963 6.0976

Fig. 8 General structure of a three-layer artificial neural network (ANN)

The data flow commences with the input data vector x passed in through the input
layer to the hidden layer, during which the weight of each parameter is also added.
Next, in the middle or hidden layer, the ellipsoidal basis function (EBF) [24] existing
in each neuron plays the key role in the activation function, leading to the non-linear
mapping process which is dependent on the summation of input with weights and
bias. For implementing LCF lifetime and ratchet limit modelling, the interpolating
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functions are formulated by Eqs. (2) and (3), where φi (x) is the basis function of EBF
neural network [24], αi and αN+1 are the weight and bias terms, respectively, and
the L f and λ represent the approximations of LCF life and ratchet limit multiplier.

L f (x) =
∑N

i=1
αiφi (x), for LCF lifetime modelling (2)

λ(x) =
∑N

i=1
αiφi (x) + αN+1, for ratchet limit modelling (3)

The working flow of LDNN-based probabilistic LCF and ratcheting analyses
under the pLMM framework is illustrated by three main steps included:

Step 1. Generating the training dataset by Latin Hypercube Sampling and
processing the input dataset with LMM to acquire the structural response;

Step 2. Training [25] and testing the LMM-driven neural network (LDNN);
Step 3. Performing the probabilistic LCF or ratcheting analysis with surrogate

models to predict the distribution of key output and the failure probability.

3.2 Benchmark of Probabilistic Low Cycle Fatigue Analysis

Description of the FEA model. To illustrate the applicability of the proposed prob-
abilistic analysis scheme for LCF life assessment, a benchmark of the elbow pipe
bend is investigated, and detailed descriptions of the geometry are given out in Fig. 9.
Firstly, the structure of the elbow pipe bend is characterized by the dimension param-
eters in Table 2. The parameters RO , tn , R and L denote the outer radius of elbow
pipe, nominal pipe wall thickness, bending radius and straight length, respectively.
Besides, the bending characteristic, h, is defined as Rt/rm2, where rm refers to the
nominal mean radius of the pipe. The FEA model is discretized by ABAQUS, with
the 20-node quadratic brick element C3D20R adopted, which keeps a good balance
of numerical precision and computational efficiency by reduced integration tech-
nology. And inside the black dotted box, the elbow zone is refined so as to satisfy
the requirements of mesh convergence and to capture the prominent stress gradient
around this local region, with 4,760 elements created in total.

Adopted material properties and boundary conditions (BCs). The elbow pipe
bend is made of austenitic stainless steel 316L, and the temperature-dependent mate-
rial properties are provided [26] in Table 3, including Young’s modulus E , Poisson’s
ratio ν, the average coefficient of linear thermal expansion αm and thermal conduc-
tivity k. In addition, the temperature-dependent cyclic stress–strain relationship is
described by Eqs. (4) and (5) in Ramberg–Osgood (R-O) form, where εta is the total
true strain amplitude, σa is the total true stress amplitude, E is themulti-axial Young’s
modulus, and K and n are the strength coefficient and plastic hardening parameters
controlling the cyclic responses.
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Fig. 9 Descriptions of the geometry and FEAmodel of the elbow pipe component for probabilistic
LCF life and ratchet limit analyses

Table 2 Geometric dimensions of the elbow pipe bend

Outer radius
RO (mm)

Wall thickness
tn(mm)

Bending radius
R(mm)

Length
L(mm)

Bending characteristic
h

180 60 500 1500 1.33

Table 3 Adopted temperature-dependent material properties of austenitic stainless steel 316L

Temperature (◦C) 20 100 200 300 400

Young’s modulus

E
(
103MPa

)
200 193 185 176 168

Poisson’s ratio
ν

0.3

Coefficient of thermal expansion

αm
(
10−6/◦C

)
15.3 15.9 16.6 17.2 17.8

Thermal conductivity
k(W/mm · K)

0.01428 0.01548 0.01698 0.01849 0.01999

K (MPa) 2286 2082 1860 1650 1650

n 0.351 0.339 0.325 0.31 0.31
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εta = σa

E
+

(σa

K

) 1
n

(4)

E = 3E

2(1 + v)
(5)

The half model of the elbow pipe bend is created with the symmetric BCs exerted
on the symmetric surfaces, and the displacement constraints are also applied along
with the horizontal and vertical directions at each end of the elbow pipe, which
are shown in Fig. 9. Besides, on the inner surfaces lies the constant inner pressure,
and between the inner and outer surfaces of the pipe wall, there exists the cyclic
temperature difference.

Deterministic ratchet limit boundary and alternating plastic response region.
By means of the deterministic LMM procedures, the limit boundaries of the elbow
pipe bend are established in Fig. 10, by which the structural responses are divided
into two different sections: the ratcheting region and the reverse plasticity region.
And the typical failure mechanisms in terms of LCF crack initiation and progressive
plastic collapse (ratcheting) are compared in Fig. 11. Here, the horizontal and vertical
coordinates are normalized by the limit load of the elbow pipe bend, 112.4MPa, and
the applied reference temperature difference, 225◦C, respectively.

Probabilistic LCF lifetime prediction by LDNN. Considering the uncertain
design parameters, including the Material parameters K and n, Nominal thickness
tn, constant inner pressure P/P0 and cyclic temperature difference �T/�T 0, the
statistical distribution of the elbow pipe LCF life, visualized by the plots in Fig. 12,
is investigated by employing the proposed LDNN-based surrogate model with 120
neuron pathways inside the hidden layer. Under the existence of random variables,
including material property parameters (K and n), elbow pipe thickness and the inner
pressure, the LCF life of elbow pipe bend tends to show the Lognormal distribution.

Fig. 10 Deterministic
ratchet limit boundary and
the reverse plasticity load
region for the elbow pipe
bend
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Fig. 11 Typical failure mechanisms in terms of LCF crack initiation and ratcheting for the elbow
pipe bend

Fig. 12 Statistical
distribution of LCF life of
the elbow pipe

3.3 Benchmark of Probabilistic Ratcheting Analysis

Probabilistic ratchet limit prediction by LDNN. The probabilistic ratchet limit
of the elbow pipe bend is estimated by the LDNN-based surrogate model (with 100
neurons set in the hidden layer) andMCS sampling in terms of the predefined random
variables, and the 3D statistical distribution curves are plotted in Fig. 13. Definitely
different from the distribution types (Lognormal and Weibull) to depict the proba-
bilistic LCF life, here the probabilistic ratchet limit considering the random variables
(including nominal thickness and material property parameters K and n) obey the
Normal distribution, with the detailed statistical information provided in Table 4. As
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the level of cyclic temperature difference gradually increases, the mean values of the
ratchet limit decrease from 79.04 to 69.42 MPa, whereas the standard deviations,
accounting for the dispersion degree of the random variable, reduce slightly and
remain stable at high-temperature conditions (for the cases where the normalized
temperature difference ranges from 1.1 to 1.3).

Fig. 13 Statistical distribution of ratchet limit of the elbow pipe under constant inner pressure and
various cyclic temperature differences

Table 4 Statistical
distribution information of
ratchet limit of the elbow pipe
under constant inner pressure
and various cyclic
temperature differences

�T/�T 0 Statistical distribution of ratchet limit

0.9 N ∼ Normal (76.446, 4.450)

1.0 N ∼ Normal (74.162, 4.564)

1.1 N ∼ Normal (72.389, 4.667)

1.2 N ∼ Normal (70.7137, 4.753)

1.3 N ∼ Norma l(69.416, 4.742)
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3.4 Reliability-Based LCF and Ratchet Analyses
for the Elbow Pipe Bend

Definition of the unified limit state indicator (ULSI) function. Under the pLMM
framework, the unified limit state indicator (ULSI) function is proposed to simplify
the subsequent reliability analysiswith a concise formbyEq. (6). For the probabilistic
LCF life assessment, the LCF multiplier λLCF in the ULSI function is expressed
by the proportion of the predicted structural lifetime to the design life to satisfy
the operation requirement (which is predefined as 2,000 cycles in this reliability
analysis for the elbow pipe bend). Concerning the probabilistic ratcheting analysis,
the ratcheting multiplier λratcheting is directly generated by the LMM ratcheting
procedure, which refers to the amplification factor from the current load level to the
ratchet limit when λratcheting > 1.0.

G(X) = λ(X) − 1 =
⎧
⎨

⎩

λLCF (X) − 1 = LCF(X)
Ldesign

− 1, for probabilistic LCF life assessment

λratcheting(X) − 1, for probabilistic ratcheting analysis
(6)

Reliability-based LCF life and ratchet limit evaluations. Based on the deter-
ministic structural ratcheting boundary in Fig. 10, the load combination located in the
reverse plasticity region (in purple colour) is reinvestigated by reliability analysis,
where the design parameters are set as random variables. To verify the effectiveness
of the pLMM framework, there are two comparison sets employed: the first one is
given out by the response surface model (RSM), with the quartic order polynomial
leveraged to fit the least-squares regression of the LCF life and the ratchet limit.
Another is the step-by-step elastoplastic analysis, during which the LCF life and
ratcheting state are determined by either the cyclic plastic strain range or the accu-
mulative plastic strain, respectively. The failure probability regarding a certain cyclic
plastic response is calculated via the direct MCS.

The reliability analysis results of the proposed LDNN surrogate model and the
RSM-based method are shown in Table 5, with the failure probability compared to
the detailed MCS. It can be observed that with the lowest training points involved,
the failure probability of the proposed LDNN-based approach is much closer to
validation than the RSM-based method for the probabilistic fatigue and ratcheting
evaluations. The error generated by the RSM-based method is mainly caused by
insufficient training data, which means to guarantee adequate estimation quality,
much more training points should be prepared and input during the fitting process of
the RSM model.
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Table 5 Results of reliability analyses for LCF and ratcheting failures by LDNN surrogate model,
RSM model and MCS validation

Failure mode LDNN-based method RSM-based method Verification of MCS
with elastoplastic
analysis

Pf NLDNN Pf NRSM Pf NMCS

LCF 0.1048 120 0.1079 250 0.0819 4452

Ratcheting 0.6635 100 0.6802 220 0.6679 4351

Noting that NLDNN and NRSM indicate the gross number of training points used in the training
process of the LDNN and RSM surrogate model respectively, and NMCS refers to the total number
of elastoplastic simulations during MSC

4 Probabilistic Creep-Fatigue Analysis Under pLMM
Framework

4.1 Linear Matching Method-Driven Neural Network
(LDNN) for Creep-Fatigue Life Prediction

The probabilistic creep-fatigue assessment under the pLMMframework is performed
by using the Linear Matching Method-driven neural network (LDNN), where the
basic interpolating function of creep-fatigue lifetime L is given out by Eq. (7). And
the numerical implementation process of this proposed probabilistic creep-fatigue
analysis is carried out by using the conjunction of ABAQUS and Isight.

L(x) =
N∑

i=1

βiϕi (x) + βN+1 (7)

4.2 Benchmark of Probabilistic Creep-Fatigue Analysis

Random variables in the probabilistic creep-fatigue analysis. In this case study,
the same FEA model, the elbow pipe bend operating under a high-temperature envi-
ronment, is utilized to introduce the applicability of the proposed probabilistic creep-
fatigue analysis under the pLMM framework when solving engineering problems.
The uncertain design parameters cover the cyclic yield strength Rp0.2(T ), the creep
Norton law coefficients A and n, Nominal thickness tn, cyclic inner pressure P/P0,
the cyclic temperature difference �T/�T 0, and creep dwell time t.

Creep-fatigue failure mechanism of the elbow pipe. Based on the mean values
of the design parameters, the typical failure mechanism of the elbow pipe component
is plotted in Fig. 14. Due to the effect of geometric discontinuity at the elbow location,
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the inner surface of the intrados exhibits the maximum strength of fatigue damage
and creep damage simultaneously.

Probabilistic creep-fatigue lifetime prediction. Considering the uncertainty in
design parameters of the elbowpipe, the proposed probabilistic creep-fatigue analysis
is able to measure the statistical distributions of the creep-fatigue lifetime, as well
as the estimation of the statistical information by the proposed LDNN with 120
neurons in the middle layer, as plotted in Fig. 15. The creep-fatigue lifetime follows
the log-normal distribution [27], with the logarithmicmean value and the logarithmic
standard deviation also fitted.

Fig. 14 Creep-fatigue
damage increment per cycle
of the elbow pipe under the
mean values of the design
conditions

Fig. 15 Statistical
distribution of the
creep-fatigue responses: a
damage increment of the
elbow pipe; b lifetime of the
elbow pipe
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5 Conclusions

Traditional safety factors are dedicated to pursuing extremely safe designs under
uncertain conditions with deterministic assessments, which, inevitably, is an obstacle
to achieving precise design and risk management. In this study, a series of prob-
abilistic structural integrity assessment strategies are elaborated under the proba-
bilistic Linear Matching Method (pLMM) framework to consider the uncertainty
of the design conditions, where different structural failure behaviours, including
shakedown, ratcheting, low cycle fatigue (LCF), and creep-fatigue, are taken into
consideration. Detailed benchmarks are also provided, showing the effectiveness
and comprehensive applicability of the pLMM framework in engineering problems.
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Peak Load Prediction of Human Bone
Proximal Femur: Sensitivity to Tissues
Strength and Geometry

Aurora Angela Pisano and Paolo Fuschi

Abstract In a peculiar structure like the human proximal femur, the relevant lit-
erature oriented to describe the bone mechanical behavior gives a large variety of
analysis methods, models and approaches and this due to many factors such as: age,
life-style, ethnicity, gender, diseases in progress, etc. The main challenge is indeed
the great variability of the input data/parameters to be used in the mechanical analy-
sis. In this paper a sensitivity analysis is performed on a numerical predictive method
for the evaluation of the collapse/limit load of the human proximal femur recently
proposed by the authors. The influence of the cortical and trabecular thicknesses and
strengths on the numerical findings is investigated. The results obtained show a great
sensitivity of the predicted ultimate load to the strengths of bone tissues rather than
to thicknesses.

Keywords Sensitivity analysis · Human proximal femur · FE-based limit
analysis · In silico tests results

1 Introduction

The fracture of the human proximal femur is a very common pathology, it is known
that every year hundreds of thousands people are affected worldwide by this pathol-
ogy, especially the elderly, and this number is expected growing in the future aging
industrialized societies. This explains the huge number of literature studies, both
experimental and theoretical, which try to relate experimentally detectable quanti-
ties with the risk of rupture of the femur as well as the construction of mechanical
models for predicting such rupture.
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As well known, the risk of spontaneous or fall induced fractures of the femur is
mainly associated to the presence of osteoporosis. Therefore, the clinical assessment
of such risk is very often based on the measurement of bone mineral density (BMD)
performed by dual-energy X-ray absorptiometry (DXA). It has been also shown that
the BMDmeasures are not always reliable for the purpose and that better predictions
of femoral strength can be obtained using subject-specific finite element (FE) models
based on Computer Tomography (CT) images. The literature on this subject is truly
vast so here reference is made to a recent review paper [1] and references therein,
correlating experimental and clinical evidence of BMD and/or CT-finite element
analysis with strength and fracture risk of human proximal femur.

Significant efforts have also been made in recent years in defining damage and
fracture propagation models framed in the context of the extended finite element
method (XFEM) [2, 3] and of the partition of unity finite element method (PUFEM)
[4]. These models can be very complex, especially in 3D, and they are often not free
from numerical problems and mesh dependence. These approaches to the problem,
which try to simulate the initiation and propagation of the fracture until the bone
breaks, are with no doubts interesting, but certainly deserve further studies.

On the other hand, the importance of the problem and its economic impact on
public health, pushed researchers to find faster and reliable methods to predict the
proximal femur collapse so to use this information in clinical decisions. The method
promoted in this article, which belongs to a recent research program by the authors
[5], can be framed within the latter faster predictive approaches, and applies the
theory of limit analysis in the context of human bones.

The theory of limit analysis allows to determine the peak load or plastic collapse
load of a structural element, without following the evolutive load history that has
determined it, then it does not describe post-elastic phenomena, damage or fracture
propagation, going rather to the direct determination of the ultimate load. A signifi-
cant simplification offered by the limit analysis numerical procedure applied in this
paper is that it is based only on elastic analyses of the proximal femur model. In par-
ticular, we refer to a numerical procedure, known as Elastic Compensation Method
(ECM), able to define a lower bound to the collapse load. The ECM [6, 7] makes
use of sequences of linear elastic analyses within which the elastic moduli of the
“materials” the bone is made with are systematically varied to simulate the process
of stress redistribution arising within the bone just before its collapse. The robustness
of the method has already been experienced by the authors in several applications
of engineering interest and for structures made up of composites, [8–10], or rein-
forced concrete [11–13] and a first promising attempt has also been made for “bone
materials” [5, 14].

The application of the ECM to the human proximal femur essentially requires
the definition of a mechanical model (geometry, thicknesses, loading and boundary
conditions) together with admissible stress domains (yield surfaces) for the macro-
constituent materials, namely the cortical and trabecular tissues. In the present paper
attention will be focused on those parameters that more than others can influence
the evaluation of the limit load via the promoted approach. Precisely, referring to a
simplified mechanical model of the human proximal femur, a sensitivity analysis is
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carried out by varying both the cortical thickness, often indicated in the literature
as a crucial parameter [15], (the trabecular thickness varying consequently), and
the strength values entering the Tsai-Wu-type admissibility stress domain hereafter
adopted for both cortical and trabecular tissues. The numerical results obtained show
a great sensitivity of the predicted collapse load value on the material strengths rather
than on the thickness of bone tissues.

2 Simplified Mechanical Model of Human Proximal Femur

As declared in the introductory section, the main object of the present paper is to
study the influence on the limit load values of the human proximal femur exerted by
the cortical thickness and the strengths of cortical and trabecular tissues.
To achieve the above goal, first of all, it is necessary to set up a mechanical model. A
simplified (smoothed and regular) shape of the bone, already applied by the authors
with success in [5], is adopted in order to make easier the implementation of a
numerical FE model.

The geometry of the bone is assumed as in Fig. 1a, which represents a median
section of a 3D model (the one used in the analyses) containing the shaft and neck
axes. With reference to a Cartesian orthogonal system, the drawn section lies in

Fig. 1 Geometries of the (simplified) human proximal femur: a Characteristic outer dimensions;
b Inner dimensions
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Table 1 Geometrical data of the simplified proximal femur model

Dimension Reference

d1 [mm] 51.60 Holzet al. 2009 [16]

d2 37.40 Holzet al. 2009 [16]

d3 65.64 Michelotti and Clark 1999 [17]

d4 35.40 Michelotti and Clark 1999 [17]

h1 80.00 Dall’Ara et al. 2013 [18]

h2 5.30 Michelotti and Clark 1999 [17]

h3 44.00 Michelotti and Clark 1999 [17]

AC 90.26 Michelotti and Clark 1999 [17]

θ [grad] 130 Yang et al. 2014 [19]

the plane (Y, Z ), with Y oriented along the radial or medio-lateral direction and
Z coincident with the axial or inferior-superior shaft axis; eventually the X axis,
orthogonal to such plane, is oriented in the posterior-anterior direction. The values
of the dimensions indicated in Fig. 1a are reported in Table1, together with the
references from which they are borrowed.

Figure1b depicts the internal geometry of the proximal femurwith an external part
made of cortical tissue and an internal part made of trabecular and marrow tissues.
Unlike what was assumed by the authors in [5], the thickness of the cortical tissue is
here considered variable in different areas into which the simplified proximal femur
model has been divided; in particular S1, S2 and S3 indicate the cortical thickness in
the head zone, in the neck and trochanter zones and in the shaft zones, respectively
(see again Fig. 1b). Following [15], it is possible to define a ratio between these
thicknesses which can be approximately assumed as S1/S2 = 0.5, S1/S3 = 0.25,
these ratios will be used later on to investigate on the effects of thicknesses variation
on the predicted value of the peak load.

The mechanical model used for the numerical analyses is defined following the
two mechanical configurations shown in Fig. 2a, b which reproduce the in-vitro
experimental tests carried on till collapse by Dall’Ara et al. [18] on 36 pairs of fresh
frozen humanproximal femurs of donorswith age 76 ± 12 years. In particular, Fig. 2a
considers the femur in a one-legged standing position, which will be referred in the
following as “STANCE” configuration, while Fig. 2b shows a sideways falling on
the postero-lateral aspect of the greater trochanter, from now on referred as “SIDE”
configuration. As specified in [18], the above configurations are characteristics and
of main interest to understand the mechanical behaviour of the human femur. Load
and boundary conditions for the two configurations are appropriately fixed in order
to numerically reproduce the quoted experimental tests.

In particular, the load was applied in the plane containing both neck and prox-
imal shaft axes with an angle of 20o and 60o from the proximal shaft axis for the
STANCE and SIDE configurations, respectively. In order to simulate the real action
of the testing machine, the loads are actually applied as distributed loads on a cap
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Fig. 2 Mechanical model, boundary and loading conditions, of the human proximal femur in: a
STANCE configuration; b SIDE configuration

of the femoral head which extends itself to a depth of 10mm. These caps, for both
configurations, are highlighted in Fig. 2 and correspond to the grey parts under the
drawn resultant concentrated loads. The same type of representation was used for
the constraints in the SIDE configuration, where the roller constraint is extended to
all the grey part (a zone of 10mm depth) drawn above the schematized symbol of
the roller.

3 Constitutive Assumptions: Tsai-Wu-Type Yield Surface

The constitutive characterization of the human proximal femur—to be meant in
this context as the definition of the material mechanical properties of cortical and
trabecular tissues and of their mutual dependence under loading—is a challenging
problem, and this not only for the inherent complex structure of the human bones, but
also because it depends on several factors, such as age, gender, geographical location
and ethnic group. In spite of this, in the last decades, a wide number of researchers
have faced this problem with the aim to set up numerical models able to forecast the
bone mechanical response to assigned loads in different configurations.

It is well known that, at a macroscopic level, the proximal femur is made of two
different types of tissues such as the cortical tissue, which constitutes the external
and most resistant part of the bone, and the trabecular tissue, which constitutes its
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internal part, which also contributes to the overall strength of the femur. Each of the
above tissues can be viewed, at microscopic level, as a composite material, mainly
made by water, collagen and minerals. Referring to what is present in the relevant
literature, the mechanical properties of the constituent parts of the bone, in terms of
elastic moduli (Young and shear moduli) and material strengths, can be obtained in
different ways. Classical approaches make use of standard laboratory tests on real
samples (see e.g. [20, 21]), but, for obvious reasons, their application is hampered
by the limited availability of real specimens and by the impossibility of a standard-
ized reproducibility of the tests. The difficulty in applying classical methods has
been overcome by modern approaches which make use of diagnostic imaging cou-
pled with macro and micro finite element numerical simulation; see, among others,
[22–29].

To interpret the constitutive behaviour of the human proximal femur beyond its
elastic phase, many models have been presented in the literature, obviously it would
be difficult to list them all, which would also be outside the scope of this study. In
broad general terms, we can recall the models based on damage mechanics proposed
in [30–33], the ones based on fracturemechanics, [34], themodels based on plasticity
(see e.g. [35] and references therein) and the more recent models proposed by [36,
37], in which a continuum plasticity-damage formulation is enriched by nonlocal
and/or gradient terms.Moreover, there are specific models for trabecular and corti-
cal tissues. The former have been proposed by [38–41], while the latter have been
addressed in [42–45]. A general quadratic yield criterion has been also proposed by
Zysset and Co-Workers [35]. This criterion adapts its shape from an ellipsoid to a
cylinder or a cone surface so being able to fit, at every hierarchical level, the different
behavior of the human bone tissues.

For the analysis method followed in this article, it is also essential to underline that
bones exhibit a plastic behaviour, accompanied by dissipative processes, observable
both at micro and macro scale. In particular, at micro scale, the plastic deformation
are due to the breaking of hydrogen bonds within single collagenmolecules followed
by the breaking of bonds and intermolecular sliding within collagen fibrils, see e.g.
[46–48]. This intermolecular sliding produces energy dissipation and represents the
mechanism of plastic deformation. At macro scale, plastic deformation and energy
dissipation are due to fibrillar sliding. Eventually, it is well accepted, that bones
exhibit a plastic behaviour and than undergo plastic deformations; indeed the ductility
of bones is a positive characteristic, it helps to absorbs impacts rendering them
fracture resistant, [49].

Keeping in mind that bone is definitely a composite material, in the follow ref-
erence is made to one of the more accredited criterion for composites, that is the
Tsai-Wu criterion, [50]. The Tsai-Wu criterion is hereafter used to interpret the con-
stitutive mechanical behavior of both cortical and trabecular tissues. Indeed, the
experimental stress-strain diagrams of [47, 51] justify the further hypothesis of per-
fect plasticity, i.e. the Tsai-Wu surface is assumed as a yield surface which plays
the role of plastic potential. The same choice was made by the authors in a previous
article, [5], of which this study is a further step forward.
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In the principal stress space the Tsai-Wu-type yield surface writes

G11σ11 + G22σ22+G33σ33 + F1111σ
2
11 + F2222σ

2
22 + F3333σ

2
33+
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with the stresses coefficients, Gii , Fiiii , Fii j j , given by
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In Eq. (1), σ11, σ22, and σ33 are principal stresses, while in Eq. (2) σ
+
i , σ−

i , σi j are the
moduli of ultimate strengths in tension, compression and shear, respectively, with
i, j = 1, 2, 3 referring to direction and plane of orthotropy. Moreover, the repeated
indices in Eq. (2) do not imply summation. To be secure that the Tsai-Wu-type yield
surface has an ellipsoidal shape, containing the stress space origin, also the condition
Fiiii Fj j j j − F2

i i j j ≥ 0 has to be satisfied. The yield surface presented above is then
quadratic and convex, it follows the standard transformation rules assuring invariance
and symmetry, moreover it takes into account stress or strain components interaction.

A typical representation of the Tsai-Wu-type yield surface in principal stresses
space is the one drawn in Fig. 3. The shape is that of an ellipsoid whose inclination

Fig. 3 Typical Tsai-Wu
surface in principal stress
space
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with respect to the axes varies with the ultimate strengths values σ+
i , σ−

i , σi j , which
are obviously different for cortical and trabecular tissues, so defining two distinct
Tsai-Wu-type yield surfaces, one for the cortical and another one for the trabecular
tissue. The strength values, for different fixed thicknesses of bone tissues, will also
be used to carry on the sensitivity analysis.

At closure of this section, it is worth to remark that the ultimate strengths, dif-
ferent for the trabecular and the cortical tissues, will be assumed in the shape
σ+
1 ≡ σ+

2 , σ−
1 ≡ σ−

2 , σ13 ≡ σ23, so adopting for both tissues a transversally isotropic
behavior. Marrow will instead be assumed isotropic. Eventually, the values of the
elastic parameters will be borrowed from the literature referring to a transversally
isotropic cortical tissue and to an orthotropic trabecular tissue. The latter choices
however do not affect the results because, as known, the limit load does not depend
from the elastic behavior of the structure. The great variation of the local elastic
properties in terms of their values (see e.g. [56, 57] for quantitative information) is
indeed a drawback for analyses whose results are affected by the evolutive phenom-
ena preceding the collapse. Limit analysis overcomes this drawback and the assumed
values of the elastic constants are here chosen just to initialize the applied numerical
procedure whose details are given in the next section.

4 Limit Load Prediction of Human Proximal Femur

The concept of limit, or ultimate, or also collapse, load of a structure belongs to
the theory of limit analysis which, in the promoted approach, has been applied to a
human proximal femur under assigned loads and boundary conditions corresponding
to the previously defined STANCE and SIDE configurations. As well known, limit
analysis theory allows to directly determine the ultimate load of a generic structure
and this, as said at closure of Sect. 3, regardless its elastic behavior and, what is most
important, regardless all the evolutive diffusive phenomena (damage, plasticity and
the like) that occur before collapse. This latter property is particularly advantageous
in the case of human femur, whose post elastic behaviour is not easy to describe due
to the complexity of the “bone material”. To apply the limit analysis theory only the
knowledge of a yield surface (depending on the strength values of the material) and
of load and boundary conditions, to which the bone is subjected, are required.

It is worth to remind that limit analysis theory, in its classical formulation, applies
to structuresmade of perfectly plasticmaterials for which the plastic strain rate vector
is normal to the yield surface. This latter condition is known as normality rule (or
associated flow rule) and the materials that meet this requirement are referred to as
standard materials, [52]. In this framework, two fundamental theorems hold, namely
the static and the kinematic theorem, which, for sake of completeness, are briefly
recalled next with reference to a structuremade up of amaterial whose yield function,
say f (σ )= 0, defines a yield surface in the shape given in Fig. 3. The structure is, by
hypothesis, subjected to a distribution of static loads expressed as P = P P̄, where
P is a scalar load multiplier of given reference loads P̄.
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The static theorem of limit analysis states that: “the exact limit load multiplier,
say PL ,—i.e. the multiplier which gives the limit load PL = PL P̄—is the largest one
among all the possible lower bound multipliers, say PLB , corresponding to statically
and plastically admissible stress fields σ , that is stress fields in equilibrium with the
applied loads PLB P̄ and satisfying the condition f (σ )≤ 0”. It is PLB ≤ PL and, for
this reason, the theorem is also known as lower bound theorem giving rise to the
so-called static approach to the determination of the limit load. The static approach
considers only the equilibrium and the yield condition, no matter the kinematics at
incipient collapse state.

The kinematic theorem of limit analysis states that: “the exact collapse load mul-
tiplier PL is the smallest one among all the possible upper bound multipliers, say
PUB , corresponding to the set of all kinematically and plastically admissible velocity
fields, say u̇”. The displacement rates u̇ are compatible with the plastic strain rates
ε̇ p at collapse and the latter obey the normality rule, i.e., ε̇ p = λ̇∂ f/∂σ with λ̇ > 0
where f (σ ) = 0 and λ̇ = 0 otherwise. It is PUB ≥ PL and, for this reason, the the-
orem is also known as upper bound theorem giving rise to the so-called kinematic
approach to the determination of the limit load. The kinematic approach considers
only displacement and strain rate fields (which define a collapse mechanism), no
matter the stress distribution.

For standard perfectly plastic materials the lower and the upper bound multipliers
coincide with the exact limit load multiplier, for nonstandard materials the above
two theorems can be rephrased enabling one to bracket the collapse load in a direct
manner through the so-called “Radenkovic approach” for nonstandard limit analy-
sis, see again [52]. During the last decades, many different procedures, have been
developed for computing the limit load of real structural problems, see e.g. the con-
tributions in the monographs [53, 54]. Among these procedures it must be included
the one referred in this study and summarized in the next Section, known as Elastic
Compensation Method (ECM). The ECM leads to the evaluation of a lower bound
to the collapse load in the spirit of a static approach to limit analysis.

4.1 The Elastic Compensation Method for the Evaluation
of a PLB

The ECM it is a FE-based iterative procedure which evaluates the maximum mul-
tiplier PLB of the applied loads P for which the stress distribution in the analyzed
structure (the proximal femur in this context) is statically and plastically admissible.
With reference to Fig. 3, the geometrical interpretation of such circumstance is that all
the stress points, representing the stress state within the proximal femur under study,
are located inside or, at least, on the yield surface. The ECM procedure is known in
the literature and the authors have already successfully applied and extended it in
several contexts, namely to structures made up of materials such as, steel, compos-
ites, concrete and also bone tissues (see e.g. [5, 9, 13]). Therefore, the Reader can
find details on the numerical procedure by consulting the quoted papers.



96 A. Angela Pisano and P. Fuschi

Fig. 4 Meshes, applied nodal loads and constraints in the FE models of the proximal femur: a
STANCE configuration; b SIDE configuration

For completeness, the three main steps of the ECM, based on FE elastic analysis
of the proximal femur, and the rationale on which the method is based are recalled
hereafter.

Preliminarily, in Fig. 4a, b are reported the two meshes of 10-nodes 3D-solid
tetrahedral finite elements associated to the mechanical models given in Fig. 2a, b,
respectively. For both configurations the reference loads, acting on the cap of the
femoral head (refer again to Fig. 2a, b), are applied (as point loads) on the FE nodes
falling within the cap. The nodes marked with B are the fully constrained ones at
the section where the shaft of the bone specimen was cut and clamped to the testing
device. The nodes marked with A, on the greater trochanter of SIDE configuration,
are those where the vertical displacement (DOF U2) is not allowed being free the
horizontal displacements (DOFs U1 and U3) so coming true the roller constraint
applied during the experimental test (see Fig. 2b). Knowing that the output of an FE
analysis gives, among other results, the principal stresses at each Gauss points (GPs)
of each element; at each GP it can be easily verified the position of the corresponding
stress point with respect to the assumed yield surface. Indeed, for the application of
the ECM, principal stresses are evaluated at element level, by averaging their values
between all theGPswithin the same element. Eventually, stress points inside or on the
yield surface are representative of stress states statically and plastically admissible,
while stress points outside the yield surface are not admissible. The procedure then
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acts on these latter not admissible stresses, if any, and tries to redistribute them
in such a way to obtain admissible stresses in the whole FE mesh of the bone.
Because yield domains for cortical and trabecular tissues are different, the above
check of admissibility for the stresses is made separately in the different tissues of
the proximal femur.

• ECM-step #1. An FE model of the human proximal femur is built starting from
its mechanical model in terms of geometry, boundary and loading conditions as
well as elastic material parameters. In particular, the acting loads are defined in
the shape PD p̄i where p̄i are given applied basic loads specified in modulus,
direction and versus and PD denotes a scalar design load multiplier which is
fixed as specified next. To start, a first multiplier for the loads, say P (1)

D , is fixed
and a first sequence of FE elastic analyses is carried on, using the adopted FE
model.

• ECM-step #2. The ECM acts by reducing the elastic parameters of the elements
for which the stress points, representative of the element stress state, are not
admissible, and this to bring them back into, or onto, the yield domain [5]. It
should be emphasized that, being in the elastic field, a reduction of the elastic
parameters produces a proportional reduction of the stresses. At this stage, a new
FE elastic analysis, or iteration, is performed within the current sequence, i.e.
on keeping fixed the acting loads, P (1)

D p̄i , but with the updated elastic moduli,
and this with the aim of re-distribute the stresses within the whole mesh. The
iterations continue until all the element stresses, for the loads P (1)

D p̄i , just reach
or are below their corresponding yield values.

• ECM-step #3. Further sequences of elastic analyses are carried on,
(i.e. P (2)

D p̄i , P
(3)
D p̄i , …), each one with an increased value of the initial load

multiplier PD , (i.e. P
(i+1)
D > P (i)

D ), and the ECM stress redistribution procedure
repeated till further load increases do not allow all the stress points to be brought
below or onto the yield surface. The greater value of PD for which the stresses
can be redistributed gives the searched (maximum) lower bound multiplier PLB

and, eventually, the limit load PLB p̄i .

5 Sensitivity Analysis

This section reports, for both STANCE and SIDE configurations, the results of a
sensitivity analysis carried out by considering different thicknesses for the cortical
tissue (the trabecular’s thickness, as said, varies consequently) and, for each fixed
thickness value, by considering different strength values of cortical and trabecular
tissues. The choice of the cortical thickness values and of the cortical and trabecular
strength values is based on the reasoning reported below.

Concerning the choice of the cortical thickness values, reference is made to a
study carried on by [55] on hundreds of patients. This study found that the values of
the thickness (lateral and medial) of the cortical, measured at 5 cm below the less
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Table 2 Cortical thicknesses of the proximal femur models

Model N. S3 [mm] S2 [mm] S1 [mm]

GM1 5.7 2.85 1.425

GM2 7.0 3.5 1.75

GM3 8.3 4.15 2.075

trochanter, are equal to 7± 1.3mm. Therefore, three geometricmodels, namedGM1,
GM2, GM3, are considered for which the thickness of the cortical in the shaft (S3)
is assumed 5.7, 7 and 8.3mm, respectively. Moreover, the cortical thickness in the
head (S1) and in the neck and trochanter areas (S2) are varied as specified in Sect. 2,
that is using the ratios S1/S3 = 0.25 and S1/S2 = 0.5. All the cortical thicknesses
used in the three geometric models are given in Table2.

On the other hand, the ultimate strength values for cortical and trabecular tissues
are shown in Table3, together with the referenced papers and the choices adopted
to fix some of the strength values. Such values are function of the apparent density
values, [56]. Three pairs of apparent density values are considered, corresponding
to the minimum, average and maximum values of apparent density in cortical and in
trabecular. These three pairs of apparent density values lead to the definition of three
differentmaterials, hereinafter referred to asMat.1,Mat.2 andMat3. Precisely,Mat.1
is obtained by assuming ρcortical = 1.5 g/cm3 and ρtrabecular = 0.1 g/cm3; Mat.2 by
assuming ρcortical = 1.75 g/cm3 and ρtrabecular = 0.4 g/cm3; Mat.3 by assuming
ρcortical = 2.0 g/cm3 and ρtrabecular = 0.7 g/cm3. Obviously other combinations of
values for ρcortical and ρtrabecular would be possible, however it is likely that themate-
rial strengths assumed above correspond to a femur in condition of major fragility,
medium resistant and higher resistant.

The values of the elastic moduli are also function of the apparent density ρ, see
[57] and they are reported in Table4 for the set of three materials considered. It
should be pointed out that: for all the examined cases, the marrow has been assumed
isotropic, homogeneous and incompressible with E = 20 MPa and ν = 0.499, after
[34]. As said, all the elastic parameters (for cortical, trabecular and marrow) are
assigned only at the beginning of the first sequence of analyses, i.e. to initialize the
procedure. They will remain unchanged within the elements that remain in the elastic
regime (this is always the case in the marrow), while they will be updated within
the elements of cortical and trabecular tissues when stress redistribution has to be
performed. It is worth to remark once again that, as assured by limit analysis theory,
their real values do not affect the value of the lower bound multiplier.

The limit analysis of the proximal femur via ECM was then carried on 18 times,
9 for the STANCE configuration, 9 for the SIDE one. Each of the three geometric
models was discretized in finite elements by using 3D-solid tetrahedral elements
each having 10 nodes and 17 Gauss points per element, see again Fig. 4a, b. Starting
from a reference load equal to 1000N, the PLB values obtained, are drawn in Figs. 5
and 6.
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Table 3 Strengths values [MPa] for cortical and trabecular tissues

Strength Cortical Trabecular Cortical Trabecular

Mat.1 Mat.2

σ−
1 = σ−

2 68.249(1) 0.913(1) 86.137(1) 6.099(1)

σ−
3 155.164(1) 0.526(1) 207.324(1) 7.220(1)

σ+
1 = σ+

2 23.887(2) 0.602(3) 30.148(2) 4.025(3)

σ+
3 93.098(4) 0.347(5) 124.394(4) 4.765(5)

σ13 = σ23 53.50(6) 0.315(7) 53.50(6) 4.332(7)

σ12 67.80(6) 0.548(8) 67.80(6) 3.659(8)

Mat.3

σ−
1 = σ−

2 105.380(1) 13.128(1)

σ−
3 266.486(1) 20.792(1)

σ+
1 = σ+

2 36.883(2) 8.664(3)

σ+
3 159.892(4) 13.722(5)

σ13 = σ23 53.50(6) 12.475(7)

σ12 67.80(6) 7.877(8)

(1) after [56, 58, 59]; (2) after [34, 60] with σ+
1 = σ+

2 = 35%σ−
1 ; (3) after [21] with σ+

1 = σ+
2 =

66%σ−
1 ; (4) after [34, 60] with σ+

3 = 60%σ−
3 ; (5) after [21] with σ+

3 = 66%σ−
3 ; (6) after [61]; (7) after

[62] with σ13 = σ23 = 0.6σ−
3 ; (8) after [62] with σ12 = 0.6σ−

1

Table 4 Elastic constants for cortical and trabecular bonea

Cortical Mat.1 Mat.2 Mat.3

E1 [MPa] 3852.988 5484.106 7445.735

E2 3852.988 5484.106 7445.735

E3 6759.629 9621.239 13062.689

G12 [MPa] 1351.926 1924.248 2612.538

G23 1960.292 2790.159 3788.179

G13 1960.292 2790.159 3788.179

ν12 0.425 0.425 0.425

ν23 0.370 0.370 0.370

ν13 0.370 0.370 0.370

Trabecular Mat.1 Mat.2 Mat.3

E1 [MPa] 4.884 137.954 531.445

E2 8.462 229.293 868.602

E3 13.698 327.636 1180.180

G12 [MPa] 2.049 68.369 281.673

G23 2.686 81.309 322.116

G13 4.073 125.018 498.056

ν12 0.332 0.293 0.279

ν23 0.164 0.149 0.143

ν13 0.202 0.162 0.148
a After [57]
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Fig. 5 PLB load multiplier
of the collapse load for the
proximal femur versus
cortical thickness S3 in mm.
Each curve refers to a fixed
set of strengths for the
cortical and trabecular
tissues. a STANCE
configuration; b SIDE
configuration

Figure5a, b show the load multiplier PLB of the collapse load for the proximal
femur versus the cortical thickness S3 (towhich S2 and S1 are associated). Each triplet
of vertical dots identifies the computed PLB values for each of the three geometrical
models examined, namely: GM1 with cortical thickness S3 = 5.7mm; GM2 with
cortical thickness S3 = 7mm; GM3 with cortical thickness S3 = 8.3mm. Each dot
within the triplet corresponds to a fixed set of strengths for the cortical and trabecular
tissues, namely Mat.1, Mat.2 and Mat.3 of Tables3 and 4. The curves interpolating
the obtained findings for fixed material are aimed to show the sensitivity of the
predicted load multipliers PLB to the variation of the cortical thickness.

Figure6a, b show the load multiplier PLB of the collapse load for the proximal
femur versus the apparent density of cortical tissue ρcortical , assumed as plotting
parameter identifying the three different set of strengths for cortical and trabecular
tissues used in the analyses and shown in Tables3 and 4. Each triplet of vertical
dots identifies the computed PLB values for each of the three materials examined,
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Fig. 6 PLB load multiplier
of the collapse load for the
proximal femur versus the
apparent density of cortical
tissue ρcortical , assumed as
plotting parameter
identifying the three different
set of strengths for cortical
and trabecular tissues used in
the analyses. Each curve
refers to a fixed geometrical
model of the proximal femur.
a STANCE configuration; b
SIDE configuration

namely: Mat.1 with ρcortical = 1.5 g/cm3 and ρtrabecular = 0.1 g/cm3; Mat.2 with
ρcortical = 1.75 g/cm3 andρtrabecular = 0.4 g/cm3;Mat.3withρcortical = 2.0 g/cm3

and ρtrabecular = 0.7 g/cm3. Each dot within the triplette corresponds to a fixed
geometrical model of the proximal femur, namely GM1, GM2 and GM3 of Table2.
The curves interpolating the obtained findings for fixed geometrical model are aimed
to show the sensitivity of the predicted load multipliers PLB to the variation of the
strengths in the cortical and trabecular tissues.

6 Discussion

By inspection of Figs. 5 and 6 the following can be deduced. For fixed strength values
of the bone tissues, i.e. for fixed mechanical characteristics of the bone tissues, the
sensitivity to a variation of the cortical’s thickness (variation of the proximal femur
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geometry) appears to be quite relevant. Precisely, a variation of the thickness in the
shaft area from 5.7 to 8.3mm (which corresponds to a variation of approximately
45%) implies, for the STANCE configuration, a variation of the lower bound mul-
tiplier from 3 to 5 when Mat.1 is considered, from 7.5 to 10.5 and from 14 to 18
when Mat.2 and Mat.3 are used, respectively (see Fig. 5a). In terms of percentages,
the variation of the evaluated PLB ranges from 28.6% for Mat.3 up to 66.6% for
Mat.1. The above percentages are slightly lower when dealing with SIDE configura-
tion (see Fig. 5b), for which the values of the collapse multiplier vary from 1.7 to 2.7
for Mat.1, from 3.5 to 4.5 and from 6.2 to 7.3 when Mat.2 and Mat.3 are considered,
respectively. In this configuration the variation in the calculated PLB ranges from
17.7% for Mat.3 up to 58.8% in the case of Mat.1. It is worth noting that a variation
of 45% of the input parameter (the tissues’ thicknesses) implies amaximum variation
of the output (the PLB multiplier) of 66.6%. Such circumstance is highlighted from
the sub-horizontal slope of the interpolating curves of Fig. 5a, b.

For fixed cortical thickness, i.e. for fixed geometrical model, the sensitivity of the
results to a variation of the strengths of cortical and trabecular tissues, plotted as a
function of their apparent density, appears to be dramatically relevant. As in fact, by
varying ρcortical from 1.5 to 2 g/cm3 (corresponding to a variation of 33.3%) the PLB

values vary, in the STANCE configuration, from 3 to 14 when the geometrical model
GM1 is considered, from 3.5 to 17 and from 5 to 18 when GM2 and GM3 are used,
respectively (see Fig. 6a). In terms of percentages, the variation of the PLB in this
configuration ranges from 260% for GM3 up to 367% for GM1. An high variability
of the results also occurs when the SIDE configuration is examined, in this case the
variation in terms PLB goes from 170% for GM3 model (PLB values from 2.7 to 7.3)
up to 265% for GM1 model (PLB values from 1.7 to 6.2), (see Fig. 6b). It is worth
noting that a variation of 33.3% of the input parameter (the tissues’ strengths) implies
a maximum variation of the output (the PLB multiplier) of 367%. Such circumstance
is highlighted by the high slope of the interpolating curves of Fig. 6a, b.

An accurate evaluation of the bone tissues strengths seems to be of utmost impor-
tance for a reliable prediction of the collapse load. Indeed, the strengths of cortical
and trabecular tissues determine the shape of the Tsai-Wu-type yield domain used
in the numerical procedure. It is this domain which discriminates between admissi-
ble and not admissible stresses so determining the PLB value. On the other hand, a
precise definition of the cortical thickness seems indeed to affect less the results of
the numerical simulations.

The obtained results furnish an important information on the parameters to be
taken into account for a good prediction. To this concern it is worth noting that: (i)
the parameters necessary to the ECM are very few with respect to those required by
a reliable post-elastic numerical analysis which implies a definition of the evolutive
response beyond the elastic limit so introducing many other constitutive assumptions
and other related material parameters; (ii) the FE analyses carried on within the ECM
are really of predictive type. They are not used for a retrofitting of experimental tests
to calibrate a numerical model. They are used to redistribute stresses, which is the
key idea of the ECM.
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Remark The ECM is able to reproduce the experimental data and, in fact, Fig. 6a,
b provide, for the average value of ρcortical , corresponding to Mat.2, values of the
collapse loads very close to each other and to the ones given in [18] and this for all
the three geometrical models taken into account. More precisely, in the STANCE
configuration the experimental collapse load value is 8.7 ± 2.9 kN and the one
obtained from the numerical simulations (Fig. 6a) is 9 ± 1.5 kN, while in the SIDE
configuration the experimental collapse load is 3.1 ± 1.1 kN and the one obtained
applying the ECM procedure is 4 ± 0.5 kN (Fig. 6b). It should be remembered here
that to obtain the collapse load, the scalar PLB values have to be multiplied by the
reference load which, as previously mentioned, was assumed equal to 1kN.

7 Concluding Remarks

A sensitivity study for the determination of the collapse load of a human proximal
femur, by varying both the thickness of the cortical (the trabecular thickness varying
consequently) and the strength values of cortical and trabecular tissues, has been
presented. The numerical findings were carried out using a numerical predictive
method applied on a geometrical simplified 3D model of the human proximal femur
for assigned boundary and loading conditions. The adopted numerical method is
based on the theory of limit analysis and is known in literature as Elastic Compensa-
tion Method. The proposed numerical approach allows to determine a lower bound
to the collapse load and therefore provides a safety factor for the analyzed proximal
femur. A limitation of the ECM is due to the fact that the acting forces are fixed
on time, however there are no limits in considering different load conditions, which
can simulate, for example, the action of muscles, as long as they are applied in a
quasi-static equivalent manner.

The proposed numerical procedure provides a valuable tool for predicting the
collapse load of the humanproximal femur in a simple and relatively accuratemanner.
The accuracy of the results essentially depends on the accuracy of a few parameters
entering the model, such as the cortical and trabecular strength values. The geometry
seems indeed to have a weaker influence on the predicted collapse load. Finally,
it is worth to remark that the procedure can be applied simultaneously to different
materials that meet different yield criteria and this would allow, for example, the easy
insertion in the mechanical model of a prostheses.
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Graded Damage Solutions in One
Dimension

Nunziante Valoroso

Abstract A regularized damage model is considered named Graded damage in
which the gradient enhancement has the form of an explicit bound for the spatial
gradient of damage. The key features of the proposed approach are demonstrated by
computing the analytical solution of two problems that are one-parameter dependent.
The first one is the classical one-dimensional damageable rod under tensile load, for
which the hardening function is determined based on the equivalence with a given
cohesive relationship. The second application is a mode-I delamination problem
for which the cohesive law for the interface is formulated starting from the graded
damage concept, i.e. by prescribing the shape of damage distribution within the
cohesive process zone.

Keywords Damage mechanics · Regularization · Cohesive zone models

1 Introduction

Damage and Fracture Mechanics find their raison d’être in the need for predictive
computations able to prevent catastrophic failure in engineering structures. The com-
plexity of the physics of damage, which rules out any homogeneity of materials at the
usual macroscopic scale of laboratory experiments, has led to many different model-
ing assumptions in Solid Mechanics, each of them resulting from a suitable trade-off
between physical relevance at different scales and applicability to structural design
[5]. Nonetheless, computations of failure mechanisms and ultimate load-carrying
capacity of structures still stay as difficult tasks in civil and mechanical engineering
owing to the intrinsic non-smoothness of damage and fracture phenomena [7].

Roughly speaking, one can categorize the computational approaches to failure into
two families, the continuous and the discontinuous one, each of themwith advantages
and limitations. Discontinuous descriptions allow for jumps in the displacement
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field, whereby one has to deal with changes in topology that are intrinsic to the
representation of discrete cracks. In a finite element context this requires special
elements with embedded discontinuities [3] or extended finite element formulations
(X-FEM) either in the original setup of Belytschko and co-workers [17] or in the
format of the so-called Thick Level Set model [18].

One can also include into the discontinuous family the cohesive zonemodels orig-
inating from thework ofBarenblatt [4]. Initiallymotivated by the need to characterize
stress states in the vicinity of cracks, in cohesive zone models one may speak e.g. of
damage, delamination or de-cohesion to designate all those progressive phenomena
preceding fracture, during which material separation is resisted by attractive forces
that develop along an extended crack tip, i.e. the cohesive process zone.

In the cohesive zone approach crack progression is governed by an independent
relationship between surface tractions and displacement jumps that incorporates typ-
ical fracture parameters, i.e. the cohesive strength and the fracture toughness. Under
certain conditions the shape of the softening curve does also play a role in fracture
predictions [1], but it is commonly believed to be less relevant compared to the other
parameters. Anyway, classical implementations of the cohesive zone concept only
allow for strong discontinuities along interfaces that pre-exist in the material before
any loading, whereby in numerics use is made of degenerated (zero-thickness) finite
elements that are placed along potential discontinuity surfaces [14].

A discrete crack representation closely reflects the physics of fracture but includes
a number of difficulties, most of which are related to crack tracking. This partly
motivates the continuous approach as a tool for modeling fracture starting from the
strain localization stage; here no physical crack opening exist and fully damaged
states can be understood as the smeared, diffuse representation of macro-fractures.
In this context the basic idea consists of preserving the topology of the initial finite
element mesh and to bring into the material model a concise information about
material microstructure via a length scale parameter; the latter is used to introduce
the necessary regularization that restores well-posedness of the problem either via
a nonlocal integral approach after Pijaudier-Cabot and Bažant [21] or in the form
of a gradient enhancement in the wake of the works of Peerlings et al. [8, 20].
We also note the family of phase-field models initiated from the regularized form
of the variational theory of quasi-static fracture [6]; though starting from a different
perspective, i.e. global energyminimization, thesemodels endupwith afield equation
of diffusive type that is quite close to that of gradient damage models, see e.g. [15,
16] among others.

In all such cases averaging or differential operators come into play, whereby the
constitutive equations are no longer defined at the local level but are established at the
scale of the structural model. Onemay then conclude that continuous representations
of discontinuities provide globally smoothed solutions through elements, whereas in
usual local models stresses, strains and internal variables are all defined in a point-
wise fashion that can be understood as generally discontinuous fields inside elements
and across elements boundaries [2].

This chapter is concerned with a gradient-based continuum damage formulation
named Graded damage [23], i.e. a Generalized Standard Model with convex con-
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straints that admits the geometrical interpretation of the Thick Level Set approach
of Moës et al. [18]. The variational structure of the model along with its directional
convexity properties allow for an effective implementation based on convex pro-
gramming in the spirit of direct methods, by alternating minimization with respect to
displacements and damage and maximization with respect to the Lagrange multipli-
ers that implicitly contain the information necessary to track the interphases between
fully damaged regions and the sound material.

In particular, in the following the graded damage model is applied to two different
one-dimensional problems for which a non-homogeneous solution is computed in
closed form. The first problem is presented in Sect. 2; it is rather classical and refers
to the rod under tensile load, whose interest lies in the fact that the relevant solution
is considered to be representative of the response of a three-dimensional structure
across a localization band. Moreover, this analytical solution is typically used to
design the constitutive functions of a continuum damage formulation that render the
response of the damageable rod identical to the one of an elastic bar in which a
cohesive interface is the only source of dissipation, see e.g. [13, 25].

The second problem is discussed in Sect. 3; it is in a sense analogous to the
one of the tensile rod and refers to a one-parameter-dependent delamination problem
where the interface constitutive relationship is gradient-enhanced based on the graded
damage concept. Worth noting is the fact that in cohesive models understood in the
sense of Hillerborg [11] there is in principle no need for any regularization, whereby
few attempts have been made so far to introduce gradients along a cohesive interface.
However, the general consensus that nonlocal interactions may occur at the meso-
scale level suggest that introduction of a material length scale into an interface model
is a worthwhile attempt [12, 19].

2 The Damageable Rod

To begin with, consider the homogeneous elastic-damageable rod depicted in Fig. 1;
the domain Ω occupied by the structure is the interval [−L , L], body forces are
neglected and loading is performed via an increasing elongation at the two ends of
the bar.

2L

x

Fig. 1 One-dimensional rod. Model problem
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In the present one-dimensional context the stored energy function reads:

ψ(u, d) = 1

2
ω(d) E

(
du

dx

)2

(1)

where E > 0 is the elastic modulus, u is the axial displacement obeying the essential
boundary conditions:

u(−L) = −u�, u(L) = u�; u� > 0 (2)

d is the damage variable and ω(d) is a monotonically decreasing function that
accounts for material degradation.

Restricting attention to the class of Generalized Standard Materials, the local
model is completed by prescribing a dissipation pseudo-potential [10]; for rate-
independency, it must be positively homogeneous of degree-one with respect to the
flux ḋ:

ϕ(ḋ) = Yc(d) ḋ + ��+(ḋ) (3)

In the above relationship Yc(d) is a positive convex function of the current damage
state d, here considered as a parameter, and ��+ is the convex indicator of non-
negative reals that enforces irreversibility:

��+ (d∗) =
{
0 if d∗ ≥ 0

+∞ otherwise
(4)

Likewise, damage is a constrained variable since it has to complywith the physical
bounds:

0 ≤ d ≤ 1 (5)

This can be accounted for in the present formulation either via an indicator function
of the admissibility domain or using a smoothed version of it, say g1(d), with the
relevant Karush-Kuhn-Tucker conditions

g1(d) ≤ 0; γ1 ≥ 0; γ1 g1(d) = 0 (6)

It is well known that the local constitutive equations emanating from the above
potentials will produce non-objective numerical solutions with respect to finite ele-
ment meshes; actually, owing to strain softening, strains and damage do localise into
narrow regions with high gradients and mechanical dissipation is strongly affected
by mesh refinements. Objectivity can be restored by appealing to a nonlocal formu-
lation, i.e. introducing spatial interactions into the constitutive equations to provide a
suitable localization limiter [5]. To this end, in the graded damage model an explicit
nonlocal constraint acting on the damage gradient is prescribed via the following
[23]:
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g2(d) = ||∇d| | − f (d) (7)

where the bounding function f (d) > 0 may be arbitrarily nonlinear provided that it
is concave; in addition, the following complementarity conditions apply:

g2(d) ≤ 0 ; γ2 ≥ 0 ; γ2 g2(d) = 0 (8)

that characterize the gradient constraint (7) as non-dissipative.
As a direct consequence of nonlocality, the thermodynamic potentials are func-

tionals of the state variables u and d, here understood as fields [9]. In particular, the
internal energy of the rod is the Lagrangian:

E(ε, d, γi ) =
∫

Ω

ψ(ε, d) dx +
∫

Ω

[γ1 g1(d) + γ2 g2(d)] dx (9)

where ψ is the local stored energy function defined by Eq. (1); likewise, a global
pseudo-potential of dissipation is obtained by integrating the dissipation function (3)
over the physical domain Ω:

D(ḋ) =
∫

Ω

ϕ(ḋ) dx (10)

The forces work-conjugate to the axial strain and damage are the Cauchy stress
and the energy release rate. In particular, the former is obtained along with the
equilibrium equation by zeroing the first variation of the potential energy (9) with
respect to the displacement u as

σ = ω(d) E
du

dx
(11)

For the ensuing developments the gradient constraint is taken as:

g2(d) =
∣∣∣∣ dd

dx

∣∣∣∣ − 1

lc
≤ 0 (12)

whence results a piece-wise linear distribution of damage along the rod. The energy
release rate is a variational derivative and includes a nonlocal term originating from
(12) plus two boundary conditions [16]. In particular, the first variation of the func-
tional (9) with respect to damage followed by integration by parts yields:

∂E
∂d

δd∗ =
[
−

∫
Ω

G dx +
[[

γ2 sign

(
dd

dx

)]]
S

+
[
γ2 sign

(
dd

dx

)]
∂Ω

]
δd∗ (13)

where the domain term G reads:
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G = −∂ψ

∂d
− γ1

dg1
dd

+ d

dx

(
γ2 sign

(
dd

dx

))
(14)

S being the set of possible discontinuity points for the damage gradient. For non-
dissipative internal discontinuities the (internal) jump relationships give:

γ +
2 = γ −

2 = 0 (15)

whereas the (external) natural boundary conditions read:

γ2(x) = 0; x ∈ ∂Ω (16)

which allow for non-zero damage derivatives on the outer boundary.
Damage evolution is governed by the normality rule:

G − Yc(d) ≤ 0, ḋ ≥ 0, (G − Yc(d)) ḋ = 0 (17)

that follows from the Biot-like subdifferential inclusion:

− ∂E
∂d

∈ ∂D(ḋ) (18)

During initial loading the displacement u� increases up to the elastic limit:

uel =
√

2 Yc(0)

−ω′(0) E
L (19)

and the unique response is the homogeneous elastic one:

u� = σ L

E
(20)

Once damage has started to grow and its spatial distribution d(x) is known, the
relationship between the constant stress and the prescribed displacement can bemade
explicit as:

u� = σ

2 E

∫
Ω

ω−1(d(x)) dx (21)

Solutions beyond the elastic limit are associated with the initiation and growth
of defects and can be either homogeneous or localized; in both cases one can use a
parametrization in terms of the maximum damage level dm ≤ 1.

For the homogeneous inelastic case, damage evolution requires the local strain
energy to increase everywhere in the bar; this can be expressed as



Graded Damage Solutions in One Dimension 113

(
Yc(d)

−ω′(d)

)′
> 0 (22)

where use is made of the local limit condition emanating from (17) and the prime
denote differentiation with respect to the driving variable d. The above inequality is
equivalent to:

Yc(d) ω′′(d) − Y ′
c(d) ω′(d) > 0 (23)

that is a necessary requirement for local stability. Condition (23) is suggested in [13]
along with an additional strain softening condition, whereby the complementary
elastic energy should decrease with damage, that is:

(
ω2(d) Yc(d)

−ω′(d)

)′
< 0 (24)

whereby one has

[
Y ′

c(d) ω2(d) + Yc(d) 2ω(d)ω′(d)
]
ω′(d) − Yc(d)ω2(d) ω′′(d) > 0 (25)

Without loss of generality, for non-homogeneous damage we assume that strain
localization associated with one single defect initiates at point x = 0 immediately
after the initial elastic limit (19) has been attained; the study can therefore be limited
to half of the bar on account of the symmetry of (12).

The complementarity conditions (8) imply that the multiplier γ2 can be non-zero
only where the nonlocal constraint (12) is met with the equality. In this case the
damage field reads:

d(x) = d(0) − x

lc
(26)

and the constraint set coincides with the interval [0, lm], being

lm = lc d(0) = lc dm ≤ lc (27)

the half-width of the localization band, see also Fig. 2.
For damage evolution (ḋ > 0) one has from (17) the differential problem:

Y (d(x)) − dγ2
dx

= Yc (d(x)) (28)

where the local damage-driving force reads:

Y = −∂ψ

∂d
= −ω′(d)

ω2(d)

σ 2

2 E
(29)
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Fig. 2 One-dimensional rod. Damage distribution for localized solution

Relationship (28) is a first-order differential equation subject to two boundary
conditions; the first one allows to compute the (uniform) stress σ as a function of the
driving variable dm and the second one is needed to set the integration constant for
the Lagrange multiplier field γ2. The latter is certainly nihil either on the boundary of
the active constraint set defined by g2(d) = 0, either where the gradient of damage
is discontinuous, or on the outer boundary of the domain, where condition (16)
holds. Therefore, integration of (28) between 0 and lm , which correspond to two
discontinuity points for the damage gradient, provides the averaged limit condition
[23]: ∫ lm

0
Y (d(x)) dx =

∫ lm

0
Yc (d(x)) dx (30)

The integrals are computed via u-substitution in the form

∫ lm

0
y(d(x)) dx = −lc

∫ d(lm )

d(0)
y(d) dd (31)

and one obtains the stress as a function of the maximum damage level dm as:

σ(dm) =
[

2 E

ω−1(dm) − 1
H(dm)

] 1
2

(32)

where H(dm) is the definite integral:

H(dm) =
∫ dm

0
Yc(d) dd (33)
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and the integrand Yc(d) is the constitutive function, which can in turn be determined
in a way consistent with a cohesive model. To this end re-write Eq. (21) for half
of the bar and split the integral into two parts, respectively accounting for damage
behaviour and a purely elastic response:

u� = σ

E

[∫ lm

0

[
ω−1(d(x)) − 1

]
dx + L

]
= 1

2
w + σ L

E
(34)

In the above equation w is the apparent opening displacement across the local-
ization band; it can be expressed in terms of the chosen parametrization as:

w(dm) = 2 σ(dm)

E
lc F(dm) (35)

where the non-dimensional term F(dm) reads:

F(dm) =
∫ dm

0

(
ω−1(d) − 1

)
dd (36)

and depends only upon the assumed form of the degradation function ω(d).
Relationships (32) and (35) are used to determine the constitutive function Yc(d)

by requiring that the macroscopic response of the damageable rod be equivalent to
that of an elastic bar in which the localization band is replaced by a cohesive interface
of given properties. In particular, we consider the linear softening law depicted in
Fig. 3, whose analytical expression reads:

σ = σc

(
1 − σc

2 Gc
w

)
(37)

where σc and Gc respectively denote the peak stress and the fracture energy.
Substitution of (35) into (37) and solution for σ(dm) provides the stress as a

function of the maximum damage dm as:

σ(dm) = σc

1 + λ F(dm)
(38)

Fig. 3 Linear softening
function
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where λ is the non-dimensional parameter:

λ = lc

lcoh
(39)

expressing the ratio between the characteristic length lc of the graded damage model
and the length scale lcoh of the cohesive zone [11]:

lcoh = E Gc

σ 2
c

(40)

For a given dm , the value H(dm) of the integral (33) follows from substitution of
(38) into (32) as:

H(dm) = ω−1(dm) − 1

2 E

(
σc

1 + λ F(dm)

)2

(41)

Motivated by stability arguments that are being illustrated later on, we choose for
the degradation function the quadratic expression:

ω = (1 − d)2 (42)

whereby one has from (36):

F(dm) = d2
m

1 − dm
(43)

while (32) provides the following expression for the (uniform) stress:

σ(dm) = σc
1 − dm

λ d2
m + 1 − dm

(44)

with the limits
lim

dm→0
σ(dm) = σc; lim

dm→1
σ(dm) = 0 (45)

The constitutive function Yc(d) is computed by differentiation of (41) as:

Yc(d) = σ 2
c

E

1 + λ d2(d − 3)(
λ d2 + 1 − d

)3 (46)

and the relevant limits read:

Yc(0) = lim
d→0

Yc(d) = σ 2
c

E
; lim

d→1
Yc(d) = σ 2

c

E

1 − 2 λ

λ3
(47)
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Fig. 4 The constitutive
function Yc consistent with
linear softening

Figure4 depicts the function Yc(d) normalized to Yc(0) for different values of the
parameter λ, which determines the properties of the function Yc(d) itself. In practice,
a safe value of λ to be used in numerical computations [23] can be taken in a way to
comply with conditions (23) and (25).

For the case at hand the local stability requirement (23) provides:

λ <
(d − 2)

√
d4 − 4 d3 + 40 d2 − 72 d + 36 + d3 − 4 d2 − 10 d + 12

8 d4 − 36 d3 + 24 d2
(48)

with limit

lim
d→1

λ = 1

2
(49)

On the other hand, the strain softening condition (25) implies:

0 < λ <
1 + (1 − d)2

2 d
(50)

The above relationships define the admissible region for λ that is shaded in Fig. 5.
Clearly, any positive value of λ lower than 0.5 allows to fulfill both conditions for
each d ∈ [0, 1].

For a given damage distribution the relationship between the stress and the dis-
placement u� is obtained from Eq. (21) as:

σ(dm) = E u�

L

1 − dm(
β d2

m + 1 − dm
) (51)
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Fig. 5 Admissible region
for parameter λ

with

β = lc

L
(52)

Evidently, in the present context knowledge of the damage distribution is equiv-
alent to knowledge of the constraint set [0, lm], where the integral in Eq. (21) is
non-trivial and the Lagrange multiplier γ2 is non-zero.

Evaluation of the multiplier γ2 amounts to compute the integral of the differential
equation (28). To this end use is made of the chain rule as:

dγ2
dx

= γ ′
2(d)

dd

dx
= − 1

lc
γ ′
2(d) (53)

to get the integral as:

1

lc
γ2(d) = −σ 2(dm)

2 E ω(d)
+ σ 2

c

E

d (2 − d)

2
(
λ d2 + 1 − d

)2 + C (54)

The integration constant C is obtained using one of the two boundary conditions
on γ2, i.e. γ2(0) = γ2(dm) = 0, that is:

C = σ 2(dm)

2 E
(55)
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whereby one has:

γ2(d) = −σ 2(dm) lc

2 E

(
ω−1(d) − 1

) + σ 2
c lc

E

d (2 − d)

2
(
λ d2 + 1 − d

)2

= lc

2 E

d (2 − d)

(1 − d)2

[
σ 2(d) − σ 2(dm)

]
(56)

Equation (56) describes the variation of the multiplier γ2 within the active con-
straint interval and depends upon dm , which is a fixed value, and d = d(x), which
is a function of the abscissa x along the bar. It is immediately recognized that the
Lagrange multiplier γ2 is zero either at x = 0, where d = dm , and at x = lm , where
d = 0. Moreover, its maximum value within the interval occurs at point x̄ where
Y (x) = Yc (d(x)) owing to the differential relationship (28).

A typical spatial distribution of the Lagrange multiplier γ2(x)within the symmet-
ric localization band is depicted in Fig. 6 along with the local damage-driving force
Y and the constitutive function Yc .

The response of the elasto-damaging bar is clearly dependent upon the length
scales lc and lcoh via the non-dimensional parameter λ defined by (39) and from the
geometric factor β given by (52).

Actually, by comparison of Eq. (44) with (51) one has:

u�(dm) = σc L

E

β d2
m + 1 − dm

λ d2
m + 1 − dm

(57)

Fig. 6 One-dimensional
rod. A typical spatial
distribution of Y , Yc and γ2
corresponding to the
symmetric localized solution
with a single defect
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This relationship allows to obtain the condition underwhich the response of the rod
is stable under displacement control, i.e. it does not exhibit a snap-back. This requires
the end-displacement u� to be an increasing function of the maximum damage level
dm , that is:

∂u�

∂dm
= σc L

E

(β − λ)(2 dm − d2
m)

λ d2
m + 1 − dm

> 0 (58)

whereby one obtains the condition that governs the stability of the response for the
damaging tensile bar under displacement control

β > λ ⇔ L < lcoh (59)

The stability condition strongly depends upon the expressions of the degradation
function (42) and of the constitutive function (46).Actually, taking forYc the constant
function, i.e. Yc(0) given by (47), and the quadratic degradation function (42) one
obtains:

σ(dm) = 2 σc (1 − dm)√
4 − 2 dm

(60)

in place of (44) and

u�(dm) = σc L

E

2(β d2
m + 1 − dm)√
4 − 2 dm

(61)

that replaces (57). The stability condition now reads:

β >
3 − dm

dm (8 − 3 dm)
(62)

whereby one infers that there is always a snap back right after the elastic limit no
matter how short is the bar since the right-hand side of (62) diverges for dm → 0.
This can slow down convergence in the solution of a Finite Element problem and
should be avoided as much as possible.

However, there exist situations that are evenmore harmful. In this respect, consider
the case of a linear degradation function

ω(d) = 1 − d (63)

and a constant elastic limit

Y c = σ 2
c

2 E
(64)
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In this case one obtains the stress and the end displacement as:

σ(dm) = σc

√
1 − dm (65)

u�(dm) = σc L

E

(
1 − β dm − β ln (1 − dm)

)
(66)

The stability condition now reads:

β >
1

ln (1 − dm) + 3 dm
(67)

Clearly, the right-hand side of (67) diverges for both dm → 0 and for dm →
1 − exp(−3dm) � 0.94048.

Figure7 depicts the σ − u� response of the bar for the different choices of the
constitutive functions ω(d) and Yc(d) considered above, that is:

(i) quadratic degradation and non-constant limitYc(d) that realizes the equivalence
with linear softening;

(ii) quadratic degradation and constant limit Yc = σ 2
c /E ;

(iii) linear degradation and constant limit Yc = σ 2
c /2E .

For all these cases the non-dimensional parameters respectively defined by (39)
and (52) are such that λ ≤ 0.5 and β > λ, which correspond to a rod that can be
considered a short one.

Fig. 7 One dimensional rod. Normalized stress-displacement responses obtained for different
choices of the constitutive functions ω(d) and Yc(d)
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3 The Block with Cohesive Interface

Generally speaking, a cohesive law is a relationship between a displacement dis-
continuity vector, which is understood as the interface strain, and a surface traction
vector playing the role of the stress. For the developments that follow attentionwill be
restricted to mode-I opening; tractions and displacement jumps will then be normal
to the interface while negative relative displacements will be left out for notational
simplicity.

As a model problem consider the structure in Fig. 8, consisting of a rigid block
connected to a fixed support via a damageable adhesive layer of negligible thickness
[24]. A monotonic increase of the end-displacement δ produces a uniform rotation
of the block but a non-uniform distribution of damage, which starts nucleating from
the left edge with non-zero gradient.

Denoting by w the opening displacement across the interface, a stored energy
function from which one can obtain a (local) cohesive law using a damage-based
formulation reads [22]:

ψ̃(w, d) = 1

2
ω(d) k w2 (68)

where k is the (undamaged) interface stiffness in tension.
For the problem at hand the kinematics of deformation is completely described

by a single parameter, i.e. the rotation α, here assumed to be small in the usual sense.
Therefore, one has the opening displacement:

w(x) = α (L − x) (69)

while the stress-like variables read:

Fig. 8 The rigid-block
problem
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Fig. 9 Bilinear cohesive law

t (x, d) = ∂ψ̃(w, d)

∂w
= ω(d) k α (L − x)

Ỹ (x, d) = −∂ψ̃(w, d)

∂d
= −ω′(d)

1

2
k α2(L − x)2

(70)

The governing equations of a nonlocal interface model based on the graded dam-
age concept are formally identical to those developed in Sect. 2 for the tensile rod
with two minor modifications. In particular, the stored energy function (1) has to be
replaced by (68), while the function Ỹc(d) is now directly prescribed, e.g. based on
the shape of a chosen traction-separation relationship.

For instance, a constitutive function Ỹc(d) that yields the (local) bilinear cohesive
law of Fig. 9 reads:

Ỹc(d) = −ω′(d) G0 G2
c[

G0 + (Gc − G0) ω(d)
]2 (71)

to which corresponds the work of separation:

∫ +∞

0
Ỹc(d) ḋ dt = −

∫ 1

0
Ỹc (ω) dω = Gc (72)

where G0 and Gc respectively denote the initial energy threshold and the interface
fracture toughness:

G0 = 1

2
k w0

2; Gc = 1

2
k w0 wc (73)

Without loss of generality, in the remainder we shall assume Eqs. (12) and (42)
to hold; moreover, the length scale lc of the nonlocal interface model is supposed to
be greater than the width L of the block.

The equilibrium path of the structure can be traced using the balance of moments
about the center of rotation:

P L =
∫

Ω

t (x, d) (L − x) dx (74)
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Ω being the physical domain [0, L] and P the reaction force corresponding to the
prescribed displacement δ. During initial loading the latter increases up to the elastic
limit δ0 given by:

δ0 =
√
2 G0

k
= α0 L (75)

that is first attained when the local limit condition Ỹ = Ỹc (0) is met. This state
corresponds to damage nucleation at x = 0 and from this point onwards loading can
be effectively parametrized in terms of the size lm > 0 of the damaged portion of the
domain of interest.

For lm ≤ lc the length lm does also coincide with the size of the active constraint
set (i.e. where g2(d) = 0) and the adopted parametrization is fully equivalent to the
one given in terms of the maximum damage dm defined as:

dm = min

{
1,

lm

lc

}
(76)

It isworth emphasizing that, unlike the case of the tensile rodwith a single evolving
defect, for the problem at hand the constraint set translates along the interface once
the damage process zone has fully developed. In particular, this occurs when the
size of the damaged region lm equals the length scale lc; to account for this case,
the (piece-wise) linear damage function that is prescribed via the gradient constraint
(12) is conveniently defined as:

d(x) = max

{
0, dm − x − c

lc

}
(77)

where the (finite) size of the fully damaged subdomain reads:

c = max

{
0, lm − lc

}
(78)

As discussed in Sect. 2, owing to gradient-dependence the normality rule yields
the differential equation (28); the latter now admits two sets of boundary conditions
for the opening angle α and the Lagrange multiplier γ2.

For the rigid block problem the averaged limit condition reads:

∫ H

0
Ỹ (x, d(x)) dx =

∫ H

0
Ỹc (d(x)) dx (79)

where H denotes the size of the active process zone portion that is contained within
the physical domain [0, L]:

H = min

{
lm, L

}
(80)
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With this notation in hand, balance of moments about the center of rotation can
be expressed as:

P L =
∫ H

c
ω(d)k α̂ (L − x)2 dx +

∫ L

H
k α̂ (L − x)2 dx (81)

whereby one obtains the different branches of the equilibrium path by distinguishing
the different possible cases for the integration limits of Eq. (79), which in turn take
into account the boundary conditions (16) for the Lagrange multiplier field and the
internal jump conditions (15), if any.

Phase 1. Linear elastic The initial linear elastic phase is purely local; the limit value
for the displacement is given by (75), to which corresponds the reaction force:

P0 = √
2 G0 k

L

3
(82)

Phase 2. Damage nucleation and growth for 0 < lm ≤ L In this case use of the
integral limit condition (79) allows to compute the opening angle α as a function of
the length lm (driving variable) as:

α̂1 = α0

√
Gc l2c L2 (2 lc − lm)

A1 A2
(83)

with

A1 =
[

l3m
6

− 2

3
(lc + L) l2m + (L + 2 lc) L lm − 2 L2 lc

]
(84)

A2 = [
(G0 − Gc)(l

2
m − 2 lc lm) − Gc l2c

]
(85)

and limits
α̂0
1 = lim

lm→0
α̂1 = α0 (86)

α̂L
1 = lim

lm→L
α̂1 = α0

√
6Gc l2c (2 lc − L)

(4 lc − 3 L) [(lc − L)2 Gc − (L − 2 lc) G0 L] (87)

Obviously, the limit (86) coincides with the opening angle α0 defined by (75)
whereas the upper limit (87) marks the end of the domain of validity of relationship
(83), to which corresponds by equilibrium the end reaction force:

P̂1 =
[

L3 l2c + (lm − 3 lc) l2m L2 − (lm − 4 lc) l3m L

2
+ (lm − 5 lc) l4m

10

]
k α̂1

3 l2c L
(88)
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Phase 3. Damage growth for L ≤ lm ≤ lc When the driving variable lm grows beyond
the length L , the zero-damageboundarywouldbe locatedoutside the physical domain
of the interface. In this case the boundary conditions for the Lagrange multiplier and
the limit condition (79) yield an averaged equality over the entire domain [0, L],
whereby one obtains another nonlinear branch of the equilibrium path defined by the
following:

α̂2 = α0

√
6G2

c l4c (L + 2 lc − 2 lm)

B1 B2 B3
(89)

with
B1 = L + 4 lc − 4 lm (90)

B2 = (lc − lm)2 Gc − lm (lm − 2 lc) G0 (91)

B3 = (L − lm + lc)
2 Gc − (L − lm)(L − lm + 2 lc)G0 (92)

The corresponding value of the reaction force reads:

P̂2 = k L2

30 l2c

[
10 l2c + (5 L − 20 lm) lc + L2 − 5 L lm + 10 l2m

]
α̂2 (93)

Phase 4. Crack propagation For lm > lc there exists a fully damaged region of finite
size c defined by (78); the latter can be taken as the driving variable for computing the
last part of the equilibrium curve because in this case the non-trivial limit condition
reduces to an averaged equality over the interval [c, L] on account of the jump
relationships (15).

The opening angle is now computed as:

α̂3 = α0

(L − c)2

√
6G2

c l2c L2

G0
[
Gc (L − c)2 − G0(−L + c − lc)(−L + c + lc)

] (94)

whereas the equilibrium equation yields:

P̂3 = k (L − c)5

30 l2c L
α̂3 (95)

As expected, the reaction force (95) converges to zero when the portion of the
active damage process zone lying within the physical domain progressively shrinks
and collapses to a point.

The complete equilibrium path for the block delamination problem is depicted
in Fig. 10. The curve corresponds to a length scale lc = 6mm and to the data set of
Table1. The different colors on the plot are used to distinguish the four branches of
the theoretical solution whereas the points highlighted on the load-deflection curve
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Fig. 10 Equilibrium curve for the rigid-block problem

Table 1 Data set for the rigid block problem

L = 2mm; k = 800N/mm3

Gc = 0.25N/mm; G0 = 0.025N/mm

Fig. 11 Tractions distributions along the interface at varying end-displacement δ
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Fig. 12 Damage-conjugate
force Ỹ along the interface at
varying end-displacement δ

Fig. 13 Threshold function
Ỹc along the interface at
varying end-displacement δ

indicate the stations selected for the plots of Fig. 11, which shows the distribution of
the surface tractions along the interface for different damage levels.

Unlike the case of a local model, where the profile of the surface tractions would
replicate the bilinear shape of the traction-separation curve consequent to (71),
due to gradient-dependence the tractions distribution in the present case changes
continuously from a bilinear shape to an exponential-like one for increasing end-
displacement δ.

Moreover, it is noted that the differential character of the constitutive relationship
allows for point-wise values of the surface tractions higher than the peak stress√
2 k G0 of the underlying local model. Likewise, the point-wise values of the

damage-conjugate variable Ỹ can exceed those of the limit function Ỹc owing to
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Fig. 14 Lagrange multiplier
γ2 along the interface at
varying end-displacement δ

the averaged character of the limit condition. This behaviour is clearly put forward
in Figs. 12 and 13, that have been plotted using the same scale to ease the comparison.

It is also worth noting that functions Ỹ and Ỹc do share only one common point-
wise value over the physical domain [0, L]. This corresponds to the extremum
point, which is indeed a maximum because of the obvious sign constraint, of the
Lagrange multiplier field γ2 that is used to enforce the nonlocal, gradient constraint,
see e.g. Fig. 14.

4 Closure

Based on the graded damage formulation contributed in [23] two problems in one
dimension have been discussed and the relevant analytical solutions computed to be
used as a reference for finite element procedures.

In the tensile rod problem the uniform stress is obtained from the averaged limit
condition and the constitutive function Yc is determined in a way to produce a global
response curve that is consistent with a cohesive zone model with linear softening.

On the other hand, in the block delamination problem the constitutive function
Yc is prescribed based on a local cohesive model while the integral limit condition
provides the parameter governing the kinematics of deformation. In this case one
obtains a global equilibrium curve that depends from the length scale since the effect
of gradient-dependence is that of relaxing the surface tractions in that they are no
longer constrained to the shape of the underlying local softening curve.
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Fatigue Strength Prediction of Nodular
Cast Iron by Shakedown Analysis

Christian Gebhardt , Felix Weber , Tobias Sedlatschek ,
Alexander Bezold, and Christoph Broeckmann

Abstract A large number of heavy-section castings are used in current wind tur-
bines. Considerable potential for innovation arises, on the one hand, from the use
of new materials with different mechanical properties and, on the other hand, from
exploiting strength gradients in the component which result from the microstructure
of the material. In the present paper, therefore, the influence of the graphite mor-
phology on the fatigue strength of high-silicon alloyed ductile cast iron (Si-DCI) is
analyzed by shakedown analysis of real and syntheticmicrostructures. Finite element
models are built from low magnification micrographs of Si-DCI by approximating
the geometry of the precipitated graphite with B-splines. The fatigue strength is then
predicted using shakedown analysis with Melan’ static theorem. Simulation studies
with synthetically generated microstructures show that the so-called nodularity can
already be used as a suitable qualitative parameter for evaluating the influence of
graphite morphology on the fatigue strength. A comparison of the results of shake-
down analyses with experimentally measured fatigue strengths of Si-DCI shows
good agreement. Due to the simplified modeling based on micrographs, the method
may be used for component design, quality assurance and extrapolation of fatigue
strength.

Keywords RVE · Micromechanical simulation · Shakedown analysis · B-Splines

1 Introduction

Hardly anymechanical failures of heavy-section castings in wind turbines are known
[38], which implies a high safety potential in these components. According to the
standard DIN EN ISO 1563 [16], a decisive cross-section needs to be specified in
part design, which results in requirements for the microstructure and thus a mini-
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mum strength, often not defined by the standard but only by agreement of customer
and foundry. As a result of complex geometries, however, castings in wind turbines
exhibit locally different microstructures, which is manifested in various gradients,
one of which is the graphite morphology [44]. In addition to the metallic matrix,
shrinkage cavities and graphite nodules influence the strength of nodular cast iron.
In particular, they have a crack-initiating effect under cyclic loading and are responsi-
ble for the scattering of the fatigue strength due to local variations inmorphology, size
and distribution of defects [18]. Large shrinkage cavities lower the fatigue strength
and are therefore often modeled as cracks in the context of component design [30].
In general, the fatigue mechanisms of ductile cast iron cannot be generalized. Since
ductile cast irons tolerate shrinkage up to a certain size according to the Kitagawa
diagram, the design guideline [25] defines an elongation at fracture above which
a damage tolerant design is required. In more brittle cast iron materials, the crack
initiation phase tends to play a minor role and crack growth under a Mode I loading
dominates the fatigue life [30], while the fatigue phenomenon in ductile materials
is caused by dislocation motion [26]. The latter results in higher defect tolerance
and an increased occurrence of non-propagating cracks [24]. In high silicon alloyed
nodular cast irons (Si-DCI), the metallic matrix is almost exclusively ferritic. In the
absence of larger shrinkage cavities, which can be locally avoided by cooling irons,
the graphite morphology has a major influence on the fatigue strength in this material
[24]. This complicates the derivation ofmicrostructure-property relationships, which
are, however, of great interest for the local dimensioning of the castings. Microme-
chanical models based on the real microstructure in the material provide a remedy.
Beyond analytical and semi-analytical micromechanical models, representative vol-
ume elements (RVE) based on the finite element method are well established [8]. By
applying numerical homogenizationmethods, they can be used to determine effective
mechanical material properties - including the fatigue properties of a material. In the
last decades,micromechanicalmodelingmethods have been further developedwhich
allow the simulation of graphite morphology in ductile iron castings using represen-
tative volume elements [5]. For ductile cast irons, both two- and three-dimensional
models are well established, with two-dimensional models currently having advan-
tages over three-dimensional ones in resolving the phase boundary. For example, the
interface between graphite and matrix was approximated with Bezier curves in the
literature [9]. The advantage is a smooth interface between graphite and ferrite, which
avoids artificial stress peaks at the interface. Furthermore, multiphase elements are
known, where the interface passes a finite element [20]. In the literature, the consti-
tutive modeling of the metallic matrix of DCI is mainly performed on the basis of
infinitesimal strain tensors and assuming the validity of the associated flow rule [35]
as well as the von Mises yield surface [4]. Homogeneous and isotropic modeling of
the metallic matrix, where the grain structure is explicitly modeled, are common.
Several phenomenological hardening laws were applied for the matrix, such as the
Voce’s law [6], the Armstrong-Frederich law [35] and the Simo andHughes law [19].

ForDCI, it is common to inversely calibratemodel parameters by comparisonwith
macroscopicmaterial tests. Kasvayee et al. [32] calibrated themodel parameters with
tensile tests. Andriollo et al. [5] calibrated the homogenized properties of the simu-
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lation to experimental cyclic material properties. In addition, characterization of the
individual microstructural constituents by nanoindentation is frequently applied for
DCI [3, 19]. Fernandino et al. determined the model parameters inversely by using
FEM [19]. Andriollo et al. [2] used nanoindentation to characterize the mechanical
property gradient within graphite nodules. However, nanoindentation of such soft
phases is problematic because the results depend not only on the heterogeneity of
the graphite nodules themselves, but also on the constitutive properties of under-
lying microstructural constituents. More recently, Andriollo et al. [6] prepared an
equivalent matrix material that corresponded to the effective composition of the fer-
ritic matrix. The model material is then characterized in macroscopic material tests.
Gebhardt et al. [22] applied an alternative approach in which the plastic deformation
of the ferritic matrix in Si-DCI was characterized by a combination of microme-
chanical modeling and full-field digital image correlation. If calibrated properly,
effective material properties are obtained from the RVE through homogenization.
Such approach fails if the microstructure is not statistically homogeneous which is
particularly crucial for DCI since themicrostructural constituents varywidely locally
[6]. In the literature for DCI, numerical homogenization methods based on averag-
ing techniques are largely known [10]. For purely elastic deformation, the effective
elasticity tensor can be obtained immediately from the homogenized fields. If plastic
deformation is simulated, a stress-strain curve is often plotted in the literature by
using the homogenized fields, from which the effective properties are then directly
determined [19]. Compared to the material properties under monotonous loading,
microstructure-sensitive fatigue properties and microstructure-fatigue relationships
are not sufficiently investigated in the current scientific literature [23]. Generally, in
various modeling approaches, crack initiation and crack propagation were explicitly
simulated for each loading cycle [31] which results in high computational costs.
Consequently, these models may contribute to an understanding of the underlying
fatigue mechanisms, but are unsuitable for generating large data sets. However, these
are required for the derivation of microstructure-property relationships. Fatigue Indi-
cator parameters (FIP) were developed based on this motivation [27]. Therein, only a
few cycles of the cyclic loading are simulated explicitly, which still results in a high,
but reduced, computational time. On the other hand, so-called direct methods offer
an advantage, since they can efficiently predict a microstructure-sensitive fatigue
strength based on RVEs by using the shakedown effect on the microscale [48]. Here,
the limit state sought is the cyclic loading of the RVE at which the accumulation of
plastic dissipation work is limited. Thereby, the time evolution of fatigue damage
and cracking are not explicitly simulated. The shakedown state can be determined
by mathematical optimization [41]. The advantage of this method is that the fatigue
strength (shakedown limit) of a microstructure can be predicted very quickly without
expensive incremental simulations [13]. The static shakedown theorem was applied
to idealized material microstructures to determine optimal design parameters for
fiber composites [14]. By using the average stress theorem, safe load spaces can be
determined for RVEs [39]. Hachemi et al. [28] presented an approach to account for
the debonding of defects in idealized material microstructures. Moreover, the static
shakedown theorem was used for three-dimensional RVEs. However, the material
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structure consisted of only a single idealized inclusion [34]. You et al. [49] studied
copper composites using incremental and direct methods. The results show com-
parable shakedown behavior with both methods. Shakedown analysis of cemented
carbide microstructures were performed by Chen et al. [13]. The RVEs were based
on SEM images or generated synthetically from statistical data. In more recent publi-
cations, the shakedown behavior at the grain level was also discussed. These models
are based on the research of Dang Van and Papadopolous [12]. Auricchio et al. [7]
derived a fatigue model for shape memory alloys from them. Gebhardt et al. per-
formed shakedown analysis of nodular cast iron and, the results of image analysis
and shakedown limits were correlated by using a simplified residual neural network
[23]. Other than that, no systematic study of the influence of the microstructure on
the fatigue strength of Si-DCI is known in the literature. Thus, this paper presents
shakedown analyses on real and synthetically generated microstructures of Si-DCI.

2 Material

The basis of the investigations was the standardized material EN-GJS-500-14 which
was cast in cuboids of size 100 × 100 × 220 mm by sand casting. For details of
process control and fabrication, the reader is referred to [21]. Starting froma reference
alloy, the graphite morphology was modified by adding cerium and manipulating the
magnesium pretreatment, resulting in threematerials with spheroidal graphite, where
the graphite nodule density increases from S1 to S3, and V with vermicular graphite
(see Table1).

As a first approach to understand the influence of the graphite morphology on
the fatigue limit, fatigue tests under axial loading were carried out in accordance
with DIN 50100 [15] with constant stress amplitudes on modernized 100 kN Amsler
HFP 422 high-frequency pulsators which were also partly published in [21, 24]. The
cycle limit was 107 and a frequency drop of 5 Hz was used to detect the macroscopic
crack. At least 20 specimens were tested at stress ratios of Rσ = −1, Rσ = 0, and
Rσ = −2.3 for each S-N-curve, 15 of which were used in a stair-case procedure. An
additional five specimenswere used to estimate the transition region to infinite fatigue

Table 1 Chemical compositions of investigated alloys in wt.%

Alloy C Si Ce Mg Ni P Cr Mn Fe

S1 2.87 3.85 <0.0033 0.028 0.028 0.077 0.045 0.172 bal.

S2 2.76 3.78 <0.0033 0.033 0.057 0.035 0.050 0.181 bal.

S3 2.82 3.95 0.047 0.042 0.037 0.036 0.057 0.202 bal.

V 2.95 3.95 <0.0033 0.022 0.027 0.233 0.048 0.175 bal.

Standard DIN EN 1563 [16]

– >3.8 – – – < 0.05 – < 0.5
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Fig. 1 Haigh diagrams of the investigated alloys of EN-GJS-500-14. �A is the stress amplitude at
50% failure probability. S1–S3 show spheroidal graphite with increasing nodule density, whereas
V shows vermicular graphite

Table 2 Quantitative graphite analysis

Alloy Nodularity [%] Nodule density
[1/mm2]

Mean maximum feret
diameter [µm]

S1 62.6 88.4 32.5

S2 64.0 75.4 30.8

S3 57.6 22.2 51.1

V 44.5 67.5 36.9

life by using a combined statistical analysis [33]. Figure1 shows the 50% values of
the stress amplitudes �A over the mean stress�m . Alloy group V exhibits the lowest
fatigue strength. It is noteworthy that alloy group S3 predominantly exhibits the
highest fatigue strengths. Alloys of groups S1 and S2 are comparable.

For quantitative image analysis as well as for the generation of the microme-
chanical models, metallographic sections of the previously tested fatigue specimens
were prepared for each S-N curve. At least ten microstructural images were taken
for each specimen at 100×magnification and a pixel scale of 1.0234µm. The results
in Table2 show that the nodularity according to ASTM E2567 [17] is lowest for the
alloy group V. The alloy group S3 had the largest graphite nodules, resulting in a
lower nodule density. Figure2 shows microstructural images representative of the
different alloy groups.

The fatigue mechanisms of these particular alloys were published in [24]. It was
shown that the graphite morphology influences the fatigue mechanisms locally. At
spheroidal graphite mostly slip is observed, whereas non-speroidal graphite shows
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Fig. 2 Exemplary micrographs of the four different alloys investigated. Spheroidal graphite S1–S3
and vermicular graphite V

early Mode I crack initiation. In the course of fatigue loading these fatigue mecha-
nisms, the cracks become non-propagating and no further plastic slip accumulates
at spheroidal graphite. Instead more plastic slip and cracks form at other graphite
nodules. In a continuum mechanics sense, these microscale fatigue mechanisms can
be considered as effective plastic deformation. In the following, therefore, these
mechanisms are interpreted as shakedown phenomena at the mesoscale.

3 Methods

3.1 Generation of Finite Element Representative Volume
Elements

Shakedown analyses were carried out on both real and synthetic micrographs of the
cast iron grade EN-GJS-500-14. The analyses on synthetic micrographs were used
to investigate the effect of graphite on the fatigue behavior, while the analyses of
the real micrographs were used to compare the numerical results with experiments.
To this end 254 real micrographs of the four investigated alloy groups S1–S3 and V
were taken from the fatigue specimens as mentioned above.
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Fig. 3 Example of a synthetic RVEs built with the RSA algorithm. The graphite nodules are
randomly projected into the RVE

The synthetic microstructures were constructed by using a so-called Random
Sequential Adsorption algorithm (RSA) (see Fig. 3). According to DIN 945-4 [1],
graphite nodules may be classified into classes I to VI depending on their shape
as well as categories three to eight depending on their size. Velichko et al. [46]
quantified the comparative images for graphite analysis given in the standard [1]
by quantitative image analysis. These results were used in this work to classify all
graphite nodules acquired from all 254 micrographs in a database. The synthetic
RVEs were then generated by randomly projecting graphite nodules into an image
size of 1mm2. After each iteration, the respective graphite morphology and graphite
fraction as well as the nodule count were checked. In this way, selected graphite
features were kept constant or within a maximum allowed relative deviation of 1%.
The result of the algorithm is a binary micrograph. In a post-processing step, the
graphite-ferrite interfaces were diluted by assigning to each pixel the mean of its
3 · 3 submatrix, which simplifies the construction of the B-spline around the graphite
nodules, described in the next chapter.

The fatigue mechanisms identified and related to the graphite morphology require
that the graphite geometry must be reconstructed from the micrographs as accurately
as possible. Hence, approximatedB-splineswere used tomodel the graphite. Figure4
shows the main steps of the implemented meshing method. The implementation was
carried out in Python language and uses the open-source packages sci-kit [36], sci-kit
image [45] and open-cv [11]. The details of the program code are published in [23]
and are briefly outlined here.

Starting from the micrograph (Fig. 4a), the graphite contour is extracted by image
analysis. The pixel coordinates of the respective contours serve as control points of
a B-spline (Fig. 4b). A B-spline curve C(u) of the degree p is a sum of piecewise
polynomials constructed by using a knot vector U = [u0, . . . , um] and has the con-
trol points {Pi } = {P0, . . . ,Pn}. Knot vector and control points are related by the
following relation:

m = n + p + 1. (1)
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von Mises Stress [MPa]

Fig. 4 Generation of the Finite Element Model: optical microscope image (a), image processing
and B-spline modeling (b), meshing (c), exemplary linear elastic RVE simulation (d)

Herem + 1 is the number of knots and n + 1 is the number of control points. The
B-spline curve is then

C(u) =
n∑

i=0

Ni,p(u)Pi . (2)

with i th basis functions Ni,p, degree p andPi the i th control point. The basis functions
are defined over the knot vectorU and are constructed according to the Cox-de-Boor
formula [37] as follows:

Ni,0(u) =
{
1 if ui ≤ u ≤ ui+1

0 otherwise
,

Ni,p(u) = u − ui
ui+p − ui

Ni,p−1(u) + ui+p+1 − u

ui+p+1 − ui+1
Ni+1,p−1(u). (3)

An approximation according to the algorithm of Piegl and Tiller [37] is performed
to smooth the contour. The approximation of the graphite geometry from the discrete
image data is based on the removal of knots. In a first step, an overdeterminedB-spline
curve is constructed which interpolates all discrete image data. As input parameters,
besides the error tolerance ξ , the starting degree and the final degree of the B-spline
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curve are defined. From this, a B-spline curve C(u) with a knot vector U and a set of
evaluation points {ūk} is constructed. The approximated curve results from a reduced
knot vector of a B-spline and the resulting newly placed control points. Here, an
approximation error ξ between the B-spline curve C(u) and the coordinates {Dk} of
the graphite contour is tolerated. Estimated errors {ẽk} are used within the algorithm.
After the least square fit, the exact errors {ēk} are determined as the shortest distance
between the data points {Dk} and new evaluation points. After that, the resulting
graphite geometries are slightly extruded in-direction to obtain a 2.5D RVE model
that avoids the pure plane strain or stress state. The model is meshed by using the
free software gmsh with wedge elements C3D6 from the abaqus element library
having two gauss points and six nodes (Fig. 4c). Finally, the linear-elastic stress field
is solved in Abaqus by using static uniform boundary conditions (Fig. 4d).

3.2 Implementation of Melan’s Static Shakedown Theorem

Melan’s static shakedown theorem was implemented with and without kinematic
hardening. The discretized shakedown theorem here is based on the notation given
by Simon et al. [41] and uses, among others, the open Python libraries NumPy [29]
and SciPy [47]. The discretized shakedown theorem is given by

maximize α,

subjected to [C] · {
ρi

} = 0, (4a)

f (ασ e
ik + ρi , σY i ) ≤ 0 (4b)

i = 1, . . . , NG; k = 1, . . . , NV,

with the load factor α, the system matrix [C], the discretized residual stresses
{
ρi

}
,

discretized elastic stresses σ e
ik and yield limits σY i for all Gauss point NG. The

inequality constraints in Eq.4b ensure that the stress states lie within the yield surface
f . The loadspace L is defined by the load vertices NV (see Fig. 5). Therefore, for a
purely pulsating loading, which is applied here, the number of vertices is two. The
mesoscopic elastic stresses σ e increase with increasing load space by a factor of
α and are determined by using the FEM software Abaqus. They are a function of
the applied loads Pk . Figure6 shows schematically the setup of the simulation for a
two-dimensional RVE and the load point Pxx > 0.

Kinematic and isotropic hardening are considered in this work with the inequality
constraints

f
(
ασ e

ik + ρi − π i , σY i
) ≤ 0 (5a)

f
(
ασ e

ik + ρi , σmax,i
) ≤ 0 (5b)

i = 1, . . . , NG; k = 1, . . . , NV



142 C. Gebhardt et al.

PI

PII

PIII

σII,o

σII,u

Δσ(t)

H(t)

Fig. 5 Definition of the load space L. The load considered in this work are two load vertices
corresponding to a purely pulsating stress

Fig. 6 Boundary conditions
for the linear-elastic finite
element RVE simulation

P xxΩ

which limit themovement and expansion of the yield surface f by a second yield sur-
face (two-surface model) [40]. For this purpose, the hardening stress π̄ is introduced.
For the radius of the second yield surface, the tensile strength σmax of the respective
phase, i.e. graphite or ferrite, is used. The shakedown conditions are checked at the
Gaussian points for each load vertex.
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Equation4a is the equilibrium condition of the discretized, time-independent
residual stresses. The principle of virtual work for the time-independent residual
stresses is ∫

V
δεTρ dV =

∫

V
δuT BTρ dV = 0. (6)

The B-matrix B denotes the matrix of partial derivative shape functions N(x) ∈
K NNE×NDOF , where NNE is the number of nodes of the element type used and
NDOF is the number of degrees of freedom. Equation6 is discretized as follows,
where wi j denotes the weights following from the numerical integration of the inte-
grals:

NE∑

1

∫

Ve
BTρ dV =

NE∑

1

∫∫∫ 1

0
BTρ |J | dξ dη dζ (7a)

NE∑

i=1

NGE∑

j=1

wi j |J |i j BT
i jρi j =

NG∑

1

C iρi . (7b)

The sum of the matrices C i per Gauss point symbolizes the assembled system
matrix, whose structure is explained below. The Jacobi matrix J ∈ K NNE×NDOF

reads

J =

⎡

⎢⎢⎢⎢⎢⎢⎣

∂N1

∂ξ
(ξ)

∂N2

∂ξ
(ξ) . . .

∂NNNE

∂ξ
(ξ)

∂N1

∂η
(ξ)

∂N2

∂η
(ξ) . . .

∂NNNE

∂η
(ξ)

∂N1

∂ζ
(ξ)

∂N2

∂ζ
(ξ) . . .

∂NNNE

∂ζ
(ξ)

⎤

⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎣

x1 y1 z1
x2 y2 z2
...

...
...

xNNE yNNE zNNE

⎤

⎥⎥⎥⎦ . (8)

The shape functions in element coordinates are transformed into the global coor-
dinate system by using the Jacobian matrix

N(x) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂N1

∂ξ

∂N1

∂η

∂N1

∂ζ

∂N2

∂ξ

∂N2

∂η

∂N2

∂ζ

...
...

...

∂NNNE

∂ξ

∂NNNE

∂η

∂NNNE

∂ζ

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(J−1)T . (9)

The B-matrix in global coordinates is then
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B(x) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂N1

∂x
0 0 . . . 0

0
∂N1

∂y
0 . . . 0

0 0
∂N1

∂z
. . .

∂NNNE

∂z
∂N1

∂y

∂N1

∂x
0 . . . 0

0
∂N1

∂z

∂N1

∂y
. . .

∂NNNE

∂y
∂N1

∂z
0

∂N1

∂x
. . .

∂NNNE

∂x

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(10)

and has the dimensions B ∈ K 6×3NNE . The matrices B are evaluated at the Gauss
points. By multiplying with the Jacobi determinant and the respective weights, the
submatrices per Gauss point Cminor ∈ K 3NNE×6 correspondingly

Cminor = C i = det (J i ) wi BT
i (11)

are formed. The global system matrix C ∈ K 3NN×6NG is composed of submatrices
of Cminor , i.e. Cminor,S ∈ K 3×6, so that Cminor,S = Ci, j with i ∈ NN , j ∈ NG. The
system matrix follows by positioning the matrices Cminor,S according to

C =

⎡

⎢⎢⎢⎣

C1,1 C1,2 . . . C1,NG

C2,1 C2,2 . . . C2,NG
...

...
. . .

...

CNN ,1 CNN ,2 . . . CNN ,NG

⎤

⎥⎥⎥⎦ . (12)

The commercial optimizer Gurobi is used to solve the discretized shakedown
theorem. To determine the shakedown limit at the end of the optimization, the average
stress theorem is applied, leading to

�∞ = 1




∫


̄

ασ ed
, (13)

where 
 is the RVE volume.

3.3 Model Calibration and Validation

In the RVE, graphite and ferrite were modelled homogeneously and isotropically.
The elastic modulus of ferrite was chosen based on results from nanoindentations
determined in [22]. Therein, graphite was also characterized, but the Young’s mod-
uli of graphite were highly scattered, which is also known from the literature [6].
The parameters of the graphite were therefore determined exclusively in subsequent
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Fig. 7 Influence of elastic modulus and yield limit of graphite on the shakedown limit of Si-DCI

parameter studies. The parameters for the plastic deformation of the ferrite were
identified by full-field inverse analysis published in [22]. A cost function based on
simulated and experimental strains which were measured by digital image correla-
tion was built. In order to investigate the effect of graphite on the shakedown limit, a
singlemicrograph of the alloy group S1wasmeshed, where the yield limit of graphite
σY,0.2,Graphite was varied from 10 to 300 MPa and the elastic modulus of graphite
EGraphite was varied from 100 to 75000 MPa. The results in Fig. 7 show that the
shakedown limit saturates with increasing values of the yield limit of the graphite.
The onset of the saturation shifts to higher yield limits as the elastic modulus of
graphite increases and is reached immediately for low elastic moduli of graphite.
Therefore, the model parameters for the graphite must be chosen from the range
where the shakedown limit is no longer affected by the yield limit of the graphite,
otherwise the model parameters of the graphite would control the shakedown limit.
Meanwhile, an increase in the elastic modulus from 10 to 15 GPa at a yield limit of
300 MPa results in the increase of the shakedown limit of 8.6%. In light of the fact
that the elastic deformation of graphite cannot be measured reproducibly, a model
error due to the experimental uncertainties can be expected.

The shakedown simulation of Si-DCI was validated by using flat bending fatigue
tests. For this purpose, fatigue specimens of the alloy group S1were used. The failure
probabilities corresponding to the experimental fatigue strengths were determined by
Rossow’s estimation function and the data were fitted by using a normal distribution
function. By extrapolating the regression in Fig. 9, the fatigue strength amplitude
σA,P0.1% was determined. Ten micrographs were taken and modeled in the highly
stressed near-surface region, and the size of the RVE in each case was the entire
image area of approximately 1250 · 900 pixels with a pixel size of 1.0234µm/pixel
(see Fig. 8). Shakedown analyses were then performed on the RVEs. Figure9 shows
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Fig. 8 Position of the RVE in the bending fatigue specimen for validation

Fig. 9 Statistical evaluation of the transition region of bending fatigue tests of the alloy S1 and
shakedown limits of micrographs from the highly loaded region with and without consideration of
strain hardening. The data points of the RVEs are slightly altered to the right and left respectively
for visualization
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the results, where the data points were alternately positioned slightly to the right
or slightly to the left of zero in the x-direction for visualization purposes. These
are to be compared with the fatigue strengths of the experiment, i.e. σR=0,P=0.1% =
2 · σA,P=0.1% = 378MPa. The calculated shakedown limits for ideal-plastic material
behavior are significantly lower than the experimental fatigue strengths. Increasing
the elastic modulus of graphite leads to a reduction of themean relative error between
experiment and simulation. However, it should be noted that the scattering of the
shakedown limits is high,which is related to the locally varying graphitemorphology.
If limited kinematic hardening in the ferrite is additionally considered, the shakedown
limits do not change in both cases. This phenomenon is well known in the literature
as pointed out by Stein, Zhang, and König [43] who have shown that the shakedown
limit of the plate with the whole does not change when changing from elastic ideal-
plastic material behavior to limited kinematic hardening. Similar observations were
observed by Simon and Weichert [42] for a thin-walled tube.

4 Results

4.1 Influence of the RVE Size and the Mesh
on the Shakedown Limit

In order to ensure the mesh convergence of the RVE, shakedown simulations were
performed using the model parameters for ideal-plastic deformation and an elastic
modulus for graphite of EG = 15GPa on one representativemicrograph of each alloy
group S1–S3 and V. Figure10 shows that the shakedown limit converges between
100,000 and 150,000 elements per RVEdepending on the alloy group. To determine a
sufficient RVE size, five micrographs were randomly cropped out of one micrograph
of each alloy group S1–S3 and V with nine different sizes up to a maximum size
of 1.1mm2, meshed, and the shakedown limit was determined using the above-
mentioned model parameters. The results in Fig. 11 show a decreasing scatter of the
shakedown limit with increasing RVE size, as indicated by the respective regressions
with a power law. The convergence depends on the graphite morphology, with the
alloy groups S1 and S2 converging faster than S3 and V. The reasons for this are
the large graphite sizes and their irregular distribution in the alloy group S3 as well
as the rough interface between graphite and ferrite. With the largest analyzed RVE
size, the scatter of the shakedown limit is highest for S3 with a standard deviation
of 15.4 MPa and lowest for S1 with 8.8 MPa, which results in RVE sizes not being
representative for this material. Therefore, in addition to a minimum size of the RVE
of 1.1mm, the concept of the SRVE (statistically representative volume element) has
to be applied. Accordingly, the fatigue strength, i.e. the shakedown limit, results from
the statistical evaluation of a high number of shakedown simulations.
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Fig. 10 Influence of the finite element size near the graphite-ferrite interface on the shakedown
limit of micrographs of the alloy groups S1 (top left), S2 (top right), S3 (bottom left) and V (bottom
right)

4.2 Shakedown Limits of Synthetic RVEs

Table3 shows the shakedown studies performed on synthetic RVEs. Graphite frac-
tion, nodule count and the nodularity were investigated where the other parameters
were kept constant within a small tolerance.

Figure12 shows the correlation matrix between graphite fraction AG and nodule
count nG with the shakedown limit �∞, with the distributions of the correlated
quantities plotted on the diagonal of the figure. It can be seen that the graphite fraction
of a micrograph reduces the simulated shakedown limit—however, the correlation
is low with a correlation coefficient of R = −0.36. This is due to the fact that the
implemented algorithm cannot prevent a simultaneous variation of the nodule count
which affects the shakedown limit (R = −0.4). The scatter can be explained by
the variation of graphite sizes, morphology and distribution. Figure13 shows the
correlation matrix for the study of the nodule count nG , where the graphite fraction
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Fig. 11 Influence of the RVE size on the shakedown limit for alloy group S1 (top left), S2 (top
right), S3 (bottom left) and V (bottom right)

Table 3 Overview of studies performed with synthetic RVEs

Objective Graphite fraction Size class Graphite type

Graphite fraction Variable 7 VI

Nodule count Constant 5, 6, 7 VI

Nodularity Constant 6 III–VI

was kept constant. As the nodule count increases, the shakedown limit (R = 0.54)
also increases, which is related to lower elastic stresses in the ferritic matrix. At the
same time, a dependence of the shakedown limit on the maximum Feret diameter
Fmax of the micrograph becomes noticeable. However, the Feret diameter is linearly
dependent on the nodule count nG of a micrograph. In all studies performed from
Table3 it is noticeable that the maximum Feret diameter of an image correlates with
the shakedown limit only if the overall graphite sizes increase. The shakedown limit
does not appear to be dominated by individual graphite precipitates.



150 C. Gebhardt et al.

0.8 1

Σ∞

0 0.5 1
nG

0 0.5 1

0.8

1

AG

Σ
∞

0

0.5

1

n
G

0

0.5

1
A

G

Fig. 12 Correlation matrix between graphite fraction AG , nodule count nG and shakedown limit
�∞, Pearson correlation coefficients are given in red

Furthermore, the graphite morphology influences the shakedown limit. With the
help of the implemented RSA algorithm, synthetic RVEs with varying nodularities
were generated using the formula according to the ASTM standard [17]. Figure14
shows an increase in the shakedown limit with increasing nodularity N%. A slight
influence of the maximum Feret diameter is also visible in this simulation study.

4.3 Comparison of Shakedown Limits with Fatigue
Experiments

Figure15 shows the comparison between the simulated shakedown limits and the
corresponding fatigue experiments. The shakedown limits are visualized by violin
plots. The white dots indicate the respective mean values and the vertical gray lines
the quartile distances of the shakedown limits. In contrast to conventional boxplots,
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the continuous distributions expected from the shakedown limits are also shown in
gray and which were determined using kernel density estimation and truncated by
whiskers with a quartile spacing of 1.5. For comparison with the pulsating fatigue
tests, the fatigue strengths were plotted at P = 0% and P = 50% failure proba-
bilities, where the former were determined by regression. As Table4 shows, good
extrapolations are achieved for the alloy groups S2 and V, since the scattering mea-
sures Tσ and the error squares R2 are small. For S3 and S1, on the other hand, only
the values for P = 50% can be sufficiently trusted from a statistical point of view.
In all the shakedown analyses performed, it was found that the alloy group V has the
lowest average shakedown limit, as also seen in the experiment. The alloy group S3
shows surprisingly high shakedown limits against the background of large graphite
precipitates. This is in agreement with the experimental fatigue strength measured
for P = 50%, but not for the extrapolations to P = 0% due to poor experimental
regression in the transition region to infinite fatigue life. The absolute values of the
shakedown limits for an elastic modulus of graphite of 15GPa are always lower
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than with an elastic modulus of 30GPa for the same mesh. At the same time, the
scattering of shakedown limits is high for all alloy groups due to the heterogeneous
microstructure. The particular shape of the continuous distribution for alloy group
S2 with a fine mesh, i.e. the high scattering, follows from the presence of degener-
ated chunky graphite in some of the micrographs. Coarser meshing of about 50,000
wedge elements per micrograph increases the shakedown limit for all alloy groups
and smooths the shape of the distributions as the elastic stresses at the graphite-ferrite
interface decrease. The calculation time changes non linearly. The coarser FE mesh
reduces the computation time to 11% of the computation time of the fine mesh.
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Fig. 15 Results of the shakedown analyses of the real micrographs of the alloy groups S1–S3 and
V with different elastic moduli for graphite and two different meshs. The black lines indicate the
results of the fatigue experiments

Table 4 Statistical evaluation of the fatigue tests (Rσ = 0)

S1 S2 S3 V

σA,P=0.1% 131.79 130.21 117.30 122.33

σA,P=50% 155.47 148.86 156.19 137.80

R2 0.78 0.99 0.72 0.93

Tσ = 1 : σ90
σ10

1:1.20 1:1.17 1:1.40 1:1.14
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5 Discussion

This paper presented an approach to determine microstructure-sensitive fatigue
strengths of Si-DCI by using shakedown analyses of finite element representative
volume elements (RVEs). Here, ferrite and graphite were modeled homogeneously
and isotropically. The elastic moduli in the model for both graphite and ferrite were
chosen based on nanoindentation results presented in [22]. Since the elastic modulus
of graphite can hardly be measured reproducibly, the influence of the elastic modulus
and yield limit of graphite on the shakedown limit was investigated. The parameter
study revealed that the yield limit of graphite no longer affects the shakedown limit
of a micrograph above a discrete limit that depends on the elastic modulus. There-
fore, a sufficiently high yield limit of graphite was chosen in all shakedown analyses.
The model was validated for EN-GJS-500-14 based on the bending fatigue tests per-
formed by modeling micrographs from the highly loaded region of the specimen and
comparing them to the experimental fatigue strength. The resulting shakedown limits
indicate that the elastic modulus of graphite is of the order of 30 GPa. If kinematic
hardening is considered by using a second yield surface, the shakedown limit does
not change compared to ideal-plastic modeling, which is known from the literature
for the comparable case of a plate with a hole.

Furthermore, the influence of the finite element mesh and the size of the RVE on
the shakedown limit of the RVE was investigated. The results here scatter strongly,
which is related to the strong heterogeneity of the Si-DCI microstructure. As a result,
theRVEsize shouldbe at least 1mm2 whichwould still results in amodelwhich ist not
representative. Consequently, the effective fatigue strength should be derived from
the statistics of many shakedown analyses of a representative number of microme-
chanical models. In addition to the nodule density and the graphite fraction, its
morphology varies when comparing individual micrographs. For the last reason, the
graphite was modeled with approximated B-splines.

In order to investigate the influence of the microstructure on the fatigue strength,
shakedown analyses of synthetic RVEs were carried out. In each case, one parameter
was kept constant. The correlation analyses reveal that the graphite fraction and the
nodule count influence the shakedown limit. With increasing graphite fraction, the
shakedown limit decreases slightly. As the nodule count increases while the graphite
content remains constant, the shakedown limit increases, which is consistent with
experimental observations. In addition, as also observed in the literature, the shake-
down limit was found to increase with increasing nodularity. However, the poor
correlation coefficients show that the microstructure cannot be described unambigu-
ously with the parameters considered, implying that further influences must exist.

Finally, shakedown analyses of micrographs of the investigated material groups
S1–S3 and V were performed, which were taken directly from fatigue specimens and
compared with experimental results. Different elastic moduli of the graphite as well
as two different meshes were investigated. As a result, good predictions succeed with
both fine and somewhat coarser mesh density and with an elastic modulus of graphite
of 30GPa.Vermicular, i.e., graphite nodules deviating froman ideal spheroidal shape,
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reduce the shakedown limit. As in the experiment, the highest shakedown limits are
found with spheroidal graphite and high nodule count. However, the alloy group with
comparatively larger graphite nodules also achieved high shakedown limits.

6 Conclusions

The paper presented a modelling approach to predict the fatigue strength of high sili-
con alloyed nodular cast iron. To this end, finite element models of themicrostructure
were built and the static shakedown theoremwas implemented and used to determine
the shakedown limits of the finite element models. The following findings are worth
highlighting:

• The fatigue strength of high silicon alloyed nodular cast iron can be estimated
from shakedown analyses of 2.5D FE models and is in good agreement with the
experimental fatigue strength at low failure probabilities.

• Due to the heterogeneity of the material a representative size of the RVE cannot
be found. Consequently, the effective fatigue strength must be obtained from the
statistics.

In future work, the limitations of the 2.5D model could be overcome by using
3D-RVEs. However, due to the high experimental effort to obtain the microstructure
an approach to synthetically built the models must be developed. Furthermore, more
sophisticated material models could be of interest to close the still existing gap
between experimental and simulated results. To this end, the direct cyclic method
could offer more possibilities to include more physical material models as well as
damage.
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A Macroscopic Fatigue Criterion
for Ductile Porous Materials
with Drucker-Prager Matrix

J. Zhang , A. Oueslati , W. Q. Shen , and G. de Saxcé

Abstract In this work, we derive a macroscopic fatigue criterion for ductile porous
materials with Drucker-Prager dilatant matrix considering the hollow sphere unit cell
subjected to cyclic repeated external loads. The static shakedown theorem is applied
basing upon a suitable choice of statically and plastically admissible trial stress
fields. The closed-form fatigue criterion in parametric form depends on the friction
angle, the porosity, the two stress invariants and the sign of the third invariant of the
macroscopic stress tensor. The safety domain is bounded by the proposed fatigue
criterion and by the macroscopic yield strength proposed one corresponding to the
collapse by development of a mechanism at the first cycle. The established model
have been assessed and validated by numerical solutions obtained by finite element
computations with a quarter of the hollow sphere subjected to homogeneous strain
rate boundary conditions for different values of porosity and frictions angles.

Keywords Fatigue · Shakedown · Porous materials · Drucker-Prager model

1 Introduction

Geological and construction materials are usually widely subjected to cyclic loads
such as off-shore structures, foundations and infrastructures ofmotorway, railway and
airports. Their deformation and strength performances can be significantly altered
by the high number of loading cycles and load levels [1–3]. As shown on Fig. 1,
an elasto-plastic structure subjected to variable repeated actions may fail as a result
of incremental collapse (ratchet), or by alternating plasticity (fatigue), comprising
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Fig. 1 Three types of asymptotic responses subjected to cyclic loads

equal plastic strains of opposite sign leading eventually to local material failure. It
may happen also that the structure endures a finite number of cycles with equivalent
elastic behaviors, which is called shakedown. From the point of view of energies,
the total dissipation is bounded in time if the structure shakes down [4, 5].

The idea to apply shakedown concepts to determine the fatigue limit load of
materials is due to Dang Van [6]. By maximizing the size of the load domain, the
shakedown limit load can be obtained until the failure of the structure due to fatigue.
Similarly to statical problems [7, 8], the effective strength of porous media subjected
to cyclic loadings is also dependent on porosity and local mechanical properties of
solid matrix. An appropriate up-scaling method has to be developed for the determi-
nation of such a fatigue criterion. One of the logic approaches is to extend the limit
analysis methods developed for statical problems without consideration of loading
history.

Two referenceworks in the field are theMelan’s statical theorem [9] with the basic
idea of time-independent residual stress field and the Koiter’s kinematical theorem
[10] by the definition of plastic stain increment field. These theoremswere developed
for linear elastic perfectly plastic solid materials. Their main extensions ware com-
pleted for various and more general constitutive laws [11]. It should be pointed out
that although the bibliography on the ductile failure of porous materials under mono-
tonic loads is abundant and renewed, there are few papers dealing with the modeling
of ductility under cyclic loadings and most of them concern micromechanics-based
numerical approaches [13–15].

The aim of the present work is to contribute to the theoretical and numerical
studies of the effective shakedown of ductile porous materials under cyclic load by
the use ofMelan’s shakedown theorem. Inspire from theGurson-like approachwithin
the framework of micromechanics [12], a hollow sphere model with an associated
Drucker-Prager matrix is adopted as the Representative Elementary Volume (REV),
which has been successfully applied for the limit analysis of porous media [16–18].
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Considering the complexity of the fictitious elastic and residual stress fields under
general cyclic loads, the case of the hollow sphere subjected to pure hydrostatic
loading is firstly studied, in which the exact solution can be provided. Then, the
general case involving shear effects with any arbitrary cyclic load fluctuations is
concerned with two important steps: the construction of appropriate trial stress and
trial residual stress fields and then maximizing the size of the load domain in the
spirit of the standard lower shakedown theorem. Following [19], the crucial step
is providing a time-independent admissible residual stress field accounting for the
influence of the friction angle, which is the most difficult part of the method of
solution.

The present study is organized as follows. A brief review of the classical Hill-
Mandel lemma for the average-field theory and Melan’s shakedown theorem are
presented as the starting point in Sect. 2. In Sect. 3, the steady-state behavior of the
hollow sphere under repeated pure hydrostatic loading is firstly discussed. Then,
the derivation of a macroscopic shakedown of the unit cell under general repeated
loads involving shear effects is also studied in this part. In Sect. 4, the established
criterion is assessed and validated by comparison with step-by-step FEM numerical
simulations. Concluding remarks and some perspectives are finally summarized in
the last section.

2 Problem Formulations

The porous material is represented by a thick hollow sphere (REV)Ω made of a pore
ω and elastic perfectly plastic solid phaseΩM = Ω − ω. The inner and the outer radii
are respectively denoted by a and b. So the porosity is obtained by f = (a/b)3 < 1.
Let σ be the Cauchy stress tensor and ε the corresponding strain field in the elasto-
plastic body which is decomposed into two parts:

ε = εe + ε p (1)

with ε p being the plastic strain tensor, and the elastic part εe satisfying Hooke’s law.
The matrix material obeys to the associated elastic-perfectly plastic Drucker-

Prager criterion for which the yield function writes:

F(σ ) = σeq(σ ) + 3ασm − σy ≤ 0 (2)

where σeq =
√

3
2 s : s is the equivalent stress with s being the deviatoric part, σm =

1
3 tr(σ ) the mean stress, σy the shear cohesion stress and α the pressure sensitivity
factor of solid phase depends on the friction angle φ though

tan φ = 3α (3)
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The associated flow law ensures that the plastic strain rate obeys to the normality
rule:

ε̇ p = λ̇
∂F

∂σ
, (4)

where λ̇ ≥ 0 is the plastic multiplier.
From the classical Hill’s lemma [20], the macroscopic stress Σ and macroscopic

strain E are obtained as volume averages of their microscopic counterparts σ and ε:

Σ = 1

| Ω |
∫

Ω

σ dV , E = 1

| Ω |
∫

Ω

ε dV . (5)

The set of kinematical admissible displacement fields classically reads:

Ka = {u s.t. u(x) = E · x on ∂Ω} . (6)

And, the strain field, symmetric part of the displacement gradient, is ε(u) = gradsu .
Similarly, the set of statically admissible stress fields is such as:

Sa = {σ s.t. div σ = 0 in Ω, σ · n = 0 on ∂ω, σ = 0 in ω} (7)

where n is the unit outward normal vector of the matrix.
In addition, if σ is statically admissible, it is worth to remark that Σ depends on

it through:

Σ = 1

| Ω |
∫

∂Ω

(σ · n) ⊗ x dS (8)

where x is the position vector in the cartesian coordinate system, and dS is an
infinitesimal element of the surface area at the external boundary ∂Ω .

For a perfectly elasto-plastic structureΩ under varying loads, the variable loading
Σ(t) in domain P is illustrated in Fig. 2. When the load factor α determining the
domain dimension reaches a threshold αSD called shakedown limit, the collapses
occur by formation of a mechanism (excessive deformation) or by alternating plas-
ticity (fatigue). To eliminate the explicit time dependence of the loadings, König’s
statement [21] is introduced: shakedown occurs for any load path in a given con-
vex load domain P , if it occurs for a cyclic load path containing all vertices. This
allows us to verify only all the load vertices (Fig. 2b) to predict the safety domain for
shakedown instead of the entire loading history (Fig. 2a). Consequently, the cyclic
loadings are imposed proportional in each cycle. In fact, Konig’s theorem states that,
if the load factor α is less than the shakedown factor αSD , then the structures shakes
down and the dissipation is bounded in time, otherwise, the asymptotic behavior is
alternating plasticity or accomodation leading to failure by accumulation of plastic
strains (see Fig. 1).



A Macroscopic Fatigue Criterion for Ductile Porous Materials … 163

(a) Arbitrary load path (b) Critical cyclic loadings

Fig. 2 Critical cyclic loadings for shakedown analysis and load domain

The residual stresses are computed by subtracting the elastic responses in the
fictitious elastic part from the total stresses:

ρ(x, t) = σ (x, t) − σ E (x, t) (9)

In the sense of De Saxcé [22], the admissible time-independent residual stress field
ρ̄ satisfies the following condition:

ρ̄ ∈ Sa, & F(ρ̄ + σ E ) ≤ 0 ∀t in Ω (10)

3 Macroscopic Fatigue Criterion for Ductile Porous
Materials with Drucker-Prager Dilatant Matrix

In this part, the exact solution under pure hydrostatic loading will be firstly studied,
and then extended to general loading cases.

3.1 Asymptotic Behavior Under Repeated Pure Hydrostatic
Loading

The hollow sphere undergoes a uniform hydrostatic stress q exerted upon its external
boundary ∂Ω . Owing to (8), the average mean stress is:

Σm = 1

3
Tr (Σ) = q (11)

Taking into account the central symmetry of the problem, the spherical coordinate
(r, θ, ϕ) are used, r being the radius, θ the inclination angle, ϕ the azimuth one, with
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orthonormal frame {er , eθ , eφ}, and all the fields are depending only on r . Simple
computations allow the derivation of the stress field in the fictitious elastic body is:

σ E = Σm

1 − f

(
1 + 1

2

(a
r

)3
(eθ ⊗ eθ + eφ ⊗ eφ − 2 er ⊗ er )

)
(12)

where 1 is the second order unit tensor.
The behaviour of the body remains elastic provided:

max
a≤r≤b

σe = max
a≤r≤b

(
| 3
2

Σm

1 − f

(a
r

)3 | +3α
Σm

1 − f

)
≤ σ0 (13)

Hence, the first yielding occurs on the void boundary and the elastic limit average
mean stress is:

Σ E
m± = (1 − f )

±3/2 + 3α
σ0 (14)

for Σm > 0 or Σm < 0.
Beyond this limit, plastic strains appear and our aim is to determine when the

macro-element shakes down using Melan’s theorem if the load Σm belongs to the
domain:

Σm− ≤ Σm ≤ Σm+ = Σm− + ΔΣm (15)

whereΣm− andΣm+ are the minimum andmaximummacroscopic hydrostatic loads
during the cyclic loading process, respectively.

The exact stress field of hollow sphere under pure hydrostatic load beyond the
elastic limit is taking the following form [19]:

σ ∗ = A0

3α

((
1 −

(a
r

)3γ)
1 + 3

2
γ
(a
r

)3γ
(eθ ⊗ eθ + eφ ⊗ eφ)

)
(16)

where γ = 2α/(2α + ε) and ε = ±1 for A0 > 0 or A0 < 0, respectively.
We denote σ E(1) the stress field in the corresponding fictitious elastic body, and

the residual stress field is defined by:

ρ̄(1) = σ ∗ − σ E(1) (17)

where Σ E
m takes its extreme values in the inner part a ≤ c ≤ b of the body when

shakedown occurs:

ρ̄(1) = A0

((
1 −

(a
r

)3γ)
1 + 3

2
γ
(a
r

)3γ
(eθ ⊗ eθ + eφ ⊗ eφ)

)

− Σm±
1 − f

(
1 + 1

2

(a
r

)3
(eθ ⊗ eθ + eφ ⊗ eφ − 2 er ⊗ er )

) (18)
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where A0 is a constant parameter. It can be verified that γ , A0 and Σm have the same
sign ε.

Taking the positive sign ε = 1 for example, the total stress field under the pure
hydrostatic load for a ≤ c ≤ b is taking the following form:

σ (1) = A0

((
1 −

(a
r

)3γ)
1 + 3

2
γ
(a
r

)3γ
(eθ ⊗ eθ + eφ ⊗ eφ)

)

−Σm+ − Σm

1 − f

(
1 + 1

2

(a
r

)3
(eθ ⊗ eθ + eφ ⊗ eφ − 2 er ⊗ er )

) (19)

Combining with the yield function (2), the shakedown limit is reached in when
the yield function vanishes simultaneously for the extreme values of loading:

| 3γ A0

2

(a
r

)3γ | +3α

(
γ A0

(a
r

)3γ + A0

(
1 −

(a
r

)3γ)) ≤ σ0 (20)

| 3γ A0

2

(a
r

)3γ − 3

2

ΔΣm

1 − f

(a
r

)3 | +3α

(
γ A0

(a
r

)3γ + A0

(
1 −

(a
r

)3γ)− ΔΣm

1 − f

)
≤ σ0

(21)
Because (a/r)n decreases quickly when r increases, the previous condition is

satisfied anywhere in the body if it is fulfilled at r = a:

(
3γ A0

2

)2

+ 3α (γ A0) ≤ σ0

(
3γ A0

2
− 3

2

ΔΣm

1 − f

)2

+ 3α

(
γ A0 − ΔΣm

1 − f

)
≤ σ0

(22)

Combining the two previous equations, the shakedown limit for pure hydrostatic
loading reads:

ΔΣm

σ0
≤ 3 (1 − f )

(3/2 + 3α) (3/2 − 3α)
(23)

3.2 Macroscopic Shakedown Criterion Under General Cyclic
Loadings

For the general case, the choice of a trial stress field is crucial due to the non linearity
of Drucker-Prager yield function. It must be rather rich to capture the main physical
effects but depends on a few number of parameters in order to obtain a closed-form
formula for the macroscopic criterion.

The trial stress field is considered as the sum of the two parts, where a heteroge-
neous part inspired from the exact field under pure hydrostatic loadings, which has
been provided in the previous subsection
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σ (1) = ρ̄(1) + σ E(1) (24)

where the residual stress field in the inner region a ≤ r ≤ c is inspired from the exact
solution

The other part under the pure deviatoric loadings is expressed in spherical coor-
dinates:

σ (2) = ρ̄(2) + σ E(2) (25)

where a statically admissible stress field in the fictitious body, deduced from the
Papkovich-Neuber solution [5, 23] for the hollow sphere under the pure deviatoric
load, in the following form, in the spherical coordinates:

σ E(2) = − sign(J3)Σe
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where ν is Poisson’s coefficient, Σe the macroscopic equivalent stress and J3 the
third invariant of the macroscopic stress deviator.

Similar to the residual stress field for the pure hydrostatic loading (18), the new
deviatoric residual stress field consists of two parts:

ρ̄(2) = ρ̄(2a) + ρ̄(2b) , (27)

where ρ̄(2a) is the extreme value of the elastic stress field in the fictitious elastic body,
and the second part ρ̄(2b) is in spherical coordinates:

ρ̄(2b) = ρ2b
rr er ⊗ er + ρ2b

θθ eθ ⊗ eθ + ρ2b
φφeφ ⊗ eφ + ρ2b

rθ (er ⊗ eθ + eθ ⊗ er ) (28)

ρ2b
rr , ρ

2b
θθ , ρ

2b
φφ and ρ2b

rθ being the functions of r and θ . We suppose the deviatoric parts
sE(2), s(2b) of σ E(2), ρ̄(2b) have the following relation:

s(2b) = A1 K (r) sE(2) and σm(ρ̄(2b)) = A1 K (r) σm(σ E(2)) (29)

where K (r) is a function of r and A1 the constant to be determined, noticing that the
existence of ρ̄(2b) and K (r) was provided in [5].
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Consequently, in the matrix ΩM , the resultant two parameters-based trial stress
field in the matrix can be written as:

σ = σ (1) + σ (2) , (30)

Note that a vanishing stress field is considered in the void ω.
For a variable hydrostatic loading combined with a constant shear loading, we

consider the load domain defined by two elementary loads Σ+ and Σ−, and the
axisymmetric macroscopic stress tensor, resulting from (30), takes the form:

Σ± = Σm±1 − sign(J3±)
Σe±
3

(er ⊗ er + eθ ⊗ eθ − 2eφ ⊗ eφ) (31)

Replacing the stress tensor in the yield function (2) by (30), the shakedown con-
ditions are obtained, considering the collapse by fatigue when the yield function
vanishes simultaneously for the extreme values of loading:
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P1(r, θ) = 3 (−5ν + 10ν( ar )
3 + 18( ar )

5 − 20( ar )
3 + 7)

7 − 5ν

(3 cos2(θ) − 1)

2

and



168 J. Zhang et al.
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Because (a/r)n decreases quickly when r increases, the previous condition is
satisfied anywhere in the body if it is fulfilled at r = a. Due to the linear elastic
response when shakedown occurs, let us introduce a generalized stress triaxiality

τ = γ A0
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Replacing γ A0 and (γ A0 − ΔΣm
1− f ), (32) and (32) can be respectively written:
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Solving (35) and (36) with respect to K (a)A1, we obtain
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Combining (34), leads to the closed-form macroscopic fatigue criterion:
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where two events may occur:

• When J3+ > 0, the condition is satisfied if it is fulfilled at the equator θ = π/2
where the left part of the previous shakedown condition (32) and (32) takes its
maximum value, where

P1(a,
π

2
) = 3(5ν + 5)

2(5ν − 7)
P2(a,

π

2
) = 225(7ν2 − 13ν + 7)
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• When J3+ < 0, the condition is satisfied if it is fulfilled at the poles θ = 0 and
θ = π where the left part of the previous shakedown condition (32) and (32) takes
its maximum value, where

P1(a, 0) = 3(5ν + 5)

−5ν + 7
P2(a, 0) = 225(ν2 + 2ν + 1)

(5ν − 7)2

The set of Eqs. (38) constitutes the main finding in this study.

4 Numerical Verification of the Established Criterion

4.1 Step-by-Step FEM Numerical Procedure

This part is devoted to validate the accuracy of the established macroscopic fatigue
criterion of ductile porous media with Drucker-Prager matrix. As a result, step-by-
step incremental elastic-plastic simulations until fatigue collapse by Finite Element
Method (FEM) are performed in order to obtain the numerical limit loads.

Because of the geometrical symmetry of hollow sphere model, only a quarter
is considered, which is discretized by quadratic axisymmetric elements in Abaqus
software (Fig. 3). The velocity field v = D · x is prescribed on the external surface,
achieved by a MPC (Multi-Points Constraints) user subroutine in Abaqus/Standard
[24]. The implementation of such MPC program was firstly provided in void inter-
action and coalescence study of polymeric materials [25], and has been successfully
used in the studies of porous media [26]. Hence, the enforced macroscopic triaxiality
T = Σm/Σeq can be maintained during each loading cycle.
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Fig. 3 Hollow sphere model and initial mesh

Fig. 4 AccumulatedEquivalent Plastic Strain (PEEQ)under pulsating loadwhen shakedownoccurs
for f = 0.01, φ = 20◦ and T = 1.3333

The computations are performed for different porosities f ∈ {0.001, 0.01}, dif-
ferent friction angles φ ∈ {10◦, 20◦, 30◦} and with σ0 = 20 MPa, E = 14 GPa and
ν = 0.2. Moreover, the following loading cases are considered for instance: alter-
nating load R = −1 and an intermediate cyclic loads with R = 1/5 and R = −1/5,
where the stress ratio is defined as R = Σ−/Σ+. The state of the long-term behavior
is checked by increasing of the amplitude of the imposed deformation on the external
boundary until the collapse by fatigue or a mechanism is observed. In practice, the
evolution of the equivalent plastic deformation, and the evolution of the components
of the plastic strain. In practice, the evolution of the equivalent plastic deformation
in the whole structure provides information on the status of the structure as shown
in Fig. 4.
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4.2 Comparison Between Analytical Solutions
and Numerical Results

Figures5 plotted themacroscopic shakedown domain computed from the established
macroscopic fatigue criteria (38) under alternating loading (R = −1) for several void
volume fractions ( f ∈ {0.001, 0.01}) and friction angles (φ ∈ {10◦, 20◦, 30◦}). It is
worth noting that the collapse by development of a mechanism do not occur in this
situation, so the safety domain is only defined by the fatigue criterion. In general, an
excellent qualitative agreement can be observed between the analytical prediction
and the above step-by-step numerical simulation by FEM for various value of void
volume fractions and pressure sensitive parameters.

Interestingly, in the particular case of pure hydrostatic loading, the numerical
results fit the exact value ΔΣ SD

m = 3 (1− f )
(3/2+3α)(3/2−3α)

. This fact is foreseeable since
the trial stress field and the residual stress tensor contain the exact solution for the
hollow sphere under hydrostatic load. The location of first occurrence of the fatigue
collapse in REV is verified by Fig. 6. The maximum value of the equivalent stress
always presents on the void surface (r = a) at θ = π/2 or 0. The first point where
the fatigue occurs is located on the internal boundary r = a at the equator θ = π/2
for J3+ > 0 and at the poles θ = 0 or π for J3+ < 0, in accord with the analytical
solution.

Figure7 displays the comparison between analytical results and numerical ones of
the shakedown limit for the intermediate load corresponding to R = 1/5. Two major
features must be underlined here. Unlike the alternating load (for which R = −1),
the safety domain is obtained at the intersection of the domain defined by the new
fatigue criterion and the one proposed inGuo et al. [27], corresponding to the collapse
by development of a mechanism at the first cycle. In all figures shown hereafter, the
analytic safe domain is bounded by solid lines. The second important remark is that
the shakedown safe domain is considerably reduced compared to the gauge surface
corresponding to the failure under monotonic loading. This ductility reduction is

Fig. 5 Comparison between the yield surfaces obtained by the analytic criteria and by numerical
simulations under alternating loadings (R = −1) for porosity f = 0.001 (left) and f = 0.001
(right)
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Fig. 6 Location of the occurrence of fatigue collapse

Fig. 7 Interaction curve for the intermediate loads with R = 1/5 for porosity f = 0.001 (left) and
f = 0.01 (right). The analytic safe domain is bounded by solid lines

more pronounced in the dominant compression zone (Σm < 0). In addition, these
curves confirm that the effect of the friction angle on the safe domain is negligible.

For completeness, the influence of Poisson’s ratio on the macroscopic fatigue cri-
teria is also studied. Figure8 depicted the analytical and numerical safe domain
boundary for different values of Poisson’s coefficient ν ∈ {0.15, 0.25, 0.35, 0.4}
for the intermediate loading case R = −1/5 with f = 0.01 and friction angle
φ ∈ {10◦, 20◦}. It can be seen that the strength domain shrinks slightly with the
increase of ν within the dominant compression zone (Σm < 0) while the homog-
enized criterion is insensitive to Poisson’s ratio variations in the traction region
(Σm > 0). These observations has been confirmed by considering other loading cases
and different angle friction, but not reported here for seek of shortness.

It is legitimate to wonder whether there is a noticeable difference between the
macroscopic shakedown domains for porous materials with Drucker-Prager model
or von Mises criterion, which can be recovered from the proposed model (38) by
taking φ = 0. To this end, Fig. 9 depicts the analytic safe domains obtained under
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Fig. 8 Effect of Poisson’s coefficient on the macroscopic shakedown domain for the intermediate
loading case R = −1/5

Fig. 9 Comparison of the effective shakedown safety domain with Drucker-Prager dilatant matrix
with the one with von Mises model

cyclic loads with Drucker-Prager and von Mises constitutive laws. The difference
between themodels is noticeable but not considerable as it could be expected because
of the presence of the first invariant of the stress in the Drucker-Prager yield function.
This remark should be taken with caution because, as we have seen above, the real
safe domain is a result of interaction between the homogenized shakedown domain
and the limit analysis effective yield.

5 Conclusion

In this study, we appliedMelan’s shakedown theorem to derive amacroscopic fatigue
criterion for ductile porous material with pressure-sensitive dilatant matrix under
cyclic repeated loadings, considering the hollow sphere unit cell. The closed-form
fatigue criterion in parametric form, depending on the porosity, friction angle, Pois-
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son’s ratio and the sign of the third invariant of the macroscopic stress tensor, is able
to predict the shakedown limit for all intermediate repetitive fluctuation of loads lying
between the alternating and the pulsating loads (−1 ≤ R < 1). The safety domain
is bounded by this fatigue criterion and by the macroscopic yield strength proposed
by Guo et al. [27] corresponding to the collapse by development of a mechanism at
the first cycle, inside of which the material is always stable. It is worthy to note that
the obtained results allow us to retrieve, as a particular case, the fatigue criterion of
porous material with a von Mises matrix. Further, the macroscopic shakedown loci
predicted by our analysis is slightly effected by friction angle variations, however, the
safe domain is considerably reduced compared to the one obtained by limit analysis
for monotonic load conditions.

Step-by-step elasto-plastic numerical simulations have been carried out to verify
the accuracy of prediction by the established macroscopic fatigue model. The good
agreement is observed for various configurations of porosity and frictions angles,
owing to the suitable choice of microscopic stress fields. The criterion is strictly
conservative to predict the safety domain because of the Melan’s statical approach.

For future investigations, inspired from Dang Van’s theory of fatigue, we hope
apply the shakedown analysis to the monocrystals and polycrystals to propose new
fatigue criteria, exhibiting the dependence with respect to the porosity and Pois-
son’s coefficient. Another extension will concern the application of homogenized
shakedown criterion to composite material with inclusions.
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A Direct Method for Cyclic Crystal
Plasticity with Application to High-Cycle
Fatigue

Insaf Echerradi, Daniel Weisz-Patrault, and Michael Peigney

Abstract The prediction of fatigue in materials and structures is usually based on
experimentalWohler curves, relating the number of cycles to failure to the amplitude
of the applied cyclic loading. Those curves show some scattering due notably to the
variability of the microstructure. Predicting fatigue lifetime can thus be seen as a
statistical problem that depends on microstructural descriptors. This paper paves
the way to a probabilistic approach for quantitatively linking crystallographic and
morphological texture data to fatigue lifetime prediction. In more detail, a simplified
mesoscopic model is constructed for calculating the evolution of an elastic-plastic
polycrystal with a prescribed texture. That model is limited to high cycle fatigue,
corresponding to cyclic loadings of sufficiently low amplitude for plasticity to be
mainly confined to few well-separated grains. The model obtained takes details of
the texture into account, i.e. the distribution, shape and orientation of the individual
grains. It relies on analytical formula and is mesh-free. A comparison with full-field
finite element simulation shows that the proposed model leads to satisfactory results
in regard to its complexity. In the case of cyclic loading, we show that the model
presented leads to a direct method for calculating the asymptotic values of the plastic
slips (and cumulated plastic slips) reached in each grain when the number of cycles
grows to infinity. We show how that direct approach can be used for upscaling a local
failure criterion to the mesoscopic scale and performing probabilistic analysis.
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1 Introduction

It is commonly accepted that fatigue in polycrystals is related to plastic mechanisms
occurring at the grain scale. Plastic flow initiates in few critical grains having the
least favorable orientations with respect to the applied loading. For small loading
amplitudes, plasticity remains confined in those grains but persistent slip bands may
appear after a large number of cycles, leading to the possible initiation of a crack.
Based on that interpretation, the fatigue life of a polycrystal could in principle be
predicted from the elastic-plastic evolution of its constitutive grains. Some work
in that direction can notably be found in [1] using full-field simulations. For such
problems, direct methods bypassing the incremental simulation over a large number
of cycles are of interest. A possible approach is to use shakedown theory. In clas-
sical plasticity, Melan and Koiter theorems deliver bounds on the set of loadings
for which there is elastic shakedown, i.e. the plastic dissipation is bounded on the
time interval [0,+∞). In more intuitive terms, shakedown means that the medium
behaves elastically in the large time limit. Those theorems have been extended to
several types of nonlinear behaviors [8, 17–21, 24] and can be used to bound the
shakedown domain of a polycrystal with a given microstructure. Since shakedown
is beneficial for fatigue, loadings within the shakedown domain are expected to cor-
respond to high-cycle fatigue. A recent illustration of that approach can be found
in [15]. However, although shakedown is a requisite for high-cycle fatigue, it does
not guarantee an infinite lifetime. Indeed, the number of cycles to failure depends
on the asymptotic state of stress reached in the polycrystal, which shakedown theory
only provides limited information about. Sections2–4 of this paper report on a sim-
plified numerical method for a fast evaluation of the plastic slips in elastic-plastic
2D polycrystals. That method is based on incremental variational principles, which
have proved to be a fruitful approach in many applications [2, 9, 10, 16, 22, 25,
26]. Starting from elastic-plastic constitutive equations detailed in Sect. 2, the incre-
mental evolution problem is turned into an energy minimization problem over the
space of admissible displacement fields and plastic slip fields (Sect. 3). An approxi-
mate solution can be obtained by restricting the minimization to a well-chosen finite
dimensional subspace, in the spirit of Galerkin’s methods. In the present case, we
restrict the energy minimization to plastic strain fields that are uniform per grain. For
an isotropic elasticity tensor, the incremental problem reduces to a linear comple-
mentarity problem. That problem can further be simplified by neglecting the elastic
interaction between plastifying grains and assuming that only one plastic slip system
is activated in each grain. Such assumptions are expected to be representative of small
loadings corresponding to high-cycle fatigue. In that case, the incremental problem
can be solved analytically as detailed in Sect. 4. The increment of plastic slip in grain
j is obtained as an explicit function of the material parameters, loading parameters
and a localization tensor S j that is entirely determined from the geometry of the
grain and the elastic moduli. For an ellipsoidal grain, the tensor S j corresponds to
the Eshelby tensor [5, 14]. The validity of the model presented is briefly discussed in
Sect. 5 by comparison with full-field finite element simulations. The approach pre-
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sented allows one to estimate the step-by-step evolution of plastic slips for a given
loading history. In Sect. 6 we focus on cyclic loadings and show that the approach
presented leads to a direct method for calculating the asymptotic values taken by the
state variables in each grain as the number of cycles grows to infinity. That method
is direct in the sense that it gives the asymptotic state without resorting to step-by-
step calculation. The direct approach of Sect. 6 is used in Sect. 7 for upscaling a local
(microscopic) fatigue criterion to themesoscopic scale of a polycrystal: starting from
a crack initiation criterion at the grain level, we use the asymptotic formulas of the
shakedown state to express the fatigue criterion at the mesoscopic level. The mathe-
matical structure of the obtained fatigue criterion is compared with well-established
fatigue criteria (Dang Van, Crossland, Sines). In Sect. 8 we show how the model
presented can be used in a probabilistic setting.

2 Constitutive Laws

2.1 Single Crystal

First consider a single crystal modeled in the framework of crystalline plasticity at
small strains: considering N slip systems (ni , t i )1≤i≤N , the local strain ε is decom-
posed as

ε = C−1 : σ +
N∑

i=1

γiτ
0
i (1)

where

τ 0
i = 1

2
(ni ⊗ t i + t i ⊗ ni ) (2)

and (γi , ni , t i ) are respectively the plastic slip, the normal to the slip plane and the
slip direction for slip system i . In (1), σ is the stress and C is the elasticity tensor
(assumed to be isotropic in the following). We recall that the strain ε is related to
the displacement u by the relation ε = (∇u + ∇T u)/2. Adopting the framework of
generalized standard materials [6], the plasticity flow rule is determined from the
free energy � and the dissipation potential �, which are respectively chosen as

� = 1

2

(
ε −

N∑

i=1

γiτ
0
i

)
: C :

(
ε −

N∑

i=1

γiτ
0
i

)
+ 1

2
ξX

N∑

i=1

γ 2
i (3)

� =
N∑

i=1

(τc + ξηi )|γ̇i | (4)
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where

ηi =
∫ t

0
|γ̇i |dt

is the accumulated plastic slip, τc > 0 is the critical shear stress, ξX ≥ 0 is the linear
hardeningmodulus and ξ ≥ 0 is the isotropic hardeningmodulus. The flow rule reads
as

σ : τ 0
i − ξXγi

⎧
⎨

⎩

= τc + ξηi if γ̇i > 0
= −τc − ξηi if γ̇i < 0
∈ [−τc − ξηi , τc + ξηi ] if γ̇i = 0

(5)

2.2 Polycrystal

Now consider a polycrystalline Representative Volume Element (RVE) constituted
of M grains occupying the disjoint subdomains Ω1, . . . , ΩM . The crystalline ori-
entation in grain j is characterized by a rotation R j relative to the reference crys-
tal, so that the constitutive equations in grain j are obtained by replacing τ 0

i with
τ

j
i = T R jτ 0

i R
j in (1) and (5), i.e. for x ∈ Ω j we have the relations

ε = C−1 : σ +
N∑

i=1

γiτ
j
i (6)

σ : τ
j
i − ξXγi

⎧
⎨

⎩

= τc + ξηi if γ̇i > 0,
= −τc − ξηi if γ̇i < 0,
∈ [−τc − ξηi , τc + ξηi ] if γ̇i = 0.

(7)

We note than in the more general situation where the elasticity tensor C is not
isotropic, the term C in (6) should be replaced with a rotated elasticity tensor depend-
ing on R j . The RVE is submitted to traction force σ̄ (t) · n on its boundary, where
σ̄ (t) can be interpreted as the mesoscopic stress at time t . We consider a proportional
loading of the form

σ̄ (t) = f (t)σ 0 (8)

where σ 0 is independent of time. Assuming quasistatic evolutions, the stress field
needs to satisfy the equilibrium equations

div σ = 0 in Ω, σ · n = σ̄ · n on ∂Ω (9)

where Ω = ∪M
j=1Ω

j is the domain occupied by the RVE. To simplify the presen-
tation, the same critical shear stress τc and hardening moduli are used for all the
grains.
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3 Incremental Energy Minimization

For solving the evolution problem defined by Eqs. (6)–(9), a common approach is to
resort to time-discretization: the evolution is calculated in a timemarching approach,
using an incremental problem for estimating the state variable (ε, σ , γi , ηi ) at time
t0 + δt (δt > 0), assuming their values (ε0, σ 0, γ 0

i , η0
i ) to be known. Adopting the

backward Euler scheme, the corresponding incremental problem reads as

div σ = 0 in Ω, σ · n = σ̄ · n on ∂Ω

ε = C−1 : σ +
N∑

i=1

γiτ
j
i in Ω j

σ : τ
j
i − ξXγi

⎧
⎨

⎩

= τc + ξηi if γi > γ 0
i= −τc − ξηi if γi < γ 0
i∈ [−τc − ξηiτc + ξηi ] if γi = γ 0
i

in Ω j ,

(10)

with ηi = η0
i + |γi − γ 0

i |. A variational formulation is attached to the incremental
problem (10). Setting γ = (γ1, . . . , γN ), it can be verified indeed that the displace-
ment field u and plastic slips field γ in (10) are solution to the minimization problem

inf
u,γ

F (11)

where

F =
M∑

j=1

∫

Ω j
� j dΩ +

N∑

i=1

∫

Ω

(τc + ξη0i + 1

2
ξ |γi − γ 0

i |)|γi − γ 0
i |dΩ −

∫

∂Ω

(σ̄ · n) · udS

and� j is the free energy in grain j , defined by replacing τ 0
j with τ i

j in (3). Observing
that

∫
∂Ω

(σ̄ .n).udS = ∫
Ω

σ̄ : εdΩ , we can rewrite F as

F =
M∑

j=1

∫

Ω j

1

2

(
ε −

N∑

i=1

γiτ
j
i

)
: C : (ε −

N∑

i=1

γiτ
j
i )dΩ + 1

2
ξX

∫

Ω

N∑

i=1

γ 2
i dΩ

+
n∑

i=1

∫

Ω

(
τc + ξη0

i + 1

2
ξ |γi − γ 0

i |
)

|γi − γ 0
i |dΩ −

∫

Ω

σ̄ : εdΩ

In general, problem (10) or (11) needs to be solved numerically, using e.g. the finite
elementmethod. Following [23],we note that problem (11) ismathematically equiva-
lent to a linear complementarity problem. Dedicated numerical algorithms are avail-
able for such problems [3]. In the following we introduce a series of simplifying
assumptions that allow us to solve (10) in a semi-analytical form. Those assump-
tions are expected to be relevant for small loadings corresponding to the regime of
high-cycle fatigue.
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4 Simplified Problem

4.1 Piecewise-Constant Plastic Slips

We restrict the minimization in (11) to plastic slips that are uniform in each grain.
That assumption notably allows one to make some progress on the minimization of
(11) with respect to u. For a given γ (uniform per grain), observe indeed that

inf
u

F = 1

2
ξX

∫

Ω

N∑

i=1

γ 2
i dΩ +

N∑

i=1

∫

Ω

(
τc + ξη0

i + 1

2
ξ |γi − γ 0

i |
)

|γi − γ 0
i |dΩ

+1

2

M∑

j=1

|Ω j |τ j : C : τ j + W

where

W = inf
u

1

2

∫

Ω

ε : C : εdΩ −
M∑

j=1

∫

Ω j

ε : C : τ j dΩ −
∫

Ω

σ̄ : εdΩ (12)

and τ j = ∑N
i=1 γiτ

j
i . Let χ j be the characteristic function of Ω j , i.e. χ j (x) = 1

if x ∈ Ω j and χ j (x) = 0 otherwise. Setting τ (x) = C−1 : σ̄ + ∑
j χ

j (x)τ j , we
obtain

W = inf
u

1

2

∫

Ω

ε : C : εdΩ −
∫

Ω

ε : C : τdΩ. (13)

The solution u∗ to the minimization problem (13) satisfies the stationarity condition

∫

Ω

ε∗ : C : εdΩ =
∫

Ω

τ : C : εdΩ (14)

for any compatible strain field ε. Using (14) with ε = ε∗ gives
∫
Ω

ε∗ : C : ε∗dΩ =∫
Ω

τ : C : ε∗dΩ so that

W = −1

2

∫

Ω

τ : C : ε∗dΩ. (15)

Choosing ε = ∫
Ω

(ε∗ − τ )dΩ in (14) gives
∫
Ω

ε∗dΩ = ∫
Ω

τdΩ = |Ω|C−1 : σ̄ +∑
j |Ω j |τ j so that
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∫

Ω
τ : C : ε∗dΩ = σ̄ :

∫

Ω
ε∗dΩ +

∑

j

τ j : C :
(∫

Ω j
ε∗dΩ

)

= |Ω|σ̄ : C−1 : σ̄ +
∑

j

|Ω j |σ̄ : τ j +
∑

j

τ j : C :
(∫

Ω j
ε∗dΩ

)
.

(16)
Note that u∗ is a solution to the linear elasticity problem

σ ∗ = C : (ε∗ − τ j ) in Ω j ,

ε∗ = (∇u∗ + ∇T u∗)/2,
div σ ∗ = 0 in Ω,

σ ∗ · n = σ̄ · n on ∂Ω.

(17)

The superposition principle implies that

ε∗ = C−1 : σ̄ +
∑

j

ε j (18)

where ε j is the strain field corresponding to the solution of the single inclusion
problem (defined for any given j = 1, . . . , M)

σ = C : (ε j − τ j ) in Ω j ,

σ = C : ε j in Ω − Ω j ,

ε j = (∇u j + ∇T u j )/2,
div σ = 0 in Ω,

σ · n = 0 on ∂Ω.

(19)

Problem (19) is linear in τ j so that ε j (x) can be written as

ε j (x) = S j (x) : τ j (20)

where the fourth-order tensor S j does not depend on τ j and is entirely determined
from Ω , Ω j and C. It follows that

∫

Ω j

ε∗dΩ = |Ω j |
(
C−1 : σ̄ +

∑

k

S jk : τ k

)
(21)

where

S jk = 1

|Ω j |
∫

Ω j

Sk(x)dΩ. (22)

For j 
= k, the tensor S jk in (22) captures the elastic interaction between grains j
and k. The norm of that tensor is expected to decrease with the distance between
grains j and k. Substituting (21) in (16) we finally arrive at
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W = −1

2
|Ω|σ̄ : C−1 : σ̄ −

∑

j

|Ω j |σ̄ : τ j −
∑

j,k

1

2
|Ω j |τ j : C : S jk : τ k . (23)

Dropping the constant term |Ω|σ̄ : C−1 : σ̄/2, minimization problem (11) thus
reduces to

infγ −
M∑

j=1

|Ω j |σ̄ : τ j −
M∑

j,k=1

1

2
|Ω j |τ j : C : S jk : τ k + 1

2

M∑

j=1

|Ω j |τ j : C : τ j

+1

2
ξX

∫

Ω

N∑

i=1

γ 2
i dΩ +

N∑

i=1

∫

Ω

(
τc + ξη0

i + 1

2
ξ |γi − γ 0

i |
)

|γi − γ 0
i |dΩ.

(24)

4.2 Critical Grains

Consider an initial state (t = 0) in which γ = 0. In the general case of a nonpro-
portional loading, several slip systems may be successively activated in each grain
depending on the direction of σ̄ (t). However, for a proportional loading as consid-
ered in (8), only one slip system is expected to be activated in each grain (at least
for small loading level f (t)). That slip system I ( j) corresponds to the maximum
resolved shear stress in each grain, i.e.

I ( j) = argmax1≤i≤N |σ 0 : τ
j
i |.

Assuming that only slip system I ( j) is activated in grain j and denoting by γ j (resp.
η j ) the corresponding plastic slip (resp. cumulated plastic slip), (24) becomes

inf
γ

−
∑

j

|Ω j |σ̄ : τ j −
∑

j,k

1

2
|Ω j |τ j : C : S jk : τ k + 1

2

∑

j

|Ω j |τ j : C : τ j

+1

2
ξX

M∑

j=1

|Ω j |(γ j )2 +
M∑

j=1

|Ω j |
(

τ 0
c + 1

2
ξ |γ j − γ j,0|

)
|γ j − γ j,0|

(25)
where γ j,0 and η j,0 are the plastic slip and the accumulated plastic slip in grain j
at time t0. The updated critical shear stress τ 0

c in (25) is defined by τ 0
c = τc + ξη j,0.

All the grains remains elastic if the loading level f (t) in (8) is such that | f (t)σ 0 :
τ

j
I ( j)| ≤ τc for all j , i.e. the elastic limit is

τc

sup j |σ 0 : τ
j
I ( j)|

.
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For loading levels slightly above that elastic limit, plastic flow is expected to be
limited to few critical grains characterized by the highest value of the resolved shear
stress |σ 0 : τ

j
I ( j)|. Without loss of generality, we can assume that those critical grains

are grains 1, . . . ,m. We assume that the critical grains are far away from one another,
so that their elastic interaction is negligible. In that case, (24) reduces to

inf
γ

−
m∑

j=1

|Ω j |σ̄ : τ j −
m∑

j=1

1

2
|Ω j |τ j : C : S j j : τ j + 1

2

m∑

j=1

|Ω j |τ j : C : τ j

+1

2
ξX

n∑

j=1

|Ω j |(γ j )2 +
m∑

j=1

|Ω j |
(

τ 0
c + 1

2
ξ |γ j − γ j,0|

)
|γ j − γ j,0|

(26)
where we recall that τ j = γ jτ

j
I ( j). Setting

α j = τ
j
I ( j) : C : (I − S j j ) : τ

j
I ( j), β

j = σ̄ : τ
j
I ( j) + ξγ j,0, (27)

and
α̃ j = α j + ξ + ξX ,

the local optimality condition in (26) reads as

β j − α̃ jγ j

⎧
⎨

⎩

∈ [−τ 0
c , τ 0

c ] if γ j = γ j,0

= τ 0
c if γ j > γ j,0

= −τ 0
c if γ j < γ j,0

which yields

γ j =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

γ j,0 if |β j − α̃ jγ j,0| ≤ τ 0
c ,

β j − τ 0
c

α̃ j
if β j − α̃ jγ j,0 > τ 0

c ,

β j + τ 0
c

α̃ j
if β j − α̃ jγ j,0 < τ 0

c .

(28)

for j = 1, . . . ,m. The aforementioned assumptions thus allow one to obtain a closed
form solution to the incremental problemof elastic-plastic evolutions in a polycrystal.
We can observe in (28) that the plastic slips γ 1, . . . , γ m are determined independently
from one another, i.e. there is no coupling between the plastifying grains. This results
from the fact that the elastic interaction between grains has been neglected. Apart
from loading and material parameters, the plastic slip in (28) depends on the shape
and the crystalline orientation of the grain through the scalars α j and β j in (27).
In more detail, the tensor S j j is determined from the shape of grain j whereas the
crystalline orientation plays a role through the selection of the active slip system
I ( j) and the corresponding strain τ

j
I ( j).



186 I. Echerradi et al.

5 Illustration

5.1 Mesoscopic Model Construction

A 2D polycrystalline RVE of 500 grains is generated randomly using Neper -a gen-
eration and meshing software package based on the Voronoi-Laguerre tessellation.
The obtained tessellation is shown in Fig. 1a. The implementation of the formula
(28) requires the evaluation of the fourth-order tensor S j for each grain. Note that
problem (19) defining the tensor S j is formally similar to Eshelby’s inclusion prob-
lem. However, the irregularity of the grain geometries ruins any hope of solving
(19) analytically. Rather than evaluating S j numerically (which could be done using
finite element calculations), we choose to approximate each grain into an ellipsoid,
as shown in Fig. 1b. That strategy allows Eshelby’s explicit solution [5, 14] to be used
for S j . The approximation of each grain into an ellipsoid can be performed using the
maximum volume inscribed ellipsoid optimization algorithm inMatlab [27] as well
as a modeling system for convex optimizations (CVX Matlab package).

Regarding slip systems, the face-centered cubic lattive (FCC) is one of the most
common crystalline structures in metals (Fig. 2a). In that case, there are 12 slip
systems defined according to the Thompson tetrahedron. In the 2D setting considered
in this paper, we use 6 slip systems defined according to an equilateral triangle shown
in Fig. 2b. The inclination angle Θ j shown in Fig. 2b is the Euler angle describing
the crystallographic orientation of grain j . The vectors (ni , t i ) defining the 6 slip
systems in the reference single crystal take the form

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ni =
(− sin(φi )

cos(φi )

)
, where φi ∈ {0◦, 60◦, 120◦}

t i =
(
cos(miφi )

sin(miφi )

)
, where mi ∈ {−1, 1}

(29)

Fig. 1 a A 500-grain tessellation generated by Neper and b its approximated geometry inMatlab
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Fig. 2 a The FCC crystalline structure. b Slip system in grain j of a 2D polycrystal

At this point, all the ingredients are in place for using the simplified model presented
in Sect. 4: In a first stage, the active slip system and the best fitting ellipsoid are
calculated in each grain, which allows one to evaluate the parameters (α j , β j ) in
(27). Subsequently, the plastic slip in each grain is updated at each time step via
formula (28).

5.2 Finite Element Model Construction

In order to validate the solution procedure presented in Sect. 4, Finite Element (FE)
simulations have been performed inFreefem++ [7], importing the tessellation shown
in Fig. 1a into a 1 × 1 square domain that was finely meshed. That unit square was
embedded into a coarsely meshed 2 × 2 square serving as an elastic matrix for
reducing border effects (Fig. 4a). Material and loading parameters are reported in
Table1. The tensor σ 0 is set to (u1 ⊗ u2 + u2 ⊗ u1)/2 (pure shear). The plastic slip
at each Gauss point is calculating using Lemke’s algorithm [3] for solving the linear
complementarity problem arising from (11). In Fig. 3a are shown the plastic slips as
calculated by the finite element method after the first half-cycle. An average plastic
slip per grain has been extracted from the FE simulations and compared with the
results obtained from the formula (28). The relative error between those two values
has been calculated for each grain and is shown in Fig. 3b as a function of the average
plastic slip computed inFreefem++. The average relative error is 4.46% (4.28%when
restricted to the critical grains with the highest plastic slips as shown in Fig. 3b) with
a maximum of approximately 13% (7% when restricted to critical grains). A finer

Table 1 Material and loading parameters

E (GPa) ν f a (MPa) f m (MPa) ζ/μ

(MPa−1)
τ 0c (MPa)

210 0.3 101 0 1615.38 100
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(a) FE results for the plastic slip field
in the polycrystal

(b) Model error as a function of the
plastic slip (FE value)

Fig. 3 Validation of the mesoscopic model

meshing density reduces the average error on critical grains to 3.79%. That error
is partly due to the nonuniformity of the plastic slip within each grain, the elastic
interaction between plastifying grains and the irregularity of the grain geometries,
all of which are not taken into account in the simplified method.

6 Direct Approach for Cyclic Loadings

The simplified method presented in Sect. 4 allows one to estimate the step-by-step
evolution of plastic slips for a given loading history. In this Section, we consider a
cyclic loading and are interested in the asymptotic state reached by the polycrystal
as the number of cycles grows to infinity. As detailed in the following, we show that
asymptotic values of the plastic slips (and cumulated plastic slips) in each grain can
be obtained directly, i.e. without carrying out step-by-step calculations. Since there
is no coupling between grains in (28), we first note that critical grains can studied
independently from one another. Hence, from now on we simplify the notations by
dropping the superscript j in (28) and consider a single critical grain. The active slip
system is denoted by (n, t). We have

γ =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

γ 0 if |β − α̃γ 0| ≤ τ 0
c

β − τ 0
c

α̃
if β − α̃γ 0 > τ 0

c

β + τ 0
c

α̃
if β − α̃γ 0 < τ 0

c

(30)

where
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α = τ : C : (I − S) : τ , β = σ̄ : τ + ξγ 0, (31)

and

τ = 1

2
(t ⊗ n + n ⊗ t), α̃ = α + ξ + ξX .

We consider a cyclic loading of the form (8) where f (t) alternates between a
minimum value fmin and a maximum value fmax . To fix ideas, we assume that
f (0) = f (T ) = fmin and f (T/2) = fmax where T is the period of the loading.
The function f is monotonically increasing (resp. decreasing) on the time interval
[0, T/2] (resp. [T/2, T ]) and the plastic slip γ is expected to have a similar behavior.
Thismotivates calculating the evolution of γ by solving the incremental problem (28)
on each of the half-cycles [nT, nT + T/2] and [nT + T/2, (n + 1)T ]. We denote
by γn (resp. γn+ 1

2
) the value of γ at time nT (resp nT + T/2). Similarly we denote

by τc,n (resp. τc,n+ 1
2
) the value of the updated critical shear stress τc at time nT (resp

nT + T/2). We obtain

γn+ 1
2

=
⎧
⎨

⎩

γn if |βn+ 1
2
− α̃γn| ≤ τc,n

βn+ 1
2
− τc,n

α̃
if βn+ 1

2
− α̃γn > τc,n

(32)

where βn+ 1
2

= fmaxσ
0 : τ + ξγn , and

γn+1 =
⎧
⎨

⎩

γn+ 1
2

if |βn+1 − α̃γn+ 1
2
| ≤ τc,n+ 1

2
βn+1 + τc,n+ 1

2

α̃
if βn+1 − α̃γn+ 1

2
< τc,n+ 1

2

(33)

whereβn+1 = fminσ
0 : τ + ξγn+ 1

2
. Formulas (32) and (33) give a recurrence relation

for calculating the sequence of plastic slips γ1, γ2, . . .. Let us consider the case where
shakedown occurs, i.e. the plastic slip converge towards a time-independent value γ∞
as time tends to infinity. Taking the limit n → ∞ in (32)-(33) and assuming plastic
flow on each half-cycle, we obtain the relations

γ∞ = fmaxσ
0 : τ + ξγ∞ − τc,∞

α̃

γ∞ = fminσ
0 : τ + ξγ∞ + τc,∞

α̃

(34)

where τc,∞ = τc + ξη∞ and η∞ =
∞∑

n=0

(|γn+1 − γn+ 1
2
| + |γn+ 1

2
− γn|) is the asymp-

totic value of the cumulated plastic slip. It follows that

γ∞ = σ 0 : τ
fmax + fmin

2(α + ξX )
, τc,∞ = σ 0 : τ

fmax − fmin

2
(35)
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from which we obtain the value of η∞ as

η∞ = 1

ξ

(
fmax − fmin

2
σ 0 : τ − τc

)
. (36)

The obtained expressions for γ∞ and η∞ can be rewritten in a more compact fashion
as

γ∞ = σm
nt

α + ξX
, η∞ = σ a

nt − τc

ξ
(37)

where

σm
nt = fmax + fmin

2
σ 0 : τ , σ a

nt = fmax − fmin

2
σ 0 : τ (38)

are respectively the mean value and the amplitude of the resolved macroscopic stress
f (t)σ 0 : τ . Formula (37) shows that there is a simple relation between the loading
parameters and the plastic state variables in the shakedown state. However, there
are some restrictions on the loading parameters for that formula to apply. We have
indeed

|γ∞| = |
∞∑

n=0

(γn+1 − γn+ 1
2
) + (γn+ 1

2
− γn)| ≤

∞∑

n=0

|γn+1 − γn+ 1
2
| + |γn+ 1

2
− γn | = η∞

which implies that (37) holds only if

|σm
nt |

α + ξX
≤ σ a

nt − τc

ξ
. (39)

Fig. 4 Asymptotic state in a critical grain
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Table 2 Material and loading parameters

E (GPa) ν f a (MPa) f m (MPa) ζ (MPa−1) τ 0c (MPa)

210 0.3 101 50 5.10−2 90

When the loading parameters (σm
nt , σ

a
nt ) do not satisfy that condition, shakedown

is found to occur after a finite number of cycles. There is no direct formula for
estimating the shakedown state in that case.

Expressions (37) for the asymptotic state are verified through a comparison with a
step-by-step simulation of a 100-grain randomly generated tessellation submitted to
a cyclic shear. In Fig. 4a is shown the plastic slip γNc as a function of Nc, as calculated
from (30). The cumulated slip ηNc is shown in Fig. 4b. Those values correspond to
the grain that plastifies first in the tessellation. The material and loading parameters
used are reported in Table2. The values γ∞ and η∞ given by (37) are shown as red
lines in Fig. 4. As expected, (γNc, ηNc) converge towards γ∞ and η∞ as Nc → ∞.
For Nc > 1.1 106, the relative difference between γNc and γ∞ is smaller than 1%.

Formulas (37) gives a direct approach for estimating the asymptotic state in each
grain of the polycrystal. This is valuable for fatigue analysis and probabilistic studies,
as illustrated in the next Sections.

7 Mesoscopic Fatigue Criterion

Experimental observations show that fatigue cracks usually appear in persistent slip
bands inside critical grains. Motivated by such observations, we consider that a
fatigue crack may initiate in a given critical grain if X ≥ b where

X = sup
t

σnt (t) + aσnn(t) (40)

and (a, b) are (positive) material parameters. In (40), σnt (t) and σnn(t) are defined
as

σnt (t) = n · σ (t) · t, σnn(t) = n · σ (t) · n

where n is the normal to the active slip plane, t is the direction of the slip and σ (t)
is the local stress in the shakedown state. Correspondingly, fatigue life is infinite if

X ≤ b. (41)

A condition similar to (41) is considered in Dang Van’s fatigue criterion [4] and is
also related to damage indicators proposed by [13]. In the original construction of
DangVan’s fatigue criterion, the purely elastic stress in critical grains is approximated
using Lin-Taylor’s approximation and the stabilized plastic strain is estimated using a
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heuristic ansatz. The approach presented allows one to improve on those assumptions.
In more detail, when shakedown is reached in a critical grain, the local stress takes
the form

σ (t) = σ̄ (t) − γ∞C : (I − S) : τ .

Recalling thatC is isotropic (with Lame coefficients (λ, μ)) and noting that n · t = 0,
we have

σnt (t) = f (t)σ 0
nt − γ∞α, σnn(t) = f (t)σ 0

nn − γ∞α′ (42)

where α is defined as in (31) and

− α′ = λ tr(S : τ ) + 2μn ⊗ n : S : τ . (43)

In (42), we have set σ 0
nt = n · σ 0 · t and σ 0

nn = n · σ 0 · n. Using expression (37) for
γ∞ yields

σnt (t) + aσnn(t) = f (t)(σ 0
nt + aσ 0

nn) − (α + aα′)
σm
nt

α + ξX
.

The value of f (t) reaching the maximum of the expression above is either fmax or
fmin , depending on the sign of σ 0

nt + aσ 0
nn . Setting

σm
nn = fmax + fmin

2
σ 0
nn, σ

a
nn = fmax − fmin

2
σ 0
nn, (44)

we arrive at X = sup{X+, X−} where

X± = σm
nt + aσm

nn ± (σ a
nt + aσ a

nn) − (α + aα′)
σm
nt

α + ξX
. (45)

In the case ξX = 0 (which we consider in the following), the expression above sim-
plifies as

X± = aσm
nn ± (σ a

nt + aσ a
nn) − a

α′

α
σm
nt . (46)

7.1 Influence of the Grain Shape

The quantity X = sup{X+, X−} drives the fatigue life of critical grains. For a given
loading, X depends on the shape of critical grains through the ratio α′/α where α

and α′ are defined in (31) and (43) respectively. That ratio can be interpreted as
a geometric amplification factor of the mean resolved shear stress σm

nt . Evaluating
α′/α requires evaluating the tensor S introduced in (20), which can only be done
numerically in general. A notable exception is the case of ellipsoidal grains, forwhich
S coincides with the Eshelby tensor. Let r ≤ 1 be the aspect ratio of the ellipsoidal
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Fig. 5 Geometric amplification factor capturing the influence of the grain shape (orientation x ,
aspect ratio r ) on the fatigue indicator

grain and let x be the angle between the long axis of the grain and the direction n
of the slip plane. Some calculations based on the expression of the Eshelby tensor
leads to −α′

α
= 2(1 − r)(1 + r + (1 − r) cos 2x) sin 2x

(1 + r)2 − (1 − r)2 cos 4x
. (47)

Interestingly, the ratio −α′/α is found to be independent of the elastic moduli. It is
plotted in Fig. 5(left) as a function of the angle x , for several values of the aspect
ratio r . In the limit case r = 1 (circular inclusion), α′/α is equal to 0. In the limit
case r = 0 (flat grains), we obtain −α′/α = cotan x which may take any value in
R depending on the angle x . We have in particular −α′/α = +∞ when x = 0, i.e.
when the normal to slip plane is parallel to the (flat) grain. More generally, for a
given aspect ratio r , it can easily be seen that −α′/α is π−periodic and covers an
interval of the form [−M(r), M(r)] as x varies between 0 and π . The function M(r)
is plotted in Fig. 5(right) and can be interpreted as a maximum amplification factor
of σm

nt in the fatigue life indicator X .

7.2 Influence of the Crystalline Orientation

For a given aspect ratio r , we consider the worst situation where the angle x gives
the largest value of |α′/α| in which case

X± = aσm
nn ± (σ a

nt + aσ a
nn) + aM(r)|σm

nt |.

Let (u1, u2) be eigenvectors of σ 0, so that σ 0 = λ1u1 ⊗ u1 + λ2u2 ⊗ u2 with λ1 ≤
λ2. The orientation θ of the active slip system depends on the crystalline orientation
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and can be parameterized by the angle θ such that n = cos θu1 + sin θu2 and t =
− sin θu1 + cos θu2. We have

X+ = a( f m + f a)(λ2 + (λ1 − λ2)(cos θ)2) + f a(λ2 − λ1) sin θ cos θ

+aM(r)| f m |(λ2 − λ1)| sin θ cos θ | (48)

where

f m = fmax + fmin

2
, f a = fmax − fmin

2
.

The most critical value of X+ is obtained by maximization with respect to θ . That
maximization can be performed in closed form (details omitted) yielding

sup
θ

X+ = a( f m + f a)
λ1 + λ2

2
+ 1

2
(λ2 − λ1)

√
( f a + aM(r)| f m |)2 + a2( f m + f a)2.

A similar calculation gives

sup
θ

X− = a( f m − f a)
λ1 + λ2

2
+ 1

2
(λ2 − λ1)

√
( f a + aM(r)| f m |)2 + a2( f m − f a)2.

Hence, if

a( f m ± f a)
λ1 + λ2

2
+ 1

2
(λ2 − λ1)

√
( f a + aM(r)| f m |)2 + a2( f m ± f a)2 ≤ b

(49)
then a critical grain of aspect ratio r satisfies the infinite lifetime condition, whatever
its geometric or crystalline orientation. Now consider a polycrystal made of ellip-
soidal grains with varying aspect ratios in a given interval [r0, r1]. Observing that
the left-hand side of (49) is increasing with M(r) and noting from Fig. 5 (right) that
M is decreasing with r , we obtain that the condition

a( f m ± f a)
λ1 + λ2

2
+ 1

2
(λ2 − λ1)

√
( f a + aM(r0)| f m |)2 + a2( f m ± f a)2 ≤ b

(50)
ensures that all critical grains satisfy the infinite lifetime condition, whatever their
orientation (both geometric and crystalline) and whatever the exact value of their
aspect ratios. Condition (50) can thus be interpreted as an infinite lifetime condition
for the polycrystal. It is expected to be representative of polycrystals that contains
many grains covering almost all possible orientations. In that case, there is indeed a
high probability that there exists a critical grain close to the worst orientation, thus
achieving the value max X in (50). For a RVE with few grains or a with special
texture, condition (50) is expected to be conservative. More details on such issues
are provided in Sect. 8.

In condition (50), the only parameters related to the shape of the grains is the scalar
M(r0). The most favorable situation corresponds to circular inclusions (r0 = 1), in
which case M(r0) = 0 and (50) reduces to
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a( f m ± f a)
λ1 + λ2

2
+ 1

2
(λ2 − λ1)

√
( f a)2 + a2( f m ± f a)2 ≤ b. (51)

Equation (51) is expressed only in terms of macroscopic loading parameters. It can
be interpreted as an upscaled version of the local expression (41) used in individual
grains. It is interesting to compare (50) with 2D versions of widely used macroscopic
fatigue criteria such as Crossland’s, Sines’ or Dang Van’s criterion. For the loading
considered, the infinite lifetime condition obtained from a 2D version of Dang Van’s
criterion takes the form

a( f m ± f a)
λ1 + λ2

2
+ 1

2
(λ2 − λ1) f

a ≤ b. (52)

There is a close resemblance between (52) and (50), especially in the case of circular
grains. In particular, the term in λ1+λ2

2 is the same. Condition (51) can be observed
to be more conservative than (52) because the multiplying factor of λ2−λ1

2 is larger.
The infinite lifetime condition obtained from Crossland’s and Sines’ criteria in 2D
read respectively as

a

(
f m

λ1 + λ2

2
+ f a|λ1 + λ2

2
|
)

+ 1

2
(λ2 − λ1) f

a ≤ b (53)

a f m
λ1 + λ2

2
+ 1

2
(λ2 − λ1) f

a ≤ b (54)

which differ from (52) by the term in (λ1 + λ2)/2 capturing the influence of the
hydrostatic stress. In Dang Van’s, Crossland’s and Sines’ criterion, the term in (λ2 −
λ1)/2 (capturing the influence of the deviatoric stress) is the same.

8 Probabilistic Aspects

8.1 Survival Function for a Critical Grain of Random
Orientation

The direct expressions (37) for the asymptotic state are well suited to a probabilistic
analysis of fatigue. This Section elaborates on this point for the simplest case of a
zero-mean loading (i.e. f m = 0) and circular grains. In that case, we have from (48)

X+ = −X− = a f a(λ2 + (λ1 − λ2)(cos θ)2) + f a(λ2 − λ1) sin θ cos θ (55)

where we recall that θ is the orientation of the active slip system. The angle θ

depends on the crystalline orientation Θ in the critical grain, as shown in Fig. 6 for
the case of the 6 slip systems listed in (29). In that case, it can be calculated that
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Fig. 6 Angle θ of the active
slip system as a function of
the crystalline orientation Θ
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θ = Θ − π/3 if 0 ≤ Θ ≤ π/6 (modulo π/2), θ = Θ if π/6 ≤ Θ ≤ π/3 (modulo
π/2), θ = Θ + π/3 if π/3 ≤ Θ ≤ π/2 (modulo π/2). Setting ψ = arctan(1/a),
some straightforward manipulations lead to

X+
f a

= a
λ1 + λ2

2
+

√
1 + a2

λ1 − λ2

2
y (56)

where
y = cos(2θ + ψ). (57)

Provided that π/6 ≤ ψ ≤ π/3 (which corresponds to a in the range [1/√3,
√
3]), it

can be verified that y takes values in [−y2,−y1] ∪ [y1, y2] where

y1 = cos

(
ψ − 2π

3

)
, y2 = cos

(
ψ − π

3

)
.

If now Θ is seen as a random variable with a prescribed probability density, then
relations (56) and (57) allow one to calculate the probability densities of y and X =
max(X+, X−). In the particular case where Θ is uniformly distributed on [0, 2π ], it
can be calculated that the variable y has a probability density p given by

p(y) =
⎧
⎨

⎩

3

2π

1√
1 − y2

if |y| ∈ [y1, y2],
0 otherwise.

(58)
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Fig. 7 Probability density p of y = cos 2θ + ψ (red curve). The vertical dashed lines show the
support of p. The histogram shows the probability density approximated from a sample of 1000000
randomly generated crystalline orientations

The probability density p in (58) is shown in Fig. 7 (red curve). To validate expres-
sion (58), the values of y corresponding to 1000000 randomly generated crystalline
orientations have been calculated. The results, shown as a normalized histogram in
Fig. 7, are in good agreement with (58).

The probability density of X can be obtained from (58) and relation (55). Of
particular interest is the survival function for X , defined as the probability that X ≤ b
when f a is prescribed. That quantity is denoted by S( f a) in the following. It can
be interpreted as the probability of infinite lifetime for a critical grain of random
orientation when submitted to a loading amplitude f a . Equation (56) shows that the
condition X ≤ b is equivalent to

1

B

(
A − b

fa

)
≤ y ≤ 1

B

(
A + b

fa

)

where

A = a
λ1 + λ2

2
, B =

√
1 + a2

λ2 − λ1

2
. (59)
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Fig. 8 Survival function for a critical grain of random orientation. Case f m = 0, σ 0 = (u1 ⊗ u2 +
u2 ⊗ u1)/2, a = 0.7

It follows that

S( f a) =
∫ A+b/ f a

B

A−b/ f a

B

p(y)dy. (60)

Using expression (58) for p, there is no substantial difficulty in evaluating the integral
in (60). The result depends on the loading mode σ 0 in (8) through the parameters
(A, B) in (59). Both those parameters depend indeed on the eigenvalues (λ1, λ2) of
σ 0. Let us consider the case of pure shear, i.e. σ 0 = (u1 ⊗ u2 + u2 ⊗ u1)/2. In that
case we have A = 0, B = √

1 + a2 and we obtain

S( f a) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0 if fa ≥ b

y1
√
1 + a2

1

2
+ 3

π

(
arcsin

(
b

f a
√
1 + a2

)
− ψ

)
if

b

y2
√
1 + a2

≤ f a ≤ b

y1
√
1 + a2

1 if fa ≤ b

y2
√
1 + a2

(61)

The survival function given by (61) is plotted in Fig. 8 for the case a = 0.7. For
any given k in [0, 1], we denote by f ak the maximum loading amplitude f a such that
S( f a) = k. It can be verified from (61) that the median survival loading f a50% (i.e. the
loading f a corresponding to a survival probability of 50%) is equal to b. The value
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f a100% (corresponding to a guaranteed infinite lifetime) is equal to b/y2
√
1 + a2, with

y2 � 0.996 for the case a = 0.7 depicted in Fig. 8. It is interesting to compare that
value with the maximum value f ameso corresponding to an infinite lifetime according
to the mesoscopic fatigue criterion (50). For the loading under consideration, we
obtain from (50) that f ameso = b/

√
1 + a2 which is slightly smaller that f a100%. The

reason is that Eq. (50) was derived by allowing the orientation θ of the active slip
system to take any value in [0, 2π ], which is actually not the case as shown in Fig. 6.
However, the relative difference between f a100% and f ameso is really small in the case
a = 0.7 (this can be verified to remain true for any value of a in [0, 1]).

8.2 Survival Function for a RVE with M Critical Grains

Consider now a RVE containing M critical grains and submitted to a given macro-
scopic loading ( f m, f a, σ 0). The RVE survives (i.e. has an infinite time) is all its
critical grains do. If the crystalline orientations in the critical grains are statically
independent variables, the survival function Smeso of the RVE is

Smeso = SM (62)

In (62) it is assumed implicitly that all the critical grains have the same survival
function S, which is notably the case if f m = 0 and the grains are circular. For
a shear loading with zero-mean value (σ 0 = (u1 ⊗ u2 + u2 ⊗ u1)/2, f m = 0), it
follows from (61) and (62) that the loading amplitude f a50% corresponding to a 50%
probability of survical for the RVE is

b√
1 + a2

1

sin(ψ + π
6 (21− 1

M − 1))
. (63)

The value f a50% given by (63) is plotted in Fig. 9 as a function of the number M of
critical grains. It can be verified that f a50% converges towards b/y2

√
1 + a2 � f ameso

asM → ∞. This means that themesoscopic criterion (50) is a good fatigue indicator
for RVEwith many critical grains. In fact, 20 critical grains is enough for the relative
difference between f a50% and f ameso to be smaller than 1%. By contrast, for a RVE
with a small number (<10) of critical grains, f a50% may be significantly larger than
f ameso. Such a situation may occur for structures with large stress gradients. In that
case, the stress field varies rapidly in space, which imposes the RVE to be small,
consequently reducing the potential number of critical grains. This in accordancewith
the experimental observation that fatigue limits generally increase in the presence of
local stress gradients [11, 12].
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Fig. 9 Median loading amplitude f a50% for a RVE with M critical grains. Case f m = 0, σ 0 =
(u1 ⊗ u2 + u2 ⊗ u1)/2, a = 0.7

9 Concluding Remarks

In this paper we have presented a simplified method for calculating the elastic-
plastic evolutions of polycrystals submitted to loadings of relatively low amplitude.
The comparison with full-field FE simulations shows that the method presented is
relatively accurate, at least in situations where plastifying grains are relatively far
away from each other. The main advantage of the proposed approach lies in its
numerically efficiency as it relies on analytical formula. In the case of cyclic load-
ings, the proposed approach leads to a direct method for estimating the asymptotic
state. The proposed approach could be extended in several ways. For instance, more
advanced hardening laws could be considered. The accuracy of themethod could also
be improved by taking the elastic interaction between critical grains into account,
which is the topic of ongoing work. An other important issue is the extension to
the 3D setting. In that regard, we note that the simplified model of Sect. 4 and the
analytical formula of Sect. 6 for the shakedown state can be directly extended to 3D.
However, the construction of the mesoscopic fatigue criterion in Sect. 7 as well as
the probabilistic analysis in Sect. 8 should be revisited and involve more complex
calculations.
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Masonry Domes Under Complex
Loading Conditions: A Shell-Based Static
Limit Analysis Approach

Nicola A. Nodargi and Paolo Bisegna

Abstract A shell-based static limit analysis approach is proposed for the structural
assessment of masonry domes subject to complex loading conditions, such as involv-
ing horizontal forces or differential settlements of the supports. The problem formu-
lation resorts to the statics of shells and to the shell stress resultants on the domemid-
surface to characterize the equilibrated and statically admissible stress states in the
dome. By exploiting differential or integral shell equilibrium conditions, alongside
classicalHeyman’s assumptions, collapse andminimum-thrust analysis problems are
formulated. Finite difference or finite volume discretization strategies are discussed
to arrive at their discrete counterparts, which are efficiently solved as second-order
cone programming problems. Numerical simulations are presented, dealing with the
pseudo-static seismic analysis of spherical and catenary domes subject to uniformly
or linearly distributed horizontal accelerations along the height of the dome, and with
the minimum-thrust analysis of spherical domes under non-standard distributions of
support differential settlements. The obtained results prove the computational merit
of the proposed framework.

Keywords Historical monuments · Limit analysis · Vulnerability assessment

1 Introduction

The seismic assessment of historical masonry structures is a part of the societal
challenge to preserve the architectural heritage. Attention is here focused onmasonry
domes, resorting to static limit analysis as structural analysis framework and to
Heyman’s assumptions of infinite compressive strength, vanishing tensile strength,
and no-sliding condition for the constitutive description of masonry [22].
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A vast literature, tracing back to several historical contributions (e.g., see [15, 24,
26, 33, 45, 46]) exists on the structural behavior of masonry domes under their self-
weight. From a computational standpoint, in the last decades two main approaches
have emerged. On the one hand, lunar-slices formulations aim at improving the clas-
sical sliced equilibriummodel, which regards the dome as a collection of independent
lunar slices and thus reduces the problem to the thrust line analysis of an arch with
variable width [21], by the introduction of suitable distributions of compressive hoop
stresses (e.g., see [1, 25, 44]). On the other hand, membrane formulations search
for a compressed thrust membrane contained within the thickness of the dome in
equilibrium with its self-weight. A continuous description of the unknown thrust
membrane and of the relevant membrane forces is adopted in the thrust surface
analysis method [2–4, 16], whereas a discrete description of the unknown thrust
membrane as a network of compressed truss elements is the rationale for the thrust
network analysis method (e.g., see [6–9, 17, 18, 30, 43]).

By contrast, the problem of masonry domes subjected to complex loading condi-
tions, e.g. related to the presence of horizontal forces (as required in pseudo-static
seismic analyses) or differential settlements of the supports, has received less atten-
tion [13].

In [49], experimental results on the collapse capacity of blockmasonry domes sub-
ject to horizontal forces proportional to their self-weight have been derived by testing
small-scale models on a tilting table. A simple lunar-slice formulation considering
the equilibrium of the two opposite lunar slices of the dome in the tilting direction has
been therein proposed for an interpretation of the experimental evidences. Concern-
ing membrane formulations, proportional horizontal forces have been introduced in
the thrust surface analysis method in [12], by considering a suitably rotated config-
uration of the dome in which the verticality of external loads is recovered. In [29],
an extension of the thrust network analysis method has been proposed for comput-
ing the structural capacity under horizontal forces. That requires determining those
horizontal forces which imply the “deepest” and “shallowest” configurations of the
thrust network to coincide.

In the context of kinematic limit analysis, an adaptive approach has been proposed
in [20]. It is based on the assumption that the failure of a dome is driven by the opening
of few curved flexural hinges, which produce amechanism of rigid bodies. The actual
collapse mechanism is determined through the solution of a nonlinear optimization
problem, which searches for the optimal position of the curved flexural hinges within
a NURBS parameterization of the dome. Furthermore, an application of block-based
methods to masonry domes under horizontal forces has been carried out in [10],
based on a point contact model simplifying the failure conditions to be imposed at
block interfaces.

Recently, a novel shell-based approach to the static limit analysis of masonry
domes has been proposed. It exploits the classical statics of shells and the shell
stress resultants on the dome mid-surface to characterize the set of equilibrated
and statically admissible stress states in the dome. Thanks to the non-customary
choice to explicitly include the bending moments in the formulation, the result-
ing framework has been proven to be more simple and more general compared to
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competing approaches when considering axisymmetric masonry domes under their
self-weight [37, 38, 40]. In particular, it allows recovering lunar-slices formulations,
thrust surface analysis method, and thrust network analysis method as special cases.
More importantly, in conjunction with suitable discretization of the shell stress resul-
tants on the domemid-surface, such a framework has been demonstrated to enable the
treatment of horizontal forces, thus leading to the pseudo-static seismic assessment
of masonry domes [36, 39].

In the present work, an extension of such a shell-based static limit analysis
approach for masonry domes is proposed for addressing general, complex loading
conditions, e.g. due to the presence of horizontal forces or to differential settlements
of the supports. Normal-force and bending-moment tensors, and shear-force vec-
tor on the dome mid-surface are introduced as the problem unknowns. Exploiting
differential or integral shell equilibrium conditions, alongside classical Heyman’s
assumptions, collapse and minimum-thrust analysis problems are formulated. Two
alternative discretization strategies, respectively based on finite difference or finite
volume methods, are adopted for deriving the discrete counterpart of those optimiza-
tion problems, to be solved in the form of second-order cone programming problems
by standard and effective optimization tools. Numerical simulations are addressed
for assessing the computational performances of the methodology. The pseudo-static
seismic analysis of spherical and catenary domes under uniformly or linearly dis-
tributed horizontal accelerations along the height of the dome is presented, with para-
metric analyses enlightening on the role played by the dome geometry. Furthermore,
the minimum-thrust analysis of spherical domes under non-standard distributions
of support differential settlements is discussed. The obtained results, which provide
an estimate of the structural safety of masonry domes on the safe side because of
the underlying static limit analysis approach, highlight the potential of the proposed
approach.

The paper is organized as follows. Section2 deals with problem formulation,
whereas the problem discretization is addressed in Sect. 3. Section4 is devoted to
numerical applications and conclusions are outlined in Sect. 5.

2 Shell-based Static Limit Analysis

A masonry dome of revolution is considered. It is described by its mid-surface and
its thickness h measured along the normal direction to the mid-surface (Fig. 1a). In a
Cartesian reference frame (O; x, y, z) with coordinate axes respectively parallel to
the unit vectors i , j and k, the typical point on the domemid-surface is parameterized
as:

x(t, ϑ) = r(t) er (ϑ) + z(t) k. (1)

Here, t and ϑ denote a meridional parameter and the longitude angle, and respec-
tively span meridian and parallel curves on the dome mid-surface. Moreover, r and z
respectively denote the distance from the revolution axis along the radial direc-
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Fig. 1 Formulation: a three-dimensional view of the mid-surface of an axially symmetric masonry
dome, and b shell stress resultants acting on the mid-surface of the dome

tion er = cosϑ i + sin ϑ j , and the elevation, of the point x. The meridian curves
are characterized by a tangential angle ϕ and by a radius of curvature ρ given by:

tan ϕ = − z/t
r/t

, ρ = − (r2/t + z2/t )
3/2

z/t t r/t − z/t r/t t
, (2)

the slash symbol standing for differentiation with respect to the indicated variable.
Henceforth, the tangential angle ϕ will be used as meridional parameter in place of t ,
exploiting relationship (2)1. The following physical basis vectors are introduced on
the dome mid-surface:

eϕ = cosϕ er − sin ϕ k, eϑ = − sin ϑ i + cosϑ j , n = sin ϕ er + cosϕ k,
(3)

such that eϕ and eϑ are unit vectors respectively tangent to meridian and parallel
curves, whereas n is the exterior normal unit vector to the mid-surface. For future
use, the metric tensor sI , the Weingarten tensor sL and the alternating tensor sW on
the dome mid-surface are respectively introduced:

sI = s∇x = eϕ ⊗ eϕ + eϑ ⊗ eϑ ,

sL = −s∇n = −ρ−1eϕ ⊗ eϕ − r−1 sin ϕ eϑ ⊗ eϑ ,
sW = −eϕ ⊗ eϑ + eϑ ⊗ eϕ,

(4)

with ⊗ denoting tensor product and s∇ as surface gradient operator (e.g., see [48]).
A shell-based approach is resorted to for formulating the static limit analysis

problem for the dome under external loads. That requires:
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i. reducing external loads on the dome to statically equivalent surface distributions
of forces q and couples m applied to its mid-surface;

i i. describing the stress state in the dome by the normal-force tensor N , shear-force
vector Q, and bending-moment tensor M introduced as tangent fields on its
mid-surface as customary in classical statics of shells (e.g., see [19, 23]).

In particular, surface distributions of forces and couples corresponding to the
dome self-weight are given by [34–36, 39]:

q0 = −qk, m0 = m sin ϕ eϕ,

q =
(
1 + h2

12ρ

sin ϕ

r

)
γ h, m =

(
1

ρ
+ sin ϕ

r

)
γ h3

12
, (5)

where γ stands for the specific weight of the constituting masonry material. On
the other hand, the following representation within the physical basis of vec-
tors

(
eϕ, eϑ , n

)
is assumed for the tangent fields N , Q, and M on the dome mid-

surface (Fig. 1(b)):

N = Nϕ eϕ ⊗ eϕ + Nϑϕ eϑ ⊗ eϕ + Nϕϑ eϕ ⊗ eϑ + Nϑ eϑ ⊗ eϑ ,

Q = Qϕ eϕ + Qϑ eϑ ,

M = Mϕ eϕ ⊗ eϕ + Mϕϑ

(
eϕ ⊗ eϑ + eϑ ⊗ eϕ

) + Mϑ eϑ ⊗ eϑ .

(6)

It is noticed that non-symmetric normal-force and symmetric bending-moment ten-
sors are considered. The latter assumption, which is not strictly required in classical
statics of shells, may be motivated by a consistent derivation of the shell stress resul-
tants from a 3D stress state via a thickness integration involving the Cauchy stress
tensor (e.g., see [32, 36]).

Within such a framework, the equilibrium and static admissibility conditions to
be enforced on the stress state in the dome are discussed.

2.1 Equilibrium

The differential shell equilibrium equations of the dome mid-surface read (e.g.,
see [32]):

0 = sI sdiv N − sL Q + p,

0 = sdiv Q + sL · N + q,

0 = sI sdiv M − Q + m,

0 = sW · (
N − MsL

)
.

(7)
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where · and sdiv respectively denote scalar product and surface divergence operator
(e.g., see [48]). Equations (7)1,2 imply translational equilibrium within the tangent
plane and along the normal direction to the dome mid-surface, provided the decom-
position q = p + qn of the external surface forces q is introduced. Analogously,
equations (7)3,4 imply rotational equilibrium about the tangent plane and about the
normal direction, under the assumption that the external surface couples m obey the
condition m · n = 0.

Exploiting relationships (4) and (6), Eqs. (7) can be expanded component-wise.
When multiplied by rρ, they yield (e.g., see [19, 23], with a slight change of notation
due to switching the indices of the off-diagonal components of the stress tensors and
with the assumption Mϑϕ = Mϕϑ ):

0 = (
r Nϕ

)
/ϕ

+ ρNϕϑ/ϑ − ρ cosϕNϑ + r Qϕ + rρqϕ,

0 = (
r Nϑϕ

)
/ϕ

+ ρNϑ/ϑ + ρ cosϕNϕϑ + ρ sin ϕ Qϑ + rρqϑ ,

0 = (
r Qϕ

)
/ϕ

+ ρQϑ/ϑ − r Nϕ − ρ sin ϕNϑ + rρqn,

0 = (
rMϕ

)
/ϕ

+ ρMϕϑ/ϑ − ρ cosϕMϑ − rρQϕ + rρmϕ,

0 = (
rMϕϑ

)
/ϕ

+ ρMϑ/ϑ + ρ cosϕMϕϑ − rρQϑ + rρmϑ ,

0 = rρ
(
Nϑϕ − Nϕϑ

) + (r − ρ sin ϕ) Mϕϑ .

(8)

The differential equilibrium equations (7) or (8) need to be complemented by the
boundary conditions on the free part of the mid-surface boundary. If that is e.g.
assumed to be unloaded, the boundary conditions result to be:

Nν = 0, Q · ν = 0, sWMν = 0, (9)

where, for τ the unit tangent vector to the boundary and × denoting cross product,
ν = τ × n. For the sake of simplicity, it is assumed that the supporting structures of
the dome are sufficiently resistant to withstand the transmitted actions. Accordingly,
no boundary conditions need to be enforced on the supported boundary of the dome
and equations analogous to (9) allow the post-computation of the support constraint
reactions.

By integrating the differential shell equilibrium equations (7) on a typical partP
of the domemid-surface, and invoking the surface divergence theorem (e.g., see [48]),
an integral shell equilibrium characterization is obtained:
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0 =
∫

∂P
(N + n ⊗ Q) ν dl +

∫
P

q da,

0 =
∫

∂P

[
(x − O) × (N + n ⊗ Q) ν + sWMν

]
dl

+
∫
P

[
(x − O) × q + sWm

]
da.

(10)

Those equations, respectively consisting in translational and rotational equilibrium
conditions, involve the tractions, i.e. internal forces and couples per unit length,
associated to the shell stress tensors on the boundary ∂P of the partP . Within such
a formulation, boundary conditions can be possibly considered on the free part of the
mid-surface boundary prescribing the boundary integrals of the relevant tractions.

2.2 Static Admissibility

The classical Heyman’s assumptions of infinite compressive and vanishing tensile
strengths are adopted to characterize the admissible stress states in the dome [22].
Therefore, the shell stress resultants are required to obey the following unilateral
conditions (e.g., see [27, 36, 39]):

sym N � 0, sym (M − Nh/2) � 0, sym (M + Nh/2) � 0, (11)

where sym denotes the symmetric part operator and the notation S � 0 [resp., S � 0]
translates the symmetric tensor S to be positive [resp., negative] semidefinite. Con-
dition (11)1 implies that, for any tangent unit vector ν to the dome mid-surface, the
normal force Nν · ν is compressive. Likewise, conditions (11)2,3 imply the bend-
ing moments Mν · ν to be bounded by ±h/2 Nν · ν, i.e. the center of pressure to
be contained within the dome thickness for any tangent unit vector ν to the dome
mid-surface. In passing, it is noticed that condition (11)1 is linearly dependent on
the remaining two, and can be thus dropped off.

A sufficiently large friction coefficient is assumed to be available, such that Hey-
man’s no-sliding conditions are tacitly satisfied. The influence of finite friction has
been discussed for general masonry structures e.g. in [5, 14, 28, 41, 47] and for
masonry domes in [36, 39].

2.3 Collapse and Minimum-Thrust Analysis Problems

Collapse and minimum-thrust analysis problems for a masonry dome subjected to
general loading conditions are here formulated in the context of static limit analysis.
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To that end, let the set of equilibrated and statically admissible stress states in the
dome be introduced:

H = {
(N, Q, M) | conditions (7) or (10), and conditions (11)2,3, hold

}
. (12)

For a collapse analysis, it is assumed that the external forces q and couples m
applied to the dome mid-surface are the sum of dead and live load contributions,
the latter obtained by amplification of a basic live load distribution through a load
multiplier λ:

q = qd + λq l, m = md + λml. (13)

The static limit analysis theorem states that the collapse multiplier λc of the basic
live loads, i.e. the collapse capacity of the dome, is achieved by maximizing λwithin
the set H (e.g., see [11, 22]):

max
{λ, N, Q, M}

λ,

subject to (N, Q, M) ∈ H. (14)

In passing, it is noticed that a pseudo-static seismic analysis matches such a formu-
lation, as detailed in Sect. 4.1.

By contrast, a minimum-thrust analysis problem aims at providing quantitative
assessment of the structural safety of the dome under completely prescribed loads
(also possibly reducing to the self-weight). A given settlement distribution δ is con-
sidered on the supported boundary C of the dome mid-surface, which produces a
settlement mechanism of the dome resisted by the reactions r of the settled con-
straints. The static theorem of the minimum thrust guarantees that a minimum thrust
state in the dome is achieved by minimizing the opposite of the work done by those
reactions (coinciding with the complementary energy of the dome due to the support
settlement):

W = −
∫
C
r · δ dl, (15)

within the setH, i.e. by addressing the following optimization problem (e.g., see [11,
22]):

min
{N, Q, M}

W,

subject to (N, Q, M) ∈ H. (16)

The solution of either problems (14) or (16) requires a suitable discretization of
the set H of equilibrated and statically admissible stress states. In the next section,
two alternative discretization methods will be discussed for achieving efficient com-
putational strategies.
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3 Problem Discretization

The proposed shell-based static limit analysis formulation offers a general frame-
work for developing computational strategies. Since amounting to a discretization
of the setH of equilibrated and statically admissible stress states in the dome, those
strategies require a discretization of the shell stress tensors N , Q, and M on the dome
mid-surface, and the imposition of discretized equilibrium and static admissibility
conditions descending from their continuous counterpart, i.e. conditions (7) or (10),
and (11)2,3, respectively. In the following, two alternative strategies, based on finite
difference and finite volume methods are discussed.

3.1 Finite Difference Method

For a finite difference discretization of the shell-based static limit analysis formu-
lation, a main and an auxiliary rectangular grids are considered in the parameter
space (ϕ, ϑ) (Fig. 2a). They are characterized by grid spacing �ϕ and �ϑ , and
shifted by half the grid spacing with respect to each other in both directions. The
nodes of the main grid are labeled by indices (i, j), respectively running along ϕ-
and ϑ-direction, whereas the nodes of the auxiliary grid, which coincide by con-
struction with the centers of the finite difference cells of the main grid, are labeled
by indices (i + 1/2, j + 1/2).

The unknown physical components of the shell stress tensors are located at the
nodes of themain grid. Accordingly, the vector X is introduced,which column-stacks
the nodal unknowns at each node:

ϕ

ϑ

i i + 1

i + 1
2

j

j + 1
j + 1

2

Δϕ

Δϑ

main grid

auxiliary grid

O
x

y
z

(a) (b)

Fig. 2 Problem discretization: a main and auxiliary staggered rectangular grids in the parameter
space (ϕ, ϑ) for finite difference discretization, and b mesh on the dome mid-surface for finite
volume discretization
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X (i, j) =
(
N (i, j)

ϕ ; N (i, j)
ϑϕ ; N (i, j)

ϕϑ ; N (i, j)
ϑ ; Q(i, j)

ϕ ; Q(i, j)
ϑ ; M (i, j)

ϕ ; M (i, j)
ϑϕ ; M (i, j)

ϑ

)
.

(17)

The differential equilibrium equations (7), in their component-wise form (8), are
enforced in the finite difference sense at the nodes of the auxiliary grid. To that end,
let the typical physical component S of a shell stress tensor be considered. A finite
difference approximation of S and of its partial derivatives S/ϕ and S/ϑ can be derived
at the nodes of the auxiliary grid in terms of the unknown values at the nodes of the
main grid:

S(i+1/2, j+1/2) = 1

4

[
S(i, j) + S(i+1, j) + S(i+1, j+1) + S(i, j+1)

]
,

S(i+1/2, j+1/2)
/ϕ = 1

2�ϕ

[−S(i, j) + S(i+1, j) + S(i+1, j+1) − S(i, j+1)
]
,

S(i+1/2, j+1/2)
/ϑ = 1

2�ϑ

[−S(i, j) − S(i+1, j) + S(i+1, j+1) + S(i, j+1)
]
.

(18)

Accordingly, after some algebra, the finite difference approximation of Eqs. (8) can
be compactly written as [39]:

EX + f = 0, (19)

with E and f respectively as the structural equilibriummatrix and the vector of nodal
forces. Due to their algebraic nature, possible boundary conditions (9) on the free
boundary of the dome mid-surface may be straightforwardly enforced at the nodes
of the main grid, resulting in linear conditions in the unknown X .

The static admissibility conditions (11)2,3 on the shell stress tensors are also
enforced at the nodes of the main grid. For computational convenience, they can be
recast in the following second-order conic constraint format:

U (i, j)
± X ∈ Kr, (20)

whereKr ⊂ R
3 is the rotated quadratic cone in R3 [31], and U (i, j)

± are two structural
admissibility operators relevant to node (i, j) of the main grid, whose derivation is
detailed in [39].

In closing, conditions (18) and (20) provide a finite difference approximation of
the set H of equilibrated and statically admissible stress states in the dome.
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3.2 Finite Volume Method

For a finite volume discretization of the shell-based static limit analysis formulation,
the dome mid-surface is discretized into finite volumes (or cells) that are the image
of a rectangular mesh in the parameter domain (ϕ, ϑ) (Fig. 2b).

The nodal values of the physical components of the shell stress tensors are assumed
as problem unknowns. They are collected in the vector X , which column-stacks the
nodal unknowns at each node:

X i = (Ni
ϕ; Ni

ϑϕ; Ni
ϕϑ ; Ni

ϑ ; Qi
ϕ; Qi

ϑ ; Mi
ϕ; Mi

ϕϑ ; Mi
ϑ). (21)

The integral equilibrium equations (10) are enforced for any cell of the mesh.
Upon noticing that the shell stress tensors N , Q, and M are only involved on the cell
boundaries, a piecewise-linear Lagrangian interpolation of the physical components
of the shell stress tensors is thereon adopted in terms of the nodal values (21). Let the
typical physical component S of a shell stress tensor be considered. Its approximation
on the edge γ joining nodes i and j is given by:

S|γ (σ ) ≈ L1(σ ) Si + L2(σ ) S j , L1(σ ) = 1 − σ

l
, L2(σ ) = σ

l
, (22)

where l and σ ∈ [0, l] are the length of, and a curvilinear abscissa along, the edge γ ,
respectively, and L1 and L2 are the linear Lagrange functions on [0, l]. From their
interpolated physical components, the shell stress tensors at any point of γ are finally
reconstructed by representations (6), where the exact physical basis vectors at that
point are substituted. Therefore, after some algebra, the finite volume approximation
of Eqs. (10) can be expressed as [36]:

EX + f = 0, (23)

which is formally identical to the finite difference equilibrium conditions, Eq. (19).
Also in this case, possible boundary conditions (9) on the free boundary of the dome
mid-surface may be straightforwardly enforced at the free cell boundaries, resulting
in linear conditions in the unknown X .

The static admissibility conditions (11)2,3 on the shell stress tensors are imposed
at the nodes of the mesh and amount to the following requirements:

U i
±X ∈ Kr, (24)

which have analogous interpretation to the ones pertaining to the finite difference
method, Eq. (20), and are detailed in [36].

In summary, conditions (23) and (24) yield a finite volume approximation of the
setH of equilibrated and statically admissible stress states in the dome.
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3.3 Discrete Collapse and Minimum-Thrust Analysis
Problems

Substitution of the finite difference or finite volume approximations of the set H of
equilibrated and statically admissible stress states in the dome within the collapse
analysis problem (14) or the minimum-thrust analysis problem (16) yields their
discrete counterpart. The former discrete problem reads:

max{λ, X} λ,

s.t. EX + f d + λ f l = 0, BX = 0,

U•
±X ∈ Kr, at all nodes, (25)

where the decomposition (13) of the external loads is reflected in the decomposition
of the vector f of nodal forces, B is a suitable matrix enforcing possibile bound-
ary conditions on the free boundary of the dome mid-surface, and the symbol •
respectively stands for (i, j) or i for finite difference or finite volume discretiza-
tion, Eqs. (20) and (24). In a similar fashion, the discrete minimum-thrust analysis
problem is given by:

max
X

− δTWX,

s.t. EX + f = 0, BX = 0,

U•
±X ∈ Kr, at all nodes, (26)

where δ is the prescribed vector collecting the nodal values of the constraint settle-
ments, and W is the operator associated to the bilinear form in Eq. (15). Those in
Eqs. (25) and (26) are convex optimization problems, known in mathematical pro-
gramming as second-order cone programming problems. For their solution standard
and effective optimization softwares are available (e.g., see [31]).

4 Numerical Results

In this section, numerical simulations are presented to assess the computational
performances of the proposed shell-based static limit analysis approach. Pseudo-
static seismic analyses of spherical and catenary domeswith parameterized geometry
and minimum-thrust analyses of spherical domes under differential settlements are
respectively discussed in Sects. 4.1 and 4.2.

All numerical analyses have been performed by means of an in-house
MATLAB® code, and the computations have been done on a single machine with
dual Intel® Xeon® CPU Gold 6226R@ 2.89GHz and 256 GB RAM. The optimiza-
tion problems (25) and (26) have been solved by Mosek® optimization software
(version 10.0) [31].
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Fig. 3 Pseudo-static seismic analysis: a section geometry, with highlighted mid-surface and geo-
metric parameters, and b typical finite volume mesh on half of the mid-surface, with highlighted
problem symmetry for proportional horizontal forces along x-direction, of a spherical dome

4.1 Pseudo-static Seismic Analysis

Pseudo-static seismic analyses fit the format of collapse analysis problems, Eqs. (13)–
(14), by assuming the self-weight loads

(
q0,m0

)
in Eq. (5) as dead loads

(
qd,md

)
,

and suitable distributions of seismic loads as basic live loads
(
q l,ml

)
. Concerning

the latter, horizontal accelerations that are uniformly or linearly distributed along the
height of the domeare considered, in accordance to the Italian norms for constructions
NTC 2018 [42]. As a consequence, the basic live loads boil down to:

q l = W

S

q ı, ml = W

S

m s ı, (27)

where ı and s ı respectively denote the seismic acceleration direction and its pro-
jection on the tangent plane to the dome mid-surface, the choices 
 = 1 or 
 = z
respectively correspond to uniform or linear seismic acceleration distributions, and
W , i.e. the weight of the dome, and S are respectively computed as the integral of q
and of 
q over the dome mid-surface. Taking advantage of the axially-symmetric
geometry of spherical and catenary domes investigated in the following, in all the
simulations it is assumed without loss of generality that the seismic acceleration
direction ı coincides with the direction i . As the descending problem is symmet-
ric with respect to the xz-plane, only half of the domes is modeled with suitable
boundary conditions imposed on the symmetry edges.

Spherical Domes. A spherical dome is considered, characterized by mid-surface
radius R, normalized thickness h/R, and half-embrace angle β (Fig. 3a). For finite
difference simulations, the main and auxiliary staggered rectangular grids are
obtained by subdividing ϕ- and ϑ-domains respectively into m and 2m intervals.
For finite volume simulations, the image of the main rectangular grid onto the dome
mid-surface is adopted for a discretization (Fig. 3b). Evidences from of a conver-
gence analysis not reported here show that, in engineering terms, both methods are
at convergence for a 32 × 64 mesh. Relevant numerical results are henceforth dis-
cussed.
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λ = 0.238 λ = 0.201

(a) (b)

Fig. 4 Pseudo-static seismic analysis: incipient collapse mechanism of a hemispherical dome with
normalized thickness h/R = 0.07 under a uniformly or b linearly distributed pseudo-static seismic
loads along the height (lateral view). Results obtained from finite difference discretization strategy
are shown

The case of hemispherical dome with normalized thickness h/R = 0.07 is first
investigated to explore how its collapse capacity depends on the seismic loads dis-
tribution. By recalling that the normalized minimum thickness of a hemispherical
dome, as estimated under Heyman’s assumptions, is 0.04284 [37], the geometric
safety factor [22] of the dome under investigation results to be 1.634. The pro-
posed finite difference discretization predicts a collapse load multiplier λ = 0.238
[resp., λ = 0.201] for uniformly [resp., linearly] distributed pseudo-static seismic
loads. Correspondingly, the predictions from the proposed finite volume scheme
are λ = 0.241 [resp., λ = 0.203], thus proving a satisfactory agreement between
the two discretization approaches. Figure4 shows the incipient collapse mechanisms
derived by the finite difference discretization in the two cases of uniform and linear
seismic load distributions. It is remarked that those mechanisms are computed by
applying the second-order cone programming duality to the results from the col-
lapse analysis problem (25) (e.g., see [36, 39]). From a qualitative point of view,
both mechanisms exhibit the formation of three curved flexural hinges along parallel
curves in the half of the dome in the positive direction of the horizontal forces. Two
of them, developing at the extrados of the dome, are located at its springing and in the
vicinity of its crown, whereas one develops at the intrados of the dome in the haunch
region. Despite the qualitative similarities of the two mechanisms, the distribution of
seismic loads affects the position of the uppermost curved hinge, which shifts upward
when linearly distributed seismic loads are concerned and is responsible for a slight
reduction in the collapse multiplier compared to the case of uniformly distributed
seismic loads.

A parametric analysis is carried out to systematically explore the seismic capac-
ity of spherical domes in relationship with their geometrical features and the seis-
mic loads distribution. Results are shown in Fig. 5, where the collapse multiplier λ

is plotted versus the normalized thickness h/R of the dome for the half-embrace
angles β = {70◦, 80◦, 90◦}. In addition to the good agreement between predictions
from finite difference and finite volume approaches, it is noticed that the collapse
capacity of spherical domes increases with h/R (in particular, it is vanishing in the
minimum thickness configuration) and decreases with β. The slight reduction of the
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Fig. 5 Pseudo-static seismic analysis: collapse load multiplier λ of spherical domes versus normal-
ized thickness h/R, for selected values of the embrace angle β and considering uniformly or linearly
distributed seismic loads along the height of the dome. Results obtained from finite difference and
finite volume discretization strategies are compared

collapse multiplier for linearly distributed seismic loads compared to uniform ones,
which becomes more pronounced for increasing h/R, is confirmed.

In closing, the present results highlight the computational merit of the proposed
shell-based static limit analysis approach and its versatility to alternative discretiza-
tion strategies. From an applicative viewpoint, when Heyman’s assumptions on
masonry material and in particular the no-sliding hypothesis are satisfied, masonry
domes exhibit a moderate resistance to seismic loads (for the influence of finite shear
strength, see [36, 39]).

Catenary Domes. A catenary dome is considered, characterized by a midspan l,
a rise-to-midspan ratio f/ l, and a normalized thickness h/ l (Fig. 6). The dome
parameterization matches that in Eq. (1) by assuming the following radial distance
and elevation functions:

r(t) = aarcsinh (t/a) , z(t) = ( f + a) − a
√
1 + (t/a)2, (28)

where the parameter a is determined by imposing that the curve (r, z) passes through
the point (l, 0). Finite difference and finite volume discretization analogous to the
ones introduced for spherical domes are adopted (the typical finite volume mesh
is shown in Fig. 6b). Also in this case, results relevant to a 32 × 64 mesh, which
practically guarantees convergence, are discussed.

Initially, a catenary dome characterized by rise-to-midspan ratio f/ l = 1.5 and
normalized thickness h/ l = 0.07 is investigated. As the minimum thickness of cate-
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Fig. 6 Pseudo-static seismic analysis: a section geometry, with highlighted mid-surface and geo-
metric parameters, and b typical finite volume mesh on half of the mid-surface, with highlighted
problem symmetry for proportional horizontal forces along x-direction, of a catenary dome

nary domes is vanishing, its geometric safety factor is theoretically unbounded.
The collapse load multiplier estimated by the present finite difference discretization
is λ = 0.413 [resp., λ = 0.296] for uniformly [resp., linearly] distributed pseudo-
static seismic loads. Correspondingly, the finite volume scheme estimates λ = 0.444
[resp., λ = 0.304]. The incipient collapse mechanisms derived by the finite volume
discretization for uniform and linear seismic load distributions are depicted in Fig. 7.
As for spherical domes, both mechanisms are qualitatively caused by the opening of
three parallel hinges, two at the extrados and one at the intrados, in the half of the
dome in the positive direction of the horizontal forces. In the case of linear seismic
load distribution, those hinges are not as much clearly identified, and relative rota-
tions appear to be diffused between a family of parallel curves. It is also confirmed
that the reduction in collapse capacity due to linearly distributed seismic loads is
related to a higher position of the uppermost parallel hinge.

A parametric analysis on the collapse load multiplier is then performed for cate-
nary domes with parameterized geometry. Results relevant to the finite difference
method are shown in Fig. 8, where the collapse load multiplier λ is plotted as a func-
tion of the normalized thickness h/ l for the values f/ l = {0.75, 1, 1.25, 1.5, 2} of the
rise-to-midspan ratio. As expected, the collapse capacity of catenary domes increases
with h/ l and decreases with f/ l. In addition, it markedly reduces when switching
form uniform to linear seismic loads distributions. Although a completely fair com-
parison is hindered by intrinsic geometric differences, it is noticed that the seismic
resistance of catenary domes largely outperforms the one of spherical domes. On
the one hand, especially when considering small rise-to-midspan ratios, i.e. shallow
geometries, accounting for the influence of finite shear strength may be advisable.
On the other hand, the present evidences extend the well-known result that cate-
nary geometries exhibit excellent structural performances under vertical loads to the
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Fig. 7 Pseudo-static seismic analysis: incipient collapse mechanism of a catenary dome with rise-
to-midspan ratio f/ l = 1.5 and normalized thickness h/ l = 0.07 under a uniformly or b linearly
distributed pseudo-static seismic loads along the height (lateral view). Results obtained from finite
volume discretization strategy are shown
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Fig. 8 Pseudo-static seismic analysis: collapse load multiplier λ of catenary domes versus normal-
ized thickness h/ l, for selected values of the rise-to-midspan ratio f/ l and considering uniformly
or linearly distributed seismic loads along the height of the dome. Results obtained from finite
difference discretization strategy are shown

case of catenary domes under proportional horizontal loads. That is also reflected
in the finite seismic resistance achieved for very small values of the normalized
thickness h/ l.

As a concluding remark, the obtained results confirm the capabilities of the pro-
posed shell-based static limit analysis framework in addressing the pseudo-static
limit analysis of masonry domes with arbitrary axially-symmetric geometry, also
capturing the fine properties of their structural response and quantifying the influ-
ence of the seismic load distribution.
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4.2 Minimum-Thrust Analysis Under Differential
Settlements

A hemispherical dome with normalized thickness h/R = 0.07 is considered, sub-
jected to its self-weight. As shown in Fig. 9a, it is assumed that the dome undergoes
vertical differential settlements at its springing according to the following distribu-
tion:

δ = −
[
1 − cos

(
ϑ

α
π

)]
δk, ϑ ∈ [−α, α] , (29)

in which δ and α respectively control the settlement magnitude and the size
of the springing region where settlements occur. A minimum-thrust analysis is
carried out considering the two values α = {π/6, π/3} of the size parameter. The
settlement mechanisms obtained by the finite difference scheme are depicted in
Fig. 9b, c, showing a shift from a localized to a semi-global mechanism on increas-
ing the size of the springing region experiencing settlements. In particular, the semi-
globalmechanism involves a downward shift of awedge of the dome directly affected
by the vertical settlements, and the formation of an arch-like structure to withstand
the self-weight of the upper portion of the dome. The opening of intrados parallel
hinges in the haunch lateral regions of the dome are also observed.

Such results, obtained through simulations taking few seconds, highlight the
potential of the proposed shell-based static limit analysis approach in performing

x

y

z

R

α

δ

(a) (b)

(c)

Fig. 9 Minimum thrust analysis under differential settlements: a distribution of vertical support
settlements at the springing, and descending settlement mechanism assuming b α = π/6 or c
α = π/3, for a hemispherical dome with normalized thickness h/R = 0.07 (frontal view). Results
obtained from finite difference discretization strategy are shown
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minimum-thrust analysis problems also characterized by non-standard settlement
distributions in a completely automatic fashion and conciliating robustness, accu-
racy and effectiveness.

5 Conclusions

A shell-based static limit analysis approach has been proposed for the structural
assessment of masonry domes subject to complex loading conditions, e.g. account-
ing for the presence of horizontal loads or related to differential settlements at the
supports. In viewof an application of the static theoremof limit analysis, a description
of equilibrated and statically admissible stress states in the dome has been achieved
by resorting to the classical statics of shells and to the shell stress resultants on the
dome mid-surface, namely the normal-force and bending-moment tensors, and the
shear-force vector. Collapse analysis and minimum-thrust analysis problems have
been thus formulated exploiting differential or integral shell equilibrium conditions,
alongside classical Heyman’s assumptions. A finite difference and a finite volume
discretization schemes have been presented to translate that formulation into a com-
putational strategy, resulting in the efficient solution of a second-order programming
problem by standard optimization software. The computational performances of the
proposed framework have been explored in numerical simulations, including para-
metric analysis on the pseudo-static seismic collapse capacity of spherical and cate-
nary domes under uniform or linear distributions of horizontal accelerations, and the
minimum-thrust state of spherical domes under non-standard distributions of sup-
port differential settlements. Those results prove the potentialities of the proposed
framework for an accurate and efficient structural assessment of masonry domes,
including the prediction of collapse multiplier and incipient collapse mechanisms.
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Robust Optimization Applied
to Uncertain Limit Analysis

Jeremy Bleyer and Vincent Leclère

Abstract Limit analysis (LA) is an efficient tool for computing in a direct manner
the ultimate load of a structure made of a perfectly plastic material. The lower bound
static approach amounts to maximize the load factor such that one can find an opti-
mal stress field in equilibriumwith such loading and satisfying strength conditions at
each point in the domain. In the deterministic case, the ultimate load is obtained via
the resolution of a convex optimization problem. When loading or strength proper-
ties are random, the data of such an optimization problem become uncertain. Robust
optimization theory is a branch ofmathematical optimization which aim at finding an
optimal solution of uncertain problems among all possible realizations of the uncer-
tainty within a known uncertainty set. Applying the concepts of robust optimization
to uncertain limit analysis, one may compute a worst-case ultimate load estimate
associated with a given uncertainty set, for instance in the case of uncertain strength
properties or uncertain load cases. This paper discusses how robust limit analysis
problems can be reformulated, either exactly or approximately, into deterministic
problems. In particular, the distinction between static and adjustable robust counter-
parts is introduced. In the former case, uncertain LA problems are replaced with a
deterministic problem with reduced strength properties. In the latter case, additional
optimization variables must be introduced in order to obtain an extended LA problem
in much higher dimension.
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1 Introduction

Limit analysis [13, 22] is a powerful direct method used to estimate the collapse
load of a structure consisting of a perfectly plastic material. The lower and upper
bound approaches of limit analysis are naturally formulated as convex optimization
problems for which given data consist of a known material yield criterion, a known
reference loading and a known geometry [12]. However, in real-world applications,
these parameters may be subject to uncertainty due to factors such as inaccurate
load amplitude or direction, or variations in material strength. As a result, engineers
often aim to design structures that are robust to such uncertainties, meaning that the
collapse load must be safe for all possible combinations of uncertain parameters.

Traditionally, limit analysis has addressed this issue by either assuming a worst-
case scenario for the uncertain parameters or by performing a stochastic analysis in
which random realizations of the parameters are used.While the first approach can be
overly conservative, it can also be challenging to determine the worst-case scenario
in complex loading situations. The second approach, on the other hand, requires
assuming a probability distribution for the parameters and solving a large number
of problems to find the worst-case configuration, which may not be achievable in
practice. General definitions of the probability of collapse have been given in [3,
21], later revisited by [2] using stochastic stress vectors. Various works have also
considered the numerical computation of limit loads in a stochastic setting such as
[23, 28] or [1, 10, 14, 17] for geotechnical applications. For instance, the reader can
refer to [15] for a recent review of slope stability in spatially variable soils.

Alternative approaches have sought to evaluate the robustness or reliability of
structures through non-probabilistic methods. In [19], the authors consider uncertain
limit analysis of truss structures with very similar sources of uncertainties as those
investigated in this work. For this purpose, they used the info-gap decision theory
[4] which is however known to be difficult to apply in practice since robustness
functions are very hard to compute in general. For the very specific case of truss
structures investigated in [19], it can however be computed via the resolution of
a linear programming problem. Similarly, mixed-integer programming approaches
can also be used to compute a worst-case limit load [16] but solving such NP-hard
problems is notoriously difficult and almost impossible for large-scale problems.
Using a chance-constrained programming approach, [25, 26] considered limit anal-
ysis and shakedown theorems under normal or log-normal strength uncertainties for
von Mises plasticity.

In this work, we propose an alternative approach that utilizes the principles of
robust optimization theory [5, 7] to obtain a robust estimate of plastic limit loads
in the presence of uncertainty. This approach allows us to design structures that are
resistant to a wide range of uncertain parameters without relying on conservative
assumptions or computationally intensive analyses. More precisely, uncertain limit
analysis problems are formulated in the case of uncertain strength properties. A def-
inition of the worst-case limit load is given using concepts of robust optimization
theory. Then, in order to obtain computationally tractable formulations, different
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decision rules are introduced, in particular so-called static and affinely adjustable
formulations. Static concepts are then applied to the definition of robust strength
conditions and illustrated on the case of a Mohr-Coulomb criterion with uncertain
cohesion and friction angle. Finally, the resolution of robust limit analysis at the
structure scale is discussed for the case of strength uncertainties and loading uncer-
tainties.

The manuscript is organized as follows: Sect. 2 introduces robust formulations of
limit analysis theory in the case of strength uncertainty; Sect. 3 details the derivation
of tractable robust counterparts of uncertain strength constraints arising in the previ-
ous formulations; Sect. 4 is devoted to the resolution of robust limit analysis problems
with a specific emphasis on the case of loading uncertainties and the corresponding
affinely adjustable robust formulations; finally, Sect. 5 draws some conclusions and
perspectives for future research.

2 Robust Limit Analysis with Strength Uncertainties

2.1 Nominal and Uncertain Limit Analysis Problem

The nominal limit analysis problem amounts to computing the maximum load factor
λN by solving the following convex maximization problem:

λN = max
λ,σ

λ

s.t. ÷σ + λ f r + f f = 0 in Ω

σ · n = λt r + t f on ∂ΩT

σ ∈ G in Ω

(N)

where λ is the load factor, σ the Cauchy stress field in Ω , f r (resp. f f) is the
reference (resp. fixed) body force, t r (resp. t f) the reference (resp. fixed) contact force
prescribed on somepart∂ΩT of the boundarywith unit normal n andG is thematerial
yield/strength criterion which we assume to be a convex set (possibly unbounded)
containing 0. In the above, the first two constraints correspond to the local balance
equation and traction boundary conditions, whereas the last one corresponds to the
strength condition which must be satisfied at all points x ∈ Ω . Note that formulation
(N) corresponds to a static formulation which will result in a lower-bound estimate
of the true collapse load when restricting to a finite-element subspace of statically
admissible stress fields.

We nowconsider the casewhere the loading is certain but thematerialmay possess
uncertain properties such that the strength criterion is now written as G(ζ) where
ζ ∈ R

m is a vector of uncertain parameters. Contrary to probabilistic approaches in
whichζ is a randomvariablewith a givenprobability distribution, robust optimization
approaches describe the uncertainty through the notion of an uncertainty set U ⊆



228 J. Bleyer and V. Leclère

R
m . It is assumed that any possible realization of the uncertainty belongs to the

uncertainty setζ ∈ U without positing any probability distribution. The goal of robust
optimization theory is to find an optimum solution to an uncertain optimization
problem for any possible realization in this uncertainty set. Obviously, the choice of
the uncertainty set is an important modeling step in such approaches and depends on
our knowledge of the origins of the considered uncertainty. If probability distributions
are known, uncertainty sets can be based on the size of the support or the shape of the
probability distribution. For instance, its size can correspond to a certain confidence
level of the probability distribution. It can also be built from available data.

This aspect is outside the scope of the present work, which presents a general
methodology. One key assumption on the uncertainty used to obtain interesting
results is that it is assumed to be convex. Although it can be more general, we
assume, for simplicity, that U is a convex ball of unit radius for some norm i.e.
U = {ζ ∈ R

m s.t. ‖ζ‖ ≤ 1}. In particular, we will note by Up uncertainty sets corre-
sponding to the L p-ball (typically with p = 1, 2 or ∞).

The maximum load factor now becomes uncertain i.e. it depends on the value ζ
of the uncertainty realization:

λ+(ζ) = max
λ,σ

λ

s.t. ÷σ + λ f r + f f = 0
σ · n = λt r + t f

σ ∈ G(ζ)

(1)

The main purpose of robust optimization is to provide worst-case solutions to a
given optimization problem. Our proposed theory of robust limit analysis therefore
aims at evaluating the worst-case limit load among all possible realizations. In the
remaining of this section, we discuss various robust formulations.

2.2 Adjustable Robust Optimization

For a given loading and twodifferent given realizations of the uncertainty, one expects
that the corresponding optimal stress fields will be different depending on the uncer-
tainty realizations. The most natural approach therefore consists in considering the
stress field and the corresponding load factor to be recourse variables, i.e. variables
which depends on ζ. Thus, we are facedwith an adjustable robust counterpart (ARC)
to problem (1) defined as follows:

λARC = min
ζ∈U

λ+(ζ) = min
ζ∈U

max
σ(ζ),λ(ζ)

λ(ζ)

s.t. ÷σ(ζ) + λ(ζ) f r + f f = 0
σ(ζ) · n = λ(ζ)t r + t f

σ(ζ) ∈ G(ζ)

(ARC)
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i.e. we find the largest load factor such that, for each uncertainty realization there
exists an optimal stress field in equilibrium, with the corresponding collapse load
factor, satisfying the strength criterion.

In the following, we also make use of the following equivalent formulation of the
ARC problem [18, 24]:

λARC = max
λ̄

λ̄

s.t. ∀ζ ∈ U , ∃σ,λ s.t. ÷σ + λ f r + f f = 0
σ · n = λt r + t f

σ ∈ G(ζ)

λ̄ ≤ λ

(2)

where uncertainty of the objective function has been transferred to the constraints
with the introduction of a static (non-adjustable) variable λ̄.

2.3 Static Robust Optimization

Unfortunately, adjustable recourse problems are numerically challenging. Indeed,
both formulations involve either a min/max problem (ARC) or an infinite number of
constraints (2). To solve adjustable recourse problem, one typically makes a simpli-
fying assumption on how recourse variables depend on the uncertainty, the so-called
decision rules.

Themost simple of such rules is to assume that recourse variables are in fact static,
i.e. they do not depend on the uncertainty. This yields to a conservative static robust
counterpart (RC) inwhichwe look for a stress fieldσ and a load factorλ, independent
of the exact realization of the uncertainty, which satisfy the strength condition G(ζ)

for all ζ ∈ U . The corresponding problem can be formulated as follows:

λRC = max
λ,σ

λ

s.t. ÷σ + λ f r + f f = 0
σ · n = λt r + t f

σ ∈ G(ζ) ∀ζ ∈ U
(3)

What makes problem (3) a robust optimization problem is the condition ∀ζ ∈ U
in the last constraint. This implies that the constraint σ ∈ G(ζ) must be fulfilled for
any possible value of ζ ∈ U . It is therefore an infinite-dimensional constraint. One
of the main goals of robust optimization theory is to make such a problem tractable
using standard convex optimization algorithms.

For instance, the robust constraint can be reformulated as:

σ ∈ G(ζ) ∀ζ ∈ U ⇔ σ ∈ GRC (4)



230 J. Bleyer and V. Leclère

Fig. 1 Robust strength domain GRC (in blue) obtained as the intersection of various uncertain
realizations G(ζ) (in black) of a nominal domain (in red)

when introducing:
GRC =

⋂

ζ∈U
G(ζ) (5)

the robust counterpart to the uncertain strength criterion. In order for a stress field
to be admissible with respect to any possible realization of the uncertain strength
criterion G(ζ), it has to belong to the intersection of all such domains (see Fig. 1).

Now, problem (3) writes as:

λRC = max
λ,σ

λ

s.t. ÷σ + λ f r + f f = 0
σ · n = λt r + t f

σ ∈ GRC

(RC)

which is now independent of the uncertainty realization. As a result, problem (RC) is
a classical limit analysis problemwith a different strength criterion given by (5). This
makes problem (RC) very appealing provided that a simple expression for GRC can
be found. It is however very hard to determine a simple expression for the infinite-
dimensional set intersection appearing in (5). Exact or approximate reformulation of
strength criteria robust counterparts are discussed in Sect. 3.
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2.4 Affinely Adjustable Robust Optimization

Unfortunately, if (RC) problems are numerically tractable, the obtained approxi-
mation might be unreasonably conservative [8]. A middle ground is the affinely
adjustable robust counterpart (AARC), which consists in looking for adjustable
variables σ(ζ) and λ(ζ) that are affine functions of the uncertain variable, the so-
called affine decision rule [6]:

σ(ζ) = σ0 +
m∑

j=1

σ jζ j (6a)

λ(ζ) = λ0 +
m∑

j=1

λ jζ j (6b)

where the σi (resp. λi ) represent 1 + m different stress fields (load factor variables)
which are now static optimization variables. Inserting the affine decision rules (6a)–
(6b) into (ARC), the corresponding AARC reads:

λAARC = max
σi ,λi

min
ζ∈U

λ0 +
m∑

j=1

λ jζ j

s.t. ÷
⎛

⎝σ0 +
m∑

j=1

σ jζ j

⎞

⎠ +
⎛

⎝λ0 +
m∑

j=1

λ jζ j

⎞

⎠ f r + f f = 0

⎛

⎝σ0 +
m∑

j=1

σ jζ j

⎞

⎠ · n =
⎛

⎝λ0 +
m∑

j=1

λ jζ j

⎞

⎠ t r + t f

⎛

⎝σ0 +
m∑

j=1

σ jζ j

⎞

⎠ ∈ G(ζ)

(7)

which can also be reformulated as follows:

λAARC = max
λ̄,σi ,λi

λ̄

s.t. ÷(σ j ) + λ j f
r + f f = 0 ∀ j = 0, . . . ,m

σ j · n = λ j t r + t f ∀ j = 0, . . . ,m⎛

⎝σ0 +
m∑

j=1

σ jζ j

⎞

⎠ ∈ G(ζ) ∀ζ ∈ U

λ̄ ≤ λ0 +
m∑

j=1

λ jζ j ∀ζ ∈ U

(AARC)
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in which we removed the uncertainty from the objective function and replaced the
minimization over ζ with robust constraints. Note that equality constraints depending
on ζ have been re-expressed by identifying the corresponding terms of the expansion
in terms of ζi since U is full dimensional.

2.5 Comparison Between the Different Approaches

Summarizing, (RC) is the most conservative formulation yielding the smallest limit
load. (AARC) is more flexible since it considers additional static variables σ j ,λ j

for j = 1, . . . ,m and reduces to (RC) if we fix all σ j = 0. As mentioned, (ARC) is
less conservative than (AARC) since we allow for more general decision rules but
is generally untractable. Finally, all of these formulations guard against all possible
realizations of the uncertainty such that we have the following ordering:

λRC ≤ λAARC ≤ λARC ≤ λ+(ζ) ∀ζ ∈ U (8)

In the remainder of this work, the focus is put on the tractability of the different
formulations. For (RC) to be tractable, the characterization of the safe domain GRC

must be tractable. Section3 discusses conditions for which exact or approximate
tractable formulations can be obtained. Tractable formulations of (AARC) are then
discussed in Sect. 4.

3 Robust Strength Conditions

3.1 Uncertain Strength Conditions and a Tractable
Approximation

Tractability of robust formulations such as (AARC) is essentially driven by how the
uncertain strength criterion G depends on ζ. Unfortunately, we are not aware of any
general results. However, in most applications, such uncertain constraints can be
written in the following form:

g(σ + Σζ) ≤ 1 − bTζ, ∀ζ ∈ U (9)

with σ ∈ R
d ,Σ ∈ R

d×m , d being the dimension of the stress space, b ∈ R
m and g

is a convex homogeneous function.

Exact reformulations of such a constraint are possible only ifG orU is polyhedral.
In the general case, one can benefit from the following safe approximation due to
[9]: the robust constraint (9) can be safely approximated as follows:



Robust Optimization Applied to Uncertain Limit Analysis 233

g(σ) + ‖s‖∗ ≤ 1 (10)

where ‖ · ‖∗ is the dual norm of ‖ · ‖ defined as:

‖z‖∗ = sup
‖x‖≤1

zTx (11)

and where for j = 1, . . . ,m:

s j = max{g(Σ j ) + b j , g(−Σ j ) − b j } (12)

with Σ j denoting the j-th column of Σ .

3.2 Illustrative Application on a Robust Mohr-Coulomb
Criterion

Let us consider the case of a Mohr-Coulomb strength criterion where the cohesion
c and the friction angle φ are uncertain. A negative correlation is often encountered
between both parameters, i.e. soils with low cohesion tend to exhibit higher friction
angles than with higher cohesion.We denote by ρ the correlation coefficient between
c andφ, with typical values ranging from−0.5 to−0.9 [27]. Let us therefore consider
that k = (c,φ) is given by:

k(ζ) = k0 + Kζ, for ζ ∈ U (13)

where k0 corresponds to the nominal values and where the “correlation” matrix K
is such that:

K KT =
[

Δc2 ρΔcΔφ
ρΔcΔφ Δφ2

]
i.e. K =

[
Δc 0
ρΔφ Δφ

√
1 − ρ2

]
(14)

where Δc,Δφ are the parameters typical variations and are assumed to be positive.
Note that if such variationswere taken as the standard deviations of the corresponding
parameters, K KT would be the corresponding covariance matrix.

Figure2a illustrates the corresponding uncertainty sets obtained in the case c = 1
MPa,φ0 = 30◦,Δc = 150 kPa,Δφ = 5◦, ρ = 0 and for various choices for the norm
involved in the definition of U , resulting in a corresponding L1 (diamond shape), L2

(elliptic shape) or L∞ (rectangular shape) ball in physical space. Figure2b shows the
same uncertainty sets in the case of a negative correlation ρ = −0.5 which results in
similar polyhedral or elliptic sets skewed along the negative diagonal which encodes
the negative correlation coefficient. Let us point out that the previous choices for
the uncertainty set result in simple convex set but more complex sets could also
be considered, based for instance on available data regarding cohesion and friction
angle pairs.
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Fig. 2 Uncertainty sets of cohesion and friction angles for c = 1 MPa, φ0 = 30◦, Δc = 150 kPa,
Δφ = 5◦ for various sets Up corresponding to a L p unit ball

The robust counterpart of the Coulomb criterion therefore reads:

σ1 − σ3 + (σ1 + σ3) sin φ(ζ) − 2c(ζ) cosφ(ζ) ≤ 0 ∀ζ ∈ U (15)

where σ1 (resp. σ3) is the maximum (resp. minimum) principal stress.

Assuming that the variationsΔc,Δφ are small, linearization around k0 results in:

σ1 − σ3 + (σ1 + σ3)(sin φ0 + cos(φ0)(K21ζ1 + K22ζ2))

− 2(c0 + K11ζ1) cosφ0

+ 2c0 sin φ0(K21ζ1 + K22ζ2) ≤ 0 ∀ζ ∈ U (16)

with Ki j being the components of K defined in (14).
This yields the following robust counterpart:

σ1 − σ3 + (σ1 + σ3) sin φ0 − 2c0 cosφ0 + ‖s‖∗ ≤ 0 (17)

where:

s =
(| ((σ1 + σ3) cosφ0 + 2c0 sin φ0) ρΔφ − 2Δc cosφ0|

|(σ1 + σ3) cos(φ0) + 2c0 sin φ0|
√
1 − ρ2Δφ

)
(18)

Let us now investigate the simple case of no cross-correlation ρ = 0 with U =
{(ζ1, ζ2) s.t. ‖ζ‖∞ ≤ 1}. The previous expression reduces to:

s =
(

2Δc cosφ0

((σ1 + σ3) cos(φ0) + 2c0 sin φ0) Δφ

)
(19)

‖s‖∗ = ‖s‖1 = 2Δc cosφ0 + |(σ1 + σ3) cos(φ0) + 2c0 sin φ0| Δφ (20)
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so that the robust Mohr-Coulomb criterion (17) reduces to:

σ1 − σ3 + (σ1 + σ3) sin φ0

+ |(σ1 + σ3) cos(φ0) + 2c0 sin φ0| Δφ ≤ 2(c0 − Δc) cosφ0 (21)

which can be further expressed as follows:

{
σ1 − σ3 + (σ1 + σ3)(sin φ0 + cos(φ0)Δφ) ≤ 2cmin cosφ0 − 2c0 sin φ0Δφ

σ1 − σ3 + (σ1 + σ3)(sin φ0 − cos(φ0)Δφ) ≤ 2cmin cosφ0 + 2c0 sin φ0Δφ

(22)
where cmin = c0 − Δc is the worst-case cohesion. Introducing φmin = φ0 − Δφ
the worst-case friction angle and φmax = φ0 + Δφ the best-case friction angle
and using the fact that sin(φmax/min) ≈ sin φ0 ± cos(φ0)Δφ and cos(φmax/min) ≈
cosφ0 ∓ sin(φ0)Δφ, the previous criterion is, in fact, a first-order approximation
(in terms of Δc,Δφ) to the following multi-surface criterion:

{
σ1 − σ3 + (σ1 + σ3) sin φmax ≤ 2cmin cos(φmax)

σ1 − σ3 + (σ1 + σ3) sin φmin ≤ 2cmin cos(φmin)
(23)

i.e. the obtained robust counterpart, for this specific case, (approximately) corre-
sponds to the intersection of two Coulomb criteria with the worst-case cohesion and
either the best or the worst-case friction angle. An illustration of such a result is given
in Fig. 3. The yield surface corresponding to random realizations of c(ζ) and φ(ζ)

are also represented. One can indeed see that the obtained robust strength criterion
forms a tight lower bound to the various realizations and is made of two sets of lines
approximately characterized by the minimum and maximum friction angle φmin and
φmax.

4 Solving Robust Limit Analysis Problems

4.1 Strength Uncertainty with Static Formulation

As discussed before, for a limit analysis problem with uncertain strength conditions,
we can replace the original uncertain strength criterion by its robust counterpart
when using a static decision rule for the stress field. This approximation is obviously
conservative and can provide reasonable estimates of the robust limit load only when
the uncertainty if of small amplitude so that the optimal stress field does not heavily
depend on the uncertainty realization, making static decision rules relevant.

In this case, the resulting robust limit analysis problem is equivalent to a classical
deterministic limit analysis problem in which the nominal strength criterion has been
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Fig. 3 Robust and uncertain
Mohr-Coulomb criterion:
c0 = 1 MPa, φ0 = 30◦,
Δc = 150 kPa, Δφ = 5◦.
Black dashed lines denote
the nominal surface, thin
coloured lines denote
random realizations of the
uncertain criterion. The
robust domain is represented
in gray and delimited by
thick black lines

replaced by a smaller robust strength criterion. For a concrete implementation, the
latter has to be formulated using tractable convex constraints.

As an illustration, we consider a slope stability problem for a cohesive-frictional
soil with uncertain values for the cohesion and friction angle (c = 1 ± 0.1 MPa and
φ = (30 ± 10)◦) for a pseudo-static earthquake loading f = (0.2g,−g). The cor-
responding load factor is interpreted here as the slope safety factor which should
be larger than 1 to guarantee stability. The problem numerical resolution relies on
a general-purpose domain-specific language (DSL), called fenics_optim, dedi-
cated to automating the formulation and resolution of convex variational problems
in a finite-element setting. The package is implemented as an add-on to the FEn-
iCS Python interface and enables to easily formulate convex optimization problems
using only a few lines of code and to discretize them in a very simple manner using
various finite-element interpolation spaces. Their numerical resolution is performed
efficiently using Mosek as the underlying conic programming solver [20]. More
details regarding the package can be found in [11, 12] for its specific usage in the
context of limit analysis.

Figure4 represents the empirical distribution of the slope safety factor obtained
for 200 random realizations of the material parameters. The nominal safety factor is
slightly larger than 3 whereas the robust estimate is slightly less than 2 and indeed
corresponds to the lower bound of the empirical distribution. This figure illustrates
the advantage of using a robust formulation since, instead of running 200 LA com-
putations, one is able to obtain an accurate estimate of the left part of the empirical
distribution tail with a single computation. In this present case, only two uncertain
parameters have been considered but the approach can be extended to a larger number
of parameters. A typical example would be the modeling of soil spatial variability
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Fig. 4 Empirical distribution of the slope stability safety factor. The vertical black and red lines
correspond to a single deterministic limit analysis with either nominal strength properties or using
the corresponding robust strength condition

using random fields for instance. Besides, it can also be noted that the obtained esti-
mate is not too conservative since a non-negligible number of uncertainty realizations
are associated with a safety factor close to this robust estimate. Finally, it has to be
pointed out that the variability on the friction angle induces a large variability on
the obtained safety factor, explaining the difference between a nominal factor of 3
and a robust estimate around 2. This observation is further confirmed by the shape
of the collapse mechanisms represented in Fig. 5. In the robust case, the collapse
mechanism involves a much larger volume of soil than the nominal case since the
most critical scenario corresponds to a smaller friction angle. Estimating the amount
of soil mass mobilized during slope failure is an important point when assessing the

Fig. 5 Collapse mechanism and concentrated dissipation in slip lines for the nominal and robust
case
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stability of a slope and its potential of damage in case of failure. Again, one can
see that robust limit analysis computations can also be used to obtain a worst-case
estimate of such a mobilized soil mass when accounting for uncertainty on the soil
material parameters.

4.2 Loading Uncertainties

Similarly to [16, 19], we assume here that the fixed distributed and surface loadings
f f, t f are uncertain andvary, around anominal value, inside a convex set. In particular,
we consider that the reference loadings f r, t r are deterministic. Assuming them to
be uncertain adds another layer of difficulty due to the fact that the loading direction
along which one has to optimize depends on the uncertainty realization. This specific
case will be left for a future contribution.

Without loss of generality, we characterize the uncertain variation of the fixed
loadings as follows:

f f(ζ) = f f0 +
m∑

j=1

f fjζ j = f f0 + Ffζ (24a)

t f(ζ) = t f0 +
m∑

j=1

t fjζ j = t f0 + T fζ (24b)

where we introduced the matrices Ff = [( f fj ) j=1,...,m] and T f = [(t fj ) j=1,...,m] and
where ζ ∈ U with U a given convex uncertainty set. The corresponding uncertain
limit analysis problem therefore reads:

λ+(ζ) = max
λ,σ

λ

s.t. ÷σ + λ f r + f f0 + Ffζ = 0
σ · n = λt r + t f0 + T fζ
σ ∈ G

(25)

4.3 Robust Counterpart

Clearly, for this load uncertainty case, the use of static decision rules is doomed to
fail since one cannot expect finding, except in very specific cases, a single stress field
which is statically admissible with any realization of the uncertain loading (24). One
must therefore resort to an adjustable robust optimization which, similarly to (2),
reads:
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λARC = max
λ̄

λ̄

s.t. ∀ζ ∈ U , ∃σ,λ s.t. ÷σ + λ f r + f f0 + Ffζ = 0
σ · n = λt r + t f0 + T fζ
σ ∈ G
λ̄ ≤ λ

(26)

Again, in order to obtain a safe and tractable approximation to the above robust
formulation, we resort to the use of the affine decision rules (6) and obtain the
following AARC:

λAARC = max
σi ,λi

min
ζ∈U

λ0 +
m∑

j=1

λ jζ j

s.t. ÷
⎛

⎝σ0 +
m∑

j=1

σ jζ j

⎞

⎠ +
⎛

⎝λ0 +
m∑

j=1

λ jζ j

⎞

⎠ f r + f f0 + Ffζ = 0

⎛

⎝σ0 +
m∑

j=1

σ jζ j

⎞

⎠ · n =
⎛

⎝λ0 +
m∑

j=1

λ jζ j

⎞

⎠ t r + t f0 + T fζ

⎛

⎝σ0 +
m∑

j=1

σ jζ j

⎞

⎠ ∈ G

(27)
which can be further formulated as follows:

λAARC = max
λ̄,σi ,λi

λ̄

s.t. ÷(σi ) + λi f
r + f fi = 0 ∀i = 0, . . . ,m

σi · n = λi t r + t fi ∀i = 0, . . . ,m⎛

⎝σ0 +
m∑

j=1

σ jζ j

⎞

⎠ ∈ G ∀ζ ∈ U

λ̄ ≤ λ0 +
m∑

j=1

λ jζ j ∀ζ ∈ U

(28)

Clearly, (28) bears striking similarities with (AARC) in the sense that we look
for 1 + m stress fields statically admissible with a given loading (here we have an
additional fixed loading for each j = 1, . . . ,m compared to (AARC)). In particular,
uncertainty has been removed from the equilibrium equations whereas only the last
two constraints are robust ones which must be reformulated. In particular, the robust
strength constraint can be reformulated, either exactly or approximately, using the
results of Sect. 3. Finally, the last constraint can be reformulated as follows using
the dual norm ‖ · ‖∗ to the norm involved in the definition of the uncertainty set U .
Indeed, introducing the vector Λ = (λ j ) j=1,...,m , we can write:
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λ̄ ≤ λ0 + ΛTζ ∀ζ ∈ U
⇔ λ̄ + max

ζ∈U
{−ΛTζ} ≤ λ0 (29)

⇔ λ̄ + ‖−Λ‖∗ ≤ λ0

which results in a tractable convex constraint for classical uncertainty sets.
In conclusion, we see that the robust reformulation of (28) is close to a classi-

cal limit analysis problem except that the number of stress fields and load factor is
now 1 + m and that the strength criterion will couple all stress variables in a single
constraint which would have been exactly or approximately reformulated to guaran-
tee the robust constraint σ0 + ∑m

j=1 σ jζ j ∈ G, ∀ζ ∈ U . As a result, the resulting
robust problem will still be convex and representable using conic constraints. It will
however be much larger in size than a deterministic problem.

5 Conclusions

In this work, we have proposed an extension of limit analysis theory to an uncertain
setting using the robust optimization (RO) framework. Since limit analysis problems
can be formulated as convex optimization programs, we can naturally apply robust
optimization concepts when considering uncertain data. We covered two different
sources of uncertainty, namely strength and loading uncertainty.

An important aspect of RO is related to the use of static or adjustable optimization
variables. In the present LA case, it amounts to deciding whether we consider the
stress field and load multiplier that we optimize for to be independent or depen-
dent on the uncertain parameters. The main feature of RO is to propose tractable
reformulations of uncertain constraints as standard deterministic constraints, possi-
bly involving a much larger number of variables. Various results have been obtained
for the two cases of static and adjustable formulations.

First, the use of static variables results in the static robust counterpart (RC) which
deserves the following comments:

• (RC) is a standard deterministic LA problemwhere the uncertain strength criterion
is replaced with a safe estimate called the robust strength domain GRC.

• The robust strength domain is the smallest possible strength domain corresponding
to all uncertainty realizations.

• Obtaining an explicit expression for the robust domain depends on how constraints
depend on the uncertain parameters.

• Tractable approximations of the robust domain have been provided and illustrated
on the case of a Mohr-Coulomb example.

• The resulting LA problem can be solved using standard tools and the resulting
load estimate is a conservative safe approximation for all realization.

Clearly, this is a very conservative approach. In particular, finding such a stress field
is not always possible. Our experience suggests that static formulations can be used
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only when considering strength uncertainty and in the case where this uncertainty
is of small amplitude. Intuitively, this corresponds to the fact that the collapse stress
field is only mildly perturbed by the realization of the uncertainty.

Second, in the general case where adjustable formulations are needed, simple
decision rules must be chosen for the robust problem to be tractable. In particular,
the case of loading uncertainty can only be tackled using adjustable formulations.
More precisely:

• Affine decision rules assume an affine dependence of the load factor and stress
field with respect to the uncertain parameters.

• Robust strength constraints take the form (9) which can be reformulated either
exactly or approximately.

• The corresponding affinely adjustable problem can be reformulated to yield the
deterministic optimization problem (AARC).

• The latter involves a much larger number of optimization variables compared to
the nominal limit analysis problem. This number depends on the dimension of the
uncertainty space.

Further research will focus on the numerical implementation of the proposed
formulations in order to assess their efficiency on more involved examples. In this
respect, specific strategies should probably be investigated in order to reduce the com-
putational cost of the corresponding large-scale optimization problems, especially
when considering AARC formulations. Analyzing such more advanced examples
would therefore shed light on the necessity, or not, of considering more complex
decision rules than affine rules such as piecewise-linear or nonlinear decision rules.
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Advances of the RSDM-S: Robustness
and Fast Convergence Issues

Ioannis A. Kapogiannis and Konstantinos V. Spiliopoulos

Abstract The Residual Stress Decomposition Method (RSDM) is an iterative
numerical procedure which has been developed to estimate, in a direct way, the
kind of asymptotic stress states under cyclic loading of inelastic structures. The
method was the basis to formulate another numerical procedure, which was named
RSDM-S, to establish safety margins for elastic shakedown under mechanical and/or
thermal loads. The method exploits the expected cyclic nature of the residual stresses
of the asymptotic cycle state. Starting from a load factor high above shakedown an
iterative procedure shrinks the loading domain until the conditions of the limit cycle,
which marks the shakedown state, are met. The procedure consists of two loops
an external incremental that reduces the load factor and an internal iterative loop
that establishes a cyclic state for the current load factor. The current work refers to
advancements of themethod in terms of robustness and fast convergence. It discusses
the efficiency of the numerical scheme used which is proved to have a continuous
descent towards the shakedown factor with superlinear convergence. Examples of
application of structures undergoing various kinds of cyclic actions like, mechan-
ical or thermomechanical loads or cyclic imposed displacements are presented, and
shakedown domains are constructed.

1 Introduction

The last decades, structures and structural components are designed to operate beyond
the elastic limit in favor of material savings. Especially in case of cyclic thermome-
chanical loadings the allowable stresses may be greater than the yield limit. The
amplitude of the cyclic load will determine the magnitude of the inelastic strains,
whichwill be responsible either for the failure due to alternating plastic straining (low
cycle fatigue) and/or incremental plastic straining (ratcheting), or for safety, through
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elastic shakedown. Thus, the post-elastic response of structures due to cyclic thermal
and mechanical loads is always a major concern for the designer engineer.

Apart from the thermomechanical loads, support excitations due to repeated acci-
dental loads, such as the earthquakes, may establish a pattern of cyclic imposed
displacements to the structures.

The induced stresses, due to seismic actions, undergo many complete reversals in
a small period like the duration of an earthquake. Designing such structures to behave
elastically during earthquakes, without damage, may render the project economically
unviable. Consequently, it may be necessary for the structure to suffer some damage
and therefore dissipate energy input, during the earthquake. Thus, the same question
arises whether after a sequence of imposed cyclic displacements, the post-elastic
response will lead to a long-term stabilization of the damage, with an effect to extend
the life cycle of a structure.

Previous years, in order to study the post-elastic response of a structure, one
should perform step-by-step inelastic analysis based on a specific time-history. In
this way one could be sure that, the structure would end up to a safe or unsafe
asymptotic state. Besides the fact that this approach is time consuming and may
have convergence problems, no general answer of safety will be given except for the
specific load history. However, a class of numerical methods, called Direct Methods
exists, (a most recent compilation of these methods may be found in [13], which
may provide safety margins for any load combinations. These methods have a much
lower computational cost as they bypass the transient deformation stages and search
the asymptotic states, in a direct way, right from the start of the calculations.

Most direct methods deal with the shakedown problem as being a constrained
optimization problem, described by the theorems of [11] and [6]. The structure
is discretized with many finite elements (FE) and large-scale nonlinear mathemat-
ical programming (MP) problems must be solved. Towards this direction, general-
purpose efficient optimization algorithms, like the interior point method (IPM) or
conic programming, are often employed, as part of the method. These may be
combined with other algorithms to assess the behavior of materials that require a
high degree of intensive computational burden (e.g. [3]).

A strain driven algorithm that converts theMP problem of the lower bound shake-
down theorem to an equivalent incremental-iterative problem of fictitious elasto-
plastic steps has been proposed and recently applied to the analysis of fiber-based
3D framed structures [10]

The linear matching method (LMM) is an iterative method that produces a
sequence of linear elastic solutions by modifying the elastic moduli of the various
parts of the structure so that the stress equals the yield stress. Thus, in this respect
each time it matches a linear problem to a plasticity problem. The method was devel-
oped in the context of shakedown [14]. The method was expanded and employed,
since then, to many applications in problems of structural mechanics, e.g. to find
ratcheting limits [2, 8], and more recently in shakedown with hardening and thermal
effects [9]

A simplified Direct Method originally conceived for creep problems [15, 16]
was further developed and applied to account for plastic behavior [18]. The metod
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was called Residual Stress Decomposition method (RSDM) [19]. It is an iterative
stress driven direct methodwhich can predict the final asymptotic state of a cyclically
loaded structure (either shakedown, or alternating plasticity or incremental collapse).
In this asymptotic stress state, the residual stresses have cyclic behavior, thus they
can be decomposed in Fourier series whose coefficients may be calculated in an
iterative manner by satisfying compatibility and equilibrium at time points inside the
cycle. The method was formulated to calculate the shakedown limit (RSDM-S) of
structures subjected to cyclic thermomechanical loads and multidimensional loading
domains [20–22].

An upgrade of the RSDM-S appeared quite recently [17]. The upgrade was both
in the robustness and the numerical efficiency. The robustness is guaranteed as the
sequence of the iterative steps is theoretically proved to be monotonically decreasing
towards the final solution. A numerical scheme that possesses a superlinear conver-
gence makes it a very fast procedure. The method was also formulated to cater for
cyclic imposed displacements.

In the present work, these issues of robustness and convergence are further
discussed and analyzed. The efficiency of the approach is further demonstrated
through new applications to structures under mechanical, thermomechanical, or
imposed displacements, simulating earthquake loading.

2 Theoretical Background

Let a body of volume V with surface S be subjected to mechanical load P, applied
on a part of the surface Sf, prescribed displacements u, applied on another part Spr
and fixed displacements on another part Su (Fig. 1).

The mechanical load and prescribed displacements are applied periodically with
period T. One may assume that the minimum values of the cyclic load or prescribed

V

Fig. 1 Body subjected to forces and imposed displacements. Reproduced from [17]. Copyright ©
Elsevier Masson SAS. All rights reserved
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(a)                                                               (b)

t
T

Fig. 2 Independent cyclic loading (mechanical (and/or) imposed displacement) variation over one
time period a in time domain, b in loading domain. Reproduced from [17]. Copyright © Elsevier
Masson SAS. All rights reserved

displacements are zero and the starred quantities represent the maximum values
(Fig. 2). It has been proved [7] that if a structure shakes down under a cyclic loading
program containing the vertices of the loading domain, then it will shake down for
any loading path contained in this domain. Such a cyclic program may be seen in
Fig. 2, in either the time domain (a), or the loading domain (b).

This domain may be isotropically varied if multiplied with a load factor γ. Thus,
the idea behind RSDM-S is to find the largest loading domain for which shakedown
occurs, by moving from a large value of γ to smaller ones.

In response to the cyclic loading program, the stresses in the structure at a cycle
point τ = t/T (where this point is either a point in the time domain or a vertex in the
loading domain) are decomposed into an elastic part σel , in response to the applied
external cyclic actions, and a residual stress part ρ. In the search for the shakedown
factor γ, the elastic stresses are themselves multiplied by this factor. Thus, the total
stress vector can now be written:

σ(τ ) = γσel(τ ) + ρ(τ ) (1)

The elastic response of the loads and the prescribeddisplacementsmaybeobtained
by separating the two actions and superposing their effects [17]. Two different finite
element (FE) problems are solvedwhich provide the corresponding to the two actions
elastic strain rates ε̇elL , ε̇

el
pr ; on the other hand, plasticity introduces residual strains.

Thus, one may write for the total strain rate ε̇:

ε̇ = ε̇elL + ε̇elpr + ε̇elr + ε̇ pl (2)

Where ε̇ pl are the plastic strains and ε̇elr is the residual elastic straining. Since both
terms ε̇ and ε̇elL + ε̇elpr in (2) are kinematically admissible, the sum:



Advances of the RSDM-S: Robustness and Fast Convergence Issues 247

ε̇r = ε̇elr + ε̇ pl (3)

is also kinematically admissible. In a FE environment this may be expressed as
ε̇r = Bṙr , where B is the well-known FE compatibility matrix between strains and
FE nodal displacements.

The elastic term ε̇elr is related to the residual stress via the elastic material matrix
D. Thus, one may write:

ε̇r = D−1ρ̇ + ε̇ pl → ρ̇ = Dε̇r − Dε̇ pl (4)

Expressing residual strain compatibility and equilibrium of residual stresses with
zero loads, one may write, from the principle of virtual work (PVW):

∫

V

BT · ρ̇dV = 0

→
∫

V

(BTDB)dV ṙr =
∫

V

BTDε̇
pl
dV → KPrr =

∫

V

BTDε̇ pldV (5)

with K being the standard stiffness matrix.
The cyclic nature of the residual stresses at the asymptotic cycle (e.g., [4]) allows

their decomposition in Fourier series.

ρ(τ ) = 1

2
a0 +

n∑
k=1

{
cos(2kπτ) · ak + sin(2kπτ) · bk

}
(6)

with the values of the Fourier coefficients being given, [18–20].

ak = − 1

kπ

1∫

0

{[
ρ̇(τ )

]
(sin 2kπτ)

}
dτ (7)

bk = 1

kπ

1∫

0

{[
ρ̇(τ )

]
(cos 2kπτ)

}
dτ (8)

The basis of the RSDM-S are the Eqs. (6)–(8). Very good accuracy was attained
by keeping just three terms of the series, i.e. n = 3.

An upgraded numerical scheme of the RSDM-S has been very recently presented
[17]. It consists of an inner and an outer loop. The outer incremental type loop
updates the shakedown factor, which is then used in the inner loop to iteratively
update the Fourier coefficients found by performing time integration over the values
of ρ̇ evaluated (Eqs. (4) and (5)) at the vertices of the loading domain. The iterations of
the internal loop stop when a cyclic solution has been established. This is manifested
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when two successive values of ϕ, defined by (9), coincide within a certain accuracy:

ϕ =
n∑

k=1

∥∥ak
∥∥ +

n∑
k=1

∥∥bk
∥∥ (9)

If we denote by γ (μ), the value of the current shakedown factor inside an outer
iteration μ, the following formula is used to update it for the first two iterations:

γ (μ+1) = γ (μ) − ϕ(γ (μ)) (10)

whereas for the next outer iterations the following formula is used:

γ (μ+1) = γ (μ) − γ (μ) − γ (μ−1)

ϕ
(
γ (μ)

) − ϕ
(
γ (μ−1)

) · ϕ
(
γ (μ)

)
(11)

The proposed relationship is a regular falsi procedure for finding the zero of the
function ϕ(γ ), defined at the points of the convergence of the inner loops. Thus, the
convergence of the outer loops is superlinear (e.g., [5]).

Given that γ (μ) > γ (μ+1), for the corresponding values of ϕ, it will hold
that ϕ(γ (μ)) > ϕ(γ (μ+1)). This is an important assumption to prove that ϕ is a
monotonously descending function, as assumed in Fig. 3.

The proof of themonotonicitymay be found in [17] and is illustrated in the present
work (Fig. 4). It is related to the fact that because of (7) and (8) the norms of the
vectors of the coefficients of the Fourier series are directly related to the norms of
the residual stress rate vectors which in turn are directly related to the plastic strain
vector (Eq. (4)). The value of ϕ, on the other hand is proportional to the length of
this vector (Eq. 9), which, since it is measured through the radial return rule, is the
distance from the yield surface when the total stress exceeds it. Thus, the proof is
obvious, from Fig. 4, where one may see the total stress vectors OA and OB at the

Fig. 3 Convergent sequence
of solutions. Reproduced
from [17]. Copyright ©
Elsevier Masson SAS. All
rights reserved
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Fig. 4 Proof of the descending sequence of ϕ(γ )

end of iteration μ and at the start of iteration μ + 1, respectively, with both points A
and B located on the elastic stress vector σel .

Initial starting point of the descending algorithm may be considered as three or
four times the maximum elastic limit which is located at one of the vertices of the
loading domain.

3 Examples of Application

In the present work, the updated RSDM-S is used to evaluate load and displace-
ment shakedown limits in new examples. The results are validated either by
performing step-by-step analyses or by comparing with the corresponding results of
the bibliography. All examples highlight the speed and the accuracy of the RSDM-S.

3.1 The Simple Frame

The first example is the simple sway frame of Fig. 5a, as introduced in [12].
Two distributed loads (P1 and P2) act independently, varying from the value “0” to

themaximumvalues P∗
1 and P∗

2 , as shown in Fig. 5b. Themechanical properties were
E = 20,000 kN/cm2, ν =0.3, σy = 10 kN/cm2. The RSDM-S was run considering
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(a)                                                         (b)

P1

P2

230cm

23
0c
m

10cm
40cm

10cm

40cm

A B

C

Fig. 5 a Geometry and loads, b Loading cycle

five time points of the loading cycle (the vertices of the loading domain). 350 brick
elements were used for the discretization (Fig. 6).

Different shakedown limits were calculated, considering different ratios of P1/P2.
The shakedown domain is presented in Fig. 7.

In all the cases the convergence appeared quite smooth. In Fig. 8 one may see
such a convergence at point A, which was accomplished in twelve iterations.

It is pointed out that, the results are in good agreement with those presented [12].

(a)                                                                 (b)

Fig. 6. 2D view and 3D view of the frame using 350 brick elements. Reproduced from [17].
Copyright © Elsevier Masson SAS. All rights reserved
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Fig. 7 Shakedown domain
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3.2 The Slab with the Hole

The numerical efficiency of the upgraded RSDM-S is further demonstrated also in
the case of thermomechanical loading. The benchmark problem of the square plate
with a circular hole in its center is selected. The structure is subjected to both thermal
and distributedmechanical loads (Fig. 9a). Themechanical load is applied at the edge
of the slab and is uniformly distributed. The temperature ranges from the inner to
the outer edge according to the formulae:

θ(r, t) = θ0 + 	θ ∗ ln
(
2.5D
r

)
ln(5)

(12)



252 I. A. Kapogiannis and K. V. Spiliopoulos

(a)

(b)

Fig. 9 a Geometry, b loading Discretization of the slab

Due to the symmetry of the geometry and the loading, only one quarter of the
plate is discretized (Fig. 9b). Let D be the diameter of the circle, L the length of
the slab and d the thickness, then D/L = 0.2,d/L = 0.05. In the present work,
L is equal to 20 cm. The boundary conditions along the X-axis and the Y-axis are
considered rolled. Results for the cyclic thermal load θ and the cyclic load P varying
proportionally from 0 to θ∗ and P∗ will be investigated. The material properties are
E= 180 GPa, v= 0.3 and σy = 200MPa. The model consists of 220 brick elements.

The RSDM-S converged in 15 external iterations. The corresponding shakedown
domain for different ratios of θ∗/P∗ is presented in Fig. 10.
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Fig. 10 Shakedown domain
for the holed slab. The value
σt corresponds to the
maximum thermal stress
developed in the structure
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3.3 90o Pipe Elbow

Pipe elbows are met in almost all types of piping systems. Being parts of machinery
configurations, pipelines, and industrial facilities, they are often subjected to earth-
quake loads. Thus, these components usually undergo cyclic loads and/or imposed
cyclic displacements.

In the present example, the shakedown domain for a typical 90o steel pipe bend
subjected to cyclic out of plane-imposed displacement is investigated. The steel
elbow, of a yield stress of 360 MPa, consists of two straight pipes with an 8-inch
outer diameter, 8.18 mm depth and of an equal length of 1.10 m. The left end of the
pipe is considered fixed and the imposed displacement is applied at the right support
with direction along the horizontal axis Z, as shown in Fig. 11.

Fig. 11 The configuration of the pipe elbow
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Fig. 12 Convergence diagram of the RSDM-S in the case of imposed displacement

The cross section was divided into three layers along the thickness with the
structure being discretized with 10,528 hexagonal brick elements. The elbow is
subjected to horizontal cyclic imposed displacement varying from 0 to u*. The yield
displacement turned out to be uy = 18 mm.

According to the RSDM-S the shakedown displacement is equal to ush = 32 mm.
The convergence is quite good and the procedure is completed in 11 iterations, as
shown in Fig. 12.

The shakedown limit produced by the RSDM-S was validated with results
obtained by step-by-step analyses using the Abaqus software [1]. Two analyses were
run, considering the amplitude of the imposed displacement higher and lower than
the shakedown limit.

In the first case, the imposed displacement was equal to 60 mm and the plastic
strain was found to be always increasing (ratcheting). The most stressed point was
point A located near the fixed support. For this point, the accumulated plastic strain
at the end of the 16th cycle of loading is shown in Fig. 13.

The evolution of the equivalent plastic strain from cycle to cycle for the point A
may be seen in Fig. 14.

In the case where the imposed displacement was set equal to 20 mm, the plastic
deformation appeared and locked around 1%. 50 cycleswere used and the shakedown
condition met right from the first cycle as presented in Fig. 15.

4 Convergence Issues

To underline the numerical efficiency of the method, the following remarks can be
made concerning its convergence characteristics:
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POINT A

Fig. 13 Contour of equivalent plastic strain at the last loading cycle

Fig. 14 Plastic strain
diagram in case of 60 mm
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Both the internal and the external loops are controlled through the iterative values
of ϕ (Eq. (9)) [17]. Internal loop iterations stop when the relative difference between
two successive values of ϕ is of a tolerance of 10–3, whereas the external loop
iterations stop when the value of ϕ reaches the tolerance of 10–4.

Convergence evolution towards the shakedown factor is plotted against the
external loop iterations, where the load factor changes value. There is no standard
number of internal loop iterations (internal loops have linear convergence), but due to
the external superlinear convergence, the number of external incremental-like loops
limits the total number of iterations. For all the different loading cases of the exam-
ples considered herein, to reach the final shakedown factor, this total number never
exceeded 120 iterations (for example, for the elbow problem with the larger number
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Fig. 15 Plastic strain
diagram in the case of 20 mm
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of finite elements, it was 87). In each iteration, the number of elastic solutions (Eq. 5)
equals the number of vertices of the loading domain; the stiffness matrix used to find
these solutions is formed and decomposed only once (at the very beginning of the
procedure). Additionally, it should be noted that even with n = 1, as the number of
terms of the Fourier series, the results are almost identical.

5 Concluding Remarks

The RSDM-S is a direct method that is used to establish shakedown domains. In
the present work a recent update of the approach that appeared in the literature
is elaborated further. Closely linked to the robustness of the procedure, the proof
of the method’s continuous descent towards the shakedown load factor is demon-
strated graphically. At the same time, the superlinear convergence of the external
incremental-like outer loop which guarantees fast convergence is underlined. Further
structural examples to the already published ones, undergoing diverse cyclic loading
actions from thermomechanical loading to imposed displacements are discussed and
construction of corresponding shakedown domains are presented.
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Mixed Fiber Elements and
Incremental-Iterative Algorithm
for Shakedown and Limit Fire Analysis
of 3D Frames

Domenico Magisano and Giovanni Garcea

Abstract Thiswork presents an efficient fiber analysis for evaluating the shakedown
safety factor of 3D frames under multiple load combinations. Mixed beam elements
are employed for an accurate discretization of the structures. A continuation method,
similar to an incremental elasto-plastic analysis, is used at structural level. It evaluates
a fictitious equilibrium path made of a sequence of safe states with a converging
non-decreasing load factor. Each point of the path is obtained by finding kinematic
variables corresponding to self-equilibrated stresses satisfyingMelan’s condition for
the current load factor to be safe. The stress admissible domain is defined at fiber
level as a function of the load factor using the maximum and minimum effect due
to all loads. The overall analysis allows a direct application of the Newton method
easily implemented in commercial codes. The same numerical strategy can solve
also a different problem, named limit fire analysis. It consists in evaluating for an
assigned external load the maximum time of fire exposure that leads to the structural
collapse as a consequence of the strength reduction of the materials.

Keywords Frame structures · Fire analysis · Limit analysis · Mixed finite
elements

1 Introduction

Despite its technical implications, shakedown analysis seems still currently confined
to the research community or particular applications instead of being used as a
common tool in structural design. One of the main open problems is the difficulty
in managing the large number of load conditions [17, 18, 21] and the complex
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combination rules required for a realistic definition of the load domain, which can
lead to a very time-consuming analysis. For example, we can consider the simple
case of linear combination rules where the load domain is defined as a combination
of basic actions varying between a minimum and a maximum value. According to
the König [5] (convexity) theorem, we can consider the set of vertexes of the load
domain, in this case a convex polytope with 2p vertexes, where p is the number of
basic loads. In fact, the plastic admissibility of the elastic stresses due to all possible
loads within the load domain, known as stress envelope, requires the admissibility
of the stresses corresponding to the load vertexes only. However, for values of p
in the order of tens, as typically occurs in structural design, the number of vertexes
becomes so large to prevent the solution process.

This work presents an accurate, efficient and very simple fiber-based analysis
for evaluating the shakedown safety factor of 3D frames subjected to multiple load
combinations. Mixed FEs with equilibrated stress interpolation are used for an accu-
rate discretization of the structure. The first novelty point is the stress admissible
domain defined at fiber level as a function of the load factor accounting for the elas-
tic stress envelope due to all possible loads. Compared to stress resultants approaches,
the stress envelope is now defined by two scalar values, namely the maximum and
minimum effect on the fiber, regardless of dimension and complexity of the load
domain. This key feature guarantees that, unlike in existing proposals [6, 17, 18,
21], the number of load combinations has no influence on the cost of the nonlin-
ear part of the analysis. A decomposition method inspired by the one proposed in
[2, 3] is applied to solve the global lower bound optimization problem through an
incremental-iterative method, similar to a standard elasto-plastic analysis. Follow-
ing a strain-driven approach, each point of a pseudo-equilibrium path is obtained
by finding kinematic discrete variables corresponding to a self-equilibrated stress
field able to satisfy the admissibility condition required by Melan’s theorem for the
current load factor to be safe. The structural residual requires, at FE level, the def-
inition of plastically admissible stresses, corresponding to assigned kinematic FE
variables and load factor. To this aim, a novel decomposition method is proposed for
mixed FEs, that avoids the solution of the FE optimization problem [4, 6] replaced by
section state determinations at each integration point allowing a simple imposition
of the fiber plastic admissibility for the assigned load factor. An iterative element
state determination is then applied to preserve the equilibrated stress interpolation
and the FE compatibility. The proposed shakedown analysis is based on the direct
application of the full Newton method for both global and local equations without
any need for optimization tools and, then, easy to implement in existing FE codes.
Moreover, the incremental-iterative solution is competitive with other general opti-
mization methods due to the large number of constraints, which are not involved in
the global iterations of our approach.

In addition, this work introduces the limit fire analysis for assessing the ultimate
fire resistance of 3D frames under given dead loads. It is assumed that the firemodel is
characterized by a non-decreasing temperature over time as suggested by technical
standards, the strength of the materials does not increase with heating as typical
of most structural materials and the structure undergoes small deformations. Under
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these hypotheses,we derive a lower bound theorem thatmakes it possible to define the
limit fire duration as a synthetic safety limit based only on the concepts of equilibrium
and strength. The problem is very similar to the shakedown one.

2 Modeling of 3D Frame Structures

2.1 The 3D Beam Model

Let us consider a cylinder in a reference configuration B, characterized by length
� and confined by a lateral boundary, ∂B, and two terminal bases, Ω0 and Ω�.
The cylinder is referred to a Cartesian frame (O, x1 ≡ s, x2, x3) with unit vectors
{i1, i2, i3} and i1 aligned with the cylinder axis. In this system (see Fig. 1), we denote
with X = si1 + x the position of a point P , where s is an abscissa which identifies
the generic cross-section Ω(s) of the beam, while x = x2i2 + x3i3 is the position of
P inside Ω(s).

The displacement field v[X] of the model is expressed, as usual, as a rigid motion
of the section

v(X) = u(s) + ϕ(s) × x (1)

where u(s) and ϕ(s) are the mean translation and rotation of the section and the
operator × denotes the cross product. The kinematics assumed in Eq. (1) allows us
to evaluate, using a linear Cauchy continuum, the stress-strain work W in terms of
the generalized strains and stresses of the section as

W :=
∫

�

(
n(s)Tε(s) + τ (s)Tγ(s)

)
ds (2)

with the generalized strains ε, collecting axial strain and bending curvatures, and γ,
collecting shear strains and torsional curvature, defined as

x1 x2

x3

x3

x

Ω�Ω0

B

s

X0

X

Ω

∂B [0 n2 n3]T

Fig. 1 The cylindrical solid
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ε(s) ≡
⎡
⎣ e

χ2

χ3

⎤
⎦ =

⎡
⎣u1,s

ϕ2,s

ϕ3,s

⎤
⎦ γ(s) ≡

⎡
⎣γ2

γ3
χ1

⎤
⎦ =

⎡
⎣u2,s − ϕ3

u3,s + ϕ2

ϕ1,s

⎤
⎦ (3)

where a comma stands for derivative. The stress resultants on the section n and τ
due to normal and tangential stresses respectively are defined as

n(s) ≡
⎡
⎣N1(s)
M2(s)
M3(s)

⎤
⎦ =

∫
Ω

σ11(s, x)a(x)dΩ, τ (s) ≡
⎡
⎣N2(s)
N3(s)
M1(s)

⎤
⎦ =

∫
Ω

⎡
⎣ σ12

σ13

σ13x2 − σ12x3

⎤
⎦ dΩ

(4)
with a = [1, x3,−x2]T . In particular, n collects axial force and bending moments
while τ collects shear forces and torque. Introducing the vectors

t(s) =
[
n(s)
τ (s)

]
ρ(s) =

[
ε(s)
γ(s)

]
(5)

the elastic constitutive law can be written as

ρ(s) = F(s)t(s) with F(s)−1 = C(s) =
[
E 0
0 G

]
(6)

where the coefficients of the cross-section compliance matrix F can be obtained as
in [13]. For a future use, we introduce also the extraction operator Tn and Tτ such
that

n(s) = Tnt(s), τ (s) =Tτ t(s), t(s) = TT
n n(s) + TT

τ τ (s)

ε(s) = Tnρ(s), γ(s) =Tτρ(s), ρ(s) = TT
n ε(s) + TT

τ γ(s).
(7)

Finally, using the kinematics in Eq. (1), the normal strain over the section, work-
conjugated to σ ≡ σ11, is

ε(s, x) ≡ v1,s = a(x)Tε(s, x). (8)

2.2 Discretization in Mixed Finite Elements

The beam finite element adopted (see [6]) uses a stress interpolation

t(s) = L(s)βe (9)

which exactly satisfies the equilibrium equations on the element for zero body forces,
that is

N ,s = 0, M,s +i1 ∧ N = 0, (10)
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while body load effects can be exactly included as a particular solution. Equation (10)
states thatN ≡ [N1, N2, N3]T and the torsionalmoment componentM1 are constant,
while the two flexural components M2(s) and M3(s) ofM(s) ≡ [M1, M2, M3]T are
linear with s and linked to the shear resultants so that N2� = −(M3(�) − M3(0)) and
N3� = (M2(�) − M2(0)). The internal work in Eq. (2) becomes

W ≡ N T (u(�) − u(0)) + M(�)Tϕ(�) − M(0)Tϕ(0) = dT
e Q

T
e βe (11)

allowing us to directly obtain the discrete form ofW without any FEM interpolation
for the kinematic variables u(s) and ϕ(s). In Eq. (11) the vectors that collect the
kinematics de and staticβe FE generalized parameters and the compatibility operator
Qe are defined as

βe =

⎡
⎢⎢⎢⎢⎢⎢⎣

N1

M2(0)
M3(0)
M2(�)

M3(�)

M1

⎤
⎥⎥⎥⎥⎥⎥⎦

, de =

⎡
⎢⎢⎣
u(0)
ϕ(0)
u(�)

ϕ(�)

⎤
⎥⎥⎦ , Qe = 1

�

⎡
⎢⎢⎢⎢⎢⎢⎣

−� iT1 0 � iT1 0
iT3 −� iT2 −iT3 0

−iT2 −� i3 iT2 0
−iT3 0 iT3 � iT2
iT2 0 −iT2 � iT3
0 −� iT1 0 � iT1

⎤
⎥⎥⎥⎥⎥⎥⎦

. (12)

2.3 Fiber Analysis

For frameswithmedium to large span to depth ratios of themembers, it is a reasonable
approximation [1, 6, 19, 20] to define the elasto-plastic behavior only in terms of
normal stress componentσ ≡ σ11,while plastic deformations due to shear and torsion
are assumed to be negligible. The plastic admissibility condition can be written as

σ−(s, x) ≤ σ(s, x) ≤ σ+(s, x), ∀(s, x) (13)

where σ+(s, x) and σ−(s, x) are the stress limits of the material in traction (posi-
tive) or compression (negative) respectively. Omitting the dependence on the point
coordinates s and x to simplify the notation, the admissibility condition (13) can be
rewritten by introducing the yield function f (σ) as

f (σ) ≡ |σ − c| − r ≤ 0 (14)

where
c = σ+ + σ−

2
r = σ+ − σ−

2
(15)

The constitutive law is imposed at a discrete number of points belonging to the FE
domain. To this end, a certain number of integration points (IPs) are used along the
beam axis. Gauss-Lobatto rules are preferred in order to include the end sections.
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Fig. 2 Typical fiber
discretization of the sections

For each IP, the cross section is discretized using a finite number n f of fibers with a
normal stress σ constant over each fiber domain of area A and equal to the mid point
one (cf. Fig. 2).

2.4 Linear Elastic Solution

The linear elastic problem corresponds to the stationarity of the Hellinger-Reissner
functional ΠHR that, at the element level, can be expressed as

ΠHR = dT
e Q

T
e βe − 1

2
βT
e Heβe − dT

e pe

where pe is the elemental contribution of the external loads and, introducing the FE
interpolation for the generalized stress, the elastic compliance matrix of the element
is obtained from the equivalence

∫
�

t(s)TFt(s)ds = βT
e Heβe ⇒ He =

∫
�

L(s)TFL(s) ds. (16)

Since the stress interpolation is discontinuous across element boundaries, the
stationarity of ΠHR with respect to βe furnishes the FE elastic constitutive law

βe(de) = H−1
e Qede (17)

which allows us to express the elastic problem in terms of displacement variables
only. The stationarity conditionwith respect tode furnishes the equilibrium equations
on the element as

QT
e βe(de) − pe = 0 (18)
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which, in the elastic case, become

Kede − pe = 0 with Ke = QT
e H

−1
e Qe.

The linear elastic solution can be then achieved by solving the global linear equations
obtained by assembling the global elastic stiffness matrix K and load vector p:

Kd − p = 0.

At least 3 Gauss-Lobatto IPs are needed to exactly integrate the elastic complemen-
tary energy along the element

1

2
βT
e Heβe = 1

2

∑
g

nT
g E

−1
g ngwg + 1

2

∑
g

τ T
g G

−1
g τ gwg (19)

A generic integration point quantity (.)g belongs to a FE e but the subscript e is
omitted to simplify the notation.

Using the fiber discretization, the complementary energy density of the section,
on the basis of Eq. (8), can then be evaluated as

1

2
nT

g E
−1
g ng = 1

2

∑
m

1

Em
σ2
m Am (20)

where E is the Young modulus and the subscript m denotes a generic fiber. Also in
this case, a generic fiber quantity (.)m belongs to an IP g of a FE e, but subscripts g
and e are omitted for a simpler notation.

Remembering that the fiber strain is linked to the generalized ones as εm = aTmε
and the elastic law σ = Eε, the previous equation allows us to evaluate Eg as

∑
m

Emε2m Am = 1

2
εT

g

(∑
m

Em AmamaTm

)
εg ⇒ Eg =

(∑
m

Em AmamaTm

)

For the fiber model, the normal stress resultants in Eq. (4) on the section can be
computed as a function of the normal stresses of the fibers at IP, collected in vector
σg = [σ1, · · · ,σn f ], as

ng(σg) =
∑
m

σm Amam . (21)

We have that the vector collecting all stress resultants can be written, exploiting
Eq. (7), as

tg(σg, τ g) =
[
ng

τ g

]
≡ TT

n

∑
m

(σm Amam) + TT
τ τ g. (22)



266 D. Magisano and G. Garcea

2.5 Elasto-plastic Solution

Starting from an initial stress stateσ(0)
g and τ (0)

g stored at each IP g, the elasto-plastic
solution can be obtained, as demonstrated in [8, 12, 22], by solving the following 3
groups of equations:

Global equations QTβ − p = 0 (23a)

Element equations

⎧⎪⎨
⎪⎩
QeΔde −

∑
g

LT
g Δρgwg = 0

tg(σg, τ g) − Lgβe − t̄g = 0 ∀g

(23b)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
Fiber normal stress

⎧⎪⎨
⎪⎩

Δσm − Em

(
Δεm − μm

∂ fm(σm)

∂σm

)
= 0

μm ≥ 0 μm fm(σm) = 0

Tangential stress resultants Δτ g = GgTτΔρg

(23c)

where Δεm = aTmΔε, with Δε = TnΔρg = [Δe,Δχ2,Δχ3]T , denotes the incre-
ment of strain work-conjugate to σm . Global equations, obtained assembling ele-
ment counterpart Eq. (18), impose the equilibrium of internal and external forces.
Element-wise equations link the stress DOFs βe with the displacement increment
Δde, preserving the kinematic compatibility of the generalized strain incrementΔρg

at each IP g with the element displacement increment Δde and the FE equilibrated
stress interpolation in Eq. (9). Vector t̄g collects the generalized stresses at the gth
IP corresponding to the particular solution of the equilibrium equations due to dis-
tributed loads. Finally, constitutive laws at each IP provide the section stress resultants
tg corresponding to the generalized strain increment Δρg . The first of Eq. (23c) is
the elasto-plastic constitutive law of the mth fiber integrated by a backward Euler
scheme for an elastic-perfectly plastic Drucker material. This can be seen as the first
order condition of the following closest point projection problem:

⎧⎨
⎩
minimize

1

2
Em(σm − σ∗

m)2

subject to fm(σm) ≤ 0
(24)

with the fiber elastic predictor σ∗
m = σ(0)

m + EmΔεm . The solution of this one-
dimensional optimization problem is provided explicitly by a simple min-max oper-
ation:

σm = max
(
σ−, min

(
σ∗
m, σ+

))
. (25)
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3 Shakedown Analysis

We say that a structure shakes down to an elastic state or, simply, shakedown occurs
if, after an initial phase during which the occurrence and the accumulation of plastic
strain increments are possible, the structural response, for every load path, tends to
be purely elastic with a finite total plastic work.

3.1 Load Domain

The FE external load vector p(t), varying with the time t , can be expressed as a
combination of p load patterns pi belonging to an admissible load domain P. We
assume

P :=
q⋃

k=1

P
(k) , P

(k) :=
{
p =

p∑
i=1

αki (t)pi : αmin
ki ≤ αki (t) ≤ αmax

ki

}
(26)

where αki defines the range of variability in time of pi for the kth load combination
accounting for the probability of simultaneous actions. Each combination P

(k) is a
convex polytope with 2p vertexes.

3.2 Melan’s Shakedown Theorem and Admissibility
Condition

A sufficient condition for shakedown is given by the classic Bleich-Melan static
theorem: shakedown occurs if there exists an additional time-independent self equi-
librated stress field such that the yield condition is satisfied at every point in the body
for any possible loading.

For frames with medium to large span to depth ratios of the members, it is a
reasonable approximation [1, 6, 19, 20] to define the elastic domain only in terms
of normal stress components σ ≡ σ11. In this case, it is useful to define the envelope
of elastic stress S(s, x) associated to a generic point of the body (s, x) as the set of
elastic stresses σ̂(s, x) produced by all loads p ∈ P.

With these assumptions, the static shakedown theorem can be formulated as
follows: shakedown occurs if there exists an additional time-independent self-
equilibrated stress σ(s, x) such that

fc(s, x) ≤ λσ̂(s, x) + σ(s, x) ≤ ft (s, x), ∀σ̂(s, x) ∈ S(s, x) (27)

where ft (s, x) and fc(s, x) are the stress limits of the material in traction (positive)
or compression (negative) respectively. An amplification factor λ of the reference
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load domain is introduced. This makes it possible to define the shakedown safety
factor of the reference load domain as the maximum value of λ for which shakedown
occurs.

3.3 Elastic Stress Envelope

For each point x of the cross section s the elastic stress envelope S(s, x) becomes the
closed line segment

S(s, x) = {σ̂ : σ̂min ≤ σ̂(t) ≤ σ̂max} (28)

where σ̂max and σ̂min are the maximum and minimum values respectively of the
normal elastic stress σ̂ of the point for each possible load in P. It is worth noting that
S(s, x) is always defined by two vertexes independently from the number of load
combinations and from the complexity of P.

From now on, to simplify the notation, we avoid to report the dependence of the
stress on (s, x). The endpoints σ̂min and σ̂max can be easily evaluated according to
the load definition in Eq. (26) which implies that

S(s, x) =
q⋃

k=1

S
(k)(s, x) , S

(k) :=
{

σ̂(k) =
p∑

i=1

αki (t)σ̂i : αmin
ki ≤ αki (t) ≤ αmax

ki

}

(29)
We can first evaluate the stress envelope S(k) for p ∈ P

(k) as

S
(k)(s, x) = {σ̂(k) : σ̂k,min ≤ σ̂(k) ≤ σ̂k,max}

where, letting σ̂i the elastic normal stress of the fiber due to pi ,

σ̂k,I =
{∑

i α
max
ki σ̂i if nI σ̂i ≥ 0∑

i α
min
ki σ̂i if nI σ̂i < 0

I = min,max (30)

with nmin = −1 and nmax = 1. The endpoints of the overall envelope can be then
obtained as

σ̂max = max
(k)

σ̂kmax and σ̂min = min
(k)

σ̂kmin. (31)

Equation (30) represents a particularization to the one-dimensional stress space of
the formulation reported in [6] for the selection of the meaningful stress vertexes.
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3.4 Shakedown Yield Function

The shakedown admissibility condition (27) for a load domain amplified by λ, omit-
ting the dependence from s and x, can bewritten in terms of stress envelope endpoints
as {

σ + λσ̂max ≤ ft

σ + λσ̂min ≥ fc.
(32)

This rewriting allows us to introduce the shakedown yield function f (σ,λ)

f (σ,λ) ≡ |σ − c(λ)| − r(λ) ≤ 0 (33)

where

c = c0 − λĉ with c0 = ft + fc
2

ĉ = σ̂max + σ̂min

2

r = r0 − λr̂ with r0 = ft − fc
2

r̂ = σ̂max − σ̂min

2

(34)

Condition inEq. (33) defines the admissible domainof the additional self-equilibrated
stressσ that depends on the load amplifierλ.We cannote how this domain is unrelated
to the complexity of the load variation, but depends only on the maximum σ̂max and
minimum σ̂min elastic effect on the point, apart from the material strength.

It is important to remark the first important feature of the proposed approach: only
the two vertexes of the elastic envelope of each fiber affect the admissible domain,
independently from the number of basic actions or the complexity of the load domain.

3.5 Shakedown Safety Factor According to the Lower Bound
Theorem

The shakedown safety factor λS of the structure is the maximum value of the load
factor which satisfies the sufficient condition of the Bleich–Melan static theorem [5,
6, 24]. This can be written in discrete form as the following constrained optimisation
problem

maximize λ

subject to QTβ = 0

f (σm,λ) ≤ 0 ∀e, g,m

tg(σg, τ g) − Lgβe = 0 ∀g, e

(35)

where the last equality constraint is necessary to preserve the equilibrated stress
interpolation (9) over the element.
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We can note that (35) is very similar to the static limit analysis optimization
problem. In particular, the only relevant difference is that the plastic admissibility is
imposed for the two vertexes of S(s, x). Indeed, shakedown analysis reduces to limit
analysis when the stress envelope degenerates into a single point [4].

3.6 Elastic Limit and Non-empty Limit

It is useful to define two load factors named elastic limit λE and non-empty limit
λ∅. λE is the maximum load factor for which the elastic stress produced by all loads
satisfies the admissibility condition without additional self-equilibrated stress fields,
i.e. fm(0,λ) ≤ 0 for any fiber m in the structure.

λ∅ is the maximum load factor for which the shakedown admissible domain is a
non-empty set at any fiber in the structure. This means that for λ = λ∅ there exists a
fiber m in the structure whose shakedown admissible domain {σm : fm(σm,λ) ≤ 0}
reduces to a single point, i.e. its domain radius r(λ) vanishes. According to the
expression of r(λ) in Eq. (34), we have

λ∅ = min
e,g,m

(
r0m
r̂m

)
.

The shakedown safety factor λS must satisfy the condition

λE ≤ λS ≤ λ∅. (36)

3.7 Incremental Strategy for Fiber-Based Shakedown
Analysis

Let us denote with z = {λ,β,d, τ g,σg,ρg} the set of all the problem variables.
It is possible to define a sequence of states z(n) corresponding to a non-decreasing
sequence of load factorsλ(n). A superscript (n − 1) is used to denote the consolidated
quantities found at the previous step while (n) denotes the searched solution at the
new step of the sequence. Δ(.) = (.)(n) − (.)(n−1) represents the difference between
quantities of step (n) and (n − 1). We introduce the following non-negative energy
term

Ψg(Δσg,Δτ g) = 1

2

∑
m

1

Em
Δσ2

m Amwg + 1

2
Δτ T

g G
−1
g Δτ gwg (37)

which represents a norm of the stress increment. The problem variables at the new
step z(n), omitting the superscript (n) to simplify the notation, that correspond to an
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assigned λ = λ̄ ≥ λ(n−1), are obtained as the solution of the following optimization
problem

minimize
∑
e,g

Ψg(Δσg,Δτ g)

subject to QTβ = 0

fm(λ̄,σm) ≤ 0 ∀m, g, e

tg(σg, τ g) − Lgβe = 0 ∀g, e

(38)

i.e. by finding the increment of self-equilibrated stress with minimum norm (37)
which makes it possible to fulfill the sufficient condition of the lower bound shake-
down theorem for λ̄ = λ(n) to be safe. Clearly, the sequence λ(n) can start from
λ(0) = λE since no additional stresses are needed for λ < λE . Let us introduce the
Lagrangian function

L =
∑
e,g

Ψg(Δσg,Δτ g) − ΔdTQTβ +
∑
e,g,m

μm fm(λ̄,σm)Amwg

−
∑
e,g

ΔρT
g

(
tg(σg, τ g) − Lgβe

)
wg

where the Lagrangian multipliers are the increment of kinematic variables Δd, the
increment of generalized strains Δρg at each IP g and the plastic multiplier μm of
each fiber m. The optimization problem in Eq. (38) is then equivalent to

{
L = stationary

μm ≥ 0 ∀m, g, e
(39)

that is the stationarity of the Lagrangian with non-negative multipliers μm of the
inequality constraints. It is necessary to note that, system in Eq. (39) admits solution
only if λ(n) ≤ λS because, by definition, no additional self-equilibrated stress able to
satisfy the admissibility condition can be found beyond λS . This suggests that it is
not convenient to directly assign the values of λ(n). Instead, we can use a continuation
strategy replacing λ = λ̄ with an arc-length equation for defining z(n). Indeed, the
sequence points z(n) belongs to a curve in the hyperspace of z. A particular z(n) along
this curve can be identified by a constraint equation

g(Δz) − Δξ = 0 (40)

by assigning a value to the positive parameter Δξ, with g(Δz) defining a suitable
distance of z(n) from z(n−1), known as arc-length in continuation methods [9, 15]. A
proper arc-length definition must assure the existence of a solution for (39) for all
values of Δξ and Δλ ≥ 0.
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The stationarity of L with respect to d imposes the self-equilibrium of the addi-
tional stress and can be collected in the group of global equations together with
Eq. (40):

Global equations

{
QTβ = 0

g(Δz) − Δξ = 0.
(41a)

The stationarity of L with respect to βe and ρg furnishes element-wise equations
preserving the kinematic compatibility of Δρg with Δde and the FE equilibrated
stress interpolation in Eq. (9):

Element equations

⎧⎪⎨
⎪⎩
QeΔde −

∑
g

LT
g Δρgwg = 0

tg(σg, τ g) − Lgβe = 0 ∀g

∀e. (41b)

Finally, the stationarity of L with respect to σm and τ g provides constitutive laws
at each IP linking the section stress resultants tg to the section generalized strain
increment Δρg:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
Fiber stress σ

⎧⎪⎨
⎪⎩

Δσm − Em

(
Δεm − μm

∂ fm(λ,σm)

∂σm

)
= 0

μm ≥ 0 μm fm(λ,σm) = 0

Tangential stress resultants Δτ g = GgTτΔρg

(41c)

where Δεm = aTmΔε, with Δε = TnΔρg = [Δe,Δχ2,Δχ3]T , denotes the incre-
ment of strain work-conjugate to σm

Δεm = Δe + Δχ2x3m − Δχ3x2m .

The first of Eq. (41c), for an assigned Δρg and then Δεm , is the elasto-plastic con-
stitutive law of the fiber m integrated by a backward Euler scheme and can be seen
as the first order condition of the following CPP problem:

⎧⎨
⎩
minimize

1

2
Em(σm − σ∗

m)2

subject to fm(λ,σm) ≤ 0
∀m (42)

with the fiber elastic predictor σ∗
m = σ(n−1)

m + EmΔεm . The solution of this one-
dimensional optimization problem is straightforward and just requires a min-max
scalar operation:

σm = max
(
fc − λσ̂min, min

(
σ∗
m, ft − λσ̂max

))
. (43)
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Equations (41) define the elasto-plastic shakedown step since are very similar to
the step equations of a standard incremental elasto-plastic analysis [12, 20, 22]. The
main difference is that the admissible domain for the self-equilibrated stress σ is a
function of the load factor λ.

4 Limit Fire Analysis

4.1 Model of the RC Frames in Fire

Temperature Distribution For the particular simple case of rectangular concrete
sections exposed to fire, we adopt the handy formulas to estimate the 2D temperature
distribution proposed byWickstrom [23]. Details on their application are reported in
[10, 11]. The temperature distribution is assumed to be constant with respect to the
longitudinal axis s of the heated structural elements, i.e. it is equal for all sections of
the considered element. It is worth highlighting that the fire model is characterized
by a non-decreasing temperature T (x, t) at any point of the structure with respect to
the fire duration t .

Strength Reduction for Concrete and Steel Rebars The concrete tensile strength
is considered negligible at any temperature. The concrete compressive strength expe-
riences significant degradation at elevated temperatures. The reduced compressive
strength for concretes fcT can be estimated from its ambient value fc as

fcT = kc(T ) fc (44)

where the dimensionless reduction factor kc(T ) is given by Eurocode 2. Similarly,
for the reduced strength of reinforcing bars fyT is computed from its ambient value
fy using ks(T ) taken from Lie et al.’s model [7]

fyT = ks(T ) fy . (45)

Both kc(x, t) and ks(x, t) are non-increasing function of t , i.e. the strength of the
materials at t2 is less than or equal to the strength at t1 for any t2 > t1.

4.2 Time-Dependent Admissibility Condition

The admissibility condition at a given fire duration t can be written as

σ−(s, x, t) ≤ σ(s, x) ≤ σ+(s, x, t), ∀(s, x) (46)
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where σ+(s, x, t) and σ−(s, x, t) are now the time-dependent stress limits of the
material in traction (positive) or compression (negative). According to the material
model just presented, for concrete

σ+(s, x, t) = 0 and σ−(s, x, t) = −kc(x, t) fc,

while for steel reinforcing bars

σ+(s, x, t) = ks(x, t) fy and σ−(s, x, t) = −ks(x, t) fy .

Omitting the dependence on the position (s, x) to simplify the notation, it is possible
to define the admissible domain of the stress σ introducing the time-dependent yield
function f (σ, t) as

f (σ, t) ≡ |σ − c(t)| − r(t) ≤ 0 (47)

where

c(t) = σ+(t) + σ−(t)

2
r(t) = σ+(t) − σ−(t)

2
. (48)

4.3 Safety Condition in Case of Fire

A sufficient condition for a structure to be safe at ambient temperature is given by
the classic static theorem of limit analysis [14, 16].

Theorem 1 (Static theorem of limit analysis) The structure is safe if there exists
a stress field in equilibrium with the external loads such that the yield condition is
satisfied at every point in the body.

In case of a generic fire event which changes the strength of the materials, we can say,
as simple corollary, that a structure is safe at a given fire duration t if the hypotheses
of Theorem 1 are satisfied at any time less than or equal to t .

However, the fire model adopted in this work has a particular feature: the strength
of the materials is a non-increasing function of the fire duration. In this context, the
following sufficient condition holds.

Theorem 2 (Static theorem of limit fire analysis) The structure is safe at a given
fire duration t if there exists a stress field in equilibrium with the external loads such
that the yield condition at t is satisfied at every point in the body and the strength of
the materials is a non-increasing function of the fire duration.

The proof of Theorem 2 exploits the hypothesis that the strength of the materials
is a non-increasing function of the fire duration. This means that if a stress field is
admissible at t then it is admissible also at any time less than t . It follows, according
to Theorem 1, that if the structure is safe at t then it is safe also at any time less than
t .
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4.4 Lower Bound Theorem of Limit Fire Analysis

Under the hypothesis that the strength of the materials is a non-increasing function of
the fire duration, the limit fire duration tL , i.e. the time of fire exposure which leads to
the collapse of the structure, can be defined as the maximum value of t that satisfies
the sufficient condition of the static theorem of limit fire analysis 2. In discrete form,
this can be formalized as follows.

Theorem 3 (Lower bound theorem of limit fire analysis in discrete form) The limit
fire duration tL of the structure discretized inmixed fiber finite elements is the solution
of the following constrained optimization problem

maximize t

subject to QTβ − p = 0

f (σm, t) ≤ 0 ∀e, g,m

tg(σg, τ g) − Lgβe − t̄g = 0 ∀g, e

(49)

where the last equality constraint preserves the equilibrated stress interpolation (9)
along each element.

We can note that (49) is a nonlinear optimization problem, convex in stress variables,
very similar to the static limit and shakedown analyses. In particular, instead of a
load amplifier, we have now a time parameter that reduces the admissible domain.

4.5 Incremental Strategy for Limit Fire Analysis

Let us denote with z = {t,β,d, τ g,σg,ρg} the set of all the problem variables. It is
possible to define a sequence of states z(n) corresponding to a non-decreasing time of
fire exposure t (n). In the following, a superscript (n − 1) is used to denote quantities
at the known state found at the previous step of the incremental process, while (n)

denotes the searched solution at the new step of the sequence.Δ(.) = (.)(n) − (.)(n−1)

represents the difference between quantities at (n) and (n − 1). The sequence of
points z(n) belongs to the curve in the hyperspace of z of equilibrated and admissible
solutions. Starting from a known z(n−1), a particular z(n) along this curve can be
identified by a constraint equation

g(Δz) − Δξ = 0 (50)

which defines a suitable distance from z(n−1) to z(n). At each step of the incremental
analysis, z(n) is found by solving, for an assigned Δξ, a generalization of Eqs. (23)
which takes account of the time-dependent yield function of the fibers:



276 D. Magisano and G. Garcea

Global equations

{
QTβ − p = 0

g(Δz) − Δξ = 0.
(51a)

Element equations

⎧⎪⎨
⎪⎩
QeΔde −

∑
g

LT
g Δρgwg = 0

tg(σg, τ g) − Lgβe − t̄g = 0 ∀g

(51b)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
Fiber normal stress

⎧⎪⎨
⎪⎩

Δσm − Em

(
Δεm − μm

∂ fm(σm, t)

∂σm

)
= 0

μm ≥ 0 μm fm(σm, t) = 0

Tangential stress resultants Δτ g = GgTτΔρg

(51c)

with Δεm = aTmTnΔρg . The first of Eq. (51c) is the elasto-plastic time-dependent
constitutive law of the fiber m integrated by a backward Euler scheme, which is
equivalent to

σm = max
(
σ−(t), min

(
σ∗
m, σ+(t)

))
. (52)

with the fiber elastic predictor σ∗
m = σ(n−1)

m + EmΔεm . Note that thermal strains and
variations of elastic properties over time, according to the lower bound theorem
Eq. (49), can be neglected because they do not affect the limit fire duration.

Equations (51) define the elasto-plastic fire step since are very similar to the
Eq. (23) of a standard incremental elasto-plastic analysis. The main difference is that
the admissible domain for the stress σ is a function of the fire duration t , while
the loads are kept constant. From this point of view, the algorithm is similar to the
shakedown analysis seen in the previous Sect. [8].

5 Incremental Algorithm: Strain-Driven Implementation

An incremental strain-drive algorithm is presented for the limit fire duration problem,
but it can be applied also to the shakedown problem. The only difference is that a
constant load vector is involved in the structural equilibrium for the limit fire analysis,
while it is not involved in the equilibrium equations of the shakedown problem since
this is expressed in terms of additional stresswith respect to the elastic envelope.Also,
the admissible domain is a function of the load factor λ in the shakedown analysis,
while it is a function of the fire duration t in the limit fire analysis. Instead of solving
Eqs. (41) or (51) all together, it is possible to apply a strain-driven decomposed
strategy based on the solution of the following three nested sub-steps.

– A section state determination provides the stress resultants tg at each IP along the
element axis as a function of an assigned section generalized strain incrementΔρg

and the current fire duration t using the constitutive law (51c).
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– An element state determination finds the element stress interpolation variables βe

corresponding to an assigned increment of element nodal kinematic variablesΔde
and the current fire duration estimate t by means of the element Eq. (51b). This
require an iterative solution at FE level involving, at each iteration, the section
state determination at the IPs.

– A global incremental-iterative process solves the global equilibrium Eq. (51a)
step-by-step with the stress interpolation variables β expressed as functions of the
unknown kinematic degrees of freedom d and the current fire duration t (or load
factor λ) through the element state determination.

5.1 Section State Determination

The section state determination expresses the stress resultants tg of a section g as
a function tg(Δρg, t) of the generalized strain increment Δρg and the time of fire
exposure t by means of the constitutive Eq. (51c). To this end, the following simple
procedure is used.

• Δεg and Δγg are extracted from Δρg (see Eq. (7)).
• Δεg = [Δeg,Δχ2g,Δχ3g]T is used to evaluate the normal strain increment in each
fiber

Δεm = Δeg + Δχ2gx3m − Δχ3gx2m .

• Using the elastic predictor σ∗
m = σ(n−1)

m + EmΔεm , the new value of the fiber nor-
mal stress σm is computed as

σm = max
(
σ−(t), min

(
σ∗
m, σ+(t)

))
.

• The normal stress resultants are then evaluated as

ng =
∑
m

σm Amam .

• An elastic update is used for the tangential stress resultants:

τ g = τ (n−1)
g + Δτ g with Δτ g = GgΔγg

5.2 Element State Determination

The FE stress interpolation variables βe corresponding to an assigned increment of
element kinematic variables Δde and a fire duration t can be obtained by solving the
element-wise system
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⎧⎪⎨
⎪⎩
rg ≡ tg(Δρg, t) − Lgβe − t̄g = 0, ∀g

re ≡ QΔde −
∑

g

LT
g Δρgwg = 0 (53)

The vanishing of rg for each IP (section) g along the element axis assures that the
stress resultants tg(Δρg, t) given by the section state determination match the equi-
librated stress interpolation in Eq. (9). The condition re = 0 is necessary to preserve
kinematic compatibility between section strain increments Δρg and Δde. The solu-
tion of Eq. (53) is achieved using Newton’s iterations, where Δde and t are assigned
while Δρg and βe are the problem unknowns. The element internal forces can be
the computed as

se(de, t) ≡ QT
e βe(de, t). (54)

5.3 Incremental-Iterative Global Solution

The global Eq. (51a) can written in the same form as in a standard strain-driven
elasto-plastic analysis with an arc-length incremental method providing a path of
equilibrium points (t (n),d(n)). The difference is that the load factor is now replaced
by a non-decreasing t converging to the limit fire duration. For each increment Δξ,
starting from the previous known equilibrium configuration {t (n−1),d(n−1)}, the new
point {t,d} at (n) is obtained by solving

{
r(d, t) ≡ s(d, t) − p = 0.

q(d, t) ≡ g(Δd,Δt) − Δξ = 0
(55)

withΔd = d − d(n−1) andΔt = t − t (n−1), while s(d, t) ≡ QTβ(d, t) is the internal
force vector that can be directly obtained by assembling the elemental contribution
se(de, t) provided by the element state determination, instead of using the equivalent
global operation QTβ(d, t). The first equations in (55) imposes the global equilib-
rium of internal forces s(d, t) and external load vector. The last of Eq. (55) assigns
the increment size Δξ, with g(Δd,Δt) the arc-length measure. Both s and q are
functions of d and t . A Newton iterative scheme can be used to solve (55) [8, 10].
The incremental analysis is stopped when t (n) ≈ t (n−1) with Δd �= 0, i.e. when the
current Δd is a mechanism and no more stress redistribution is possible. The last
value t (n) of the sequence is the limit fire duration tL . An adaptive increment sizeΔξ,
based on the number of iterations required to achieve convergence at the previous
step, is useful to minimize the overall computational cost. In the numerical tests, this
is achieved using the simple algorithm reported in [9].
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6 Numerical Tests on Shakedown Analysis

In this section, some numerical applications are illustrated. We start with a very
simple test, for which the shakedown safety factor is easy to obtain analytically, to
validate the proposed numerical procedure. A simple 3D frame and a large building
are then analyzed to show the effectiveness of the proposal and the accuracy of the
fiber model. Three material types are used for the cross sections:

– structural steel with E = 210000MPa, fc = −300MPa and ft = 300MPa;
– concrete with E = 25000MPa, fc = −30MPa and ft = 0;
– reinforcing bars with E = 210000MPa, fc = −400MPa and ft = 400MPa.

IPE and HE sections are used for structural steel, while rectangular section are
employed for reinforced concrete (RC) buildings. In this last case, the section is
supposed to be confined in such a way that concrete has a sufficient ductility in
compression. Typical fiber discretizations of the sections is shown in Fig. 2. Flanges
and web of HE and IPE sections are discretized using nl × nt fibers, nt through the
thickness and nl along the orthogonal direction. A uniform n f × n f discretization is
used for the concrete part of RC sections, while reinforcing bars are modeled using
a single fiber per bar with area concentrated at the bar center. All the results reported
are obtained using 3 Gauss-Lobatto IPs per FE.

6.1 A Continuous Beam Supported on Four Points

The first test regards the continuous beam supported on 4 points (Fig. 3), with L =
2500mm and My the plastic moment of the IPE360 steel section. The beam is
subjected to two load pattern whose variability in time is given by the coefficients
α1 and α2. Four loading cases are considered: case 1) α1 = 2 and α2 = 0; case 2)
α1 = 0 and α2 = 1; case 3) α1 = 2 and α2 = 1; case 4) α1 ∈ [0; 1] and α2 ∈ [0; 2].
In the first 3 cases α1 and α2 are constant and this means that the shakedown analysis
coincides with a limit analysis. In the forth case, loads vary within known ranges and,
in the present context, it is the most interesting situation. This example is chosen to
validate the proposed numerical analysis since the exact solution can be easily derived
analytically. The proposed FE shakedown analysis is now tested. The structure is
discretized using 6 FEs to deal with the concentrated forces. Figure4 illustrates

Fig. 3 Continuous beam: geometry, loads and boundary condition
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Fig. 4 Continuous beam: pseudo-equilibrium path for all load cases and 10x1 fibers per wall of
the section

Table 1 Continuous beam: shakedown safety factor for all load cases

Fibers λS1 λS2 λS3 λS4

5 × 1 1.98 2.96 1.98 1.72

10 × 1 2.00 3.00 2.00 1.74

Exact 2.00 3.00 2.00 1.74

the pseudo-equilibrium path provided by the proposed incremental-iterative analysis
using 10 × 1 fibers for each wall of the section. All paths, for constant (case 1, 2
and 3) and variable (case 4) loads, exhibit an initial behaviour without additional
displacements as no stress redistribution occurs up to the elastic limit. Also, the
curve has a plateau in its final part. This means that the sequence of non-decreasing
load factors, for all load cases, converges to a value representing the safety factor,
for which the system becomes a mechanism. The safety factor λSk associated to
each load case k is reported in Table 1. It is possible to note that the proposed fiber-
based numerical analysis furnishes the exact safety factor using 10 × 1 fibers per
wall, while the solution for 5 × 1 fibers is affected by a small error. Indeed, every
even number of fibers provides an exact plastic moment in simple bending problems,
while an odd number cannot capture exactly the stress discontinuity at the neutral
axis. Interestingly, the shakedown safety factor for variable loads λS4 is lower than
all the limit load factors λS1, λS2 and λS3 corresponding to the vertexes of the load
domain.

6.2 A Large Building

This test regards the multi-story multi-span building reported in Fig. 5. The constant
gravitational load gi = αig0, with g0 = 4 KN/mq of each one way ribbed slab area is
distributed onto the beams: 90% of weight is assigned to the beams orthogonal to the
ribswhile the other 10% is applied on the parallel ones.Horizontal forces Fx j = αx Fj

and Fyj = αy Fj , along the global x and y axis respectively, with F = 30K N/m · z j ,
act at each story located at z j from the ground. The story forces are distributed as
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Fig. 5 Large building: geometry and cross sections

12φ20mm
10φ16mm

2φ14mm

Fig. 6 RC sections: geometry and materials

concentrated forces on the top of each column along the global x and y axis. Three
load combinations are considered:

– combination 1, αi ∈ [0.5; 1.4] ∀i , αx = 0, αy = 0;
– combination 2, αi ∈ [0.5; 1] ∀i , αx ∈ [−1; 1], αy ∈ [−0.3; 0.3];
– combination 3, αi ∈ [0.5; 1] ∀i , αx ∈ [−0.3; 0.3], αy ∈ [−1; 1].
More complex combination rules could be also adopted as in [6]. Two material
configurations are considered. In the first one, columns and beams have the RC
sections denoted RS1 and RS2 in Fig. 6 respectively. In the second one, steel IPE360
and HEB400 sections are used for beams and columns respectively. A single mixed
FE for all beams and columns provides a converged solution.

Figure7 shows the pseudo-equilibriumpath for the 2material configurations vary-
ing the number of fibers. It is possible to observe how the incremental-iterative
process quickly converges to the shakedown safety factor also for a large building.
However, two different behaviors characterize the twomaterial configurations in this
test. In the RC case, the curve has a plateau in its final part (λn ≈ λn−1), i.e. no more
stress redistribution is possible because an additional displacement increment would
be a mechanism. Conversely, for the steel building under consideration, the incre-
mental analysis stops without a plateau because λn reaches the value λ∅ for which
there exists one fiber where the admissible domain becomes an empty set. Table 2
shows that a small number of fibers provides an accurate safety factor in the RC
case: the solution accuracy is satisfactory also with 5 × 5 fibers. In the same table,
we can see also the low global and element iterative effort. Similar considerations
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Fig. 7 Large building: pseudo-equilibrium path varying the number of fibers

Table 2 Large RC building: shakedown safety factor and computational cost

Fibers λS Steps Total global
iterations

Mean FE
iterations

5 × 5 1.18 20 73 2.32

10 × 10 1.19 21 77 2.59

20 × 20 1.20 20 72 2.60

100 × 100 1.20 21 77 2.77

Table 3 Large steel building: shakedown safety factor and computational cost

Fibers λE λS Steps Total global
iterations

Mean FE
iterations

5 × 1 1.05 1.61 6 18 1.87

10 × 1 1.01 1.62 8 22 1.91

30 × 1 0.98 1.59 8 21 1.94

30 × 4 0.97 1.58 8 19 2.01

hold for the steel case, as reported in Table 3. However, in this case the number of
steps of the incremental process is lower because the analysis stops when λ = λ∅. As
a final remark, in both the RC and steel case, the proposed continuation method for
fiber-based shakedown analysis requires an overall computational cost comparable
to that of a single elasto-plastic analysis.

7 Numerical Tests on Limit Fire Analysis

The real scale building reported in Fig. 8 is analyzed. The vertical story load p of the
one way ribbed slab as depicted in Fig. 8 is distributed on the beams. For each floor
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p = 12kN/m2

Fig. 8 Large building: geometry (lengths in meters), loads and cross-sections
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Fig. 9 Large building: equilibrium path varying the number of fibers

area, 90% of weight is assigned to the beams orthogonal to the ribs, while the other
10% is applied on the parallel ones. A concrete compressive strength fc = 20MPa
and reinforcing bars with fy = 391MPa are considered. The fire event involves
the ground floor only, with columns exposed to fire around the entire perimeter and
beams on three edges excluding the top one. A single FE with 3 Gauss-Lobatto
IPs is employed for each beam and column. A mesh refinement does not affect the
limit fire duration. The fire duration-displacement incremental process is reported in
Fig. 9. Table 4 shows that a small number of fibers provides an accurate limit fire
duration: the solution accuracy is satisfactory also with 5 × 5 fibers, while 10 × 10
give practically the exact result. As a final remark, the proposed numerical procedure
is very efficient. Just to get an image of it, the nonlinear analysis of this real scale
example takes about 1.5 min using 10 × 10 fibers and our non-optimized in-house
MATLAB code.
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Table 4 Large building: limit fire duration and computational cost

Fibers tL (h) Steps Total global
iterations

Mean FE
iterations

CPU time (s)

5 × 5 2.53 50 140 3.2 91

10 × 10 2.50 35 113 3.3 93

20 × 20 2.50 38 117 3.3 186

100 × 100 2.50 34 106 3.3 3486

8 Conclusions

A shakedown finite element analysis of 3D framed structures was proposed in this
work. The lower bound shakedown theorem was formulated with a distributed plas-
ticity model where the admissibility is checked at a certain number of integration
points along the beam finite element axis in terms of normal stress of the fibers used
to discretize the cross section. The solution of the shakedown optimization prob-
lem was achieved by means of an incremental-iterative algorithm, which provides a
sequence of non-decreasing load factors converging to the shakedown safety factor.
At each step, the method searches for an admissible self-equilibrated stress field
required by Melan’s theorem for the current load factor to be safe. The incremental
analysis can be performed in a strain-driven incremental-iterative manner very sim-
ilar to a standard elasto-plastic analysis. The main differences regard the admissible
domain, which is a function of the load factor, and the structural equilibriumwhich is
imposed for self-equilibrated stresses. Importantly, loads affect only the admissible
domain, defined once and for all in terms of a single minimum and maximum effect
on each fiber due to all possible loads. Thiswork introduced also the limit fire analysis
concept and its numerical formulation for assessing the fire resistance of 3D frame
structures. The starting assumption is that the fire event produces a monotonously
non-increasing strength over time. This makes it possible to derive a lower bound
theoremwhich defines the limit fire duration, i.e. the time of fire exposurewhich leads
to the structural collapse, based only on equilibrium and time-dependent strength.
The same incremental-iterative algorithm proposed for the shakedown analysis can
be used for evaluating the limit fire duration. Additional details are available in [8]
for the shakedown problem and in [10] for the fire analysis.
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