
The Data Exchange Protocol
over Multi-chain Blockchain Using

Zero-Knowledge Proof

AoXuan Li1(B), Gabriele D’Angelo2, and Su-Kit Tang1

1 Faculty of Applied Sciences, Macao Polytechnic University, Macao SAR, China
{aoxuan.li,sktang}@mpu.edu.mo

2 Department of Computer Science and Engineering, University of Bologna,
Bologna, Italy

g.dangelo@unibo.it

Abstract. The implementation of blockchain technology is becoming
popular among cyber-physical systems. However, the current solutions
suffer from scalability and privacy issues. In this position paper, we lever-
age zero-knowledge proof and multichain technology to propose an effi-
cient system for data transferring across different components. Each com-
ponent may maintain a private chain storing its data, and the system acts
as a relayer between different chains, in which multiple private chains are
efficient for appending new data. Only encrypted data is transferred from
a source chain to a destination chain. The relayer handles data transfer-
ring in two phases: send and receive, and the relayer keeps a Merkle tree
of all sent data. In fact, it only transfers the data if the receiver can
submit a valid zero-knowledge proof that proves the ownership of the
data. The zero-knowledge proof discloses nothing but the statement is
true; therefore it protects anonymity for the data owners. This system is
secure and satisfies relevant properties such as ledger indistinguishability,
transaction non-malleability, and matchability.

Keywords: Zero-knowledge proof · Multichain · Blockchain ·
Cyber-physical system

1 Introduction

A cyber-physical system combines physical and computational components, and
each part is tightly connected [12]. Blockchain is a distributed ledger that
may hold any data, which is decentralized and transparent. All records on
the blockchain are immutable, and no single party may manipulate the data.
Blockchain is widely employed in cyber-physical systems [25], e.g., healthcare
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[8,10,17], IoT [14,16,22], and smart grid [23]. However, those solutions may suf-
fer from scalability issues on the large scale of data, or they cannot guarantee
privacy and anonymity for sensitive data.

Popular blockchain projects, e.g., Bitcoin [20] and Ethereum [29], are limited
in throughput due to the computational cost for generating and appending new
blocks to the blockchain, in fact, the nodes have to verify all previous blocks are
valid. As the blockchain size grows, the cost for adding a new block becomes
too expensive. Also, all data on the blockchain is transparent, and all parties
may access any data on-chain. Moreover, for sensitive data, e.g., health data
and financial data, the blockchain is unable to provide the needed privacy and
anonymity.

A multichain approach allows each party to keep a private blockchain, and
each blockchain may exchange data via a cross-chain transactions. In a cross-
chain or single-chain transaction, the source blockchain network will transfer
data to the destination blockchain network. Since each private blockchain is
small compared with a single chain containing all data, the multichain approach
could accelerate block generations. However, in such a protocol, the sender and
receiver addresses are openly available on-chain, and one may track the transac-
tion graph. Many research works show that this setting cannot provide privacy
[7,24]. To address this issue, we employ a similar solution as in Zcash [2,15],
that is a fork of Bitcoin [20]: the transaction is encrypted with the public key of
the receiver, and then this receiver needs to prove the knowledge of the private
key. If a sender Alice on blockchain A transfers some data to a receiver Bob on
blockchain B, we want both Alice and Bob to be anonymous and no other party
may know any information about the data.

For example, suppose blockchain A is a private chain of a hospital, and
blockchain B belongs to a research institute. Alice is a patient in the hospital,
and Bob is a researcher at the institute. Bob wants to retrieve someone’s medical
records for academic purposes, and Alice wants to contribute her data. After the
transfer of Alice’s data from blockchain A to blockchain B, no one can figure out
what the data contains and who the original owner of the data is. To address the
first requirement, Alice may encrypt her data with Bob’s public key. The second
requirement commonly refers to transaction unlinkability [4]. When Alice sends
the data to Bob, Bob is the new owner of the data. To prove his ownership, Bob
has to prove that he can correctly decrypt the message. A simple solution is to
disclose Bob’s private key, and then one may verify the private key by decrypting
data sent by Alice; however, this solution will also disclose Alice’s identity and
the data content. To address the issue, we leveraged zero-knowledge proof and
Merkle tree to verify the ownership of data. We explained zero-knowledge proof
and the Merkle tree in detail in Sects. 2.1 and 3.5.

All data sent from chain A to chain B groups a Merkle tree, and the data
sent from Alice to Bob is one of the leaves. To prove Bob’s ownership, he proves
the following statements using zero-knowledge proof:

1. he knows a path from the data to the Merkle tree root, and
2. he knows the correct private key.
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A zero-knowledge proof reveals nothing but the statements are correct. Since
records on a blockchain are public to all nodes, if Bob writes the received data
to chain B without modification, a malicious user who has access to both chain
A and chain B may discover Alice’s identity by matching data content. For
example, the malicious user may lookup chain A for a sending request where the
data content is the same as a record on chain B. Therefore, Bob encrypts the
data content with a different public key and writes the new ciphertext down on
B. The encryption algorithm can guarantee that a malicious user cannot figure
out two ciphertexts containing the same plain text if it has been encrypted with
different public keys.

We can generalize the two-chain solution to the multichain system. As we
mentioned before, a cyber-physical system may combine many components, and
each component manages a private chain. To reduce communication complex-
ity across the system, we introduced a middleware of multiple chains, called a
relayer, to handle data exchange. Our proposed protocol is a general-purpose
protocol so that it can fit in any multichain system supporting smart contracts.
For example, financial institutes may employ our protocol to exchange data with-
out a trusted third party. In this case, the institutes increase the data liquidity
while protecting user privacy. The protocol also allows different sensors in an
IoT system to transfer data efficiently and securely.

Our Contribution. We proposed a data exchange protocol over multi-chain
blockchain using zero-knowledge proof. In the protocol, each component maintains
a private blockchain, and different components can exchange data through cross-
chain transactions. We also designed a relayer to carry data from a source chain
to a destination chain, which keeps a Merkle tree of all sent data. This relayer is
also responsible for verifying zero-knowledge proofs. This system provides both
scalability and privacy for data transfer between different components in a cyber-
physical system. It is noteworthy that the sender and the receiver may be on the
same chain, i.e., the user sends a single-chain transaction, and there is a single chain
that is both the origin and the destination of the transaction. Alternatively, the
user can send a cross-chain transaction, and the source chain and the destination
chain are on different chains. We illustrate the process in Fig. 1.

2 Background and Related Work

In this section, we describe the background technologies and methodologies that
are necessary for understanding this paper.

2.1 Merkle Tree

Merkle tree [19], also called hash tree, is a tree in which every non-leaf node is
labeled as the hash value of its child nodes’ labels. The top of the tree is the
root hash, and each leaf node has an authentication path to the root. It allows
efficient verification of membership in a large data set. Figure 2 is an example of
a Merkle tree, which contains a root hash rt and labels l1, l2, l3, l4. Verifying the
membership of label l1 only needs H2 and H34.
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Fig. 1. Protocol Overview.

2.2 Blockchain

A blockchain is a distributed ledger among many network nodes, and records
encode as ordered transactions. The transactions compose blocks, and each
block links to the previous block with a hash value. The links of hash values
make records on-chain immutable. If a malicious user wants to manipulate an
intermediate block, the user must modify all the following blocks. Since the
blockchain architecture is distributed and decentralized, usually modification
is impossible. Bitcoin [20] is the first implementation of a blockchain, which
supports asset transactions. Ethereum [29] introduced smart contracts into the
blockchain, which enabled decentralized applications.

All network nodes have to store the same copy of a blockchain. Consensus
algorithms allow nodes to agree on the status of the ledger. When a new block
joins the chain, the majority of parties need to agree on the validity of the
block and the containing transactions. There are different consensus algorithms,
and the most popular algorithms are proof-based algorithms and vote-based
algorithms [21]. In a proof-based algorithm, the first party who solves a hard
puzzle has the right to append a block. In a vote-based algorithm, a block joins
the chain if enough parties append the same block. More advanced structures
are under investigation now [18,26].
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Fig. 2. Merkle Tree.

2.3 Zero-Knowledge Proof

Zero-knowledge proof was introduced by Goldwasser, Micali, and Rackoff [9],
which allows a prover to convince the verifier that a statement is true without
revealing anything but the truth of the statement. Blum, Feldman and Micali
[5] extended the protocol to a non-interactive protocol. Zero-knowledge proof
protocols are theoretical advances until recent implementation. The zk-SNARK
algorithm [3,13] is the most popular instance of the protocol.

Zk-SNARK stands for Zero-Knowledge Succinct Non-Interactive Argument
of Knowledge, in which the proof size is succinct and independent from the
complexity of the statement. Zk-SNARK generates proofs in three phases:

1. The setup phase outputs public parameters and the SNARK for a language
L in NP.

2. Prover generates a proof π with the instance x and the witness w.
3. Verifier can check the validity of π and x.

2.4 Related Works

Zero-knowledge proof (ZKP) is widely adopted among privacy-preserving
blockchains. Zerocash [2] is one of the first projects using zero-knowledge proof
on private transactions. However, it only supports intra-chain transactions, and
the transaction type is limited to direct payment. Zexe [6] extends the function-
ality of zerocash and adds supports for conditional smart contracts. It requires
users to compute the smart contract on their plain inputs off-line, and then the
user generates a ZKP proving the correctness of the off-line computation. Zkay
[28] further integrates ZKP with the blockchain by proposing a language for
writing private smart contacts, and ZeeStar [27] is a succeeding work of Zkay
which introduced a language based on homomorphic encryption. However, those
works are very computationally intensive [1], and they are not optimized for data
exchange protocols.
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3 Preliminaries

In this section, we describe how to construct the protocol with zk-SNARK and
other cryptography building blocks.

3.1 Cryptographic Building Blocks

We introduce the formal notation of the cryptography building blocks we use. λ
denotes the security parameter. This part is similar to [2] section 4.1.

Collision-Resistant Hashing. We use a collision-resistant hash function
CRH : {0, 1}∗ → {0, 1}O(λ).

Pseudorandom Functions. We use a pseudorandom function family PRF =
{PRFx : {0, 1}∗ ← {0, 1}O(λ)}x. We then instance three pseudorandom random

functions from the same PRFxs
$←− PRF and add different prefix to the input.

Namely,

– PRF addr
x (z) := PRFx(00||z),

– PRF sn
x (z :) = PRFx(01||z), and

– PRF pk
x (z) := PRFx(10||z).

Moreover, we require PRF sn to be collision resistant, i.e. one cannot find (x, z) �=
(x′, z′) s.t. PRF sn

x (z) = PRF sn
x′ (z′).

Statistically-Hiding Commitments. We use a computationally binding
and statistically hiding commitment scheme COMM . Namely, {COMMx :
{0, 1}∗ → {0, 1}O(λ)}x where x denotes the trapdoor parameter.

One-Time Strongly-Unforgeable Digital Signatures. We use a digital sig-
nature scheme Sig = (Gsig,Ksig, Ssig, Vsig).

– Gsig(1λ) → ppsig. Given a security parameters λ, Gsig samples public param-
eters ppsig for the signature scheme.

– Ksig(ppsig) → (pksig, sksig). Given public parameters ppsig, Ksig samples a
public key and a secret key for a single user.

– Ssig(sksig,m) → σ. Given a secret key sksig and a message m, Ssig signs m
to obtain a signature σ.

– Vsig(pksig,m, σ) → b. Given a public key pksig, message m, and the signature
σ, Vsig outputs b = 1 if validated or otherwise b = 0.

We require Sig to be one-time strong unforgeable against chosen-message attacks
(SUF-1CMA security).

Key-Private Public-Key Encryption. We use a public-key encryption
scheme PKC = (Gpkc,Kpkc, PKC.Enc, PKC.Dec).

– Gpkc(1λ) → pppkc. Given a security parameter λ, Gpkc samples public param-
eters pppkc for the encryption scheme.
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– Kpkc(pppkc) → (pkpkc, skpkc). Given public parameters pppkc, Kpkc samples
a public key and a secret key for a single user.

– PKC.Encpkpkc
(m) → Ct. Given a public key pkpkc and a message m,

PKC.Enc encrypts m to obtain a cipher text Ct.
– PKC.Decskpkc

(Ct) → m. Given a secret key skpkc and a cipher text Ct,
PKC.Dec decrypts Ct to obtain the plain message m (or ⊥ if decryption
fails).

The encryption scheme PKC is secure against chosen-ciphertext attack and pro-
vides both ciphertext indistinguishability IND-CCA and key indistinguishability
IK-CCA.

3.2 Concrete Design

In this section, we describe how we instantiate each building block in Table 1.

Table 1. Concrete Design.

CRH Poseidon [11]

PRF

COMM

Sig Elliptic Curve Digital Signature Algorithm

PKC Elliptic-Curve Integrated Encryption Scheme

3.3 Transactions

We introduce two types of transactions.

– Send transactions. A send transaction txsend is a tuple (cm, con, ∗), where
cm is the data commitment, con is the data’s encrypted content, and ∗ are
other information, e.g., randomness. The transaction txsend records that a
user transfer data with commitment cm and encrypted content con.

– Receive transactions. A receive transaction txreceive is a tuple (rt, sn, cmnew,
connew, πRECEIVE, ∗), where rt, sn is the Merkle root and the serial number for
the data on the source chain, cmnew is commitment of data on the destination
chain, connew is new encrypted content, and ∗ denotes other information. The
transaction txreceive records that a user receives some data and writes it down
on the destination chain.

3.4 Data

A data is an object d, which contains commitment, encrypted content, serial
number, and address.

– commitment, denoted as cm: a string that appears on the ledger once d is
sent.

– encrypted content, denoted as con: the encrypted content of d.
– serial number, denoted as sn: a unique string associated with d.
– address, denoted as addrpk: an address public key, representing who owns d.
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3.5 zk-SNARKs for Receiving Data

We use zk-SNARK to prove a NP statement RECEIV E. For the definition of
zk-SNARK, we refer to [3] for a detailed explanation. We first provide an informal
definition of zk-SNARKs. Given a field F, a zk-SNARK for F−arithmetic cir-
cuit satisfiability is a triple of polynomial-time algorithm (KeyGen,Prove,Verify):

– KeyGen(1λ, C) → (pk, vk). On input: a security parameter λ and an
F−arithmetic circuit C, the key generator KeyGen probabilistically samples
a proving key pk and a verification key vk.

– Prove(pk, x, a) → π. On input a proving key pk and any (x, a) ∈ RC , the
prover Prove outputs a non-interactive proof π for the statement x ∈ LC .

– Verify(vk, x, π) → b. On input: a verification key vk, an input x, and a proof
π, the verifier Verify outputs b = 1 if he/she is convinced that x ∈ LC .

We recall the corresponding receive transaction txreceive = (rt, sn, cmnew,
connew, πRECEIVE, ∗). To receive a data d, a user u should show that

1. u owns d,
2. commitment of d appears on the ledger,
3. sn is the calculated correctly as the serial number of d,
4. content are matched,

which is formalized as a statement RECEIV E and proved with zk-SNARK. We
then define the statement as follows.

– Instances is x := (rt, sn, h, cmnew, hsig), which specifies a set rt, sn, h for old
data, where rt is the root for a CRH-based Merkle tree, sn is the serial num-
ber, and h is the signature. It also specifies the public value vpub, commitment
of new data cmnew, and fields hsig used for non-malleability.

– Witnesses are of the form a := (path, c, addrsk, dnew) where

d = (addrpk, con, ρ, r, s, cm)
addrpk = (apk, pkpkc)

dnew = (addrnew
pk , vnew, ρnew, rnew, snew, cmnew)

addrnew
pk = (anew

pk , pknew
pkc )

Thus, the witness a specifies an authenticated path from root rt to the data’s
commitment, the entirety information of the data d, the address secret key.

Given a RECEIV E instance x, a witness a is valid for x if:

1. The data’s commitment cm appears on the ledger, i.e., path is a valid authen-
tication path for leaf cm in a CRH-based Merkle tree with root rt.

2. The address secret key ask matches the address public key, i.e., apk =
PRF addr

ask
(0).

3. The nullifier key nk matches the address secret key, i.e., nk = PRF addr
ask

(1).
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4. The serial number sn is computed correctly, i.e., sn = PRF sn
nk (ρ).

5. The data d is well formatted, i.e., cm = COMMs(COMMr(apk||ρ)||con).
6. The address secret key ask ties to hsig to h, i.e., h = PRF pk

ask
(hsig).

7. New data dnew are well formatted, i.e.,
cm = COMMsnew(COMMrnew(anew

pk ||ρnew)||connew).
8. Content are matched, i.e.,

connew = PKC.Encpknew
pkc

(PKC.Decskpkc
(con)).

3.6 Security

Security of the protocol is characterized by three properties, which we call ledger
indistinguishability, transaction non-malleability, and matchability.

Definition 1. A protocol is secure if it satisfies ledger indistinguishability,
transaction non-malleability, and balance.

We provide the informal definition below.

Ledger Indistinguishability. This property captures the requirement that the
ledger reveals no new information to the adversary beyond the publicly-revealed
information (e.g. plain text address, coin’s public value).

Transaction Non-malleability. This property means no bounded adversary
may modify the data stored in a valid receive transaction.

Matchability. This property requires no bounded adversary could receive data
other than he/she received from the send transaction.

4 Protocol Overview

Suppose a user Alice, denoted as uA, on Block A want to send data with
encrypted content con to Bob, denoted as uB, on Block B. Let PRF addr

x (·),
PRF sn

x (·) and PRF pk
x (·) denote three pseudorandom functions for a seed x.

Each user ui generates an address key pair (addrpk,i, addrsk,i), where addrpk,i =
(apk,i, pkpkc,i) and addrsk,i = (ask,i, skpkc,i), and a nullifier key nk. apk,i is gen-
erated as PRF addr

ask
(0). nk is generated as PRF addr

ask
(1).(pkpkc,i, skpkc,i) are key-

private encryption scheme. Here, we outline the protocol in three steps:

(1) uA generates randomness r, s, and ρ, where ρ is the data’s serial number
randomness. Let COMM denote a commit scheme and PKC.Enc denote
a public-key encryption scheme. Let addrpk := (apk, pkenc) be uB’s address
pair. uA encrypts data content with pkenc and generates con at first. uA

commits the serial number in two steps:
1. k = COMMr(apk,1||ρ)
2. cm := COMMs(con||k)
Then, uA computes the ciphertext Ct = PKC.Encpkpkc

(con, ρ, r, s). The
tuple (con, k, s, cm,Ct) is the new transaction txsend. The ledger will keep
a CRH(collision-resistant hash)-based Merkle tree CMList of all com-
mitted serial numbers (cm). If cm is already in the ledger, the transac-
tion will be rejected. Logically, the data uA sends to uB is defined as
d := (addrpk, v, ρ, r, s, cm).
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(2) uB can scan over the public ledger and find the transaction txsend. The user
then decrypts Ct and gets (con, ρ, r, s).

(3) When uB wants to receive the data (or more than one received coins), uB

will generate a data dnew with newly encrypted content connew and a zk-
SNARK proof πRECEIVE over the following statements:
For old data d, given the Merkle root rt, serial number sn, uB knows d and
address secret key ask,1 s.t.
– d is well-formatted.
– The address secret key matches the public key, i.e., apk = PRF addr

ask
(0).

– The nullifier key matches the address secret key, i.e., nk = PRF addr
ask

(1).
– The serial number is computed correctly, i.e., sn = PRF sn

nk (ρ).
– The data commitment cm appears as a leaf of Merkle-tree with root rt.
– New data dnew is well formatted.
– connew = PKC.Encpknew

pkc
(PKC.Decskpkc

(con)).

The receive transaction txreceive := (rt, sn, cmnew, connewπRECEIVE, ∗) is
appended to the ledger, where rt, sn are the Merkle root and the serial number
for the old data. The relayer will verify the proof and check if all sn do not
appear on the ledger. It will write the new data dnew on blockchain B if vali-
dated. Furthermore, we employ a message authentication code (MAC) scheme
to prevent malleability attacks. A MAC is a code that authenticates a message’s
source and its integration. When receiving a data, the user samples a key pair
(pksig, sksig) and use sksig sign every value associated with the txreceive trans-
action. The user also computes hsig := CRH(pksig) and h := PRF pk

ask
(hsig),

which acts like a MAC to sign the secret address key. The user then modifies
the statement to prove that h is computed correctly. The signature σ along with
pksig are included in the txreceive transaction.

5 Conclusion

In this position paper, we proposed a data exchange protocol over multi-chain
blockchain using zero-knowledge proof. The protocol leverages advanced cryptog-
raphy algorithms and blockchain technologies to provide an efficient and private
data transferring algorithm. This protocol preserves the anonymity of the origi-
nal owner, and the system is secure against malicious users, and provides indis-
tinguishability, transaction non-malleability, and matchability. In future work,
we will implement the protocol on the Ethereum Test Network and Hyperledger
Fabric and evaluate the performance of the proposed architecture. Moreover, we
will simulate the protocol’s security against various attack scenarios.
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