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Abstract. Federated Learning (FL) is a promising framework for dis-
tributed learning when data is private and sensitive. However, the state-
of-the-art solutions in this framework are not optimal when data is het-
erogeneous and non-IID. We propose a practical and robust approach to
personalization in FL that adjusts to heterogeneous and non-IID data
by balancing exploration and exploitation of several global models. To
achieve our aim of personalization, we use a Mixture of Experts (MoE)
that learns to group clients that are similar to each other, while using the
global models more efficiently. We show that our approach achieves an
accuracy up to 29.78% better than the state-of-the-art and up to 4.38%
better compared to a local model in a pathological non-IID setting, even
though we tune our approach in the IID setting.
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1 Introduction

In many real-world scenarios, data is distributed over organizations or devices
and is difficult to centralize. Due to legal reasons, data might have to remain
and be processed where it is generated, and in many cases may not be allowed
to be transferred [10]. Furthermore, due to communication limitations it can be
practically impossible to send data to a central point of processing. In many
applications of Machine Learning (ML) these challenges are becoming increas-
ingly important to address. For example, sensors, cars, radio base stations and
mobile devices are capable of generating more relevant training data than can
be practically communicated to the cloud [8] and datasets in healthcare and
industry cannot legally be moved between hospitals or countries of origin.
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Fig. 1. Our approach adjusts to non-Independent and Identically Distributed (IID)
data distributions by adaptively training a Mixture of Experts (MoE) for clients that
share similar data distributions.

Federated Learning (FL) [1,27] shows promise to leveraging data that cannot
easily be centralized. It has the potential to utilize compute and storage resources
of clients to scale towards large, decentralized datasets while enhancing privacy.
However, current approaches fall short when data is heterogeneous as well as
non-Independent and Identically Distributed (non-IID), where stark differences
between clients and groups of clients can be found. Therefore, personalization
of collectively learned models will in practice often be critical to adapt to dif-
ferences between regions, organizations and individuals to achieve the required
performance [11,18]. This is the problem we address in this chapter.

Our approach adjusts to non-IID data distributions by adaptively training
a Mixture of Experts (MoE) for clients that share similar data distributions.We
explore a wide spectrum of data distribution settings: ranging from the same
distribution for all clients, all the way to different distributions for each client.
Our aim is an end-to-end framework that performs comparable or better than
vanilla FL and is robust in all of these settings.

In order to achieve personalization, the authors of [11] introduce a method for
training cluster models using FL. We show that their solution does not perform
well in our settings, where only one or a few of the cluster models converge.
To solve this, inspired by the Multi-Armed Bandit (MAB) field, we employ an
efficient and effective way of balancing exploration and exploitation of these
cluster models. As proposed by the authors of [24,29], we add a local model and
use a MoE that learns to weigh, and make use of, all of the available models to
produce a better personalized inference, see Fig. 1.

In summary, our main contributions are:

1. We devise an FL algorithm which improve upon [11] by balancing exploration
and exploitation to produce better adapted cluster models, see Sect. 3.1;

2. We use said cluster models as expert models in an MoE to improve perfor-
mance, described in Sect. 3.1;

3. An extensive analysis1 of our approach with respect to different non-IID
aspects that also considers the distribution of client performance, see Sect. 4.5.

1 The source code for the experiments can be found at https://github.com/Ericsson
Research/fl-moe.

https://github.com/EricssonResearch/fl-moe
https://github.com/EricssonResearch/fl-moe
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2 Background

2.1 Problem Formulation

Consider a distributed and decentralized ML setting with clients k ∈ {1, 2, . . . ,
K}. Each client k has access to a local data partition P k that never leaves the
client where nk = |P k| is the number of local data samples. In this chapter we
are considering a multi-class classification problem where we have n =

∑K
k=1 nk

data samples xi, indexed i ∈ {1, 2, . . . , nk}, and output class label yi is in a
finite set. We further divide each client partition P k into local training and
test sets. We are interested in performance on the local test set in a non-IID
setting, see Sect. 2.2.

2.2 Regimes of Non-IID Data

In any decentralized setting it is common to have non-IID data that can be of
non-identical client distributions [14,18], and which can be characterized as:

– Feature distribution skew (covariate-shift). The feature distributions vary
between clients. Marginal distributions P (x) varies, but P (y | x) is shared;

– Label distribution skew (prior probability shift, or class imbalance). The dis-
tribution of class labels are different between clients, so that P (y) varies but
P (x | y) is shared;

– Same label, different features. The conditional distributions P (x | y) varies
between clients but P (y) is shared;

– Same features, different label (concept shift). The conditional distribution
P (y | x) varies between clients, but P (x) is shared;

– Quantity skew (unbalancedness). Clients have different amounts of data.

Furthermore, the data independence between clients and between data sam-
ples within a client can also be violated.

2.3 Federated Learning

In a centralized ML solution data that may be potentially privacy-sensitive is col-
lected to a central location. One way of improving privacy is to use a collaborative
ML algorithm such as Federated Averaging (FedAvg) [27]. In FedAvg train-
ing of a global model fg(x,wg) is distributed, decentralized and synchronous. A
parameter server coordinates training on many clients over several communica-
tion rounds until convergence.

In communication round t, the parameter server selects a fraction C out of
K clients as the set St. Each selected client k ∈ St will train locally on nk data
samples (xi, yi), i ∈ P k, for E epochs before an update is sent to the parame-
ter server. The parameter server performs aggregation of all received updates
and updates the global model parameters wg. Finally, the new global model
parameters are distributed to all clients.
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We can now define our objective as

min
wg∈Rd

L(wg)
Δ= min

wg∈Rd

K∑

k=1

nk

n

client k average loss

1
nk

∑

i∈Pk

l (xi, yi,wg)

sample i loss

population average loss

, (1)

where l (xi, yi,wg) is the loss for yi, ŷg = fg (xi,wg). In other words, we aim to
minimize the average loss of the global model over all clients in the population.

2.4 Iterative Federated Clustering

In many real distributed use-cases, data is naturally non-IID and clients form
clusters of similar clients. A possible improvement over FedAvg is to introduce
cluster models that map to these clusters, but the problem of identifying clients
that belong to these clusters remains. We aim to find clusters, subsets of the
population of clients, that benefit more from training together within the subset,
as opposed to training with the entire population.

Using Iterative Federated Clustering Algorithm (IFCA) [11] we set the
expected largest number of clusters to be J and initialize one cluster model with
weights wj

g per cluster j ∈ {1, 2, . . . , J}. At communication round t each selected
client k performs a cluster identity estimation, where it selects the cluster model
ĵk that has the lowest estimated loss on the local training set. This is simi-
lar to [26].

The cluster model parameters wj
g at time t + 1 are then updated by using

only updates from clients the jth selected cluster model, so that (using model
averaging [11,27])

nj ← ∑
k∈{St | ĵk=j} nk, (2)

wj
g(t + 1) ← ∑

k∈{St | ĵk=j} nk

nj
wk(t + 1). (3)

2.5 Federated Learning Using a Mixture of Experts

In order to construct a personalized model for each client, [24] first add a local
expert model fk

l (x,wk
l ) that is trained only on local data. Recall the global

model fg(x,wg) from Sect. 2.3. The authors of [24] then learn to weigh the
local expert model and the global model using a gating function from MoE [12,
15,29]. The gating function takes the same input x and outputs a weight for
each of the expert models. It uses a Softmax in the output layer so that these
weights sum to 1. We define fk

h

(
x,wk

h

)
as the gating function for client k. The

same model architectures are used for all local models, so fk
h (x,w) = fk′

h (x,w)
and fk

l (x,w) = fk′
l (x,w) for all pairs of clients k, k′. For simplicity, we write

fl (x) = fk
l

(
x,wk

l

)
and fh (x) = fk

h

(
x,wk

h

)
for each client k. Parameters wk

l

and wk
h are local to client k and not shared. Finally, the personalized inference is

ŷh = fh (x) fl (x) + [1 − fh (x)] fg (x) . (4)
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3 Adaptive Expert Models for Personalization

3.1 Framework Overview and Motivation

In IFCA, after the training phase, the cluster model with the lowest loss on
the validation set is used for all future inferences. All other cluster models are
discarded in the clients. A drawback of IFCA is therefore that it does not use all
the information available in the clients in form of unused cluster models. Each
client has access to the full set of cluster models, and our hypothesis is that if a
client can make use of all of these models we can increase performance.

It is sometimes advantageous to incorporate a local model, as in Sect. 2.5,
especially when the local data distribution is very different from other clients.
We therefore modify the MoE [24] to incorporate all the cluster models
from IFCA [11] and the local model as expert models in the mixture, see Fig. 2.
We revise (4) to

ŷh = glf
k
l (x) +

J−1∑

j=0

gk
j f j

g (x) , (5)

where gl is the local model expert weight, and gk
j is the cluster model expert

weight for cluster j from fk
h (x), see Fig. 2.

However, importantly, we note that setting J in [11] to a large value produces
few cluster models that actually converge, which lowers performance when used
in a MoE. The authors of [34] note that this method is difficult to train in practice
and that the performance is worse than FedAvg together with fine-tuning.
We differ from [11] in the cluster estimation step in that we select the same
number of clients Ks = �CK� in every communication round, regardless of J .
This spreads out more evenly over the global cluster models. Since cluster models
are randomly initialized we can end up updating one cluster model more than the
others by chance. In following communication rounds, a client is more likely to
select this cluster model, purely because it has been updated more. This also has
the effect that as J increases, the quality of the updates are reduced as they are
averaged from a smaller set of clients. In turn, this means that we needed more
iterations to converge. Therefore, we make use of the ε-greedy algorithm [31]
in order to allow each client to prioritize gathering information (exploration)
of the cluster models or use the estimated best cluster model (exploitation). In
each iteration a client selects a random cluster model with probability ε and the
currently best otherwise, see Algorithm 3.

By using the ε-greedy algorithm we make more expert models converge and
avoid a mode collapse. We can then use the gating function fk

h from MoE to adapt
to the underlying data distributions and weigh the different expert models. We
outline our setup in Fig. 1 and provide details in Fig. 2 and Algorithms 1 to 4.

When a cluster model has converged it is not cost-effective to transmit this
cluster model to every client, so by using per-model early stopping we can reduce
communication in both uplink and downlink. Specifically, before training we
initialize J = {1, 2, . . . , J}. When early stopping is triggered for a cluster model
we remove that cluster model from the set J . The early-stopping algorithm is
described in Algorithm 1.
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Algorithm 1. Adaptive Expert Models for FL — server
1: procedure server(C, K)
2: initialize J ← {1, 2, . . . , J},

{
wj

g(0)
∣∣ j ∈ J }

� Initialize J global cluster
models

3: Ks ← �CK� � Number of clients to select per communication round
4: for t ∈ {1, 2, . . .} do � Until convergence
5: St ⊆ {1, 2, . . . , K}, |St| = Ks � Random sampling of Ks clients
6: for all k ∈ St do � For all clients, in parallel
7: wk(t + 1), nk, ĵk ← k.client

({
wj

g

∣∣ j ∈ J })
� Local training (Alg. 2)

8: for all j ∈ {1, 2, . . . , J} do � For all cluster models
9: nj ← ∑

k∈{St | ĵk=j} nk � Total number of samples for cluster model
j from clients where j = ĵ

10: wj
g(t + 1) ← ∑

k∈{St | ĵk=j}
nk
nj

wk(t + 1) � Update cluster model j
with clients where j = ĵ

11: if early stopping triggered for model j then
12: J ← J \ j � Optional: Remove j from the set of selectable clus-

ter models J

Algorithm 2. Adaptive Expert Models for FL — client
13: procedure client(

{
wj

g

∣
∣ j ∈ J }

)

14: ĵ ← cl.-est.
(
ε,

{
wj

g

∣∣ j ∈ J })
, nk ← |P k| � Estimate best cluster (Alg. 3)

15: wk(t + 1) ← update
(
w ĵ

g(t), nk

)
� Perform local training using clus-

ter model ĵ (Alg. 4)

16: return (wk(t + 1), nk, ĵ)

4 Experiments

4.1 Datasets

We use three different datasets, with different non-IID characteristics, in which
the task is an image multi-class classification task with varying number of classes.
We summarize these datasets in Table 1.

– CIFAR-10 [20], where we use a technique from [24] to create client partitions
with a controlled Label distribution skew, see Sect. 4.2;

– RotatedCIFAR-10 [11], where the client feature distributions are controlled
by rotating CIFAR-10 images—an example of same label, different features;

– Federated Extended MNIST (FEMNIST) [4,5] with handwritten char-
acters written by many writers, exhibiting many of the non-IID characteristics
outlined in Sect. 2.2.

Algorithm 3. Adaptive Expert Models for FL — cluster assignment
17: procedure cl.-est.(ε,

{
wj

g

∣∣ j ∈ J }
)

18: return

{
argminj∈J

∑
i∈Pk l

(
xi, yi,w

j
g

)
prob. 1 − ε � Lowest loss model

U {1, J} prob. ε � Random assignment
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Algorithm 4. Adaptive Expert Models for FL—local update
19: procedure update(wk(t + 1), nk) � Mini-batch gradient descent
20: for e ∈ {1, 2, . . . , E} do � For a few epochs
21: for all batches of size B do � Batch update
22: wk(t + 1) ← wk(t + 1) −

η
B

∇w k(t+1)

∑B
i=1 li

(
xi, yi,w

k(t + 1)
)

� Local parameter update

23: return wk(t + 1)

Fig. 2. Our solution with 2 global cluster models. Each client k has one local expert
model fl(x,wk

l ) and share J = 2 expert cluster models f j
g (x,wj

g) with all other clients.
A gating model fh(x,wk

h) is used to weigh the expert cluster models and produce a
personalized inference ŷh from the input x.

Table 1. Dataset summary statistics — number of samples per client.

Samples, training set Samples, test set

Dataset Classes K C Mean Min Max Mean Min Max

CIFAR-10 10 50 0.1 500.0 500 500 100.0 100 100

Rot. CIFAR-10 10 200 0.1 500.0 500 500 100.0 100 100

FEMNIST 62 182 0.07 199.7 98 387 22.7 11 44

4.2 Non-IID Sampling

In order to construct a non-IID dataset from the CIFAR-10 dataset [20] with
the properties of class imbalance that we are interested in we first look at [27].
A pathological non-IID dataset is constructed by sorting the dataset by label,
dividing it into shards of 300 data samples and giving each client 2 shards.

However, as in [24], we are interested in varying the degree of non-IIDness
and therefore we assign two majority classes to each client which make up a
fraction p of the data samples of the client. The remainder fraction (1 − p) is
sampled uniformly from the other 8 classes. When p = 0.2 each class has an
equal probability of being sampled. A similar case to the pathological non-IID
above is represented by p = 1. In reality, p is unknown.
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4.3 Model Architecture

We start with the benchmark model defined in [4] which is a Convolutional Neu-
ral Network (CNN) model with two convolutional layers and one fully connected
layer with fixed hyperparameters. However, in our case where nk is small, the
local model is prone to over-fitting, so it is desirable to have a model with lower
capacity. Similarly, the gating model is also prone to overfitting due to both a
small local dataset and the fact that it aims to solve a multi-label classification
problem with fewer classes (expert models), than in the original multi-class clas-
sification problem. The local model, gating model and cluster models share the
same underlying architecture, but therefore have hyperparameter such as num-
ber of filters in a hidden layer individually tuned, see Sect. 4.4. The AdamW [25]
optimizer is used to train the local model and the gating model, while Stochas-
tic Gradient Descent (SGD) [2] is used to train the cluster models to avoid
issues related to momentum parameters when averaging. We use negative log-
likelihood loss in (1).

4.4 Hyperparameter Tuning

Hyperparameters are tuned using [23] in four stages and used for all clients. For
each model we tune the learning rate η, the number of filters in two convolutional
layers, the number of hidden units in the fully connected layer, dropout, and
weight decay. For the ε-greedy exploration method we also tune ε.

First, we tune the hyperparameters for a local model and for a single global
model. Thereafter, we tune the hyperparameters for the gating model using the
best hyperparameters found in the earlier steps. Lastly, we tune ε with two
cluster models J = 2. For the no exploration experiments we set ε = 0.

Hyperparameters depend on p and J but we tune the hyperparameters for
a fixed majority class fraction p = 0.2, which corresponds to the IID case. The
tuned hyperparameters are then used for all experiments. We show that our
method is still robust in the fully non-IID case when p = 1. See Table 2 for
tuned hyperparameters in the CIFAR-10 experiment.

4.5 Results

We summarize our results for the class imbalance case exemplified with the
CIFAR-10 dataset in Table 3. In Fig. 3, we see an example of how the performance
varies when we increase the non-IID-ness factor p for the case when J = 3.
In Fig. 3a we see the performance of IFCA [11] compared to our solution in
Fig. 3b. We also compare to: a local model fine-tuned from the best cluster
model, an entirely local model, and an ensemble model where we include all
cluster models as well as the local model with equal weights. In Fig. 4 we vary the
number of cluster models J for different values of the majority class fraction p.
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Table 2. Tuned hyper-parameters in the CIFAR-10 experiment for the global cluster
models, the local models and the gating model.

Model η Conv1 Conv2 FC Dropout Weight Dec. E ε

Global 5.86 × 10−3 128 32 1024 0.80 1.10 × 10−3 3 0.33

Local 2.69 × 10−4 32 256 256 0.76 9.89 × 10−3

Gate 3 × 10−6 12 12 8 0.78 6.88 × 10−4
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(a) No exploration.
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(b) ε-greedy exploration.

Fig. 3. Results for CIFAR-10. Comparison between no exploration and our ε-greedy
exploration method for J = 6. Our proposed MoE solution with ε-greedy exploration
is superior in all cases from IID to pathological non-IID class distributions, here shown
by varying the majority class fraction p.

Table 3. Results for CIFAR-10 and p ∈ {0.2, 0.4, . . . , 1} when J = 6. Mean μ and
standard deviation σ for our exploration method ε-greedy and without exploration.
We compare our proposed MoE solution to the baseline from IFCA [11]. Our proposed
solution is superior in all but one case, indicated by bold numbers.

MoE IFCA Ensemble Fine-tuned Local

p Exp. strategy # trials μ σ μ σ μ σ μ σ μ σ

0.2 ε-greedy (ours) 7 72.39 1.26 70.38 0.74 70.82 1.87 70.16 0.61 38.52 0.75

No exploration 6 57.73 1.95 71.25 0.86 58.58 1.96 70.13 1.04 38.06 0.87

0.4 ε-greedy (ours) 6 72.05 1.79 68.59 1.00 69.96 2.33 70.28 1.05 43.36 0.47

No exploration 9 60.12 2.37 68.29 1.56 59.54 1.31 69.42 1.54 43.16 0.71

0.6 ε-greedy (ours) 8 75.22 0.75 66.53 0.98 71.44 1.17 72.50 0.54 54.63 0.33

No exploration 9 67.94 0.75 61.47 2.27 65.15 0.87 68.27 1.71 55.04 0.45

0.8 ε-greedy (ours) 14 81.09 1.18 65.23 2.40 74.44 0.76 80.13 1.02 69.49 0.58

No exploration 15 75.04 0.93 62.59 1.95 70.82 1.56 76.49 1.27 69.55 0.70

1.0 ε-greedy (ours) 14 90.76 0.82 48.79 5.35 71.06 4.03 90.26 1.02 86.65 0.39

No exploration 6 88.79 0.52 60.97 2.07 71.56 9.12 91.11 0.33 86.37 0.31
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An often overlooked aspect of performance in FL is the inter-client variance.
We achieve a smaller inter-client variance, shown for CIFAR-10 in Fig. 6a and
Table 3.

We see that for CIFAR-10 our ε-greedy exploration method achieves better
results for lower values of p by allowing more of the cluster models to converge—
thereby more cluster models are useful as experts in the MoE, even though the
models are similar, see Fig. 5a. For higher values of p we see that the cluster
models are adapting to existing clusters in the data, see Fig. 5c. The most inter-
esting result is seen in between these extremes, see Fig. 5b. We note that the
same number of clients pick each cluster model as in IFCA, but we manage to
make a better selection and achieve higher performance.

Fig. 4. Results for CIFAR-10. Comparison between no exploration (colored dashed
lines) and the ε-greedy exploration method (colored solid lines). Our proposed MoE
solution with the ε-greedy exploration outperforms all other solutions, including the
baseline from IFCA [11]. It performs better the greater the non-IIDness, here seen by
varying the majority class fraction p. Furthermore, our solution is robust to changes
in the number of cluster models J .

For the rotated CIFAR-10 case in Table 4 and 7b we see that IFCA manages
to assign each client to the correct clusters at J = 2, and in this Same label,
different features case our exploration method requires a larger J to achieve the
same performance. We also note the very high ε = 0.82. More work is needed on
better exploration methods for this case.
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Fig. 5. Results for CIFAR-10. The number of clients in each cluster for the different
exploration methods. Clusters are sorted—the lowest index corresponds to the most
picked cluster. Our ε-greedy exploration method picks the cluster models more evenly.

Fig. 6. CDF of client accuracy. Comparison between no exploration (colored dashed
lines) and the ε-greedy exploration method (colored solid lines). Our proposed MoE
solution with ε-greedy exploration improves accuracy and fairness for two of the
datasets.

The FEMNIST dataset represents a more difficult scenario since there are
many non-IID aspects in this dataset. We find from Table 5 and Fig. 7a that for
FEMNIST the best performance is achieved when J = 9 and in Fig. 6b we show
the distribution of accuracy for the clients for the different models.

5 Related Work

The FedAvg algorithm [27] is the most prevalent algorithm for learning a
global model in FL. This algorithm has demonstrated that an average over
model parameters is an efficient way to aggregate local models into a global
model. However, when data is non-IID, FedAvg converges slowly or not at
all. This has given rise to personalization methods for FL [14,18]. Research on
how to handle non-IID data among clients is ample and expanding. Solutions
include fine-tuning locally [33], meta-learning [9,17], MAB [30], multi-task learn-
ing [22], model heterogeneous methods [7,13], data extension [32], distillation-
based methods [16,21] and Prototypical Contrastive FL [28].

Mixing local and global models has been explored by [6], where a scalar α is
optimized to combine global and local models. In [29] the authors propose to use
MoE [15] and learn a gating function that weighs a local and global expert to
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Table 4. Results for Rotated CIFAR-10. Mean μ and standard deviation σ with varying
number of cluster models J , for our exploration method ε-greedy and for the baseline
exploration method from IFCA. At J = 2 all clients have picked the correct cluster
model.

MoE IFCA Ensemble Local

J Exp. strategy # trials μ σ μ σ μ σ μ σ

ε-greedy (ours) 7 70.20 1.35 72.63 2.01 67.89 1.23 42.79 1.10
1

No exploration 10 70.70 0.95 73.08 0.87 68.14 1.15 43.27 0.92

ε-greedy (ours) 7 75.45 2.44 77.91 1.90 71.45 1.97 42.76 1.15
3

No exploration 10 76.94 1.14 79.95 0.92 71.51 1.13 42.94 1.65

ε-greedy (ours) 3 75.59 1.20 78.59 0.92 71.26 1.55 43.70 0.84
6

No exploration 4 76.49 0.86 79.30 0.51 70.78 0.82 43.09 1.12

ε-greedy (ours) 1 77.58 80.33 72.65 40.55
9

No exploration 6 76.96 0.96 79.6 1.27 71.38 1.46 42.53 1.90

Table 5. Results for FEMNIST. Mean μ and standard deviation σ with varying number
of cluster models J for our exploration method ε-greedy and for the baseline exploration
method from IFCA.

MoE IFCA Ensemble Local

J Exp. strategy # trials μ σ μ σ μ σ μ σ

ε-greedy (ours) 3 75.99 3.03 77.80 3.88 75.14 3.20 36.27 0.76
1

No exploration 3 78.15 0.79 80.48 0.77 77.53 0.57 36.35 0.39

ε-greedy (ours) 3 82.07 0.22 78.35 0.74 80.49 1.28 36.12 0.78
3

No exploration 3 77.59 0.60 78.21 3.63 76.52 1.95 36.15 0.43

ε-greedy (ours) 3 82.72 0.81 77.11 1.03 80.48 1.57 36.90 0.88
6

No exploration 3 78.26 0.71 79.04 1.58 77.42 0.89 36.13 1.04

ε-greedy (ours) 3 84.37 1.01 78.05 0.84 81.82 1.62 36.72 0.85
9

No exploration 3 77.06 1.88 78.73 1.35 76.49 1.45 36.52 0.76

enhance user privacy. This work is developed further in [24], where the authors
use a gating function with larger capacity to learn a personalized model when
client data is non-IID. We differ in using cluster models as expert models, and by
evaluating our method on datasets with different non-IID characteristics. Recent
work has studied clustering in FL settings for non-IID data [3,11,19,26]. In [11]
the authors implement a clustering algorithm for handling non-IID data in form
of covariate shift. Their proposed algorithm learns one global model per cluster
with a central parameter server, using the training loss of global models on local
data of clients to perform cluster assignment. In their work, they only perform
clustering in the last layer and aggregate the rest into a single model. If a global
model cluster is unused for some communication rounds, the global cluster model
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Fig. 7. Results for FEMNIST and rotated CIFAR-10. Comparison between no explo-
ration (colored dashed lines) and the ε-greedy exploration method (colored solid lines).
Our proposed MoE solution is superior in the FEMNIST case, but need more cluster
models to achieve similar performance to the baseline in the rotated CIFAR-10 case.

is removed from the list to reduce communication overhead. However, this means
that a client cannot use other global cluster models to increase performance.

6 Discussion

We adapted the inspiring work by [11] to work better in our setting and efficiently
learned expert models for non-IID client data. Sending all cluster models in
each iteration introduces more communication overhead. We addressed this by
removing converged cluster models from the set of selectable cluster models
in Algorithm 1, although this is not used in our main results. This only affects
the result to a minor degree, but has a larger effect on training time due to
wasting client updates on already converged models. Another improvement is the
reduces complexity in the cluster assignment step. A notable difference between
our work and IFCA is that we share all weights, as opposed to only the last layer
in [11]. These differences increase the communication overhead further, but this
has not been our priority and we leave this for future work.

7 Conclusion

In this chapter, we have investigated personalization in a distributed and decen-
tralized ML setting where the data generated on the clients is heterogeneous
with non-IID characteristics. We noted that neither FedAvg nor state-of-the-art
solutions achieve high performance in this setting. To address this problem, we
proposed a practical framework of MoE using cluster models and local models as
expert models and improved the adaptiveness of the expert models by balancing
exploration and exploitation. Specifically, we used a MoE [24] to make better use
of the cluster models available in the clients and added a local model. We showed
that IFCA [11] does not work well in our setting, and inspired by the MAB field,
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added an ε-greedy exploration [31] method to improve the adaptiveness of the
cluster models which increased their usefulness in the MoE. We evaluated our
method on three datasets representing different non-IID settings, and found that
our approach achieve superior performance in two of the datasets, and is robust
in the third. Even though we tune our algorithm and hyperparameters in the
IID setting, it generalizes well in non-IID settings or with varying number of
cluster models—a testament to its robustness. For example, for CIFAR-10 we
see an average accuracy improvement of 29.78% compared to IFCA and 4.38%
compared to a local model in the pathological non-IID setting. Furthermore, our
approach improved the inter-client accuracy variance with 60.39% compared to
IFCA, which indicates improved fairness, but 60.98% worse than a local model.

In real-world scenarios data is distributed and often displays non-IID char-
acteristics, and we consider personalization to be a very important direction of
research. Finding clusters of similar clients to make learning more efficient is still
an open problem. We believe there is potential to improve the convergence of
the cluster models further, and that privacy, security and system aspects provide
interesting directions for future work.
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