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Preface

This volume contains 11 extended abstracts and 33 short abstracts representing a total
of 44 proceedings papers presented at the 27th International Conference on Research
in Computational Molecular Biology (RECOMB 2023), which was hosted by Bilkent
University, and took place at İstanbul, Turkey on April 16–19, 2023. These 44 contri-
butions were selected using a rigorous peer-review process from 188 submissions to the
conference. Each of the submissions received reviews from at least three members of the
Program Committee (PC) or their designated sub-reviewers. After the initial review pro-
cess, all submissions were opened for discussion by their reviewers and the conference
program chair through the EasyChair Conference Management System. Final decisions
were made based on the reviewers’ assessments with some adjustment to ensure a broad
coverage of bioinformatics research topics in the conference program.

RECOMB 2023 offered the authors the option to publish full extended papers in the
conference proceedings, or to publish short abstracts in the proceedings while pursuing
the publication of the full paper through a different venue. The authors of a subset
of accepted papers were invited to submit revised manuscripts to be considered for
publication in two partner journals, Cell Systems and Genome Research. All papers
that appear as extended abstracts in the proceedings were invited for submission to the
RECOMB 2023 special issue in the Journal of Computational Biology.

RECOMB 2023 also featured highlight talks of computational biology papers pub-
lished in journals 18 months prior to the conference. Of the 60 submissions to the
highlights track, eight were selected for oral presentation at RECOMB.

In addition to the presentations of these contributed papers, RECOMB 2023 featured
six invited keynote talks given by leading scientists:

– İvet Bahar (Stony Brook University, USA, the EMBO Keynote Lecture)
– Richard Durbin (Wellcome Trust Sanger Institute and University of Cambridge, UK)
– Tuuli Lappalainen (New York Genome Center, USA; KTH Royal Institute of

Technology; and SciLifeLab, Sweden)
– Fabian Theis (Helmholtz Munich, Germany and Wellcome Trust Sanger Institute,

UK)
– Ewan Birney (European Bioinformatics Institute, UK)
– Sohini Ramachandran (Brown University, USA)

In addition, fourRECOMBsatellitemeetings tookplace in parallel directly preceding
the main RECOMB meeting, including:

– RECOMB-Seq 2023: The 13th RECOMB Satellite Conference on Biological
Sequence Analysis

– RECOMB-CCB 2023: The 15th RECOMB Satellite Workshop on Computational
Cancer Biology
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– RECOMB-CG 2023: The 20th RECOMB Satellite Conference on Comparative
Genomics

– RECOMB-Genetics 2023: The 11th RECOMBSatelliteWorkshop onComputational
Methods in Genetics

The organization of this conference would not have been possible without the hard
work of many colleagues who donated their time, efforts, and expertise. I am especially
grateful to the local organizing committee: the Conference Co-chairs CanAlkan (Bilkent
University) and Attila Gürsoy (Koç University), A. Ercüment Çiçek (Bilkent University)
for publicity, Tunca Doğan (Hacettepe University) for registration, Arzucan Özgür
(Boğaziçi University) for satellite meetings, and Öznur Taştan (Sabanci University)
for publications, as well as the Student Organization Committee who volunteered their
time and efforts. I am also grateful to many others who helped the organization of the
conference butwhose nameswere not yet known to us at the time of this writing. I want to
thank the Poster Co-chairs, Iman Hajirasouliha (Weill Cornell Medicine) and Oğuzhan
Külekçi (Istanbul Technical University), Keynotes Chair, Gamze Gürsoy (Columbia
University), Highlights Chair, Ferhat Ay (La Jolla Institute for Immunology Satellites),
and Travel Fellowship Co-chairs, Gürkan Bebek (Case Western Reserve University)
and Arif Harmancı (University of Texas Health Science Center at Houston). I also want
to thank the chairs of the Satellite meetings, including Co-chairs of RECOMB-Seq,
Broňa Brejová (Comenius University in Bratislava) and A. Ercüment Çiçek (Bilkent
University), Co-chairs of RECOMB-CG, Katharina Jahn (Freie Universität Berlin) and
Tomáš Vinař (Comenius University in Bratislava), Co-chairs of RECOMB-Genetics,
Emilia Huerta-Sanchez (Brown University), Nick Mancuso (University of Southern
California) and Sriram Sankararaman (University of California, Los Angeles), and
Co-chairs of RECOMB-CCB, Giulio Caravagna (University of Trieste) and Gabriele
Schweikert (University of Dundee), for their great efforts in ensuring a high-quality
technical programs of these satellite meetings. I am grateful to all of those PC members
and sub-reviewers who took time to review and discuss submissions under a very tight
schedule. Finally, I want to thank the keynote speakers and the authors of the proceedings
papers, the highlight talks and the posters for presenting their work at the conference.

April 2023 Haixu Tang
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Çiğdem Gündüz Demir Koç University, Turkey
Gamze Gürsoy Columbia University, USA
Faraz Hach University of British Columbia, Canada
Iman Hajirasouliha Cornell University, USA
Bjarni Halldorsson deCODE Genetics and Reykjavik University,

Iceland
Arif Harmancı University of Texas Health Sciences Center, USA
Farhad Hormozdiari Google Health, USA
Fereydoun Hormozdiari University California, Davis, USA



Organization ix

Lei Huang Microsoft, USA
Tao Jiang University of California, Riverside, USA
Emre Karakoç Wellcome Sanger Institute, UK
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VStrains: De Novo Reconstruction
of Viral Strains via Iterative Path
Extraction from Assembly Graphs

Runpeng Luo and Yu Lin(B)

School of Computing, Australian National University, Canberra, Australia
{john.luo,yu.lin}@anu.edu.au

Abstract. With the high mutation rate in viruses, a mixture of closely
related viral strains (called viral quasispecies) often co-infect an indi-
vidual host. Reconstructing individual strains from viral quasispecies is
a key step to characterizing the viral population, revealing strain-level
genetic variability, and providing insights into biomedical and clinical
studies. Reference-based approaches of reconstructing viral strains suffer
from the lack of high-quality references due to high mutation rates and
biased variant calling introduced by a selected reference. De novo meth-
ods require no references but face challenges due to errors in reads, the
high similarity of quasispecies, and uneven abundance of strains.

In this paper, we propose VStrains, a de novo approach for recon-
structing strains from viral quasispecies. VStrains incorporates contigs,
paired-end reads, and coverage information to iteratively extract the
strain-specific paths from assembly graphs. We benchmark VStrains
against multiple state-of-the-art de novo and reference-based approaches
on both simulated and real datasets. Experimental results demonstrate
that VStrains achieves the best overall performance on both simulated
and real datasets under a comprehensive set of metrics such as genome
fraction, duplication ratio, NGA50, error rate, etc.

Availability: VStrains is freely available at https://github.com/
MetaGenTools/VStrains.

Keywords: De Novo Assembly · Viral Quasispecies · Assembly
Graph · Path Extraction

1 Introduction

Viruses are the most abundant biological entities on Earth and have high muta-
tion rates, up to a million times higher than their hosts [11,26]. Variations in
viral genetic sequences lead to the emergence of new viral strains during evolu-
tion and are also known to be associated with many diseases [31]. One challenge
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in viral studies is to analyze a mixture of closely related viral strains, referred
to as viral quasispecies. The problem of inferring individual viral strains from
sequencing data of viral quasispecies is called strain-aware assembly or viral
haplotype reconstruction. Viral haplotype reconstruction in individual patients
provides a signature of genetic variability and thus informs us about disease sus-
ceptibilities and evolutionary patterns of distinct viral strains [10]. Sequencing
data of viral quasispecies from next-generation sequencing (NGS) techniques are
short and have a low error rate [33] (≤0.5%) while that from third-generation
sequencing (TGS) techniques are long and have a high error rate [9] (1.6–2.7% for
deletions, 1.2–2.2% for mismatches and 1.1–2.4% for insertions). Due to the low
pairwise strain divergence in viral quasispecies, it is challenging to distinguish
the sequencing error in TGS data and highly similar viral strains. Therefore, var-
ious approaches have been proposed to infer individual viral strains from NGS
data and can mainly be classified into two categories [15], reference-based and de
novo (or reference-free). Reference-based approaches (such as PredictHaplo [30]
and NeurHap [36]) rely on the alignment between reads and references and thus
suffer from the lack of high-quality references due to high mutation rates [8],
and biased variant calling introduced by a selected reference [3,34]. De novo
approaches directly assemble viral strains from sequencing reads without ref-
erences and have the potential to identify novel viral strains and provide deep
insights for viral genetic novelty [31].

While de novo (meta)-genomic assemblers such as SPAdes-series [1,5,7,24,28]
could be applied to assemble individual strains, they tend to produce fragmented
contigs rather than complete viral strains, or collapsed contigs ignoring dif-
ferences between strains, as they are not specifically designed to distinguish
closely related viral strains. Specialized de novo assemblers such as SAVAGE [3],
PEHaplo [8], viaDBG [12] and Haploflow [13] directly assemble reads into strains
from viral quasispecies and have achieved promising results. More recently, VG-
Flow [4] was proposed to extend pre-assembled contigs (produced by the spe-
cialized assembler SAVAGE [3]) into full-length viral strains using flow varia-
tion graphs and significantly outperformed other approaches on recovering viral
strains from viral quasispecies. While VG-Flow [4] guarantees its runtime to be
polynomial in the genome size, all the recovered viral strains must be selected
from a set of candidate paths inferred by greedy path extraction strategies and
thus some viral strains not covered by the candidate set are infeasible to be
reconstructed.

Here we propose VStrains, a de novo approach for reconstructing strains from
viral quasispecies. VStrains employs SPAdes [5] to build the assembly graph from
paired-end reads and incorporates contigs and coverage information to iteratively
extract distinct paths as reconstructed strains. We benchmark VStrains against
multiple state-of-the-art de novo and reference-based approaches on both simu-
lated and real datasets. Experimental results demonstrate that VStrains achieves
the best overall performance on both simulated and real datasets under a com-
prehensive set of metrics such as genome fraction, duplication ratio, NGA50,
error rate, etc. In particular, in more challenging real datasets, VStrains achieves
remarkable improvements in recovering viral strains compare to other methods.
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2 Methods

2.1 Preliminary

An assembly graph generated by SPAdes is a directed graph G = (V,E). Each
vertex v ∈ V represents a double-stranded DNA segment where its forward and
reverse strands are denoted by seq(v+) and seq(v−), respectively. A distinctive
feature of assembly graphs built by SPAdes (with iterative k-mer sizes up to
kmax) is that each (kmax+1)-mer appears in at most one vertex and thus can
be used to uniquely identify the corresponding vertex in the assembly graph.
Two vertices u and v can be connected by an edge e = (uou , vov ) ∈ E, where
ou, ov ∈ {+,−} denote the strandedness of u and v, respectively. Note that
the suffix of uou overlaps kmax positions with the prefix of vov under the de
Bruijn graph model [29] behind SPAdes. Moreover, the assembly graphs built
by SPAdes also contain contigs information, i.e., a contig in G(V,E) is defined
as a path of vertices together with their strandedness information. The coverage
of a vertex v is estimated by the number of reads containing the DNA segment
corresponding to v and denoted by cov(v). The coverage of a contig c is estimated
by the average coverage along all the vertices in c and denoted by cov(c).

2.2 Algorithm Overview

VStrains takes paired-end reads from viral quasispecies as the input and aims
to recover individual viral strains. During pre-processing, VStrains first employs
SPAdes to construct an assembly graph and contigs from paired-end reads, then
canonizes the strandedness of vertices and edges, and further complements the
assembly graph with additional linkage information from paired-end reads. After
pre-processing, VStrains makes use of the contigs, paired-end links, and cover-
age information to perform branch splitting and non-branching path contrac-
tion to disentangle the assembly graph. Finally, VStrains outputs strain-specific
sequences from the assembly graph via iterative contig-based path extraction.
Refer to Fig. 1 for an overview of our algorithm. Details of each step are explained
in the following sections.

Fig. 1. The framework of VStrains
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2.3 Preprocessing

2.3.1 Canonize Strandedness
Recall that each vertex in the assembly graph produced by SPAdes represents
both the forward and reverse strands of a DNA segment, and thus contigs
reported by SPAdes may refer to two different strands of the same DNA seg-
ment. Therefore, there is no obvious correspondence between a viral strain and
a directed path in the assembly graph. To unravel this correspondence, VStrains
performs the strandedness canonization to choose the strandedness ov ∈ {+,−}
for each vertex v ∈ V where all adjacent edges only use vov . VStrains first
chooses an arbitrary vertex s ∈ V as the starting vertex and fixes its stranded-
ness to os. Let ōs denotes the opposite strandedness of os, i.e., ōs = {+,−}\{os}.
VStrains flips its adjacent edges if necessary to ensure these edges only use sos ,
e.g., (uou , sōs) and (sōs , uou) will be flipped into (sos , uōu) and (uōu , sos), respec-
tively. VStrains iteratively performs the above step until all the vertices have a
fixed strandedness or one vertex has to use both strandedness. VStrains resolves
the latter case by splitting this vertex into a pair of vertices, representing its
forward and reverse strands, respectively. As a result, seq(vov ) can be simpli-
fied to seq(v) where ov is the chosen strandedness of v, and (uou , vov ) ∈ E can
be simplified to (u, v), where ou and ov are the chosen strandedness of u and
v, respectively. The vertices without any in-coming edges are defined as source
vertices, whereas the vertices without any out-going edges are defined as sink
vertices.

2.3.2 Inferring Paired-End Links
While SPAdes uses paired-end reads to construct contigs as paths in the assembly
graph, VStrains uses unique k-mers of vertices in the assembly graph to establish
mappings between paired-end reads and pairs of vertices and thus infers paired-
end links.

VStrains uses minimap2 [20] to find exact matches of (kmax+1)-mers between
pairs of vertices in the assembly graph produced by SPAdes (with iterative k-mer
sizes up to kmax) and paired-end reads. Assume u and v are a pair of vertices in
the assembly graph. A PE link is added between u and v if a paired-end read
contains at least one (kmax+1)-mer in u and at least one (kmax+1)-mer in v.
Note that the (kmax+1)-mer can uniquely identify the corresponding vertex and
thus makes it extremely unlikely to produce false-positive PE links unless errors
in reads coincide with rare variations between strains. Since (kmax+1)-mer is
usually smaller than the read length, even erroneous paired-end reads may infer
paired-end links as long as they still contain error-free (kmax+1)-mers.

Note that paired-end reads are commonly used to infer paired-end links
between vertices in the assembly graph. For example, overlap-graph-based assem-
blers, such as SAVAGE [3] and PEHaplo [8], use pairwise alignments between
paired-end reads to build overlap graphs [27], and thus face challenges to choose
appropriate parameters (e.g., the overlap length cutoff along with allowed mis-
matches) to distinguish false-positive links between perfect reads from different
strains and true positive links between erroneous reads from the same strain in
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overlap graphs. De Bruijn graph-based assemblers, such as SPAdes and viaDBG,
split paired-end reads into k-bimers [5] or bilabel [23], pairs of k-mers of exact (or
near exact) distances, one from the forward read and the other from the reverse
read. Although this split strategy helps adjust k-bimers/bilabel distances [5,23]
and efficiently construct de Bruijn graphs, it does not make full use of all avail-
able k-mer pairs (with varying distances) between forward and reverse reads to
further simplify their assembly graphs. To overcome this limitation, VStrains
uses all available k-mer pairs without any distance constraints between forward
and reverse reads to create PE links between vertices in the assembly graph,
which unravels its potential to further simplify the assembly graph produced by
SPAdes.

2.4 Graph Disentanglement

After pre-processing, paired-end link information has been incorporated, and
viral strains are expected to correspond to directed paths in the assembly graph.
However, strains may share vertices and edges, and thus result in an entan-
gled assembly graph. In this section, the graph disentanglement iteratively splits
branching vertices and contracts non-branching paths as follows.

2.4.1 Branching Vertex Splitting
A vertex v ∈ V is called a branching vertex if either the in-degree or out-degree
of v is greater than 1. A branching vertex is non-trivial if both its in-degree and
out-degree are greater than 1, and trivial otherwise. For example, vertex L is a
trivial branching vertex while vertices D, G, K, and P are non-trivial branching
vertices in Fig. 2(a).

Without loss of generality, assume a trivial branching vertex v has multiple
in-coming edges {(ui, v) ∈ E |i = 1, . . . , n}. In a trivial split, vertex v will be
replaced by vertices {v1, . . . , vn}, and each in-coming edge (ui, v) will be replaced
by (ui, vi), respectively. The coverage of vi and the capacity of (ui, vi) are set to
the capacity of (ui, v). If v has an out-going edge (v, w), (v, w) will be replaced
by edges {(vi, w)|i = 1, . . . , n} where the capacity of (vi, w) is set to the coverage
of vi.

A non-trivial branching vertex v is called balanced if v has the same number of
in-coming edges {(ui, v) ∈ E |i = 1, . . . , n} and out-going edges {(v, wj) ∈ E |j =
1, . . . , n}. For example, vertex P is a balanced branching vertex in Fig. 2(a). Let
U = {ui|i = 1, . . . , n} and W = {wj |j = 1, . . . , n}. In a balanced split, the
balanced branching vertex v will be replaced by vertices {v1, . . . , vn}, and an
in-coming edge (ui, v) and out-going edge (v, wi) will be replaced by (ui, vi) and
(vi, wi) if ui and wi are both contained in at least one contig or connected by a
PE link. The above balanced split of v corresponds to a bijection between U and
W , and most of these one-to-one mappings can be perfectly inferred by contigs
and PE links between U and W . For example, a balanced split of P from Fig. 2(a)
to (b) corresponds to two one-to-one mappings, O↔R and N↔Q, inferred by the
contig and PE link information, respectively. In case U and W form a partial
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Fig. 2. Graph disentanglement of VStrains. (a) P is a balanced branching vertex. (b)
P is split into P1 and P2 in a balanced split corresponding to O↔R (contig path) and
N↔Q (PE link). (c) A trivial branching vertex L in (b) is split into L1 and L2 in a
trivial split, and thus previously unbalanced branching vertex K becomes a balanced
branching vertex. (d) K is split into K1, K2 and K3 in a balanced split, corresponding
to three one-to-one mappings, I↔L1NP1Q (contig path), J↔L2OP2R (PE link), and
H↔M (coverage compatible pair). D and G are not split during graph disentanglement.
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bijection using contigs and PE links information, VStrains further uses coverage
information and aims to find more one-to-one mappings. For the ui ∈ U and
wj ∈ W not in the current partial bijection, an one-to-one mapping is established
between ui and wj if and only if ui and wj form a coverage compatible pair, i.e.,
ui = arg min

u
|cap(v, wj)−cap(u, v)| and wj = arg min

w
|cap(v, w)−cap(ui, v)|. For

example in Fig. 2(c) to (d), vertices H and M form a coverage compatible pair,
together with two other one-to-one mappings I↔L1NP1Q (from contig path) and
J↔L2OP2R (from PE link), lead to a balanced split on the balanced branching
vertex K in Fig. 2(d).

Note that not all non-trivial branching vertices are balanced (e.g., vertex K
is an unbalanced branching vertex in Fig. 2(a)). For such unbalanced vertex v,
VStrains performs a trivial split on its adjacent trivial branching vertices and
aims to convert v into a balanced vertex. For example, after performing a trivial
split on vertex L in Fig. 2(b) to (c), vertex K now becomes a balanced branching
vertex in Fig. 2(c) and becomes a candidate for a balanced split. VStrains per-
forms a balanced split on v if the above bijection can be established by contigs,
PE links, and coverage information.

2.4.2 Non-branching Path Contraction
The above branch split operation in the assembly graph creates non-branching
paths, i.e., path p = (v1, v2, . . . , vn), vi ∈ V ∀i = 1, . . . , n, where the in-degree of
v2, ...vn and the out-degree of v1, ...vn−1 are all 1. Following the similar idea of
graph simplification in SPAdes, VStrains contracts all the non-branching paths.
For example, the above non-branching path p is contracted into one vertex vp,
and each in-coming edge (u, v1) of v1 is replaced by (u, vp) and each out-going
edge (vn, w) is replaced by (vp, w) with the same capacity, the coverage of vp is set
to be the average coverage of v1, . . . , vn. Moreover, vp inherits all the PE links of
vertices in non-branching path p. For example in Fig. 2(d), three non-branching
paths in three different colors on the right are contracted, respectively.

2.5 Contig-Based Path Extraction

While VStrains effectively disentangles the assembly graph through branching
vertex splitting and non-branching path contraction in the above step, there
still exist branching vertices (e.g., D and G in Fig. 2(d)) which may introduce
ambiguity in distinguishing full paths that correspond to individual viral strains.

Recall SPAdes outputs contigs as paths of vertices on the assembly graph,
which are usually sub-paths of viral strain induced paths on the assembly graph.
The remaining problem is to extend these contigs (sub-paths) into corresponding
viral strains (full paths) on the assembly graph. Note that a full path on the
assembly graph starts from a source vertex and ends at a sink vertex or is a
cyclic path (i.e., its first and the last vertex coincide). Ideally, the strain-specific
(not shared by multiple viral strains) contigs should be extended and extracted
first. The longer a contig is, the more likely that this contig is strain-specific.

Therefore, VStrains iteratively selects the longest contig and extends its cor-
responding sub-path on both ends. Without loss of generality, consider the right
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Fig. 3. The contig-based path extraction of VStrains. (a) Assembly graph after
graph disentanglement with three contigs: I→K1→L1→N, O→P2→R, K3→M. (b) The
longest contig I→K1→L1→N is firstly extended to I→K1 . . . →P1→Q (terminated at
I due to the lack of coverage compatible pair with respect to 200x). Afterwards, the
second longest contig O→P2→R is extended to J→K2→ . . . →P2→R (terminated at J
due to the lack of coverage compatible pair with respect to 300x). At last, the shortest
contig K3→M is extended to C→D1→ . . . →K3→M (thanks to the coverage compati-
ble pairs with respect to 400x) (c) Contigs J→ . . . →R and I→ . . . →Q are extended
to full paths (thanks to the path extraction and coverage/topology update in (b)).

extension of the current contig C = (v1, v2, . . . , vn). If vn has only one out-
going edge (vn, vn+1), the current contig will be extended into (v1, . . . , vn, vn+1).
If vn has multiple out-going edges {(vn, v1n+1), . . . , (vn, v

m
n+1)}, we follow the

same strategy in Sect. 2.4.1 to look for one-to-one mapping between vn−1 and
{v1n+1, . . . , v

m
n+1} using contigs, paired-end reads and coverage information. If

vn−1 forms the one-to-one mapping with v
′
n+1, the current contig will be

extended into (v1, . . . , vn, v
′
n+1), otherwise, the extension to the right termi-

nates. If vn is a sink vertex (without any out-going edges), the extension to the
right terminates. If vn is a visited vertex during extension on the other end, the
extension to the right terminates and a cyclic path is obtained by combining
both left and right extensions.

If the currently selected contig can be extended into a full path, VStrains will
include this extended path as one of the output strains. Otherwise, VStrains will
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contract this extended path as a single vertex, and wait for confident extension
in the future step. VStrains will also update the coverage information of the
assembly graph. More specifically, VStrains estimates the path coverage as the
median coverage of all the non-branching vertices along the path, and reduces
the path coverage from all the traversed vertices. For example, VStrains extends
the contig H→K3→M into the full path C→D1→ . . . →K3→M (using coverage
compatible pairs F↔H and C↔F described in Sect. 2.4.1) in Fig. 3(b).

By iteratively extending and extracting the contig from the assembly graph,
VStrains obtains a set of distinct paths as the final viral strains. This iterative
strategy contracts/extracts the most confident sub-paths/full-paths first, and
updates topology and coverage information of the assembly graph on the fly,
which in turn reveals more strain-specific paths in the updated graph and facil-
itates the subsequent path extractions. For example, after extracting the full
path C→D1→ . . . →K3→M in Fig. 3(b), the (sub)-paths I→K1→ . . . →P1→Q
and J→K2→ . . . →P2→R are able to further extend to the left (using coverage
compatible pairs A↔I and B↔J) into two full paths A→D3→ . . . →P1→Q and
B→D2→ . . . →P2→R.

Note that, unlike other greedy path finding strategies [4,8,13] deriving a set of
candidate paths based on the original flow-variation graph, VStrain iteratively
extracts the most confident path and updates the assembly graph on the fly,
which results in more accurate reconstruction of viral strains. For example, VG-
Flow employs three greedy strategies (maximum capacity, minimum capacity,
shortest paths) to derive the set of candidate paths, from which the final output
strains will be selected. However, such greedy strategies are directly applied
on the original flow-variation graph, making it likely to find erroneous paths
(e.g., the maximum-capacity path C→D→E→G→H→K3→M and the minimum-
capacity path A→D→F→G→I→ . . . →P1→Q in Fig. 3(a) are both erroneous
paths).

3 Experimental Setup

3.1 Experimental Datasets

3.1.1 Simulated Datasets
To evaluate the performance and scalability of VStrains, we used three simulated
viral quasispecies datasets from [3] consisting of 6 Poliovirus, 10 hepatitis C virus
(HCV), and 15 Zika virus (ZIKV) mixed strains, respectively. These datasets
were commonly used to benchmark strain-aware viral assemblers and simulated
from known reference genomes using SimSeq [6] with the default error profile.

3.1.2 Real Datasets
Two real datasets with different coverages are obtained from the NCBI database.
The first 5-HIV-labmix (20,000x) dataset [14] is a lab mix of 5 known real human
immunodeficiency virus (HIV) strains (NCBI accession number SRR961514).
The second 2-SARS-COV-2 (4,000x) dataset [37] is a mixture of 2 real severe
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acute respiratory syndrome coronavirus 2 (SARS-COV-2) strains (BA.1 and
B.1.1). Two independently assembled strains, BA.1 (NCBI accession number
SRR18009684) and B.1.1 (NCBI accession number SRR18009686), are used as
the ground-truth for evaluation. Table 1 presents a summary of the simulated
and real datasets.

Table 1. Quasispecies characteristics of the simulated and real benchmarking datasets.

Dataset Virus type Genome
size

Strain
abundance

Pairwise
divergence

Data type Sequencing
coverage

Read length

6 Poliovirus Poliovirus 7.5 kbp 1.6–51% 1.2–7% Simulated 20,000x 2×250 bp

10 HCV HCV-1a 9.3 kbp 5–19% 6–9% Simulated 20,000x 2×250 bp

15 ZIKV ZIKV 10.3 kbp 2–13% 1–10% Simulate 20,000x 2×250 bp

5 HIV-labmix HIV-1 9.6 kbp 10–30% 1–6% Real 20,000x 2×250 bp

2 SARS-COV-2 SARS-COV-2 30.3 kbp 47.6–52.4% 0.28% Real 4,000x 2×75 bp

All datasets consist of Illumina Miseq paired-end reads.

3.2 Baselines and Evaluation Metrics

VStrains was benchmarked against the state-of-the-art methods on assembling
viral strains including SPAdes [5], SAVAGE [3], VG-Flow [4], PEHaplo [8],
viaDBG [12], Haploflow [13], and PredictHaplo [30]. Three recent reference-based
machine-learning approaches GAEseq [17], CAECseq [16] and NeurHap [36] were
not included for comparison because all of them have only been applied to a
gene segment of viral strains in their experiments and failed to handle the above
datasets on whole viral strains (i.e., memory usage exceeding 300 GB). Note
that PredictHaplo [30] is a reference-based approach and needs an accurate ref-
erence as the input. Therefore, we randomly select a ground-truth viral strain
and provide it to PredictHaplo [30] for each dataset. All above tools under eval-
uation use default settings unless specified otherwise. Refer to Section S3 in the
Supplementary Materials for a detailed description of baselines.

Similar to previous studies, we employ MetaQUAST [25] to evaluate all
assembly results of viral strains. As viral quasispecies contains highly similar
strains, we run MetaQUAST with the “--unique-mapping” option to minimize
ambiguous false positive mapping. For each assembly, we report the genome
fraction, duplication ratio, NGA50, error rate, and number of contigs. Genome
fraction is defined as the total number of aligned bases in the reference, divided
by the genome size. A base in the reference genome is counted as aligned if there
is at least one contig with at least one alignment to this base. Duplication ratio
is defined as the total number of aligned bases in the assembly, divided by the
total number of aligned bases in the reference. NG50 is the contig length such
that using longer or equal length contigs produce half of the bases of the ref-
erence genome, whereas NGA50 counts the lengths of aligned blocks instead of
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contig lengths, such that the contig is broken into smaller pieces when it has a
misassembly with respect to the reference genome. Error rate is defined as the
sum of mismatch rate, indel rate, and N’s rate, which reflects the number of
errors with respect to the reference genome size.

4 Experimental Results

In this section, we show the performance of VStrains and other baselines on both
simulated and real datasets. In consistent with previous observations [4,12], we
found that SPAdes in general outperforms metaSPAdes [28] and other specialized
versions (refer to Section S1 in the Supplementary Materials for detailed compar-
ison among SPAdes-series assemblers) and thus is employed to build assembly
graphs for VStrains.

4.1 Performance on Simulated Datasets

Table 2 summarizes the performance of de novo and reference-based approaches
on reconstructing viral strains in three simulated datasets. Note that special-
ized strain-aware assemblers such as PEHaplo, viaDBG, and SAVAGE typi-
cally outperform the general-purpose assembler SPAdes, especially in genome
fraction. One possible reason is that SPAdes is not designed to distinguish
highly similar viral strains. When two or more strains share long and identi-
cal sequences, SPAdes may result in fragmented assemblies (i.e., low NGA50)
and keep only one copy of such shared sequences (i.e., low genome fraction). VG-
Flow uses assembled contigs from SAVAGE (VG-Flow+SAVAGE) and SPAdes
(VG-Flow+SPAdes) to build flow-variation graphs and effectively improves their
genome fraction and NGA50. While the greedy strategies in building candidate
paths make VG-Flow tractable, VG-Flow may be forced to use more (incorrect)
paths to cover all strains (i.e. high duplication ratio and error rate) when not all
the ground-truth paths have been included in its selected candidate set. VStrains
uses contigs, paired-end reads, and coverage information to extract strain-specific
paths iteratively from assembly graphs built by SPAdes (VStrains+SPAdes)
and achieves the best overall performance on a comprehensive set of metrics
(including genome fraction, duplication ratio, NGA50, error rate and number of
contigs). It is worth noting that VStrains is able to adapt the general-purpose
assembler SPAdes to assemble highly similar strains and even outperform exist-
ing specialized strain-aware assemblers.
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Table 2. Performance of de novo and reference-based approaches on reconstructing
viral strains in simulated datasets

6 Poliovirus Strains Genome Fraction
(GF)

Duplication
Ratio

NGA50 (# ref
strains >50% GF)

Error Rate
(mis+indel+N’s)

# Contigs
(> 500 bp)

PredictHaplo 16.68% 1.00 7459(1) 0.871% 1

PEHaplo 82.68% 1.00 7393(5) 0.160% 5

Haploflow 61.40% 1.00 6671(3) 0.517% 5

viaDBG 68.80% 2.51 2535(6) 0.018% 48

SAVAGE 85.03% 1.70 2930(5) 0.014% 50

VG-Flow+SAVAGE 61.69% 1.27 5656(4) 0.020% 8

SPAdes 43.82% 1.01 5706(2) 0.228% 8

VG-Flow+SPAdes – – – – –

VStrains+SPAdes 89.67% 1.00 6682(6) 0.087% 6

10 HCV Strains Genome Fraction
(GF)

Duplication
Ratio

NGA50 (# ref
strains >50% GF)

Error Rate
(mis+indel+N’s)

# Contigs
(> 500 bp)

PredictHaplo 89.97% 1.00 9292(9) 0.325% 9

PEHaplo 95.95% 1.01 8859(10) 0.013% 12

Haploflow 62.09% 1.55 8893(6) 3.834% 22

viaDBG 97.66% 2.18 9033(10) 0.002% 24

SAVAGE 99.52% 1.07 9059(10) 0.002% 18

VG-Flow+SAVAGE 99.67% 1.00 9264(10) 0.003% 10

SPAdes 90.81% 1.00 8840(10) 0.006% 10

VG-Flow+SPAdes 94.11% 1.10 8687(10) 0.016% 12

VStrains+SPAdes 98.16% 1.00 9124(10) 0.046% 10

15 ZIKV Strains Genome Fraction
(GF)

Duplication
Ratio

NGA50 (# ref
strains >50% GF)

Error Rate
(mis+indel+N’s)

# Contigs
(> 500 bp)

PredictHaplo 46.66% 1.00 10269(7) 0.427% 7

PEHaplo 84.24% 1.5 6256(15) 0.402% 46

Haploflow 21.82% 4.25 10198(3) 4.167% 26

viaDBG 93.04% 2.97 5136(15) 0.028% 276

SAVAGE 98.85% 1.47 4031(15) 0.011% 116

VG-Flow+SAVAGE 98.23% 1.20 10081(15) 0.077% 18

SPAdes 66.71% 1.00 6447(11) 0.037% 27

VG-Flow+SPAdes – – – – –

VStrains+SPAdes 98.87% 1.00 10130(15) 0.068% 16

Three simulated datasets consist of 6-Poliovirus (20,000x), 10-HCV (20,000x), and 15-
ZIKV (20,000x). ‘-’ indicates that the corresponding approach failed to complete on the
given dataset or exceeded the peak memory limit (500 GB) or CPU time limit (800 h).
Refer to Section S2 Table S2.1.x, S2.2.x and S2.3.x in the Supplementary Materials for
the detailed strain-level results reported by MetaQUAST.

4.2 Performance on Real Datasets

Table 3 summarizes the performance of VStrains and other de novo and
reference-based approaches on two real datasets, 5-HIV-labmix [14] and 2-SARS-
COV-2 [37]. While viaDBG results in high genome fraction and low error rate,
it comes at a cost of (extremely) high duplication ratio and an excessive number
of contigs, making it infeasible to distinguish correct and incorrect contigs from
its output. As a reference-based approach, PredictHaplo achieves a high genome
fraction (99.22%) and high NGA50 (9604) for 5-HIV-labmix dataset because a
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ground-truth viral strain was provided as its input. However, in reality, accurate
reference genomes are usually not available and species are unknown in viral qua-
sispecies, it is impossible to provide good reference genomes for PredictHaplo.

Similar to the performance on the simulated datasets, SPAdes results in very
fragmented assemblies with low genome fraction (49.11%) and NGA50 (614) for
5-HIV-labmix dataset. SAVAGE as a specialized strain-aware assembler produces
almost double the genome fraction (87.34%) and NGA50 (1397) compare to
SPAdes. While VG-Flow+SAVAGE increases the NGA50 to 7235, it decreases
the genome fraction to 77.7%, doubles the duplication ratio (from 1.56 to 3.12),
and significantly increase the error rate from 0.115% to 1.038%, which indicates
its limitation on handling real datasets. On the other hand, VStrains+SPAdes
significantly improves the overall performance on SPAdes, e.g., increase genome
fraction from 49.11% to 86.42%, NGA50 from 614 to 7583, and decreases the
error rate from 0.515% to 0.237%. Note that VG-Flow+SPAdes fails to achieve
such an improvement as VG-Flow is mainly designed to couple with SAVAGE.
However, SAVAGE typically assumes at least 10,000x total coverage of viral
sequencing data (quote from its GitHub site), which limits the application of
VG-Flow on datasets without ultra-high coverage (e.g., on the 2-SARS-COV-2
dataset with only 4,000x coverage).

Table 3. Performance of de novo and reference-based approaches on reconstructing
viral strains in real datasets

5 HIV-labmix
Strains

Genome Fraction
(GF)

Duplication
Ratio

NGA50 (# ref
strains >50% GF)

Error Rate
(mis+indel+N’s)

# Contigs
(> 500 bp)

PredictHaplo 99.22% 1.00 9604(5) 1.259% 5

PEHaplo 84.19% 1.55 1915(5) 0.300% 41

Haploflow 56.80% 1.26 4832(4) 2.675% 18

viaDBG 92.80% 13.54 5942(5) 0.071% 228

SAVAGE 87.34% 1.56 1397(5) 0.115% 72

VG-Flow+SAVAGE 77.70% 3.12 7235(4) 1.038% 23

SPAdes 49.11% 1.07 614(3) 0.515% 33

VG-Flow+SPAdes 79.75% 2.27 1938(5) 1.137% 78

VStrains+SPAdes 86.42% 1.30 7583(5) 0.237% 12

2 SARS-COV-2
Strains

Genome Fraction
(GF)

Duplication
Ratio

NGA50 (# ref
strains >50% GF)

Error Rate
(mis+indel+N’s)

# Contigs
(> 500 bp)

PredictHaplo 50.02% 9.00 30347(1) 0.024% 9

PEHaplo 67.10% 1.24 21822(1) 0.073% 4

Haploflow 54.78% 1.12 30308(1) 0.059% 3

viaDBG 80.96% 1.52 5501(2) 0.004% 20

SAVAGE – – – – –

VG-Flow+SAVAGE – – – – –

SPAdes 48.44% 1.00 795(1) 0.014% 7

VG-Flow+SPAdes – – – – –

VStrains+SPAdes 63.37% 1.00 12272(2) 0.013% 3

Two real datasets consist of 5-HIV-labmix (20,000x) and 2-SARS-COV-2 (4,000x). ‘–’
indicates that the corresponding approach failed to complete on the given dataset or
exceeded the peak memory limit (500 GB) or CPU time limit (800 h). Refer to Section
S2 Table S2.4.x and S2.5.x in the Supplementary Materials for the detailed strain-level
results reported by MetaQUAST.

https://github.com/HaploConduct/HaploConduct
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5 Software and Resource Usage

All the experiments were run under the National Computational Infrastructure
(NCI) Gadi supercomputer by submitting jobs to the Gadi biodev queue with
the default job dependencies. The allocated RAM size was limited to 500 GB
and CPU time was limited to 800 h. The peak memory (maximum resident set
size) refers to the peak amount of memory throughout the program execution.
Table 4 summarize the CPU time and peak memory for different approaches on
all viral quasispecies benchmarks, respectively.

From Table 4, we observe that Haploflow is much more efficient than all other
approaches in runtime and peak memory, but may not be a preferred tool due
to its extremely high error rate and low genome fraction (as shown in Table 2
and 3). The general-purpose assembler SPAdes is more efficient than specialized
strain-aware assemblers such as PEHaplo, Haploflow, viaDBG and SAVAGE in
terms of runtime and peak memory. To reconstruct full-length viral strains from
pre-assembled contigs, VG-Flow and VStrains cost comparable running time
and memory usage. However, since VG-Flow employs SAVAGE to generate the
pre-assembled contigs and the running time and memory usage of SAVAGE are
almost the most expensive when compared to other tools, which results in high
memory usage and running time of “SAVAGE+VG-Flow”. On the contrary, the
running time and memory usage of “SPAdes+VStrains” are comparable with
other specialized assemblers.

Table 4. CPU Time and peak memory usage of de novo and reference-based approaches
on viral haplotype reconstruction

CPU time (hours) Peak memory (GB)

Poliovirus HCV ZIKV HIV SARS Poliovirus HCV ZIKV HIV SARS

PredictHaplo 0.96 2.03 1.99 1.22 19.10 0.77 1.12 1.11 0.91 1.33

PEHaplo 571.93 0.79 127.48 1.20 1.40 5.52 8.98 7.17 4.31 2.36

Haploflow 0.02 0.03 0.03 0.03 0.01 0.45 1.11 1.25 0.43 0.22

viaDBG 0.15 0.24 0.30 0.25 0.18 12.24 15.77 15.85 13.81 8.78

SAVAGE 33.15 18.80 14.84 71.05 – 51.34 26.42 13.39 52.19 –

VG-Flow 1.92 5.93 22.32 10.87 – 0.81 6.93 1.07 1.02 –

SPAdes 0.27 0.41 0.43 0.50 0.10 0.59 0.61 0.60 0.57 0.58

VStrains 3.20 3.76 5.22 6.50 0.23 1.72 1.52 1.78 1.62 0.87

To test the scalability of VStrains, we further compared its runtime and peak
memory usage to VG-Flow on simulation datasets with increasing genome size
and a variable number of strains (Fig. 4). VG-Flow was selected to compare as it
is the most state-of-the-art viral quasispecies assembly post-processing tool. The
runtime and memory usage of VStrains do not demonstrate significant correla-
tions with respect to the increase in the number of strains while the runtime of
VG-Flow increases with the number of strains. When increasing the genome size,
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the runtime and memory usage of both VStrain and VG-Flow increased (Fig. 4(a)
and (c)). It is worth noting that, when including the runtime and memory usage
of the pre-assemblers (SAVAGE and SPAdes), SAVAGE+VG-Flow is much more
sensitive to the genome size than VStrains+SPAdes (Fig. 4(b) and (d)). Thus,
we concluded that VStrains+SPAdes is more efficient than VG-Flow+SAVAGE
in the analysis of large-scale datasets. Taking into account the good performance
of VStrains+SPAdes at Table 2 and Table 3, it is more cost-effective to employ
VStrains as a postprocessing tool for SPAdes in terms of both performance and
program efficiency compare to VG-Flow.

Fig. 4. CPU time and peak memory for VG-Flow, VStrains, VG-Flow+SAVAGE, and
VStrains+SPAdes on simulated datasets consist of 2, 4, 6, 8 strains with increas-
ing genome size (bp) (2500, 5000, 10.000, 20.000, 40.000, 100.000, 200.000). The x-
axis is plotted on a logarithmic scale. The CPU time for VStrains+SPAdes (VG-
Flow+SAVAGE) is the addition of VStrains (VG-Flow) and SPAdes (SAVAGE), and
the peak memory for VStrains+SPAdes (VG-Flow+SAVAGE) is the maximum between
VStrains (VG-Flow) and SPAdes (SAVAGE).
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6 Conclusion and Discussion

In VStrains, we first introduce a strategy to canonize the strandedness of assem-
bly graphs from SPAdes, which reduces the strain reconstruction problem into
the path extraction problem. Secondly, we use all available k-mer pairs in paired-
end reads to infer PE links in the assembly graph produced by SPAdes. Thirdly,
we propose an effective way to incorporate PE links together with contigs and
coverage information to disentangle the assembly graphs. Finally, we demon-
strate how to extract confident strain-specific paths via iterative contig-based
path extraction. Experimental results on both simulated and real datasets show
that VStrains achieves the best overall performance among the state-of-the-art
approaches.

Currently, VStrains relies on both assembly graphs and contigs from SPAdes
and thus cannot couple with assemblers which does not explicitly output assem-
bly graphs such as SAVAGE. The current implementation of VStrains requires
additional alignments of paired-end reads to vertices in assembly graphs to infer
PE links, which dominates the total runtime and peak memory usage. It is worth
exploring how to make VStrains more flexible and efficient.

With the advance of third-generation sequencing (TGS), multiple approaches
(including Strainline [22], Strainberry [35], VirStrain [21], viralFlye [2], etc.)
have been proposed for strain-aware assembly using TGS data. VStrains has the
potential to be extended to handle TGS data by taking advantages of assembly
graphs built from Canu [19], Flye [18], wtdbg [32] and others.
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Abstract. The reference indexing problem for k-mers is to pre-process
a collection of reference genomic sequences R so that the position of all
occurrences of any queried k-mer can be rapidly identified. An efficient
and scalable solution to this problem is fundamental for many tasks in
bioinformatics.

In this work, we introduce the spectrum preserving tiling (SPT), a
general representation of R that specifies how a set of tiles repeatedly
occur to spell out the constituent reference sequences in R. By encoding
the order and positions where tiles occur, SPTs enable the implementa-
tion and analysis of a general class of modular indexes. An index over
an SPT decomposes the reference indexing problem for k-mers into: (1)
a k-mer-to-tile mapping; and (2) a tile-to-occurrence mapping. Recently
introduced work to construct and compactly index k-mer sets can be used
to efficiently implement the k-mer-to-tile mapping. However, implement-
ing the tile-to-occurrence mapping remains prohibitively costly in terms
of space. As reference collections become large, the space requirements of
the tile-to-occurrence mapping dominates that of the k-mer-to-tile map-
ping since the former depends on the amount of total sequence while the
latter depends on the number of unique k-mers in R.

To address this, we introduce a class of sampling schemes for SPTs
that trade off speed to reduce the size of the tile-to-reference map-
ping. We implement a practical index with these sampling schemes in
the tool pufferfish2. When indexing over 30,000 bacterial genomes,
pufferfish2 reduces the size of the tile-to-occurrence mapping from
86.3 GB to 34.6 GB while incurring only a 3.6× slowdown when query-
ing k-mers from a sequenced readset.

Availability: pufferfish2 is implemented in Rust and available at
https://github.com/COMBINE-lab/pufferfish2.
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1 Introduction

Indexing of genomic sequences is an important problem in modern computational
genomics, as it enables the atomic queries required for analysis of sequencing
data—particularly reference guided analyses where observed sequencing data
is compared to known reference sequences. Fundamentally, analyses need to
first rapidly locate short exact matches to reference sequences before performing
other operations downstream. For example, for guided assembly of genomes,
variant calling, and structural variant identification, seed sequences are matched
to known references before novel sequences are arranged according to the seeds
[1]. For RNA-seq, statistics for groups of related k-mers mapping to known
transcripts or genes allow algorithms to infer the activity of genes in single-cell
and bulk gene-expression analyses [2–4].

Recently, researchers have been interested in indexing collections of genomes
for metagenomic and pan-genomic analyses. There have been two main types
of approaches: full-text indexes, and hashing based approaches that typically
index the de Bruijn graph (dBG). With respect to full-text indexes, researchers
have developed tools that use the r-index [5] to compute matching statistics and
locate maximal exact matches for large reference collections [6,7]. For highly
repetitive collections, such as many genomes from the same species, r-index based
approaches are especially space efficient since they scale linearly to the number
of runs in the Burrows-Wheeler Transform (BWT) [8] and not the length of the
reference text. With respect to hashing based approaches, tools restrict queries
to fixed length k-mers [1,9] and index the dBG. These tools achieve faster exact
queries but typically trade off space. In other related work, graph-based indexes
that compactly represent genomic variations as paths on graphs have also been
developed [10,11]. However, these indexes require additional work to project
queries landing on graph-based coordinates to linear coordinates on reference
sequences.

Many tools have been developed to efficiently build and represent the dBG
[12,13]. Recently, Khan et al. introduced a pair of methods to construct the
compacted dBG from both assembled references [14] and read sets [15]. Ekim et
al. [16] introduced the minimizer-space dBG –a highly effective lossy compres-
sion scheme that uses minimizers as representative sequences for nodes in the
dBG. Karasikov et al. developed the Counting dBG [17] that stores differences
between adjacent nodes in the dBG to compress metadata associated with nodes
(and sequences) in a dBG. Encouragingly, much recent work on Spectrum Pre-
serving String Sets (SPSS) that compactly index the set-membership of k-mers
in reference texts has been introduced [15,18–23]. Although these approaches do
not tackle the locate queries directly, they do suggest that even more efficient
solutions for reference indexing are possible.

In this work, we extend these recent ideas and introduce the concept of
a Spectrum Preserving Tiling (SPT) which encodes how and where k-mers in



Spectrum Preserving Tilings Enable Sparse and Modular Reference Indexing 23

an SPSS occur in a reference text. In introducing the SPT, this work makes
two key observations. First, a hashing based solution to the reference indexing
problem for k-mers does not necessitate a de Bruijn graph but instead requires
a tiling over the input reference collection—the SPT formalizes this. Second,
the reference indexing problem for k-mers queries can be cleanly decomposed
into a k-mer-to-tile query and a tile-to-occurrence query. Crucially, SPTs enable
the implementation and analysis of a general class of modular indexes that can
exploit efficient implementations introduced in prior work.

Contributions. We focus our work on considering how indexes can, in practice,
efficiently support the two composable queries—the k-mer-to-tile query and the
tile-to-occurrence query. We highlight this work’s key contributions below. We
introduce:

1. The spectrum preserving tiling (SPT). An SPT is a general representation
that explicitly encodes how shared sequences—tiles—repeatedly occur in a
reference collection. The SPT enables an entire class of sparse and modular
indexes that support exact locate queries for k-mers.

2. An algorithm for sampling and compressing an indexed SPT built from unitigs
that samples unitig-occurrences. For some small constant “sampling rate”, s,
our algorithm stores the positions of only ≈ 1/s occurrences and encodes all
remaining occurrences using a small constant number of bits.

3. Pufferfish2: a practical index and implementation of the introduced sam-
pling scheme. We highlight the critical engineering considerations that make
pufferfish2 effective in practice.

2 Problem Definition and Preliminaries

The Mapped Reference Position (MRP) Query. In this work we consider
the reference indexing problem for k-mers. Given a collection of references R =
{R1, . . . , RN}, where each reference is a string over the DNA alphabet {A, C, T, G},
we seek an index that can efficiently compute the mapped reference position
(MRP) query for a fixed k-mer size k. Given any k-mer x, the MRP query
enumerates the positions of all occurrences of x in R . Precisely, each returned
occurrence is a tuple (n, p) that specifies that k-mer, x, occurs in reference n at
position p where Rn[p : p + k] = x. If a k-mer does not occur in some Rn ∈ R ,
the MRP query returns an empty list.

Basic Notation. Strings and lists are zero-indexed. The length of a sequence
S is denoted |S|. The i-th character of a string S is S[i]. A k-mer is a string of
length k. A sub-string of length � in the string S starting at position i is notated
S[i : i + �]. The prefix and suffix of length i is denoted S[: i] and S[|S| − i :],
respectively. The concatenation of strings A and B is denoted A ◦ B.

We define the glue operation, A ⊕k B, to be valid for any pair of strings A
and B that overlap by (k−1) characters. If the (k−1)-length suffix of A is equal
to the (k − 1)-length prefix of B, then A ⊕k B := A ◦ B[(k − 1) :]. When k clear
from context, we write A ⊕ B in place of A ⊕k B.
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Rank and Select Queries over Sequences. Given a sequence S, the rank
query given a character α and position i, written rankα(S, i), is the number of
occurrences of α in S[: i] The select query selectα(S, r) returns the position of
the r-th occurrence of symbol α in S. The access query access(S, i) returns S[i].
For a sequence of length n over an alphabet of size σ, these can be computed in
O(lg σ) time using a wavelet matrix that requires n lg σ + o(n lg σ) bits [24].

3 Spectrum Preserving Tilings

In this section, we introduce the spectrum preserving tiling, a representation of
a given reference collection R that specifies how a set of tiles containing k-mers
repeatedly occur to spell out the constituent reference sequences in R . This
alternative representation enables a modular solution to the reference indexing
problem, based on the interplay between two mappings—a k-mer-to-tile mapping
and a tile-to-occurrence mapping.

3.1 Definition

Given a k-mer length k and an input reference collection of genomic sequences
R = {R1, . . . , RN}, a spectrum preserving tiling (SPT) for R is a five-tuple
Γ := (U ,T , S ,W ,L):

Fig. 1. (a) A spectrum preserving tiling (SPT) with k = 3, (b) with tiles (an SPSS)
that contain all k-mers in references. (c) The SPT explicitly encodes where each k-mer
occurs.

• Tiles: U = {U1, . . . , UF }. The set of tiles is a spectrum preserving string set,
i.e., a set of strings such that each k-mer in R occurs in some Ui ∈ R . Each
string Ui ∈ U is called a tile.

• Tiling sequences: T = {T1, . . . , TN} where each Tn corresponds to each
reference Rn ∈ R . Each tiling sequence is an ordered sequence of tiles Tn =
[Tn,1, . . . , Tn,Mn

], of length Mn, with each Tn,m = Ui ∈ U . We term each Tn,m

a tile-occurrence.
• Tile-occurrence lengths: L = {L1, . . . , LN}, where each Ln =

[ln,1, . . . , ln,Mn
] is a sequence of lengths.

• Tile-occurrence offsets: W = {W1, . . . ,WN}, where each Wn =
[wn,1, . . . , wn,Mn

] is an integer-sequence.
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• Tile-occurrence start positions: S = {S1, . . . , SN}, where each Sn =
[sn,1, . . . , sn,Mn

] is an integer-sequence.

A valid SPT must satisfy the spectrum preserving tiling property, that every
reference sequence Rn can be reconstructed by gluing together substrings of tiles
at offsets Wn with lengths Ln:

Rn = Tn,1[wn,1 : wn,1 + ln,1] ⊕ . . . ⊕ Tn,Mn
[wn,Mn

: wn,Mn
+ ln,Mn

].

Specifically, the SPT encodes how redundant sequences—tiles—repeatedly
occur in the reference collection R . We illustrate how an ordered sequence of
start-positions, offsets, and lengths explicitly specify how redundant sequences
tile a pair of references in Fig. 1. More succinctly, each tile-occurrence Tn,m with
length ln,m tiles the reference sequence Rn as:

Rn[sn,m + wn,m : sn,m + wn,m + ln,m] = Tn,m[wn,m : wn,m + ln,m].

In the same way a small SPSS compactly determines the presence of a k-
mer, a small SPT compactly specifies the location of a k-mer. For this work,
we consider SPTs where any k-mer occurs only once in the set of tiles U . The
algorithms and ideas introduced in this paper still work with SPTs where a k-mer
may occur more than once in U (some extra book-keeping of a one-to-many k-
mer-to-tile mapping would be needed, however). For ease of exposition, we ignore
tile orientations here. We completely specify the SPT with orientations, allowing
tiles to simultaneously represent reverse-complement sequences, in Section S.2.

3.2 A General and Modular Index over Spectrum Preserving
Tilings

Any SPT is immediately amenable to indexing by an entire class of algorithms.
This is because an SPT yields a natural decomposition of the MRP query
(defined in Sect. 2) where k-mers first map to the tiles and tile-occurrences then
map to positions in references. To index a reference collection, a data structure
need only compose a query for the positions where k-mers occur on tiles in a
SPSS with a query for the positions where tiles cover the input references.

Ideally, an index should find a small SPT where k-mers are compactly repre-
sented in the set of tiles where tiles are “long” and tiling sequences are “short”.
Compact tilings exist for almost all practical applications since the amount of
unique sequence grows much more slowly than the total length of reference
sequences. Finding a small SPSS where k-mers occur only once has been solved
efficiently [18–20]. However, it remains unclear if a small SPSS induces a small
SPT, since an SPT must additionally encode tile-occurrence positions. Currently,
tools like pufferfish index reference sequences using an SPT built from the
unitigs of the compacted de Bruijn graph (cdBG) constructed over the input
sequences, which has been found to be sufficiently compact for practical applica-
tions. Though the existence of SPSSs smaller than cdBGs suggest that smaller
SPTs might be found for indexing, we leave the problem of finding small or even
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optimal SPTs to future work. Here, we demonstrate how indexing any given
SPT is modular and possible in general.

Given an SPT, the MRP query can be decomposed into two queries that can
each be supported by sparse and efficient data structures. These queries are:

• The kmer-to-tile query: Given a k-mer x, k2tile(x) returns (i, p)—the
identity of the tile Ui that contains x and the offset (position) into the tile
Ui where x occurs. That is, k2tile(x) = (i, p) iff Ui[p : p + k] = x. If x is not
in R , k2tile(x) returns ∅.

• The tile-to-occurrence query: Given the r-th occurrence of the tile Ui,
tile2occ(i, r) returns the tuple (n, s, w, l) that encodes how Ui tiles the refer-
ence Rn. When tile2occ(i, r) = (n, s, w, l), the r-th occurrence of Ui occurs
on Rn at position (s+w), with the sequence Ui[w : w+ l]. Let the r-th occur-
rence of Ui be Tn,m on T , then tile2occ(i, r) returns (n, sn,m, wn,m, ln,m).

When these two queries are supported, the MRP query can be computed
by Algorithm 1. By adding the offset of the queried k-mer x in a tile Ui to
the positions where the tile Ui occurs, Algorithm 1 returns all positions where
a k-mer occurs. Line 10 checks to ensure that any occurrence of the queried
k-mer is returned only if the corresponding tile-occurrence of Ui contains that
k-mer. We note that storing the number of occurrences of a tile and returning
num-occs(Ui) requires negligible computational overhead. In practice, the length
of tiling sequences, T , are orders of magnitude larger than the number of unique
tiles. In this work, we shall use occi, to denote the number of occurrences of Ui

in tiling sequences T .

Algorithm 1:
1 def mrp(x):
2 tup ← k2tile(x)
3 if tup = ∅ then
4 return [ ]

5 (i, p) ← tup
6 occi ← num-occs(Ui)
7 ans ← [ ]

8 for r ← 0 to occsi do
9 (n, s, w, l) ← tile2occ(i, r)

10 if w ≤ p ≤ (w + l − k) then
11 ans.append(n, s + p)

12 return ans

3.3 “Drop in” Implementations for Efficient k-mer-to-tile Queries

Naturally, prior work for indexing and compressing spectrum preserving string
sets (SPSS) can be applied to implement the k-mer-to-tile query. When
pufferfish was first developed, the data structures required to support the
k-mer-to-tile query dominated the size of moderately sized indexes. Thus,
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Almodaresi et al. [9] introduced a sampling scheme that samples k-mer posi-
tions in unitigs. Recently, Pibiri [21,22] introduced SSHash, an efficient k-mer
hashing scheme that exploits minimizer based partitioning and carefully handles
highly-skewed distributions of minimizer occurrences. When built over an SPSS,
SSHash stores the k-mers by their order of appearance in the strings (which we
term tiles) of an SPSS and thus allows easy computation of a k-mer’s offset into
a tile. Other methods based on the Burrows-Wheeler transform (BWT) [8], such
as the Spectral BWT [23] and BOSS [25], could also be used. However, these
methods implicitly sort k-mers in lexicographical order and would likely need
an extra level of indirection to implement k2tile. Unless a compact scheme is
devised, this can outweigh the space savings offered by the BWT.

3.4 Challenges of the Tile-to-Occurrence Query

The straightforward solution to the tile-to-occurrence query is to store the
answers in a table, utab, where utab[i] stores information for all occurrences
of the tile Ui and computing tile2occ(i, r) amounts to a simple lookup into
utab[i][r]. This is the approach taken in the pufferfish index and has proven to
be effective for moderately sized indexes. This implementation is output optimal
and is fast and cache-friendly since all occi occurrences of a tile Ui can be accessed
contiguously. However, writing down all start positions of tile-occurrences in
utab is impractical for large indexes.

For larger indexes (e.g. metagenomic references, many human genomes),
explicitly storing utab becomes more costly than supporting the k-mer-to-tile
query. This is because, as the number of indexed references grow, the number of
distinct k-mers grows sub-linearly whereas the number of occurrences grows with
the (cumulative) reference length. Problematically, the number of start positions
of tile-occurrences grows at least linearly. For a reference collection with total
sequence length L, a naive encoding for utab would take O(L lg L) bits, as each
position require �lg L� bits and there can be at most L distinct tiles.

Other algorithms that support “locate” queries suffer from a similar problem.
To answer queries in time proportional to the number of occurrences of a query,
data structures must explicitly store positions of occurrences and access them
in constant time. However, storing all positions is impractical for large reference
texts or large k-mer-sets. To address this, some algorithms employ a scheme
to sample positions at some small sampling rate s, and perform O(s) work to
retrieve not-sampled positions. Since s is usually chosen to be a small constant,
this extra O(s) work only imposes a slight overhead.

One may wonder if utab—which is an inverted index—can be compressed
using the techniques developed in the Information Retrieval field [26]. For bio-
logical sequences, a large proportion of utab consists of very short inverted lists
(e.g. unique variants in indexed genomes) that are not well-compressible. In fact,
these short lists occur at a rate that is much higher than for inverted indexes
designed for natural languages. So, instead applying existing compression tech-
niques, we develop a novel sampling scheme for utab and the tile-to-occurrence
query that exploits the properties of genomic sequences.
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Fig. 2. (a) A unitig-tiling is an SPT where tiles, unitigs, always occur completely
in the reference sequences. (b) The MRP query is performed by computing a k-
mer’s offset into a unitig (k2u), then adding the offset to the positions where unitig-
occurrences appear in indexed reference sequences (u2occ). To naively support the
unitig-to-occurrence query, positions of all unitig-occurrences are stored in a table,
utab.

Fig. 3. (a) Pufferfish2 samples unitigs and their occurrences on a unitig-tiling. Only
the positions of the occurrences of the sampled unitigs (black) are stored in utab. Posi-
tions of the not-sampled unitigs (gray) can be computed relative to the positions of
sampled unitigs by traversing backwards on the visualized tiling of references. Sam-
pling the zero-th unitig-occurrence on every reference sequence guarantees that traver-
sals terminate. (b) Predecessor and successor nucleotides are obtained from adjacent
unitig occurrences and are stored in the order in which they appear on the references.
These nucleotides for the r-th occurrence of Ui is stored in ptab[i][r] and stab[i][r],
respectively.

4 Pufferfish2

Below, we introduce pufferfish2, an index built over an SPT consisting of
unitigs. Pufferfish2 applies a sampling scheme to sparsify the tile-to-occurrence
query of a given pufferfish index [9].

4.1 Interpreting pufferfish as an Index over a Unitig-Based SPT

Though not introduced this way by Almodaresi et al., pufferfish is an index
over a unitig-tiling of an input reference collection [9]. A unitig-tiling is an SPT
which satisfies the property that all tiles always occur completely in references
where, for every tile-occurrence Tn,m = Ui, offset wn,m = 0 and length ln,m =
|Ui|. When this property is satisfied, we term tiles unitigs.

An index built over unitig-tilings does not need to store tile-occurrence off-
sets, W , or tile-occurrence lengths L since all tiles have the same offset (zero)
and occur with maximal length. For indexes constructed over unitig-tilings, we
shall use k2u to mean k2tile, and u2occ to be tile2occ with one change.
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That is, u2occ omits offsets and lengths of tile occurrences since they are uninfor-
mative for unitig-tilings and returns a tuple (n, s) instead of (n, s, w, l), In prose,
we shall refer to these queries as the k-mer-to-unitig and unitig-to-occurrence
queries.

The MRP query over unitig-tilings can be computed with Algorithm 4
(in Section S.1) where Line 10 is removed from Algorithm 1. We illustrate the
MRP query and an example of a unitig-tiling in Fig. 2.

4.2 Sampling Unitigs and Traversing Tilings to Sparsify
the Unitig-to-Occurrence Query

Pufferfish2 implements a sampling scheme for unitig-occurrences on a unitig-
tiling. For some small constant s, our scheme samples 1/s rows in utab each
corresponding to all occurrences of a unique unitig. In doing so, it sparsifies the
u2occ query and utab by only storing positions for a subset of sampled unitigs.
To compute unitig-to-occurrence queries, it traverses unitig-occurrences on an
indexed unitig-tiling.

Notably, pufferfish2 traverses unitig-tilings that are implicitly represented.
For unitig-tilings with positions stored in utab, there exists no contiguous
sequence in memory representing occurrences that is obvious to traverse. How-
ever, when viewed as an SPT, unitig-occurrences have ranks on a tiling and
traversals are possible because tiling sequences map uniquely to a sequence of
unitig-rank pairs.

Specifically, we define the pred query—an atomic traversal step that enables
traversals of arbitrary lengths over reference tilings. Given the r-th occurrence
of the unitig Ui, the pred query returns the identity and rank of the preceding
unitig. Let tile Tn,m be the r-th occurrence of the unitig Ui on all tiling sequences
T . Then, pred(i, r) returns (j, q) indicating that Tn,m−1, the preceding unitig-
occurrence, is the q-th occurrence of the unitig Uj . If there is no preceding
occurrence and m = 1, pred(i, r) returns the sentinel value ∅.

When an index supports pred, it is able to traverse “backwards” on a unitig-
tiling. Successively calling pred yields the identities of unitigs that form a tiling
sequence. Furthermore, since pred returns the identity j and the rank q of a pre-
ceding unitig-occurrence, accessing data associated with each visited occurrence
is straightforward in a table like utab (i.e., with utab[j][q]).

Given the unitig-set U , pufferfish2 first samples a subset of unitigs US ⊆
U . For each sampled unitig Ui ∈ US , it stores information for unitig-occurrences
identically to pufferfish and records, for all occurrences of a sampled unitig
Ui, a list of reference identity and position tuples in utab[i].

To recover the position of the r-th occurrence a not-sampled unitig Ui and
to compute u2occ(i, r), the index traverses the unitig-tiling and iteratively calls
pred until an occurrence of a sampled unitig is found—let this be the q-th
occurrence of Uj . During the traversal, pufferfish2 accumulates number of
nucleotides covered by the traversed unitig-occurrences. Since Uj is a sampled
unitig, the position of the q-th occurrence can be found in utab[j][q]. To return
u2occ(i, r), pufferfish2 adds the number of nucleotides traversed to the start
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position stored at utab[j][q], the position of a preceding occurrence of the sam-
pled unitig Uj .

This procedure is implemented in Algorithm 2 and visualized in Fig. 3.
Traversals must account for (k−1) overlapping nucleotides of unitig-occurrences
that tile a reference (Line 5). Storing the length of the unitigs is negligible since
the number of unique unitigs is much smaller than the number of occurrences.

On the Termination of Traversals. Any unitig that occurs as the zero-th
occurrence (i.e., with rank zero) of a tiling-sequence is always sampled. This
way, backwards traversals terminate because every occurrence of a not-sampled
unitig occurs after a sampled unitig. This can be seen from Fig. 3. Concretely,
if Tn,1 = Ui for some tiling-sequence Tn, then the unitig Ui must always be
sampled.

Algorithm 2:
1 def u2occ(i, r):
2 l ← 0
3 while !isSamp[i] do
4 (i, r) = pred(i, r)
5 l ← l + |Ui| − k + 1

6 (n, s) ← utab[i][r]
7 return (n, s + l)

Algorithm 3:
1 def pred(i, r):
2 p ← ptab[i][r]
3 y ← p ◦ Ui[: k − 1]
4 (j, ) ← k2u(y)

5 s ← Ui[k]
6 t ← rankp(ptab[i], r)
7 q ← selects(stab[j], t)
8 return (j, q)

4.3 Implementing the pred Query with pufferfish2

Pufferfish2 computes the pred query in constant time while requiring only
constant space per unitig-occurrence by carefully storing predecessor and suc-
cessor nucleotides of unitig-occurrences.

Predecessor and Successor Nucleotides. Given the tiling sequence Tn =
[Tn,1, . . . , Tn,Mn

], we say that a unitig-occurrence Tn,m is preceded by Tn,m−1,
and that Tn,m−1 is succeeded by Tn,m. Suppose Tn,m = Ui, and Tn,m−1 = Uj ,
and let the unitigs have lengths �i and �j , respectively.

We say that, Tn,m−1 precedes Tn,m with predecessor nucleotide p. The pre-
decessor nucleotide is the nucleotide that precedes the unitig-occurrence Tn,m on
the reference sequence Rn. Concretely, p is the first nucleotide on the last k-mer
of the preceding unitig, i.e., p = Tn,m−1[�j − k]. We say that, Tn,m succeeds
Tn,m−1 with successor nucleotide s. Accordingly, the successor nucleotide, s, is
the last nucleotide on the first k-mer of the succeeding unitig, i.e., s = Tn,m[k].

Abstractly, the preceding occurrence Tn,m−1 can be “reached” from the
succeeding occurrence Tn,m by prepending its predecessor nucleotide to the
(k − 1)-length prefix of Tn,m. Given Tn,m and its predecessor nucleotide p,
the k-mer y that is the last k-mer on the preceding occurrence Tn,m−1 can
be obtained with y = p ◦ Tn,m[: k − 1]. Given an occurrence Tn,m, let the func-
tions pred-nuc (Tn,m) and succ-nuc (Tn,m) yield the predecessor nucleotide and
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the successor nucleotide of Tn,m, respectively. If Tn,m is the first or last unitig-
occurrence pair on Tn, then succ-nuc (Tn,m) and pred-nuc (Tn,m) return the
“null” character, ‘$’.

These notationally dense definitions can be more easily understood with
a figure. Figure 3 shows how predecessor and successor nucleotides of a given
unitig-occurrence on a tiling are obtained.

Concrete Representation. Pufferfish2 first samples a set of unitigs US ⊆ U

from U and stores a bit vector, isSamp, to record if a unitig Ui is sampled where
isSamp[i] = 1 iff Ui ∈ US . Pufferfish2 stores in utab the reference identity
and position pairs for occurrences of sampled unitigs only.

After sampling unique unitigs, pufferfish2 stores a predecessor nucleotide
table, ptab, and a successor nucleotide table, stab. For each not-sampled unitig
Ui only, ptab[i] stores a list of predecessor nucleotides for each occurrence of Ui in
the unitig-tiling. For all unitigs Ui, stab[i] stores a list of successor nucleotides
for each occurrence of Ui. Concretely, when the unitig-occurrence Tn,m is the
r-th occurrence of Ui,

ptab[i][r] = pred-nuc (Tn,m) and stab[i][r] = succ-nuc (Tn,m) .

As discussed in Sect. 4.2, unitigs that occur as the zero-th element on a
tiling is always sampled so that every occurrence of a not-sampled unitig has
a predecessor. If Tn,m has no successor and is the last unitig-occurrence on a
tiling sequence, stab[i][j] contains the sentinel symbol ‘$’. Figure 3 illustrates
how predecessor and successor nucleotides are stored.

Fig. 4. Visualizing the pred query that finds the occurrence of Uj that precedes the
queried occurrence of Ui with rank 1. (a) All occurrences of Ui and Uj are visualized
(in sorted order) with their preceding and succeeding unitig occurrences, respectively.
The figure shows stored successor nucleotides for Uj , and predecessor nucleotides for
Ui. Whenever an occurrence of Uj precedes an occurrence of Ui, a corresponding pair
of nucleotides “A” and “T” occur and are stored in stab[j] and ptab[i] respectively. (b)
Their ranks (annotated with subscripts) of the corresponding predecessor-successor
nucleotide pair match in ptab[i] and stab[j], but the indices do not. A rank query for
predecessor nucleotide “T” at index r = 1 yields the matching rank of the successor
nucleotide “A”. A select query for the nucleotide “A” with rank 1 yields the index and
occurrence of the predecessor Uj .



32 J. Fan et al.

Computing the pred Query. Given the k-mer-to-unitig query, pufferfish2
supports the pred query for any unitig Ui that is not-sampled. When the r-th
occurrence of Ui succeeds the q-th occurrence of Uj , it computes pred(i, r) =
(j, q) with Algorithm 3. To compute pred, it constructs a k-mer to find Uj , and
then computes one rank and one select query over the stored lists of nucleotides
to find the correct occurrence.

Pufferfish2 first computes j, the identity of the preceding unitig. The last
k-mer on the preceding unitig must be the first (k − 1)-mer of Ui prepended
with predecessor nucleotide of the r-th occurrence of Ui. Given ptab[i][r] = p, it
constructs the k-mer, y = p ◦ Ui[: k − 1], that must be the last k-mer on Uj . So
on Line 4, it computes k2u(y) to obtain the identity of the preceding unitig Uj .

It then computes the unitig-rank, q, of the preceding unitig-occurrence of Uj .
Each time Ui is preceded by the nucleotide p, it must be preceded by the same
unitig Uj since any k-mer occurs in only one unitig. Accordingly, each occurrence
Uj that is succeeded by Ui must always be succeeded by the same nucleotide s
equal to the k-th nucleotide of Ui, Ui[k]. For the preceding occurrence of Uj that
the algorithm seeks to find, the nucleotide s is stored at some unknown index q
in stab[j]—the list of successor nucleotides of Uj .

Whenever an occurrence of Ui succeeds an occurrence of Uj , so do the cor-
responding pair predecessor and successor nucleotides stored in ptab[i] and
stab[j]. Since ptab[i] and stab[j] store predecessor and successor nucleotides
in the order in which unitig-occurrences appear in the tiling sequences, the fol-
lowing ranks of stored nucleotides must be equal: (1) the rank of the nucleotide
p = ptab[i][r] at index r in the list of predecessor nucleotides, ptab[i], of the
succeeding unitig Ui, and (2) the rank of the nucleotide s = Ui[k] at index q in
the list of successor nucleotides, stab[j], of the preceding unitig Uj . We illus-
trate this correspondence between ranks in Fig. 4. So to find q, the rank of the
preceding unitig-occurrence, pufferfish2 computes the rank of the predeces-
sor nucleotide, t = rankp(ptab[i], r). Then, computing selects(stab[i], t), the
index where the t-th rank successor nucleotide of Uj occurs must yield q.

Time and Space Analysis. Pufferfish2 computes the pred query in constant
time. The k-mer for the query k2u is assembled in constant time, and the k2u
query itself is answered in constant time, as already done in the pufferfish
index [9].

For not-sampled unitigs, pufferfish2 does not store positions of unitig-
occurrences in utab. Instead, it stores nucleotides in tables stab and ptab. These
tables are implemented by wavelet matrices that support rank, select, and access
operations in O(lg σ) time on sequences with alphabet size σ while requiring only
lg σ + o(lg σ) bits per element [24].

As explained in Sect. 3.1, we have avoided the treatment of orientations of
nucleotide sequences for brevity. In actuality, unitigs may occur in a forward or
a backwards orientation (i.e., with a reverse complement sequence). When con-
sidering orientations, pufferfish2 implements the pred query by storing and
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querying over lists of nucleotide-orientation pairs. In this case, ptab and stab
instead store predecessor-orientation and successor-orientation pairs. Accord-
ingly, wavelet matrices are then built over alphabets of size 8 and 9 respectively—
deriving from eight nucleotide-orientation pairs and one sentinel value for unitig-
occurrences that have no predecessor. Thus, ptab and stab in total require ≈ 7
bits per unitig-occurrence (since 7 = �lg 8� + �lg 9�). We describe how the pred
query is implemented with orientations in Section S.3.

Construction. The current implementation of pufferfish2 sparsifies the
unitig-to-occurrence query and compresses the table of unitig occurrences, utab,
of an existing pufferfish index, and inherits its k-mer-to-unitig mapping. In
practice, sampling and building a pufferfish2 index always takes less time
than the initial pufferfish index construction. In brief, building pufferfish2
amounts to a linear scan over an SPT. We describe how pufferfish2 in con-
structed in more detail in Section S.4.

4.4 A Random Sampling Scheme to Guarantee Short Backwards
Traversals

Even with a constant-time pred query, computing the unitig-to-occurrence query
is fast only if the length of backwards traversals—the number of times pred is
called — is small. So for some small constant s, a sampling scheme should sample
1/s of unique unitigs, store positions of only 1/s of unitig-occurrences in utab,
and result in traversal lengths usually of length s.

At first, one may think that a greedy sampling scheme that traverses tiling
sequences to sample unitigs could be used to bound traversal lengths to some
given maximum length, s. However, when tiling sequences become much longer
than the number of unique unitigs, such a greedy scheme samples almost all
unitigs and only somewhat effective in limited scenarios (see Section S.5). Thus,
we introduce the random sampling scheme that samples 1/s of unitigs uni-
formly at random from U . This scheme guarantees that traversals using the
pred query terminate in s steps in expectation if each unitig-occurrence Tn,m is
independent and identically distributed and drawn from an arbitrary distribu-
tion. Then, backwards traversals until the occurrence of a sampled unitig is a
series of Bernoulli trials with probability 1/s, and traversal lengths follow a geo-
metric distribution with mean s. Although this property relies on a simplifying
assumption, the random sampling scheme works well in practice.
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Table 1. Size and speed of pufferfish2 indexes querying 10 million random k-mers
and 100,000 reads. Uncompressed, baseline implementations of the unitig-to-occurrence
query (pufferfish indexes with the sparse k2u implementation [9]) are labeled with
“None” sampling strategy. Relative sizes of compressed representations and relative
slowdowns to the baseline are indicated in parentheses.

Dataset Sampling strategy u2occ size (GB) 10M k-mers (secs) 100K reads (secs)

7 Humans None 16.8 86.1 139.4

Random (s = 3, t = .05) 7.8 (0.46) 4159.1 (43.8×) 8092.8 (58.04×)

Random (s = 3, t = .25) 9.9 (0.59) 681.1 (7.9×) 1466.2 (10.52×)

4000 Bacteria None 7.7 35.5 12.6

Random (s = 3, t = .05) 3.7 (0.48) 420.4 (11.9×) 15.6 (1.24×)

Random (s = 3, t = .25) 4.7 (0.61) 323.8 (9.1×) 15.5 (1.23×)

30K Human gut None 86.3 80.6 178.7

Random (s = 3, t = .05) 45.6 (0.53) 439.4 (5.5×) 570.2 (3.19×)

Random (s = 3, t = .25) 54.4 (0.63) 365.2 (4.5×) 576.9 (3.23×)

Random (s = 6, t = .05) 34.6 (0.40) 1037.5 (12.9×) 644.8 (3.61×)

Random (s = 6, t = .25) 45.6 (0.53) 614.0 (7.6×) 646.1 (3.56×)

4.5 Closing the Gap Between a Constant Time pred Query
and Contiguous Array Access

Even though the pred query is constant time and traversals are short, it is
difficult to implement pred queries in with speed comparable to contiguous array
accesses that are used to compute the u2occ for when utab is “dense”—i.e.,
uncompressed and not sampled. In fact, any compression scheme for utab would
have difficulty contending with constant time contiguous array access regardless
of their asymptotics since dense implementations are output optimal, very cache
friendly, and simply store the answers to queries in an array. To close the gap
between theory and practice, pufferfish2 exploits several optimizations.

In practice, a small proportion of unique unitigs are “popular” and occur
extremely frequently. Fortunately, the total number of occurrences of popular
unitigs is small relative to other unitigs. To avoid an excessively large number
of traversals from a not-sampled unitig, pufferfish2 modifies the sampling
scheme to always sample popular unitigs that occur more than a preset number,
α, times. Better yet, we re-parameterize this optimization and set α so that
the total number of occurrences of popular unitigs sum to a given proportion
0 < t ≤ 1 of the total occurrences of all the unitigs. For example, setting t = 0.25
restricts pufferfish2 to sample from 75% of the total size of utab consisting
of unitigs that occur most infrequently.

Also, the MRP and pred query are especially amenable to caching. Notably,
pufferfish2 caches and memoizes redundant k2u queries in successive pred
queries. Also, it caches “streaming” queries to exploit the fact that successive
queried k-mers (e.g., from the same sequenced read) likely land on the same
unitig. We describe in more detail these and other important optimizations
in Section S.6.
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5 Experiments

We assessed the space-usage of the indexes constructed by pufferfish2 from
several different whole-genome sequence collections, as well as its query perfor-
mance with different sampling schemes. Reported experiments were performed
on a server with an Intel Xeon CPU (E5-2699 v4) with 44 cores and clocked at
2.20 GHz, 512 GB of memory, and a 3.6 TB Toshiba MG03ACA4 HDD.

Datasets. We evaluated the performances on a number of datasets with vary-
ing attributes: (1) Bacterial collection: a random set of 4000 bacterial genomes
from the NCBI microbial database; (2) Human collection: 7 assembled human
genome sequences from [27]; and (3) Metagenomic collection: 30,691 representa-
tive sequences from the most prevalent human gut prokaryotic genomes from [28].

Results. To emulate a difficult query workload, we queried the indexes with 10
million random true positive k-mers sampled uniformly from the indexed refer-
ences. Our results from Table 1 show that sampling popular unitigs is critical
to achieve reasonable trade-offs between space and speed. When indexing seven
human genomes, the difference in space between always sampling using t = 0.05
and t = 0.25, is only 2.1 GB (12.5% of the uncompressed utab). However, explic-
itly recording 2.1 GB of positions of occurrences of popular unitigs, substantially
reduces the comparative slowdown from 43.8× to 7.9×. This is because setting
t = 0.25 instead of t = 0.05 greatly reduces the maximum number of occurrences
of a not-sampled unitig—from ≈87,000 to ≈9,000 times, respectively. Here, set-
ting t = 0.25 means that random k-mer queries that land in not-sampled unitigs
perform many fewer traversals over reference tilings.

On metagenomic datasets, indexes are compressed to a similar degree but
differences in query speed at different parameter settings are small. Pufferfish2
is especially effective for a large collection of bacterial genomes. With the fastest
parameter setting, it incurs only a 4.5× slowdown for random queries while
reducing the size of utab for the collection of 30,000 bacterial genomes by 37%
(from 86.3 GB to 54.4 GB).

Apart from random lookup queries, we also queried the indexes with k-mers
deriving from sequenced readsets [29,30]. We measured the time to query and
recover the positions of all k-mers on 100,000 reads. This experiment demon-
strates how the slowdown incurred from sampling can (in most cases) be further
reduced when queries are positionally coherent or miss. Successive k-mer queries
from the same read often land on the same unitig and can thus be cached (see
Sect. 4.5). True negative k-mers that do not occur in the indexed reference col-
lection neither require traversals nor incur any slowdowns.

To simulate a metagenomic analysis, we queried reads from a human stool
sample against 4,000 bacterial genomes. This is an example of a low hit-rate
analysis where 18% of queried k-mers map to indexed references. In this scenario,
pufferfish2 reduces the size of utab by half but incurs only a 1.2× slowdown.
We also queried reads from the same human stool sample against the collection
of 30,000 bacterial genomes representative of the human gut. Here, 88% of k-
mers are found in the indexed references. At the sparsest setting, pufferfish2
indexes incur only a 3.6× slowdown while reducing the size of utab by 60%.
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We observe that pufferfish2’s sampling scheme is less effective when index-
ing a collection of seven human genomes. When sampled with s = 3 and t = 0.25,
pufferfish2 incurs a 10.5× slowdown when querying reads from a DNA-seq
experiment in which 92% of queried k-mers occur in reference sequences. Inter-
estingly, the slowdown when querying reads is larger than the slowdown when
querying random k-mers. This is likely due to biases from sequencing that cause
k-mers and reads to map to non-uniformly indexed references. Nonetheless, this
result motivates future work that could design sampling schemes optimized for
specific distributions of query patterns.

We expect to see less-pronounced slowdowns in practice than those reported
in Table 1. This is because tools downstream of an index like pufferfish2 almost
always perform operations much slower after straightforward exact lookups for
k-mers. For example, aligners have to perform alignment accounting for mis-
matches and edits. Also, our experiments pre-process random k-mer sets and
read-sets so that no benchmark is I/O bound. Critically, the compromises in
speed that pufferfish2 makes are especially palatable because it trades-off
speed in the fastest operations in analyses—exact k-mer queries—while sub-
stantially reducing the space required for the most space intensive operation.

Table 2. Sizes in GB of possible, new indexes—with k2u implemented by SSHash and
u2occ by pufferfish2—compared to the size of original pufferfish indexes. Selected
sampling parameters for datasets (top-to-bottom) are (s = 3, t = 0.25), (s = 3, t =
0.05), and (s = 6, t = 0.05), respectively.

Dataset u2occ w/pufferfish2 k2u w/SSHash New index Original pufferfish index

7 Human 9.9 3.2 13.1 28.0

4000 Bacteria 3.7 7.3 11.0 26.1

30K Human gut 34.6 22.0 55.6 131.7

Using SSHash for Even Smaller Indexes. For convenience, we have imple-
mented our SPT compression scheme within an index that uses the specific
sparse pufferfish implementation for the k-mer-to-tile (k-mer-to-unitig) map-
ping [9]. However, the SPT enables the construction of modular indexes that use
various data structures for the k-mer-to-tile mapping and the tile-to-reference
mapping, provided only a minimalistic API between them. A recent represen-
tation of the k-mer-to-tile mapping that supports all the necessary function-
ality is SSHash [22]. Compared to the k2u component of pufferfish, SSHash
is almost always substantially smaller. Further, it usually provides faster query
speed compared to the sparse pufferfish implementation of the k-mer-to-tile
query, especially when streaming queries are being performed.

In Table 2, we calculate the size of indexes if SSHash is used for the k-mer-to-
tile mapping—rather than the sparse pufferfish implementation. These sizes
then represent overall index sizes that would be obtained by pairing a state-
of-the-art representation of the k-mer-to-tile mapping with a state-of-the-art
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representation of the tile-to-reference mapping (that we have presented in this
work). Practically, the only impediment to constructing a fully-functional index
from these components is that they are implemented in different languages (C++
for SSHash and Rust for pufferfish2)—we are currently addressing this issue.

Importantly, these results demonstrate that, when SSHash is used, the repre-
sentation of the tile-to-occurrence query becomes a bottleneck in terms of space,
occupying an increasingly larger fraction of the overall index. Table 2 shows that,
in theory, if one fully exploits the modularity of SPTs, new indexes that combine
SSHash with pufferfish2 would be half the space of the original pufferfish
index. As of writing, with respect to an index over 30,000 bacterial genomes,
the estimated difference in monetary cost of an AWS EC2 instance that can fit
a new 55.6 GB index versus a 131 GB pufferfish index in memory is 300USD
per month (see Section S.7).

Comparing to MONI and the r-Index. We compared pufferfish2 to
MONI, a tool that builds an r-index to locate maximal exact matches in highly
repetitive reference collections [6]. In brief, pufferfish2 is faster and requires
less space than MONI for our benchmarked bacterial dataset. Our tool does so
with some trade-offs. Pufferfish2 supports rapid locate queries for k-mers of
a fixed length, while r-index based approaches supports locate queries for pat-
terns of any arbitrary length and can be used to find MEMs. Notably, it has
been shown that both k-mer and MEM queries can be used for highly effective
read-mapping and alignment [1,6].

For reference, we built MONI on our collection of 4,000 bacterial genomes.
Here, MONI required 51.0G of disk space to store which is 29% larger than the
pufferfish index (39.5 GB) with its dense k2u implementation—its least space-
efficient configuration. The most space efficient configuration of the pufferfish2
index (with s = 3, t = .25) is 42% the size of MONI when built on from the
same data and requires 21.7 GB of space. Compared to a theoretically possible
index specified in Table 2 that would only require 11.0 GB, MONI would need
4.6× more space.

We also performed a best-effort comparison of query speed between
pufferfish2 and MONI. Unfortunately, it is not possible to directly mea-
sure the speed of exact locate queries for MONI because it does not expose
an interface for such queries. Instead, we queried MONI to find MEMs on true-
positive k-mers treating each k-mer as unique read (encoded in FASTQ format
as MONI requires). We argue that this is a reasonable proxy to exact locate
queries because, for each true-positive k-mer deriving from an indexed reference
sequence, the entire k-mer itself is the maximal exact match. For MONI, just like
in benchmarks for in Table 1, we report the time taken for computing queries
only and ignore time required for I/O operations (i.e. loading the index and
quries, and writing results to disk).

We found that pufferfish2 is faster than MONI when querying k-mers
against our collection of 4,000 bacterial genomes. MONI required 1,481.7 s to
query the same set of 10 million random true-positive k-mers queried in Table 1.
When compared to the slowest built most space efficient configuration of
pufferfish2 benchmarked in Table 1, pufferfish2 is 3.5× faster.
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6 Discussion and Future Work

In this work, we introduce the spectrum preserving tiling (SPT), which describes
how a spectrum preserving string set (SPSS) tiles and “spells” an input collection
of reference sequences. While considerable research effort has been dedicated to
constructing space and time-efficient indexes for SPSS, little work has been done
to develop efficient representations of the tilings themselves, despite the fact that
these tilings tend to grow more quickly than the SPSS and quickly become the
size bottleneck when these components are combined into reference indexes.
We describe and implement a sparsification scheme in which the space required
for representing an SPT can be greatly reduced in exchange for an expected
constant-factor increase in the query time. We also describe several important
heuristics that are used to substantially lessen this constant-factor in practice.
Having demonstrated that modular reference indexes can be constructed by
composing a k-mer-to-tile mapping with a tile-to-occurrence mapping, we have
thus opened the door to exploring an increasingly diverse collection of related
reference indexing data structures.

Despite the encouraging progress that has been made here, we believe that
there is much left to be explored regarding the representation of SPTs, and that
many interesting questions remain open. Some of these questions are: (1) How
would an algorithm sample individual unitig-occurrences instead of all occur-
rences of a unitig to explicitly bound the lengths of backwards traversals? (2)
Does a smaller SPSS imply a small SPT and could one compute an optimally
small SPT? (3) Given some distributional assumptions for queries, can an algo-
rithm sample SPTs to minimize the expected query time? (4) In practice, how
can an implemented tool combine our sampling scheme with existing compres-
sion algorithms for the highly skewed tile-to-occurrence query? (5) Can a lossy
index over an SPT be constructed and applied effectively in practical use cases?

With excitement, we discuss in more detail these possibilities for future work
in more detail in Section S.8.

Funding. This work is supported by the NIH under grant award numbers
R01HG009937 to R.P.; the NSF awards CCF-1750472 to R.P. and CNS-1763680 to
R.P; and NSF award No. to DGE-1840340 J.F. This work was also partially supported
by the project MobiDataLab (EU H2020 RIA, grant agreement No

¯101006879).

Conflicts of Interest. R.P. is a co-founder of Ocean Genomics Inc.

References

1. Almodaresi, F., Zakeri, M., Patro, R.: PuffAligner: a fast, efficient and accurate
aligner based on the pufferfish index. Bioinformatics 37(22), 404–4055 (2021)

2. Patro, R., Duggal, G., Love, M.I., Irizarry, R.A., Kingsford, C.: Salmon provides
fast and bias-aware quantification of transcript expression. Nat. Methods 14(4),
417–419 (2017)

3. Bray, N.L., Pimentel, H., Melsted, P., Pachter, L.: Near-optimal probabilistic RNA-
seq quantification. Nat. Biotechnol. 34(5), 525–527 (2016)



Spectrum Preserving Tilings Enable Sparse and Modular Reference Indexing 39

4. Patro, R., Mount, S.M., Kingsford, C.: Sailfish enables alignment-free isoform quan-
tification from RNA-seq reads using lightweight algorithms. Nat. Biotechnol. 32(5),
462–464 (2014)

5. Gagie, T., Navarro, G., Prezza, N.: Optimal-time text indexing in BWT-runs
bounded space. In: Proceedings of the Twenty-Ninth Annual ACM-SIAM Sym-
posium on Discrete Algorithms, SODA 2018, USA, pp. 1459–1477. Society for
Industrial and Applied Mathematics (2018)

6. Rossi, M., Oliva, M., Langmead, B., Gagie, T., Boucher, C.: MONI: a pangenomic
index for finding maximal exact matches. J. Comput. Biol. 29(2), 169–187 (2022).
PMID: 35041495

7. Ahmed, O., Rossi, M., Gagie, T., Boucher, C., Langmead, B.: SPUMONI 2:
improved pangenome classification using a compressed index of minimizer digests.
BioRxiv (2022)

8. Burrows, M., Wheeler, D.: A block-sorting lossless data compression algorithm.
Digital SRC Research Report, Citeseer (1994)

9. Almodaresi, F., Sarkar, H., Srivastava, A., Patro, R.: A space and time-efficient
index for the compacted colored de Bruijn graph. Bioinformatics 34(13), i169–i177
(2018)

10. Kim, D., Paggi, J.M., Park, C., Bennett, C., Salzberg, S.L.: Graph-based genome
alignment and genotyping with HISAT2 and HISAT-genotype. Nat. Biotechnol.
37(8), 907–915 (2019)

11. Garrison, E., et al.: Variation graph toolkit improves read mapping by representing
genetic variation in the reference. Nat. Biotechnol. 36(9), 875–879 (2018)

12. Minkin, I., Pham, S., Medvedev, P.: TwoPaCo: an efficient algorithm to build the
compacted de Bruijn graph from many complete genomes. Bioinformatics 33(24),
4024–4032 (2016)

13. Chikhi, R., Limasset, A., Medvedev, P.: Compacting de Bruijn graphs from
sequencing data quickly and in low memory. Bioinformatics 32(12), i201–i208
(2016)

14. Khan, J., Patro, R.: Cuttlefish: fast, parallel and low-memory compaction
of de Bruijn graphs from large-scale genome collections. Bioinformatics
37(Supplement 1), i177–i186 (2021)

15. Khan, J., Kokot, M., Deorowicz, S., Patro, R.: Scalable, ultra-fast, and low-memory
construction of compacted de Bruijn graphs with Cuttlefish 2. Genome Biol. 23(1),
190 (2022). https://doi.org/10.1186/s13059-022-02743-6

16. Ekim, B., Berger, B., Chikhi, R.: Minimizer-space de Bruijn graphs: whole-genome
assembly of long reads in minutes on a personal computer. Cell Syst. 12(10), 958-
968.e6 (2021)
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Abstract. Rooted species trees are used in several downstream appli-
cations of phylogenetics. Most species tree estimation methods produce
unrooted trees and additional methods are then used to root these
unrooted trees. Recently, Quintet Rooting (QR) (Tabatabaee et al.,
ISMB and Bioinformatics 2022), a polynomial-time method for rooting
an unrooted species tree given unrooted gene trees under the multispecies
coalescent, was introduced. QR, which is based on a proof of identifiabil-
ity of rooted 5-taxon trees in the presence of incomplete lineage sorting,
was shown to have good accuracy, improving over other methods for
rooting species trees when incomplete lineage sorting was the only cause
of gene tree discordance, except when gene tree estimation error was very
high. However, the statistical consistency of QR was left as an open ques-
tion. Here, we present QR-STAR, a polynomial-time variant of QR that
has an additional step for determining the rooted shape of each quintet
tree. We prove that QR-STAR is statistically consistent under the multi-
species coalescent model, and our simulation study shows that QR-STAR
matches or improves on the accuracy of QR. QR-STAR is available in
open source form at https://github.com/ytabatabaee/Quintet-Rooting.

Keywords: Species Tree Estimation · Rooting · Statistical
Consistency · Multispecies Coalescent

1 Introduction

Inferring rooted species trees is important for many downstream applications
of phylogenetics, such as comparative genomics [7,11] and dating [25]. These
estimations use different loci from across the genomes of the selected species, and
so are referred to as multi-locus analyses. If rooted gene trees can be accurately
inferred, then the rooted species tree can be estimated from them [14]; however,
this is not a reliable assumption [29]. Hence, the standard approach is to first
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estimate an unrooted species tree using multi-locus datasets, and then root that
estimated tree.

The estimation of the unrooted species tree is challenged by biological pro-
cesses, such as incomplete lineage sorting (ILS) or gene duplication and loss
(GDL), that can result in different parts of the genome having different evolu-
tionary trees. When ILS or GDL occur, statistically consistent estimation of the
unrooted species tree requires techniques that take the source of heterogeneity
into consideration [15,22]. The case of ILS, as modeled by the multispecies coa-
lescent (MSC) model [10], is the most well-studied, and there are several methods
for estimating unrooted species trees that have been proven statistically consis-
tent under the MSC (see [22] for a survey of such methods).

The general problem of rooting a species tree (or indeed even a gene tree)
is of independent interest, but presents many challenges. A common approach
is the use of an outgroup taxon (i.e., the inclusion of a species that is outside
the smallest clade containing the remaining species), so that the resultant tree
is rooted on the edge leading to the outgroup [16]. However, outgroup selection
has its own difficulties: if the outgroup is too distant, then it may be attached
fairly randomly to the tree containing the remaining species, and if it is too
close, it may even be an ingroup taxon [5,6,9,13]. Other approaches use branch
lengths estimated on the tree to find the root based on specific optimization
criteria; however, these approaches tend to degrade in accuracy unless the strict
molecular clock holds (which assumes that all sites along the genome evolve
under a constant rate) [8,18,31].

Quintet Rooting (QR) [30] is a recently introduced method that is designed
to root a given species tree using the unrooted gene tree topologies, under the
assumption that the gene trees can differ from the species tree due to ILS. QR
is based on mathematical theory established by Allman, Degnan, and Rhodes
[2], which showed that the rooted species tree topology is identifiable from the
unrooted gene tree topologies whenever the number of species is at least five. In
[30], QR was shown to provide good accuracy for rooting both estimated and
true species trees in the presence of ILS, compared to alternative methods.

However, QR was not proven to be statistically consistent for locating the
root. Thus, we do not have a proof that the root location selected by QR, when
given the true species tree topology, will converge to the correct location as
the number of gene trees in the input increases. Although much attention has
been paid to establishing statistical consistency for unrooted species tree esti-
mation methods and many methods, such as ASTRAL [19], SVDQuartets [32]
and BUCKy [12], have been proven to be statistically consistent estimators of
the unrooted species tree topology under the MSC, to the best of our knowledge,
no prior study has addressed the statistical consistency properties of methods
for rooting species trees.
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In this paper, we argue that QR is not guaranteed to be statistically consis-
tent under the MSC, but we also present a modification to QR, which we call
QR-STAR, that we prove statistically consistent. Moreover, QR-STAR, like QR,
runs in polynomial time. We also provide results of a simulation study compar-
ing QR to QR-STAR. Due to space limitations, most of the proofs and results
from the simulation study are presented in the full version of the paper available
at https://doi.org/10.1101/2022.10.26.513897.

2 Background

We present the theory from [2] first, which establishes identifiability of the rooted
species tree from unrooted quintet trees, and then we describe Quintet Rooting
(QR), our earlier method for rooting species trees. Together these form the basis
for deriving our new method, QR-STAR, which we present in the next section.

2.1 Allman, Degnan, and Rhodes (ADR) Theory

Allman, Degnan, and Rhodes (ADR) [2] established that the unrooted topology
of the species tree is identifiable from four-leaf unrooted gene trees under the
MSC, a result that is well known and used in several “quartet-based” methods
for estimating species trees under the MSC [12,17,19,24]. ADR also proved that
the rooted species tree topology is identifiable from unrooted five-leaf gene tree
topologies; this result is much less well known, but was recently used in the
development of QR for rooting species trees.

ADR have described the probability distribution of unrooted gene tree
topologies under each 5-taxon MSC model species tree. On a given set of five
taxa, there exist 105 different rooted binary trees, labeled with R1, . . . , R105

1,
that can be categorized into three groups based on their (unlabeled) rooted
shapes: caterpillar, balanced and pseudo-caterpillar [27]. An example of a tree
from each category is shown in Fig. 1. Each 5-taxon model species tree defines a
specific probability distribution over the 15 different unrooted gene tree topolo-
gies on the same leafset, shown with T1, . . . , T15. Theorem 9 in [2] states that
this distribution uniquely determines the rooted tree topology and its internal
branch lengths for trees with at least five taxa.

To prove this identifiability result, the ADR theory specifies a set of linear
invariants (i.e., equalities) and inequalities that must hold between the proba-
bilities of unrooted 5-taxon gene trees, for any choice of the parameters of the
model species tree. These linear invariants and inequalities define a partial order
on the probabilities of the topologies of the different 5-taxon unrooted gene trees.
In other words, two gene tree probabilities ui = P(Ti) and uj = P(Tj) can have
one of four possible relationships: ui > uj , uj > ui, ui = uj , or ui and uj are
not comparable.

1 The labeling of rooted and unrooted trees in this paper is consistent with the nota-
tions and leaf-labeling used in Tables 4–5 in [2] as well as in [30].

https://doi.org/10.1101/2022.10.26.513897
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Fig. 1. ADR invariants and inequalities for different rooted topological
shapes. The invariants and inequalities found by ADR define, for each rooted 5-taxon
model tree topology, a partial order on the probabilities of the 15 unrooted 5-leaf gene
trees; importantly, the partial order depends only on the “rooted shape” of the 5-taxon
model species trees (i.e., caterpillar, balanced and pseudo-caterpillar). Thus, the topol-
ogy of any 5-leaf rooted binary species tree is uniquely determined by the partial order,
and so can be determined from the true distribution on unrooted 5-leaf gene trees (i.e.,
it is identifiable, as established by ADR).

Figure 1 shows examples of these partial orders with a Hasse diagram for a
particular leaf labeling of trees from each rooted shape. Note that some proba-
bilities are members of the same set (e.g., for R1, set c4 contains both u4 and
u13, indicating that u4 = u13), and so we refer to the sets ci as equivalence
classes on these probabilities. Furthermore, we will denote the set of equivalence
classes associated with a 5-taxon rooted tree R with CR. As can be seen in Fig. 1,
the number of equivalence classes depends on the shape of the rooted species
tree, with caterpillar, balanced and pseudo-caterpillar trees having 7, 5 and 5
equivalence classes, respectively.

Each directed edge between two equivalence classes in these Hasse diagrams
defines an inequality, so that all gene tree probabilities in class ca at the source
of an edge are greater than all gene tree probabilities in class cb at the target,
and we denote this by ca > cb. The exact values of the unrooted gene tree
probabilities depend on the internal branch lengths of the model tree, and ADR
provide a set of formulas that relate the model tree parameters to the probability
distribution of the unrooted gene trees in Appendix B of [2], which will be used
in our proofs.
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2.2 Quintet Rooting

The input to QR is an unrooted species tree T with n leaves and a set G of k
single-copy unrooted gene trees where the gene trees draw their leaves from the
leafset of T , denoted by L(T ). Given this input, QR searches over all possible
rootings of T and returns a tree most consistent with the distribution of quintets
(i.e., 5-taxon trees) in the input gene trees.

QR approaches this problem by selecting a set Q of quintets of taxa from
L(T ) (called the “quintet sampling” step; refer to Supplementary Materials Sec.
A for details), and scoring all rooted versions of T based on their induced trees
on these quintets. The subtree T|q, T restricted to taxa in quintet set q, can be
rooted on any of its seven edges. In a preprocessing step, QR computes a score for
each of these seven different rootings for all trees induced on the quintets in set
Q, based on a cost function. This results in 7 × |Q| computations, and therefore
the preprocessing step takes O(k(|Q| + n)). Next, for every rooted version of
T , QR sums up the costs of all its induced rooted trees on quintets in Q using
the scores computed in the preprocessing step, and returns the rooting with the
minimum overall cost. Since T can be rooted on any of its 2n − 3 edges, the
scoring step takes O(n + |Q|) time. Therefore, the overall runtime of QR when
using an O(n) sampling of quintets is O(nk). Figure 2 shows the pipeline of QR
and its individual steps.

Thus, QR provides an exact solution to the optimization problem with the
following input and output:

– Input: An unrooted tree topology T , a set of k unrooted gene tree topologies
G = {g1, g2, . . . , gk}, a set Q containing quintets of taxa from leafset L(T )
and a cost function Cost(r, �u).

– Output: Rooted tree R with topology T such that
∑

q∈Q Cost(R|q, �̂uq) is
minimized, where �̂uq is the distribution of unrooted gene tree quintets in
G|q = {g1|q, g2|q, . . . , gk|q}.

Cost Function. The cost function Cost(R|q, �̂uq) measures the fitness of the
rooted quintet tree R|q with the distribution of the unrooted gene trees restricted
to q (i.e., �̂uq), according to the linear invariants and inequalities derived from
the ADR theory. In particular, this cost function is designed to penalize a rooted
tree R|q if the estimated quintet distribution �̂uq violates some of the inequalities
or invariants in its partial order. To this end, a penalty term was considered for
each invariant and inequality in the partial order of a 5-taxon rooted tree that
is violated in a quintet distribution. The cost function was defined based on a
linear combination of these penalty terms, and had the following form, where r
is a 5-taxon rooted tree and �̂u is an estimated quintet distribution:

Cost(r, �̂u) =
∑

c∈Cr

1
|c|

∑

ua,ub∈c

|ûa − ûb|
︸ ︷︷ ︸

Invariants Penalty

+
∑

c>c′∈Cr

1
|c′|

∑

ua∈c,ub∈c′
max(0, ûb − ûa)

︸ ︷︷ ︸
Inequalities Penalty

.

(1)
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The normalization factors 1
|c| and 1

|c′| were used to reduce a topological bias that
arose from differences in the sizes of the equivalence classes for each tree shape.

3 QR-STAR

QR-STAR is an extension to QR that has an additional step for determining
the rooted shape (i.e., the rooted topology without the leaf labels) of a quintet
tree, as well as an associated penalty term in its cost function. This penalty term
compares the rooted shape of the 5-taxon tree, denoted by S(r), with the rooted
shape inferred by QR-STAR from the given quintet distribution, denoted by
Ŝ(û). The motivation for this additional preprocessing step is that, as we argue
in Supplementary Materials Sec. C, the cost function of QR does not guarantee
statistical consistency. The cost function of QR-STAR takes the following general
form

Cost∗(r, �̂u) =
∑

c∈Cr

∑

ua,ub∈c

αa,b|ûa − ûb|
︸ ︷︷ ︸

Invariants Penalty

+
∑

c>c′∈Cr

∑

ua∈c,ub∈c′
βa,b max(0, ûb − ûa)

︸ ︷︷ ︸
Inequalities Penalty

+ C1|S(r) �= Ŝ(û)|
︸ ︷︷ ︸

Shape Penalty

(2)
where αa,b ≥ 0 and βa,b, C > 0 are constant real numbers for all a, b2. Let
αmax = maxa,b(αa,b) and βmin = mina,b(βa,b) where a, b ranges over all pairs of
indices a, b used in the penalty terms in Eq. 2.

Each of the 105 rooted binary trees on a given set of 5 leaves have a unique set
of inequalities and invariants that can be derived from the ADR theory. The cost
function in Eq. 2 considers a penalty term for these inequalities and invariants
as well as the shape of the tree, so that Cost∗(r, �̂u) is minimized for a rooted
5-taxon tree r that best describes the given estimated quintet distribution.

3.1 Determining the Rooted Shape

Model 5-taxon species trees with different rooted shapes (i.e., caterpillar, bal-
anced, pseudo-caterpillar) define equivalence classes with different class sizes on
the unrooted gene tree probability distribution. These class sizes can be used
to determine the unlabeled shape of a rooted tree, when given the true gene
tree probability distribution. For example, the size of the equivalence class with
the smallest gene tree probabilities is 8 for the pseudo-caterpillar trees and 6
for balanced or caterpillar trees. Therefore, the size of the equivalence class
corresponding to the minimal element in the partial order can differentiate a
pseudo-caterpillar tree from other tree shapes. Moreover, both caterpillar and

2 Refer to Remark 1 for why αa,b does not need to be strictly positive.
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Fig. 2. Pipeline of QR and QR-STAR. The input is an unrooted species tree T
and set of unrooted gene trees G on the same leafset. a) The sampling step selects a
set Q of quintets from the leafset of T (shown is the linear encoding sampling). b) An
additional step in QR-STAR that determines the rooted shape for each selected quintet.
c) The preprocessing step computes a cost for each of the seven possible rootings of
each selected quintet. d) The scoring step computes a score for each rooted tree in
the search space based on the costs computed in the preprocessing step, and returns a
rooting of T with minimum score.

balanced trees have a unique class with the second smallest probability, which
is of size 2 for caterpillar trees and 4 for balanced trees and this can be used
to differentiate a caterpillar tree from a balanced tree. This approach is used in
Theorem 9 in [2] for establishing the identifiability of rooted 5-taxon trees from
unrooted gene trees.

However, given an estimated gene tree distribution, it is likely that none of
the invariants derived from the ADR theory exactly hold, and so the class sizes
cannot be directly determined and the approach above cannot be used as is
to infer the shape of a rooted quintet. Here we propose a simple modification
for determining the rooted shape of a tree from the estimated distribution of
unrooted gene trees, by looking for significant gaps between quintet gene tree
probabilities.

Let T be the unrooted species tree with n ≥ 5 leaves given to QR-STAR and q
be a quintet of taxa from L(T ). Let �̂u be the quintet distribution estimated from
input gene trees induced on taxa in set q. QR-STAR first sorts �̂u in ascending

order to get ûσ1 ≤ ûσ2 ≤ · · · ≤ ûσ15 . Let A(k) =
√

2
k ln(30|Q|k) (refer to

Lemma 4 for the derivation of A(k)), where k is the number of input gene trees
and |Q| is the size of the set of sampled quintets in QR-STAR (this depends on
the number n of taxa and is assumed fixed), and note that limk→∞ A(k) = 0.
The first step of QR-STAR computes an estimate of the rooted shape of a quintet
q, denoted by Ŝ(û) in Eq. 2, as follows:
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– estimate the rooted shape Ŝ(û) as pseudo-caterpillar if ûσ7 − ûσ6 < A(k);
– estimate the rooted shape Ŝ(û) as balanced if ûσ7 − ûσ6 ≥ A(k) and ûσ9 −

ûσ8 < A(k);
– estimate the rooted shape Ŝ(û) as caterpillar if ûσ7 − ûσ6 ≥ A(k) and ûσ9 −

ûσ8 ≥ A(k).

The runtime of QR-STAR is the same as QR, as determining the topological
shape for each quintet is done in constant time, so that the overall runtime
remains O(nk) when a linear sampling of quintets is used.

4 Theoretical Results

In this section, we provide the main theoretical results, starting with a series of
lemmas and theorems that will be used in the proof of statistical consistency of
QR-STAR in Theorem 2. Throughout this paper, we assume that discordance
between species trees and gene trees is solely due to ILS. In establishing sta-
tistical consistency, we assume that input gene trees are true gene trees and,
thus, have no gene tree estimation error. If not otherwise specified, all trees
are assumed to be fully resolved (i.e., binary). Due to space constraints, the
proofs are provided in Supplementary Materials Section B. We begin with some
definitions and key observations.

Definition 1 (Path length parameter). Let R be an MSC model species tree.
Let f(R) be the length of the shortest internal branch of R and g(R) be the length
of the longest internal path (i.e., a path formed from only the internal branches)
of R. We define the path length parameter of R as

h(R) =
1
18

e−3g(R)(1 − e−f(R))2 (3)

Note that h(R) ∈ (0, 1
18 ) since exp(−x) ∈ (0, 1) for all x > 0 and the branch

lengths have positive values. The formula for Eq. 3 is derived from the proof of
Lemma 2 in Supplementary Materials Sec. B.

Lemma 1. Let R be an MSC model species tree with n ≥ 5 leaves and q be an
arbitrary set of 5 leaves from L(R). Then h(R|q) ≥ h(R) where R|q is the rooted
tree R restricted to taxa in set q.

Lemma 2. Let R be an MSC model species tree with 5 leaves and internal
branch lengths x, y, and z. Let �u be the probability distribution that R defines
on the unrooted 5-taxon gene tree topologies. If �̂u is an estimate of �u such that
given ε > 0, we have |ûi −ui| < ε for all 1 ≤ i ≤ 15, then the following inequality
holds:

∀c>c′∈CR
∀ua∈c,ub∈c′ : ûa − ûb > h(R) − 2ε. (4)



Statistically Consistent Rooting under MSC 49

Definition 2. For a 5-taxon rooted tree R, we define IR as the set of ordered
pairs (i, j), 1 ≤ i �= j ≤ 15, corresponding to inequalities in the form ui > uj

defined according to the partial order of R. The inequalities that are a result of
transitivity (i.e. ui > uj and uj > uk implies ui > uk) are not included in IR.

Definition 3. Let V (R,R′) be the set of violated inequalities of two rooted 5-
taxon trees R and R′, i.e., all pairs {i, j} such that (i, j) ∈ IR and (j, i) ∈ IR′ .

Figure 3a shows an example of V (R,R′) computed for caterpillar trees and
Fig. 3b is a heatmap showing the function |V (R,R′)| computed for the seven
possible rootings of an unrooted quintet tree. The set V (R,R′) can be eas-
ily computed from IR and IR′ for all pairs of rooted 5-taxon trees, and IR is
derived from the ADR theory for all 105 5-taxon rooted trees in the Supplemen-
tary Materials, Sec. S2 in [30].

Fig. 3. Conflicting inequality penalty terms between rooted 5-taxon species
trees. a) Set of violated inequality penalty terms in the partial orders of R1 and
R7 with respect to R4, which are all caterpillar trees. The red edges show violations
of inequalities in tree R4, highlighted in blue. b) Heatmap showing the number of
pairwise violated penalty terms (function |V (R, R′)|) of seven possible rooted trees
having unrooted topology with bipartitions ab|cde and abc|de. The dark colors indicate
more violations, and the lightest color corresponds to no violations (|V (R, R′)| = 0).
(Color figure online)

Lemma 3. (a) For 5-taxon binary rooted trees R and R′ with the same rooted
shape, the set V (R,R′) is always non-empty. (b) For each balanced tree B, there
exist two caterpillar trees C1 and C2 such that V (B,Ci) = ∅.

4.1 Statistical Consistency

In this section, we establish statistical consistency for QR-STAR under the MSC
and provide the sufficient condition for a set of sampled quintets to lead to con-
sistency. That is, we prove that as the number of input true gene trees increases,
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the probability that QR-STAR and its variants correctly root the given unrooted
species tree converges to 1. We first prove statistical consistency for QR-STAR
when the model tree has only five taxa in Theorem 1 and then extend the proofs
to trees with arbitrary numbers of taxa in Theorem 2. The main idea of the
proof of consistency for 5-taxon trees is that we show as the number of input
gene trees increases, the cost of the true rooted tree becomes arbitrarily close
to zero, but the cost of any other rooted tree is bounded away from zero, where
the bound depends on the path length parameter of the model tree, h(R).

Lemma 4. Let R be an MSC model species tree with n ≥ 5 leaves and Q be a
set of quintets of taxa from L(R). Given δ > 0 and k > 0 unrooted gene tree

topologies, the following inequality holds, where Aδ(k) =
√

2
k ln(30|Q|

δ )

P

(

∀q∈Q∀1≤i≤15|(ûq)i − (uq)i| <
Aδ(k)

2

)

≥ 1 − δ. (5)

Setting δ = 1
k in Eq. 5, we get A(k) =

√
2
k ln(30|Q|k), which is the bound that

is used for determining the rooted shape of each quintet in the first step of QR-
STAR as well as the proofs of statistical consistency. When R has only five taxa,

A(k) becomes
√

2
k ln(30k), as Q can only contain one quintet.

Lemma 5 (Correct determination of rooted shape). Let R be a 5-taxon
model species tree and �u be the probability distribution that it defines on the
unrooted 5-taxon gene tree topologies. There is an integer k > 0 such that if
we are given at least k unrooted gene trees drawn i.i.d. from the distribution �u,
the first step of QR-STAR will correctly determine the rooted shape of R with
probability at least 1 − 1

k .

Lemma 6 (Upper bound on the cost of the model tree). Let R be a
5-taxon model species tree and �u be the probability distribution that it defines on
the unrooted 5-taxon gene tree topologies. There is an integer k > 0 such that if
we are given at least k unrooted gene trees drawn i.i.d. from distribution �u, then
Cost∗(R, �̂u) is less than 31αmaxA(k) with probability at least 1 − 1

k .

Theorem 1 (Statistical Consistency of QR-STAR for 5-taxon trees).
Let R be a 5-taxon model species tree and �u be the distribution that it defines on
the unrooted 5-taxon gene tree topologies. Given a set G of unrooted true quintet
gene trees drawn i.i.d. from �u, QR-STAR is a statistically consistent estimator
of R under the MSC.

Remark 1. Note that when αmax = 0, meaning that the invariant penalty terms
are removed from the cost function, the cost of the true tree would become
exactly zero according to the proof of Lemma 6, and the cost of any other tree
would be positive when k is large enough so that the conditions of Theorem 1
hold. Hence in this case, the condition in Eq. 7 (see full version of the paper)
will reduce to A(k) < 1

2h(R).
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Remark 2. Note that Lemma 3(a) holds for all pairs of 5-taxon rooted trees
with the same rooted shape and with different permutations of the leaf-labeling,
regardless of whether they have the same unrooted topology or not. Due to
this property, it is possible to differentiate all pairs of 5-taxon rooted trees in
a statistically consistent manner with the cost function of QR-STAR, without
prior knowledge about the unrooted tree topology, and hence Theorem 1 does
not assume that the unrooted topology is given as input.

The next lemma and theorem extend the proof of statistical consistency to trees
with n > 5 taxa. The linear encoding of a tree T by quintets is defined in
Supplementary Materials Section A.

Lemma 7 (Identifiability of the root from the linear encoding). Let R
and R′ be rooted trees with unrooted topology T and distinct roots. Let QLE(T )
be the set of quintets of leaves in a linear encoding of T . There is at least one
quintet of taxa q ∈ QLE(T ) so that R|q and R′

|q have different rooted topologies.

Lemma 7 states that no two distinct rooted trees with topology T induce the
same set of rooted quintet trees on quintets of taxa in set QLE(T ). Clearly, the
same is true for any superset Q such that QLE(T ) ⊆ Q, including the set Q5 of
all quintets of taxa on the leafset of T . There might also be other quintet sets that
are not a superset of QLE(T ), but have the property that no two rooted versions
of T define the same set of rooted quintets on their elements. We generalize the
proof of consistency to all set of sampled quintets with this property.

Definition 4. Let T be an unrooted tree and Q be a set of quintets of taxa from
L(T ). We say Q is “root-identifying” if every rooted tree R with topology T is iden-
tifiable from T and the set of rooted quintet trees in {R|q : q ∈ Q}, i.e., no two
rooted trees with topology T induce the same set of rooted quintet trees on Q.

Theorem 2 (Statistical Consistency of QR-STAR). Let R be an MSC
model species tree with n ≥ 5 leaves and let T denote its unrooted topology.
Given T and a set G of unrooted true gene trees on the leafset L(T ), QR-STAR
is a statistically consistent estimator of the rooted version of T under the MSC,
if the set of sampled quintets Q is root-identifying.

5 Experimental Study

We performed an experimental study on simulated datasets to explore the param-
eter space of QR-STAR on a training dataset, and then compared its accuracy to
QR on a test dataset. We used the 101-taxon simulated datasets from [34] as our
training data, which had model conditions characterized by four levels of gene tree
estimation error (GTEE) ranging from 0.23 to 0.55 (measured in terms of normal-
ized Robinson-Foulds (RF) [26] distance between true and estimated gene trees)
for 1000 genes. The normalized RF distance between the model species tree and
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Fig. 4. Rooting the model species tree with estimated gene trees on S200
datasets. Comparison between QR and QR-STAR in terms of rooting error (nCD)
for rooting the true unrooted species tree topology using estimated gene trees (GTEE
levels vary from 0.22 (for low ILS) to 0.49 (for high ILS)) on the 201-taxon datasets
from [20] with 50 replicates in each model condition. The columns show tree height
(500K for high ILS, 2M for moderate ILS, and 10M for low ILS), and the rows show
speciation rate (1e−06 or 1e−07).

true gene trees (denoted average distance, or AD) in this dataset was 0.46, which
indicates moderate ILS. For the test data (see Table D1 in the Supplementary
Materials for empirical statistics), we used a set of 201-taxon simulated datasets
from [20]; these are characterized by two different speciation rates and three tree
heights (500K for high ILS, 2M for moderate ILS, and 10M for low ILS) and three
numbers of genes for each combination of speciation rate and tree height. GTEE
levels on the test data varied from 0.22 (for low ILS) to 0.49 (for high ILS). The
AD levels ranged from 0.09 (for the 10M, 1e−07 condition) to 0.69 (for the 500K,
1e−06 condition). The number of replicates for each model condition for both the
training and test datasets was 50.

We measured the error in the rooted species tree in terms of average nor-
malized clade distance (nCD) [30], which is an extension of RF error for rooted
trees. For our training experiment, we only rooted the true species tree topology
to directly observe the rooting error. In our test experiments, we rooted both
the model species tree and estimated species tree, as produced by ASTRAL,
using both true and estimated gene trees (which were estimated using FastTree
[23]). Additional information about the simulation study, datasets, and software
commands are provided in Supplementary Materials Section D.

In our training experiments, we explored the impact of the shape coeffi-
cient C and the ratio αmax

βmin
(that describes the relative impact of invariants

and inequalities) on the accuracy of QR-STAR. Results for the training experi-
ments (provided in Supplementary Materials Sec. E1) show that there are wide
ranges of settings for the algorithmic parameters that provide the best accuracy.
We used these training results and theoretical considerations related to sample
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complexity of QR-STAR to set the algorithmic parameters to C = 1e−02 and
αmax

βmin
= 0.

Figure 4 shows a comparison between QR and QR-STAR in terms of rooting
error for rooting the model species tree topology using estimated gene trees on
the test datasets. Increasing the ILS level (by reducing tree height) decreases the
rooting error, and increasing the number of genes also generally reduces rooting
error (although much less under the lowest ILS level where tree height is 10M).
To understand the impact of ILS in Fig. 4, note that the true species tree is being
rooted and so ILS will not impact species tree estimation accuracy. However, the
level of ILS impacts information about rooting location, which comes from the
distribution of gene tree topologies. Thus, with lower ILS, it is likely that many
gene trees that have low probability of appearing will not appear in the input. In
this case, some estimates of quintet probabilities would become zero, and it may
not be possible to differentiate some of the rooted quintets using the inequality
and invariants derived from the ADR theory. In the extreme case, when there is
no discordance, there will be only one quintet gene tree with non-zero probability,
and the identifiability theorem in [2] would not hold and it becomes impossible
to find the root. This trend can be compared to the impact of ILS level on the
problem of estimating the unrooted topology of the species tree, where increases
in ILS generally lead to increases in error [19–21].

A comparison between QR and QR-STAR shows that QR-STAR generally
matched or improved on QR; the only exception was for the high ILS conditions,
where the two methods were very close but with perhaps a small advantage to
QR. On these high ILS conditions, however, GTEE is also large, and QR-STAR
is more accurate than QR when used with true gene trees, even under high ILS
(Supplementary Materials Sec. E). Hence, the issue is likely to be high GTEE
rather than high ILS, suggesting that QR-STAR is slightly more affected by
GTEE compared to QR.

6 Conclusion

In this work we presented QR-STAR, a polynomial time statistically consistent
method for rooting species trees under the multispecies coalescent model. QR-
STAR is an extension to QR, a method for rooting species trees introduced in
[30]. QR-STAR differs from QR in that it has an additional step for determining
the topological shape of each unrooted quintet selected in the QR algorithm,
and incorporates the knowledge of this shape in its cost function, alongside
the invariants and inequalities previously used in QR. We also showed that the
statistical consistency for QR-STAR holds for a larger family of optimization
problems based on cost functions and sampling methods.

To the best of our knowledge, this is the first work that established the
statistical consistency of any method for rooting species trees under a model that
incorporates gene tree heterogeneity. It remains to be investigated whether other
rooting methods can also be proven statistically consistent under models of gene
evolution inside species trees, such as the MSC or models of GDL. For example,
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STRIDE [4] and DISCO+QR [33] are methods that have been developed for
rooting species trees from gene family trees, where genes evolve under gene
duplication and loss (GDL); however, it is not known whether these methods
are statistically consistent under any GDL model.

Our simulation study showed as well that QR-STAR generally improved on
QR in a wide range of model conditions. Given that QR itself improved on other
methods for rooting species trees (as shown in [30]), this experimental study
suggests that QR-STAR may be a useful tool for rooting species trees when
gene tree discordance due to ILS is present.

This study suggests several directions for future research. For example, we
proved statistical consistency for one class of cost functions, which was a linear
combination of the invariant, inequality and shape penalty terms; however, cost
functions in other forms could also be explored and proven statistically consis-
tent. The proof of Theorem 1 suggests that the sample complexity of QR-STAR
depends on the function h(R), which is based on both the length of the short-
est branch and the longest path in the model tree. This suggests that having
very short or very long branches can both confound rooting under ILS, which is
also suggested in previous studies [1,2]. This is unlike what is known for species
tree estimation methods such as ASTRAL, where the sample complexity is only
affected by the shortest branch of the model tree [3,28], and trees with long
branches are easier to estimate.

Another theoretical direction is the construction of the rooted species tree
directly from the unrooted gene trees. As explained in Remark 2, the proof of
consistency of QR-STAR for 5-taxon trees does not depend upon the knowledge
of the unrooted tree topology; this suggests that it is possible to estimate the
rooted topology of the species tree in a statistically consistency manner directly
from unrooted gene tree topologies. Future work could focus on developing sta-
tistically consistent methods for this problem, which is significantly harder than
the problem of rooting a given tree.

There are also directions for improving empirical results. An important con-
sideration in designing a good cost function is its empirical performance, as many
cost functions can lead to statistical consistency but may not provide accurate
estimations of the rooted tree in practice (see Figures E1 and E2 in the Supple-
mentary Materials). One potential direction is to incorporate estimated branch
lengths, whether of the gene trees or the unrooted species tree, into the rooting
procedure.
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Abstract. Co-linear chaining is a widely used technique in sequence
alignment tools that follow seed-filter-extend methodology. It is a math-
ematically rigorous approach to combine short exact matches. For co-
linear chaining between two sequences, efficient subquadratic-time chain-
ing algorithms are well-known for linear, concave and convex gap cost
functions [Eppstein et al. JACM’92]. However, developing extensions of
chaining algorithms for directed acyclic graphs (DAGs) has been chal-
lenging. Recently, a new sparse dynamic programming framework was
introduced that exploits small path cover of pangenome reference DAGs,
and enables efficient chaining [Makinen et al. TALG’19, RECOMB’18].
However, the underlying problem formulation did not consider gap cost
which makes chaining less effective in practice. To address this, we
develop novel problem formulations and optimal chaining algorithms that
support a variety of gap cost functions. We demonstrate empirically the
ability of our provably-good chaining implementation to align long reads
more precisely in comparison to existing aligners. For mapping simulated
long reads from human genome to a pangenome DAG of 95 human hap-
lotypes, we achieve 98.7% precision while leaving < 2% reads unmapped.

Implementation: https://github.com/at-cg/minichain.

Keywords: Variation graph · Sparse dynamic programming ·
Minimum path cover · Pangenome

1 Introduction

A significant genetic variation rate among genomes of unrelated humans, plus the
growing availability of high-quality human genome assemblies, has accelerated
computational efforts to use pangenome reference graphs for common genomic
analyses [25,41,42]. The latest version of industry-standard DRAGEN software by
Illumina now uses a pangenome graph for mapping reads in highly polymorphic
regions of a human genome [15]. For surveys of the recent algorithmic develop-
ments in this area, see [2,7,11,34]. Among the many computational tasks associ-
ated with pangenome graphs, sequence-to-graph alignment remains a core compu-
tational problem. Accurate alignments are required for variation analysis and con-
struction of pangenome graph from multiple genomes [10,23]. Sequence-to-graph
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
H. Tang (Ed.): RECOMB 2023, LNBI 13976, pp. 58–73, 2023.
https://doi.org/10.1007/978-3-031-29119-7_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-29119-7_4&domain=pdf
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alignment is also useful in other applications including genome assembly [14] and
long-read error correction [40].

Suppose a pangenome graph is represented as a character labeled DAG
G(V,E) where each vertex v ∈ V is labeled with a character from alphabet
{A, C, G, T}. The sequence-to-DAG alignment problem seeks a path in G that
spells a string with minimum edit distance from the input query sequence. An
O(m|E|) time algorithm for this problem has long been known, where m is
the length of input sequence [30]. Conditioned on Strong Exponential Time
Hypothesis (SETH), the O(m|E|) algorithm is already worst-case optimal up to
sub-polynomial improvements because algorithms for computing edit distance in
strongly sub-quadratic time cannot exist under SETH [3]. As a result, heuristics
must be used for alignment of high-throughput sequencing data against large
DAGs to obtain approximate solutions in less time and space.

All practical long read to DAG aligners that scale to large genomes rely on
seed-filter-extend methodology [9,23,26,28,35]. The first step is to find a set of
anchors which indicate short exact matches, e.g., k-mer or minimizer matches,
between substrings of a sequence to subpaths in a DAG. This is followed by a
clustering step that identifies promising subsets of anchors which should be kept
within the alignments. Different aligners implement this step in different ways.
Co-linear chaining is a mathematically rigorous approach to do clustering of
anchors. It is well studied for the case of sequence-to-sequence alignment [1,12,
13,17,27,29,33], and is widely used in present-day long read to reference sequence
aligners [19,22,36,38,39]. For the sequence-to-sequence alignment case, the input
to the chaining problem is a set of N weighted anchors where each anchor is a
pair of intervals in the two sequences that match exactly. A chain is defined
as an ordered subset of anchors such that their intervals appear in increasing
order in both sequences (Fig. 1a). The desired output of the co-linear chaining
problem is the chain with maximum score where score of a chain is calculated by
the sum of weights of the anchors in the chain minus the penalty corresponding
to gaps between adjacent anchors. For linear gap costs, this problem is solvable
in O(N log N) time by using range-search queries [1].

Solving chaining problem for sequence-to-DAG alignment remained open
until Makinen et al. [28] introduced a framework that enables sparse dynamic
programming on DAGs. Suppose K denotes cardinality of a minimum-sized set
of paths such that every vertex is covered by at least one path. The algorithm
in [28] works by mimicking the sequence-to-sequence chaining algorithm on each
path of the minimum path cover. After a polynomial-time indexing of the DAG,
their algorithm requires O(KN log N + K|V |) time for chaining. Parameteriz-
ing the time complexity in terms of K is useful because K is expected to be
small for pangenome DAGs. This result was further improved in [26] with an
O(KN log KN) time algorithm. However, the problem formulations in these
works did not include gap cost. Without penalizing gaps, chaining is less effec-
tive [17]. A challenge in enforcing gap cost is that measuring gap between two
loci in a DAG is not a simple arithmetic operation like in a sequence [21].

We present novel co-linear chaining problem formulations for sequence-to-
DAG alignment that penalize gaps, and we develop efficient algorithms to solve
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Sequence 2

Sequence 1

Sequence

DAG

(a) (b)

Fig. 1. Illustration of co-linear chaining for (a) sequence-to-sequence and (b) sequence-
to-DAG alignment. It is assumed that vertices of DAG are labeled with strings. Pairs of
rectangles joined by dotted arrows denote anchors (exact matches). A subset of these
anchors that form a valid chain are shown in gray.

them. We carefully design gap cost functions such that they enable us to adapt
the sparse dynamic programming framework of Makinen et al. [28], and solve
the chaining problem optimally in O(KN log KN) time. We implemented and
benchmarked one of our proposed algorithms to demonstrate scalability and
accuracy gains. Our experiments used human pangenome DAGs built by using
94 high quality de novo haplotype assemblies provided by the Human Pangenome
Reference Consortium [25] and CHM13 human genome assembly provided by the
Telomere-to-Telomere consortium [31]. Using a simulated long read dataset with
0.5× coverage, we demonstrate that our implementation achieves the highest
read mapping precision (98.7%) among the existing methods (Minigraph: 98.0%,
GraphAligner: 97.0% and GraphChainer: 95.1%). In this experiment, our imple-
mentation used 24 min and 25 GB RAM with 32 threads, demonstrating that
the time and memory requirements are well within practical limits.

2 Concepts and Notations

2.1 Co-linear Chaining on Sequences Revisited

Let R and Q be two sequences over alphabet Σ = {A,C,G, T}. Let M [1..N ]
be an array of anchors. Each anchor is denoted using an interval pair
([x..y], [c..d]) with the interpretation that substring R[x..y] matches substring
Q[c..d], x, y, c, d ∈ N. Anchors are typically either fixed-length matches (e.g.,
using k-mers) or variable-length matches (e.g., maximal exact matches). Suppose
function weight assigns weights to the anchors. The co-linear chaining problem
seeks an ordered subset S = s1s2 · · · sp of anchors from M such that

– for all 2 ≤ j ≤ p, sj−1 precedes (≺) sj , i.e., sj−1.y < sj .x and sj−1.d < sj .c.
– S maximises chaining score, defined as

∑p
j=1 weight(sj)−

∑p
j=2 gap(sj−1, sj).

Define gap(sj−1, sj) as f(gapR(sj−1, sj), gapQ(sj−1, sj)), where gapR

(sj−1, sj) = sj .x − sj−1.y − 1, gapQ(sj−1, sj) = sj .c − sj−1.d − 1 and
f(g1, g2) = g1 + g2.

The above problem can be trivially solved in O(N2) time and O(N) space.
First sort the anchors by the component M [·].x, and let T [1..N ] be an
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integer array containing a permutation of set [1..N ] which specifies the sorted
order, i.e., M [T [1]].x ≤ M [T [2]].x ≤ . . . ≤ M [T [N ]].x. Define array C[1..N ]
such that C[j] is used to store a partial solution, i.e., the score of an opti-
mal chain that ends at anchor M [j]. Naturally, the final score will be obtained
as maxj C[j]. Array C can be filled by using the following dynamic program-
ming recursion: C[T [j]] = weight(M [T [j]]) + max

(
0,maxi:M [i]≺M [T [j]](C[i] −

gap(M [i],M [T [j]]))
)
, in increasing order of j. A straight-forward way of com-

puting C[T [j]] will need an O(N) linear scan of arrays C and M , resulting in
overall O(N2) time. However, the O(N2) algorithm can be optimized to use
O(N log N) time by using the following search tree data structure (ref. [4]).

Lemma 1. Let n be the number of leaves in a balanced binary search tree, each
storing a (key, value) pair. The following operations can be supported in O(log n)
time:

– update(k, val): For the leaf w with key = k, value(w) ←− max(value(w), val).
– RMQ(l, r): Return max{value(w) | l < key(w) < r}. This is range maximum

query.

Moreover, given n (key, value) pairs, the balanced binary search tree can be con-
structed in O(n log n) time and O(n) space.

The dynamic programming recursion for array C[1..N ] can be computed more
efficiently using range maximum queries [1,12]. To achieve this, a search tree
needs to be initialized, updated and queried properly (Algorithm 1). Note that
argmaxi:M [i]≺M [j](C[i] − gap(M [i],M [j])) is equal to argmaxi:M [i]≺M [j](C[i] +
M [i].y + M [i].d). Accordingly, we compute optimal C[j] in Line 11 by using
an O(log N) time RMQ operation of the form M [i].d ∈ (0,M [j].c) that returns
maximum C[i] + M [i].y + M [i].d from search tree T . The algorithm performs
N update and N RMQ operations over search tree T of size at most N , thus
solving the problem in O(N log N) time and O(N) space.

Algorithm 1: O(N log N) time chaining between two sequences
Input: Array of weighted anchors M [1..N ]
Output: Array C[1..N ] such that C[j] = score of an optimal chain that ends at M [j]

1 Initialize search tree T using keys {M [j].d | 1 ≤ j ≤ N} and values −∞
2 Initialize C[j] as weight(M [j]), for all j ∈ [1, N ]
3 /* Create array Z that stores tuples of the form (pos, task, anchor), where pos ∈ N,

anchor ∈ [1, N ] and task ∈ {0, 1}. task is either 0 or 1 for querying or updating the search
tree T respectively.*/

4 for j ←− 1 to N do
5 Z.push(M [j].x, 0, j)
6 Z.push(M [j].y, 1, j)

7 end
8 for z ∈ Z in lexicographically ascending order based on the key (pos, task) do
9 j ←− z.anchor, wt ←− weight(M [j])

10 if z.task = 0 then
11 C[j] ←− max(C[j], wt + T .RMQ(0, M [j].c) − M [j].x − M [j].c + 2)
12 else
13 T .update(M [j].d, C[j] + M [j].y + M [j].d)
14

15 end
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2.2 Sparse Dynamic Programming on DAGs Using Minimum Path
Cover

Our work builds on the work of Makinen et al. [28], who provided a parameterized
algorithm to extend co-linear chaining on DAGs without considering gap costs.
In the following, we present useful notations and a summary of their algorithm.

In a weighted string-labeled DAG G(V,E, σ), function σ : V → Σ+ labels
each vertex v ∈ V with string σ(v). Edge v → u has length |σ(v)|. The length
of a path in G is the sum of the lengths of the edges traversed in the path. Let
Q ∈ Σ+ be a query sequence. Let M be an array of N anchors. An anchor is
denoted using a 3-tuple of the form (v, [x..y], [c..d]) with the interpretation that
substring σ(v)[x..y] in DAG G matches substring Q[c..d], where x, y, c, d ∈ N and
v ∈ V (Fig. 2). A path cover of DAG G(V,E) is a set of paths in G such that
every vertex in V belongs to at least one path. A minimum path cover (MPC) is
one having the minimum number of paths. If K denotes the size of MPC of DAG
G, then MPC can be computed either in O(K|E| log |V |) [28] or O(K3|V |+ |E|)
[5] time.

To extend co-linear chaining for sequence-to-DAG alignment, we can use a
search tree containing keys equal to the sequence coordinates of anchors, similar
to Algorithm 1. However, the order in which the search tree should be queried
and updated is not trivial with DAGs. Makinen et al. [28] suggested decomposing
the DAG into a path cover {P1, ..., PK}, and then performing the computation
only along these paths. The algorithm uses K search trees {T1, ..., TK}, one per
path. Search tree Ti maintains M [·].d as keys and partial solutions C[·] as values
of all the anchors that lie on path Pi. Similar to Algorithm 1, the K search trees
need to be updated and queried in a proper order. Suppose R(v) ⊆ V denotes the
set of vertices which can reach v using a path in G. Set R(v) always includes v.
Define last2reach(v, i) as the last vertex on path Pi that belongs to R(v), if one
exists. Also define paths(v) as {i : Pi covers v}. Naturally last2reach(v, i) = v iff
i ∈ paths(v). The main algorithm works by visiting vertices u of G in topological
order, and executing the following two tasks:

– Compute optimal scores of all anchors in vertex u: First, process all
the anchors for which M [j].v = u in the same order that is used for co-linear
chaining on two sequences (Algorithm 1). While performing an update task,
update all search trees Ti, for all i ∈ paths(u). Similarly, while performing a
range query, query search trees Ti to maximize C[j].

– Update partial scores of selected anchors outside vertex u: Next,
for all pairs (w, i), w ∈ V, i ∈ [1,K] such that last2reach(w, i) = u and
i /∈ paths(w), query search tree Ti to update score C[j] of every anchor M [j]
for which M [j].v = w.

Based on the above tasks, once the algorithm reaches v ∈ V in the topologi-
cal ordering, the scores corresponding to anchors in vertex v would have been
updated from all other vertices that reach v. A well-optimized implementation of
this algorithm uses O(KN log KN) time [26]. This result assumes that the DAG
is preprocessed, i.e., path cover and last2reach information is precomputed in
O(K3|V | + K|E|) time.
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3 Problem Formulations

We develop six problem formulations for co-linear chaining on DAGs with differ-
ent gap cost functions. In each problem, we seek an ordered subset S = s1s2 · · · sp

of anchors from array M such that

– for all 2 ≤ j ≤ p, sj−1 precedes (≺) sj , i.e., the following three conditions
are satisfied (i) sj−1.d < sj .c, (ii) sj−1.v ∈ R(sj .v), and (iii) sj−1.y < sj .x if
sj−1.v = sj .v.

– S maximizes the chaining score defined as
∑p

j=1 weight(sj) −
∑p

j=2 gap(sj−1, sj). Define gap(sj−1, sj) as f(gapG(sj−1, sj), gapS(sj−1, sj)),
where functions gapG and gapS will be used to specify gap cost in the DAG
and the query sequence respectively.

M11

M9.dM9.c

M9.yM9.x

M8

M4

M12

M5

ATCGACGTA TCAGATCGGTAC

GCTAGCAAATCCGCCATACTACATA

GTCGAACGACAACATGTCCATAACATATTCCATACACCTGATCGACTTCAGTACGGTACGCATAGCTATAGCAAGCATGCCAAAT

M15
M14M13

M10M9

M7
M3

M6

M2

M1

GCATGCCAAATGCATGCAGATCACC

DAG

Sequence

v0

v1

v4v3

v2 v5

M9.v = v3
9

9

13

14

12

12

Fig. 2. An example showing multiple anchors as input for co-linear chaining. The
DAG has a minimum path cover of size two {(v0, v1, v3, v4), (v0, v2, v3, v5)}. Anchors
M1,M4,M5,M9,M10,M11,M12 form a valid chain. The interval coordinates of anchor
M9 in the sequence and the DAG are annotated for illustration.

gapS(sj−1, sj) equals sj .c−sj−1.d−1, i.e., the count of characters in sequence
Q that occur between the two anchors. However, defining gapG is not as straight-
forward because multiple paths may exist from sj−1.v to sj .v, and the correct
alignment path is unknown. We formulate and solve the following problems:

Problems 1a–1c: gapG(sj−1, sj) is computed by using the shortest path from
sj−1.v to sj .v. Suppose D(v1, v2) denotes the shortest path length from vertex
v1 to v2 in G. We seek the optimal chaining score when

gapG(sj−1, sj) = D(sj−1.v, sj .v) + (sj .x − sj−1.y − 1).

The above expression calculates the count of characters in the string path
between anchors sj−1 and sj . Define Problems 1a, 1b and 1c using f(g1, g2) =
g1 + g2, f(g1, g2) = max(g1, g2) and f(g1, g2) = |g1 − g2| respectively. These
definitions of function f are motivated from the previous co-linear chaining for-
mulations for sequence-to-sequence alignment [1,29].
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Problems 2a–2c: gapG(sj−1, sj) is measured using a path from sj−1.v to
sj .v that is chosen based on path cover {P1, ..., PK} of DAG G. For each
i ∈ paths(sj−1.v), consider the following path in G that starts from source sj−1.v
along the edges of path Pi till the middle vertex last2reach(sj .v, i), and finally
reaches destination sj .v by using the shortest path from last2reach(sj .v, i) to
sj .v. Among |paths(sj−1.v)| such possible paths, measure gapG(sj−1, sj) using
the path which minimizes gap(sj−1, sj) = f(gapG(sj−1, sj), gapS(sj−1, sj)).
More precisely,
gapG(sj−1, sj) equals the element of the set

{dist2begin(μ, i) − dist2begin(sj−1.v, i) + D(μ, sj .v) + sj .x

−sj−1.y − 1 | i ∈ paths(sj−1.v), μ = last2reach(sj .v, i)}

which minimizes gap(sj−1, sj), where dist2begin(v, i) denotes the length of sub-
path of path Pi from the start of Pi to v. We will show that this definition
enables significantly faster parameterized algorithms with respect to K. Again,
define Problems 2a, 2b and 2c with f(g1, g2) = g1 + g2, f(g1, g2) = max(g1, g2)
and f(g1, g2) = |g1 − g2| respectively.

4 Proposed Algorithms

Our algorithm to address Problems 1a-1c uses a brute-force approach that eval-
uates all O(N2) pairs of anchors. We use single-source shortest distances com-
putations for measuring gaps.

Lemma 2. Problems 1a, 1b and 1c can be solved optimally in O(N(|V | + |E| +
N)) time.

Proof. We will process anchors in array M [1..N ] one by one in a topological
order of M [·].v. If there are two anchors with equal component M [·].v, then
the anchor with lower component M [·].x is processed first. Suppose DAG G′

is obtained by reversing the edges of G. While processing anchor M [j], we
will compute partial score C[j], i.e., the optimal score of a chain that ends
at anchor M [j]. We identify all the anchors that precede M [j] using a depth-
first traversal starting from M [j].v in G′. Next, we compute single-source short-
est distances from M [j].v in G′ which requires O(|V | + |E|) time for DAGs
[8]. Finally, C[j] is computed as weight(M [j]) + max

(
0,maxi:M [i]≺M [j](C[i] −

f(gapG(M [i],M [j]), gapS(M [i],M [j]))
)

in O(N) time. �	

The above algorithm is unlikely to scale to a mammalian dataset. We leave
it open whether there exists a faster algorithm to solve Problems 1a-c. Next,
we propose O(KN log KN) time algorithm for addressing Problem 2a, assuming
O(K3|V |+K|E|) time preprocessing is done for DAG G. The preprocessing stage
is required to compute (a) an MPC {P1, . . . , PK} of G, (b) last2reach(v, i), (c)
D(last2reach(v, i), v) and (d) dist2begin(v, i), for all v ∈ V, i ∈ [1,K].

Lemma 3. The preprocessing of DAG G(V,E, σ) can be done in O(K3|V | +
K|E|) time.
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Proof. An MPC {P1, . . . , PK} can be computed in O(K3|V | + |E|) time [5]. To
compute the remaining information, we will use dynamic programming algo-
rithms that process vertices ∈ V in a fixed topological order. Suppose func-
tion rank : V → [1, |V |] assigns rank to each vertex based on its topological
ordering. Let N (v) denote the set of adjacent in-neighbors of v. Similar to [28],
last2reach(v, i) is computed in O(K|V | + K|E|) time for all v ∈ V, i ∈ [1,K].
Initialize last2reach(v, i) = 0 for all v and i. Then, use the following recursion:

last2reach(v, i) =

{
rank(v) if i ∈ paths(v)
maxu:u∈N (v) last2reach(u, i) otherwise

At the end of the algorithm, last2reach(v, i) = 0 will hold for only those
pairs (v, i) for which last2reach(v, i) does not exist. Next, we compute
D(last2reach(v, i), v), for all v ∈ V, i ∈ [1,K], also in O(K|V | + K|E|)
time. Initialize D(last2reach(v, i), v) = ∞ for all v and i. Then, update
D(last2reach(v, i), v)

=

{
0 if last2reach(v, i) = v

minu:u∈N (v),last2reach(u,i)=last2reach(v,i) D(last2reach(u, i), u) + |σ(u)| otherwise

Finally, dist2begin(v, i), for all v ∈ V, i ∈ [1,K] is computed by linearly scanning
K paths in O(K|V |) time. �	

Lemma 4. Assuming DAG G(V,E, σ) is preprocessed, Problem 2a can be solved
in O(KN log KN) time and O(KN) space.

Proof. The choice of gap cost definition in Problem 2a allows us to make effi-
cient use of range-search queries. Algorithm 2 gives an outline of the proposed
dynamic programming algorithm. Similar to the previously discussed algorithms
(Sect. 2.1), it also saves partial scores in array C[1..N ]. We use K search trees,
one per path. Search tree Ti maintains partial scores C[ ] of those anchors M [j]
whose coordinates on DAG are covered by path Pi. Each search tree is initialized
with keys M [j].d, and values −∞. Subsequently, K search trees are queried and
updated in a proper order.

– If K = 1, i.e., when DAG G is a linear chain, the condition in Line 6 is
always satisfied and the term D(v,M [j].v) (Line 18) is always zero. In this
case, Algorithm 2 works precisely as the co-linear chaining algorithm on two
sequences (Algorithm 1).

– For K > 1, we use last2reach information associated with vertex M [j].v
(Lines 9-11). This ensures that partial score C[j] is updated from scores of
the preceding anchors on path Pi for all i ∈ [1,K]\paths(M [j].v).

All the query and update operations done in the search trees together
use O(KN log N) time because the count of these operations is bounded by
O(KN), and the size of each tree is ≤ N . The sorting step in Line 15 requires
O(KN log KN) time to sort O(KN) tuples. The overall space required by K
search trees and array Z is O(KN). �	
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Algorithm 2: O(KN log KN) time chaining algorithm for Problem 2a
Input: Array of weighted anchors M [1..N ], preprocessed DAG G(V, E, σ)
Output: Array C[1..N ] such that C[j] = score of an optimal chain that ends at M [j]

1 Initialize search tree Ti, for all i ∈ [1, K] using keys {M [j].d | 1 ≤ j ≤ N} and values −∞
2 Initialize C[j] as weight(M [j]), for all j ∈ [1, N ]
3 /* Create array Z that stores tuples of the form (v, pos, task, anchor, path), where v ∈ V ,

pos ∈ N, task ∈ {0, 1}, anchor ∈ [1, N ] and path ∈ [1, K].*/
4 for j ←− 1 to N do
5 for i ←− 1 to K do
6 if i ∈ paths(M [j].v) then
7 Z.push(M [j].v, M [j].x, 0, j, i)
8 Z.push(M [j].v, M [j].y, 1, j, i)

9 else if last2reach(M [j].v, i) exists then
10 v ←− last2reach(M [j].v, i)
11 Z.push(v, |σ(v)| + 1, 0, j, i)

12

13 end

14 end
15 for z ∈ Z in lexicographically ascending order based on the key (rank(v), pos, task) do
16 j ←− z.anchor, i ←− z.path, v ←− z.v, wt ←− weight(M [j])
17 if z.task = 0 then
18 C[j] ←− max(C[j], wt + Ti.RMQ(0, M [j].c) − M [j].x − dist2begin(v, i) −

D(v, M [j].v) − M [j].c + 2)
19 else
20 Ti.update(M [j].d, C[j] + M [j].y + dist2begin(v, i) + M [j].d)
21

22 end

For simplicity of notations, we have not allowed an anchor to span two or
more connected vertices in a DAG, but the proposed framework can be easily
generalized to handle this [26,28]. Finally, we design algorithms for Problems
2b and 2c by using 2-dimensional RMQs. We summarize the result below. The
proof is provided in the expanded version of this paper [6].

Lemma 5. Assuming DAG G(V,E, σ) is preprocessed, Problems 2b and 2c can
be solved in O(KN log2 N + KN log KN) time and O(KN log N) space.

5 Implementation Details

Among the proposed algorithms, Algorithm 2 has the best time complexity.
We implemented this algorithm in C++, and developed a practical long read
alignment software Minichain.

Pangenome Graph Representation: A path in pangenome reference graph
G(V,E, σ) spells a sequence in a single orientation, whereas a read may be sam-
pled from either the same or the opposite orientation due to the double-stranded
nature of DNA. To address this internally in Minichain, for each vertex v ∈ V ,
we also add another vertex v̄ whose string label is the reverse complement of
string σ(v). For each edge u → v ∈ E, we also add the complementary edge
v̄ → ū. This process doubles the count of edges and vertices.

Optimization for Whole-Genome Pangenome Graphs: A pan-genome
reference graph associated with a complete human genome is a union of weakly
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connected components, one per chromosome, because there is no edge which
connects two chromosome components. We actually maintain two components
per chromosome, one being the reverse complement of the other. During both
preprocessing and chaining stages of the proposed algorithms, each component is
treated independently. The parameter K in our time complexity results is deter-
mined by the maximum K value among the components. We use GraphChainer
implementation [26] to compute minimum path cover and range queries. We also
optimize runtime by performing parallel preprocessing of different components
(Lemma 3) using multiple threads.

Computing Multiple Best Chains and Confidence Scores: When a read
is sampled from a repetitive region of a genome, computing read’s true path
of origin becomes challenging. Practical methods often report more than one
alignment per read in such cases. The highest-scoring alignment is marked as
primary alignment, and the remaining are marked as secondary. Additionally,
based on the score difference between the primary and the highest-scoring sec-
ondary alignment, a confidence score ∈ [0, 60] is provided as mapping quality that
represents the likelihood that the primary alignment is correct [24]. In Minichain,
we also implement an algorithm to identify multiple high-scoring chains so that
multiple base-to-base alignment records can be reported to a user. Algorithm 2
returns partial scores C[1..N ] in the end. We perform backtracking from anchor
argmaxj C[j] to compute the optimal chain. The anchors involved in this chain
are marked as visited. Iteratively, we check presence of another chain (a) whose
score is ≥ τ ·maxj C[j], where τ ∈ [0, 1] is a user-specified threshold with default
value 0.95, and (b) none of the anchors in the chain are previously visited. We
stop when no additional chains exist that satisfy these conditions.

Computing Anchors and Final Base-to-Base Alignments: In Minichain,
we use the seeding and base-to-base alignment methods from Minigraph [23]. The
seeding method in Minigraph works by identifying common minimizers between
query sequence and string labels σ(v) of graph vertices. Given a pre-defined
ordering of all k-mers and w consecutive k-mers in a sequence, (w, k)-minimizer is
the smallest k-mer among the w k-mers [37]. The common minimizer occurrences
between a query and vertex labels form anchors. In our experiments, we use same
parameters k = 17, w = 11 as Minigraph. The weight of each anchor is k times
a user-specified constant which is set to 200 by default. Algorithm 2 is used to
compute the best chains and discard those anchors which do not contribute to
these chains. Finally, we return the filtered anchors to Minigraph’s alignment
module to compute base-to-base alignments [43].

6 Experiments

Benchmark Datasets: We built string-labeled DAGs of varying sizes by using
Minigraph v0.19 [23]. Each DAG is built by using a subset of 95 publicly avail-
able haplotype-resolved human genome assemblies [25,31]. In Minigraph, a DAG
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is iteratively constructed by aligning each haplotype assembly to an intermedi-
ate graph, and augmenting additional vertices and/or edges for each structural
variant observed. We disabled inversion variants by using --inv=no parameter
to avoid introducing cycles in the DAG. CHM13 human genome assembly [31] is
used as the starting reference, and we added other haplotype assemblies during
DAG construction. In the CHM13 assembly, the first 24 contigs represent indi-
vidual chromosome (1–22, X, Y) sequences, and the last 25th contig represents
mitochondrial DNA. Using this data, we constructed five DAGs, labeled as 1H,
10H, 40H, 80H and 95H respectively. In each of these DAG labels, the integer
prefix reflects the count of haplotype assemblies present in the DAG. Proper-
ties of these DAGs are shown in Table 1. Parameter K, i.e., the size of MPC,
is presented as a range because different connected components in a DAG have
different MPCs. For all DAGs, note that the maximum K is � |V |. We used
PBSIM2 v2.0.1 [32] to simulate long reads from CHM13 human assembly. For
each simulated read and each DAG, we know the true string path where the read
should align. PBSIM2 input parameters were set such that we get sequencing
error rate and N50 read length as 5% and 10 kbp respectively. The commands
used to run the tools are available in the expanded version of this paper [6].

Table 1. Properties of DAGs used in our experiments. Total sequence length indicates
the sum of length of string labels of all vertices in the DAG.

DAG |V | |E| No. of structural
variants

N50 length of
vertex labels (kbp)

Total sequence
length (Gbp)

K
(min-max)

1H 25 0 0 150, 617 3.11 1–1

10H 141, 755 203, 160 61, 430 225 3.15 1–9

40H 340, 451 489, 612 149, 186 126 3.23 1–20

80H 553, 271 797, 528 244, 282 85 3.31 1–29

95H 611, 949 882, 739 270, 815 78 3.34 1–35

Evaluation Methodology: Alignment output of a read specifies the string
path in the input DAG against which the read is aligned. An appropriate eval-
uation criteria is needed to classify the reported string path as either correct
or incorrect by comparing it to the true path. We followed a similar criteria
that was used in previous studies [22,23]. First, the reported string path should
include only those vertices which correspond to CHM13 assembly, i.e., it should
not span an edge augmented from other haplotypes (Fig. 3). Second, the reported
interval in CHM13 assembly should overlap with the true interval, and the over-
lapping length should exceed ≥ 10% length of the union of the true and the
reported intervals. A correct alignment should satisfy both the conditions. We
use paftools [22] which implements this evaluation method. All our experiments
were done on AMD EPYC 7742 64-core processor with 1 TB RAM. We used 32
threads to run each aligner because all the tested tools support multi-threading
by considering each read independently. Wall clock time and peak memory usage
were measured using /usr/bin/time Linux command.
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Fig. 3. Illustration of the evaluation criteria. Among the three reported paths above,
only (C) is correct.

Performance Comparison with Existing Algorithms: We compared
Minichain (v1.0) to three existing sequence-to-DAG aligners: Minigraph v0.19
[23], GraphAligner v1.0.16 [35], and GraphChainer v1.0 [26]. Minigraph uses a
two-stage co-linear chaining approach. The first stage ignores edges in the graph
and solves co-linear chaining between query sequence and vertex labels. The sec-
ond stage combines the vertex-specific-chains. In contrast, GraphAligner does
not use co-linear chaining and instead relies on its own clustering heuristics.
GraphChainer solves co-linear chaining on DAG without penalizing gaps. All the
aligners, except GraphChainer, also compute mapping quality (confidence score)
for each alignment. We excluded optimal sequence-to-DAG aligners (e.g., [16,18])
because they do not scale to DAGs built by using entire human genomes.

We evaluated accuracy and runtime of Minichain using three DAGs 1H, 10H
and 95H (Tables 2, 3 and 4). While using DAG 1H, we also tested Minimap2 v2.24
[22], a well-optimized sequence-to-sequence aligner, by aligning reads directly to
CHM13 genome assembly. The results show that Minichain consistently achieves
the highest precision among the existing sequence-to-DAG aligners. It aligns a
higher fraction of reads compared to Minigraph. The gains are also visible when
mapping quality (MQ) cutoff 10 is used to filter out low-confidence alignments.
GraphAligner and GraphChainer align 100% reads consistently, but this is sup-
plemented with much higher fraction of incorrectly aligned reads. Both Mini-
graph and Minichain do not align 100% reads. This likely happens because the
seeding method used in these two aligners filters out the most frequently occur-
ring minimizers from DAG to avoid processing too many anchors. This can leave
several reads originating from long-repetitive genomic regions as unaligned [20].

Among the four aligners, Minigraph performs the best in terms of runtime.
Runtime of Minichain increases for DAG 95H because of higher value of K.
However, we expect that this can be partly addressed with additional improve-
ments in the proposed chaining algorithm, e.g., by dynamically deleting the
anchors from search trees whose gap from all the remaining unprocessed anchors
exceeds an acceptable limit. Overall, the results demonstrate practical advan-
tage of Minichain for accurate long-read alignment to DAGs. Superior accuracy
of Minichain is also illustrated using precision-recall plots in Fig. 4.

Impact of Increasing DAG Size on Accuracy: Alignment accuracy gen-
erally deteriorates as count of haplotypes increases in DAGs for all the tested
aligners. For each read that was not aligned correctly, we checked if the corre-
sponding reported string path overlaps with the true interval (Fig. 3, case A).
Such reads are aligned to correct region in the DAG but the reported path uses
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Table 2. Performance comparison of long read aligners using DAG 1H.

Minichain Minigraph GraphAligner GraphChainer Minimap2

Indexing time (sec) 65 65 395 458 55

Alignment time (sec) 205 104 6298 6714 133

Memory usage (GB) 20.06 19.66 38.12 126.14 12.48

Unaligned reads 0.94% 2.11% 0% 0% 0%

Incorrect aligned reads 0.58% 0.66% 1.06% 1.33% 0.56%

Unaligned reads (MQ≥10) 3.89% 5.82% 0.80% 0% 2.29%

Incorrect aligned reads (MQ≥10) 0.02% 0.11% 0.53% 1.33% 0.0013%

Table 3. Performance comparison of long read aligners using DAG 10H.

Minichain Minigraph GraphAligner GraphChainer

Indexing time (sec) 67 66 321 537

Alignment time (sec) 610 132 5479 9642

Memory usage (GB) 23.15 23.16 38.41 143.94

Unaligned reads 1.17% 2.17% 0% 0%

Incorrect aligned reads 0.80% 1.20% 1.55% 2.10%

Unaligned reads (MQ≥10) 4.03% 5.88% 0.28% 0%

Incorrect aligned reads (MQ≥10) 0.20% 0.34% 0.99% 2.10%

one or more augmented edges. The remaining fraction of incorrectly aligned reads
align to wrong region in the DAG. We observe that the fraction of incorrectly-
aligned reads which align to correct region in DAG increases with increasing
count of haplotypes (Fig. 5). This happens because the count of alternate paths
increases combinatorially with more number of haplotypes which makes precise
alignment of a read to its path of origin a challenging problem. Addressing this
issue requires further algorithmic improvements.

Table 4. Performance comparison of long read aligners using DAG 95H.

Minichain Minigraph GraphAligner GraphChainer

Indexing time (sec) 77 71 342 763

Alignment time (sec) 1414 154 5695 17336

Memory usage (GB) 24.75 24.76 40.79 192.36

Unaligned reads 1.62% 2.23% 0% 0%

Incorrect aligned reads 1.31% 1.96% 3.01% 4.92%

Unaligned reads (MQ≥10) 4.75% 6.26% 0.88% 0%

Incorrect aligned reads (MQ≥10) 0.56% 0.89% 2.38% 4.92%
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Fig. 4. Precision-recall curves obtained by using different aligners. X-axis indicates
percentage of incorrectly aligned reads in log-scale. These curves are obtained by setting
different mapping quality cutoffs ∈ [0, 60]. GraphChainer curve is a single point because
it reports fixed mapping quality 60 in all alignments.

Fig. 5. The fraction of incorrectly aligned reads is shown using DAGs 1H, 10H, 40H,
80H and 95H. Each incorrectly-aligned read is further classified as aligned to either
a wrong or a correct region in the DAG based on whether the reported string path
overlaps with the true string path (e.g., cases A, B in Fig. 3).
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27. Mäkinen, V., Sahlin, K.: Chaining with overlaps revisited. In: 31st Annual Sympo-
sium on Combinatorial Pattern Matching (CPM 2020). Schloss Dagstuhl-Leibniz-
Zentrum für Informatik (2020)

28. Mäkinen, V., Tomescu, A.I., Kuosmanen, A., Paavilainen, T., Gagie, T., Chikhi, R.:
Sparse dynamic programming on DAGs with small width. ACM Trans. Algorithms
15(2), 1–21 (2019)

29. Myers, G., Miller, W.: Chaining multiple-alignment fragments in sub-quadratic
time. In: SODA, vol. 95, pp. 38–47 (1995)

30. Navarro, G.: Improved approximate pattern matching on hypertext. Theor. Com-
put. Sci. 237(1–2), 455–463 (2000)

31. Nurk, S., Koren, S., Rhie, A., Rautiainen, M., et al.: The complete sequence of a
human genome. Science 376(6588), 44–53 (2022). https://doi.org/10.1126/science.
abj6987

32. Ono, Y., Asai, K., Hamada, M.: PBSIM2: a simulator for long-read sequencers with
a novel generative model of quality scores. Bioinformatics 37(5), 589–595 (2020).
https://doi.org/10.1093/bioinformatics/btaa835

33. Otto, C., Hoffmann, S., Gorodkin, J., Stadler, P.F.: Fast local fragment chaining
using sum-of-pair gap costs. Algorithms Mol. Biol. 6(1), 4 (2011). https://doi.org/
10.1186/1748-7188-6-4

34. Paten, B., Novak, A.M., Eizenga, J.M., Garrison, E.: Genome graphs and the
evolution of genome inference. Genome Res. 27(5), 665–676 (2017)

35. Rautiainen, M., Marschall, T.: GraphAligner: rapid and versatile sequence-to-
graph alignment. Genome Biol. 21(1), 1–28 (2020). https://doi.org/10.1186/
s13059-020-02157-2

36. Ren, J., Chaisson, M.J.: lra: a long read aligner for sequences and contigs. PLoS
Comput. Biol. 17(6), e1009078 (2021)

37. Roberts, M., Hayes, W., Hunt, B.R., Mount, S.M., Yorke, J.A.: Reducing storage
requirements for biological sequence comparison. Bioinformatics 20(18), 3363–3369
(2004). https://doi.org/10.1093/bioinformatics/bth408

38. Sahlin, K., Baudeau, T., Cazaux, B., Marchet, C.: A survey of mapping algorithms
in the long-reads era. BioRxiv (2022)
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Abstract. Biomedical image segmentation is an essential task in the
computer-aided diagnosis system. An encoder-decoder based on a shal-
low or deep convolutional neural network (DCNN) is an extensively used
framework for biomedical image analysis. To study and rethink the effec-
tiveness of compounding both the shallow and deep networks for the
medical image segmentation task, we propose a dual-model CNN archi-
tecture, called DM-Net, for biomedical image segmentation. DM-Net is
composed of a shallow CNN structure at its left, called L-Net and a
deeper CNN structure at its right, named R-Net. The L-Net is pro-
posed to encode low-level contextual information and the R-Net is pre-
sented to produce high-level semantic feature maps. Furthermore, a novel
crossed-skip connection (CSC) strategy is proposed to transfer infor-
mation between the two side networks mutually. Extensive experiments
demonstrate that our method outperforms representative approaches on
three public medical image datasets.

Keywords: Medical image segmentation · Crossed-skip c onnection ·
Contextual information encoding

1 Introduction

Accurate segmentation of skin lesion, white blood cell (WBC), and thyroid nod-
ule from biomedical images, such as dermoscopic images, human blood smear
images, and thyroid ultrasound images, are of great significance in providing clear
guidance for clinical applications such as disease diagnosis and further treatment.
In clinical practice, biomedical images are analyzed by doctors via a hybrid visual
inspection system for diagnosing human diseases. It needs a high degree of ability
and concentration and is labour-intensive. An automated computer-aided diag-
nosis system is able to release physicians from time-consuming work, and assist
doctors in improving human disease diagnosis in terms of accuracy, efficiency,
and objectivity.

The emergence of deep convolutional neural networks (DCNNs) has shown
a strong ability in biomedical image segmentation [1–3,7,18–22]. However,
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
H. Tang (Ed.): RECOMB 2023, LNBI 13976, pp. 74–84, 2023.
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Fig. 1. Illustration of the proposed DM-Net architecture. DM-Net is composed of a
shallow CNN model at its left, called L-Net and a deeper CNN at its right, named R-
Net. The L-Net is proposed to encode low-level contextual information and the R-Net
is presented to produce high-level semantic feature maps. Furthermore, a novel CSC
strategy is proposed to bridge information between the L-Net and the R-Net mutually.

most existing DCNNs are based on U-Net architecture [8–11], which is a shallow
CNN structure. Moreover, the shallower CNNs tend to extract more coarse/fine-
grained features and it is difficult to produce the vanishing gradient issue. In addi-
tion, the shallower CNNs are beneficial to train. The classical U-Net [3] and its
variations [4–6,23] can generate coarse-grained and fine-grained low-level feature
maps with the uniformly scaled network width using the standard skip connec-
tion scheme. Though these CNN models have obtained notable performance in
medical image processing, they are still limited to difficulty in capturing more
high-dimensional and complex information. To overcome this problem, scaling
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up the depth of CNN models is widely exploited from various DCNN models
[7,12,13]. Intuitively, the deeper CNN models tend to extract richer and more
high-dimensional feature maps than those shallower CNN models. For instance,
Gu et al. [7] used pre-trained ResNet’s encoder blocks as a fixed feature encoder
to encode contextual information for achieving the medical image segmentation
tasks. Li et al. [12] proposed a deeper and more efficient CNN framework to extract
hybrid feature maps for biomedical image segmentation. However, these deep net-
works have a common shortcoming in producing fine-grained feature maps by uti-
lizing the deeper depth of convolutional layers and being hard to train because of
the vanishing gradient issue.

In this paper, to alleviate those above issues, we want to rethink the process
of compounding the shallow and deep networks. In particular, a question arises:
is there a simple yet effective compound method that can achieve better accu-
racy and efficiency for general medical image analysis? Intuitively, we propose a
new compound structure for automated biomedical image segmentation, called
DM-Net. It compounds a shallow network and a deep network. In DM-Net, the
proposed CSC strategy is used to bridge both the two side networks. In this
way, the dual-model of the proposed DM-Net is allowed to interact by the CSC
strategy. Firstly, the L-Net transfers low-dimensional information to the decoder
blocks of the R-Net and further help it preserve more low-dimensional informa-
tion. On the other hand, the R-Net also transfers high-dimensional semantic
information to the decoder blocks of the L-Net and further facilitate it facilitate
preserve more high-level semantic information. Extensive experiments demon-
strate the effectiveness of the proposed DM-Net across different biomedical image
datasets.

2 Methodology

Figure 1 shows our proposed DM-Net’s architecture, which composes a shallow
network structure and a deep network structure. The details of the proposed
DM-Net are illustrated as follows.

2.1 The Shallow CNN Model: L-Net

Our proposed L-Net is a shallow CNN model to capture low-level features, which
includes an encoder-decoder structure, which utilizes U-Net [3] as its backbone.
Furthermore, motivated by the dense atrous convolution [7], we present a con-
textual information encoding (CIE) module to encode the high-level semantic
information.
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Fig. 2. The illustration of the cascaded dilated inception module.

Fig. 3. An illustration of our proposed stacked atrous convolutional (SAC) module for
extracting high-level features.

Fig. 4. The illustration of the MBConv block and the EfficientNet block.

(1) Encoder-Decoder Structure: Our L-Net is formed using the backbone
of U-Net [3] structure. There are the encoder pathway and decoder pathway
in the L-Net. The encoder flow performs each convolutional layer with a filter
to produce a set of feature maps, and a Relu activation function is followed.
The decoder pathway also applies each convolutional layer to produce feature
maps. In addition, our proposed crossed skip connection strategy transfers the
corresponding feature maps from the encoder pathway and concatenates them
to upsample feature maps of the R-Net’s decoder blocks.
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(2) CIE Module: We propose a novel contextual information encoding (CIE)
module to encode more high-level semantic features. Figure 1 shows an architec-
ture of our proposed CIE module, which is integrated using a novel CDI module
and a SAC module, which can be illustrated as follows.

CDI Module: We present a cascaded densely inception (CDI) module to
extract the high-level semantic information maps. It is spirited by the Incep-
tion module [15]. As shown in Fig. 2, the proposed CDI module includes 3 × 3
max pooling layer, 1 × 1 convolutional layer (CL), 1 × 1 and 5 × 5 CLs with
an atrous rate of 1, and 1 × 1 and 3 × 3 CLs with an atrous rate of 1.

SAC Module: In addition, we propose a novel stacked atrous convolutional
(SAC) module to encode high-dimensional contextual information. It is moti-
vated by atrous convolution [16]. As shown in Fig. 3, our proposed SAC module
comprises several cascaded pipelines with the gradual increment of the number of
the atrous convolutional layer (CL) from 1 to 1, 3, and 7. Each branch’s receptive
field (RF) is 3, 7, 9 and 23. The proposed SAC module uses different receptive
fields. In each atrous convolution pipeline, we use 11 CLs before rectifying the
linear activation function. Furthermore, we add the original feature maps with
other feature maps. Generally, the CL with an extensive RF can encode and
generate high-dimensional information for large target objects, but the CL with
a small RF is beneficial for encoding small targets’ feature maps. Therefore, we
cascade the atrous CL integrated with different atrous rates to capture different
scale targets’ features.

2.2 The Deep CNN Model: R-Net

Moreover, a deep network model is proposed at the right of the proposed DM-Net
to encode high-level semantic information, named R-Net. It has a deeper depth of
convolutional layers than the L-Net, which can transfer high-dimensional infor-
mation (i.e., spatial and contextual information) to the L-Net. Specifically, we
apply the pre-trained EfficientNet’s encoder block [14] as its encoder. The pro-
posed DM-Net is a simple yet highly effective compound coefficient by uni-
formly scaling all depth/width/resolution dimensions. A flowchart view of the
EfficientNet block is shown in Fig. 4(b). Each EfficientNet block consists of sev-
eral MBConv blocks (see Fig. 4(a)), which are formed by several 1 × 1 convolu-
tional layers, batch normalization, swish activate layers, and squeeze and excita-
tion (SE) block. Thus, our R-Net can achieve remarkable performance with the
same parameters by uniformly scaling the network width, depth, or resolution
in a fixed proportion. To use the EfficientNet encoder in the proposed DM-Net
architecture, we add the CDI and SAC module as the last convolutional layer of
the encoder block. Meanwhile, the decoder flow also applies each convolutional
layer to produce feature maps. The proposed CSC strategy transfers its corre-
sponding feature maps from the encoder pathway to the decoder pathway of the
L-Net. Using three biomedical image datasets, we co-train the two side networks
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(i.e., the L-Net and the R-Net). Finally, we optimize the R-Net by minimizing
a dice loss.

2.3 Loss Function

We used a hybrid loss to optimize our proposed DM-Net during the training
phase, which jointly combined the Dice loss and a cross-entropy loss to address
the training problems of class imbalance. Dice loss Ldice, cross-entropy loss Lce,
and hybrid loss Lhybrid are defined as follows:

Ldice = 1 −
K∑

k

2ωk

∑N
i p(k, i)g(k, i)

∑N
i p2(k, i) +

∑N
i g2(k, i)

(1)

Lce = − 1
N

N∑

i=1

G(k, i).log(P (k, i))

+(1 − G(k, i)).log(1 − P (k, i))

(2)

Lhybrid = λLce + μLdice (3)

1 = μ + λ (4)

where N is the number of pixels, P (k, i) ∈ (0, 1) and G(k, i) ∈ (0, 1) denote
the produced probability and the ground truth label for class k, respectively. K
is the class number, and

∑
k

ωk = 1 are the class weights. In our study, we set

ωk = 1
K empirically. Lce is the cross-entropy loss. Ldice is the dice loss. λ and μ

are two weighted factors that balance the impact of Lce and Ldice. In addition,
λ and μ are set at 0.4 and 0.6 empirically, respectively in our experiments.

3 Experiments

Table 1. A quantitative skin lesion segmentation performance of the proposed DM-Net
and other comparison CNN models on the ISIC-2017 dataset.

Datasets Methods Accuracy mIoU Sensitivity Specificity

ISIC-2017 U-Net [3] 0.9299 0.8237 0.8235 0.9748

AG-Net [2] 0.927 0.8208 0.8222 0.9669

M-Net [8] 0.9291 0.8231 0.8171 0.9737

U-Net++ [10] 0.931 0.8281 0.8354 0.9743

U-Net3+ [11] 0.9315 0.8271 0.8277 0.9753

CE-Net [7] 0.9396 0.8442 0.8294 0.9821

MB-DCNN [1] 0.9275 0.821 0.7922 0.9824

Ours 0.9398 0.8531 0.8442 0.9869
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Table 2. A quantitative WBC segmentation performance of the proposed DM-Net and
other comparison CNN models on the SCISC dataset.

Datasets Methods Accuracy mIoU Sensitivity Specificity

SCISC U-Net [3] 0.9613 0.871 0.8697 0.9663

AG-Net [2] 0.9678 0.8939 0.8657 0.989

M-Net [8] 0.9756 0.9184 0.9276 0.9868

U-Net++ [10] 0.968 0.8923 0.8749 0.9886

U-Net3+ [11] 0.9709 0.8993 0.8771 0.9899

CE-Net [7] 0.9727 0.9092 0.9396 0.98

MB-DCNN [1] 0.9627 0.8736 0.8626 0.983

Ours 0.9905 0.9273 0.9509 0.9901

Table 3. A quantitative thyroid nodule segmentation performance of the proposed
DM-Net and other comparison CNN models on the TNUI-2021 dataset.

Datasets Methods Accuracy mIoU Sensitivity Specificity

TNUI-2021 U-Net [3] 0.9875 0.8555 0.7821 0.9977

AG-Net [2] 0.9875 0.8587 0.8349 0.9957

M-Net [8] 0.9877 0.8639 0.8225 0.9974

U-Net++ [10] 0.9876 0.8558 0.8077 0.9973

U-Net3+ [11] 0.9872 0.854 0.7858 0.9973

CE-Net [7] 0.9396 0.8431 0.8242 0.984

MB-DCNN [1] 0.9817 0.7463 0.5989 0.9946

Ours 0.977 0.9028 0.8031 0.9997

3.1 Datasets and Settings

• ISIC-2017 Dataset. The 2017 International Skin Imaging Collaboration
(ISIC) dataset is associated with a disease type and ground truth of each
skin lesion image. It contains 2k training samples, 150 validation samples,
and 600 testing samples. Each skin lesion image is annotated by an expert as
ground truth (GT) for the segmentation task.

• SCISC Dataset: The second medical image dataset [17], called SCISC. It
includes 268 single WBC of human blood smear images (51 samples of neu-
trophils, 54 samples of eosinophils, 56 samples of basophils, 54 samples of
monocytes, and 53 samples of lymphocytes). There are 185 training, 53 vali-
dation, and 30 testing WBC blood smear images. Each image is paired with
an expert manual segmentation as the GT labeled by pathologists.

• TNUI-2021 Dataset: The third medical image dataset, called TNUI-2021.
It contains 1381 thyroid nodule ultrasound images. We randomly divided
it into a training set (i.e., 966 ultrasound images), a validation set (i.e., 276
ultrasound images) and a testing set (i.e., 139 ultrasound images) in a ratio of
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7:2:1. Each ultrasound image is marked with a physician manual segmentation
as the GT labeled by pathologists.

• Evaluation Metrics: To evaluate the segmentation performance of the pro-
posed DM-Net, we utilized the Specificity, Sensitivity, Accuracy, and mean
intersection-over-union (mIoU), as measurements for the medical image seg-
mentation tasks.

• Training phase and validation phase: In our proposed DM-Net were
trained on the ISIC-2017, the SCISC, and the TNUI-2021 training dataset
using pixel-level labels. First, to further decrease the risk of overfitting, we
augmented the training dataset using data augmentation processing, includ-
ing horizontal image flip, vertical image flip, diagonal image flip, and random
rotation. The Adam optimizer with a batch size of 16 was utilized to optimize
the segmentation and classification networks separately. An initialized learn-
ing rate is set to 0.0001. Finally, we used a validation dataset to supervise
the training processing to avoid our proposed DM-Net trapping in overfitting
under the training phase. We implemented our framework and other compar-
ison CNN models in PyTorch using one NVIDIA GTX 1080TI GPU.

Testing phase. In the testing phase, we also took advantage of the data
augmentation strategy for the three datasets during testing, i.e., horizontal,
vertical flips, and diagonal flips. After that, we averaged the predictions as
the final segmentation results. All comparison CNN models adopt the same
scheme during training and testing phases.

3.2 Segmentation Results

We compared the proposed DM-Net with other comparison state-of-the-art
(SOTA) biomedical image segmentation CNN models, including U-Net [3], AG-
Net [2], AttU-Net [9], M-Net [8], U-Net++ [10], U-Net3+ [11], CE-Net [7], and
MB-DCNN [1]. Four metrics were used, including the mean Accuracy, mIoU,
mean Sensitivity, and mean Specificity, to evaluate the segmentation perfor-
mance of those methods. As for the skin lesion segmentation task, a quantitative
comparison is shown in Table 1 of the proposed DM-Net, and other comparisons
medical image segmentation CNN models on the ISIC-2017 dataset. As can be
seen, the proposed DM-Net achieves comparable performance in terms of the
mean Accuracy, mIoU, mean Sensitivity, and mean Specificity. Our proposed
DM-Net achieves 0.9398, 0.8531, 0.8442, and 0.9869 in terms of the mean Accu-
racy, mIoU, mean Sensitivity, and mean Specificity, more accurate than several
other comparison CNN models. Compared with the U-Net [3], the mean Accu-
racy increases from 0.9299 to 0.9398 by 0.19%, the mIoU increases from 0.8237
to 0.8531 by 2.94%, the mean Sensitivity increases from 0.8235 to 0.8442 by
2.07%, the mean Specificity increases from 0.9748 to 0.9869 by 1.21%, which
indicates the advantage of our proposed DM-Net on the skin lesion segmenta-
tion task. As for the WBC segmentation task, a quantitative comparison result
is shown in Table 2 of the proposed DM-Net and other comparison CNN models
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Table 4. Ablation studies performance for each component of our proposed DM-Net
on skin lesion segmentation from the ISIC-2017 dataset.

Methods Accuracy mIoU Sensitivity

L-Net 0.883 0.819 0.798

R-Net 0.895 0.834 0.781

the L-Net ensembled with the R-Net 0.9234 0.823 0.802

DM-Net+CDI module 0.9324 0.8512 0.8421

DM-Net+CDI module+SAC module 0.9398 0.8531 0.8442

on the SCISC dataset. As can be seen, our DM-Net achieves the best perfor-
mance in terms of mean Accuracy, mIoU, mean Sensitivity, and mean Specificity.
Our model achieves 0.9905, 0.9273, 0.8868, 0.9509, and 0.9901 in terms of the
mean Accuracy, mIoU, mean Sensitivity, and mean Specificity, more accurate
than several other CNN models. Compared with the U-Net [3], the mean Accu-
racy increases from 0.9613 to 0.9905 by 2.92%, the mIoU increases from 0.871
to 0.9273 by 5.63%, the mean Sensitivity increases from 0.8697 to 0.9509 by
8.12%, the mean Specificity increases from 0.9663 to 0.9901 by 2.38%, which
indicates the superiority of our proposed DM-Net on the WBC segmentation.
As for the thyroid nodule segmentation task, a quantitative comparison result
is shown in Table 3 of the proposed DM-Net and other comparison CNN models
on the TNUI-2021 dataset. As can be seen, the proposed DM-Net achieves com-
parable performance in terms of mIoU, mean Sensitivity, and mean Specificity.
Our proposed DM-Net achieves 0.9028, 0.8031, 0.9481, and 0.9997 in mIoU,
mean Sensitivity, and mean Specificity, more accurate than the other several
CNN models. Compared with the U-Net [3], the mIoU increases from 0.8555 to
0.9028 by 4.73%, the mean Sensitivity increases from 0.7821 to 0.9481 by 6.60%,
the mean Specificity increases from 0.9977 to 0.9997 by 0.20%, which shows the
superiority of our proposed DM-Net for thyroid nodule segmentation.

3.3 Ablative Evaluation on Segmentation

To verify the effectiveness of the contextual information encoding (CIE) module
and the crossed skip connection (CSC) strategy on the segmentation task on
the ISIC-2017 dataset, we further performed ablation experiments (see Table 4).
Experiments show that both the CIE module and the CSC strategy can improve
the biomedical image segmentation performance. Further improvements can be
achieved when these two modules are used together.

4 Conclusions

In this study, we design a novel H-shaped network for automated skin lesion,
WBC, and thyroid nodule segmentation. Specifically, we propose a novel CSC
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strategy, which tends to bring better information fusion. In addition, we propose
a CIE module, which can preserve more spatial information. Meanwhile, to alle-
viate the imbalance training problem, we design a novel hybrid loss. Experiments
on three public medical image datasets show the effectiveness of the proposed
DM-Net. In addition, the proposed DM-Net is validated on 2D data now, and
the extension to 3D data would be a possible future study.

Acknowledgments. This study was supported by the National Natural Science Foun-
dation of China under Grant 61901120 and 62171133.

References

1. Xie, Y., Zhang, J., Xia, Y., Shen, C.: A mutual bootstrapping model for automated
skin lesion segmentation and classification. IEEE Trans. Med. Imaging 39(7), 2482–
2493 (2020)

2. Zhang, S., et al.: Attention guided network for retinal image segmentation. In:
Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11764, pp. 797–805. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-32239-7 88

3. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomed-
ical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F.
(eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-24574-4 28

4. Jha, D., Riegler, M., Johansen, D., Halvorsen, P., Johansen, H.: DoubleU-Net: a
deep convolutional neural network for medical image segmentation. In: 2020 IEEE
33rd International Symposium on Computer-Based Medical Systems (CBMS), pp.
558–564 (2020)

5. Jin, Q., Cui, H., Sun, C., Meng, Z., Su, R.: Cascade knowledge diffusion network
for skin lesion diagnosis and segmentation. Appl. Soft Comput. 99, 106881 (2021)

6. Zhang, Y., Lai, H., Yang, W.: Cascade UNet and CH-UNet for thyroid nodule
segmentation and benign and malignant classification. In: Shusharina, N., Heinrich,
M.P., Huang, R. (eds.) MICCAI 2020. LNCS, vol. 12587, pp. 129–134. Springer,
Cham (2021). https://doi.org/10.1007/978-3-030-71827-5 17

7. Gu, Z., Cheng, J., Fu, H., et al.: CE-Net: context encoder network for 2D medical
image segmentation. IEEE Trans. Med. Imaging 38(10), 2281–2292 (2019)

8. Fu, H., Cheng, J., Xu, Y., et al.: Joint optic disc and cup segmentation based on
multi-label deep network and polar transformation. IEEE Trans. Med. Imaging
37(7), 1597–1605 (2018)

9. Oktay, O., Schlemper, J., Folgoc, L., et al.: Attention U-Net: learning where to
look for the pancreas. arXiv preprint arXiv:1804.03999 (2018)

10. Zhou, Z., Rahman Siddiquee, M.M., Tajbakhsh, N., Liang, J.: UNet++: a nested
U-Net architecture for medical image segmentation. In: Stoyanov, D., et al. (eds.)
DLMIA/ML-CDS -2018. LNCS, vol. 11045, pp. 3–11. Springer, Cham (2018).
https://doi.org/10.1007/978-3-030-00889-5 1

11. Huang, H., Lin, L., Tong, R., et al.: UNet 3+: a full-scale connected UNet for
medical image segmentation. In: 2020 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pp. 1055–1059. IEEE (2020)

12. Li, X., Chen, H., Qi, X., Dou, Q., et al.: H-DenseUNet: hybrid densely connected
UNet for liver and tumor segmentation from CT volumes. IEEE Trans. Med. Imag-
ing 37(12), 2663–2674 (2018)

https://doi.org/10.1007/978-3-030-32239-7_88
https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.1007/978-3-030-71827-5_17
http://arxiv.org/abs/1804.03999
https://doi.org/10.1007/978-3-030-00889-5_1


84 X. Zhou et al.

13. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 770–778 (2016)

14. Tan, M., Le, Q.: EfficientNet: rethinking model scaling for convolutional neural
networks. In: International Conference on Machine Learning 2019, pp. 6105–6114.
PMLR (2019)

15. Szegedy, C., Ioffe, S., Vanhoucke, V., Alemi, A.: Inception-v4, inception-ResNet
and the impact of residual connections on learning. In: Thirty-First AAAI (2017)

16. Chen, L., Papandreou, G., Schroff, F., Adam, H.: Rethinking atrous convolution
for semantic image segmentation. arXiv preprint arXiv:1706.05587 (2017)

17. Zhou, X., Li, Z., Xie, H., et al.: Leukocyte image segmentation based on adaptive
histogram thresholding and contour detection. Curr. Bioinform. 15(3), 187–195
(2020)

18. Zhou, X., Nie, X., Li, Z., et al.: H-Net: a dual-decoder enhanced FCNN for auto-
mated biomedical image diagnosis. Inf. Sci. 613, 575–590 (2022)

19. Zhou, X., Li, Z., Tong, T.: DTSC-Net: semi-supervised 3D biomedical image seg-
mentation through dual-teacher simplified consistency. In: 2022 IEEE International
Conference on Bioinformatics and Biomedicine (BIBM), pp. 1429–1434 (2022)

20. Li, Z., Lai, T., Zhou, X.: Saliency detection based on weighted saliency
probability. In: 2019 IEEE International Conference on Parallel & Dis-
tributed Processing with Applications, Big Data & Cloud Computing, Sus-
tainable Computing & Communications, Social Computing & Networking
(ISPA/BDCloud/SocialCom/SustainCom), pp. 1550–1555 (2019)

21. Zhou, X., Wang, C., Li, Z., Zhang, F.: Adaptive histogram thresholding-based
leukocyte image segmentation. In: Pan, J.-S., Li, J., Tsai, P.-W., Jain, L.C. (eds.)
Advances in Intelligent Information Hiding and Multimedia Signal Processing.
SIST, vol. 157, pp. 451–459. Springer, Singapore (2020). https://doi.org/10.1007/
978-981-13-9710-3 47

22. Zhou, X., Tong, T., Zhong, Z., et al.: Saliency-CCE: exploiting colour contextual
extractor and saliency-based biomedical image segmentation. Comput. Biol. Med.
154, 106551 (2023)

23. Zhou, X., Li, Z., Xue, Y., et al.: CUSS-Net: a cascaded unsupervised-based strategy
and supervised network for biomedical image diagnosis and segmentation. IEEE
J. Biomed. Health Inform. 154, 1–12 (2023)

http://arxiv.org/abs/1706.05587
https://doi.org/10.1007/978-981-13-9710-3_47
https://doi.org/10.1007/978-981-13-9710-3_47


MTGL-ADMET: A Novel Multi-task
Graph Learning Framework for ADMET
Prediction Enhanced by Status-Theory

and Maximum Flow

Bing-Xue Du1, Yi Xu1, Siu-Ming Yiu2, Hui Yu3(B), and Jian-Yu Shi1(B)

1 School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
jianyushi@nwpu.edu.cn

2 Department of Computer Science, The University of Hong Kong, Hong Kong, China
3 School of Computer Science, Northwestern Polytechnical University,

Xi’an 710072, China
huiyu@nwpu.edu.cn

Abstract. It is a vital step to evaluate drug-like compounds in terms of
absorption, distribution, metabolism, excretion, and toxicity (ADMET)
in drug design. Classical single-task learning based on abundant labels
has achieved inspiring progress in predicting individual ADMET end-
points. Multi-task learning (MTL), having the low requirement of end-
point labels, can predict multiple ADMET endpoints simultaneously.
Nonetheless, it is still an ongoing issue that the performance of exist-
ing MTL-based approaches depends on how appropriate participating
tasks are. Furthermore, there is a need to elucidate what substructures
are crucial to specific ADMET endpoints. To address these issues, this
work constructs a Multi-Task Graph Learning framework for predict-
ing multiple ADMET properties of drug-like small molecules (MTGL-
ADMET) under a new paradigm of MTL, ‘one primary, multiple auxil-
iaries’. It first leverages the status theory and the maximum flow to select
appropriate auxiliary tasks of a specific ADMET endpoint task. Then, it
designs a novel primary-centered multi-task learning model, which con-
sists of a task-shared atom embedding module, a task-specific molecular
embedding module, a primary task-centered gating module, and a multi-
task predictor. The comparison with state-of-the-art MTL-based meth-
ods demonstrates the superiority of MTGL-ADMET. More elaborate
experiments validate its contributions, including the status theory-based
auxiliary selection algorithm and the novel MTL architecture. Further-
more, a case study illustrates the interpretability of MTGL-ADMET by
indicating crucial substructures w.r.t. the primary task. It’s anticipated
that this work can boost pharmacokinetic and toxicity analysis in drug
discovery. The code and data underlying this article are freely available
at https://github.com/dubingxue/MTGL-ADMET.
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1 Introduction

Pharmaceutical companies usually spend approximately 10 years and 1.1 billion
dollars in discovering and developing a novel drug [1,2]. One of the undesired and
painful events in such a costly process is the failure of drug candidates at clinical
trials. It is mainly caused by undesirable pharmacokinetic (PK) properties or
unacceptable toxicities [3]. By leveraging experimental and clinical data, AI-
based computational methods are promising in a rapid and low-risk manner to
predict the PK properties and toxicities of drug-like molecules before performing
clinical trials [4,5]. Aiming to this perspective, machine learning-based (ML-
based) methods, including classical shallow learning and modern deep learning,
were popularly developed over the past years. Their typical tasks cover predicting
Absorption, Distribution, Metabolism, Excretion, Toxicity (ADMET), and other
physic-chemical properties of small-molecule compounds.

Through building a predictor for each ADMET endpoint task, ML-based
approaches can precisely infer unknown properties for newly given compounds.
Their success relies on known ADMET properties (labels) of compounds and
molecular representation algorithms, where the latter is referred to as feature
extraction in classical machine learning and as embedding in modern deep learn-
ing. For example, MoleculeNet contributes a library of machine learning-based
ADMET predictive approaches [6], including classical machine learning (sup-
port vector machines, random forest, etc.) and modern deep learning (deep
neural networks and graph neural networks (GNNs), etc.). In general, these
methods belong to the paradigm of single-task learning (STL), ‘one model, one
task’, where sufficient labels are one of the crucial factors when training a good
predictive model (Fig. 1a). However, it is costly to acquire multiple molecular
properties in most practical cases. The resulting scarce labels would cause poor
molecular representations and trigger the overfitting issue, further resulting in
a poor prediction of AMDET properties. To alleviate this predicament, two
modern representation techniques, pre-training and fine-tuning, are utilized to
achieve improved predictions in the case of scarce labels. The pre-training learns
good initial molecular representations by abundant unlabeled data, while the
fine-tuning further learns task-specific molecular representations [7–9]. In short,
pre-training is to train a general set of parameters and fine-tune them for a
specific task.

Multi-task learning (MTL) doesn’t need to require a compound to be mea-
sured all the ADMET properties. It solves multiple tasks at the same time while
exploiting commonalities and differences across ADMET endpoint tasks. Dur-
ing its training, the underlying knowledge among ADMET endpoints can be
transferred between them such that the issue of scarce labels can be compen-
sated [10]. The superiority of MTL to STL is demonstrated by recent works in
ADMET endpoint predictions [11]. In common, the models in these works first
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Fig. 1. Learning paradigms. (a) ‘one model, one task’ in the single-task learning
framework; (b) ‘one model fits all tasks’ in the popular multi-task learning framework;
and (c) ‘one primary, multiple auxiliaries’ in our new multi-task learning framework.

design a GNNs model (such as graph convolution network (GCN) [12], relational
graph convolution network (R-GCN) [13], and graph isomorphism network [14])
to extract task-shared embeddings. Then, they leverage parallel fully-connected
neural networks to generate task-specific embeddings for multiple ADMET end-
points simultaneously. In short, existing MTL-based ADMET models follow the
paradigm ‘one model fits all tasks’ (Fig. 1b). However, such joint learning cannot
guarantee that one can always achieve better performance by MTL than that
by STL w.r.t. a specific task, since it assumes that all the tasks have the same
ranking or assume a certain learning trade-off among tasks (e.g., task-specific
weights in the loss function) [10]. In other words, one model cannot fit all tasks
in general. It depends on whether appropriate auxiliary tasks can be selected,
which is still an ongoing issue [15].

We hold two assumptions in mind. We first believe that the utilization of task
associations can boost the selection of appropriate auxiliary tasks. For example,
Cytochrome P450 enzymes (CYP450s) are hemoproteins that participate in the
metabolism of compounds. Their inhibition can increase the plasma concentra-
tion (i.e., an endpoint of Distribution), reduce the Clearance (an endpoint of
Excretion), and prolong the half-life (another endpoint of Excretion) of ther-
apeutic agents [16]. The associations between tasks could help select auxiliary
endpoint tasks. Moreover, we believe that the presence of certain substructures
of a compound is strongly related to its PK endpoint properties. For instance,
the absorption endpoint, Human Intestinal Absorption (HIA), is usually related
to hydrophilicity functional groups [17]. Similarly, another case of excretion end-
point, Clearance, is usually related to lipophilicity functional groups [18]. The
capture of important functional groups (i.e., task-specific crucial substructures)
could provide insights into the underlying mechanism of different ADMET prop-
erties for a compound/drug.

Based on these ideas, we propose a new paradigm of MTL, ‘one primary,
multiple auxiliaries’, where auxiliary tasks boost the primary task even with
their own degradation (Fig. 1c). Under this paradigm, we construct a Multi-
Task Graph Learning framework for predicting multiple ADMET properties of
drug-like small molecules (MTGL-ADMET) in this work. We first build a task
association network by training individual and pairwise tasks. Then we leverage
the Status Theory and the Maximum Flow in complex network science to col-
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lect appropriate tasks (i.e., friendly auxiliary tasks) for each specific task (i.e.,
the primary task). After that, we design a multi-task graph learning model to
train the primary task and its auxiliary tasks together. The model technically
includes a task-shared atom embedding module, a task-specific molecular embed-
ding module, a primary task-centered gating module, and a multi-task predictor.
In brief, our contributions are as follows. (1) Holding the paradigm ‘one primary,
multiple auxiliaries’, we design a novel task selection algorithm, which utilizes
the status theory to determine friendly auxiliaries of a specific task, and the
maximum flow to estimate the increments of MTL w.r.t. STL. (2) We provide
a novel model of MTL-based ADMET prediction, where atom embeddings are
shared by multiple tasks and they are aggregated further into generating task-
specific molecular embeddings. (3) By the aggregation weights of atoms, the
proposed model provides an interpretable manner to indicate crucial compound
substructures significantly associated with each ADMET task.

2 Methodology

2.1 Problem Formulation

Fig. 2. Overview of MTGL-ADMET (a) The friendly auxiliary task selection con-
taining three sub-steps. (b-c) The novel multi-task learning model for both a primary
task and its selected auxiliaries. It is an end-to-end model, which contains a task-shared
atom feature module, a task-specific molecular feature module, a primary task-centered
gating module, and a multi-task predictor module from left to right.
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Given a set of n ADMET endpoint tasks T = {t1, t2, . . . , tn}, we construct
n multi-task neural networks (MTNN) M = {m1,m2, . . . ,mn} accordingly.
Each MTNN mk adopts a paradigm, ‘one primary, multiple auxiliaries’, which
enhances the primary task by its auxiliary tasks (shown in Fig. 1). Suppose that
a specific primary task tk and its auxiliary tasks Tk =

{
t
(k)
1 , t

(k)
2 . . .

}
⊆ T , where

tk’s auxiliary task t
(k)
i ∈ T . One of our goals is to determine Tk among T for tk

for further training mk.
Given M compounds {ci, i = 1, 2, . . . ,M} and their ADMET properties

y = {y1,y2, . . . ,yM} w.r.t. T , where yi ∈ Rn, yi(j) ∈ {1, 0,−} or yi(j) ∈ R,
j ∈ {1, 2, . . . n}, where ‘−’ has no property measured. The former type of yi(j)
indicates the binary classification problem, which determines whether a molecule
has an ADMET endpoint of interest or not. The latter accounts for the regression
problem, which reflects how well its endpoint is. For example, Phenobarbital,
an anticonvulsant drug, has significant Hepatotoxicity (i.e., yi(j) = 1) but none
of the four kinds of Cardiotoxicities (i.e., yi(j) = 0) while exhibiting the value
3.16 of Lethal Dose 50 % (LD50), which is a measure of Acute oral toxicity
(i.e., yi(j) = 3.16), but has no other measured property (i.e., yi(j) = ‘−’). One
of our goals is to predict n ADMET properties yx of a new coming compound
cx by the well-trained MTNNs {mk}. For this purpose, we design a Multi-Task
Graph Learning framework enhanced by Status Theory and Maximum Flow
(MTGL-ADMET) (shown in Fig. 2).

2.2 Overview of Framework

As shown in Fig. 2, our MTGL-ADMET model consists of two stages. One is
the friendly auxiliary tasks selection while another is a novel multi-task learning
model for both a primary task and its selected auxiliaries. The auxiliary task
selection (Sect. 2.3) contains three steps. Step I: We leverage the differences
between the performances of individual tasks and those of pairwise tasks to
calculate inter-task associations. Step II: we perform a preliminary selection
of auxiliary tasks for each task by the status theory [19]. Step III: we run a
further selection of friendly auxiliary tasks by the maximum flow calculation [20].
The novel multi-task learning model is designed for each task group under the
paradigm ‘one primary task, multiple auxiliary tasks’ (Sect. 2.4). It contains four
components, including a task-shared atom embedding module, a task-specific
molecular embedding module, a primary task-centered gating module, and a
multi-task predictor.

2.3 Auxiliary Task Selection

Task Association Network Construction. To investigate how well a task
can boost another one, we measure the differences between the performances of
individual ADMET tasks and their corresponding pairwise tasks. These differ-
ences are regarded as inter-task associations. Suppose that tw and tk are two
tasks, Sw and Sk are two single-task learning models accounting for tw and tk
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individually, and Dw,k is a dual-task learning model training the tasks simultane-
ously (Fig. S1). These learning models contain a two-layer ResGCN, an attention
block, and fully connected neural networks. We design an index Ẑw→k to reflect
the fluence of tw on tk as follows,

Ẑw→k = Z
(d)
k|w − Z

(s)
k (1)

where Z
(s)
k is the performance of tk given by Sk, and Z

(d)
k|w is the performance

of tk given by Dw,k. Similarly, we can define Ẑk→w =
(
Z

(d)
w|k − Z

(s)
w

)
to reflect

how tk fluences tw, where Z
(d)
w|k is the performance of tw given by Dw,k. In

general, Ẑtw→tk �= Ẑtk→tw , since the influence between two tasks is asymmetric.
Moreover, such an influence could be either positive or negative. If Ẑw→k > 0,
tw boosts tk; otherwise, tw depresses tk. Finally, regarding these differences as
inter-task associations among all the tasks T , we organize them into a bi-directed
and signed network, where nodes are ADMET tasks and edges are inter-task
associations. The adjacent matrix of the task association network is illustrated
in Fig. S2. Based on the task association network, a preliminary selection of
primary task-auxiliary tasks shall be performed by leveraging complex network
analysis.

Preliminary Auxiliary Selection by Status Theory. Inspired by status
theory in social network [19], we perform a preliminary selection of auxiliaries
for each task. The status theory states the rule of ‘the person respected by me
should have higher status than me’ where social status represents the prestige
of nodes (persons) in a social network. Analogously, the status represents the
ranking of tasks in the AMDET task association network. Holding the paradigm
‘one primary, multiple auxiliaries’, we attempt to construct a primary task-
specific pool containing a high-ranking primary and its low-ranking auxiliaries.
The status theory helps find the lower-ranking auxiliaries. In terms of Ẑw→k,
we empirically selected ≤ 5 auxiliary tasks in descending order with consider-
ing the high complexity of status theory-satisfied triads in the case of multiple
auxiliaries.

Given a primary task tk, our task is to select a set of auxiliary tasks Tk =
{ti} ⊂ T , i �= k and i = 1, 2 . . . , n. We consider two tasks tw ∈ Tk and tz ∈
Tk accompanying with tk to form a triad. There are two types of triads in
directed networks, which correspond to acyclic and cyclic triads (Fig. 2a). If the
triad is acyclic, then the triad satisfies the status theory [19]. In this case, the
status theory implies that both tw and tz have higher status than tk if there are
positive associations from them to tk or negative associations from tk to them
respectively. However, we cannot determine the result directly because the inter-
task associations are signed and bi-directed. Thus, we first turn to bi-directed
associations among tk, tw and tz into mono-directed associations as follows,

ei,j = Ẑi→j − Ẑj→i, i, j ∈ {w, z, k} (2)
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where ei,j is the mono-directed association between ti and tj . Then, we reverse
the directions of all negative ei,j and flip their signs to positive (i.e., ej,i = −ei,j ,
if ei,j < 0). So far, the task association network can be treated as a pure directed
network when omitting positive signs. Sequentially, it can examine whether a
given triad satisfies the status theory (acyclic) or not (cyclic). In this manner,
acyclic triads w.r.t. the primary task tk could be found to expand the auxiliary
group.

Refined Auxiliary Selection by Maximum Flow. Holding the paradigm
‘one primary, multiple auxiliaries’, we suppose that tk is the primary task, and
two other tasks tw and tz are its auxiliaries. Let Mk|w,z be a multi-task learning
model accounting for them, Z

(m)
k|w,z be the performance of tk obtained by the

model. The status theory guarantees that mono-directed associations flow from
all the auxiliaries to the primary task, but the corresponding bi-directed inter-
task associations could be positive or negative. In details, each mono-directional
association to tk (Ẑi→k −Ẑk→i > 0) accounts for three scenarios of bi-directional
inter-task associations, including (1) (Ẑi→k > 0 & Ẑk→i < 0), (2) (Ẑi→k > 0
& Ẑk→i > 0), (3) (Ẑi→k < 0 & Ẑk→i < 0), where i ∈ {w, z}. Naturally, we
desire positive inter-task associations from the auxiliaries to the primary, which
reflects that the auxiliary task ti boosts the primary task tk. Thus, we select the
first two scenarios with the top priority to determine two auxiliaries of a specific
primary task tk.

More importantly, since we also expect that Z(m)
k|w,z ≥ Max

(
Z(d)

k|w,Z(d)
k|z

)
at

the same time, we calculate the maximum flow for the triad based on Ford-
Fulkerson algorithm [20], where tk is the sink node, one of its auxiliaries is the
source node (e.g., ti) and another is the intermedia node (e.g., tj), i, j ∈ {w, z}.
We directly regard mono-directed associations {ei,j} as the flux between two
tasks. Specifically, ei,k is the flux from ti to tk, and ej,k is the flux from tj to tk.
Thus, we define the maximum input flux (e.g., fmax

k (i, j) ) of tk given the source
ti and the sink tj as follows,

fmax
k|i,j = ei,k + min (ei,j , ej,k) (3)

In the case that tk has more than 2 auxiliaries, we apply the Ford-Fulkerson
algorithm [20] to calculate the maximum flux. Finally, according to the value of
fmax

k (i, j) of multiple combinations from 2 to 5 auxiliaries in descending order,
we determine the auxiliaries w.r.t. tk.

2.4 Multi-task Graph Learning Model

The multi-task graph learning model contains a task-shared atom embedding
module, a task-specific molecular embedding module, a primary task-centered
gating module, and a multi-task predictor module (Fig. 2b–2c).
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Task-Shared Atom Embedding Module. By adopting two-layer resid-
ual GCN (ResGCN), the task-shared atom embedding module learns atom
embedding representation by aggregating neighboring atom features on molecule
graphs, which are shared by both the primary task and its auxiliaries. Accord-
ing to chemical structure, each compound c is represented as a molecule graph
G = (V, E), where V is a set of atoms and E is a set of chemical bonds. Let
A ∈ R

N×N (N = |V|) be its adjacency matrix, in which aij = 1 indicates
the occurring bond (eij ∈ E) between atom i (vi) and atom j (vj), and aij = 0
indicates no bond. Here, each node vi (atom) is initially represented by a q-
dimensional binary feature vector hi ∈ R

q. As suggested in [21], the initial node
features typically include the atom symbol, the number of adjacent atoms, the
number of adjacent hydrogens, the implicit value of the atom, and the atom
occurrence in an aromatic structure. For each atom vi in the molecule graph
G of compound c, each layer of the ResGCN updates its features hc

i ∈ R1×d

by aggregating the embeddings of its neighboring atoms and adding a residual
connection from the previous layer [22]. The aggregation update rule for atom
embedding on the kth layer in the matrix form is defined as follows:

H(k+1) = σ
(
D̃− 1

2 ÃD̃− 1
2H(k)W(k)

)
+ σ

(
H̃(k)

)
, k = 0, 1 (4)

where Ã = A + IN, IN is the identity matrix, D ∈ R
N×N is the degree matrix,

in which diagonal elements are the degrees of each vertex and D̃ii =
∑

j Ãij ,
W(k) is the layer-wise trainable weight matrix, and σ(·) denotes an activation
function.

Note that the atom embedding vector hc
i (i.e., each row of H) is shared by

all the tasks. In classical single-task learning, the molecular embedding h can
be obtained by a popular readout, which is simply generated by averaging the
task-shared atom embeddings of compound c. In contrast, the current multi-task
learning requires task-specific molecular embedding, which shall be obtained in
the next section.

Task-Specific Molecular Embedding Module. The task-specific molecu-
lar embedding module leverages parallel attention layers to learn task-specific
molecular representations (hk,h(k)

i ) of compound c. The idea seems like a multi-
head attention (i.e., a concatenation of parallel attentions). However, considering
a different manner, we don’t concatenate atom embeddings weighted by parallel
task-specific attention layers, but take the weights on the same set of task-shared
atom embeddings to differentiate atom embeddings w.r.t. tasks. Then, the task-
specific molecular representations can be obtained by a classical readout on
them.

Suppose that compound c contains N atoms, of which each is encoded into
p-dimensional vectors hc

i ∈ Rp×1 by the task-shared atom embedding module.
With regard to a specific task tz, its attention weights are implemented by a
forward-feed neural network as follows:

az = Sigmoid (Wz · H + bz) ,
∑N

i=1 az(i) = 1 (5)
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where Wz ∈ R1×p is the learnable weight matrix and bz ∈ R1×N is the
bias vector, H ∈ Rp×N is the task-shared atom embedding matrix (stacked by{
hc

i ∈ Rp×1
}

column by column, a transposed form of that in the last section),
az ∈ R1×N is the atom weight vector, of which each element az(i) accounts for
the i-th atom in the compound. Thus, the task-specific molecular embedding
w.r.t. tz (denoted as hz) can be calculated in the following form:

hz =
∑N

i=1 az(i)hc
i (6)

More importantly, task-specific atom weights facilitate finding crucial substruc-
tures w.r.t. tasks, where two bonding atoms are regarded as a crucial structure
fragment if both of them have high weights (See Sect. 3.4).

Primary Task-Centered Gating Module. Under the paradigm ‘one pri-
mary, multiple auxiliaries’, the primary task-centered gating module learns how
each auxiliary task contributes to the primary task and how these contributions
are combined by a set of gating networks. Inspired by [23], each gating net-
work G is simply composed of a single-layer feed-forward network and a Sigmoid
activation function. It takes the task-shared average molecular embedding h of
compound c as the input and outputs two scalar weights, of which one is for the
primary task and another is for an auxiliary. The weighted embedding of the
auxiliaries with regard to the primary task is taken as its contribution to the
primary task. Sequentially, all the contributed embeddings of the primary task
are summed up as their final embeddings (Fig. 2c). Let Gi be a gating network
containing a fully connected layer FCi

G, which accounts for each primary-center
task pair be (tk, t

(k)
i ) where tk is the primary task, t

(k)
i ∈ T is its i-th auxiliary,

and i = 1, 2, . . . ,
∣∣∣
{

t
(k)
i

}∣∣∣. With regard to tk and t
(k)
i , we suppose that w

(i)
k , w

(k)
i

are their weights and hk,h(k)
i are their task-specific embeddings respectively. In

addition, let h ∈ Rp×1 be the task-shared molecular embedding, which is simply
generated by averaging the task-shared atom embeddings of compound c (i.e.,
a popular readout). Formally, the weights of the primary task and its auxiliary
t
(k)
i are defined by a neural network as follows,

[
w

(i)
k , w

(k)
i

]
= Softmax

(
FCi

G(h)
)

(7)

Furthermore, with the contribution of t
(k)
i to tk, its embedding hi→k is defined

as
hi→k = w

(i)
k hk + w

(k)
i h(k)

i , w
(i)
k + w

(k)
i = 1 (8)

Thus, the final embedding of the primary task passing through all the gating
networks {Gi} is as follows:

h∗
k =

∑
i=1 hi→k (9)

Once the primary task-centered gating module is done, h∗
k and {h∗

i } are passed
into task-specific towers (e.g., implemented by fully-connected neural networks)
to predict task labels.
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Multi-task Predictor. Either the primary task or its auxiliaries have indi-
vidual predictors, which contain task-specific fully-connected neural networks
to learn better task-specific nonlinear representation. We implement these
neural networks (NNs) with the same architecture, which contains an input
layer, a hidden layer, and an output layer. The predictor concerning the pri-
mary task tk maps the contributed embeddings h∗

k into the predicted primary
task label ŷk (i.e., ŷk = NNk (h∗

k), while those predictors accounting for the

auxiliaries
{

t
(k)
i

}
maps

{
h(k)

i

}
into corresponding auxiliary task labels (i.e.,{

ŷ
(k)
i = NN

(k)
i

(
h(k)

i

)}
). Furthermore, considering these tasks are of classifi-

cation or regression, we use the Cross-Entropy loss for classification tasks and
the Mean Squared Error loss for regression tasks when training multiple tasks
together. When training MTGL-ADMET, the loss of multi-task learning is
defined as follows,

loss =
∑C

c=1
∑Mc

n=1 (− [pcyc · log σ (ŷc) + (1 − yc) · log (1 − σ (ŷc))]) +
∑R

r=1
∑Mr

n=1 (ŷr − yr)
2

(10)
here yc and ŷc are the true label and the predictor value of compound cn w.r.t.
classification task tc respectively, yr is the true property value of cn w.r.t. regres-
sion task tr, ŷr is the corresponding predicted value, C is the number of classifi-
cation tasks and Mc is the number of compounds in classification tasks. R is the
number of regression tasks and Mr is the number of compounds in regression
tasks. Inspired by [24], to alleviate the imbalance of positive and negative sam-
ples in classification tasks, we utilize a weight pc in the loss function, which is
defined as the ratio of the number of negative samples to that of positive samples
w.r.t. classification task tc.

3 Experiments

3.1 Dataset and Setup

To evaluate our MTGL-ADMET, we built a dataset covering 24 endpoints (18 for
classification and 6 for regression) from 8 publications. The dataset contains five
Absorption [25,26], two Distribution [27,28], five Metabolism [24], two Excretion
[29], eight Toxicity [24] and two ADMET-related Physicochemical properties
[30,31]. There are 43,291 drug-like compounds across 24 endpoint tasks in total,
including 28,153 compounds in classification tasks and 16,545 in regression tasks,
where a compound may have one or more endpoint labels (Table S1). Each
node of the input drug/compound was initially represented by a 40-dimensional
(40-d) binary atom feature vector, including atom symbol (16-d), degree (7-
d), formal charge (1-d), radical electrons (1-d), hybridization (6-d), aromaticity
(1-d), hydrogens (5-d), chirality (1-d) and chirality type (2-d), as suggested in
[24]. Furthermore, the two-layer ResGCN encodes each compound into a 64-
dimensional embedding vector. After that, through parallel attention blocks on
atoms of each task, each compound is represented as a 64-dimensional embedding
vector. In the meanwhile, the input feature of FC in the gating network is the
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task-shared average molecular representation, which is also a 64-dimensional
embedding vector and the output feature is a 2-dimensional embedding vector.
In the n-th task predictor module, of which the input layer, the two-hidden
layer, and the output layer contain 64, 128, 128, and 1 neurons respectively. In
addition, we adopted an empirical setting for the parameters in the training,
which assigns the batch size of 128, the epoch number of 200, the learning rate
of 0.001, and selects Adam as the optimizer.

Table 1. Performance comparisons of MTGL-ADMET and baselines on 24 ADMET
endpoint

No. Endpoint Metric ST-GCN ST-MGA MT-GCN MT-GCNAtt MGA MTGL-ADMETa

1 HIA AUC 0.916± 0.054 0.972± 0.014 0.899± 0.057 0.953± 0.019 0.911± 0.034 0.981± 0.011 (18)

2 OB AUC 0.716± 0.035 0.710± 0.035 0.728± 0.031 0.726± 0.027 0.745± 0.029 0.749± 0.022 (14, 24)

3 P-gp inhibitor AUC 0.916± 0.012 0.917± 0.006 0.895± 0.014 0.907± 0.009 0.901± 0.010 0.928± 0.008 (None)

4 P-gp substrates AUC 0.775± 0.034 0.755± 0.014 0.733± 0.044 0.730± 0.034 0.719± 0.035 0.801± 0.031 (18, 21)

5 Caco-2 permeability R2 0.451± 0.033 0.519± 0.014 0.374± 0.022 0.404± 0.017 0.385± 0.031 0.523± 0.025 (24)

6 PPB R2 0.577± 0.028 0.585± 0.004 0.589± 0.036 0.619± 0.025 0.568± 0.038 0.626± 0.029 (9)

7 BBB AUC 0.956± 0.008 0.959± 0.004 0.945± 0.007 0.955± 0.009 0.956± 0.010 0.973± 0.005 (23)

8 CYP1A2 inhibitor AUC 0.932± 0.007 0.931± 0.013 0.914± 0.009 0.941± 0.008 0.940± 0.006 0.952± 0.005 (9)

9 CYP2C19 inhibitor AUC 0.774± 0.012 0.781± 0.008 0.775± 0.011 0.782± 0.011 0.795± 0.019 0.804± 0.015 (12, 16)

10 CYP2C9 inhibitor AUC 0.746± 0.016 0.764± 0.017 0.771± 0.016 0.782± 0.011 0.798± 0.019 0.794± 0.013 (5, 6, 11, 16)

11 CYP2D6 inhibitor AUC 0.848± 0.016 0.841± 0.022 0.839± 0.015 0.845± 0.015 0.877± 0.017 0.869± 0.016 (5, 6)

12 CYP3A4 inhibitor AUC 0.892± 0.006 0.915± 0.006 0.865± 0.007 0.896± 0.011 0.875± 0.006 0.916± 0.007 (11)

13 Half life AUC 0.725± 0.011 0.708± 0.024 0.688± 0.035 0.699± 0.028 0.707± 0.017 0.727± 0.022 (14)

14 Clearance AUC 0.723± 0.030 0.710± 0.015 0.686± 0.031 0.755± 0.014 0.740± 0.027 0.779± 0.027 (12, 22, 24)

15 Hepatotoxicity AUC 0.653± 0.040 0.669± 0.022 0.612± 0.039 0.640± 0.068 0.713± 0.053 0.701± 0.036 (8, 10, 17)

16 Respiratory toxicity AUC 0.842± 0.018 0.872± 0.013 0.810± 0.014 0.828± 0.015 0.828± 0.021 0.859± 0.010 (None)

17 Cardiotoxicity-1 AUC 0.707± 0.026 0.703± 0.020 0.683± 0.028 0.696± 0.028 0.684± 0.023 0.740± 0.023 (2, 16, 23)

18 Cardiotoxicity-5 AUC 0.620± 0.015 0.637± 0.010 0.626± 0.027 0.619± 0.015 0.623± 0.014 0.641± 0.014 (9, 14, 19)

19 Cardiotoxicity-10 AUC 0.627± 0.013 0.611± 0.015 0.609± 0.022 0.613± 0.021 0.603± 0.026 0.654± 0.010 (9, 10)

20 Cardiotoxicity-30 AUC 0.664± 0.036 0.653± 0.036 0.645± 0.036 0.687± 0.059 0.709± 0.035 0.723± 0.029 (6, 11, 23)

21 LD50 R2 0.588± 0.018 0.617± 0.018 0.503± 0.017 0.502± 0.023 0.492± 0.029 0.635± 0.015 (16, 22)

22 IGC50 R2 0.703± 0.055 0.818± 0.021 0.618± 0.027 0.744± 0.032 0.772± 0.021 0.819± 0.008 (5, 19)

23 ESOL R2 0.814± 0.030 0.896± 0.013 0.824± 0.030 0.872± 0.018 0.866± 0.020 0.931± 0.038 (21, 22)

24 logD7.4 R2 0.759± 0.056 0.904± 0.008 0.770± 0.019 0.838± 0.016 0.838± 0.018 0.915± 0.008 (1, 16)

Average 0.747± 0.025 0.769± 0.015 0.725± 0.006 0.752± 0.022 0.752± 0.023 0.793± 0.018
aThe numbers in the parenthesis means the auxiliary task numbers for each primary
task in our model.

3.2 Comparisons with State-of-the-Art

We assessed our MTGL-ADMET by the comparison with three state-of-the-
art multi-task learning models, which commonly use GNN but different MTL
architectures under the paradigm ‘one model fits all tasks’. They are briefly
summarized as follows:

MT-GCN [32]: It extends GCNs into the MTL architecture. It utilizes a
two-layer GCN module with mean pooling and maximum pooling to generate
task-shared molecular embeddings and a group of task-specific four-layer fully-
connected neural networks to generate task-specific molecular embeddings. Its
default values of parameters were used to train the model in the following exper-
iments. Also, we denote its single-task form as ST-GCN.
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MT-GCNAtt: We designed an extension of MT-GCN, MT-GCNAtt, by
adding an extra attention block for each task after its GCN module. The param-
eters in the attention blocks are the same as those in our model while other
parameters are directly taken from the original MT-GCN.

MGA [13]: Adopting a similar architecture to MT-GCN, it uses two-layer
R-GCNs [33] (an extension of regular GCNs) to generate task-shared molecular
embeddings and builds a task-specific attention layer followed by a three-layer
fully-connected neural network for each task. We used all the default values
of parameters to train the MGA in the following experiments. Meanwhile, we
adopted its single-task form as ST-MGA.

For a fair comparison, we utilized 10 independent experiments for all the
methods. In each round of the experiments, the dataset was randomly split
into a training set, a validation set, and a testing set by the ratio of 8:1:1 in
terms of sample number. The validation set was used to select tasks. We run
10 repetitions under different random seeds and measured their performance by
the average Area Under the Receiver Operating Characteristic Curve (AUC) for
classification tasks, and the square determination coefficient (R2) for regression
tasks respectively (Table 1). The greater, the better. We highlighted the result
of best in bold and the second best in underline, and the numbers in brackets
mean serial numbers of auxiliary tasks w.r.t. each primary task in our model.

The results show that MT-GCN has the worse performance, MT-GCNAtt
and MGA exhibit similar performances, and our method achieves the best per-
formance on average with significant improvements over these five approaches
by 4.6%, 2.4%, 6.8%, 4.1%, and 4.1% respectively. Meanwhile, the performance
of ST-GCN and ST-MGA is better than their MTL forms, MT-GCN and MGA
on average. In terms of individual endpoints, ST-GCN achieves the second best
over 4 tasks only, ST-MGA wins the best over 1 task and the second best over
10 tasks, MT-GCN achieves the worst on all tasks, MT-GCNAtt achieves the
second best over 3 tasks, while MGA wins the best over 3 tasks and the sec-
ond best over 3 tasks. In contrast, our MTGL-ADMET wins the best over 20
tasks and the second best over the remaining 4 tasks. Therefore, the comparison
demonstrates the superiority of our MTGL-ADMET.

3.3 Ablation Studies

We evaluated the proposed selection of primary-specific auxiliary tasks by the
comparison with three selection strategies, including an individual-task strategy
and two designated multiple-task strategies (Fig. 3). The individual-task strat-
egy, denoted as Single, trained predictors independently for individual ADMET
endpoint tasks. The second strategy (denoted as Rand-5) randomly selected five
auxiliaries for a specific task tk. The third one (denoted as Top-5) selected at
most top-5 positive auxiliary tasks of tk according to the descending order of{

Ẑi→k

}
and Ẑi→k > 0 (i.e., the fluence of auxiliary ti on tk, see also Sect. 2.3).

In contrast, our selection algorithm results in different numbers of auxiliary end-
points w.r.t. a specific endpoint. See the last column in Table 1.
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Overall, our status theory-based selection outperforms these selection strate-
gies and our MTGL-ADMET wins the best over all the tasks. Our method
achieves the best performance on average with significant improvements over
Single, Rand-5, and Top-5 by 3.16%, 3.60%, and 1.85% respectively. Especially,
our selection algorithm remarkably improves the prediction on two classification
tasks (‘Hepatotoxicity’, Cardiotoxicity-30) with 4.4% and 4.1% increments than
the second best. More details can be found in Table S2.

Fig. 3. Comparison with auxiliary selection strategies. The left panel is for classifica-
tion tasks while the right panel is for regression tasks. Compared with the MTGL-
ADMET selection strategies, Single, Rand-5 randomly selected five auxiliaries, and
Top-5 selected at most top-5 positive auxiliary tasks.

Fig. 4. Correlation between the maximum fluxes and the incremental performance.
Each point represents a task group, which contains at least 2 auxiliary tasks. The
maximum flux is calculated by the Ford-Fulkerson algorithm. The solid curve indicates
a fitting while two dotted curves denote its 95% confidence bounds
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In detail, there are 2 tasks, ‘P-gp inhibitor’ and ‘Respiratory toxicity’, having
no appropriate auxiliary, 7 tasks having only one auxiliary, 9 tasks having only
two auxiliaries, 5 tasks having three auxiliaries, 1 task having four auxiliaries
(‘CYP2C9 inhibitor’). These results demonstrate that our selection algorithm
relying on the status theory and the maximum flow can select approximate tasks
adaptively. It significantly outperforms these strategies over all the endpoint
tasks, no matter whether it is a classification task or a regression task.

To investigate why our task selection algorithm strategy is effective, we first
calculated the maximum flux over all the primary-specific task groups. Then,
we measure the correlation between them and the incremental performance of
the multi-task learning to the single-task learning on the testing dataset, i.e.
Z

(m)
k|w,z − Z

(s)
k . We found a significant Spearman correlation (γ = 0.9562, ρ =

2.6089e−08) between the maximum flux and the increment (Fig. 4). The results
demonstrate that the maximum flow on status-shaped triads can be a good
indicator to select appropriate auxiliary tasks for a specific task. More results
can refer to Fig. S3.

In addition, we investigated how the main components of MTGL-ADMET
contribute to the prediction by ablation studies. We designed two variants of
MTGL-ADMET (Fig. S4). The first one (denoted as w/o Att) eliminates the
parallel attention block in the task-specific molecular embedding module. The
second one (denoted as w/o Gate) lacks gate networks in the primary task-
centered gate module. MTGL-ADMET significantly outperforms these variants
in both classification and regression tasks. Specifically, compared to w/o Att
and w/o Gate, MTGL-ADMET improves on average value by 3.1% and 1.1%.
In detail, MTGL-ADMET improves the AUC value by 2.45% and 1.16% in
classification tasks and the R2 value by 4.9% and 1.03% in regression tasks.
Therefore, the results indicate that the parallel attention blocks and the gate
networks play critical roles in predicting ADMET endpoints.

3.4 Case Study: Interpretability of MTGL-ADMET

Although deep learning is known as a black-box model, it is essential to under-
stand how MTGL-ADMET makes a prediction and whether it can guide lead
compound optimization in drug discovery. Since the task-specific molecular
embedding module can learn task-specific atom importance by its task-specific
attention layers, we decided that two bonding atoms are regarded as a crucial
structure fragment if both of them have high attention weights. The weight of
a bond is the average of the weights of its constituent atoms (highlighted in
Fig. 5). One or more fragments form a crucial substructure, which is specific to
endpoint tasks.

We selected seven endpoints as the case study, including HIA (A), OB (A),
BBB (D), CYP3A4 and CYP2D6 inhibitors (M), Clearance (E), Hepatotoxicity
(T), and Cardiotoxicity-1 (T), where A is for an absorption endpoint, D is for
a distribution endpoint, M is for a metabolism endpoint, E is for an excretion
endpoint and T is for a toxicity endpoint respectively.
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Fig. 5. Cases study of crucial substructures. (a) two compounds of HIA and two of OB.
(b) four compounds of BBB. (c) two CYP3A4 inhibitors and one inhibitor for CYP2D6
and CYP3A4. (d) four compounds of Clearance. (e) four compounds of Hepatotoxicity.
(f) four compounds of Cardiotoxicity-1. The atoms and bonds of endpoint-specific
critical substructures are highlighted in green. (Color figure online)

First, we picked up two compounds (Maprotiline and Acetohexamide) having
good HIAs and another two compounds (Paroxetine cation and Zonisamide)
having good OBs. As shown in Fig. 5a, their crucial substructures indicated
by our MTGL-ADMET involve hydroxyl and amino, of which all are commonly
hydrophilic [34]. These results are consistent with the fact that drugs/compounds
with good absorption properties (e.g., HIA and OB) have higher hydrophilicity
[17].

Then, four compounds having good BBBs were investigated (Fig. 5b). Sim-
ilarly, their highlighted substructures involve lipophilic functional groups, (i.e.,
sulfonamide, morpholinyl and piperidine), which are helpful to pass the blood-
brain barrier [35–37].

After that, we investigated an important enzyme inhibitor, Ethinylestradiol,
which belongs to the family of CYP3A4 inhibitors. Two compounds having high
affinities with CYP enzymes were focused on. After an extra docking simulation
(Autodock), we found that their highlighted substructures involve aromatic rings
and hydrophobic fragments (Fig. 5c, upper panel), which are the key to the
binding site in the pocket by contributing to non-covalent bonds (e.g., H-bonds
and Pi-Pi bonds) [38]. Also, the result is consistent with the domain knowledge
that CYP3A4 inhibitors usually have furan ring, tertiary amine, or acetylene
substructures [38].
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More importantly, to investigate whether a compound shows task-specific
crucial substructures, we picked up a compound (1-Allyl-1, 5-anhydro-2, 3-
dideoxy-4-O-(4-fluoro-2-methylphenyl) hex-2-enitol) inhibiting two kinds of CYP
enzymes (CYP 2D6 and CYP 3A4) as the case study (Fig. 5c, lower panel). The
results validate that its highlighted substructures are specific to two endpoints.

Furthermore, four compounds having good Clearances were selected
(Fig. 5d). Their highlighted substructures, including alkyl and halogen, are
lipophilic. The results are consistent with the knowledge that compounds having
high lipophilicity tend to have high clearance [18,34]. Last, we paid attention
to two toxicity endpoints, Hepatotoxicity, and Cardiotoxicity-1, which repre-
sent serious concerns in drug development and are the main reasons for a drug
being withdrawn from the market [39]. Acetohexamide and Amodiaquine have
highlighted substructures, sulfonamide moiety and halogen atom (Fig. 5e), while
Lidoflazine and Bromperidol have highlighted substructures, a basic nitrogen
center flanked by aromatic or hydrophobic groups (Fig. 5f). These two groups of
substructures agree with the finding in [40] and [41] respectively.

In summary, the consistency of our findings with domain knowledge and lit-
erature demonstrates that MTGL-ADMET is an interpretable model, which can
indicate compound substructures (or functional groups) significantly associated
with ADMET endpoints. It would help reveal why a compound shows a specific
ADMET property of interest.

4 Conclusions

In this paper, holding a new paradigm of MTL, ‘one primary, multiple aux-
iliaries’, we’ve proposed a multi-task graph learning framework for predicting
various ADMET endpoints of drug-like small molecules (MTGL-ADMET). It
contains two stages, auxiliary task selection, and primary-centered multi-task
learning. The former stage builds a task association network by training indi-
vidual and pairwise tasks and leverages both the status theory and the max-
imum flow in complex network science to collect appropriate tasks. The lat-
ter stage constructs a novel primary-centered multi-task graph learning model
to train the primary task and its auxiliary tasks together. The model techni-
cally includes a task-shared atom embedding module, a task-specific molecular
embedding module, a primary task-centered gating module, and a multi-task
predictor. MTGL-ADMET can address two existing issues, including auxiliary
selection and task-specific molecular substructure finding.

The comparison with state-of-the-art MTL-based models demonstrates the
superiority of our MTGL-ADMET in terms of prediction performance. More
elaborate experiments validate its contributions. First, it improves the selection
algorithm of appropriate auxiliary tasks in the MTL by calculating the maximum
flux of status theory-satisfied task triads as the initial estimator. Secondly, by
the gating networks, it uncovers the contributions of auxiliary tasks to the pri-
mary task, which helps understand ADMET endpoint associations in a quantity
manner. Thirdly, by task-shared atom embeddings and task-specific attention
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scores, it obtains task-specific molecular embeddings with the highlight of cru-
cial compound substructures specific to ADMET endpoints.

In summary, we believe that our study provides new insights into ADMET
endpoint prediction and also can be borrowed for other multi-task learning prob-
lems (e.g., compound physic-chemical property prediction in drug discovery,
object detection, autonomous vehicles, and recommendation systems). In the
coming future, the integration of status theory and maximum flow techniques
into the architecture of neural networks (e.g., to embed the task association
network) would improve the finding of optimal auxiliary tasks.
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Abstract. De novo drug design is a crucial part of drug discovery which
is a highly expensive and slow process. Many deep learning methods
have been proposed to automate and accelerate it. However, most of the
current state-of-the-art methods are limited to generating novel drugs
specific to proteins that already have known drugs or limited to generat-
ing molecules which lack certain desirable drug-like properties like high
binding affinity or low binding energy. We introduce our graph genera-
tive model, CDGCN (Conditional de novo drug generative model using
Graph Convolution Networks), for de novo drug generation for novel pro-
teins, which takes as input a protein sequence of amino acids and gen-
erates novel molecular structures having desirable drug-like properties.
CDGCN generates desirable molecules for a protein using a sequential
decoding scheme by learning the distribution of generation paths of its
ligands. We show that CDGCN can quickly generate novel and chemically
valid drug-like molecules which have a higher binding affinity with their
target proteins as compared to the state-of-the-art methods. The best
binding energy between a novel protein and its novel drug-like molecules
generated by CDGCN was observed to be at least −7.3 kcal/mol whereas
for the state-of-the-art method it was observed to be −6.2 kcal/mol.

Availability and implementation: Code and data are available at
https://github.com/mshik/CDGCN.

Keywords: Graph convolution network · De novo drug design ·
Graph generation

1 Introduction

Drug discovery and development is an integral part of the healthcare system,
with the objective to find better drugs for known diseases and effective drugs for
new diseases. Usually behind a disease there is a target protein which is a type
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of biological molecule and behind a drug there is a lead which is a biological
molecule with drug-like properties [8,10,17,39] like high binding affinity with
the target protein to suppress its function [10], low synthetic accessibility score
[8], and others [17,39]. Finding optimum leads turns out to be the main part of
drug discovery and is mainly done in two ways: i) Drug repurposing which is a
process of finding leads from the set of known drugs which inhibit already known
proteins similar to the target protein, and ii) de novo drug design which aims
to discover novel drugs for known or novel target proteins. Drug repurposing
requires detailed knowledge about the target proteins to find similar known pro-
teins [35]. Moreover, it restricts the search space among known drugs which can
hinder finding leads with better binding affinity. From now on, we mention pro-
teins known to interact with some known drugs as known proteins, and proteins
not known to interact with any known drug as novel proteins.

In this work, we focus on de novo drug design which is an iterative task and
has multiple stages starting from i) understanding the target protein, ii) gen-
erating and optimizing leads having drug-like properties, iii) lab trial to obtain
drugs from leads etc. The latter is a highly expensive and slow process and its
success depends on the quality of leads found in stage ii. Efficiently finding opti-
mum leads is not an easy task as one needs to search quite extensively among
possible molecules which have drug-like properties and high binding affinity and
the size of the drug-like molecule space is estimated to be 1060, and the number
of synthesizable molecules is in the order of 108 [10,33].

In recent years, machine learning methods have been introduced for de novo
drug design, many of which utilize deep generative models [10,14–16,22]. The
primary idea behind these methods is to generate leads with the required prop-
erties of valid drugs. The set of generated leads are significantly small to be
considered for further testing which reduces the search time. These generative
models learn the distribution of molecules and then generate novel molecules by
sampling from the learned distribution [40]. Popular deep generative models for
de novo drug generation can be broadly divided into two categories: i) SMILES-
based methods [10] which generate SMILES strings [44] of molecules and ii)
graph-based methods [14–16,22] which generate graph structures of molecules.
There are existing methods that generate novel leads for known proteins by
learning to generate molecules similar to known drugs for those proteins. The
conditional graph generative model by Li et al. [22] is designed to generate novel
drugs for a predetermined set of known proteins on which it is trained. The
sequential decoding scheme of this model is well suited for drug molecules of
different sizes as it provides the flexibility to generate graphs of different sizes
unlike the methods which generate graphs by generating fixed size adjacency
matrices in one step [23]. However, this model is incapable of learning the rich
structural and functional information of proteins, and therefore, fails to generate
novel drugs for novel proteins. The recent SMILES-based generative model by
Grechishnikova [10] addresses this issue by learning to translate protein sequence
of amino acids to SMILES string of drugs. To the best of our knowledge, it is the
only method that is designed to generate novel drugs for novel proteins. How-
ever, SMILES-based methods are limited to learning the SMILES syntax and



106 S. Mallick and S. Bhadra

grammar, rather than directly learning the molecular structure, and hence they
tend to generate less number of chemically valid molecules [22]. It is also shown
that Grechishnikova [10] is comparatively much slower and requires a larger
memory to generate the same number of drugs as compared to Li et al. [22].

In this work, we propose a conditional graph generative model to generate
novel drug structures for novel proteins which satisfy drug-like properties and
strongly bind to proteins. Our proposed model CDGCN (Conditional de novo
drug generative model using Graph Convolution Networks) learns the relation-
ship between protein sequences, and the structure of their known drugs, and
then predicts the structure of novel drugs for novel proteins exploiting that
learned relationship. CDGCN utilizes a sequential decoding scheme for generat-
ing desirable molecular graphs for a given protein by learning the distribution
of generation paths for ligands of that protein. Novel proteins are more widely
available as sequences of amino acids than their three-dimensional structures
[10] and hence it is ideal to utilize protein sequences for training the model. The
three-dimensional structures of some of the proteins for testing is obtained from
Protein Data Bank (PDB) [1]. We show that CDGCN generates a smaller num-
ber of prescribed leads and while reducing search space it also prescribes com-
pletely unknown or novel leads which have better binding energy than known
ligands of the tested proteins, namely, i) Nitric oxide synthase, inducible (PDB
code 4NOS), ii) Interleukin-1 receptor-associated kinase 4 (PDB code 2NRU),
iii) Tyrosine-protein phosphatase non-receptor type 1 (PDB code 1LQF), iv)
Nitric oxide synthase, brain (PDB code 1K2R), and v) Integrin alpha-L (PDB
code 1CQP). The contribution of this work is as follows:

– We developed the first graph generative network, CDGCN (Conditional de
novo drug generative model using Graph Convolution Networks), for protein-
specific de novo drug generation for both known and novel proteins.

– As technical contribution, we propose a non-trivial way to include protein
function information into the graph generation process, which allowed us to
generate novel drugs having high binding affinity to novel proteins.

– Our proposed method CDGCN achieved superior performance when com-
pared to the state-of-the-art method by Grechishnikova [10] for the task of
novel protein-specific de novo drug generation for five novel proteins such that
the best binding energy between each protein and its generated molecules
by CDGCN is at least −7.3 kcal/mol whereas the same for the generated
molecules by Grechishnikova [10] is −6.2 kcal/mol.

To the best of our knowledge, there is no existing method that can directly
generate a reasonable number of drug-like molecules using the information from
novel proteins in a short amount of time. This is crucial to reduce the time and
cost required in drug discovery for novel proteins.

2 Materials and Methods

2.1 Molecular Graph Generation

A drug molecule is represented as a graph G = (V,E) where V is the set of
nodes in G corresponding to the atoms in the drug molecule, and E is the set
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of edges in G corresponding to the bonds in the drug molecule. Each node has
an atom type from a fixed set A of atom types and each edge has a bond type
from a fixed set B of bond types. CDGCN takes as input a protein as a sequence
of amino acids and sequentially generates a molecular graph by adding a node
or an edge incrementally. The graph generation process starts with an empty
graph. At each generation step, CDGCN selects one out of four different types
of actions to be performed on the intermediate graph. i) init action which adds
the first node to the empty graph, ii) append action which attaches a new node
with a new edge to an existing node in the intermediate graph, iii) connect action
which adds a new edge between an existing node and the last appended node
in the intermediate graph, and iv) end action which ends the sequential graph
generation process. Figure 1 shows an overview of CDGCN. In CDGCN, Embedp

takes a protein sequence and gives its embedding which contains useful informa-
tion about its function. FNN0 takes this protein embedding and gives probability
scores for each atom type in A for the init action. FNN1, . . . FNNl also take the
protein embedding and give task-specific protein embeddings. At each generation
step, EmbedV takes the atom type of each node in the intermediate graph and
gives its embedding. GCN1 takes the intermediate graph structure and the node
embeddings and gives new node embeddings. The task-specific protein embed-
ding is summed with the output node embedding for each FNN and GCN layer.
GCN2, . . . GCNl take the intermediate graph structure and the summed node
embeddings from the previous layer. The outputs of the l different summations
are concatenated and passed to FNNl+1 to obtain final node embeddings and
then passed to an average pooling layer to obtain a graph-level embedding. This

Fig. 1. Overview of our generative model CDGCN. The three types of actions, i.e.,
append, connect and end, are shown separately for better visualization.
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graph embedding is passed to RNN, which stores information from the previous
intermediate graphs, and its output is concatenated with each node embedding
from FNNl+1. The concatenated outputs are passed to FNNl+2 to obtain a ten-
sor of size |V |×(|A|×|B|+ |B|) for all possible append and connect actions. RNN
output is passed to FNNl+3 to obtain a scalar for the end action. FNNl+2 and
FNNl+3 outputs are passed through Softmax layer to obtain the final probabil-
ity scores for the append, connect and end actions. An action is then sampled
to be applied on the intermediate graph. After append or connect action, the
new graph is given as input to GCN1 for the next generation step. After end
action, the generation process stops and the current graph is post-processed to
obtain the drug molecule. The inference algorithm of CDGCN is given in the
supplementary.

2.2 Model Architecture

The learnable parameters of the model are denoted as Θ. Embedp is based
on a pre-trained network from Dallago et al. [5] which was trained on protein
sequences for the task of predicting protein function from its sequence. FNN0 is
a fully connected feed-forward neural network which consists of i) dense layer,
and ii) Softmax activation [7]. CDGCN is first pre-trained to generate chemi-
cally valid molecules without protein constraint. In this case, a learnable weight
vector followed by Softmax activation is used instead of Embedp and FNN0.
EmbedV is a matrix of dimension |A| × d0 consisting of learnable embeddings.
GCN1, . . . GCNl are Graph Convolution Networks (GCN) having i) Graph Con-
volution (GC) layer, ii) Batch Normalization (BN) layer [11,13], and iii) Recti-
fied Linear Unit (ReLU) activation [30], except GCNl which consists of only GC
layer. GC is computed following Wu et al. [46] for molecular graphs and has the
following formulation.

hi
(v)GC

= Wihi−1
(v)GC

+
∑

b∈B
Θi

b

∑

u∈Nb(v)
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(u)GC

+
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where hi
(v)GC

is the ith layer node embedding of node v. Nb(v) is the set of
nodes which are directly connected to node v with edges having bond type b and
N d(v) is the set of nodes at a path length of d from the node v in the graph G.∑
b∈B

Θi
b

∑
u∈Nb(v)
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, where D is the receptive field

size, represent the information of the local and distant neighbourhoods of node v
respectively. Wi, Θi

b and Θi
d are learnable parameters of the ith GC layer. FNN1,

. . . FNNl each consist of a single dense layer with output dimensions equal to
those of the L GCN layers respectively. FNNl+1 consists of two dense layers each
followed by a BN layer and ReLU activation. RNN is implemented using Gated
Recurrent Unit (GRU) layers [4] as shown in the following equation.

hGRU
m = GRUΘ(hGRU

m−1 ,hv∗ ||hG) (2)

where hGRU
m is the graph-level embedding for the mth generation step contain-

ing information from the previous m − 1 intermediate graphs. hv∗ is the node
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embedding of the last appended node v∗ in the current intermediate graph G.
FNNl+2 consists of i) dense layer, ii) BN layer, iii) ReLU activation, iv) dense
layer and v) exponential activation. FNNl+3 consisting of i) dense layer, and ii)
exponential activation. || is concatenation.

2.3 Loss Computation and Training

The objective for CDGCN is to maximize the log-likelihood of generating a
molecular graph G by following a generation path T given a protein P . T is a
sequence of m actions where the jth action tj determines the evolution of the
intermediate graph Gj at the jth generation step. The next action depends on
all the previous intermediate graphs and the protein P . The log-likelihood is
given as

log(PΘ(G, T |P )) =
m∑

j=1

log(PΘ(tj+1|Gj , . . . , G1, P )) (3)

where m is the number of actions in T and Gj is the intermediate graph obtained
after applying action tj ∈ T . The marginal likelihood is given as

log(PΘ(G|P )) = log
∑

T ∈S(G)

PΘ(G, T |P ) (4)

where S(G) is the set of all possible generation paths. However, for most
molecules encountered during drug discovery, the marginal likelihood is
intractable [22]. To resolve this issue, importance sampling is used to estimate a
particular probability distribution by sampling from a different predefined dis-
tribution [6,18], and hence the marginal likelihood from Eq. 4 becomes

log(PΘ(G|P )) = logET ∼Qα(T |G,P )

[
PΘ(G,T |P )
Qα(T |G,P )

]
≥ log 1

K

K∑
k=1

PΘ(G,Tk|P )
Qα(Tk|G,P ) (5)

where Qα(T |G,P ) is a predetermined distribution of generation paths in which
the actions at each step are either based on canonical atom ordering [45] with
probability α or based on random ordering with probability 1−α and K denotes
the number of different generation paths possible to generate G. The detailed
algorithm to compute Qα(T |G,P ) is given in the supplementary. The training of
CDGCN is done in mini-batches of size N and during the training, the following
negative log-likelihood loss is being minimized

L̂(Θ) = − 1
N

N∑

i=1

log
1
K

K∑

k=1

PΘ(Gi, Tik
|Pi)

Qα(Tik
|Gi, Pi)

(6)

3 Results and Discussion

This section reports the empirical evaluation and comparison of CDGCN with
state-of-the-art benchmark methods for the quality of the generated structures
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for both the cases of known and novel proteins, i.e., i) the fraction of generated
structures being chemically valid and novel [22], ii) the fraction of generated
structures having drug-like properties [10], iii) the fraction of correctly generated
structures for known proteins [22] and iv) the best binding affinity achieved by
the generated structures [10]. Quantitative efficiency of CDGCN is shown by
comparing the time required for generating the structures.

3.1 Datasets

Two real biological databases, i) ChEMBL [28] and ii) BindingDB [27] were
used for empirical evaluation. ChEMBL is a manually curated public database
of approximately 2.3 million molecules. Around 106 molecules that satisfy desired
physicochemical properties (Sect. 3.4) were extracted and used for the pre-
training of CDGCN and Li et al. [22]. BindingDB is a public database of experi-
mentally measured binding energies between proteins and ligands [27]. All exper-
iments here use the version of the BindingDB database constructed by Grechish-
nikova [10] where each protein is presented as FASTA sequences [26] and each
ligand is presented as SMILES strings [44]. This was used for the fine-tuning of
the pre-trained CDGCN and Li et al. [22], as well as for the training of Grechish-
nikova [10]. The BindingDB dataset is divided into five cross-validation folds
where the validation folds are further split in half to obtain validation data for
hyperparameter tuning and separate test data for evaluation of the trained mod-
els. The pairwise sequence similarity, measured using the Needleman-Wunsch
global alignment algorithm from the EMBOSS package [36], between the pro-
teins in the training dataset and the proteins in the test/validation dataset for
each fold is kept less than 20% so that the test dataset has proteins which are
truly novel for the generative model to prove its generalization. The majority of
protein sequences share less than 40% similarity within the training dataset and
the test dataset to make them diverse enough to train and evaluate the mod-
els. The histogram plots for the pairwise sequence similarities are given in the
supplementary. Proteins in training data are known proteins whereas proteins
in validation/test data are novel proteins. The models were trained, validated
and tested by the ligands present in the BindingDB dataset, hence they were
removed from the modified ChEMBL dataset to avoid data leakage during eval-
uation. In the raw dataset, each drug molecule is in its canonical SMILES format
[45] which is used for obtaining the node descriptors and edge descriptors using
RDKit [20]. The entire dataset, including both the modified ChEMBL and Bind-
ingDB together, has 65 unique atom types listed in the supplementary and four
unique bond types (single, double, triple, and aromatic).

3.2 Baselines

For the task of generating novel drugs for known proteins, CDGCN was com-
pared against the state-of-the-art i) graph-based method by Li et al. [22], and ii)
SMILES-based method by Grechishnikova [10]. For the task of generating novel
drugs for novel proteins, CDGCN has been compared with the latter.
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3.3 Implementation Details

CDGCN is implemented in MXNet 1.7.0 [3] on a system with a single NVIDIA
GeForce RTX 2080 Ti GPU with 8 GB memory. Training was done with batch
size 8 selected using five-fold cross-validation. Batch sizes higher than 8 could
not be tested due to memory constraint. It is however, worthwhile to train with
higher batch sizes. All other hyperparameters and optimizer for CDGCN fol-
low Li et al. [22]. Pre-training of CDGCN was done on the ChEMBL dataset.
Finetuning of CDGCN was done on the BindingDB datasets by passing pairs of
proteins and their known ligands to the model. The hyperparameters α and K
from Eq. 5 are selected as 0.8 and 5 respectively. A suitable choice for α and K
is crucial to generate unique and novel chemically valid molecules. The hyperpa-
rameter sensitivity study is in the supplementary. Finetuning lasted on average
for 10 epochs with early stopping [34] for the five different folds. Li et al. [22]
and Grechishnikova [10] were trained following their original setup, however, the
batch size was restricted to 8 for Li et al. [22] and the number of epochs was
restricted to 6000 for Grechishnikova [10] due to memory constraint.

3.4 Evaluation Metrics

CDGCN is designed to speed up the drug discovery process, hence we evaluate its
ability to quickly generate high quality molecules. We report the time required to
generate proposed structures by each of the three models, i.e., CDGCN and the
two baselines, along with the chemical validity of generated molecules, which is
checked using RDKit [20], and novelty of generated molecules using exact string
matching algorithm on the molecules in the dataset.

Along with having a good binding affinity with the target protein, a lead
should also have desirable physicochemical properties [10]. Lipinski’s rule of five
is a widely used rule of thumb to test whether the generated molecules have
certain physicochemical properties found in orally active drugs for humans [21,
25,32], like i) an octanol-water partition coefficient logP that does not exceed 5,
ii) molecular weight within 500 daltons, iii) no more than 5 hydrogen bond donors
(H-bond donors), and iv) no more than 10 hydrogen bond acceptors (H-bond
acceptors) [9,24]. Molecules satisfying properties like i) no more than 10 rotatable
bonds and ii) no more than 140Å2 of topological polar surface area (TPSA)
are predicted to have good oral bioavailability [41]. The quantitative estimate
of drug-likeness (QED) is another property widely used to select appropriate
molecules during the early stages of drug discovery [2]. It ranges from 0 to 1
with higher values indicating highly drug-like. The synthetic accessibility score
(SAS) is crucial in deciding whether a drug-like molecule is easy to synthesize
[8]. We report these properties for all three models.

Following Li et al. [22], we report the percentage of “binding/active” predic-
tions (Rc) among all generated molecules and their proteins using binary random
forest classifiers. The positive class for these classifiers consisted of 100 known
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ligands for each known protein. The negative class consisted of 100 ligands not
known to interact with that known protein, however, it might be noisy. Higher
Rc is better. ECFP6 fingerprints were used as the features for the ligands [37].
We selected classifiers which had accuracy of atleast 95% for evaluation.

Leads must strongly bind to a protein to inhibit its function. We performed
molecular docking to evaluate binding energies of generated molecules. We gen-
erated three-dimensional conformers for both the generated molecules and the
known ligands using OpenBabel package [31]. Molecular docking is computa-
tionally heavy, therefore we selected five novel proteins with available binding
sites and docked their Protein Data Bank (PDB) [1] structures with the gen-
erated molecules and their known ligands using SMINA software with default
settings [19]. Jupyter Dock software [29] was used for integrating SMINA into
python for parallelizing the heavy computation of the molecular docking for mul-
tiple molecules. We report binding energies for the generated molecules and the
known ligands for each of the five proteins.

3.5 Experimental Evaluation

Different sets of molecules were generated by CDGCN and Li et al. [22] for each
protein by repeated sampling as the generative processes here are probabilis-
tic whereas a deterministic set of molecules was generated for each protein in
the case of Grechishnikova [10]. Duplicate molecules were discarded from the
sets of generated molecules. Henceforth SN will denote the set of N generated
molecules. The generation of SN by Grechishnikova [10] was done by setting
the beam size hyperparameter equal to N . To maintain consistency for evalua-
tion with Grechishnikova [10], the molecular structures generated by both the
graph-based methods were converted to canonical SMILES strings using RDKit
[20]. Each experiment was repeated 10 times and the mean and standard devia-
tions are reported. Paired t-tests for each evaluation metric were performed for
statistical significance. The values in bold for multiple models indicate that the
difference is not significant between those models.

Table 1 reports the i) average time in seconds required to generate the pro-
posed structures, ii) average percentage of generated molecules that are chem-
ically valid, novel and satisfy the constraints of all the physicochemical prop-
erties, and iii) average Rc values described in this section. Molecules generated
by both the graph-based methods outperform those of Grechishnikova [10] in
terms of their chemical validity, novelty and desirable drug-like properties by
a large margin. This makes CDGCN computationally efficient for generating
novel drugs for novel proteins which can help enlarge their sets of drugs. In the
case of known proteins, Li et al. [22] is better than CDGCN for some cases but
the values of CDGCN are comparable. It is important to note that more than
85% of the molecules generated by CDGCN for both the known and the novel
proteins satisfy SAS which means that CDGCN tends to generate molecules
that are easy to synthesize which can further help in speeding up the drug



CDGCN 113

discovery process. For the Rc values for known proteins, CDGCN is superior to
Li et al. [22] but Grechishnikova [10] is superior to both of them. This is because
for known proteins, Grechishnikova [10] with simple SMILES strings is easy to
learn but can lead to over-fitting which reflects in Table 1 and the percentage of
novel molecules generated by Grechishnikova [10] is very less as compared to the
graph-based methods.

Table 2 shows the best binding energies and the percentage of generated
molecules having binding energy lower than −7.0 kcal/mol for each protein.
Binding energy of −6.0 kcal/mol is considered as minimum threshold for any
molecule to be used for drug development [12]. In all the cases, CDGCN is
superior to Grechishnikova [10]. For each of the five novel proteins, CDGCN
generated molecules that gave lower binding energy than their known ligands.
This shows that CDGCN is optimized to generate novel molecules which can
effectively bind with a protein. Two sample molecular docking output images
using PyMol [38] are provided in Fig. 2.

Fig. 2. (a) Docked novel protein from test dataset named Integrin alpha-L (PDB
code 1CQP) having highest binding energy of −7.3 kcal/mol with its generated novel
molecule by CDGCN. (b) Docked protein named Vascular endothelial growth factor
receptor 2 (PDB code 1Y6A) having lowest binding energy of −11.1 kcal/mol with
one of its known ligand (L) named ZD4190 [43] and −11.2 kcal/mol with one of its
generated novel molecule (G) by CDGCN.

The Tanimoto similarity score, following Grechishnikova [10], shows ∼13% of
the generated molecules from all the three models-Li et al. [22], Grechishnikova
[10] and CDGCN are structurally similar to the molecules in the dataset and
∼42% of the generated molecules from all the three models differ significantly
from the molecules in the dataset. We also tested the relevance of Embedp from
Fig. 1 by computing binding energies of the five novel proteins from Table 2
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Table 1. Qualitative and quantitative analysis of the three models-Li et al. [22],
Grechishnikova [10], and CDGCN, for generating chemically valid, novel and drug-
like molecules for the known and the novel proteins. Better values are in bold. ‘–’
indicates samples not generated due to memory constraint.

Protein type Model Average across all proteins
S10 S100 S1000

Time
required to
generate
structures
(seconds)

known Li et al. [22] 15.5± 0.77 28.8± 1.42 117.0± 4.63

Grechishnikova [10] 41.5 ± 3.30 121.4 ± 8.57 –
CDGCN 17.8 ± 1.62 31.0 ± 4.05 131.1 ± 4.87

novel Grechishnikova [10] 42.1 ± 2.10 190.0 ± 12.21 –
CDGCN 20.7± 0.91 35.1± 1.47 141.7 ± 5.72

Valid (%) known Li et al. [22] 96.3± 1.55 95.2± 0.57 95.4± 0.21
Grechishnikova [10] 89.0 ± 4.34 77.3 ± 6.44 –
CDGCN 95.3 ± 2.49 95.0 ± 0.66 94.9 ± 0.37

novel Grechishnikova [10] 85.7 ± 4.15 63.9 ± 2.98 –
CDGCN 94.5± 0.63 94.1± 0.86 94.0 ± 0.51

Novel (%) known Li et al. [22] 99.7± 0.22 99.7± 0.10 99.7± 0.03
Grechishnikova [10] 76.8 ± 0.20 78.0 ± 0.13 –
CDGCN 99.7± 0.27 99.7± 0.11 99.6 ± 0.03

novel Grechishnikova [10] 82.3 ± 0.32 84.1 ± 0.09 –
CDGCN 99.8± 0.48 99.9± 0.08 99.8 ± 0.05

< 5 logP known Li et al. [22] 78.0 ± 4.79 76.9 ± 2.17 76.9 ± 1.65
Grechishnikova [10] 63.9 ± 6.02 48.5 ± 9.50 –
CDGCN 78.8± 2.65 77.5± 3.69 77.1± 2.92

novel Grechishnikova [10] 55.3 ± 9.88 31.1 ± 4.30 –
CDGCN 77.4± 4.22 76.9± 2.94 77.0 ± 2.60

< 500
Molecular
weight (Da)

known Li et al. [22] 79.0± 3.99 77.9± 2.16 77.9± 2.19

Grechishnikova [10] 60.4 ± 14.02 43.6 ± 8.33 –
CDGCN 76.9 ± 4.31 75.8 ± 3.93 75.5 ± 2.76

novel Grechishnikova [10] 77.3 ± 5.10 42.1 ± 4.62 –
CDGCN 71.9± 4.35 70.9± 2.07 71.0 ± 2.10

< 5 Number
of H-bond
donors

known Li et al. [22] 91.0± 2.92 88.4± 1.17 88.7± 0.68

Grechishnikova [10] 66.6 ± 9.77 50.6 ± 7.98 –
CDGCN 88.9 ± 5.47 87.6 ± 1.67 87.5 ± 0.73

novel Grechishnikova [10] 76.5 ± 5.29 42.7 ± 4.25 –
CDGCN 85.0± 4.05 84.0± 1.60 84.1 ± 1.56

< 10
Number of
H-bond
acceptors

known Li et al. [22] 93.0± 2.92 90.4± 1.14 90.7± 0.47

Grechishnikova [10] 79.8 ± 6.47 60.8 ± 8.74 –
CDGCN 90.5 ± 4.36 89.3 ± 2.04 89.2 ± 1.89

novel Grechishnikova [10] 77.8 ± 5.23 43.8 ± 4.35 –
CDGCN 89.5± 2.69 88.1± 1.66 87.8 ± 1.02

(continued)
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Table 1. (continued)

Protein type Model Average across all proteins
S10 S100 S1000

< 10
Number of
rotable
bonds

known Li et al. [22] 83.4± 5.64 81.7± 1.94 81.6± 1.60

Grechishnikova [10] 67.6 ± 12.6 50.1 ± 8.13 –
CDGCN 79.5 ± 3.39 79.2 ± 3.33 78.7 ± 2.08

novel Grechishnikova [10] 77.4 ± 5.38 43.5 ± 4.14 –
CDGCN 78.2± 2.89 74.7± 1.74 74.8 ± 1.76

< 140
TPSA

known Li et al. [22] 89.3± 3.44 86.7± 1.04 87.0± 0.99

Grechishnikova [10] 66.7 ± 9.68 49.3 ± 7.43 –
CDGCN 86.5 ± 5.12 85.4 ± 2.05 85.1 ± 1.56

novel Grechishnikova [10] 77.2 ± 4.67 43.5 ± 4.47 –
CDGCN 83.5± 3.48 82.0± 2.00 82.0 ± 1.76

QED known Li et al. [22] 0.58± 0.02 0.57± 0.02 0.57± 0.01
Grechishnikova [10] 0.44 ± 0.08 0.34 ± 0.06 –
CDGCN 0.57 ± 0.01 0.57± 0.02 0.57± 0.02

novel Grechishnikova [10] 0.49 ± 0.06 0.31 ± 0.04 –
CDGCN 0.54± 0.02 0.54± 0.02 0.54± 0.02

< 6 SAS known Li et al. [22] 93.1± 2.88 90.4± 1.16 90.6± 0.41
Grechishnikova [10] 82.5 ± 5.81 63.4 ± 8.59 –
CDGCN 91.1 ± 4.64 89.8 ± 1.09 89.6 ± 0.79

novel Grechishnikova [10] 77.8 ± 5.23 44.4 ± 4.37 –
CDGCN 89.5± 2.96 88.2± 1.67 87.8 ± 0.96

Rc known Li et al. [22] 57.4 ± 3.30 42.1 ± 1.02 40.1 ± 0.92
Grechishnikova [10] 85.2± 2.28 77.9± 2.19 –
CDGCN 62.1 ± 1.84 46.7 ± 1.25 43.9 ± 0.94

with i) 100 molecules generated by Li et al. [22] for the known proteins, ii)
100 molecules generated by the pretrained CDGCN without Embedp, and iii)
100 molecules generated for each novel protein by the finetuned CDGCN with
Embedp. We found that the finetuned CDGCN with Embedp gave the best
binding energies for all five novel proteins among all the three models. Detailed
ablation study is provided in the supplementary.
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Table 2. Binding energies of known ligands and generated molecules for CDGCN and
Grechishnikova [10] for each of the five novel proteins. ‘Best’ shows the best binding
energy for the docked molecules. The PDB codes of the PDB structures used for molec-
ular docking for each protein is also reported for reference. Better values are in bold.
Underlined values are better than the values for the known ligand. ‘–’ indicates values
not reported due to memory constraint.

PDB code Best ≤ −7.0 kcal
/mol (%)

4nos Known ligands −7.9 46.2
S10 Grechishnikova [10] −6.2 0.0

CDGCN −7.3± 0.24 17.0± 10.00
S100 Grechishnikova [10] −7.6 2.8

CDGCN −8.0± 0.38 12.1± 2.90
S1000 Grechishnikova [10] – –

CDGCN −8.6 ± 0.12 12.4 ± 0.70
2nru Known ligands −8.8 93.5

S10 Grechishnikova [10] −7.9 90.0
CDGCN −8.3± 0.37 59.3 ± 18.60

S100 Grechishnikova [10] −8.1 52.4
CDGCN −8.9± 0.27 58.9± 4.30

S1000 Grechishnikova [10] – –
CDGCN −10.1 ± 0.45 59.5 ± 1.70

1lqf Known ligands −11.0 99.4
S10 Grechishnikova [10] −9.3 80.0

CDGCN −9.5± 0.26 95.7± 5.30
S100 Grechishnikova [10] −10.1 88.0

CDGCN −10.2± 0.12 92.8± 2.20
S1000 Grechishnikova [10] – –

CDGCN −11.1 ± 0.21 94.8 ± 0.40
1k2r Known ligands −9.0 94.2

S10 Grechishnikova [10] −7.8 91.3
CDGCN −8.3± 0.29 63.2 ± 4.10

S100 Grechishnikova [10] −8.2 56.1
CDGCN −9.1± 0.24 64.6± 2.10

S1000 Grechishnikova [10] – –
CDGCN −10.2 ± 0.17 66.8 ± 0.80

1cqp Known ligands −9.6 98.6
S10 Grechishnikova [10] −7.9 90.5

CDGCN −8.1± 0.26 69.5 ± 15.20
S100 Grechishnikova [10] −9.2 69.3

CDGCN −9.8± 0.32 78.0± 2.50
S1000 Grechishnikova [10] – –

CDGCN −10.1 ± 0.39 79.7 ± 1.20

4 Conclusion

In this work, the first deep conditional graph generative network, CDGCN, for
novel protein-specific de novo drug generation was introduced. Computational
experiments demonstrated the superiority of CDGCN as compared to the state-
of-the-art method by Grechishnikova [10] in terms of binding energies of gen-
erated molecules with the corresponding proteins, percentages of valid, novel,
and diverse molecules, drug-likeness, and synthetic accessibility. In CDGCN, the
encoder used to encode graphs into learned embeddings utilizes graph convolu-
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tion networks adapted for molecular graphs [46]. As part of our future work, the
graph encoding scheme of CDGCN will be improved upon by exploring methods
that provide more informative representations of molecular graphs [42,47].
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1 Introduction

Over the course of their lifespan, human cells accumulate molecular alterations
that result in the modification of cell behavior [27]. When aggregated at the tissue
level, these alterations can compromise tissue homeostasis, in turn clinically
impacting a patient [13]. Understanding the combined effect of these alterations
is key to designing bespoke lines of treatment [28,33]. These molecular alterations
occur at different genomic levels and are recorded using different technologies,
collectively referred to as “omics” technologies. Each of these omic measurements
offers only partial information regarding the compromised tissue. Aggregating
different omic measurements, an analysis known as multi-omics integration, is
therefore necessary to generate a comprehensive picture of the molecular features
underlying a cancerous lesion [5,20].

Owing to their high versatility, cell lines offer a cost-effective model system for
drug response modelling [8]. Specifically, large scale consortia have industriously
subjected a large number of cell lines to hundreds of different compounds, yield-
ing valuable drug response measurements [12,16,32]. A key challenge resides in
combining these response measurements with multi-omics data to study mecha-
nisms of resistance and sensitivity [24]. Existing approaches focus on combining
all omics data types and can be ordered based on the stage of the analysis
at which the integration is performed [6]. At one extreme, early integration
approaches [4,19] first aggregate all features from all data types to process them
all simultaneously. At the other extreme, late integration approaches first com-
pute a representation of each data type individually, and subsequently combine
these representations [11,26,36]. Several other methods can be positioned along
this ordering, and differ by the analysis stage during which the grouping of data
types is performed [41]. Although promising and encouraging, these methods do
not take into account the quality of the data types and do not explicitly model
their topology [2], i.e., how the data types relate to each other regarding infor-
mation content and capacity to predict drug response. In particular, it has been
observed that, although it has traditionally been the least clinically actionable
data type, gene expression consistently prevails over other data types [9] and
provides similar performance as early-integration approaches [1], obviating the
need for complex integration strategies.

In order to maintain the predictive power of gene expression data, while
exploiting the robustness of the most actionable data types, we present Perco-
late, an unsupervised multi-omics integration framework. Percolate sets itself
apart from other integration approaches as it aims to eliminate gene expres-
sion measurements from the final predictor, rather than integrating it with all
other data types. This is achieved by extracting the joint signal between gene
expression and the other data types in an iterative fashion. First the joint signal
between gene expression and Data type 1 (e.g. mutations) is extracted. Then
the remaining signal (not shared with Data type 1) is employed to extract the
joint signal of gene expression with Data type 2 (e.g. copy number data). This
procedure is repeated for all omics data types. In this way, the gene expression
signal is “percolated” down the other omics data types, ideally extracting all
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predictive signal from the gene expression data. Technically, Percolate employs
a popular framework, called JIVE [11,26], which breaks down paired datasets
into joint and individual signals. We first extended JIVE to non-Gaussian noise
models employing GLM-PCA [7]. Specifically, we used an alternative optimiza-
tion, the decomposition of saturated parameters [21], which we theoretically
proved to be competitive with the original formulation. Finally, we developed an
out-of-sample extension for JIVE, useful when only one of the two data types is
available.

We first show that comparing gene expression to other data types individually
recovers a known topology of multi-omics data. We then show that the informa-
tion shared between individual omic data types and gene expression increases
drug response predictive performance for the individual omic data types. Finally,
reconstructing the joint signal solely from mutation, copy-number and methy-
lation, we show that the signatures derived from “percolating” gene expression
down these data types recapitulate the drug response predictive performance of
these data types.

2 Methods

2.1 Trade-off Between Robust and Predictive Types

We consider four data types: mutations (MUT), copy number aberrations
(CNA), methylation (METH) and gene expression (GE). MUT and CNA directly
measure genetic aberrations and therefore rely on DNA measurements. Due
to several biological and technological factors, these measurements are highly
robust and suffer from little technical artefacts. On the other end of the spec-
trum, GE measures RNA abundance, a process known for exhibiting large bio-
logical variability and prone to technical artefacts. Between these two extremes,
methylation offers an intermediate level of robustness. However, when it comes
to drug response prediction, the order is reversed: GE offers, on average, a bet-
ter predictive performance than METH, and significantly outperforms MUT and
CNA [1,8,17]. This leads to a trade-off between robustness and predictive abil-
ity (Fig. 1A) with MUT and CNA being the most robust and least predictive
and GE being the most predictive and least robust, with METH rating at the
intermediate level in terms of robustness and predictive capacity.

2.2 Exponential Family Distribution

Our integrated approach is inspired by AJIVE [11], a computational approach
which takes as input two paired datasets and computes a joint and a data-
specific signals. AJIVE is an extension of the JIVE model [26], which we selected,
among other extensions [35,37], for its computational tractability and its math-
ematical formulation which is amenable to the derivation we propose. JIVE,
AJIVE, and derivations thereof, critically rely on Principal Component Analysis
(PCA) which assumes a Gaussian noise model on the data [22,39]. To extend this
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Table 1. Exponential family distributions. Gaussian distribution is assumed to
have unit variance. The dispersion parameter r is fixed for the Negative Binomial.

Data type Family distribution

Copy-number aberration (CNA) Log-Normal or Gamma

Gene expression (GE) Negative-Binomial

Methylation (METH) Beta

Mutation (MUT) Bernoulli

framework to non-Gaussian settings, we make use of a generalized formulation
that can deal with a wider class of parametric distribution models, i.e., the so-
called exponential family [31].

Definition 2.1 (Exponential family distribution). Let X ⊂ R
p, we say that

a random vector Z ∈ X follows an exponential family distribution if its
probability density function f can be written as

∀z ∈ X , f (z|θ) = h (z) exp
(
η (θ)T

T (z) − A (θ)
)

. (1)

T : X → R
q (q > 0) is called the sufficient statistics, θ ∈ R

q the exponential
parameter, η : Rq →∈ R

q the natural parametrization, A : Rq → R the log-
partition function and h : X → R

+ the base measure.

The exponential family encompasses a broad set of distributions (Supp.
Table 1), including the Gaussian distribution with unit variance, the Poisson,
the Bernoulli, the Beta or the Gamma distributions. Practically, the functions
A, T and η are modelling choices which can be tuned for any specific application.

2.3 Saturated Model Parameters

For this section, we consider a data matrix X ∈ R
n×p, with n (resp. p) the

number of samples (resp. features). We model this data using an exponential
family distribution E = (T,A, η) (Definition 2.1), which choice is motivated by
prior knowledge. For instance, if the data is known to be binary, one would
turn to E defined by the Bernoulli distribution, while another data distribution
would lead to a different choice of functions (Supp. Table 1). We denote by q the
dimensionality of T and A output space.

Definition 2.2 (Negative log-likelihood). We define the negative log-
likelihood, denoted L, as follows:

∀Θ ∈ R
n×p×q, L (Θ;X, E) =

n∑
i=1

p∑
j=1

A (Θi,j) − η (Θi,j)
T

T (Xi,j) . (2)
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Fig. 1. Dissecting multi-omics topology using Percolate bridges the gap
between predictive and robust data types. (A) Trade-off between robust data
types (MUT, CNA) and predictive types (METH, GE). (B) Workflow of our imple-
mentation of GLM-PCA, which relies on the projection of saturated parameters. (C)
Workflow of Percolate, which extends JIVE to non-Gaussian settings by comparing the
low-rank structures of saturated parameter matrices.

Definition 2.3 (Saturated parameters). We define the saturated parameters
Θ̃ (X, E) ∈ R

n×p×q as the minimizers of L, i.e.,

Θ̃ (X, E) = argmin
Θ∈Rn×p×q

L (Θ;X, E) . (3)

The saturated parameters correspond to single-sample maximum likelihood
estimates. This quantity, which will be the pillar of our approach to GLM-PCA
(Sect. 2.4), can be computed as follows.

Proposition 2.4 (Computation of saturated parameters). Assume that A and
ν are differentiable with invertible differentials. Then, denoting J as the Jacobian
of a function:

Θ̃ (X, E) = η−1 ◦ (
JA◦η−1

)−1 ◦ T (X) =̂ g−1 (X) , (4)

using an element-wise operation on all elements of X.
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Proof. We refer the reader to the Supplementary Material (Sect. 4) for the proof.
�

Proposition 2.4 shows that the saturated parameters correspond to a dual repre-
sentation of the data motivated by prior knowledge on the data-distribution. We
will exploit this representation ‘a la PCA to find the main sources of variations
in a framework called GLM-PCA.

2.4 Generalized Linear Model Principal Component Analysis
(GLM-PCA)

JIVE is based on Principal Component Analysis (PCA), which admits three
equivalent definitions: maximization of projected variance, minimization of
reconstruction error and maximization of a Gaussian likelihood with unit-
variance. This latter definition can be restrictive for non-Gaussian data and
we therefore set out to replace PCA by an extension called GLM-PCA [7].
In these methods, the Gaussian likelihood is replaced by an exponential family
distribution. The original approach from Collins et al. [7] minimizes a negative
log-likelihood using an SVD-like decomposition for the exponential parameters,
yielding three different matrices. Refinements of this idea, which solve a similar
optimization problem, have been proposed in the literature [23,25] and offer com-
petitive routines for the computation of these three matrices. Another take on
this problem, which relies on the projection of saturated parameters, has recently
been developed by Landgraf et al. [21]. This approach offers the advantage of a
simpler single-matrix optimization instead of concomitantly optimizing on three.
Furthermore, the out-of-sample extension relies on a matrix multiplication and
is thus computationally fast. These two approaches therefore aim at finding the
same decomposition through different computational routines. We here present
these two approaches and prove that the latter offers a similar or better mini-
mizer for the negative log-likelihood, which, to the best of our knowledge, had
not been established.

2.4.1 Two Formulations of GLM-PCA

Definition 2.5 (SVD-type [7]). SVD-type GLM-PCA computes three matrices,
USV D ∈ R

n×d, VSV D ∈ R
p×d and ΣSV D ∈ R

d×d (diagonal), alongside a vector
μSV D ∈ R

p defined as

USV D, VSV D, ΣSV D, μSV D =̂ argmin
U,V,Σ,μ

V T V =UT U=Id

L (
UΣV T + 1nμT ; X, E)

(5)

Definition 2.6 (Projection of saturated parameters [21]). GLM-PCA by pro-
jection of saturated parameters computes one matrix, VSP ∈ R

p×d alongside a
vector μSP ∈ R

p defined as

VSP , μSP =̂ argmin
V ∈R

p×d,μ∈R
p

V T V =Id

L
((

Θ̃ (X; E) − 1nμT
)

V V T + 1nμT ; X, E
)

, (6)
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The loading matrices (VSV D and VSP ) and the score matrix (USV D) have orthog-
onal constraints, which is similar to PCA where scores are by construction uncor-
related.

2.4.2 Equivalence of the Formulations

We here show that the projection of saturated parameters provides a competitive
minimization when compared to the SVD-type decomposition. The main result
is based on Supp. Lemma 5.1 and we refer the reader to the Supplementary
Material (Sect. 5) for a complete proof.

Theorem 2.7. Let us define USV D, VSV D,ΣSV D and μSV D as in Definition
2.5, and VSP , μSP as in Definition 2.6. The likelihood resulting from the two
optimization processes satisfies

L (
USV DΣSV DV T

SV D + 1nμT
SV D

) ≥ L
((

Θ̃ − 1nμT
SP

)
VSP V T

SP + 1nμT
SP

)
,

(7)
where the dependencies on X and E for L and Θ̃ were removed for verbosity’s
sake.

Theorem 2.7 shows that, although the two approaches compute the same
decomposition, the one obtained from saturated parameters yields a lower or
equal negative log-likelihood. It is also worth noting that the SVD-like optimiza-
tion is usually performed by alternate optimization [40] and the initialization can
play a major role in the convergence. The projection of saturated parameters
only requires one minimization round, and is thus faster and less prone to ini-
tialization effects. Using the decomposition of saturated parameters, however,
comes at a price: there is an infinity of solutions, all equal up to a unitary trans-
formation. In order to obtain sample scores that are uncorrelated, we proceed
as follows.

Definition 2.8 (Sample scores). Let VSP and μSP be defined as in Definition
2.6 and assume that rank

(
Θ̃ − 1T

nμSP

)
≥d. Then rank

[(
Θ̃ − 1T

nμSP

)
VSP V T

SP

]

= d and we define USP , ΣSP and WSP as the unique rank-d SVD decomposition
of the saturated parameters, i.e.

USP ΣSP WT
SP =

(
Θ̃ − 1T

nμSP

)
VSP V T

SP . (8)

It is worth noting that the equality in Eq. 8 is not an approximation and this
second SVD does not entail any loss of information. It is a pure computational
maneuver to whiten the obtained scores.

2.4.3 Hyper-parameter Optimization

The solution of Eq. (6) is an optimization problem with a Stiefel-manifold con-
straint, which we solved by using recent advances in auto-differentiation [30]
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Fig. 2. Assessing the number of joint components. (A) Schematic of the sample-
level permutations we perform to estimate the number of joint components. (B) Venn-
diagram of the number of joint components obtained using the permutation scheme. (C)
Ratio of variance explained for the GE saturated parameters matrix after projection
on the joint components.

and optimization on Riemmannian manifolds [29]. We modelled the functions
A, T and the negative log-likelihood using PyTorch; stochastic gradient descent
(SGD) on the Stiefeld-manifold was performed using McTorch. Such a formula-
tion allows to employ a large variety of exponential family distributions without
the need for heavy and potentially cumbersome Lagrangian computations. Our
optimization scheme relies on four hyper-parameters: number of factors (or prin-
cipal components), learning rate, number of epochs and batch size. To determine
them, we compute the Akaike Information Criterion (AIC) of the complete data
for various values of d and different hyper-parameters [3]. For a GLM-PCA model
with d PCs, the AIC corresponds to the sum of the data log-likelihood and the
number of model parameters, which we estimate as the dimensionality of the
Stiefel manifold

{
V ∈ R

d×p|V V T = Id

}
, equal to pd − d(d + 1)/2. Among all

trained models, we select the one which harbors the smallest AIC.

2.5 Comparison of GLM-PCA Directions by Percolate

Setting: We consider two datasets XA ∈ R
n×pA and XB ∈ R

n×pB with paired
samples (rows) but potentially different features. We first perform GLM-PCA
independently on XA and XB using two different exponential family distribu-
tions, yielding dA and dB factors, respectively denoted as ṼA and ṼB . We fur-
thermore denote by Θ̃A and Θ̃B the saturated parameters of datasets A and
B respectively, and μ̃A and μ̃B the intercept terms. Using the decomposition
presented in Definition 2.8, we furthermore define ŨA,ΣA, W̃A and ŨB ,ΣB , W̃B .
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Definition 2.9. To compare the two sets of samples scores, ŨA and ŨB, we
aggregate them in a matrix M, which we decompose by SVD:

M =
[
ŨA, ŨB

]
= UMΣMV T

M . (9)

The top left-singular vectors correspond to sample scores which are highly cor-
related between ŨA and ŨB , since both of these two matrices are consisting, by
construction, of uncorrelated factors. Following the same intuition as in AJIVE,
these can be understood as the joint signal, motivating the following definition.

Definition 2.10 (Joint and individual signals). Let rJ < min (dA, dB), we
define the joint signal as the matrix ŨJ ∈ R

n×rJ with the top rJ left-singular
values of M. We furthermore denote by ΣJ the diagonal matrix with the top rJ

singular values of M.
We define the individual signal of A (resp. B), denoted as ŨA

I (resp. ŨB
I ),

as the signal from ŨA
I (resp. ŨB

I ) not present in ŨA (resp. ŨB), formally:

ŨA
I & =

(
In − ŨJ ŨT

J

)
ŨA

ŨB
I & =

(
In − ŨJ ŨT

J

)
ŨB

. (10)

We call the complete process Percolate, and a summarised workflow can be
found in Fig. 1B-C.

In order to set the number of joint components rJ , we employ a sample-level
permutation scheme. We first independently permute the rows of ŨA and ŨB ,
which we then aggregate as in Eq. (9) to obtain the singular values. We perform
100 such permutations independently and retrieve the first singular value for
each. Finally, we set rJ as the number of elements in ΣM over one standard
deviation from the mean of the permuted singular values (Fig. 2A).

2.6 Projector of Joint Signal

AJIVE does not provide an out-of-sample extension, and we here propose a
derivation thereof by rewriting the matrix UJ as a function of the saturated
parameters.

Theorem 2.11. Let’s decompose the matrix VM as VM =
[
V T

M,A V T
M,B

]T such
that V T

M,A contains the first dA columns of V T
M and V T

M,B the last dB ones, we
obtain:

ŨJ = ŨJ,A + ŨJ,B

with

⎧
⎨
⎩

ŨJ,A =
(
Θ̃A − 1nμ̃T

A

)
Ṽ T

A ṼAWAΣ−1
A VM,AΣ−1

J

ŨJ,B =
(
Θ̃B − 1nμ̃T

B

)
Ṽ T

B ṼBWBΣ−1
B VM,BΣ−1

J

. (11)
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Fig. 3. The joint signal between robust and gene expression contains most
of the predictive signal. (A) Workflow of our approach. (B) Predictive performance
for MUT when using Percolate between MUT and GE. Each point corresponds to a
single drug, with the x-axis corresponding to the predictive performance obtained using
the original mutation data, and the y-axis by either the joint (red) or the individual
(blue) signals. (C) Predictive performance for CNA, similarly displayed as in B. (D)
Predictive performance for METH, similarly displayed as in B.

Proof. We refer the reader to the Supplementary Material (Sect. 6) for the com-
plete proof. �

The formulation of ŨJ presented in Equation (11) highlights the additive
contribution of both dataset to the joint signal. At test time, both views are
therefore required to estimate the joint signal. To tackle the issue of missing data-
view, we propose a nearest-neighbor imputation of the unknown joint-term. Let’s
consider, without loss of generality, that only the view A is available. The joint
signal has been computed using the two data matrices XA and XB , yielding ŨJ,A

and ŨJ,B . The second term contains rJ terms, and we train rJ corresponding
k-Nearest-Neighbors (kNN) regressors. The test dataset YA ∈ R

m×pA can be
projected on the joint signal by replacing the saturated parameter Θ̃A in Eq. 11
with the saturated parameter of the test data. We then estimate the second term
by means of the rJ kNN regression models. Adding these two terms yields an
estimate of the joint signal.

2.7 Drug Response Prediction

We assess the predictive performance of a dataset by employing ElasticNet [42],
which has been shown, inspite of its relative simplicity, to outperform more
complex non-linear models when it comes to drug response prediction [8,17,38].
For a given dataset, we perform nested cross-validation as follows. First, datasets
are stratified into 10 groups of equal size. For each group (10%), we employ
a 3-fold cross-validation grid search on the remaining 90% to determine the
optimal ElasticNet hyper-parameters (�1-ratio and penalization). We then fit
this optimal ElasticNet model on the 90% to predict the class labels on the 10%.
Repeating this procedure, we obtain one cross-validated estimate per sample
and we define the predictive performance as the Pearson correlation between
these estimates and the actual values.
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2.8 Data Download, Modelling and Processing

We consider four data types in our analysis (Table 1) which we modelled using
different exponential family distributions (Supp. Material). The GDSC data was
accessed on January 2020 from CellModel Passport [16]. For GE, MUT and CNA,
we restricted to protein coding genes known to be frequently mutated in cancer,
referred to as the mini-cancer genome [15]. GE was corrected for library size
using TMM normalization [34] and mutations were restricted to non-silent.

3 Results

3.1 The Breakdown of the Joint Signals Highlights the Topology
of Multi-omics Data

To compare data types, we employ Percolate using the distributions defined in
Table 1, and a number of PCs set using the procedure presented in Subsect. 2.4
(Supp. Figure 2). For each comparison, setting the number of joint components
is a crucial step, as it defines the threshold between the joint and individual
signals. For that purpose, we used a sample level permutation test (Fig. 2A,
Subsect. 2.5).

We observe that GE shares 21 joint components with METH, 13 with CNA
and only 6 with MUT, which is coherent with the gradient put forward in Fig. 1.
We furthermore observe that MUT is consistently the data type with the least
number of joint components (Fig. 2B), highlighting the weakness of the signal
coming from MUT data, corroborating previous measured topologies of multi-
omics data [2]. To measure the strength of the underlying joint signals, we com-
puted the proportion of GE variance explained by the joint directions (Fig. 2C),
computed as the ratio between the joint signal variance and the variance of the
GE’s saturated parameters matrix. We observe that the joint signal between GE
and METH explains 26% of GE variance, while this figures drops to 14% and
7% for CNA and MUT, respectively. These observations highlight the existence
of a joint signal, of which the predictive performance can be interrogated.

3.2 Robust Signal Predictive of Drug Response Is Concentrated
in the Joint Part

We then investigated the relevance of the joint and individual signals when it
comes to drug response prediction. Considering one robust data type at a time
(MUT, CNA or METH), we first decomposed the original robust data type into
a signal joint with GE and an individual signal specific to the robust data type.
We then computed, for 195 drugs (Methods), the predictive performance for
these two signals and compared it to the original robust robust data (Fig. 3A,
Subsect. 2.7). To ensure a proper comparison between joint, individual and cell-
view, the cross-validation was performed using the same folds for all datasets. As
ElasticNet has been shown in the literature to outperform other more advanced
algorithms for this particular task [8,17,38], we restricted our comparison to
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Fig. 4. Robust-type-based signatures created from Percolate recapitulate
drug response. (A) Schematic of the cross validation experiment. (B) Results for
MUT with a special zoom on drugs predictive for joint but not robust (left) and for
robust but not join (right). (C) Results for CNA. (D) Results for METH.

this regression method. Such experimental design has the advantage to properly
assess the effect of Percolate, as no additional performance can be gained from
the regression model.

We first analyzed the results obtained between MUT and GE data (Fig. 3B).
We observe that for most drugs, the predictive performance of the joint signal
exceeds the predictive performance of the original robust signal, except for a
number of drugs of which the response is quite well predicted based on MUT
only. This set includes the drugs Nutlin-3, Dabrafenib, and PLX-4720. In con-
trast, the individual signal shows no predictive performance (Pearson correlation
below 0) for most drugs, indicating an absence of drug response related signal in
the individual portion. We then turned to CNA where the choice of distribution
was unclear, with, to the best of our knowledge, no clear precedent on how to
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model such data. Due to the observed behavior of CNA data, we opted for two
possible distributions: Log-normal and Gamma distributions (Supp. Table 1). We
observe that the joint signal computed using a Gamma-distribution yields bet-
ter performances than the log-normal model (Supp. Figure 3A-B). When using
a Gamma distribution, a conclusion similar to the MUT data can be reached
with the majority of drugs predicted well with the joint signal except three
drug, AZD4547, PD173074 and Savolitinib (Fig. 3C). This advocates for using
the Gamma distribution for analyzing CNA data and shows that the joint signal
presents an increased performance while the individual signal is not predictive.
Finally, we studied the drug response performance obtained after decomposing
METH using GE (Fig. 3D). We observe that the joint signal presents a similar
predictive performance as the original methylation data. The individual signal
is, again, not predictive. These results highlight the potential of restricting pre-
dictors to the joint signal for robust data types.

3.3 Out-of-sample Extension Recapitulates the Predictive
Performance of Robust Signal

In order to compute the joint signal between one robust data type and GE, one
needs to have access to both modalities. However, the purpose is to become inde-
pendent of non-robust GE measurements. In order to study whether the joint
signal could be estimated without access to gene expression, when the predic-
tor is applied to a test case, we exploited our out-of-sample extension (Subsect.
2.6). We employed this algorithm to compute the drug response predictive per-
formance of the joint signal estimated using the robust data alone (Fig. 4A).
Dividing the data in ten independent folds, we performed a cross-validation esti-
mation as follows. For each train-test division of the data, we trained a Percolate
instance on the 90% of the data, the training set containing GE and the robust
data type. The resulting joint information was then used to train an ElasticNet
model to predict drug response. The remaining 10% (test data) were then used
to first estimate the joint signal, solely based on the robust data (Subsect. 2.6).
This joint signal was then used as input into the ElasticNet model to predict
the response on this test set. Finally, we computed the predictive performance
as indicated in Subsect. 2.7.

When analyzing results for MUT (Fig. 4B), we first observe a clear drop in
performance for the joint signal compared to the previous results (Fig. 3B). This
suggests that the GE portion of the joint signal (Eq. 11) contains a significant
portion of predictive signal, which is less well captured by our out-of-sample
extension. Nonetheless, we observe that 11 drugs show a predictive performance
above 0.2 for joint but not for the robust data. In contrast, 11 drugs show
the opposite effect, including seven which target the MAPK pathway – MEK
(Trametinib, PD0325901, Selumetinib) and ERK (ERK2440, ERK6604, Ulix-
ertinib, SCH772984). BRAF inhibitors Dabrafenib and PLX-4720 also show a
drop in performance. This suggests that constitutive activation of the MAPK
pathway is not recapitulated by the joint signal. Nonetheless, the joint signal
generated by Percolate helps increase performance for several poorly predictive
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Fig. 5. Study of joint signals contributing to improved performance. For each
drug, we report the top 10 largest gene regression coefficients from the joint signal,
in absolute values. We first analysed the joint biomarkers created from MUT data for
Gemcitabine (A), Vincristine (B) and Palbociclib (C). We then turned to CNA-based
signatures for OSI-27 (D), Vorinostat (E) and Vincristine (F).

drugs and is therefore of interest to study various response mechanisms. We
then turned to CNA (Fig. 4C) and observe a modest decrease in predictive per-
formance compared to the performance on the original CNA profiles. Three drugs
show a spectacular drop as the response can not be predicted by the joint signal
– Savolitinib (cMET), PD173074 (FGFR) and AZD4547 (FGFR). In contrast,
three drugs show improved performance for the joint signal – OSI-027 (mTOR),
Navitoclax (HDAC) and Vincristine (tubulin). Finally, we repeated the experi-
ment for METH (Fig. 4D) and observe that predictive performances of the joint
signal is remarkbly comparable to the predictive performance on the original
METH data, with most drugs falling showing less than 2% relative performance
difference (Supp. Figure 4C). Taken together, these results show that the joint
signal recapitulates the drug response performance abilities of DNA-based mea-
surements.
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3.4 Study of Genes Contributing to the Joint Signals

We then set out to study the underlying mechanisms associated with the pre-
dictors derived from the robust data types (Subsect. 3.3) which also lead to
improved performance. For a given drug, we trained an ElasticNet model on
the joint signal, yielding one regression coefficient per joint component. Using
the relationship from Eq. 11, we obtain a regression coefficient for each gene.
A positive coefficient indicates that larger values of the saturated parameters,
caused by a mutation or amplification of the supporting gene, are associated
with resistance. In contrast, a negative coefficient indicates that larger values of
the saturated parameters are associated with sensitivity.

For MUT, we studied the mode of action of three drugs for which the joint
signal performs well (Fig. 4B): Gemcitabine (Fig. 5A), Vincristine (Fig. 5B) and
Palbociclib (Fig. 5C). We observe that TP53 mutation status is associated with
resistance to three drugs, concordant with earlier observations showing that
TP53 mutant are more resistant to chemotherapy [14]. Resistance to Gemc-
itabine and Vincristine is also associated with KRAS and PI3KCA mutations,
known for their proliferative potential [10,18]. Interestingly, mutations in MYC
and MAPK8IP2 are associated with sensitivity to these three drugs. Three other
drugs show a drop in predictive performance on the joint signal as compared to
the original signal: Nutlin-3, Dabrafenib and PLX-4720 (Fig. 4B). We observe
that the known targets of these drugs exhibit a large coefficient: TP53 for Nultin-
3 (known resistance biomarker) and BRAF for Dabrafenib and PLX-4720 (Supp.
Figure 5). These three drugs highlight a limitation of our approach: GLM-PCA
generates scores which aggregates the contributions of several genes. Highly-
specific drugs, like Nutlin-3 (Mdm2-inhibitor) or BRAF/MEK-inhibitors not
only target a specific protein, but mutations in the target are excellent response
predictors. Such cases do not benefit from the GLM-PCA aggregation as a single
feature alone is predictive.

Next we turned to CNA where three drugs: OSI-27 (Fig. 5D), Vorinostat
(Fig. 5E) and Vincristine (Fig. 5F), which all showed increased performance when
the joint signal is employed as compared to the original CNA data. For both
OSI-27 (mTORC1) and Vorinostat (HDAC), we observe that amplification of
CDKN2A (p16) is associated with sensitivity. P16 acts as a tumor-suppressor by
slowing down the early progression of the cell-cycle and its loss is here associated
with resistance for these two drugs. Finally, Vincristine’s predictor shows that
MAP4K1’s amplification as a predictor of resistance. Such result is coherent with
what we observed for MUT (Fig. 5B) where mutations on KRAS were associated
with resistance.

3.5 Iterative Application of Percolate Deprives Gene Expression
from Predictive Power

Finally, we questioned whether some signal predictive of drug response is still
present in gene expression. To this end, we studied the GE signal after it has been
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Fig. 6. The signal joint with DNA-based measurements deprives gene
expression from any predictive power. (A) Schematic of our iterative procedure
to remove from GE any signal joint with robust data type. (B) Predictive performance
of the resulting residual gene expression compared to the predictive performance of the
complete gene expression.

stripped of all the signal it shares with MUT, METH or CNA. To remove all sig-
nal associated with robust data types from GE, we used Percolate iteratively on
GE, starting with the least predictive data type (MUT), followed by CNA and
ending with the most predictive data type (METH) (Fig. 6A). Specifically, we
first”percolate” GE through MUT to obtain an individual GE signal (not shared
with MUT), which is then percolated through CNA to obtain a second GE indi-
vidual signal, which is then finally percolated through METH, resulting in the
individual GE signal we denote as residual gene expression. We finally assessed
the predictive performance of this residual gene expression and compared it to
the predictive performance of the original GE (Fig. 6B, Subsect. 2.7). We observe
that no drug reaches a Pearson correlation above 0.16, indicative of a complete
lack of predictive performance in the residual GE. This shows that removing the
signal joint with DNA-based measurements deprives gene expression from any
predictive ability.

4 Discussion

Designing multi-omics predictors of drug response has highlighted the existence
of a trade-off between robust and predictive data types. To study this trade-
off, we developed Percolate, a method which decomposes a pair of data types
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into a joint and an individual signal. After showing that the strength of the
joint signal recapitulates the known topology between data types, we showed
that the joint signal contains more predictive power than any robust data type
alone. Exploiting our out-of-sample extension, we showed that the joint signal,
computed from robust data types alone, recapitulates most of the predictive
performance of each original robust signal. Finally, we showed that the gene
expression signal predictive of drug response is fully captured by robust data
types through Percolate.

Although encouraging, our results display certain limitations that could
inspire future methodological improvements. A key direction lies in the drop
of performance between Fig. 4 and Fig. 5, caused by the out-of-sample exten-
sion. We theoretically decomposed the joint signal (Theorem 2.7) and presented
an approach to approximate, using the robust type, the contribution from gene
expression. We believe that this step can be improved in two ways: either by
increasing the sample-size, thereby expanding the pool of potential anchors, or
through the design of novel regression approaches. Another important improve-
ment would be to extend this methodology to unpaired (single-cell) multi-omic
measurements where characterizing the joint signal between omic datasets is a
critical step.

Technically, Percolate extends JIVE in two different ways. First, by using
GLM-PCA instead of PCA, we tailor the dimensionality reduction step to the
specific data under consideration. Second, we developed an out-of-sample exten-
sion which allows to estimate the joint signal, even in the absence of one data-
modality. For our analysis, we made use of standard distributions from the expo-
nential family: Negative Binomial, Gamma, Beta or Bernoulli. Our implemen-
tation of GLM-PCA is versatile and any exponential family distribution can be
employed in our framework, provided it can be auto-differentiated by PyTorch.
Employing more complex distribution, like the inverse-gamma for copy-number
is a fruitful avenue to improve on our methodology.
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Abstract. Many studies have found that sequence in the 5’ untranslated
regions (UTRs) impacts the translation rate of an mRNA, but the regula-
tory grammar that underpins this translation regulation remains elusive.
Deep learning methods deployed to analyse massive sequencing datasets
offer new solutions to motif discovery. However, existing works focused
on extracting sequence motifs in individual datasets, which may not be
generalisable to other datasets from the same cell type. We hypothe-
sise that motifs that are genuinely involved in controlling translation
rate are the ones that can be extracted from diverse datasets generated
by different experimental techniques. In order to reveal more generalised
cis-regulatory motifs for RNA translation, we develop a multi-task trans-
lation rate predictor, MTtrans, to integrate information from multiple
datasets. Compared to single-task models, MTtrans reaches a higher pre-
diction accuracy in all the benchmarked datasets generated by various
experimental techniques. We show that features learnt in human samples
are directly transferable to another dataset in yeast systems, demonstrat-
ing its robustness in identifying evolutionarily conserved sequence motifs.
Furthermore, our newly generated experimental data corroborated the
effect of most of the identified motifs based on MTtrans trained using
multiple public datasets, further demonstrating the utility of MTtrans
for discovering generalisable motifs. MTtrans effectively integrates bio-
logical insights from diverse experiments and allows robust extraction of
translation-associated sequence motifs in 5’UTR.
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1 Introduction

For eukaryotic translation systems, the primary point of regulation of translation
occurs at the initiation stage [14,24,29]. The 5’ untranslated regions (5’UTR)
encode many important sequence features, collectively shaping the initiation
efficiency [3,9]. While the molecular mechanism of translation regulation has
been studied for decades, it remains challenging to predict how well the 5’UTR of
a transcript impacts its translation. The discovery of predictive sequence motifs
in the 5’UTR and how the interplay of these elements exert their regulatory
effects remain an important research area in molecular biology.

There is a rapid evolution in methods, both experimental and computational,
to identify the regulatory code of translation control from the high throughput
sequencing-based translation rate profiling. The most common sequencing-based
techniques include Ribosome Profiling (RP) [13], Fluorescence-Activated Cell
Sorting (FACS) screening coupled with deep sequencing, and Massively Parallel
Reporter Assays (MPRA) [7,25]. Previous hypothesis-driven methods required
one to firstly have a set of candidate features and test them in the RP dataset
or FACS-screening dataset afterwards [6,9,18,21]. Deep learning, an alternative
approach to discover the regulatory grammar in a data-driven manner [1,4,7,
16,31], can capture the rich pattern of translation regulatory motifs in 5’UTRs
from the ultra-high throughput MPRA datasets [15,25].

However, deep neural networks can capture unintended rule that relies on
dataset-specific covariates, also called the ‘short-cut’ [8,10]. Even though seem-
ingly successful in one dataset, short-cut features may fail to generalise to slightly
different circumstances. Karollus et al. have found that the sequence motifs dis-
covered from the MPRA dataset can hardly generalize to endogenous datasets
[15], which is likely caused by the fact that these experimental techniques probe
different facets of the translation regulation system. This poses a challenge to
distinguish actual translation-related motifs from the false positives caused by
dataset-specific artefacts [10].

To resolve the issue, we propose a multi-task translation rate prediction
model MTtrans which can gather insight from various datasets for more accurate
prediction and co-optimize a set of translation regulatory features that gener-
alise across techniques. The fundamental assumption of our work is that robust
sequence features in 5’UTR that predict translation rate across multiple datasets
generated by different experimental techniques are more likely to be actual reg-
ulatory elements for mRNA translation. In this work, we demonstrated that
our model could outperform existing methods in both synthetic sequences and
endogenous sequences. Further, our model identifies sequence features that are
generalisable to an independent dataset collected from yeast. We determined
what combinations of tasks would lead to the most robust predictive models
and derive sequence motifs. As further validation, we conducted an independent
FACS screening experiment to validate the identified sequence motifs.
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2 Methods

2.1 MTtrans Model

Our multi-task learning model MTtrans applies the hard parameter sharing to
encode the information from several task-specific inputs. The model consists
of a shared encoder fe to embed sequences into a shared space and the task-
specific towers f t

w to capture the variance of the translation rate for the t-th task.
Suppose a total of T tasks which are sequence libraries from any techniques, are
integrated to train the model and the data for task t is denoted as {xt

i, y
t
i} with

paired translation rate yt
i , t = {1, ..., T}, i = {1, ..., N t}.

The Shared Encoder. We stacked four 1d-convolution layers as the main
building block for the shared encoder. Raw sequences will first be one-hot
encoded, ending up a 4 dimensional input xt

i for conv1. Noted we don’t include
any pooling operation in the encoder following the convolution layer for a better
sense of the location. Instead, Batch Normalisation (BN) and drop-out oper-
ation is performed after each convolution layer to stabilise the activation and
have a more robust model performance. The hidden unit at layer l is com-
puted by ht,l

i = ReLU(W lhxt,l−1
i + bl) and the batch-normalized activation by

at,l
i = BN(ht,l

i ).

The Task Specific Tower. The number of towers corresponds to the number
of tasks selected. The t-th tower f t

w consists of a 2-layer Gated Recurrent Unit
(GRU) and an output dense layer. The hidden size of the GRU is set to 80 and
the hidden state of the last time point is taken to connect to the output layer.
Taken together, the translation rate is predicted by ŷt

i = f t
w(a

t,L
i ) = f t

w(fe(xt
i))

wherein at,L
i is the activation from the last convolution layer.

Model Training. One of the biggest differences in training our multi-task
model is that only the t-th towers will be updated at one time. Technically,
there is a task switch activating the corresponding tower for each mini-batch
sampled from X t, while the shared encoder receives gradient for all the tasks.
Each instance in X t is a pair of sequences xt

i and the translation rate yt
i , which is

defined by the mean ribosome loading for MPRA tasks [25] and the translation
efficiency for RP tasks [2,12,28]. The cost is quantified by the naive mean square
error weighted by λt for t ∈ {1, .., T}:

Lt = λt
∑

i∈B

[yt
i − f t

w(fe(xt
i))]

2

A learning rate scheduler is applied to wrap the Adam optimizer so f t
w and fe

will be updated in a rate that is boosted in the beginning and then goes through
a dramatic decay. The small learning rate in the late training phase restricts
the parameters in a narrow range. Therefore, each f t

w docks to a similar θfe
and



142 W. Zheng et al.

stabilise the models. The learning rate ε is mediated by the largest dimension
of the model d, two constants τ1, τ2 and a step-renewing variable δ, following by
δ = δ +min(τ2, 2δ).

θ∗
ft
w
= θft

w
− ε∇θft

w
Lt

θ∗
fe

= θfe
− ε

∑

t∈T

∇θfe
Lt

ε = d− 1
2 × min(δ− 1

2 , δ ∗ (τ− 3
2

1 ))

Model Evaluation. All the datasets used in our study were split into train,
validation and test set. For all the MPRA tasks, the same train-test splitting was
kept as in Sample et al. [25] so that the model performance was directly compa-
rable. The remaining dataset was randomly splited into training and validation
set in a ratio of 9:1. The training process was terminated when the validation loss
converged. For the RP tasks, the entire dataset will be split into train, valida-
tion, test set in a ratio of 8:1:1. We set up 10 runs of experiments with a different
random seed each time to minimize the influence of data splitting. Similarly, the
prediction accuracy was calculated by averaging the results on the test set by
different random seeds using the Spearman correlation coefficient.

Model Transfer. Transfer learning is a useful deep learning technique to exploit
the knowledge learned from related datasets to a new, and usually smaller,
dataset [20,22]. It could also be used to evaluate how informative are the learned
features when fixing the feature extractor [30]. We relied a lot on the transferred
performance to compare feature generalisability. All four convolutional layers
are frozen when transferring MTtrans 3M to the yeast dataset. We randomly re-
initialised a tower module, including 2 GRU layers and an output layer, and only
updated parameters in these layers. The same MSE loss was used as the objec-
tive function. To transfer to our FACS-seq dataset for classification, in addition
to the above-mentioned parameter fixing and tower re-initialization, we wrapped
the output neuron with a sigmoid function and changed the objective function
to binary cross-entropy. For FramePooling and Optimus models, we also fixed
all of their convolutional layers and re-initialised the last two dense layers.

2.2 Extraction of Sequence Motifs from Convolutional Filters

The hidden features formulated within the convolution neuron represent the
local sequence combinations that are useful for predicting the translation rate.
Here in this study, we use a technique called Maximum Activation Seqlet [1,25].
This technique can reveal the short sequence segments the convolutional filters
are detecting, and then these segments are used to construct the Position Weight
Matrices (PWMs) [1,25]. Here we first segment an input sequence xt

i into several
subsequences (Seqlet) xt

i,j at the same length as the receptive field of the target
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neuron c. We searched for Seqlet from Xt that have the highest activation values
for convolutional filter c and bagged them into Pc.

Pc = argmax
{xt

i,j∈X t}
at,l

i

Piling up the short sequences in Pc, we can calculate the frequency of nucleotide
at each position, resulting in the Position Weight Matrices(PWMs). From here,
the convolutional filters were converted into PWMs and were visualised as
sequence logo using python package logomaker version 0.8.

2.3 Motif Similarity Comparison

Important translation regulatory elements can be captured independently by
models trained with different datasets. In order to identify which motifs are
significantly similar to annotated RBP binding motifs, motifs similarity analysis
was performed using tomtom from the tool-kit meme-suite version 5.4.1. The
query motifs are explained from the models in the way we described and target
motifs are labelled by RNAcompete [23] which is a built-in database in meme-
suite version 5.4.1. Only motif pairs satisfying FDR ≤ 0.05 and E −value ≤ 10
at the same time will be noted as significantly similar.

2.4 Motifs Matching

To detect the motif occurrence using neuron activation, we first encoded the
5’UTRs by MTtrans to extract the feature map of the shared encoder. Then
we filtered the sequences that can uniquely activate the motifs. For each con-
volutional filter, we ranked the 5’UTR sequences by the activated values in the
feature map and kept the top-ranked sequences. Each sequence can only be
assigned to one filter. When one sequence ranks top for multiple filters, the fil-
ters with the highest activation values will be assigned to it, and it will be added
to the uniquely activating set for each convolution filter (channel). In the FACS-
seq datasets, the effect of a motif converted from a filter is defined as the mean
of log count in the uniquely activating set minus the average read count of the
library. If their direction is the same, the motif effect is consistent in the new
library.

We can also skip the shared encoder to match the motifs by using the 256
PWMs derived from the convolutional filters. Each matrix is scanning a 9bp
long sequence window, whose matching score is produced by the inner product
between the flattened PWM and one-hot sequence. We scanned along the query
sequence in the stride of 1 bp and we only kept the maximal matching value
across windows of every position. A UTR is considered to contain the motif
when this collapsed score goes above a defined threshold. Because the score
distribution differs from motif to motif, we set the activation threshold to the
quantiles of their score distribution.
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2.5 Building Logistic Regression and Random Forest Model on
PWM-Derived Scores

The PWMs generate a positive real number which reflects the presence and
strength of the motifs when scanning the input sequence. We could obtain 256
PWM scores for each sequence, which formulate the feature set to describe a
sequence. The feature vector is standard scaled across all 1,052 UTRs from
the two classes of our in-house FACS-seq dataset. We implemented the model
training using scikit-learn package version 1.1.3. The training set and test set
were then split in a ratio of 9:1 with different random seeds. The performance
metric F1-score and AUROC score were evaluated in the test set for the Logistic
Regression (LR) and Random Forest (RF) model, as well as the three deep
learning baselines.

2.6 Identification of Important Motifs

Leveraging the white-box nature of the RF and LR model, we can obtain fea-
ture importance for 256 motifs and assign their regulation direction with the
coefficient of LR. We first select the top half of the motifs ranking by the RF
importance score. Motifs remain the same sign for all MPRA tasks that were
first filtered (45 positives and 150 negatives), where we further identified 25 neg-
ative motifs by their intersection over negative LR coefficients. Because of fewer
positive motifs left, we identified them from the top half of important features,
resulting in 29 positive motifs.

3 Results

Fig. 1. The model architecture of our multi-task learning method MTtrans. The model
consists of a shared encoder and several task-specific towers. We use the shared CNN
encoder (bright yellow) to extract features and transform task-specific input xt into
task-specific feature map. The task specific tower takes in the feature map and predicts
the translation rate yt for the corresponding task. Blue, green and orange color stand
for different tasks. (Color figure online)
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3.1 MTtrans Learns the Shared Patterns from Multiple
Experimental Systems

MTtrans is developed as a multi-task learning method to account for the variance
of translation rate given by different experimental systems. We adapted the
canonical hard parameter sharing architecture which consists of a shared encoder
(bottom) and several task-specific upper layers (towers) (Fig. 1).

We can break down the forward propagation process of our neural network
into two parts: sequence feature extraction and translation rate regression. The
shared encoder was mainly made up of four 1D convolution layers. It can scan
from the 5‘ to 3‘ end of the 5‘UTR to detect sequence features like the scanning
mechanism of the translation initiation. One important reason for using convolu-
tional neural networks is that a variety of methods for deciphering convolutional
neural networks have been developed in recent years [4,11,26], allowing for the
visualisation of the regulatory signal encoded in the different layers. The towers
will learn to reorient the extracted pattern for each task and make the regression
from sequence pattern to translation rate (Fig. 1). The tower module is built up
with a two-layer Gated Recurrent Unit network (GRU) to deal with the various
input lengths and a dense layer to project the GRU memory to the output value,
which is the predicted translation rate.

3.2 MTtrans Better Coordinates MPRA Tasks and Improves
Translation Rate Prediction

We started with the MPRA datasets, in which the translation rate was measured
by mean ribosome loading (MRL), to evaluate the effectiveness of our MTtrans
model. We included two published models OptimusN [25] and FramePooling
[15] for comparison. Another baseline called mixing was trained with a dataset
merging all the MPRA libraries. The involvement of mixing was to account for
the benefit of being trained from a larger integrated dataset.

Our multi-task method can predict the translation rate more accurately than
the alternatives in all MPRA tasks, regardless of input length or sequence origin
(Fig. 2a,b). In the largest MPRA dataset (fixed length random UTRs, short for
MPRA-U), our model can consistently outperform the state-of-art result, reach-
ing r2 = 0.947 in translation rate prediction (p=0.0037 compared to Frame-
Pooling, one-sided unpaired T-test, Fig. 2c & Supplementary Table 2). Interest-
ingly, model mixing showed a performance loss on the fixed length human UTRs
(task MPRA-H for MTtrans, the left panel of Fig. 2b), suggesting that it could
be suboptimal to simply mix the datasets, probably due to covariates such as
batch effect and shift in in sequence composition between random synthetic
sequences and natural sequences. When modelling 5‘UTR sequences with vary-
ing lengths, it turned out that using more data together with GRU layers can
boost the performance strikingly. Thus, with the designed task-specific towers,
our method could alleviate the conflict and effectively coordinate datasets with
different study designs, benefiting all the tasks.
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3.3 MTtrans is Robust Across Replicates

MTtrans has achieved high accuracy on the MPRA-U task, but it’s reasonable
to question whether it is over-fitted on the MPRA-U task and captured some
unwanted batch effect. To answer that, we collected sequences having two exper-
imental replicates from MPRA-U and found that the translation rate predicted
by MTtrans is more consistent with that measured in replicate-2 (Fig. 2e). The
absolutes prediction error of MTtrans mostly fell in ±1MRL and had the small-
est mean. The consistency, measured by the r2 in replicate-2, also showed the
advantage of our multi-task method over the single-task baselines. Interestingly,
despite a higher accuracy than FramePooling in replicate-1 (Fig. 2a), OptmiusN
made more errors than FramePooling in replicate-2. We further asked whether
the failure cases by MTtrans were caused by the potential incorrect signal in the
data. We correlated the error in replicate-1 with the variance of measurement
and found a weak correlation (Fig. 2f). There are sequences strongly deviated
from our prediction but highly consistent between replicates, serving as interest-
ing cases for further investigation. Overall, training with multiple datasets can
correct the model to become more robust between replicates.

3.4 MTtrans Learns More Transferable Sequence Features

To test whether the shared encoder of MTtrans captures a more universal fea-
ture set, we fixed the encoder and then transferred the model to a new MPRA
random 5‘UTR dataset (MPRA-Yeast) generated in Saccharomyces cerevisiae.
The performance of the transferred model with the fixed encoder can imply how
general these learned features are [30].

MTtrans has learnt more transferable motifs than the single-task models
(OptimusN, FramePooling) significantly. However, MTtrans was not on par with
the model trained from scratch (box coloured with mauve in Fig. 2d), which
showed the evolutionary divergence between the two translation systems despite
a considerable convergence they shares. This performance gap may imply the
existence of yeast-specific patterns shaped by the evolution process that can not
be filled by learning more human data. The result may suggest that MTtrans
has captured more generalisable sequence features in 5‘UTR for translation initi-
ation. Although not comparable with the yeast-oriented model, there is a signifi-
cant improvement over the single-task models. Apart from seeing more sequence
composition during training, using more datasets may also prevent the encoder
from capturing dataset-specific patterns as it will hamper the other tasks and
increase the overall loss during optimization. Overall, using the shared encoder
to gather different tasks is a good strategy for learning more transferable features
and may lead to genuine regulatory motifs.

3.5 MTtrans Better Predicts the Translation Rate of Endogenous
Transcripts in Human Cell Lines

We next turned to the human endogenous 5‘UTRs in their natural genomic
context, whose translation rate is typically assessed via ribosome profiling (RP).
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Fig. 2. MTtrans make accurate and robust translation rate prediction by combining the
signal from different task. a Performance for predicting mean ribosome loading (MRL)
on fixed length random synthetic sequences MPRA dataset (left) and also a varying
length synthetic sequences dataset (right). Prediction performance was measured by
the r2 between the observed mrl value and the predicted in the held-out test set (n
=20,000 for fixed length and n = 7,600 for varing length). OptimusN [25], FramePooling
[15] and the counterpart MTtrans model simply trained by mixing all the dataset were
compared by evaluating them on the same test set. b Performance for predicting mean
ribosome loading (MRL) on the MPRA dataset ofs human 5’utr sequences (left) and
also a varying length synthetic sequences dataset(right). Prediction performance was
measured by the r2 between the observed mrl value and the predicted in the held-
out test set (n=25,000 for fixed length and n=7,600 varing length). OptimusN [25],
FramePooling [15] and the counterpart MTtrans model simply trained by mixing all
the dataset were compared by evaluating them on the same test set. c the scatter
plot showing the performance for task fixed length random UTRs (MPRA-U). A high
fidelity of r2 at 0.947 is reached. Sequences with uORF was colored with blue and
sequences without uORF with orange respectively. d Transferring encoder trained from
human MPRA datasets to MPRA-Yeast dataset. All the parameters in encoder are
fixed for OptimusN, FramePool and MTtrans. While for model Yeast, the entire model
is trained from scratch in MPRA-Yeast. e Robustness shown by the absolute prediction
error in technical replicate. Absolute prediction error is calculated by subtracting the
model prediction for MPRA-task to the label from MPRA-U replicate-2. The larger
density plot showed the overall spread of error and the value ranging from 0 to 1.4
|ΔMRL| magnified in the upper right panel. The upper right box plot highlighting
the densest region to display the mean and quantile of the error distribution. The
bottom right bar plot label the consistency of model prediction for replicate-1 and
observed value of replicate-2 by r2 f The absolute prediction error is weakly correlated
to with the variation observed between two replicates. Prediction error is calculated in
replicate-1. Variation between replicates is calculated by firstly normalizing MRL to
σ = 1 for each replicate and then the absolute different of the two normalized MRL so
that the dift of MRL by a unit of σ.
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Fig. 3. MTtrans supports a flexible task combination strategy to make effective infor-
mation sharing and promote the prediction for the noisy ribosome profiling data. a
Observed log translation Efficiency (TE) against the log TE predicted by MTtrans 3R
on the cell line PC-3 dataset. Color shows an increasing dot density from blue to red.
b Model performance in three ribosome profiling datasets. Model 5‘UTR RF was from
the MTtrans 3R here was trained by the three RP datasets. The red box indicates
a single-task counterpart. The blue box indicates the strategy 2M3R. The MTtrans
model was trained with two MPRA tasks and three RP tasks.

We selected three sequencing libraries from human HEK293T cell line [2], PC-3
cell line [12] and muscle tissue [28]. With the same datasets, Cao et al. built
a random forest regressor (which is named 5‘UTR RF in the later text) with
thousands of manually crafted features to predict the translation efficiency (TE)
of each transcript [6].

MTtrans greatly surpasses other methods in the noisy RP data (Fig. 3a&b).
Deep learning-based algorithms seem to be more suitable in modelling RP when
we compare single-task with 5‘UTR RF, which may be explained by the learned
regulatory features not included in the RF model. A consistent performance
gain was conferred by MTtrans in all cell lines. The improvement was not only
observed in small source tasks like muscle but also held true for tasks of larger
size (i.e. PC-3, Fig. 3a). Notably, adding two human 5‘UTR MPRA datasets
further improved the performance of all three RP tasks, suggesting beneficial
information sharing from the MPRA sequence features.

3.6 Discovery of 5’UTR Sequence Motifs from the Deeper Layer of
Shared Encoder

We next interpreted the convolutional filters in the shared encoder to see what
features MTtrans has learned. There are studies that only explain the parameters
of the first convolution layer [1,31], but one could argue that features extracted
from higher layers confer more abstraction and are more likely to represent the
regulatory grammar [4,7].

By taking the feature map from each layer for fitting random forest models,
we found out that the deeper layers confer more information. (Supplementary
Fig. 2a). The sequence features derived from the last layer of MTtrans 3M can
reconstruct many biologically meaningful motifs. 43 motifs are significantly sim-
ilar to the RBP binding motifs annotated by RNAcompete [23], indicating that
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Fig. 4. Sequence motifs discovered by MTtrans. A total of 256 motifs are projected
into PHATE space by reducing the last layer feature map input from all sequences to 2
dimension. The sequence logos of convolutional filters were generated from the position
weight matrices using Maximal Activation Seqlet. Colour fo the dots denotes the regu-
latory effect estimated in dataset MPRA-H, which is the Pearson correlation between
motifs activity and translation rate. Diamonds indicate motifs that are significantly
similar to known RBP in [23].

MTtrans captured the biologically meaningful elements to some degree (Fig. 4).
For example, HuR have been proved to bind to 5’UTR; PABR4 has high poly-U
affinity [5]; RMB4 is known to suppress the cap-dependent initiation process [19].

The upstream start codon (uAUG) and the Kozak consensus are well char-
acterised regulatory signals that can alter the translation initiation [14,17,29].
AUG is present in a substantial fraction of the found motifs. 56 of the 67 uAUG
detecting motifs, the majority of which include guanine right to the uAUG,
are negatively correlated to the translation rate. MTtrans also re-discovered
upstream stop codon UGA and UAA in filter 150 and filter 215.

In conclusion, by interpreting the learned shared encoder, we can rediscover
many genuine regulatory signals, suggesting the advantage of MTtrans as a motif
discovery tool.

3.7 The Discovered Regulatory Motifs can be Experimentally
Validated

To validate whether the discovered motifs remain predictive in datasets gener-
ated by a different experimental technology, we generated an in-house FACS-seq
library to measure the translation rate of 8,000 newly designed 5’UTRs (Fig. 5a).



150 W. Zheng et al.

When using neuron activation to detect the presence of motifs in a sequence,
MTtrans motifs manifested an overall consistency (59% of all 256 channels) in
regulatory effect across MPRA datasets and FACS-seq dataset (p=0.0066, bino-
mial test with k = 153 n = 256, Supplementary Fig. 6b).

To test the extent to which the discovered motifs are predictive without the
specific neural network, we used the PWMs derived from the shared encoder to
score the strength of motifs. The scores of the 256 motifs were used as features to
train logistic regression and random forest models to classify the top and bottom
10% UTRs of our FACS-seq dataset (Fig. 5ab). Using MTtrans motifs, LR and
RF models succeeded in separating the two classes (average F1 0.714 & 0.740,
average AUROC 0.725 & 0.745, respectively) and outperformed the deep neural
network baselines Optimus100 and FramePool100 in F1-score. These results
showed that the discovered motifs alone are robust and highly informative in
modeling translation regulation.

Inspecting the learned parameters of LR and RF models can give us insights
into the role of each motif in the FACS-seq dataset and we further identified
a subset of important features (29 positive and 25 negative). We next tested
these identified motifs in another independent FACS-seq dataset to evaluate
their robustness. We curated another public FACS-seq library, GSE176581 [6],
whose translation rate was represented by the enrichment of cells in the high GFP
fluorescence bin (log fold change of Bin5). For motif detection, a motif is consid-
ered to occur in the sequence when its PWM matching score is higher than the
defined quantile threshold of the score distribution (see Method). Collectively,
UTRs with more positive motifs have higher translation rate than UTRs with
more negative motifs (Fig. 5c, p-value = 7.65 × 10−4 for the threshold of 90%
quantile, one-sided unpaired T-test), and the significance also holds for differ-
ent threshold (Supplementary Fig. 6), indicating a robust regulatory direction of
these motif features. For individual motifs, we specifically checked out sequences
that only contained one motif and with a low average score on the opponent
set (Fig. 5d and f). Only 10 positive and 11 negative motifs left meet the above
criteria, and the majority of them maintained the same regulatory effect on the
translation rate.

Overall, using two FACS-seq datasets, we demonstrated that the MTtrans-
derived motifs are transferable to a new experimental system and can distinguish
between low TR class and high TR class without the neural network. Two subsets
of features, identified by PWM-based models, show a robust regulatory direction
across two FACS-seq libraries. These results supported that MTtrans can indeed
combine different datasets to yield biologically meaningful motifs.

4 Discussion

In this study, we demonstrate that our multi-task learning model MTtrans, is
effective to predict mRNA translation rate using 5’UTR sequences for diverse
experimental data. MTtrans works by treating each dataset as an individual task
so that useful information across tasks can be underlined repeatedly. Impor-
tantly, we found that this framework enables the extraction of highly robust
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Fig. 5. FACS experiment to validate the discovered motifs. a cells expressing EGFP
coupled with designed 5’UTR are sorted by their EGFP fluorescence intensity, screened
for high EGFP expression and then sequenced to identify the delivered 5’UTRs. The
read count of the 5’UTRs can thus approximate its translation rate. 5’UTRs with the
lowest translation rate were grouped as the negative class (class 1) and the positive class
(class 2) for the highest one. b Result of binary cross-entropy for the above two classes.
The box shows the performance of models for different train-test splitting random
seeds. LR is the logistic regression built on the features scored by MTtrans-explained
PWMs. RF stands for the random forest model built using the same features. c The
distribution of translation rate (log fold-change in Bin5) for 5’UTRs on another FACS-
seq library GSE176581. UTRs that enriched with the 29 identified positive motifs (red
curve and bins), has higher translation rate than those containing the 25 negative motif
sets (blue curve and bins) (p-value = 7.65×10−4 for threshold of 90% quantile, one-side
unpaired T-test). d The translation rate of sequences from GSE176581 that contain
only one motif among the selected positive feature set. f The translation rate of the
sequence from GSE176581 that contains only one motif among the selected negative
feature set.

sequence motifs that predict the increase or decrease of the translation rate.
This is achieved by the hard-sharing architecture in our multi-task model.

Previous studies on transcription factor motif discovery usually can extract
predictive features from the first convolutional layer [1,31]. Koo et al. even pro-
pose an ambiguous pooling to enforce the motifs detection finished in the first
layer [16]. Interestingly, in the context of translation rate prediction based on
5’UTR, it is necessary to look beyond the first layer to extract features. Fur-
thermore, we found that the improvement does not result from the longer recep-
tive field (Supplementary Fig. 2). As the deeper features are assembled from
the lower layer patterns by convolution filters, translation rate prediction may
thereby require better arrangement of the basal motifs to sense the sequence
context. This might partially explain how the CNN model surpasses the k-mer-
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linear model [25] because k-mer models lose the sequential relationship of the
features despite a broader k-mer coverage. Future work should explore how to
better extract features from different layers of neural networks for the prediction
of transcription factor binding and translation rate.

A core premise of our work is that more robust and transferable features can
be extracted from a model learned from diverse data sets generated from dif-
ferent experimental techniques and cell types. Although we have yielded robust
regulatory motifs with maximally activated Seqlet (Fig. 4), there is still rich
information in the model that is not fully explained, such as the motif interac-
tion. Recent studies analyse the motif interaction in an instance-based way. Ziga
et al. identified the cooperative TF binding interaction by permuting the spac-
ing of two candidate motifs [4,5]. Preserving the reading frame position of the
extracted feature is necessary for the model to correctly identify the in-frame or
out-of-frame motifs [15]. For MTtrans, we choose to employ the GRU layers in
the task-specific tower because it is effective at handling the spatial arrangement
of the motif detected by the last convolutional layer. Visualisation of the GRU
layer, however, usually requires an extra architectural plugin like attention [27].
Although the task-specific syntax explanation of the GRU layers is not the focus
of this work, future work can reveal how the essential elements are coordinated
to predict the translation rate.

Overall, MTtrans provides a solution to extract the robust translation reg-
ulatory elements in the 5’UTR from a collection of related yet noisy systems.
We expect this multi-task framework can be extended to learning the technique-
invariant determinant for other sequence modelling questions to reveal the bio-
logically meaningful signal from the sequence.
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Abstract. Signaling and metabolic pathways, which consist of a series
of reactions producing target molecules from source compounds, are cor-
nerstones of cellular biology. The cellular reaction networks containing
such pathways can be precisely modeled by directed hypergraphs, where
each reaction corresponds to a hyperedge, directed from its set of reac-
tants to its set of products. Given such a network represented by a
directed hypergraph, inferring the most likely set of reactions that pro-
duce a given target from a given set of sources corresponds to finding a
shortest hyperpath, which is NP-complete. The best methods currently
available for shortest hyperpaths either offer no guarantee of optimality,
or exclude hyperpaths containing cycles even though cycles are abundant
in real biological pathways.

We derive a novel graph-theoretic characterization of hyperpaths,
leveraged in a new formulation of the general shortest hyperpath problem
as an integer linear program that for the first time handles hyperpaths
containing cycles, and present a novel cutting-plane algorithm that can
solve this integer program to optimality in practice. This represents a
major advance over the best prior exact algorithm, which was limited to
acyclic hyperpaths (and hence fails to find a solution for the many biolog-
ical instances where all hyperpaths are in fact cyclic). In comprehensive
experiments over thousands of instances from the standard NCI-PID and
Reactome databases, we demonstrate that our cutting-plane algorithm
quickly finds an optimal hyperpath, with a median running-time of under
ten seconds and a maximum time of around thirty minutes, even on large
instances with many thousands of reactions.

Source code implementing our cutting-plane algorithm for shortest
hyperpaths in a new tool called Mmunin is available free for research use
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1 Introduction

Signaling and metabolic pathways are cornerstones of systems biology. They
underly cellular communication, govern environmental response, and their
perturbation has been implicated in the cause of disease [21]. Networks com-
prised of these pathways are traditionally represented as ordinary graphs [30,31],
modeling each protein or molecule as a vertex, and each reaction by a collec-
tion of edges, directed from each reactant to each product. However, this does
not faithfully model multiway reactions—ubiquitous in cellular processes—and
shortest paths from these models are often not biologically meaningful [14,27].

Directed hypergraphs generalize ordinary graphs where an edge, now called
a hyperedge, is directed from one set of vertices, called its tail, to another set
of vertices, called its head. Hypergraphs have been used to model many cellular
processes [7,10,11,14,23,24,26,27,33]. In particular, a biochemical reaction with
multiple reactants—all of which must be present for the reaction to proceed—and
multiple products—all of which are produced upon its completion—is correctly
captured by a single hyperedge, directed from its set of reactants to its set of
products. Despite hypergraphs affording more faithful models of reaction net-
works, the lack of practical algorithms has hindered their potential for properly
representing and reasoning about molecular reactions.

Biologically, a typical metabolic or signaling pathway consists of a series of
reactions synthesizing a set of target molecules—a key metabolite or transcrip-
tion factor—from a set of source compounds—molecules available to the cell
or activated membrane-bound receptors [2]. Computationally, finding the most
efficient way to produce a set of target molecules from a set of available source
compounds maps to the shortest hyperpath problem we consider here: Given a
network of cellular reactions whose reactants and reactions are modeled by the
vertices and weighted hyperedges of a directed hypergraph, together with a set
of sources and a set of targets, find a hyperpath from the sources to the targets
of minimum total weight. We briefly summarize prior work on related problems.

Related Work

The two fundamental hypergraph models that have emerged for pathway infer-
ence are hyperpaths and factories (see [15] for a survey).

Factories are informally a set of reactions that produce the targets from the
sources, while ensuring intermediate metabolites are not depleted. Unlike hyper-
paths, a factory’s hyperedges are unordered, essentially running simultaneously.
Current approaches find a factory producing the targets using either the fewest
reactions (min-edge) or fewest sources (min-source). Cottret et al. [8] intro-
duced the min-source factory problem and showed it is NP-hard, and Zarecki
et al. [32] extended the problem to consider molecular weights of the sources.
Methods from Acuña et al. [1] and Andrade et al. [3] enumerate all min-source
factories either excluding or including stoichiometry. Krieger and Kececioglu [17]
introduced the min-edge factory problem, showed it was NP-complete, incorpo-
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rated negative regulation into pathway inference for the first time, and solved
the problem with a mixed-integer linear program that is fast in practice.

Hyperpaths were first studied in the field of algorithms (see the survey from
Ausiello and Laura [4]). Italiano and Nanni [12] proved that finding a shortest
source-sink hyperpath is NP-complete, even when hyperedges have a single head
vertex. Gallo et al. [9] defined and explored special cases of hypergraphs and
hyperpaths, including what they call a B-path (though see the correction of
Nielsen and Pretolani [22]), which is essentially equivalent to our definition of
hyperpath in Sect. 2. They showed the vertices reachable from a source vertex
in a hypergraph can be found in time linear in the total size of the tail and
head sets of all hyperedges, gave an efficient algorithm for a variant of shortest
hyperpaths with a so-called additive cost function, and proved that finding a
minimum cut in a hypergraph is NP-complete. Carbonell et al. [6] gave an effi-
cient algorithm to find a source-sink hyperpath if one exists—irrespective of its
length—and proved that finding any hyperpath that must contain a specified set
of hyperedges is NP-complete. Ritz et al. [25,26] were the first to solve the short-
est acyclic hyperpath problem by formulating it as a mixed-integer linear pro-
gram (MILP)—later extended by Schwob et al. [29] to include time-dependence
among reactions—and showed that in the context of signaling networks, opti-
mal acyclic hyperpaths can be found even for large cell-signaling hypergraphs.
Their formulation does not extend to allow cycles, which are common in pathway
databases (see experimental results in Sect. 4), and are often caused by feedback
loops or by the components of protein complexes during assembly and disas-
sembly. Krieger and Kececioglu [16,18] gave the first heuristic for the general
shortest hyperpath problem allowing cycles, proved it finds optimal hyperpaths
for the special case of singleton-tail hypergraphs, gave a tractable hyperpath
enumeration algorithm, and verified that the heuristic is close to optimal on all
instances from the standard pathway databases by leveraging the enumeration
algorithm.

Our Contributions

In contrast to prior work, we provide an exact algorithm for the general short-
est hyperpath problem, allowing cycles. Note that cycles appear in pathway
databases—often as feedback loops—so an algorithm that handles cycles is vital
for the adoption of hypergraph models of cellular reaction networks. We formu-
late this problem as an integer linear program (ILP) and develop a cutting-plane
algorithm that can quickly solve this ILP to optimality in practice. More specif-
ically, we make the following contributions.

• We derive a new graph-theoretic characterization of hyperpaths in terms of
source-sink cuts, that captures fully-general hyperpaths with cycles.

• We leverage this characterization to obtain the first integer linear program-
ming formulation of the general shortest hyperpath problem. This cut-based
ILP formulation has an exponential number of constraints, however, and can-
not be solved directly.
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Fig. 1. A hyperedge e with tail(e)={v1, . . . , vk} and head(e)={w1, . . . , w�}. To use e
in a hyperpath P , every vertex vi ∈ tail(e) must have a preceding hyperedge f in P
with vi ∈ head(f).

• Nevertheless, we show we can solve this ILP on real biological instances with
a practical cutting-plane algorithm that computes over a small subset of the
constraints, while guaranteeing an optimal solution to the full ILP.

• Our cutting-plane algorithm is typically fast in practice, finding optimal
hyperpaths with a median running time under 10 s, and a maximum run-
ning time around 30 min, as measured through comprehensive experiments
on thousands of instances from standard reaction databases.

• We demonstrate the strength of hyperpath models for pathway inference by
showing the cutting-plane algorithm accurately recovers annotated pathways,
with a median overlap score of over 95%, while recovered hyperedges outside
the annotated pathway provide evidence for possible cross-talk.

A preliminary implementation of the cutting-plane algorithm in a new tool
called Mmunin (short for “integer-linear-programming-based cutting-plane algo-
rithm for shortest source-sink hyperpaths”) is available free for non-commercial
use at http://mmunin.cs.arizona.edu.

Plan of the Paper

The next section defines the computational problem of shortest hyperpaths.
Section 3 gives a new graph-theoretic characterization of hyperpaths that leads
to the first formulation of shortest hyperpaths as an integer linear program for
fully-general hyperpaths with cycles, as well as a cutting-plane algorithm for
solving it to optimality in practice. Section 4 compares our algorithm to alternate
hyperpath methods through comprehensive experiments over the two standard
pathway databases, and demonstrates on concrete biological examples that we
can accurately recover known annotated pathways. Finally, Sect. 5 concludes.

2 Shortest Hyperpaths in Directed Hypergraphs

A hypergraph is a generalization of an ordinary graph, where an edge, instead of
touching two vertices, now connects two subsets of vertices. Formally, a directed
hypergraph is a pair (V,E), where V is a set of vertices, and E is a set of
directed hyperedges. Each hyperedge e ∈ E is an ordered pair (X,Y ), where
both X,Y ⊆ V are non-empty vertex subsets. Edge e is directed from set X to
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set Y . We call X the tail of e, and Y the head of e, and refer to them by the
functions tail(e) = X and head(e) = Y . We also refer to the in- and out-edges of
a vertex v by in(v) =

{
e∈E : v ∈head(e)

}
and out(v) =

{
e∈E : v ∈ tail(e)

}
.

Figure 1 shows a directed hyperedge.
In ordinary directed graphs, a path from a vertex s to a vertex t is a sequence

of edges starting from s ending at t, where for consecutive edges e and f in the
sequence, the preceding edge e must enter the vertex that the following edge f
leaves. We say t is reachable from s when there is such a path from s to t.

In generalizing these notions to directed hypergraphs, the conditions both
for when a hyperedge can follow another in a hyperpath, and when a ver-
tex is reachable from another, become more involved. A hyperpath is again a
sequence of hyperedges, but now for hyperedge f in a hyperpath, for every vertex
v∈tail(f), there must be some hyperedge e that precedes f in the hyperpath for
which v∈head(e). Reachability is captured by the following notion of superpath.

Definition 1 (Superpath). In a directed hypergraph (V,E), an s, t-superpath,
for vertices s, t∈V , is an edge subset F ⊆E such that the hyperedges of F can
be ordered e1, e2, . . . , ek, where

(i) tail(e1) = {s},
(ii) for each 1 < i ≤ k,

tail(ei) ⊆ {s} ∪
⋃

1≤j<i

head(ej) ,

(iii) and t ∈ head(ek).

For an s, t-superpath, we call s its source vertex and t its sink vertex, and we
say t is reachable from s. �

This definition of superpath is equivalent to the notion of B-connectivity
from the literature, but is more explicit, and more amenable to formulation as
an integer linear program in Sect. 3.

We can now define hyperpaths in terms of superpaths. Recall that a set S is
minimal with respect to some property X if S satisfies X, but no proper subset
of S satisfies X.

Definition 2 (Hyperpath). An s, t-hyperpath is a minimal s, t-superpath. �

In other words, a hyperpath P is a superpath for which removing any edge
e∈P leaves a subset P −{e} that is no longer a superpath.

We say a hyperpath P contains a cycle if, for every ordering e1, . . . , ek of its
hyperedges satisfying properties (i)–(iii) in the definition of superpath, P con-
tains some hyperedge f with a vertex in head(f) that also occurs in tail(e) for an
earlier hyperedge e in the ordering. While in ordinary graphs a minimal s, t-path
can never contain a cycle, in hypergraphs an s, t-hyperpath, which by definition
is minimal, can in fact contain cycles.
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Notice that when the hyperedges of a hypergraph all have real-valued weights
that are strictly positive, then an s, t-superpath of minimum total weight must
be minimal. (If it is not minimal, deleting an edge will give another superpath
of strictly smaller weight, contradicting its optimality.) Hence for positive edge
weights, a minimum weight superpath is a minimum weight hyperpath. This
leads to the following definition of the shortest hyperpaths problem.

For an edge weight function ω(e), we extend ω to edge subsets F ⊆ E by
ω(F ) :=

∑
e∈F ω(e).

Definition 3 (Shortest Hyperpaths). The Shortest Hyperpaths problem is
the following. Given a directed hypergraph (V,E), a positive edge weight func-
tion ω : E →R+, source s ∈ V and sink t ∈ V , find

argmin
F⊆E

{
ω(F ) : F is an s, t-superpath

}
. (1)

This s, t-superpath of minimum weight is a shortest s, t-hyperpath. �

For uniform weights ω(e)=1, this finds a series of the fewest possible reactions
that produce t from s, where for each reaction in the series, all its input reactants
are produced as output products of earlier reactions in the series.

We note that Shortest Hyperpaths with a single source and sink can also
capture more general versions of the problem with multiple sources and multiple
sinks, as follows. To find a hyperpath that starts from a set of sources S ⊆ V ,
simply add a new source vertex s to the hypergraph together with a single hyper-
edge ({s}, S) of zero weight, and equivalently find a hyperpath from the single
source s. To find a hyperpath that reaches all vertices in a set of sinks T ⊆ V ,
add a new sink vertex t, a zero-weight hyperedge (T, {t}), and equivalently find
a hyperpath to the single sink t. To find a hyperpath that reaches some vertex
in a set of sinks T ⊆ V , add new sink vertex t, zero-weight hyperedges ({v}, {t})
from all v ∈ T , and again equivalently find a hyperpath to the single sink t. Thus
versions of shortest hyperpaths with multiple sources and sinks can be reduced
to the problem above with a single source and sink.

Shortest Hyperpaths is NP-complete [25] (even for acyclic hypergraphs), so it
is unlikely we can efficiently compute shortest hyperpaths in the worst-case. The
next section presents a new formulation of Shortest Hyperpaths as an integer
linear programming problem, which allows us to leverage techniques for solving
integer linear programs to quickly find shortest hyperpaths in practice, even for
large reaction networks.

3 Computing Hyperpaths by Integer Programming

We now formulate Shortest Hyperpaths as a discrete optimization problem
known as an integer linear program, using a characterization of superpaths in
terms of cuts. This integer linear program is the first formulation that handles
fully general hyperpaths that may contain cycles.
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3.1 Characterizing Superpaths via Cuts

We can give a clean characterization of superpaths—that captures fully general
superpaths containing cycles—in terms of cuts.

An s, t-cut of a hypergraph is a bipartition (C,C) of its vertices V , for non-
empty subsets C ⊆ V and C := V −C, where source s ∈ C and sink t ∈ C. We
call C the source side and C the sink side of the cut, and often refer to a cut by
just specifying its source side C.

A hyperedge e crosses s, t-cut C iff tail(e) ⊆ C and head(e) ∩ C �= ∅. In other
words, for a hyperedge to cross a cut, all its tail vertices must be on the source
side, while at least one head vertex must be on the sink side. We say an edge
subset F ⊆ E crosses an s, t-cut iff at least one hyperedge e ∈ F crosses the cut.

The following characterization theorem for superpaths is the key that will
enable us to find shortest hyperpaths via integer linear programming.

Theorem 1 (Characterizing Superpaths). F is an s, t-superpath if and
only if F crosses every s, t-cut.

Proof. To prove the forward implication, take an ordering of the hyperedges of
s, t-superpath F that satisfies the definition of superpath, and an arbitrary s, t-
cut C. In the ordering of F , consider the first hyperedge e such that head(e) ∩ C
is nonempty. (Such an edge e must exist, as F reaches t ∈ C.) We claim that
tail(e) ⊆ C, which can be shown by proving

⋃
f∈F : f precedes e head(f) ⊆ C,

using induction over the ordering of F . Thus edge e ∈ F crosses cut C, so F
crosses C as well.

For the reverse implication, we prove the contrapositive. Suppose F is not
an s, t-superpath. Collect the set R of all vertices reachable from s in F . While
s ∈ R, notice t �∈R (since otherwise F reaches t from s, contradicting that F is
not an s, t-superpath). Thus (R,R) is an s, t-cut. F does not cross cut R (since
e ∈ F crossing R would contradict that R holds all vertices reachable from s
in F ). �

3.2 Representing Superpaths by Linear Inequalities

We now formulate Shortest Hyperpaths as an integer linear programming prob-
lem. In general, an integer linear program (ILP) is a mathematical optimization
problem over integer-valued variables, that maximizes a linear function of these
variables, subject to constraints that are linear inequalities in the variables. The
key to the formulation is to represent the set of all s, t-superpaths in a hyper-
graph (V,E) by linear inequalities.

The variables of our ILP encode the hyperedges in a superpath F . For every
hyperedge e∈E, there is a variable xe, where xe∈{0, 1}. An assignment of values
to these variables encodes a superpath F by xe = 1 iff e ∈ F . We represent the
collection of all variables in the ILP by a vector x = (xe)e∈E , where x∈{0, 1}|E|.

The constraints of the ILP ensure an assignment of values to the variables
actually encodes an s, t-superpath. The domain D of the ILP is all assignments
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of values to variables x that satisfy the constraints. For our ILP, the domain is

D :=

{

x∈{0, 1}|E| : ∀s, t-cuts C
∑

e∈E : e crosses C

xe ≥ 1

}

. (2)

This has a constraint for every s, t-cut of the hypergraph, which is a linear
inequality in the variables xe. Notice that this inequality for a cut C is satisfied
iff at least one hyperedge e crossing C has xe =1. Equivalently, the set F ⊆ E
encoded by x must contain at least one hyperedge e ∈ F crossing C. Thus
assignments x∈D encode edge subsets F that cross every s, t-cut.

Consequently, by Theorem 1, the domain D of the ILP in Eq. (2) is exactly
the set of all s, t-superpaths in the hypergraph.

The objective function of the ILP is to minimize
∑

e∈E ω(e)xe, for fixed edge
weights ω, which is a linear function of the variables x. For x∈D, the value of this
objective function is the total weight of the hyperedges in superpath F encoded
by x. We can write this objective function as a dot product ω ◦ x, where ω is
now a vector of edge weights.

Finally, our integer linear program is to compute argminx∈D
{
ω ◦ x

}
. Since

domain D is all s, t-superpaths, this is equivalent to the definition of the Shortest
Hyperpaths problem, so a solution to this ILP is a shortest s, t-hyperpath.

3.3 Solving the Integer Program by a Cutting Plane Algorithm

For a hypergraph of n vertices and m hyperedges, the integer linear program
given above has m variables and Θ(2n) constraints (corresponding to the number
of s, t-cuts). Thus for a large hypergraph, we cannot even feasibly write down
the corresponding ILP, due to its exponentially-many constraints. Nevertheless,
we can actually compute optimal solutions to this full ILP in practice, even for
large hypergraphs, using an approach known as a cutting-plane algorithm.

A cutting-plane algorithm computes over a subset of the constraints of the full
integer linear program, and solves a series of less-constrained problems, stopping
once it detects it has an optimal solution to the full ILP. The key to a cutting-
plane algorithm is an efficient separation algorithm, which for a given solution x
to the current ILP, reports whether x satisfies all constraints of the full ILP,
and if x does not, returns a constraint violated by x. (This violated constraint
is a hyperplane, called a cutting plane, that separates x from the domain of the
full ILP.) For our above ILP for Shortest Hyperpaths, this proceeds as follows.

(1) Let I be an initial set of inequalities, containing a subset of the inequalities
from the full ILP, and let S := I be the current set of inequalities.

(2) Solve the ILP restricted to the inequalities in S, and let x∗ be the optimal
solution to this current ILP.

(3) Run the separation algorithm to efficiently find an s, t-cut C that is not
crossed by the hyperedges e with x∗

e = 1, if such a cut exists.
(4) If the separation algorithm found a cut C not crossed by x∗, add the new

cut-inequality given by C to set S, and go back to Step (2).
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(5) Otherwise, the hyperedges in x∗ cross every s, t-cut. Halt and output the
current solution x∗.

This starts with an initial set of inequalities I, and adds inequalities to this set
as it finds cuts that solutions to prior ILPs do not cross.

The above cutting-plane algorithm outputs an optimal solution to the
full ILP, though it works with only a subset of its constraints. Note that when
the algorithm outputs its final solution x∗ at Step (5), which crosses every cut,
x∗ encodes an s, t-superpath (by Theorem 1). Furthermore, as x∗ is an optimal
solution for a less-constrained ILP that is a minimization problem, its objec-
tive function value is a lower bound on the weight of an optimal solution to the
full ILP. Hence x∗ is a minimum-weight s, t-superpath, or equivalently, a shortest
s, t-hyperpath.

The next section specifies the initial inequalities I used in practice, which are
crucial to its success. Then Sect. 3.5 presents our efficient separation algorithm,
which finds multiple violated inequalities that are all added to the current ILP.
As demonstrated in Sect. 4, this cutting-plane algorithm can find optimal hyper-
paths even for large instances from real cellular reaction networks.

3.4 Strengthening the Initial Integer Program

We can markedly reduce the number of iterations of the cutting-plane algorithm
by seeding it with a strong set of initial inequalites I. We start with I containing
both the structure-based and distance-based inequalities that we describe next.

Structure-Based Inequalities. We define three classes of inequalities, based
on structural properties of hyperpaths.

The tail-covering inequalities ensure that for any hyperedge chosen by a
solution to the ILP, its tail set is covered by the head sets of other chosen
hyperedges (corresponding to condition (ii) in Definition 1 for a superpath).
More formally, for every hyperedge e ∈ E, and every vertex v ∈ tail(e)−{s}, we
have the inequality,

∑
f ∈ in(v) xf ≥ xe.

The head-hitting inequalities ensure that for a hyperedge e chosen by a solu-
tion, its head intersects (or “hits”) the tail of another chosen hyperedge (fol-
lowing from the minimality condition in Definition 2 for a hyperpath, since
otherwise e can be safely trimmed while maintaining reachability). More for-
mally, for every hyperedge e ∈ E with t �∈ head(e), we have the inequality,(∑

f �= e : head(e)∩ tail(f) �= ∅ xf

) ≥ xe.
The target-production inequality ensures that target t is reached by hyper-

edges chosen by the solution (corresponding to condition (iii) in Definition 1 for
an s, t-superpath). More formally,

∑
f ∈ in(t) xf ≥ 1.

Together, these structure-based inequalities drive the solution found by the
cutting-plane algorithm toward having the connected structure of a hyperpath
(whereas without them, the solutions over many iterations tend to be discon-
nected hyperedges that cross the current set of cuts). Adding these inequalities to
the initial ILP dramatically reduces the number of iterations of the cutting-plane
algorithm, greatly improving its running time.
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Distance-Based Inequalities. We first show that for ordinary graphs, there
is a small subset of constraints from our original ILP, given by what we call
distance-based cuts, that we can efficiently find and that guarantee that the ILP
solved on just these distance-based inequalities has objective function value equal
to the shortest path length. We then generalize these inequalities to hypergraphs.

Ordinary Graphs. For an ordinary directed graph with source s and sink t reach-
able from s, let D(v) be the length of a shortest s, v-path for every vertex v
reachable from s. Over these reachable vertices v other than s with distance
D(v) ≤ D(t), let d1 < · · ·<dk be the sorted set of their unique distances D(v).
Define a sequence of s, t-cuts C1 ⊂ · · · ⊂ Ck associated with these unique dis-
tances, for 1≤ i≤k, by

Ci := {s} ∪
{

v∈V : D(v) < di

}
. (3)

Finally, denote the family of these s, t-cuts by C := {C1, . . . , Ck}, which we call
the distance-based cuts.

The following theorem implies that for ordinary graphs, if we solve our origi-
nal ILP just over inequalities corresponding to these distance-based cuts—which
for a graph with n vertices is an ILP with less than n inequalities—then the
objective function value of the optimal solution to this small ILP will in fact be
the length of a shortest s, t-path.

Theorem 2 (Distance-Based Cuts Suffice for Ordinary Graphs). In
an ordinary graph, let F be an edge set that crosses every cut in the family C
of distance-based s, t-cuts. Then F has total weight ω(F ) that is at least the
length D(t) of a shortest s, t-path.

Proof. We show by induction that the weight of an edge set crossing cuts
C1, . . . , Ci is at least di, for all 1 ≤ i ≤ k. Since dk = D(t), this proves the
theorem.

For the basis with i = 1, consider cut C1 = {s}, and let e = (s, v) be a
minimum-weight edge leaving s. Consider any setF crossing C1, which must
contain an edge f leaving s. Since we have that ω(F ) ≥ ω(f) ≥ ω(e) = D(v) = d1,
the basis holds.

For the inductive step with i > 1, let F be any edge set that crosses cuts
C1, . . . , Ci. Set F must contain an edge f = (x, y) that crosses cut Ci. Notice
that D(x) < di, which implies D(x) = dj for some j <i. Let F ′ ⊆ F − {(x, y)}
be the subset of F that crosses cuts C1, . . . , Cj . We have

ω(F ) ≥ ω(F ′) + ω(f)
≥ D(x) + ω(f) (4)
≥ D(y) (5)
≥ di , (6)

where inequality (4) follows from the inductive hypothesis on j <i, inequality (5)
follows from the fact that D(x) + ω(f) = D(x) + ω(x, y) ≥ D(y), and inequal-
ity (6) follows from the definitions of edge (x, y) and cut Ci. Thus the induction
holds. �
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Notice that a shortest s, t-path crosses every cut in family C. Hence a conse-
quence of Theorem 2 is that, for the optimal solution to the ILP whose inequali-
ties are just the cut constraints given by the distance-based cuts C, its objective
function value is the length of a shortest s, t-path.

The number of cuts in family C is less than the number of vertices. More-
over, Dijkstra’s single-source shortest-path algorithm computes distance D(v) for
every vertex v reachable from s with distance at most D(t). Thus for an ordinary
graph with n vertices and m edges, we can find the distance-based inequalities
given by cuts C, which constitute less than n inequalities, in the same time as
running Dijkstra’s algorithm, namely O(m + n log n) time.

Generalizing to Hypergraphs. To generalize the distance-based cuts C to hyper-
graphs, we need both a measure of distance to a vertex in a hypergraph, and a
way to efficiently compute this measure. While there does not appear to be any
natural distance measure on vertices for shortest hyperpaths that corresponds
to D(v) in ordinary graphs, we can define a generalized vertex distance as follows.

For a hyperedge e, let an s, e-superpath be a superpath from source s that
reaches all vertices in tail(e), and define an s, e-hyperpath to be a minimal s, e-
superpath. For a hyperpedge e, let its tail-distance D(tail(e)) be the length of a
shortest s, e-hyperpath. Finally, for a vertex v in a hypergraph, we can define its
vertex-distance from source s to be, D(v) := mine∈ in(v)

{
D

(
tail(e)

)
+ ω(e)

}
.

Note that computing tail-distances D(tail(e)) for hyperedges is at least as
hard as Shortest Hyperpaths, so computing the above vertex-distances D(v) is
unfortunately NP-complete as well.

To make this practical, we run the efficient hyperpath heuristic of Krieger
and Kececioglu [16,18], which computes estimated tail-distances D̃(tail(e)) for
all hyperedges e that are reachable from source s. We then apply these tail-
distance estimates in the above definition of vertex distance, to obtain efficiently-
computable estimated vertex-distances D̃(v).

Using these vertex-distance estimates D̃(v), and their unique estimated
vertex-distances d̃1 < · · · < d̃k, we can directly generalize our prior distance-
based cuts C1, . . . , Ck, defined by (3), to hypergraphs. This yields the distance-
based inequalities that our cutting-plane algorithm starts from in its initial set I.

3.5 A Separation Algorithm Leveraging Distance-Based Cuts

The cutting-plane algorithm starts with inequalities I, where I contains the
structure-based inequalities, as well as the distance-based inequalities from
the family of cuts C. Since the solution x∗ to the current ILP crosses all cut-
inequalities in S ⊇ I with its active hyperedges e where x∗

e = 1, solution x∗

already crosses every cut in C. To find new cuts not crossed by x∗, the separation
algorithm considers every s, t-cut C ∈ C, and enlarges its source-side C ⊇ {s},
called source-augmentation, or enlarges its sink-side C = V −C ⊇ {t}, called
sink-augmentation, to obtain a new cut Ĉ not crossed by x∗.

Source-augmentation of C ∈ C, to obtain Ĉ ⊃ C not crossed by x∗, proceeds
as follows. Recall that hyperedge e crosses C if tail(e) ⊆ C but head(e) �⊆ C.
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For a given active hyperedge e that crosses C, we enlarge C to form a new
cut Ĉ = C ∪ head(e), which is the minimal enlargement of C that e no longer
crosses. We then repeat this process on Ĉ for every active hyperedge that crosses
it, until we obtain a final cut Ĉ that no active hyperedge crosses. (Here Ĉ could
grow until it includes sink t, which makes it no longer an s, t-cut, in which
case there is no source-augmentation of C that x∗ does not cross.) This process
actually finds the cut Ĉ ⊃ C of minimum size

∣
∣Ĉ

∣
∣ that x∗ does not cross.

Since the cut C = {s} is one of the distance-based cuts in C, and source-
augmentation of this trivial cut yields Ĉ ⊃ {s} consisting of all vertices reach-
able from s along active hyperedges, by the proof of Theorem 1 this separation
algorithm is guaranteed to find a cut not crossed by x∗ whenever one exists.

Sink-augmentation of C ∈ C, to obtain Ĉ ⊂ C not crossed by x∗, proceeds
as follows. For a given active hyperedge e that crosses C, we enlarge C by
moving one vertex v ∈ tail(e) − {s} from C to its sink-side C, yielding new
cut Ĉ = C−{v}. This is a minimal enlargement of C that e no longer crosses.
Of course, this may cause new active hyperedges to now cross Ĉ that did not
before. To reduce the number of new edges crossing Ĉ, we exploit the freedom
in picking v by greedily choosing the v ∈ tail(e)−{s} that causes the fewest
active hyperedges to newly cross Ĉ. (Once an active hyperedge e crossing Ĉ
has tail(e) = {s}, this fails to find a sink-augmentation of C not crossed by x∗.)
We repeat this process on Ĉ for every active hyperedge crossing it, until we
obtain a final cut Ĉ ⊂ C that x∗ does not cross.

This separation algorithm can find up to 2k inequalities that are violated
by x∗, where k = |C| is the number of distance-based cuts, all of which are added
to the current set S by the cutting-plane algorithm. For a hypergraph of size
� =

∑
e∈E

(|tail(e)| + |head(e)|), this separation algorithm can be implemented
to run in O(k2 �) time.

4 Experimental Results

We present experimental results with our implementation of the cutting-plane
algorithm, named Mmunin [20], that show it can find optimal hyperpaths in large
real-world cellular reaction networks quickly, often in less than 10 s. We first give
details of our experimental setup, describing our datasets and implementation.
We then show, through comprehensive experiments over all source-sink instances
from the two standard reaction databases in the literature, how Mmunin surpasses
both the state-of-the-art heuristic for general shortest hyperpaths [16,18], and
the state-of-the-art exact algorithm for shortest acyclic hyperpaths [25]. Finally,
we discuss an illustrative biological example, and analyze how well Mmunin recov-
ers known biological pathways.

4.1 Experimental Setup

We first briefly describe our datasets and how we transform them into hyper-
graphs, and then give details on our implementation, including two modifications
that further improve running time.
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Table 1. Dataset summaries

NCI-PID Reactome

Pathways 213 2,516

Vertices 9,009 20,458

Hyperedges 8,456 11,802

Sources 3,200 8,296

Targets 2,636 5,066

Reachable targets 2,220 2,432

mean max mean max

Tail size 1.9 10 2.4 26

Head size 1.1 5 1.6 28

In-degree 1.0 323 0.9 1,056

Out-degree 1.7 326 1.4 1,167

Doubly-reachable set 756 1,836 929 1,725

Datasets and Preparation. We prepared instances from two benchmark
datasets, called NCI-PID and Reactome, following the hypergraph construction
protocol of Ritz et al. [25] and Krieger and Kececioglu [18]. The NCI-PID dataset
aggregates all pathways from NCI-PID [28], while the Reactome dataset aggre-
gates all pathways from Reactome [13]. To build a hypergraph from each dataset,
we map each protein or small molecule to a vertex, and each reaction to a hyper-
edge, with reactants and positive regulators in the tail, and products in the
head. All hyperedges are given unit weight, even though the cutting-plane algo-
rithm handles general weights, as NCI-PID is missing reaction rates for many
reactions. Table 1 gives summaries of these hypergraphs. The NCI-PID hyper-
graph has 9,009 vertices and 8,456 hyperedges, while the Reactome hypergraph
has 20,458 vertices and 11,802 hyperedges. For all instances, we create a super-
source s and add a single hyperedge e, where tail(e) = {s} and head(e) contains
all vertices with no in-edge, which we call sources. For each individual instance,
we create a sink t and connect it by an ordinary graph edge (v, t) to one vertex v
with no out-edges, which we call a target. Considering all possible targets v,
generates 2,636 instances from NCI-PID, and 5,066 instances from Reactome.

Implementation. The cutting-plane algorithm and its separation algorithm
are all implemented in Python 3.8, comprising around 2,000 lines of code. All
procedures are implemented as described earlier, with a few exceptions. First,
we use a procedure from Hhugin to compute the doubly-reachable subgraph H,
which contains only those hyperedges from the input hypergraph G that can
possibly be in any s, t-hyperpath. Next, the initial distance-based inequalities
require approximate tail-distances from Hhugin, but to improve running time,
the cutting-plane algorithm begins with only the distance-based inequality given
by cut C = {s}. We begin execution of Hhugin and the cutting plane algorithm in
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Table 2. Suboptimality of alternate hyperpath methods

NCI-PID Reactome

Reachable instances 2,220 2,432

AcycMILP suboptimal 38 22

Hhugin suboptimal 23 0

Mmunin suboptimal (none) (none)

median max median max

AcycMILP path-length difference-from-optimal (∞) (∞) (∞) (∞)

Hhugin path-length difference-from-optimal 1 6 0 0

Table 3. Performance of Mmunin

NCI-PID Reactome

Instances 2,220 2,432

median max median max

Number of iterations 3 1,598 3 874

Time per iteration (sec) 2 12 3 12

Total time (sec) 7 1,788 9 776

parallel, and at each iteration, the cutting-plane algorithm checks if Hhugin has
terminated, in which case it computes the full set of distance-based inequalities
using the approximate tail-distances returned by Hhugin and adds them to the
current constraint set. Lastly, at each iteration the cutting-plane algorithm com-
pares its objective value to the length of Hhugin’s heuristic hyperpath P , and if
they are equal, returns P (since we then know P is optimal, as the cutting-plane
objective value is a lower bound on the shortest hyperpath length).

We also made one modification to Hhugin. Previously, when hyperedges were
removed from the heap, their in-edge lists were frozen, so that new hyperedges
were never added. We changed this behavior so that these in-edge lists continue
to grow as new hyperedges are extracted from the heap.

Source code for the cutting-plane algorithm, including all datasets, is avail-
able at http://mmunin.cs.arizona.edu [20].

4.2 Comparing Alternate Hyperpath Methods

Mmunin outperforms state-of-the-art hypergraph methods for pathway inference:
the hyperpath heuristic Hhugin [19], and the MILP for shortest acyclic hyper-
paths [25] , which we call AcycMILP. We compare these methods over all instances
from Reactome and NCI-PID. Table 2 gives statistics for these instances.

For all these instances, Mmunin computes an optimal shortest hyperpath
in less than 30 min, while allowing cycles for the first time. Mmunin surpasses
AcycMILP on 22 Reactome instances and 38 NCI-PID instances where all s, t-
hyperpaths are cyclic, hence AcycMILP fails to return any hyperpath. Mmunin
outperforms Hhugin on the 23 NCI-PID instances where Hhugin is suboptimal.

http://mmunin.cs.arizona.edu
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Mmunin not only returns an optimal hyperpath for these instances, but also fin-
ishes its computation before Hhugin, showing that Mmunin (even without the
distance-based constraints given by Hhugin) is faster for these instances. In fact,
we found that Mmunin is faster than Hhugin on over 20% of all instances.

4.3 Speed of Computing Optimal Hyperpaths

Mmunin is typically fast in practice, with a median running time under 10 s.
Table 3 gives statistics on the running time, number of iterations, and time per
iteration over the instances from each dataset. The maximum running time over
all these instances is just under 30 min, demonstrating it is now feasible to find
optimal shortest hyperpaths even for large instances with over 10,000 hyper-
edges. We note that inherent randomness in the CPLEX solver may cause
variable running times, even for the same instance.

The number of iterations needed for the cutting-plane algorithm to return
an optimal solution tends to be low, around 2 or 3 iterations, but can be as high
as 1,598 iterations. Even though the cutting-plane algorithm may require many
iterations, the instance with the highest average time per iteration takes only
12 s per iteration. Note that at each iteration, the cutting-plane algorithm solves
an ILP containing thousands of variables and inequalities within this time.

4.4 A Concrete Biological Example

As an illustration of the hyperpaths found by Mmunin, we show one concrete bio-
logical example from NCI-PID. This instance was chosen from the 23 instances
where Mmunin outperforms the hyperpath heuristic Hhugin, because the size of
the hyperpaths makes them reasonable to draw. Note that AcycMILP is also
optimal on this instance, since the optimal hyperpath is acyclic. Figure 2 shows
the hyperpaths returned by Mmunin and Hhugin for this instance, which rep-
resents the deactivation of “nuclear factor of activated T cells” (NFATC2) by
“cAMP response element modulator” (CREM) in NCI-PID. Hyperedges drawn
in a red dash are unique to Mmunin’s hyperpath, hyperedges in a green dotted
line are unique to Hhugin’s hyperpath, and hyperedges in a solid black line are
common to both hyperpaths. Eight of the nine hyperedges that are shared by
both pathways have been omitted for simplicity, and have been replaced with
ellipses. The hyperedges from MAPK8 to JUN and from MAPK3 to JUN denote
transcription of JUN, where all other hyperedges denote biochemical reactions.
Vertices with gray fill denote the activated form of a given protein. Note that
stoichiometry of the reactions are not considered in our hyperpath formulation,
so two copies of NFATC2 are needed in the final reaction.

The hyperpaths contain hyperedges from four different NCI-PID path-
ways: “Calcium signaling in the CD4+ TCR pathway”, “RAS signaling in
the CD4+ TCR pathway”, “JNK signaling in the CD4+ TCR pathway”, and
“Nongenotropic androgen signaling”. The hyperpaths show CREM repressing
the activated form of NFATC2 before forming a ternary complex with NFATC2
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Fig. 2. Comparing hyperpaths whose target is the NFATC2/CREM complex.

and its DNA binding sites, resulting in the attenuation of transcription of T
helper-1-specific cytokine genes in human medullary thymocytes [5].

Hhugin’s hyperpath contains 13 hyperedges and Mmunin’s hyperpath contains
11 hyperedges, which is optimal. Notably, hyperedges unique to Mmunin use
vertices that are shared between both hyperpaths, and is therefore much simpler,
making it a more likely pathway.

4.5 Analysis of Recovering Known Pathways

Mmunin accurately recovers annotated pathways from Reactome. We define new
problem instances for a small number of annotated pathways P ∗ from Reactome:
ten pathways from the 22 instances with only cyclic hyperpaths (so AcycMILP
fails to return any hyperpath), where the target appears in only one anno-
tated Reactome pathway. (These ten benchmark pathways are: “Regulation of
Complement Cascade”, “Sphingolipid Metabolism”, “Triglyceride Catabolism”,
“Hydrocarboxylic Acid-Binding Receptors”, “Transport of Small Molecules”,
“Proton/Oligopeptide Cotransporters”, “Interleukin-37 Signaling”, “Uncoating
of the Influenza Virion”, “Glycogen Synthesis”, and “Tolerance by Mtb to Nitric
Oxide Produced by Macrophages”.) For each instance, hypergraph G includes
all vertices and hyperedges from Reactome, the sources consist of all vertices in G
with no in-edges and all vertices in P ∗ with no in-edges from P ∗, and the targets
are all vertices in P ∗ with no out-edges from P ∗. For these ten instances, the
number of hyperedges in P ∗ ranges from 2 to 98, with a median of [14,17]. Note
that these instances now contain multiple targets. For five of these instances, the
sink is not reachable from the source, so to restore reachability, we added to the
source set vertices that are unreachable due to an unreachable cycle. (A simple
example of this is when vertex a is in the tail of all in-edges to vertex b and
vice versa.) This resulted in a doubly-reachable set containing 3,600 hyperedges
for some instances, which is twice the size of the doubly-reachable set for any
single-target instance (shown in Table 1). Due to this increase, the running time
of Mmunin on these instances was significantly longer, taking at most 25 h to
compute an optimal hyperpath.
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We compared Mmunin’s hyperpath P with the known pathway P ∗ from
Reactome for each instance. For five of the instances, P = P ∗, meaning Mmunin
perfectly recovered the annotated pathway. For the other five instances, P con-
tained fewer hyperedges than P ∗, either due to redundant branches in P ∗ (so
P ⊂ P ∗), or hyperedges outside P ∗ more efficiently reaching vertices within
P ∗, which is evidence of potential crosstalk between biological pathways. We
measured the similarity of P and P ∗ for each instance by the so-called Sorensen
coefficient 2 |P ∩ P ∗| / (|P |+ |P ∗|). Over these ten instances, this similarity mea-
sure ranged from 0.62 to 1, with a median of [0.95, 1]. Overall, this experiment
shows that Mmunin is able to accurately recover known pathways, or possibly
discover more efficient ones.

5 Conclusion

We have presented a new formulation of the general shortest hyperpath problem
as an integer linear program, and a practical cutting-plane algorithm that for the
first time can find shortest hyperpaths with cycles. Comprehensive experiments
on large real-world cellular reaction networks show we can quickly compute opti-
mal hyperpaths, and accurately recover annotated biological pathways.
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Abstract. T cells monitor the health status of cells by identifying for-
eign peptides displayed on their surface. T-cell receptors (TCRs), which
are protein complexes found on the surface of T cells, are able to bind
to these peptides. This process is known as TCR recognition and con-
stitutes a key step for immune response. Optimizing TCR sequences for
TCR recognition represents a fundamental step towards the development
of personalized treatments to trigger immune responses killing cancer-
ous or virus-infected cells. In this paper, we formulated the search for
these optimized TCRs as a reinforcement learning (RL) problem, and pre-
sented a framework TCRPPO with a mutation policy using proximal policy
optimization. TCRPPO mutates TCRs into effective ones that can recog-
nize given peptides. TCRPPO leverages a reward function that combines
the likelihoods of mutated sequences being valid TCRs measured by a
new scoring function based on deep autoencoders, with the probabilities
of mutated sequences recognizing peptides from a peptide-TCR inter-
action predictor. We compared TCRPPO with multiple baseline methods
and demonstrated that TCRPPO significantly outperforms all the base-
line methods to generate positive binding and valid TCRs. These results
demonstrate the potential of TCRPPO for both precision immunotherapy
and peptide-recognizing TCR motif discovery.
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1 Introduction

Immunotherapy is a fundamental treatment for human diseases, which uses a
person’s immune system to fight diseases [9,30,31]. In the immune system,
immune response is triggered by cytotoxic T cells which are activated by the
engagement of the T cell receptors (TCRs) with immunogenic peptides pre-
sented by Major Histocompatibility Complex (MHC) proteins on the surface of
infected or cancerous cells. The recognition of these foreign peptides is deter-
mined by the interactions between the peptides and TCRs on the surface of
T cells. This process is known as TCR recognition and constitutes a key step
for immune response [8,10]. Adoptive T cell immunotherapy (ACT), which has
been a promising cancer treatment, genetically modifies the autologous T cells
taken from patients in laboratory experiments, after which the modified T cells
are infused into patients’ bodies to fight cancer. As one type of ACT thera-
pies, TCR T cell (TCR-T) therapy directly modifies the TCRs of T cells to
increase the binding affinities, which makes it possible to recognize and kill
tumor cells effectively [22]. TCR is a heterodimeric protein with an α chain and
a β chain. Each chain has three loops as complementary determining regions
(CDR): CDR1, CDR2 and CDR3. CDR1 and CDR2 are primarily responsible
for interactions with MHC, and CDR3 interacts with peptides [21]. The CDR3
of the β chain has a higher degree of variations and is therefore arguably mainly
responsible for the recognition of foreign peptides [17]. In this paper, we focused
on the optimization of the CDR3 sequence of β chain in TCRs to enhance their
binding affinities against peptide antigens, and we conducted the optimization
through novel reinforcement learning. The success of our approach will have the
potential to guide TCR-T therapy design. For the sake of simplicity, when we
refer to TCRs in the rest of the paper, we mean the CDR3 of β chain in TCRs.

Despite the significant promise of TCR-T therapy, optimizing TCRs for ther-
apeutic purposes remains a time-consuming process, which typically requires
exhaustive screening for high-affinity TCRs, either in vitro or in silico. To accel-
erate this process, computational methods have been developed recently to pre-
dict peptide-TCR interactions [28], leveraging the experimental peptide-TCR
binding data [25,29] and TCR sequences [5]. However, these peptide-TCR bind-
ing prediction tools cannot immediately direct the rational design of new high-
affinity TCRs. Existing computational methods for biological sequence design
include search-based methods [3], generative methods [14,16], optimization-
based methods [12] and reinforcement learning (RL)-based methods [2,26]. How-
ever, all these methods generate sequences without considering additional con-
ditions such as peptides, and thus cannot optimize TCRs tailored to recognizing
different peptides. In addition, these methods do not consider the validity of
generated sequences, which is important for TCR optimization as valid TCRs
should follow specific characteristics [15].

In this paper, we presented a new reinforcement-learning (RL) framework
based on proximal policy optimization (PPO) [24], referred to as TCRPPO1

to computationally optimize TCRs through a mutation policy. In particular,

1 The code is available at https://github.com/ninglab/TCRPPO.

https://github.com/ninglab/TCRPPO
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TCRPPO learns a joint policy to optimize TCRs customized for any given pep-
tides. In TCRPPO, we designed a new reward function that measures both the
likelihoods of the mutated sequences being valid TCRs, and the probabilities
of the TCRs recognizing peptides. To measure TCR validity, we developed a
TCR auto-encoder, referred to as TCR-AE, and utilized reconstruction errors from
TCR-AE and also its latent space distributions, quantified by a Gaussian Mixture
Model, to calculate novel validity scores. To measure peptide recognition, we
leveraged a state-of-the-art peptide-TCR binding predictor ERGO [28] to predict
peptide-TCR binding. Please note that TCRPPO is a flexible framework, as ERGO
can be replaced by any other binding predictors [4,32]. In addition, we designed
a novel buffering mechanism, referred to as Buf-Opt, to revise TCRs that are
difficult to optimize. We conducted extensive experiments using 7 million TCRs
from TCRdb [5], 10 peptides from McPAS [29] and 15 peptides from VDJDB [25].
Our experimental results demonstrated that TCRPPO can substantially outper-
form the best baselines with best improvement of 45.04% and 52.89% in terms of
generating qualified TCRs with high validity scores and high recognition proba-
bilities, over McPAS and VDJDB peptides, respectively. Figure 1 presents the overall
architecture of TCRPPO.

2 Related Work

Existing methods developed for biological sequence design include search-based
methods, deep generative methods, optimization-based methods and RL-based
methods. Among search-based methods, the classical evolutionary search [3] uses
an evolution strategy to randomly mutate the sequences and select desired ones
in an iterative way. Among generative methods, Killoran et al. [16] optimized
the latent embeddings of DNA sequences learned from a variational autoencoder
towards better properties. Gupta et al. [14] used generative adversarial networks
(GANs) to generate DNA sequences and selected the generated ones with desired
properties to further optimize GANs. Among optimization-based methods, Gon-
zalez et al. [12] used a Gaussian process model to emulate the production rates of
a certain protein across different gene designs in living cells, and then optimized
the gene designs to improve the production rates using Bayesian optimization.
Both the above generative methods and optimization methods aim at optimizing
the biological sequences without any additional conditions, As a consequence,
these methods are not applicable to our TCR optimization problem. In our prob-
lem, the optimization of TCRs must be tailored to given peptides, because TCRs
binding to different peptides have different characteristics.

Despite the success of RL on many applications, there remains limited work
of applying RL to biological sequence design. Angermueller et al. [2] developed a
model-based RL method for biological sequence design using PPO to improve the
sample efficiency, where the policy is trained over a simulator model learned to
approximate the reward function. Skwark et al. [26] then leveraged a RL method
based on PPO to discover a potential Covid-19 cure. Their method aims at iden-
tifying the variants of human angiotensin-converting enzyme (ACE2) protein
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sequence that have higher binding affinities against the SARS-CoV-2 spike protein
than the original ACE2 protein. Our TCRPPO also applies PPO with a mutation
policy to optimize TCR sequences. However, TCRPPO is fundamentally different
from previous methods in three aspects. First, TCRPPO learns a joint policy to opti-
mize the TCRs customized for any given peptides. In addition, TCRPPO employs
a comprehensive reward function to simultaneously optimize the validity and the
recognition probability of the TCRs against the peptides. TCRPPO also leverages a
buffering mechanism to generalize the optimization capability of TCRPPO to TCRs
that are hard to optimize, or peptides with fewer positive binding TCRs.

3 Methods

Fig. 1. Model architecture of TCRPPO Fig. 2. Data flow for TCRPPO and TCR-AE
training and testing

3.1 Problem Definition

In this paper, the recognition ability of a TCR sequence against the given pep-
tides is measured by a recognition probability, denoted as sr. The likelihood of
a sequence being a valid TCR is measured by a score, denoted as sv. A qualified
TCR is defined as a sequence with sr > σr and sv > σc, where σr and σc are
pre-defined thresholds (σr=0.9 and σc=1.2577, as discussed in Appendix A.2
and A.4.4, respectively). The goal of TCRPPO is to mutate the existing TCR
sequences that have low recognition probability against the given peptide, into
qualified ones. A peptide p or a TCR sequence c is represented as a sequence of
its amino acids 〈o1, o2, · · · , oi, · · · , ol〉, where oi is one of the 20 types of natural
amino acids at the position i in the sequence, and l is the sequence length. We
formulated the TCR mutation process as a Markov Decision Process (MDP)
M = {S,A, P,R} containing the following components:

– S: the state space, in which each state s ∈ S is a tuple of a potential TCR
sequence c and a peptide p, that is, s = (c, p). Subscript t (t = 0, · · · , T ) is
used to index step of s, that is, st = (ct, p). Please note that ct may not be
a valid TCR. A state st is a terminal state, denoted as sT , if it contains a
qualified ct, or t reaches the maximum step limit T . Please also note that p
will be sampled at s0 and will not change over time t,
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– A: the action space, in which each action a ∈ A is a tuple of a mutation
site i and a mutant amino acid o, that is, a = (i, o). Thus, the action will
mutate the amino acid at position i of a sequence c = 〈o1, o2, · · · , oi, · · · , ol〉
into another amino acid o. Note that o has to be different from oi in c.

– P: the state transition probabilities, in which P(st+1|st,at) specifies the prob-
ability of next state st+1 at time t + 1 from state st at time t with the
action at. In our problem, the transition to st+1 is deterministic, that is
P(st+1|st,at) = 1.

– R: the reward function at a state. In TCRPPO, all the intermediate rewards at
states st (t = 0, · · · , T − 1) are 0; only the final reward at sT is used to guide
the optimization.

3.2 Mutation Policy Network

TCRPPO mutates one amino acid in a sequence c at a step to modify c into a
qualified TCR. Specifically, at the initial step t = 0, a peptide p is sampled as
the target, and a valid TCR c0 is sampled to initialize s0 = (c0, p); at a state
st = (ct, p) (t > 0), the mutation policy network of TCRPPO predicts an action
at that mutates one amino acid of ct to modify it into ct+1 that is more likely
to lead to a final, qualified TCR bound to p. TCRPPO encodes the TCRs and
peptides in a distributed embedding space. It then learns a mapping between
the embedding space and the mutation policy, as discussed below.

Encoding of Amino Acids. Following the idea in Chen et al. [6], we repre-
sented each amino acid o by concatenating three vectors: 1) ob, the corresponding
row of o in the BLOSUM matrix, 2) oo, the one-hot encoding of o, and 3) od,
the learnable embedding, that is, o is encoded as o = ob ⊕ oo ⊕ od, where ⊕
represents the concatenation operation. We used such a mixture of encoding
methods to enrich the representations of amino acids within c and p.

Embedding of States. We embedded st = (ct, p) via embedding its associated
sequences ct and p. For each amino acid oi,t in ct, we embedded oi,t and its
context information in ct into a hidden vector hi,t using a one-layer bidirectional
LSTM [13] as below,

−→
h i,t,

−→c i,t=LSTM(oi,t,
−→
h i−1,t,

−→c i−1,t;
−→
W );

←−
h i,t,

←−c i,t=LSTM(oi,t,
←−
h i+1,t,

←−c i+1,t;
←−
W );

hi,t=
−→
h i,t ⊕ ←−

h i,t

(1)

where
−→
h i,t and

←−
h i,t are the hidden state vectors of the i-th amino acid in ct;−→c i,t and ←−c i,t are the memory cell states of i-th amino acid;

−→
W and

←−
W are the

learnable parameters of the two LSTM directions, respectively; and
−→
h 0,t,

←−
h lc,t,−→c 0,t and ←−c lc,t (lc is the length of ct) are initialized with random vectors. With

the embeddings of all the amino acids, we defined the embedding of ct as the
concatenation of hidden vectors at the two ends, that is, ht =

−→
h lc,t ⊕ ←−

h 0,t. We
embedded a peptide sequence into a hidden vector hp using another bidirectional
LSTM in the same way.
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Action Prediction. To predict the action at = (i, o) at time t, TCRPPO needs
to make two predictions: 1) the position i of current ct where at needs to occur;
2) the new amino acid o that at needs to place with at position i. To measure
“how likely” the position i in ct is the action site, TCRPPO uses the following
network:

f(i) = wT(ReLU(W1hi,t + W2h
p))/(

∑lc

j=1
wT(ReLU(W1hj,t + W2h

p))), (2)

where hi,t is the latent vector of oi,t in ct (Eq. 1); hp is the latent vector of
p; w/Wj (j=1,2) are the learnable vector/matrices. Thus, TCRPPO measures the
probability of position i being the action site by looking at its context encoded in
hi,t and the peptide p. The predicted position i is sampled from the probability
distribution from Eq. 2 to ensure necessary exploration.

Given the predicted position i, TCRPPO needs to predict the new amino acid
that should replace oi in ct. TCRPPO calculates the probability of each amino acid
type being the new replacement as follows:

g(o) = softmax(U1 × ReLU(U2hi,t + U3h
p)), (3)

where Uj (j=1,2,3) are the learnable matrices; softmax(·) converts a 20-
dimensional vector into probabilities over the 20 amino acid types. The replace-
ment amino acid type is then determined by sampling from the distribution,
excluding the original type of oi,t.

3.3 Potential TCR Validity Measurement

Leveraging the literature [1,35], we designed a novel scoring function to quan-
titatively measure the likelihood of a given sequence c being a valid TCR (i.e.,
to calculate sv), which will be part of the reward of TCRPPO. Specifically, we
trained a novel auto-encoder model, denoted as TCR-AE, from only valid TCRs.
We used the reconstruction accuracy of a sequence in TCR-AE to measure its
TCR validity. The intuition is that since TCR-AE is trained from only valid TCRs,
its encoding-decoding process will obey the “rules” of true TCR sequences, and
thus, a non-TCR sequence could not be well reproduced from TCR-AE. However, it
is still possible that a non-TCR sequence can receive a high reconstruction accu-
racy from TCR-AE, if TCR-AE learns some generic patterns shared by TCRs and
non-TCRs and fails to detect irregularities, or TCR-AE has high model complex-
ity [19,35]. To mitigate this, we additionally evaluated the latent space within
TCR-AE using a Gaussian Mixture Model (GMM), hypothesizing that non-TCRs
would deviate from the dense regions of TCRs in the latent space.

TCR-AE. Figure 1 presents the auto-encoder TCR-AE. TCR-AE uses a bidirectional
LSTM to encode an input sequence c into h′ by concatenating the last hid-
den vectors from the two LSTM directions (similarly as in Eq. 1). Please note
that this bidirectional LSTM is independent of the mutation policy network in
TCRPPO. h′ is then mapped into a latent embedding z′ as follows,

z′ = W zh′, (4)
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which will be decoded back to a sequence ĉ via a decoder. The decoder has a
single-directional LSTM that decodes z′ by generating one amino acid at a time
as follows,

h′
i, c

′
i = LSTM(ôi−1,h′

i−1, c
′
i−1;W

′); ôi = softmax(U ′ × ReLU(U ′
1h

′
i + U ′

2z
′)),
(5)

where ôi−1 is the encoding of the amino acid ôi−1 that is decoded from step
i − 1; W ′ is the parameter. The LSTM starts with a zero vector o0 = 0 and
h0 = Whz′. The decoder infers the next amino acid by looking at the previously
decoded amino acids encoded in h′

i and the entire prospective sequence encoded
in z′.

Please note that TCR-AE is trained from TCRs, independently of TCRPPO and
in an end-to-end fashion. Teacher forcing [34] is applied during training to feed
the ground truth amino acids as inputs to predict the next amino acid, and
thus cross entropy loss is applied on each amino acid to optimize TCR-AE. As a
stand-alone module, TCR-AE is used to calculate the score sv. The input sequence
c to TCR-AE is encoded using only BLOSUM matrix as we found empirically that
BLOSUM encoding can lead to a good reconstruction performance and a fast
convergence compared to other combinations of encoding methods.

Reconstruction-Based Score. With a well-trained TCR-AE, we calculated the
reconstruction-based TCR validity score of a sequence c as follows,

rr(c) = 1 − lev(c, TCR-AE(c))/lc (6)

where TCR-AE(c) represents the reconstructed sequence of c from TCR-AE; lev(.)
is the Levenshtein distance, an edit-distance-based metric, between c and
TCR-AE(c); lc is the length of c. Higher rr(c) indicates higher probability of c
being a valid TCR. Please note that when TCR-AE is used in testing, the length
of the reconstructed sequence might not be the same as the input c, because
TCR-AE could fail to accurately predict the end of the sequence, leading to either
too short or too long reconstructed sequences. Therefore, we normalized the
Levenshtein distance using the length of input sequence lc similarly to Snover
et al. [27]. Please note that rr(c) could be negative when the distance is greater
than the sequence length. The negative values will not affect the use of the scores
(i.e., negative rr(c) indicates very different TCR-AE(c) and c).

Density Estimation-Based Score. To better distinguish valid TCRs from
invalid ones, TCRPPO also conducts a density estimation over the latent space
of z′ (Eq. 4) using GMM. For a given sequence c, TCRPPO calculates the likelihood
score of c falling within the Gaussian mixture region of training TCRs as follows,

rd(c) = exp(1 +
log P (z′)

τ
) (7)

where log P (z′) is the log-likelihood of the latent embedding z′; τ is a con-
stant used to rescale the log-likelihood value (τ = 10). We carefully selected the
parameter τ such that 90% of TCRs can have rd(c) above 0.5. As we do not
have invalid TCRs, we cannot use classification-based scaling methods such as
Platt scaling [20] to calibrate the log likelihood values to probabilities.
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TCR Validity Scoring. Combining the reconstruction-based scoring and den-
sity estimation-based scoring, we developed a new scoring method to measure
TCR validity as follows:

sv(c) = rr(c) + rd(c). (8)

This method is used to evaluate if a sequence is likely to be a valid TCR and is
used in the reward function.

3.4 TCRPPO Learning

Final Reward. We defined the final reward for TCRPPO based on sr and sv
scores as follows,

R(cT , p) = sr(cT , p) + α min(0, sv(cT ) − σc) (9)

where sr(cT , p) is the predicted recognition probability by ERGO, σc is a threshold
that cT is very likely to be a valid TCR; and α is the hyperparameter used to
control the tradeoff between sr and sv (α = 0.5).

Policy Learning. We adopted the proximal policy optimization (PPO) [24] to
optimize the policy network as discussed in Sect. 3.2. The objective function of
PPO is defined as follows:

maxΘ LCLIP(Θ) = Êt[min(rt(Θ)Ât, clip(rt(Θ), 1 − ε, 1 + ε)Ât)],

where rt(Θ) =
πΘ (at|st)

πΘold(at|st) ,
(10)

where Θ is the set of learnable parameters of the policy network and rt(Θ) is
the probability ratio between the action under current policy πΘ and the action
under previous policy πΘold . Here, rt(Θ) is clipped to avoid moving rt outside
of the interval [1 − ε, 1 + ε]. Ât is the advantage at timestep t computed with
the generalized advantage estimator [23], measuring how much better a selected
action is than others on average:

Ât = δt + (γλ)δt+1 + ... + (γλ)T−t+1δT−1, (11)

where γ ∈ (0, 1) is the discount factor determining the importance of future
rewards; δt = rt + γV (st+1) − V (st) is the temporal difference error in which
V (st) is a value function; λ ∈ (0, 1) is a parameter used to balance the bias and
variance of V (st). Here, V (·) uses a multi-layer perceptron (MLP) to predict the
future return of current state st from the peptide embedding hp and the TCR
embedding ht. The objective function of V (·) is as follows:

minΘ LV (Θ) = Êt[(V (ht,h
p) − R̂t)2], (12)

where R̂t =
∑T

i=t+1 γi−tri is the rewards-to-go. Because we only used the final
rewards, that is ri = 0 if i �= T , we calculated R̂t with R̂t = γT−trT . We also
added the entropy regularization loss H(Θ), a popular strategy used for policy
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gradient methods [18,24], to encourage the exploration of the policy. The final
objective function of TCRPPO is defined as below,

minΘ L(Θ) = −LCLIP(Θ) + α1L
V (Θ) − α2H(Θ), (13)

where α1 and α2 are two hyperparameters controlling the tradeoff among the
PPO objective, the value function and the entropy regularization term.

Reward-Informed Buffering and Re-optimization. TCRPPO implements a
novel buffering and re-optimizing mechanism, denoted as Buf-Opt, to deal with
TCRs that are difficult to optimize, and to generalize its optimization capacity
to more, diverse TCRs. To optimize TCRs, various number of mutations will be
applied to get the binding TCRs. For TCRs requiring more mutations, it could be
more difficult for TCRPPO to optimize; and thus re-optimizing these TCRs enables
TCRPPO to explore more actions for the optimization of difficult TCRs, instead of
being overwhelmed by relatively simple cases. This mechanism includes a buffer,
which memorizes the TCRs that cannot be optimized to qualify. These hard
sequences and the corresponding peptides will be sampled from the buffer again
following the probability distribution below, to be further optimized by TCRPPO,

S(c, p) = ξ(1−R(cT ,p))/Σ. (14)

In Eq. 14, S measures how difficult to optimize c against p based on its final
reward R(cT , p) in the previous optimization, ξ is hyper-parameter (ξ = 5 in
our experiments), and Σ converts S(c, p) as a probability. It is expected that by
doing the sampling and re-optimization, TCRPPO is better trained to learn from
hard sequences, and also the hard sequences have the opportunity to be better
optimized by TCRPPO. In case a hard sequence still cannot be optimized to qualify,
it will have 50% chance of being allocated back to the buffer. In case the buffer is
full (size 2,000 in our experiments), the sequences earliest allocated in the buffer
will be removed. We referred to the TCRPPO with Buf-Opt as TCRPPO+b.

4 Experimental Settings

4.1 Datasets

We selected peptides and TCR sequences for the training and testing of TCRPPO
and TCR-AE. Figure 2 summaries the peptides and TCRs used in our experiments.

Peptides. To test TCRPPO, we first identified a set of peptides that TCRPPO needs
to optimize TCR sequences for. We aimed at selecting the peptides which are
very likely to have reliable peptide-TCR binding predictions, such that their
binding predictions can serve to test TCRPPO’s optimized TCRs against the
respective peptides. We identified such peptides from two databases: McPAS [29]
and VDJDB [25], which have experimentally validated TCR-peptide binding pairs.
We applied the autoencoder-based ERGO models [28] on McPAS and VDJDB (McPAS
and VDJDB have pre-specified training and testing sets for each peptide), and
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selected the peptides which have AUC values above 0.9 on their respective test-
ing sets. This resulted in 10 peptides selected from McPAS, denoted as PMcPAS, and
15 peptides selected from VDJDB, denoted as PVDJDB, with lengths ranging from 8
to 21, as presented in Appendix Table A.1. Additional discussion on peptides is
available in Appendix A.1.

TCR Sequences. We then selected TCR sequences that TCRPPO needs to opti-
mize against each of the peptides selected as above. We selected such sequences
from the TCRdb database [5], which contains 277 million human TCR sequences,
each with a TCR-β sequence. Here, we used TCRdb, not McPAS or VDJDB, because
TCRdb’s sequences are valid TCRs and have no information on their binding
affinities with the selected peptides. Therefore, these valid TCRs can be used to
train TCR-AE to calculate sv. Meanwhile, since TCRdb is much larger than McPAS
(4,528 TCRs) and VDJDB (50,049 TCRs), it is very likely that the sv calculated
from the TCR-AE, which is trained over TCRdb data, will be independent of the
sr calculated from ERGO, which is trained on McPAS or VDJDB, avoiding possible
correlation between sv and sr as in the reward (Eq. 9).

We selected all the TCRs with lengths below 27 (ERGO can only predict
sequences of length 27 or shorter) from TCRdb, resulting in 7,331,105 unique
TCR-β sequences. Figure A.1 presents the distribution of lengths of TCRs in
TCRdb. As shown in Figure A.1, the most common length of TCRs is 15. Addi-
tional discussion on the length of TCRs is available in Appendix A.1. Among
these selected sequences, we sampled 50K sequences, denoted as the validation
set Sv, to test and validate sv; within these 50K sequences, we again sampled
1K sequences, denoted as the testing set Stst, to test TCRPPO performance once
it is well trained. The remaining selected sequences (i.e., not in the validation
set), denoted as the training set Strn, are used to train TCRPPO; they are also
used to train TCR-AE.

4.2 Experimental Setup

For all the selected peptides from a same database (i.e., 10 peptides from McPAS,
15 peptides from VDJDB), we trained one TCRPPO agent, which optimizes the
training sequences (i.e., 7,281,105 TCRs in Fig. 2) to be qualified against one of
the selected peptides. The ERGO model trained on the corresponding database
(the same ERGO model also used to select the peptides from the database as in
Sect. 4.1) will be used to test recognition probabilities sr for the TCRPPO agent.
Please note that as in Springer et al. [28], one ERGO model is trained for all
the peptides in each database (i.e., one ERGO predicts TCR-peptide binding for
multiple peptides). Thus, the ERGO model is suitable to test sr for multiple pep-
tides in our setting. Also note that we trained one TCRPPO agent corresponding
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to each database, because peptides and TCRs in these two databases are very
different, demonstrated by the inferior performance of an ERGO trained over the
two databases together, and discussed in Springer et al. [28].

TCRPPO mutates each sequence up to 8 steps (i.e., T = 8). In TCRPPO training,
an initial TCR sequence (i.e., c0 in s0) is randomly sampled from Strn, and
will be mutated in the following states; a peptide p is randomly sampled at
s0, and remains the same in the following states (i.e., st = (ct, p)). Once a
TCRPPO is well trained from Strn, it will be tested on Stst. We set the dimensions
of the hidden layers (e.g., hidden layers of action prediction networks) as 256,
and the dimensions of latent embeddings (e.g., hp, ht) as 128 (i.e., half of the
hidden dimensions). Other hyper-parameters and the details of hyper-parameter
selection of the TCR mutation environment, the policy network and the RL agent
are available in Appendix A.2.

4.3 Baseline Methods

We compared the TCRPPO method and TCRPPO+b with multiple baseline methods
of two primary categories: 1) generative methods that generate a new TCR in
its entirety, and 2) mutation-based methods that optimize TCRs via mutating
amino acids of existing TCRs. For generative methods, we used two baseline
methods including Monte Carlo tree search (MCTS) [7] and a variational autoen-
coder with backpropagation (BP-VAE) [11]. For mutation-based methods, we used
three baseline methods to mutate each TCR sequence up to 8 steps and stop the
mutation once a qualified TCR is generated, including random mutation (RM),
greedy mutation (Greedy) and genetic mutation (Genetic) [33]. In addition, we
used a random selection method (RS) as another baseline to randomly sample a
TCR from TCRdb, which helps quantify the space of valid TCRs. More details
about baseline methods are available in Appendix A.3.

4.4 Evaluation Metrics

We evaluated all the methods using six metrics including: (1) qualification rate
q%, which measures the percentage of qualified TCRs (Sect. 3.1) among all the
output TCRs; (2) edit distance between c0 and cT (edist), which measures
sequence difference between c0 and qualified cT ; (3) average TCR validity score
sv over valid TCRs or over qualified TCRs; (4) average recognition probability sr
over valid TCRs or over qualified TCRs; (5) validity rate v%, which measures the
percentage of valid TCRs (Sect. 3.1) among all the output TCRs; (6) average
number of calls to R calculation (#R) (Eq. 9) over all the generated TCRs,
which estimates the efficiency of methods. We calculated the metrics over two
different sets of output TCRs: (1) the set of valid TCRs Cv: Cv = {c|sv(c) > σc};
(2) the set of qualified TCRs Cq: Cq = {c|sr(c) > σc, c ∈ Cv}.
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5 Experimental Results

5.1 Comparison on TCR Optimization Methods

Overall Comparison. Table 1 presents the overall comparison among all the
methods over PMcPAS and PVDJDB. In PMcPAS, TCRPPO methods achieve overall the
best performance: in terms of q%, TCRPPO achieves 25.89±29.60%, which slightly
outperforms the best q% from the baseline method Genetic (25.18±21.28%).
TCRPPO+b achieves the best q% at 36.52±30.25% among all the methods, which
is 45.04% better than the best from the baseline methods (25.18±21.28% from
Genetic). TCRPPO+b achieves so with a few R calls (#R =7). In PVDJDB, TCRPPO
methods also achieve overall the best performance: in terms of q%, TCRPPO and
TCRPPO+b outperform the best baseline Genetic by 18.80% and 52.89%.

Among the qualified TCRs (Cq) for PMcPAS, TCRPPOand TCRPPO+b methods
achieve the highest sv values on average (1.55±0.19 for TCRPPO; 1.55±0.17 for
TCRPPO+b), with above 6% improvement from those of Genetic, which achieves
the best q% among all the baseline methods. Note that qualified TCRs must have
sv above σc, which is set as 1.2577 as discussed in Appendix A.4.4. The significant
high sv values from TCRPPO methods demonstrate that TCRPPO is able to gener-
ate qualified TCRs that are highly likely to be valid TCRs. In terms of sr among
qualified TCRs, TCRPPO methods have sr(Cq) value 0.97±0.03, above the σr. Note
that σr = 0.9, a very high threshold for sr to determine TCR-peptide binding,
is actually a very tough constraint. The fact that TCRPPO methods can survive
this constraint with substantially high q% and highly likely valid TCRs as results
demonstrates the strong capability of TCRPPO methods. In addition, TCRPPO meth-
ods need a few number of calls to calculate R (i.e., 7 for TCRPPO, compared to
166 for Genetic), indicating that TCRPPO is very efficient in identifying qualified
TCRs. In PVDJDB, we observed very similar trends as those in PMcPAS.

Among all the baseline methods, RS randomly selects a valid TCR from
TCRdb, given that some TCRs in TCRdb may already qualify. Thus, it is a naive
baseline for all the other methods. It has v% around 95%, corresponding to
how our sv threshold σc is identified (by 95 percentile true positive rate) as
discussed in Appendix A.4.4. On average, among all valid TCRs, about 0.05%
(q% in RS) TCRs are qualified TCRs. RM, Greedy, Genetic and TCRPPO methods
substantially outperform this baseline method.

Comparison Among Mutation-Based Methods. RM, Greedy, Genetic,
TCRPPO and TCRPPO+b are mutation-based methods: they start from a valid TCR
from TCRdb, and optimize the TCR by mutating its amino acids. Among all the
mutation-based methods, TCRPPO and TCRPPO+b outperform others as discussed
above. Below we only focused on PMcPAS, as similar trends exist on PVDJDB.

In PMcPAS, RM underperforms all the other mutation-based methods: it has
q% below 3% on average, but has very high v% (close to 100%). RM uses R
to select randomly mutated sequences, which decomposes to its sv and its sr
components. RM starts from valid TCRs with high sv already, but low sr in
general. During random mutation, sr cannot be easily improved as no knowledge
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or informed guidance is used to direct the mutation towards better sr. Therefore,
the sv component in R will dominate, leading to that the final selected, best
mutated sequence tends to have high sv to satisfy high R. Such best mutated
sequence tends to occur after only a few random mutations, since as shown
in Appendix A.4.4, random mutations can quickly decrease sv values. Thus, the
qualified sequences produced from RM tend to be more similar to the initial TCRs
(edist is small, around 3; high v% as 99.36±0.21%), their sv values are high
(close to 1.5; highest among all mutation-based methods) but q% is low due to
hardly improved sr values.

In PMcPAS, Greedy has a better q% (20.58 ± 17.85%) than RM and also a high v%
(99.98 ± 0.04%). Greedy leverages a greedy strategy to select the random muta-
tion that gives the best R at the current step. Thus, it leverages some guidance
on sr improvement based on R, and can improve sr values compared to RM. As
in Table 1, it has better sr(Cv) value (0.62 ± 0.12) for valid TCRs. Meanwhile,
Greedy explores a large sequence space, allowing its to identify more valid TCRs,
leading to high v% (99.98 ± 0.04), high q% (20.58 ± 17.85; also due to better sr
improvement) but more diverse results (edist = 5.10 ± 1.09) than RM.

Genetic is the second best mutation-based method on PMcPAS, after TCRPPO
methods. Genetic explores a sequence space even larger than that in Greedy,
and uses R to guide next mutations also in a greedy way. Thus, it enjoys the
opportunity to reach more, potentially qualified TCRs, demonstrated by high
edist (5.16 ± 1.05) indicating diverse sequences, and thus achieves a better q%
(25.18 ± 21.28%) than Greedy, even better than that of TCRPPO, and a high
v% (100.00 ± 0.00%), at a significant cost of many more calls to calculate R.
Even though, it still significantly underperforms TCRPPO+b in terms of q% and
qualities of qualified TCRs as discussed earlier.

Comparison Between Mutation-Based Methods and Generation-
Based Methods. Overall, mutation-based methods substantially outperform
generation-based methods. For example, in terms of q%, mutation-based meth-
ods (excluding random mutation RM) has an average q% 22.88% in PMcPAS, com-
pared to 0.03% of the generation-based methods (MCTS and BP-VAE). In addition
to the superior performance, mutation-based methods have strong biological rel-
evance that make them very suitable and practical for TCR-T based precision
immunotherapy, in which they can be readily employed to optimize existing
TCRs found in patient’s TCR repertoire. However, any promising TCRs gener-
ated from generation-based methods have to be either synthesized, which could
be both very costly and technically challenging, or mutated from existing TCRs
that are similar to the generated TCRs in their amino acids. Detailed discussions
on generation-based methods are available in Appendix A.4.1.

5.2 Evaluation on Optimized TCR Sequences

Figure 3A presents the entropy of amino acid distributions at each sequence
position among the length-15 TCRs for each PMcPAS peptide. Here the TCRs
are optimized by TCRPPO with respect to the McPAS peptides. Figure 3A clearly
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Fig. 3. Optimized TCR patterns for McPAS peptides (A); TCR distances (B).

shows some common patterns among all the optimized TCRs. For example,
the first three positions and last four positions tend to have high conservation.
TCRs for some peptides (e.g., “SSPPMFRV”, “ASNENMETM”, and “RFYK-
TLRAEQASQ”) have high variations at internal regions. Similar patterns are
also observed among the binding TCRs for other peptides in VDJDB2.

Figure 3B presents the difference between qualified TCRs optimized by
TCRPPO and existing TCRs. It presents the distribution of Hamming distances
between qualified TCRs (length 15) for peptide “RFYKTLRAEQASQ” and their
most similar (in terms of Hamming distance) TCRs that are known to bind to
this peptide in McPAS; and the distribution of Hamming distances between qual-
ified TCRs for this peptide and their most similar TCRs in TCRdb. This figure
demonstrates that the qualified TCRs by TCRPPO are actually different from
known binding TCRs, but there are TCRs similar to them existing in TCRdb.
This can be meaningful for precision immunotherapy, as TCRPPO can produce
diverse TCR candidates that are different from known TCRs, leading to a novel
sequence space; meanwhile, these TCR candidates actually have similar human
TCRs available for further medical evaluation and investigation purposes.

Additional analyses are available in Appendix A.4, such as the overview of
amino acid distributions of TCRs, the patterns for binding TCRs and the com-
parison on TCR detection. Specifically, we found that TCRPPO can successfully
learn the patterns of TCRs (Appendix A.4.2); we also found that TCRPPO can
identify the specific binding patterns which are more conserved than the real
binding patterns (Appendix A.4.3). We also found that our sv scoring method
successfully distinguishes TCRs from non-TCRs in Appendix A.4.4.

6 Conclusions and Outlook

In this paper, we presented a reinforcement learning framework to optimize
TCRs for more effective TCR recognition, which has the potential to guide TCR
engineering therapy. Our experimental results in comparison with generation-
based methods and mutation-based methods on optimizing TCRs demonstrate
that TCRPPO outperforms the baseline methods. Our analysis on the TCRs gener-
ated by TCRPPO demonstrates that TCRPPO can successfully learn the conservation
patterns of TCRs. Our experiments on the comparison between the generated
TCRs and existing TCRs demonstrate that TCRPPO can generate TCRs similar
2 https://vdjdb.cdr3.net/motif.

https://vdjdb.cdr3.net/motif
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to existing human TCRs, which can be used for further medical evaluation and
investigation. Our results in TCR detection comparison show that the sv score in
our framework can very effectively detect non-TCR sequences. Our analysis on
the distribution of sv scores over mutations demonstrates that TCRPPO mutates
sequences along the trajectories not far away from valid TCRs.

Our proposed TCRPPO is a modular and flexible framework. Thus, the TCR-AE
and ERGO scoring functions in the reward design can be replaced with other pre-
dictors trained on large-scale data when available. Also, TCRPPO can be further
improved from the following perspectives. First, the recognition probabilities of
TCRs considered in our paper are based on a peptide-TCR binding predictor
(i.e., ERGO) rather than experimental validation. Therefore, testing the generated
qualified TCR candidates in a wet-lab will be needed ultimately to validate the
interactions between TCRs and peptides. Moreover, when the predicted recog-
nition probabilities are not sufficiently accurate, TCRPPO learned from unreliable
rewards could be inaccurate, resulting in generating TCRs that could not rec-
ognize the given peptide. Thus, it could be an interesting and challenging future
work to incorporate the reliabilities of predictions in the reward function of
TCRPPO, so that the effect of unreliable recognition probabilities can be allevi-
ated. Finally, TCRPPO only considers the CDR3 of β chain in TCRs, while other
regions of TCRs, though not contributing most to interactions between TCRs
and peptides, are not considered. In this sense, incorporating other regions of
TCRs (e.g., CDR3 of alpha chains) could be an interesting future work.
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Background: Summary methods are one of the dominant approaches to species
tree estimation from genome-scale data sets. They are utilized as part of a
pipeline in which the first step is to estimate trees from individual regions of
the genome (called gene trees) and the second step is to “summarize” them into
a species tree. This approach can fail to produce accurate species trees when the
input gene trees are highly discordant due to gene tree estimation error as well
as biological processes, like incomplete lineage sorting (ILS) [5].

Methods: We present TREE-QMC, a new summary method that is fast and
accurate under such challenging scenarios. TREE-QMC builds upon the algo-
rithmic framework of wQMC [1], which takes a set of weighted quartets (four-leaf
trees) as input and then builds a species tree in a divide-and-conquer fashion.
At each step in the divide phase, a branch (split) in the species tree is identified
by constructing a graph and then seeking its max cut. We improve upon this
approach in two ways. First, we address scalability by providing an algorithm
to construct the graph directly from the input gene trees instead of the Θ(n4)
weighted quartets. This gives TREE-QMC a time complexity of O(n3k) with
some mild assumptions on subproblem sizes, where n is the number of taxa and
k is the number of gene trees. Second, we address accuracy by normalizing the
quartet weights to account for “artificial taxa,” which are introduced during
the divide phase so that solutions on subproblems can be combined during the
conquer phase (Fig. 1a). We introduce both uniform (n1) and non-uniform (n2)
normalization schemes, with the latter up-weighting quartets with leaves labeled
by species more closely related to the subproblem (n0 denotes no normalization).

Results: We explore the utility of TREE-QMC for multi-locus species tree esti-
mation, benchmarking it against the current leading methods. Our simulation
study shows TREE-QMC-n2 is at least as accurate and often more accurate
than the dominant method ASTRAL-III [6] (and its improvement FASTRAL
[2]), while being highly competitive in terms of runtime (Fig. 1b–d). Moreover,
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TREE-QMC-n2 is at least as accurate as wQFM [4], while scaling to much larger
data sets. We also re-analyze an avian data set [3], finding that the estimated
species trees differ only on short branches suggestive of ILS and that the tree
produced by TREE-QMC is closest to the published reference tree.

Fig. 1. Subfigure (a) shows how taxa are split at each step in the divide phase, including
the introduction of artificial taxa. To compute the quartet weights, the leaves of each
gene tree are relabeled by artificial taxa for a given subproblem. Subfigures (b) and (d)
show percent species tree error for different model conditions, all with 1000 estimated
gene trees (note: *, **, and *** indicate a significant difference between methods with
p < 0.05, 0.005, and 0.0005, respectively). Subfigure (c) shows runtime (hours).

Preprint: https://doi.org/10.1101/2022.06.25.497608.
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DNA sequencing data continues to progress towards longer reads with increas-
ingly lower sequencing error rates. We focus on the critical problem of mapping,
or aligning, low-divergence sequences from long reads (e.g. PacBio HiFi) to a ref-
erence genome, which poses challenges in terms of accuracy and computational
resources when using cutting-edge read mapping approaches that are designed
for all types of alignments. A natural idea would be to optimize efficiency with
longer seeds to reduce the probability of extraneous matches; however, contigu-
ous exact seeds quickly reach a sensitivity limit.

We introduce mapquik, a novel strategy that creates accurate longer seeds by
anchoring alignments through matches of k consecutively-sampled minimizers
(k-min-mers) and only indexing k-min-mers that occur once in the reference
genome, thereby unlocking ultra-fast mapping while retaining high sensitivity.
Figure 1 gives an overview of the algorithmic pipeline of mapquik, compared with
those of the state-of-the-art methods that use minimizers as seeds.

We demonstrate that mapquik significantly accelerates the seeding and chain-
ing steps—fundamental bottlenecks to read mapping—for both the human and
maize genomes with >96% sensitivity and near-perfect specificity. On the human
genome, for both simulated and real HiFi reads, mapquik achieves a 30× speed-
up over the state-of-the-art tool minimap2, and on the maize genome, a 350×
speed-up over minimap2, making mapquik the fastest mapper to date.
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Fig. 1. Overview of the long-read mapping pipeline using mapquik and com-
parison with state-of-the-art methods using minimizers as seeds. State-of-the-
art read mappers such as minimap2 and Winnowmap2 (top) build an index for a reference
sequence by computing window minimizers (k = 3, w = 5) (a), and storing the positions
of the minimizers in the index (b). In order to map a query sequence using the reference
index (top right, nucleotide C in blue denotes a sequencing error), mappers compute
the minimizers on the query sequence (c), and find matches between the minimizers
of the query and those in the reference index. Once minimizer matches are found,
minimap2 and Winnowmap2 perform a colinear chaining step to output a high-scoring
set of matches, using dynamic programming (d). In contrast, mapquik (bottom) indexes
reference sequences by generating k-min-mers, k consecutive, randomly-selected min-
imizers of length � (k = 3, � = 2) (e), and storing only the k-min-mers that appear
exactly once in the reference (f). mapquik stores the start and end position of each
k-min-mer, along with the order the k-min-mers appear in. In order to map a query
sequence using the k-min-mer index, mapquik first obtains matches between the query
and the reference index by querying the index with each query k-min-mer (g). k-min-
mer matches are extended if the next immediate pair of k-min-mers also match (h).
Instead of a colinear chaining step, mapquik performs a linear-time pseudo-chaining
step, which locates matches that are colinear with the match with the highest number
of k-min-mers (i).
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These accelerations are enabled not only by minimizer-space seeding but also
a novel heuristic O(n) pseudo-chaining algorithm, which improves over the long-
standing O(n log n) bound. Minimizer-space computation builds the foundation
for achieving real-time analysis of long-read sequencing data.

Full manuscript and software available at:
https://www.biorxiv.org/content/10.1101/2022.12.23.521809v2
https://github.com/ekimb/mapquik
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Summary: Sketching-based approaches in recent years have been successfully
applied to genomic and metagenomic analyses. For example, Mash [5], is a Min-
Hash [1]-based approach that was used to characterize the similarity between all
pairs of RefSeq genomes in less than 30 CPU hours. Importantly, the accuracy
and efficiency of sketching approaches can be characterized theoretically. For
example, widely used MinHash has been shown to be well-suited to quantify the
similarity of sets of roughly the same sizes but falters when sets of very different
sizes are compared [4]. To ameliorate this, an approach called “FracMinHash”
was recently introduced [2, 3] that allows the sketch size to scale with the size
of the underlying data, similar to ModHash dynamic scaling [1]. While there
is ample computational evidence for the superiority of FracMinHash when com-
pared to the classic MinHash, particularly when comparing sets of different sizes,
no theoretical characterization about the accuracy and efficiency of the FracMin-
Hash approach has yet been given.

In this work, we perform such a theoretical analysis. Our work determines
various statistics of FracMinHash and shows its asymptotic normality. We then
assume a simple mutation model, in which every nucleotide of a genome sequence
of length L is mutated with a constant mutation rate p. Finally, we show how
to derive a confidence interval for p given an observed containment index Cfrac

using the FracMinHash sketching approach, and thus, leading to point estimates
and confidence intervals for the Average Nucleotide Identity (ANI).

Experiments and Results: Our experiments showed that the confidence inter-
val for mutation rate p is statistically sound. To do this, we took a genome
sequence of varying lengths L and simulated the simple mutation process with
various mutation rates. We then observed the containment index Cfrac and
recorded the percentage of experiments in which the true mutation rate fell
within the confidence interval. Table 1 shows the results and demonstrates that
the confidence intervals are indeed statistically significant.

A full version of this paper with the same title is available as a preprint: https://doi.
org/10.1101/2022.01.11.475870.
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Table 1. The percentage of experiments that resulted in the true mutation rate falling
within the 95% confidence interval when using various mutation rates across multiple k-
mer sizes and L values. A scale factor (elaborated in the full version) of s = 0.1 was used.
The results show an average of over 10,000 simulations for each setting. N/A entries
indicate that the parameters are not particularly interesting and the experiments were
not performed.

L = 10K L = 100K L = 1 M

p = 0.001 0.1 0.2 0.001 0.1 0.2 0.001 0.1 0.2

k = 21 95.7 94.9 95.0 95.2 95.0 95.3 95.0 94.8 95.1

k = 51 95.2 94.6 N/A 95.2 95.5 N/A 95.0 94.8 N/A

k = 100 95.1 N/A N/A 95.2 N/A N/A 95.1 94.7 N/A

(a) Estimates of evolutionary distances
between original and mutated Staphy-
lococcus genome

(b) Estimates of evolutionary distances
between pairs of real bacterial genomes

Fig. 1. Mash distances and FracMinHash estimates of evolutionary distance when (a)
introducing point mutations to a Staphylococcus genome at a known rate, and (b)
between pairs of real bacterial genomes. Error bars indicate the confidence intervals
surrounding the FracMinHash estimate calculated using Theorem 8.

We also made a comparison of the confidence interval with the mutation
distance computed by Mash [5]. We used a Staphylococcus genome, introduced
artificial mutations using the simple mutation process, and recorded the Mash
distance as well as the FracMinHash distance. We then repeated the same exper-
iment for a set of real genomes that do not follow the simple mutation model
at all. The results are shown in Fig. 1, which shows that the confidence interval
that we derived is more accurate and precise.
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Motivation. In sequence similarity search applications such as read mapping, it
is desired that seeds match between a read and reference in regions with muta-
tions or read errors (seed sensitivity) but do not produce redundant matches
due to repeats, which can lower specificity in, e.g., read mapping. K-mers are
likely the most well-known and used seed construct in bioinformatics, and many
studies on, e.g., spaced k-mers aim to improve sensitivity over k-mers. Spaced
k-mers are highly sensitive when mutation rate is largely dominated by substitu-
tions, but deteriorates quickly when indels are present. Recently, we developed
a pseudo-random seeding construct, strobemers [1] (Fig. 1A), which were empir-
ically demonstrated to have high sensitivity also at high indel rates, but the
study lacked a deeper understanding of why.

Fig. 1. Panel A: k-mers and randstrobes are sampled over two similar sequences S and
T different by four mutations. Due to the pseudo-random selection of strobe position
in randstrobes, it is likely that at least one of the seeds match in a mutation dense
regions. Panel B: the core idea behind modelling the entropy of a seed. We compute
the probability that a position i downstream of a position p is covered by a seed, given
that the seed is covering position p. Randstrobes have a pseudo-random component
and therefore higher entropy than k-mers.

Methods. In this study, we demonstrate that the entropy (randomness) of a
seed is a good predictor for seed sensitivity. We propose a model to estimate
the entropy of a seed (Fig. 1B), and find that seeds with high entropy according
to our model in most cases have high match sensitivity. We also present three
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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new strobemer seed constructs, mixedstrobes, altstrobes, and multistrobes. We
use both simulated and biological data to demonstrate that our new seed con-
structs improve sequence matching sensitivity to other strobemers (Fig. 2). We
also implement strobemers into minimap2 and observe slightly faster alignment
time and higher accuracy than using k-mers at various error rates.

altstrobes−analysis mixedstrobes−analysis multistrobes−analysis
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Fig. 2. For various parametrizations (x-axis), the entropies (y-axis; upper panels) of
three novel seeding constructs that we propose, altstrobes, mixedstrobes and multi-
strobes. The entropy of k-mers (orange) and randstrobes (turquoise) are also shown.
Each line corresponds to a window parameter in the seeding constructs. Lower three
panels shows the corresponding summed seed sensitivity (y-axis), where the sensitivity
is measured as producing at least one match between two sequences different by m
mutations in a given window. Here, m is summed so that the sequences go from 99.5%
down to 70% sequence identity. (Color figure online)

Results. Our discovered seed randomness-sensitivity relationship gives an expla-
nation as to why some seeds perform better than others, and the relationship pro-
vides a framework for designing even more sensitive seeds. In addition, we show
that the three new seed constructs are practically useful. Finally, in cases where
our entropy model does not predict the observed sensitivity well, we explain why
and how to improve the model in future work.
Code: https://github.com/benjamindominikmaier/mixedstrobes altstrobes.
bioRxiv: https://doi.org/10.1101/2022.10.13.512198.
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Motivation. Modern sequence alignment algorithms need to handle massive
amounts of data. Given a reference sequence of length n and a query sequence
of length m, optimal alignment algorithms such as Smith-Waterman run in time
O(mn); this is too slow when dealing with large amounts of sequencing data.
As a result, these algorithms are eschewed in favor of heuristic methods, which
are much faster. A popular heuristic algorithm is the seed-chain-extend method,
which is employed in popular genome-to-genome alignment and long-read map-
ping tools such as minimap2 [3]. Unfortunately, these heuristic methods lack
theoretical guarantees on the resulting alignment.

Theoretical Results. In this work, we give, to our knowledge, the first theo-
retical guarantees on the goodness of seed-chain-extend. We do this by using a
probabilistic model. Let S be a uniformly random string of length n, and S′ be
a mutated substring of S with additional independent point substitutions. We
apply seed-chain-extend to S, S′ and average the results to obtain our bounds in
expectation. In our model of seed-chain-extend, we: (1) use exact fixed-length k-
mer matches of length k (2) allow for overlapping k-mer anchors in the chain (3)
use a linear gap chaining cost [1] (4) perform quadratic time extension between
gaps, not banded alignment. To measure the goodness of alignment, we propose
a metric called recoverability, which measures how many homologous bases can
be recovered by our resulting alignment. We now state our main result:

Simplified Theorem 1 (Informal main result; no sketching). Suppose we
are given a uniformly random DNA string of length n and a mutated substring
of length m where each base is substituted with probability θ. If θ < 0.206
and the longer string is already seeded, then we can choose k = Θ(log n) such
that the expected runtime of k-mer seed-chain-extend is O(mnf(θ) log(n)) =
O(mn2.43·θ log(n)), and in expectation ≥ 1 − O( 1√

m
) of the homologous bases

can be recovered from this alignment.

J. Shaw was supported by an NSERC CGS-D scholarship. This work was supported
by Natural Sciences and Engineering Research Council of Canada (NSERC) grant
RGPIN-2022-03074.
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Fig. 1. Recoverability and seed-chain-extend diagrams. k-mer matches correspond to
matches in the alignment matrix; chaining is the task of finding an optimal sequence
of k-mer matches. Extension corresponds to performing dynamic programming (DP)
on the sub-matrix between k-mer anchors in a chain. (Color figure online)

We also prove a version of the above theorem with sketching, i.e. subsam-
pling the set of k-mer seeds to reduce chaining time. It turns out that with
open syncmer seeds [2], the above theorem still holds, except we can reduce the
runtime of chaining by a factor of logn, which is useful in practice.

Experimental Results. We simulated sequences with point substitutions and
aligned them to each other using a basic implementation of a seed-chain-extend
aligner. The experimental runtimes were strongly sub-quadratic, as predicted
by our theory, and well predicted by our O(mnf(θ) log n) bound. Importantly,
our theory, which predicts that sketching does not increase extension runtime
asymptotically yet reduces chaining runtime asymptotically, is validated by our
results. By sketching with Θ(1/ log n) density, we can reduce chaining time by a
factor of log n, which is ∼20 on our simulated genomes, yet the extension time
plateaus at a ∼3 times slowdown (Fig. 1).

Availability. Our simulations and implementation of seed-chain-extend is avail-
able at https://github.com/bluenote-1577/basic seed chainer/.

Preprint. Our preprint is available at https://doi.org/10.1101/2022.10.14.
512303.
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Abstract. Compacted de Bruijn graphs are one of the most funda-
mental data structures in computational genomics. Colored compacted
graphs Bruijn graphs are a variant built on a collection of sequences, and
associate to each k-mer the sequences in which it appears. We present
GGCAT, a tool for constructing both types of graphs. Compared to
Cuttlefish 2 (Genome Biology, 2022), the state-of-the-art for construct-
ing compacted de Bruijn graphs, GGCAT has a speedup of up to 3.4×
for k = 63 and up to 20.8× for k = 255. Compared to Bifrost (Genome
Biology, 2020), the state-of-the-art for constructing the colored variant,
GGCAT achieves a speedup of up to 33.3× for k = 27. GGCAT is up to
480× faster than BiFrost for batch sequence queries on colored graphs.
GGCAT is based on a new approach merging the k-mer counting step
with the unitig construction step, and on many practical optimizations.
GGCAT is implemented in Rust and is freely available at https://github.
com/algbio/ggcat.

Keywords: de Bruijn graph · unitig · Sequencing data · k-mers

De Bruijn graphs are one of the most fundamental data structures in computa-
tional genomics, appearing in countless applications. To obtain an (edge-centric)
de Bruijn graph of order k for a multiset of strings (usually sequencing reads,
or assembled genomes), for every k-mer in the strings, one adds an edge from
the node corresponding to its prefix of length k − 1, to the node corresponding
to its suffix of length k − 1. De Bruijn graphs usually have associated also an
abundance threshold a, so that edges (and thus nodes) are added only for k-mers
appearing at least a times in the input strings. A colored de Bruijn graph [4] is
built from a collection of datasets, for example different sequencing datasets or
different (full) genome sequences. For every k-mer, colored de Bruijn graphs also
store the identifiers (colors) of the datasets in which the k-mer appears. Given a
de Bruijn graph, a key problem is to compute the set of all its maximal unitigs
(a unitig is a path whose internal nodes have in-degree and out-degree one); this
problem is also called graph compaction.
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H. Tang (Ed.): RECOMB 2023, LNBI 13976, pp. 208–209, 2023.
https://doi.org/10.1007/978-3-031-29119-7

http://orcid.org/0000-0002-6973-995X
http://orcid.org/0000-0002-5747-8350
https://github.com/algbio/ggcat
https://github.com/algbio/ggcat
https://doi.org/10.1007/978-3-031-29119-7


Extremely-Fast Construction and Querying 209

We propose a new tool for constructing compacted, and optionally colored,
de Bruijn graphs, GGCAT.1 As opposed to state-of-the-art tools BCALM2 [1]
and Cuttlefish 2 [5], the first idea of GGCAT is to merge the k-mer counting
step with unitig construction, by adding a little more “context” information that
allows us to compute valid global unitigs inside each bucket that the input is
split into. This avoids the storage of every single k-mer, since only unitigs built
inside the buckets are written to disk. Moreover, as opposed to other tools, these
unitigs are lz4-compressed before writing to disk, which allows for a substantial
reduction in disk usage for highly repetitive datasets. Second, we avoid a union-
find data structure (used by BCALM2) with a new joining step across buckets,
that guarantees exact results with very low expected running time. Third, we
devise a parallelization pipeline that divides the algorithm into smaller execution
units (e.g., reading from disk, k-mer counting, k-mer extension), thus preventing
core stalling due to waiting for data.

For colored graphs we extend our algorithm above with an approach inspired
by the state-of-the-art tool BiFrost [3], but with several optimizations that allow
improved build and query times, with a comparable colormap size. The main dif-
ference w.r.t. BiFrost is to map each color set to a color set index, instead of using
an individual (compressed) color bitmap for each possible k-mer. In addition, to
store each color set, we compute the difference between consecutive colors and
compress them using a run-length encoding. Combined with our improvements
over Cuttlefish 2, this leads to a major speed up over BiFrost for colored graphs.
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Spatially resolved transcriptomics (SRT) technologies measure mRNA expres-
sion at thousands of locations in a tissue slice. However, nearly all SRT tech-
nologies measure expression in two dimensional slices extracted from a three-
dimensional tissue, thus losing information that is shared across multiple slices
from the same tissue. Integrating SRT data across multiple slices can help recover
this information and enables innovative downstream tasks such as 3D differen-
tial expression analysis, 3D cell-cell communication, and 3D clustering. Many
existing methods for integrating SRT slices either do not use spatial information
or assume that the morphology of the tissue is largely preserved across slices, an
assumption that is often violated due to biological or technical reasons. A recent
method, PASTE [3], aligns adjacent SRT slices according to both transcriptomic
and spatial similarity, but assumes that adjacent slices overlap over the full 2D
assayed region, with similar field of view and similar number and proportion of
cell types.

We introduce PASTE2, a method to perform partial alignment and 3D recon-
struction of multi-slice SRT datasets, allowing only partial overlap between
slices and/or slice-specific cell types. PASTE2 is based on a novel partial Fused
Gromov-Wasserstein (partial-FGW ) optimal transport formulation, which we
optimize using a conditional gradient algorithm. PASTE2 includes a model selec-
tion procedure to estimate the fraction of overlap between slices, and optionally
uses information from histological images that accompany some SRT experi-
ments. PASTE2 also provides a generalized Procrustes analysis method for 3D
spatial reconstruction of the tissue from partially aligned 2D slices.

We demonstrate PASTE2’s advantages on both simulated and real SRT
datasets. We show on simulated data that PASTE2 achieves accurate alignment
when slices do not fully overlap. On SRT dataset from the human dorsolateral
prefrontal cortex [1], we show that PASTE2 computes more accurate alignments
than competing methods, and the use of histological images can further improve
the alignment. We further use PASTE2 to reconstruct a 3D map of gene expres-
sion of a Drosophila embryo using a 16 slice Stereo-seq SRT dataset [2]. PASTE2
enables detailed studies of 3D spatial gene expression across a wide range of bio-
logical applications.

The PASTE2 software is available at https://github.com/raphael-group/
paste2.
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A genetic map for a population or a species contains the locations of genetic
markers or variant sites in relation to one another based on the probability
of recombination, rather than a physical location along each chromosome. An
accurate genetic map, which is an estimation of the recombination rates along
a chromosome, serves as the foundation for genetic studies like gene mapping,
population genetics, and genealogical studies. Given that recombination rates
differ between populations, the estimation of population-specific genetic maps is
crucial for advancing genetic research, particularly in diverse populations. The
traditional approach to infer the recombination rates is to use genotype data
from a large number of parent-offspring pairs to capture an adequate number of
meiotic crossover events [1, 2]. An alternative approach is to use recombination
event signals that are dispersed among individuals in population samples [3,
4]. IBDrecomb [4] leverages the recent development of fast Identity-by-Descent
(IBD) segment calling methods. IBD segments are identical DNA fragments
that are inherited from a common ancestor. Under the assumption that the IBD
segment boundaries were caused by recombination events, IBDrecomb counts the
IBD segment boundaries and generates a map iteratively using the normalized
counts of the IBD segments. However, IBDrecomb is not adequately efficient
as it requires outputting all pairwise IBD segments, which is not conducive for
biobank-scale cohorts.

We present FastRecomb, a novel method that efficiently identifies poten-
tial recombination breakpoints in very large cohorts using positional Burrows-
Wheeler transform (PBWT) [5]. For short IBD segments, we assume that PBWT
can be used as a lightweight alternative to conventional IBD calling methods if
the error rate is low. Our approach detects blocks of haplotype matches, such
as IBD segments, and takes into account the number of mismatches at each site
rather than counting all pairwise IBD segments. The number of mismatches (or
minor alleles) within each matching block corresponds to the number of diverg-
ing haplotypes. In fact, FastRecomb counts the number of diverging haplotypes
at each variant site to infer the recombination rates. Blocks of haplotype matches
can be detected in linear time using PBWT [6]. Additionally, a pre-processing
step [7] is applied in an effort to smooth the haplotype panel by using blocks
of haplotype matches to reduce the impact of genotyping errors within a panel.
It is anticipated that the more individuals available in the panel, the closer the
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computed rates mirror the actual values. With the growing availability of genetic
data in large-scale cohorts, we anticipate our method will enable an accurate and
population-specific estimation of recombination rates in diverse populations as it
has the capability of being applied to samples containing millions of individuals
without requiring the use of extensive computational resources.

The accuracy of recombination rate estimation of FastRecomb improves with
the increasing number of haplotypes while the running time increases linearly
with the sample size. FastRecomb is also robust against genotyping errors as
its performance was not affected by increasing the error rates from 0 to 0.2%.
FastRecomb outperformed LDhat and IBDrecomb in mid-regions (excluding 5
Mbps from both sides) while one million samples for FastRecomb were used.
Other tools are not tractable for such large sample sizes. We applied FastRecomb
on four different subsets of UK Biobank data. Approximately 1 CPU hour and
55 MB memory were used to estimate the recombination rates for chromosome
20 using 458,677 individuals.

The current implementation of FastRecomb does not treat the end regions
differently. Hence, the estimated rates for the end-regions are not as accurate
as those of the mid-region. In summary, FastRecomb unleashes the potential of
large-scale haplotype panels by providing an efficient approach for estimating
population-specific genetic maps. A preprint of the full paper is available at
https://www.biorxiv.org/content/10.1101/2023.01.09.523304v1. Source code is
available at https://github.com/ZhiGroup/FastRecomb.
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Abstract. Tools that classify sequencing reads against a database of
reference sequences require efficient index data structures. The r-index
is a compressed full-text index that answers substring presence/absence,
count and locate queries in space proportional to the amount of distinct
sequence in the database: O(r) space where r is the number of Burrows-
Wheeler runs. To date, the r-index has lacked the ability to quickly
classify matches according to which reference sequences (or sequence
groupings, i.e. taxa) a match overlaps. We present new algorithms and
methods for solving this problem. Specifically, given a collection D of d
documents D = {T1, T2, . . . , Td} over an alphabet of size σ, we extend
the r-index with O(rd) additional words to support document listing
queries for a pattern S[1..m] that occurs in ndoc documents in D in
O(m log logw σ + ndoc) time and O(rd) space, where w is the machine
word size. Applied in a bacterial mock community experiment, our
method is up to 3 times faster than a comparable method that uses
the standard r-index locate queries. We show that our method classifies
both simulated and real nanopore reads at the strain level with higher
accuracy compared to other approaches. Finally, we present strategies for
compacting this structure in applications where read lengths or match
lengths can be bounded. Our source code can be found at https://github.
com/oma219/docprofiles, and our experimental code can be found at
https://github.com/oma219/docprof-experiments.

1 Introduction

Metagenomic read classification allows researchers to study organisms present in
an environmental sample. Tools like Kraken 2 [13] and Centrifuge [6] accomplish
this using an index of the reference sequences. Kraken 2 [13] builds a compact
hash table that maps minimizer sequences onto the taxonomic lowest-common
ancestor of the genomes it occurs in. Centrifuge [6] uses an FM-index [4] to find
substring matches which are combined to make classification decisions. But as
databases of reference sequences continue to grow, these tools encounter diffi-
culties with scaling and accuracy. Nasko et al. [9] showed that the specificity
of k-mer based approaches like Kraken 2 can suffer as the reference database
(i.e., RefSeq) grows, since the addition of new sequences causes more k-mers (or
minimizers) to co-occur in distant parts of the taxonomy. The FM-index at the
core of Centrifuge does not naturally scale to pangenomes; rather, it requires
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an initial work-intensive step that compresses the genomes in a way that elides
some of the underlying genetic variation.

The r-index [5] is a successor to the FM-index that indexes repetitive texts
using O(r)-space, where r is the number of runs in the text’s Burrows-Wheeler
Transform (BWT). Since r grows only with the amount of distinct sequence in
the collection, the r-index scales naturally to large pangenomes and reference
databases like the ones used for taxonomic classification. Since it is a full-text
index, the r-index can find matches of any length, unconstrained by a particular
choice of k-mer length.

While the r-index has already been applied to pangenomic pattern-matching
[7, 11] and binary classification [2], it has so far lacked the ability to solve multi-
class classification problems in an accurate and efficient manner. A straightfor-
ward approach would be to use standard backward search in the r-index, then
use locate queries to locate the offsets in the concatenated text where the pat-
tern occurs. These offsets can then be cross-referenced with another structure
to determine which documents they occur in. This requires an amount of work
proportional to the number of occurrences occ, which is expensive, particularly
for repetitive matches against a pangenome.

We hypothesized that extending the r-index to multi-class classification could
be accomplished by augmenting it with efficient facilities for document listing,
i.e. the ability to report all the reference sequences (documents) where a particu-
lar pattern occurs. A document—which we will sometimes call a “class”—could
consist of a single genome or a collection of related genomes.

An early study by Muthukrishnan [8] described a specialized index for doc-
ument listing consisting of a generalized suffix tree and a document array. It
provided O(m + ndoc) queries, where m is the length of the pattern and ndoc
is the number of distinct documents it occurs in. But this came at the cost
of O(n log n) bits of space, where n is the total length of the texts, which is
impractical for large pangenome databases. Sadakane [12] improved on this by
introducing a new succinct document array representation and building on suc-
cinct representations of suffix trees and arrays. He showed how to reduce the
index size to |CSA| + O(n) bits, where |CSA| is the size of the compressed
suffix array using statistical compression with an increased time complexity of
O(m + ndoc · log n), a high cost for repetitive text collections [3]. Later efforts
further reduced the required space using grammar-compression [3] and relative
Lempel-Ziv compression [10].

We present a new method that solves the document listing problem in
O(m log logw σ + ndoc)-time and O(rd)-space using the r-index. Importantly,
we also show how to use the prefix-free parsing process to build the profile
simultaneously with the BWT. This document-array structure can be sampled
and stored at the run boundaries of the BWT, yielding a space complexity of
O(rd). At query time, after performing backward search for a pattern, we can
report the document listing by simply examining the current document array
profile which is an array of d integers—as opposed to performing a query for
each occurrence of a pattern. We also discuss practical optimizations that can
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be used to reduce the space usage of this data structure even further in the
context of metagenomic read classification.

We compare the query time and index size for our approach to an alternative
that uses the standard r-index locate query to report document listings. We show
that as a database of bacterial genomes grows larger, our approach is much faster
than the locate-query approach, up to 3.2 times faster. Furthermore, we show
when attempting to classify different strains of Escherichia coli and Salmonella
enterica, that using our document array profiles yields higher recall and precision
compared to SPUMONI 2’s sampled document array [1]. Finally, we believe that
our theoretical guarantees will prove useful for the community by allowing read
classification to be compared in a grounded manner that complements practical
evaluation.
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Summary. Multiple sequence alignment (MSA) is a critical step in the study
of protein sequence and function. Typically, MSA algorithms progressively align
pairs of sequences and combine these alignments with the aid of a guide tree.
These alignment algorithms use scoring systems based on substitution matrices
to measure amino-acid similarities. While successful, standard methods strug-
gle on sets of proteins with low sequence identity—the so-called twilight zone
of protein alignment. For these difficult cases, another source of information
is needed. Protein language models are a powerful new approach that lever-
age massive sequence datasets to produce high-dimensional contextual embed-
dings for each amino acid in a sequence. These embeddings have been shown to
reflect physicochemical and higher-order structural and functional attributes of
amino acids within proteins. Here, we present a novel approach to align multiple
sequences, based on clustering and ordering amino acid contextual embeddings.
Our method for aligning semantically consistent groups of proteins circumvents
the need for many standard components of MSA algorithms, avoiding initial
guide tree construction, intermediate pairwise alignments, gap penalties, and
substitution matrices. The added information from contextual embeddings leads
to higher accuracy alignments for structurally similar proteins with low amino-
acid similarity. We anticipate that protein language models will become a fun-
damental component of the next generation of algorithms for generating MSAs.

Software Availability: https://github.com/clairemcwhite/vcmsa.

Methods. A brief overview of our method, vcMSA, is given in Fig. 1.

Results. We apply vcMSA to align a benchmark set of 147 protein families, and
evaluate the quality of each alignment by determining the percent of columns in
the output alignment that fully match columns in the reference gold standard
alignment. We compare vcMSA to nine MSA algorithms and find that vcMSA
tends to produce higher quality alignments than previous methods. Notably,
vcMSA has good performance when considering sequence families with highly
divergent sequences, precisely the scenario that current methods have the most
difficulty on.
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Fig. 1. Overview of vcMSA algorithm. (A) Proteins are embedded using a protein
language model to produce vector representations of each amino acid, and the mean
of these amino acid embeddings is taken to produce a sequence-level representation.
(B) We cluster sequence representations, and detect outlier sequences. (C) For each
sequence cluster, we determine bi-directional/reciprocal best hits of cosine-similarity
between pairs of amino acids in different sequences. (D) From a network built from
reciprocal best hits, we determine confident clusters of amino acids, corresponding
to columns in the MSA. (E) To determine column order, we trace the path of each
sequence through clusters and combine all paths into one network, taking edge weights
from the number of sequences which traverse between the pairs of clusters. We trim any
clusters which cause cycles, and use a topological sort of the resulting directed acyclic
graph to find column order. (F) Clusters/columns limit scope of search for unplaced
amino acids. (G) We iterate limited searches until all amino acids are placed. Gaps in
the alignment occur when a cluster does not contain an amino acid from a sequence.
(H) We combine alignments from each sequence cluster and outliers in the final MSA.

Full Paper: A complete manuscript describing this work can be accessed at:
https://www.biorxiv.org/content/XX.XXXX/2022.01.31.XXXXXv1.
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Erin K. Molloy4, Vishaka Gopalan1, Stephen M. Mount5, Eytan Ruppin1,

Kenneth Aldape2, and S. Cenk Sahinalp1(B)

1 Cancer Data Science Laboratory, Center for Cancer Research,
National Cancer institute, NIH, Bethesda, MD 20892, USA

cenk.sahinalp@nih.gov
2 Laboratory of Pathology,Center for Cancer Research, National Cancer Institute,

NIH, Bethesda, MD 20892, USA
3 Program in Computational Biology, Bioinformatics, and Genomics,

University of Maryland, College Park, MD 20742, USA
4 Department of Computer Science, University of Maryland,

College Park, MD 20742, USA
5 Department of Cell Biology and Molecular Genetics, University of Maryland,

College Park, MD 20742, USA
6 Center for Bioinformatics and Computational Biology, University of Maryland,

College Park, MD 20742, USA
7 Department of Computer Science, Indiana University,

Bloomington, IN 47408, USA

The recent rise of single-cell sequencing technology empowers more accurate
tumor lineage inference by allowing the examination of intratumor heterogene-
ity at a cellular resolution. However, since single-cell sequencing data is derived
from an incredibly limited amount of genetic material, the signals obtained are
more scarce and unstable than those from bulk sequencing DNA methylation,
the addition of a methyl group to cytosine, which results in the formation of
5-methylcytosine (5mC) especially in the context of CpG sites, is an epigenetic
marker that has been extensively studied for its role in regulating gene expres-
sion and maintaining cellular memory. Prior research suggests the changes in
methylation status at CpG sites in cancer cells may provide a greater amount of
observable evidence for tumor evolution than single-nucleotide variations (SNVs)
or copy number aberrations (CNAs) [2, 5]. That said, constructing tumor lin-
eage with single-cell methylation data has two major challenges. First, single-cell
methylation data exhibit high level of sparsity. Second, not all CpG sites have
their methylation statuses stably retained during in tumor evolution [4].

In this work, we introduce Sgootr (Single-cell Genomic methylatiOn tumOr
Tree Reconstruction, Fig. 1), the first distance-based computational method to
jointly select informative CpG sites and reconstruct tumor lineages from single-
cell methylation data. Sgootr consists of five key components: (i) biclustering of
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cells and sites for reducing sparsity-induced noise; (ii) likelihood-based sequenc-
ing error correction accounting for copy number variation; (iii) expected distance
calculation between cell pairs for tree construction; (iv) pruning of CpG sites
according to a tree-based methylation status persistence measure; and (v) infer-
ence of migration history from the lesion-labeled tree. Components (iii) and (iv)
are iteratively applied.

Application of Sgootr on simulated data shows that it can more accurately
capture the evolution history of a tumor compared to a baseline approach.
Application of Sgootr to a multiregionally-sampled metastatic CRC scBS-seq
data set [1] and a multiregionally-sampled GBM MscRRBS patient sample [3]
reveals tumor progression models and metastatic migration histories simpler
than previously reported. A comparison of Sgootr against alternative lineage-
reconstruction and site-selection approaches on the same datasets shows that
it infers a simpler migration history in a shorter amount of time. Interestingly
lineage-informative CpG sites identified by Sgootr appear to be primarily in
inter-CpG island (CGI) regions, as opposed to CGI’s which have been the main
regions of interest in genomic methylation-related analyses.

Sgootr is implemented as a Snakemake workflow, available at https://github.
com/algo-cancer/Sgootr. The full manuscript is available on bioRχiv at https://
www.biorxiv.org/content/10.1101/2021.03.22.436475v2.

Fig. 1. Overview of Sgootr. Sgootr leverages single-cell methylation sequencing data
from tumor samples, incorporating copy number information when available, to jointly
infer a single-cell tumor lineage tree and identify CpG sites that may harbor lineage-
informative methylation changes.
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In real-world multiclass classification problems, outcome labeling ambiguity and
subjectivity would deteriorate prediction accuracy. Although outcome labels are
often combined in an ad hoc way to train algorithms in practice, there lacks a
principled approach to guide the combination by any optimality criterion.

Finding an “optimal” label combination is nontrivial. The reason is that even
if prediction is completely random (“random guess”), i.e., assigning data points
with random labels irrespective of features, prediction accuracy would still be
boosted by label combination. In such an extreme case, the increase in prediction
accuracy does not outweigh the decrease in classification resolution. Hence, our
rationale is that label combination must be guided by a criterion that reasonably
balances prediction accuracy and classification resolution.

Motivated by this rationale, we propose ITCA, a criterion from an informa-
tion theory perspective to define the optimal balance between prediction accu-
racy and classification resolution.

Let (X, Y ) ∼ P be a random pair where X ∈ X ⊂ IRd is a feature vector,
Y ∈ [K0] := {1, . . . ,K0} is a class label indicating one of K0 observed classes
that are potentially ambiguous, and P is the joint distribution of (X, Y ). For a
fixed positive integer K (< K0), a class combination is represented by an onto
mapping: πK : [K0] → [K]. For example, if K0 = 4 classes are combined into
K = 3 classes by merging the original classes 3 and 4, then π3(1) = 1, π3(2) =
2, π3(3) = 3, and π3(4) = 3. Given a class combination πK , a classification
algorithm C, and a training dataset Dt, we denote by φC,Dt

πK
: X → [K] a multi-

class classifier trained by C on Dt to predict K combined classes. Then ITCA is
defined on a validation dataset Dv:

ITCA(πK ; Dt, Dv, C) :=
K∑

k=1

[
−p

Dv
πK

(k) · log p
Dv
πK

(k)
]

·

∑

(X i,Yi)∈Dv

1(φ
C,Dt
πK

(X i) = k, πK (Yi) = k)

1
∨ ∑

(X i,Yi)∈Dv

1(πK (Yi) = k)
, (1)

where pDv
πK

(k) := 1
|Dv|

∑

(X i,Yi)∈Dv

1(πK(Yi) = k) is the proportion of πK ’s k-

th combined class in Dv, and the expression a
∨

b means the maximum of a
and b, preventing the denominator of (1) from being zero. In (1), πK ’s k-th
combined class has weight −pDv

πK
(k) · log pDv

πK
(k), i.e., the class’s contribution to
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the “classification resolution” defined as the entropy of the K combined class
labels:

∑K
k=1 −pDv

πK
(k) · log pDv

πK
(k). Note that (1) becomes the classification accu-

racy (ACC) if we set the k-th combined class’s weight as pDv
πK

(k). Hence, ITCA
overweighs minor classes so it would be less dominated by major classes than
ACC is. We also propose two heuristic search strategies, i.e., greedy search and
breadth-first search (BFS), to find the optimal class combination that maximizes
ITCA.

We evaluate ITCA extensively on both simulated and real-world data.
First, we demonstrate the effectiveness of ITCA and the two search strate-

gies in multiple simulation settings. ITCA consistently outperforms alternative
class combination criteria (including our newly proposed alternative criteria and
the commonly used ACC and mutual information) and clustering-based class
combination algorithms (Figs. 1–3 in Supplementary Material)’.We also analyze
the theoretical properties of ITCA at the population level with the oracle algo-
rithm and the linear discriminant analysis (LDA) algorithm. As expected, when
used with the oracle algorithm, ITCA has a much stronger ability to find the
true class combination than when it is used with the LDA algorithm (Fig. 4 in
Supplementary Material). We also find that, when the LDA is used as a soft
classification algorithm, ITCA is more likely to find the true class combination
(Fig. 5 in Supplementary Material).

Second, we apply ITCA to improve prediction accuracy in a disease prog-
nosis application. We use the random forest classification algorithm to predict
rehabilitation outcomes of traumatic brain injury patients, which were evalu-
ated and recorded by physical therapists for 17 activities with seven Functional
Independence Measure levels: 1 (patient requires total assistance to perform an
activity) to 7 (patient can perform the activity with complete independence).
We apply ITCA as a data-driven approach to guide the combination of out-
come levels for each activity. Compared with the expert-suggested combination
and the hierarchical-clustering-based combinations, ITCA-guided combinations
consistently lead to more balanced levels and more significant improvement in
prediction accuracy from random guess (Fig. 6 in Supplementary Material).

Third, we demonstrate how ITCA identifies biologically similar cell types in
a single-cell RNA-seq dataset of hydra. Since our goal is to discover ambiguous
cell types instead of achieving high prediction accuracy, we choose the LDA, a
weak classification algorithm. In our results, ITCA suggests the combination of
two cell types with similar labels and gene expression profiles. Moreover, ITCA
with greedy search constructs a cell type hierarchy more biologically meaningful
than the result of hierarchical clustering (Fig. 7 in Supplementary Material).

The full version of this manuscript is available at [1].
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Introduction. Efficient methods to map, store, and search DNA sequences have
become critical in the analysis of ever-growing sequencing data. Sequence sketch-
ing, which is necessary to reduce memory and runtime overhead, is a fundamental
building block in many of these sequence analysis tasks. The common principle
in all sketching techniques is the consistent selection of a k-mer representative
from a long DNA sequence for indexing the sequences in data structures or algo-
rithms. A key parameter for evaluating and comparing sketching schemes is their
density, which is defined as the fraction of k-mers selected from a sequence by
the scheme.

Minimizers are the most common sequence sketching techniques and have
been widely applied across many different bioinformatics applications. In this
technique, the minimum k-mers from every L-long window of a sequence are
selected, based on some pre-defined order. However, the commonly used lexico-
graphic and random k-mer orders have been shown to achieve density that is
far from optimal. Minimizer orders based on universal hitting sets (UHS) have
achieved lower density [1], but UHS construction becomes infeasible for k > 13,
making UHS-based orders of limited use. In this work, we present minimizer
orders that are compatible with a minimum decycling set (MDS) of a de Bruijn
graph (dBG). These orders have density that is as low or even lower than UHS-
compatible orders and can be computed efficiently for large values of k.

Methods. A complete dBG of order k is a directed graph in which each k-mer is
represented by a node, and directed edges exist for every pair (u, v) such that the
(k−1)-long suffix of u is identical to the (k−1) long prefix of v. Paths in the dBG
represent all possible sequences, and a path of w nodes represents a sequence of
w overlapping k-mers. An MDS is a minimum set of nodes necessary to remove
all cycles from a graph, and finding it in a general graph is NP-hard. However,
an MDS of a complete dBG can be constructed in linear time using an algorithm
due to Mykkeltveit [2]. We introduce an algorithm to test the membership of a
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k-mer in this MDS in O(k) time based on Mykkeltveit’s construction. We define
a decycling-set-based minimizer order compatible with an MDS such that every
k-mer in the MDS precedes all other k-mers, and the order of two k-mers within
or outside of the MDS is determined by a random hash function. Using our
new membership algorithm and the new order we defined enables computing
minimizers in a sequence on the fly for any value of k.

We further extended the decycling-set-based order by defining two symmetric
MDSs, which are based on the fact that Mykkeltveit’s construction uses sym-
metric properties of the dBG. We prove that the union of these two sets leaves
shorter remaining paths in the dBG compared to each of the symmetric sets
separately. We thus define a minimizer order compatible with a double decycling
set, which we hypothesize will achieve even lower density.

Results. We compared the density factors of our new minimizer orders to
UHS-based orders, a Miniception-based order [3], and a random minimizer order
(Fig. 1). The density factor is density normalized by length to a unitless value
such that the random order has an expected density factor of 2. The results
show that the decycling- and double decycling-set-based orders achieved the
lowest expected density factor, and could be extended efficiently to large k.
Moreover, the double-decycling-set-based order achieves lower density factors
than the decycling-based order for smaller values of L = w + k − 1. Our full
paper presents extensive results over a range of k and L and various real genome
sequences.

Fig. 1. Decycling-set-based minimizer orders achieved the lowest expected
density. The expected density factors of different minimizer orders are compared over
a range of L values for k = 11 (A) and k = 50 (B). Average density factor are reported
over ten runs with 10M nt random sequences.

Conclusion. Our new decycling-set-based orders are the first to yield much
lower density than random that can be efficiently extended to larger k without
being tailored to a specific sequence. By implementing our new decycling-set-
based minimizer orders in data structures and algorithms of high-throughput
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DNA sequencing analysis, we expect to see reductions in runtime and memory
usage, beyond what was previously demonstrated using UHS-based minimizer
orders.

Our manuscript is available on bioRxiv at https://doi.org/10.1101/2022.
10.18.512682 and the code is freely available from github.com/OrensteinLab/
DecyclingSetBasedMinimizerOrder.
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Abstract. A genomic sketch is a small, probabilistic representation of
the set of k-mers in a sequencing dataset. Sketches are building blocks
for large-scale analyses that consider similarities between many pairs of
sequences or sequence collections. While existing tools can easily com-
pare 10,000s of genomes, relevant datasets can reach millions of sequences
and beyond. Popular tools also fail to consider k-mer multiplicities, mak-
ing them less applicable in quantitative settings. We describe a method
called Dashing 2 that builds on the SetSketch data structure. SetSketch
is related to HyperLogLog, but discards use of leading zero count in favor
of a truncated logarithm of adjustable base. Unlike HLL, SetSketch can
perform multiplicity-aware sketching when combined with the ProbMin-
Hash method. Dashing 2 integrates locality-sensitive hashing to scale
all-pairs comparisons to millions of sequences. Dashing 2 is free, open
source software available at https://github.com/dnbaker/dashing2.

Keywords: Genomics · Sequencing · Sketching

1 Introduction

Sketching, e.g. based on MinHash or HyperLogLog, is a key building block for
scaling sequence comparison. Sketches built over all the k-mers in a sequence have
been applied in clustering [8], phylogenetic inference [2], strain-level profiling [3,
6], species delineation [5] and summarization of genomic collections [1, 7]. While
existing tools can easily cluster 10,000s of genomes, many relevant biological
datasets are much larger, reaching millions of sequences and beyond. Further,
these tools fail to consider multiplicities of the k-mers, limiting their applicability
in settings where quantities matter, e.g. when analyzing collections of sequence
reads, or summaries from quantitative sequencing assays.

Dashing 2 builds on the recent SetSketch structure [4]. SetSketch is related to
HyperLogLog (HLL), but replaces the HLL’s leading zero count (LZC) operation
with a truncated logarithm of adjustable base. This addresses a major disadvan-
tage of the HLL as implemented in Dashing, since the LZC wastes about 2 bits
of space out of every 8-bit estimator (“register”) stored. SetSketch is also capa-
ble of multiplicity-aware sketching. Finally, SetSketch admits a simple, accurate
algorithm for computing similarity between sketches in a joint fashion.
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2 Methods Summary

Ertl’s SetSketch [4] addresses this issue by replacing the HyperLogLog’s LZC
operation with a logarithm of configurable base b. Given a data item d, the
update rule for each register Ki, is:

Ki = max(Ki, �1 − logb hi(d))�) (1)
Since each register is a function of every input item, each addition may

require O(m) work where m is the number of registers. Building on Ertl’s work,
we propose (in the full paper) several practice improvements that allow this
computational to be done much more quickly.

Further, this approach can compute a weighted version of the Jaccard simi-
larity, known as the Probability Jaccard similarity.

Dashing 2 has other notable modes and features, discussed in the full paper.

3 Results Summary

Our results show that Dashing 2 is capable of sketching very large collections
of genomics data very quickly. Importantly, it can also compute the similarity
between two sketches much more quickly than the original version of Dashing.
Its estimates for the Jaccard similarity and for the related Mash distance are
generally better than other competing methods like Mash [8], Dashing [1] and
BinDash [9]. Details can be found in the full paper.
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Abstract. CRISPR-Cas9 based genome editing combined with single-
cell sequencing enables the tracing of the history of cell divisions, or
cellular lineage, in tissues and whole organisms. While standard phylo-
genetic approaches may be applied to reconstruct cellular lineage trees
from this data, the unique features of the CRISPR-Cas9 editing process
motivate the development of specialized models that describe the evolu-
tion of cells with CRISPR-Cas9 induced mutations. Here, we introduce
the star homoplasy model, a novel evolutionary model that constrains
a phylogenetic character to mutate at most once along a lineage, cap-
turing the non-modifiability property of CRISPR-Cas9 mutations. We
derive a combinatorial characterization of star homoplasy phylogenies
by identifying a relationship between the star homoplasy model and the
binary perfect phylogeny model. We use this characterization to develop
an algorithm, Startle (Star tree lineage estimator), that computes a max-
imum parsimony star homoplasy phylogeny. We demonstrate that Star-
tle infers more accurate phylogenies on simulated CRISPR-based lin-
eage tracing data compared to existing methods; particularly on data
with high amounts of dropout and homoplasy. Startle also infers more
parsimonious phylogenies with fewer metastatic migrations on a lineage
tracing dataset from mouse metastatic lung adenocarcinoma.

Code availability: Software is available at https://github.com/raphael-group/
startle.

Preprint availability: Full preprint is available at https://www.biorxiv.org/
content/10.1101/2022.12.18.520935v1.
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Abstract. A method is developed for inferring the minimum tree-child
network from multiple trees by aligning the lineage taxon strings that
are obtained from the trees for each taxon. This algorithmic innovation
enables us to get around the scalable limitation of the existing programs
for phylogenetic network inference.

Keywords: Phylogenetic tree · Phylogenetic network · Shortest
common supersequence

Now that a variety of genomic projects have been completed, reticulate evo-
lutionary events have been demonstrated to play important roles in genome
evolution [3, 5]. In this study, phylogenetic networks are rooted, directed acyclic
graphs in which the leaves are labeled with taxa, the non-leaf indegree-1 nodes
represent speciation events and the nodes with multiple incoming edges repre-
sent reticulation events. Phylogenetic trees are phylogenetic networks with no
reticulate nodes. Although phylogenetic networks are more appealing than trees
for modeling reticulate events, it is challenging to apply phylogenetic networks
in the study of genome evolution.

One approach to phylogenetic network inference is that phylogenetic trees
are first inferred from biomolecular sequences and then used to reconstruct a
phylogenetic network with the smallest hybridization number (HN) that displays
all the trees (see [2]), where the HN is defined as the sum over all the reticulate
nodes of the difference between the indegree and outdegree of each reticulate
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node. This approach takes advantage of the fact that the theory of phylogenetic
trees is mature and there are excellent tools available for inferring trees from
a large number of sequences. But, inferring a phylogenetic network with the
smallest HN from multiple trees is NP-hard even for the special case when there
are only two input trees. None of the existing programs can be used for inferring
a network from a set of 30 trees on 30 taxa in which the trees do not contain
any non-trivial common clusters, i.e. no proper cluster appears in all trees.

Since the general inference problem is hard, attention has been switched to
the inference of the tree-child networks, in which every non-leaf node has at least
one child that is not reticulate, or, recently, a tree-based network [8]. Tree-child
networks have a completeness property that for any set of binary trees, there
is always a tree-child network (whose reticulate nodes can be of indegree 2 or
more) that displays all the trees [6].

The program we introduce here, named ALTS, takes a different approach
from other studies [1, 4, 7] for tree-child network inference. In each input tree, we
first label the non-leaf nodes with taxa w.r.t. an ordering of the taxa and, for each
taxon, compute its lineage taxon string (LTS) that consists of the labels of certain
ancestors of that taxon. Then, we compute the shortest common supersequence
(SCS) of the LTSs obtained for each taxon and use all the SCSs to construct a
tree-child network. Here, a string is said to be a common supersequence of a set of
strings if each of the latter can be obtained from the former by the removal of one
or more letters. The smallest tree-child network displaying all trees can be found
by examining all orderings of the taxa. This algorithmic innovation enables us to
get around the scalable limitation associated with the parsimonious inference by
efficiently sampling the taxon orderings and progressively computing the SCSs.
We also added a feature of inferring a weighted tree-child network if the input
trees are weighted.

The full version of this work can be found on arXiv (Id: 2301.00992).
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1 Department of Computer Science, ETH Zurich, 8092 Zurich, Switzerland
{amir.joudaki,alexandru.meterez,harun.mustafa,ragnargroot.koerkamp,

andre.kahles,gunnar.ratsch}@inf.ethz.ch
2 Biomedical Informatics Research, University Hospital Zurich, 8091 Zurich,

Switzerland
3 Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland

4 ETH AI Center, 8092 Zurich, Switzerland

Sequence-to-Graph Alignment. Sequence-to-graph alignment is a key step in
various bioinformatics applications, such as variant genotyping [1] and genome
assembly [2]. The goal of sequence-to-graph alignment is to determine the min-
imum number of editing operations needed to transform a query sequence into
a reference sequence represented in a graph. Seed-and-extend is an approximate
sequence-to-graph alignment approach [3], that typically uses k-mer matches,
i.e. substrings of length k of the original sequence, to find candidate locations
in the graph to start the alignment from. However, using a large k lowers the
recall, while using shorter k in large graphs with high levels of variation can lead
to an exponential increase in false positive matches [4].

Limitations of Exact Seeds. To highlight these limitations, consider the follow-
ing setting: we draw reference sequence Ref uniformly from the set of DNA
nucleotides, and create a query sequence by copying a substring of the reference
sequence at some offset position and substituting each nucleotide with proba-
bility r. To determine the offset between the reference and query using k-mer
matches, at least one k-mer in the query must be copied without mutations. The
probability of this occurring is (|q| − k + 1)(1 − r)k, and the expected number
of matches between reference and query k-mers due to chance is O(|Ref||q|4−k).
This shows that while lowering k can improve recall, it also leads to more matches
and more time needed to process them. To address this issue, a novel seeding
approach that relies on long inexact matches instead of short exact matches is
proposed.

Finding Inexact Seed Matches. For finding seeds we use Tensor Sketching [5],
which in contrast to k-mers, relies on subsequences that are not necessarily con-
tiguous. Tensor Embedding of a sequence a is a |Σ|t-dimensional tensor that
counts the number of subsequences of length t in a, and the embedding dis-
tance between a and b is defined as the Euclidean distance between their respec-
tive tensors. Tensor Sketching is a Euclidean norm-preserving dimensionality
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reduction for Tensor Embedding, but does so in linear time and memory com-
plexity. We can prove that under uniformly random sequences and substitution,
the expected Tensor Sketching distance is proportional to the edit distance.
This enables us to recover sequence similarity even at high edit distance. Finally,
we used a K-nearest neighbor index to anchor seeds from a query sequence to
nodes in a graph. The index maps vectors in a vector space to lists of graph
nodes and is used to anchor seeds in the query to the nearest neighbors returned
by it. To improve scalability and avoid indexing redundant information, a subset
of the nodes are sketched and stored in a Hierarchical Navigable Small Worlds
(HNSW) index [6].

Experimental Results. We evaluate the performance of our Tensor Sketching
approach on synthetic and real genomic datasets and compare it to state-of-
the-art seed-and-extend methods. Our results, presented in Fig. 1, show that our
approach significantly reduces the number of false positive matches and produces
more accurate alignments, particularly at high edit distance.

Fig. 1. The recall of different baselines was evaluated across different mutation rates
and increasing graph sizes. The number of nodes in the graph for each plot is 100K
(A), 10M (B), 100M (C) and 1B (D). The values were measured on a De Bruijn graph
generated by MetaGraph and MG-Sketch was run with K = 40 neighbors and
D = 14, w = 16, s = 8, t = 6.
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Summary of Contributions. We propose a novel seeding approach for sequence-
to-graph alignment that relies on long inexact matches and a K-nearest neighbor
index. Our approach significantly improves the accuracy and speed of alignment
at high edit distance, and has the potential to significantly impact various bioin-
formatics applications that rely on sequence-to-graph alignment.
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Extended Abstract

Substitution rates change through time, creating a major challenge for dating
phylogenetic trees. Ideally, we need to know a molecular clock model that assigns
probabilities to substitution rates throughout the tree. The strict clock model,
while being simple and convenient to use, is insufficient to model phylogenies
at long evolutionary time horizons. Alternatives to the strict clock exist, but
none is universally accepted. While Maximum Likelihood (ML) methods require
a parametric model of the molecular clock, Bayesian methods need a proper
prior. Therefore, both ML and Bayesian methods are sensitive to model mis-
specification. We introduce a new method - Molecular Dating with Categorical
rates (MD-Cat) - that uses a categorical distribution (CAT model) to approx-
imate the distribution of the rates (Fig. 1). Our method is non-parametric, as
we do not assume any predefined parametric model of the clock but use a CAT
model to approximate it. We co-estimate the rate categories and branch lengths
in time units by formulating a ML problem and solving it using Expectation-
Maximization (EM) algorithm. We test MD-Cat on simulated and real datasets
of Angiosperms and HIV. Under a wide selection of rate distributions, we show
that MD-Cat is more accurate than the alternatives.

The Model. We assume the input tree has the correct topology and branch
lengths are given in substitution unit with uncertainties. Let Bi be a random
variable denoting the estimated length of branch ei in substitution unit, b̂i be
its estimate, τi be the unknown length in time unit, and s be the sequence
length (Fig. 1a). We assume Bi ∼i.i.d. N(μiτi,

b̂i
s ) and let f(b̂i|μi, τi) denote the

Gaussian pdf of this model. To model the molecular clock, we discretize the rates
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Fig. 1. (a) The generative model. (b) Examples of clock models and their categorical
approximation. Rate categories are identified by the projection of the steps onto the
x-axis of the CDF plot. (c) The hierarchical model in plate notation.

into k categories ω = [ω1, ω2, . . . ωk] each with the same probability mass 1
k and

use this CAT model to approximate the unknown distribution of the rates.

The Log-Likelihood Function. Putting all elements together, we obtain a
hierarchical probabilistic model (Fig. 1c). The log-likelihood function is

l(τ, ω) =
∑N

i=1 log Li(b̂i; τi, ω) =
∑N

i=1 log
(

1
k

∑k
j=1 f(b̂i;ωj , τi)

)
(1)

where Li(b̂i; τi, ω) denotes the density of b̂i on branch i and f is the density
function of the Gaussian model. Our goal is to find τ and ω that maximize
l(τ, ω) and satisfy the linear constraints defined by calibration points.

The EM Algorithm. We start with an initial of τ and ω and iteratively
improve the log-likelihood function by alternating between the E-step and M-
step. In the E-step, we compute the posterior of the latent variables:

qij = Pr(μi = ωj |b̂i; τ, ω) = f(b̂i|μi=ωj ,τi)∑k
m=1 f(b̂i|μi=ωm,τi)

. (2)

In the M-step, we find ω and τ to maximize
∑N

i=1

∑k
j=1 qij log f(b̂i|ωj , τi) (3)

Using the Gaussian pdf and removing constants, the problem is reduced to:

min
τ>0,ω>0

N∑

i=1

k∑

j=1

sqij

b̂i

(b̂i − ωjτi)2 (4)

such that the calibration constraints are satisfied.
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Open Source Software. https://github.com/uym2/MD-Cat.

Data Availability. https://github.com/uym2/MD-Cat-paper.

Preprint. https://www.biorxiv.org/content/10.1101/2022.10.06.511147v1.
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Abstract. Defining and accounting for subphenotypic structure has the
potential to increase statistical power and provide a deeper understand-
ing of the heterogeneity in the molecular basis of complex disease. Exist-
ing phenotype subtyping methods primarily rely on clinically observed
heterogeneity or metadata clustering. However, they generally tend to
capture the dominant sources of variation in the data, which often orig-
inate from variation that is not descriptive of the mechanistic hetero-
geneity of the phenotype of interest; in fact, such dominant sources of
variation, such as population structure or technical variation, are, in gen-
eral, expected to be independent of subphenotypic structure. We instead
aim to find a subspace with signal that is unique to a group of samples for
which we believe that subphenotypic variation exists (e.g., cases of a dis-
ease). To that end, we introduce Phenotype Aware Components Analysis
(PACA), a contrastive learning approach leveraging canonical correlation
analysis to robustly capture weak sources of subphenotypic variation. In
the context of disease, PACA learns a gradient of variation unique to
cases in a given dataset, while leveraging control samples for account-
ing for variation and imbalances of biological and technical confounders
between cases and controls. We evaluated PACA using an extensive sim-
ulation study, as well as on various subtyping tasks using genotypes,
transcriptomics, and DNA methylation data. Our results provide mul-
tiple strong evidence that PACA allows us to robustly capture weak
unknown variation of interest while being calibrated and well-powered,
far superseding the performance of alternative methods. This renders
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PACA as a state-of-the-art tool for defining de novo subtypes that are
more likely to reflect molecular heterogeneity, especially in challenging
cases where the phenotypic heterogeneity may be masked by a myriad
of strong unrelated effects in the data.

A preprint of the full paper is available at:
https://www.biorxiv.org/content/10.1101/2023.01.05.522921v1.
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Vaccination provides an effective way to develop immunity against many dis-
eases and is the key component to overcoming the global COVID-19 pandemic.
Peptide vaccines present a safe and cost-efficient alternative to traditional vac-
cines with fewer side effects and with application to non-infectious diseases like
cancer or Alzheimer’s disease. They are rapidly produced and adapted for new
viral variants. Their efficacy depends on the peptides included in the vaccine and
the ability of major histocompatibility complex (MHC) molecules to bind and
present these peptides to cells of the immune system. Due to the high diversity
of MHC alleles, their diverging peptide binding specificities, and physical con-
straints on the maximum length of peptide vaccine constructs, choosing a set of
peptides that effectively achieve immunization across a large proportion of the
population is challenging.

Bioinformatics has long been well established in peptide vaccine design
to optimize population coverage or the number of peptides presented by the
human leukocyte antigen (HLA) molecules per individual of a target popula-
tion. Usually, selected peptides are concatenated with optional spacer sequences
in between. Due to the restricted vaccine capacities such approaches have diffi-
culty covering the full population or being robust to viral mutations. Especially
rare MHC alleles are often not targeted by the vaccine formulation.

Here, we present HOGVAX, a combinatorial optimization approach to select
peptides that maximize population coverage (Fig. 1). Our model requires (i) can-
didate peptide sequences, (ii) HLA allele frequencies, and (iii) binding affinity
predictions between peptides and HLA alleles. The key idea behind HOGVAX
is to exploit overlaps between peptide sequences to include a large number of
peptides in limited space and thereby also cover rare MHC alleles. We model this
task as a theoretical problem, which we call the Maximum Scoring k-Superstring
Problem (MSKS). We show that MSKS is NP-hard and introduce a reformu-
lation as a graph problem using the hierarchical overlap graph (HOG) data
structure. This rooted directed tree-like structure contains the input peptides
and all pairwise maximal overlaps as nodes. Weighted tree edges model prefixes
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Fig. 1. HOGVAX workflow.

while special edges called suffix links connect each node with its longest proper
suffix in the HOG. We give an integer linear programming (ILP) formulation
for the graph that selects a closed walk equivalent to a vaccine formulation of
length k. Each MHC allele covered by peptides included in the walk increases
the population coverage. Furthermore, HOGVAX is able to consider haplotype
frequencies to take linkage disequilibrium between MHC loci into account.

We compare HOGVAX to the state-of-the-art tool OptiVax by Liu et al. [Cell
Systems 11(2), 2020] using the same SARS-CoV-2 case study proposed by Liu et
al. Candidate peptides derive from using sliding windows over the entire SARS-
CoV-2 proteome. HLA allele frequencies are available from databases, and allele
linkage can be considered by combining the frequencies of allele combinations
with haplotype or genotype data of typed individuals. Binding affinities result
from in silico prediction methods as they are difficult to obtain experimentally
and are represented as a binary matrix expressing whether a specific candidate
peptide binds to an allele (combination).

We first run OptiVax to select a number of peptides which we concatenate
to define the maximum vaccine length k. We then run HOGVAX using this k.
HOGVAX creates vaccines with maximal population coverage based on single
allele data in under 15 min and based on haplotype frequencies in about 1.5 h. In
addition, our vaccine formulations contain significantly more peptides compared
to vaccine sequences built from concatenated peptides, which has been the state-
of-the-art. We predict over 98% population coverage for our vaccine candidates
of MHC class I and II based on single-allele and haplotype frequencies. Moreover,
we predict high numbers of per-individual presented peptides leading to a robust
immunity in the face of new virus variants.

Note that we are constructing an overlap-vaccine sequence that must be
degraded by the proteasome into presentable peptide fragments to induce immu-
nity. The proteasomal cleavage process is, however, not fully understood yet.
Thus, only experimental investigations will show how well our approach and
competing methods will work in practice.
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We provide a publicly available open source implementation of HOGVAX
and all datasets required for reproduction at https://gitlab.cs.uni-duesseldorf.
de/schulte/hogvax and a full version of the paper at https://doi.org/10.1101/
2023.01.09.523288.
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Each of an individual’s two alleles, at each genomic position, is inherited from a
chain of ancestors going back in time. These two chains must eventually coalesce
at an identical common ancestor. The length of these chains, measured by the
number of generations until coalescence, is called the coalescence time, or the
time to the most recent common ancestor (TMRCA). Coalescence times along
two homologous chromosomes can be well approximated with a Markov chain
using the sequentially Markovian coalescent (SMC) framework [1, 2]. This frame-
work underlies the PSMC [3] method and its extensions [3–6], which estimate a
posterior distribution of the TMRCAs at each genomic position.

With increasing dataset sizes, scalable inference of coalescence times between
each pair of haplotypes in a large dataset is of great interest, as they may pro-
vide otherwise unattainable rich information about the population structure and
history of the sample.

In SMC-based methods, hidden states along the genome correspond to pair-
wise TMRCAs. However, standard HMMs require a discrete hidden state space,
while coalescence time is naturally continuous. Therefore, current SMC-based
methods discretize time into T intervals, and so have at least O(T ) computa-
tional complexity per step.

We introduce Gamma-SMC, which avoids discretizing time by utilizing the
observation that SMC posterior coalescence time distributions are very well
approximated by a gamma distribution [7]. If we constrain the posterior to be
a member of the family Γ(α, β), then the hidden state is described by only two
parameters (α and β) per step, which leads to O(1) time-complexity per step.

To support HMM operations, we describe how to update the forward pos-
terior density from one step to the next. For the emission step, we exploit the
conjugacy between Poisson and gamma to derive a simple update rule for the
α, β parameters. For the transition step, we derived a closed-form expression of
the coalescence time at step i + 1, given that the forward density at step i is
gamma, which is approximately also gamma. For each possible Γ(α, β) distri-
bution, we thus map a new approximate subsequent Γ(α′, β′) distribution. We
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Fig. 1. Speed. Running times of Gamma-SMC vs. MSMC2 and ASMC-seq.

evaluate this mapping over a log-spaced grid, and use lookup and bilinear inter-
polation for O(1) evaluation of off-grid values. Importantly, while calculating
this flow field is computationally expensive, it needs only be calculated once.

To evaluate the accuracy of Gamma-SMC, we simulated a whole genome
using realistic population genetic parameters, used ASMC-seq [6], MSMC2 [8]
and Gamma-SMC to infer the posterior mean of the coalescence times, and
compared them to the true TMRCAs. We observed that all methods have similar
inference accuracy (r2: ASMC-seq = 0.85, MSMC2 = 0.82, Gamma-SMC =
0.80), with Gamma-SMC slightly less accurate.

We next evaluated the running time of Gamma-SMC, observing that it is at
least ×14 faster than ASMC-seq (Fig. 1), depending on T . For example, analysis
of all pairs using T = 69 discrete time intervals (ASMC-seq default), required
29 min for a single processor for ASMC-seq, compared to ∼1 min for Gamma-
SMC. Extrapolated to a genome size of 3.2 Gbp, Gamma-SMC can process a
whole genome in ∼0.14 s.

Finally, we applied Gamma-SMC to 505,515 pairs of haploid genomes from
the 1000 Genomes Project data, and detected evidence for recent positive selec-
tion at multiple sites across the genome.

Link to the bioRxiv preprint: https://www.biorxiv.org/content/10.1101/
2023.01.06.522935v1.
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Mendelian Randomization (MR) [1] is a widely-used analytical tool that uses
genetic variants (“genetic instruments”) to determine whether one trait (the
“exposure”) has a causal effect on another (the “outcome”). The validity of
MR rests on three key assumptions [1]: (i) that the genetic instrument affects
the exposure; (ii) that the genetic instrument is independent of confounders
of the exposure-outcome relationship; (iii) that the genetic instrument affects
the outcome only through its effect on the exposure. Unfortunately, the latter
two assumptions are often violated in practice, due to several factors including
horizontal pleiotropy and population stratification (and related phenomena such
as assortative mating and dynastic effects). These biases can lead to bias and
false positive findings in MR studies [1].

In this abstract, we introduce MR-Twin, a test for causal effects between
pairs of traits that is able to leverage family-based genetic data to provably
control for population stratification, cross-trait assortative mating, and dynastic
effects, and avoids false positives due to weak instrument bias. MR-Twin tests for
a causal effect by comparing an appropriate statistic computed on the offspring
in the families to their “digital twins” [2], which are simulated offspring created
by sampling offspring genotypes from parental genotypes. By testing for causal
effects while conditioning on parental genotypes, MR-Twin avoids confounding
caused by population stratification, since offspring genotypes are independent of
population information given the genotypes of their parents.

We now outline the algorithm in the context of a trio design in which we have
genetic data on the parents and the offspring. Let X and O denote the geno-
types and outcome phenotype values respectively for some individual, and let
(Xn;On)Nn=1, denote these across N trios. Also let P1 and P2 denote the geno-
types of the parents of the individual with genotypes X, and let A := (P1,P2)
refer to the set of parental genotypes. Let Z denote the set of external con-
founders measured on the same individual, which we define as the set of con-
founders that satisfy X ⊥⊥ Z | A. Thus, population stratification is an exter-
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nal confounder (as are assortative mating and dynastic effects) while horizontal
pleiotropy is not. The key idea is that we can formulate a hypothesis test of
a causal effect conditional on the parental haplotypes A. Bates et al. [2] show
that such a test is also a test of the stronger null hypothesis of a causal effect
conditional on (A,Z).

The way that this is accomplished is through a conditional randomization
test, similar to the Digital Twin Test proposed by Bates et al. in the context of
GWAS [2]. The idea is to sample so-called “digital twins” X̃ from each set of par-
ents A such that X̃ | A has the same distribution as X | A, which can easily be
accomplished using the laws of Mendelian inheritance. We construct B such ran-
dom samples across all trios, (X̃n, On)Nn=1, and for each set b of twins we compute
a test statistic tb = t((X̃n;On)Nn=1; β̂) representing the strength of association
between the genetically-predicted exposure and the outcome. We also construct
a test statistic for the true offspring of the trios, t∗ = t((Xn;On)Nn=1; β̂). We
can then obtain a p-value for a non-zero causal effect of the exposure on the
outcome, p = 1+1{tb≥t∗}

1+B .
In order to assess the performance of MR-Twin, we simulated genotypes

from two populations with allele frequency differences modeled according to
the standard Balding-Nichols model [3], and then simulated phenotypes with
confounding due to population stratification. We show that while standard MR
methods had inflated false positive rates (FPRs) under this stratification model,
MR-Twin did not have an inflated FPR regardless of the strength of confounding.
We also demonstrate that a recent family-based method [1] controls FPR under
stratification but, unlike MR-Twin, can still yield false positives due to weak
instrument bias. We show that, given the same sample size, the methods have
similar power. We then applied the methods to 121 pairs of traits measured in
959 White British trios from the UK Biobank [4]. MR-Twin identified trait pairs
that are expected to be causal (such as Weight → BMI) and did not identify
trait pairs that are not expected to be causal (such as Height → Body Fat).

MR-Twin should be a useful tool for researchers who want to verify that their
significant MR findings are not confounded by population or familial effects. MR-
Twin is freely available at: https://github.com/nlapier2/MR-Twin.
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The Li & Stephens (LS) hidden Markov model (HMM) [1] models the process
of reconstructing a haplotype as a mosaic copy of haplotypes in a reference
panel (haplotype threading). For small panels the probabilistic parameterization
of LS enables modeling the uncertainties of such mosaics, and has been the
foundational model for haplotype phasing and imputation. However, LS becomes
inefficient when sample size is large (tens of thousands to millions), because of
its linear time complexity (O(MN), where M is the number of haplotypes and
N is the number of sites in the panel).

Recent work has attempted to obtain the optimal haplotype threading in the
Li & Stephens model in time sublinear to the size of the panel. Gerton Lunter
described “fastLS”, an algorithm that implements the Li & Stephens model and
obtains the optimal haplotype threading through the use of the Burrows-Wheeler
transform [2]. His algorithm obtains the optimal haplotype threading orders of
magnitude faster than the Viterbi algorithm. Yohei Rosen and Benedict Paten
also described an algorithm that achieved runtime orders of magnitude faster than
the Viterbi algorithm [3]. Their method achieves this using the efficient sparse
representation of haplotypes and the lazy evaluation of dynamic programming.
These algorithms have also been claimed to have runtime sublinear to the size of
the reference panel. However, this claim has only been shown empirically.

Previously, we introduced a new formulation of haplotype threading, the
Minimal Positional Substring Cover (MPSC) [4]. The MPSC problem is, given a
query haplotype z and a set of haplotypes X, find a smallest set of segments of
haplotypes in X that covers z. This formulation corresponds to LS model with 0
mismatch rate and the only objective is to minimize the switch rate. Obviously,
the MPSC formulation is too limited as it does not tolerate mismatches. In a
sense, MPSC is a more general formulation of haplotype threading. The tradi-
tional haplotype threading is a special case of MPSC with non-overlapping seg-
ments. MPSC formulation captures the fact that while the switching of templates
indicates some recombination events, the exact breakpoint of the recombination
events may be anywhere within the overlapping region between the templates.
Furthermore, this combinatorial formulation is theoretically attractive because
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Table 1. Summary of algorithms on haplotype threading

Functionalities Time complexity

Lunter [2] fastLS Expt. o(MN)

Rosen and Paten [3] LS Lazy Evaluation Expt. o(MN)

Sanaullah et al. [4] MPSC O(N)

Set Maximal MPSC O(N)

h-MPSC O(h|C|+N)

This work MPSC Graph O(N)

Length Maximal MPSC O(N)

Set Max. MPSC Solution Space Count O(N)

Set Max. MPSC Solution Space Enumerate O(N + Sc)

h-MPSC O(N)

M is the number of sequences. N is the number of sites. C is the outputted cover. h is
the coverage guaranteed. Sc is the number of MPSCs outputted.

it is can be solved in worst case O(N) time [4]. I.E. given a PBWT of the ref-
erence panel, a MPSC haplotype threading of a query haplotype can be done in
time independent to the number of haplotypes in the reference panel.

In this work, we present new results on the solution space of the MPSC by
first identifying a property that any MPSC will have a set of required regions,
and then proposing a MPSC graph. In addition, we derived a number of opti-
mal algorithms for MPSC, including solution enumerations, the Length Maximal
MPSC, and h-MPSC solutions. In doing so, our algorithms reveal the solution
space of LS for large panels. Even though we only solved an extreme case of LS
where the emission probability is 0, our algorithms can be made more robust by
PBWT smoothing. We show that our method is informative in terms of revealing
the characteristics of biobank-scale data sets and can improve genotype impu-
tation. Table 1 summarizes the major algorithmic contributions of this paper.
The preprint of the full paper is available at https://www.biorxiv.org/content/
10.1101/2023.01.04.522803v1.
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Introduction. Spatial transcriptomics provides information on both the expres-
sion and the locations of cells in a sample, enabling the analyses of cell-cell
signaling and cell type organization. Spatial transcriptomics uses a set of bar-
coded spots placed at regular intervals on the sample to profile the expression
of genes. While most current platforms for spatial transcriptomics only provide
multi-cellular resolution, newer spatial technologies, such as Stereo-seq [3] and
Seq-scope [4], achieve a spot-to-spot distance of 0.5 µm on average, resulting in
more than 1000 placed spots per cell on average.

A challenging step in the analysis of such new data is cell segmentation and
the integration of spots to assign an expression profile to each cell. Recently,
new segmentation methods were developed for spatial proteomics or in situ flu-
orescent hybridization (FISH) based spatial transcriptomics data. However, the
predefined spot locations, the large number of genes profiled, and the sparseness
of the expression captured by each spot make these methods not appropriate for
sequencing-based technologies. Most standard cell segmentation methods devel-
oped to date rely on nucleus or membrane straining to identify cell boundaries.
While successful, these methods do not fully utilize the information provided by
spatial transcriptomics data, leading to less accurate results.

Methods. Here we developed SCS (Sub-cellular spatial transcriptomics Cell
Segmentation), which combines sequencing and staining data to improve cell
segmentation in high-resolution spatial transcriptomics. SCS performs segmen-
tation in three key steps. It first identifies cell nuclei from staining images using
the Watershed algorithm [2]. Second, a transformer model infers for each spot
whether it is part of a cell or part of the extracellular matrix (background), and
its relative position w.r.t. the center of its cell, by adaptively aggregating high-
dimensional but sparse gene expression information from neighboring spots via
an attention mechanism. To train the model, we used as positive samples spots
within the identified nuclei and as negative samples spots sampled from highly
confident background regions. Finally, spots that are determined to be part of
the cell are grouped by tracking the gradient flow from spots to nucleus centers.

Results. We applied SCS to two different high-resolution spatial transcriptomics
platforms: a mouse brain dataset profiled using Stereo-seq [3] with nucleus stain-
ing, and a mouse liver dataset from Seq-scope [4] with H&E staining. To evaluate
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performance, we compared SCS with Watershed cell segmentation, and several
popular deep learning-based methods, including Cellpose [6], DeepCell [1], and
StarDist [5]. Since the ground truth for cell segmentation does not exist, we com-
pare the expression of regions where two methods (SCS and another method)
agree to regions where they disagree using Pearson’s r. We expect that the more
correlated the difference region for a method is with the intersection region, the
more accurate the segmentation of that method.

Our results indicate that SCS greatly outperforms others methods for seg-
menting spatial transcriptomics sub-cellular data. On the Stereo-seq dataset,
SCS segmentation achieved an average correlation that is 24% higher than
Watershed (0.61 vs. 0.49), and at least 13% higher than all other deep learning
methods (0.60 vs. 0.53 of DeepCell). While image-based methods on nucleus
staining images tend to underestimate cell sizes, SCS can accurately capture
cytoplasm regions of cells, leading to more realistic cell size estimation. In addi-
tion, some cells were completely missed by image-based methods due to their low
staining signal intensity. However, SCS identified such cells by integrating tran-
scriptomics data, leading to at least 1.5% more identified cells when compared
to other methods. On the Seq-scope data, the differences were less dramatic due
to the use of H&E images. Still, SCS had a higher correlation of 0.88 vs. 0.86
for Watershed and higher correlations than all the other deep learning-based
methods. For this data, we observed that when the boundaries of two cells are
unclear in the staining, image-based methods tend to merge them, while SCS
can correctly separate them relying on transcriptomics data, leading to at least
2.3% more cells identified by SCS.

To characterize molecular heterogeneity within individual cells, we used SCS
to investigate how RNAs are distributed within cells. Specifically, we divided each
SCS identified cell into two regions, the nucleus region and the cytoplasm region,
and identified genes whose RNAs localize deferentially between two groups of
regions using t-test. Interestingly, in both datasets, RNAs that have been exper-
imentally shown to reside in nucleus or cytoplasm are significantly enriched in
our identified RNAs in the corresponding regions.

Conclusion. Applications of SCS to two datasets generated using state-of-the-
art spatial transcriptomics platforms demonstrate the advantage of our method
over the existing image-based methods. While sub-cellular spatial transcrip-
tomics is still very new, we believe that its advantages and ability to provide
spatially resolved single-cell information would make it very popular going for-
ward. The ability of SCS to identify more accurate cell boundaries and more
cells would make it a useful tool for analyzing such data.
Code: https://github.com/chenhcs/SCS.
Preprint: https://doi.org/10.1101/2023.01.11.523658.
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The assay for transposase-accessible chromatin using sequencing (ATAC-seq)
identifies accessible chromatin regions using a Tn5 transposase that can access,
cut, and ligate adapters to DNA fragments for subsequent amplification and
sequencing. These sequenced regions are quantified and tested for enrichment in
a process referred to as “peak calling”. Downstream analyses, including motif
detection, differential binding analysis or footprint identification, require accu-
rate peak calls. Most unsupervised peak calling methods are based on traditional
statistical models and suffer from elevated false positive rates. Such errors can
be reduced by masking repetitive regions and using control samples, but input
controls for ATAC-seq are typically unavailable due to high sequencing costs.
Newly developed supervised deep learning methods can be successful, but they
are trained on high quality labeled data, which can be difficult and costly to
obtain. Moreover, though biological replicates are recognized to be important,
there are no established approaches for using replicates in the deep learning
tools. However, joint analysis of multiple biological replicates could improve the
power to distinguish true transcription factor binding events, since some weak or
highly variable peak signals may only become evident across multiple replicates.

To better address these important challenges, we developed a novel peak
caller named Replicative Contrastive Learner (RCL), which uses unsupervised
contrastive learning to extract shared peak signals from multiple replicates
(Fig. 1). Our method separates peak calling into 1) identifying candidate regions
of possible enrichment, then 2) learning to score and classify the regions as peaks.
To identify candidate regions (Fig. 1a), genome positions with coverage greater
than a threshold t in all replicates are retained. An algorithm then processes
these sites into variable-length candidate regions and α bp genomic segments
centered roughly on candidate peak summits. Candidate regions are classified
and scored via the genomic segments they overlap. The raw coverage vectors
of the segments are encoded to a low-dimensional embedding while optimizing
a replicate similarity loss and a segment class similarity loss over biological
replicates, as well as an autoencoder MSE loss on denoised data (Fig. 1b).
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Fig. 1. RCL model. (a) Raw coverage is processed to extract α-length input segments.
(b) The segments are fed to encoder e(·) for cross-replicate contrastive loss. The embed-
ding is fed to a multilayer perceptron (MLP) for class similarity loss and a decoder for
the autoencoder (MSE) loss. (c) Shaded red boxes represent the elements contrasted
in the respective losses.

We use ResNET (He et al. 2016) as the backbone of the encoder. The losses
encourage both the low dimensional embeddings and peak probabilities to be
similar for the same segment across replicates and distinct for different segments
(Fig. 1c).

Fig. 2. Precision-Recall curves for ChromHMM
regions. Black dots denote the ChromHMM
region with lowest called score. RCL-C2, cov-
erage threshold 2; RCL-MED, default coverage
threshold; MACS-multiQ and ChIP-R-multiQ
dots indicate performance at typical q-value cut-
offs. (Color figure online)

We compared RCL to three
unsupervised methods, MACS
(Zhang et al. 2008), ChIP-R
(Newell et al. 2021), and HMM-
RATAC (Tarbell and Liu 2019),
as well as the pre-trained super-
vised deep learner LanceOtron
(Hentges et al. 2021) on five
ATAC-seq datasets from human
cell lines and mouse tissues. To
evaluate performance we com-
pared peak calls to open and
closed chromatin regions identi-
fied by ChromHMM (Ernst and
Kellis 2017) in the same cells
and tissues. RCL consistently
dominates the other methods
(data A549 in Fig. 2). Decreasing
threshold t exposes the learner to
lower coverage candidate regions,
allowing RCL to identify weaker

peaks with little cost to precision (RCL-C2 vs. RCL-MED). On A549, RCL
finds twice as many true peaks while maintaining higher precision than either
MACS or LanceOtron ever attains. Moreover, peaks called only by RCL (not
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overlapping with peaks called by any other method) are associated with genes
expected to be functionally relevant in the examined cell lines and tissues. For
most relevant terms, RCL peaks are associated with at least five genes and more
than two-fold enrichment, while other methods find no relevant associations.

We developed a novel peak caller for ATAC-seq data using contrastive learn-
ing to extract signals shared across biological replicates and identify open chro-
matin regions. We have focused on ATAC-seq data, where peak calling has been
particularly difficult because of the lack of control samples and reliable truth
labels. However, our model assumes nothing particular to ATAC-seq data and
can be applied to ChIP-seq, CUT&RUN and other techniques requiring peak
calling. Run times were acceptable on all tested datasets. For the largest dataset
of three replicates with 60 million 1,000 bp segments per replicate, the training
time (25 epochs) took about one hour on two GPUs. Because RCL can pre-
dict more peaks with higher precision, it will facilitate future epigenome and
chromatin accessibility studies in various biological contexts.

Link to the bioRxiv: https://www.biorxiv.org/content/10.1101/2023.01.07.
523108v1.full.pdf.
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Motivation. Gene regulatory network (GRN) inference that incorporates single-
cell RNA-seq (scRNA-seq) differentiation trajectories or RNA velocity can reveal
causal links between transcription factors and their target genes. However, cur-
rent GRN inference methods require a total ordering of cells along a linear
pseudotemporal axis, which is biologically inappropriate since trajectories with
branches cannot be reduced to a single time axis. Such orderings are especially
difficult to derive from RNA velocity studies since they characterize each cell’s
state transition separately.

Methods. Here, we present Velorama, a novel method for GRN inference on
scRNA-seq data that does not require a total ordering over the differentiation
landscape. Velorama takes advantage of recent advances in cell fate mapping
using RNA velocity and is the first method to fully incorporate cell-to-cell tran-
sition probabilities for GRN inference. Our key conceptual advance is to perform
causal GRN inference while modeling the differentiation landscape as a partial,
rather than total, ordering of cells (Fig. 1). Thus, we model cell-differentiation
in a local, rather than global, context, which enables us to better capture cell
dynamics.

Results. On a standard set of synthetic datasets, we first demonstrate Velo-
rama’s use with just pseudotime, finding that it improves area under the
precision-recall curve (AUPRC) by 1.5–3x over state-of-the-art approaches.
Using RNA velocity instead of pseudotime as the input to Velorama further
improves AUPRC by an additional 1.8–3x. We also applied Velorama to study
cell differentiation in pancreas, dentate gyrus, and bone marrow from real
datasets and obtained intriguing evidence for the relationship between regulator
interaction speeds and mechanisms of gene regulatory control during differenti-
ation. We expect Velorama to be a critical part of the RNA velocity toolkit for
investigating the causal drivers of differentiation and disease.

Implementation. https://github.com/rs239/velorama.

Full Text Preprint. https://www.biorxiv.org/content/10.1101/2022.10.18.
512766v.
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Fig. 1. Schematic of Velorama: Existing methods need to impose a total (i.e., linear)
ordering on cells in order to perform gene regulatory network (GRN) inference. When
supplied with RNA velocity, they convert it to a global pseudotime measure and do not
make use of the cell transition matrix. (a) Our key insight is that the differentiation
landscape is more faithfully captured by a partial ordering, or directed acyclic graph
(DAG), of cells constructed from RNA velocity (or pseudotime, as available) data.
(b) We perform Granger causal inference on this DAG, taking advantage of a recent
advance in generalizing Granger causality with the use of graph neural networks. At
each node (cell), we collect the expression of putative regulators (e.g., three genes per
cell) at the cell’s ancestor nodes (e.g., we look back three lags). These are applied to
predict the target gene’s expression. A key component of our neural network is the first
hidden layer where regularization of the weights is performed to identify statistically
significant regulator–target relationships.
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Introduction. With the advent of tools such as AlphaFold [6] that are based
on machine learning, protein structure prediction has become more tractable.
The next challenge in this domain is protein docking. The docking programs
predict many binding sites for two target proteins, which are then ranked with
a scoring function. The best docking tools have been able to ensure that the
optimal binding conformation appears within the top 100 predicted docking
structures, but rarely do they appear in the top 10, and even more rarely in
the top position [9]. Therefore, improving scoring/evaluation functions would
greatly benefit existing docking tools.

Results. We developed a tool called Protein Interface Scoring with
Transformer Network (PIsToN) that has the following novel contributions:

– Data representation. We represent interfaces of protein complexes as 2D
multi-channel images. Similar to the MaSIF approach [4], we compute cir-
cular “patches” on protein surfaces [4]. Next, we convert patches into images
with pixel intensities corresponding to feature values associated with surface
points (geometric and physico-chemical). Unlike the single-patch approach of
MaSIF, we consider pairs of patches from protein binding interfaces, allow-
ing us to compute essential interaction properties: distance between atoms,
relative accessible surface area (RASA) [10], Van der Waals interactions [1],
and more.

– Vision transformer network.We provide novel adaptations to the vision trans-
former (ViT) model [3], thus improving predictive performance and providing
explainability. Since ViTs are best suited for image classification, the choice
of images for the representation of the features is an ideal complement.

– Hybrid machine learning. The ViT is enhanced with a hybrid component that
combines energy terms with surface feature representations.

– Multi-attention and explainability.We introduce dual attention: spatial atten-
tion to highlight essential binding sites and feature attention to identifying
the relative importance of specific protein properties. The embeddings of each
protein property are combined using the transformer encoder.
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– Contrastive mini-batch training. Each training iteration consists of multiple
views of acceptable and incorrect binding poses of the same protein com-
plex, labeled using Critical Assessment of Predicted Interactions (CAPRI)
criteria [5]. The combination of supervised contrastive [7], margin ranking
[2], and binary cross-entropy terms in the loss function help to cluster the
correct docking models in the embedding space while pulling apart incorrect
predictions.

– Superior Performance. PIsToN had a superior AUC ROC measure and suc-
cess rate on MaSIF test [4] and CAPRI Score [8] datasets (Fig. 1).

Fig. 1. PIsToN performance. A) AUC ROC on MaSIF test dataset; B) AUC ROC
on CAPRI score set; C) The success rate on the CAPRI score set (% of complexes for
which at least one model of acceptable quality is found in the top N selected models).

Conclusion. The PIsToN deep learning model outperforms the state-of-the-art
scoring functions in identifying viable protein binding interfaces. Given docking
models for two protein targets, PIsToN is more accurate in placing the correct
configuration among the top predictions.
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1 Introduction

Proteins and chemicals interact with each other by following fundamental physic-
ochemical principles, and a complete understanding of these principles would
allow the accurate prediction of protein-chemical interactions. Without such an
understanding, machine learning approaches that rely on the available knowl-
edge space of large interaction datasets can help to rapidly identify high-affinity
protein-chemical pairs in the vast combination space by learning affinity patterns
from measurements for millions of protein-chemical pairs. However, a represen-
tative sampling of the entire combination space is impossible or infeasible, and
thus the available datasets explore only portions of this space. Previous work
suggests that these limited datasets may contain potentially misleading spurious
patterns and may lead to prediction models that do not generalize to molecules
outside of the dataset, for which the learned patterns are non-applicable [3].
Here, we propose DebiasedDTA, a novel model training framework to improve
the generalizability of DTA prediction models.

2 DebiasedDTA

The DebiasedDTA training framework comprises two stages: “guide” and “pre-
dictor” models. The guide learns a weighting of the dataset such that a model
trained thereupon can learn a robust relationship between biomolecules and
binding affinity instead of spurious associations. The predictor then uses the
weights produced by the guide and progressively weights the training data dur-
ing its training to generalize well to unseen biomolecules.

The guide in DebiasedDTA target the low-complexity spurious relationships
in the data and, therefore should have a limited learning capacity. We design a
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weak learner with simple biomolecule representations: ID-DTA. ID-DTA repre-
sents the chemicals and proteins in the training set with one-hot-encoded vec-
tors and uses decision trees for regression, as decision trees have limited learning
capacity. DebiasedDTA is model-agnostic for the predictor; in that, any DTA
prediction model that allows instance weighting can be trained with Debiased-
DTA training framework. Here, we experiment with GraphDTA [1].

Here we report the experiment results for BDB dataset [2] which contains four
test splits: warm, cold (unseen) ligand, cold (unseen) protein, and cold (unseen)
both. We measure concordance index on the test sets and compare DebiasedDTA
with a method proposed to improve the generalizability of ligand-based drug-
target interaction prediction models, asymmetric validation embedding (AVE)
[3], since there is no comparable study for structure-based DTA prediction.

Table 1. The effect of DebiasedDTA framework on the generalizability of GraphDTA.

Debiasing Warm Cold ligand Cold protein Cold both

None 0.824 (0.010) 0.701 (0.024) 0.685 (0.039) 0.558 (0.077)
AVE 0.825 (0.017) 0.716 (0.049) 0.692 (0.027) 0.581 (0.082)
DebiasedDTA 0.832 (0.012) 0.728 (0.039) 0.695 (0.027) 0.603 (0.050)

3 Results

The results of experiments are displayed in Table 1. Table 1 shows that Debi-
asedDTA can improve the performance of GraphDTA on seen and unseen
biomolecules (compared to no debiasing), suggesting that DebiasedDTA can
improve the generalizability of a DTA prediction model. The results also indicate
that DebiasedDTA can outperform AVE, a state-of-the-art method to improve
the generalizability of ligand-based affinity prediction models. The results for
more datasets, guides, and predictors are available in our preprint.

4 Conclusion

DebiasedDTA is a model training framework that aims to improve the general-
ization performance of DTA prediction models. The out-of-distribution gener-
alization is a notoriously difficult problem and our results point to a promising
direction to enhance the toolbox for generalization in DTA prediction.
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Abstract. Drug combination therapy is a well-established technique for
disease treatment that improves efficacy while decreasing safety risks. In
this study, we present a computational predictive pipeline that makes use
of a wide range of biological resources as well as current breakthroughs
in deep learning.

Keywords: Drug discovery · Deep learning · Biological networks ·
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1 Introduction

Drug combination therapy has been widely applied in both traditional and mod-
ern medicine due to its diverse merits. Compared with monotherapy, adminis-
tering drug combinations leads to improvement of efficacy [1], and reduction
of side effects [2] and host toxicity [3], further, it even overcomes drug resis-
tance [4]. Considering the fact that a single drug usually cannot be effective,
drug combinations are increasingly used to treat a variety of complex diseases,
such as human immunodeficiency virus (HIV) [5], virus infections [6], and cancer
[7, 8]. Computational methods have emerged to tackle the limitations of tradi-
tional wet-lab tests, which are confined to a small number of drugs and thus are
unable of exploring the large combinatorial search space. Current computational-
based methods often comprise only one modality and rarely make use of recent
advances in deep learning research. Although the reported results on Drug Comb
are pretty high, their use of drug or cell line features usually result in false pre-
dictions on domain-shift datasets.
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2 Methods

In this study, we address the problems mentioned above by proposing an end-
to-end deep learning framework that accurately predicts synergistic effects. Our
method takes advantage of multi-modal data, graph neural networks, and large-
scale unsupervised training to integrate and learn useful information for syn-
ergistic prediction. Specifically, our model takes chemical structure graphs of
drugs and the protein expression of cell lines as input and applies a pre-trained
molecular graph transformer to convert drug graphs into embeddings. Mean-
while, the model generates embeddings for every protein in the expression by
utilizing a protein language model [9]. To enrich more features, we also include
disease information, particularly, we apply RotatE [10] to get the embedding of
disease from PrimeKG [11]. Next, we utilize graph neural networks and take our
generated embeddings as node representations. In order to inference on unseen
drugs, we include drug-drug similarity edge and drug-target module/ drug-drug
interaction module to generate pseudo edges and formed a refined graph with
richer information. Finally, a synergistic prediction head is built on top of our
graph and acts as a Perceptron (MLP) to predict the synergistic effect. We also
incorporate a self-training strategy to benefit from the large amount of informa-
tion in the combination space.

3 Results

Our framework achieves state-of-the-art results in comparison with other deep
learning-based methods on synergistic prediction benchmark datasets. We gained
2% AU ROC improvement on DrugComb dataset where well-performing meth-
ods exceed over 90%. When inferencing new drug combinations on an indepen-
dent set released by AstraZeneca, a 10% of improvement over previous methods
is observed. In addition, we’re robust against unseen drugs and surpass almost
15% AU ROC compared to the second-best model. We also presented the findings
of ablation studies, which show that our self-training technique and predictive
modules mine more meaningful information about drugs and proteins and that
our pretrained embeddings also contributed significantly to our performance
improvement.

4 Conclusion

We developed an end-to-end model that aggregates various types of drug-related
information to aid in discovering drug combinations. Furthermore, certain deep
learning advances are first integrated into our framework to improve our perfor-
mance. Truthfully, there are still many issues to be resolved in this field, including
isolated drugs (which exhibit a huge dissimilarity to our database) or perhaps
more precise regression values. We will investigate all these aspects further, and
we believe this work will benefit the community.
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Drug combination therapy is a promising solution to many complex diseases,
such as breast cancer, colorectal cancer, Alzheimer’s disease, and diabetes. How-
ever, previous studies have also pointed out the rareness of synergistic drug
combinations. Since experimentally testing millions of candidate combinations
is not scalable, there is a pressing need to develop computational approaches to
identify synergistic drug combinations.

We focus on cancer drug synergistic prediction and follow existing approaches
to form the synergistic drug combination prediction problem as a triplet classi-
fication problem. Each triplet consists of two drugs and a cancer cell line and
will be classified into synergistic or not. Each cell line is represented using its
genomics features, such as gene expression and somatic mutation. A key tech-
nical challenge is to derive an effective representation for a pair of drugs. Sim-
plified molecular-input line-entry system (SMILES) sequences and molecular
graphs are the two major modalities for representing a drug. Both of them have
strengths and limitations: SMILES sequences are easier to embed by leveraging
the recent progress in natural language processing, but are ambiguous on drugs
with complex structures; molecular graphs precisely characterize the molecular
information, but large graphs (i.e., large diameter) are often hard to embed. This
dilemma is even more severe when we want to embed a pair of drugs since one
might be better represented using SMILES sequences and the other might be
better represented using molecular graphs. As we showed in the experiments, a
simple concatenation of these two kinds of features yields undesirable results.

To address this problem, we propose Pisces, a cross-modal contrastive learn-
ing approach for drug synergy prediction. Our intuition is that the SMILES
sequence modality and the molecular graph modality complement each other,
and thus should be integrated. To realize this intuition, we have developed a
cross-modal contrastive learning framework, as illustrated in Fig. 1. We propose
to create four augmented views for each drug pair based on the combination of
the SMILES sequence and the molecular graph modality. We hypothesize that
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Fig. 1. Flowchart of Pisces. Pisces considers both the SMILES sequence and the
molecular graph of each drug. It first uses Transformer to embed SMILES sequences
and graph neural networks to embed molecular graphs. Pisces embeds each cell line by
aggregating neighbors of over-expressed genes in the protein-protein interaction net-
work. It then concatenates the SMILES embedding and the graph embedding between
two drugs, which creates four different views for each drug combination. These four
different views are treated as augmentations in contrastive learning.

these four combinations can offer a comprehensive view of a drug pair, thus
enhancing the drug synergistic prediction.

We evaluated our method on a recently published large-scale cancer drug
synergy dataset GDSC-Combo, which covers 102,893 drug combinations span-
ning over 63 drugs and 125 cell lines. We first observed a substantial discrepancy
between the prediction performance by using two different modalities. By con-
trasting these two modalities, Pisces substantially outperformed five existing
drug combination prediction approaches under vanilla cross validation setting,
stratified cross validation for drug combinations setting, and stratified cross val-
idation for cell lines setting. Finally, we found that two drugs from the top
performed drug pairs favored different modalities, again confirming the effective-
ness of integrating SMILES and molecular graph modalities. Despite the large
amount of triplet combinations that have been measured in GDSC-Combo, it
still only covers 20.7% of all possible triplet combinations. Pisces offers an in
silico solution to massively generalize these in vitro measurements. In addition
to drug synergy prediction, Pisces can be broadly applied to other applications
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that require the modeling of drug pairs, such as drug-drug interaction prediction,
as well as further integrating other drug modalities.

Link to the bioRxiv preprint: https://www.biorxiv.org/content/10.1101/
2022.11.21.517439v1.full.pdf.
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Introduction: Cancer forms in an evolutionary process in which somatic muta-
tions occur in cells, forming clones with different sets of mutations. Modeling
this genetic process is important for understanding cancer. Existing methods for
modeling cancer evolution from cohort-level phylogenies consist of tree genera-
tive models [1, 2], tree consensus methods [3–5], and statistical tests [6]. These
methods are used to reduce phylogeny uncertainty, detect causal relationships
between pairs of mutations, detect interchangeable mutations, detect pathways
of interchangeable mutations, and predict mutation fitness. We introduce CloMu
(Clone To Mutation) a tree-generative model, which effectively performs all of
these tasks while existing methods each complete only a subset of these tasks.

Methods: CloMu solves the Independent Clonal Evolution problem, which
takes as input sets T1, . . . , Tn of possible phylogeny trees for each patient on
m total mutations and seeks to identify model parameters fθ that maximize
the data probability Pr(T1, . . . , Tn|fθ). Like TreeMHN [1] and HINTRA [2], we
assume independent clonal evolution such that the rate fθ(c, s) of a clone c ∈
{0, 1}m acquiring a new mutation s ∈ [m] only depends on the genotype c of
that clone. CloMu represents fθ using a two-layer neural network with a small
number L � m of hidden neurons. The network is trained using reinforcement
learning. After training the parameters once for each dataset, the learned model
can be post-processed to complete the previously mentioned tasks.

Results: We benchmarked CloMu using simulated and real data. One set of
simulations consisted of pairs of mutations with bidirectional causal relation-
ships. Our method outperformed all existing methods, especially in the presence
of interchangeable mutations. We also constructed simulations with pathways
of interchangeable mutations. CloMu produced latent representations, which
accurately identified interchangeable mutations. Additionally, CloMu accurately
predicted pathways of interchangeable mutations, greatly outperforming heuris-
tics based on existing methods. On a breast cancer cohort [7], CloMu’s fitness
predictions matched known driver mutations, and CloMu’s causal relationships
predictions matched TreeMHN in cases where this is theoretically expected. On
an AML cohort [8], CloMu’s causal relationship predictions matched TreeMHN
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
H. Tang (Ed.): RECOMB 2023, LNBI 13976, pp. 271–273, 2023.
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Fig. 1. Overview of CloMu. (A) Under the independent clonal evolution assumption,
our model determines a log rate fθ(c, s) of any clone c ∈ {0, 1}m acquiring a mutation
s ∈ [m]. (B) This in turn enables us to compute probabilities P = [pi,s] that the next
mutation to occur on a tree T is s at node/clone ci. (C-G) We use the model for
five prediction tasks. (H) CloMu represents fθ using a low-parameter, two-layer neural
network trained via reinforcement learning.

when expected and CloMu’s fitness predictions were orthogonally validated by
clonal prevalence measurements (Fig. 1).

Conclusion: We introduced CloMu, a tree generative model of cancer evolution
trained using reinforcement learning. CloMu outperformed existing methods on
simulations in a wide variety of tasks and gave validated predictions on real
data. In the future, our work may be expanded by supporting additional types
of mutations such as copy-number aberrations, or by utilizing our latent rep-
resentations for patient outcome predictions. Larger future data sets may also
enable accurate prediction of complex mutation interactions on real data.

Availability: The code for CloMu and the data used are both available at https://
github.com/elkebir-group/CloMu.
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The increased sharing of genomic data over the past decade has sparked acute
privacy concerns. To address these concerns, data custodians often resort to
only releasing summary-level information, such as alternate allele frequencies
(AAF) for single nucleotide variants (SNVs) in a given dataset, which was ini-
tially thought to sufficiently protect individual privacy. A notable example is the
Beacon service [3] introduced by the Global Alliance for Genomics and Health
(GA4GH), which is a web service that only allows queries about the presence or
absence of alternate alleles in a dataset. However, research [5, 6] has shown that
even such summary statistics are vulnerable to membership inference attacks.
These attacks leverage likelihood ratio test (LRT) scores, whereby an attacker,
given a target genome, computes the log-likelihood that the target individual
was part of the dataset D over which the summary statistics were computed,
compared to the likelihood that they were not. Typically, the attacker identifies
a threshold θ and claims that the target individual was part of the dataset (i.e.,
i ∈ D) if the target’s LRT score lies below θ. Membership inference allows the
attacker to potentially infer sensitive information about the individual such as
underlying medical conditions, based on dataset metadata. Approaches used to
prevent such attacks typically involve adding noise to the summary informa-
tion using heuristics or differentially-private mechanisms (flipping bits in the
case of Beacons, and adding real-valued noise to AAF releases), or suppressing
information release for a subset of SNVs (masking).

In this work, we consider both forms of summary statistics releases: a) the
Beacon service, where the system’s responses are binary indicators of the pres-
ence of certain alleles, and b) the release of alternate allele frequencies for a
given set of single nucleotide variants (SNVs). We present a rigorous optimiza-
tion framework that enables the data custodian to combine the addition of noise
(either binary or real-valued, depending on the release) with masking and finely
tune the privacy-utility tradeoff as desired, in contrast to state-of-the-art meth-
ods which rely on only one mode of data obfuscation. Following the model
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presented in [8], we further consider two attack models: a) a fixed-threshold model
where the attacker identifies an LRT score threshold a priori, using either simu-
lated or external data according to a maximum allowable false positive rate, and
b) an adaptive-threshold model where the attacker identifies a threshold which
best separates the LRT scores of individuals in the dataset from those who are
not after the defense is implemented. We capture the latter as the threshold
being set to the mean of the lowest K percentile of LRT scores for a set of
individuals not in the dataset D. Our goal is to solve an optimization problem
capturing the privacy-utility tradeoff, taking into account the relative impact of
adding noise to masking SNVs on utility, as well as the relative importance of
utility versus privacy using exogenous parameters. We call this the Summary
Stats Privacy Problem (SSPP).

Solving the SSPP problem optimally has exponential worst-case runtime.
Therefore, to approximately solve SSPP, we propose highly scalable algo-
rithms which leverage greedy heuristics (which we call Soft Privacy Greedy
(SPG)). In the case of Beacons, we compute the average marginal contribution
of flipping each SNV, as well as the average marginal impact of masking each
SNV on the LRT score, normalized by the relative costs of flipping and masking
(user specifies the cost of flipping as α, and the cost of masking is 1−α). We then
rank the SNVs in decreasing order of their marginal contributions, and greed-
ily either flip or mask SNVs until a desired level of privacy is achieved (using a
user-specified parameter, w). We assume that the subset of flipped SNVs and the
subset of masked SNVs are disjoint. In the case of AAF releases, we propose a
greedy heuristic that alternates between masking SNVs, and adding real-valued
noise to the remaining release using a differentially-private Laplace mechanism.

Our experiments were conducted on a dataset based on the 1000 Genomes
Project [1] made available as part of the 2016 iDash workshop on Privacy and
Security [7], consisting of 800 individuals and over 1.3 million SNVs. We compare
our approach to state-of-the-art baseline approaches, including differentially pri-
vate mechanisms [2], randomized noise on rare alleles [4], strategic flipping using
differential discriminative power [9], linkage-equilibrium based suppression [5],
and prior greedy methods [8]. We also evaluate performance against a more
powerful adversary that attempts to infer missing or flipped SNVs using linkage
disequilibrium as a metric for correlation between SNVs. Our approach scales
easily to 1.3 million SNVs, and the results presented in Fig. 1 demonstrate that
our approach outperforms prior art in both utility and privacy.
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Fig. 1. Utility-Privacy plots for the various attack models. a) Fixed threshold model,
Beacon release, θ = −250, baselines flip SNVs, b) Fixed threshold model, AAF release,
θ = 0, c) Adaptive threshold model, Beacon release, K = 10, baselines flip SNVs, d)
Adaptive threshold model, AAF release, K = 10.
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1 Introduction

Our understanding of genomic privacy is rapidly evolving as new data modali-
ties expose new routes for potential breaches. Transcriptomic data, such as gene
expression measurements shared in databases like NCBI GEO, is a prominent
example of biomedical data for which our understanding of privacy implications
is incomplete. Prior works have shown that knowledge of expression quantita-
tive trait loci (eQTLs) could be used to match genotypes to gene expression
profiles, also known as a linking attack [1, 2]. Such a linkage could in turn lead
to re-identification of individuals. However, existing methods can analyze only
a fraction of known independent eQTLs due to restrictive model assumptions,
leaving the full extent of this risk incompletely understood. Our work introduces
discriminative sequence models (DSMs), a novel probabilistic framework for pre-
dicting a sequence of genotypes based on gene expression data. By modeling the
joint distribution over all variants in a genomic region with linkage disequilib-
rium, DSMs enable an accurate assessment of the power of linking attacks that
leverage all known eQTLs with calibration for redundant predictive signals.

2 Methods

Our discriminative sequence models (DSMs) enable sequence-level inference of
genotypes given a gene expression profile. DSMs score the likelihood of a target
genetic sequence belonging to the same individual as a query gene expression
profile. The predictive probabilities of DSMs are calibrated during training to
correctly adjust for correlation, i.e., linkage disequilibrium (LD), among nearby
genetic variants as well as redundant predictive signals across different eQTLs
and eGenes (genes associated with eQTLs), thus allowing the model to leverage
the full range of information captured by known eQTL associations. To achieve
this, DSMs model the joint distribution over the genotype sequence and the
gene expression profile by extending the popular Li-Stephens model of genetic
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sequences to include probabilistic factors that capture the correlation between
each eQTL and a set of known eGenes. Furthermore, we introduce a haplotype-
based approximate inference for our model to allow the use of large reference
panels needed for accurate prediction.

3 Results

To evaluate DSMs, we emulated a linking attack scenario in which the attacker
identifies eQTL associations and trains the model on one dataset (GTEx;
n = 588) and uses the model to perform a linking attack on a separate dataset
including gene expression profiles and genotypes (FUSION; n = 292), shuffled to
obscure the links. We also included genotype profiles from a third dataset (HRC)
to increase the number of candidate profiles to distinguish from the match.

We compared DSM against two methods: GNB [1] and EBL [2]. GNB uses an
independent Bayesian model with a Gaussian distribution over gene expression
for each eQTL. EBL additionally leverages an extremity-based correction to set
SNP prediction probabilities to 1 for extreme values of gene expression. The
DSM consistently obtains higher linking accuracy, revealing a greater risk of re-
identification than previously known (Fig. 1). The largest improvement was seen
in chromosome 21, where the DSM correctly links 146 (out of 292) individuals,
while GNB and EBL respectively link 75 and 71 individuals. Our work provides
a new framework for understanding the privacy risks of functional genomic data
in relation to protected genetic information.
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Number of additional non-matching samples (HRC)

GNB

DSM
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Fig. 1. DSMs enhance the accuracy of linking gene expression profiles to
corresponding genotype profiles. DSM’s linking accuracy is compared to that of
prior approaches (EBL and GNB) as more non-matching target genotypes are consid-
ered.
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