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1 Introduction

With the size of Integrated Circuits (ICs) getting smaller and their functionality
getting more complex, the task to assert the correctness of an IC becomes crucial.
It is imperative that functionality of chips is thoroughly verified before silicon
to prevent bugs from escaping into the final product. These bugs not only cause
malfunctions but are a threat to the security of systems and a cause of monetary
losses [1]. In this regard, formal verification techniques allow reliable verification of
ICs using mathematical proof. Among formal verification methods, Binary Decision
Diagram (BDD)-based methods are widely used to prove the correctness of ICs.
A BDD is a canonical representation of a Boolean function as a Directed Acyclic
Graph (DAG) [2]. Therefore, if two Boolean functions perform the same task, their
BDDs will be the same if the input variables of both functions are in the same order
regardless of how the Boolean function is defined. This attribute of canonicity allows
two circuits to be easily compared and verified. State-of-the-art tools can perform
this verification by a simple root pointer comparison of the BDDs of two Boolean
functions [1].

However, one of the main challenges of using BDDs is to find a good order
of the input variables. The size of BDDs is very sensitive to the input variable
order; therefore, a good order of input variables may produce a size of BDD within
polynomial order, but a bad order can cause the size of a BDD to be of exponential
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order. This attribute of a BDD calls for the choice of input variable order to be
perceptive. A number of different heuristics have been developed in the past that
try to associate the arrangement of input variables with different aspects of circuits’
architecture or by using searching and sorting techniques [3—7]. These heuristics
can be divided into two main categories based on when the input order is applied to
the BDD construction. In static variable ordering heuristics, the input variable order
is arranged and decided before the construction of BDDs, and in dynamic variable
ordering heuristics, the input variable order is applied during the construction of
BDD.!

The erratic behavior of the BDD size is not just limited to the ordering of the
input variables, but the size is also sensitive to the structure of underlying function.
This behavior is particularly evident in BDDs of complex arithmetic circuits.
Arithmetic circuits make integral part of ICs; therefore, their correct functionality
is essential. Bugs like Pentium FDIV can render a chip useless if they are not
identified before silicon. Within the category of arithmetic circuits, multipliers have
piqued the interest of researchers for a long time as the BDDs of multiplier circuits
tend to explode in size even at substantially small multipliers [2]. Due to this
explosion, constructing the BDDs for multipliers requires tremendous hardware
resources [8]. Furthermore, using systems with insufficient resource requirements
lead to prolonged runtimes only to result in failure at the end. Keeping the concern
for the size of BDDs for multipliers in mind, the choice of an appropriate input
variable ordering for a multiplier becomes paramount as a good input variable
ordering can help in reducing this size explosion. Additionally, an early estimation
of memory requirement can facilitate an appropriate selection of resources and thus
save time and effort.

Contribution In this paper, we present a methodology to choose an optimal static
variable ordering heuristic for larger multipliers with an early estimation of the
endsize, peaksize, and memory required for constructing the BDD nodes. Our
proposed methodology allows a fast and resource-efficient optimal static variable
ordering heuristic selection. The estimation of the size and memory requirements
of the large multiplier allows a more insightful selection of resources for the BDD
construction. In our methodology, we first obtain the smaller version of the target
multiplier and perform analysis using various static variable ordering heuristics. Our
results show that a static variable ordering heuristic that is optimal for a scaled-down
circuit is also optimal for the larger circuit while requiring only a fraction of time
and memory resources. For the endsize estimation, we reuse chosen heuristics and
incrementally increase the size of the circuit to estimate the endsize and the peaksize
of the larger circuits. Using the estimated peaksize of the BDD, a conservative
estimation of the memory requirements for the BDD nodes can be determined with
high accuracy. We perform extensive experiments on multipliers obtained using the
GenMul [9] multiplier generator.

I In this work, we overlook dynamic variable ordering heuristics as these heuristics can be
counterintuitively slow and thus prohibitive for complex circuits like multipliers.
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2 Related Work

Multipliers have been a subject of interest for a long time, and multiple strategies
have been developed specifically to address the size complexity of the multiplier
BDDs. In [10], the authors address the complexity of multipliers BDDs through the
introduction of input variables although the complexity is reduced but not solved
completely. Recently, in [11] the authors also present a method to decrease the
complexity of verification of the multiplier BDDs; however, an optimal variable
ordering is not addressed. Multiple different static variable ordering heuristics have
been developed in the past. In [5—7] authors exploit circuit architecture to come up
with a suitable input variable ordering, whereas in [3, 4], searching algorithms are
applied to the circuit to find a good input variable ordering. Most of these consider
only the endsize of the BDD and only for a single output.

The memory usage issue of BDDs is addressed by several works [12—15] using
different approaches in constructing and manipulation of the BDDs. The estimation
of size of BDDs has been attempted using timed automata by [16, 17] for generic
circuits.

Our work differs in how the problem is approached with only multipliers as our
target circuits. We focus mainly on choosing an optimal static variable ordering
heuristic from the already developed heuristics. For calculations, we consider all
the outputs for endsize and also consider the peaksize of the BDDs. Additionally,
we focus on memory estimation instead of memory management.

3 Preliminaries

3.1 Binary Decision Diagrams

BDDs are a tree-like representation of a Boolean function created using Shannon
expansion. Once ordered and reduced, these Reduced Ordered BDDs (ROBDDs)
form a canonical DAG for the given Boolean function. In our work, we refer to the
ROBDDs as BDDs. The canonicity of the BDDs is indifferent to the architecture of
the underlying function. That is, given two Boolean functions, their BDDs will be
the same if :

¢ Dboth the functions perform the same tasks regardless of the underlying architec-
ture and
* Dboth the graphs are made with input variables arranged in the same order.

This makes the comparison of two circuits a trivial task. For this reason,
the BDDs are favored in the area of formal verification. However, the size of
BDDs and their sensitivity to certain circuit architectures sometimes undermines
its performance and ease. The ordering of input variables of a Boolean function
heavily influences the size of its BDD. Thus, a good choice of the input variable
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order plays a decisive role in finding an optimally sized BDD. Although finding an
optimal input variable order for a BDD is NP-hard [2], various heuristics have been
developed to address this problem. Using these heuristics, the input variables can be
arranged during the construction of BDD using dynamic variable ordering heuristics
or before the construction of BDD using static variable ordering heuristic like the
ones given below.

¢ Initial Order: Input variable order as they are defined in the circuit description.

* Reverse Order: Reverse of the initial order.

* Dependency Order: The variables influencing more outputs of the circuit get
precedence [7].

* Depth-First Search Order: Depth-First Search (DFS) is used to determine input
variable order [3].

e Fanin Order: The inputs that are deeper in the circuit get precedence [6].

* Fanout Order: The inputs with more fanouts in the circuit get precedence [4].

¢ Random Order: The input variable order is generated randomly.

* Breadth-First Search Order Breadth-First Search is used to determine the
ordering for the given circuit [3].

Although dynamic variable ordering heuristics are capable of producing better
outcomes, their excessive runtimes make them counterproductive. For this reason,
in this work, we only focus on static variable ordering heuristics.

3.2 Multipliers

Multipliers are essential components in modern ICs. Many pivotal applications
like encryption, digital signal processing, etc. require multipliers. Different types
of multiplier architectures have been developed over time to satisfy demands
in aspects like power, speed, area, and accuracy. When individually compared,
these architectures are apparently different, but based on their internal functions,
a multiplier can be broadly represented as a three-stage structure as represented in
Fig. 1. Each of these stages performs the following task:

* Partial Product Generator (PPG): generates the partial product from the multi-
plier and multiplicand.

* Partial Product Accumulator (PPA): reduces and aggregates the partial products.

* Final Stage Adder (FSA): sums up all the result of the PPA to generate the final
product.

The PPGs for multipliers can be implemented using simple AND gates and Booth
encoding algorithm. Likewise, some of the examples of PPAs are array, Wallace tree,
counter-based Wallace, and Dadda tree algorithms. For the FSA stage, architectures
like Brent-Kung, ripple carry, carry look-ahead, Lander-Fischer, Kogge-Stone, and
Carry-skip can be used.
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4 Methodology

In this section, we explain our proposed methodology. First, we present an overview
and later we explain each step of our methodology.

4.1 Overview

The overview of our proposed methodology is illustrated in Fig.2. Our proposed
methodology is comprised of two steps. In the first step, shown in Fig. 2 by the red
solid line, a smaller version of the target multiplier circuit is obtained. The behavior
of BDDs for a number of different static variable ordering heuristics is observed for
the smaller scaled-down circuit, and the most optimal heuristic is identified. Once
the optimal heuristic is selected, the first step of the methodology is concluded
and the second step begins. In the second step, shown as a blue dashed line in
Fig. 2, we build a set of circuits which are also scaled-down versions of the target
multiplier. The circuits in this set have the same structure but incrementally increase
in size. The optimal static variable ordering heuristic is applied to this set of circuits,
and different parameters related to the size of BDDs of each circuit are collected.
Using these parameters, the endsize, peaksize, and memory requirement of the target
multiplier are estimated.
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Fig. 2 Proposed two-step methodology

4.2 Optimal Static Variable Order Selection

The first step of our proposed methodology aims to find an optimal static variable
ordering heuristic for the target multiplier. This process is represented in Fig.2 by
the red solid line. The idea is to work on smaller version of the target circuit to find
the optimal static variable ordering heuristic and then use it for target multiplier.
This helps to reduce the time and resources required for constructing the BDDs that
are otherwise substantial when the larger multiplier is used. Consider a target circuit
that is a 64 x 64 bit signed multiplier with a Array PPA and a Brent-Kung FSA.
The scaled-down version is a 8 x 8 bit signed multiplier with the same Array PPA
and a Brent-Kung FSA. We use GenMul [9] to obtain multiplier circuits in various
structures and sizes. Our proposed methodology is agnostic to the underlying tools,
thus, any BDD construction tool can be adopted that provides information about
the endsize and the peaksize of the BDD. In order to find the optimal variable
ordering heuristic, we use an in-house framework with CUDD [18] at its heart. This
framework finds input variable orders for a given circuit using different heuristics
and then uses these input variable orders to construct BDDs for the circuits. In
addition to the BDD construction, the framework also monitors different parameters
of BDDs like peaksize during construction and endsize. Since the GenMul tool only
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Table 1 Results of static

. . . Static variable ordering | Circuit size
variable ordering heuristics

for the same multiplier in heuristic 8x8 [10x10 |12x12

different sizes Initial order 6480 50,085 391,891
Reverse order 6386 48,876 | 374,537
Dependent order 12,916 | 129,321 | 1,276,275
Fanin order 6969 51610 390512
Fanout order 6480 50085 391891
Random order 16710 | 230951 | 2524622
BFS appending 12618 | 123378 | 1178732

Initial order interleaved 12916 | 129321 | 1276275

provides circuits in Verilog, we convert the circuits into bench format that can be
processed by our framework. This can be done using the Yosys tool [19].

The framework generates input variable orderings for the scaled-down multiplier
using different heuristics. Using the generated input variable orders, it constructs
the BDDs for the circuit and records their endsizes and peaksizes in a database.
The details of these static variable ordering heuristics are given in Sect. 3.1. Once
the results of all the static variable ordering heuristics are available, the optimal
heuristic is chosen. The choice of the optimal heuristic can be based on different
factors, e.g., smallest endsize and resource usage. With the decision of the optimal
static variable ordering heuristic, the first step of the methodology concludes, and
the second step for the endsize and peaksize estimation for the target multiplier
begins.

Revisiting the earlier example, Table 1 shows the endsizes of the Array PPA
and Brent-Kung FSA multiplier for three different sizes. The bold values show
the smallest values. It can be seen that heuristic that performs well for 8 x 8 also
performs well for the larger 10 x 10 and 12 x 12 multiplier thus in line with our
claim that the heuristic that performs well for smaller circuits also performs well for
larger circuits.

4.3 BDD Endsize and Peaksize Estimation

In the second step, we estimate the endsize and the peaksize of the target multiplier.
Since the BDDs of multipliers usually explode in size, an estimation of the peaksize
and endsize can help in projecting the required resources for the construction of
their BDDs. This process is shown by the blue dashed line in Fig. 2. In this step, we
use the optimal static variable ordering heuristic that is previously selected in the
first step of the methodology. We obtain two or more circuits from the GenMul tool
with the same structure to perform the experiments. These circuits are slightly larger
than the scaled-down version of the target multiplier. In our set of circuits, we obtain
multipliers with the same architecture with 8 x 8,9 x 9, and 10 x 10 bit-size. Our
framework constructs the BDDs of these circuits and extracts vital information such
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as the endsize and peaksize of the BDDs of each circuit using the selected static
variable order heuristic. Once this information is available, trends are observed with
respect to the growth of BDD. Using these trends, the growth factors are calculated,
and these growth factors are used to estimate the endsize and peaksize of the target
multiplier using the following equations:

ey =d, " X ey (D
ﬁ)‘ = dpy_x X Px 2

where ¢, and p, are the estimated endsizes and peaksizes of the target multiplier
and e, and p, are the endsize and peaksize of the scaled-down multiplier. x is the
bit-size of the inputs of the scaled-down multiplier and y is the bit-size of the input
of the target multiplier. d. and d), are the growth factors per bit of the endsize and
peaksize, respectively, for the given multiplier structure. The peaksize of a BDD
shows the maximum number of nodes that were created throughout the construction
of the BDD. Therefore, the peaksize dictates the memory consumption during the
construction of a BDD. Using the peaksize and the memory required by a single
node, the estimation of the memory required by the target BDD is calculated as
follows:

memory_required = py x size_per_node 3)

However, the memory estimation is conservative as they do not include the auxiliary
memory that maybe required for processing. Regardless, they can allow for a
more insightful resource allocation and thus produce practical runtimes for BDD
construction.

S [Experiments

In this section, we present the experimental results of the proposed methodology
to select the optimal static variable ordering heuristic and estimation of peaksize
and endsize. In our work, we obtained different multiplier structure combinations
using the GenMul tool. We applied our methodology to a wide range of multiplier
structures, but for brevity, we present results for only a few static variable ordering
heuristics and multiplier structures.

5.1 Selection of Optimal Heuristic

Figure 4 shows the endsize and peaksize of different static variable ordering
heuristics for four different 8 x 8 multiplier structures. The naming of the multipliers
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in the figures is in the X_A_B format where X is the PPG (S = signed simple, U =
unsigned simple), A is the PPA type (AR = Array, WT = Wallace tree, DT = Dadda
tree, CWT = counter-based Wallace tree), and B represents its FSA type (BK =
Brent-Kung, RC = ripple carry, CK = carry skip, LF = Ladner-Fischer). The x-
axis represents the multiplier structure and the y-axis shows the number of nodes.
When choosing the optimal static variable ordering heuristic based on the endsize,
the lowest value would be considered. From Fig. 3a which shows the endsize for
signed multipliers, it can be seen that the reverse order performs well for all the
multiplier structures, but in Fig. 4a which shows the endsize of unsigned multipliers,
initial and fanout ordering heuristics outperforms the other heuristics. The initial
and reverse ordering heuristics are less intuitive, but it is interesting to see that
there are other heuristics like the fanout ordering that produce similar results as that
of initial order. And consequently its performance would match the reverse order.
While some heuristics look oblivious to the structures, heuristics like fanin order
seem to be affected by the structure of the multiplier. The random order performs
the worst for all the selected structures which reinforces that the selection of input
variable order should be rational.

Figures 3b and 4b show the peaksizes using different static variable ordering
heuristics for signed and unsigned multipliers, respectively. When selecting the
static variable ordering heuristic based on the peaksize, the difference seems to be
less obvious. It seems so because on average the peaksize is 10x larger than the
endsize; therefore, the difference between orders is less evident. Within our selected
signed multiplier structures (Fig.3b), the reverse order performs well but this is
not universal. For the unsigned multiplier of Array and Brent-Kung combination
(U_AR_BK) as evident in Fig. 4b, the BFS produces a much smaller peaksize and
thus would consume fewer resources and therefore would be the choice for optimal
heuristic when the peaksize is considered.

5.2 Estimation of Endsize and Peaksize of the BDDs

From the results of step 1, as evident from Fig. 3a, the reverse order was selected as
the optimal static variable ordering heuristic for the multiplier structure S_AR_BK.
Since our scaled-down version of multiplier was 8 x 8, the circuits in this set for
estimation are of size 9 x 9, 10 x 10, and 11 x 11. Although a set of three increments
would suffice, more incremental circuits would result in a better estimation. We
obtained a set of circuits of all the multiplier structures with incremental increase
in size. However, due to space constraints, we only show the result for one of the
multiplier structure, i.e., signed multiplier with Array PPA and Brent-Kung FSA
(S_AR_BK). As expected in our results, the growth factor of the peaksize was
slightly greater than the endsize (2.8 and 2.6, respectively).

Figure 5a, b shows the estimated endsize and peaksize using Equations 1 and 2
for our selected multiplier structure. The x-axis represents the size of the multiplier
in bits, and the primary y-axis shows the number of nodes, and the secondary y-axis
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Fig. 3 Endsize and peaksize of four 8 x8 signed multiplier structures for different static variable
ordering heuristics. (a) Endsize for signed multipliers. (b) Peaksize for signed multipliers
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gives the percentage error between the actual and the estimated values. The solid
blue lines show the actual endsize and peaksize, and the red dashed lines show the
estimated endsize and peaksize for these circuits. The percentage error is shown by
the bar graph (green) in the background of the respective graphs.

As visible from Fig.5a, b, the estimated values follow the same trends as
the actual values. Consider the 16 x 16 bit multiplier in Fig.5, the estimated
endsize is 21, 967, 242 and the estimated peaksize is 279, 660, 485. To calculate the
percentage error, we constructed the BDD for the circuit sizes that were achievable.
For the 16 x 16 bit multiplier, the percentage error in endsize is ~5.9% and for
peaksize it is only ~ 1.2%. Although the error in the estimated endsize shows
an increasing trend in this case, increasing the number of circuits to calculate
the growth factors will help in decreasing the error percentage. The error in the
estimated peaksize does not show a constant increase as the endsize and is very
small in contrast to the endsize. Thus, the values that are calculated for the memory
required by the BDD nodes using the estimated peaksize can be reliable.

5.3 Memory Usage Estimation

A single node on CUDD package requires 32-bytes when compiled using 64-bit
pointer system (16-bytes for 32-bit pointers) [18]. Table 2 shows the estimated
values for endsize, peaksize, and memory requirement of BDD nodes constructed
using reverse ordering for a signed multiplier with Array PPA and Brent-Kung
FSA (S_AR_BK) for larger sizes. Using these values, for the given structures the
minimum memory requirement for a 16 x 16 multiplier, excluding the auxiliary
memory required by the CUDD package, is &9 GB memory for 64-bit systems.
Based on the estimated values, for the 18 x 18 multiplier, we ran it on system with
memory resource less than estimated values (Intel(R) Xeon(R) CPU E5-2630 v3 @
2.40 GHz, main memory = 64 GB). As expected, the BDD construction failed after
running for an extended period (runtime > 24 h). Later, we constructed the BDD on
a system having resources greater than our memory estimate (Intel(R) Core(TM)
i9-11900KF @ 3.50 GHz, main memory = 125GB), and the construction was
successfully completed in a reasonable time (&1 h). Thus, it reinforces the
confidence in the estimated values and in the idea that an early memory estimation
allows for a more efficient selection of resource and utilization of time.

6 Discussion

In this section, we discuss some observations and possible extensions of our
work. Although we applied our methodology to only traditional BDD construction
methods, we believe that it can easily be adapted to other methods used for
constructing BDDs like the one proposed in [10]. In addition to that, the estimated
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Table 2 Estimated endsize, peaksize, and memory requirement for S_AR_BK multiplier using
reverse ordering

Estimated Estimated Estimated memory
Multiplier sizes endsize peaksize required by CUDD?
16 x 16 2.18 x 10°7 2.80 x 10”8 9GB
18 x 18 1.67 x 10"9 2.30 x 10"9 74 GB
32 x 32 2.54 x 10014 5.87 x 10”15 1.88 x 10"5TB
64 x 64 3.23 x 10”28 2.58 x 10"30 8.26 x 19719 TB

 conservative estimate for nodes only

memory requirement is not just useful for resource selection for BDD construction;
it can also help in exploring other options for construction of multipliers in case the
available resources appear to be insufficient. The effects of approaches which strive
to reduce memory usage can also be explored and how these methods effect the
growth factors. Another interesting aspect would be the assessment of methodology
for arithmetic circuits other than multipliers, and it would be insightful to see how
the methodology and estimation extends to these circuits.

7 Conclusion

In this paper, we presented a methodology to choose an optimal static variable
ordering heuristic for larger multipliers with early estimation of the endsize,
peaksize, and memory requirements for constructing the BDD. Using the smaller
version of the target multiplier structure, we were able to find an optimal static
variable ordering heuristic that also works equally well for the target multiplier.
For the endsize estimation, we reused the chosen heuristics and collected a set of
multiplier circuits of the same structure with incremental increase in size to find a
growth factor per bit for the endsize and peaksize. This growth factor was used to
estimate the endsize and the peaksize of the target multiplier. Using the estimated
peaksize, we were also able to project the memory required in constructing the
BDD. We demonstrated the applicability of our methodology on various multiplier
circuits.
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