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1 Introduction 

A major objective of the technical industry is to provide its customers with small and 
fast devices which are simultaneously energy-efficient. System designers focus on 
three major aspects while designing a system: area, latency, and power consumption. 

In terms of area, it is widely known to researchers in the field of digital 
technology that the number of transistors, which are able to fit on an integrated 
circuit, has risen steadily since the early 1960s, thanks to technological advance 
(also known as Moore’s law) [1]. This trend of minimization has been declining and 
is expected to end in 2025 [2]. 

The question is, how to address the three aspects when “simply” minimizing 
the transistors will not be possible in the foreseeable future any more. It turns out 
that many applications, especially in the domain of digital signal processing, do 
not require strictly correct computations [3]. This is due to the fact that the human 
perception itself is not perfect. In some other situations, it might even be the case 
that the customer is willing to accept incorrect results in favor of having a faster, 
smaller, or less energy-hungry system [4]. 

A design paradigm known as approximate computing [5, 6] exploits this. The 
basic idea is to trade off computational accuracy for gains in nonfunctional aspects 
such as reduced area, smaller latency, and power reduction. 

In the literature, two main approaches to introduce approximations to the design 
in order to achieve gains on one or multiple of the aspects mentioned above are used 
(see, e.g., [7]): (a) physical changes to the design including voltage over-scaling or 
overclocking or (b) altering the functionality. We will pursue the latter approach 
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in this work. More precisely, we will present a novel and fast approximate logic 
synthesis (ALS) technique. Our optimization goal is the circuit area. We refer the 
reader to [8] for a general survey on ALS techniques. 

In this work we propose an ALS method that (a) aims to minimize the area of 
an approximated circuit, (b) specifically targets arithmetic circuits, (c) operates on 
(X)AIG representations of Boolean functions, and (d) has a small execution time 
due to a fast method of evaluating the error introduced by the approximation. 

2 Related Work 

Approximate logic synthesis has been performed on many different representations 
of Boolean functions using very different means of approximation. 

Initial work has been done by using the structural information of a given circuit, 
e.g., by cutting the carry chain of adders or multipliers [9]. 

On a higher level of abstraction, researchers extended programming 
languages [10] and hardware description languages [11] with constructs to 
automatically compile/synthesize approximated systems. 

Preliminary work on approximations on graph structures has mostly been done 
on BDDs [12–14]. In this work, we use the AIG data structure. The works that are 
closest to the work presented in this manuscript are [15] where the authors find 
cuts within an AIG that are replaced by approximations. The introduced error is 
bound by a miter structure that is evaluated using SAT. While the authors in [14] 
work on BDDs, we employ their idea of exploiting properties of the approximation 
operation to speed up the error metric computation process. We further also use their 
algorithmic approach for AIG approximation. 

3 Background 

3.1 Notation and Conventions 

In this paper, all functions will be of type f : Bn → Bm. The m individual output 
functions are denoted as fi . The interpretation of f (x)  as a natural number with the 
usual binary encoding is denoted by val(f (x)). 

For a function f with m = 1, i.e., a Boolean function, its ON/OFF-set is denoted 
by ON / OFF(f ), i.e. 

. ON(f ) := {x | f (x) = 1} and OFF(f ) := {x | f (x) = 0}.

The size of a ON/OFF-set is denoted # ON(f )/# OFF(f ).
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Given a Boolean function f , an approximated version of it is denoted by a hat, 
i.e., f̂ . Primary inputs are labeled A,  B, . . .  and primary outputs X, Y, Z. Within this 
manuscript, the approximations do not alter the number of input or output variables. 

The truth density td(f ) of a function f is the ratio between the size of the ON-set 
of f and the total number of inputs, i.e. 

. td(f ) = 1

2n
· # ON(f ).

The name stems from the fact that the truth density gives information about the 
probability of f being 1, i.e., true. 

3.2 (XOR-)AND-Inverter Graphs 

To efficiently represent Boolean functions, many representations have been pre-
sented. This work focuses on AND-Inverter Graphs (AIGs) [16] and XOR-AND-
Inverter Graphs [17]. These structures are directed acyclic graphs. In both represen-
tations, nodes without incoming edges represent primary inputs, and nodes without 
outgoing edges represent primary outputs. For AIGs, the internal nodes represent 
the logical AND operation, whereas in a XAIG, the nodes can represent either the 
logical AND or the logical XOR operation. In both types of graphs, edges might be 
negated. We denote the size, i.e., the number of nodes, of an (X)AIG G by #G. 

Example 1 Consider the addition of the two-bit numbers (CA), (DB) ∈ B2, i.e., 
(ZYX) = (CA) + (DB). An AIG representing the adder is shown in Fig. 1a. The 
nodes are AND operations, while dashed edges indicate negations. The output X is 
computed as 

.X = ¬ (¬B ∧ ¬A)
︸ ︷︷ ︸

Node6

∧¬ (A ∧ B)
︸ ︷︷ ︸

Node5
︸ ︷︷ ︸

Node7

. (1) 

Figure 1b shows an XAIG representing the same functionality, i.e., a two-bit adder. 
The gray nodes are XOR nodes. Note that the computation of X in Eq. (1) is actually 
an XOR operation, i.e., X = A ⊕ B. This is reflected by the XAIG in node 7 
that completely represents the computation of X. This shows that XAIGs may save 
nodes compared to AIGs. The AIG used the three nodes 5, 6, and 7 to represent the 
computation of X (see Fig. 1a).

While there is no one-to-one correspondence between the number of nodes in an 
(X)AIG and the resulting circuit size, the rule of thumb “less nodes lead to smaller 
circuits” does often hold and is used within this work. 

In this work, we expect the functionality to be optimized by ALS to be given as 
an AIG. Hence, instead of optimizing a circuit, represented by an AIG, directly for
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Fig. 1 AIG and XAIG for a two-bit adder. (a) AIG for a two-bit adder computing (CA)+(DB) = 
(ZYX). Each node represents an AND operation. Dashed lines indicate negation. (b) XAIG 
representing the same functionality as the AIG in (a). The gray nodes are XOR nodes; the other 
nodes are AND nodes

the area used by an actual physical realization, we aim to minimize the number of 
AIG nodes instead. 

3.3 Error Metrics 

To evaluate systems in terms of the quality of the computed values, many different 
error metrics have been proposed. Each of these metrics measures different aspects 
of the approximated functionality (see [18] for an overview of commonly used 
metrics). Some examples of error metrics are 

. er(f, f̂ ) = 1

2n
·

∑

x∈Bn

f (x) �= f̂ (x), . (2) 

wce(f, f̂ )  = max 
x∈Bn

|val(f (x)) − val( f̂ (x))|, and. (3) 

whd(f, f̂ )  = 
m−1
∑

i=0 

2i
∑

x∈Bn

(

fi(x) ⊕ f̂i (x)
)

. (4) 

The error rate (Eq. 2) counts how often the approximated function f̂ computes 
an incorrect result. This metrics is not well-suited for evaluating approximations of 
arithmetic circuits as it does not take into account at all how severe the errors are as 
it completely ignores the actual function values. As this metrics is rather simple to 
evaluate (or compute an estimate using Monte Carlo simulations), it is often used
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Table 1 Error metric values for the error rate, the worst-case error, and the weighted Hamming 
distance for an exemplary function f and its approximated function f̂ 

x f (x)  f̂ (x)  f (x) �= f̂ (x)  |val(f (x)) − val( f̂ (x))| ∑m−1 
i=0 2i ·

(

f (x)  ⊕ f̂ (x)
)

000 00 10 1 2 2 

001 10 10 0 0 0 

010 10 10 0 0 0 

011 00 00 0 0 0 

100 01 10 1 1 3 

101 11 00 1 3 3 

110 11 11 0 0 0 

111 01 01 0 0 0 

er(f, f̂ )  = 3/8 wce(f, f̂ )  = 3 whd(f, f̂ )  = 8 

in the literature. The worst-case error (Eq. 3) does take the values of f and f̂ into 
account and returns the largest error. The last error metric (Eq. 4) is a weighted 
variant of the Hamming distance metric derived from the mean Hamming distance 
as presented in [19]. The weight parameters 2i ensure that the bit position of an error 
is taken into account. Therefore, we have that errors in the more significant bits have 
a larger influence on the error than the lower significant bits. The metrics (3) and (4) 
are well-suited for arithmetic circuits. 

Example 2 Table 1 shows the truth table for a function f , an approximation f̂ of 
f , and the error metric values for the three error metrics introduced above. 

All these error metrics have in common that they are computationally expen-
sive to determine [20], making iterative ALS techniques that rely on repeatedly 
evaluating an error metric infeasible. It is possible to accelerate the error metric 
computation when properties of the approximation operation on a specific data 
structure can be exploited [14]. In this work, we adopt the greedy bucket-based 
algorithm from [14] to operate on (X)AIGs and choose the weighted Hamming 
distance as our error metric. We will use the truth density propagation from [21] 
to quickly compute (an estimate of) whd (see Sect. 4.3). 

4 Fast AIG Approximate Logic Synthesis 

4.1 Bucket-Based Approximation Algorithm 

We first describe the presented ALS technique, a bucket-based approximation 
algorithm, on a high level of abstraction before explaining the technical details in 
the following sections. 

The main idea behind the algorithm is, given an AIG G, to define multiple 
buckets that contain approximations of G that have less nodes than G. Each bucket 
has an error threshold. Only approximated AIGs that have an whd error lass than
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the threshold are stored in the bucket. All buckets are sorted in ascending order of 
the threshold. The algorithm iterates over the AIGs currently stored in the buckets 
and tries to further approximate them without exceeding the error threshold of the 
last bucket. When no further approximations are possible, the algorithm terminates 
and returns the buckets. 

The returned buckets form the Pareto front for the optimization criteria number 
of AIG nodes (which we use as a stand-in for the circuit’s area) and the weighted 
Hamming distance error metric. 

The algorithm is depicted in Algorithm 1. In lines 1–3 the buckets are set up. 
They are initialized with copies of the AIG that is to be approximated; the first 
bucket (having the smallest error threshold) is selected as the first AIG to be 
approximated. The algorithm runs as long as approximations have been performed 
(lines 4–20). For the current bucket, nodes and corresponding approximation 
operations that can be applied are found (line 6). Each of these approximations 

Algorithm 1: Fast approximate AIG synthesis 
Input : AIG to approximate A, number of buckets n with corresponding thresholds 
Output : Array bucket containing the approximate AIGs
� Initialize the buckets 

1 buckets ← 〈A,  . . . A〉
2 bucket[0].changed ← true � Ensure to approximate at least once 
3 currBucket  ← bucket[0] 
4 while currBucket.changed do 
5 currBucket.changed ← f alse  
6 approxCandidates ← f indApproximationCandidates(currBucket); foreach 

Candidate c ∈ approxCandidates do 
7 approx ← approximate(currBucket, c) 

8 e ← error(approximated,  A)

� Find bucket repBucket  with 
• error(approx,  A)  ≤ error(repBucket,  A)  and 
• #approx < #repBucket . 

9 repBucket  ← f  indF ittingBucket (approxB,  buckets,  A)  

10 if repBucket  exists then 
11 repBucket  ← approx 
12 repBucket.changed  ← true  

13 if repBucket  has a lower error threshold than currBucket  then 
14 currBucket  ← repBucket � Continue with repBucket  

15 

16 else
� Continue with next bucket 

17 currBucket  ← next (currBucket)  

18 else 
19 currBucket  ← next (currBucket) � Continue with next bucket 
20 

21 return buckets 
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is applied (line 7), and the result is evaluated for whether it can be put into one of 
the buckets, i.e., whether there is a bucket containing an AIG with a larger error and 
more nodes (line 9). If that is the case, the corresponding bucket is updated (lines 
11–12). If the updated bucket has a lower error threshold than the currently used 
bucket, this bucket is used in the next iteration (lines 13–14); otherwise, the next 
bucket is used (lines 17 and 19). 

We implemented the proposed ALS method in the state-of-the-art logic synthesis 
tool ABC [22]. 

4.2 Approximation Operations 

In this work, we make use of the two different approximation operations, XOR 
replacement and constant replacement, as they can be efficiently implemented on 
the AIG data structure. After a replacement has been conducted, the structure of 
the AIG has changed, and new optimization rules may apply. Therefore, after each 
replacement, the AIG is again optimized by ABC. 

Example 3 After replacing an input A of an AND node v (i.e., v represents A∧ B) 
with a constant 0, e.g., allows to further replace the node v with the constant 0 as 
we have 

. A ∧ B
replace A with 0� = 0 ∧ B = 0.

XOR Replacement The idea behind XOR replacement is to first identify nodes in 
the initial AIG G that form an XOR operation and then to replace them by a single 
node only. 

In order to identify the nodes forming an XOR operation, the AIG G is 
transformed into an equivalent XAIG G′ (see step (a) in Fig. 2). This step is handled 
automatically by ABC. Note that the transformation does not necessarily replace all 
AND nodes by XOR nodes. 

Fig. 2 Exemplary XOR replacement example
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Table 2 XOR Replacements based on the truth densities of A and B 

td(A) 

A ⊕ B 25% 50% 75% 

td(B) 25% A ∨ B A ∨ B ¬(A ∧ B) / A ∨ B 
50% A ∨ B ¬(A ∧ B) / A ∨ B ¬(A ∧ B) 

75% ¬(A ∧ B) / A ∨ B ¬(A ∧ B) ¬(A ∧ B) 

The second step (see step (b) in Fig. 2) then replaces the found XOR node by a 
single AND node. Note that one or multiple edges in the graph might be negated in 
this process (see the outgoing edge of node 5 on the right of Fig. 2). 

In order to find suitable replacements for the XOR node, we investigated the 
XOR behavior depending on the truth densities of the inputs of the XOR operation. 
Table 2 shows the replacements introducing the smallest error. We obtained the 
replacements via exhaustive testing. 

The tie breaker in the case when both NAND and OR are suitable replacements, 
we chose the NAND replacement when either td(A) > (1 − td(B)) or td(B) > 

(1 − td(A)) holds. We replace the XOR node with an OR node otherwise. 

Example 4 Consider the AIG on the left of Fig. 2 and assume td(A) = 0.7 and 
td(B) = 0.5. The nodes 3, 4, and 5 form an XOR operation and, hence, can be 
replaced according to Table 2. As both NAND and OR are valid replacements, 
we have to check the tie breaker to decide on the actual replacement. As we have 
td(B) = 0.5 > 0.3 = (1 − 0.7) = (1 − td(A)), the three nodes are replaced by a 
single NAND node. 

Replacing any XOR node v in the AIG of a function f according to Table 2 
yields an approximation f̂ where 

. ON(fv) ⊆ ON(f̂v) ∨ ON(f̂v) ⊆ ON(fv) (5) 

holds. Here fv/ f̂v is the function represented by the node v. Equation 5 describes 
over-/underapproximations, respectively. Note that the property in Eq. (5) holds only 
locally at the replaced node. 

Constant Replacement When a node in the AIG has a truth density close to either 
0 or 1, it can be considered a constant 0 or 1 node. To make this decision, the user 
can specify a corresponding decision threshold. As long as this threshold is less than 
0.5, i.e., replace the node v with a constant 0/1 when td(v) < 0.5/ td(v) > 0.5, the 
constant replacement operation also has the property in Eq. (5). 

For this replacement operation, the AIG G does not need to be transformed into 
an XAIG.
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4.3 Fast Computation of the Weighted Hamming Distance 

We review the definition of the weighted Hamming distance error metric from 
Eq. (4) 

. whd(f, f̂ ) =
m−1
∑

i=0

2i ·
(

∑

x∈Bn

(

fi(x) ⊕ f̂i (x)
)

)

(6) 

and note that the computation of the Hamming distance on the individual output 
functions fi can be computed using the truth density as follows: 

. =
m−1
∑

i=0

2i ·
(

2n · |td(fi) − td(f̂i)|
)

= 2n ·
m−1
∑

i=0

2i · |td(fi) − td(f̂i)|. (7) 

For this equality to hold, the function f̂ must have been obtained by applying an 
approximation operation for which the property in Eq. (5) holds. 

Example 5 Consider the two approximations X̂ and X̃ shown in the truth table in 
Table 3. For the approximation operation yielding X̂, property (5) holds, i.e., we 
have that ON(X) ⊂ ON(X̂) holds. This property does not hold for the approxima-
tion X̃. Computing the whd using Eq. (7) shows that the over-/underapproximation 
property is crucial: 

. whd(X, X̂) = 22 · |0.50 − 0.75| = 4 · 0.25 = 1

whd(X, X̃) = 22 · |0.50 − 0.50| = 4 · 0.00 = 0

The value whd(X, X̃) = 0 is clearly incorrect. 

The advantage of computing whd using Eq. (7) instead of using the initial definition 
of Eq. (4) is that the actual time necessary to determine the value can be greatly 
reduced if the computation of the truth densities can be done quickly. We will see in 
Sect. 4.4 how this is possible.

Table 3 Approximating X 

using operations for which 
the over-/underapproximation 
property Eq. (5) does hold 
(X̂) and does not hold (X̃) 

A B X X̂ X̃ 

1 1 0 0 0 

0 1 1 1 1 

1 0 1 1 0 

0 0 0 1 1 
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As the proposed ALS method (see Algorithm 1) is an iterative approach, many 
whd values have to be computed during a synthesis run. When the total number 
of inputs does not exceed 16, the AIG can be fully evaluated and exact results can 
be computed. When the AIG grows beyond this, the truth density and, hence, the 
whd are computed iteratively by determining the whd locally for the approximated 
node only. We then adopt an additive model accumulating the locally computed 
errors until the output node is reached. This additive model along with the fact that 
consecutive errors that might cancel each other out (a situation also known as error 
masking) are not taken into account leads to an overestimation of the total error. The 
upside of this simplification is that it allows for a very fast estimation of the total 
whd. 

4.4 Truth Density Computation 

So far, we used the truth density values of all (X)AIG nodes without considering 
how to actually compute them. In this work, we make use of two different means of 
obtaining the truth densities of the nodes. 

The first means of obtaining the truth density is to directly use ABC. The tool 
estimates the truth density values of the nodes by running a number of simulations 
of the graph, i.e., evaluating the graph for a given number of randomly generated 
inputs. The quality of the result greatly varies with the number of simulations and, 
hence, the time one is willing to spend on the estimation. 

As the computation of the densities is crucial for both, the decision on which node 
to replace and the computation of the weighted Hamming distance error metric, we 
chose to use the error propagation method presented in [21]. While its intended use 
is to propagate the error rate through a general Boolean network, it can easily be 
applied for our use case as (X)AIGs are nothing but a specific Boolean network and 
the truth density is already computed by the approach as a “by-product.” 

The speed of the approach from [21] stems from not having to perform full 
simulations of the (X)AIGs but computes the truth density using symbolic variables. 
It should be noted that computed densities are only exact in case when there is no 
fanout reconvergence in the (X)AIG. Nevertheless, extensive tests have shown that 
the degradation of the results in case of reconvergences is negligible. 

5 Experimental Evaluation 

5.1 Experimental Setup 

We implemented the proposed ALS technique in the state-of-the-art logic synthesis 
tool ABC [22] using the probabilistic error propagation tool from [21].
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As benchmark circuits, generic n-bit adders and multipliers as well as the 
EvoApproxLibLITE library [18] are used. 

Instead of directly specifying the whd value of the buckets, we define a threshold 
t ∈ [0, 1] that reflects how large the error in the most significant bit of the output 
is allowed to be in percent. This allows to define buckets that capture similar error 
behavior for circuits of different size, i.e., one does not have to (manually) compute 
different bucket values for an 8-bit and an 16-bit multiplier. A threshold value t can 
be translated in an estimate on the whd via whd(f, f̂ )  ≈ t · 2n · 2m−1. 

All experiments were executed on an AMD Ryzen 5 3600XT 6-Core CPU with 
3.80-GHz and 16-GB memory running Ubuntu 20.04 in WSL 2 on Windows 10 
Build 19044.1645. 

5.2 Scalability 

To assess the scalability of our approach, we performed approximate logic synthesis 
on adders of increasing bit width using 5 buckets with threshold values 0.0156, 
0.0.03125, 0.0625, 0.125, and 0.25. In the experiments, it turned out that the error 
propagation implementation has a memory leak preventing it to be used for AIGs 
with more than ≈ 300 nodes. Therefore, the following results were obtained using 
ABC’s simulation method. 

The results of the synthesis runs are presented in Table 4. For each bit width, the 
results for each bucket are listed in a separate line. The approximated AIGs were 
converted to a list of logic gates using ABC. Afterward, the area and delay have been 
computed by ABC using the mcnc.genlib gate library. For each physical aspect, 
the number of gates, the area, and the delay, we present the reduction/increase in the 
aspect in percent after the absolute values in the table. We further report the whd for 
the AIGs.

Using the number of AIG nodes as a stand-in for the circuit area works well: the 
reduction in nodes is qualitatively reflected in the reduction in the number of gates 
and the reduction of the area. As can be seen, the goal of optimizing circuits for area 
has been achieved. It is interesting to see the reduction remains in the range ≈ 65%– 
75% for threshold values up to 0.125. Only after allowing for 25% weighted errors 
in the most significant bit, further size reductions are achieved. 

While our method is capable of reducing the area, it does, in turn, increase the 
delay of the circuit (usually in the ≈ 112%–125% range). This value, again, drops 
when a large threshold is used. As we do not explicitly optimize for delay, this is an 
acceptable trade-off. 

As can be seen, the actual whd values for the buckets increase with increasing 
bit width of the adders. This shows that choosing a means to describe buckets that 
abstracts away the bit width is helpful.
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Table 4 ALS results for adders of varying bit width. For each bucket, the number AIG node, 
number of gates, area, delay, and whd are reported. For the number of nodes/gates, the area, and 
the delay, the relative change to the unapproximated AIG is also shown 

Threshold Nodes % Gates % Area % Delay % whd 

16 bit [Run-time: 34.64 s] 

Unapprox. 158 – 105 – 215 – 33.70 – – 

0.0156 141 89% 66 63% 170 79% 39.30 117% 2.75 

0.03125 139 88% 66 63% 166 77% 38.80 115% 3.00 

0.0625 137 87% 66 63% 162 65% 38.30 114% 3.25 

0.125 135 85% 66 63% 158 73% 37.80 112% 3.50 

0.25 131 83% 61 58% 151 70% 35.30 104% 4.00 

32 bit [Run-time: 365.54 s ≈ 5 m]  

Unapprox. 318 217 – 439 – 65.70 – – 

0.0156 270 85% 131 60% 319 73% 77.40 118% 7.00 

0.03125 269 85% 132 61% 315 72% 77.20 118% 7.25 

0.0625 266 84% 133 61% 309 70% 78.00 119% 7.75 

0.125 264 83% 132 61% 306 70% 77.70 118% 8.00 

0.25 193 60% 83 38% 176 40% 44.60 66% 16.64 

64 bit [Run-time: 2527.54 s ≈ 42 m] 

Unapprox. 638 – 441 – 887 – 129.70 – – 

0.0156 523 82% 261 59% 598 67% 160.30 124% 15.50 

0.03125 521 82% 261 59% 594 67% 159.80 123% 15.75 

0.0625 519 81% 261 59% 590 67% 159.30 123% 16.00 

0.125 517 81% 261 59% 586 66% 158.80 122% 16.25 

0.25 461 72% 223 51% 483 54% 134.40 103% 21.45 

128 bit [Run-time: 22738.28 s ≈ 6 h]  

Unapprox. 1278 – 889 – 1783 – 257.70 – – 

0.0156 1034 81% 516 58% 1179 66% 315.70 123% 32.48 

0.03125 1032 81% 516 58% 1175 66% 315.20 123% 32.73 

0.0625 1030 81% 516 58% 1171 66% 314.70 122% 32.98 

0.125 1028 80% 516 58% 1167 65% 314.20 122% 33.23 

0.25 501 39% 194 22% 211 12% 57.20 22% 61.72

5.3 Multi-Objective Optimization for Area and whd 

The benchmark library EvoApproxLibLITE1 [18, 23] provides a selection of approxi-
mate adders and multipliers. They have been synthesized via exhaustive search with 
respect to various error metrics (including er and wce) as well as area and power 
consumption. The benchmark set does not evaluate the whd error metric. 

As the final buckets of the presented approach form the Pareto front of the multi-
objective optimization problem with the optimization criteria whd and area, we

1 The benchmark library is publicly available at https://ehw.fit.vutbr.cz/evoapproxlib/. 

https://ehw.fit.vutbr.cz/evoapproxlib/
https://ehw.fit.vutbr.cz/evoapproxlib/
https://ehw.fit.vutbr.cz/evoapproxlib/
https://ehw.fit.vutbr.cz/evoapproxlib/
https://ehw.fit.vutbr.cz/evoapproxlib/
https://ehw.fit.vutbr.cz/evoapproxlib/
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Fig. 3 Comparison of the synthesis results of the proposed approach (dark blue dots) and 
EvoApproxLibLITE (red squares) with respect to area and the weighted Hamming distance error 
metric for (a) 8-bit unsigned adders and (b) 8-bit unsigned multipliers
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compare our results with the exhaustive results from EvoApproxLibLITE. We select 
the adders and multipliers from the benchmark set that form the Pareto front with 
respect to area and the wce error metric and compute the whd values for them so 
that we can compare the benchmark circuits to our results. The circuits optimized 
for this metric were chosen as wce does take into account the order of the output 
bits, and, therefore, the corresponding circuits allow for the fairest comparison. 

The comparison for 8-bit unsigned adders and multipliers is shown in Fig. 3. 
The notation for our circuits is as follows: “add8u_b75” refers to an unsigned 8-bit 
adder from the bucket with a threshold of 0.75. For EvoApproxLibLITE, the naming 
scheme is of the form “add8u_〈ID〉” and directly taken from their website.

For the adders (Fig. 3a), the proposed ALS method clearly produces better results 
than EvoApproxLibLITE. These results can be explained, in part, by the fact that 
EvoApproxLibLITE optimized for a different error and in part by the fact that the 
computation of the sum bits in an adder basically is a large XOR gate. When 
looking at the results for the multipliers (Fig. 3b), one can see that the applied 
approximations are not resulting in points close to the Pareto front any more. When 
investigating what approximation operations have been chosen by the proposed ALS 
algorithm (see Table 5), one can see that the ratio of XOR replacement over constant 
replacements for the adder is higher than for the multiplier. This further hints that 
XOR replacement is well-suited for adders while multipliers do not benefit from 
this particular kind of approximation. 

5.4 Truth Density Computation 

To investigate the difference in execution time between the ABC simulation-
based truth density estimation and the method from [21], we synthesized adders 
of increasing bit width using 5 buckets with threshold values 0.0156, 0.0.03125, 
0.0625, 0.125, and 0.25. The results are reported in Fig. 4. As can be seen, the error 
propagation approach clearly excels with respect to the execution time. Due to the 
memory leakage issue (see Sect. 5.2), we can not show results for larger circuits. 
While using ABC for the error estimation already is fast, using error propagation 
shows a great potential to further accelerate our proposed ALS technique.

Table 5 Number of 
XOR/Constant replacements 
for 8-bit adders and 
multipliers 

Replace Replace Ratio 

Circuit XOR Constant 

8-bit adder 37 4 9.25 

8-bit multiplier 136 38 3.6 
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Fig. 4 Execution time of the 
proposed ALS method in 
seconds for adders of varying 
bit width 

6 Conclusion and Outlook 

We presented a novel and fast greedy, bucket-based approximate logic synthesis 
technique working on AIGs that aims to minimize both the area of the resulting 
circuit and, at the same time, the error introduced by the approximations. We chose 
the weighted Hamming distance error metric whd to assess the functional quality of 
the circuit as it takes into account the order of the output bits. We found a means of 
effectively computing whd via computing truth densities and exploiting properties 
of the used approximation operations. The effectiveness of the presented method 
has been evaluated in a set of experiments. 

The next step is to find the memory leakage in the fast error propagation tool to 
further enhance the speed of the proposed method. 

Acknowledgments The paper has been partially funded by the Deutsche Forschungsgemeinschaft 
(DFG, German Research Foundation)—450987171. 

References 

1. Moore, G.E.: Cramming more components onto integrated circuits. Electronics 38(8), pp. 114 
(1965) 

2. Waldrop, M.M.: The chips are down for Moore’s law. Nature News 530(7589), 144–147 
(2016). Visited on 06/20/2022 

3. Zhu, N., et al.: Design of low-power high-speed truncation-error-tolerant adder and its 
application in digital signal processing. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 
18(8), 1225–1229 (2010) 

4. Venkatesan, R., et al.: MACACO: modeling and analysis of circuits for approximate comput-
ing. In: International Conference On Computer Aided Design (2011). Visited on 09/19/2018 

5. Han, J., Orshansky, M.: Approximate computing: an emerging paradigm for energy-efficient 
design. In: European Test Symposium (2013) 

6. Mittal, S.: A survey of techniques for approximate computing. ACM Comput. Surv. 48(4), 
1–33 (2016). Visited on 02/28/2019 

7. Venkataramani, S., et al.: Approximate computing and the quest for computing efficiency. In: 
Design Automation Conference (2015). Visited on 04/11/2019



32 A. Heil and O. Keszocze

8. Scarabottolo, I., et al.: Approximate logic synthesis: a survey. Proc. IEEE 108(12), 2195–2213 
(2020) 

9. Shafique, M., et al.: A low latency generic accuracy configurable adder. In: Design Automation 
Conference (2015). Visited on 02/08/2019 

10. Barbareschi, M., Iannucci, F., Mazzeo, A.: A pruning technique for B&B based design 
exploration of approximate computing variants. In: International Symposium on VLSI (2016) 

11. Keszocze, O., Kiessling, M.: Approximate computing extensions for the clash HDL compiler. 
In: Methoden und Beschreibungssprachen zur Modellierung und Verifikation von Schaltungen 
und Systemen (2021) 

12. Soeken, M., et al.: BDD minimization for approximate computing. In: Asia and South Pacific 
Design Automation Conference (2016) 

13. Shirinzadeh, S., et al.: An adaptive prioritized e-preferred evolutionary algorithm for approx-
imate BDD optimization. In: Proceedings of the Genetic and Evolutionary Computation 
Conference (2017). Visited on 10/19/2018 

14. Keszocze, O.: BDD-based error metric analysis, computation and optimization. IEEE Access 
10, 14013–14028 (2022) 

15. Chandrasekharan, A., et al.: Approximation-aware rewriting of AIGs for error tolerant 
applications. In: International Conference On Computer Aided Design (2016). Visited on 
10/24/2018 

16. Mishchenko, A., Chatterjee, S., Brayton, R.: DAG-aware AIG rewriting: A fresh look at com-
binational logic synthesis. In: Design Automation Conference (2006). Visited on 07/31/2019 
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