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Abstract This paper’s content is devoted to the study of the monetary utility 
functions and their use in optimal portfolio choice and optimal risk allocation. In 
most of the relative papers, the domain of a monetary utility function is a dual space. 
This approach implies that closed and convex sets are weak-star compact. The main 
contribution of the present paper is the definition of such a function on any Riesz 
space, which is not necessarily a dual space, but it formulates a symmetric Riesz 
dual pair together with its topological dual. This way of definition implies the weak 
compactness of the sets usually needed for the solution of the above optimization 
problems. 
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1 Monetary Utility Functions and Risk Metrics 

We obtain the following definition of a monetary utility function: 

Definition 1.1 A finite-valued function .U : L1(�,F ,P) → R is called monetary 
utility function if it enjoys the following properties: 

(1) .U(X) ≥ U(Y ), if .X(ω) ≥ Y (ω), .P− a.e. (Monotonicity) 
(2) .U(t · X + (1 − t) · Y ) ≥ tU(X) + (1 − t)U(Y ), for any .t ∈ [0, 1], where . ·

denotes the usual scalar product (Concavity) 
(3) .U(X + m · 1) = U(X) + m, where .1(ω) = 1,P-a.e. (Cash Invarianve) 

A value of some Monetary Utility Function corresponds to an amount of capital, 
alike in the case of the Principles of Premium Calculation in insurance. 

The above definition of a monetary utility function is obtained from Jouini 
et al. (2007) in .L∞(�,F ,P), where the optimal risk sharing problem is studied. 
Equilibrium pricing under monetary utility functions is studied in Filipoviĉ and 
Kupper (2008) in .L∞(�,F ,P) as well. As it is well-known, coherent risk measures 
are established in Artzner et al. (1999) and convex risk measures in Föllmer and 
Schied (2002). The main contribution of this paper is that convex and coherent 
risk measures may be replaced by monetary utility functions and vice versa, under 
the properties of equivalence defined below. Optimal portfolio selection is the 
main application of the monetary utility function. Another use of monetary utility 
functions is that their continuity provides that the optimal risk allocation problem 
has a non-empty solution. The optimal risk allocation problem is initially studied 
in Borch (1962). Recent works on the same theme are Kiesel and Rüschendorf 
(2009), Righi and Moresco (2022). We also provide a way to produce monetary 
utility functions and corresponding monetary risk measures by Young functions. In 
general, we notice that a monetary convex risk measure . ρ implies the definition of 
a monetary utility function .u = −ρ. On the other hand, a monetary utility function 
u implies the definition of a monetary convex risk measure .ρ = −u. 

2 Risk Functionals and Their Equivalence 

Definition 2.1 A risk measure, with respect to a nonatomic probability space 
(�,F , P), is some  ρ : L0 × F → R, such that ρ(X, A) = ρ(X−1(A)). 

Definition 2.2 A risk functional, with respect to the probability space (�,F , P), 
is some f : P × L0 × F → R, such that f (P, X,A)  = P(X−1(A)). 

Remark 2.3 A law-invariant risk measure is a risk functional. We recall that a risk 
measure ρ is law invariant if PX = PY implies that ρ(X) = ρ(Y ), where PZ is the 
distribution probability measure of Z. A monetary risk measure corresponds to the 
notion of regulatory capital. A risk functional which is not a risk measure is value
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at risk (VaR). Hence, the notion of risk functional is a generalization of the notion 
of risk measure. 

Definition 2.4 Two risk functionals fi, fj are called equivalent, and we write fi ∼ 
fj , if for some strictly positive Mi,Mj ∈ R we have Mifj ≤ fi ≤ Mjfj ,. A risk  
functional is called nontrivial if it is not equal to the zero function on F . 

Proposition 2.5 The equivalence of risk functionals is actually an equivalence 
relation in terms of set theory. It is reflexive, symmetric, and transitive. 

Proof If f1 ∼ f2, obviously f1 ∼ f1. If f1 ∼ f2, then f 2 ∼ f1. Finally, if f1 ∼ f2 
and f2 ∼ f3, then f1 ∼ f3. fi, i  = 1, 2, 3 are risk functionals according to the 
above definition. �	

We notice that: 

Lemma 2.6 Value at risk and expected shortfall are not equivalent. 

Proof As it is well -known, ESa(X) = − 1 
a

∫ a 
0 V aRu(X)du, for any level of 

significance a ∈ (0, 1) and any X ∈ L1(�,F , P). �	
Proposition 2.7 Let fi, fj : F → R be two risk functionals which are nontrivial 
and fi ∼ fj . Moreover, let fi be coherent. Then, fj is coherent as well. 

Proof Direct from the properties of coherent risk measures. �	
Proposition 2.8 Let fi, fj : F → R be two risk functionals which are nontrivial 
and fi ∼ fj . Moreover, let fi be convex. Then, fj is convex as well. 

Proof Direct from the properties of convex risk measures. �	
Another proof of the non-coherence of value at risk is the following one. 

Corollary 2.9 Value at risk is a noncoherent risk functional. 

Proof Direct, from the above proposition and ESa(X) = − 1 
a

∫ a 
0 V aRu(X)du, for  

any level of significance a ∈ (0, 1) and any X ∈ L1(�,F , P). �	
An example of a premium principle, which does not satisfy the properties of a 

coherent risk measure, is the Exponential Principle of Premium Calculation: 

.Pb(X) := 1
b

logE(ebX), (2.1) 

for any strictly positive b ∈ R. 
The subset of those X ∈ L0 in which E(ebX ) is not equal to infinity is related to 

the Orlicz spaces, mentioned below. 

Definition 2.10 The parameter b is called risk aversion coefficient. 

Proposition 2.11 The monetary utility function −Pb arising from the Exponential 
Principle of Premium Calculation Pb satisfies the properties of a coherent risk 
measure, except positive homogeneity.
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Proof First we do prove that −Pb does not satisfy the positive homogeneity: if 
t >  0 is a positive, nonzero real number, then 

. Pb(t · X) = 1

b
logE(eb(tX)) = 1

b
logE(ebt ebX) = Pb(X) + t,

where · denotes the scalar product: 

(i) (Translation Invariance): Pb(X + c1) = 1 
b logE(eb(X+c1) ) = 1 

b (log(ebc ) + 
Pb(X) = c + Pb(X), for any c ∈ R. −Pb satisfies the translation invariance 
property. 

(ii) (Monotonicity): If X � Y , P-a.s., then ebX � ebY , P-a.s. This implies 
E(ebX ) � E(ebY ) and consequently Pb(X) � Pb(Y ). 

(iii) (Subadditivity): 

. 
1

b
logE(eb(X+Y )) � 1

b
logE(ebX),

1

b
logE(ebY ),

hence 

. 
1

b
logE(eb(X+Y )) � max

{
1

b
logE(ebX),

1

b
logE(ebY )

}

,

namely, 

. Pb(X + Y ) � max{Pb(X), Pb(X)}.

Hence, Pb(X + Y ) � − min{−Pb(X),−Pb(X)}, and consequently −Ub(X + 
Y ) � − min{Ub(X), Ub(X)}, which implies min{Ub(X), Ub(X)} � Ub(X + 
Y ). Finally, we get that Ub(X + Y ) � Ub(X) + Ub(Y ). �	

The last inequality in the above theorem relies on the following: 

Lemma 2.12 Pb(X) � E(X), for any X ∈ L1+. Thus, for any X ∈ L1(�, F , P) 
taking almost everywhere positive values. For such a X, Pb(X) ≥ 0. 

Proof It suffices to prove that 1 
b log E(ebX ) � E(X). From Jensen’s inequality, we 

get that ebE(X) � E(ebX ). Hence, bE(X) � log E(ebX ). �	

2.1 The Case of Conditional Value at Risk 

As it is well-known expected shortfall .ESa is Conditional Value -at- Risk . CV aRa

are equal for any real-valued random variable .X ∈ L0(�,F ,P), and for any . a ∈
(0, 1). This is true if cumulative distribution function .FX is continuous, except a set 
.Aa(X) ∈ B[0, 1], such that .λ(Aa(X)) = 0. .B[0, 1]] denotes the .σ -algebra of Borel 
sets in .[0, 1]. . λ is the Lebesgue measure on .[0, 1].
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3 Monetary Utility Functions and Equilibrium 

Monetary utility functions’ impact on investors’ decisions may be summarized in 
terms of “best” portfolio choice for a single investor. That’s because the essential 
problem for any investor is to determine the set of portfolios, which maximizes 
her monetary utility function U defined on .L1(�,F,P). . 1 is the ranodm variable, 
such that .1(ω) = 1, P -a.e. Since the order interval .[−e1, e1] is weakly compact 
and convex set of .L1(�,F,P), then . B(p, e,w) = {X ∈ L1+|p(X) = w,X ∈
[−e1, e1]} is a weakly compact and convex set. .p ∈ L∞(�,F,P), such that 
.p(ω) > 0, P a.e. and .w > 0 is the cash wealth of the investor. 

Then, for any monetary utility function .U : L1(�,F,P) → R, we obtain the 
following. 

Theorem 3.1 The problem of maximization of a monetary utility function U over 
.B(p, e,w) has a solution if U is weakly continuous. 

Proof .< L1(�,F,P), L∞(�,F,P) > is a symmetric Riesz pair. Hence . [−e1, e1]
is a weakly compact and convex set. The conclusion arises from the Bauer 
maximization principle. �	

Hence, the Marshallian demand correspondence is well-defined for any investor 
whose monetary utility function U is convex and weakly continuous. This is a result 
of special importance if markets are incomplete, or else the portfolio payoffs lie in 
a nontrivial and weakly closed subspace M of .L1(�,F,P). 

4 Optimal Risk Allocations 

Monetary utility functions are also related to problems of collective minimization of 
regulatory capital. We consider a set .{1, 2, ..., I } consisted of regulators or financial 
institutions. Risk functionals arise in the problems related to the inf -convolution, 
which is actually the value functional of the following optimization problem: 

. inf

{
I∑

i=1

riρi(Xi)

∣
∣
∣
∣

I∑

i=1

Xi = X ∈ Lp, Xi ∈ Lp

}

.

.ri > 0 for any .i = 1, 2, ..., I such that .
∑I

i=1 ri = 1, and . ρi is some risk measure 
defined on .Lp := Lp(�,F,P) for .p ≥ 1 and .p < ∞. . ri for any . i = 1, ..., I

denotes the market power of each .i = 1, ...., I . Since the optimal risk allocations 
are related to some class of utility functions, we may consider the class of monetary 
utility functions. A monetary utility function, which arises from a monetary risk 
measure .ρ : L0 → R, is the function .u = −ρ. On the other hand, a utility function 
u implies a monetary risk measure .ρ = −u.
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These spaces are in general .Lp spaces on a nonatomic probability space 
.(�,F ,P), and .1 ≤ p < ∞. A unified result is the following one: 

Proposition 4.1 The above inf -convolution is well-defined on the symmetric Riesz 
pair, if . ρi is weakly continuous, for any .i = 1, ..., I . 

Proof The conclusion arises from Bauer maximization principle. �	
The case of .p = 1 is of special interest since the probability distributions of 

the heavy-tailed random variables lie in this one Lebesgue space. We recall that a 
heavy-tailed random variable is any element .X ∈ L0(�,F ,P) whose exponential 
moments .E(erX) = +∞ for any positive, nonzero real number r . In order to make 
things more simple, we assume that .X(ω) ≥ 0, .P-a.e. 

5 Creating Monetary Utility Functions 

As we did notice above, Jensen’s inequality implies that for any convex and finite
-valued function .C : R → R: 

. C(E(X)) ≤ E(C(X)),

namely, convex functions imply a way to establish monetary utility functions, whose 
form is actually an expected utility form. It suffices to assume that .E(C(X)) is finite 
for a subset of . L0. A large class of convex functions is the one of Young functions. 

We call Young function any convex, even, continuous function . � satisfying the 
relations .�(0) = 0, .�(−x) = �(x) ≥ 0 for any .x ∈ R and 

. lim
x→∞ �(x) = ∞ .

The conjugate function of . � is defined by 

. �(y) = sup
x≥0

{xy − �(x)} , ∀ y ≥ 0 .

Definition 5.1 An N-Young function is a Young function . � defined on . R, which 
satisfies the conditions: 

(1) 

. lim
x→0

�(x)

x
= 0 ,
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(2) 

. lim
x→∞

�(x)

x
= ∞ ,

(3) If .�(x) = 0, then .x = 0. 

Definition 5.2 We say that a Young function . � satisfies the .	2-property if there 
exist a constant .k > 0 and a .x0 ∈ R such that holds 

. �(2x) ≤ k�(x) , ∀ x ≥ x0 .

Let us mention some examples of Young functions: .�0(x) = |x| is a Young 
function. .�1 = 1

2 |x|2 is a Young function, which satisfies both N and . 	2 properties. 
If we would like to specify some Young function which is not of the type of 
.�p(x) = 1

p
|x|p, p > 1 and satisfies both N properties and .	2 properties, then 

we may mention .�
(x) = (1 + |x|)log(1 + |x|) − |x|. About the class . ∇2 of Young 
functions, see (Rao and Ren, 1991, p. 22): a Young function . � is a .∇2 -Young 
function if 

. �(x) ≤ 1

2g
�(x), x ≥ x0 > 0

for some .g > 1. . x0 may be equal to zero. An example of . ∇2 Young function is the 
conjugate of . �
, which is the function .�(x) = e|x| − |x| − 1. 

The book Rao and Ren (1991) is devoted to a complete study on Young functions 
and Orlicz spaces. 

Thus, the monetary utility function implied by some Young function . � is the 
following one .φ : L0 → R, where .φ(X) := −E(�(X)). Any monetary utility 
function defined by the way shown above is a Young monetary utility function. 

In Rao and Ren (1991), the (sub) -set of .X ∈ L0(�,F ,P) such that 
.(E)(U(X)) < +∞ if .−U is a Young function is called Orlicz Heart .MU . . MU

is in general a convex subset of .L0(�,F ,P). Monetary risk measures defined on 
Orlicz hearts and Orlicz spaces are initially studied in Cheridito and Li (2009). 

6 Analysis Notions and Results Used in the Paper 

We add this section in order to make the content of the paper understood in a better 
manner. The partially ordering implied by some cone K on the vector space E is 
defined in the following way: .x ≥ y ↔ x − y ∈ K . A more detailed study of 
partially ordered linear spaces and all of the content of this section is obtained from 
Aliprantis and Border (2006). A non-empty subset K of a vector space E, such that 
.K + K ⊆ K, tK ⊂ K for any .t ∈ R+ and .K ∩ (−K) = {0} is a cone. Any set



34 C. Floros et al.

of the form .[a, b] = (a + K) ∩ (b − K), where .a, b ∈ E is an order-interval with 
respect to the cone K . 

The set of upper bounds of .a ∈ E, with respect to the cone K , is the set  
.a + K . Lower bound of .b ∈ E with respect to the cone K is the set .b − K . 
A partially ordered vector space E is a Riesz space (or else a vector lattice) if 
.sup{x, y} = x ∨ y ∈ E and .inf{x, y} = x ∧ y ∈ E, where supremum and infimum 
are the minimum upper bound and the maximum lower bound of .{x, y}, respectively 
(with respect to the cone K). In such a case, the absolute value of any .x ∈ E is equal 
to .x ∨ (−x) = |x| alike in the case of real numbers. The space of all real-valued 
linear functionals defined on some vector space E is called algebraic dual space 
of E. A linear functional defined on some partially ordered space E, such that the 
cone K implying the partially ordering is the cone K , is called order-bounded if 
it actually maps an order-interval .[a, b] to a closed interval of the real numbers. 
The vector space of all the order-bounded linear functionals of the partially ordered 
linear space E is called order dual. We denote the order dual of E by . E′. An ideal 
of some Riesz space is any subspace S of E, such that if .|x| ≥ |y| and .x ∈ S, 
implies that .y ∈ S. A dual pair .< E,E∗ > is called Riesz pair if both .E,E∗ are 
Riesz spaces and . E∗ is an ideal of the order dual . E′ of E. A dual pair . < E,E∗ >

is called symmetric Riesz pair, if and only if .< E∗, E > is a Riesz Pair as well. If 
.< E,E∗ > is a symmetric Riesz pair, then the non-empty order intervals of E are 
weakly compact. The set F of maximizers of some weakly continuous function f 
is non-empty if the domain of it is some weakly compact set C of E. Moreover, F 
actually it is an extreme set of C. An extreme set of some convex set is any subset A 
of it; then every element of .z ∈ A, such that .z = tx+(1−t)y ∈ A, where .t ∈ (0, 1); 
then .x, y ∈ A. An extreme point is any extremal set consisted of a singleton. 
This is a proof of Bauer maximization principle refers to the maximization of 
semicontinuous functions: if C is a compact convex subset C of a locally convex 
Hausdorff space, then every upper semicontinuous convex function on C has a 
maximum point that is an extreme point of it. The analog of the above theorem 
is valid for the minimization of a concave function, which is weakly continuous. 
The topology under use here is the weak topology over a Riesz pair .< E,E∗ > as 
well. 

7 Further Research 

Further research may be related to the functional form of the efficiency frontiers or 
the demand functions under different classes of concave functions. This study relies 
on the equivalence structure for risk functionals as it is defined here.
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