
Fast AIG-Based Approximate Logic
Synthesis

Annika Heil and Oliver Keszocze

1 Introduction

A major objective of the technical industry is to provide its customers with small and
fast devices which are simultaneously energy-efficient. System designers focus on
three major aspects while designing a system: area, latency, and power consumption.

In terms of area, it is widely known to researchers in the field of digital
technology that the number of transistors, which are able to fit on an integrated
circuit, has risen steadily since the early 1960s, thanks to technological advance
(also known as Moore’s law) [1]. This trend of minimization has been declining and
is expected to end in 2025 [2].

The question is, how to address the three aspects when “simply” minimizing
the transistors will not be possible in the foreseeable future any more. It turns out
that many applications, especially in the domain of digital signal processing, do
not require strictly correct computations [3]. This is due to the fact that the human
perception itself is not perfect. In some other situations, it might even be the case
that the customer is willing to accept incorrect results in favor of having a faster,
smaller, or less energy-hungry system [4].

A design paradigm known as approximate computing [5, 6] exploits this. The
basic idea is to trade off computational accuracy for gains in nonfunctional aspects
such as reduced area, smaller latency, and power reduction.

In the literature, two main approaches to introduce approximations to the design
in order to achieve gains on one or multiple of the aspects mentioned above are used
(see, e.g., [7]): (a) physical changes to the design including voltage over-scaling or
overclocking or (b) altering the functionality. We will pursue the latter approach

A. Heil · O. Keszocze (�)
Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Nürnberg, Germany
e-mail: annika.heil@fau.de; oliver.keszoecze@fau.de

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. Drechsler, S. Huhn (eds.), Advanced Boolean Techniques,
https://doi.org/10.1007/978-3-031-28916-3_2

17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-28916-3protect T1	extunderscore 2&domain=pdf

 885 56845 a 885 56845 a

mailto:annika.heil@fau.de
mailto:annika.heil@fau.de
mailto:annika.heil@fau.de

 8719 56845 a 8719 56845
a

mailto:oliver.keszoecze@fau.de
mailto:oliver.keszoecze@fau.de
mailto:oliver.keszoecze@fau.de
https://doi.org/10.1007/978-3-031-28916-3_2
https://doi.org/10.1007/978-3-031-28916-3_2
https://doi.org/10.1007/978-3-031-28916-3_2
https://doi.org/10.1007/978-3-031-28916-3_2
https://doi.org/10.1007/978-3-031-28916-3_2
https://doi.org/10.1007/978-3-031-28916-3_2
https://doi.org/10.1007/978-3-031-28916-3_2
https://doi.org/10.1007/978-3-031-28916-3_2
https://doi.org/10.1007/978-3-031-28916-3_2
https://doi.org/10.1007/978-3-031-28916-3_2
https://doi.org/10.1007/978-3-031-28916-3_2

18 A. Heil and O. Keszocze

in this work. More precisely, we will present a novel and fast approximate logic
synthesis (ALS) technique. Our optimization goal is the circuit area. We refer the
reader to [8] for a general survey on ALS techniques.

In this work we propose an ALS method that (a) aims to minimize the area of
an approximated circuit, (b) specifically targets arithmetic circuits, (c) operates on
(X)AIG representations of Boolean functions, and (d) has a small execution time
due to a fast method of evaluating the error introduced by the approximation.

2 Related Work

Approximate logic synthesis has been performed on many different representations
of Boolean functions using very different means of approximation.

Initial work has been done by using the structural information of a given circuit,
e.g., by cutting the carry chain of adders or multipliers [9].

On a higher level of abstraction, researchers extended programming
languages [10] and hardware description languages [11] with constructs to
automatically compile/synthesize approximated systems.

Preliminary work on approximations on graph structures has mostly been done
on BDDs [12–14]. In this work, we use the AIG data structure. The works that are
closest to the work presented in this manuscript are [15] where the authors find
cuts within an AIG that are replaced by approximations. The introduced error is
bound by a miter structure that is evaluated using SAT. While the authors in [14]
work on BDDs, we employ their idea of exploiting properties of the approximation
operation to speed up the error metric computation process. We further also use their
algorithmic approach for AIG approximation.

3 Background

3.1 Notation and Conventions

In this paper, all functions will be of type f : Bn → Bm. The m individual output
functions are denoted as fi . The interpretation of f (x) as a natural number with the
usual binary encoding is denoted by val(f (x)).

For a function f with m = 1, i.e., a Boolean function, its ON/OFF-set is denoted
by ON / OFF(f), i.e.

. ON(f) := {x | f (x) = 1} and OFF(f) := {x | f (x) = 0}.

The size of a ON/OFF-set is denoted # ON(f)/# OFF(f).

Fast AIG-Based Approximate Logic Synthesis 19

Given a Boolean function f , an approximated version of it is denoted by a hat,
i.e., f̂ . Primary inputs are labeled A, B, . . . and primary outputs X, Y, Z. Within this
manuscript, the approximations do not alter the number of input or output variables.

The truth density td(f) of a function f is the ratio between the size of the ON-set
of f and the total number of inputs, i.e.

. td(f) = 1

2n
· # ON(f).

The name stems from the fact that the truth density gives information about the
probability of f being 1, i.e., true.

3.2 (XOR-)AND-Inverter Graphs

To efficiently represent Boolean functions, many representations have been pre-
sented. This work focuses on AND-Inverter Graphs (AIGs) [16] and XOR-AND-
Inverter Graphs [17]. These structures are directed acyclic graphs. In both represen-
tations, nodes without incoming edges represent primary inputs, and nodes without
outgoing edges represent primary outputs. For AIGs, the internal nodes represent
the logical AND operation, whereas in a XAIG, the nodes can represent either the
logical AND or the logical XOR operation. In both types of graphs, edges might be
negated. We denote the size, i.e., the number of nodes, of an (X)AIG G by #G.

Example 1 Consider the addition of the two-bit numbers (CA), (DB) ∈ B2, i.e.,
(ZYX) = (CA) + (DB). An AIG representing the adder is shown in Fig. 1a. The
nodes are AND operations, while dashed edges indicate negations. The output X is
computed as

.X = ¬ (¬B ∧ ¬A)
︸ ︷︷ ︸

Node6

∧¬ (A ∧ B)
︸ ︷︷ ︸

Node5
︸ ︷︷ ︸

Node7

. (1)

Figure 1b shows an XAIG representing the same functionality, i.e., a two-bit adder.
The gray nodes are XOR nodes. Note that the computation of X in Eq. (1) is actually
an XOR operation, i.e., X = A ⊕ B. This is reflected by the XAIG in node 7
that completely represents the computation of X. This shows that XAIGs may save
nodes compared to AIGs. The AIG used the three nodes 5, 6, and 7 to represent the
computation of X (see Fig. 1a).

While there is no one-to-one correspondence between the number of nodes in an
(X)AIG and the resulting circuit size, the rule of thumb “less nodes lead to smaller
circuits” does often hold and is used within this work.

In this work, we expect the functionality to be optimized by ALS to be given as
an AIG. Hence, instead of optimizing a circuit, represented by an AIG, directly for

20 A. Heil and O. Keszocze

Fig. 1 AIG and XAIG for a two-bit adder. (a) AIG for a two-bit adder computing (CA)+(DB) =
(ZYX). Each node represents an AND operation. Dashed lines indicate negation. (b) XAIG
representing the same functionality as the AIG in (a). The gray nodes are XOR nodes; the other
nodes are AND nodes

the area used by an actual physical realization, we aim to minimize the number of
AIG nodes instead.

3.3 Error Metrics

To evaluate systems in terms of the quality of the computed values, many different
error metrics have been proposed. Each of these metrics measures different aspects
of the approximated functionality (see [18] for an overview of commonly used
metrics). Some examples of error metrics are

. er(f, f̂) = 1

2n
·

∑

x∈Bn

f (x) �= f̂ (x), . (2)

wce(f, f̂) = max
x∈Bn

|val(f (x)) − val(f̂ (x))|, and. (3)

whd(f, f̂) =
m−1
∑

i=0

2i
∑

x∈Bn

(

fi(x) ⊕ f̂i (x)
)

. (4)

The error rate (Eq. 2) counts how often the approximated function f̂ computes
an incorrect result. This metrics is not well-suited for evaluating approximations of
arithmetic circuits as it does not take into account at all how severe the errors are as
it completely ignores the actual function values. As this metrics is rather simple to
evaluate (or compute an estimate using Monte Carlo simulations), it is often used

Fast AIG-Based Approximate Logic Synthesis 21

Table 1 Error metric values for the error rate, the worst-case error, and the weighted Hamming
distance for an exemplary function f and its approximated function f̂

x f (x) f̂ (x) f (x) �= f̂ (x) |val(f (x)) − val(f̂ (x))| ∑m−1
i=0 2i ·

(

f (x) ⊕ f̂ (x)
)

000 00 10 1 2 2

001 10 10 0 0 0

010 10 10 0 0 0

011 00 00 0 0 0

100 01 10 1 1 3

101 11 00 1 3 3

110 11 11 0 0 0

111 01 01 0 0 0

er(f, f̂) = 3/8 wce(f, f̂) = 3 whd(f, f̂) = 8

in the literature. The worst-case error (Eq. 3) does take the values of f and f̂ into
account and returns the largest error. The last error metric (Eq. 4) is a weighted
variant of the Hamming distance metric derived from the mean Hamming distance
as presented in [19]. The weight parameters 2i ensure that the bit position of an error
is taken into account. Therefore, we have that errors in the more significant bits have
a larger influence on the error than the lower significant bits. The metrics (3) and (4)
are well-suited for arithmetic circuits.

Example 2 Table 1 shows the truth table for a function f , an approximation f̂ of
f , and the error metric values for the three error metrics introduced above.

All these error metrics have in common that they are computationally expen-
sive to determine [20], making iterative ALS techniques that rely on repeatedly
evaluating an error metric infeasible. It is possible to accelerate the error metric
computation when properties of the approximation operation on a specific data
structure can be exploited [14]. In this work, we adopt the greedy bucket-based
algorithm from [14] to operate on (X)AIGs and choose the weighted Hamming
distance as our error metric. We will use the truth density propagation from [21]
to quickly compute (an estimate of) whd (see Sect. 4.3).

4 Fast AIG Approximate Logic Synthesis

4.1 Bucket-Based Approximation Algorithm

We first describe the presented ALS technique, a bucket-based approximation
algorithm, on a high level of abstraction before explaining the technical details in
the following sections.

The main idea behind the algorithm is, given an AIG G, to define multiple
buckets that contain approximations of G that have less nodes than G. Each bucket
has an error threshold. Only approximated AIGs that have an whd error lass than

22 A. Heil and O. Keszocze

the threshold are stored in the bucket. All buckets are sorted in ascending order of
the threshold. The algorithm iterates over the AIGs currently stored in the buckets
and tries to further approximate them without exceeding the error threshold of the
last bucket. When no further approximations are possible, the algorithm terminates
and returns the buckets.

The returned buckets form the Pareto front for the optimization criteria number
of AIG nodes (which we use as a stand-in for the circuit’s area) and the weighted
Hamming distance error metric.

The algorithm is depicted in Algorithm 1. In lines 1–3 the buckets are set up.
They are initialized with copies of the AIG that is to be approximated; the first
bucket (having the smallest error threshold) is selected as the first AIG to be
approximated. The algorithm runs as long as approximations have been performed
(lines 4–20). For the current bucket, nodes and corresponding approximation
operations that can be applied are found (line 6). Each of these approximations

Algorithm 1: Fast approximate AIG synthesis
Input : AIG to approximate A, number of buckets n with corresponding thresholds
Output : Array bucket containing the approximate AIGs
� Initialize the buckets

1 buckets ← 〈A, . . . A〉
2 bucket[0].changed ← true � Ensure to approximate at least once
3 currBucket ← bucket[0]
4 while currBucket.changed do
5 currBucket.changed ← f alse
6 approxCandidates ← f indApproximationCandidates(currBucket); foreach

Candidate c ∈ approxCandidates do
7 approx ← approximate(currBucket, c)

8 e ← error(approximated, A)

� Find bucket repBucket with
• error(approx, A) ≤ error(repBucket, A) and
• #approx < #repBucket .

9 repBucket ← f indF ittingBucket (approxB, buckets, A)

10 if repBucket exists then
11 repBucket ← approx
12 repBucket.changed ← true

13 if repBucket has a lower error threshold than currBucket then
14 currBucket ← repBucket � Continue with repBucket

15

16 else
� Continue with next bucket

17 currBucket ← next (currBucket)

18 else
19 currBucket ← next (currBucket) � Continue with next bucket
20

21 return buckets

Fast AIG-Based Approximate Logic Synthesis 23

is applied (line 7), and the result is evaluated for whether it can be put into one of
the buckets, i.e., whether there is a bucket containing an AIG with a larger error and
more nodes (line 9). If that is the case, the corresponding bucket is updated (lines
11–12). If the updated bucket has a lower error threshold than the currently used
bucket, this bucket is used in the next iteration (lines 13–14); otherwise, the next
bucket is used (lines 17 and 19).

We implemented the proposed ALS method in the state-of-the-art logic synthesis
tool ABC [22].

4.2 Approximation Operations

In this work, we make use of the two different approximation operations, XOR
replacement and constant replacement, as they can be efficiently implemented on
the AIG data structure. After a replacement has been conducted, the structure of
the AIG has changed, and new optimization rules may apply. Therefore, after each
replacement, the AIG is again optimized by ABC.

Example 3 After replacing an input A of an AND node v (i.e., v represents A∧ B)
with a constant 0, e.g., allows to further replace the node v with the constant 0 as
we have

. A ∧ B
replace A with 0� = 0 ∧ B = 0.

XOR Replacement The idea behind XOR replacement is to first identify nodes in
the initial AIG G that form an XOR operation and then to replace them by a single
node only.

In order to identify the nodes forming an XOR operation, the AIG G is
transformed into an equivalent XAIG G′ (see step (a) in Fig. 2). This step is handled
automatically by ABC. Note that the transformation does not necessarily replace all
AND nodes by XOR nodes.

Fig. 2 Exemplary XOR replacement example

24 A. Heil and O. Keszocze

Table 2 XOR Replacements based on the truth densities of A and B

td(A)

A ⊕ B 25% 50% 75%

td(B) 25% A ∨ B A ∨ B ¬(A ∧ B) / A ∨ B
50% A ∨ B ¬(A ∧ B) / A ∨ B ¬(A ∧ B)

75% ¬(A ∧ B) / A ∨ B ¬(A ∧ B) ¬(A ∧ B)

The second step (see step (b) in Fig. 2) then replaces the found XOR node by a
single AND node. Note that one or multiple edges in the graph might be negated in
this process (see the outgoing edge of node 5 on the right of Fig. 2).

In order to find suitable replacements for the XOR node, we investigated the
XOR behavior depending on the truth densities of the inputs of the XOR operation.
Table 2 shows the replacements introducing the smallest error. We obtained the
replacements via exhaustive testing.

The tie breaker in the case when both NAND and OR are suitable replacements,
we chose the NAND replacement when either td(A) > (1 − td(B)) or td(B) >

(1 − td(A)) holds. We replace the XOR node with an OR node otherwise.

Example 4 Consider the AIG on the left of Fig. 2 and assume td(A) = 0.7 and
td(B) = 0.5. The nodes 3, 4, and 5 form an XOR operation and, hence, can be
replaced according to Table 2. As both NAND and OR are valid replacements,
we have to check the tie breaker to decide on the actual replacement. As we have
td(B) = 0.5 > 0.3 = (1 − 0.7) = (1 − td(A)), the three nodes are replaced by a
single NAND node.

Replacing any XOR node v in the AIG of a function f according to Table 2
yields an approximation f̂ where

. ON(fv) ⊆ ON(f̂v) ∨ ON(f̂v) ⊆ ON(fv) (5)

holds. Here fv/ f̂v is the function represented by the node v. Equation 5 describes
over-/underapproximations, respectively. Note that the property in Eq. (5) holds only
locally at the replaced node.

Constant Replacement When a node in the AIG has a truth density close to either
0 or 1, it can be considered a constant 0 or 1 node. To make this decision, the user
can specify a corresponding decision threshold. As long as this threshold is less than
0.5, i.e., replace the node v with a constant 0/1 when td(v) < 0.5/ td(v) > 0.5, the
constant replacement operation also has the property in Eq. (5).

For this replacement operation, the AIG G does not need to be transformed into
an XAIG.

Fast AIG-Based Approximate Logic Synthesis 25

4.3 Fast Computation of the Weighted Hamming Distance

We review the definition of the weighted Hamming distance error metric from
Eq. (4)

. whd(f, f̂) =
m−1
∑

i=0

2i ·
(

∑

x∈Bn

(

fi(x) ⊕ f̂i (x)
)

)

(6)

and note that the computation of the Hamming distance on the individual output
functions fi can be computed using the truth density as follows:

. =
m−1
∑

i=0

2i ·
(

2n · |td(fi) − td(f̂i)|
)

= 2n ·
m−1
∑

i=0

2i · |td(fi) − td(f̂i)|. (7)

For this equality to hold, the function f̂ must have been obtained by applying an
approximation operation for which the property in Eq. (5) holds.

Example 5 Consider the two approximations X̂ and X̃ shown in the truth table in
Table 3. For the approximation operation yielding X̂, property (5) holds, i.e., we
have that ON(X) ⊂ ON(X̂) holds. This property does not hold for the approxima-
tion X̃. Computing the whd using Eq. (7) shows that the over-/underapproximation
property is crucial:

. whd(X, X̂) = 22 · |0.50 − 0.75| = 4 · 0.25 = 1

whd(X, X̃) = 22 · |0.50 − 0.50| = 4 · 0.00 = 0

The value whd(X, X̃) = 0 is clearly incorrect.

The advantage of computing whd using Eq. (7) instead of using the initial definition
of Eq. (4) is that the actual time necessary to determine the value can be greatly
reduced if the computation of the truth densities can be done quickly. We will see in
Sect. 4.4 how this is possible.

Table 3 Approximating X

using operations for which
the over-/underapproximation
property Eq. (5) does hold
(X̂) and does not hold (X̃)

A B X X̂ X̃

1 1 0 0 0

0 1 1 1 1

1 0 1 1 0

0 0 0 1 1

26 A. Heil and O. Keszocze

As the proposed ALS method (see Algorithm 1) is an iterative approach, many
whd values have to be computed during a synthesis run. When the total number
of inputs does not exceed 16, the AIG can be fully evaluated and exact results can
be computed. When the AIG grows beyond this, the truth density and, hence, the
whd are computed iteratively by determining the whd locally for the approximated
node only. We then adopt an additive model accumulating the locally computed
errors until the output node is reached. This additive model along with the fact that
consecutive errors that might cancel each other out (a situation also known as error
masking) are not taken into account leads to an overestimation of the total error. The
upside of this simplification is that it allows for a very fast estimation of the total
whd.

4.4 Truth Density Computation

So far, we used the truth density values of all (X)AIG nodes without considering
how to actually compute them. In this work, we make use of two different means of
obtaining the truth densities of the nodes.

The first means of obtaining the truth density is to directly use ABC. The tool
estimates the truth density values of the nodes by running a number of simulations
of the graph, i.e., evaluating the graph for a given number of randomly generated
inputs. The quality of the result greatly varies with the number of simulations and,
hence, the time one is willing to spend on the estimation.

As the computation of the densities is crucial for both, the decision on which node
to replace and the computation of the weighted Hamming distance error metric, we
chose to use the error propagation method presented in [21]. While its intended use
is to propagate the error rate through a general Boolean network, it can easily be
applied for our use case as (X)AIGs are nothing but a specific Boolean network and
the truth density is already computed by the approach as a “by-product.”

The speed of the approach from [21] stems from not having to perform full
simulations of the (X)AIGs but computes the truth density using symbolic variables.
It should be noted that computed densities are only exact in case when there is no
fanout reconvergence in the (X)AIG. Nevertheless, extensive tests have shown that
the degradation of the results in case of reconvergences is negligible.

5 Experimental Evaluation

5.1 Experimental Setup

We implemented the proposed ALS technique in the state-of-the-art logic synthesis
tool ABC [22] using the probabilistic error propagation tool from [21].

Fast AIG-Based Approximate Logic Synthesis 27

As benchmark circuits, generic n-bit adders and multipliers as well as the
EvoApproxLibLITE library [18] are used.

Instead of directly specifying the whd value of the buckets, we define a threshold
t ∈ [0, 1] that reflects how large the error in the most significant bit of the output
is allowed to be in percent. This allows to define buckets that capture similar error
behavior for circuits of different size, i.e., one does not have to (manually) compute
different bucket values for an 8-bit and an 16-bit multiplier. A threshold value t can
be translated in an estimate on the whd via whd(f, f̂) ≈ t · 2n · 2m−1.

All experiments were executed on an AMD Ryzen 5 3600XT 6-Core CPU with
3.80-GHz and 16-GB memory running Ubuntu 20.04 in WSL 2 on Windows 10
Build 19044.1645.

5.2 Scalability

To assess the scalability of our approach, we performed approximate logic synthesis
on adders of increasing bit width using 5 buckets with threshold values 0.0156,
0.0.03125, 0.0625, 0.125, and 0.25. In the experiments, it turned out that the error
propagation implementation has a memory leak preventing it to be used for AIGs
with more than ≈ 300 nodes. Therefore, the following results were obtained using
ABC’s simulation method.

The results of the synthesis runs are presented in Table 4. For each bit width, the
results for each bucket are listed in a separate line. The approximated AIGs were
converted to a list of logic gates using ABC. Afterward, the area and delay have been
computed by ABC using the mcnc.genlib gate library. For each physical aspect,
the number of gates, the area, and the delay, we present the reduction/increase in the
aspect in percent after the absolute values in the table. We further report the whd for
the AIGs.

Using the number of AIG nodes as a stand-in for the circuit area works well: the
reduction in nodes is qualitatively reflected in the reduction in the number of gates
and the reduction of the area. As can be seen, the goal of optimizing circuits for area
has been achieved. It is interesting to see the reduction remains in the range ≈ 65%–
75% for threshold values up to 0.125. Only after allowing for 25% weighted errors
in the most significant bit, further size reductions are achieved.

While our method is capable of reducing the area, it does, in turn, increase the
delay of the circuit (usually in the ≈ 112%–125% range). This value, again, drops
when a large threshold is used. As we do not explicitly optimize for delay, this is an
acceptable trade-off.

As can be seen, the actual whd values for the buckets increase with increasing
bit width of the adders. This shows that choosing a means to describe buckets that
abstracts away the bit width is helpful.

28 A. Heil and O. Keszocze

Table 4 ALS results for adders of varying bit width. For each bucket, the number AIG node,
number of gates, area, delay, and whd are reported. For the number of nodes/gates, the area, and
the delay, the relative change to the unapproximated AIG is also shown

Threshold Nodes % Gates % Area % Delay % whd

16 bit [Run-time: 34.64 s]

Unapprox. 158 – 105 – 215 – 33.70 – –

0.0156 141 89% 66 63% 170 79% 39.30 117% 2.75

0.03125 139 88% 66 63% 166 77% 38.80 115% 3.00

0.0625 137 87% 66 63% 162 65% 38.30 114% 3.25

0.125 135 85% 66 63% 158 73% 37.80 112% 3.50

0.25 131 83% 61 58% 151 70% 35.30 104% 4.00

32 bit [Run-time: 365.54 s ≈ 5 m]

Unapprox. 318 217 – 439 – 65.70 – –

0.0156 270 85% 131 60% 319 73% 77.40 118% 7.00

0.03125 269 85% 132 61% 315 72% 77.20 118% 7.25

0.0625 266 84% 133 61% 309 70% 78.00 119% 7.75

0.125 264 83% 132 61% 306 70% 77.70 118% 8.00

0.25 193 60% 83 38% 176 40% 44.60 66% 16.64

64 bit [Run-time: 2527.54 s ≈ 42 m]

Unapprox. 638 – 441 – 887 – 129.70 – –

0.0156 523 82% 261 59% 598 67% 160.30 124% 15.50

0.03125 521 82% 261 59% 594 67% 159.80 123% 15.75

0.0625 519 81% 261 59% 590 67% 159.30 123% 16.00

0.125 517 81% 261 59% 586 66% 158.80 122% 16.25

0.25 461 72% 223 51% 483 54% 134.40 103% 21.45

128 bit [Run-time: 22738.28 s ≈ 6 h]

Unapprox. 1278 – 889 – 1783 – 257.70 – –

0.0156 1034 81% 516 58% 1179 66% 315.70 123% 32.48

0.03125 1032 81% 516 58% 1175 66% 315.20 123% 32.73

0.0625 1030 81% 516 58% 1171 66% 314.70 122% 32.98

0.125 1028 80% 516 58% 1167 65% 314.20 122% 33.23

0.25 501 39% 194 22% 211 12% 57.20 22% 61.72

5.3 Multi-Objective Optimization for Area and whd

The benchmark library EvoApproxLibLITE1 [18, 23] provides a selection of approxi-
mate adders and multipliers. They have been synthesized via exhaustive search with
respect to various error metrics (including er and wce) as well as area and power
consumption. The benchmark set does not evaluate the whd error metric.

As the final buckets of the presented approach form the Pareto front of the multi-
objective optimization problem with the optimization criteria whd and area, we

1 The benchmark library is publicly available at https://ehw.fit.vutbr.cz/evoapproxlib/.

https://ehw.fit.vutbr.cz/evoapproxlib/
https://ehw.fit.vutbr.cz/evoapproxlib/
https://ehw.fit.vutbr.cz/evoapproxlib/
https://ehw.fit.vutbr.cz/evoapproxlib/
https://ehw.fit.vutbr.cz/evoapproxlib/
https://ehw.fit.vutbr.cz/evoapproxlib/

Fast AIG-Based Approximate Logic Synthesis 29

Fig. 3 Comparison of the synthesis results of the proposed approach (dark blue dots) and
EvoApproxLibLITE (red squares) with respect to area and the weighted Hamming distance error
metric for (a) 8-bit unsigned adders and (b) 8-bit unsigned multipliers

30 A. Heil and O. Keszocze

compare our results with the exhaustive results from EvoApproxLibLITE. We select
the adders and multipliers from the benchmark set that form the Pareto front with
respect to area and the wce error metric and compute the whd values for them so
that we can compare the benchmark circuits to our results. The circuits optimized
for this metric were chosen as wce does take into account the order of the output
bits, and, therefore, the corresponding circuits allow for the fairest comparison.

The comparison for 8-bit unsigned adders and multipliers is shown in Fig. 3.
The notation for our circuits is as follows: “add8u_b75” refers to an unsigned 8-bit
adder from the bucket with a threshold of 0.75. For EvoApproxLibLITE, the naming
scheme is of the form “add8u_〈ID〉” and directly taken from their website.

For the adders (Fig. 3a), the proposed ALS method clearly produces better results
than EvoApproxLibLITE. These results can be explained, in part, by the fact that
EvoApproxLibLITE optimized for a different error and in part by the fact that the
computation of the sum bits in an adder basically is a large XOR gate. When
looking at the results for the multipliers (Fig. 3b), one can see that the applied
approximations are not resulting in points close to the Pareto front any more. When
investigating what approximation operations have been chosen by the proposed ALS
algorithm (see Table 5), one can see that the ratio of XOR replacement over constant
replacements for the adder is higher than for the multiplier. This further hints that
XOR replacement is well-suited for adders while multipliers do not benefit from
this particular kind of approximation.

5.4 Truth Density Computation

To investigate the difference in execution time between the ABC simulation-
based truth density estimation and the method from [21], we synthesized adders
of increasing bit width using 5 buckets with threshold values 0.0156, 0.0.03125,
0.0625, 0.125, and 0.25. The results are reported in Fig. 4. As can be seen, the error
propagation approach clearly excels with respect to the execution time. Due to the
memory leakage issue (see Sect. 5.2), we can not show results for larger circuits.
While using ABC for the error estimation already is fast, using error propagation
shows a great potential to further accelerate our proposed ALS technique.

Table 5 Number of
XOR/Constant replacements
for 8-bit adders and
multipliers

Replace Replace Ratio

Circuit XOR Constant

8-bit adder 37 4 9.25

8-bit multiplier 136 38 3.6

Fast AIG-Based Approximate Logic Synthesis 31

Fig. 4 Execution time of the
proposed ALS method in
seconds for adders of varying
bit width

6 Conclusion and Outlook

We presented a novel and fast greedy, bucket-based approximate logic synthesis
technique working on AIGs that aims to minimize both the area of the resulting
circuit and, at the same time, the error introduced by the approximations. We chose
the weighted Hamming distance error metric whd to assess the functional quality of
the circuit as it takes into account the order of the output bits. We found a means of
effectively computing whd via computing truth densities and exploiting properties
of the used approximation operations. The effectiveness of the presented method
has been evaluated in a set of experiments.

The next step is to find the memory leakage in the fast error propagation tool to
further enhance the speed of the proposed method.

Acknowledgments The paper has been partially funded by the Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation)—450987171.

References

1. Moore, G.E.: Cramming more components onto integrated circuits. Electronics 38(8), pp. 114
(1965)

2. Waldrop, M.M.: The chips are down for Moore’s law. Nature News 530(7589), 144–147
(2016). Visited on 06/20/2022

3. Zhu, N., et al.: Design of low-power high-speed truncation-error-tolerant adder and its
application in digital signal processing. IEEE Trans. Very Large Scale Integr. (VLSI) Syst.
18(8), 1225–1229 (2010)

4. Venkatesan, R., et al.: MACACO: modeling and analysis of circuits for approximate comput-
ing. In: International Conference On Computer Aided Design (2011). Visited on 09/19/2018

5. Han, J., Orshansky, M.: Approximate computing: an emerging paradigm for energy-efficient
design. In: European Test Symposium (2013)

6. Mittal, S.: A survey of techniques for approximate computing. ACM Comput. Surv. 48(4),
1–33 (2016). Visited on 02/28/2019

7. Venkataramani, S., et al.: Approximate computing and the quest for computing efficiency. In:
Design Automation Conference (2015). Visited on 04/11/2019

32 A. Heil and O. Keszocze

8. Scarabottolo, I., et al.: Approximate logic synthesis: a survey. Proc. IEEE 108(12), 2195–2213
(2020)

9. Shafique, M., et al.: A low latency generic accuracy configurable adder. In: Design Automation
Conference (2015). Visited on 02/08/2019

10. Barbareschi, M., Iannucci, F., Mazzeo, A.: A pruning technique for B&B based design
exploration of approximate computing variants. In: International Symposium on VLSI (2016)

11. Keszocze, O., Kiessling, M.: Approximate computing extensions for the clash HDL compiler.
In: Methoden und Beschreibungssprachen zur Modellierung und Verifikation von Schaltungen
und Systemen (2021)

12. Soeken, M., et al.: BDD minimization for approximate computing. In: Asia and South Pacific
Design Automation Conference (2016)

13. Shirinzadeh, S., et al.: An adaptive prioritized e-preferred evolutionary algorithm for approx-
imate BDD optimization. In: Proceedings of the Genetic and Evolutionary Computation
Conference (2017). Visited on 10/19/2018

14. Keszocze, O.: BDD-based error metric analysis, computation and optimization. IEEE Access
10, 14013–14028 (2022)

15. Chandrasekharan, A., et al.: Approximation-aware rewriting of AIGs for error tolerant
applications. In: International Conference On Computer Aided Design (2016). Visited on
10/24/2018

16. Mishchenko, A., Chatterjee, S., Brayton, R.: DAG-aware AIG rewriting: A fresh look at com-
binational logic synthesis. In: Design Automation Conference (2006). Visited on 07/31/2019

17. Háleček, I., Fišer, P., Schmidt, J.: On XAIG rewriting. In: International Workshop on Logic &
Synthesis (2017)

18. Mrazek, V., et al.: EvoApprox8B: library of approximate adders and multipliers for circuit
design and benchmarking of approximation methods. In: Design, Automation and Test in
Europe (2017). Visited on 10/17/2018

19. Vasicek, Z.: Formal methods for exact analysis of approximate circuits. IEEE Access 7,
177309–177331 (2019)

20. Keszocze, O., Soeken, M., Drechsler, R.: The complexity of error metrics. Inf. Process. Lett.
139, 1–7 (2018). Visited on 08/08/2018

21. Echavarria, J., et al.: Probabilistic error propagation through approximated Boolean networks.
In: Design Automation Conference (2020)

22. Brayton, R., Mishchenko, A.: ABC: An academic industrial-strength verification tool. In:
Touili, T., Cook, B., Jackson, P. (eds.) Computer Aided Verification. University of California,
Berkeley (2010)

23. Mrazek, V., Vasicek, Z., Sekanina, L.: EvoApproxLib: extended library of approximate
arithmetic circuits. In: Workshop on Open-Source EDA Technology (2019)

	Fast AIG-Based Approximate Logic Synthesis
	1 Introduction
	2 Related Work
	3 Background
	3.1 Notation and Conventions
	3.2 (XOR-)AND-Inverter Graphs
	3.3 Error Metrics

	4 Fast AIG Approximate Logic Synthesis
	4.1 Bucket-Based Approximation Algorithm
	4.2 Approximation Operations
	4.3 Fast Computation of the Weighted Hamming Distance
	4.4 Truth Density Computation

	5 Experimental Evaluation
	5.1 Experimental Setup
	5.2 Scalability
	5.3 Multi-Objective Optimization for Area and `3́9`42`"̇613A``45`47`"603Awhd
	5.4 Truth Density Computation

	6 Conclusion and Outlook
	References

