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Preface 

For decades, Boolean functions have been significantly contributing to computer 
science and, by this, paved the way for the design and verification of state-of-the-art 
circuits and systems. 

The International Workshop on Boolean Problems (IWSBP) is a bi-annually held 
and well-established forum to discuss the recent advances in problems related to 
Boolean logic and Boolean algebra. After two exhaustive years of the COVID-19 
pandemic, the workshop took place again in person from September 22 to 23 in 2022 
and was hosted at the University of Bremen, Germany. Such an in-person meeting 
undoubtedly offers an environment to spark engaging discussions and supports 
fruitful collaborations in the exciting field of Boolean problems. 

The workshop addresses the scientific exchange of problems related to Boolean 
logic and Boolean algebra. It also includes problems of a discrete mathematical 
nature. The workshop provides a forum for researchers and engineers from different 
disciplines to exchange ideas and to discuss problems and solutions. The workshop 
is devoted to both theoretical discoveries and practical applications. One important 
aim is to initiate collaborative research and to find new areas of application. 

The book’s first chapter is a contribution resulting from the invited keynote at 
the workshop. Here, Martin Fränzle presents “Arithmetic Satisfiability-Modulo-
Theory Solving Applied to Nonstandard Analysis Problems of Cyber-Physical 
Systems”. The following nine chapters are extended manuscripts based on the 
workshop submissions. In the second chapter, Annika Heil and Oliver Keszocze 
write about the “Fast AIG-Based Approximate Logic Synthesis”. Afterward, in 
the third chapter, Siang-Yun Lee, Heinz Riener, and Giovanni De Micheli consider 
“External Don’t Cares in Logic Synthesis”. Claudio Moraga, Radomir S. Stanković, 
and Milena Stanković target “Maiorana-McFarland Boolean Bent Functions Char-
acterized by Their Reed-Muller Spectra” in the fourth chapter. In the fifth chapter, 
Muhammad Hassan, Thilo Vörtler, Karsten Einwich, Rolf Drechsler, and Daniel 
Große investigate “Toward System-Level Assertions for Heterogeneous Systems”. 
In the sixth chapter, Marcel Merten, Mohammed E. Djeridane, Sebastian Huhn, 
and Rolf Drechsler write about “SAT-Based Key Determination Attack for Improv-
ing the Quality Assessment of Logic Locking Mechanisms”. Anna Bernasconi,

v



vi Preface

Valentina Ciriani, and Licia Monfrini address “Autosymmetric and D-reducible 
Functions: Theory and Application to Security” in the seventh chapter. In the eighth 
chapter, Danila Gorodecky and Leonel Sousa focus on “Two-Operand Modular 
Multiplication to Small Bit Ranges”. Ahmad Al-zoubi and Goerschwin Fey present 
“Low-Latency Real-Time Inference for Multilayer Perceptrons on FPGAs” in 
the nineth chapter. In the tenth chapter, Bernd Steinbach and Christian Posthoff 
investigate “Thirty-Six Officers of Euler-New Insights Computed Using XBOOLE”. 
Finally, the book is concluded in the eleventh chapter by an invited article from 
Khushboo Qayyum, Alireza Mahzoon, and Rolf Drechsler about “Start Small But 
Dream Big: On Choosing a Static Variable Order for Multiplier BDDs”. 

We would like to express our thanks to the program committee of the 15th 
IWSBP and to the organizational team, in particular, Lisa Jungmann and Kristiane 
Schmitt. Furthermore, we thank all the authors of contributed chapters who did a 
great job in submitting their manuscripts of very high quality. A special thanks goes 
to the keynote speakers of the workshop, Prof. Martin Fränzle (Carl von Ossietzky 
University of Oldenburg, Germany) and Dr. Stefan Frehse (formerly matched.io, 
Germany). Finally, we would like to thank Dhivya Savariraj, Hemalatha Velarasu, 
Zoe Kennedy, Brian Halm, and Charles Glaser from Springer. All this would not 
have been possible without their steady support. 

Bremen, Germany Rolf Drechsler 
May, 2023 Sebastian Huhn



Contents 

Arithmetic Satisfiability-Modulo-Theory Solving Applied to 
Nonstandard Analysis Problems of Cyber-Physical Systems . . . . . . . . . . . . . . . 1 
Martin Fränzle 

Fast AIG-Based Approximate Logic Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  17 
Annika Heil and Oliver Keszocze 

External Don’t Cares in Logic Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  33 
Siang-Yun Lee, Heinz Riener, and Giovanni De Micheli 

Maiorana-McFarland Boolean Bent Functions Characterized by 
Their Reed-Muller Spectra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  49 
Claudio Moraga, Radomir S. Stanković, and Milena Stanković 

Toward System-Level Assertions for Heterogeneous Systems . . . . . . . . . . . . . .  67 
Muhammad Hassan, Thilo Vörtler, Karsten Einwich, Rolf Drechsler, 
and Daniel Große 

SAT-Based Key Determination Attack for Improving the Quality 
Assessment of Logic Locking Mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  83 
Marcel Merten, Mohammed E. Djeridane, Sebastian Huhn, 
and Rolf Drechsler 

Autosymmetric and D-reducible Functions: Theory and 
Application to Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  95 
Anna Bernasconi, Valentina Ciriani, and Licia Monfrini 

Two-Operand Modular Multiplication to Small Bit Ranges . . . . . . . . . . . . . . . .  111 
Danila Gorodecky and Leonel Sousa 

Low-Latency Real-Time Inference for Multilayer Perceptrons 
on FPGAs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  123 
Ahmad Al-Zoubi and Goerschwin Fey

vii



viii Contents

Thirty-Six Officers of Euler-New Insights Computed Using XBOOLE. . . .  135 
Bernd Steinbach and Christian Posthoff 

Start Small But Dream Big: On Choosing a Static Variable Order 
for Multiplier BDDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  155 
Khushboo Qayyum, Alireza Mahzoon, and Rolf Drechsler 

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  171



Arithmetic Satisfiability-Modulo-Theory 
Solving Applied to Nonstandard Analysis 
Problems of Cyber-Physical Systems 

Martin Fränzle 

1 Introduction 

Cyber-physical systems (CPSes) joining a physical environment and numerous 
embedded computational devices via digital networking into a tightly coupled 
system are rapidly becoming reality. They are at the heart of the recent push toward 
so-called smart environments, be it “smart cities” as denoting anticipated forms of 
CPS-enabled urban structures, or “smart grids,” “smart transportation,” and “smart 
health” advancing energy supplies, transportation systems, and medical technology, 
respectively, or “Industry 4.0” revolutionizing manufacturing technology. Most of 
these applications are inherently safety-critical in that malfunctions may endanger 
life, property, or the environment. The quest for ensuring the predictable, reliable, 
and safe operation of complex cyber-physical infrastructures thus becomes pro-
nounced [26]. 

This quest does, however, induce the need to reason about the joint dynamic 
behavior of computational devices and physical (in a broad sense) processes. Such 
reasoning naturally involves hybrid discrete-continuous state, with the physical 
phenomena spanning a multidimensional continuous state space that is subject to 
continuous-time dynamics, while computational processes give rise to discrete state 
and behavior. Pertinent models reflecting the joint dynamics of such hybrid-state 
systems supporting their analysis are hybrid automata [1] and related formalisms, 
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2 M. Fränzle

which induce complex verification conditions that can in general only be solved 
approximately due to undecidability of even the most basic dynamical problems of 
restricted subclasses of hybrid automata [19]. Such approximations have historically 
given rise to a vast and diverse set of different automated verification technologies 
[13]. 

All these analysis techniques do have to reason about infinite state due to the 
hybrid discrete-continuous nature of the state space. Adopting set-based reasoning 
is a must when it comes to automatic reasoning about such infinite domains, either 
directly or indirectly by constructing finite-state abstractions lumping together sets 
of infinite cardinality into a single abstract item. Various computational procedures 
have been devised for such set-based reasoning, with the most prominent ones being 
reach-set computation on the one hand and satisfiability-modulo-theory (SMT) 
solving on the other. Reach-set computation provides over- or—more rarely— 
under-approximations of the state set reachable within a bounded or unbounded 
time or step horizon within a computational representation of subsets of hybrid 
discrete-continuous state spaces of finite dimension. A specific such representation 
has to be chosen, as arbitrary sets are not representable due to cardinality reasons: 
only countable many sets are computer-representable, while the subsets of a 
finite-dimensional hybrid state space have the cardinality of the powerset of the 
continuum. Various computational representations and with them algorithms for 
the approximate computation of reach sets of hybrid automata have been devised, 
among them (computational) interval boxes, zonotopes and polyhedra, support 
functions, Taylor forms, or sub-level sets of algebraic functions (cf. [13] for an 
overview). 

An alternative approach, which we employ on the examples in this note, is 
satisfiability-modulo-theory (SMT) solving [3] over arithmetic theories, as pio-
neered by the LP-SAT hybrid-state planner [28]. Being based on automated proof 
search over the underlying arithmetic theory and thereby implicitly defining and 
enumerating relevant subsets of the problem domain, it avoids explicit computation 
of reachable state sets while solving—mostly depth-bounded, though extensions 
to unbounded problems exist based on inductive proof rules or Craig interpolation 
[24]—reachability problems of infinite-state or hybrid-state systems [9]. While 
SMT was originally confined to decidable theories, where a theory solver deciding 
arbitrary conjunctions of theory atoms exists and the DPLL(T) or CDCL(T) 
paradigm, inheriting conflict-driven clause learning (CDCL) from propositional 
satisfiability [21], adds the ability to reason about arbitrary Boolean combinations 
of theory atoms, solvers like iSAT [16] and dReal [18] have later added the ability 
to (approximately yet safely) reason about undecidable fragments of arithmetic 
involving transcendental functions. Their reasoning is based on a tight integration 
of interval constraint propagation [5] with CDCL [21]. 

iSAT [15] and its subsequent extensions for direct coverage of nonlinear 
ordinary differential equations [10] and of stochastic SMT problems [16] thus 
exploit the Boolean algebra structure of the powerset—or rather of computationally 
representable subsets of the powerset—of the domains reasoned about, namely, the 
Booleans, the integers, the reals, the computational reals implemented as binary
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floating-point numbers [25], and their combinations. Within this note, we cannot 
explain the algorithmic underpinnings of the iSAT solver family in any detail, but we 
explain their input languages and their use for encoding hybrid discrete-continuous 
state dynamics (Sect. 2), and we demonstrate recent applications outside the tradi-
tional domains of automated verification [17] and test automation [27]. With respect 
to those recent applications, we focus on the two sample applications of exact 
monitoring of cyber-physical processes under epistemic and aleatory uncertainty 
(Sect. 3.1, based on [12]) and of quantitative safety analysis of autonomous systems 
featuring brain-computer interfaces (Sec. 3.2, related to [8]). 

2 iSAT and SiSAT 

As we are aiming at the automated analysis of phenomena involving hybrid 
discrete-continuous state, we are faced with the general problem of mechanically 
solving equational and inequational arithmetic constraints over mixed discrete-
continuous domains. These constraints do not only naturally involve linear and 
polynomial (often ambiguously denoted as “nonlinear” in the satisfiability-modulo-
theory community) arithmetic but also transcendental functions and linear as well 
as nonlinear differential equations. 

In order to understand how such constraint systems evolve from an analysis prob-
lem for a hybrid discrete-continuous state system modeled as a hybrid automaton 
[1], we take a look at the probabilistic hybrid automaton depicted in Fig. 1. In  
order to pursue qualitative bounded reachability analysis for hybrid-state systems 
via constraint solving [2, 14], where bounded reachability analysis constitutes the 
simplest instance of bounded model checking [7], with respect to a given set of goal 
or target states like, e.g., those satisfying .T > −12, one generates the following 
constraints: 

Fig. 1 A small probabilistic hybrid automaton, involving both nondeterministic transition selec-
tion (in green) and probabilistic transition selection (red), i.e., constituting a hybrid-state Markov 
decision process
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Table 1 The symbolic transition relation for the PHA from Fig. 1 used in qualitative bounded 
model checking (BMC, [7]) 

Source Guard Action Target 

Controlled .(T ≤ −22) .(T ′ = T ∧ c′ = 0) Controlled’ 

Controlled .(T ≥ −18) .(T ′ = T ) Defunct’ 

Controlled .(T ≥ −18) .(T ′ = T ∧ c′ = 1) Controlled’ 

Source Flow Invariant Target 

Controlled .

(
dT
dt

= (20 − 50c − T )α
)

.(−22 ≤ T ≤ −18) Controlled’ 

Defunct .

(
dT
dt

= (20 − T )α
)

True Defunct’

• Initial conditions of the automaton map to corresponding constraints, yielding the 
initial-state condition .I ≡ controlled ∧ −24 ≤ T ∧ T ≤ −18 for the automaton 
from Fig. 1.

• Transitions map to constraints between the values of state variables before and 
after the transition, the latter here denoted by decorating the state variable names 
with a prime. For the automaton from the example, the corresponding transition 
constraint is given in the upper part of Table 1.

• Durational stays in locations are interpreted as transitions from pre- to post-states 
connected by the differential equation associated with the location, as shown in 
the lower part of Table 1. 

Both parts of the transition relation together form the symbolic transition 
relation T 

• The specification of the goal set simply is copied as .G ≡ T > −12. 

These constraints constitute a symbolic representation that is in one-to-one corre-
spondence to qualitative, non-probabilistic behavior of the infinite-state transition 
system induced by the hybrid automaton. 

“Unwinding” this symbolic transition to a desired depth .k ∈ N is then 
achieved by k times copying the transition constraint under appropriate renaming, 
thereafter adding (accordingly renamed) versions of the initial state constraint and 
the target constraint. This yields a constraint . Φk = I [x/x0] ∧ T [x/x0][x′/x1] ∧
T [x/x1][x′/x2] ∧ . . . ∧ T [x/xk−1][x′/xk] ∧ G[x/xk], where . x denotes the variable 
set of the above constraints and .φ[x/y] the substitution of . x by . y in . φ. Satisfiablity 
of the resulting constraint system .Φk then corresponds to reachability of a state 
satisfying the target constraint within exactly k steps of the hybrid automaton [7], 
with any satisfying valuation of . Φk constituting a path from an initial state to a target 
state of k steps in length. 

Note that the constraint system . Φk not only refers to a rich (and undecidable in 
general) fragment of arithmetic but also comprises arbitrary Boolean combinations 
of the arithmetic atoms involved. This necessity is induced by encoding transition 
systems and is in stark contrast to many settings of arithmetic constraint solving, 
e.g., interval constraint propagation [5], where conjunctive constraint systems tend 
to be addressed.
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In order to address the solving of such hybrid-domain constraint systems 
involving complex Boolean connective structure, the author’s group has together 
with Bernd Becker’s group at Albert Ludwigs Universität Freiburg and Christoph 
Weidenbach’s group at the Max-Planck-Institut für Informatik at Saarbrücken 
developed a number of arithmetic constraint solvers within the Transregional 
Research Center AVACS (Automatic Verification and Analysis of Complex Sys-
tems, DFG SFB-TRR 14, [4]). Most notably are iSAT [15, 24, 25] addressing the 
above fragment of linear, polynomial, and transcendental arithmetic constraints, yet 
without ordinary differential equations, iSAT(ODE) [10, 11] adding the respec-
tive support for ordinary differential equation constraints, and SiSAT [16, 17] 
adding stochastic quantification and a corresponding quantitative semantics akin 
to propositional stochastic SAT (SSAT, [20, 22]), yet lifting such to stochastic 
satisfiability modulo an arithmetic theory. Generalizing satisfiability-modulo-theory 
(SMT) based bounded model checking of hybrid automata [2, 14], such stochastic 
satisfiability-modulo-theory (SSMT) permits the direct analysis of probabilistic 
bounded reachability problems of probabilistic hybrid automata. 

An SSMT formula .φ = Q : π input to SiSAT hereby comprises a (possibly 
empty) quantifier prefix Q containing a sequence of existential (. ∃x ∈ {v1, . . . , vn} :
. . .) and random ( 

R 

x ∈ {(v1, p1),  . . . , (vn, pn)} :  . . .  describing a probability 
distribution with finite carrier) quantifications over finite domains, followed by a 
quantifier-free “matrix” . π , which is an arithmetic constraint formula as in iSAT or 
iSAT(ODE). In contrast to the Boolean satisfaction semantics of SMT formulae, the 
semantics of such an SSMT formula . φ takes the form of a probability of satisfaction 
. Pφ and is defined recursively over its quantifier prefix:

• If . φ is quantifier-free, then .Pφ = 1 if . φ is satisfiable and .Pφ = 0 else.
• If . φ is of the form .∃x ∈ {v1, . . . , vn} : ψ , where . v1 to . vn are theory constants, 

then .Pφ = maxv∈{v1,...,vn} Pψ[x/v].
• If . φ is of the form 

R 

x ∈ {(v1, p1), . . . , (vn, pn)} :  ψ , where . v1 to . vn

are (pairwise different) theory constants and . d1 to . dn rational numbers with 
.
∑n

i=1 pi = 1, then .Pφ = ∑
(v,p)∈{(v1,p1),...,(vn,dn)} p · Pψ[x/v]. 

Semantically, an SSMT formula thus constitutes a .1 1
2 -player game, or equivalently 

a Markov decision process (MDP), where the existential player seeks to maximize 
the satisfaction probability of the matrix in response to the preceding random draws 
by the random player. 

Using such SSMT constraint encodings, we can compute the maximum, w.r.t. 
optimal resolution of nondeterministic choices, probability of reaching a target state 
in a probabilistic hybrid automaton (cf. Fig. 1) as follows:

• I and G remain as before.
• The symbolic transition relation is enriched by recourse to variables . etr and . rtr

encoding the resolution of nondeterministic choices and probabilistic choices, 
respectively, as shown in Table 2.

• The unwinding .Φk is extended by a quantifier prefix comprising exis-
tential and randomized quantification and thereby encoding the sequence
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Table 2 The symbolic transition relation for the PHA from Fig. 1 used in quantitative bounded 
model checking (PBMC; [16]) 

Source Guard Trans Distr Action Target 

Controlled .(T ≤ −22) .(etr = 1) true .(T ′ = T ∧ c′ = 0) Controlled’ 

Controlled .(T ≥ −18) .(etr = 2) .(rtr = 0) .(T ′ = T ) Defunct’ 

Controlled .(T ≥ −18) .(etr = 2) .(rtr = 1) .(T ′ = T ∧ c′ = 1) Controlled’ 

Source Flow Invariant Target 

Controlled .

(
dT
dt

= (20 − 50c − T )α
)

.(−22 ≤ T ≤ −18) Controlled’ 

Defunct .

(
dT
dt

= (20 − T )α
)

True Defunct’

of (and consequently the dependencies among) resolution of nondeter-
ministic choices and probabilistic choices, rendering an SSMT formula 
Ψk = ∃etr0 

R 

rtr0∃etr1 

R 

rtr1 . . . ∃etr (k−1) 

R 

rtr (k−1) : Φk .

The probability of satisfiability of the resulting constraint system .Ψk then cor-
responds to the maximum probability of reaching a state satisfying the target 
constraint within exactly k steps of the probabilistic hybrid automaton. 

3 Sample Applications 

We will now demonstrate two recent sample applications of such arithmetic 
constraint solving, both of which go well beyond classical static analysis of 
design models of embedded or cyber-physical systems. The first deals with the 
stringent online monitoring of safety properties of cyber-physical systems when 
state observation is uncertain, the other with the quantitative safety analysis of 
critical cyber-physical systems basing their decisions on (highly uncertain) brain-
computer interfaces. 

3.1 Exact Monitoring of Cyber-Physical Systems Under 
Uncertainty1 

Cyber-physical systems (CPS) joining a physical environment and numerous 
embedded computational devices via digital networking into a tightly coupled 
system are rapidly becoming reality. They are at the heart of the recent push toward 
so-called smart environments. Most of these applications are inherently safety-

1 This section is based on joint work with Bernd Finkbeiner, Florian Kohn, and Paul Kröger 
published in [12]. 
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critical in that malfunctions may endanger life, property, or the environment. The 
quest for ensuring the predictable, reliable, and safe operation of complex cyber-
physical infrastructures is often addressed via stringent run-time monitoring. The 
applications pose high demands on the accuracy of the monitoring mechanisms, as 
lacking detection of an anomaly in system behavior may induce the aforementioned 
risks, while spurious signaling of a potential problem may lead to performance-
degrading exception handling up to full system lockdown. Such accuracy, however, 
is hard to attain when observing physical state through actual sensor devices, 
thereby facing inevitable and significant inaccuracies and uncertainties in the state 
observation in the form of epistemic as well as aleatory uncertainties. 

This provokes a quest for monitoring algorithms which are optimally exact given 
these inaccuracies and the partiality of the sensory equipment. Exact hereby means 
that they are both sound and maximally complete w.r.t. the monitoring problem 
under uncertainty. Soundness implies that the monitor will never provide monitoring 
verdicts that are artifacts of the uncertain observation, yet that all its verdicts 
invariantly hold true in any ground truth consistent with the observed noisy and 
partial measurements. If it provides a verdict whenever such verdict invariantly 
holds true in any measurement-consistent ground truth, then we call the monitor 
complete. 

For qualitative models of sensory uncertainty, arithmetic SMT solving can pro-
vide such monitoring algorithms for spatiotemporal properties, as we demonstrate 
by means of an example. To this end assume that we model measurement error 
qualitatively (i.e., non-stochastical) as a nondeterministic measurement outcome, 
characterized by:

• an unknown yet fixed sensor offset that is bounded by a sensor-specific constant 
.ε > 0,

• an independent per-sample error that is bounded by sensor-specific constant 
.δ > 0. 

The upper bounds on these two values refer directly to the two terms trueness 
and precision used by the pertinent ISO norm 5725 to describe the accuracy of a 
measurement method. 

Figure 2 explains the relationship between ground-truth values of physical 
entities and the related measurements under this model of measurement error. Given 
a ground-truth trajectory . τ , where . τ maps the various names s of physical signals to 
their actual signal .τ(s) : R → R, a measurement time series . ms thus is possible iff:

.∃o ∈ [−ε, ε] : ∀t ∈ T : ∃e ∈ [−δ, δ] : τ(s)(t) + o + e = ms(t), (1) 

where T is the set of time instants where measurements are taken. Vice versa, 
ground truth . τ is consistent with measurement series .mS1, . . . msn , denoted by 
.ms1 , . . . , msn � τ , iff all .msi are possible w.r.t. . τ . . GT(ms1 , . . . , msn) = {τ |
ms1 , . . . , msn � τ } is the possible ground truth given .mS1, . . . msn . 

Now assume that our monitoring obligation is to at time .t = 13 find out about the 
truth value of the signal temporal logic [23] formula .G≤12(x ≥ 2 ∧ x ≤ 5) at .t = 1
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Fig. 2 Imprecise measurement (red dots) of a physical quantity (green line)

Fig. 3 A time series of imprecise measurements (after [12]) 

given the time series of measurements depicted in Fig. 3. This time series has been 
obtained via a sensor observing physical state x with an offset error bound . ε = 0.5
and per-sample error bound .δ = 0.5. 

Given the relation between ground-truth values for x and the imprecise measure-
ments . mi expressed in Eq. (1), we can reduce the question whether . φ = G≤12(x ≥
2 ∧ x ≤ 5) holds at time .t = 13 to an arithmetic SMT problem as follows: We 
first rewrite Eq. (1) into an existential SMT problem by the following sequence of 
satisfiability-preserving transformation: 

.∃o ∈ [−ε, ε] : ∀t ∈ T : ∃e ∈ [−δ, δ] : τ(x)(t) + o + e = mx(t). (2) 

↓ eliminate ∀ by specialisation to time domain referenced by φ 

∃o ∈ [−ε, ε] :  
13∧
t=1 

∃e ∈ [−δ, δ] :  τ(x)(t) + o + e = mx(t). (3) 

↓ Skolemization, quantifier lifting, bound renaming 

∃o ∈ [−ε, ε] : ∃e1, . . . , e13 ∈ [−δ, δ] :  
13∧
t=1 

τ(x)(t) + o + ei = mx(t). (4)
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↓ interpret as satisfiability problem, drop ∃ quantifier prefix 

13∧
t=1 

τ(x)(t) + o + ei = mx(t). (5) 

↓ FO reduction by renaming 

13∧
t=1 

xi + o + ei = mxi
. (6) 

↓ add actual measurements 

13∧
t=1 

xi + o + ei = mxi ∧ mx0 = 3.95 ∧ mx1 = 4.8 ∧ mx2 = 5.7∧ 
. . .  ∧ mx12 = 2.6 ∧ mx13 = 3.66︸ ︷︷ ︸

measurement values 

(7) 

As Eq. (7) expresses consistency between the measurements .mi and possible 
ground-truth values . xi , we then simply add the bounded model checking [7] 
tableaux for . φ or alternatively for .¬φ at time .t = 1 to Eq. (7), obtaining 

.ψ := (7)︸︷︷︸
consistency 

∧ 
13∨
t=1 

(xi < 2 ∨ xi > 5)

︸ ︷︷ ︸
¬φ holds at t=1 

. (8) 

ψ ′ := (7)︸︷︷︸
consistency 

∧ 
13∧
t=1 

(xi ≥ 2 ∨ xi ≤ 5)

︸ ︷︷ ︸
φ holds at t=1 

(9) 

It now is easy to see that . ψ is satisfiable iff there is a possible ground truth consistent 
with the actual measurements that violates . φ, implying that . ψ is unsatisfiable iff 
each ground truth consistent with the actual measurements is guaranteed to satisfy 
. φ at time .t = 1. Analogously, . ψ ′ is satisfiable iff there is a possible ground 
truth consistent with the actual measurements that satisfies . φ, implying that . ψ
is unsatisfiable iff each ground truth consistent with the actual measurements is 
guaranteed to violate . φ at time .t = 1. 

Pursuing arithmetic SMT solving on both . ψ and . ψ ′ and reporting

• “. φ holds at . t = 1” iff . ψ is unsatisfiable,
• “. φ is violated at . t = 1” iff . ψ ′ is unsatisfiable,
• “the measurements are inconclusive about . φ at .t = 1” iff both . ψ and . ψ ′ are 

satisfiable
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thus provides a sound (no wrong verdicts are given ever) and complete (verdicts 
are provided whenever possible) monitoring procedure based on SMT solving. 
The induced proof obligation of deciding satisfiability of the arithmetic constraint 
systems . ψ and .ψ ′ can be discharged by various SMT solvers covering linear 
arithmetic, like MathSAT [6]. When the exactness of results is to be further refined 
by also incorporating a model of the system dynamics into the state estimation (see 
[12] for details) and if this model is involves transcendental arithmetic, then solvers 
like iSAT [15] and dReal [18] become the method of choice. 

3.2 Quantitative Safety Analysis of BCI-Enabled Autonomous 
Systems2 

Our second example deals with the use of brain-computer interfaces to inform the 
embedded decision logic of a cyber-physical system about the imminent, potentially 
conflictory actions of a human. The scenario depicted in Fig. 4 entails the use of 
blood-oxygen-level-dependent imaging via a functional near-infrared spectroscopy 
(fNIRS) helmet to detect cortical activity, the use of a computer-vision system based 
on a convolutional neural network trained to spot signs of stress in the fNIRS image, 
a Bayesian network trained to predict human behavior dependent on stress levels 
(and some other factors like age and gender of the subject), and a robust control 
component basing driving decisions of an autonomous car on these observations. 
Though uncertainties as well as signal latencies are high (see the respective marking 
in Fig. 4), these together are nevertheless meant to provide the following safety-
enhancing functionality:

• The signal processing and classification chain comprising of the fNIRS and 
the image classifier provide indications of whether the driver of the manually 
operated car (marked “M” in the image) while waiting for a left turn through 
oncoming traffic has built up stress due to extended waiting or due to preexisting 
conditions.

• The human behavior prediction determines the stress-dependent likelihood of the 
driver of car “M” filtering through the current gap in front of the automated red 
car (marked “A” in the image), as well the dependence of this likelihood on gap 
size variation.

• The control prompts car “A” to vary gap size to avoid risks should a stressed 
human driver in car “M” start to filter through oncoming traffic, while at the 
same time not compromising performance by always or unnecessarily frequently 
opening the gap in front of “A.”

2 This section is based on joint work with Werner Damm, Andreas Lüdtke, Jochem W. Rieger, 
Alexander Trende, and Anirudh Unni published in [8]. 
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Fig. 4 Brain-computer interfaces supporting the decision-making in autonomous vehicles 
(after [8])

Full details of this scenario can be found in [8]. 
Given the latencies and inaccuracies in the fNIRS-based human state detection, 

the actual safety impact of such a system remains unclear. We have therefore 
encoded the system model into SiSAT, facilitating its rigorous analysis, as follows: 

1. We have encoded a state-based model of the dynamic buildup of frustration 
in a waiting driver directly from the experimental findings obtained on human 
subjects in a driving simulator (and thus obviously needing further empirical 
justification for a transfer to reality, but being used herein cum grano salis as an 
example of the argument logic). This model tracks the buildup of frustration 
levels based on the number of gaps that the manual driver has waited for, 
with critical levels being reached from a non-frustrated state within . 6 ± 2
gaps, but preexisting frustration being possible. The slope of stress buildup is 
nondeterministic in its start state and varies stochastically in speed within the 
aforementioned boundaries. 

2. We have encoded probabilistic processes modeling the likelihood of misclassi-
fications of stress detection due to an optimally adjusted detector, adjusting it 
conservatively, as required in a safety-oriented design, for a moderately high 
sensitivity even if that may come at the price of compromised specificity. We 
could thus calibrate the detection system for frustration to a sensitivity of 0.78
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and obtained a similar reliability for the prediction of gap acceptance, which 
was encoded by an analogous probabilistic process. The stress detection process 
reads actual stress levels due to the dynamic model from 1. and reports an 
unreliable stress detection based on this reflecting the actual sensitivity; likewise 
the modeled actual gap acceptance varies stochastically around the predictions 
of the behavioral model. 

3. We have built physical first principles models of the car movements. 
4. We have for the sake of comparison once added the control component to the 

model of car “A” and once replaced it with a controller for keeping gap size in 
front of “A” constant. 

Combining these models, we generated a corresponding symbolic SSMT represen-
tation of a hybrid-state Markov decision process (MDP) in SiSAT syntax using 
the coding scheme sketched in Sect. 2. Within this MDP, gap sizes in traffic on 
the HAV’s lane as well as occurrence times of manually driven cars in opposing 
traffic were existential variables, forcing SiSAT to construct a worst-case (i.e., 
maximally risky) scenario, while gap acceptance, build-up slopes for frustration, 
and the frustration detection were random variables as described above. SiSAT was 
thus asked to construct a worst-case scenario of short and long gaps leading to 
maximum risk. The probabilities for the random variables were directly taken from 
the experimental findings obtained on male subjects, i.e., gap acceptance rates for 
short gaps in condition of frustration were 0.37 if the oncoming traffic was manually 
operated and 0.97 if it was an HAV; likewise, detection rate of frustration was 0.78. 

In the uncontrolled setting of a constant gap size in front of “A,” SiSAT based 
on this MDP computed the risk of traversing through a too short gap in front of 
car “A” as being in the interval [0.96999999, 0.97000001] for the worst possible 
scenario. With the robust control strategy in place, the worst-case risk of traversing 
through a too short gap was computed as [0.29584999, 0.29585001], implying a 
risk reduction for worst-case scenarios by a factor of approximately 3.3 despite the 
uncertainties in sensing frustration by neurophysiological measurements. It should 
be noted that these figures apply to the mutual worst-case scenarios (which need 
not even coincide) and are not reflecting the average case, which is dominated by 
non-risky situations and should not exhibit significant changes in behavior with 
associated impact on performance. It should also be clear that these figures are 
currently only meant to demonstrate feasibility of the analysis method and cannot 
directly be transferred to realistic driving situations due to lack of a sufficiently 
dense empirical basis of some model elements. 

4 Conclusion 

Satisfiability solving modulo theories (SMT) [3] has evolved into a stable and now 
rather scalable algorithmic foundation for the automated analysis of diverse com-
putational as well as cyber-physical phenomena, provided that they are encodable
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in (mostly existential) fragments of logic over appropriate theories. Within this 
note, we have demonstrated how SMT solving over rich arithmetic domains can 
automatically discharge proof obligations of hybrid-state cyber-physical systems 
that are induced by analysis problems outside the traditional domains of automated 
verification [17] and test automation [27]. The two examples provided were exact 
monitoring of cyber-physical processes under epistemic and aleatory uncertainty 
[12] and quantitative safety analysis of autonomous systems featuring brain-
computer interfaces [8], shedding light on the breadth of potential application areas 
of arithmetic SMT solving. 
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Fast AIG-Based Approximate Logic 
Synthesis 

Annika Heil and Oliver Keszocze 

1 Introduction 

A major objective of the technical industry is to provide its customers with small and 
fast devices which are simultaneously energy-efficient. System designers focus on 
three major aspects while designing a system: area, latency, and power consumption. 

In terms of area, it is widely known to researchers in the field of digital 
technology that the number of transistors, which are able to fit on an integrated 
circuit, has risen steadily since the early 1960s, thanks to technological advance 
(also known as Moore’s law) [1]. This trend of minimization has been declining and 
is expected to end in 2025 [2]. 

The question is, how to address the three aspects when “simply” minimizing 
the transistors will not be possible in the foreseeable future any more. It turns out 
that many applications, especially in the domain of digital signal processing, do 
not require strictly correct computations [3]. This is due to the fact that the human 
perception itself is not perfect. In some other situations, it might even be the case 
that the customer is willing to accept incorrect results in favor of having a faster, 
smaller, or less energy-hungry system [4]. 

A design paradigm known as approximate computing [5, 6] exploits this. The 
basic idea is to trade off computational accuracy for gains in nonfunctional aspects 
such as reduced area, smaller latency, and power reduction. 

In the literature, two main approaches to introduce approximations to the design 
in order to achieve gains on one or multiple of the aspects mentioned above are used 
(see, e.g., [7]): (a) physical changes to the design including voltage over-scaling or 
overclocking or (b) altering the functionality. We will pursue the latter approach 
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in this work. More precisely, we will present a novel and fast approximate logic 
synthesis (ALS) technique. Our optimization goal is the circuit area. We refer the 
reader to [8] for a general survey on ALS techniques. 

In this work we propose an ALS method that (a) aims to minimize the area of 
an approximated circuit, (b) specifically targets arithmetic circuits, (c) operates on 
(X)AIG representations of Boolean functions, and (d) has a small execution time 
due to a fast method of evaluating the error introduced by the approximation. 

2 Related Work 

Approximate logic synthesis has been performed on many different representations 
of Boolean functions using very different means of approximation. 

Initial work has been done by using the structural information of a given circuit, 
e.g., by cutting the carry chain of adders or multipliers [9]. 

On a higher level of abstraction, researchers extended programming 
languages [10] and hardware description languages [11] with constructs to 
automatically compile/synthesize approximated systems. 

Preliminary work on approximations on graph structures has mostly been done 
on BDDs [12–14]. In this work, we use the AIG data structure. The works that are 
closest to the work presented in this manuscript are [15] where the authors find 
cuts within an AIG that are replaced by approximations. The introduced error is 
bound by a miter structure that is evaluated using SAT. While the authors in [14] 
work on BDDs, we employ their idea of exploiting properties of the approximation 
operation to speed up the error metric computation process. We further also use their 
algorithmic approach for AIG approximation. 

3 Background 

3.1 Notation and Conventions 

In this paper, all functions will be of type f : Bn → Bm. The m individual output 
functions are denoted as fi . The interpretation of f (x)  as a natural number with the 
usual binary encoding is denoted by val(f (x)). 

For a function f with m = 1, i.e., a Boolean function, its ON/OFF-set is denoted 
by ON / OFF(f ), i.e. 

. ON(f ) := {x | f (x) = 1} and OFF(f ) := {x | f (x) = 0}.

The size of a ON/OFF-set is denoted # ON(f )/# OFF(f ).
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Given a Boolean function f , an approximated version of it is denoted by a hat, 
i.e., f̂ . Primary inputs are labeled A,  B, . . .  and primary outputs X, Y, Z. Within this 
manuscript, the approximations do not alter the number of input or output variables. 

The truth density td(f ) of a function f is the ratio between the size of the ON-set 
of f and the total number of inputs, i.e. 

. td(f ) = 1

2n
· # ON(f ).

The name stems from the fact that the truth density gives information about the 
probability of f being 1, i.e., true. 

3.2 (XOR-)AND-Inverter Graphs 

To efficiently represent Boolean functions, many representations have been pre-
sented. This work focuses on AND-Inverter Graphs (AIGs) [16] and XOR-AND-
Inverter Graphs [17]. These structures are directed acyclic graphs. In both represen-
tations, nodes without incoming edges represent primary inputs, and nodes without 
outgoing edges represent primary outputs. For AIGs, the internal nodes represent 
the logical AND operation, whereas in a XAIG, the nodes can represent either the 
logical AND or the logical XOR operation. In both types of graphs, edges might be 
negated. We denote the size, i.e., the number of nodes, of an (X)AIG G by #G. 

Example 1 Consider the addition of the two-bit numbers (CA), (DB) ∈ B2, i.e., 
(ZYX) = (CA) + (DB). An AIG representing the adder is shown in Fig. 1a. The 
nodes are AND operations, while dashed edges indicate negations. The output X is 
computed as 

.X = ¬ (¬B ∧ ¬A)
︸ ︷︷ ︸

Node6

∧¬ (A ∧ B)
︸ ︷︷ ︸

Node5
︸ ︷︷ ︸

Node7

. (1) 

Figure 1b shows an XAIG representing the same functionality, i.e., a two-bit adder. 
The gray nodes are XOR nodes. Note that the computation of X in Eq. (1) is actually 
an XOR operation, i.e., X = A ⊕ B. This is reflected by the XAIG in node 7 
that completely represents the computation of X. This shows that XAIGs may save 
nodes compared to AIGs. The AIG used the three nodes 5, 6, and 7 to represent the 
computation of X (see Fig. 1a).

While there is no one-to-one correspondence between the number of nodes in an 
(X)AIG and the resulting circuit size, the rule of thumb “less nodes lead to smaller 
circuits” does often hold and is used within this work. 

In this work, we expect the functionality to be optimized by ALS to be given as 
an AIG. Hence, instead of optimizing a circuit, represented by an AIG, directly for
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Fig. 1 AIG and XAIG for a two-bit adder. (a) AIG for a two-bit adder computing (CA)+(DB) = 
(ZYX). Each node represents an AND operation. Dashed lines indicate negation. (b) XAIG 
representing the same functionality as the AIG in (a). The gray nodes are XOR nodes; the other 
nodes are AND nodes

the area used by an actual physical realization, we aim to minimize the number of 
AIG nodes instead. 

3.3 Error Metrics 

To evaluate systems in terms of the quality of the computed values, many different 
error metrics have been proposed. Each of these metrics measures different aspects 
of the approximated functionality (see [18] for an overview of commonly used 
metrics). Some examples of error metrics are 

. er(f, f̂ ) = 1

2n
·

∑

x∈Bn

f (x) �= f̂ (x), . (2) 

wce(f, f̂ )  = max 
x∈Bn

|val(f (x)) − val( f̂ (x))|, and. (3) 

whd(f, f̂ )  = 
m−1
∑

i=0 

2i
∑

x∈Bn

(

fi(x) ⊕ f̂i (x)
)

. (4) 

The error rate (Eq. 2) counts how often the approximated function f̂ computes 
an incorrect result. This metrics is not well-suited for evaluating approximations of 
arithmetic circuits as it does not take into account at all how severe the errors are as 
it completely ignores the actual function values. As this metrics is rather simple to 
evaluate (or compute an estimate using Monte Carlo simulations), it is often used
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Table 1 Error metric values for the error rate, the worst-case error, and the weighted Hamming 
distance for an exemplary function f and its approximated function f̂ 

x f (x)  f̂ (x)  f (x) �= f̂ (x)  |val(f (x)) − val( f̂ (x))| ∑m−1 
i=0 2i ·

(

f (x)  ⊕ f̂ (x)
)

000 00 10 1 2 2 

001 10 10 0 0 0 

010 10 10 0 0 0 

011 00 00 0 0 0 

100 01 10 1 1 3 

101 11 00 1 3 3 

110 11 11 0 0 0 

111 01 01 0 0 0 

er(f, f̂ )  = 3/8 wce(f, f̂ )  = 3 whd(f, f̂ )  = 8 

in the literature. The worst-case error (Eq. 3) does take the values of f and f̂ into 
account and returns the largest error. The last error metric (Eq. 4) is a weighted 
variant of the Hamming distance metric derived from the mean Hamming distance 
as presented in [19]. The weight parameters 2i ensure that the bit position of an error 
is taken into account. Therefore, we have that errors in the more significant bits have 
a larger influence on the error than the lower significant bits. The metrics (3) and (4) 
are well-suited for arithmetic circuits. 

Example 2 Table 1 shows the truth table for a function f , an approximation f̂ of 
f , and the error metric values for the three error metrics introduced above. 

All these error metrics have in common that they are computationally expen-
sive to determine [20], making iterative ALS techniques that rely on repeatedly 
evaluating an error metric infeasible. It is possible to accelerate the error metric 
computation when properties of the approximation operation on a specific data 
structure can be exploited [14]. In this work, we adopt the greedy bucket-based 
algorithm from [14] to operate on (X)AIGs and choose the weighted Hamming 
distance as our error metric. We will use the truth density propagation from [21] 
to quickly compute (an estimate of) whd (see Sect. 4.3). 

4 Fast AIG Approximate Logic Synthesis 

4.1 Bucket-Based Approximation Algorithm 

We first describe the presented ALS technique, a bucket-based approximation 
algorithm, on a high level of abstraction before explaining the technical details in 
the following sections. 

The main idea behind the algorithm is, given an AIG G, to define multiple 
buckets that contain approximations of G that have less nodes than G. Each bucket 
has an error threshold. Only approximated AIGs that have an whd error lass than
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the threshold are stored in the bucket. All buckets are sorted in ascending order of 
the threshold. The algorithm iterates over the AIGs currently stored in the buckets 
and tries to further approximate them without exceeding the error threshold of the 
last bucket. When no further approximations are possible, the algorithm terminates 
and returns the buckets. 

The returned buckets form the Pareto front for the optimization criteria number 
of AIG nodes (which we use as a stand-in for the circuit’s area) and the weighted 
Hamming distance error metric. 

The algorithm is depicted in Algorithm 1. In lines 1–3 the buckets are set up. 
They are initialized with copies of the AIG that is to be approximated; the first 
bucket (having the smallest error threshold) is selected as the first AIG to be 
approximated. The algorithm runs as long as approximations have been performed 
(lines 4–20). For the current bucket, nodes and corresponding approximation 
operations that can be applied are found (line 6). Each of these approximations 

Algorithm 1: Fast approximate AIG synthesis 
Input : AIG to approximate A, number of buckets n with corresponding thresholds 
Output : Array bucket containing the approximate AIGs
� Initialize the buckets 

1 buckets ← 〈A,  . . . A〉
2 bucket[0].changed ← true � Ensure to approximate at least once 
3 currBucket  ← bucket[0] 
4 while currBucket.changed do 
5 currBucket.changed ← f alse  
6 approxCandidates ← f indApproximationCandidates(currBucket); foreach 

Candidate c ∈ approxCandidates do 
7 approx ← approximate(currBucket, c) 

8 e ← error(approximated,  A)

� Find bucket repBucket  with 
• error(approx,  A)  ≤ error(repBucket,  A)  and 
• #approx < #repBucket . 

9 repBucket  ← f  indF ittingBucket (approxB,  buckets,  A)  

10 if repBucket  exists then 
11 repBucket  ← approx 
12 repBucket.changed  ← true  

13 if repBucket  has a lower error threshold than currBucket  then 
14 currBucket  ← repBucket � Continue with repBucket  

15 

16 else
� Continue with next bucket 

17 currBucket  ← next (currBucket)  

18 else 
19 currBucket  ← next (currBucket) � Continue with next bucket 
20 

21 return buckets 
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is applied (line 7), and the result is evaluated for whether it can be put into one of 
the buckets, i.e., whether there is a bucket containing an AIG with a larger error and 
more nodes (line 9). If that is the case, the corresponding bucket is updated (lines 
11–12). If the updated bucket has a lower error threshold than the currently used 
bucket, this bucket is used in the next iteration (lines 13–14); otherwise, the next 
bucket is used (lines 17 and 19). 

We implemented the proposed ALS method in the state-of-the-art logic synthesis 
tool ABC [22]. 

4.2 Approximation Operations 

In this work, we make use of the two different approximation operations, XOR 
replacement and constant replacement, as they can be efficiently implemented on 
the AIG data structure. After a replacement has been conducted, the structure of 
the AIG has changed, and new optimization rules may apply. Therefore, after each 
replacement, the AIG is again optimized by ABC. 

Example 3 After replacing an input A of an AND node v (i.e., v represents A∧ B) 
with a constant 0, e.g., allows to further replace the node v with the constant 0 as 
we have 

. A ∧ B
replace A with 0� = 0 ∧ B = 0.

XOR Replacement The idea behind XOR replacement is to first identify nodes in 
the initial AIG G that form an XOR operation and then to replace them by a single 
node only. 

In order to identify the nodes forming an XOR operation, the AIG G is 
transformed into an equivalent XAIG G′ (see step (a) in Fig. 2). This step is handled 
automatically by ABC. Note that the transformation does not necessarily replace all 
AND nodes by XOR nodes. 

Fig. 2 Exemplary XOR replacement example
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Table 2 XOR Replacements based on the truth densities of A and B 

td(A) 

A ⊕ B 25% 50% 75% 

td(B) 25% A ∨ B A ∨ B ¬(A ∧ B) / A ∨ B 
50% A ∨ B ¬(A ∧ B) / A ∨ B ¬(A ∧ B) 

75% ¬(A ∧ B) / A ∨ B ¬(A ∧ B) ¬(A ∧ B) 

The second step (see step (b) in Fig. 2) then replaces the found XOR node by a 
single AND node. Note that one or multiple edges in the graph might be negated in 
this process (see the outgoing edge of node 5 on the right of Fig. 2). 

In order to find suitable replacements for the XOR node, we investigated the 
XOR behavior depending on the truth densities of the inputs of the XOR operation. 
Table 2 shows the replacements introducing the smallest error. We obtained the 
replacements via exhaustive testing. 

The tie breaker in the case when both NAND and OR are suitable replacements, 
we chose the NAND replacement when either td(A) > (1 − td(B)) or td(B) > 

(1 − td(A)) holds. We replace the XOR node with an OR node otherwise. 

Example 4 Consider the AIG on the left of Fig. 2 and assume td(A) = 0.7 and 
td(B) = 0.5. The nodes 3, 4, and 5 form an XOR operation and, hence, can be 
replaced according to Table 2. As both NAND and OR are valid replacements, 
we have to check the tie breaker to decide on the actual replacement. As we have 
td(B) = 0.5 > 0.3 = (1 − 0.7) = (1 − td(A)), the three nodes are replaced by a 
single NAND node. 

Replacing any XOR node v in the AIG of a function f according to Table 2 
yields an approximation f̂ where 

. ON(fv) ⊆ ON(f̂v) ∨ ON(f̂v) ⊆ ON(fv) (5) 

holds. Here fv/ f̂v is the function represented by the node v. Equation 5 describes 
over-/underapproximations, respectively. Note that the property in Eq. (5) holds only 
locally at the replaced node. 

Constant Replacement When a node in the AIG has a truth density close to either 
0 or 1, it can be considered a constant 0 or 1 node. To make this decision, the user 
can specify a corresponding decision threshold. As long as this threshold is less than 
0.5, i.e., replace the node v with a constant 0/1 when td(v) < 0.5/ td(v) > 0.5, the 
constant replacement operation also has the property in Eq. (5). 

For this replacement operation, the AIG G does not need to be transformed into 
an XAIG.
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4.3 Fast Computation of the Weighted Hamming Distance 

We review the definition of the weighted Hamming distance error metric from 
Eq. (4) 

. whd(f, f̂ ) =
m−1
∑

i=0

2i ·
(

∑

x∈Bn

(

fi(x) ⊕ f̂i (x)
)

)

(6) 

and note that the computation of the Hamming distance on the individual output 
functions fi can be computed using the truth density as follows: 

. =
m−1
∑

i=0

2i ·
(

2n · |td(fi) − td(f̂i)|
)

= 2n ·
m−1
∑

i=0

2i · |td(fi) − td(f̂i)|. (7) 

For this equality to hold, the function f̂ must have been obtained by applying an 
approximation operation for which the property in Eq. (5) holds. 

Example 5 Consider the two approximations X̂ and X̃ shown in the truth table in 
Table 3. For the approximation operation yielding X̂, property (5) holds, i.e., we 
have that ON(X) ⊂ ON(X̂) holds. This property does not hold for the approxima-
tion X̃. Computing the whd using Eq. (7) shows that the over-/underapproximation 
property is crucial: 

. whd(X, X̂) = 22 · |0.50 − 0.75| = 4 · 0.25 = 1

whd(X, X̃) = 22 · |0.50 − 0.50| = 4 · 0.00 = 0

The value whd(X, X̃) = 0 is clearly incorrect. 

The advantage of computing whd using Eq. (7) instead of using the initial definition 
of Eq. (4) is that the actual time necessary to determine the value can be greatly 
reduced if the computation of the truth densities can be done quickly. We will see in 
Sect. 4.4 how this is possible.

Table 3 Approximating X 

using operations for which 
the over-/underapproximation 
property Eq. (5) does hold 
(X̂) and does not hold (X̃) 

A B X X̂ X̃ 

1 1 0 0 0 

0 1 1 1 1 

1 0 1 1 0 

0 0 0 1 1 
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As the proposed ALS method (see Algorithm 1) is an iterative approach, many 
whd values have to be computed during a synthesis run. When the total number 
of inputs does not exceed 16, the AIG can be fully evaluated and exact results can 
be computed. When the AIG grows beyond this, the truth density and, hence, the 
whd are computed iteratively by determining the whd locally for the approximated 
node only. We then adopt an additive model accumulating the locally computed 
errors until the output node is reached. This additive model along with the fact that 
consecutive errors that might cancel each other out (a situation also known as error 
masking) are not taken into account leads to an overestimation of the total error. The 
upside of this simplification is that it allows for a very fast estimation of the total 
whd. 

4.4 Truth Density Computation 

So far, we used the truth density values of all (X)AIG nodes without considering 
how to actually compute them. In this work, we make use of two different means of 
obtaining the truth densities of the nodes. 

The first means of obtaining the truth density is to directly use ABC. The tool 
estimates the truth density values of the nodes by running a number of simulations 
of the graph, i.e., evaluating the graph for a given number of randomly generated 
inputs. The quality of the result greatly varies with the number of simulations and, 
hence, the time one is willing to spend on the estimation. 

As the computation of the densities is crucial for both, the decision on which node 
to replace and the computation of the weighted Hamming distance error metric, we 
chose to use the error propagation method presented in [21]. While its intended use 
is to propagate the error rate through a general Boolean network, it can easily be 
applied for our use case as (X)AIGs are nothing but a specific Boolean network and 
the truth density is already computed by the approach as a “by-product.” 

The speed of the approach from [21] stems from not having to perform full 
simulations of the (X)AIGs but computes the truth density using symbolic variables. 
It should be noted that computed densities are only exact in case when there is no 
fanout reconvergence in the (X)AIG. Nevertheless, extensive tests have shown that 
the degradation of the results in case of reconvergences is negligible. 

5 Experimental Evaluation 

5.1 Experimental Setup 

We implemented the proposed ALS technique in the state-of-the-art logic synthesis 
tool ABC [22] using the probabilistic error propagation tool from [21].
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As benchmark circuits, generic n-bit adders and multipliers as well as the 
EvoApproxLibLITE library [18] are used. 

Instead of directly specifying the whd value of the buckets, we define a threshold 
t ∈ [0, 1] that reflects how large the error in the most significant bit of the output 
is allowed to be in percent. This allows to define buckets that capture similar error 
behavior for circuits of different size, i.e., one does not have to (manually) compute 
different bucket values for an 8-bit and an 16-bit multiplier. A threshold value t can 
be translated in an estimate on the whd via whd(f, f̂ )  ≈ t · 2n · 2m−1. 

All experiments were executed on an AMD Ryzen 5 3600XT 6-Core CPU with 
3.80-GHz and 16-GB memory running Ubuntu 20.04 in WSL 2 on Windows 10 
Build 19044.1645. 

5.2 Scalability 

To assess the scalability of our approach, we performed approximate logic synthesis 
on adders of increasing bit width using 5 buckets with threshold values 0.0156, 
0.0.03125, 0.0625, 0.125, and 0.25. In the experiments, it turned out that the error 
propagation implementation has a memory leak preventing it to be used for AIGs 
with more than ≈ 300 nodes. Therefore, the following results were obtained using 
ABC’s simulation method. 

The results of the synthesis runs are presented in Table 4. For each bit width, the 
results for each bucket are listed in a separate line. The approximated AIGs were 
converted to a list of logic gates using ABC. Afterward, the area and delay have been 
computed by ABC using the mcnc.genlib gate library. For each physical aspect, 
the number of gates, the area, and the delay, we present the reduction/increase in the 
aspect in percent after the absolute values in the table. We further report the whd for 
the AIGs.

Using the number of AIG nodes as a stand-in for the circuit area works well: the 
reduction in nodes is qualitatively reflected in the reduction in the number of gates 
and the reduction of the area. As can be seen, the goal of optimizing circuits for area 
has been achieved. It is interesting to see the reduction remains in the range ≈ 65%– 
75% for threshold values up to 0.125. Only after allowing for 25% weighted errors 
in the most significant bit, further size reductions are achieved. 

While our method is capable of reducing the area, it does, in turn, increase the 
delay of the circuit (usually in the ≈ 112%–125% range). This value, again, drops 
when a large threshold is used. As we do not explicitly optimize for delay, this is an 
acceptable trade-off. 

As can be seen, the actual whd values for the buckets increase with increasing 
bit width of the adders. This shows that choosing a means to describe buckets that 
abstracts away the bit width is helpful.
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Table 4 ALS results for adders of varying bit width. For each bucket, the number AIG node, 
number of gates, area, delay, and whd are reported. For the number of nodes/gates, the area, and 
the delay, the relative change to the unapproximated AIG is also shown 

Threshold Nodes % Gates % Area % Delay % whd 

16 bit [Run-time: 34.64 s] 

Unapprox. 158 – 105 – 215 – 33.70 – – 

0.0156 141 89% 66 63% 170 79% 39.30 117% 2.75 

0.03125 139 88% 66 63% 166 77% 38.80 115% 3.00 

0.0625 137 87% 66 63% 162 65% 38.30 114% 3.25 

0.125 135 85% 66 63% 158 73% 37.80 112% 3.50 

0.25 131 83% 61 58% 151 70% 35.30 104% 4.00 

32 bit [Run-time: 365.54 s ≈ 5 m]  

Unapprox. 318 217 – 439 – 65.70 – – 

0.0156 270 85% 131 60% 319 73% 77.40 118% 7.00 

0.03125 269 85% 132 61% 315 72% 77.20 118% 7.25 

0.0625 266 84% 133 61% 309 70% 78.00 119% 7.75 

0.125 264 83% 132 61% 306 70% 77.70 118% 8.00 

0.25 193 60% 83 38% 176 40% 44.60 66% 16.64 

64 bit [Run-time: 2527.54 s ≈ 42 m] 

Unapprox. 638 – 441 – 887 – 129.70 – – 

0.0156 523 82% 261 59% 598 67% 160.30 124% 15.50 

0.03125 521 82% 261 59% 594 67% 159.80 123% 15.75 

0.0625 519 81% 261 59% 590 67% 159.30 123% 16.00 

0.125 517 81% 261 59% 586 66% 158.80 122% 16.25 

0.25 461 72% 223 51% 483 54% 134.40 103% 21.45 

128 bit [Run-time: 22738.28 s ≈ 6 h]  

Unapprox. 1278 – 889 – 1783 – 257.70 – – 

0.0156 1034 81% 516 58% 1179 66% 315.70 123% 32.48 

0.03125 1032 81% 516 58% 1175 66% 315.20 123% 32.73 

0.0625 1030 81% 516 58% 1171 66% 314.70 122% 32.98 

0.125 1028 80% 516 58% 1167 65% 314.20 122% 33.23 

0.25 501 39% 194 22% 211 12% 57.20 22% 61.72

5.3 Multi-Objective Optimization for Area and whd 

The benchmark library EvoApproxLibLITE1 [18, 23] provides a selection of approxi-
mate adders and multipliers. They have been synthesized via exhaustive search with 
respect to various error metrics (including er and wce) as well as area and power 
consumption. The benchmark set does not evaluate the whd error metric. 

As the final buckets of the presented approach form the Pareto front of the multi-
objective optimization problem with the optimization criteria whd and area, we

1 The benchmark library is publicly available at https://ehw.fit.vutbr.cz/evoapproxlib/. 

https://ehw.fit.vutbr.cz/evoapproxlib/
https://ehw.fit.vutbr.cz/evoapproxlib/
https://ehw.fit.vutbr.cz/evoapproxlib/
https://ehw.fit.vutbr.cz/evoapproxlib/
https://ehw.fit.vutbr.cz/evoapproxlib/
https://ehw.fit.vutbr.cz/evoapproxlib/
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Fig. 3 Comparison of the synthesis results of the proposed approach (dark blue dots) and 
EvoApproxLibLITE (red squares) with respect to area and the weighted Hamming distance error 
metric for (a) 8-bit unsigned adders and (b) 8-bit unsigned multipliers
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compare our results with the exhaustive results from EvoApproxLibLITE. We select 
the adders and multipliers from the benchmark set that form the Pareto front with 
respect to area and the wce error metric and compute the whd values for them so 
that we can compare the benchmark circuits to our results. The circuits optimized 
for this metric were chosen as wce does take into account the order of the output 
bits, and, therefore, the corresponding circuits allow for the fairest comparison. 

The comparison for 8-bit unsigned adders and multipliers is shown in Fig. 3. 
The notation for our circuits is as follows: “add8u_b75” refers to an unsigned 8-bit 
adder from the bucket with a threshold of 0.75. For EvoApproxLibLITE, the naming 
scheme is of the form “add8u_〈ID〉” and directly taken from their website.

For the adders (Fig. 3a), the proposed ALS method clearly produces better results 
than EvoApproxLibLITE. These results can be explained, in part, by the fact that 
EvoApproxLibLITE optimized for a different error and in part by the fact that the 
computation of the sum bits in an adder basically is a large XOR gate. When 
looking at the results for the multipliers (Fig. 3b), one can see that the applied 
approximations are not resulting in points close to the Pareto front any more. When 
investigating what approximation operations have been chosen by the proposed ALS 
algorithm (see Table 5), one can see that the ratio of XOR replacement over constant 
replacements for the adder is higher than for the multiplier. This further hints that 
XOR replacement is well-suited for adders while multipliers do not benefit from 
this particular kind of approximation. 

5.4 Truth Density Computation 

To investigate the difference in execution time between the ABC simulation-
based truth density estimation and the method from [21], we synthesized adders 
of increasing bit width using 5 buckets with threshold values 0.0156, 0.0.03125, 
0.0625, 0.125, and 0.25. The results are reported in Fig. 4. As can be seen, the error 
propagation approach clearly excels with respect to the execution time. Due to the 
memory leakage issue (see Sect. 5.2), we can not show results for larger circuits. 
While using ABC for the error estimation already is fast, using error propagation 
shows a great potential to further accelerate our proposed ALS technique.

Table 5 Number of 
XOR/Constant replacements 
for 8-bit adders and 
multipliers 

Replace Replace Ratio 

Circuit XOR Constant 

8-bit adder 37 4 9.25 

8-bit multiplier 136 38 3.6 
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Fig. 4 Execution time of the 
proposed ALS method in 
seconds for adders of varying 
bit width 

6 Conclusion and Outlook 

We presented a novel and fast greedy, bucket-based approximate logic synthesis 
technique working on AIGs that aims to minimize both the area of the resulting 
circuit and, at the same time, the error introduced by the approximations. We chose 
the weighted Hamming distance error metric whd to assess the functional quality of 
the circuit as it takes into account the order of the output bits. We found a means of 
effectively computing whd via computing truth densities and exploiting properties 
of the used approximation operations. The effectiveness of the presented method 
has been evaluated in a set of experiments. 

The next step is to find the memory leakage in the fast error propagation tool to 
further enhance the speed of the proposed method. 
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External Don’t Cares in Logic Synthesis 

Siang-Yun Lee, Heinz Riener, and Giovanni De Micheli 

1 Introduction 

Logic synthesis, or, more specifically, technology-independent logic optimization, is 
a step in the VLSI design flow after RTL synthesis and before technology mapping, 
attempting to optimize combinational circuits on technology-independent represen-
tations, such as AND-inverter graphs (AIGs). As a bottom line, the produced result 
of a logic synthesis algorithm must respect the given functionality of the circuit. 
To date, this means that the output circuit should be functionally equivalent to 
the original one, and is usually verified by performing combinational equivalence 
checking (CEC) [5] on the two circuits. However, this requirement might be too 
strong in some cases. Further high-effort optimization can be enabled by relaxing 
the requirement of exact functional equivalence and allowing flexibilities external 
to the combinational circuit under optimization. 

Don’t cares are flexibilities in logic functions or logic networks where output 
values of some (local) functions can be changed without violating the (global) 
specification [3]. Don’t-care conditions may be derived on various scales, from 
interconnections of logic gates within a combinational network [4] to interactions 
between submodules in a system [12]. Computation and utilization of don’t-care 
conditions in combinational logic synthesis have often been formulated using 
incompletely specified functions [2], also known as permissible functions [11]. 
Don’t cares play a central role in logic synthesis. However, due to the intrinsically 
high computational complexity of don’t-care computation, methods to (under-) 
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approximate them were developed [9, 14, 15]. Nowadays, more powerful and 
scalable computation of don’t cares enabled by satisfiability (SAT) solving and 
simulation is commonly used, but consideration of don’t cares is still limited to 
those within a combinational network [10]. 

In contrast to internal don’t cares computed within a network, external don’t cares 
are flexibilities arising from outside of the combinational network under optimiza-
tion, derived from a higher-level perspective of the system. For example, cascaded 
finite-state machines may produce don’t-care input sequences for each other [12]. 
As another example, sometimes the system is partitioned into submodules and 
optimized separately. While their boundaries are intended to be kept, flexibilities 
on the input-output relations of individual submodules due to their interactions are 
allowed. Considering external don’t cares essentially changes the problem from 
optimizing a (completely specified) Boolean function into optimizing a Boolean 
relation. The solution space is enlarged and the problem complexity is much higher; 
thus, there is currently no open-source logic synthesis tool that supports taking and 
utilizing external don’t cares. Nevertheless, with the increased computation power 
affordable nowadays, solving such optimization problems should be possible on 
smaller benchmarks. Moreover, in some applications, users of logic synthesis tools 
crave to optimize their circuit as much as possible and are willing to afford higher 
runtime. 

This paper serves as a pioneer toward support of external don’t cares in logic 
synthesis. During this journey, we will lay the foundation with mathematical 
definitions of don’t-care conditions in general, explore different flavors of external 
don’t cares, view the general problem of logic synthesis from a Boolean relation 
perspective, and finally take the first step of considering external don’t cares in 
logic optimization. We will show with experimental demonstrations that external 
don’t cares indeed open up more optimization opportunities that would have been 
impossible without them. In the end, we will also point out possible directions for 
future research. 

2 Background and Terminologies 

2.1 Boolean Functions and Boolean Relations 

A Boolean variable is a variable taking values in the Boolean domain .B = {0, 1}. 
The (n-dimensional) Boolean space . Bn is an n-ary Cartesian power of the Boolean 
domain. An (n-input, single-output, completely specified) Boolean function is a 
function .f : Bn → B of n Boolean variables. Multi-output Boolean functions can 
be seen as an ordered set of single-output functions. 

A Boolean relation . R is a binary relation over two Boolean spaces .R ⊆ B
n×B

m, 
a domain (. Bn) and a codomain (. Bm). Boolean functions are special cases of Boolean 
relations. More specifically, they can be classified into two types:
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• Completely specified functions are special cases of Boolean relations where the 
relations are functional (i.e., an element in the domain maps into one unique 
element in the codomain) and total (i.e., every element in the domain maps into 
an element in the codomain). When describing Boolean functions as Boolean 
relations, an element in the domain, which is a value assignment to all the 
function’s input variables, is also called a minterm. 

• Incompletely specified functions are Boolean functions for which the output 
values under some minterms are not specified. In other words, for some minterm 
.b ∈ B

n, the output value can be either 0 or 1. An incompletely specified function 
can be represented as a nonfunctional Boolean relation . R having, for some 
minterms . b, both .(b, 0) ∈ R and .(b, 1) ∈ R. 

Given an incompletely specified function as a Boolean relation .R ⊆ B
n × B

m, a  
completely specified function .f : Bn → B

m is compatible with . R if 

.∀b ∈ B
n, (b, f (b)) ∈ R. (1) 

When not explicitly noted, functions in the remaining of this paper refer to single-
output, completely specified Boolean functions. 

2.2 Logic Networks and Functions in a Network 

Logic networks (or simply networks) are technology-independent representations of 
digital circuits. A logic network N is defined by a four-tuple .N = (I, V ,E,O), 
where the two sets .(V ,E) define a directed acyclic graph. The first set I is the set of 
primary inputs (PIs) to the network. Each element in the vertex set V , referred to as 
a node n, models either a logic gate or a PI. Thus, .I ⊆ V . Each element . (ni, no, c)

in the edge set .E ⊆ V × V × B models a wire from node . ni to node . no with a 
complementation tag .c ∈ {0 = regular, 1 = complemented} recording the existence 
of an inverter on the wire. . ni is said to be a fanin of . no and . no is said to be a fanout 
of . ni . Finally, each primary output (PO) in O is a tagged node .(n, c) modeling an 
outgoing wire from a gate or a PI, with or without an inverter. 

Cuts A cut in a network, defined over a given set .R ⊆ V of root nodes, is a set C 
of nodes such that any path from a PI to a root includes a node in C. Let  . CUTS(R)

denote the set of all cuts for the set R: 

.C ∈ CUTS(R) if ∀i ∈ I, r ∈ R,∀p : i
p� r, ∃n ∈ C : n ∈ p. (2) 

When R contains only one node n, .CUTS(R) may be abbreviated as . CUTS(n)

and is also referred to as a cut of n: 

.CUTS(n) � CUTS({n}). (3)
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Conversely, given a set C of nodes, a node n is said to be supported by C if C is 
a cut of n. A  logic cone between a cut .C ∈ CUTS(n) and a node n is the set of all 
nodes on any path from a node in C to n. All nodes in the logic cone are supported 
by C. 

A cut of a network N is a cut where R is the set of nodes referenced by POs: 

.CUTS(N) � CUTS({n : ∃c, (n, c) ∈ O}). (4) 

Given any set R of roots, the identical set .C = R is always a cut by definition; thus, 
such cut is said to be a trivial cut. Also, the set I of PIs is always a cut in a network 
for any possible R. 

Global Function of Nodes Each node n in a network computes a Boolean function 
.fn : B

|I | → B in terms of the PIs, called the node’s global function. To express 
the global functions, a Boolean variable . xi is associated with each PI .i ∈ I . Let  
.x = (x1, . . . , x|I |) be the set of all PI variables. By definition, the function of a PI 
node .i ∈ I is .fi(x) = xi . Then, in a topological order, the functions of all nodes in 
the network can be computed by composing the functions of a node’s fanins with 
the function of the corresponding logic gate. Finally, the PO functions are computed 
by taking the function of a PO node and inverting if the PO is complemented. 

Node Function in Terms of a Cut The function of a node may also be expressed 
in terms of a cut supporting it. Given a node n and a cut .C ∈ CUTS(n), the  local 
function .f C

n : B|C| → B is the Boolean function derived by associating a Boolean 
variable with each node in C and computing the local functions of each node in 
the logic cone between C and n in a topological order. The global functions are a 
special case of local functions using the PI set I as the cut: 

.fn � f I
n . (5) 

2.3 Don’t-Care Conditions 

A don’t care for an incompletely specified function is a minterm for which the 
output value is not specified. In a logic network, although all node functions (in 
terms of any cut) are completely specified, for some nodes, there may be some 
minterms where the output values of their functions are flexible. In other words, the 
function . f C

n of a node n in terms of cut C may be modified by changing its output 
value under some minterms without affecting the global functions of any PO. As 
a consequence, an incompletely specified function where these minterms are don’t 
cares and the output values under the other minterms are the same as . f C

n can be 
used to resynthesize the logic cone between C and n. Two types of internal don’t 
cares, arising from different reasons, may appear in logic networks:
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• Given a cut .C ∈ CUTS(R) supporting a set R of nodes1 and let . x = (x1, . . . , x|C|)
be Boolean variables associated with each node in C, a value assignment . bC ∈
B

|C| to . x (i.e., a minterm of the local functions .f C
n of any node .n ∈ R) is a  

satisfiability don’t care (SDC) if this value combination never appears under any 
PI value assignment: 

.�bI ∈ B
|I |, (fn(bI ) : n ∈ C) = bC. (6) 

• Given a node n and a cut .C ∈ CUTS(n) and let .x = (x1, . . . , x|C|) be Boolean 
variables associated with each node in C, a value assignment .bC ∈ B

|C| to . x (i.e., 
a minterm of the local function . f C

n ) is an  observability don’t care (ODC) with 
respect to n if none of the PO functions are affected by flipping the output value 
of . f C

n under . bC : 

.∀bI ∈ B
|I |, (fn(bI ) : n ∈ C) = bC �⇒ ∀o ∈ O, f ∗

o (bI ) = fo(bI ), (7) 

where . f ∗
o is the PO function derived by replacing any regular outgoing edge of n 

with a complemented one and replacing any complemented outgoing edge of n 
with a regular one. 

3 Computation of Internal Don’t Cares 

Appearance of “don’t care” as a technical term in the literature dates back to 
as early as the 1980s [3]. Pioneering research attempted to derive don’t cares in 
multi-level networks and use them in two-level minimization to resynthesize part 
of the network [2]. Theories on don’t-care computation were formulated based 
on symbolic computations propagated through the network [4, 11]. Until the late 
1990s, computation of don’t cares had been implemented using binary decision 
diagrams (BDDs). Due to scalability concerns, approximated computation was 
adopted [9], and the compatibility of ODCs was studied to avoid recomputation 
of ODCs in the network once an ODC is used to change the function of a 
node [14]. Since the early 2000s, computation tools of don’t cares have moved from 
BDDs to SAT, enabling using complete, instead of approximate, don’t cares while 
maintaining scalability [10].

1 The supported set R is not involved in the definition of SDCs, so it can, in theory, be empty and 
C is not necessarily a cut. Although one may define and compute SDCs for any set C of nodes, in 
practice, SDCs are only meaningful when C is indeed a cut, as SDCs are used to optimize nodes 
in R. 
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In many modern logic synthesis tools, internal don’t cares are derived locally 
(under-approximated) using bit-parallel circuit simulation: 

• To compute the SDCs for a given set C of nodes, we first find another cut 
.C0 ∈ CUTS(C) supporting C. Then, we perform circuit simulation by assigning 
projection functions to nodes in . C0 and obtain the local functions of nodes in C 
in terms of . C0, represented as truth tables. Finally, by analyzing each bit in the 
truth tables, we identify the value combinations at C that do not happen, which 
are the SDCs at C. 

• To compute the ODCs with respect to a node n, we first mark the transitive fanout 
cone of n for a predefined number of levels and collect the set R of nodes having 
fanouts outside of this transitive fanout cone. Then, we find a cut . C ∈ CUTS(R)

supporting R and perform circuit simulation to obtain the local functions . fR of 
nodes in R in terms of C. After adding a temporary inverter at the output of n, we  
perform another simulation to obtain . f ∗

R . Finally, we compare the two simulation 
results to identify the minterms where . fR and . f ∗

R have identical values, which 
are the ODCs with respect to n. 

4 Definition and Representation of External Don’t Cares 

The general problem of technology-independent combinational logic synthesis 
asks for generating a logic network that implements the desired output functions 
and is optimized according to some predefined cost objective. Often, the desired 
functionalities are given as an unoptimized network. Besides improving the cost 
objective, a logic synthesis algorithm must preserve the functionalities of the 
given network. More precisely, the global PO functions must not change after 
optimization. 

However, the desired functionalities may not be completely specified, and 
there may be don’t-care conditions external to the network under synthesis. For 
example, due to the interplay between the network and its environment (other 
cascaded circuits, previous- and next-stage sequential circuits, or user inputs), some 
input value combinations may never appear, or some output values are not used 
(“observed”) under certain conditions. These external don’t cares (EXDCs) can be 
leveraged to further optimize the network. As it is impossible to derive external don’t 
cares from the network alone, they have to be given to a combinational optimization 
algorithm from a higher-level algorithm. 

4.1 External Controllability Don’t Cares (External SDCs) 

Extending the definition of SDC to the input boundary, a value assignment to the 
PIs that will never appear is called an external controllability don’t care (EXCDC). 
These don’t cares are controlled by the environment external to the network.



External Don’t Cares in Logic Synthesis 39

Mathematically, EXCDCs are essentially a special case of SDCs where the cut 
C is the set of PIs. The set of EXCDCs of a network N may be given as a function 
.f CDC : B|I | → B: 

.f CDC(bI ) = 1 ⇐⇒ bI is an EXCDC. (8) 

4.2 External Observability Don’t Cares 

Extending the definition of ODCs to the output boundary, external ODCs are 
conditions under which some PO values are not of interest. Depending on the 
reasons of such situations, there are several ways one may wish to define external 
ODCs. 

As a Function of PIs For each PO .o ∈ O, the condition under which the value of o 
is not observed may be specified as a function of PI values. For example, when the 
network describes the transition and output logic of a Mealy finite-state machine, it 
may appear that for some previous states (PIs of the network), an output is not used. 
In this case, the external ODCs are described as a multi-output function . f ODCI :
B

|I | → B
|O|: 

.For each o ∈ O, f ODCI
o (bI ) = 1 ⇐⇒ bI is an EXODC for o. (9) 

As a Function of Other POs For each PO .o ∈ O, the condition under which the 
value of o is not observed may be specified as a function of other PO values. For 
example, when the outputs of the network are used in the next stage as a series of 
cascaded conditional statements such that if a PO of higher priority evaluates to 
1, then the lower-priority POs do not matter. In this case, the external ODCs are 
described as a multi-output function .f ODCO : B|O| → B

|O|: 

.For each o ∈ O, f ODCO
o (bO) = 1 ⇐⇒ bO is an EXODC for o. (10) 

The i-th output of .f ODCO should not depend on its i-th input. Note that in this 
case, the don’t-care conditions depend on the actual implementation of the network. 
Using one ODC to optimize and change the function of a PO may invalidate 
opportunities of using another ODC to optimize some other POs. 

As Equivalence Classes Instead of specifying external ODCs separately for each 
PO, the flexible conditions might be some value combinations of a subset of POs. 
Figure 1 gives an example. Because of the cascaded next-stage logic at the output 
of N , the value combinations .o1 = 0, o2 = 1, and .o1 = 1, o2 = 0 have the 
same effect as seen from the system output (both map into .y1 = 1, y2 = 1; red  
edges). Thus, these two PO value combinations may be classified into the same 
external observability equivalence class (EXOEC), and PI minterms that map to 
one of them are flexible to be re-mapped to either one (pink edges are added).
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Fig. 1 Example of external observability equivalence classes 

More generally, two PO value combinations are observably equivalent (in the same 
EXOEC) if their difference may not be observed when the network is immersed in 
a larger system. By definition, this is an equivalence relation and is reflexive (i.e., 
if a is observably equivalent to b, then b is observably equivalent to a [a and b 
are indistinguishable]), symmetric (i.e., any PO value combination is observably 
equivalent to itself [trivial]), and transitive (i.e., if a is observably equivalent to b 
and b is observably equivalent to c, then a is observably equivalent to c [.a, b and c 
are indistinguishable]). 

EXOECs can be given as a function .f OEC : B2·|O| → B: 

.f OEC(aO, bO) = 1 ⇐⇒ aO and bO are observably equivalent. (11) 

Because .f OEC describes an equivalence relation, it must fulfill the reflexivity, 
symmetry and transitivity properties as described above. 

4.3 Logic Synthesis from a Boolean Relation Perspective 

A logic network computes a multi-output Boolean function at its primary outputs 
(i.e., the collection of PO global functions). Hence, it can be described as a Boolean 
relation. The task of logic synthesis is thus finding an (optimized) network whose 
output function is compatible with a given Boolean relation . R. The presence of 
external don’t cares adds more elements into . R. 

More generally, given a set . C1 of nodes and a cut .C0 ∈ CUTS(C1) supporting it, 
a Boolean relation .R01 can be derived to describe the network functionality between 
. C0 and . C1. Moreover, if . C1 is also a cut supporting another set . C2, another Boolean 
relation .R12 can be derived and cascaded with . R01.
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ODC for n 

Fig. 2 Illustration of Example 1 

Example 1 Let .C1 ∈ CUTS(N) be a cut of the network. Let .C0 = I and let . C2 =
{n : ∃c, (n, c) ∈ O}. We may derive two Boolean relations: 

.R01 = {(b0, f
C0
C1

(b0)) : b0 ∈ B
|C0|}. (12) 

R12 = {(b1, f  C1 
C2 

(b1)) : b1 ∈ B|C1|}, (13) 

where .f
C0
C1

is the function the nodes in . C1 compute in terms of . C0, and similarly for 

. f
C1
C2

. 

Figure 2 illustrates the example. According to the definitions in Sect. 2.3, an  
(internal) SDC is an element .b1 ∈ B

|C1| such that 

.�b0 ∈ B
|C0|, (b0, b1) ∈ R01. (14) 

Whereas an (internal) ODC for a node .n ∈ C1 is an element .b0 ∈ B
|C0| such that, 

let .b1 = fC1−{n}(b0) be the values at .C1 − {n} under . b0: 

.if ((b1, 0), b2) ∈ R12, then also ((b1, 1), b2) ∈ R12. (15) 

Generalizing internal and external don’t cares, SDCs are elements in a Boolean 
space (which corresponds to any cut in the network) that are not mapped to by 
any element in a previous-stage Boolean space. In contrast, ODCs arise from two 
elements in a Boolean space that map to the same element in a next-stage Boolean 
space. 

4.4 Boolean Relation as Unified Representation of External 
Don’t Cares 

We observe that none of .f ODCI, f ODCO, f OEC is general enough to express the 
other two. More concretely:
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• .f ODCI cannot be represented using .f ODCO or .f OEC because the latter ones lack 
conditioning on the PI values. There can be multiple PI value combinations 
leading to the same PO value, but only some of them are don’t cares. 

• The example in Fig. 1 cannot be represented using .f ODCI or .f ODCO because the 
condition is not simply ignoring the value of a single PO, but flipping the values 
of both POs. 

It is possible to convert .f ODCO into .f OEC, but the conversion is not straightfor-
ward, nor efficient. Starting from .f OEC(aO, bO) = aO ↔ bO , for each . bO ∈ B

|O|
such that .f ODCO

o (bO) = 1, we make  .f OEC(bO, b∗
O) = 1, where . b∗

O is derived 
by flipping the value corresponding to o in . bO . The complication comes from 
propagating the equivalence and keeping the transitivity property of the equivalence 
relation during the process. 

As discussed in Sect. 4.3, the specification of a logic synthesis problem can 
be seen as a Boolean relation. In the presence of external don’t-care conditions, 
representation using Boolean relations is inevitable because there are more than one 
compatible completely specified multi-output Boolean functions. To represent the 
specification Boolean relation .Rspec, we write its characteristic function, called the 
specification function .f spec : B|I |+|O| → B, which asks if a certain pair of PI and 
PO minterms is in .Rspec: 

. f spec(bI , bO) = 1 ⇐⇒ Under bI , bO is acceptable at POs.

⇐⇒ (bI , bO) ∈ Rspec (16) 

Given an original network . Nori, computing the function . f I
O , and the external 

don’t-care conditions as any subset of representations discussed in this section, . f spec

may be derived: 

. f spec(bI , bO) =f CDC(bI )

∨
∧

o∈O

(
f ODCI

o (bI ) ∨ f ODCO
o (bO)

)

∨ f OEC(f I
O(bI ), bO). (17) 

In Eq. (17), if  .f CDC, .f ODCI, or  .f ODCO are not given, they are substituted with 0 
(i.e., the term is removed); if .f OEC is not given, it is substituted with a negated 
miter function .¬∨

o∈O

(
f I

o (bI ) ⊕ bO

)
. 

A network is compatible if its global PO function .f impl fulfills: 

.∀b ∈ B
|I |, f spec(b, f impl(b)) = 1. (18) 

After logic optimization, a verification step is usually done to ensure the functional 
correctness of the optimized circuit. Classical CEC verifies if the optimized circuit 
computes exactly the same global PO function as the original circuit. However,
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when optimization is performed with external don’t cares, such exact equivalence 
requirement is too strong. Verification must be modified to use a network represent-
ing .f spec instead of a miter network. 

5 Optimization with External Don’t Cares 

To utilize both internal and external don’t-care conditions, a Boolean method, 
which considers Boolean functions of the nodes instead of analyzing the network 
as algebraic expressions (i.e., an algebraic method), must be used. As it is 
computationally too hard to synthesize (or resynthesize) the entire network from 
a Boolean function or Boolean relation, modern Boolean methods often perform 
resynthesis and substitution locally within a smaller region, called a window. 

However, in order to leverage the flexibilities provided by external don’t cares, 
these conditions must be propagated from the boundaries of the network inward 
to the windows being resynthesized. For this purpose, we propose to adopt the 
simulation-guided paradigm [7]. In this paradigm, node functions are approximated 
by their simulation signatures, obtained by performing global simulations using a 
non-exhaustive set of simulation patterns (value assignments to primary inputs). 
An optimization flow adopting the simulation-guided paradigm consists of the 
following key steps: 

1. Generate a set of simulation patterns. 
2. Simulate the network to obtain simulation signatures and use the signatures to 

compute optimization candidates. The resynthesis computation can be done in a 
window of any size. Optionally, ODCs may be computed by re-simulating the 
transitive fanout cone, similar to the method described in Sect. 3. 

3. As the simulation is not exhaustive, a candidate needs to be formally verified 
before it can be substituted into the network. This is done by solving a SAT 
instance converted from the network. If a satisfiable assignment is derived by the 
SAT solver, it is a counterexample proving that the candidate produces unwanted 
output under a certain PI assignment. The counterexample is added into the 
simulation patterns. Otherwise, an unsatisfiable result proves that the candidate 
is valid and thus it is used to substitute the original sub-network. 

Using global simulation, internal SDCs are accumulated and propagated within 
the network as missing bit patterns in the simulation signatures. EXCDCs can be 
easily integrated by removing simulation patterns that are don’t cares in Step 1. 
In contrast, EXODCs may only be used when ODC computation is enabled in 
Step 2 and is considered until primary outputs. In such case, ODC computation 
is modified as follows: To compute ODCs of a node n, two  sets  S and . S∗ of PO 
simulation signatures are obtained, one (S) by normal simulation and the other (. S∗) 
by adding an inverter at the output of n. For each bit in the simulation signatures 
(corresponding to a PI simulation pattern), instead of checking if all POs have the 
same value in S and in . S∗, we check if the PO value combination in . S∗ is in the
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Boolean relation .Rspec. The SAT instance in Step 3 also needs to be relaxed to 
take external don’t cares into account. The modified SAT instance now encodes the 
complement of Eq. (18) instead of a miter. A satisfiable assignment to the instance 
is a counterexample violating the Boolean relation .Rspec. 

6 Experimental Demonstration 

To demonstrate the effectiveness of considering external don’t cares in logic 
synthesis, we present some experimental results in this section. As external don’t 
cares are not provided along with commonly used benchmarks, we have to generate 
them by ourselves. The algorithm presented in Sect. 5 is implemented in the open-
source C++ logic synthesis library mockturtle2 [16]. 

We select ten  medium-sized (comparing to other benchmarks in the same 
suite) benchmarks from the IWLS’22 programming contest.3 These benchmarks are 
originally provided as truth tables of PO functions in terms of PIs (i.e., completely 
specified functions). In this experiment, we use the best (smallest in terms of the 
number of gates) synthesized AIGs we have obtained in participation of the contest 
as the starting point. Without external don’t cares, they cannot be optimized any 
further using the highest-effort (using the entire network as windows, considering 
internal ODCs until POs, and no limitation on the size of dependency circuits) 
simulation-guided resubstitution [7]. 

Table 1 summarizes the optimization results using randomly generated external 
don’t cares. All of the 10 benchmarks have 12 PIs and 3 POs. Column #Gates lists 

Table 1 Optimization results of using randomly generated external don’t cares on highly 
optimized benchmarks 

Benchmark EXCDC EXODC Both 

Name #PIs #POs #Gates .Δ % Time .Δ % Time .Δ % Time 

ex70 12 3 263 15 5.70 0.24 0 0.00 0.27 15 5.70 0.35 

ex71 12 3 369 2 0.54 0.70 13 3.52 0.75 13 3.52 0.70 

ex72 12 3 456 83 18.20 2.03 38 8.33 1.80 35 7.68 2.13 

ex73 12 3 208 1 0.48 0.36 1 0.48 0.28 1 0.48 0.24 

ex74 12 3 468 40 8.55 3.78 0 0.00 3.78 37 7.91 3.78 

ex75 12 3 489 78 15.95 1.43 114 23.31 1.20 132 26.99 1.03 

ex76 12 3 246 2 0.81 0.22 1 0.41 0.24 4 1.63 0.27 

ex77 12 3 319 89 27.90 0.37 25 7.84 0.32 98 30.72 0.29 

ex78 12 3 369 42 11.38 0.36 56 15.18 0.35 52 14.09 0.35 

ex79 12 3 365 0 0.00 0.92 20 5.48 0.70 17 4.66 0.78

2 Available: https://github.com/lsils/mockturtle. 
3 https://www.iwls.org/iwls2022/. 

https://github.com/lsils/mockturtle
https://github.com/lsils/mockturtle
https://github.com/lsils/mockturtle
https://github.com/lsils/mockturtle
https://github.com/lsils/mockturtle
https://www.iwls.org/iwls2022/
https://www.iwls.org/iwls2022/
https://www.iwls.org/iwls2022/
https://www.iwls.org/iwls2022/
https://www.iwls.org/iwls2022/
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the number of gates before optimization using EXDCs, columns . Δ list the reduction 
on the number of gates after optimization, columns % list the reduction percentage, 
and columns Time list the runtime in seconds. All benchmarks use the same external 
don’t-care conditions. Column EXCDC is optimized providing only a randomly 
generated .f CDC having 248 minterms evaluating to 1, column EXODC is optimized 
providing only .f ODCO = (f ODCO

y1
= 0, f ODCO

y2
= ¬y1, f

ODCO
y3

= 0), and column 

Both is optimized with both .f CDC and .f ODCO. 
This experiment shows that providing external don’t cares indeed enables further 

optimization opportunities, and that the presented optimization technique works in 
practice. 

7 Conclusion and Future Work 

This paper aims primarily at raising and defining the problem of logic synthesis 
with external don’t cares. It provides a review on the theoretical definition of don’t-
care conditions in general, and identifies different ways of representing external 
don’t cares. An emphasis is made on the relation of don’t cares and Boolean 
relations. Finally, using partial simulation and SAT-based verification, we present 
how external don’t cares may be considered in logic optimization. In conclusion, 
this paper is the first step toward involving external don’t cares in logic synthesis. 
While the theoretical formulations serve as a foundation for future research, 
the optimization technique is still limited in achievable optimization quality and 
scalability. In the following, we discuss some future research directions. 

7.1 Multi-Target Resynthesis 

From the Boolean relation point of view, the classical definition of internal ODCs 
(Eq. 7) is additionally restricted to pairs of elements that only differ in one bit 
(corresponding to the node under consideration) instead of any pair that map to 
the same next-stage minterm. The advantage of this approach is that the don’t-care 
conditions are used to optimize one node at a time without the need to modify 
the other nodes. However, it is possible to generalize this class of don’t cares by 
grouping all elements that map to the same element in the next-stage Boolean space 
together as an OEC and drop the dependency of the definition on a certain node. 
In this case, multiple nodes need to be optimized together and change their output 
values. 

It is shown in [8] that considering the resynthesis problem of multiple nodes 
at the same time is necessary for some optimization opportunities to emerge, 
and the work provides algorithms to describe internal DCs as Boolean relations 
and to resynthesize windows from Boolean relations. The problem of multi-target
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resynthesis specified by a Boolean relation is intrinsically more complex than 
the well-researched single-target resynthesis [6, 13]. While [1] discusses Boolean 
relation solving based on divide and conquer, further investigation still has potential. 
With such Boolean relation solver available, logic optimization with external don’t 
cares can be further enhanced. 

7.2 Propagation and Management of Observability 
Equivalence Classes 

The biggest problem encountered in the utilization of external don’t cares is to 
properly and efficiently propagate these conditions into the network. Propagation 
of EXCDCs by partial simulation is relatively straightforward without scalability 
concern. In contrast, propagation of external ODCs as presented in Sect. 5 is 
not scalable. On the one hand, computation of ODCs involves re-simulating the 
entire transitive fanout cone of the node, and verification with EXODCs requires 
duplicating at least the transitive fanout cone, if not the entire network, in the SAT 
instance. One possibility to address this issue is to develop methods to propagate 
external OECs into a cut in the network. On the other hand, management of the 
OECs is not scalable with respect to the number of POs if PO minterms are explic-
itly represented. Thus, symbolic representations of OECs and their management 
methods (especially, merging equivalence classes according to the transitivity rule) 
need to be developed. 
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Maiorana-McFarland Boolean Bent 
Functions Characterized by Their 
Reed-Muller Spectra 

Claudio Moraga, Radomir S. Stanković, and Milena Stanković 

1 Introduction 

Bent functions were introduced by Oscar Rothaus in 1976 [16]. These functions are 
at the largest Hamming distance .(2n−1 − 2(n/2)−1) from affine Boolean functions, 
however restricted to an even number of variables. Due to the high nonlinearity, 
these functions attracted the interest of researchers particularly in coding theory and 
in cryptography. It is simple to understand that also due to the high nonlinearity, 
the number of such functions is reduced, increasing however, super exponentially. 
There are 8 bent functions on 2 variables, 896 bent functions on 4 variables, and, 
as it will be shown below, there are .1.37 · 1018 Maiorana-McFarland Boolean bent 
functions on 8 variables out of almost .1.158 ·1077 Boolean functions on 8 variables. 
(See, [6], for the exact number of Boolean bent functions on 8 variables.) 

In his original paper, Rothaus introduced a simple method to generate a class of 
bent functions from .F2k

2 to . F2: 

. f (x, y) = x · y + g(y),

where g is an arbitrary Boolean function from . Fk
2 to . F2. This method was strongly 

improved by J. A. Maiorana [8] as follows: 
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.f (x, y) = x · (π(y)) + g(y), (1) 

where . π denotes a permutation of . Fk
2. 

Independently of Maiorana’s work, L. R. McFarland developed the same method 
[9]. For this reason, this class of functions is known as the Maiorana-McFarland 
class. A first analysis of the Maiorana-McFarland generation method was disclosed 
in [2]. Later on, many other classes have been developed. (See, e.g., [1, 2, 10, 18, 
20].) 

The Transform, which today is known as the Reed-Muller transform, was 
originally developed in 1928 by I. L. Zhegalkin [21, 22], (in Russian). Due to 
the language barrier, this transform remained unknown and was “rediscovered” 
only in 1954 by S. M. Reed [15] and D. E. Muller [13]. The basic Reed-Muller 

transform, which here we call .RM(1), has the matrix representation .

[
1 0
1 1

]
, and the 

transform has a Kronecker product structure, i.e. .RM(n) =
([

1 0
1 1

])⊗n

, the  n-fold 

Kronecker product of .RM(1) with itself. The Reed-Muller spectrum of a Boolean 
n-place function f with value vector . F is obtained as .RM(n) ·F, with computations 
done modulo 2. With respect to bent functions, it is interesting to mention that the 
Reed-Muller spectrum supports the concept of the degree of bent functions. Recall 
that the degree of a binary bent function in n variables is at most .n/2 [1], meaning 
that in the Reed-Muller functional expression of a bent function, no product with 
more than .n/2 variables should appear. This observation is important, since it can 
be used to reduce the search space in determining bent functions [14]. 

Applications of this transform in different areas have received different names. In 
this paper, related functional expressions are called Positive Polarity Reed-Muller 
expressions. Mathematicians would rather speak of Zhegalkin polynomials, whereas 
people working in cryptography refer to these functional expressions as algebraic 
normal forms. (See, e.g., [10, 20].) As a closing remark, it may be mentioned that 
the Reed-Muller transform belongs to the family of spectral techniques for signal 
processing. See, e.g., [17]. 

2 Formalisms 

Let .n = 2k, .k ∈ N. The following notation will be used when explicit dimensions 
are needed: .Y(k) denotes a .(2k × 2k) matrix or a vector of length . 2k . 

A simple method to generate n-place Boolean bent functions of the Maiorana-
McFarland class, based on Eq. (1), is the following, adapted from [11, 12]: 

. F = vec(M[k] · P(k) ⊕ [1, . . . , 1]T ⊗ G)

= vec(M[k] · P(k)) ⊕ vec([1, . . . , 1]T ⊗ G), (2)
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where . F denotes the value vector of an n-place Boolean function, vec is a 
vectorizing operation, which when applied to a matrix, concatenates the columns 

of that matrix to build a column vector [3]. .M =
[

0 0
0 1

]
, and .M[k] indicates the 

k-fold tensor sum1 of . M with itself. Notice that the first row of .M[k] will always be 
a 0 row. .P(k) stands for a .(2k ×2k) permutation matrix, .[1, 1, . . . , 1] is a row vector 
of length . 2k , and . G represents the value vector of an arbitrary Boolean function on 
k variables. . G will be a row vector. Unless otherwise specified, in what follows, 
vectors will be column vectors. 

Let .U(q) be a .(2q × 2q) square matrix all of whose entries are 1. Then, [3, 7, 11] 

.M[2k] = M[k] ⊗ U(k) ⊕ U(k) ⊗ M[k]. (3) 

Thus, 

.M[2] = M ⊗
[

1 1
1 1

]
⊕

[
1 1
1 1

]
⊗ M mod 2 =

⎡
⎢⎢⎣

0 0 0 0
0 1 0 1
0 0 1 1
0 1 1 0

⎤
⎥⎥⎦ . (4) 

Proof of the bentness of . F generated with (2): 
Recall that if an n-place Boolean function is bent, then all coefficients of its 

Walsh spectrum have the absolute value .2n/2 [4]. 
Let . SF denote the Walsh spectrum of an n-place Boolean function f with value 

vector . F. Then, 

.SF (ω) = W(n) · (−1)f (x), ∀ω, x ∈ Fn
2 , where W(n) =

[
1 1
1 −1

]⊗n

(5) 

and the superindex .⊗n indicates the n-fold Kronecker product of the matrix with 
itself. 

The Spectrum of (2) will be 

. SF =
([

1 1
1 −1

]⊗n

· (−1)vec(M[k]·P(k)⊕([1,1,...,1]T ⊗G))

)

=
([

1 1
1 −1

]⊗n

· vec(−1)(M
[k]·P(k)⊕([1,1,...,1]T ⊗G))

)
. (6)

1 The tensor sum of two matrices has the same structure of the Kronecker product of the matrices, 
except that all basic operations are sums modulo 2 [3, 7]. For this reason the tensor sum is also 
known as Kronecker sum. 
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Definition 1 Let .a11, . . . arr ∈ {0, 1}; (−1)[a11...arr ] := [(−1)a11 · · · (−1)arr ]; 
and if 

.A =
⎡
⎢⎣

a11 · · · a1r

...
. . .

...

ar1 · · · arr

⎤
⎥⎦ , then (−1)A :=

⎡
⎢⎣

(−1)a11 · · · (−1)a1r

...
. . .

...

(−1)ar1 · · · (−1)arr

⎤
⎥⎦ . (7) 

Moreover, if . B is a matrix of the same dimensions as . A, then 

.(−1)A⊕B = (−1)A#(−1)B, (8) 

where . # denotes the Hadamard product of matrices [3]. Furthermore, if . A and . B are 
square matrices of dimensions .(r × r), and . B has the particular structure that all 
rows are identical, then .A#B = A · diag(b1, b2, . . . , br ), where .(b1, b2, . . . , br ) are 
entries of a row of . B [12]. ��

Let .Delta = diag((−1)g1 , (−1)g2 , . . . , (−1)g2k ). Then with (7) and (8) in (6): 

. SF =
([

1 1
1 −1

]⊗n

· vec〈(−1)(M
[k]·P(k))#(−1)([1,1,...,1]T ⊗G)〉

)

=
([

1 1
1 −1

]⊗n

· vec〈(−1)(M
[k]·P(k)) · Delta〉

)
. (9) 

Notice that .(−1)(M
[k]·P(k)) = (−1)M[k] ·P(k). Moreover, .(−1)M equals the . (2×2)

matrix .

[
1 1
1 −1

]
= W(1). Then, .(−1)M[k] =

[
1 1
1 −1

]⊗k

= W(k). 

Moreover, recall that .W(k) · W(k) = 2k · I(k), where .I(k) denotes the identity 
matrix. With Lemma 4.3.1 of [3], Eq. (9) becomes: 

. SF = vec

([
1 1
1 −1

]⊗k

·
[
(−1)M[k] · P(k) · Delta

]
·
[

1 1
1 −1

]⊗k
)

= vec

([
1 1
1 −1

]⊗k

·
[

1 1
1 −1

]⊗k

· P(k) · Delta ·
[

1 1
1 −1

]⊗k
)

(10)

= vec

〈
2k · I(k) · P(k) · Delta ·

[
1 1
1 −1

]⊗k
〉

.

Notice that the diagonal elements of Delta belong to .{−1, 1} as well as all 

entries of .

[
1 1
1 −1

]⊗k

. The product of them and the permutation of the resulting
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rows, induced by .P(k), will preserve this structural property. All entries will have 
magnitude 1. Therefore, the absolute value of all the coefficients of .SF will be 
.2k = 2n/2. The spectrum is flat, the entries have the correct magnitude, and hence 
the (Maiorana-McFarland) Boolean function f generated with (2) is indeed bent as 
it should be proven. . �

If in Eq. (2) .k = 4, .n = 2k = 8, .2k = 16, then there are . 16! permutation matrices 
.P(4), and there are .2(24) = 216 = 65.536 Boolean functions . G on 4 variables, whose 
value vectors have length 16. Hence, there are .16! · 216 ≈ 1.37 · 1018 Maiorana-
McFarland Boolean bent functions on 8 variables (out of .≈ 99.27 · 1030 Boolean 
bent functions on 8 variables [6] and .2(28) = 2256 ≈ 1.16 · 1077 general Boolean 
functions on 8 variables). 

It is simple to see that Eq. (2) provides the value vector of Maiorana-McFarland 
Boolean bent functions, depending on .P(k) and . G. To obtain their functional 
expressions, the following Lemma of the Reed-Muller transform theory will be 
used: 

Lemma 1 ([4, 15]) Given the value vector . F of a Boolean function, its functional 
Positive Polarity Reed-Muller polynomial expression f may be obtained as the 
inner product of the corresponding Reed-Muller basis and the Reed-Muller spec-
trum of . F. ��

If .k = 2, .n = 4, .2k = 4, the Reed-Muller basis .B(4), of length . 24, is calculated as 

. B(4) = ([
1 x1

] ⊗ [
1 x2

] ⊗ [
1 x3

] ⊗ [
1 x4

])T
.

After computing the Kronecker product, we get: 

. B(4) = [1, x4, x3, x3x4, x2, x2x4, x2x3, x2x3x4, x1, x1x4,

x1x3, x1x3x4, x1x2, x1x2x4, x1x2x3, x1x2x3x4]T

or in another way of writing 

.B(4) = vec

⎡
⎢⎢⎣

1 x2 x1 x1x2

x4 x2x4 x1x4 x1x2x4

x3 x2x3 x1x3 x1x2x3

x3x4 x2x3x4 x1x3x4 x1x2x3x4

⎤
⎥⎥⎦ . (11) 

Theorem 1 Given a Maiorana-McFarland Boolean bent function generated with 
(2) for a fixed k, then .P(k) and . G make unique disjoint contributions to the RM 
spectrum of the function. ��

This will be illustrated with the experimental results below. The proof will be 
presented after the Cases.
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.(i) Let .k = 2, .n = 4, .2k = 4. 
Permutations will be coded as .[n1, n2, n3, n4], where .1 ≤ i �= j ≤ 4, .ni �= nj , 
and with .n0 := 0, .(ni−1) ∈ Z4 without repetitions. The position of . ni (i.e., i) 
indicates the column and the value of . ni the row where the permutation matrix 
has the entry 1. All other entries of the same row and column have obviously 
the value 0. Calculations will follow the second expression of (2) and will be 
done in .GF(2). 

The required Reed-Muller transform matrices are 

.RM(1) =
[

1 0
1 1

]
, RM(2) = RM(1) ⊗ RM(1) =

⎡
⎢⎢⎣

1 0 0 0
1 1 0 0
1 0 1 0
1 1 1 1

⎤
⎥⎥⎦ . (12) 

Case 1 Let .P(2) = [4, 3, 2, 1] and .G1 = [1, 0, 0, 0]. Then, 

. RM(4) · F1 = RM(4)〈vec(M[2] · P(2)) ⊕ vec([1, 1, 1, 1]T ⊗ G1)〉 mod 2.

With Lemma 4.3.1 of [3] 

. RM(4) · F1 = vec〈RM(2) · (M[2] · P(2)) · RM(2)T 〉
⊕ vec〈RM(2) · ([1, 1, 1, 1]T ⊗ G1) · RM(2)T 〉 mod 2.

= vec

〈⎡
⎢⎢⎣

1 0 0 0
1 1 0 0
1 0 1 0
1 1 1 1

⎤
⎥⎥⎦ ·

⎡
⎢⎢⎣

0 0 0 0
1 0 1 0
1 1 0 0
0 1 1 0

⎤
⎥⎥⎦ ·

⎡
⎢⎢⎣

1 1 1 1
0 1 0 1
0 0 1 1
0 0 0 1

⎤
⎥⎥⎦

〉

⊕ vec

〈⎡
⎢⎢⎣

1 0 0 0
1 1 0 0
1 0 1 0
1 1 1 1

⎤
⎥⎥⎦ ·

⎡
⎢⎢⎣

1 0 0 0
1 0 0 0
1 0 0 0
1 0 0 0

⎤
⎥⎥⎦ ·

⎡
⎢⎢⎣

1 1 1 1
0 1 0 1
0 0 1 1
0 0 0 1

⎤
⎥⎥⎦

〉

= vec

〈⎡
⎢⎢⎣

0 0 0 0
1 1 0 0
1 0 1 0
0 0 0 0

⎤
⎥⎥⎦ ⊕

⎡
⎢⎢⎣

1 1 1 1
0 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦

〉
.

With Lemma 1 and . B(4)

.f (x1, x2, x3, x4) = 〈x4 ⊕ x2x4 ⊕ x3 ⊕ x1x3〉 ⊕ 〈1 ⊕ x1 ⊕ x2 ⊕ x1x2〉.
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Case 2 Let .P(2) = [4, 3, 2, 1] and .G2 = [1, 0, 1, 1]: The same permutation as in 
Case 1, but a new .G-function: 

. RM(4) · F1 = RM(4)〈vec(M[2] · P(2)) ⊕ vec([1, 1, 1, 1]T ⊗ G(2)〉

= vec

〈⎡
⎢⎢⎣

0 0 0 0
1 1 0 0
1 0 1 0
0 0 0 0

⎤
⎥⎥⎦ ⊕

⎡
⎢⎢⎣

1 1 0 1
0 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦

〉
,

leading to 

. f (x1, x2, x3, x4) = 〈x4 ⊕ x2x4 ⊕ x3 ⊕ x1x3〉 ⊕ 〈1 ⊕ x2 ⊕ x1x2〉.

Case 3 .P(2) = [2, 1, 4, 3], .G1 = [1, 0, 0, 0]: A new permutation, but the same 
.G-function as in Case 1. 

. RM(4) · F3 = RM(4)〈vec(M[2] · P(2)) ⊕ vec([1, 1, 1, 1]T ⊗ G1)〉

= vec

〈⎡
⎢⎢⎣

0 0 0 0
1 1 0 0
0 0 1 0
0 0 0 0

⎤
⎥⎥⎦ ⊕

⎡
⎢⎢⎣

1 1 1 1
0 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦

〉
,

i.e., 

. f (x1, x2, x3, x4) = 〈x4 ⊕ x2x4 ⊕ x1x3〉 ⊕ 〈1 ⊕ x1 ⊕ x2 ⊕ x1x2〉.

Case 4 .P(2) = [4, 1, 3, 2], .G = [1, 0, 1, 0]. A new permutation and a new .G-
function. 

. RM(4) · F4 = RM(4)〈vec(M[2] · P(2)) ⊕ vec([1, 1, 1, 1]T ⊗ [1, 0, 1, 0])〉

vec

〈⎡
⎢⎢⎣

0 0 0 0
1 0 1 0
0 1 1 0
0 0 0 0

⎤
⎥⎥⎦ ⊕

⎡
⎢⎢⎣

1 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦

〉
,

from where 

. f (x1, x2, x3, x4) = 〈x4 ⊕ x1x4 ⊕ x2x3 ⊕ x1x3〉 ⊕ 〈1 ⊕ x2〉.

The four cases illustrate that the Reed-Muller spectrum of . F may be obtained by 
vectorizing two disjoint matrices. (Matrices are called “disjoint,” in the case that if 
the Hamming weight of a row of a matrix is larger than 0, then the corresponding
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row in the other matrix is a 0 row.) One of the matrices depends on the permutation 
.P(k) used in (2), and the other one depends on the function . G of (2). In all cases 
the first and fourth rows of the first matrix are 0 rows, whereas the second matrix is 
characterized by unique non-0 row in the first position. 

Proof In what follows, by calculating step by step, we prove that the results of the 
former cases are not “biased coincidences.” 

. RM(4) · F = vec〈{RM(2) · M[2]} · P(2) · RM(2)T 〉
⊕vec〈RM(2) · ([1, 1, 1, 1]T ⊗ G) · RM(2)T 〉 mod 2.

First part, without including the permutation: 

.{RM(2) · M[2]} mod 2 =

⎡
⎢⎢⎣

1 0 0 0
1 1 0 0
1 0 1 0
1 1 1 1

⎤
⎥⎥⎦ ·

⎡
⎢⎢⎣

0 0 0 0
0 1 0 1
0 0 1 1
0 1 1 0

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0 0 0 0
0 1 0 1
0 0 1 1
0 0 0 0

⎤
⎥⎥⎦ . (13) 

Recall that the first row of . M is a 0 row and the bottom row of .RM is a constant 
1 row. Furthermore, the columnwise sum of the entries of . M is congruent with 
0 modulo 2. These properties support that already .RM(2) · M[2] determines the 
position of the 0 rows of the first component of the (matrix representation of the) 
RM spectrum, independently of the permutation .P(k). 

Second part. The effect of .P(2): 

. RM(2) · M[2] · P(2) mod 2 =

⎡
⎢⎢⎣

0 0 0 0
   
   
0 0 0 0

⎤
⎥⎥⎦ .

Obviously the first and fourth rows will remain 0 rows for any permutation, 
whereas the entries of the second and third row, marked with “. ,” will contribute 
a Hamming weight larger than 0 for these rows, depending on .P(2), which will 
reorder the columns. 

Finally, 

. {RM(2) · M[2]} · P · RM(2)T =

⎡
⎢⎢⎣

0 0 0 0
   
   
0 0 0 0

⎤
⎥⎥⎦ ·

⎡
⎢⎢⎣

1 1 1 1
0 1 0 1
0 0 1 1
0 0 0 1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0 0 0 0
 Q Q Q
 Q Q Q
0 0 0 0

⎤
⎥⎥⎦ ,

where the . Q entries equal the sum mod 2 of 2 or 4 .  entries. The corresponding 
rows have a Hamming weight larger than 0. The first and fourth rows, however, 
remain 0 rows.
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Similarly, with respect to .vec〈RM(2) · ([1, 1, 1, 1]T ⊗ G) · RM(2)T 〉 mod 2, 
where .G = [g1, g2, g3, g4]. 

. RM(2) · ([1, 1, 1, 1]T ⊗ G) mod 2 =

⎡
⎢⎢⎣

1 0 0 0
1 1 0 0
1 0 1 0
1 1 1 1

⎤
⎥⎥⎦ ·

⎡
⎢⎢⎣

g1 g2 g3 g4

g1 g2 g3 g4

g1 g2 g3 g4

g1 g2 g3 g4

⎤
⎥⎥⎦

=

⎡
⎢⎢⎣

g1 g2 g3 g4

0 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦ ,

and 

. RM(2) · ([1, 1, 1, 1]T ⊗ G) · RM(2)T mod 2

=

⎡
⎢⎢⎣

g1 g2 g3 g4

0 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦ ·

⎡
⎢⎢⎣

1 1 1 1
0 1 0 1
0 0 1 1
0 0 0 1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

g1 g12 g13 g1234

0 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦ ,

where .g12 = g1 ⊕ g2, .g13 = g1 ⊕ g3 and .g1234 = g1 ⊕ g2 ⊕ g3 ⊕ g4. Only the first 
row has entries in .{0, 1} and a Hamming weight .> 0. All other rows are 0 rows. 

It becomes clear that the Reed-Muller spectra of .vec(M[2] · P(2)) and of 
.vec([1, 1, 1, 1]T ⊗ G) are disjoint, since there is no overlap of nonzero coefficient 
rows of both matrix representations of the spectra. 

Furthermore, notice that 

. RM(2) · GT =

⎡
⎢⎢⎣

1 0 0 0
1 1 0 0
1 0 1 0
1 1 1 1

⎤
⎥⎥⎦ ·

⎡
⎢⎢⎣

g1

g2

g3

g4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

g1

g1 ⊕ g2

g1 ⊕ g3

g1 ⊕ g2 ⊕ g3 ⊕ g4

⎤
⎥⎥⎦ ,

which proves the following Lemma. 

Lemma 2 For a given k and . G from (2), the transpose of the RM spectrum of . GT

equals the first row of the (matrix representation of the) RM spectrum of . F, where . F
is obtained with (2). ��

.(ii) Let .k = 3, .n = 6, .2k = 8. 
Notice that .k = 2r has no integer solution for r . This will cause an asymmetry 
in the calculation of .M[k]. (See below.) 

Permutations will be coded as .[n1, n2, n3, n4, n5, n6, n7, n8], where . ∀1 ≤
i �= j ≤ 8, .ni �= nj and with .n0 := 0, .(ni−1) ∈ Z8 without repetitions. The
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position of . ni (i.e., i) indicates the column and the value of . ni the row where 
the permutation matrix has the entry 1. All other entries of the same row and 
column have the value 0: 

. RM(6) = RM(3) ⊗ RM(3),

as usual; however [3], 

. M[3] = M[2] ⊗ U(1) ⊕ U(2) ⊗ M.

. M[3] =

⎡
⎢⎢⎣

0 0 0 0
0 1 0 1
0 0 1 1
0 1 1 0

⎤
⎥⎥⎦ ⊗

[
1 1
1 1

]
⊕

⎡
⎢⎢⎣

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

⎤
⎥⎥⎦ ⊗

[
0 0
0 1

]

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0
0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1
0 1 1 0 0 1 1 0
0 0 0 0 1 1 1 1
0 1 0 1 1 0 1 0
0 0 1 1 1 1 0 0
0 1 1 0 1 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

A direct calculation shows that in this case, the following also holds, where, 
in general, the tensor sum does not commute [3, 7, 11]: 

. M[3] = M ⊗ U(2) ⊕ U(1) ⊗ M[2].

The Basis .B(6) = ⊗6
i=1[1, xi]T has a legth of .26 = 64 and may be given a 

compact representation by vectorizing a matrix, whose first column is 

. 
[

1, x6, x5, x5x6, x4, x4x6, x4x5, x4x5x6
]T

,

and its first row is 

. 
[

1, x3, x2, x2x3, x1, x1x3, x1x2, x1x2x3
]
.

All other entries are obtained as the product of the corresponding row-
column coordinates. For example, a Basis component at the position . 〈5, 6〉
equals .x1x3x4, where the variables are ordered by increasing indices.
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Case 5 Let .P(3) = [6, 8, 7, 5, 2, 4, 3, 1], and .G = [1, 0, 0, 1, 1, 1, 1, 0]. 

. 

RM(6)(vec〈M[3] · P(3) ⊕ ([1, 1, 1, 1, 1, 1, 1, 1]T ⊗ G)〉)
= vec〈RM(3) · (M[3] · P(3) ⊕ [1, 1, 1, 1, 1, 1, 1, 1]T ⊗ G) · RM(3)T 〉
= vec(RM(3) · (M[3] · P(3)) · RM(3)T )

⊕ vec(RM(3) · ([1, 1, 1, 1, 1, 1, 1, 1]T ⊗ G) · RM(3)T ).

Let 

.Alpha := RM(3) · (M[3] · P(3)) · RM(3)T , (14) 

and 

. Beta := RM(3) · ([1, 1, 1, 1, 1, 1, 1, 1]T ⊗ G) · RM(3)T .

Direct MatLab calculations give the following results: 

. 

Alpha: Row 2 = [1, 0, 1, 0, 0, 0, 0, 0]
Row 3 = [0, 1, 1, 0, 0, 0, 0, 0]
Row 5 = [1, 0, 0, 0, 1, 0, 0, 0].

All other rows are 0 rows. 

. Beta : Row 1 = [1, 1, 1, 0, 0, 1, 1, 1].

All other rows are 0 rows. 
It is quite clear that Alpha and Beta are disjoint. 
The 1-entries of Alpha and Beta applied on the matrix representation of . B(6)

lead to the following Positive Polarity Reed-Muller functional expression: 

. f (x1, x2, x3, x4, x5, x6) = 〈1 ⊕ x2 ⊕ x3 ⊕ x1x2 ⊕ x1x3 ⊕ x1x2x3〉
⊕ 〈x2x6 ⊕ x6 ⊕ x2x5 ⊕ x3x5 ⊕ x1 ⊕ x1x4〉.

Notice that the functional expression is of degree .3 = n/2, which is the 
maximum degree allowed for f to be bent [1]. 

.(iii) Let .k = 4, .n = 8, .2k = 16. 
Permutations will be coded as .[n1, n2, n3, n4, . . . , n13, n14, n15, n16], where 
.1 ≤ i �= j ≤ 16, .ni �= nj and with .n0 := 0, .(ni−1) ∈ Z16 without repetitions. 
The position of . ni (i.e., i) indicates the column and the value of . ni the row 
where the permutation matrix has the entry 1. All other entries of the same 
row and column have the value 0.
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. RM(8) = RM(4) ⊗ RM(4) and M[4] = M[2] ⊗ U(2) ⊕ U(2) ⊗ M[2].

Recall that .U(2) denotes a .(4 × 4) matrix all whose entries are 1. 

. B(8) = [[1, x1] ⊗ [1, x2] ⊗ [1, x3] ⊗ [1, x4] ⊗ [1, x5] ⊗ [1, x6]
⊗ [1, x7] ⊗ [1, x8]]T

The matrix .B(8), which has a length of .28 = 256, may be expressed by 
vectorizing a .(24 × 24) matrix with first column: 

. [1, x8, x7, x7x8, x6, x6x8, x6x7, x6x7x8, x5, x5x8, x5x7, x5x7x8,

x5x6, x5x6x8, x5x6x7, x5x6x7x8]T ,

and first row 

. [1, x4, x3, x3x4, x2, x2x4, x2x3, x2x3x4, x1, x1x4, x1x3,

x1x3x4, x1x2, x1x2x4, x1x2x3, x1x2x3x4].

An entry at the position .〈j, k〉 equals the product of j -th row entry times 
the k-th column entry (ordered by increasing indices). For instance, the entry 
at the position .〈4, 7〉 equals .x2x3x7x8. 

Case 6 Let .P(4) = [5, 7, 3, 2, 4, 1, 6, 8, 16, 14, 9, 12, 10, 11, 15, 13], and . G =
[1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0]. 

. 

RM(8)(vec〈M[4] · P(4) ⊕ [1, 1, 1, . . . , 1, 1]T · G〉
= vec〈RM(4) · (M[4] · P(4) ⊕ [1, 1, 1, . . . , 1, 1]T · G) · RM(4)T 〉
= vec(RM(4) · (M[4] · P(4)) · RM(4)T )

⊕ vec(RM(4) · [1, 1, 1, . . . , 1, 1]T · G · RM(4)T ).

As in (15), let the result be expressed as .vec(Alpha)⊕vec(Beta). Direct MatLab 
calculations give the following results: 

. 

Alpha: Row 2 = [0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0],
Row 3 = [0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0],
Row 5 = [1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
Row 9 = [0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0].

All other rows are 0 rows. 

. Beta: Row 1 = [1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0].
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All other rows are 0 rows. 
Clearly, Alpha and Beta are disjoint, since they have no overlap of nonzero rows. 
The 1-entries of Alpha and Beta applied on the matrix representation of . B(8)

lead to the following Positive Polarity Reed-Muller functional expression, where to 
simplify the representation, .xijk denotes .xixj xk: 

. f (x1, . . . , x8) = 〈1 ⊕ x3 ⊕ x4 ⊕ x13 ⊕ x23 ⊕ x123〉
⊕ 〈x6 ⊕ x15 ⊕ x17 ⊕ x18 ⊕ x26 ⊕ x27 ⊕ x28

⊕ x36 ⊕ x37 ⊕ x47 ⊕ x128 ⊕ x138 ⊕ x238 ⊕ x348〉.

Notice that the functional expression for f has degree 3, which is below the . n/2
upper limit for a Boolean function to be bent, as stated in [1]. 

Test of Lemma 2 

. 
RM(4) · [1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0]T

= [1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0]T .

It is simple to verify that once transposed, this corresponds to the first row of 
Beta. 

The results of the above experiments (and additional experiments with .k = 5 and 
.k = 6 not included for space reasons) show that the distribution of the 1-entries in 
the nonzero rows depends on the permutation used in (2). Furthermore, the results 
show that for any permutation in (2), Alpha comprises just k nonzero rows, starting 
with the second row. 

Theorem 2 The distribution of the k non-0 rows of Alpha conforms to the following 
relationship: The second row of Alpha is a non-0 row. If .j > 2 denotes the position 
of a non-0 row, then: 

.jnew = 2(jprevious) − 1.

��
See experimental results in Table 1. 
Proof by induction on k. 

Let .u ∈ N and let Alpha. u denote Alpha when .k = u. Furthermore, let . M⊥
denote the skew-transpose of . M.

Preliminaries 

.RM(1) · U(1) · RM(1)T =
[

1 0
1 1

]
·
[

1 1
1 1

]
·
[

1 1
0 1

]
=

[
1 0
0 0

]
= M⊥.
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Table 1 Observations 
supporting the theorem 

Positions of the non-0 

k rows of Alpha 

2 2, 3 

3 2, 3, 5 

4 2, 3, 5, 9 

5 2, 3, 5, 9, 17 

6 2, 3, 5, 9, 17, 33

. RM(1) · M(1) · RM(1)T =
[

1 0
1 1

]
·
[

0 0
0 1

]
·
[

1 1
0 1

]
=

[
0 0
0 1

]
= M.

Induction Basis 
Assume that for .k = u, Alpha. u satisfies the proposition. Recall that, as shown in 
(13), the distribution of the kind of rows is independent of .P(k). Therefore, in what 
follows, .P(k) = I(k) will be considered. 

Induction Step 
Let .k = u + 1 and .P(u + 1) = I(u + 1). 

. Alphau+1 = RM(u + 1) · M[u+1]〈RM(u + 1)〉T

= 〈RM(u) ⊗ RM(1)〉〈M[u] ⊗ U(1) ⊕ U(u) ⊗ M〉〈RM(u) ⊗ RM(1)〉T
= 〈RM(u) ⊗ RM(1)〉 · 〈M[u] ⊗ U(1)〉〈RM(u) ⊗ RM(1)〉T
⊕ 〈RM(u) ⊗ RM(1)〉 · 〈U(u) ⊗ M〉 · 〈RM(u) ⊗ RM(1)〉T
= 〈RM(u) · M[u] · RM(u)T 〉 ⊗ 〈RM(1) · U(1) · RM(1)T 〉
⊕ 〈RM(u) · U(u) · RM(u)T 〉 ⊗ 〈RM(1) · M · RM(1)T 〉
= Alphau ⊗ M⊥ ⊕ 〈M⊥〉⊗u ⊗ M.

Notice that .〈M⊥〉⊗u is a .(2u+1 × 2u+1) matrix with a single 1-entry at the left 
upper corner. Therefore, .〈M⊥〉⊗u ⊗ M is a .2u+2 square matrix with a single 1-entry 
at the second position of the second row, i.e., its second row is a non-0 row. 

Analysis of . Alphau ⊗ M⊥
Every row of Alpha. u will be duplicated with double length. Since the first row of 
Alpha, for any k is a 0 row, this row will first be duplicated, however, because of 
the nature of .〈M⊥〉⊗u ⊗ M, as discussed above, the second row of Alpha.u+1 will 
become a non-0 row. In every other row of Alpha. u+1, the 1-entries of Alpha. u will be 
replaced by .M⊥, and the 0-entries will be replaced by .(2×2) 0-matrices. Therefore, 
Alpha.u+1 will have .u + 1 nonzero rows, since u of them will be preserved from 
Alpha. u and an additional one will be provided by .〈M⊥〉⊗u ⊗ M. 

From the former analysis, Alpha.u+1 may be considered as a matrix comprising 
blocks of pairs of rows. If the blocks are first assigned the same position as the rows



Reed-Muller Spectra of Maiorana-McFarland Boolean Bent Functions 63

of Alpha. u, the first row of a j -th block will have .j−1 preceding blocks, i.e., . 2(j−1)

preceding rows. Its own row position will then be .2(j − 1) + 1 = 2j − 1. 
End of the proof. ��

3 The Effect of a Subset of Spectral Invariant Operations 

It is known that the basic spectral invariant operations [4] preserve the bentness of 
Boolean functions [19]. In what follows a subset of spectral invariant operations, 
called additive spectral invariant operations, will be considered. 

Definition 2 Additive spectral invariant operations comprise the complementation 
of a function as well as adding one or more (complemented or uncomplemented) 
arguments to the function or to its complement. ��

It will be shown that additive basic spectral invariant operations preserve the 
Maiorana-McFarland bentness of Boolean functions and that they only affect the 
Beta component of the Reed-Muller spectrum of an original Maiorana-McFarland 
Boolean function. 

Let . V be some vector. Then, . 1V will represent a column vector of the same length 
as . V, with all components with value 1. 

Given an n-place Maiorana-McFarland Boolean function f with value vector . F
of length . 2n, then, with .1 ≤ i, j ≤ n: 

. 
F ⊕ 1F; F ⊕ Xi; F ⊕ 1F ⊕ Xi; F ⊕ Xj ; F ⊕ 1F ⊕ Xj ;
F ⊕ Xi ⊕ Xj ; F ⊕ 1F ⊕ Xi ⊕ Xj ; . . . ; F ⊕n

r=1 Xr ,

are examples of value vectors of functions obtained with additive spectral invariant 
operations applied to . F. . Xi and .Xj represent the value vectors of the variables . xi

and . xj in the context of n variables, similarly for other value vectors. 
Let .k = 2. With (2), .F = vec〈M[2] · P(2) ⊕ (1G ⊗ [g1, g2, g3, g4])〉. 

Analysis of .F ⊕ 1F (i.e., the complement of . F). 

. F ⊕ 1F = vec(M[2] · P(2) ⊕ (1G ⊗ [g1, g2, g3, g4]) ⊕ 1F

= vec(M[2] · P(2) ⊕ (1G ⊗ [g1, g2, g3, g4]) ⊗ vec(1G ⊗ (1G)T )

= vec〈M[2] · P(2) ⊕ (1G ⊗ [g1, g2, g3, g4] ⊕ (1G ⊗ 1G)T 〉 (15)

= vec〈M[2] · P(2) ⊕ (1G ⊗ ([g1, g2, g3, g4] ⊕ (1G)T )〉
= vec(M[2] · P(2) ⊕ (1G ⊗ [g1, g2, g3, g4])

It is quite clear that (15) is a particular case of (2), with .G = [g1, g2, g3, g4]. 
Therefore, .F ⊕ 1F is the value vector of a (new) Maiorana-McFarland Boolean bent 
function.
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Analysis of .F ⊕ X2: 

. F ⊕ X2 = vec(M[2] · P(2)) ⊕ (1G ⊗ [g1, g2, g3, g4]) ⊕ X2)

= vec(M[2] · P(2) ⊕ (1G ⊗ [g1, g2, g3, g4]) ⊕ vec(1G ⊗ [0, 1, 0, 1])
= vec〈M[2] · P(2) ⊕ (1G ⊗ [g1, g2, g3, g4]) ⊕ (1G ⊗ [0, 1, 0, 1])〉 (16)

= vec〈M[2] · P(2) ⊕ (1G ⊗ ([g1, g2, g3, g4] ⊕ [0, 1, 0, 1])〉
= vec(M[2] · P(2) ⊕ (1G ⊗ [g1, g2, g3, g4]).

It is simple to see that (16) is also a particular case of (2), with a different . G. 
Therefore, .F⊕X2 is the value vector of another (new) Maiorana-McFarland Boolean 
bent function. 

The analysis of the effect of additive spectral invariant operations when .k > 2 is 
straightforward. 

It may be seen that all other cases of functions obtained with additive spectral 
invariant operations may be analyzed by repetitions of the above two cases, with 
appropriate definitions of the . X vectors. In all cases it will be concluded that 
the considered spectral invariant operations preserved the Maiorana-McFarland 
bentness of an original Maiorana-McFarland Boolean bent function. 

Furthermore, the analyzed cases indicate that if the Reed-Muller spectrum of the 
generated new functions is calculated, only its Beta component—(the one dependent 
of . G)—will change with respect to the Reed-Muller spectrum of the originating 
function, and, since in the matrix representation of Beta only the first row is a 
nonzero row, the “new” Beta may be simply calculated with Lemma 2. 

4 Closing Remarks 

Boolean bent functions are frequently, if not always, associated with their Walsh 
spectra, since the absolute value of the spectral coefficients determines whether a 
function is bent or not. In this chapter, however, we have established particular struc-
tural features of the Reed-Muller spectrum of functions in the Maiorana-McFarland 
class of Boolean bent functions. These features are disjoint and depend separately on 
the parameters . P and . G of the generating Eq. (2). If a set of Boolean bent functions 
is given, the analysis of the structure of the Alpha components of their Reed-Muller 
spectra would allow recognizing which bent functions are Maiorana-McFarland. 
Furthermore, we showed that additive basic spectral operations consisting of adding 
a constant vector 1 or the value vector of one or more possibly complemented 
arguments to a reference Maiorana-McFarland Boolean bent function preserves this 
class and affects only the Beta component of the Reed-Muller spectrum. Tests done 
with random Boolean bent functions, but not Maiorana-McFarland bent functions, 
showed that their Reed-Muller spectra have a structure different from the one shown 
in Theorem 2.



Reed-Muller Spectra of Maiorana-McFarland Boolean Bent Functions 65

Acknowledgments The authors thank the reviewers of a preliminary version of this chapter for 
their constructive criticism and the suggestions to improve the manuscript. 

References 
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Toward System-Level Assertions 
for Heterogeneous Systems 

Muhammad Hassan, Thilo Vörtler, Karsten Einwich, Rolf Drechsler, 
and Daniel Große 

1 Introduction 

Driven by growth opportunities in various application domains, e.g., Internet of 
Things (IOT), many semiconductor vendors are shifting their focus toward a more 
integrated solution of high-performance analog/mixed-signal (AMS) designs. Due 
to this industry shift, most System-on-Chips (SOCs) today are AMS containing 
analog sensors, mixed-signal converters, and digital processors running Software 
(SW) on top, tightly integrated on a single die. One characteristic of such SOCs is 
that each subsystem interacts simultaneously with each other by internal connec-
tions and reacts to inputs coming from outside. Digital systems behavior usually 
exhibits discrete changes in time and value, whereas analog circuits usually exhibit 
continuous changes. While this shift has resulted in high-performance and low-area 
devices, it has significantly increased the efforts required to develop and verify 
these highly complex devices and achieving the required Time To Market (TTM) 
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simultaneously. Nowadays, assertion-based verification (ABV) in combination with 
coverage analysis [21, 22, 36] and constrained randomization techniques [19, 50] is  
widely used to perform functional verification of digital designs at Register Transfer 
Level (RTL). ABV defines temporal properties in order to verify the functional 
correctness of the design with respect to expected behaviors. Consequently, the bugs 
are found at their source. Furthermore, design observability and controllability is 
also improved. Applying the ABV methodology to AMS designs can bring the same 
benefits that the digital design community has enjoyed. However, late availability of 
RTL in the design process exacerbates the situation. 

In this regard, the emergence of virtual prototypes (VPs) at the abstraction 
of Electronic System Level (ESL) has modernized the design and verification of 
AMS SOCs in many ways  [11, 13, 14, 20, 23–25, 33, 41, 47]. Essentially, a VP 
is a software simulation model of the entire Hardware (HW) platform, created 
by composing models of the individual Intellectual Property (IP) blocks (i.e., 
instruction set simulators, bus and peripheral models, etc.). For this purpose, the 
C.++-based system modeling language SystemC together with Transaction-level 
Modeling (TLM) techniques [27] and mixed-signal extension SystemC/AMS [4] 
is being heavily used in industrial practice [3, 11, 22, 33, 34, 41]. Overall, the 
adoption of VPs has led to significant improvements on the design and verification 
of SOCs. Because of earlier availability and significantly faster simulation speed as 
opposed to RTL, the VPs enable HW/SW co-design and verification very early in 
the development flow. Serving as reference for (early) embedded SW development 
and HW verification, the functional correctness of VPs is very important. Hence, a 
whole VP and its individual components are subjected to rigorous verification. 

However, one of the main challenges is the availability of a practical assertions 
library for system-level design verification which enables ABV methodologies. 
When speaking of unavailability, we also broadly include advanced testbench 
concepts based on the Universal Verification Methodology (UVM), or in the future 
even more abstract based on Portable Stimulus Specification (PSS). Regardless of 
the specific solution, a system-level assertions library is missing which satisfies 
the following: (1) expressiveness to represent complex behaviors of heterogeneous 
systems, (2) compatibility to SystemC, TLM, and SystemC/AMS, (3) capture of 
complex analog-digital interactions, and (4) integration of complex heterogeneous 
characteristics like continuous time, frequency analysis, etc. 

Contribution In this paper we present a system-level assertions library for het-
erogeneous systems, an advanced ABV environment for SystemC, TLM, and its 
mixed-signal extension SystemC/AMS. To overcome the limitations of state-of-the 
art libraries (see Sect. 2 for more details), the proposed SystemC assertions library 
provides the following features: 

• New assertions specification API: An intuitive, user-friendly, and expressive 
Application Programming Interface (API) to specify complex behaviors of 
nontrivial heterogeneous systems has been developed. 

• Compatibility: The library is compatible with SystemC and its extensions, TLM, 
and SystemC/AMS.



Toward System-Level Assertions for Heterogeneous Systems 69

• Complex behaviors: Various complex behaviors can be captured like, (1) com-
plex analog-to-digital, (2) digital-to-analog, (3) digital-to-digital, and (4) analog-
to-analog. 

• SW and TLM Support: The assertions library supports the checking of TLM 
interface and SW/HW interactions. 

• Heterogeneous characteristics: The library integrates heterogeneous character-
istics like continuous time, frequency analysis, slopes, equations, attenuations, 
differential-algebraic equations (DAE), digital signals, temporal logic, variables, 
and events. These characteristics are necessary for expressing complex proper-
ties. 

• Improved usability: Debugging of failed assertions is supported. 

Considering all these features, we develop a new system-level assertions library 
for bridging the gap of ABV for heterogeneous systems. The running example and 
experiments on a real-world model of ARM V8-based CPU using ARM fast models 
demonstrate the capabilities of the library to improve the system verification in a 
significant way. 

The paper is organized as follows: Sect. 2 gives a survey of current approaches 
concerning heterogeneous/AMS verification. Section 3 discusses the running exam-
ple along with assertions to set up the environment. Section 4 describes our 
contribution and the implementation and discusses the approach. This includes syn-
tax and semantics of the system-level assertions library. In Sect. 5 we demonstrate 
the benefits of our methodology with experiments. Finally, we conclude and mention 
future work in Sect. 6. 

2 Related Work 

SystemC is widely used for system-level design and verification; however, it still 
lacks native temporal assertions support. Several approaches have been proposed for 
digital SystemC-based models/VPs. Besides basic work on the temporal language 
itself [45], these approaches can be divided into two categories, formal assertion-
based verification (e.g., [7, 12, 17, 18, 29, 31, 46, 48]) and simulation-based 
verification (e.g., [5, 6, 9, 13, 15, 40, 44]). The formal approaches aim to fully 
explore the state space based on abstract representations of system-level models. 
However, these approaches typically run into the state space explosion problem. 
Furthermore, the aforementioned simulation-based methods only consider purely 
digital models. 

In [6, 9, 40] new approaches for transaction-level assertions are introduced. 
However, in [40] transactions are mapped to signals, and therefore the approach 
is restricted only to transactions which are invoked by suspendable processes. In 
[6] transactions are recorded and written into a trace to do post-processing. Trace-
based assertion checking however requires that everything to be recorded must be 
annotated in the code and the creation of simulation data bases can become very 
resource intensive.
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Various works have also been presented for the specification and verification of 
analog circuits [32, 35, 39, 42, 43, 51]. Here, too, a distinction is made between 
formal and simulation-based methods. One focus of the work was in particular to 
develop suitable extensions for the specification of assertions. It should be noted, 
however, that the aforementioned works only target analog components and usually 
only address the implementation level. The overall heterogeneous systems (incl. 
SW) and environment considered here are not supported. 

In the area of digital HW/SW co-design and verification, various formal 
approaches have been proposed, for example [16, 38, 49]. However, these so 
far assume only implementation-level descriptions for the hardware part (e.g., in 
Verilog or VHDL). Furthermore, due to the huge state spaces in analog domain, 
only small problems can be handled. Recently, abstraction techniques have been 
developed, and the hardware parts are abstracted to C level [26, 37]. However, these 
methods consider only pure digital designs. 

Heterogeneous characteristics like continuous time, frequency analysis, slopes, 
equations, attenuations, DAE, digital signals, temporal logic, variables, and events 
are insufficiently integrated in all known specification languages. However, these 
characteristics in combination with a special time definition are necessary for 
expressing complex properties. Therefore, our work considers all these conditions 
to develop a new system-level assertions library for bridging the gap of ABV for 
heterogeneous designs.‘ 

3 Preliminaries 

3.1 Assertion-Based Verification 

ABV is an established technique used nowadays to verify SOCs [10]. To enable 
ABV, a language is required based on the general notion of Property Specification 
Language (PSL) [28], Linear Temporal Logic (LTL), Finite LTL (FLTL), or Com-
putation Tree Logic (CTL) [30]. Based on the specification assertions (properties) 
are typically manually created and capture the design intent. The basic function 
of an assertion is to specify a set of behaviors that is expected to be true for a 
given Design Under Verification (DUV). Assertions are included in the DUV via 
monitors, and they compare the temporal behavior of the assertions against the DUV 
during simulation. Assertions are used in the validation environments of TLM, RTL, 
and gate level and offer the following advantages: (1) detect design errors at their 
source and increase observability, (2) actively monitor a design to ensure correct 
functional behavior, and (3) can be used for functional and formal verification. The 
widely used assertions library for RTL, SystemVerilog Assertion (SVA) [8], unifies 
simulation and formal verification semantics to drive the design for verification 
methodology. It takes a layered approach to define the properties of the DUV. More 
precisely, properties are composed of four layers: (1) the Boolean layer consists 
of propositions and Boolean connectives, (2) the sequence layer adds operators for
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temporal reasoning to the Boolean layer. (3) the property layer defines operations 
on sequences, and (4) the verification layer provides indicators for the verification 
tools on how to apply the properties. Most often assertions use implication operators 
which define some specific sequence of events (known as antecedent) which should 
occur before another sequence of events (known as consequent) should occur. 

The first three layers define the actual property (intended or error state) that 
relates to parts of the DUV, whereas the fourth layer is used to control the high-
level behavior of the verification tools. 

3.2 System-Level Running Example 

For brevity, we refrain from giving a proper introduction to SystemC, TLM, and 
SystemC/AMS. Instead, we present here a heterogeneous system as a running 
example (Fig. 1) that will be used to showcase the main ideas of our approach 
throughout this paper. The SystemC, TLM, and SystemC/AMS constructs and 
semantics necessary to understand the example will be explained as needed. The 
running example models a temperature control system covering multiple domains, 
i.e., SW, digital HW, and analog behavior. The system is modeled in SystemC/AMS 
using differentModels of Computation (MoC), in particular Timed Data Flow (TDF) 
and Electrical Linear Networks (ELNs). The overall system as shown in Fig. 1 
consists of the following components:

• an ARM V8-based CPU using ARM fast models implemented as SystemC TLM 
[2] with Linux operating system and SW running on top, 

• four ADT7420 temperature sensors implemented as SystemC/AMS TDF and 
discrete event model [1], 

• an Advanced Microcontroller Bus Architecture (AMBA) bus that acts as a bridge 
device to connect temperature sensors and ARM processor (created in SystemC 
TLM)—(COS_AMBA_DEVICE in Fig. 1), 

• an environment model (Thermal_Network) that builds 3 connected rooms and 
an ambient temperature modeled as a sinus (SIN_SRC_TDF), i.e., each sensor 
senses a different temperature (implementation as SystemC/AMS ELN and 
discrete event model), and finally 

• a heater model implemented as SystemC/AMS ELN that can be used to increase 
the temperature. 

The communication between SW running on the ARM8 and the connected 
sensors is done via registers connected to the bus of the processor. The SW 
configures the sensors by writing to addresses on the bus, which in turn creates TLM 
transactions. These TLM transactions are written into the corresponding registers of 
the ADT7420 sensors. The AMBA bus (COS_AMBA_DEVICE) also translates the 
AMBA-PV transactions used by ARM fast models. Additionally, I. 2C transactions of 
the sensor model are also translated. To showcase the features of proposed system-
level assertions library, the running example considers the following scenario for 
demonstration purposes:
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Fig. 1 Schematic of running example: temperature control system

• booting a Linux operating system on the ARM processor, 
• a control SW is executed on top of Linux. The control SW continuously measures 

(monitors) the temperature sensor output, 
• if the SW detects that the temperature value falls below a programmed threshold 

value, it switches the heater to ON state, 
• otherwise, when the temperature exceeds a certain programmed threshold, the 

heater is switched to OFF state. 

3.3 Assertions for System-Level Running Example 

A lot of assertions can be defined for the running example introduced in Sect. 3.2. 
However, for the purpose of demonstrating the features of the proposed system-level 
assertions library, we focus on only one. The concrete assertion states that: 

• When the temperature of Room 1 t_r1 (SystemC TDF signal) is above the 
threshold t_threshold (SW-controlled TLM register value), the heater has to be 
switched off (heater_sw) within 1ms. 

How this heterogeneous assertion can be expressed in our proposed assertions 
library can be seen in Listing 1. Please note that we introduce all ingredients (in 
particular, API, layers, etc.) from the users’ perspective for the proposed system-
level assertions library in the next sections. 

1 auto heater_off = (t_r1 > t_threshhold) ->* (true | 
delay(1_SC_MS) | (heater_switch==false)); 

2 heater_off.default_sampling(1_SC_MS); 

Listing 1 Concrete assertion for temperature control system example



Toward System-Level Assertions for Heterogeneous Systems 73

4 System-Level Assertions Library for Heterogeneous 
Systems 

In this section, we introduce the proposed system-level assertions library and its 
components for bridging the gap of ABV for heterogeneous systems. First, we 
provide a brief overview of the library. Then, we describe the intuitive API and 
the layered architecture of the assertions library in detail while always providing an 
example. 

4.1 Overview 

The system-level assertions library is developed with an intuitive, user-friendly, and 
an expressive API. As a result, complex behaviors of heterogeneous systems can be 
captured easily. These behaviors are not only limited to events taking place at one 
point in time in one domain, rather also temporal behaviors across different domains, 
e.g., TLM and analog. To enable the API expressiveness, a layered architecture 
inline with SVA-layered architecture [8] is used, i.e., Boolean layer, sequence 
layer, property layer, and verification layer. At the back end, first the assertion is 
divided into different layers and expressions; then, multiple SystemC processes 
are spawned to monitor the signals and events specified in the expressions. The 
library uses linear time model where the assumption is that the time is linear. Each 
assertion is synchronized to the sampling ticks (notion of discrete time) of DUV 
as defined by SystemC/AMS semantics, unless specified. The assertion is evaluated 
at each sampling tick. If the specified expressions evaluate to true, the assertion is 
satisfied. Additionally, the complete trace of assertion evaluation is displayed to the 
verification engineer. 

In the following sections, the components of system-level assertions library are 
explained in detail. 

4.2 Application Programming Interface 

The API of the library is designed to enable the expressiveness required for specify-
ing cross-domain behaviors, e.g., TLM and analog. Hence, dedicated functions like 
delay(...), repeat(...), default_sampling(...), etc. are defined to specify the behaviors 
and make the library user-friendly. Additionally, operators (e.g., pipe ( | ), -. >*) are 
introduced to enable specification of sequences in SystemC. 

The concrete assertion (specified in Listing 1) is interpreted in light of the pro-
posed API as follows: an assertion property heater_off is created. The property joins 
two  sequences via an overlapping implication operator (-. >*). The sequences are,
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Table 1 Non-comprehensive list of supported Boolean expressions by system-level assertions 
library 

Operator Name Data type 

+= -= /= *= &= |= Binary assignment operators int, double 

.< <= > >= Binary relational operators int, double 

.+ − ∗ / Binary arithmetic operators int, double 

.&& || == != Binary logical operators int, double 

+ - ! ++ – Unary operators int, double 

(1) antecedent—(t_r1 . > t_threshhold), (2) consequent—(true | delay(1_SC_MS) 
| (heater_switch==false)). The sequences comprise of f our  Boolean expres-
sions in total: (1) (t_r1 . > t_threshhold), (2)  true, (3)  delay (1_SC_MS), (4)  
(heater_switch==false). Furthermore, the sampling time of the assertion is written 
in Line. 2, i.e., 1_SC_MS. 

4.3 Boolean Layer 

The Boolean layer describes the behaviors of primitive elements relative to each 
other at a particular point in time. The primitive elements in our proposed library 
are SystemC events, variables, and SystemC/AMS signals. These primitive elements 
are related using arithmetic, logical, or relational operators. Consequently, they 
form an expression, e.g., a relational expression. In Listing 1 the expression (t_r1 
. > t_threshhold) compares an analog signal t_r1 with a digital threshold value 
t_threshhold stored in TLM register. If the relational condition is satisfied, the 
expression is evaluated to true. A non-comprehensive list of Boolean expressions 
is shown in Table 1. 

4.4 Sequence Layer 

The sequence layer builds on top of Boolean layer to specify the temporal relation-
ship between primitive elements (Boolean expressions) over time. The sequence 
layer also specifies sequences as either a combination of simpler sequences using 
sequence operators or as basic Boolean expressions correlated by events. The 
proposed API introduces the pipe operator ( | ) to represent the continuity of a 
sequence. This increases readability as well as user-friendliness of the assertion 
property. Additionally, the API introduces delay(...), repeat(...) operators to specify 
temporal assertions. As a result, a sequence can comprise of delay operators 
(Sect. 4.4.1), Boolean expressions, and event expressions. To determine a match of 
the sequence, the Boolean expressions are evaluated at each successive sample tick, 
defined by a sampling event (SystemC/AMS sampling points) that gets associated
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Table 2 Non-comprehensive list of supported sequence operators by system-level assertions 
library 

Operator Description 

delay Specifies delay from current sampling point until the next 

and Sequence and operation 

or Sequence or operation 

repeat Repetition operator 

with the sequence. If all expressions of the sequence are true, then a match of the 
sequence occurs. For example, the assertion in Listing 1 has the expressions: 

. (true| delay(1_SC_MS)| (heater_switch == false))

The expressions are interpreted as follows: a signal is asserted—true, followed 
by a delay operator—delay(1_SC_MS), and after the delay of 1ms, the expression 
(heater_switch == false) is evaluated. The sequence returns true only if all the 
expressions evaluate to true. A non-comprehensive list of supported sequence 
operators is shown in Table 2. 

4.4.1 Delay Operator 

The system-level assertions library introduces delay operator—delay(delay_cycles) 
and delay(min_delay_cycles, max_delay_cycles) which takes delay time as input. 
The function of delay operator is to create a relationship between Boolean expres-
sions over a period of time or between the given time constraints. 

4.4.2 Repeat Operator 

The library also introduces repeat operator—repeat(value) and repeat(min_value, 
max_value)—which takes a repetition value as input for how many times the 
sequence should be repeated. It helps in cases when a certain set of expressions 
are expected to be true over multiple time points. 

4.4.3 Sequence “and/or” Operators 

The system-level assertions library introduces the sequence “and/or” operators. 
The sequences are evaluated in parallel. In case of “and” operator, if one sequence 
evaluates to “false”, the evaluation stops and the assertion fails. On the other hand, 
in case of “or” operator, the library waits for all sequences to be evaluated.
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4.5 Property Layer 

The property layer allows for more general behaviors to be specified, i.e., speci-
fication of properties as either a combination of simpler properties using property 
operators or as an implication built up from several sequences. In particular, prop-
erties allow users to invert the sense of a sequence (e.g., when the sequence should 
not happen), disable the sequence evaluation, or specify that a sequence be implied 
by some other occurrence. The properties and their respective sequences (including 
Boolean expressions) are evaluated on each sampling event (sampling tick) of the 
system’s default sampling time, unless specified. In this concrete assertion (defined 
in Listing 1), the property sampling time is set to 1ms (heater_off.default_sampling 
(1_SC_MS)). As a result, the assertion property in Listing 1 is evaluated every ms. 
The property layer supports implication operators, “not”, and “and/or” operators. 

4.5.1 Implication Operator 

An implication refers to a situation in which in order for a behavior to occur, a 
preceding sequence must have occurred. This preceding sequence in this case is 
known as antecedent. The succeeding behavior is known as consequent. Evaluation 
of an implication starts through repeated attempts to evaluate the antecedent. When 
the antecedent succeeds, the consequent is required to succeed for the property to 
hold. Thus, in other words, an antecedent sequence implies a consequent property 
expression, as follows: 

. antecedent − > ∗ consequent

where − > ∗ = overlapping implication operator

Nonoverlapping Implication 

The delay(...) operator is used to implement nonoverlapping implication. 

Overlapping Implication

-. >* In the system-level assertion library, we introduce an overlapping implication 
operator (-. >*). This means that if the antecedent sequence is evaluated to true, the  
consequent sequence is evaluated at the same tick. 

As shown in Listing 1, if the expression (t_r1 . > t_threshhold) is true, the 
sequence (true |delay(1_SC_MS) |(heater_switch==false)) should be true in next 
sampling ticks. A non-comprehensive list of supported property operators is shown 
in Table 3.
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Table 3 Non-comprehensive list of supported property operators by system-level assertions 
library 

Operator Description 

Not the evaluation of the property returns the opposite of the evaluation of the 
underlying property expression 

and The property evaluates to true if, and only if, both property expression 1 and 
property expression 2 evaluate to true. 

or The property evaluates to true if, and only if, at least one of property expression 
1 and property expression 2 evaluates to true. 

4.6 Verification Layer 

The verification layer specifies which properties are to be asserted or covered. 
This layer always associates properties with corresponding verification directives. A 
verification directive can be parameterized by the severity level and an info string; 
further on it can be specified if the property should be asserted, covered or both. The 
proposed library supports only assert at the moment. 

5 Experiments 

This section describes the experimental evaluation on a real-world model integrating 
an ARM V8 CPU via ARM fast models (as described in Sect. 3.2). Fast models are 
accurate, flexible programmer’s view models of ARM IP, allowing one to develop 
software such as drivers, firmware, OS, and applications prior to silicon availability. 
They allow full control over the simulation, including profiling, debug, and trace. 
As mentioned, the complete model is implemented as a mixture of a SystemC TLM 
model and a SystemC/AMS model. 

Several assertions were created to verify the behavior of temperature control 
system. The behaviors to verify included but not limited to: (1) SW and TLM 
interactions, (2) analog and TLM interactions, (3) analog-digital, (4) digital-analog, 
(5) digital events, and (6) analog-analog interactions, etc. In the following, we detail 
the results of the concrete assertion from Listing 1. 

Partial simulation results of the temperature control system SW are shown in 
Fig. 2. The  orange sinus signal is the ambient temperature (SIN_SRC_TDF) which 
oscillates between 262 K and 293 K. The green waveform signal (t_r1) is the  
temperature of room 1. The blue waveform signal (t_r2) is the temperature of room 
2. The purple waveform signal (t_r3) is the temperature of room 3. At the bottom 
of Fig. 2, digital signals—heater_switch and interrupts (irq0-irq3) from temperature 
sensors are displayed.

After booting the Linux OS (approx. 30s), the control SW gets started. The heater 
(heater_switch) gets turned on as the temperature in room one (t_r1) is below  the  
minimum temperature of 292 K. It can be seen how the temperature slowly increases



78 M. Hassan et al.

Fig. 2 Simulation results running the temperature control SW

in all rooms. When the temperature is above the maximum threshold of . 294.15
K, the heater gets turned off. As a consequence, the room temperatures start to 
decrease. The sensors have been programmed to generate an interrupt whenever the 
temperature is above or below a threshold value (stored in register). 

We could see the assertion was satisfied throughout the simulation. However, 
if we decreased the delay(...) from 1ms to a smaller value, the assertion was 
always violated. This is expected and in accordance with the specifications. They 
require that the heater_switch should be turned off within 1ms after the threshold 
temperature is crossed. The reason for 1ms is because of the inherent delays 
due to reading and writing of registers in different connected devices, and can be 
summarized as follows: 

• the temperature sensor senses the temperature, 
• the sensed temperature is written into the register, 
• SW reads the temperature from the ARM processor, 
• SW checks whether the sensed temperature value is above the threshold value, 
• and writing the heater switch control register depending on the comparison result. 

Hence, using the proposed intuitive system-level assertion library, it is possible to 
check complex behaviors of the heterogeneous systems, e.g., digital, analog, and 
SW behavior. 

6 Conclusion 

In this paper, we presented a practical system-level assertions library for hetero-
geneous systems. The library comprises of an intuitive and user-friendly API and 
offers full compatibility with SystemC, TLM, and SystemC/AMS. As a result, the 
library supports specification of SW, TLM, and complex interactions, all necessary 
to represent complex AMS behavior. The system-level assertions library prototype
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was used to verify the industrial model using ARM fast models, a temperature 
control system SW, environment models, temperature sensors, and assertions. 
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39. Ničković, D., Lebeltel, O., Maler, O., Ferrère, T., Ulus, D.: Amt 2.0: qualitative and quantitative 
trace analysis with extended signal temporal logic. Int. J. Softw. Tools Technol. Transf. 22(6), 
741–758 (2020) 

40. Niemann, B., Haubelt, C., et al.: Assertion-based verification of transaction level models. In: 
MBMV, pp. 232–236. Citeseer (2006) 

41. Pêcheux, F., Grimm, C., Maehne, T., Barnasconi, M., Einwich, K.: SystemC AMS based 
frameworks for virtual prototyping of heterogeneous systems. In: ISCAS, pp. 1–4 (2018) 

42. Radojicic, C., Grimm, C., Schupfer, F., Rathmair, M.: Verification of mixed-signal systems 
with affine arithmetic assertions. VLSI Design (2013) 

43. Steinhorst, S., Hedrich, L.: Model checking of analog systems using an analog specification 
language. In: DATE, pp. 324–329 (2008) 

44. Tabakov, D., Vardi, M.: Monitoring temporal SystemC properties. In: MEMOCODE, pp. 123– 
132 (2010) 

45. Tabakov, D., Vardi, M., Kamhi, G., Singerman, E.: A temporal language for SystemC. In: 
FMCAD, pp. 1–9 (2008) 

46. Vardi, M.Y.: Formal techniques for SystemC verification. In: DAC, pp. 188–192 (2007) 
47. Vörtler, T., Einwich, K., Hassan, M., Große, D.: Using constraints for SystemC AMS design 

and verification. In: DVCon Europe (2018)



Toward System-Level Assertions for Heterogeneous Systems 81

48. Weiss, R.J., Ruf, J., Kropf, T., Rosenstiel, W.: Efficient and customizable integration of 
temporal properties into SystemC. In: Applications of Specification and Design Languages 
for SoCs, pp. 101–114. Springer, Berlin (2006) 

49. Xie, F., Liu, H.: Unified property specification for hardware/software co-verification. In: 31st 
Annual International Computer Software and Applications Conference (COMPSAC 2007), 
vol. 1, pp. 483–490. IEEE (2007) 

50. Yuan, J., Pixley, C., Aziz, A.: Constraint-Based Verification. Springer, Berlin (2006) 
51. Zivkovic, C., Grimm, C., Olbrich, M., Scharf, O., Barke, E.: Hierarchical verification of AMS 

systems with affine arithmetic decision diagrams. TCAD 38(10), 1785–1798 (2019)



SAT-Based Key Determination Attack for 
Improving the Quality Assessment of 
Logic Locking Mechanisms 

Marcel Merten, Mohammed E. Djeridane, Sebastian Huhn, 
and Rolf Drechsler 

1 Introduction 

Nowadays, designers can benefit from access to advanced technology nodes without 
having the large capital expenditure of operating their own semiconductor foundries. 
This is thanks to the distributed manufacturing of the integrated circuits (ICs). 
However, such a distribution also yields a growing threat of compromising the 
integrity of once trusted IC processes by unauthorized or untrusted users [1]. During 
the last decade, complementary metal-oxide-semiconductor (CMOS)-based protec-
tion mechanisms have been the dominant technology for implementing various 
protection measures. However, the layout-level obfuscation by using CMOS-based 
camouflaging causes a significant overhead with respect to the resulting power 
consumption and the required area [2]. 

Recent research works like [1, 3, 4] have been focusing on achieving high 
protection while still preserving low overhead by utilizing reconfigurable silicon 
nanowire field-effect transistor-based polymorphic logic gates [1]. In [1], an 
algorithm is proposed that replaces gates impacting the original functional behavior 
of the circuit by reconfigurable polymorphic logic gates. Afterward, the quality 
of the resulting logic locking functionality is assessed by a metric based on the 
Hamming distance (HD) of the outputs over randomly applied stimuli and keys. 
The result is considered optimal if the HD is 50% of the maximal HD. The formal 
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approach proposed in [5] shows the limitations of simulation-based approaches, 
unveiling further weaknesses in the protection mechanisms. In [5], a limited number 
of corrupting keys are calculated, which later be assessed. Thereby, a corrupting key 
is defined as a key that behaves equivalent to the correct key when considering at 
least one stimulus. 

This work proposes a novel technique to determine corrupting keys, forming the 
most critical security breaches. More precisely, a framework is designed to calculate 
the most intimidating corrupting keys based on the concept of a SAT-based attack. 
In contrast to other techniques, the proposed approach calculates the corrupting keys 
based on distinguishing input patterns (DIPs), maximizing the number of equivalent 
behaving stimuli. This improves the quality of the assessment of potential security 
threats using logic locking mechanisms. 

Various experiments have been conducted on the ITC’99 benchmark set. The 
results prove that the improved key calculation unveils weaknesses in the protection 
structures that remain undetected when using current approaches. The proposed 
technique utilizes the concept of a SAT-based attack to provide a metric for 
evaluating the threat of a specific corrupting key. In conclusion, the proposed 
approach allows a more accurate evaluation of the security of a logic locked circuit. 

The remainder of this work is structured as follows: Sect. 2 briefly introduces the 
preliminaries of this work. Section 3 describes the proposed key determination pro-
cedure in detail. Finally, Sect. 4 presents the experimental evaluation. A conclusion 
and an outlook on future work are given in Sect. 5. 

2 Preliminaries 

Within the last decade, a lot of research has been spent on enhancing electronic 
systems, while the classical CMOS technology has exceeded its physical limits. 
Research in the field of reconfigurable technologies has gained a lot of interest 
since it has a great potential to realize even more complex systems. This emerging 
technology is a promising candidate for overcoming the constraints of Moore’s law 
by employing polymorphic logic gates. 

2.1 Reconfigurable Field-Effect Transistors 

Different concepts have been proposed on realizing a device-level reconfiguration 
capability like RFETs. An RFET introduces a control gate that can be configured 
between an n-channel and p-channel behavior [2]. The reconfiguration capabilities 
of this new emerging technology can be used to implement new protection 
mechanisms, e.g., an on-chip key storage by the polymorphic logic behavior [2]. 
Furthermore, the RFET technology is promising to introduce effective protection 
mechanisms against optical reverse-engineering attacks.
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A popular approach to prevent reverse engineering, even given the entire layout, 
is adding logic locking mechanisms to the circuit. The correct functional behavior 
of a circuit C is defined in Definition 1. 

Definition 1 Given a circuit C, a set of appliable stimuli . S, a set of reachable states 
. F , and a set of possible outputs . P , the function .C : S × F → P defines the 
intended functional behavior of C. In particular, .C(s, ψ) describes the functional 
behavior .∀C, s ∈ S, ψ ∈ F , with .s ∈ S be a stimulus and .ψ ∈ F be an internal 
state. 

Logic locking encrypts the correct functional behavior by encrypting the circuit C 
using a secret key . kc. The functional behavior of a logic locked circuit is defined in 
Definition 2. 

Definition 2 The functional behavior of a logic locked circuit C is defined given a 
stimulus .s ∈ S , an internal state .ψ ∈ F , and a key .k ∈ K. Applying the secret key 
. kc yields the correct functional behavior .C(s, ψ, kc) = C(s, ψ). 

CMOS-based approaches usually introduce XOR/XNOR key gates [6–8] or MUX  
gates [9–12] to obfuscate the correct functional behavior of the circuit, resulting in 
a huge overhead regarding the area and power consumption [1]. Figure 1 gives a 
basic example of an XOR gate inverting the behavior of the preceding logic when 
an incorrect key is applied. In the example, the locked output has the functionality 
of a NAND gate instead of the intended AND gate behavior. 

Polymorphic logic gates like RFETs realize multiple functionalities in the same 
cell and, hence, are an effective way to implement a logic locking mechanism. The 
intended functionality is chosen by configuring a control signal. To insert key gates 
without the high-performance overhead of CMOS- based techniques, polymorphic 
logic gates can replace gates of the original circuit, meaning gates with a high impact 
on the primary outputs are replaced [1]. Various functionalities can be implemented 
by RFET-based cells like the NAND/NOR- or the XOR/XNOR-RFET. An example 
of the RFET visualized in Fig. 2 can be configured as an XOR or XNOR gate, 
depending on the control signal serving as a key bit. 

2.2 Boolean Satisfiability Problem 

The Boolean satisfiability (SAT) problem is one of the first proven NP-hard prob-
lems [13]. However, a lot of research on SAT-solving techniques has significantly

Fig. 1 Simple CMOS-based 
logic locking example a 

key 
b locked 

function 

intended 
function 
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Fig. 2 XOR/XNOR-RFET

increased the effectiveness of SAT solvers over the years. For example, Dynamic 
Clause Activation (DCA) allows to activate or deactivate a CNF . Φ with an activation 
literal a in an extended .Φa = Φ + a. To satisfy . Φa , . Φ only has to be satisfied if 
.a = 0. Therefore, . Φ can be deactivated by setting .a = 1. The application of DCA 
in SAT can result in significant speedup [14]. 

Moreover, some modern SAT solvers are extended to solve pseudo-Boolean (PB) 
logic. PB allows defining inequalities in clauses. Furthermore, weights can be 
assigned to specific literals or clauses that are not required to be true in a satisfiable 
solution. Pseudo-Boolean optimization (PBO) can be used to determine a solution 
maximizing or minimizing the weights of a PB instance. The optimization is 
performed utilizing an objective function . Θ . The function . Θ is usually defined as 
a maximization or minimization of a sum of weighted literals. These PBO-based 
optimization techniques have been heavily orchestrated in various domains like IC 
testing [15]. 

2.3 SAT-Based Attacks 

While camouflaging and logic obfuscation try to protect intellectual property from 
malicious misuse, attackers constantly work on techniques to remove or unlock 
such protection mechanisms. A popular attacking algorithm is the SAT attack first 
proposed in [16]. The idea of the SAT-based attack is to use SAT to unlock the 
circuit by determining the correct key . kc or an equivalent behaving key. First, a 
miter structure of two instances of the logic locked circuit is created. By solving the 
miter instance, a pair of keys .(k1, k2) and a DIP D is calculated for the primary
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Fig. 3 Basic concept of a SAT-based attack 

inputs (PIs). The DIP D is an input pattern, which results in a differing output 
behavior using . k1 and . k2, meaning that at least one of the output behaviors of the two 
compared keys is incorrect. Next, an unlocked product C of the chip is used to get 
the correct output behavior .C(D) for the D. Before the next DIP . D′ is calculated, 
the key space of . k1 and . k2 is constrained to satisfy the correct output behavior . C(D)

for the previously calculated DIP D. This is done by adding a SAT-instance . ΦD

consisting of two inverted miters. Each inverted miter forces equivalence between 
the logic locked circuit using .keyX and the oracle output .C(D) on the stimuli D. 
The basic principle of the SAT-based attack is illustrated in Fig. 3. 

2.4 Quality Assessment of RFET-Based Logic Locking 
Mechanisms Using Formal Methods 

This section describes the SAT-based quality assessment approach proposed in [5]. 
The assessment framework analyzes a circuit under assessment (CuA) using (RFET-
based) logic locking mechanisms. First, corrupting keys—incorrect keys that result 
in correct functional behavior given at least one stimulus—are collected for a later 
assessment. A formal definition of a corrupting key . kf is given in Definition 3.
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Fig. 4 Abstract model of the miter structure 

Definition 3 Given a logic locked circuit C, a stimulus .s ∈ S, and an internal state 
.ψ ∈ F , a key  .kf ∈ K is a corrupting key, iff .kf �= kc and . ∃s, C(s, ψ, kc) =
C(s, ψ, kf ). 

Therefore, a miter circuit is created from the CuA considering the correct key . kc— 
yielding the SAT instance . Φkc—and any incorrect key . ̂K yielding . Φ

̂K. The basic 
principle of this construction is given in Fig. 4. The CuA is unrolled for N clock 
cycles to consider sequential elements. The FFs are modeled as pseudo primary 
inputs (PPIs), initialized with 0. 

The entire model is stored as one SAT instance .Φcomp and processed by a 
state-of-the-art SAT solver. The inverted miter compares the unrolled .Φkc with the 
unrolled . Φ

̂K, i.e., considering any incorrect key .ki �= kc, ki ∈ ̂K. In particular, both 
states—defined by the stored FFs’ values—and the primary output values can be 
compared for all N observed clock cycles. If a satisfiable solution is determined, 
i.e., a corrupting key . kf has been detected, this circumstance results in a functional 
equivalent of the CuA given at least one stimulus. 

Next, the calculated security threat is assessed. More precisely, every determined 
corrupting key . kf is evaluated against possible stimuli leading to functional 
equivalence to the correct key . kc. More precisely, the individual corrupting key is 
enforced in .Φ

̂K by additional clauses. The key detection procedure—including the 
security threat evaluation regarding the discovered corrupting key—is repeated until 
.Φcomp is unsatisfiable or a user-defined limit has been exceeded. 

3 SAT-Based Key Determination Attack 

This section describes the approximative determination of the most intimidating key 
to improve the quality assessment of a CuA using logic locking mechanisms. The 
key determination procedure is divided into two parts. First, an adapted SAT-based 
attack is applied to collect constraints for the keys. In the second step, DCA methods 
are combined with the constraints to calculate a key, which forms a maximal threat 
to the logic locking mechanism.
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To collect the constraints narrowing the key space, a miter SAT instance . ΦDIP

is generated to calculate DIPs. Subsequently, the miter structure is constructed from 
the CuA while considering the a priori known correct key . kc yielding the SAT 
instance .Φkc and any incorrect key in . ̂K yielding . Φ

̂K. The FFs are modeled as 
pseudo primary inputs (PPIs) in cycle .n+ 1 and are connected to the corresponding 
pseudo primary outputs (PPOs) of the previous cycle n. Furthermore, similar to 
the SAT-based approach, the primary inputs use the same stimuli for both unrolled 
instances (of the CuA) and are kept constant during the unrolling. Contrary to the 
SAT-based assessment framework, in the attack framework, a miter is constructed 
to detect functional inequivalence. After the miter has been added, the key is 
constrained for both instances of the unrolled CuA. For . Φkc , the correct key . kc

is set by adding clauses implying . kc, whereby .Φ̂K is extended by a conflict clause 
excluding . kc. The entire model is stored as one SAT instance .ΦDIP and processed 
by a state-of-the-art SAT solver. 

Like in the SAT-based assessment framework, the CuA is unrolled for N clock 
cycles since for the assessment of sequential circuits, sequential elements—meaning 
flip-flops (FFs)—have to be considered [17]. Here, the value N has to be adjusted 
for the CuA characteristics. The number of clock cycles required to achieve the 
relaxation given a stimuli of the circuit varies depending on the circuit. Similar to 
the approach proposed in [5], 0 is assumed as the initialization value for all FFs in 
cycle .n = 1. 

Next, a DIP .D ∈ D is calculated, distinguishing the behavior of an arbitrary 
key from . kc. Similar to a SAT-based attack, a constraint is modeled as instance . ΦD

of the circuit that forces the equivalence to the correct key on this specific DIP. 
Only one inverted miter instance is required since the correct key . kc is given. Next, 
a new  .D′ ∈ D can be calculated. Like in a SAT-based attack, this procedure is 
repeated to narrow the search space for the keys until every remaining key results in 
a functional equivalent behavior (as yielded when the correct key is being applied). 
The algorithm terminates after the calculation of all constraints .ΦX,X ∈ D, 
meaning that .ΦD,ΦD′ , ΦD′′ , ... constrain the corrupting key to fully unlock the 
circuits. The basic principle of this adapted SAT-based attack is visualized in Fig. 5.

Afterward, DCA is used to add a new activation variable .a ∈ A for . ΦD , such that 
.ΦDa = ΦD +a. Next, .ΦDa is added to the final key determination problem instance 
.ΦKD , so that .Φkd = Φkd ∗ ΦDa . By assuming .a = 0, .ΦDa = ΦD and, hence 
equivalence to the correct key on this specific DIP is forced. Now, the next DIP . D′
can be calculated. In Fig. 6 a complete key determination instance .∀D,D′ ∈ D, and 
.∀a, a′ ∈ A is illustrated.

Once .ΦKD is complete, containing all the activatable .ΦDa , the most intimidating 
key is determined. First, the weight .w(a) = −1 is assigned for every activation sig-
nal .a ∈ A. PBO-solving techniques are utilized to determine the most intimidating 
key. In particular, an objective function . θ , defined in Eq. 1, is used to maximize 
the number of activated instances . ΦD . Therefore, the PBO solver increases the 
functional equivalence to the correct behavior on the calculated DIPs:
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Fig. 5 Adapted SAT-based attack to collect constraints for the key space
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Fig. 6 Complete key determination instance including all activatable key-space constraints

.θ = max

(

∑

a∈A

(w(a))

)

(1) 

A corrupting key is calculated by solving the problem instance .ΦKD ∗ θ that 
satisfies the functional equivalence to . kc on the maximum number of DIPs. The 
DIPs of a SAT attack are iteratively narrowing the search space of the keys to find 
a key that unlocks the circuit. Therefore, a key is considered a most intimidating 
corrupting key that satisfies the maximum number of constraints as given by the 
DIPs.Consequently, .ΦKD ∗ θ is solved for a predefined number of keys, which will 
be assessed afterward. 

The assessment of the detected keys can be performed with an arbitrary 
assessment technique, for example, the HD approach or the approach proposed 
in [5].
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4 Experimental Evaluation 

This section describes the experimental evaluation of the proposed technique to 
determine corrupting keys during the quality assessment of logic locking mech-
anisms. The experiments compare the novel approach with the determination of 
corrupting keys proposed in [5], which are used as the baseline. For the assessment 
of the detected keys, the assessment framework defined in [5] is used for both key 
determination approaches. 

All experiments have been executed on an AMD 4750U processor with 32GB 
system memory. All implementations are solely in C. ++. For the evaluation, 
different benchmark circuits of the ITC’99 benchmark suite are considered. For each 
of these circuits, 15 of the NOR, NAND, XOR, and XNOR gates have been randomly 
replaced by RFETs, while the functional behavior is retained if the correct key is 
applied. Experimental evaluations have shown that 15 RFETs can be considered a 
sufficient number of key gates to create logic locking structures with weaknesses 
that are nontrivial to analyze and, hence, hard to detect. Consequently, each circuit 
has 15 control signals resulting in .215 = 32,768 possible keys. Similar to the results 
in [5], the 1024 most intimidating keys are assessed on both the proposed and 
the baseline approaches. Furthermore, up to 1024 stimuli with functionally correct 
behaving primary outputs (POs) (per corrupting key . kf ) are captured. 

The FFs of the CuA are initialized with 0, and the stimuli are kept constant over 
all five clock cycles. Each circuit has been unrolled for five clock cycles since it has 
been proven as an appropriate parameter to cover the functional behavior’s majority 
of the considered benchmark circuits [18]. 

Table 1 shows the detailed results of the two approaches for determining 
the corrupting keys. It illustrates the number of detected corrupting keys, their 
minimum, the average and maximum number of corrupted stimuli for the novel 
SAT-based key determination approach, and the baseline approach proposed in [5]. 
Furthermore, the number of calculated DIPs for the SAT-attack-based approach is 
shown.

For the b05, b07, b08, b09, b12, b14, and b15, the results are equivalent regarding 
the number of detected corrupting keys and corrupted stimuli. However, in the case 
of the b05, the proposed approach shows that no DIP can be calculated, meaning all 
32,768 keys are behaving equivalent. This provides additional information about the 
poor quality of the underlying logic locking mechanism. Considering the circuits, 
b06, b10, b11, and b13, the novel approach shows that there are more critical 
corrupting keys than those ones as detected by the baseline approach. In fact, the 
baseline key collection algorithm can lead to a major misjudgment of the quality of 
a logic locking mechanism. 

Figure 7 presents the number of activated constraints for the corrupting keys 
when using the SAT-based key determination technique. The diagram shares further 
information about the actual equivalence of the corrupting keys to the correct 
behavior. For example, in the case of the b17, 7 corrupting keys are able to fully 
unlock the circuit, while 80 corrupting keys can satisfy 2 constraints and 712 
corrupting keys are able to satisfy 1 constraint. In the case of the b10, all 1024
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Table 1 Results—15 key bits 

SAT-attack-based approach Baseline approach [5] 

#stimuli #stimuli 

Circuit DIPs #{. kc} Minimum Average Maximum #{. kc} Minimum Average Maximum 

b05 0 – – – – 1024 2 2 2 

b06 2 1024 4 4 4 1024 2 3 4 

b07 1 3 2 2 2 3 2 2 2 

b08 2 63 256 256 256 63 256 256 256 

b09 1 1 2 2 2 1 2 2 2 

b10 2 1024 1024 1024 1024 1024 256 256 512 

b11 1 1024 128 128 128 1024 126 126 128 

b12 1 1024 32 32 32 1024 32 32 32 

b13 1 1024 1024 1024 1024 1024 512 768 1024 

b14 2 1024 1024 1024 1024 1024 1024 1024 1024 

b15 2 1024 1024 1024 1024 1024 1024 1024 1024 

b17 3 1024 1024 1024 1024 1024 1024 1024 1024 

b20 1 0 0 0 0 0 0 0 0 

b21 1 0 0 0 0 0 0 0 0 

b22 1 0 0 0 0 0 0 0 0

Corrupting keys 

C
irc

ui
ts

 

b05 
b06 
b07 
b08 
b09 
b10 
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b13 
b14 
b15 
b17 
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b21 
b22 

0 250 500 750 1000 

All constraints (#DIPs) #DIPs - 1 #DIPs - 2 #DIPs - 3 

Fig. 7 Number of DIPs with correct functional behavior for corrupting keys 

assessed keys are able to satisfy the equivalent behavior to the correct key on both 
calculated DIPs. Therefore, at least 1024 corrupting keys exist that fully unlock the 
circuit’s functional behavior resulting in an unbearable security breach. On the other 
hand, the results for the b14 and b15 show that no corrupting key fully unlocking 
the circuit’s functional behavior exists.



SAT-Based Key Determination Attack for Improving the Quality Assessment. . . 93

This clearly shows that the novel approach outperforms other approaches of 
determining the most intimidating corrupting keys, providing a more appropriate 
quality assessment of logic locking mechanisms. 

5 Conclusions 

This paper presented a novel method of calculating the most intimidating cor-
rupting keys for logic locking mechanisms. In the end, the proposed technique 
allows determining keys, which form an enormous security threat, by adapting 
the conceptual structure of SAT-based attacks and enhancing the idea with PBO 
techniques. The resulting metric ensures the detection of potential security breaches 
and outperforms the existing key determination mechanisms. Future work will 
investigate a sophisticated weight calculation for the activation signals to prefer 
activating instances . ΦD , implying that the most equivalent functional behavior is 
achieved. 
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Autosymmetric and D-reducible 
Functions: Theory and Application to 
Security 

Anna Bernasconi, Valentina Ciriani, and Licia Monfrini 

1 Introduction 

The multiplicative complexity of a Boolean function f is defined as the minimum 
number of AND gates that are necessary and sufficient to represent f with a circuit, 
using the two-input Boolean operators AND and XOR, and the negation (NOT). 
The basis {AND, XOR, NOT} is widely used to represent Boolean functions in 
cryptographic applications [7, 8, 14–16], where the multiplicative complexity plays 
a crucial role. In particular, the minimization of the number of AND gates is 
important for high-level cryptography protocols such as zero-knowledge protocols 
and secure two-party computation, where processing AND gates is more expensive 
than processing XOR gates [1]. Moreover, the multiplicative complexity is an 
indicator of the degree of vulnerability of the circuits, as a small number of 
AND gates in an {AND, XOR, NOT} circuit indicate a high vulnerability to 
algebraic attacks [8, 10, 16]. However, determining the multiplicative complexity 
of a Boolean function f is a computationally intractable problem [8]. Therefore, 
the minimization of the number of AND gates, in circuits composed by the gates 
{AND, XOR, NOT}, is important in order to estimate the multiplicative complexity 
of the function. For this purpose, Boolean functions can be represented exploiting 
XOR-And Graphs (XAGs) [11, 14, 15], and the multiplicative complexity of an XAG 
implementation of a Boolean function can be used to provide an upper bound for its 
real multiplicative complexity. 
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The “regularities” of Boolean functions are often exploited for deriving, in 
shorter synthesis time, more compact circuits. In the literature, some structural 
regularities of Boolean functions have been studied, i.e., autosymmetry [5, 6, 13] 
and D-reducibility [4]. These regularities are based on the notion of affine spaces 
and are easily expressed using XOR gates. Thus, both these structural regularities 
can be exploited for decreasing the multiplicative complexity of an XAG, and to 
better estimate the multiplicative complexity of the function. In the literature [3] 
a study of the multiplicative complexity of autosymmetric functions and a study 
of the multiplicative complexity of D-reducible functions are proposed. Moreover, 
experimental results show that about the 9% of these regular functions are both 
autosymmetric and D-reducible. 

In this paper, we further investigate on regular functions that are both autosym-
metric and D-reducible. In particular, we give a formal characterization of com-
pletely specified autosymmetric and D-reducible functions. Moreover, we study the 
case of non-completely specified functions. Finally, we discuss the multiplicative 
complexity of functions that are both autosymmetric and D-reducible. The experi-
mental results show that, for functions that are both autosymmetric and D-reducible, 
we get a better estimate of the multiplicative complexity in about 27% of the cases 
with respect to exploiting autosymmetry or D-reducibility only, with an average 
reduction of the number of ANDs of about 27%. 

2 Preliminaries 

In this section, we review the definitions and properties of autosymmetric and D-
reducible functions, and we introduce our running example. Finally, at the end 
of the section, we give a very brief introduction to multiplicative complexity and 
XOR-AND Graphs (XAGs). Hereafter, we will consider Boolean functions over n 
variables (i.e., described in the Boolean space .{0, 1}n). 

2.1 Autosymmetric Functions 

In this section, we introduce a particular regularity, i.e., autosymmetry [5, 6, 13], 
based on affine spaces. 

Intuitively, a Boolean function f over n variables is k-autosymmetric if it can be 
projected onto a smaller function . fk that depends on .n − k variables. The regularity 
of a Boolean function f is then measured computing its autosymmetry degree k, 
with .0 ≤ k ≤ n, where .k = 0 means no regularity. For .k ≥ 1 the Boolean function 
f is said to be autosymmetric, and a new function . fk depending on .n − k variables 
only, called the restriction of f , is identified. Moreover, an expression for f can 
be simply built from . fk: .f (x1, x2, . . . , xn) = fk(y1, y2, . . . , yn−k), where . fk is 
a Boolean function on .n − k variables .y1 = ⊕(X1), y2 = ⊕(X2), . . . , yn−k =
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⊕(Xn−k) and each .⊕(Xi) is a XOR whose input is a set of variables . Xi with . Xi ⊆
{x1, x2, . . . , xn}. Note that .⊕(Xi) can be a single variable, i.e., .Xi = {xj } and 
.⊕(Xi) = xj . The autosymmetry test consists of finding the value of k, the restriction 
. fk , and each single XOR with its input variables . Xi (reduction equations). Note that 
a degenerate function, i.e., a function that does not depend on all the variables, is 
autosymmetric. The computational time of the autosymmetry test is polynomial in 
the size of the ROBDD representation of f [5]. 

The restriction . fk is “equivalent” to, but smaller than f , and has . |S(f )|/2k

minterms only, where .S(f ) denotes the support of f , and thus .|S(f )| is the number 
of minterms of f . Each point of . fk in .{0, 1}n−k corresponds to a set of . 2k points in 
.{0, 1}n where f assumes the same value. The function f can be synthesized through 
the synthesis of its restriction . fk . As the new .n− k variables are XOR combinations 
of some of the original ones, the reconstruction of f from . fk can be obtained with an 
additional logic level of XOR gates, whose inputs are the original variables, and the 
outputs are the new .n− k variables given as inputs to a circuit for . fk . In general, the 
restricted function . fk can be synthesized in any framework of logic minimization. 
In this paper we derive an XAG representation of it. 

We now recall some properties of autosymmetric functions and of their restric-
tions, which will be useful for the analysis of their multiplicative complexity. As 
shown in [5, 6], any k-autosymmetric function f is associated with a k-dimensional 
vector space . Lf , defined as the set of all minterms . α s.t. .f (x) = f (x ⊕ α) for 
all .x ∈ {0, 1}n. Let  .Lf be sorted in increasing binary order, with the vectors 
indexed from 0 to .2k − 1. The set of vectors of . Lf with indices . 20, 21, . . . , 2k−1

is called the canonical basis . BL of . Lf . The  k variables that are truly independent 
onto . Lf are called canonical variables, while the other variables are called non-
canonical. Informally, the canonical variables are the ones that assume all the 
possible combinations of .{0, 1} values in the vectors of the vector space . Lf , 
meanwhile the non-canonical variables are the variables that, on . Lf , have a constant 
value or are a linear combination of the canonical ones. 

The canonical variables can be easily computed from the canonical basis 
.v1, . . . , vk , in the following way: for each . vi , let  x be the variable corresponding 
to the first 1-component from left of . vi . The variable x is a canonical variable. 

Finally, the restriction . fk corresponds to the projection of f onto the subspace 
.{0, 1}n−k where all the canonical variables assume value 0, while the reduction 
equations correspond to the linear combinations that define each non-canonical 
variable in terms of the canonical ones (see [5, 6] for more details). 

Example 1 Given an arbitrary function f , the vector space .Lf provides the 
essential information to compute the autosymmetry degree, the restriction . fk , and 
the reduction equations of f . Consider, for instance, the completely specified 
Boolean function .f (x1, . . . , x5) described by its minterms as follows: . f = {00001,
.00100, 00110, 01000, 01010, 01101, .10001, 10011, 10100, .11000, 11101, .11111}. 
The function f can be represented by the Karnaugh map depicted in Fig. 1. The  
“regularity” of the function is highlighted by the colors in the figure. The computa-
tion of the vector space . Lf and of the reduction equations is not straightforward; we
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Fig. 1 Karnaugh map for the running example (function f ), the colors highlight the autosymmetry 
regularity 

Fig. 2 Karnaugh map for the 
reduced function . f2 of the 
2-autosymmetric function 
shown in Fig. 1 

refer the reader to [5] for the complete algorithm. The vector space . Lf associated 
with f is .Lf = {00000, 01100, 10101, 11001}. In fact, for any element .α ∈ Lf , 
we have that .f (x) = f (x ⊕ α) for all .x ∈ {0, 1}n. We have that .k = log2 |Lf | = 2; 
thus, f is 2-autosymmetric. The canonical basis is .BV = {01100, 10101}. The  
canonical variables are . x1 and . x2 (i.e., the variables that correspond to the first 
ones from left in the two vectors of the canonical base). The remaining variables 
. x3, . x4, and . x5 are non-canonical. The restriction . f2, depicted in Fig. 2, can be 
computed starting from the subset of minterms .{00001, .00100, 00110} of f , where 
all the canonical variables are equal to 0. In fact, if we project these points in the 
space .{0, 1}3, corresponding to the non-canonical variables . x3, . x4, and . x5, we get 
.f2(y1, y2, y3) = {001, 100, 110}. Finally, the reduction equations for reconstructing 
the original function f are [5]: .y1 = x1 ⊕ x2 ⊕ x3; y2 = x4; y3 = x1 ⊕ x5. 

Autosymmetric functions are just a subset of all Boolean functions. Indeed, while 
the number of the Boolean functions of n variables is . 22n

, the number of autosym-
metric ones is .(2n − 1)22

n−1
[6]. Therefore, the set of autosymmetric functions is 

much smaller than the one containing all the Boolean functions. Nevertheless, a 
considerable amount of standard Boolean functions of practical interest falls in this 
class. Indeed, about .24% of the functions in the classical ESPRESSO benchmark 
suite [17] have at least one truly (i.e., nondegenerate) autosymmetric output [5, 6]. 
Thus, the interest on autosymmetric functions is motivated by (1) their compact (in



Autosymmetric and D-reducible Functions: Theory and Application to Security 99

terms of number of AND gates) representation, which consists of an XOR layer that 
is the input to an XAG for the restriction, and (2) the frequency of autosymmetric 
functions in the set of benchmark functions. 

2.2 D-reducible Functions 

In this section, we summarize the definitions and the major properties of dimension-
reducible Boolean functions, i.e., D-reducible functions. We recall that the Boolean 
space .{0, 1}n is a vector space with respect to the exclusive sum . ⊕ and the 
multiplication with the scalars 0 and 1. Moreover, an affine space is a vector space 
or a translation of a vector space [4], more precisely: let V be vector subspace 
of the Boolean vector space .({0, 1}n,⊕) and w be a point in .{0, 1}n, then the set 
.A = w ⊕ V = {w ⊕ v | v ∈ V } is an affine space over V with translation point 
w. The space V is called the vector space associated with A. Finally, a Boolean 
function .f : {0, 1}n → {0, 1} is D-reducible if .f ⊆ A, where .A ⊂ {0, 1}n is an 
affine space of dimension strictly smaller than n. 

The minimal affine space A containing a D-reducible function f is unique, and 
it is called the associated affine space of f . The function f can be represented as 
.f = χA · fA, where .fA ⊆ {0, 1}dimA is the projection of f onto A and . χA is 
the characteristic function of A. Observe that the smallest affine space contains the 
whole on-set of a function f . Thus, this regularity is different from autosymmetry, 
since the numbers of minterms of the original function f and of the projected 
function . fA are equal to each other. Moreover, as shown in [9], an affine space can 
be represented by a simple expression, consisting of an AND of XORs or literals. In 
particular, an affine space of dimension .dimA can be represented by an expression 
containing .(n − dimA) XOR factors. 

The D-reducibility of a function f can be exploited in the minimization process. 
The projection . fA is minimized instead of f . This approach requires two steps: 
first, deriving the affine space A and the projection . fA and then minimizing . fA

in any logic framework (e.g., XAG). The D-reducibility test [4], which establishes 
whether a function f is D-reducible, and the computation of A can be performed 
efficiently exploiting the Gauss-Jordan elimination procedure [12], which is used to 
find the on-set minterms of f that are linearly independent. 

Example 2 Let us consider the running example, analyzed for autosymmetry, i.e., 
the function f shown in Fig. 3. The minimal affine space A containing all the 
minterms the function f is highlighted by the color cyan in the figure. Thus, A is a 
four-dimension affine space. The canonical basis of the vector space V associated 
with A is .{00010, 00101, .01001, 10000}; its canonical variables are . x1, . x2, . x3, 
and . x4, while . x5 is non-canonical. The representation, as an AND of XORs, of 
A is .x2 ⊕ x3 ⊕ x5. Moreover, the projection of f onto the affine space A is 
.fA . = .{0000, .0010, 0011, .0100, 0101, .0110, 1000, .1001, .1010, 1100, .1110, 1111}. 
The projection . fA is represented in the Karnaugh map in Fig. 4.
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Fig. 3 Karnaugh map for the D-reducible function f . The space A of f is highlighted 

Fig. 4 Karnaugh map for the 
projection . fA of the 
D-reducible function f 
shown in Fig. 3 

2.3 Multiplicative Complexity and XOR-AND Graphs 

The multiplicative complexity .M(f ) of a Boolean function f is a complexity 
measure defined as the number of AND gates, with fan-in 2, which are necessary 
and sufficient to implement f with a circuit over the basis {AND, XOR, NOT}. 
Moreover, the multiplicative complexity .MC(f ) of a circuit C implementing a 
Boolean function f over the basis {AND, XOR, NOT} is the actual number of 
AND gates in C. Therefore, the multiplicative complexity of a circuit for f only 
provides an upper bound for the multiplicative complexity of f , i.e., . M(f ) ≤
MC(f ). In this work, we consider Boolean functions represented in XOR-AND 
graph (XAG) form [11, 14, 15], which are logic networks that contain only binary 
XOR nodes, binary AND nodes, and inverters. In particular, we refer to the XAG 
model described in [14], where regular and complemented edges are used to connect 
the gates. Complemented edges indicate the inversion of the signals and replace 
inverters in the network.
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3 Completely Specified Autosymmetric and D-reducible 
Functions 

A Boolean function f , which is D-reducible and autosymmetric at the same time, 
can be decomposed in two different ways. The first possibility is to apply the D-
reducibility decomposition, and represent f as .f = χAfA, and then to apply the 
autosymmetry reduction to . fA. The second possibility consists in decomposing the 
function f applying the autosymmetry test and deriving the restriction . fk , and then 
applying the D-reducibility decomposition to . fk . In this section, we prove that if 
f is a completely specified function, these two strategies provide the same final 
representation of the function f . 

We first recall from [3] a theoretical result contained in the proof of a theorem, 
used to prove our results. For this reason, we report it as a lemma, and we recall 
here its proof. 

Lemma 1 ([3]) Let f be an autosymmetric function with associated linear space 
. Lf . Let f also be a D-reducible function contained in the affine space A. Then, 
.Lf ⊆ V , where V is the vector space associated with A. 

Proof First of all, we observe that the vector space . Lf is a subspace of the vector 
space V associated with A. Let .α ∈ Lf , and let x be any on-set minterm of f . Then, 
.f (x ⊕ α) = f (x) = 1, and therefore both x and .x ⊕ α ∈ A. This in turns implies 
that .α ∈ (x ⊕ A), i.e., .α ∈ V , since .x ⊕ A = V for any .x ∈ A (we refer the reader 
to [9] for more details on affine spaces and their properties). 	

Example 3 Let us consider the function f described in Figs. 1 and 3. In the previous 
examples, we have shown that f is both autosymmetric and D-reducible. Example 1 
shows that .Lf = {00000, 01100, 10101, 11001}, and from the Fig. 3 of Example 2, 
we have that A . = .{00001, .00011, .00100, .00110, .01000, .01010, .01101, . 01111,
.10001, .10011, .10100, .10110, .11000, .11010, .11101, .11111}. The corresponding 
vector space is computed as .V = v ⊕A where v is any vector contained in A. Thus, 
if we pick .v = 00001 and computing .V = 00001 ⊕ A, we obtain: V . = . {00000,
.00010, .00101, .00111, .01001, .01011, .01100, .01110, .10000, .10010, .10101, . 10111,
.11001, .11011, .11100, .11110}. (Notice that we can use any v in A and we would 
obtain the same associated vector V .) We can easily verify that .Lf ⊆ V . 

Let k denote the dimension of . Lf and a be the dimension of the vector space V 
associated with A. The dimension of an affine space A is defined as the dimension 
of the corresponding vector space V . 

Proposition 1 The dimension of . Lf is less or equal to the dimension of A, and the 
canonical variables of V include all the canonical variables of . Lf . 

Proof The first part of the proposition immediately follows from Lemma 1. 
For the second part, observe that, since .Lf ∈ V , we can construct a basis for V 

extending a basis for . Lf . Each vector in a basis for . Lf corresponds to a canonical 
variable of . Lf , and consequently to a canonical variable of V . The remaining
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.a − k canonical variables of V can be derived from the remaining .a − k linearly 
independent vectors in the basis of V . 	

As a consequence, we have the following corollary. 

Corollary 1 The .n − k non-canonical variables of .Lf include the .n − a non-
canonical variables of V . 

Example 4 Let us consider the running example. Example 1 shows that the 
canonical variables of . Lf are . x1 and . x2, and Example 2 shows that the canonical 
variables of the vector space V associated with A are . x1, . x2, . x3, and . x4. In this  
running example, we have that the function is k-autosymmetric with .k = 2 and that 
.a = 4. Moreover, the non-canonical variables of . Lf are . x3, . x4, and . x5. The non-
canonical variable of the vector space V associated with A is . x5. We can verify that 
the .n− k = 5−2 = 3 non-canonical variables of . Lf contain the . n−a = 5−4 = 1
non-canonical variable of V . 

For completeness, we recall from [3] a theorem stating that if we first apply the 
D-reducibility decomposition, we do not loose the autosymmetry property of the 
function. 

Theorem 1 ([3]) Let f be a completely specified k-autosymmetric Boolean func-
tion depending on n binary variables. If f is D-reducible with associate affine space 
A, then the projection . fA of f onto A is k-autosymmetric. 

In order to prove that the two decomposition strategies provide the same final 
representation of f , we need to prove that the restriction . fk of an autosymmetric 
function preserves the D-reducibility property, as shown in the following theorem. 

Theorem 2 Let f be a D-reducible completely specified Boolean function 
depending on n binary variables, and with associate affine space A. If  f is k-
autosymmetric, then the restriction . fk of f is D-reducible with respect to the same 
affine space A. 

Proof First of all, we notice that the reduction . fk is the result of a projection of f 
onto a .(n − k)-dimensional space, where each point of . fk in .{0, 1}n−k corresponds 
to a set of . 2k points in .{0, 1}n where f assumes the same value (as reviewed in 
Sect. 2.1). 

We now show that . fk is D-reducible in .{0, 1}n−k , where it is described by the 
variables . yi corresponding to the non-canonical variables of . Lf , and defined by the 
reduction equations. Observe that the on-set minterms of . fk , and the corresponding 
minterms in the original space .{0, 1}n, are obviously covered by A. Moreover, recall 
that . fk is derived by f assigning value 0 to all the canonical variables of . Lf , and 
renaming the non-canonical variables with .y1, . . . , yn−k . If we now assign value 0 
to the occurrences of the k canonical variables of . Lf in . χA, and we rename the non-
canonical variables of . Lf as .y1, . . . , yn−k , we obtain the characteristic function of 
an .a − k dimensional subspace . A′ of A that covers . fk in .{0, 1}n−k . Therefore, . fk is 
D-reducible and can be studied in a subspace of dimension .a − k represented by a 
product of .(n − k) − (a − k) = n − a EXOR factors, i.e.,
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. fk = χA′fkA′ ,

where .fkA′ depends on .a − k variables. 
Replacing the variables .y1, . . . , yn−k in both . χA′ and .fkA′ with the corresponding 

reduction equations, we derive a representation of f as 

. f = χA fkA .

Observe that the affine space associated with f and . fk is the same. 	

In summary, we have shown how to decompose the function f with two different 

strategies. If we first apply the D-reducibility decomposition, and then exploit the 
autosymmetry property on . fA, we obtain .f = χAfAk . If, vice versa, we first exploit 
the autosymmetry of f , and then we decompose the restriction . fk using the D-
reducibility property, we get .f = χAfkA. Observe that both functions .fAk and . fkA

depend on the same .a − k variables. Finally, we have the following theorem, which 
immediately follows from Theorems 1 and 2, and from the fact that . f = χAfAk =
χAfkA. 

Theorem 3 The two decompositions are equivalent, i.e., .fAk = fkA. 

The following examples show the two possible strategies implemented on the 
running example. 

Example 5 (Autosymmetry—D-reducibility) Let us consider the running example. 
Now, we first apply autosymmetry and then D-reducibility to the given function 
f . Let us consider the function f described in Fig. 1. Example 1 shows that 
f is 2-autosymmetric and it computes the restriction . f2 as the set of minterms 
.f2(y1, y2, y3) = {001, 100, 110} in .{0, 1}3. We now compute the D-reducibility 
decomposition of . f2. The Karnaugh map for . f2 is shown on the left side of 
Fig. 5 where the affine space A, which entirely contains . f2, is highlighted in 
cyan. The function . f2 can be projected in A obtaining the Boolean function 
.f2A(y1, y2) = {00, 01, 11} depicted in the Karnaugh map on the right side of 
Fig. 5. The characteristic function of A is .(y1 ⊕ y3). In order to simply describe our 
example, we represent the function .f2A in SOP form (i.e., .f2A = (y2 + y1)). Recall 
that .f2A can be represented in any form and that we will use the XAG representation 

Fig. 5 Left side: Karnaugh map for .f2(y1, y2, y3). The space A of f is highlighted in cyan. Right 
side: Karnaugh map for .f2A(y1, y2)
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Fig. 6 Left side: Karnaugh map for the function .fA(x2, x3, x4, x5). Right side: Karnaugh map for 
. fA2(y1, y2)

in the experimental section. In summary, we have that . f2(y1, y2, y3) = χA · f2A =
(y1 ⊕ y3)(y2 + y1). In order to reconstruct the original function f , we replace the 
variables . y1, . y2, and . y3 with the corresponding reduction equations computed in 
Example 1. We have  . f (x1, . . . , x5) = [(x1 ⊕ x2 ⊕ x3) ⊕ (x1 ⊕ x5)] · [x4 + (x1 ⊕
x2 ⊕ x3)], which can be simplified. We finally obtain: 

. f (x1, . . . , x5) = χA · f2A = (x2 ⊕ x3 ⊕ x5) · [x4 + (x1 ⊕ x2 ⊕ x3)] .

Example 6 (D-reducibility-Autosymmetry) Let us consider again the running exam-
ple. In this case, we first apply D-reducibility and then autosymmetry to the given 
function f . Let us consider the function f described in Fig. 3. Example 2 shows 
that f is D-reducible, and the projection .fA(x2, x3, x4, x5) is shown in Fig. 4: 
.fA . = .{0000, .0010, .0011, .0100, .0101, .0110, .1000, .1001, .1010, .1100, .1110, .1111}. 
We now compute the autosymmetry decomposition of . fA. The Karnaugh map for 
. fA is depicted on the left side of Fig. 6. The projection . fA is autosymmetric, and 
its associated vector space is .LfA

.= .{0000, .0110, .1010, .1100}. This space has 
dimension .k = log2 |LfA

| = 2; thus, . fA in Fig. 6 is 2-autosymmetric. The  
canonical basis is .{0110, 1010} and the canonical variables are . x1 and . x2. Thus, 
the non-canonical variables are . x3 and . x4. We can now compute the restriction . fA2
using the subset .{0000, 0010, 0011} of the minterms of . fA that have the canonical 
variables set to 0. If we project such minterms into the Boolean space .{0, 1}2 of the 
variable . x3 and . x4, we obtain the function .fA2(y1, y2) = {00, 10, 11} depicted in 
the Karnaugh map on the right-hand side of Fig. 6. The corresponding reduction 
equations are: .y1 = x1 ⊕ x2 ⊕ x3; y2 = x4. A SOP form for the function 
.fA2 is .SOP(fA2) = y2 + y1. Applying the reduction equations, we have that 
.y2 + y1 = x4 + (x1 ⊕ x2 ⊕ x3). Recalling that the characteristic function of A 
is .χA = (x2 ⊕ x3 ⊕ x5), we have:  

.f (x1, . . . , x5) = χA · fA2 = (x2 ⊕ x3 ⊕ x5) · [x4 + (x1 ⊕ x2 ⊕ x3)] .
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We finally notice that this decomposition is identical to the one obtained with the 
other strategy in the previous example. 

4 Incompletely Specified Autosymmetric and D-reducible 
Functions 

In this section, we discuss the case where an incompletely specified Boolean 
function f is D-reducible and autosymmetric at the same time. 

The autosymmetry test of an incompletely specified Boolean function specifies 
the don’t cares to a 0 or a 1, in  order to  obtain a completely specified function, 
whose degree of autosymmetry is maximum [2]. Therefore, after the autosymmetry 
test, the reduced function . fk is completely specified. 

Meanwhile, the D-reducibility reduction of an incompletely specified Boolean 
function f has the objective to find the smallest affine space A that contains the 
minterms of f ; the points of A that are not minterms of f can be 0 or don’t 
cares. Thus, the projected function . fA remains an incompletely specified Boolean 
function. In any case, if we consider a function f that is both D-reducible and 
autosymmetric, the resulting decomposed functions .fkA and .fAk are completely 
specified, because of the autosymmetry test. 

When the initial function is incompletely specified, the properties proved in 
Sect. 3 do not hold. In this case, we have that the completely specified functions . fkA

and .fAk can be different. We show this through an example from the ESPRESSO 

benchmark suite [17]. 

Example 7 Consider the function f that is the first output of the bench bench-
mark defined as follows: .f on

.= .{010001, .011010, .011110, .101001, .101110}, 
.f off

.= .{000110, .001000, .001001, .001010, .001110, .001111, .100010, . 100101,
.100110}; all the other points are in . f dc. If we first apply D-reducibility and then 
autosymmetry, we obtain the Karnaugh maps shown in Fig. 7. On the left side 

Fig. 7 Left-hand side: Karnaugh of the projection . fA for bench_0. Right-hand side: Karnaugh 
map of the restriction .fA1 for bench_0
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Fig. 8 Left-hand side: 
Karnaugh map of the 
restriction . f3 for bench_0. 
Right-hand side: Karnaugh 
map of the projection .f3A for 
bench_0 

of the figure, we have the Karnaugh map of the projection . fA, which is a 1-
autosymmetric function. Thus, on the right, we have the Karnaugh map of the 
restriction . fA1. Notice that the Karnaugh map on the left contains don’t cares, 
since the D-reducibility test does not specify the don’t care conditions. If we first 
apply autosymmetry and then D-reducibility, we have the Karnaugh maps shown 
in Fig. 8. The incompletely specified function f is 3-autosymmetric. Thus, on the 
left of Fig. 8, we have the Karnaugh map of the restriction . f3. On the right side, we 
have Karnaugh map of the projection . f3A. Notice that the Karnaugh map on the left 
does not contain don’t cares, since the autosymmetry test specifies the don’t care 
conditions in order to obtain the best degree of autosymmetry. From this example, 
we can observe that the in presence of don’t care conditions, we can have two 
different final results, on changing the test ordering. 

Finally, considering the results obtained in Sects. 3 and 4, we can define the 
following strategy: 

• If the function is completely specified, we can use one of the two approaches 
(actually, the experiments in Sect. 6 show that performing the D-reducibility and 
then the autosymmetry seems to be the more efficient approach). 

• If the function is incompletely specified, we should use both approaches and take 
the best solution (the experimental results in Sect. 6 show that the running time 
cost for performing both approaches is affordable). 

5 Multiplicative Complexity 

In this section we discuss the multiplicative complexity of a completely specified 
autosymmetric and D-reducible function. 

Since f is autosymmetric and D-reducible, we can upper bound its multiplicative 
complexity by first projecting f onto A, and then by estimating the multiplicative 
complexity of the restriction .fAk of . fA, as proved in [3], in the following way 
.M(f ) ≤ (n − dimA) + M(fAk).
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Alternatively, we can first compute the restriction . fk and then estimate the 
multiplicative complexity of the projection .fk,A of . fk on the affine space A. Indeed, 
we have that, since f is autosymmetric, the multiplicative complexity of f (i.e., 
.M(f )) is equal to the multiplicative complexity of . fk (i.e., .M(fk)). In fact, f can be 
reconstruct from . fk just replacing the . yi with XORs of literals. Moreover, as proved 
in [3] we have that, if f is D-reducible, then .M(f ) ≤ (n−dimA)+M(fA). Recall 
that we have proved in Sect. 3 that, if f is both autosymmetric and D-reducible, 
also . fk is D-reducible. Therefore, we can say that .M(fk) ≤ (n−dimA)+M(fkA). 
Since .M(f ) = M(fk), we finally have that .M(f ) ≤ (n − dimA) + M(fkA), as  
expected. 

6 Experimental Results 

In this section, we report and discuss the experimental results reached applying both 
the autosymmetry test and the D-reducible decomposition to Boolean functions in 
the benchmarks from ESPRESSO, LGSynth’89 benchmark suite [17] and to some 
functions from cryptography benchmarks in the context of multiparty computation 
(MPC) and fully homomorphic encryption (FHE) [14, 15]. 

The experiments have been run on a Intel(R) Core(TM) i7-8565U 1.80GHz 
processor with 8.00GB RAM, on Windows 11 for D-reducibility, and on a virtual 
machine running OS Ubuntu 64-bit for autosymmetry. 

Observe that autosymmetry and D-reducibility are properties of single outputs, 
e.g., different outputs of the same benchmark can have different autosymmetry 
degrees. Therefore, we perform the autosymmetry and D-reducibility tests on the 
single outputs of the considered benchmark suites. We considered each output 
as a separate Boolean function, and analyzed a total of 237 D-reducible and 
autosymmetric (nondegenerate) functions. The given functions and their restrictions 
or projections have been synthesized in XAG form using the heuristic approach 
proposed in [14]. 

We conducted four tests each composed by the following overall strategy: (1) 
regularity test (autosymmetry alone; or D-reducibility alone; or first autosymmetry 
and then D-reducibility; or first D-reducibility and then autosymmetry); (2) XAG 
construction on the projected/reduced function [14]; and (3) reconstruction of the 
original function in XAG form (adding XORs from the reduction equations and/or 
adding AND of XORs for the characteristic function of the affine space A). 

We report in Table 1 a significant subset of functions as representative indicators 
of our experiments. The first column reports the name and the number of the 
considered output of each benchmark. The following triples of columns report the 
multiplicative complexity of the XAG (AND) and the number of XORs (XOR) for 
the case we are considering, obtained running the heuristic in [14], and the running 
time in seconds. These triples describe the results for the following four different 
strategies: autosymmetry alone, D-reducibility alone, first autosymmetry and then 
D-reducibility (A. +D), and first D-reducibility and second autosymmetry (D. +A).
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The experiments show that the functions where the XAG minimization can 
benefit from autosymmetry and D-reducibility are about 27%, with an average 
reduction of the number of ANDs of about 27.4%; the number of functions where 
the estimates of the multiplicative complexity are the same is about 66.7%, while 
for the 6.3% of the functions, the method provides a worst result. The worst 
result could come from the fact that the approach proposed in [14], for XAG 
synthesis, is heuristic. Some particular benchmarks seem to highly benefit from the 
proposed strategies. For example, the benchmark t4_3 can be represented using 
the D. +A approach with the gain of 55%, in AND gates, with respect to exploiting 
autosymmetry alone.We finally observe that the combined methods can also provide 
a reduction of the number of XOR gates, due to the XOR factorization in both 
approaches. 

In conclusion, the experiments show that: 

1. Running times deeply depend on the XAG heuristic [14]. Moreover, in general, 
the running time for the XAG heuristic depends on the dimension of its input 
function. For this reason, in the cases when we perform both the testing 
procedures, often the total running times are reduced since the input function 
for the XAG heuristic is smaller. In other words, the gain in running time for 
constructing the XAG is higher than the running times required for testing the 
two regularities. 

2. In case of completely specified functions (where A. +D and D. +A give the  same  
results), the strategy more convenient is D. +A since this strategy has better 
running times. 

3. In case of incompletely specified functions, it is convenient to test both strategies 
A. +D and D. +A in order to find the best solution. The sum of the running times of 
the two approaches (A. +D and D. +A) is about the 50% greater than the running 
time of the autosymmetry approach alone (which is much more time-consuming 
than the D-reducibility test). Therefore, testing both strategies (A. +D and D. +A) 
is still computationally convenient. 

7 Conclusion 

This paper has addressed regular functions that are both autosymmetric and D-
reducible. The theoretical study shows that in the case of completely specified 
Boolean functions, the two tests can be performed in any order, obtaining exactly the 
same decomposition. In the case of incompletely specified Boolean functions, this 
property does not hold. The experimental results validate the proposed approach. 
Future works can include the study of other XOR-based regularities for enhancing 
the computation of multiplicative complexity.
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Two-Operand Modular Multiplication to 
Small Bit Ranges 

Danila Gorodecky and Leonel Sousa 

1 Introduction 

Residue number system (RNS) and modular arithmetic provide data parallelism by 
representing integers as residues given a preselected moduli set . {p1, p2, . . . , pm}
of co-prime numbers, with .Z = p1 · p2 · ... · pm. Each of these residues requires 
a significantly lower number of bits than the ordinary representation. Arithmetic 
operations on residues are calculated independently for each modulo of the set. A 
larger number of smaller moduli provide parallelism and allow fast calculations, 
achieving high performance computing. The range of integers represented in the 
RNS domain cannot exceed Z different integers. 

Implementations of RNS can be found in aircraft systems [1], neural compu-
tations [2], real-time signal processing (pattern recognition) [3], cryptography [4], 
and radio astronomy [5]. In general, RNS is efficient for processing large amounts 
of data (hundreds and thousands of bits) [6] or repeatedly computed arithmetic 
operations, as well as in assuring the reliability of computational arithmetic [2, 7, 8]. 

Data processing in RNS involves the following steps, as depicted in Fig. 1: 

1. input operands .A1, A2, . . . , An are converted from a positional representation 
into a modular representation as a set of residues (block (1) on Fig. 1); 

2. arithmetic operations with these residues, for each modulo . p1,. p2, .. . . , pm, are  
computed (central blocks on Fig. 1); 
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Fig. 1 RNS structure 

3. the residues .S1, S2, . . . , Sn for each modulo are converted back from the RNS 
domain to the positional number representation S (block (2) on Fig. 1). 

Thus, the RNS structure consists of two types of components: converters and 
arithmetic units (adders and multipliers). 

A major limitation to the application of RNS in real life is the requirements 
of converters, blocks (1) and (2) on Fig. 1. Forward computation of residues 
(.X(modP )) and backward recovery of positional representation are indispensable. 

There are several memory and combinational hardware realizations of RNS 
converters [9]. Memory-free approaches are important for high performance com-
puting, but the main severe restriction on special moduli for the set does not allow 
wide-range RNS implementations. Generally, these moduli sets consist of variations 
of .2δ ± d [10], where .d = 1, 3, 5, is a natural number, and all selected moduli must 
be co-prime numbers. According to this condition, in order to multiply, for example, 
two 50-bit integer numbers, the following moduli set can be adopted: . {24 − 5, 24 +
1, 24 + 3, 25 − 1, 26 ± 3, 26 − 5, 27 − 1, 27 ± 3, 28 − 5, 28 + 1, 29 − 3, 29, 210 − 5}. 

This set consists of 15 co-prime numbers, and the speed of calculation is limited 
by 10-bit multiplication modulo .210 − 5. On the other hand, 50-bit multiplication 
can be computed in the scope of a set of 19 more general co-prime integers, such as 
.{73, 71, 67, 64, 61, 59, 53, 49, 47, 43, 41, 37, 31, 29, 27, 25, 23, 19, 17}, where the 
slowest multiplication is limited by 7 bits, modulo 73. 

The memory-based design of arithmetic units by modulo P (converters from 
RNS to binary) is organized as a pipeline and reduces the length of inputs X from 
k to . δ in a step-by-step manner, where k is bit range of the input and P is .δ-
bit modulo [11]. Commonly, pipelining of memory-based approaches of modulo 
calculation consists of .k−δ similar blocks, with each block executing multiplication, 
subtraction, and comparison. For instance, conversion of a 100-bit number on 
modulo 997 requires 90 stages of pipelining. Thus, this type of converters takes
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large area costs and imposes a long calculation latency. Another type of memory-
based approaches uses memory to store all possible pre-computed residues for every 
modulo from the moduli set [10]. This technique is based on lookup tables. 

Hardware implementation of modular arithmetic is organized similarly to the 
conversion operations, i.e., arithmetic operations for a special moduli set are realized 
with non-memory techniques and calculation for an arbitrary modulo utilizes 
memory. 

This chapter proposes a non-memory approach for computing . A · B =
R(mod P ), for an arbitrary value for modulo P . Experimental results of the 
synthesis of these units on FPGA are presented. 

2 Two Operand Modular Multiplication 

Allowing an arbitrary modulo may reduce significantly the bit range of multiplica-
tion comparing to multiplication for a special moduli set. Considering multiplication 
in RNS for an arbitrary moduli set in 50-bit range, as it has noted in the introduction, 
the difference in slower multiplications is 3 bits (i.e., the largest modulo from the 
first set is .210 − 5, 10 bits are required, while the largest modulo for the second set 
is 73, requiring only 7 bits). 

Arithmetic calculation is the main gain of using RNS. RNS splits inputs into sub-
vector of smaller bit ranges; with smaller bit range of sub-vectors, the performance 
of calculations increases. On the other hand, RNS deals with special values of 
moduli due to the complexity of transformation to/from RNS for an arbitrary value 
of modulo. 

This research is focused on modular multiplication for an arbitrary value of 
moduli, taking into account the idea of efficient transformation [12]. Thus, for 
instance, multiplication of two 3000-bit numbers might be represented as the 
parallel multiplication by 560 different moduli in RNS, where every modulo does 
not exceed 12-bit range. That is why the emphasis on multiplication by moduli up 
to 12-bit values. 

The architecture of multiplication is based on the idea of constructing small 
blocks of adders and multipliers to organize multiplication for any bit range [13]. 

The idea of the approach consists of three steps, as pictured on Fig. 2: input 
splitting, bit-range reducing, and comparing and subtraction. 

Fig. 2 Steps of the proposed approach for modular multiplication
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2.1 Binary Digit Fragmentation 

The first branch of the approach decomposes inputs A and B of Fig. 2 into bits 
multiplied by power of two constants and the results added modulo: 

.A · B(mod P ) =
k∑

i=1

k∑

j=1

(
ai · bj · 2i+j−2)(mod P ) = S, (1) 

where .A = (ak, ak−1, . . . , a1) and .B = (bk, bk−1, . . . , b1), where k bit is the most 
significant bit. 

The sum is calculated in a recursive manner, while sum .> 2 · P , according to 
Algorithm 1. 

Algorithm 1: Algorithm for modular multiplication 

Note that the output of Algorithm 1 is the result S, which does not exceed 
.2k+2 − 1. Experimentally, it has been detected that recursive sum (the loop part 
of the Algorithm) is computed in 2 or 3 cycles for up to 12-bit modulo. 

Consider an example for two 3-bit operands .A = (a3, a2, a1), . B = (b3, b2, b1)

and multiplication by modulo .P = 7. Thus, formula 1 takes the form:
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. 

A · B(mod 7) = a1 · b1(mod 7) + a1 · b2 · 2(mod 7) + a1 · b3 · 22(mod 7)

+ a2 · b1 · 2(mod 7) + a2 · b2 · 22(mod 7) + a2 · b3 · 24(mod 7)

+ a3 · b1 · 22(mod 7) + a3 · b2 · 23(mod 7) + a3 · b3 · 24(mod 7)

= a1 · b1(mod 7) + a1 · b2 · 2(mod 7) + a1 · b3 · 4(mod 7)

+ a2 · b1 · 2(mod 7) + a2 · b2 · 4(mod 7) + a2 · b3 · 2(mod 7)

+ a3 · b1 · 4(mod 7) + a3 · b2 · 1(mod 7) + a3 · b3 · 2(mod 7)

= S ≤ 21,

where .S = (s5, s4, s3, s2, s1). 
Note that .S = 21 if . a1 · b1 = a1 · b2 = a1 · b3 = a2 · b1 = a2 · b2 = a2 · b3 =

a3 · b1 = a3 · b2 = a3 · b3 = 1. 
Then 

. 

S = s1 · 20(mod 7) + s2 · 21(mod 7) + s3 · 22(mod 7)

+ s4 · 23(mod 7) + s5 · 24(mod 7)

= s1 · 1(mod 7) + s2 · 2(mod 7) + s3 · 4(mod 7)

+ s4 · 1(mod 7) + s5 · 2(mod 7)

= Stemp ≤ 2 · P.

Actually, the maximum value of .S_temp achieves 8, if . s1 = s2 = s3 = s4 = 1
and .s5 = 0. 

The final step of multiplication compares .S_temp with P and subtracts P from 
.S_temp if needed. 

2.2 Sub-Vector Splitting 

The other part of the approach is to segment factors into 2- to 6-bit sub-vectors, 
depending on the initial length of the factors, and perform modulo multiplication of 
pairs of sub-vectors by power of 2 constants. This technique proposes to consider 
the multiplication of sub-vectors by a constant as a system of Boolean functions. 
Tools like Espresso [14] and ABC [15] can be used to minimize these systems of 
functions. 

The question of optimal splitting factors for multiplication in regular arithmetic 
has been already investigated in [16]. Results of experiments, for which the bit range 
of results is equal to the length of the factors, are shown in Table [16]. This result 
was obtained for two-level minimization; multi-level minimization has not been 
considered yet.
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Table 1 Comparison of Synopsys multiplication and minimized Boolean functions in Espresso 

Type of multiplication, Speed of calculations, GHz 

BITs . × BITs . → BITs Espresso multiplication Synopsys multiplication 

.2 × 2 → 2 6.25 6.66 

.3 × 3 → 3 5.55 5 

.4 × 4 → 4 5.3 4 

.5 × 5 → 5 3.45 3.13 

.6 × 6 → 6 2.78 2.85 

.7 × 7 → 7 2.39 2.7 

.8 × 8 → 8 2 2.43 

According to the experimental results in Table 1, 3 by 3, 4 by 4, and 5 by 5 bit 
multiplications are preferable. Since 3 by 3 bit multiplication provides the highest 
speed, it is used as the base for modular multiplication. If a bit length of an operand 
is not divisible by 3, it is split into 3-bit sub-vectors and one 1- or 2-bit additional 
sub-vector. For instance, 8-bit operand is split into two 3-bit and one 2-bit sub-
vectors. Thus, binary representations of both factors are split into .�k/q� = v sub-
vectors, where q is the bit range of the sub-vectors with the largest number bits. 
For instance, splitting 8-bit operands A and B into 3-bit sub-vectors, .q = 3 and 
.v = �8/3� = 3. 

In common, k-input A and B values are split into q-bit sub-vectors. Typically, in 
the worst case, when .δ = �log2P �+1 = k, the maximum value of S does not exceed 
.(P − 1) · v. The most suitable bit range of q is defined experimentally depending on 
the hardware features. This research focuses on multiplication .A · B = S(mod P ), 
where .A,B and P vary from 6 to 12 bits; then, the product of multiplication is 
calculated in two steps. On the first step, the sum of products of two sub-vectors is 
calculated with Eq. 2. 

.A · B(mod P ) =
v∑

i=1

v∑

j=1

(
Ai · Bj · 2(i+j−2)·q)

(mod P ) = S, (2) 

where .A = (Av,Av−1, . . . , A1) and .B = (Bv, Bv−1, . . . , B1) are v dimension sub-
vectors, q is the number of bits per sub-vector, and A and B are k-bit vectors. 

Equation 2 is applied while .Stemp ≤ 2 · P , in a recursive manner, according to 
Algorithm 2. 

Consider an example with .A · B(mod 47), i.e., A and B are 6-bits numbers. 
Splitting operands into two, i.e., .v = 2, 3-bit sub-vectors, formula 2 is unrolled as 

.

A · B(mod 47) = A1 · B1(mod 47) + A1 · B2 · 23(mod 47)

+ A2 · B1 · 23(mod 47) + A2 · B2 · 26(mod 47) =
= Stemp1 .
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Algorithm 2: Algorithm for modular multiplication 

.Stemp1 takes the maximum value if .A = 45 and .B = 15, and it equals to the 8-bit 
width number .158 = (10011110). 

Decimal 45 in binary is .(101101) and 15 in binary is .(001111). Hence, . A1 =
A2 = (101) or 5 in decimal, .B1 = (111) or 7 in decimal, and .B2 = (001) or 1 in 
decimal. Returning to formula 2, we have:  

. 

A · B(mod 47) = 5 · 7(mod 47) + 5 · 1 · 23(mod 47)

+5 · 7 · 23(mod 47) + 5 · 1 · 26(mod 47)

= 35(mod 47)+40(mod 47)+40(mod 47)+45(mod 47) = 158.

The idea behind the iterative implementation of Algorithm 2 is to reduce . Stemp1

to the value which is less than .47 · 2. Let’s assume that .Stemp1 = 158, then 

. Stemp2 = 6 + 3 · 23(mod 47) + 2 · 26(mod 47) = 6 + 24 + 34 = 64.

Taking into account that .2 · 47 > 64 > 47, .S = 64 − 47 = 17. 
Note that .Stemp1 is precalculated and is specified in the realization. 

3 Boolean Representations 

The central point of the proposed approach is minimization of a system of Boolean 
functions, which represents the multiplication of a sub-vector by a sub-vector and
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two sub-vectors by a constant. Additionally these multipliers are used as structural 
blocks. 

With the primary focus on the synthesis of modular multipliers for FPGAs, it is 
crucial to take into account the hardware features of the target devices. 

The main circuit of an FPGA is the lookup table (LUT), a memory for 
implementing a system of Boolean functions. Typically, FPGA LUTs have four, five, 
or six inputs. Thus, we can represent modular multiplication as the superposition of 
functions, where the number of variables of each and every function is equal to 
the number of inputs of the FPGA. This is a multi-level representation of Boolean 
functions. 

In some cases two-level representation of systems of Boolean functions might 
be more efficiently implemented, as it is shown in [16]. Applications for two- and 
multi-level minimization of systems of Boolean functions have been proposed, such 
as ABC [15] and FLC2 [17]. The contribution [18] describes in detail the process 
and the sense of multi-level minimization for FPGA implementation. 

In the experiments we have used a multi-level minimization of Boolean functions 
for targeting on five- and six-input LUTs, and two-level minimization in disjunctive 
normal form. The first branch of the proposed technique is based on fragmentation 
of operands into bits and is characterized by .O(δ2) sums, where . δ is the number of 
bits of the inputs. For example, 51 additions are needed for .P = 47. The second 
branch of the proposed technique is concluded by summing q-bit vectors and is 
characterized by .O(q) sums. For .P = 47, there are six sums needed. 

The second branch of the technique consists in representing each operand in 
formula 2 as a minimized system of Boolean functions. In the example from the 
previous section, .A1 · B1(mod 47), .A1 · B2 · 23(mod 47), .A2 · B1 · 23(mod 47), 
.A2 ·B2 ·26(mod 47) are considered as the system of Boolean functions. For instance, 
the truth table of .A2 · B2 · 26(mod47) = R realization is represented in Table 2. It  
consists on 64 rows and 17 columns, but constant columns are formal, and they 
are not included into the truth table during minimization, because the value of the 
constant is the same for all lines in the truth table. 

Table 2 Truth table for 
. A2 · B2 · 26(mod 47)

Constant 

.A2 .B2 (.26(mod 47) = 17) R 
000 000 10001 000000 

000 001 10001 000000 

.. . . .. . . .. . . . . . .

001 001 10001 010001 

001 010 10001 100010 

.. . . .. . . .. . . . . . .

111 110 10001 001001 

111 111 10001 100010
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4 Hardware Realization of Modulo Multipliers 

This section presents the results of the synthesis of modular multipliers . A ·
B(mod P ) for moduli: 47, 113, 241, 491, 887, 2001, and 4051. 

All multipliers were described on Verilog. The performance is considered as 
the critical path in nanoseconds (ns). All approaches are non-memory; the area 
is measured as the number of FPGA LUTs. Vivado suite provides the option 
to synthesize a scheme without implementing any Block RAM (BRAM) and 
multipliers of FPGA. It aims to synthesize a scheme only with LUTs. 

The experiments have been conducted on a Kintex-7 (xa7z010clg225-1l) in 
Xilinx Vivado 2019.1. Table 3 provides the number of LUTs and the critical 
path for the considered multipliers. The technique proposed in Sect. 2.1 Binary bit 
fragmentation of Sect. 2 is designated per_bits. The techniques proposed in Sect. 2.2 
Sub-Vector Splitting of Sect. 2 are implemented in three different ways:

• two-level minimization (Espresso and FLC2) with exact minimization mode— 
2lev; 

• multi-level minimization for 5-input LUTs (ABC and FLC2)—5lt; 
• multi-level minimization for 6-input LUTs (ABC and FLC2)—6lt. 

These four realizations are compared with the standard realization of modular 
multiplication by Xilinx Vivado (Standard in Table 3). The advantages of the 
proposal in comparison with the standard realizations are highlighted in Table 3. 

We may conclude that the implementation of two- and multi-level minimization 
are the best to what concerns performance. The length of the critical paths varies 
depending on the value of the exact modulo. In fact, Vivado saves area costs with 
the implemented algorithm for moduli 113 and 221. Commonly, it is difficult to 
define a dependency between the value of modulo and the figures of merit of the 
realization: the critical path and the area cost. There is no gain in the per_bits 
individual approach for modular multiplication on FPGA. 

5 Conclusion and Further Work 

Correctness in RNS calculations demands co-prime moduli set. The known 
approaches of modular multiplication are oriented to special moduli. This 
contribution proposes a technique for efficient modular multiplication in the RNS 
domain without any requirement of special moduli. The idea behind the approaches 
is to split the inputs into smaller sub-vectors and sum the partial products. The 
sub-vector multiplication with reduction is optimized through minimization of 
systems of Boolean functions. Experimental results were provided for FPGA 
implementations. The experimental results cover a range of moduli represented with 
6–12 bits. The main conclusion is that the proposed approach allows to achieve a 
trade-off between performance and area costs on FPGAs, and the resulting modular
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Table 3 Synthesis Results: LUTs and Critical Path 

#LUTs “. +” (advantage) or “. −” Critical path (ns) (“. +” (advantage) 

(disadvantage) in % comparing or “. −” (disadvantage) in % 

P with the standard) comparing with the standard) 

Standard 

47 91 24.0 

113 81 19.9 

241 152 24.7 

491 175 24.1 

887 231 27.0 

2011 221 31.4 

4051 298 31.3 

2lev 

47 54 (. + 41%) 13.9 (. + 42%) 

113 122 (. −51%) 18.1 (. + 9%) 

241 119 (. + 22%) 19.2 (. + 22%) 

491 131 (. + 25%) 18.2 (. + 24%) 

887 242 (. −5%) 26.0 (. + 4%) 

2011 285 (. −29%) 27.5 (. + 15%) 

4051 291 (. + 4%) 27.3 (. + 23%) 

per_bits 

47 205 (. −125%) 12.3 (. + 51%) 

113 260 (. −220%) 70.8 (. −256%) 

241 462 (. −203%) 98.5 (. −299%) 

491 249 (. −42%) 115.7 (. −380%) 

887 360 (. −56%) 44.0 (. −63%) 

2011 363 (. −64%) 39.0 (. −24%) 

4051 557 (. −87%) 45.1 (. −44%) 

5lt 

47 51 (. + 44%) 13.7 (. + 43%) 

113 116 (. − 43%) 19.3 (. + 3%) 

241 140 (. + 8%) 17.9 (. + 27%) 

491 125 (. + 29%) 19.3 (. + 20%) 

887 244 (. −6 %) 24.3 (. + 10%) 

2011 280 (. −27%) 25.2 (. + 20%) 

4051 297 (0%) 28.6 (. + 9%) 

6lt 

47 52 (. + 43%) 14.4 (. + 40%) 

113 114 (. −40%) 19.7 (. + 1%) 

241 129 (. + 15%) 19.2 (. + 22%) 

491 129 (. + 26%) 18.7 (. + 22%) 

887 245 (. −6%) 25.3 (. + 6%) 

2011 283 (. −28%) 24.5 (. + 22%) 

4051 310 (. −4%) 26.7 (. + 16%)
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multipliers are more efficient than the ones implemented with FPGA automatic 
synthesis tools. Future research may consider to increase the number of operands 
up to some dozens in modular multiplication, and to extend the bit range of inputs. 
Another path of research is to minimize the Boolean representations of multipliers 
within the class of Reed-Muller polynomials. 

Further research may include upgrading steps of calculations pictured on Fig. 2: 
choosing the most appropriate technique of minimization and bit range of input 
splitting (left block of the figure); improving the architectures of reducing (central 
block of the figure); and comparing and subtraction (right block of the figure). 
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Low-Latency Real-Time Inference for 
Multilayer Perceptrons on FPGAs 

Ahmad Al-Zoubi and Goerschwin Fey 

1 Introduction 

In areas like process control systems, e.g., in particle accelerators, autonomous 
driving, and critical infrastructures, control and monitoring systems are increasingly 
adapting to the use of neural networks, due to their high accuracy and tolerance to 
faulty data [4, 5, 11]. Given the sheer volume of sensor and image data on one 
hand, and the critical timing of output inference on the other hand, these systems 
are required to process this data with high throughput and low latency. Here, 
throughput measures the number of data samples processed within a given time, 
while latency measures the time between receiving a data sample and inferring the 
related result, e.g., a category that corresponds to a control decision or new control 
parameters. While several studies and commercial processing units have focused 
on the throughput aspect of the neural networks inference performance, latency-
optimized processors were falling behind. Nevertheless, very low latency is required 
for real-time neural network processors in certain applications. 

The multilayer perceptron (MLP) is a type of feed-forward neural network 
that uses the back-propagation technique for its training. An MLP has an input 
layer which acts as a receiver, one or more hidden layers for data computation, 
and an output layer which predicts the output. The ability of learning complex 
nonlinear relationships, generality, and imposing no restrictions on the input data 
distribution resulted in a wide use of this type of neural network. Along with its 
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parallel computation model, the MLP presents a worthwhile subject for hardware 
acceleration, specifically in real-time settings. 

In this work, we propose a low-latency optimized architecture for MLPs. Mainly 
focusing on improving the latency of an inference, our architecture uses early eval-
uation by splitting activation functions in piecewise linear segments, specifically the 
PLAN approximation of the sigmoid proposed in [8]. Developed using high-level 
synthesis (HLS), the architecture’s performance in terms of accuracy, throughput, 
latency, and power consumption is then analyzed in comparison with the state-
of-the-art implementation. Specifically, we compare our architecture to another 
latency-driven design [3] and to highly tuned commercial IPs provided by the FPGA 
vendor [9]. In both cases, our proposed architecture has a significantly lower latency. 

The rest of the paper is organized as follows: Sect. 2 presents and discusses 
the related work, Sect. 3 describes in detail the proposed MLP architecture, Sect. 4 
displays the experimental results, while conclusions and future work are discussed 
in Sect. 5. 

2 Related Work 

Although developed for different applications, several studies have proposed accel-
erated implementations of the MLP; we discuss a representative set of them. In 
[10], the authors proposed an FPGA-based implementation of the MLP for gas 
classification. The proposed architecture uses a set of parallel lookup table (LUT)-
based processing elements (PE), to handle the multiplications and the additions, 
while the activation functions were realized using read-only memory (ROM). 
The evaluation has proven a significant speedup in comparison with the software 
version. However, the use of memory to store support points to approximate the 
activation function limits the speedup as each neuron has to look up for the 
appropriate value in an address of a large number of elements, in this specific 
case 1001 support points. In [3], the authors proposed an architecture suitable for 
requirements given by an activity classification task. Similar to the aforementioned 
study, the multiplication-addition were carried in a parallel fashion. However, the 
ROM implementation of the activation function was replaced with a set of linear 
segments. The proposed implementation did show a 2x speedup as a result. Still, 
the architecture retained the sequential order of multiply-add-activate, which leaves 
room for further enhancements in the execution flow. In [1], the authors developed 
a 32-3-4 MLP neural network (32 input neurons, 1 hidden layer of 3 neurons and an 
output layer of 4 neurons) for a multispectral classification of satellite images. Using 
VHDL as the prototyping language, the implementation was 8 bits and was capable 
of achieving 670 ns of inference speed. Nonetheless, similar to the work in [10], 
the implementation of the activation function was memory based and following the 
same sequential order of neuron execution, not fully exploiting the parallel nature 
of both the MLP and FPGA. Finally, in [2], the authors used the Xilinx System 
generator to implement a classifier for blue whale calls. Despite not reaching a true
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real-time performance, the implementation showed how flexible it is to use a higher 
level of abstraction to prototype the MLP model. The examples while showing 
varying techniques in implementing the activation function of an MLP on FPGA 
all share the sequential execution model of the single perceptron. The novelty of the 
architecture proposed here is in the parallel evaluation of the activation values, when 
segmented into a set of linear functions, providing significant decrease in design 
latency. 

3 Implementation 

In this section, we discuss the proposed architecture broken into the neuron model 
and MLP model, where we show the parallelization of the activation function. In 
addition, we discuss the optimizing pragmas inferred in the C/C++ implementation 
for HLS, to achieve the final desired performance. 

3.1 Neuron Model 

The neuron is considered the fundamental block in the structure of the MLP. 
Each of the neurons in a given layer receives a set of inputs, where each has 
to be multiplied by a set of weights tuned in the training process, before the 
accumulated summation of these products undergoes a given activation function. 
The mathematical representation of a single neuron is defined as follows: 

.yj = f

((
n∑
i

wjixi

)
+ bj

)
(1) 

where . yj is the output of the j th neuron, . xi is the ith input, of the neuron, .wji is the 
ith element of the trained weight set of the j th neuron, while . bj is the bias of the 
neuron and f is the activation function. In this work, to have a fair comparison to the 
state of the art and to show the gains of our parallel architecture, we will focus on 
the sigmoid as the nonlinear activation function, forming the most computationally 
intensive part in our neuron model, which is given in the following formula: 

.S(x) = 1

1 + e−x
(2) 

Based on the function segmentation technique of nonlinear formulas, we adopt 
the PLAN function, as this is one of the best approximations of the sigmoid 
activation [8]. Table 1 shows the details of the PLAN function, while the proposed 
architectural model of the neuron is illustrated in Fig. 1. As shown in the neuron
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Table 1 PLAN sigmoid 
approximation function 

Sel X Y = F(x)  

0 .0 ≤ |x| < 1 . 0.25 × |x| + 0.5

1 .1 ≤ |x| < 2.375 . 0.0125 × |x| + 0.625

2 .2.375 ≤ |x| < 5 . 0.03125 × |x| + 0.84375

3 .5 ≤ |x| . 1

Fig. 1 Neuron model 

model, the input-weight’s multiplication and addition are parallelized for all activa-
tion possibilities at the same level of the activation selection, i.e., we evaluate all 
causes of the linear function segments while computing the selective lines. 

In order to clarify further the calculations behind this architecture, let us take the 
first linear segment from Table 1 as an example. The linear function takes the sum 
of products . |x| and adds the bias of the neuron. Knowing the absolute value, the 
linear function therefore is evaluated if x is in the range .0 ≤ x < 1 or .0 ≥ x > −1; 
hence .−1 ≤ x < 1. The substitution at this stage is as follows:
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.F(x) = 0.25 ×
((

n∑
i

wjixi

)
+ bj

)
+ 0.5 (3) 

Given that .wji and . bj are constants known a priori, the formula can be further 
reduced to 

.F(x) =
((

n∑
i

cjixi

)
+ bjc

)
(4) 

where . cji is the result of multiplying the .wji with 0.25 and . bjc is the neuron . bj bias 
multiplied by 0.25 and added to 0.5. This applies analogously for the second and 
third formulas, while for values higher than 5 and or lower than . −5, the output is 
either 1 or zero, respectively. This implementation allows for pre-computing the set 
of coefficients and biases that are needed to be multiplied and added to the neuron 
input, saving computational costs on the FPGA, and completely parallelizing the 
neuron computations with coefficients stored directly on the FPGA, shortening the 
length of the data path. This directly reduces the latency for inferring the output for 
given input samples. 

3.2 MLP Model 

In order to capitalize on the parallel architecture proposed for neuron computations, 
the MLP structure is also designed to process all neurons in a single layer all at the 
same time, as shown in Fig. 2. In addition, each input neuron has to be normalized, 
and a normal maximum has been added after the output layer, so the MLP can be 
used as a multi-class classifier. Given the nonlinear form of the soft-max, it naturally 
requires more computing resources and, more important, an expensive penalty to 
the inference latency. In compliance with the architectural optimization target of 
resource and computational complexity savings, the normal maximum has been 
chosen over the soft-max. 

Fig. 2 MLP model
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3.3 HLS Pragmas 

Xilinx Vitis HLS [6] allows prototyping FPGA designs in C/C++ and provides a 
wide selection of compiler pragmas that can be used to enhance the performance of 
the design under development. In the proposed architecture, the following pragmas 
have been applied: 

• Loop unrolling: The loop unrolling pragma allows for the replication of oper-
ations found in the body of the loop to be executed in parallel, and therefore 
enhances the loop’s performance. However, this pragma is considered one of 
the most resource consuming, and for large, high bounded loops, a partial loop 
unrolling option is recommended over full unrolling. In our architecture we adopt 
a relatively small MLP implementation, and therefore all loops on both neuron 
and MLP models have been fully unrolled. 

• Pipelining: The pipelining pragma allows for the concurrent execution of the 
operations in the selected region, and therefore increases utilization efficiency of 
the resources, either on loop, function, or top-level module levels. Similar to the 
case of loop unrolling, we adopt a top level pipelining style. 

• Array Partitioning: As weights, biases, and coefficients are all stored on the 
FPGA side for maximal performance, the implementation of this data was 
realized through the complete partitioning option of the pragma, i.e., using 
multiple registers instead of the Block-RAM (BRAM) memory. 

Note, while prototyping in HLS, restrictions on the target processing elements for 
certain operations exist as well. In certain implementations, like in [3], digital signal 
processing (DSP) slices were the main processing elements for multiplications 
and additions. However, although a DSP is considered faster than an equivalent 
functionality in programmable logic (PL) for the same operations, routing the design 
can grow problematic, limiting the operational frequency. Therefore, we adopt a 
more relaxed approach in realizing the desired architecture, to achieve the fastest 
possible implementation with successful timing closure, by allowing the synthesis 
tool to alternate its operation target according to the requested clock time. 

4 Experimental Results 

In this section, we describe the development environment; discuss the performance 
of the proposed MLP accelerator in terms of accuracy, latency, resources, and power 
consumption; and finally compare the performance of our IP to the state of the art.
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Fig. 3 System block design 

4.1 Experimental Setup 

This work addresses the human activity recognition application, classifying the 
activity based on accelerometer sensor data. The network topology is 7-9-9-9-5, 
a neural network of 7 inputs, 3 hidden layers of 9 neurons, and 5 outputs for clas-
sification. The aforementioned topology was the result of the MLP training on the 
UCI transition-aware human activity recognition dataset [7], using the TensorFlow 
framework. In this experiment we rely on seven features (body acceleration standard 
deviation of the three axes, the signal magnitude area of body acceleration, and the 
gravity acceleration mean of the three axes) in the classification target of five classes 
(sitting, walking, standing, activity transition, and laying). 

The proposed MLP accelerator has been developed using Vitis HLS, Vivado, and 
Vitis Unified software 2021.2 using C/C++. In addition to the latency-optimized 
custom design in [3], our comparison includes the deep-processing unit (DPU), 
Xilinx commercial IP for neural networks processing. A single-cored DPU-512 
implementation was used, and the neural network quantization and compilation 
were done using Vitis AI 2.0. The Zynq UltraScale+ ZCU104 evaluation board has 
been used to implement the proposed architecture and DPU designs. In Fig. 3, a  
system-level view of the proposed architecture can be seen. Given that an MLP 
usually falls within an extended processing pipeline, the MLP IP has been provided 
with AXI stream interfaces. The clock frequency adopted in our implementation 
was 300MHz. 

4.2 Model Accuracy 

In Table 2, an exploration of the number of neurons and required number of hidden 
layers is presented. Each consecutive layer is preceded by a layer of the number of 
neurons that yield the highest accuracy. The maximum accuracy was achieved with 
a topology of three hidden layers, consisting of nine neurons each. Any additional 
increase on the number of the layers did not improve on the accuracy or even 
decreased it.
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Table 2 Model’s accuracy Layers 

Neurons 1 2 3 4 5 

1 84.35 90.69 92.48 93.98 95.2 
2 87.21 93.7 94.59 94.5 94.12 

3 89.61 95.3 94.64 95.11 93.46 

4 90.88 95.44 96.66 97.41 95.2 

5 93.65 94.78 98.16 97.69 96.24 

6 92.81 94.31 98.77 95.67 96.56 

7 89.00 95.67 98.40 97.18 97.32 

8 90.13 96.47 97.6 98.59 95.62 

9 95.06 97.08 98.87 98.87 96.87 

10 94.54 95.58 97.55 97.18 95.91 

Fig. 4 Bit width of the weights vs accuracy

Next, we assess the impact of the PLAN, the quantization of the model 
parameters (weights and activations), and the inputs/outputs on the accuracy of the 
model. When the sigmoid function is replaced with the PLAN, the reduction in 
the model’s accuracy was minimal with a drop of 0.67%. In Fig. 4, the accuracy 
of the MLP is presented when the weights and activations are quantized to 8, 12, 
16, 20, and 24 bits. Note that the accuracy increase when increasing the bit width; 
however, a representation of 16 bits is sufficient, as any further increase will yield 
the same accuracy level with a higher cost in hardware. Finally, an assessment of 
the bit width of the inputs/outputs versus the model’s accuracy is presented in Fig. 5. 
For the best accuracy level with minimal cost of hardware, a representation of 12 
bits is sufficient. 
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Fig. 5 Bit-width of the inputs/outputs vs accuracy 

Table 3 Implementation details 

Attributes 

Latency (ns) LUT FF DSP BRAM Power (W): PL/PS 

– 916 413 3 2 – 

86.58 7476 9492 3 2 3.731: 0.976/2.755 

In light of the previous discussion on the model’s accuracy, a topology of 7-9-
9-9-5, with model parameters and inputs/outputs of 16 bits, is the one selected for 
implementation. Table 3 lists the design latency, resources, and power consumption. 
The design resources for both the MLP itself and the entire design are listed as well. 
Note that the increase in hardware resources is due to the use of the AXI-DMA and 
AXI-Interconnect. 

4.3 Comparison to the State of the Art 

In order to fairly assess the performance gains of the proposed architecture, 
we compare between our IP and the implementation mentioned in [3] and the 
official DPU processor from Xilinx. Table 4 highlights the key features of each 
implementation. The 16-bit variation of the proposed architecture, with a single 
hidden layer of 6 neurons, is the one used in this comparative study, in line with 
the selection made in our state-of-the-art review in Sect. 2. Additionally, the clock 
frequency has been reduced to 100MHz to match the implementation we are 
comparing to.
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Table 4 Comparative analysis 

MLP Processor 

Attributes Proposed State-of-the-art [3] DPUCZDX8G 

Latency (ns) 130 270 43266 

Power (W): PL/PS 0.719/2.743 0.241/- 2.006/2.768 

Bits 16 16 8 

Frequency (MHz) 100 100 300 

DSP 3 81 110 

LUT 6982 3466 27088 

FF 9299 569 36052 

BRAM 2 0 28 

URAM 0 0 12 

First, the proposed design is 2.1x and almost 332.81x times faster than the state 
of the art and a conventional neural accelerator like the Xilinx DPU. Second, the 
power consumption in the proposed accelerator is second to the design in [3]. One 
reason for this increase is the utilization of the Zynq processing system (PS), while 
in [3], the MicroBlaze soft processor is used. However, the use of the PS offers 
far more capable processing power that fits the domain requirements. A second 
reason is the increase in PL power due to the total parallelization of the activation 
function, which increased the resource utilization as a result. Third, it is noticeable 
that our proposed MLP accelerator has the lowest usage of DSP slices. Instead, 
PL implementations of mathematical operations were used to enable the synthesis 
tool achieving timing closure, by avoiding the routing complications to an extended 
number of DSPs, which could limit the design frequency. 

5 Conclusion 

In this work, a latency-optimized MLP design has been developed. The design 
architecture is based on the full parallelization of the network neurons, down to 
the internal computations of each single neuron. A topology of 7-9-9-9-5 has been 
proposed after an analysis of the model accuracy with respect to both parameters and 
input/output bit representations. Empirical results show that our latency-optimized 
MLP design outperforms a throughput-tuned state-of-the-art IP core tuned by the 
FPGA vendor by 332.81x orders of magnitude. Even another latency-optimized 
design has a significantly higher latency, for which our implementation is 2.1x faster. 
Our architecture performs inference for a small MLP architecture in only 130 ns 
enabling real-time inference for high-speed control. 

Future work is aimed toward the inclusion of more segmented activation 
functions, and an online training hardware. We applied our technique to an MLP 
architecture using sigmoid activations. Nonetheless, various other architectures
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can directly reuse this concept, most specifically the rectified linear unit (ReLU), 
hyperbolic tangent (Tanh), and soft-max activation functions, which are suitable for 
immediate parallelization. 
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5. Kocić, J., Jovičić, N., Drndarević, V.: An end-to-end deep neural network for autonomous 
driving designed for embedded automotive platforms. Sensors 19(9), 2064 (2019) 

6. Mousouliotis, P., Zogas, S., Christakos, P., Keramidas, G., Petrellis, N., Antonopoulos, 
C., Voros, N.: Exploiting vitis framework for accelerating sobel algorithm. In: 2021 10th 
Mediterranean Conference on Embedded Computing (MECO), pp. 1–5. IEEE, New York 
(2021) 

7. Reyes-Ortiz, J., Anguita, D., Oneto, L., Parra, X.: UCI Machine Learning Repository: 
Smartphone-based Recognition of Human Activities and Postural Transitions Data Set 

8. Tisan, A., Chin, J.: An end-user platform for FPGA-based design and rapid prototyping of 
feedforward artificial neural networks with on-chip backpropagation learning. IEEE Trans. 
Industr. Inform. 12(3), 1124–1133 (2016) 

9. Verucchi, M., Brilli, G., Sapienza, D., Verasani, M., Arena, M., Gatti, F., Capotondi, A., 
Cavicchioli, R., Bertogna, M., Solieri, M.: A systematic assessment of embedded neural 
networks for object detection. In: 2020 25th IEEE International Conference on Emerging 
Technologies and Factory Automation (ETFA), vol. 1, pp. 937–944. IEEE, New York (2020) 

10. Zhai, X., Ali, A.A.S., Amira, A., Bensaali, F.: MLP neural network based gas classification 
system on Zynq SoC. IEEE Access 4, 8138–8146 (2016) 

11. Zhu, J., Chen, Y., Brinker, F., Decking, W., Tomin, S., Schlarb, H.: High-fidelity prediction of 
megapixel longitudinal phase-space images of electron beams using encoder-decoder neural 
networks. Phys. Rev. Appl. 16(2), 024005 (2021)



Thirty-Six Officers of Euler-New Insights 
Computed Using XBOOLE 

Bernd Steinbach and Christian Posthoff 

1 Introduction 

Leonhard Euler (1707–1783) is well recognized as one of the most productive 
scientists in both the amount and the significance of his contributions. He is 
especially known as a mathematician, but he worked also successfully in other 
scientific areas like Mechanics, Movement of the Planets, Fluid Dynamics, Optics, 
and others. The key for this success was the use of the analytical methods of 
Mathematics. His main contributions to Mathematics are related to Analysis and 
Number Theory. 

A Latin square is a square of .n × n fields where one of n symbols has been 
assigned to each field. The main rule of a Latin square is that each symbol occurs 
only once in each row and each column. The name Latin square goes back to Euler 
who used Latin characters as symbols; however, other symbols or numbers can 
alternatively form a Latin square. The number n is the order of a Latin square. 

The well-known number puzzle Sudoku is a Latin square of order 9 with the 
additional condition that all symbols occur exactly once within nine sub-squares of 
the size .3 × 3. 

Two Latin squares can be combined into a single square that contains in each 
field the concatenation of the symbols of the associated fields of the Latin squares 
given. Two such Latin squares are called orthogonal to each other if all . n2 combined 
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pairs of symbols are different. A combined square with this property is referred to 
as Graeco-Latin square or Euler square. 

Leonhard Euler studied intensively such squares. He developed methods to 
construct Graeco-Latin squares of odd orders and orders of .n = 4k, .k = 1, 2, . . . . In  
1779, he explored the problem of the 36 officers with the aim to construct a Graeco-
Latin square of order .n = 6, but he did not find a solution. Euler was then of the 
opinion that Graeco-Latin squares of order .n = 4 · k + 2, .k = 0, 1, . . . will not exist 
because he knew that there are no Graeco-Latin squares of order . n = 2. R. C. Bose  
and S. S. Shrikhande rebutted this assumption in 1959 by finding counterexamples 
[2]. The same authors published together with E. T. Parker in 1960 a paper [3] 
containing the proof that Graeco-Latin squares of order .n = 4k+2 for . k = 2, 3, . . .

exist. 
Recently a group of scientists from India and Poland mapped this problem 

into the quantum domain and proved that absolutely maximally entangled (AME) 
quantum states .(4, 6) exist where .N = 4 is the number of parties and .d = 6 the local 
dimension [6]. However, we explore in this chapter a detailed quantified version of 
the original problem of the 36 officers specified by Euler. 

2 Preliminaries 

We are going to solve the problem of the 36 officers defined by Euler using the 
XBOOLE-monitor XBM 2. This software can be downloaded by everyone free of 
charge from the web page: 

https://tu-freiberg.de/en/fakult1/inf/xboole/download. 
A comprehensive help system supports the user of the XBOOLE-monitor 

XBM 2. Many examples to solve tasks from several areas by means of the 
XBOOLE-monitor XBM 2 are provided in [7]. 

The main data structure used in XBOOLE is the ternary vector list (TVL). We 
use TVLs in this paper to express DC-clauses of CDC-SAT equations (see Sect. 6.1) 
and (partial) solution sets of such equations. The TVL 

.x1 .x2 .x3 .x4 .x5 .x6 .x7 .x8 . x9

1 0 0 0 .− .− 0 .− . −
.ODA(f ) = 0 1 0 .− 0 .− .− 0 . −

0 0 1 .− .− 0 .− .− 0 

has the form predicate ODA (orthogonal disjunctive or antivalence form) and can 
therefore be used to express function f in disjunctive (D) or antivalence form (A): 

.f = x1x2x3x4x7 ∨ x1x2x3x5x8 ∨ x1x2x3x6x9

= x1x2x3x4x7 ⊕ x1x2x3x5x8 ⊕ x1x2x3x6x9

https://tu-freiberg.de/en/fakult1/inf/xboole/download
https://tu-freiberg.de/en/fakult1/inf/xboole/download
https://tu-freiberg.de/en/fakult1/inf/xboole/download
https://tu-freiberg.de/en/fakult1/inf/xboole/download
https://tu-freiberg.de/en/fakult1/inf/xboole/download
https://tu-freiberg.de/en/fakult1/inf/xboole/download
https://tu-freiberg.de/en/fakult1/inf/xboole/download
https://tu-freiberg.de/en/fakult1/inf/xboole/download
https://tu-freiberg.de/en/fakult1/inf/xboole/download
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because the condition of orthogonality is satisfied by these three conjunctions. This 
TVL also expresses the solution set of the logic equation .f = 1. Each of these 
three ternary vectors contains four dashes (. −). Each dash represents a combination 
of the two values 0 and 1. The number of binary vector represented by each of these 
three ternary vectors is equal to .24 = 16. Due to the orthogonality of ODA(f ), the 
solution set of the equation .f = 1 consists of 48 binary vectors. Only 3 ternary 
vectors express these 48 binary vectors. The use of dashes exponentially decreases 
the number of required ternary vectors. 

XBOOLE provides more than 100 operations, which are very efficiently imple-
mented. The most important operation of XBOOLE used in this paper is the 
intersection of two TVLs. 

3 The Problem to Solve and Its Complexity 

Leonhard Euler specified the problem as follows: 

“Six different regiments have six officers, each one belonging to different 
ranks. Can these 36 officers be arranged in a square formation so that 
each row and column contains one officer of each rank and one of each 
regiment?” [4] 

The answer to this question can be YES or NO. That means that Euler specified 
a satisfiability problem (SAT) [1]. Looking for convenient Boolean variables 
to determine a possible SAT formula, we noticed that four words are used to 
characterize each of these officers: row, column, regiment, and rank. Unfortunately, 
three of these words begin with the letter “r.” Using the military unit brigade instead 
of regiment and grade instead of rank, we get four words with different first letters. 
We define .36 × 36 = 1296 logic variables as follows: 

.xrcbg =

⎧
⎪⎨

⎪⎩

1 if the officer on the field determined by row r and
column c belongs to brigade b and has grade g ,

0 otherwise

(1) 

where each of the index variables .r, c, b, g = 1, . . . , 6. The encoding by variables 
of these four index values provides a direct specification of the row and column of 
the square as well as the brigade and grade of the 36 officers. 

Using these variables, a requirement clause can be defined for each of the 
36 fields. Each of these clauses consists of 36 variables connected by .∨-operations. 
We get, for example, the clause: 

.

⎛

⎝
6∨

b=1

6∨

g=1

x11bg

⎞

⎠
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for field (1,1). This is a disjunction of 36 variables. 
Equal index values .(r, c) of two variables determine restrictions of the type 

.x1111 ∧ x1112 = 0, which ensure one-hot encoding. That means that only one single 
officer can be assigned to each field. This restrictive equation can be transformed 
into a characteristic equation .x1111 ∨ x1112 = 1. The left-hand side of this equation 
is a clause. The number of clauses to ensure the one-hot encoding on all 36 fields is 
equal to 

.36 · (35 + 1) · 35

2
= 22,680 . (2) 

In order to exclude that the brigade of an officer does not occur on two fields 
of the same row, all six possible grades must be taken into account for each of the 
selected fields. For fields (1,1) and (1,2), we get the restriction 

. 

6∨

b=1

⎛

⎝
6∨

g=1

x11bg ∧
6∨

g=1

x12bg

⎞

⎠ = 0 ,

which can be transformed into a characteristic equation of .6 · 36 = 216 clauses 

. 

6∧

b=1

⎛

⎝
6∧

g=1

x11bg ∨
6∧

g=1

x12bg

⎞

⎠ = 1 .

The number of clauses of these restrictions for all pairs of fields of each of the 6 
rows is equal to 

.6 · (5 + 1) · 5

2
· 216 = 19,440 . (3) 

Similarly, it can be excluded that the grade of an officer does not occur on two 
fields of the same row. For fields (1,1) and (1,2), we get the restriction 

. 

6∨

g=1

(
6∨

b=1

x11bg ∧
6∨

b=1

x12bg

)

= 0 ,

which can be transformed to a characteristic equation of .6 · 36 = 216 clauses 

. 

6∧

g=1

(
6∧

b=1

x11bg ∨
6∧

b=1

x12bg

)

= 1 .

The number of clauses of these restrictions for all pairs of fields of each of the 6 
rows is again equal to
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.6 · (5 + 1) · 5

2
· 216 = 19,440 . (4) 

The explored conditions must also be satisfied for all six columns. Exchanging 
the index r and c, we get the formulas needed to ensure that in each column each 
brigade b and each grade g occur only once. The number of clauses related to the 
columns is again two times .19,440. 

The third rule is that an officer of both the same brigade b and the same grade g 
does not occur on two different fields. For fields (1,1) and (1,2) and chosen values 
.b = g = 1, we get the restriction: 

. x1111 ∧ x1211 = 0 ,

which can be transformed into equation 

. x1111 ∨ x1211 = 1 ,

where the left-hand side is a clause. The number of clauses of these restrictions for 
all pairs of fields and all 36 combinations of b and g is equal to 

.
(35 + 1) · 35

2
· 36 = 22,680 . (5) 

The number of clauses of a SAT formula to solve the problem of the 36 officers 
is therefore equal to 

.nc = 36 + 2 · 22,680 + 4 · 19,440 = 123,156 . (6) 

It may be that some restrictive clauses satisfy more than one condition and are 
therefore counted twice. However, it is time-consuming to determine and exclude 
such doubled clauses. 

It seems that the straightforward approach to solve the 36 officer problems using 
a SAT equation with 1296 variables and 123,156 clauses is not a convenient method 
to solve this problem. The search space of the 1296 logic variables would be . 21296 ≈
1.3 · 10390. 

There are several possibilities of a more compact encoding of this problem. The 
use of three Boolean variables to encode either the brigade b or the grade g of each 
field leads to .36 · (3 + 3) = 216 variables so that the search space is reduced to 
.2216 ≈ 1065. However, this encoding increases the number of required variables 
of about 100,000 restrictive clauses from 2 to 6. The 22,680 clauses regarding the 
one-hot encoding are not needed in this approach, but the number of variables in the 
required clauses triples. Hence, this modified approach is also not favorable. 

The number of Latin squares reduces the search space furthermore. Unfortu-
nately, there is no formula to easily compute the number of Latin squares. However, 
it is known from the literature [8] that .812,851,200 Latin squares of order 6 exist.



140 B. Steinbach and C. Posthoff

Hence, the number of Graeco-Latin squares is equal to 

.812,851,200 · 812,851,200 = 660,727,073,341,440,000 ≈ 6.6 · 1017 (7) 

and this number is in the range 

. 259 < 6.6 · 1017 < 260 .

Such a reduction to 60 Boolean variables also does not help us to solve the problem 
of the 36 officers because the constraints regarding repeated officers cannot be 
expressed based on these variables. 

4 A Quantitative Specification of the Problem to Solve 

Using a SAT solver we get either YES or NO as the answer to the problem of 
the 36 officers. The answer “there is no solution” of a SAT solver gives us no 
information how many different officers could be assigned to the fields of a Graeco-
Latin square. We know from (7) that more than .6.6 ·1017 Graeco-Latin squares exist 
and the two digits in each field of the square determine the brigade b and the grade g 
of the officer assigned to this field. To get a more significant answer to the problem 
of the 36 officers, we declare two additional quantitative questions: 

1. How many officers of different brigades b and different grades g can satisfy the 
rules of a Graeco-Latin square of order 6? 

2. How may such maximal assignments of officers of both a different brigade b and 
a different grade g exist on a Graeco-Latin square of order 6? 

5 Approaches to Simplify the Problem to Solve 

The one-hot encoding requires 1296 logic variables to specify all conditions of the 
problem of the 36 officers in a simple manner. A smaller number of variables, 
which satisfy the welcome property of the one-hot encoding, would reduce the 
effort to solve this problem. We start with .36 × 36 = 1296 Boolean variables 
where 36 variables characterize all 36 possible pairs of values .〈b, g〉 on each of 
the .6 × 6 fields. Figure 1a depicts this initial state.

Permuting pairs of rows or pairs of columns transforms a given Graeco-Latin 
square into another Graeco-Latin square. Hence, . 6! · 6! = 720 · 720 = 518,400
Graeco-Latin squares of order 6 belong to an equivalence class. It is enough to 
explore one representative of each of these classes. Knowing one solution for the 
representative, we can generate the other .518,399 Graeco-Latin squares of such a 
class by permutations of rows and columns.
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36 36 36 36 36 36 216 
36 36 36 36 36 36 216 
36 36 36 36 36 36 216 
36 36 36 36 36 36 216 
36 36 36 36 36 36 216 
36 36 36 36 36 36 216 

(a) 1296 

36 36 36 36 36 180 
36 36 36 36 36 180 
36 36 36 36 36 180 
36 36 36 36 36 180 
36 36 36 36 36 180 
36 36 36 36 36 180 

(b) 1080 

30 30 30 30 30 150 
30 30 30 30 30 150 
30 30 30 30 30 150 
30 30 30 30 30 150 
30 30 30 30 30 150 
30 30 30 30 30 150 

(c) 900 

20 20 20 20 20 100 
20 20 20 20 20 100 
20 20 20 20 20 100 
20 20 20 20 20 100 
20 20 20 20 20 100 
20 20 20 20 20 100 

(d) 600 

4 4 4 4 4 20  
20 20 20 20 20 100 
20 20 20 20 20 100 
20 20 20 20 20 100 
20 20 20 20 20 100 
20 20 20 20 20 100 

(e) 520 

4 4 4 4 4 2
20 16 16 16 16 84 
20 16 16 16 16 84 
20 16 16 16 16 84 
20 16 16 16 16 84 
20 16 16 16 16 84 

(f) 440 

 0

Fig. 1 Steps to exclude variables not required to specify the problem of the 36 officers

This approach of equivalence classes requires the definition of a representative. 
Such a representative can be constructed by permutations of rows and columns such 
that .b = 1 and .g = r = c occur in the fields of the main diagonal. 

The restriction to this representative allows us to reduce the number of Boolean 
variables required to solve the problem of the 36 officers. As a result of the fixed 
values in the main diagonal, we can exclude .6 · 36 = 216 variables, which express 
in the basic approach the values on the main diagonal. There remain . 1296 − 216 =
1080 variables as shown in Fig. 1b. 

The fixed value .b = 1 in the main diagonal prohibits six pairs .〈b = 1, g〉, . g =
1, . . . , 6, in all other fields. This knowledge allows us to exclude additionally . 6 · 5 ·
6 = 180 variables leaving us with .1080 − 180 = 900 variables as shown in Fig. 1c. 

The representative of the equivalence class regarding .b = 1 determines the values 
of g in the fields of the main diagonal as .g = r = c. This knowledge allows us to 
exclude additionally .5 ·5 ·6 = 150 variables .xrcbg with .r = g and also . 5 ·5 ·6 = 150
variables .xrcbg with .c = g. That means that the number of required variables can be 
reduced from 30 to 20 on each field. Applying these two rules, . 900 − 300 = 600
variables remain as shown in Fig. 1d. 

All six values of a brigade b must occur in each row. The value .b = 1 is already 
used in the first row on field (1,1). There are .5! = 120 permutations of the values b in 
the first row, which determine one more equivalence class. We use the rule .b = c for 
row .r = 1 as representative of this equivalence class. The two equivalence classes 
are orthogonal to each other and can therefore be combined so that each common 
equivalence class represents .120 · 518,400 = 62,208,000 Graeco-Latin squares. As 
a result of fixed values .b = c for row .r = 1 and columns .c = 2, . . . , 6, we can 
additionally exclude .5 ·4 ·4 = 80 variables. There remain .600−80 = 520 variables 
as shown in Fig. 1e.
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The fixed values of b for row .r = 1 and columns .c = 2, . . . , 6 allow us to 
exclude variables .xrcbg with .b = c in rows .r = 2, . . . , 6 and columns . c = 2, . . . , 6
which are additionally .5 · 4 · 4 = 80. This number takes into account that variables 
.xrcbg with .r = g have been already excluded. Finally, .520 − 80 = 440 variables 
remain as shown in Fig. 1f. 

We are going to answer the two questions of Sect. 4 for the representative of 
the equivalence class specified in this section. We already know that . 62,208,000
equivalent solutions can be generated for each found solution. 

6 Method to Solve the Problem 

6.1 CDC-SAT Model 

We take field (1,2) as an example. The requirement clause (disjunction of variables) 
of the explored representative is 

.(x1223 ∨ x1224 ∨ x1225 ∨ x1226) (8) 

because the value b is fixed to 2. The variable .xrcbg = x1221 is excluded due to 
.g = r = 1, and the variable .xrcbg = x1222 is excluded due to .g = c = 2. 

Six clauses ensure the one-hot encoding of these four variables: 

. (x1223 ∨ x1224)(x1223 ∨ x1225)(x1223 ∨ x1226)

∧(x1224 ∨ x1225)(x1224 ∨ x1226)

∧(x1225 ∨ x1226) . (9) 

The conjunction of (8) and (9) results in 

. (x1223x1224x1225x1226 ∨ x1223x1224x1225x1226

∨ x1223x1224x1225x1226 ∨ x1223x1224x1225x1226) . (10) 

Such a disjunction of conjunctions (DC) is called a DC-clause. 
The value .g = 3 of .xrcbg = x1223 prohibits the same grade in the other fields of 

the first row. Three clauses 

.(x1223 ∨ x1443)(x1223 ∨ x1553)(x1223 ∨ x1663) (11) 

ensure this condition because .x1333 has been excluded due to .g = c = 3. 
Computing the conjunction of (10) and (11) extends the first conjunction of (10) 

by the second negated variables of the three disjunctions of (11) but does not change 
the other three conjunctions of (10) due to the absorption rule:
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. (x1223x1224x1225x1226x1443x1553x1663∨x1223x1224x1225x1226

∨ x1223x1224x1225x1226∨x1223x1224x1225x1226) . (12) 

All other restrictions of the problem of the 36 officers have the same structure as 
shown in (11). Hence, the principle of extension demonstrated for the values of g 
in the first row can be applied for other all types of rules simply by adding negated 
variables to the associated conjunction of a DC-clause. The types of rules are: 

1. one-hot encoding of the variables belonging to one DC-clause; 
2. exclusion of value g of the non-negated variable in all other fields of the same 

row; 
3. exclusion of value g of the non-negated variable in all other fields of the same 

column; 
4. exclusion of value b of the non-negated variable in all other fields of the same 

row; 
5. exclusion of value b of the non-negated variable in all other fields of the same 

column; 
6. exclusion of the pair of values .〈b, g〉 of the non-negated variable in all other 

fields. 

Rule 1 is required to model the problem as a conjunction of disjunctions of 
conjunctions SAT (CDC-SAT) equation. Rules 2 and 3 ensure that only Latin 
squares for grades g belong to the solution. Analogously, rules 4 and 5 ensure that 
only Latin squares for brigades b belong to the solution. Rule 6 prohibits that an 
officer of the same brigade b and the same grade g occurs in two or more fields. 

All four conjunctions belonging to the DC-clause of field (1,2) consist of one 
non-negated and 31 negated variables. We generate each DC-clause directly as a 
ternary vector list (TVL). Each row of such a list represents one conjunction of 
a DC-clause. The non-negated variable is indicated by the value 1 in the ternary 
vector, and all negated variables appear as values 0 in the appropriate columns of 
the TVL. Figure 2 shows the generated conjunction of the non-negated variable 
.xrcbg = x1223 and highlights the rules used to add the required variables to the 
conjunction. 
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1 0 0 0  0 0 0 0  0 0 0 0  0 0 0 0  0 0 0 0  0 0 0 0  0 0 0 0  

rule 1: one-hot • • •
rule 2: g row • • •
rule 3: g column • • • • • • • • • • • •
rule 4: b row 
rule 5: b column 
rule 6: b, g fields • • • • • • • • • • • • •

0 0 0 0  

Fig. 2 Rules that determine conjunction 1 of the DC-clause of field (1,2)
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Fig. 3 Binary vectors of four conjunctions belonging to the DC-clause of field (1,2)

The application of rules 1 and 2 has already been explained above. Figure 2 
shows that the conjunction with the selected value .g = 3 in the non-negated variable 
does not contain any variable belonging to row 3 because .g = r = 3 has been fixed 
for field (3,3) of the main diagonal and all variables with .g = 3 have been excluded 
for this row. Brigade 2 is fixed as representative of the equivalence class in field 
(1,2). Therefore, only values 3, 4, 5, and 6 of b must be excluded in column 2. 
The associated 12 negated variables are indicated by bullets of rule 3. For the same 
reason, variables with .b = 2 have been excluded so that no variables for rules 4 
and 5 occur. Negated variables with the pair .〈b, g〉 = 〈2, 3〉 must be added to the 
conjunction of .xrcbg = x1223 for all fields except row 1 due to .xrcbg = x1223, row 3  
due to .g = 3 in field (3,3), column 2 due to .xrcbg = x1223, column 3 due to . g = 3
in field (3,3), and all fields of the main diagonal. There remain 13 negated variables 
indicated by bullets in the last line of Fig. 2. 

The other three conjunctions of the DC-clause belonging to field (1,2) can be 
generated analogously. Figure 3 shows the generated four binary vectors of these 
conjunctions as separate TVLs in the m-fold view of the XBOOLE-monitor XBM 2. 

The DC-clause of field (1,2) can be represented by a TVL of 4 ternary vectors 
and 116 columns. Variables .x1223, .x1224, .x1225, and .x1225 are commonly used by all 
four vectors of Fig. 3. All other variables of these vectors are different. Therefore, 
we get .4 + (32 − 4) · 4 = 116 columns which correspond to the used variables 
of the DC-clause. The four ternary vectors are disjoint so that this TVL can take 
the form predicate ODA (orthogonal disjunctive or antivalence form). Each of these 
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Fig. 4 Numbers of columns 
of the TVLs that represent the 
30 DC-clauses of the problem 
of the 36 officers 

116 116 116 116 116 
324 278 278 278 278 
324 278 278 278 278 
324 278 278 278 278 
324 278 278 278 278 
324 278 278 278 278 

four ternary vectors contains .116 − 32 dash elements (. −). The number of binary 
vectors represented by this TVL is equal to .4 · 2116−32 ≈ 7.737 · 1025. 

The TVLs of all DC-clauses can be generated in the same manner. The number 
of generated ternary vectors is equal to the number of variables shown in Fig. 1 (f). 
Larger numbers of variables belonging to the fields in rows 2–6 cause more negated 
variables in the conjunctions of the DC-clauses and also more variables in the 
associated TVL. Figure 4 shows the numbers of columns (variables) the TVLs of 
the generated 30 DC-clauses depend on. 

The CDC-SAT equation (conjunction of disjunctions of conjunctions) consists 
on the left-hand side of 30 DC-clauses which are connected by AND and on 
the right-hand side the constant value 1. The solution of this equation requires 
the computation of 29 intersections of TVLs, which represent these DC-clauses. 
The number of partial solutions after a certain number of intersections of TVLs 
belonging to DC-clauses of certain fields determines the number of solutions for the 
used subset of fields. The maximal number of used TVLs of selected DC-clauses for 
which the number of solutions is greater than 0 answers the first question regarding 
the 36 officers specified in Sect. 4. The last computed number of solutions greater 
than 0 is the answer to the second question. 

6.2 Practical Implementation Using the XBOOLE-Monitor 
XBM 2 

The XBOOLE-monitor XBM 2 can be used to create TVLs and to compute inter-
sections of them. Elementary tasks are specified in the XBOOLE-monitor XBM 2 
by means of commands. These commands can be combined into problem programs 
(PRPs), which can be executed command by command, in an uninterrupted fashion 
until a break point is reached, or completely until the end. All operations are 
executed within several Boolean spaces. The user must specify the maximal number 
of variables for each of these spaces. We use a single Boolean space of 440 variables 
to solve the problem of the 36 officers. 

The utilization of two equivalence classes allows us to reduce the number of 
required Boolean variables from 1296 to 440. We reduced the effort required to 
specify the problem of the 36 officers from more than 100,000 clauses of a classical 
SAT equation to only 30 DC-clauses of a CDC-SAT equation. Nevertheless, we are 
faced with a problem hard to solve.
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The specification of all conditions of the problem regarding the 36 officers 
leads to a PRP of the XBOOLE-monitor XBM 2 that consists of several thousand 
commands. Therefore, we split the procedure to solve the problem into four 
subtasks: 

1. defining a Boolean space of 440 variables, generating the 440 variables regarding 
the representative of the combined 2 equivalence classes, and creating equiv-
alently structured TVLs that indicate the requirement rules in the remaining 
30 fields of the square; 

2. creating the TVLs of the DC-clauses of the first row of the square and computing 
the partial solution of this row; 

3. creating the TVLs of the DC-clauses of the remaining five rows of the square; 
4. computing the solution by intersections using the results of subtasks 2 and 3. 

The PRPs of the first three subtasks require more than a thousand commands 
each. Therefore, we implemented simple but very fast (. <1 s) programs using the 
programming language C++ that generate the required PRPs which are thereafter 
executed within the XBOOLE-monitor XBM 2. 

Subtask 1 The C++ program of subtask 1 consists of 98 lines of code and generates 
a PRP with 1815 lines of commands. The rows of the generated TVLs are associated 
with the 36 pairs of values .〈b, g〉. The first six of these pairs .〈1, g〉 are avoided 
because pairs with .b = 1 determine the representative of the first equivalence class 
and have therefore been excluded from the computation. The rows of these TVLs 
store values 0 for variables .xrcbg using the indices .((b−2) ·6)+g. We store values 0 
in these TVLs because zeros occur most often in the conjunctions of the DC-clauses. 
Values 1 of these variables can easily be computed. Figure 5 shows the TVL in D 
form (disjunctive form) for field (2,1). The index of these TVLs can be computed 
by .6 ∗ (r − 1) + c.

Subtask 2 The DC-clauses of row 1 are simpler than the DC-clauses of the 
remaining rows because fixed values b are used due to the second equivalence class. 
The C++ program of subtask 2 consists of 106 lines of code and generates a PRP 
with 1353 lines of commands. The generated TVLs of the five DC-clauses of row 1 
are so simple that additionally the partial solution of row 1 is computed at the end 
of this PRP. 

Subtask 3 The creation of the 25 TVLs of the DC-clauses of rows 2–6 is the most 
complex task. The use of a C++ program to generate the required PRP is very helpful 
for this subtask. Only 147 lines of C++ code suffice to generate the 42,867 lines of 
command for the PRP for this subtask. 

Subtask 4 This subtask is computationally expensive but very easy to express. This 
PRP uses TVL 57 computed as a result of row 1 in subtask 2, TVLs 67–95 of the 
DC-clauses of rows 2–6, and computes 25 intersections to solve the problem of 
the 36 officers. The PRP consists of 17 lines and solves this task using 2 nested 
for-loops, which iterate over the rows and columns. Figure 6 shows the PRP that
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0 − − − − − − − − − − − − − − − − − − −  
− 0 − − − − − − − − − − − − − − − − − −  
− −  0 − − − − − − − − − − − − − − − − −  
− − −  0 − − − − − − − − − − − − − − − −  
− − − − − − − − − − − − − − − − − − − −  
− − − − − − − − − − − − − − − − − − − −  
− − − −  0 − − − − − − − − − − − − − − −  
− − − − −  0 − − − − − − − − − − − − − −  
− − − − − −  0 − − − − − − − − − − − − −  
− − − − − − −  0 − − − − − − − − − − − −  
− − − − − − − − − − − − − − − − − − − −  
− − − − − − − − − − − − − − − − − − − −  

D(f7) =  − − − − − − − −  0 − − − − − − − − − − −  
− − − − − − − − −  0 − − − − − − − − − −  
− − − − − − − − − −  0 − − − − − − − − −  
− − − − − − − − − − −  0 − − − − − − − −  
− − − − − − − − − − − − − − − − − − − −  
− − − − − − − − − − − − − − − − − − − −  
− − − − − − − − − − − −  0 − − − − − − −  
− − − − − − − − − − − − −  0 − − − − − −  
− − − − − − − − − − − − − −  0 − − − − −  
− − − − − − − − − − − − − − −  0 − − − −  
− − − − − − − − − − − − − − − − − − − −  
− − − − − − − − − − − − − − − − − − − −  
− − − − − − − − − − − − − − − −  0 − − −  
− − − − − − − − − − − − − − − − −  0 − −  
− − − − − − − − − − − − − − − − − −  0 − 
− − − − − − − − − − − − − − − − − − −  0 

Fig. 5 One result of subtask 1: TVL 7 representing the requirement of field (2,1) expressed by 
values 0

computes the intersections between the partial solution of the first row and the TVLs 
of the DC-clauses belonging to the fields of rows 2–6. 

7 Solutions for the First Row 

Values b of the brigades are fixed in the first row due to the chosen representative of 
the equivalence classes and for the same reason value g of field (1,1) is constant 1. 
Different combinations of values g of grades can be used in fields (1,2), . . . ,  (1,6)  
of the first row. There are .5! = 120 permutations of the numbers 2, . . . , 6 which can  
be used in a Latin square. 

The representative used restricts the possible combinations of values g in the first 
row because the number of permitted values g is restricted to 4 due to .g = 1 in field 
(1,1) and .g = r = c in the fields of the main diagonal. Using this restriction, we 
get a tighter upper bound on the number of permutations so that instead of . 5! = 120
only .4 · 4! = 96 permutations are required.
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1 lds  p6666_2  
2 set  $lastpss  57  
3 for $r  2  6  
4 ( 
5 for $c  1  6  
6 ( 
7 if  (ne $r $c)  
8 ( 
9 set  $f  (add  (mul  6  (sub  $r  1))  $c)  

10 set  $rule  (add  $f  60)  
11 set  $newpss  (add  100  $f)  
12 isc  $lastpss  $rule  $newpss  ;  main  operation  
13 set  $lastpss  $newpss  
14 ) 
15 ) 
16 ) 
17 sts  p6666_3_t_d  

Fig. 6 PRP of subtask 4: computation of 25 intersections of DC-clauses

Table 1 All 44 permitted combinations of values g in the first row 

.g(1, 2) = 3 .g(1, 2) = 4 .g(1, 2) = 5 . g(1, 2) = 6

.〈1, 3, 2, 5, 6, 4〉 .〈1, 4, 2, 3, 6, 5〉 .〈1, 5, 2, 3, 6, 4〉 . 〈1, 6, 2, 3, 4, 5〉

.〈1, 3, 2, 6, 4, 5〉 .〈1, 4, 2, 5, 6, 3〉 .〈1, 5, 2, 6, 3, 4〉 . 〈1, 6, 2, 5, 3, 4〉

.〈1, 3, 4, 2, 6, 5〉 .〈1, 4, 2, 6, 3, 5〉 .〈1, 5, 2, 6, 4, 3〉 . 〈1, 6, 2, 5, 4, 3〉

.〈1, 3, 4, 5, 6, 2〉 .〈1, 4, 5, 2, 6, 3〉 .〈1, 5, 4, 2, 6, 3〉 . 〈1, 6, 4, 2, 3, 5〉

.〈1, 3, 4, 6, 2, 5〉 .〈1, 4, 5, 3, 6, 2〉 .〈1, 5, 4, 3, 6, 2〉 . 〈1, 6, 4, 3, 2, 5〉

.〈1, 3, 5, 2, 6, 4〉 .〈1, 4, 5, 6, 2, 3〉 .〈1, 5, 4, 6, 2, 3〉 . 〈1, 6, 4, 5, 2, 3〉

.〈1, 3, 5, 6, 4, 2〉 .〈1, 4, 5, 6, 3, 2〉 .〈1, 5, 4, 6, 3, 2〉 . 〈1, 6, 4, 5, 3, 2〉

.〈1, 3, 5, 6, 2, 4〉 .〈1, 4, 6, 2, 3, 5〉 .〈1, 5, 6, 2, 3, 4〉 . 〈1, 6, 5, 2, 3, 4〉

.〈1, 3, 6, 2, 4, 5〉 .〈1, 4, 6, 3, 2, 5〉 .〈1, 5, 6, 2, 4, 3〉 . 〈1, 6, 5, 2, 4, 3〉

.〈1, 3, 6, 5, 2, 4〉 .〈1, 4, 6, 5, 2, 3〉 .〈1, 5, 6, 3, 2, 4〉 . 〈1, 6, 5, 3, 2, 4〉

.〈1, 3, 6, 5, 4, 2〉 .〈1, 4, 6, 5, 3, 2〉 .〈1, 5, 6, 3, 4, 2〉 .〈1, 6, 5, 3, 4, 2〉

The PRP of subtask 2 generates the DC-clauses of fields (1,2), . . . ,  (1,6)  and  
computes their intersections. The computed TVL 57 consists of 44 rows and 340 
columns. Each row in this TVL contains a single value 1, 144 values 0, and 195 
dashes. That means that this TVL expresses .44 · 2195 ≈ 2.2 · 1060 binary vectors. 
This large number of binary vectors is again a proof of the efficiency of TVLs used 
in XBOOLE. 

Each of the 44 rows determines exactly one possible combination of values g 
in 5 fields to the right of the first row. This number is smaller as the precomputed 
upper bound. Does a mistake in the PRP used cause this smaller number? A detailed 
exploration confirms that the computed result is correct. The number of permitted 
combinations of values g is really only 44. The reason for this restriction is that 
one  of  the  numbers  2,. . . ,  6  is  excluded in each of the five fields to the right of the 
first row, and the excluded number differs from field to field. Table 1 enumerates 
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all 44 tuples of values g of the first row of the square of the 36 officers. It can 
be seen that for each of the 4 different values g of field (1,2) exactly 11 different 
combinations exist. 

8 Analysis of the Computational Effort 

The computation of the intersections in subtask 4 is most expensive due to the large 
number of variables involved. Figure 7 shows the numbers of ternary vectors after 
the use of n DC-clauses using a logarithmic scale. 

This computation has been done using the DC-clauses of the fields row by row 
top down and from the left to the right within the rows. It can be seen that the 
number of rows of a TVL representing a partial solution grows until the maximum of 
5,095,920 rows after the use of 18 DC-clauses. Thereafter this number decreases and 
reaches the value of 480 after the use of the DC-clause of field (6,3). The solutions 
for fields (6,4) and (6,5) are equal to 0. The time to compute all these 29 intersections 
using the XBOOLE-monitor XBM 2 on a PC with a processor Intel(R) Core(TM) 
i7-5960X CPU @ 3.00 GHz processor is 3.282 s. 

A detailed study of Fig. 7 shows that the number of ternary vectors decreases 
when the DC-clause of the last field of a row has been included into the sequence 
of intersections. This welcome effect results from the restriction that the value of 
both b and g of the last fields of a row is already determined by these values in 
the other fields of the same row. The exploration of the numbers of rows after each 
intersection shows also that the computational effort depends on the order in which 
the TVLs of the DC-clauses are used. Figures 1f and 4 show that the largest TVLs 
of DC-clauses occur in the first column of the square. An approach that minimizes 
the effort therefore:
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Fig. 7 Number of rows after each intersection using the DC-clauses of the fields from the left to 
the right in the rows and top down 
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Fig. 8 Number of rows after each intersection using the DC-clauses of the fields in rows 2–6 
column by column from the right to the left 

1. computes the intersections of the DC-clauses of the first row from the left to the 
right; 

2. computes subsequently the intersections of the DC-clauses in the order of 
columns from the right to the left and within each column from row 2 down 
to row 6. 

The computation of the intersections in subtask 4 has additionally been executed 
in this modified order from the right to the left. Figure 8 shows the numbers of 
ternary vectors after the use of n DC-clauses using a logarithmic scale. 

The maximal number of ternary vectors as the result of an intersection in this 
changed order is equal to 752,564 reached after the intersection of 16 DC-clauses. 
This is less than 15 percent of the previous approach. The solutions for fields 
(5,1) and (6,1) are equal to 0. The time to compute all 29 intersections using the 
XBOOLE-monitor XBM 2 has been reduced to 1.131 s for this changed order. The 
last not empty TVL also consists of 480 ternary vectors, and the results of the 
intersections for the fields (5,1) and (6,1) are equal to 0 so that again two free fields 
remain. 

9 Detailed Evaluation of One Partial Solution 

We evaluate the first vector of the partial solution where DC-clauses of the fields 
(6,4) and (6,6) are excluded. Using this vector, we fill the pairs of values .〈b, g〉 for 
which the function value 1 occur in this vector into the fields of a .6 × 6 square. 
The field to assign such a pair of values is determined by value r of the index that 
selects the row and value c of the index that selects the column. As a result of this 
procedure, we get 34 of 36 fields filled in the square as shown in Fig. 9a.
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1,1 2,3 3,2 4,5 5,6 6,4 

2,4 1,2 6,6 5,1 4,3 3,5 

4,6 5,5 1,3 6,2 3,4 2,1 

6,5 3,6 4,1 1,4 2,2 5,3 

3,3 6,1 5,4 2,6 1,5 4,2 

5,2 4,4 2,5 1,6 

(a) 

1,1 2,3 3,2 4,5 5,6 6,4 

2,4 1,2 6,6 5,1 4,3 3,5 

4,6 5,5 1,3 6,2 3,4 2,1 

6,5 3,6 4,1 1,4 2,2 5,3 

3,3 6,1 5,4 2,6 1,5 4,2 

5,2 4,4 2,5 3,3 6,1 1,6 

(b) 

3,1 6,3 

(c) 

Fig. 9 Pairs .〈b, g〉 of the maximal solution of the problem regarding the 36 officers determined by 
the first of 480 ternary vectors computed for field (6,3): (a) computed partial solution, (b) extension 
of fields (6,4) and (6,5) regarding the rules of a Graeco-Latin square with highlighted repeated pairs 
of values . 〈b, g〉, (c) missing pair of values . 〈b, g〉

The evaluation of Fig. 9a confirms that this partially filled square: 

1. satisfies rules 2 and 3 specified in Sect. 6.1 as a condition of a Latin square of 
values g; 

2. satisfies rules 4 and 5 specified in Sect. 6.1 as a condition of a Latin square of 
values b; and 

3. satisfies rule 6 specified in Sect. 6.1 as a condition to exclude the assignment of 
any pair of values .〈b, g〉 to more than one field. 

Knowing the five pairs of values .〈b, g〉 in columns 4 and 5, it is easy to 
complete the assigned pairs of values to a Graeco-Latin square. Figure 9b shows  
this extension. The highlighted fields show that two pairs of values (officers) are 
assigned to two different fields each. However, this assignment violates rule 6. 

The missing 2 pairs of values can be found by evaluation of the 34 different pairs 
of values of Fig. 9a. Figure 9c shows the two missing pairs of values .〈b, g〉. 

The comparison of the two pairs of values .〈3, 3〉 and .〈6, 1〉 that extend the 34 
assignments of Fig. 9a to a Graeco-Latin square as shown in fields (6,4) and (6,5) 
of Fig. 9b with the two missing pairs of different values shown Fig. 9c reveals an 
interesting property:

• exchanging values b in pairs .〈3, 3〉 and .〈6, 1〉 that complete the Graeco-Latin 
square results in pairs .〈6, 3〉 and .〈3, 1〉 which are exactly the missing pairs shown 
in Fig. 9c; and

• exchanging values g in pairs .〈3, 3〉 and .〈6, 1〉 that complete the Graeco-Latin 
square results in pairs .〈3, 1〉 and .〈6, 3〉 which are also exactly the missing pairs 
shown in Fig. 9c. 

In summary, we can state that not permitting the exchange of either the values 
of grade g or brigade b in 2 fields of the .6 × 6 square prohibits the solution of the 
problem of the 36 officers specified by Euler more than 200 years ago. 

The evaluated partial solution shown in Fig. 9a is a computed single representa-
tive of an equivalence class. All .62,208,000 equivalent results of this class can be
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generated by means of permutations of rows, columns, and values .b = 2, . . . , 6. 
Due to the 480 computed representatives of equivalence class in the case of the 
excluded fields (6,4) and (6,5), we have already . 480·62,208,000 = 29,859,840,000
partial solutions for this case. 

10 Complete Evaluation 

The model of Fig. 1f determines the number of ternary vectors of the TVLs for 
the 30 DC-clauses. We know from Sect. 8 so far only the partial solutions for two 
different excluded pairs of fields: .〈(6, 4), (6, 5)〉 and .〈(5, 1), (6, 1)〉. However, there 
are .

(30
2

) = (29+1)·29
2 = 435 different pairs of fields for which the DC-clauses 

can be excluded from the CDC-SAT formula. We computed all representatives 
of equivalence classes for all these 435 cases. Table 2 summarizes the computed 
results. 

It is a property of the model being used that the brigades b of the first row are 
uniquely determined. Even if the DC-clause of one field of the first row is excluded 
from the CDC-SAT formula, the brigade b of this field remains implicitly specified. 
Therefore, we must distinguish in Table 2 the general cases where different values 
of b are possible in the two excluded fields (upper part of this table) and the special 
cases where the value of b is implicitly specified at least for one of the excluded 
fields (lower part of this table). 

Table 2 shows that the number of representatives of equivalence classes of partial 
solutions of the problem of the 36 officers depends on the positions of the 2 excluded 
fields.

Table 2 Evaluation for all cases of pairs of unused fields . f1 and . f2

Condition Number of cases Number of representatives 

No fixed value of the brigade b 
.〈f1, f2〉 are in the same row 50 480 

.〈f1, f2〉 in the same column 40 480 

.(r(f1) == c(f2)) ∧ (c(f1) == r(f2)) 10 528 

.(r(f1) == c(f2)) ⊕ (c(f1) == r(f2)) 80 276 

Otherwise 120 708 

Sum of these cases 300 

At least one fixed value of the brigade b 
.〈f1, f2〉 are in the same row 10 480 

.〈f1, f2〉 in the same column 20 480 

.(r(f1) == c(f2)) ∧ (c(f1) == r(f2)) 5 480 

.(r(f1) == c(f2)) ⊕ (c(f1) == r(f2)) 40 144 

Otherwise 60 256 

Sum of these cases 135 

Sum of all cases 435 



Thirty-Six Officers of Euler-New Insights Computed Using XBOOLE 153

The first special relation of the two excluded fields is that these fields belong to 
the same row of the explored square. There are ten such cases in each of the six 
rows of the square. Mirroring of these cases on the main diagonal leads to a second 
special relation where the two excluded fields belong to the same column of the 
explored square. We computed 480 representatives for all these cases. 

The third special relation of the two excluded fields is that these fields are located 
symmetric to the main diagonal. That means the index of the row of field 1 . r(f1)

is equal to the index of the column of field 2 .c(f2) and the index of the column of 
field 1 .c(f1) is also equal to the index of the row of field 2 .r(f2). We computed 528 
representatives for such pairs of excluded fields where the value of the brigade b is 
not fixed in one of these fields and 480 representatives otherwise. 

The fourth special relation of the two excluded fields is a partial symmetry; either 
.r(f1) is equal to .c(f2) or .c(f1) is equal to .r(f2). We computed 276 representatives 
for such pairs of excluded fields where the value of the brigade b is not fixed in one 
of these fields and 144 representatives otherwise. 

In the remaining cases, we computed 708 representatives for such pairs of 
excluded fields where the value of the brigade b is not fixed in one of these fields 
and 256 representatives otherwise. 

All computed representatives are orthogonal to each other due to the condition 
that all officers must be different in both the brigade b and the grade g. The number 
of all representatives .nar is therefore the sum of the products of the numbers of 
cases and the numbers of representatives listed in Table 2: .nar = 193,440. This  
number of representatives already includes permutations of rows and/or columns 
for which the two excluded fields remain unchanged. However, the number .nar has 
been computed under the conditions:

• the brigade .b = 1 in the main diagonal, where at all 6 values are possible;
• the grade .g = r = c in the main diagonal, where at all 6!=720 assignments are 

possible; and
• the brigade .b = c in the first row, where at all 5!=120 assignments are possible. 

Hence, the number of all partial solutions .naps consisting of 34 of officers satisfying 
the condition of Euler and using all fields of the main diagonal is equal to the product 
of all representatives .nar and the possible alternatives of the utilized equivalence 
classes .nues = 6 · 6! · 5! = 518,400: 

. naps = nar · nues = 193,440 · 518,400 = 100,279,296,000 ≈ 1011 .

11 Conclusion 

We confirmed the assumption of Euler that there is no possibility to place 36 officers 
of 6 different brigades and 6 different grades on a .6 × 6 matrix so that they form a 
Graeco-Latin square. A straightforward description of all related conditions as usual
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SAT formula would require 1296 Boolean variables and more than 100,000 clauses 
in the case that a one-hot encoding is used. 

Utilizing equivalence classes of more than 60 million elements and the CDC-SAT 
approach, we modeled this problem using only 440 Boolean variables and 30 DC-
clauses. Only one second was needed to compute the required 29 intersections using 
the XBOOLE-monitor XBM 2 in the case of an optimized order of the DC-clauses. 
Based on the complete evaluation for all pairs of excluded fields located out of the 
main diagonal and the utilized equivalence classes, we found that more than . 1011

maximal assignments of 34 different officers partially satisfy the explored problem 
of the 36 officers. 

The computed quantitative solution of a very hard Boolean problem confirms 
once more the power of both the XBOOLE-library and the XBOOLE-monitor 
XBM 2. A deep analysis of the problem and the utilization of the detected properties 
were important preconditions for this success. 
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Start Small But Dream Big: On Choosing 
a Static Variable Order for Multiplier 
BDDs 

Khushboo Qayyum, Alireza Mahzoon, and Rolf Drechsler 

1 Introduction 

With the size of Integrated Circuits (ICs) getting smaller and their functionality 
getting more complex, the task to assert the correctness of an IC becomes crucial. 
It is imperative that functionality of chips is thoroughly verified before silicon 
to prevent bugs from escaping into the final product. These bugs not only cause 
malfunctions but are a threat to the security of systems and a cause of monetary 
losses [1]. In this regard, formal verification techniques allow reliable verification of 
ICs using mathematical proof. Among formal verification methods, Binary Decision 
Diagram (BDD)-based methods are widely used to prove the correctness of ICs. 
A BDD is a canonical representation of a Boolean function as a Directed Acyclic 
Graph (DAG) [2]. Therefore, if two Boolean functions perform the same task, their 
BDDs will be the same if the input variables of both functions are in the same order 
regardless of how the Boolean function is defined. This attribute of canonicity allows 
two circuits to be easily compared and verified. State-of-the-art tools can perform 
this verification by a simple root pointer comparison of the BDDs of two Boolean 
functions [1]. 

However, one of the main challenges of using BDDs is to find a good order 
of the input variables. The size of BDDs is very sensitive to the input variable 
order; therefore, a good order of input variables may produce a size of BDD within 
polynomial order, but a bad order can cause the size of a BDD to be of exponential 
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order. This attribute of a BDD calls for the choice of input variable order to be 
perceptive. A number of different heuristics have been developed in the past that 
try to associate the arrangement of input variables with different aspects of circuits’ 
architecture or by using searching and sorting techniques [3–7]. These heuristics 
can be divided into two main categories based on when the input order is applied to 
the BDD construction. In static variable ordering heuristics, the input variable order 
is arranged and decided before the construction of BDDs, and in dynamic variable 
ordering heuristics, the input variable order is applied during the construction of 
BDD.1 

The erratic behavior of the BDD size is not just limited to the ordering of the 
input variables, but the size is also sensitive to the structure of underlying function. 
This behavior is particularly evident in BDDs of complex arithmetic circuits. 
Arithmetic circuits make integral part of ICs; therefore, their correct functionality 
is essential. Bugs like Pentium FDIV can render a chip useless if they are not 
identified before silicon. Within the category of arithmetic circuits, multipliers have 
piqued the interest of researchers for a long time as the BDDs of multiplier circuits 
tend to explode in size even at substantially small multipliers [2]. Due to this 
explosion, constructing the BDDs for multipliers requires tremendous hardware 
resources [8]. Furthermore, using systems with insufficient resource requirements 
lead to prolonged runtimes only to result in failure at the end. Keeping the concern 
for the size of BDDs for multipliers in mind, the choice of an appropriate input 
variable ordering for a multiplier becomes paramount as a good input variable 
ordering can help in reducing this size explosion. Additionally, an early estimation 
of memory requirement can facilitate an appropriate selection of resources and thus 
save time and effort. 

Contribution In this paper, we present a methodology to choose an optimal static 
variable ordering heuristic for larger multipliers with an early estimation of the 
endsize, peaksize, and memory required for constructing the BDD nodes. Our 
proposed methodology allows a fast and resource-efficient optimal static variable 
ordering heuristic selection. The estimation of the size and memory requirements 
of the large multiplier allows a more insightful selection of resources for the BDD 
construction. In our methodology, we first obtain the smaller version of the target 
multiplier and perform analysis using various static variable ordering heuristics. Our 
results show that a static variable ordering heuristic that is optimal for a scaled-down 
circuit is also optimal for the larger circuit while requiring only a fraction of time 
and memory resources. For the endsize estimation, we reuse chosen heuristics and 
incrementally increase the size of the circuit to estimate the endsize and the peaksize 
of the larger circuits. Using the estimated peaksize of the BDD, a conservative 
estimation of the memory requirements for the BDD nodes can be determined with 
high accuracy. We perform extensive experiments on multipliers obtained using the 
GenMul [9] multiplier generator.

1 In this work, we overlook dynamic variable ordering heuristics as these heuristics can be 
counterintuitively slow and thus prohibitive for complex circuits like multipliers. 
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2 Related Work 

Multipliers have been a subject of interest for a long time, and multiple strategies 
have been developed specifically to address the size complexity of the multiplier 
BDDs. In [10], the authors address the complexity of multipliers BDDs through the 
introduction of input variables although the complexity is reduced but not solved 
completely. Recently, in [11] the authors also present a method to decrease the 
complexity of verification of the multiplier BDDs; however, an optimal variable 
ordering is not addressed. Multiple different static variable ordering heuristics have 
been developed in the past. In [5–7] authors exploit circuit architecture to come up 
with a suitable input variable ordering, whereas in [3, 4], searching algorithms are 
applied to the circuit to find a good input variable ordering. Most of these consider 
only the endsize of the BDD and only for a single output. 

The memory usage issue of BDDs is addressed by several works [12–15] using  
different approaches in constructing and manipulation of the BDDs. The estimation 
of size of BDDs has been attempted using timed automata by [16, 17] for generic 
circuits. 

Our work differs in how the problem is approached with only multipliers as our 
target circuits. We focus mainly on choosing an optimal static variable ordering 
heuristic from the already developed heuristics. For calculations, we consider all 
the outputs for endsize and also consider the peaksize of the BDDs. Additionally, 
we focus on memory estimation instead of memory management. 

3 Preliminaries 

3.1 Binary Decision Diagrams 

BDDs are a tree-like representation of a Boolean function created using Shannon 
expansion. Once ordered and reduced, these Reduced Ordered BDDs (ROBDDs) 
form a canonical DAG for the given Boolean function. In our work, we refer to the 
ROBDDs as BDDs. The canonicity of the BDDs is indifferent to the architecture of 
the underlying function. That is, given two Boolean functions, their BDDs will be 
the same if : 

• both the functions perform the same tasks regardless of the underlying architec-
ture and 

• both the graphs are made with input variables arranged in the same order. 

This makes the comparison of two circuits a trivial task. For this reason, 
the BDDs are favored in the area of formal verification. However, the size of 
BDDs and their sensitivity to certain circuit architectures sometimes undermines 
its performance and ease. The ordering of input variables of a Boolean function 
heavily influences the size of its BDD. Thus, a good choice of the input variable
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order plays a decisive role in finding an optimally sized BDD. Although finding an 
optimal input variable order for a BDD is NP-hard [2], various heuristics have been 
developed to address this problem. Using these heuristics, the input variables can be 
arranged during the construction of BDD using dynamic variable ordering heuristics 
or before the construction of BDD using static variable ordering heuristic like the 
ones given below. 

• Initial Order: Input variable order as they are defined in the circuit description. 
• Reverse Order: Reverse of the initial order. 
• Dependency Order: The variables influencing more outputs of the circuit get 

precedence [7]. 
• Depth-First Search Order: Depth-First Search (DFS) is used to determine input 

variable order [3]. 
• Fanin Order: The inputs that are deeper in the circuit get precedence [6]. 
• Fanout Order: The inputs with more fanouts in the circuit get precedence [4]. 
• Random Order: The input variable order is generated randomly. 
• Breadth-First Search Order Breadth-First Search is used to determine the 

ordering for the given circuit [3]. 

Although dynamic variable ordering heuristics are capable of producing better 
outcomes, their excessive runtimes make them counterproductive. For this reason, 
in this work, we only focus on static variable ordering heuristics. 

3.2 Multipliers 

Multipliers are essential components in modern ICs. Many pivotal applications 
like encryption, digital signal processing, etc. require multipliers. Different types 
of multiplier architectures have been developed over time to satisfy demands 
in aspects like power, speed, area, and accuracy. When individually compared, 
these architectures are apparently different, but based on their internal functions, 
a multiplier can be broadly represented as a three-stage structure as represented in 
Fig. 1. Each of these stages performs the following task:

• Partial Product Generator (PPG): generates the partial product from the multi-
plier and multiplicand. 

• Partial Product Accumulator (PPA): reduces and aggregates the partial products. 
• Final Stage Adder (FSA): sums up all the result of the PPA to generate the final 

product. 

The PPGs for multipliers can be implemented using simple AND gates and Booth 
encoding algorithm. Likewise, some of the examples of PPAs are array,Wallace tree, 
counter-based Wallace, and Dadda tree algorithms. For the FSA stage, architectures 
like Brent-Kung, ripple carry, carry look-ahead, Lander-Fischer, Kogge-Stone, and 
Carry-skip can be used.
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Fig. 1 Multiplier structure
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4 Methodology 

In this section, we explain our proposed methodology. First, we present an overview 
and later we explain each step of our methodology. 

4.1 Overview 

The overview of our proposed methodology is illustrated in Fig. 2. Our proposed 
methodology is comprised of two steps. In the first step, shown in Fig. 2 by the red 
solid line, a smaller version of the target multiplier circuit is obtained. The behavior 
of BDDs for a number of different static variable ordering heuristics is observed for 
the smaller scaled-down circuit, and the most optimal heuristic is identified. Once 
the optimal heuristic is selected, the first step of the methodology is concluded 
and the second step begins. In the second step, shown as a blue dashed line in 
Fig. 2, we build a set of circuits which are also scaled-down versions of the target 
multiplier. The circuits in this set have the same structure but incrementally increase 
in size. The optimal static variable ordering heuristic is applied to this set of circuits, 
and different parameters related to the size of BDDs of each circuit are collected. 
Using these parameters, the endsize, peaksize, and memory requirement of the target 
multiplier are estimated.
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Fig. 2 Proposed two-step methodology 

4.2 Optimal Static Variable Order Selection 

The first step of our proposed methodology aims to find an optimal static variable 
ordering heuristic for the target multiplier. This process is represented in Fig. 2 by 
the red solid line. The idea is to work on smaller version of the target circuit to find 
the optimal static variable ordering heuristic and then use it for target multiplier. 
This helps to reduce the time and resources required for constructing the BDDs that 
are otherwise substantial when the larger multiplier is used. Consider a target circuit 
that is a .64 × 64 bit signed multiplier with a Array PPA and a Brent-Kung FSA. 
The scaled-down version is a .8 × 8 bit signed multiplier with the same Array PPA 
and a Brent-Kung FSA. We use GenMul [9] to obtain multiplier circuits in various 
structures and sizes. Our proposed methodology is agnostic to the underlying tools, 
thus, any BDD construction tool can be adopted that provides information about 
the endsize and the peaksize of the BDD. In order to find the optimal variable 
ordering heuristic, we use an in-house framework with CUDD [18] at its heart. This 
framework finds input variable orders for a given circuit using different heuristics 
and then uses these input variable orders to construct BDDs for the circuits. In 
addition to the BDD construction, the framework also monitors different parameters 
of BDDs like peaksize during construction and endsize. Since the GenMul tool only
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Table 1 Results of static 
variable ordering heuristics 
for the same multiplier in 
different sizes 

Static variable ordering 
heuristic 

Circuit size 

.8 × 8 .10 × 10 . 12 × 12

Initial order 6480 50,085 391,891 

Reverse order 6386 48,876 374,537 
Dependent order 12,916 129,321 1,276,275 

Fanin order 6969 51610 390512 

Fanout order 6480 50085 391891 

Random order 16710 230951 2524622 

BFS appending 12618 123378 1178732 

Initial order interleaved 12916 129321 1276275 

provides circuits in Verilog, we convert the circuits into bench format that can be 
processed by our framework. This can be done using the Yosys tool [19]. 

The framework generates input variable orderings for the scaled-down multiplier 
using different heuristics. Using the generated input variable orders, it constructs 
the BDDs for the circuit and records their endsizes and peaksizes in a database. 
The details of these static variable ordering heuristics are given in Sect. 3.1. Once 
the results of all the static variable ordering heuristics are available, the optimal 
heuristic is chosen. The choice of the optimal heuristic can be based on different 
factors, e.g., smallest endsize and resource usage. With the decision of the optimal 
static variable ordering heuristic, the first step of the methodology concludes, and 
the second step for the endsize and peaksize estimation for the target multiplier 
begins. 

Revisiting the earlier example, Table 1 shows the endsizes of the Array PPA 
and Brent-Kung FSA multiplier for three different sizes. The bold values show 
the smallest values. It can be seen that heuristic that performs well for .8 × 8 also 
performs well for the larger .10 × 10 and .12 × 12 multiplier thus in line with our 
claim that the heuristic that performs well for smaller circuits also performs well for 
larger circuits. 

4.3 BDD Endsize and Peaksize Estimation 

In the second step, we estimate the endsize and the peaksize of the target multiplier. 
Since the BDDs of multipliers usually explode in size, an estimation of the peaksize 
and endsize can help in projecting the required resources for the construction of 
their BDDs. This process is shown by the blue dashed line in Fig. 2. In this step, we 
use the optimal static variable ordering heuristic that is previously selected in the 
first step of the methodology. We obtain two or more circuits from the GenMul tool 
with the same structure to perform the experiments. These circuits are slightly larger 
than the scaled-down version of the target multiplier. In our set of circuits, we obtain 
multipliers with the same architecture with .8 × 8, .9 × 9, and .10 × 10 bit-size. Our 
framework constructs the BDDs of these circuits and extracts vital information such
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as the endsize and peaksize of the BDDs of each circuit using the selected static 
variable order heuristic. Once this information is available, trends are observed with 
respect to the growth of BDD. Using these trends, the growth factors are calculated, 
and these growth factors are used to estimate the endsize and peaksize of the target 
multiplier using the following equations: 

.êy = de
y−x × ex . (1) 

p̂y = dp 
y−x × px (2) 

where . êy and . p̂y are the estimated endsizes and peaksizes of the target multiplier 
and . ex and . px are the endsize and peaksize of the scaled-down multiplier. x is the 
bit-size of the inputs of the scaled-down multiplier and y is the bit-size of the input 
of the target multiplier. . de and . dp are the growth factors per bit of the endsize and 
peaksize, respectively, for the given multiplier structure. The peaksize of a BDD 
shows the maximum number of nodes that were created throughout the construction 
of the BDD. Therefore, the peaksize dictates the memory consumption during the 
construction of a BDD. Using the peaksize and the memory required by a single 
node, the estimation of the memory required by the target BDD is calculated as 
follows: 

.memory_required = p̂y × size_per_node (3) 

However, the memory estimation is conservative as they do not include the auxiliary 
memory that maybe required for processing. Regardless, they can allow for a 
more insightful resource allocation and thus produce practical runtimes for BDD 
construction. 

5 Experiments 

In this section, we present the experimental results of the proposed methodology 
to select the optimal static variable ordering heuristic and estimation of peaksize 
and endsize. In our work, we obtained different multiplier structure combinations 
using the GenMul tool. We applied our methodology to a wide range of multiplier 
structures, but for brevity, we present results for only a few static variable ordering 
heuristics and multiplier structures. 

5.1 Selection of Optimal Heuristic 

Figure 4 shows the endsize and peaksize of different static variable ordering 
heuristics for four different .8×8 multiplier structures. The naming of the multipliers
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in the figures is in the X_A_B format where X is the PPG (S = signed simple, U = 
unsigned simple), A is the PPA type (AR = Array, WT = Wallace tree, DT = Dadda 
tree, CWT = counter-based Wallace tree), and B represents its FSA type (BK = 
Brent-Kung, RC = ripple carry, CK = carry skip, LF = Ladner-Fischer). The x-
axis represents the multiplier structure and the y-axis shows the number of nodes. 
When choosing the optimal static variable ordering heuristic based on the endsize, 
the lowest value would be considered. From Fig. 3a which shows the endsize for 
signed multipliers, it can be seen that the reverse order performs well for all the 
multiplier structures, but in Fig. 4a which shows the endsize of unsigned multipliers, 
initial and fanout ordering heuristics outperforms the other heuristics. The initial 
and reverse ordering heuristics are less intuitive, but it is interesting to see that 
there are other heuristics like the fanout ordering that produce similar results as that 
of initial order. And consequently its performance would match the reverse order. 
While some heuristics look oblivious to the structures, heuristics like fanin order 
seem to be affected by the structure of the multiplier. The random order performs 
the worst for all the selected structures which reinforces that the selection of input 
variable order should be rational.

Figures 3b and 4b show the peaksizes using different static variable ordering 
heuristics for signed and unsigned multipliers, respectively. When selecting the 
static variable ordering heuristic based on the peaksize, the difference seems to be 
less obvious. It seems so because on average the peaksize is 10x larger than the 
endsize; therefore, the difference between orders is less evident. Within our selected 
signed multiplier structures (Fig. 3b), the reverse order performs well but this is 
not universal. For the unsigned multiplier of Array and Brent-Kung combination 
(U_AR_BK) as evident in Fig. 4b, the BFS produces a much smaller peaksize and 
thus would consume fewer resources and therefore would be the choice for optimal 
heuristic when the peaksize is considered. 

5.2 Estimation of Endsize and Peaksize of the BDDs 

From the results of step 1, as evident from Fig. 3a, the reverse order was selected as 
the optimal static variable ordering heuristic for the multiplier structure S_AR_BK. 
Since our scaled-down version of multiplier was .8 × 8, the circuits in this set for 
estimation are of size .9×9, .10×10, and .11×11. Although a set of three increments 
would suffice, more incremental circuits would result in a better estimation. We 
obtained a set of circuits of all the multiplier structures with incremental increase 
in size. However, due to space constraints, we only show the result for one of the 
multiplier structure, i.e., signed multiplier with Array PPA and Brent-Kung FSA 
(S_AR_BK). As expected in our results, the growth factor of the peaksize was 
slightly greater than the endsize (. 2.8 and . 2.6, respectively). 

Figure 5a, b shows the estimated endsize and peaksize using Equations 1 and 2 
for our selected multiplier structure. The x-axis represents the size of the multiplier 
in bits, and the primary y-axis shows the number of nodes, and the secondary y-axis
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Fig. 3 Endsize and peaksize of four 8. ×8 signed multiplier structures for different static variable 
ordering heuristics. (a) Endsize for signed multipliers. (b) Peaksize for signed multipliers
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Fig. 4 Endsize and peaksize of four 8. ×8 unsigned multiplier structures for different static variable 
ordering heuristics. (a) Endsize for unsigned multipliers. (b) Peaksize for unsigned multipliers
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Fig. 5 Estimated endsize and peaksize for the signed multiplier with Array PPA and Brent-Kung 
FSA (S_AR_BK). (a) Endsize. (b) Peaksize
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gives the percentage error between the actual and the estimated values. The solid 
blue lines show the actual endsize and peaksize, and the red dashed lines show the 
estimated endsize and peaksize for these circuits. The percentage error is shown by 
the bar graph (green) in the background of the respective graphs. 

As visible from Fig. 5a, b, the estimated values follow the same trends as 
the actual values. Consider the .16 × 16 bit multiplier in Fig. 5, the estimated 
endsize is .21, 967, 242 and the estimated peaksize is .279, 660, 485. To calculate the 
percentage error, we constructed the BDD for the circuit sizes that were achievable. 
For the .16 × 16 bit multiplier, the percentage error in endsize is .≈ 5.9% and for 
peaksize it is only .≈ 1.2%. Although the error in the estimated endsize shows 
an increasing trend in this case, increasing the number of circuits to calculate 
the growth factors will help in decreasing the error percentage. The error in the 
estimated peaksize does not show a constant increase as the endsize and is very 
small in contrast to the endsize. Thus, the values that are calculated for the memory 
required by the BDD nodes using the estimated peaksize can be reliable. 

5.3 Memory Usage Estimation 

A single node on CUDD package requires 32-bytes when compiled using 64-bit 
pointer system (16-bytes for 32-bit pointers) [18]. Table 2 shows the estimated 
values for endsize, peaksize, and memory requirement of BDD nodes constructed 
using reverse ordering for a signed multiplier with Array PPA and Brent-Kung 
FSA (S_AR_BK) for larger sizes. Using these values, for the given structures the 
minimum memory requirement for a .16 × 16 multiplier, excluding the auxiliary 
memory required by the CUDD package, is . ≈ 9GB memory for 64-bit systems. 
Based on the estimated values, for the .18 × 18 multiplier, we ran it on system with 
memory resource less than estimated values (Intel(R) Xeon(R) CPU E5-2630 v3 @ 
2.40GHz, main memory .= 64GB). As expected, the BDD construction failed after 
running for an extended period (runtime . > . 24 h). Later, we constructed the BDD on 
a system having resources greater than our memory estimate (Intel(R) Core(TM) 
i9-11900KF @ 3.50GHz, main memory .= 125GB), and the construction was 
successfully completed in a reasonable time (.≈ 1 h). Thus, it reinforces the 
confidence in the estimated values and in the idea that an early memory estimation 
allows for a more efficient selection of resource and utilization of time.

6 Discussion 

In this section, we discuss some observations and possible extensions of our 
work. Although we applied our methodology to only traditional BDD construction 
methods, we believe that it can easily be adapted to other methods used for 
constructing BDDs like the one proposed in [10]. In addition to that, the estimated
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Table 2 Estimated endsize, peaksize, and memory requirement for S_AR_BK multiplier using 
reverse ordering 

Estimated Estimated Estimated memory 

Multiplier sizes endsize peaksize required by CUDDa 

.16 × 16 .2.18 × 10^7 .2.80 × 10^8 9GB  

.18 × 18 .1.67 × 10^9 .2.30 × 10^9 74GB 

.32 × 32 .2.54 × 10^14 .5.87 × 10^15 .1.88 × 10^5 TB 

.64 × 64 .3.23 × 10^28 .2.58 × 10^30 .8.26 × 19^19 TB 
a conservative estimate for nodes only

memory requirement is not just useful for resource selection for BDD construction; 
it can also help in exploring other options for construction of multipliers in case the 
available resources appear to be insufficient. The effects of approaches which strive 
to reduce memory usage can also be explored and how these methods effect the 
growth factors. Another interesting aspect would be the assessment of methodology 
for arithmetic circuits other than multipliers, and it would be insightful to see how 
the methodology and estimation extends to these circuits. 

7 Conclusion 

In this paper, we presented a methodology to choose an optimal static variable 
ordering heuristic for larger multipliers with early estimation of the endsize, 
peaksize, and memory requirements for constructing the BDD. Using the smaller 
version of the target multiplier structure, we were able to find an optimal static 
variable ordering heuristic that also works equally well for the target multiplier. 
For the endsize estimation, we reused the chosen heuristics and collected a set of 
multiplier circuits of the same structure with incremental increase in size to find a 
growth factor per bit for the endsize and peaksize. This growth factor was used to 
estimate the endsize and the peaksize of the target multiplier. Using the estimated 
peaksize, we were also able to project the memory required in constructing the 
BDD. We demonstrated the applicability of our methodology on various multiplier 
circuits. 
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