
Sequence to Graph Alignment Using
Gap-Sensitive Co-linear Chaining

Ghanshyam Chandra and Chirag Jain(B)

Department of Computational and Data Sciences, Indian Institute of Science,
Bangalore 560012, KA, India

{ghanshyamc,chirag}@iisc.ac.in

Abstract. Co-linear chaining is a widely used technique in sequence
alignment tools that follow seed-filter-extend methodology. It is a math-
ematically rigorous approach to combine short exact matches. For co-
linear chaining between two sequences, efficient subquadratic-time chain-
ing algorithms are well-known for linear, concave and convex gap cost
functions [Eppstein et al. JACM’92]. However, developing extensions of
chaining algorithms for directed acyclic graphs (DAGs) has been chal-
lenging. Recently, a new sparse dynamic programming framework was
introduced that exploits small path cover of pangenome reference DAGs,
and enables efficient chaining [Makinen et al. TALG’19, RECOMB’18].
However, the underlying problem formulation did not consider gap cost
which makes chaining less effective in practice. To address this, we
develop novel problem formulations and optimal chaining algorithms that
support a variety of gap cost functions. We demonstrate empirically the
ability of our provably-good chaining implementation to align long reads
more precisely in comparison to existing aligners. For mapping simulated
long reads from human genome to a pangenome DAG of 95 human hap-
lotypes, we achieve 98.7% precision while leaving < 2% reads unmapped.

Implementation: https://github.com/at-cg/minichain.

Keywords: Variation graph · Sparse dynamic programming ·
Minimum path cover · Pangenome

1 Introduction

A significant genetic variation rate among genomes of unrelated humans, plus the
growing availability of high-quality human genome assemblies, has accelerated
computational efforts to use pangenome reference graphs for common genomic
analyses [25,41,42]. The latest version of industry-standard DRAGEN software by
Illumina now uses a pangenome graph for mapping reads in highly polymorphic
regions of a human genome [15]. For surveys of the recent algorithmic develop-
ments in this area, see [2,7,11,34]. Among the many computational tasks associ-
ated with pangenome graphs, sequence-to-graph alignment remains a core compu-
tational problem. Accurate alignments are required for variation analysis and con-
struction of pangenome graph from multiple genomes [10,23]. Sequence-to-graph
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alignment is also useful in other applications including genome assembly [14] and
long-read error correction [40].

Suppose a pangenome graph is represented as a character labeled DAG
G(V,E) where each vertex v ∈ V is labeled with a character from alphabet
{A, C, G, T}. The sequence-to-DAG alignment problem seeks a path in G that
spells a string with minimum edit distance from the input query sequence. An
O(m|E|) time algorithm for this problem has long been known, where m is
the length of input sequence [30]. Conditioned on Strong Exponential Time
Hypothesis (SETH), the O(m|E|) algorithm is already worst-case optimal up to
sub-polynomial improvements because algorithms for computing edit distance in
strongly sub-quadratic time cannot exist under SETH [3]. As a result, heuristics
must be used for alignment of high-throughput sequencing data against large
DAGs to obtain approximate solutions in less time and space.

All practical long read to DAG aligners that scale to large genomes rely on
seed-filter-extend methodology [9,23,26,28,35]. The first step is to find a set of
anchors which indicate short exact matches, e.g., k-mer or minimizer matches,
between substrings of a sequence to subpaths in a DAG. This is followed by a
clustering step that identifies promising subsets of anchors which should be kept
within the alignments. Different aligners implement this step in different ways.
Co-linear chaining is a mathematically rigorous approach to do clustering of
anchors. It is well studied for the case of sequence-to-sequence alignment [1,12,
13,17,27,29,33], and is widely used in present-day long read to reference sequence
aligners [19,22,36,38,39]. For the sequence-to-sequence alignment case, the input
to the chaining problem is a set of N weighted anchors where each anchor is a
pair of intervals in the two sequences that match exactly. A chain is defined
as an ordered subset of anchors such that their intervals appear in increasing
order in both sequences (Fig. 1a). The desired output of the co-linear chaining
problem is the chain with maximum score where score of a chain is calculated by
the sum of weights of the anchors in the chain minus the penalty corresponding
to gaps between adjacent anchors. For linear gap costs, this problem is solvable
in O(N log N) time by using range-search queries [1].

Solving chaining problem for sequence-to-DAG alignment remained open
until Makinen et al. [28] introduced a framework that enables sparse dynamic
programming on DAGs. Suppose K denotes cardinality of a minimum-sized set
of paths such that every vertex is covered by at least one path. The algorithm
in [28] works by mimicking the sequence-to-sequence chaining algorithm on each
path of the minimum path cover. After a polynomial-time indexing of the DAG,
their algorithm requires O(KN log N + K|V |) time for chaining. Parameteriz-
ing the time complexity in terms of K is useful because K is expected to be
small for pangenome DAGs. This result was further improved in [26] with an
O(KN log KN) time algorithm. However, the problem formulations in these
works did not include gap cost. Without penalizing gaps, chaining is less effec-
tive [17]. A challenge in enforcing gap cost is that measuring gap between two
loci in a DAG is not a simple arithmetic operation like in a sequence [21].

We present novel co-linear chaining problem formulations for sequence-to-
DAG alignment that penalize gaps, and we develop efficient algorithms to solve
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Fig. 1. Illustration of co-linear chaining for (a) sequence-to-sequence and (b) sequence-
to-DAG alignment. It is assumed that vertices of DAG are labeled with strings. Pairs of
rectangles joined by dotted arrows denote anchors (exact matches). A subset of these
anchors that form a valid chain are shown in gray.

them. We carefully design gap cost functions such that they enable us to adapt
the sparse dynamic programming framework of Makinen et al. [28], and solve
the chaining problem optimally in O(KN log KN) time. We implemented and
benchmarked one of our proposed algorithms to demonstrate scalability and
accuracy gains. Our experiments used human pangenome DAGs built by using
94 high quality de novo haplotype assemblies provided by the Human Pangenome
Reference Consortium [25] and CHM13 human genome assembly provided by the
Telomere-to-Telomere consortium [31]. Using a simulated long read dataset with
0.5× coverage, we demonstrate that our implementation achieves the highest
read mapping precision (98.7%) among the existing methods (Minigraph: 98.0%,
GraphAligner: 97.0% and GraphChainer: 95.1%). In this experiment, our imple-
mentation used 24 min and 25 GB RAM with 32 threads, demonstrating that
the time and memory requirements are well within practical limits.

2 Concepts and Notations

2.1 Co-linear Chaining on Sequences Revisited

Let R and Q be two sequences over alphabet Σ = {A,C,G, T}. Let M [1..N ]
be an array of anchors. Each anchor is denoted using an interval pair
([x..y], [c..d]) with the interpretation that substring R[x..y] matches substring
Q[c..d], x, y, c, d ∈ N. Anchors are typically either fixed-length matches (e.g.,
using k-mers) or variable-length matches (e.g., maximal exact matches). Suppose
function weight assigns weights to the anchors. The co-linear chaining problem
seeks an ordered subset S = s1s2 · · · sp of anchors from M such that

– for all 2 ≤ j ≤ p, sj−1 precedes (≺) sj , i.e., sj−1.y < sj .x and sj−1.d < sj .c.
– S maximises chaining score, defined as

∑p
j=1 weight(sj)−

∑p
j=2 gap(sj−1, sj).

Define gap(sj−1, sj) as f(gapR(sj−1, sj), gapQ(sj−1, sj)), where gapR

(sj−1, sj) = sj .x − sj−1.y − 1, gapQ(sj−1, sj) = sj .c − sj−1.d − 1 and
f(g1, g2) = g1 + g2.

The above problem can be trivially solved in O(N2) time and O(N) space.
First sort the anchors by the component M [·].x, and let T [1..N ] be an
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integer array containing a permutation of set [1..N ] which specifies the sorted
order, i.e., M [T [1]].x ≤ M [T [2]].x ≤ . . . ≤ M [T [N ]].x. Define array C[1..N ]
such that C[j] is used to store a partial solution, i.e., the score of an opti-
mal chain that ends at anchor M [j]. Naturally, the final score will be obtained
as maxj C[j]. Array C can be filled by using the following dynamic program-
ming recursion: C[T [j]] = weight(M [T [j]]) + max

(
0,maxi:M [i]≺M [T [j]](C[i] −

gap(M [i],M [T [j]]))
)
, in increasing order of j. A straight-forward way of com-

puting C[T [j]] will need an O(N) linear scan of arrays C and M , resulting in
overall O(N2) time. However, the O(N2) algorithm can be optimized to use
O(N log N) time by using the following search tree data structure (ref. [4]).

Lemma 1. Let n be the number of leaves in a balanced binary search tree, each
storing a (key, value) pair. The following operations can be supported in O(log n)
time:

– update(k, val): For the leaf w with key = k, value(w) ←− max(value(w), val).
– RMQ(l, r): Return max{value(w) | l < key(w) < r}. This is range maximum

query.

Moreover, given n (key, value) pairs, the balanced binary search tree can be con-
structed in O(n log n) time and O(n) space.

The dynamic programming recursion for array C[1..N ] can be computed more
efficiently using range maximum queries [1,12]. To achieve this, a search tree
needs to be initialized, updated and queried properly (Algorithm 1). Note that
argmaxi:M [i]≺M [j](C[i] − gap(M [i],M [j])) is equal to argmaxi:M [i]≺M [j](C[i] +
M [i].y + M [i].d). Accordingly, we compute optimal C[j] in Line 11 by using
an O(log N) time RMQ operation of the form M [i].d ∈ (0,M [j].c) that returns
maximum C[i] + M [i].y + M [i].d from search tree T . The algorithm performs
N update and N RMQ operations over search tree T of size at most N , thus
solving the problem in O(N log N) time and O(N) space.

Algorithm 1: O(N log N) time chaining between two sequences
Input: Array of weighted anchors M [1..N ]
Output: Array C[1..N ] such that C[j] = score of an optimal chain that ends at M [j]

1 Initialize search tree T using keys {M [j].d | 1 ≤ j ≤ N} and values −∞
2 Initialize C[j] as weight(M [j]), for all j ∈ [1, N ]
3 /* Create array Z that stores tuples of the form (pos, task, anchor), where pos ∈ N,

anchor ∈ [1, N ] and task ∈ {0, 1}. task is either 0 or 1 for querying or updating the search
tree T respectively.*/

4 for j ←− 1 to N do
5 Z.push(M [j].x, 0, j)
6 Z.push(M [j].y, 1, j)

7 end
8 for z ∈ Z in lexicographically ascending order based on the key (pos, task) do
9 j ←− z.anchor, wt ←− weight(M [j])

10 if z.task = 0 then
11 C[j] ←− max(C[j], wt + T .RMQ(0, M [j].c) − M [j].x − M [j].c + 2)
12 else
13 T .update(M [j].d, C[j] + M [j].y + M [j].d)
14

15 end
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2.2 Sparse Dynamic Programming on DAGs Using Minimum Path
Cover

Our work builds on the work of Makinen et al. [28], who provided a parameterized
algorithm to extend co-linear chaining on DAGs without considering gap costs.
In the following, we present useful notations and a summary of their algorithm.

In a weighted string-labeled DAG G(V,E, σ), function σ : V → Σ+ labels
each vertex v ∈ V with string σ(v). Edge v → u has length |σ(v)|. The length
of a path in G is the sum of the lengths of the edges traversed in the path. Let
Q ∈ Σ+ be a query sequence. Let M be an array of N anchors. An anchor is
denoted using a 3-tuple of the form (v, [x..y], [c..d]) with the interpretation that
substring σ(v)[x..y] in DAG G matches substring Q[c..d], where x, y, c, d ∈ N and
v ∈ V (Fig. 2). A path cover of DAG G(V,E) is a set of paths in G such that
every vertex in V belongs to at least one path. A minimum path cover (MPC) is
one having the minimum number of paths. If K denotes the size of MPC of DAG
G, then MPC can be computed either in O(K|E| log |V |) [28] or O(K3|V |+ |E|)
[5] time.

To extend co-linear chaining for sequence-to-DAG alignment, we can use a
search tree containing keys equal to the sequence coordinates of anchors, similar
to Algorithm 1. However, the order in which the search tree should be queried
and updated is not trivial with DAGs. Makinen et al. [28] suggested decomposing
the DAG into a path cover {P1, ..., PK}, and then performing the computation
only along these paths. The algorithm uses K search trees {T1, ..., TK}, one per
path. Search tree Ti maintains M [·].d as keys and partial solutions C[·] as values
of all the anchors that lie on path Pi. Similar to Algorithm 1, the K search trees
need to be updated and queried in a proper order. Suppose R(v) ⊆ V denotes the
set of vertices which can reach v using a path in G. Set R(v) always includes v.
Define last2reach(v, i) as the last vertex on path Pi that belongs to R(v), if one
exists. Also define paths(v) as {i : Pi covers v}. Naturally last2reach(v, i) = v iff
i ∈ paths(v). The main algorithm works by visiting vertices u of G in topological
order, and executing the following two tasks:

– Compute optimal scores of all anchors in vertex u: First, process all
the anchors for which M [j].v = u in the same order that is used for co-linear
chaining on two sequences (Algorithm 1). While performing an update task,
update all search trees Ti, for all i ∈ paths(u). Similarly, while performing a
range query, query search trees Ti to maximize C[j].

– Update partial scores of selected anchors outside vertex u: Next,
for all pairs (w, i), w ∈ V, i ∈ [1,K] such that last2reach(w, i) = u and
i /∈ paths(w), query search tree Ti to update score C[j] of every anchor M [j]
for which M [j].v = w.

Based on the above tasks, once the algorithm reaches v ∈ V in the topologi-
cal ordering, the scores corresponding to anchors in vertex v would have been
updated from all other vertices that reach v. A well-optimized implementation of
this algorithm uses O(KN log KN) time [26]. This result assumes that the DAG
is preprocessed, i.e., path cover and last2reach information is precomputed in
O(K3|V | + K|E|) time.
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3 Problem Formulations

We develop six problem formulations for co-linear chaining on DAGs with differ-
ent gap cost functions. In each problem, we seek an ordered subset S = s1s2 · · · sp

of anchors from array M such that

– for all 2 ≤ j ≤ p, sj−1 precedes (≺) sj , i.e., the following three conditions
are satisfied (i) sj−1.d < sj .c, (ii) sj−1.v ∈ R(sj .v), and (iii) sj−1.y < sj .x if
sj−1.v = sj .v.

– S maximizes the chaining score defined as
∑p

j=1 weight(sj) −
∑p

j=2 gap(sj−1, sj). Define gap(sj−1, sj) as f(gapG(sj−1, sj), gapS(sj−1, sj)),
where functions gapG and gapS will be used to specify gap cost in the DAG
and the query sequence respectively.

M11

M9.dM9.c

M9.yM9.x

M8

M4

M12

M5

ATCGACGTA TCAGATCGGTAC

GCTAGCAAATCCGCCATACTACATA

GTCGAACGACAACATGTCCATAACATATTCCATACACCTGATCGACTTCAGTACGGTACGCATAGCTATAGCAAGCATGCCAAAT

M15
M14M13

M10M9

M7
M3

M6

M2

M1

GCATGCCAAATGCATGCAGATCACC

DAG

Sequence

v0

v1

v4v3

v2 v5
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9
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Fig. 2. An example showing multiple anchors as input for co-linear chaining. The
DAG has a minimum path cover of size two {(v0, v1, v3, v4), (v0, v2, v3, v5)}. Anchors
M1,M4,M5,M9,M10,M11,M12 form a valid chain. The interval coordinates of anchor
M9 in the sequence and the DAG are annotated for illustration.

gapS(sj−1, sj) equals sj .c−sj−1.d−1, i.e., the count of characters in sequence
Q that occur between the two anchors. However, defining gapG is not as straight-
forward because multiple paths may exist from sj−1.v to sj .v, and the correct
alignment path is unknown. We formulate and solve the following problems:

Problems 1a–1c: gapG(sj−1, sj) is computed by using the shortest path from
sj−1.v to sj .v. Suppose D(v1, v2) denotes the shortest path length from vertex
v1 to v2 in G. We seek the optimal chaining score when

gapG(sj−1, sj) = D(sj−1.v, sj .v) + (sj .x − sj−1.y − 1).

The above expression calculates the count of characters in the string path
between anchors sj−1 and sj . Define Problems 1a, 1b and 1c using f(g1, g2) =
g1 + g2, f(g1, g2) = max(g1, g2) and f(g1, g2) = |g1 − g2| respectively. These
definitions of function f are motivated from the previous co-linear chaining for-
mulations for sequence-to-sequence alignment [1,29].
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Problems 2a–2c: gapG(sj−1, sj) is measured using a path from sj−1.v to
sj .v that is chosen based on path cover {P1, ..., PK} of DAG G. For each
i ∈ paths(sj−1.v), consider the following path in G that starts from source sj−1.v
along the edges of path Pi till the middle vertex last2reach(sj .v, i), and finally
reaches destination sj .v by using the shortest path from last2reach(sj .v, i) to
sj .v. Among |paths(sj−1.v)| such possible paths, measure gapG(sj−1, sj) using
the path which minimizes gap(sj−1, sj) = f(gapG(sj−1, sj), gapS(sj−1, sj)).
More precisely,
gapG(sj−1, sj) equals the element of the set

{dist2begin(μ, i) − dist2begin(sj−1.v, i) + D(μ, sj .v) + sj .x

−sj−1.y − 1 | i ∈ paths(sj−1.v), μ = last2reach(sj .v, i)}

which minimizes gap(sj−1, sj), where dist2begin(v, i) denotes the length of sub-
path of path Pi from the start of Pi to v. We will show that this definition
enables significantly faster parameterized algorithms with respect to K. Again,
define Problems 2a, 2b and 2c with f(g1, g2) = g1 + g2, f(g1, g2) = max(g1, g2)
and f(g1, g2) = |g1 − g2| respectively.

4 Proposed Algorithms

Our algorithm to address Problems 1a-1c uses a brute-force approach that eval-
uates all O(N2) pairs of anchors. We use single-source shortest distances com-
putations for measuring gaps.

Lemma 2. Problems 1a, 1b and 1c can be solved optimally in O(N(|V | + |E| +
N)) time.

Proof. We will process anchors in array M [1..N ] one by one in a topological
order of M [·].v. If there are two anchors with equal component M [·].v, then
the anchor with lower component M [·].x is processed first. Suppose DAG G′

is obtained by reversing the edges of G. While processing anchor M [j], we
will compute partial score C[j], i.e., the optimal score of a chain that ends
at anchor M [j]. We identify all the anchors that precede M [j] using a depth-
first traversal starting from M [j].v in G′. Next, we compute single-source short-
est distances from M [j].v in G′ which requires O(|V | + |E|) time for DAGs
[8]. Finally, C[j] is computed as weight(M [j]) + max

(
0,maxi:M [i]≺M [j](C[i] −

f(gapG(M [i],M [j]), gapS(M [i],M [j]))
)

in O(N) time. �	

The above algorithm is unlikely to scale to a mammalian dataset. We leave
it open whether there exists a faster algorithm to solve Problems 1a-c. Next,
we propose O(KN log KN) time algorithm for addressing Problem 2a, assuming
O(K3|V |+K|E|) time preprocessing is done for DAG G. The preprocessing stage
is required to compute (a) an MPC {P1, . . . , PK} of G, (b) last2reach(v, i), (c)
D(last2reach(v, i), v) and (d) dist2begin(v, i), for all v ∈ V, i ∈ [1,K].

Lemma 3. The preprocessing of DAG G(V,E, σ) can be done in O(K3|V | +
K|E|) time.
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Proof. An MPC {P1, . . . , PK} can be computed in O(K3|V | + |E|) time [5]. To
compute the remaining information, we will use dynamic programming algo-
rithms that process vertices ∈ V in a fixed topological order. Suppose func-
tion rank : V → [1, |V |] assigns rank to each vertex based on its topological
ordering. Let N (v) denote the set of adjacent in-neighbors of v. Similar to [28],
last2reach(v, i) is computed in O(K|V | + K|E|) time for all v ∈ V, i ∈ [1,K].
Initialize last2reach(v, i) = 0 for all v and i. Then, use the following recursion:

last2reach(v, i) =

{
rank(v) if i ∈ paths(v)
maxu:u∈N (v) last2reach(u, i) otherwise

At the end of the algorithm, last2reach(v, i) = 0 will hold for only those
pairs (v, i) for which last2reach(v, i) does not exist. Next, we compute
D(last2reach(v, i), v), for all v ∈ V, i ∈ [1,K], also in O(K|V | + K|E|)
time. Initialize D(last2reach(v, i), v) = ∞ for all v and i. Then, update
D(last2reach(v, i), v)

=

{
0 if last2reach(v, i) = v

minu:u∈N (v),last2reach(u,i)=last2reach(v,i) D(last2reach(u, i), u) + |σ(u)| otherwise

Finally, dist2begin(v, i), for all v ∈ V, i ∈ [1,K] is computed by linearly scanning
K paths in O(K|V |) time. �	

Lemma 4. Assuming DAG G(V,E, σ) is preprocessed, Problem 2a can be solved
in O(KN log KN) time and O(KN) space.

Proof. The choice of gap cost definition in Problem 2a allows us to make effi-
cient use of range-search queries. Algorithm 2 gives an outline of the proposed
dynamic programming algorithm. Similar to the previously discussed algorithms
(Sect. 2.1), it also saves partial scores in array C[1..N ]. We use K search trees,
one per path. Search tree Ti maintains partial scores C[ ] of those anchors M [j]
whose coordinates on DAG are covered by path Pi. Each search tree is initialized
with keys M [j].d, and values −∞. Subsequently, K search trees are queried and
updated in a proper order.

– If K = 1, i.e., when DAG G is a linear chain, the condition in Line 6 is
always satisfied and the term D(v,M [j].v) (Line 18) is always zero. In this
case, Algorithm 2 works precisely as the co-linear chaining algorithm on two
sequences (Algorithm 1).

– For K > 1, we use last2reach information associated with vertex M [j].v
(Lines 9-11). This ensures that partial score C[j] is updated from scores of
the preceding anchors on path Pi for all i ∈ [1,K]\paths(M [j].v).

All the query and update operations done in the search trees together
use O(KN log N) time because the count of these operations is bounded by
O(KN), and the size of each tree is ≤ N . The sorting step in Line 15 requires
O(KN log KN) time to sort O(KN) tuples. The overall space required by K
search trees and array Z is O(KN). �	
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Algorithm 2: O(KN log KN) time chaining algorithm for Problem 2a
Input: Array of weighted anchors M [1..N ], preprocessed DAG G(V, E, σ)
Output: Array C[1..N ] such that C[j] = score of an optimal chain that ends at M [j]

1 Initialize search tree Ti, for all i ∈ [1, K] using keys {M [j].d | 1 ≤ j ≤ N} and values −∞
2 Initialize C[j] as weight(M [j]), for all j ∈ [1, N ]
3 /* Create array Z that stores tuples of the form (v, pos, task, anchor, path), where v ∈ V ,

pos ∈ N, task ∈ {0, 1}, anchor ∈ [1, N ] and path ∈ [1, K].*/
4 for j ←− 1 to N do
5 for i ←− 1 to K do
6 if i ∈ paths(M [j].v) then
7 Z.push(M [j].v, M [j].x, 0, j, i)
8 Z.push(M [j].v, M [j].y, 1, j, i)

9 else if last2reach(M [j].v, i) exists then
10 v ←− last2reach(M [j].v, i)
11 Z.push(v, |σ(v)| + 1, 0, j, i)

12

13 end

14 end
15 for z ∈ Z in lexicographically ascending order based on the key (rank(v), pos, task) do
16 j ←− z.anchor, i ←− z.path, v ←− z.v, wt ←− weight(M [j])
17 if z.task = 0 then
18 C[j] ←− max(C[j], wt + Ti.RMQ(0, M [j].c) − M [j].x − dist2begin(v, i) −

D(v, M [j].v) − M [j].c + 2)
19 else
20 Ti.update(M [j].d, C[j] + M [j].y + dist2begin(v, i) + M [j].d)
21

22 end

For simplicity of notations, we have not allowed an anchor to span two or
more connected vertices in a DAG, but the proposed framework can be easily
generalized to handle this [26,28]. Finally, we design algorithms for Problems
2b and 2c by using 2-dimensional RMQs. We summarize the result below. The
proof is provided in the expanded version of this paper [6].

Lemma 5. Assuming DAG G(V,E, σ) is preprocessed, Problems 2b and 2c can
be solved in O(KN log2 N + KN log KN) time and O(KN log N) space.

5 Implementation Details

Among the proposed algorithms, Algorithm 2 has the best time complexity.
We implemented this algorithm in C++, and developed a practical long read
alignment software Minichain.

Pangenome Graph Representation: A path in pangenome reference graph
G(V,E, σ) spells a sequence in a single orientation, whereas a read may be sam-
pled from either the same or the opposite orientation due to the double-stranded
nature of DNA. To address this internally in Minichain, for each vertex v ∈ V ,
we also add another vertex v̄ whose string label is the reverse complement of
string σ(v). For each edge u → v ∈ E, we also add the complementary edge
v̄ → ū. This process doubles the count of edges and vertices.

Optimization for Whole-Genome Pangenome Graphs: A pan-genome
reference graph associated with a complete human genome is a union of weakly



Sequence to Graph Alignment Using Gap-Sensitive Chaining 67

connected components, one per chromosome, because there is no edge which
connects two chromosome components. We actually maintain two components
per chromosome, one being the reverse complement of the other. During both
preprocessing and chaining stages of the proposed algorithms, each component is
treated independently. The parameter K in our time complexity results is deter-
mined by the maximum K value among the components. We use GraphChainer
implementation [26] to compute minimum path cover and range queries. We also
optimize runtime by performing parallel preprocessing of different components
(Lemma 3) using multiple threads.

Computing Multiple Best Chains and Confidence Scores: When a read
is sampled from a repetitive region of a genome, computing read’s true path
of origin becomes challenging. Practical methods often report more than one
alignment per read in such cases. The highest-scoring alignment is marked as
primary alignment, and the remaining are marked as secondary. Additionally,
based on the score difference between the primary and the highest-scoring sec-
ondary alignment, a confidence score ∈ [0, 60] is provided as mapping quality that
represents the likelihood that the primary alignment is correct [24]. In Minichain,
we also implement an algorithm to identify multiple high-scoring chains so that
multiple base-to-base alignment records can be reported to a user. Algorithm 2
returns partial scores C[1..N ] in the end. We perform backtracking from anchor
argmaxj C[j] to compute the optimal chain. The anchors involved in this chain
are marked as visited. Iteratively, we check presence of another chain (a) whose
score is ≥ τ ·maxj C[j], where τ ∈ [0, 1] is a user-specified threshold with default
value 0.95, and (b) none of the anchors in the chain are previously visited. We
stop when no additional chains exist that satisfy these conditions.

Computing Anchors and Final Base-to-Base Alignments: In Minichain,
we use the seeding and base-to-base alignment methods from Minigraph [23]. The
seeding method in Minigraph works by identifying common minimizers between
query sequence and string labels σ(v) of graph vertices. Given a pre-defined
ordering of all k-mers and w consecutive k-mers in a sequence, (w, k)-minimizer is
the smallest k-mer among the w k-mers [37]. The common minimizer occurrences
between a query and vertex labels form anchors. In our experiments, we use same
parameters k = 17, w = 11 as Minigraph. The weight of each anchor is k times
a user-specified constant which is set to 200 by default. Algorithm 2 is used to
compute the best chains and discard those anchors which do not contribute to
these chains. Finally, we return the filtered anchors to Minigraph’s alignment
module to compute base-to-base alignments [43].

6 Experiments

Benchmark Datasets: We built string-labeled DAGs of varying sizes by using
Minigraph v0.19 [23]. Each DAG is built by using a subset of 95 publicly avail-
able haplotype-resolved human genome assemblies [25,31]. In Minigraph, a DAG
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is iteratively constructed by aligning each haplotype assembly to an intermedi-
ate graph, and augmenting additional vertices and/or edges for each structural
variant observed. We disabled inversion variants by using --inv=no parameter
to avoid introducing cycles in the DAG. CHM13 human genome assembly [31] is
used as the starting reference, and we added other haplotype assemblies during
DAG construction. In the CHM13 assembly, the first 24 contigs represent indi-
vidual chromosome (1–22, X, Y) sequences, and the last 25th contig represents
mitochondrial DNA. Using this data, we constructed five DAGs, labeled as 1H,
10H, 40H, 80H and 95H respectively. In each of these DAG labels, the integer
prefix reflects the count of haplotype assemblies present in the DAG. Proper-
ties of these DAGs are shown in Table 1. Parameter K, i.e., the size of MPC,
is presented as a range because different connected components in a DAG have
different MPCs. For all DAGs, note that the maximum K is � |V |. We used
PBSIM2 v2.0.1 [32] to simulate long reads from CHM13 human assembly. For
each simulated read and each DAG, we know the true string path where the read
should align. PBSIM2 input parameters were set such that we get sequencing
error rate and N50 read length as 5% and 10 kbp respectively. The commands
used to run the tools are available in the expanded version of this paper [6].

Table 1. Properties of DAGs used in our experiments. Total sequence length indicates
the sum of length of string labels of all vertices in the DAG.

DAG |V | |E| No. of structural
variants

N50 length of
vertex labels (kbp)

Total sequence
length (Gbp)

K
(min-max)

1H 25 0 0 150, 617 3.11 1–1

10H 141, 755 203, 160 61, 430 225 3.15 1–9

40H 340, 451 489, 612 149, 186 126 3.23 1–20

80H 553, 271 797, 528 244, 282 85 3.31 1–29

95H 611, 949 882, 739 270, 815 78 3.34 1–35

Evaluation Methodology: Alignment output of a read specifies the string
path in the input DAG against which the read is aligned. An appropriate eval-
uation criteria is needed to classify the reported string path as either correct
or incorrect by comparing it to the true path. We followed a similar criteria
that was used in previous studies [22,23]. First, the reported string path should
include only those vertices which correspond to CHM13 assembly, i.e., it should
not span an edge augmented from other haplotypes (Fig. 3). Second, the reported
interval in CHM13 assembly should overlap with the true interval, and the over-
lapping length should exceed ≥ 10% length of the union of the true and the
reported intervals. A correct alignment should satisfy both the conditions. We
use paftools [22] which implements this evaluation method. All our experiments
were done on AMD EPYC 7742 64-core processor with 1 TB RAM. We used 32
threads to run each aligner because all the tested tools support multi-threading
by considering each read independently. Wall clock time and peak memory usage
were measured using /usr/bin/time Linux command.
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Fig. 3. Illustration of the evaluation criteria. Among the three reported paths above,
only (C) is correct.

Performance Comparison with Existing Algorithms: We compared
Minichain (v1.0) to three existing sequence-to-DAG aligners: Minigraph v0.19
[23], GraphAligner v1.0.16 [35], and GraphChainer v1.0 [26]. Minigraph uses a
two-stage co-linear chaining approach. The first stage ignores edges in the graph
and solves co-linear chaining between query sequence and vertex labels. The sec-
ond stage combines the vertex-specific-chains. In contrast, GraphAligner does
not use co-linear chaining and instead relies on its own clustering heuristics.
GraphChainer solves co-linear chaining on DAG without penalizing gaps. All the
aligners, except GraphChainer, also compute mapping quality (confidence score)
for each alignment. We excluded optimal sequence-to-DAG aligners (e.g., [16,18])
because they do not scale to DAGs built by using entire human genomes.

We evaluated accuracy and runtime of Minichain using three DAGs 1H, 10H
and 95H (Tables 2, 3 and 4). While using DAG 1H, we also tested Minimap2 v2.24
[22], a well-optimized sequence-to-sequence aligner, by aligning reads directly to
CHM13 genome assembly. The results show that Minichain consistently achieves
the highest precision among the existing sequence-to-DAG aligners. It aligns a
higher fraction of reads compared to Minigraph. The gains are also visible when
mapping quality (MQ) cutoff 10 is used to filter out low-confidence alignments.
GraphAligner and GraphChainer align 100% reads consistently, but this is sup-
plemented with much higher fraction of incorrectly aligned reads. Both Mini-
graph and Minichain do not align 100% reads. This likely happens because the
seeding method used in these two aligners filters out the most frequently occur-
ring minimizers from DAG to avoid processing too many anchors. This can leave
several reads originating from long-repetitive genomic regions as unaligned [20].

Among the four aligners, Minigraph performs the best in terms of runtime.
Runtime of Minichain increases for DAG 95H because of higher value of K.
However, we expect that this can be partly addressed with additional improve-
ments in the proposed chaining algorithm, e.g., by dynamically deleting the
anchors from search trees whose gap from all the remaining unprocessed anchors
exceeds an acceptable limit. Overall, the results demonstrate practical advan-
tage of Minichain for accurate long-read alignment to DAGs. Superior accuracy
of Minichain is also illustrated using precision-recall plots in Fig. 4.

Impact of Increasing DAG Size on Accuracy: Alignment accuracy gen-
erally deteriorates as count of haplotypes increases in DAGs for all the tested
aligners. For each read that was not aligned correctly, we checked if the corre-
sponding reported string path overlaps with the true interval (Fig. 3, case A).
Such reads are aligned to correct region in the DAG but the reported path uses
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Table 2. Performance comparison of long read aligners using DAG 1H.

Minichain Minigraph GraphAligner GraphChainer Minimap2

Indexing time (sec) 65 65 395 458 55

Alignment time (sec) 205 104 6298 6714 133

Memory usage (GB) 20.06 19.66 38.12 126.14 12.48

Unaligned reads 0.94% 2.11% 0% 0% 0%

Incorrect aligned reads 0.58% 0.66% 1.06% 1.33% 0.56%

Unaligned reads (MQ≥10) 3.89% 5.82% 0.80% 0% 2.29%

Incorrect aligned reads (MQ≥10) 0.02% 0.11% 0.53% 1.33% 0.0013%

Table 3. Performance comparison of long read aligners using DAG 10H.

Minichain Minigraph GraphAligner GraphChainer

Indexing time (sec) 67 66 321 537

Alignment time (sec) 610 132 5479 9642

Memory usage (GB) 23.15 23.16 38.41 143.94

Unaligned reads 1.17% 2.17% 0% 0%

Incorrect aligned reads 0.80% 1.20% 1.55% 2.10%

Unaligned reads (MQ≥10) 4.03% 5.88% 0.28% 0%

Incorrect aligned reads (MQ≥10) 0.20% 0.34% 0.99% 2.10%

one or more augmented edges. The remaining fraction of incorrectly aligned reads
align to wrong region in the DAG. We observe that the fraction of incorrectly-
aligned reads which align to correct region in DAG increases with increasing
count of haplotypes (Fig. 5). This happens because the count of alternate paths
increases combinatorially with more number of haplotypes which makes precise
alignment of a read to its path of origin a challenging problem. Addressing this
issue requires further algorithmic improvements.

Table 4. Performance comparison of long read aligners using DAG 95H.

Minichain Minigraph GraphAligner GraphChainer

Indexing time (sec) 77 71 342 763

Alignment time (sec) 1414 154 5695 17336

Memory usage (GB) 24.75 24.76 40.79 192.36

Unaligned reads 1.62% 2.23% 0% 0%

Incorrect aligned reads 1.31% 1.96% 3.01% 4.92%

Unaligned reads (MQ≥10) 4.75% 6.26% 0.88% 0%

Incorrect aligned reads (MQ≥10) 0.56% 0.89% 2.38% 4.92%
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Fig. 4. Precision-recall curves obtained by using different aligners. X-axis indicates
percentage of incorrectly aligned reads in log-scale. These curves are obtained by setting
different mapping quality cutoffs ∈ [0, 60]. GraphChainer curve is a single point because
it reports fixed mapping quality 60 in all alignments.

Fig. 5. The fraction of incorrectly aligned reads is shown using DAGs 1H, 10H, 40H,
80H and 95H. Each incorrectly-aligned read is further classified as aligned to either
a wrong or a correct region in the DAG based on whether the reported string path
overlaps with the true string path (e.g., cases A, B in Fig. 3).
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