
Rolf Drechsler
Sebastian Huhn Editors

Advanced
Boolean
Techniques
Selected Papers from the
15th International Workshop
on Boolean Problems

Advanced Boolean Techniques

Rolf Drechsler • Sebastian Huhn
Editors

Advanced Boolean
Techniques
Selected Papers from the 15th International
Workshop on Boolean Problems

Editors
Rolf Drechsler
University of Bremen/DFKI
Bremen, Bremen, Germany

Sebastian Huhn
University of Bremen/DFKI
Bremen, Germany

ISBN 978-3-031-28915-6 ISBN 978-3-031-28916-3 (eBook)
https://doi.org/10.1007/978-3-031-28916-3

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland
AG 2023
This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether
the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse
of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and
transmission or information storage and retrieval, electronic adaptation, computer software, or by similar
or dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-031-28916-3
https://doi.org/10.1007/978-3-031-28916-3
https://doi.org/10.1007/978-3-031-28916-3
https://doi.org/10.1007/978-3-031-28916-3
https://doi.org/10.1007/978-3-031-28916-3
https://doi.org/10.1007/978-3-031-28916-3
https://doi.org/10.1007/978-3-031-28916-3
https://doi.org/10.1007/978-3-031-28916-3
https://doi.org/10.1007/978-3-031-28916-3
https://doi.org/10.1007/978-3-031-28916-3

Preface

For decades, Boolean functions have been significantly contributing to computer
science and, by this, paved the way for the design and verification of state-of-the-art
circuits and systems.

The International Workshop on Boolean Problems (IWSBP) is a bi-annually held
and well-established forum to discuss the recent advances in problems related to
Boolean logic and Boolean algebra. After two exhaustive years of the COVID-19
pandemic, the workshop took place again in person from September 22 to 23 in 2022
and was hosted at the University of Bremen, Germany. Such an in-person meeting
undoubtedly offers an environment to spark engaging discussions and supports
fruitful collaborations in the exciting field of Boolean problems.

The workshop addresses the scientific exchange of problems related to Boolean
logic and Boolean algebra. It also includes problems of a discrete mathematical
nature. The workshop provides a forum for researchers and engineers from different
disciplines to exchange ideas and to discuss problems and solutions. The workshop
is devoted to both theoretical discoveries and practical applications. One important
aim is to initiate collaborative research and to find new areas of application.

The book’s first chapter is a contribution resulting from the invited keynote at
the workshop. Here, Martin Fränzle presents “Arithmetic Satisfiability-Modulo-
Theory Solving Applied to Nonstandard Analysis Problems of Cyber-Physical
Systems”. The following nine chapters are extended manuscripts based on the
workshop submissions. In the second chapter, Annika Heil and Oliver Keszocze
write about the “Fast AIG-Based Approximate Logic Synthesis”. Afterward, in
the third chapter, Siang-Yun Lee, Heinz Riener, and Giovanni De Micheli consider
“External Don’t Cares in Logic Synthesis”. Claudio Moraga, Radomir S. Stanković,
and Milena Stanković target “Maiorana-McFarland Boolean Bent Functions Char-
acterized by Their Reed-Muller Spectra” in the fourth chapter. In the fifth chapter,
Muhammad Hassan, Thilo Vörtler, Karsten Einwich, Rolf Drechsler, and Daniel
Große investigate “Toward System-Level Assertions for Heterogeneous Systems”.
In the sixth chapter, Marcel Merten, Mohammed E. Djeridane, Sebastian Huhn,
and Rolf Drechsler write about “SAT-Based Key Determination Attack for Improv-
ing the Quality Assessment of Logic Locking Mechanisms”. Anna Bernasconi,

v

vi Preface

Valentina Ciriani, and Licia Monfrini address “Autosymmetric and D-reducible
Functions: Theory and Application to Security” in the seventh chapter. In the eighth
chapter, Danila Gorodecky and Leonel Sousa focus on “Two-Operand Modular
Multiplication to Small Bit Ranges”. Ahmad Al-zoubi and Goerschwin Fey present
“Low-Latency Real-Time Inference for Multilayer Perceptrons on FPGAs” in
the nineth chapter. In the tenth chapter, Bernd Steinbach and Christian Posthoff
investigate “Thirty-Six Officers of Euler-New Insights Computed Using XBOOLE”.
Finally, the book is concluded in the eleventh chapter by an invited article from
Khushboo Qayyum, Alireza Mahzoon, and Rolf Drechsler about “Start Small But
Dream Big: On Choosing a Static Variable Order for Multiplier BDDs”.

We would like to express our thanks to the program committee of the 15th
IWSBP and to the organizational team, in particular, Lisa Jungmann and Kristiane
Schmitt. Furthermore, we thank all the authors of contributed chapters who did a
great job in submitting their manuscripts of very high quality. A special thanks goes
to the keynote speakers of the workshop, Prof. Martin Fränzle (Carl von Ossietzky
University of Oldenburg, Germany) and Dr. Stefan Frehse (formerly matched.io,
Germany). Finally, we would like to thank Dhivya Savariraj, Hemalatha Velarasu,
Zoe Kennedy, Brian Halm, and Charles Glaser from Springer. All this would not
have been possible without their steady support.

Bremen, Germany Rolf Drechsler
May, 2023 Sebastian Huhn

Contents

Arithmetic Satisfiability-Modulo-Theory Solving Applied to
Nonstandard Analysis Problems of Cyber-Physical Systems 1
Martin Fränzle

Fast AIG-Based Approximate Logic Synthesis . 17
Annika Heil and Oliver Keszocze

External Don’t Cares in Logic Synthesis . 33
Siang-Yun Lee, Heinz Riener, and Giovanni De Micheli

Maiorana-McFarland Boolean Bent Functions Characterized by
Their Reed-Muller Spectra . 49
Claudio Moraga, Radomir S. Stanković, and Milena Stanković

Toward System-Level Assertions for Heterogeneous Systems 67
Muhammad Hassan, Thilo Vörtler, Karsten Einwich, Rolf Drechsler,
and Daniel Große

SAT-Based Key Determination Attack for Improving the Quality
Assessment of Logic Locking Mechanisms . 83
Marcel Merten, Mohammed E. Djeridane, Sebastian Huhn,
and Rolf Drechsler

Autosymmetric and D-reducible Functions: Theory and
Application to Security . 95
Anna Bernasconi, Valentina Ciriani, and Licia Monfrini

Two-Operand Modular Multiplication to Small Bit Ranges 111
Danila Gorodecky and Leonel Sousa

Low-Latency Real-Time Inference for Multilayer Perceptrons
on FPGAs . 123
Ahmad Al-Zoubi and Goerschwin Fey

vii

viii Contents

Thirty-Six Officers of Euler-New Insights Computed Using XBOOLE. . . . 135
Bernd Steinbach and Christian Posthoff

Start Small But Dream Big: On Choosing a Static Variable Order
for Multiplier BDDs . 155
Khushboo Qayyum, Alireza Mahzoon, and Rolf Drechsler

Index . 171

Arithmetic Satisfiability-Modulo-Theory
Solving Applied to Nonstandard Analysis
Problems of Cyber-Physical Systems

Martin Fränzle

1 Introduction

Cyber-physical systems (CPSes) joining a physical environment and numerous
embedded computational devices via digital networking into a tightly coupled
system are rapidly becoming reality. They are at the heart of the recent push toward
so-called smart environments, be it “smart cities” as denoting anticipated forms of
CPS-enabled urban structures, or “smart grids,” “smart transportation,” and “smart
health” advancing energy supplies, transportation systems, and medical technology,
respectively, or “Industry 4.0” revolutionizing manufacturing technology. Most of
these applications are inherently safety-critical in that malfunctions may endanger
life, property, or the environment. The quest for ensuring the predictable, reliable,
and safe operation of complex cyber-physical infrastructures thus becomes pro-
nounced [26].

This quest does, however, induce the need to reason about the joint dynamic
behavior of computational devices and physical (in a broad sense) processes. Such
reasoning naturally involves hybrid discrete-continuous state, with the physical
phenomena spanning a multidimensional continuous state space that is subject to
continuous-time dynamics, while computational processes give rise to discrete state
and behavior. Pertinent models reflecting the joint dynamics of such hybrid-state
systems supporting their analysis are hybrid automata [1] and related formalisms,

Supported by Deutsche Forschungsgemeinschaft under grant no. FR 2715/4-1 and by the State of
Lower Saxony within the Zukunftslabor Mobilität.

M. Fränzle (�)
Department of Computing Science, Carl von Ossietzky University of Oldenburg, Oldenburg,
Germany
e-mail: martin.fraenzle@uol.de

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. Drechsler, S. Huhn (eds.), Advanced Boolean Techniques,
https://doi.org/10.1007/978-3-031-28916-3_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-28916-3protect T1	extunderscore 1&domain=pdf

 885
56845 a 885 56845 a

mailto:martin.fraenzle@uol.de
mailto:martin.fraenzle@uol.de
mailto:martin.fraenzle@uol.de
https://doi.org/10.1007/978-3-031-28916-3_1
https://doi.org/10.1007/978-3-031-28916-3_1
https://doi.org/10.1007/978-3-031-28916-3_1
https://doi.org/10.1007/978-3-031-28916-3_1
https://doi.org/10.1007/978-3-031-28916-3_1
https://doi.org/10.1007/978-3-031-28916-3_1
https://doi.org/10.1007/978-3-031-28916-3_1
https://doi.org/10.1007/978-3-031-28916-3_1
https://doi.org/10.1007/978-3-031-28916-3_1
https://doi.org/10.1007/978-3-031-28916-3_1
https://doi.org/10.1007/978-3-031-28916-3_1

2 M. Fränzle

which induce complex verification conditions that can in general only be solved
approximately due to undecidability of even the most basic dynamical problems of
restricted subclasses of hybrid automata [19]. Such approximations have historically
given rise to a vast and diverse set of different automated verification technologies
[13].

All these analysis techniques do have to reason about infinite state due to the
hybrid discrete-continuous nature of the state space. Adopting set-based reasoning
is a must when it comes to automatic reasoning about such infinite domains, either
directly or indirectly by constructing finite-state abstractions lumping together sets
of infinite cardinality into a single abstract item. Various computational procedures
have been devised for such set-based reasoning, with the most prominent ones being
reach-set computation on the one hand and satisfiability-modulo-theory (SMT)
solving on the other. Reach-set computation provides over- or—more rarely—
under-approximations of the state set reachable within a bounded or unbounded
time or step horizon within a computational representation of subsets of hybrid
discrete-continuous state spaces of finite dimension. A specific such representation
has to be chosen, as arbitrary sets are not representable due to cardinality reasons:
only countable many sets are computer-representable, while the subsets of a
finite-dimensional hybrid state space have the cardinality of the powerset of the
continuum. Various computational representations and with them algorithms for
the approximate computation of reach sets of hybrid automata have been devised,
among them (computational) interval boxes, zonotopes and polyhedra, support
functions, Taylor forms, or sub-level sets of algebraic functions (cf. [13] for an
overview).

An alternative approach, which we employ on the examples in this note, is
satisfiability-modulo-theory (SMT) solving [3] over arithmetic theories, as pio-
neered by the LP-SAT hybrid-state planner [28]. Being based on automated proof
search over the underlying arithmetic theory and thereby implicitly defining and
enumerating relevant subsets of the problem domain, it avoids explicit computation
of reachable state sets while solving—mostly depth-bounded, though extensions
to unbounded problems exist based on inductive proof rules or Craig interpolation
[24]—reachability problems of infinite-state or hybrid-state systems [9]. While
SMT was originally confined to decidable theories, where a theory solver deciding
arbitrary conjunctions of theory atoms exists and the DPLL(T) or CDCL(T)
paradigm, inheriting conflict-driven clause learning (CDCL) from propositional
satisfiability [21], adds the ability to reason about arbitrary Boolean combinations
of theory atoms, solvers like iSAT [16] and dReal [18] have later added the ability
to (approximately yet safely) reason about undecidable fragments of arithmetic
involving transcendental functions. Their reasoning is based on a tight integration
of interval constraint propagation [5] with CDCL [21].

iSAT [15] and its subsequent extensions for direct coverage of nonlinear
ordinary differential equations [10] and of stochastic SMT problems [16] thus
exploit the Boolean algebra structure of the powerset—or rather of computationally
representable subsets of the powerset—of the domains reasoned about, namely, the
Booleans, the integers, the reals, the computational reals implemented as binary

SMT Applied to Non-Standard Analysis Problems of CPS 3

floating-point numbers [25], and their combinations. Within this note, we cannot
explain the algorithmic underpinnings of the iSAT solver family in any detail, but we
explain their input languages and their use for encoding hybrid discrete-continuous
state dynamics (Sect. 2), and we demonstrate recent applications outside the tradi-
tional domains of automated verification [17] and test automation [27]. With respect
to those recent applications, we focus on the two sample applications of exact
monitoring of cyber-physical processes under epistemic and aleatory uncertainty
(Sect. 3.1, based on [12]) and of quantitative safety analysis of autonomous systems
featuring brain-computer interfaces (Sec. 3.2, related to [8]).

2 iSAT and SiSAT

As we are aiming at the automated analysis of phenomena involving hybrid
discrete-continuous state, we are faced with the general problem of mechanically
solving equational and inequational arithmetic constraints over mixed discrete-
continuous domains. These constraints do not only naturally involve linear and
polynomial (often ambiguously denoted as “nonlinear” in the satisfiability-modulo-
theory community) arithmetic but also transcendental functions and linear as well
as nonlinear differential equations.

In order to understand how such constraint systems evolve from an analysis prob-
lem for a hybrid discrete-continuous state system modeled as a hybrid automaton
[1], we take a look at the probabilistic hybrid automaton depicted in Fig. 1. In
order to pursue qualitative bounded reachability analysis for hybrid-state systems
via constraint solving [2, 14], where bounded reachability analysis constitutes the
simplest instance of bounded model checking [7], with respect to a given set of goal
or target states like, e.g., those satisfying .T > −12, one generates the following
constraints:

Fig. 1 A small probabilistic hybrid automaton, involving both nondeterministic transition selec-
tion (in green) and probabilistic transition selection (red), i.e., constituting a hybrid-state Markov
decision process

4 M. Fränzle

Table 1 The symbolic transition relation for the PHA from Fig. 1 used in qualitative bounded
model checking (BMC, [7])

Source Guard Action Target

Controlled .(T ≤ −22) .(T ′ = T ∧ c′ = 0) Controlled’

Controlled .(T ≥ −18) .(T ′ = T) Defunct’

Controlled .(T ≥ −18) .(T ′ = T ∧ c′ = 1) Controlled’

Source Flow Invariant Target

Controlled .

(
dT
dt

= (20 − 50c − T)α
)

.(−22 ≤ T ≤ −18) Controlled’

Defunct .

(
dT
dt

= (20 − T)α
)

True Defunct’

• Initial conditions of the automaton map to corresponding constraints, yielding the
initial-state condition .I ≡ controlled ∧ −24 ≤ T ∧ T ≤ −18 for the automaton
from Fig. 1.

• Transitions map to constraints between the values of state variables before and
after the transition, the latter here denoted by decorating the state variable names
with a prime. For the automaton from the example, the corresponding transition
constraint is given in the upper part of Table 1.

• Durational stays in locations are interpreted as transitions from pre- to post-states
connected by the differential equation associated with the location, as shown in
the lower part of Table 1.

Both parts of the transition relation together form the symbolic transition
relation T

• The specification of the goal set simply is copied as .G ≡ T > −12.

These constraints constitute a symbolic representation that is in one-to-one corre-
spondence to qualitative, non-probabilistic behavior of the infinite-state transition
system induced by the hybrid automaton.

“Unwinding” this symbolic transition to a desired depth .k ∈ N is then
achieved by k times copying the transition constraint under appropriate renaming,
thereafter adding (accordingly renamed) versions of the initial state constraint and
the target constraint. This yields a constraint . Φk = I [x/x0] ∧ T [x/x0][x′/x1] ∧
T [x/x1][x′/x2] ∧ . . . ∧ T [x/xk−1][x′/xk] ∧ G[x/xk], where . x denotes the variable
set of the above constraints and .φ[x/y] the substitution of . x by . y in . φ. Satisfiablity
of the resulting constraint system .Φk then corresponds to reachability of a state
satisfying the target constraint within exactly k steps of the hybrid automaton [7],
with any satisfying valuation of . Φk constituting a path from an initial state to a target
state of k steps in length.

Note that the constraint system . Φk not only refers to a rich (and undecidable in
general) fragment of arithmetic but also comprises arbitrary Boolean combinations
of the arithmetic atoms involved. This necessity is induced by encoding transition
systems and is in stark contrast to many settings of arithmetic constraint solving,
e.g., interval constraint propagation [5], where conjunctive constraint systems tend
to be addressed.

SMT Applied to Non-Standard Analysis Problems of CPS 5

In order to address the solving of such hybrid-domain constraint systems
involving complex Boolean connective structure, the author’s group has together
with Bernd Becker’s group at Albert Ludwigs Universität Freiburg and Christoph
Weidenbach’s group at the Max-Planck-Institut für Informatik at Saarbrücken
developed a number of arithmetic constraint solvers within the Transregional
Research Center AVACS (Automatic Verification and Analysis of Complex Sys-
tems, DFG SFB-TRR 14, [4]). Most notably are iSAT [15, 24, 25] addressing the
above fragment of linear, polynomial, and transcendental arithmetic constraints, yet
without ordinary differential equations, iSAT(ODE) [10, 11] adding the respec-
tive support for ordinary differential equation constraints, and SiSAT [16, 17]
adding stochastic quantification and a corresponding quantitative semantics akin
to propositional stochastic SAT (SSAT, [20, 22]), yet lifting such to stochastic
satisfiability modulo an arithmetic theory. Generalizing satisfiability-modulo-theory
(SMT) based bounded model checking of hybrid automata [2, 14], such stochastic
satisfiability-modulo-theory (SSMT) permits the direct analysis of probabilistic
bounded reachability problems of probabilistic hybrid automata.

An SSMT formula .φ = Q : π input to SiSAT hereby comprises a (possibly
empty) quantifier prefix Q containing a sequence of existential (. ∃x ∈ {v1, . . . , vn} :
. . .) and random (

R

x ∈ {(v1, p1), . . . , (vn, pn)} : . . . describing a probability
distribution with finite carrier) quantifications over finite domains, followed by a
quantifier-free “matrix” . π , which is an arithmetic constraint formula as in iSAT or
iSAT(ODE). In contrast to the Boolean satisfaction semantics of SMT formulae, the
semantics of such an SSMT formula . φ takes the form of a probability of satisfaction
. Pφ and is defined recursively over its quantifier prefix:

• If . φ is quantifier-free, then .Pφ = 1 if . φ is satisfiable and .Pφ = 0 else.
• If . φ is of the form .∃x ∈ {v1, . . . , vn} : ψ , where . v1 to . vn are theory constants,

then .Pφ = maxv∈{v1,...,vn} Pψ[x/v].
• If . φ is of the form

R

x ∈ {(v1, p1), . . . , (vn, pn)} : ψ , where . v1 to . vn

are (pairwise different) theory constants and . d1 to . dn rational numbers with
.
∑n

i=1 pi = 1, then .Pφ = ∑
(v,p)∈{(v1,p1),...,(vn,dn)} p · Pψ[x/v].

Semantically, an SSMT formula thus constitutes a .1 1
2 -player game, or equivalently

a Markov decision process (MDP), where the existential player seeks to maximize
the satisfaction probability of the matrix in response to the preceding random draws
by the random player.

Using such SSMT constraint encodings, we can compute the maximum, w.r.t.
optimal resolution of nondeterministic choices, probability of reaching a target state
in a probabilistic hybrid automaton (cf. Fig. 1) as follows:

• I and G remain as before.
• The symbolic transition relation is enriched by recourse to variables . etr and . rtr

encoding the resolution of nondeterministic choices and probabilistic choices,
respectively, as shown in Table 2.

• The unwinding .Φk is extended by a quantifier prefix comprising exis-
tential and randomized quantification and thereby encoding the sequence

6 M. Fränzle

Table 2 The symbolic transition relation for the PHA from Fig. 1 used in quantitative bounded
model checking (PBMC; [16])

Source Guard Trans Distr Action Target

Controlled .(T ≤ −22) .(etr = 1) true .(T ′ = T ∧ c′ = 0) Controlled’

Controlled .(T ≥ −18) .(etr = 2) .(rtr = 0) .(T ′ = T) Defunct’

Controlled .(T ≥ −18) .(etr = 2) .(rtr = 1) .(T ′ = T ∧ c′ = 1) Controlled’

Source Flow Invariant Target

Controlled .

(
dT
dt

= (20 − 50c − T)α
)

.(−22 ≤ T ≤ −18) Controlled’

Defunct .

(
dT
dt

= (20 − T)α
)

True Defunct’

of (and consequently the dependencies among) resolution of nondeter-
ministic choices and probabilistic choices, rendering an SSMT formula
Ψk = ∃etr0

R

rtr0∃etr1

R

rtr1 . . . ∃etr (k−1)

R

rtr (k−1) : Φk .

The probability of satisfiability of the resulting constraint system .Ψk then cor-
responds to the maximum probability of reaching a state satisfying the target
constraint within exactly k steps of the probabilistic hybrid automaton.

3 Sample Applications

We will now demonstrate two recent sample applications of such arithmetic
constraint solving, both of which go well beyond classical static analysis of
design models of embedded or cyber-physical systems. The first deals with the
stringent online monitoring of safety properties of cyber-physical systems when
state observation is uncertain, the other with the quantitative safety analysis of
critical cyber-physical systems basing their decisions on (highly uncertain) brain-
computer interfaces.

3.1 Exact Monitoring of Cyber-Physical Systems Under
Uncertainty1

Cyber-physical systems (CPS) joining a physical environment and numerous
embedded computational devices via digital networking into a tightly coupled
system are rapidly becoming reality. They are at the heart of the recent push toward
so-called smart environments. Most of these applications are inherently safety-

1 This section is based on joint work with Bernd Finkbeiner, Florian Kohn, and Paul Kröger
published in [12].

SMT Applied to Non-Standard Analysis Problems of CPS 7

critical in that malfunctions may endanger life, property, or the environment. The
quest for ensuring the predictable, reliable, and safe operation of complex cyber-
physical infrastructures is often addressed via stringent run-time monitoring. The
applications pose high demands on the accuracy of the monitoring mechanisms, as
lacking detection of an anomaly in system behavior may induce the aforementioned
risks, while spurious signaling of a potential problem may lead to performance-
degrading exception handling up to full system lockdown. Such accuracy, however,
is hard to attain when observing physical state through actual sensor devices,
thereby facing inevitable and significant inaccuracies and uncertainties in the state
observation in the form of epistemic as well as aleatory uncertainties.

This provokes a quest for monitoring algorithms which are optimally exact given
these inaccuracies and the partiality of the sensory equipment. Exact hereby means
that they are both sound and maximally complete w.r.t. the monitoring problem
under uncertainty. Soundness implies that the monitor will never provide monitoring
verdicts that are artifacts of the uncertain observation, yet that all its verdicts
invariantly hold true in any ground truth consistent with the observed noisy and
partial measurements. If it provides a verdict whenever such verdict invariantly
holds true in any measurement-consistent ground truth, then we call the monitor
complete.

For qualitative models of sensory uncertainty, arithmetic SMT solving can pro-
vide such monitoring algorithms for spatiotemporal properties, as we demonstrate
by means of an example. To this end assume that we model measurement error
qualitatively (i.e., non-stochastical) as a nondeterministic measurement outcome,
characterized by:

• an unknown yet fixed sensor offset that is bounded by a sensor-specific constant
.ε > 0,

• an independent per-sample error that is bounded by sensor-specific constant
.δ > 0.

The upper bounds on these two values refer directly to the two terms trueness
and precision used by the pertinent ISO norm 5725 to describe the accuracy of a
measurement method.

Figure 2 explains the relationship between ground-truth values of physical
entities and the related measurements under this model of measurement error. Given
a ground-truth trajectory . τ , where . τ maps the various names s of physical signals to
their actual signal .τ(s) : R → R, a measurement time series . ms thus is possible iff:

.∃o ∈ [−ε, ε] : ∀t ∈ T : ∃e ∈ [−δ, δ] : τ(s)(t) + o + e = ms(t), (1)

where T is the set of time instants where measurements are taken. Vice versa,
ground truth . τ is consistent with measurement series .mS1, . . . msn , denoted by
.ms1 , . . . , msn � τ , iff all .msi are possible w.r.t. . τ . . GT(ms1 , . . . , msn) = {τ |
ms1 , . . . , msn � τ } is the possible ground truth given .mS1, . . . msn .

Now assume that our monitoring obligation is to at time .t = 13 find out about the
truth value of the signal temporal logic [23] formula .G≤12(x ≥ 2 ∧ x ≤ 5) at .t = 1

8 M. Fränzle

Fig. 2 Imprecise measurement (red dots) of a physical quantity (green line)

Fig. 3 A time series of imprecise measurements (after [12])

given the time series of measurements depicted in Fig. 3. This time series has been
obtained via a sensor observing physical state x with an offset error bound . ε = 0.5
and per-sample error bound .δ = 0.5.

Given the relation between ground-truth values for x and the imprecise measure-
ments . mi expressed in Eq. (1), we can reduce the question whether . φ = G≤12(x ≥
2 ∧ x ≤ 5) holds at time .t = 13 to an arithmetic SMT problem as follows: We
first rewrite Eq. (1) into an existential SMT problem by the following sequence of
satisfiability-preserving transformation:

.∃o ∈ [−ε, ε] : ∀t ∈ T : ∃e ∈ [−δ, δ] : τ(x)(t) + o + e = mx(t). (2)

↓ eliminate ∀ by specialisation to time domain referenced by φ

∃o ∈ [−ε, ε] :
13∧
t=1

∃e ∈ [−δ, δ] : τ(x)(t) + o + e = mx(t). (3)

↓ Skolemization, quantifier lifting, bound renaming

∃o ∈ [−ε, ε] : ∃e1, . . . , e13 ∈ [−δ, δ] :
13∧
t=1

τ(x)(t) + o + ei = mx(t). (4)

SMT Applied to Non-Standard Analysis Problems of CPS 9

↓ interpret as satisfiability problem, drop ∃ quantifier prefix

13∧
t=1

τ(x)(t) + o + ei = mx(t). (5)

↓ FO reduction by renaming

13∧
t=1

xi + o + ei = mxi
. (6)

↓ add actual measurements

13∧
t=1

xi + o + ei = mxi ∧ mx0 = 3.95 ∧ mx1 = 4.8 ∧ mx2 = 5.7∧
. . . ∧ mx12 = 2.6 ∧ mx13 = 3.66︸ ︷︷ ︸

measurement values

(7)

As Eq. (7) expresses consistency between the measurements .mi and possible
ground-truth values . xi , we then simply add the bounded model checking [7]
tableaux for . φ or alternatively for .¬φ at time .t = 1 to Eq. (7), obtaining

.ψ := (7)︸︷︷︸
consistency

∧
13∨
t=1

(xi < 2 ∨ xi > 5)

︸ ︷︷ ︸
¬φ holds at t=1

. (8)

ψ ′ := (7)︸︷︷︸
consistency

∧
13∧
t=1

(xi ≥ 2 ∨ xi ≤ 5)

︸ ︷︷ ︸
φ holds at t=1

(9)

It now is easy to see that . ψ is satisfiable iff there is a possible ground truth consistent
with the actual measurements that violates . φ, implying that . ψ is unsatisfiable iff
each ground truth consistent with the actual measurements is guaranteed to satisfy
. φ at time .t = 1. Analogously, . ψ ′ is satisfiable iff there is a possible ground
truth consistent with the actual measurements that satisfies . φ, implying that . ψ
is unsatisfiable iff each ground truth consistent with the actual measurements is
guaranteed to violate . φ at time .t = 1.

Pursuing arithmetic SMT solving on both . ψ and . ψ ′ and reporting

• “. φ holds at . t = 1” iff . ψ is unsatisfiable,
• “. φ is violated at . t = 1” iff . ψ ′ is unsatisfiable,
• “the measurements are inconclusive about . φ at .t = 1” iff both . ψ and . ψ ′ are

satisfiable

10 M. Fränzle

thus provides a sound (no wrong verdicts are given ever) and complete (verdicts
are provided whenever possible) monitoring procedure based on SMT solving.
The induced proof obligation of deciding satisfiability of the arithmetic constraint
systems . ψ and .ψ ′ can be discharged by various SMT solvers covering linear
arithmetic, like MathSAT [6]. When the exactness of results is to be further refined
by also incorporating a model of the system dynamics into the state estimation (see
[12] for details) and if this model is involves transcendental arithmetic, then solvers
like iSAT [15] and dReal [18] become the method of choice.

3.2 Quantitative Safety Analysis of BCI-Enabled Autonomous
Systems2

Our second example deals with the use of brain-computer interfaces to inform the
embedded decision logic of a cyber-physical system about the imminent, potentially
conflictory actions of a human. The scenario depicted in Fig. 4 entails the use of
blood-oxygen-level-dependent imaging via a functional near-infrared spectroscopy
(fNIRS) helmet to detect cortical activity, the use of a computer-vision system based
on a convolutional neural network trained to spot signs of stress in the fNIRS image,
a Bayesian network trained to predict human behavior dependent on stress levels
(and some other factors like age and gender of the subject), and a robust control
component basing driving decisions of an autonomous car on these observations.
Though uncertainties as well as signal latencies are high (see the respective marking
in Fig. 4), these together are nevertheless meant to provide the following safety-
enhancing functionality:

• The signal processing and classification chain comprising of the fNIRS and
the image classifier provide indications of whether the driver of the manually
operated car (marked “M” in the image) while waiting for a left turn through
oncoming traffic has built up stress due to extended waiting or due to preexisting
conditions.

• The human behavior prediction determines the stress-dependent likelihood of the
driver of car “M” filtering through the current gap in front of the automated red
car (marked “A” in the image), as well the dependence of this likelihood on gap
size variation.

• The control prompts car “A” to vary gap size to avoid risks should a stressed
human driver in car “M” start to filter through oncoming traffic, while at the
same time not compromising performance by always or unnecessarily frequently
opening the gap in front of “A.”

2 This section is based on joint work with Werner Damm, Andreas Lüdtke, Jochem W. Rieger,
Alexander Trende, and Anirudh Unni published in [8].

SMT Applied to Non-Standard Analysis Problems of CPS 11

Fig. 4 Brain-computer interfaces supporting the decision-making in autonomous vehicles
(after [8])

Full details of this scenario can be found in [8].
Given the latencies and inaccuracies in the fNIRS-based human state detection,

the actual safety impact of such a system remains unclear. We have therefore
encoded the system model into SiSAT, facilitating its rigorous analysis, as follows:

1. We have encoded a state-based model of the dynamic buildup of frustration
in a waiting driver directly from the experimental findings obtained on human
subjects in a driving simulator (and thus obviously needing further empirical
justification for a transfer to reality, but being used herein cum grano salis as an
example of the argument logic). This model tracks the buildup of frustration
levels based on the number of gaps that the manual driver has waited for,
with critical levels being reached from a non-frustrated state within . 6 ± 2
gaps, but preexisting frustration being possible. The slope of stress buildup is
nondeterministic in its start state and varies stochastically in speed within the
aforementioned boundaries.

2. We have encoded probabilistic processes modeling the likelihood of misclassi-
fications of stress detection due to an optimally adjusted detector, adjusting it
conservatively, as required in a safety-oriented design, for a moderately high
sensitivity even if that may come at the price of compromised specificity. We
could thus calibrate the detection system for frustration to a sensitivity of 0.78

12 M. Fränzle

and obtained a similar reliability for the prediction of gap acceptance, which
was encoded by an analogous probabilistic process. The stress detection process
reads actual stress levels due to the dynamic model from 1. and reports an
unreliable stress detection based on this reflecting the actual sensitivity; likewise
the modeled actual gap acceptance varies stochastically around the predictions
of the behavioral model.

3. We have built physical first principles models of the car movements.
4. We have for the sake of comparison once added the control component to the

model of car “A” and once replaced it with a controller for keeping gap size in
front of “A” constant.

Combining these models, we generated a corresponding symbolic SSMT represen-
tation of a hybrid-state Markov decision process (MDP) in SiSAT syntax using
the coding scheme sketched in Sect. 2. Within this MDP, gap sizes in traffic on
the HAV’s lane as well as occurrence times of manually driven cars in opposing
traffic were existential variables, forcing SiSAT to construct a worst-case (i.e.,
maximally risky) scenario, while gap acceptance, build-up slopes for frustration,
and the frustration detection were random variables as described above. SiSAT was
thus asked to construct a worst-case scenario of short and long gaps leading to
maximum risk. The probabilities for the random variables were directly taken from
the experimental findings obtained on male subjects, i.e., gap acceptance rates for
short gaps in condition of frustration were 0.37 if the oncoming traffic was manually
operated and 0.97 if it was an HAV; likewise, detection rate of frustration was 0.78.

In the uncontrolled setting of a constant gap size in front of “A,” SiSAT based
on this MDP computed the risk of traversing through a too short gap in front of
car “A” as being in the interval [0.96999999, 0.97000001] for the worst possible
scenario. With the robust control strategy in place, the worst-case risk of traversing
through a too short gap was computed as [0.29584999, 0.29585001], implying a
risk reduction for worst-case scenarios by a factor of approximately 3.3 despite the
uncertainties in sensing frustration by neurophysiological measurements. It should
be noted that these figures apply to the mutual worst-case scenarios (which need
not even coincide) and are not reflecting the average case, which is dominated by
non-risky situations and should not exhibit significant changes in behavior with
associated impact on performance. It should also be clear that these figures are
currently only meant to demonstrate feasibility of the analysis method and cannot
directly be transferred to realistic driving situations due to lack of a sufficiently
dense empirical basis of some model elements.

4 Conclusion

Satisfiability solving modulo theories (SMT) [3] has evolved into a stable and now
rather scalable algorithmic foundation for the automated analysis of diverse com-
putational as well as cyber-physical phenomena, provided that they are encodable

SMT Applied to Non-Standard Analysis Problems of CPS 13

in (mostly existential) fragments of logic over appropriate theories. Within this
note, we have demonstrated how SMT solving over rich arithmetic domains can
automatically discharge proof obligations of hybrid-state cyber-physical systems
that are induced by analysis problems outside the traditional domains of automated
verification [17] and test automation [27]. The two examples provided were exact
monitoring of cyber-physical processes under epistemic and aleatory uncertainty
[12] and quantitative safety analysis of autonomous systems featuring brain-
computer interfaces [8], shedding light on the breadth of potential application areas
of arithmetic SMT solving.

Acknowledgments Numerous colleagues who have over more than a decade contributed to
the work reported herein deserve sincere thanks, most notably Bernd Becker, Andreas Eggers,
Christian Herde, Holger Hermanns, Stefan Kupferschmidt, Stefan ratschan, Karsten Scheibler,
Tino Teige, and Christoph Weidenbach for contributing to iSAT and its descendants; Bernd
Finkbeiner, Florian Kohn, and Paul Kröger for cooperating on monitoring under uncertainty;
and Werner Damm, Andreas Lüdtke, Jochem Rieger, Alexander Trende, and Anirudh Unni for
transdisciplinary collaboration on brain-computer-interfaces enabling cyber-physical systems to
assess human state.

My thanks also go to the organizers of the 15th International Workshop on Boolean Problems,
Rolf Drechsler and Sebastian Huhn, for inviting me as a keynote speaker, and to Alberto Lluch
Lafluente and the Software Systems Engineering Section at the Technical University of Denmark
for hosting me during a research semester and thus providing a pleasant environment for preparing
this note.

References

1. Alur, R., Courcoubetis, C., Henzinger, T.A., Ho, P.: Hybrid automata: An algorithmic approach
to the specification and verification of hybrid systems. In: Grossman, R.L., Nerode, A., Ravn,
A.P., Rischel, H. (eds.) Hybrid Systems. Lecture Notes in Computer Science, vol. 736, pp.
209–229. Springer (1992). https://doi.org/10.1007/3-540-57318-6_30

2. Audemard, G., Bozzano, M., Cimatti, A., Sebastiani, R.: Verifying industrial hybrid systems
with mathsat. Electron. Notes Theor. Comput. Sci. 119(2), 17–32 (2005). https://doi.org/10.
1016/j.entcs.2004.12.022

3. Barrett, C.W., Sebastiani, R., Seshia, S.A., Tinelli, C.: Satisfiability modulo theories. In: Biere,
A., Heule, M., van Maaren, H., Walsh, T. (eds.) Handbook of Satisfiability - Second Edition,
Frontiers in Artificial Intelligence and Applications, vol. 336, pp. 1267–1329. IOS Press
(2021). https://doi.org/10.3233/FAIA201017

4. Becker, B., Podelski, A., Damm, W., Fränzle, M., Olderog, E., Wilhelm, R.: SFB/TR 14
AVACS - automatic verification and analysis of complex systems (der sonderforschungsbere-
ich/transregio 14 AVACS - automatische verifikation und analyse komplexer systeme). Inf.
Technol. 49(2), 118–126 (2007). https://doi.org/10.1524/itit.2007.49.2.118

5. Benhamou, F., Granvilliers, L.: Continuous and interval constraints. In: Rossi, F., van Beek, P.,
Walsh, T. (eds.) Handbook of Constraint Programming, Foundations of Artificial Intelligence,
vol. 2, pp. 571–603. Elsevier (2006). https://doi.org/10.1016/S1574-6526(06)80020-9

6. Cimatti, A., Griggio, A., Schaafsma, B., Sebastiani, R.: The MathSAT5 SMT Solver. In:
Piterman, N., Smolka, S. (eds.) 19th International Conference, TACAS 2013, Held as Part
of the European Joint Conferences on Theory and Practice of Software, ETAPS 2013, Rome,
Italy, March 16–24. Lecture Notes in Computer Science, vol. 7795. Springer (2013)

https://doi.org/10.1007/3-540-57318-6_30
https://doi.org/10.1007/3-540-57318-6_30
https://doi.org/10.1007/3-540-57318-6_30
https://doi.org/10.1007/3-540-57318-6_30
https://doi.org/10.1007/3-540-57318-6_30
https://doi.org/10.1007/3-540-57318-6_30
https://doi.org/10.1007/3-540-57318-6_30
https://doi.org/10.1007/3-540-57318-6_30
https://doi.org/10.1007/3-540-57318-6_30
https://doi.org/10.1007/3-540-57318-6_30
https://doi.org/10.1016/j.entcs.2004.12.022
https://doi.org/10.1016/j.entcs.2004.12.022
https://doi.org/10.1016/j.entcs.2004.12.022
https://doi.org/10.1016/j.entcs.2004.12.022
https://doi.org/10.1016/j.entcs.2004.12.022
https://doi.org/10.1016/j.entcs.2004.12.022
https://doi.org/10.1016/j.entcs.2004.12.022
https://doi.org/10.1016/j.entcs.2004.12.022
https://doi.org/10.1016/j.entcs.2004.12.022
https://doi.org/10.1016/j.entcs.2004.12.022
https://doi.org/10.3233/FAIA201017
https://doi.org/10.3233/FAIA201017
https://doi.org/10.3233/FAIA201017
https://doi.org/10.3233/FAIA201017
https://doi.org/10.3233/FAIA201017
https://doi.org/10.3233/FAIA201017
https://doi.org/10.1524/itit.2007.49.2.118
https://doi.org/10.1524/itit.2007.49.2.118
https://doi.org/10.1524/itit.2007.49.2.118
https://doi.org/10.1524/itit.2007.49.2.118
https://doi.org/10.1524/itit.2007.49.2.118
https://doi.org/10.1524/itit.2007.49.2.118
https://doi.org/10.1524/itit.2007.49.2.118
https://doi.org/10.1524/itit.2007.49.2.118
https://doi.org/10.1524/itit.2007.49.2.118
https://doi.org/10.1524/itit.2007.49.2.118
https://doi.org/10.1016/S1574-6526(06)80020-9
https://doi.org/10.1016/S1574-6526(06)80020-9
https://doi.org/10.1016/S1574-6526(06)80020-9
https://doi.org/10.1016/S1574-6526(06)80020-9
https://doi.org/10.1016/S1574-6526(06)80020-9
https://doi.org/10.1016/S1574-6526(06)80020-9
https://doi.org/10.1016/S1574-6526(06)80020-9
https://doi.org/10.1016/S1574-6526(06)80020-9

14 M. Fränzle

7. Clarke, E.M., Biere, A., Raimi, R., Zhu, Y.: Bounded model checking using satisfiability solv-
ing. Formal Methods Syst. Des. 19(1), 7–34 (2001). https://doi.org/10.1023/A:1011276507260

8. Damm, W., Fränzle, M., Lüdtke, A., Rieger, J.W., Trende, A., Unni, A.: Integrating neuro-
physiological sensors and driver models for safe and performant automated vehicle control in
mixed traffic. In: 2019 IEEE Intelligent Vehicles Symposium, IV 2019, Paris, France, June
9–12, 2019. pp. 82–89. IEEE (2019). https://doi.org/10.1109/IVS.2019.8814188

9. de Moura, L.M., Rueß, H., Sorea, M.: Lazy theorem proving for bounded model checking over
infinite domains. In: Voronkov, A. (ed.) Automated Deduction - CADE-18, 18th International
Conference on Automated Deduction, Copenhagen, Denmark, July 27–30, 2002, Proceedings.
Lecture Notes in Computer Science, vol. 2392, pp. 438–455. Springer (2002). https://doi.org/
10.1007/3-540-45620-1_35

10. Eggers, A., Fränzle, M., Herde, C.: SAT modulo ODE: A direct SAT approach to hybrid
systems. In: Cha, S.D., Choi, J., Kim, M., Lee, I., Viswanathan, M. (eds.) Automated
Technology for Verification and Analysis, 6th International Symposium, ATVA 2008, Seoul,
Korea, October 20–23, 2008. Proceedings. Lecture Notes in Computer Science, vol. 5311, pp.
171–185. Springer (2008). https://doi.org/10.1007/978-3-540-88387-6_14

11. Eggers, A., Ramdani, N., Nedialkov, N.S., Fränzle, M.: Improving the SAT modulo ODE
approach to hybrid systems analysis by combining different enclosure methods. Softw. Syst.
Model. 14(1), 121–148 (2015). https://doi.org/10.1007/s10270-012-0295-3

12. Finkbeiner, B., Fränzle, M., Kohn, F., Kröger, P.: A truly robust signal temporal logic: Mon-
itoring safety properties of interacting cyber-physical systems under uncertain observation.
Algorithms 15(4), 126 (2022)

13. Fränzle, M., Chen, M., Kröger, P.: In memory of oded maler: automatic reachability analysis
of hybrid-state automata. ACM SIGLOG News 6(1), 19–39 (2019). https://doi.org/10.1145/
3313909.3313913

14. Fränzle, M., Herde, C.: Efficient proof engines for bounded model checking of hybrid systems.
Electron. Notes Theor. Comput. Sci. 133, 119–137 (2005). https://doi.org/10.1016/j.entcs.
2004.08.061

15. Fränzle, M., Herde, C., Teige, T., Ratschan, S., Schubert, T.: Efficient solving of large non-
linear arithmetic constraint systems with complex boolean structure. J. Satisf. Boolean Model.
Comput. 1(3-4), 209–236 (2007). https://doi.org/10.3233/sat190012

16. Fränzle, M., Hermanns, H., Teige, T.: Stochastic satisfiability modulo theory: A novel
technique for the analysis of probabilistic hybrid systems. In: Egerstedt, M., Mishra, B.
(eds.) Hybrid Systems: Computation and Control, 11th International Workshop, HSCC 2008,
St. Louis, MO, USA, April 22–24, 2008. Proceedings. Lecture Notes in Computer Science,
vol. 4981, pp. 172–186. Springer (2008). https://doi.org/10.1007/978-3-540-78929-1_13

17. Fränzle, M., Teige, T., Eggers, A.: Engineering constraint solvers for automatic analysis of
probabilistic hybrid automata. J. Log. Algebraic Methods Program. 79(7), 436–466 (2010).
https://doi.org/10.1016/j.jlap.2010.07.003

18. Gao, S., Kong, S., Clarke, E.M.: dreal: An SMT solver for nonlinear theories over the reals.
In: Bonacina, M.P. (ed.) Automated Deduction - CADE-24 - 24th International Conference on
Automated Deduction, Lake Placid, NY, USA, June 9-14, 2013. Proceedings. Lecture Notes
in Computer Science, vol. 7898, pp. 208–214. Springer (2013). https://doi.org/10.1007/978-3-
642-38574-2_14

19. Henzinger, T.A., Kopke, P.W., Puri, A., Varaiya, P.: What’s decidable about hybrid automata?
J. Comput. Syst. Sci. 57(1), 94–124 (1998). https://doi.org/10.1006/jcss.1998.1581

20. Littman, M.L., Majercik, S.M., Pitassi, T.: Stochastic boolean satisfiability. J. Autom. Reason.
27(3), 251–296 (2001). https://doi.org/10.1023/A:1017584715408

21. Mahajan, Y.S., Fu, Z., Malik, S.: Zchaff2004: An efficient SAT solver. In: Hoos, H.H., Mitchell,
D.G. (eds.) Theory and Applications of Satisfiability Testing, 7th International Conference,
SAT 2004, Vancouver, BC, Canada, May 10–13, 2004, Revised Selected Papers. Lecture
Notes in Computer Science, vol. 3542, pp. 360–375. Springer (2004). https://doi.org/10.1007/
11527695_27

https://doi.org/10.1023/A:1011276507260
https://doi.org/10.1023/A:1011276507260
https://doi.org/10.1023/A:1011276507260
https://doi.org/10.1023/A:1011276507260
https://doi.org/10.1023/A:1011276507260
https://doi.org/10.1023/A:1011276507260
https://doi.org/10.1023/A:1011276507260
https://doi.org/10.1109/IVS.2019.8814188
https://doi.org/10.1109/IVS.2019.8814188
https://doi.org/10.1109/IVS.2019.8814188
https://doi.org/10.1109/IVS.2019.8814188
https://doi.org/10.1109/IVS.2019.8814188
https://doi.org/10.1109/IVS.2019.8814188
https://doi.org/10.1109/IVS.2019.8814188
https://doi.org/10.1109/IVS.2019.8814188
https://doi.org/10.1007/3-540-45620-1_35
https://doi.org/10.1007/3-540-45620-1_35
https://doi.org/10.1007/3-540-45620-1_35
https://doi.org/10.1007/3-540-45620-1_35
https://doi.org/10.1007/3-540-45620-1_35
https://doi.org/10.1007/3-540-45620-1_35
https://doi.org/10.1007/3-540-45620-1_35
https://doi.org/10.1007/3-540-45620-1_35
https://doi.org/10.1007/3-540-45620-1_35
https://doi.org/10.1007/3-540-45620-1_35
https://doi.org/10.1007/978-3-540-88387-6_14
https://doi.org/10.1007/978-3-540-88387-6_14
https://doi.org/10.1007/978-3-540-88387-6_14
https://doi.org/10.1007/978-3-540-88387-6_14
https://doi.org/10.1007/978-3-540-88387-6_14
https://doi.org/10.1007/978-3-540-88387-6_14
https://doi.org/10.1007/978-3-540-88387-6_14
https://doi.org/10.1007/978-3-540-88387-6_14
https://doi.org/10.1007/978-3-540-88387-6_14
https://doi.org/10.1007/978-3-540-88387-6_14
https://doi.org/10.1007/978-3-540-88387-6_14
https://doi.org/10.1007/s10270-012-0295-3
https://doi.org/10.1007/s10270-012-0295-3
https://doi.org/10.1007/s10270-012-0295-3
https://doi.org/10.1007/s10270-012-0295-3
https://doi.org/10.1007/s10270-012-0295-3
https://doi.org/10.1007/s10270-012-0295-3
https://doi.org/10.1007/s10270-012-0295-3
https://doi.org/10.1007/s10270-012-0295-3
https://doi.org/10.1007/s10270-012-0295-3
https://doi.org/10.1145/3313909.3313913
https://doi.org/10.1145/3313909.3313913
https://doi.org/10.1145/3313909.3313913
https://doi.org/10.1145/3313909.3313913
https://doi.org/10.1145/3313909.3313913
https://doi.org/10.1145/3313909.3313913
https://doi.org/10.1145/3313909.3313913
https://doi.org/10.1016/j.entcs.2004.08.061
https://doi.org/10.1016/j.entcs.2004.08.061
https://doi.org/10.1016/j.entcs.2004.08.061
https://doi.org/10.1016/j.entcs.2004.08.061
https://doi.org/10.1016/j.entcs.2004.08.061
https://doi.org/10.1016/j.entcs.2004.08.061
https://doi.org/10.1016/j.entcs.2004.08.061
https://doi.org/10.1016/j.entcs.2004.08.061
https://doi.org/10.1016/j.entcs.2004.08.061
https://doi.org/10.1016/j.entcs.2004.08.061
https://doi.org/10.3233/sat190012
https://doi.org/10.3233/sat190012
https://doi.org/10.3233/sat190012
https://doi.org/10.3233/sat190012
https://doi.org/10.3233/sat190012
https://doi.org/10.3233/sat190012
https://doi.org/10.1007/978-3-540-78929-1_13
https://doi.org/10.1007/978-3-540-78929-1_13
https://doi.org/10.1007/978-3-540-78929-1_13
https://doi.org/10.1007/978-3-540-78929-1_13
https://doi.org/10.1007/978-3-540-78929-1_13
https://doi.org/10.1007/978-3-540-78929-1_13
https://doi.org/10.1007/978-3-540-78929-1_13
https://doi.org/10.1007/978-3-540-78929-1_13
https://doi.org/10.1007/978-3-540-78929-1_13
https://doi.org/10.1007/978-3-540-78929-1_13
https://doi.org/10.1007/978-3-540-78929-1_13
https://doi.org/10.1016/j.jlap.2010.07.003
https://doi.org/10.1016/j.jlap.2010.07.003
https://doi.org/10.1016/j.jlap.2010.07.003
https://doi.org/10.1016/j.jlap.2010.07.003
https://doi.org/10.1016/j.jlap.2010.07.003
https://doi.org/10.1016/j.jlap.2010.07.003
https://doi.org/10.1016/j.jlap.2010.07.003
https://doi.org/10.1016/j.jlap.2010.07.003
https://doi.org/10.1016/j.jlap.2010.07.003
https://doi.org/10.1016/j.jlap.2010.07.003
https://doi.org/10.1007/978-3-642-38574-2_14
https://doi.org/10.1007/978-3-642-38574-2_14
https://doi.org/10.1007/978-3-642-38574-2_14
https://doi.org/10.1007/978-3-642-38574-2_14
https://doi.org/10.1007/978-3-642-38574-2_14
https://doi.org/10.1007/978-3-642-38574-2_14
https://doi.org/10.1007/978-3-642-38574-2_14
https://doi.org/10.1007/978-3-642-38574-2_14
https://doi.org/10.1007/978-3-642-38574-2_14
https://doi.org/10.1007/978-3-642-38574-2_14
https://doi.org/10.1007/978-3-642-38574-2_14
https://doi.org/10.1006/jcss.1998.1581
https://doi.org/10.1006/jcss.1998.1581
https://doi.org/10.1006/jcss.1998.1581
https://doi.org/10.1006/jcss.1998.1581
https://doi.org/10.1006/jcss.1998.1581
https://doi.org/10.1006/jcss.1998.1581
https://doi.org/10.1006/jcss.1998.1581
https://doi.org/10.1006/jcss.1998.1581
https://doi.org/10.1023/A:1017584715408
https://doi.org/10.1023/A:1017584715408
https://doi.org/10.1023/A:1017584715408
https://doi.org/10.1023/A:1017584715408
https://doi.org/10.1023/A:1017584715408
https://doi.org/10.1023/A:1017584715408
https://doi.org/10.1023/A:1017584715408
https://doi.org/10.1007/11527695_27
https://doi.org/10.1007/11527695_27
https://doi.org/10.1007/11527695_27
https://doi.org/10.1007/11527695_27
https://doi.org/10.1007/11527695_27
https://doi.org/10.1007/11527695_27
https://doi.org/10.1007/11527695_27

SMT Applied to Non-Standard Analysis Problems of CPS 15

22. Majercik, S.M.: Stochastic boolean satisfiability. In: Biere, A., Heule, M., van Maaren,
H., Walsh, T. (eds.) Handbook of Satisfiability - Second Edition, Frontiers in Artificial
Intelligence and Applications, vol. 336, pp. 1331–1369. IOS Press (2021). https://doi.org/10.
3233/FAIA201018

23. Maler, O., Nickovic, D.: Monitoring temporal properties of continuous signals. In: Lakhnech,
Y., Yovine, S. (eds.) Joint International Conferences on Formal Modelling and Analysis of
Timed Systems, FORMATS 2004 and Formal Techniques in Real-Time and Fault-Tolerant
Systems, FTRTFT 2004. Lecture Notes in Computer Science, vol. 3253, pp. 152–166. Springer
(2004). https://doi.org/10.1007/978-3-540-30206-3_12

24. Scheibler, K., Kupferschmid, S., Becker, B.: Recent improvements in the SMT solver isat.
In: Haubelt, C., Timmermann, D. (eds.) Workshop Methoden und Beschreibungssprachen
zur Modellierung und Verifikation von Schaltungen und Systemen (MBMV), Warnemünde,
Germany, March 12–14, 2013, pp. 231–241 (2013)

25. Scheibler, K., Neubauer, F., Mahdi, A., Fränzle, M., Teige, T., Bienmüller, T., Fehrer, D.,
Becker, B.: Accurate ICP-based floating-point reasoning. In: Piskac, R., Talupur, M. (eds.)
2016 Formal Methods in Computer-Aided Design, FMCAD 2016, Mountain View, CA, USA,
October 3–6, 2016, pp. 177–184. IEEE (2016). https://doi.org/10.1109/FMCAD.2016.7886677

26. Sztipanovits, J., Koutsoukos, X., Karsai, G., Sastry, S., Tomlin, C., Damm, W., Fränzle,
M., Rieger, J., Pretschner, A., Köster, F.: Science of design for societal-scale cyber-physical
systems: challenges and opportunities. Cyber Phys. Syst. 5(3), 145–172 (2019). https://doi.
org/10.1080/23335777.2019.1624619

27. Teige, T., Eggers, A., Scheibler, K., Stasch, M., Brockmeyer, U., Holberg, H.J., Bienmüller, T.:
Two decades of formal methods in industrial products at BTC embedded systems. In: Huisman,
M., Pasareanu, C.S., Zhan, N. (eds.) 24th International Symposium on Formal Methods, FM
2021. Lecture Notes in Computer Science, vol. 13047, pp. 725–729. Springer (2021). https://
doi.org/10.1007/978-3-030-90870-6_40

28. Wolfman, S.A., Weld, D.S.: The LPSAT engine & its application to resource planning. In: 16th
International Joint Conference on Artifical Intelligence - Volume 1. p. 310–316. IJCAI’99,
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA (1999)

https://doi.org/10.3233/FAIA201018
https://doi.org/10.3233/FAIA201018
https://doi.org/10.3233/FAIA201018
https://doi.org/10.3233/FAIA201018
https://doi.org/10.3233/FAIA201018
https://doi.org/10.3233/FAIA201018
https://doi.org/10.1007/978-3-540-30206-3_12
https://doi.org/10.1007/978-3-540-30206-3_12
https://doi.org/10.1007/978-3-540-30206-3_12
https://doi.org/10.1007/978-3-540-30206-3_12
https://doi.org/10.1007/978-3-540-30206-3_12
https://doi.org/10.1007/978-3-540-30206-3_12
https://doi.org/10.1007/978-3-540-30206-3_12
https://doi.org/10.1007/978-3-540-30206-3_12
https://doi.org/10.1007/978-3-540-30206-3_12
https://doi.org/10.1007/978-3-540-30206-3_12
https://doi.org/10.1007/978-3-540-30206-3_12
https://doi.org/10.1109/FMCAD.2016.7886677
https://doi.org/10.1109/FMCAD.2016.7886677
https://doi.org/10.1109/FMCAD.2016.7886677
https://doi.org/10.1109/FMCAD.2016.7886677
https://doi.org/10.1109/FMCAD.2016.7886677
https://doi.org/10.1109/FMCAD.2016.7886677
https://doi.org/10.1109/FMCAD.2016.7886677
https://doi.org/10.1109/FMCAD.2016.7886677
https://doi.org/10.1080/23335777.2019.1624619
https://doi.org/10.1080/23335777.2019.1624619
https://doi.org/10.1080/23335777.2019.1624619
https://doi.org/10.1080/23335777.2019.1624619
https://doi.org/10.1080/23335777.2019.1624619
https://doi.org/10.1080/23335777.2019.1624619
https://doi.org/10.1080/23335777.2019.1624619
https://doi.org/10.1080/23335777.2019.1624619
https://doi.org/10.1007/978-3-030-90870-6_40
https://doi.org/10.1007/978-3-030-90870-6_40
https://doi.org/10.1007/978-3-030-90870-6_40
https://doi.org/10.1007/978-3-030-90870-6_40
https://doi.org/10.1007/978-3-030-90870-6_40
https://doi.org/10.1007/978-3-030-90870-6_40
https://doi.org/10.1007/978-3-030-90870-6_40
https://doi.org/10.1007/978-3-030-90870-6_40
https://doi.org/10.1007/978-3-030-90870-6_40
https://doi.org/10.1007/978-3-030-90870-6_40
https://doi.org/10.1007/978-3-030-90870-6_40

Fast AIG-Based Approximate Logic
Synthesis

Annika Heil and Oliver Keszocze

1 Introduction

A major objective of the technical industry is to provide its customers with small and
fast devices which are simultaneously energy-efficient. System designers focus on
three major aspects while designing a system: area, latency, and power consumption.

In terms of area, it is widely known to researchers in the field of digital
technology that the number of transistors, which are able to fit on an integrated
circuit, has risen steadily since the early 1960s, thanks to technological advance
(also known as Moore’s law) [1]. This trend of minimization has been declining and
is expected to end in 2025 [2].

The question is, how to address the three aspects when “simply” minimizing
the transistors will not be possible in the foreseeable future any more. It turns out
that many applications, especially in the domain of digital signal processing, do
not require strictly correct computations [3]. This is due to the fact that the human
perception itself is not perfect. In some other situations, it might even be the case
that the customer is willing to accept incorrect results in favor of having a faster,
smaller, or less energy-hungry system [4].

A design paradigm known as approximate computing [5, 6] exploits this. The
basic idea is to trade off computational accuracy for gains in nonfunctional aspects
such as reduced area, smaller latency, and power reduction.

In the literature, two main approaches to introduce approximations to the design
in order to achieve gains on one or multiple of the aspects mentioned above are used
(see, e.g., [7]): (a) physical changes to the design including voltage over-scaling or
overclocking or (b) altering the functionality. We will pursue the latter approach

A. Heil · O. Keszocze (�)
Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Nürnberg, Germany
e-mail: annika.heil@fau.de; oliver.keszoecze@fau.de

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. Drechsler, S. Huhn (eds.), Advanced Boolean Techniques,
https://doi.org/10.1007/978-3-031-28916-3_2

17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-28916-3protect T1	extunderscore 2&domain=pdf

 885 56845 a 885 56845 a

mailto:annika.heil@fau.de
mailto:annika.heil@fau.de
mailto:annika.heil@fau.de

 8719 56845 a 8719 56845
a

mailto:oliver.keszoecze@fau.de
mailto:oliver.keszoecze@fau.de
mailto:oliver.keszoecze@fau.de
https://doi.org/10.1007/978-3-031-28916-3_2
https://doi.org/10.1007/978-3-031-28916-3_2
https://doi.org/10.1007/978-3-031-28916-3_2
https://doi.org/10.1007/978-3-031-28916-3_2
https://doi.org/10.1007/978-3-031-28916-3_2
https://doi.org/10.1007/978-3-031-28916-3_2
https://doi.org/10.1007/978-3-031-28916-3_2
https://doi.org/10.1007/978-3-031-28916-3_2
https://doi.org/10.1007/978-3-031-28916-3_2
https://doi.org/10.1007/978-3-031-28916-3_2
https://doi.org/10.1007/978-3-031-28916-3_2

18 A. Heil and O. Keszocze

in this work. More precisely, we will present a novel and fast approximate logic
synthesis (ALS) technique. Our optimization goal is the circuit area. We refer the
reader to [8] for a general survey on ALS techniques.

In this work we propose an ALS method that (a) aims to minimize the area of
an approximated circuit, (b) specifically targets arithmetic circuits, (c) operates on
(X)AIG representations of Boolean functions, and (d) has a small execution time
due to a fast method of evaluating the error introduced by the approximation.

2 Related Work

Approximate logic synthesis has been performed on many different representations
of Boolean functions using very different means of approximation.

Initial work has been done by using the structural information of a given circuit,
e.g., by cutting the carry chain of adders or multipliers [9].

On a higher level of abstraction, researchers extended programming
languages [10] and hardware description languages [11] with constructs to
automatically compile/synthesize approximated systems.

Preliminary work on approximations on graph structures has mostly been done
on BDDs [12–14]. In this work, we use the AIG data structure. The works that are
closest to the work presented in this manuscript are [15] where the authors find
cuts within an AIG that are replaced by approximations. The introduced error is
bound by a miter structure that is evaluated using SAT. While the authors in [14]
work on BDDs, we employ their idea of exploiting properties of the approximation
operation to speed up the error metric computation process. We further also use their
algorithmic approach for AIG approximation.

3 Background

3.1 Notation and Conventions

In this paper, all functions will be of type f : Bn → Bm. The m individual output
functions are denoted as fi . The interpretation of f (x) as a natural number with the
usual binary encoding is denoted by val(f (x)).

For a function f with m = 1, i.e., a Boolean function, its ON/OFF-set is denoted
by ON / OFF(f), i.e.

. ON(f) := {x | f (x) = 1} and OFF(f) := {x | f (x) = 0}.

The size of a ON/OFF-set is denoted # ON(f)/# OFF(f).

Fast AIG-Based Approximate Logic Synthesis 19

Given a Boolean function f , an approximated version of it is denoted by a hat,
i.e., f̂ . Primary inputs are labeled A, B, . . . and primary outputs X, Y, Z. Within this
manuscript, the approximations do not alter the number of input or output variables.

The truth density td(f) of a function f is the ratio between the size of the ON-set
of f and the total number of inputs, i.e.

. td(f) = 1

2n
· # ON(f).

The name stems from the fact that the truth density gives information about the
probability of f being 1, i.e., true.

3.2 (XOR-)AND-Inverter Graphs

To efficiently represent Boolean functions, many representations have been pre-
sented. This work focuses on AND-Inverter Graphs (AIGs) [16] and XOR-AND-
Inverter Graphs [17]. These structures are directed acyclic graphs. In both represen-
tations, nodes without incoming edges represent primary inputs, and nodes without
outgoing edges represent primary outputs. For AIGs, the internal nodes represent
the logical AND operation, whereas in a XAIG, the nodes can represent either the
logical AND or the logical XOR operation. In both types of graphs, edges might be
negated. We denote the size, i.e., the number of nodes, of an (X)AIG G by #G.

Example 1 Consider the addition of the two-bit numbers (CA), (DB) ∈ B2, i.e.,
(ZYX) = (CA) + (DB). An AIG representing the adder is shown in Fig. 1a. The
nodes are AND operations, while dashed edges indicate negations. The output X is
computed as

.X = ¬ (¬B ∧ ¬A)
︸ ︷︷ ︸

Node6

∧¬ (A ∧ B)
︸ ︷︷ ︸

Node5
︸ ︷︷ ︸

Node7

. (1)

Figure 1b shows an XAIG representing the same functionality, i.e., a two-bit adder.
The gray nodes are XOR nodes. Note that the computation of X in Eq. (1) is actually
an XOR operation, i.e., X = A ⊕ B. This is reflected by the XAIG in node 7
that completely represents the computation of X. This shows that XAIGs may save
nodes compared to AIGs. The AIG used the three nodes 5, 6, and 7 to represent the
computation of X (see Fig. 1a).

While there is no one-to-one correspondence between the number of nodes in an
(X)AIG and the resulting circuit size, the rule of thumb “less nodes lead to smaller
circuits” does often hold and is used within this work.

In this work, we expect the functionality to be optimized by ALS to be given as
an AIG. Hence, instead of optimizing a circuit, represented by an AIG, directly for

20 A. Heil and O. Keszocze

Fig. 1 AIG and XAIG for a two-bit adder. (a) AIG for a two-bit adder computing (CA)+(DB) =
(ZYX). Each node represents an AND operation. Dashed lines indicate negation. (b) XAIG
representing the same functionality as the AIG in (a). The gray nodes are XOR nodes; the other
nodes are AND nodes

the area used by an actual physical realization, we aim to minimize the number of
AIG nodes instead.

3.3 Error Metrics

To evaluate systems in terms of the quality of the computed values, many different
error metrics have been proposed. Each of these metrics measures different aspects
of the approximated functionality (see [18] for an overview of commonly used
metrics). Some examples of error metrics are

. er(f, f̂) = 1

2n
·

∑

x∈Bn

f (x) �= f̂ (x), . (2)

wce(f, f̂) = max
x∈Bn

|val(f (x)) − val(f̂ (x))|, and. (3)

whd(f, f̂) =
m−1
∑

i=0

2i
∑

x∈Bn

(

fi(x) ⊕ f̂i (x)
)

. (4)

The error rate (Eq. 2) counts how often the approximated function f̂ computes
an incorrect result. This metrics is not well-suited for evaluating approximations of
arithmetic circuits as it does not take into account at all how severe the errors are as
it completely ignores the actual function values. As this metrics is rather simple to
evaluate (or compute an estimate using Monte Carlo simulations), it is often used

Fast AIG-Based Approximate Logic Synthesis 21

Table 1 Error metric values for the error rate, the worst-case error, and the weighted Hamming
distance for an exemplary function f and its approximated function f̂

x f (x) f̂ (x) f (x) �= f̂ (x) |val(f (x)) − val(f̂ (x))| ∑m−1
i=0 2i ·

(

f (x) ⊕ f̂ (x)
)

000 00 10 1 2 2

001 10 10 0 0 0

010 10 10 0 0 0

011 00 00 0 0 0

100 01 10 1 1 3

101 11 00 1 3 3

110 11 11 0 0 0

111 01 01 0 0 0

er(f, f̂) = 3/8 wce(f, f̂) = 3 whd(f, f̂) = 8

in the literature. The worst-case error (Eq. 3) does take the values of f and f̂ into
account and returns the largest error. The last error metric (Eq. 4) is a weighted
variant of the Hamming distance metric derived from the mean Hamming distance
as presented in [19]. The weight parameters 2i ensure that the bit position of an error
is taken into account. Therefore, we have that errors in the more significant bits have
a larger influence on the error than the lower significant bits. The metrics (3) and (4)
are well-suited for arithmetic circuits.

Example 2 Table 1 shows the truth table for a function f , an approximation f̂ of
f , and the error metric values for the three error metrics introduced above.

All these error metrics have in common that they are computationally expen-
sive to determine [20], making iterative ALS techniques that rely on repeatedly
evaluating an error metric infeasible. It is possible to accelerate the error metric
computation when properties of the approximation operation on a specific data
structure can be exploited [14]. In this work, we adopt the greedy bucket-based
algorithm from [14] to operate on (X)AIGs and choose the weighted Hamming
distance as our error metric. We will use the truth density propagation from [21]
to quickly compute (an estimate of) whd (see Sect. 4.3).

4 Fast AIG Approximate Logic Synthesis

4.1 Bucket-Based Approximation Algorithm

We first describe the presented ALS technique, a bucket-based approximation
algorithm, on a high level of abstraction before explaining the technical details in
the following sections.

The main idea behind the algorithm is, given an AIG G, to define multiple
buckets that contain approximations of G that have less nodes than G. Each bucket
has an error threshold. Only approximated AIGs that have an whd error lass than

22 A. Heil and O. Keszocze

the threshold are stored in the bucket. All buckets are sorted in ascending order of
the threshold. The algorithm iterates over the AIGs currently stored in the buckets
and tries to further approximate them without exceeding the error threshold of the
last bucket. When no further approximations are possible, the algorithm terminates
and returns the buckets.

The returned buckets form the Pareto front for the optimization criteria number
of AIG nodes (which we use as a stand-in for the circuit’s area) and the weighted
Hamming distance error metric.

The algorithm is depicted in Algorithm 1. In lines 1–3 the buckets are set up.
They are initialized with copies of the AIG that is to be approximated; the first
bucket (having the smallest error threshold) is selected as the first AIG to be
approximated. The algorithm runs as long as approximations have been performed
(lines 4–20). For the current bucket, nodes and corresponding approximation
operations that can be applied are found (line 6). Each of these approximations

Algorithm 1: Fast approximate AIG synthesis
Input : AIG to approximate A, number of buckets n with corresponding thresholds
Output : Array bucket containing the approximate AIGs
� Initialize the buckets

1 buckets ← 〈A, . . . A〉
2 bucket[0].changed ← true � Ensure to approximate at least once
3 currBucket ← bucket[0]
4 while currBucket.changed do
5 currBucket.changed ← f alse
6 approxCandidates ← f indApproximationCandidates(currBucket); foreach

Candidate c ∈ approxCandidates do
7 approx ← approximate(currBucket, c)

8 e ← error(approximated, A)

� Find bucket repBucket with
• error(approx, A) ≤ error(repBucket, A) and
• #approx < #repBucket .

9 repBucket ← f indF ittingBucket (approxB, buckets, A)

10 if repBucket exists then
11 repBucket ← approx
12 repBucket.changed ← true

13 if repBucket has a lower error threshold than currBucket then
14 currBucket ← repBucket � Continue with repBucket

15

16 else
� Continue with next bucket

17 currBucket ← next (currBucket)

18 else
19 currBucket ← next (currBucket) � Continue with next bucket
20

21 return buckets

Fast AIG-Based Approximate Logic Synthesis 23

is applied (line 7), and the result is evaluated for whether it can be put into one of
the buckets, i.e., whether there is a bucket containing an AIG with a larger error and
more nodes (line 9). If that is the case, the corresponding bucket is updated (lines
11–12). If the updated bucket has a lower error threshold than the currently used
bucket, this bucket is used in the next iteration (lines 13–14); otherwise, the next
bucket is used (lines 17 and 19).

We implemented the proposed ALS method in the state-of-the-art logic synthesis
tool ABC [22].

4.2 Approximation Operations

In this work, we make use of the two different approximation operations, XOR
replacement and constant replacement, as they can be efficiently implemented on
the AIG data structure. After a replacement has been conducted, the structure of
the AIG has changed, and new optimization rules may apply. Therefore, after each
replacement, the AIG is again optimized by ABC.

Example 3 After replacing an input A of an AND node v (i.e., v represents A∧ B)
with a constant 0, e.g., allows to further replace the node v with the constant 0 as
we have

. A ∧ B
replace A with 0� = 0 ∧ B = 0.

XOR Replacement The idea behind XOR replacement is to first identify nodes in
the initial AIG G that form an XOR operation and then to replace them by a single
node only.

In order to identify the nodes forming an XOR operation, the AIG G is
transformed into an equivalent XAIG G′ (see step (a) in Fig. 2). This step is handled
automatically by ABC. Note that the transformation does not necessarily replace all
AND nodes by XOR nodes.

Fig. 2 Exemplary XOR replacement example

24 A. Heil and O. Keszocze

Table 2 XOR Replacements based on the truth densities of A and B

td(A)

A ⊕ B 25% 50% 75%

td(B) 25% A ∨ B A ∨ B ¬(A ∧ B) / A ∨ B
50% A ∨ B ¬(A ∧ B) / A ∨ B ¬(A ∧ B)

75% ¬(A ∧ B) / A ∨ B ¬(A ∧ B) ¬(A ∧ B)

The second step (see step (b) in Fig. 2) then replaces the found XOR node by a
single AND node. Note that one or multiple edges in the graph might be negated in
this process (see the outgoing edge of node 5 on the right of Fig. 2).

In order to find suitable replacements for the XOR node, we investigated the
XOR behavior depending on the truth densities of the inputs of the XOR operation.
Table 2 shows the replacements introducing the smallest error. We obtained the
replacements via exhaustive testing.

The tie breaker in the case when both NAND and OR are suitable replacements,
we chose the NAND replacement when either td(A) > (1 − td(B)) or td(B) >

(1 − td(A)) holds. We replace the XOR node with an OR node otherwise.

Example 4 Consider the AIG on the left of Fig. 2 and assume td(A) = 0.7 and
td(B) = 0.5. The nodes 3, 4, and 5 form an XOR operation and, hence, can be
replaced according to Table 2. As both NAND and OR are valid replacements,
we have to check the tie breaker to decide on the actual replacement. As we have
td(B) = 0.5 > 0.3 = (1 − 0.7) = (1 − td(A)), the three nodes are replaced by a
single NAND node.

Replacing any XOR node v in the AIG of a function f according to Table 2
yields an approximation f̂ where

. ON(fv) ⊆ ON(f̂v) ∨ ON(f̂v) ⊆ ON(fv) (5)

holds. Here fv/ f̂v is the function represented by the node v. Equation 5 describes
over-/underapproximations, respectively. Note that the property in Eq. (5) holds only
locally at the replaced node.

Constant Replacement When a node in the AIG has a truth density close to either
0 or 1, it can be considered a constant 0 or 1 node. To make this decision, the user
can specify a corresponding decision threshold. As long as this threshold is less than
0.5, i.e., replace the node v with a constant 0/1 when td(v) < 0.5/ td(v) > 0.5, the
constant replacement operation also has the property in Eq. (5).

For this replacement operation, the AIG G does not need to be transformed into
an XAIG.

Fast AIG-Based Approximate Logic Synthesis 25

4.3 Fast Computation of the Weighted Hamming Distance

We review the definition of the weighted Hamming distance error metric from
Eq. (4)

. whd(f, f̂) =
m−1
∑

i=0

2i ·
(

∑

x∈Bn

(

fi(x) ⊕ f̂i (x)
)

)

(6)

and note that the computation of the Hamming distance on the individual output
functions fi can be computed using the truth density as follows:

. =
m−1
∑

i=0

2i ·
(

2n · |td(fi) − td(f̂i)|
)

= 2n ·
m−1
∑

i=0

2i · |td(fi) − td(f̂i)|. (7)

For this equality to hold, the function f̂ must have been obtained by applying an
approximation operation for which the property in Eq. (5) holds.

Example 5 Consider the two approximations X̂ and X̃ shown in the truth table in
Table 3. For the approximation operation yielding X̂, property (5) holds, i.e., we
have that ON(X) ⊂ ON(X̂) holds. This property does not hold for the approxima-
tion X̃. Computing the whd using Eq. (7) shows that the over-/underapproximation
property is crucial:

. whd(X, X̂) = 22 · |0.50 − 0.75| = 4 · 0.25 = 1

whd(X, X̃) = 22 · |0.50 − 0.50| = 4 · 0.00 = 0

The value whd(X, X̃) = 0 is clearly incorrect.

The advantage of computing whd using Eq. (7) instead of using the initial definition
of Eq. (4) is that the actual time necessary to determine the value can be greatly
reduced if the computation of the truth densities can be done quickly. We will see in
Sect. 4.4 how this is possible.

Table 3 Approximating X

using operations for which
the over-/underapproximation
property Eq. (5) does hold
(X̂) and does not hold (X̃)

A B X X̂ X̃

1 1 0 0 0

0 1 1 1 1

1 0 1 1 0

0 0 0 1 1

26 A. Heil and O. Keszocze

As the proposed ALS method (see Algorithm 1) is an iterative approach, many
whd values have to be computed during a synthesis run. When the total number
of inputs does not exceed 16, the AIG can be fully evaluated and exact results can
be computed. When the AIG grows beyond this, the truth density and, hence, the
whd are computed iteratively by determining the whd locally for the approximated
node only. We then adopt an additive model accumulating the locally computed
errors until the output node is reached. This additive model along with the fact that
consecutive errors that might cancel each other out (a situation also known as error
masking) are not taken into account leads to an overestimation of the total error. The
upside of this simplification is that it allows for a very fast estimation of the total
whd.

4.4 Truth Density Computation

So far, we used the truth density values of all (X)AIG nodes without considering
how to actually compute them. In this work, we make use of two different means of
obtaining the truth densities of the nodes.

The first means of obtaining the truth density is to directly use ABC. The tool
estimates the truth density values of the nodes by running a number of simulations
of the graph, i.e., evaluating the graph for a given number of randomly generated
inputs. The quality of the result greatly varies with the number of simulations and,
hence, the time one is willing to spend on the estimation.

As the computation of the densities is crucial for both, the decision on which node
to replace and the computation of the weighted Hamming distance error metric, we
chose to use the error propagation method presented in [21]. While its intended use
is to propagate the error rate through a general Boolean network, it can easily be
applied for our use case as (X)AIGs are nothing but a specific Boolean network and
the truth density is already computed by the approach as a “by-product.”

The speed of the approach from [21] stems from not having to perform full
simulations of the (X)AIGs but computes the truth density using symbolic variables.
It should be noted that computed densities are only exact in case when there is no
fanout reconvergence in the (X)AIG. Nevertheless, extensive tests have shown that
the degradation of the results in case of reconvergences is negligible.

5 Experimental Evaluation

5.1 Experimental Setup

We implemented the proposed ALS technique in the state-of-the-art logic synthesis
tool ABC [22] using the probabilistic error propagation tool from [21].

Fast AIG-Based Approximate Logic Synthesis 27

As benchmark circuits, generic n-bit adders and multipliers as well as the
EvoApproxLibLITE library [18] are used.

Instead of directly specifying the whd value of the buckets, we define a threshold
t ∈ [0, 1] that reflects how large the error in the most significant bit of the output
is allowed to be in percent. This allows to define buckets that capture similar error
behavior for circuits of different size, i.e., one does not have to (manually) compute
different bucket values for an 8-bit and an 16-bit multiplier. A threshold value t can
be translated in an estimate on the whd via whd(f, f̂) ≈ t · 2n · 2m−1.

All experiments were executed on an AMD Ryzen 5 3600XT 6-Core CPU with
3.80-GHz and 16-GB memory running Ubuntu 20.04 in WSL 2 on Windows 10
Build 19044.1645.

5.2 Scalability

To assess the scalability of our approach, we performed approximate logic synthesis
on adders of increasing bit width using 5 buckets with threshold values 0.0156,
0.0.03125, 0.0625, 0.125, and 0.25. In the experiments, it turned out that the error
propagation implementation has a memory leak preventing it to be used for AIGs
with more than ≈ 300 nodes. Therefore, the following results were obtained using
ABC’s simulation method.

The results of the synthesis runs are presented in Table 4. For each bit width, the
results for each bucket are listed in a separate line. The approximated AIGs were
converted to a list of logic gates using ABC. Afterward, the area and delay have been
computed by ABC using the mcnc.genlib gate library. For each physical aspect,
the number of gates, the area, and the delay, we present the reduction/increase in the
aspect in percent after the absolute values in the table. We further report the whd for
the AIGs.

Using the number of AIG nodes as a stand-in for the circuit area works well: the
reduction in nodes is qualitatively reflected in the reduction in the number of gates
and the reduction of the area. As can be seen, the goal of optimizing circuits for area
has been achieved. It is interesting to see the reduction remains in the range ≈ 65%–
75% for threshold values up to 0.125. Only after allowing for 25% weighted errors
in the most significant bit, further size reductions are achieved.

While our method is capable of reducing the area, it does, in turn, increase the
delay of the circuit (usually in the ≈ 112%–125% range). This value, again, drops
when a large threshold is used. As we do not explicitly optimize for delay, this is an
acceptable trade-off.

As can be seen, the actual whd values for the buckets increase with increasing
bit width of the adders. This shows that choosing a means to describe buckets that
abstracts away the bit width is helpful.

28 A. Heil and O. Keszocze

Table 4 ALS results for adders of varying bit width. For each bucket, the number AIG node,
number of gates, area, delay, and whd are reported. For the number of nodes/gates, the area, and
the delay, the relative change to the unapproximated AIG is also shown

Threshold Nodes % Gates % Area % Delay % whd

16 bit [Run-time: 34.64 s]

Unapprox. 158 – 105 – 215 – 33.70 – –

0.0156 141 89% 66 63% 170 79% 39.30 117% 2.75

0.03125 139 88% 66 63% 166 77% 38.80 115% 3.00

0.0625 137 87% 66 63% 162 65% 38.30 114% 3.25

0.125 135 85% 66 63% 158 73% 37.80 112% 3.50

0.25 131 83% 61 58% 151 70% 35.30 104% 4.00

32 bit [Run-time: 365.54 s ≈ 5 m]

Unapprox. 318 217 – 439 – 65.70 – –

0.0156 270 85% 131 60% 319 73% 77.40 118% 7.00

0.03125 269 85% 132 61% 315 72% 77.20 118% 7.25

0.0625 266 84% 133 61% 309 70% 78.00 119% 7.75

0.125 264 83% 132 61% 306 70% 77.70 118% 8.00

0.25 193 60% 83 38% 176 40% 44.60 66% 16.64

64 bit [Run-time: 2527.54 s ≈ 42 m]

Unapprox. 638 – 441 – 887 – 129.70 – –

0.0156 523 82% 261 59% 598 67% 160.30 124% 15.50

0.03125 521 82% 261 59% 594 67% 159.80 123% 15.75

0.0625 519 81% 261 59% 590 67% 159.30 123% 16.00

0.125 517 81% 261 59% 586 66% 158.80 122% 16.25

0.25 461 72% 223 51% 483 54% 134.40 103% 21.45

128 bit [Run-time: 22738.28 s ≈ 6 h]

Unapprox. 1278 – 889 – 1783 – 257.70 – –

0.0156 1034 81% 516 58% 1179 66% 315.70 123% 32.48

0.03125 1032 81% 516 58% 1175 66% 315.20 123% 32.73

0.0625 1030 81% 516 58% 1171 66% 314.70 122% 32.98

0.125 1028 80% 516 58% 1167 65% 314.20 122% 33.23

0.25 501 39% 194 22% 211 12% 57.20 22% 61.72

5.3 Multi-Objective Optimization for Area and whd

The benchmark library EvoApproxLibLITE1 [18, 23] provides a selection of approxi-
mate adders and multipliers. They have been synthesized via exhaustive search with
respect to various error metrics (including er and wce) as well as area and power
consumption. The benchmark set does not evaluate the whd error metric.

As the final buckets of the presented approach form the Pareto front of the multi-
objective optimization problem with the optimization criteria whd and area, we

1 The benchmark library is publicly available at https://ehw.fit.vutbr.cz/evoapproxlib/.

https://ehw.fit.vutbr.cz/evoapproxlib/
https://ehw.fit.vutbr.cz/evoapproxlib/
https://ehw.fit.vutbr.cz/evoapproxlib/
https://ehw.fit.vutbr.cz/evoapproxlib/
https://ehw.fit.vutbr.cz/evoapproxlib/
https://ehw.fit.vutbr.cz/evoapproxlib/

Fast AIG-Based Approximate Logic Synthesis 29

Fig. 3 Comparison of the synthesis results of the proposed approach (dark blue dots) and
EvoApproxLibLITE (red squares) with respect to area and the weighted Hamming distance error
metric for (a) 8-bit unsigned adders and (b) 8-bit unsigned multipliers

30 A. Heil and O. Keszocze

compare our results with the exhaustive results from EvoApproxLibLITE. We select
the adders and multipliers from the benchmark set that form the Pareto front with
respect to area and the wce error metric and compute the whd values for them so
that we can compare the benchmark circuits to our results. The circuits optimized
for this metric were chosen as wce does take into account the order of the output
bits, and, therefore, the corresponding circuits allow for the fairest comparison.

The comparison for 8-bit unsigned adders and multipliers is shown in Fig. 3.
The notation for our circuits is as follows: “add8u_b75” refers to an unsigned 8-bit
adder from the bucket with a threshold of 0.75. For EvoApproxLibLITE, the naming
scheme is of the form “add8u_〈ID〉” and directly taken from their website.

For the adders (Fig. 3a), the proposed ALS method clearly produces better results
than EvoApproxLibLITE. These results can be explained, in part, by the fact that
EvoApproxLibLITE optimized for a different error and in part by the fact that the
computation of the sum bits in an adder basically is a large XOR gate. When
looking at the results for the multipliers (Fig. 3b), one can see that the applied
approximations are not resulting in points close to the Pareto front any more. When
investigating what approximation operations have been chosen by the proposed ALS
algorithm (see Table 5), one can see that the ratio of XOR replacement over constant
replacements for the adder is higher than for the multiplier. This further hints that
XOR replacement is well-suited for adders while multipliers do not benefit from
this particular kind of approximation.

5.4 Truth Density Computation

To investigate the difference in execution time between the ABC simulation-
based truth density estimation and the method from [21], we synthesized adders
of increasing bit width using 5 buckets with threshold values 0.0156, 0.0.03125,
0.0625, 0.125, and 0.25. The results are reported in Fig. 4. As can be seen, the error
propagation approach clearly excels with respect to the execution time. Due to the
memory leakage issue (see Sect. 5.2), we can not show results for larger circuits.
While using ABC for the error estimation already is fast, using error propagation
shows a great potential to further accelerate our proposed ALS technique.

Table 5 Number of
XOR/Constant replacements
for 8-bit adders and
multipliers

Replace Replace Ratio

Circuit XOR Constant

8-bit adder 37 4 9.25

8-bit multiplier 136 38 3.6

Fast AIG-Based Approximate Logic Synthesis 31

Fig. 4 Execution time of the
proposed ALS method in
seconds for adders of varying
bit width

6 Conclusion and Outlook

We presented a novel and fast greedy, bucket-based approximate logic synthesis
technique working on AIGs that aims to minimize both the area of the resulting
circuit and, at the same time, the error introduced by the approximations. We chose
the weighted Hamming distance error metric whd to assess the functional quality of
the circuit as it takes into account the order of the output bits. We found a means of
effectively computing whd via computing truth densities and exploiting properties
of the used approximation operations. The effectiveness of the presented method
has been evaluated in a set of experiments.

The next step is to find the memory leakage in the fast error propagation tool to
further enhance the speed of the proposed method.

Acknowledgments The paper has been partially funded by the Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation)—450987171.

References

1. Moore, G.E.: Cramming more components onto integrated circuits. Electronics 38(8), pp. 114
(1965)

2. Waldrop, M.M.: The chips are down for Moore’s law. Nature News 530(7589), 144–147
(2016). Visited on 06/20/2022

3. Zhu, N., et al.: Design of low-power high-speed truncation-error-tolerant adder and its
application in digital signal processing. IEEE Trans. Very Large Scale Integr. (VLSI) Syst.
18(8), 1225–1229 (2010)

4. Venkatesan, R., et al.: MACACO: modeling and analysis of circuits for approximate comput-
ing. In: International Conference On Computer Aided Design (2011). Visited on 09/19/2018

5. Han, J., Orshansky, M.: Approximate computing: an emerging paradigm for energy-efficient
design. In: European Test Symposium (2013)

6. Mittal, S.: A survey of techniques for approximate computing. ACM Comput. Surv. 48(4),
1–33 (2016). Visited on 02/28/2019

7. Venkataramani, S., et al.: Approximate computing and the quest for computing efficiency. In:
Design Automation Conference (2015). Visited on 04/11/2019

32 A. Heil and O. Keszocze

8. Scarabottolo, I., et al.: Approximate logic synthesis: a survey. Proc. IEEE 108(12), 2195–2213
(2020)

9. Shafique, M., et al.: A low latency generic accuracy configurable adder. In: Design Automation
Conference (2015). Visited on 02/08/2019

10. Barbareschi, M., Iannucci, F., Mazzeo, A.: A pruning technique for B&B based design
exploration of approximate computing variants. In: International Symposium on VLSI (2016)

11. Keszocze, O., Kiessling, M.: Approximate computing extensions for the clash HDL compiler.
In: Methoden und Beschreibungssprachen zur Modellierung und Verifikation von Schaltungen
und Systemen (2021)

12. Soeken, M., et al.: BDD minimization for approximate computing. In: Asia and South Pacific
Design Automation Conference (2016)

13. Shirinzadeh, S., et al.: An adaptive prioritized e-preferred evolutionary algorithm for approx-
imate BDD optimization. In: Proceedings of the Genetic and Evolutionary Computation
Conference (2017). Visited on 10/19/2018

14. Keszocze, O.: BDD-based error metric analysis, computation and optimization. IEEE Access
10, 14013–14028 (2022)

15. Chandrasekharan, A., et al.: Approximation-aware rewriting of AIGs for error tolerant
applications. In: International Conference On Computer Aided Design (2016). Visited on
10/24/2018

16. Mishchenko, A., Chatterjee, S., Brayton, R.: DAG-aware AIG rewriting: A fresh look at com-
binational logic synthesis. In: Design Automation Conference (2006). Visited on 07/31/2019

17. Háleček, I., Fišer, P., Schmidt, J.: On XAIG rewriting. In: International Workshop on Logic &
Synthesis (2017)

18. Mrazek, V., et al.: EvoApprox8B: library of approximate adders and multipliers for circuit
design and benchmarking of approximation methods. In: Design, Automation and Test in
Europe (2017). Visited on 10/17/2018

19. Vasicek, Z.: Formal methods for exact analysis of approximate circuits. IEEE Access 7,
177309–177331 (2019)

20. Keszocze, O., Soeken, M., Drechsler, R.: The complexity of error metrics. Inf. Process. Lett.
139, 1–7 (2018). Visited on 08/08/2018

21. Echavarria, J., et al.: Probabilistic error propagation through approximated Boolean networks.
In: Design Automation Conference (2020)

22. Brayton, R., Mishchenko, A.: ABC: An academic industrial-strength verification tool. In:
Touili, T., Cook, B., Jackson, P. (eds.) Computer Aided Verification. University of California,
Berkeley (2010)

23. Mrazek, V., Vasicek, Z., Sekanina, L.: EvoApproxLib: extended library of approximate
arithmetic circuits. In: Workshop on Open-Source EDA Technology (2019)

External Don’t Cares in Logic Synthesis

Siang-Yun Lee, Heinz Riener, and Giovanni De Micheli

1 Introduction

Logic synthesis, or, more specifically, technology-independent logic optimization, is
a step in the VLSI design flow after RTL synthesis and before technology mapping,
attempting to optimize combinational circuits on technology-independent represen-
tations, such as AND-inverter graphs (AIGs). As a bottom line, the produced result
of a logic synthesis algorithm must respect the given functionality of the circuit.
To date, this means that the output circuit should be functionally equivalent to
the original one, and is usually verified by performing combinational equivalence
checking (CEC) [5] on the two circuits. However, this requirement might be too
strong in some cases. Further high-effort optimization can be enabled by relaxing
the requirement of exact functional equivalence and allowing flexibilities external
to the combinational circuit under optimization.

Don’t cares are flexibilities in logic functions or logic networks where output
values of some (local) functions can be changed without violating the (global)
specification [3]. Don’t-care conditions may be derived on various scales, from
interconnections of logic gates within a combinational network [4] to interactions
between submodules in a system [12]. Computation and utilization of don’t-care
conditions in combinational logic synthesis have often been formulated using
incompletely specified functions [2], also known as permissible functions [11].
Don’t cares play a central role in logic synthesis. However, due to the intrinsically
high computational complexity of don’t-care computation, methods to (under-)

S.-Y. Lee (�) · G. De Micheli
École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
e-mail: siang-yun.lee@epfl.ch; giovanni.demicheli@epfl.ch

H. Riener
Cadence Design Systems, Munich, Germany

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. Drechsler, S. Huhn (eds.), Advanced Boolean Techniques,
https://doi.org/10.1007/978-3-031-28916-3_3

33

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-28916-3protect T1	extunderscore 3&domain=pdf

 885 54077 a 885 54077 a

mailto:siang-yun.lee@epfl.ch
mailto:siang-yun.lee@epfl.ch
mailto:siang-yun.lee@epfl.ch
mailto:siang-yun.lee@epfl.ch

 9882 54077 a 9882 54077 a

mailto:giovanni.demicheli@epfl.ch
mailto:giovanni.demicheli@epfl.ch
mailto:giovanni.demicheli@epfl.ch
https://doi.org/10.1007/978-3-031-28916-3_3
https://doi.org/10.1007/978-3-031-28916-3_3
https://doi.org/10.1007/978-3-031-28916-3_3
https://doi.org/10.1007/978-3-031-28916-3_3
https://doi.org/10.1007/978-3-031-28916-3_3
https://doi.org/10.1007/978-3-031-28916-3_3
https://doi.org/10.1007/978-3-031-28916-3_3
https://doi.org/10.1007/978-3-031-28916-3_3
https://doi.org/10.1007/978-3-031-28916-3_3
https://doi.org/10.1007/978-3-031-28916-3_3
https://doi.org/10.1007/978-3-031-28916-3_3

34 S.-Y. Lee et al.

approximate them were developed [9, 14, 15]. Nowadays, more powerful and
scalable computation of don’t cares enabled by satisfiability (SAT) solving and
simulation is commonly used, but consideration of don’t cares is still limited to
those within a combinational network [10].

In contrast to internal don’t cares computed within a network, external don’t cares
are flexibilities arising from outside of the combinational network under optimiza-
tion, derived from a higher-level perspective of the system. For example, cascaded
finite-state machines may produce don’t-care input sequences for each other [12].
As another example, sometimes the system is partitioned into submodules and
optimized separately. While their boundaries are intended to be kept, flexibilities
on the input-output relations of individual submodules due to their interactions are
allowed. Considering external don’t cares essentially changes the problem from
optimizing a (completely specified) Boolean function into optimizing a Boolean
relation. The solution space is enlarged and the problem complexity is much higher;
thus, there is currently no open-source logic synthesis tool that supports taking and
utilizing external don’t cares. Nevertheless, with the increased computation power
affordable nowadays, solving such optimization problems should be possible on
smaller benchmarks. Moreover, in some applications, users of logic synthesis tools
crave to optimize their circuit as much as possible and are willing to afford higher
runtime.

This paper serves as a pioneer toward support of external don’t cares in logic
synthesis. During this journey, we will lay the foundation with mathematical
definitions of don’t-care conditions in general, explore different flavors of external
don’t cares, view the general problem of logic synthesis from a Boolean relation
perspective, and finally take the first step of considering external don’t cares in
logic optimization. We will show with experimental demonstrations that external
don’t cares indeed open up more optimization opportunities that would have been
impossible without them. In the end, we will also point out possible directions for
future research.

2 Background and Terminologies

2.1 Boolean Functions and Boolean Relations

A Boolean variable is a variable taking values in the Boolean domain .B = {0, 1}.
The (n-dimensional) Boolean space . Bn is an n-ary Cartesian power of the Boolean
domain. An (n-input, single-output, completely specified) Boolean function is a
function .f : Bn → B of n Boolean variables. Multi-output Boolean functions can
be seen as an ordered set of single-output functions.

A Boolean relation . R is a binary relation over two Boolean spaces .R ⊆ B
n×B

m,
a domain (. Bn) and a codomain (. Bm). Boolean functions are special cases of Boolean
relations. More specifically, they can be classified into two types:

External Don’t Cares in Logic Synthesis 35

• Completely specified functions are special cases of Boolean relations where the
relations are functional (i.e., an element in the domain maps into one unique
element in the codomain) and total (i.e., every element in the domain maps into
an element in the codomain). When describing Boolean functions as Boolean
relations, an element in the domain, which is a value assignment to all the
function’s input variables, is also called a minterm.

• Incompletely specified functions are Boolean functions for which the output
values under some minterms are not specified. In other words, for some minterm
.b ∈ B

n, the output value can be either 0 or 1. An incompletely specified function
can be represented as a nonfunctional Boolean relation . R having, for some
minterms . b, both .(b, 0) ∈ R and .(b, 1) ∈ R.

Given an incompletely specified function as a Boolean relation .R ⊆ B
n × B

m, a
completely specified function .f : Bn → B

m is compatible with . R if

.∀b ∈ B
n, (b, f (b)) ∈ R. (1)

When not explicitly noted, functions in the remaining of this paper refer to single-
output, completely specified Boolean functions.

2.2 Logic Networks and Functions in a Network

Logic networks (or simply networks) are technology-independent representations of
digital circuits. A logic network N is defined by a four-tuple .N = (I, V ,E,O),
where the two sets .(V ,E) define a directed acyclic graph. The first set I is the set of
primary inputs (PIs) to the network. Each element in the vertex set V , referred to as
a node n, models either a logic gate or a PI. Thus, .I ⊆ V . Each element . (ni, no, c)

in the edge set .E ⊆ V × V × B models a wire from node . ni to node . no with a
complementation tag .c ∈ {0 = regular, 1 = complemented} recording the existence
of an inverter on the wire. . ni is said to be a fanin of . no and . no is said to be a fanout
of . ni . Finally, each primary output (PO) in O is a tagged node .(n, c) modeling an
outgoing wire from a gate or a PI, with or without an inverter.

Cuts A cut in a network, defined over a given set .R ⊆ V of root nodes, is a set C
of nodes such that any path from a PI to a root includes a node in C. Let . CUTS(R)

denote the set of all cuts for the set R:

.C ∈ CUTS(R) if ∀i ∈ I, r ∈ R,∀p : i
p� r, ∃n ∈ C : n ∈ p. (2)

When R contains only one node n, .CUTS(R) may be abbreviated as . CUTS(n)

and is also referred to as a cut of n:

.CUTS(n) � CUTS({n}). (3)

36 S.-Y. Lee et al.

Conversely, given a set C of nodes, a node n is said to be supported by C if C is
a cut of n. A logic cone between a cut .C ∈ CUTS(n) and a node n is the set of all
nodes on any path from a node in C to n. All nodes in the logic cone are supported
by C.

A cut of a network N is a cut where R is the set of nodes referenced by POs:

.CUTS(N) � CUTS({n : ∃c, (n, c) ∈ O}). (4)

Given any set R of roots, the identical set .C = R is always a cut by definition; thus,
such cut is said to be a trivial cut. Also, the set I of PIs is always a cut in a network
for any possible R.

Global Function of Nodes Each node n in a network computes a Boolean function
.fn : B

|I | → B in terms of the PIs, called the node’s global function. To express
the global functions, a Boolean variable . xi is associated with each PI .i ∈ I . Let
.x = (x1, . . . , x|I |) be the set of all PI variables. By definition, the function of a PI
node .i ∈ I is .fi(x) = xi . Then, in a topological order, the functions of all nodes in
the network can be computed by composing the functions of a node’s fanins with
the function of the corresponding logic gate. Finally, the PO functions are computed
by taking the function of a PO node and inverting if the PO is complemented.

Node Function in Terms of a Cut The function of a node may also be expressed
in terms of a cut supporting it. Given a node n and a cut .C ∈ CUTS(n), the local
function .f C

n : B|C| → B is the Boolean function derived by associating a Boolean
variable with each node in C and computing the local functions of each node in
the logic cone between C and n in a topological order. The global functions are a
special case of local functions using the PI set I as the cut:

.fn � f I
n . (5)

2.3 Don’t-Care Conditions

A don’t care for an incompletely specified function is a minterm for which the
output value is not specified. In a logic network, although all node functions (in
terms of any cut) are completely specified, for some nodes, there may be some
minterms where the output values of their functions are flexible. In other words, the
function . f C

n of a node n in terms of cut C may be modified by changing its output
value under some minterms without affecting the global functions of any PO. As
a consequence, an incompletely specified function where these minterms are don’t
cares and the output values under the other minterms are the same as . f C

n can be
used to resynthesize the logic cone between C and n. Two types of internal don’t
cares, arising from different reasons, may appear in logic networks:

External Don’t Cares in Logic Synthesis 37

• Given a cut .C ∈ CUTS(R) supporting a set R of nodes1 and let . x = (x1, . . . , x|C|)
be Boolean variables associated with each node in C, a value assignment . bC ∈
B

|C| to . x (i.e., a minterm of the local functions .f C
n of any node .n ∈ R) is a

satisfiability don’t care (SDC) if this value combination never appears under any
PI value assignment:

.�bI ∈ B
|I |, (fn(bI) : n ∈ C) = bC. (6)

• Given a node n and a cut .C ∈ CUTS(n) and let .x = (x1, . . . , x|C|) be Boolean
variables associated with each node in C, a value assignment .bC ∈ B

|C| to . x (i.e.,
a minterm of the local function . f C

n) is an observability don’t care (ODC) with
respect to n if none of the PO functions are affected by flipping the output value
of . f C

n under . bC :

.∀bI ∈ B
|I |, (fn(bI) : n ∈ C) = bC �⇒ ∀o ∈ O, f ∗

o (bI) = fo(bI), (7)

where . f ∗
o is the PO function derived by replacing any regular outgoing edge of n

with a complemented one and replacing any complemented outgoing edge of n
with a regular one.

3 Computation of Internal Don’t Cares

Appearance of “don’t care” as a technical term in the literature dates back to
as early as the 1980s [3]. Pioneering research attempted to derive don’t cares in
multi-level networks and use them in two-level minimization to resynthesize part
of the network [2]. Theories on don’t-care computation were formulated based
on symbolic computations propagated through the network [4, 11]. Until the late
1990s, computation of don’t cares had been implemented using binary decision
diagrams (BDDs). Due to scalability concerns, approximated computation was
adopted [9], and the compatibility of ODCs was studied to avoid recomputation
of ODCs in the network once an ODC is used to change the function of a
node [14]. Since the early 2000s, computation tools of don’t cares have moved from
BDDs to SAT, enabling using complete, instead of approximate, don’t cares while
maintaining scalability [10].

1 The supported set R is not involved in the definition of SDCs, so it can, in theory, be empty and
C is not necessarily a cut. Although one may define and compute SDCs for any set C of nodes, in
practice, SDCs are only meaningful when C is indeed a cut, as SDCs are used to optimize nodes
in R.

38 S.-Y. Lee et al.

In many modern logic synthesis tools, internal don’t cares are derived locally
(under-approximated) using bit-parallel circuit simulation:

• To compute the SDCs for a given set C of nodes, we first find another cut
.C0 ∈ CUTS(C) supporting C. Then, we perform circuit simulation by assigning
projection functions to nodes in . C0 and obtain the local functions of nodes in C
in terms of . C0, represented as truth tables. Finally, by analyzing each bit in the
truth tables, we identify the value combinations at C that do not happen, which
are the SDCs at C.

• To compute the ODCs with respect to a node n, we first mark the transitive fanout
cone of n for a predefined number of levels and collect the set R of nodes having
fanouts outside of this transitive fanout cone. Then, we find a cut . C ∈ CUTS(R)

supporting R and perform circuit simulation to obtain the local functions . fR of
nodes in R in terms of C. After adding a temporary inverter at the output of n, we
perform another simulation to obtain . f ∗

R . Finally, we compare the two simulation
results to identify the minterms where . fR and . f ∗

R have identical values, which
are the ODCs with respect to n.

4 Definition and Representation of External Don’t Cares

The general problem of technology-independent combinational logic synthesis
asks for generating a logic network that implements the desired output functions
and is optimized according to some predefined cost objective. Often, the desired
functionalities are given as an unoptimized network. Besides improving the cost
objective, a logic synthesis algorithm must preserve the functionalities of the
given network. More precisely, the global PO functions must not change after
optimization.

However, the desired functionalities may not be completely specified, and
there may be don’t-care conditions external to the network under synthesis. For
example, due to the interplay between the network and its environment (other
cascaded circuits, previous- and next-stage sequential circuits, or user inputs), some
input value combinations may never appear, or some output values are not used
(“observed”) under certain conditions. These external don’t cares (EXDCs) can be
leveraged to further optimize the network. As it is impossible to derive external don’t
cares from the network alone, they have to be given to a combinational optimization
algorithm from a higher-level algorithm.

4.1 External Controllability Don’t Cares (External SDCs)

Extending the definition of SDC to the input boundary, a value assignment to the
PIs that will never appear is called an external controllability don’t care (EXCDC).
These don’t cares are controlled by the environment external to the network.

External Don’t Cares in Logic Synthesis 39

Mathematically, EXCDCs are essentially a special case of SDCs where the cut
C is the set of PIs. The set of EXCDCs of a network N may be given as a function
.f CDC : B|I | → B:

.f CDC(bI) = 1 ⇐⇒ bI is an EXCDC. (8)

4.2 External Observability Don’t Cares

Extending the definition of ODCs to the output boundary, external ODCs are
conditions under which some PO values are not of interest. Depending on the
reasons of such situations, there are several ways one may wish to define external
ODCs.

As a Function of PIs For each PO .o ∈ O, the condition under which the value of o
is not observed may be specified as a function of PI values. For example, when the
network describes the transition and output logic of a Mealy finite-state machine, it
may appear that for some previous states (PIs of the network), an output is not used.
In this case, the external ODCs are described as a multi-output function . f ODCI :
B

|I | → B
|O|:

.For each o ∈ O, f ODCI
o (bI) = 1 ⇐⇒ bI is an EXODC for o. (9)

As a Function of Other POs For each PO .o ∈ O, the condition under which the
value of o is not observed may be specified as a function of other PO values. For
example, when the outputs of the network are used in the next stage as a series of
cascaded conditional statements such that if a PO of higher priority evaluates to
1, then the lower-priority POs do not matter. In this case, the external ODCs are
described as a multi-output function .f ODCO : B|O| → B

|O|:

.For each o ∈ O, f ODCO
o (bO) = 1 ⇐⇒ bO is an EXODC for o. (10)

The i-th output of .f ODCO should not depend on its i-th input. Note that in this
case, the don’t-care conditions depend on the actual implementation of the network.
Using one ODC to optimize and change the function of a PO may invalidate
opportunities of using another ODC to optimize some other POs.

As Equivalence Classes Instead of specifying external ODCs separately for each
PO, the flexible conditions might be some value combinations of a subset of POs.
Figure 1 gives an example. Because of the cascaded next-stage logic at the output
of N , the value combinations .o1 = 0, o2 = 1, and .o1 = 1, o2 = 0 have the
same effect as seen from the system output (both map into .y1 = 1, y2 = 1; red
edges). Thus, these two PO value combinations may be classified into the same
external observability equivalence class (EXOEC), and PI minterms that map to
one of them are flexible to be re-mapped to either one (pink edges are added).

40 S.-Y. Lee et al.

N

o1 o2

y1 y2

I

B|I| B2 (o1, o2)

00

01

10

11

B2 (y1, y2)

00

01

10

11

Fig. 1 Example of external observability equivalence classes

More generally, two PO value combinations are observably equivalent (in the same
EXOEC) if their difference may not be observed when the network is immersed in
a larger system. By definition, this is an equivalence relation and is reflexive (i.e.,
if a is observably equivalent to b, then b is observably equivalent to a [a and b
are indistinguishable]), symmetric (i.e., any PO value combination is observably
equivalent to itself [trivial]), and transitive (i.e., if a is observably equivalent to b
and b is observably equivalent to c, then a is observably equivalent to c [.a, b and c
are indistinguishable]).

EXOECs can be given as a function .f OEC : B2·|O| → B:

.f OEC(aO, bO) = 1 ⇐⇒ aO and bO are observably equivalent. (11)

Because .f OEC describes an equivalence relation, it must fulfill the reflexivity,
symmetry and transitivity properties as described above.

4.3 Logic Synthesis from a Boolean Relation Perspective

A logic network computes a multi-output Boolean function at its primary outputs
(i.e., the collection of PO global functions). Hence, it can be described as a Boolean
relation. The task of logic synthesis is thus finding an (optimized) network whose
output function is compatible with a given Boolean relation . R. The presence of
external don’t cares adds more elements into . R.

More generally, given a set . C1 of nodes and a cut .C0 ∈ CUTS(C1) supporting it,
a Boolean relation .R01 can be derived to describe the network functionality between
. C0 and . C1. Moreover, if . C1 is also a cut supporting another set . C2, another Boolean
relation .R12 can be derived and cascaded with . R01.

External Don’t Cares in Logic Synthesis 41

O

I

C0

C1

C2

n

B|C0| B|C1|

n = 0 n = 1

B|C2|

SDCs

ODC for n

Fig. 2 Illustration of Example 1

Example 1 Let .C1 ∈ CUTS(N) be a cut of the network. Let .C0 = I and let . C2 =
{n : ∃c, (n, c) ∈ O}. We may derive two Boolean relations:

.R01 = {(b0, f
C0
C1

(b0)) : b0 ∈ B
|C0|}. (12)

R12 = {(b1, f C1
C2

(b1)) : b1 ∈ B|C1|}, (13)

where .f
C0
C1

is the function the nodes in . C1 compute in terms of . C0, and similarly for

. f
C1
C2

.

Figure 2 illustrates the example. According to the definitions in Sect. 2.3, an
(internal) SDC is an element .b1 ∈ B

|C1| such that

.�b0 ∈ B
|C0|, (b0, b1) ∈ R01. (14)

Whereas an (internal) ODC for a node .n ∈ C1 is an element .b0 ∈ B
|C0| such that,

let .b1 = fC1−{n}(b0) be the values at .C1 − {n} under . b0:

.if ((b1, 0), b2) ∈ R12, then also ((b1, 1), b2) ∈ R12. (15)

Generalizing internal and external don’t cares, SDCs are elements in a Boolean
space (which corresponds to any cut in the network) that are not mapped to by
any element in a previous-stage Boolean space. In contrast, ODCs arise from two
elements in a Boolean space that map to the same element in a next-stage Boolean
space.

4.4 Boolean Relation as Unified Representation of External
Don’t Cares

We observe that none of .f ODCI, f ODCO, f OEC is general enough to express the
other two. More concretely:

42 S.-Y. Lee et al.

• .f ODCI cannot be represented using .f ODCO or .f OEC because the latter ones lack
conditioning on the PI values. There can be multiple PI value combinations
leading to the same PO value, but only some of them are don’t cares.

• The example in Fig. 1 cannot be represented using .f ODCI or .f ODCO because the
condition is not simply ignoring the value of a single PO, but flipping the values
of both POs.

It is possible to convert .f ODCO into .f OEC, but the conversion is not straightfor-
ward, nor efficient. Starting from .f OEC(aO, bO) = aO ↔ bO , for each . bO ∈ B

|O|
such that .f ODCO

o (bO) = 1, we make .f OEC(bO, b∗
O) = 1, where . b∗

O is derived
by flipping the value corresponding to o in . bO . The complication comes from
propagating the equivalence and keeping the transitivity property of the equivalence
relation during the process.

As discussed in Sect. 4.3, the specification of a logic synthesis problem can
be seen as a Boolean relation. In the presence of external don’t-care conditions,
representation using Boolean relations is inevitable because there are more than one
compatible completely specified multi-output Boolean functions. To represent the
specification Boolean relation .Rspec, we write its characteristic function, called the
specification function .f spec : B|I |+|O| → B, which asks if a certain pair of PI and
PO minterms is in .Rspec:

. f spec(bI , bO) = 1 ⇐⇒ Under bI , bO is acceptable at POs.

⇐⇒ (bI , bO) ∈ Rspec (16)

Given an original network . Nori, computing the function . f I
O , and the external

don’t-care conditions as any subset of representations discussed in this section, . f spec

may be derived:

. f spec(bI , bO) =f CDC(bI)

∨
∧

o∈O

(
f ODCI

o (bI) ∨ f ODCO
o (bO)

)

∨ f OEC(f I
O(bI), bO). (17)

In Eq. (17), if .f CDC, .f ODCI, or .f ODCO are not given, they are substituted with 0
(i.e., the term is removed); if .f OEC is not given, it is substituted with a negated
miter function .¬∨

o∈O

(
f I

o (bI) ⊕ bO

)
.

A network is compatible if its global PO function .f impl fulfills:

.∀b ∈ B
|I |, f spec(b, f impl(b)) = 1. (18)

After logic optimization, a verification step is usually done to ensure the functional
correctness of the optimized circuit. Classical CEC verifies if the optimized circuit
computes exactly the same global PO function as the original circuit. However,

External Don’t Cares in Logic Synthesis 43

when optimization is performed with external don’t cares, such exact equivalence
requirement is too strong. Verification must be modified to use a network represent-
ing .f spec instead of a miter network.

5 Optimization with External Don’t Cares

To utilize both internal and external don’t-care conditions, a Boolean method,
which considers Boolean functions of the nodes instead of analyzing the network
as algebraic expressions (i.e., an algebraic method), must be used. As it is
computationally too hard to synthesize (or resynthesize) the entire network from
a Boolean function or Boolean relation, modern Boolean methods often perform
resynthesis and substitution locally within a smaller region, called a window.

However, in order to leverage the flexibilities provided by external don’t cares,
these conditions must be propagated from the boundaries of the network inward
to the windows being resynthesized. For this purpose, we propose to adopt the
simulation-guided paradigm [7]. In this paradigm, node functions are approximated
by their simulation signatures, obtained by performing global simulations using a
non-exhaustive set of simulation patterns (value assignments to primary inputs).
An optimization flow adopting the simulation-guided paradigm consists of the
following key steps:

1. Generate a set of simulation patterns.
2. Simulate the network to obtain simulation signatures and use the signatures to

compute optimization candidates. The resynthesis computation can be done in a
window of any size. Optionally, ODCs may be computed by re-simulating the
transitive fanout cone, similar to the method described in Sect. 3.

3. As the simulation is not exhaustive, a candidate needs to be formally verified
before it can be substituted into the network. This is done by solving a SAT
instance converted from the network. If a satisfiable assignment is derived by the
SAT solver, it is a counterexample proving that the candidate produces unwanted
output under a certain PI assignment. The counterexample is added into the
simulation patterns. Otherwise, an unsatisfiable result proves that the candidate
is valid and thus it is used to substitute the original sub-network.

Using global simulation, internal SDCs are accumulated and propagated within
the network as missing bit patterns in the simulation signatures. EXCDCs can be
easily integrated by removing simulation patterns that are don’t cares in Step 1.
In contrast, EXODCs may only be used when ODC computation is enabled in
Step 2 and is considered until primary outputs. In such case, ODC computation
is modified as follows: To compute ODCs of a node n, two sets S and . S∗ of PO
simulation signatures are obtained, one (S) by normal simulation and the other (. S∗)
by adding an inverter at the output of n. For each bit in the simulation signatures
(corresponding to a PI simulation pattern), instead of checking if all POs have the
same value in S and in . S∗, we check if the PO value combination in . S∗ is in the

44 S.-Y. Lee et al.

Boolean relation .Rspec. The SAT instance in Step 3 also needs to be relaxed to
take external don’t cares into account. The modified SAT instance now encodes the
complement of Eq. (18) instead of a miter. A satisfiable assignment to the instance
is a counterexample violating the Boolean relation .Rspec.

6 Experimental Demonstration

To demonstrate the effectiveness of considering external don’t cares in logic
synthesis, we present some experimental results in this section. As external don’t
cares are not provided along with commonly used benchmarks, we have to generate
them by ourselves. The algorithm presented in Sect. 5 is implemented in the open-
source C++ logic synthesis library mockturtle2 [16].

We select ten medium-sized (comparing to other benchmarks in the same
suite) benchmarks from the IWLS’22 programming contest.3 These benchmarks are
originally provided as truth tables of PO functions in terms of PIs (i.e., completely
specified functions). In this experiment, we use the best (smallest in terms of the
number of gates) synthesized AIGs we have obtained in participation of the contest
as the starting point. Without external don’t cares, they cannot be optimized any
further using the highest-effort (using the entire network as windows, considering
internal ODCs until POs, and no limitation on the size of dependency circuits)
simulation-guided resubstitution [7].

Table 1 summarizes the optimization results using randomly generated external
don’t cares. All of the 10 benchmarks have 12 PIs and 3 POs. Column #Gates lists

Table 1 Optimization results of using randomly generated external don’t cares on highly
optimized benchmarks

Benchmark EXCDC EXODC Both

Name #PIs #POs #Gates .Δ % Time .Δ % Time .Δ % Time

ex70 12 3 263 15 5.70 0.24 0 0.00 0.27 15 5.70 0.35

ex71 12 3 369 2 0.54 0.70 13 3.52 0.75 13 3.52 0.70

ex72 12 3 456 83 18.20 2.03 38 8.33 1.80 35 7.68 2.13

ex73 12 3 208 1 0.48 0.36 1 0.48 0.28 1 0.48 0.24

ex74 12 3 468 40 8.55 3.78 0 0.00 3.78 37 7.91 3.78

ex75 12 3 489 78 15.95 1.43 114 23.31 1.20 132 26.99 1.03

ex76 12 3 246 2 0.81 0.22 1 0.41 0.24 4 1.63 0.27

ex77 12 3 319 89 27.90 0.37 25 7.84 0.32 98 30.72 0.29

ex78 12 3 369 42 11.38 0.36 56 15.18 0.35 52 14.09 0.35

ex79 12 3 365 0 0.00 0.92 20 5.48 0.70 17 4.66 0.78

2 Available: https://github.com/lsils/mockturtle.
3 https://www.iwls.org/iwls2022/.

https://github.com/lsils/mockturtle
https://github.com/lsils/mockturtle
https://github.com/lsils/mockturtle
https://github.com/lsils/mockturtle
https://github.com/lsils/mockturtle
https://www.iwls.org/iwls2022/
https://www.iwls.org/iwls2022/
https://www.iwls.org/iwls2022/
https://www.iwls.org/iwls2022/
https://www.iwls.org/iwls2022/

External Don’t Cares in Logic Synthesis 45

the number of gates before optimization using EXDCs, columns . Δ list the reduction
on the number of gates after optimization, columns % list the reduction percentage,
and columns Time list the runtime in seconds. All benchmarks use the same external
don’t-care conditions. Column EXCDC is optimized providing only a randomly
generated .f CDC having 248 minterms evaluating to 1, column EXODC is optimized
providing only .f ODCO = (f ODCO

y1
= 0, f ODCO

y2
= ¬y1, f

ODCO
y3

= 0), and column

Both is optimized with both .f CDC and .f ODCO.
This experiment shows that providing external don’t cares indeed enables further

optimization opportunities, and that the presented optimization technique works in
practice.

7 Conclusion and Future Work

This paper aims primarily at raising and defining the problem of logic synthesis
with external don’t cares. It provides a review on the theoretical definition of don’t-
care conditions in general, and identifies different ways of representing external
don’t cares. An emphasis is made on the relation of don’t cares and Boolean
relations. Finally, using partial simulation and SAT-based verification, we present
how external don’t cares may be considered in logic optimization. In conclusion,
this paper is the first step toward involving external don’t cares in logic synthesis.
While the theoretical formulations serve as a foundation for future research,
the optimization technique is still limited in achievable optimization quality and
scalability. In the following, we discuss some future research directions.

7.1 Multi-Target Resynthesis

From the Boolean relation point of view, the classical definition of internal ODCs
(Eq. 7) is additionally restricted to pairs of elements that only differ in one bit
(corresponding to the node under consideration) instead of any pair that map to
the same next-stage minterm. The advantage of this approach is that the don’t-care
conditions are used to optimize one node at a time without the need to modify
the other nodes. However, it is possible to generalize this class of don’t cares by
grouping all elements that map to the same element in the next-stage Boolean space
together as an OEC and drop the dependency of the definition on a certain node.
In this case, multiple nodes need to be optimized together and change their output
values.

It is shown in [8] that considering the resynthesis problem of multiple nodes
at the same time is necessary for some optimization opportunities to emerge,
and the work provides algorithms to describe internal DCs as Boolean relations
and to resynthesize windows from Boolean relations. The problem of multi-target

46 S.-Y. Lee et al.

resynthesis specified by a Boolean relation is intrinsically more complex than
the well-researched single-target resynthesis [6, 13]. While [1] discusses Boolean
relation solving based on divide and conquer, further investigation still has potential.
With such Boolean relation solver available, logic optimization with external don’t
cares can be further enhanced.

7.2 Propagation and Management of Observability
Equivalence Classes

The biggest problem encountered in the utilization of external don’t cares is to
properly and efficiently propagate these conditions into the network. Propagation
of EXCDCs by partial simulation is relatively straightforward without scalability
concern. In contrast, propagation of external ODCs as presented in Sect. 5 is
not scalable. On the one hand, computation of ODCs involves re-simulating the
entire transitive fanout cone of the node, and verification with EXODCs requires
duplicating at least the transitive fanout cone, if not the entire network, in the SAT
instance. One possibility to address this issue is to develop methods to propagate
external OECs into a cut in the network. On the other hand, management of the
OECs is not scalable with respect to the number of POs if PO minterms are explic-
itly represented. Thus, symbolic representations of OECs and their management
methods (especially, merging equivalence classes according to the transitivity rule)
need to be developed.

References

1. Bañeres, D., Cortadella, J., Kishinevsky, M.: A recursive paradigm to solve Boolean relations.
IEEE Trans. Comput. 58(4), 512–527 (2009)

2. Bartlett, K.A., Brayton, R.K., Hachtel, G.D., Jacoby, R.M., Morrison, C.R., Rudell, R.L.,
Sangiovanni-Vincentelli, A.L., Wang, A.R.: Multi-level logic minimization using implicit don’t
cares. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 7(6), 723–740 (1988)

3. Brand, D.: Redundancy and don’t cares in logic synthesis. IEEE Trans. Comput. 32(10), 947–
952 (1983)

4. Damiani, M., Micheli, G.D.: Don’t care set specifications in combinational and synchronous
logic circuits. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 12(3), 365–388 (1993)

5. Goldberg, E.I., Prasad, M.R., Brayton, R.K.: Using SAT for combinational equivalence
checking. In: W. Nebel, A. Jerraya (eds.) Proceedings of the Conference on Design,
Automation and Test in Europe, DATE 2001, Munich, Germany, March 12–16, 2001, pp. 114–
121. IEEE Computer Society (2001)

6. Lee, S.Y., Riener, H., Micheli, G.D.: Logic resynthesis of majority-based circuits by top-
down decomposition. In: M. Shafique, A. Steininger, L. Sekanina, M. Krstic, G. Stojanovic,
V. Mrazek (eds.) 24th International Symposium on Design and Diagnostics of Electronic
Circuits & Systems, DDECS 2021, Vienna, Austria, April 7–9, 2021, pp. 105–110. IEEE
(2021)

External Don’t Cares in Logic Synthesis 47

7. Lee, S.Y., Riener, H., Mishchenko, A., Brayton, R.K., De Micheli, G.: A simulation-guided
paradigm for logic synthesis and verification. IEEE Trans. CAD Integr. Circuits Syst. (2021).
https://doi.org/10.1109/TCAD.2021.3108704

8. Lee, T.Y., Wu, C.C., Lin, C.C., Chen, Y.C., Wang, C.Y.: Logic optimization with considering
Boolean relations. In: J. Madsen, A.K. Coskun (eds.) 2018 Design, Automation & Test in
Europe Conference & Exhibition, DATE 2018, Dresden, Germany, March 19–23, 2018, pp.
761–766. IEEE (2018)

9. McGeer, P.C., Brayton, R.K.: The observability don’t-care set and its approximations. In:
Proceedings of the 1990 IEEE International Conference on Computer Design: VLSI in
Computers and Processors, ICCD 1990, Cambridge, MA, USA, 17–19 September, 1990, pp.
45–48. IEEE Computer Society (1990)

10. Mishchenko, A., Brayton, R.K.: SAT-based complete don’t-care computation for network
optimization. In: 2005 Design, Automation and Test in Europe Conference and Exposition
(DATE 2005), 7–11 March 2005, Munich, Germany, pp. 412–417. IEEE Computer Society
(2005)

11. Muroga, S., Kambayashi, Y., Lai, H.C., Culliney, J.N.: The transduction method-design of logic
networks based on permissible functions. IEEE Trans. Comput. 38(10), 1404–1424 (1989)

12. Rho, J.K., Somenzi, F.: Don’t care sequences and the optimization of interacting finite state
machines. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 13(7), 865–874 (1994)

13. Riener, H., Lee, S.Y., Mishchenko, A., Micheli, G.D.: Boolean rewriting strikes back:
Reconvergence-driven windowing meets resynthesis. In: 27th Asia and South Pacific Design
Automation Conference, ASP-DAC 2022, Taipei, Taiwan, January 17–20, 2022, pp. 395–402.
IEEE (2022)

14. Saluja, N., Khatri, S.P.: A robust algorithm for approximate compatible observability don’t care
(CODC) computation. In: S. Malik, L. Fix, A.B. Kahng (eds.) Proceedings of the 41th Design
Automation Conference, DAC 2004, San Diego, CA, USA, June 7–11, 2004, pp. 422–427.
ACM (2004)

15. Savoj, H., Brayton, R.K.: The use of observability and external don’t cares for the simplification
of multi-level networks. In: R.C. Smith (ed.) Proceedings of the 27th ACM/IEEE Design
Automation Conference, Orlando, Florida, USA, June 24–28, 1990, pp. 297–301. IEEE
Computer Society Press (1990)

16. Soeken, M., Riener, H., Haaswijk, W., Testa, E., Schmitt, B., Meuli, G., Mozafari, F., Lee, S.Y.,
Tempia Calvino, A., Marakkalage, D.S., De Micheli, G.: The EPFL logic synthesis libraries.
Preprint (2022). arXiv:1805.05121

https://doi.org/10.1109/TCAD.2021.3108704
https://doi.org/10.1109/TCAD.2021.3108704
https://doi.org/10.1109/TCAD.2021.3108704
https://doi.org/10.1109/TCAD.2021.3108704
https://doi.org/10.1109/TCAD.2021.3108704
https://doi.org/10.1109/TCAD.2021.3108704
https://doi.org/10.1109/TCAD.2021.3108704
https://doi.org/10.1109/TCAD.2021.3108704

Maiorana-McFarland Boolean Bent
Functions Characterized by Their
Reed-Muller Spectra

Claudio Moraga, Radomir S. Stanković, and Milena Stanković

1 Introduction

Bent functions were introduced by Oscar Rothaus in 1976 [16]. These functions are
at the largest Hamming distance .(2n−1 − 2(n/2)−1) from affine Boolean functions,
however restricted to an even number of variables. Due to the high nonlinearity,
these functions attracted the interest of researchers particularly in coding theory and
in cryptography. It is simple to understand that also due to the high nonlinearity,
the number of such functions is reduced, increasing however, super exponentially.
There are 8 bent functions on 2 variables, 896 bent functions on 4 variables, and,
as it will be shown below, there are .1.37 · 1018 Maiorana-McFarland Boolean bent
functions on 8 variables out of almost .1.158 ·1077 Boolean functions on 8 variables.
(See, [6], for the exact number of Boolean bent functions on 8 variables.)

In his original paper, Rothaus introduced a simple method to generate a class of
bent functions from .F2k

2 to . F2:

. f (x, y) = x · y + g(y),

where g is an arbitrary Boolean function from . Fk
2 to . F2. This method was strongly

improved by J. A. Maiorana [8] as follows:

C. Moraga (�)
Faculty of Computer Science, TU Dortmund University, Dortmund, Germany
e-mail: claudio.moraga@udo.edu; claudio.moraga@tu-dortmund.de

R. S. Stanković
Mathematical Institute, Serbian Academy of Sciences and Arts and Department of Computer
Science, Faculty of Electronic Engineering, Belgrade, Serbia

M. Stanković
Department of Computer Science, Faculty of Electronic Engineering, Niš, Serbia

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. Drechsler, S. Huhn (eds.), Advanced Boolean Techniques,
https://doi.org/10.1007/978-3-031-28916-3_4

49

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-28916-3protect T1	extunderscore 4&domain=pdf

 885
50203 a 885 50203 a

mailto:claudio.moraga@udo.edu
mailto:claudio.moraga@udo.edu
mailto:claudio.moraga@udo.edu

 11076 50203 a 11076
50203 a

mailto:claudio.moraga@tu-dortmund.de
mailto:claudio.moraga@tu-dortmund.de
mailto:claudio.moraga@tu-dortmund.de
mailto:claudio.moraga@tu-dortmund.de
https://doi.org/10.1007/978-3-031-28916-3_4
https://doi.org/10.1007/978-3-031-28916-3_4
https://doi.org/10.1007/978-3-031-28916-3_4
https://doi.org/10.1007/978-3-031-28916-3_4
https://doi.org/10.1007/978-3-031-28916-3_4
https://doi.org/10.1007/978-3-031-28916-3_4
https://doi.org/10.1007/978-3-031-28916-3_4
https://doi.org/10.1007/978-3-031-28916-3_4
https://doi.org/10.1007/978-3-031-28916-3_4
https://doi.org/10.1007/978-3-031-28916-3_4
https://doi.org/10.1007/978-3-031-28916-3_4

50 C. Moraga et al.

.f (x, y) = x · (π(y)) + g(y), (1)

where . π denotes a permutation of . Fk
2.

Independently of Maiorana’s work, L. R. McFarland developed the same method
[9]. For this reason, this class of functions is known as the Maiorana-McFarland
class. A first analysis of the Maiorana-McFarland generation method was disclosed
in [2]. Later on, many other classes have been developed. (See, e.g., [1, 2, 10, 18,
20].)

The Transform, which today is known as the Reed-Muller transform, was
originally developed in 1928 by I. L. Zhegalkin [21, 22], (in Russian). Due to
the language barrier, this transform remained unknown and was “rediscovered”
only in 1954 by S. M. Reed [15] and D. E. Muller [13]. The basic Reed-Muller

transform, which here we call .RM(1), has the matrix representation .

[
1 0
1 1

]
, and the

transform has a Kronecker product structure, i.e. .RM(n) =
([

1 0
1 1

])⊗n

, the n-fold

Kronecker product of .RM(1) with itself. The Reed-Muller spectrum of a Boolean
n-place function f with value vector . F is obtained as .RM(n) ·F, with computations
done modulo 2. With respect to bent functions, it is interesting to mention that the
Reed-Muller spectrum supports the concept of the degree of bent functions. Recall
that the degree of a binary bent function in n variables is at most .n/2 [1], meaning
that in the Reed-Muller functional expression of a bent function, no product with
more than .n/2 variables should appear. This observation is important, since it can
be used to reduce the search space in determining bent functions [14].

Applications of this transform in different areas have received different names. In
this paper, related functional expressions are called Positive Polarity Reed-Muller
expressions. Mathematicians would rather speak of Zhegalkin polynomials, whereas
people working in cryptography refer to these functional expressions as algebraic
normal forms. (See, e.g., [10, 20].) As a closing remark, it may be mentioned that
the Reed-Muller transform belongs to the family of spectral techniques for signal
processing. See, e.g., [17].

2 Formalisms

Let .n = 2k, .k ∈ N. The following notation will be used when explicit dimensions
are needed: .Y(k) denotes a .(2k × 2k) matrix or a vector of length . 2k .

A simple method to generate n-place Boolean bent functions of the Maiorana-
McFarland class, based on Eq. (1), is the following, adapted from [11, 12]:

. F = vec(M[k] · P(k) ⊕ [1, . . . , 1]T ⊗ G)

= vec(M[k] · P(k)) ⊕ vec([1, . . . , 1]T ⊗ G), (2)

Reed-Muller Spectra of Maiorana-McFarland Boolean Bent Functions 51

where . F denotes the value vector of an n-place Boolean function, vec is a
vectorizing operation, which when applied to a matrix, concatenates the columns

of that matrix to build a column vector [3]. .M =
[

0 0
0 1

]
, and .M[k] indicates the

k-fold tensor sum1 of . M with itself. Notice that the first row of .M[k] will always be
a 0 row. .P(k) stands for a .(2k ×2k) permutation matrix, .[1, 1, . . . , 1] is a row vector
of length . 2k , and . G represents the value vector of an arbitrary Boolean function on
k variables. . G will be a row vector. Unless otherwise specified, in what follows,
vectors will be column vectors.

Let .U(q) be a .(2q × 2q) square matrix all of whose entries are 1. Then, [3, 7, 11]

.M[2k] = M[k] ⊗ U(k) ⊕ U(k) ⊗ M[k]. (3)

Thus,

.M[2] = M ⊗
[

1 1
1 1

]
⊕

[
1 1
1 1

]
⊗ M mod 2 =

⎡
⎢⎢⎣

0 0 0 0
0 1 0 1
0 0 1 1
0 1 1 0

⎤
⎥⎥⎦ . (4)

Proof of the bentness of . F generated with (2):
Recall that if an n-place Boolean function is bent, then all coefficients of its

Walsh spectrum have the absolute value .2n/2 [4].
Let . SF denote the Walsh spectrum of an n-place Boolean function f with value

vector . F. Then,

.SF (ω) = W(n) · (−1)f (x), ∀ω, x ∈ Fn
2 , where W(n) =

[
1 1
1 −1

]⊗n

(5)

and the superindex .⊗n indicates the n-fold Kronecker product of the matrix with
itself.

The Spectrum of (2) will be

. SF =
([

1 1
1 −1

]⊗n

· (−1)vec(M[k]·P(k)⊕([1,1,...,1]T ⊗G))

)

=
([

1 1
1 −1

]⊗n

· vec(−1)(M
[k]·P(k)⊕([1,1,...,1]T ⊗G))

)
. (6)

1 The tensor sum of two matrices has the same structure of the Kronecker product of the matrices,
except that all basic operations are sums modulo 2 [3, 7]. For this reason the tensor sum is also
known as Kronecker sum.

52 C. Moraga et al.

Definition 1 Let .a11, . . . arr ∈ {0, 1}; (−1)[a11...arr] := [(−1)a11 · · · (−1)arr];
and if

.A =
⎡
⎢⎣

a11 · · · a1r

...
. . .

...

ar1 · · · arr

⎤
⎥⎦ , then (−1)A :=

⎡
⎢⎣

(−1)a11 · · · (−1)a1r

...
. . .

...

(−1)ar1 · · · (−1)arr

⎤
⎥⎦ . (7)

Moreover, if . B is a matrix of the same dimensions as . A, then

.(−1)A⊕B = (−1)A#(−1)B, (8)

where . # denotes the Hadamard product of matrices [3]. Furthermore, if . A and . B are
square matrices of dimensions .(r × r), and . B has the particular structure that all
rows are identical, then .A#B = A · diag(b1, b2, . . . , br), where .(b1, b2, . . . , br) are
entries of a row of . B [12]. ��

Let .Delta = diag((−1)g1 , (−1)g2 , . . . , (−1)g2k). Then with (7) and (8) in (6):

. SF =
([

1 1
1 −1

]⊗n

· vec〈(−1)(M
[k]·P(k))#(−1)([1,1,...,1]T ⊗G)〉

)

=
([

1 1
1 −1

]⊗n

· vec〈(−1)(M
[k]·P(k)) · Delta〉

)
. (9)

Notice that .(−1)(M
[k]·P(k)) = (−1)M[k] ·P(k). Moreover, .(−1)M equals the . (2×2)

matrix .

[
1 1
1 −1

]
= W(1). Then, .(−1)M[k] =

[
1 1
1 −1

]⊗k

= W(k).

Moreover, recall that .W(k) · W(k) = 2k · I(k), where .I(k) denotes the identity
matrix. With Lemma 4.3.1 of [3], Eq. (9) becomes:

. SF = vec

([
1 1
1 −1

]⊗k

·
[
(−1)M[k] · P(k) · Delta

]
·
[

1 1
1 −1

]⊗k
)

= vec

([
1 1
1 −1

]⊗k

·
[

1 1
1 −1

]⊗k

· P(k) · Delta ·
[

1 1
1 −1

]⊗k
)

(10)

= vec

〈
2k · I(k) · P(k) · Delta ·

[
1 1
1 −1

]⊗k
〉

.

Notice that the diagonal elements of Delta belong to .{−1, 1} as well as all

entries of .

[
1 1
1 −1

]⊗k

. The product of them and the permutation of the resulting

Reed-Muller Spectra of Maiorana-McFarland Boolean Bent Functions 53

rows, induced by .P(k), will preserve this structural property. All entries will have
magnitude 1. Therefore, the absolute value of all the coefficients of .SF will be
.2k = 2n/2. The spectrum is flat, the entries have the correct magnitude, and hence
the (Maiorana-McFarland) Boolean function f generated with (2) is indeed bent as
it should be proven. . �

If in Eq. (2) .k = 4, .n = 2k = 8, .2k = 16, then there are . 16! permutation matrices
.P(4), and there are .2(24) = 216 = 65.536 Boolean functions . G on 4 variables, whose
value vectors have length 16. Hence, there are .16! · 216 ≈ 1.37 · 1018 Maiorana-
McFarland Boolean bent functions on 8 variables (out of .≈ 99.27 · 1030 Boolean
bent functions on 8 variables [6] and .2(28) = 2256 ≈ 1.16 · 1077 general Boolean
functions on 8 variables).

It is simple to see that Eq. (2) provides the value vector of Maiorana-McFarland
Boolean bent functions, depending on .P(k) and . G. To obtain their functional
expressions, the following Lemma of the Reed-Muller transform theory will be
used:

Lemma 1 ([4, 15]) Given the value vector . F of a Boolean function, its functional
Positive Polarity Reed-Muller polynomial expression f may be obtained as the
inner product of the corresponding Reed-Muller basis and the Reed-Muller spec-
trum of . F. ��

If .k = 2, .n = 4, .2k = 4, the Reed-Muller basis .B(4), of length . 24, is calculated as

. B(4) = ([
1 x1

] ⊗ [
1 x2

] ⊗ [
1 x3

] ⊗ [
1 x4

])T
.

After computing the Kronecker product, we get:

. B(4) = [1, x4, x3, x3x4, x2, x2x4, x2x3, x2x3x4, x1, x1x4,

x1x3, x1x3x4, x1x2, x1x2x4, x1x2x3, x1x2x3x4]T

or in another way of writing

.B(4) = vec

⎡
⎢⎢⎣

1 x2 x1 x1x2

x4 x2x4 x1x4 x1x2x4

x3 x2x3 x1x3 x1x2x3

x3x4 x2x3x4 x1x3x4 x1x2x3x4

⎤
⎥⎥⎦ . (11)

Theorem 1 Given a Maiorana-McFarland Boolean bent function generated with
(2) for a fixed k, then .P(k) and . G make unique disjoint contributions to the RM
spectrum of the function. ��

This will be illustrated with the experimental results below. The proof will be
presented after the Cases.

54 C. Moraga et al.

.(i) Let .k = 2, .n = 4, .2k = 4.
Permutations will be coded as .[n1, n2, n3, n4], where .1 ≤ i �= j ≤ 4, .ni �= nj ,
and with .n0 := 0, .(ni−1) ∈ Z4 without repetitions. The position of . ni (i.e., i)
indicates the column and the value of . ni the row where the permutation matrix
has the entry 1. All other entries of the same row and column have obviously
the value 0. Calculations will follow the second expression of (2) and will be
done in .GF(2).

The required Reed-Muller transform matrices are

.RM(1) =
[

1 0
1 1

]
, RM(2) = RM(1) ⊗ RM(1) =

⎡
⎢⎢⎣

1 0 0 0
1 1 0 0
1 0 1 0
1 1 1 1

⎤
⎥⎥⎦ . (12)

Case 1 Let .P(2) = [4, 3, 2, 1] and .G1 = [1, 0, 0, 0]. Then,

. RM(4) · F1 = RM(4)〈vec(M[2] · P(2)) ⊕ vec([1, 1, 1, 1]T ⊗ G1)〉 mod 2.

With Lemma 4.3.1 of [3]

. RM(4) · F1 = vec〈RM(2) · (M[2] · P(2)) · RM(2)T 〉
⊕ vec〈RM(2) · ([1, 1, 1, 1]T ⊗ G1) · RM(2)T 〉 mod 2.

= vec

〈⎡
⎢⎢⎣

1 0 0 0
1 1 0 0
1 0 1 0
1 1 1 1

⎤
⎥⎥⎦ ·

⎡
⎢⎢⎣

0 0 0 0
1 0 1 0
1 1 0 0
0 1 1 0

⎤
⎥⎥⎦ ·

⎡
⎢⎢⎣

1 1 1 1
0 1 0 1
0 0 1 1
0 0 0 1

⎤
⎥⎥⎦

〉

⊕ vec

〈⎡
⎢⎢⎣

1 0 0 0
1 1 0 0
1 0 1 0
1 1 1 1

⎤
⎥⎥⎦ ·

⎡
⎢⎢⎣

1 0 0 0
1 0 0 0
1 0 0 0
1 0 0 0

⎤
⎥⎥⎦ ·

⎡
⎢⎢⎣

1 1 1 1
0 1 0 1
0 0 1 1
0 0 0 1

⎤
⎥⎥⎦

〉

= vec

〈⎡
⎢⎢⎣

0 0 0 0
1 1 0 0
1 0 1 0
0 0 0 0

⎤
⎥⎥⎦ ⊕

⎡
⎢⎢⎣

1 1 1 1
0 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦

〉
.

With Lemma 1 and . B(4)

.f (x1, x2, x3, x4) = 〈x4 ⊕ x2x4 ⊕ x3 ⊕ x1x3〉 ⊕ 〈1 ⊕ x1 ⊕ x2 ⊕ x1x2〉.

Reed-Muller Spectra of Maiorana-McFarland Boolean Bent Functions 55

Case 2 Let .P(2) = [4, 3, 2, 1] and .G2 = [1, 0, 1, 1]: The same permutation as in
Case 1, but a new .G-function:

. RM(4) · F1 = RM(4)〈vec(M[2] · P(2)) ⊕ vec([1, 1, 1, 1]T ⊗ G(2)〉

= vec

〈⎡
⎢⎢⎣

0 0 0 0
1 1 0 0
1 0 1 0
0 0 0 0

⎤
⎥⎥⎦ ⊕

⎡
⎢⎢⎣

1 1 0 1
0 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦

〉
,

leading to

. f (x1, x2, x3, x4) = 〈x4 ⊕ x2x4 ⊕ x3 ⊕ x1x3〉 ⊕ 〈1 ⊕ x2 ⊕ x1x2〉.

Case 3 .P(2) = [2, 1, 4, 3], .G1 = [1, 0, 0, 0]: A new permutation, but the same
.G-function as in Case 1.

. RM(4) · F3 = RM(4)〈vec(M[2] · P(2)) ⊕ vec([1, 1, 1, 1]T ⊗ G1)〉

= vec

〈⎡
⎢⎢⎣

0 0 0 0
1 1 0 0
0 0 1 0
0 0 0 0

⎤
⎥⎥⎦ ⊕

⎡
⎢⎢⎣

1 1 1 1
0 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦

〉
,

i.e.,

. f (x1, x2, x3, x4) = 〈x4 ⊕ x2x4 ⊕ x1x3〉 ⊕ 〈1 ⊕ x1 ⊕ x2 ⊕ x1x2〉.

Case 4 .P(2) = [4, 1, 3, 2], .G = [1, 0, 1, 0]. A new permutation and a new .G-
function.

. RM(4) · F4 = RM(4)〈vec(M[2] · P(2)) ⊕ vec([1, 1, 1, 1]T ⊗ [1, 0, 1, 0])〉

vec

〈⎡
⎢⎢⎣

0 0 0 0
1 0 1 0
0 1 1 0
0 0 0 0

⎤
⎥⎥⎦ ⊕

⎡
⎢⎢⎣

1 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦

〉
,

from where

. f (x1, x2, x3, x4) = 〈x4 ⊕ x1x4 ⊕ x2x3 ⊕ x1x3〉 ⊕ 〈1 ⊕ x2〉.

The four cases illustrate that the Reed-Muller spectrum of . F may be obtained by
vectorizing two disjoint matrices. (Matrices are called “disjoint,” in the case that if
the Hamming weight of a row of a matrix is larger than 0, then the corresponding

56 C. Moraga et al.

row in the other matrix is a 0 row.) One of the matrices depends on the permutation
.P(k) used in (2), and the other one depends on the function . G of (2). In all cases
the first and fourth rows of the first matrix are 0 rows, whereas the second matrix is
characterized by unique non-0 row in the first position.

Proof In what follows, by calculating step by step, we prove that the results of the
former cases are not “biased coincidences.”

. RM(4) · F = vec〈{RM(2) · M[2]} · P(2) · RM(2)T 〉
⊕vec〈RM(2) · ([1, 1, 1, 1]T ⊗ G) · RM(2)T 〉 mod 2.

First part, without including the permutation:

.{RM(2) · M[2]} mod 2 =

⎡
⎢⎢⎣

1 0 0 0
1 1 0 0
1 0 1 0
1 1 1 1

⎤
⎥⎥⎦ ·

⎡
⎢⎢⎣

0 0 0 0
0 1 0 1
0 0 1 1
0 1 1 0

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0 0 0 0
0 1 0 1
0 0 1 1
0 0 0 0

⎤
⎥⎥⎦ . (13)

Recall that the first row of . M is a 0 row and the bottom row of .RM is a constant
1 row. Furthermore, the columnwise sum of the entries of . M is congruent with
0 modulo 2. These properties support that already .RM(2) · M[2] determines the
position of the 0 rows of the first component of the (matrix representation of the)
RM spectrum, independently of the permutation .P(k).

Second part. The effect of .P(2):

. RM(2) · M[2] · P(2) mod 2 =

⎡
⎢⎢⎣

0 0 0 0

0 0 0 0

⎤
⎥⎥⎦ .

Obviously the first and fourth rows will remain 0 rows for any permutation,
whereas the entries of the second and third row, marked with “. ,” will contribute
a Hamming weight larger than 0 for these rows, depending on .P(2), which will
reorder the columns.

Finally,

. {RM(2) · M[2]} · P · RM(2)T =

⎡
⎢⎢⎣

0 0 0 0

0 0 0 0

⎤
⎥⎥⎦ ·

⎡
⎢⎢⎣

1 1 1 1
0 1 0 1
0 0 1 1
0 0 0 1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0 0 0 0
 Q Q Q
 Q Q Q
0 0 0 0

⎤
⎥⎥⎦ ,

where the . Q entries equal the sum mod 2 of 2 or 4 . entries. The corresponding
rows have a Hamming weight larger than 0. The first and fourth rows, however,
remain 0 rows.

Reed-Muller Spectra of Maiorana-McFarland Boolean Bent Functions 57

Similarly, with respect to .vec〈RM(2) · ([1, 1, 1, 1]T ⊗ G) · RM(2)T 〉 mod 2,
where .G = [g1, g2, g3, g4].

. RM(2) · ([1, 1, 1, 1]T ⊗ G) mod 2 =

⎡
⎢⎢⎣

1 0 0 0
1 1 0 0
1 0 1 0
1 1 1 1

⎤
⎥⎥⎦ ·

⎡
⎢⎢⎣

g1 g2 g3 g4

g1 g2 g3 g4

g1 g2 g3 g4

g1 g2 g3 g4

⎤
⎥⎥⎦

=

⎡
⎢⎢⎣

g1 g2 g3 g4

0 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦ ,

and

. RM(2) · ([1, 1, 1, 1]T ⊗ G) · RM(2)T mod 2

=

⎡
⎢⎢⎣

g1 g2 g3 g4

0 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦ ·

⎡
⎢⎢⎣

1 1 1 1
0 1 0 1
0 0 1 1
0 0 0 1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

g1 g12 g13 g1234

0 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦ ,

where .g12 = g1 ⊕ g2, .g13 = g1 ⊕ g3 and .g1234 = g1 ⊕ g2 ⊕ g3 ⊕ g4. Only the first
row has entries in .{0, 1} and a Hamming weight .> 0. All other rows are 0 rows.

It becomes clear that the Reed-Muller spectra of .vec(M[2] · P(2)) and of
.vec([1, 1, 1, 1]T ⊗ G) are disjoint, since there is no overlap of nonzero coefficient
rows of both matrix representations of the spectra.

Furthermore, notice that

. RM(2) · GT =

⎡
⎢⎢⎣

1 0 0 0
1 1 0 0
1 0 1 0
1 1 1 1

⎤
⎥⎥⎦ ·

⎡
⎢⎢⎣

g1

g2

g3

g4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

g1

g1 ⊕ g2

g1 ⊕ g3

g1 ⊕ g2 ⊕ g3 ⊕ g4

⎤
⎥⎥⎦ ,

which proves the following Lemma.

Lemma 2 For a given k and . G from (2), the transpose of the RM spectrum of . GT

equals the first row of the (matrix representation of the) RM spectrum of . F, where . F
is obtained with (2). ��

.(ii) Let .k = 3, .n = 6, .2k = 8.
Notice that .k = 2r has no integer solution for r . This will cause an asymmetry
in the calculation of .M[k]. (See below.)

Permutations will be coded as .[n1, n2, n3, n4, n5, n6, n7, n8], where . ∀1 ≤
i �= j ≤ 8, .ni �= nj and with .n0 := 0, .(ni−1) ∈ Z8 without repetitions. The

58 C. Moraga et al.

position of . ni (i.e., i) indicates the column and the value of . ni the row where
the permutation matrix has the entry 1. All other entries of the same row and
column have the value 0:

. RM(6) = RM(3) ⊗ RM(3),

as usual; however [3],

. M[3] = M[2] ⊗ U(1) ⊕ U(2) ⊗ M.

. M[3] =

⎡
⎢⎢⎣

0 0 0 0
0 1 0 1
0 0 1 1
0 1 1 0

⎤
⎥⎥⎦ ⊗

[
1 1
1 1

]
⊕

⎡
⎢⎢⎣

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

⎤
⎥⎥⎦ ⊗

[
0 0
0 1

]

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0
0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1
0 1 1 0 0 1 1 0
0 0 0 0 1 1 1 1
0 1 0 1 1 0 1 0
0 0 1 1 1 1 0 0
0 1 1 0 1 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

A direct calculation shows that in this case, the following also holds, where,
in general, the tensor sum does not commute [3, 7, 11]:

. M[3] = M ⊗ U(2) ⊕ U(1) ⊗ M[2].

The Basis .B(6) = ⊗6
i=1[1, xi]T has a legth of .26 = 64 and may be given a

compact representation by vectorizing a matrix, whose first column is

.
[

1, x6, x5, x5x6, x4, x4x6, x4x5, x4x5x6
]T

,

and its first row is

.
[

1, x3, x2, x2x3, x1, x1x3, x1x2, x1x2x3
]
.

All other entries are obtained as the product of the corresponding row-
column coordinates. For example, a Basis component at the position . 〈5, 6〉
equals .x1x3x4, where the variables are ordered by increasing indices.

Reed-Muller Spectra of Maiorana-McFarland Boolean Bent Functions 59

Case 5 Let .P(3) = [6, 8, 7, 5, 2, 4, 3, 1], and .G = [1, 0, 0, 1, 1, 1, 1, 0].

.

RM(6)(vec〈M[3] · P(3) ⊕ ([1, 1, 1, 1, 1, 1, 1, 1]T ⊗ G)〉)
= vec〈RM(3) · (M[3] · P(3) ⊕ [1, 1, 1, 1, 1, 1, 1, 1]T ⊗ G) · RM(3)T 〉
= vec(RM(3) · (M[3] · P(3)) · RM(3)T)

⊕ vec(RM(3) · ([1, 1, 1, 1, 1, 1, 1, 1]T ⊗ G) · RM(3)T).

Let

.Alpha := RM(3) · (M[3] · P(3)) · RM(3)T , (14)

and

. Beta := RM(3) · ([1, 1, 1, 1, 1, 1, 1, 1]T ⊗ G) · RM(3)T .

Direct MatLab calculations give the following results:

.

Alpha: Row 2 = [1, 0, 1, 0, 0, 0, 0, 0]
Row 3 = [0, 1, 1, 0, 0, 0, 0, 0]
Row 5 = [1, 0, 0, 0, 1, 0, 0, 0].

All other rows are 0 rows.

. Beta : Row 1 = [1, 1, 1, 0, 0, 1, 1, 1].

All other rows are 0 rows.
It is quite clear that Alpha and Beta are disjoint.
The 1-entries of Alpha and Beta applied on the matrix representation of . B(6)

lead to the following Positive Polarity Reed-Muller functional expression:

. f (x1, x2, x3, x4, x5, x6) = 〈1 ⊕ x2 ⊕ x3 ⊕ x1x2 ⊕ x1x3 ⊕ x1x2x3〉
⊕ 〈x2x6 ⊕ x6 ⊕ x2x5 ⊕ x3x5 ⊕ x1 ⊕ x1x4〉.

Notice that the functional expression is of degree .3 = n/2, which is the
maximum degree allowed for f to be bent [1].

.(iii) Let .k = 4, .n = 8, .2k = 16.
Permutations will be coded as .[n1, n2, n3, n4, . . . , n13, n14, n15, n16], where
.1 ≤ i �= j ≤ 16, .ni �= nj and with .n0 := 0, .(ni−1) ∈ Z16 without repetitions.
The position of . ni (i.e., i) indicates the column and the value of . ni the row
where the permutation matrix has the entry 1. All other entries of the same
row and column have the value 0.

60 C. Moraga et al.

. RM(8) = RM(4) ⊗ RM(4) and M[4] = M[2] ⊗ U(2) ⊕ U(2) ⊗ M[2].

Recall that .U(2) denotes a .(4 × 4) matrix all whose entries are 1.

. B(8) = [[1, x1] ⊗ [1, x2] ⊗ [1, x3] ⊗ [1, x4] ⊗ [1, x5] ⊗ [1, x6]
⊗ [1, x7] ⊗ [1, x8]]T

The matrix .B(8), which has a length of .28 = 256, may be expressed by
vectorizing a .(24 × 24) matrix with first column:

. [1, x8, x7, x7x8, x6, x6x8, x6x7, x6x7x8, x5, x5x8, x5x7, x5x7x8,

x5x6, x5x6x8, x5x6x7, x5x6x7x8]T ,

and first row

. [1, x4, x3, x3x4, x2, x2x4, x2x3, x2x3x4, x1, x1x4, x1x3,

x1x3x4, x1x2, x1x2x4, x1x2x3, x1x2x3x4].

An entry at the position .〈j, k〉 equals the product of j -th row entry times
the k-th column entry (ordered by increasing indices). For instance, the entry
at the position .〈4, 7〉 equals .x2x3x7x8.

Case 6 Let .P(4) = [5, 7, 3, 2, 4, 1, 6, 8, 16, 14, 9, 12, 10, 11, 15, 13], and . G =
[1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0].

.

RM(8)(vec〈M[4] · P(4) ⊕ [1, 1, 1, . . . , 1, 1]T · G〉
= vec〈RM(4) · (M[4] · P(4) ⊕ [1, 1, 1, . . . , 1, 1]T · G) · RM(4)T 〉
= vec(RM(4) · (M[4] · P(4)) · RM(4)T)

⊕ vec(RM(4) · [1, 1, 1, . . . , 1, 1]T · G · RM(4)T).

As in (15), let the result be expressed as .vec(Alpha)⊕vec(Beta). Direct MatLab
calculations give the following results:

.

Alpha: Row 2 = [0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0],
Row 3 = [0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0],
Row 5 = [1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
Row 9 = [0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0].

All other rows are 0 rows.

. Beta: Row 1 = [1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0].

Reed-Muller Spectra of Maiorana-McFarland Boolean Bent Functions 61

All other rows are 0 rows.
Clearly, Alpha and Beta are disjoint, since they have no overlap of nonzero rows.
The 1-entries of Alpha and Beta applied on the matrix representation of . B(8)

lead to the following Positive Polarity Reed-Muller functional expression, where to
simplify the representation, .xijk denotes .xixj xk:

. f (x1, . . . , x8) = 〈1 ⊕ x3 ⊕ x4 ⊕ x13 ⊕ x23 ⊕ x123〉
⊕ 〈x6 ⊕ x15 ⊕ x17 ⊕ x18 ⊕ x26 ⊕ x27 ⊕ x28

⊕ x36 ⊕ x37 ⊕ x47 ⊕ x128 ⊕ x138 ⊕ x238 ⊕ x348〉.

Notice that the functional expression for f has degree 3, which is below the . n/2
upper limit for a Boolean function to be bent, as stated in [1].

Test of Lemma 2

.
RM(4) · [1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0]T

= [1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0]T .

It is simple to verify that once transposed, this corresponds to the first row of
Beta.

The results of the above experiments (and additional experiments with .k = 5 and
.k = 6 not included for space reasons) show that the distribution of the 1-entries in
the nonzero rows depends on the permutation used in (2). Furthermore, the results
show that for any permutation in (2), Alpha comprises just k nonzero rows, starting
with the second row.

Theorem 2 The distribution of the k non-0 rows of Alpha conforms to the following
relationship: The second row of Alpha is a non-0 row. If .j > 2 denotes the position
of a non-0 row, then:

.jnew = 2(jprevious) − 1.

��
See experimental results in Table 1.
Proof by induction on k.

Let .u ∈ N and let Alpha. u denote Alpha when .k = u. Furthermore, let . M⊥
denote the skew-transpose of . M.

Preliminaries

.RM(1) · U(1) · RM(1)T =
[

1 0
1 1

]
·
[

1 1
1 1

]
·
[

1 1
0 1

]
=

[
1 0
0 0

]
= M⊥.

62 C. Moraga et al.

Table 1 Observations
supporting the theorem

Positions of the non-0

k rows of Alpha

2 2, 3

3 2, 3, 5

4 2, 3, 5, 9

5 2, 3, 5, 9, 17

6 2, 3, 5, 9, 17, 33

. RM(1) · M(1) · RM(1)T =
[

1 0
1 1

]
·
[

0 0
0 1

]
·
[

1 1
0 1

]
=

[
0 0
0 1

]
= M.

Induction Basis
Assume that for .k = u, Alpha. u satisfies the proposition. Recall that, as shown in
(13), the distribution of the kind of rows is independent of .P(k). Therefore, in what
follows, .P(k) = I(k) will be considered.

Induction Step
Let .k = u + 1 and .P(u + 1) = I(u + 1).

. Alphau+1 = RM(u + 1) · M[u+1]〈RM(u + 1)〉T

= 〈RM(u) ⊗ RM(1)〉〈M[u] ⊗ U(1) ⊕ U(u) ⊗ M〉〈RM(u) ⊗ RM(1)〉T
= 〈RM(u) ⊗ RM(1)〉 · 〈M[u] ⊗ U(1)〉〈RM(u) ⊗ RM(1)〉T
⊕ 〈RM(u) ⊗ RM(1)〉 · 〈U(u) ⊗ M〉 · 〈RM(u) ⊗ RM(1)〉T
= 〈RM(u) · M[u] · RM(u)T 〉 ⊗ 〈RM(1) · U(1) · RM(1)T 〉
⊕ 〈RM(u) · U(u) · RM(u)T 〉 ⊗ 〈RM(1) · M · RM(1)T 〉
= Alphau ⊗ M⊥ ⊕ 〈M⊥〉⊗u ⊗ M.

Notice that .〈M⊥〉⊗u is a .(2u+1 × 2u+1) matrix with a single 1-entry at the left
upper corner. Therefore, .〈M⊥〉⊗u ⊗ M is a .2u+2 square matrix with a single 1-entry
at the second position of the second row, i.e., its second row is a non-0 row.

Analysis of . Alphau ⊗ M⊥
Every row of Alpha. u will be duplicated with double length. Since the first row of
Alpha, for any k is a 0 row, this row will first be duplicated, however, because of
the nature of .〈M⊥〉⊗u ⊗ M, as discussed above, the second row of Alpha.u+1 will
become a non-0 row. In every other row of Alpha. u+1, the 1-entries of Alpha. u will be
replaced by .M⊥, and the 0-entries will be replaced by .(2×2) 0-matrices. Therefore,
Alpha.u+1 will have .u + 1 nonzero rows, since u of them will be preserved from
Alpha. u and an additional one will be provided by .〈M⊥〉⊗u ⊗ M.

From the former analysis, Alpha.u+1 may be considered as a matrix comprising
blocks of pairs of rows. If the blocks are first assigned the same position as the rows

Reed-Muller Spectra of Maiorana-McFarland Boolean Bent Functions 63

of Alpha. u, the first row of a j -th block will have .j−1 preceding blocks, i.e., . 2(j−1)

preceding rows. Its own row position will then be .2(j − 1) + 1 = 2j − 1.
End of the proof. ��

3 The Effect of a Subset of Spectral Invariant Operations

It is known that the basic spectral invariant operations [4] preserve the bentness of
Boolean functions [19]. In what follows a subset of spectral invariant operations,
called additive spectral invariant operations, will be considered.

Definition 2 Additive spectral invariant operations comprise the complementation
of a function as well as adding one or more (complemented or uncomplemented)
arguments to the function or to its complement. ��

It will be shown that additive basic spectral invariant operations preserve the
Maiorana-McFarland bentness of Boolean functions and that they only affect the
Beta component of the Reed-Muller spectrum of an original Maiorana-McFarland
Boolean function.

Let . V be some vector. Then, . 1V will represent a column vector of the same length
as . V, with all components with value 1.

Given an n-place Maiorana-McFarland Boolean function f with value vector . F
of length . 2n, then, with .1 ≤ i, j ≤ n:

.
F ⊕ 1F; F ⊕ Xi; F ⊕ 1F ⊕ Xi; F ⊕ Xj ; F ⊕ 1F ⊕ Xj ;
F ⊕ Xi ⊕ Xj ; F ⊕ 1F ⊕ Xi ⊕ Xj ; . . . ; F ⊕n

r=1 Xr ,

are examples of value vectors of functions obtained with additive spectral invariant
operations applied to . F. . Xi and .Xj represent the value vectors of the variables . xi

and . xj in the context of n variables, similarly for other value vectors.
Let .k = 2. With (2), .F = vec〈M[2] · P(2) ⊕ (1G ⊗ [g1, g2, g3, g4])〉.

Analysis of .F ⊕ 1F (i.e., the complement of . F).

. F ⊕ 1F = vec(M[2] · P(2) ⊕ (1G ⊗ [g1, g2, g3, g4]) ⊕ 1F

= vec(M[2] · P(2) ⊕ (1G ⊗ [g1, g2, g3, g4]) ⊗ vec(1G ⊗ (1G)T)

= vec〈M[2] · P(2) ⊕ (1G ⊗ [g1, g2, g3, g4] ⊕ (1G ⊗ 1G)T 〉 (15)

= vec〈M[2] · P(2) ⊕ (1G ⊗ ([g1, g2, g3, g4] ⊕ (1G)T)〉
= vec(M[2] · P(2) ⊕ (1G ⊗ [g1, g2, g3, g4])

It is quite clear that (15) is a particular case of (2), with .G = [g1, g2, g3, g4].
Therefore, .F ⊕ 1F is the value vector of a (new) Maiorana-McFarland Boolean bent
function.

64 C. Moraga et al.

Analysis of .F ⊕ X2:

. F ⊕ X2 = vec(M[2] · P(2)) ⊕ (1G ⊗ [g1, g2, g3, g4]) ⊕ X2)

= vec(M[2] · P(2) ⊕ (1G ⊗ [g1, g2, g3, g4]) ⊕ vec(1G ⊗ [0, 1, 0, 1])
= vec〈M[2] · P(2) ⊕ (1G ⊗ [g1, g2, g3, g4]) ⊕ (1G ⊗ [0, 1, 0, 1])〉 (16)

= vec〈M[2] · P(2) ⊕ (1G ⊗ ([g1, g2, g3, g4] ⊕ [0, 1, 0, 1])〉
= vec(M[2] · P(2) ⊕ (1G ⊗ [g1, g2, g3, g4]).

It is simple to see that (16) is also a particular case of (2), with a different . G.
Therefore, .F⊕X2 is the value vector of another (new) Maiorana-McFarland Boolean
bent function.

The analysis of the effect of additive spectral invariant operations when .k > 2 is
straightforward.

It may be seen that all other cases of functions obtained with additive spectral
invariant operations may be analyzed by repetitions of the above two cases, with
appropriate definitions of the . X vectors. In all cases it will be concluded that
the considered spectral invariant operations preserved the Maiorana-McFarland
bentness of an original Maiorana-McFarland Boolean bent function.

Furthermore, the analyzed cases indicate that if the Reed-Muller spectrum of the
generated new functions is calculated, only its Beta component—(the one dependent
of . G)—will change with respect to the Reed-Muller spectrum of the originating
function, and, since in the matrix representation of Beta only the first row is a
nonzero row, the “new” Beta may be simply calculated with Lemma 2.

4 Closing Remarks

Boolean bent functions are frequently, if not always, associated with their Walsh
spectra, since the absolute value of the spectral coefficients determines whether a
function is bent or not. In this chapter, however, we have established particular struc-
tural features of the Reed-Muller spectrum of functions in the Maiorana-McFarland
class of Boolean bent functions. These features are disjoint and depend separately on
the parameters . P and . G of the generating Eq. (2). If a set of Boolean bent functions
is given, the analysis of the structure of the Alpha components of their Reed-Muller
spectra would allow recognizing which bent functions are Maiorana-McFarland.
Furthermore, we showed that additive basic spectral operations consisting of adding
a constant vector 1 or the value vector of one or more possibly complemented
arguments to a reference Maiorana-McFarland Boolean bent function preserves this
class and affects only the Beta component of the Reed-Muller spectrum. Tests done
with random Boolean bent functions, but not Maiorana-McFarland bent functions,
showed that their Reed-Muller spectra have a structure different from the one shown
in Theorem 2.

Reed-Muller Spectra of Maiorana-McFarland Boolean Bent Functions 65

Acknowledgments The authors thank the reviewers of a preliminary version of this chapter for
their constructive criticism and the suggestions to improve the manuscript.

References

1. Cusick, T.W., Stănică, P.: Cryptographic Boolean Functions and Applications. Academic
Press/Elsevier (2009)

2. Dillon J.F.: Elementary Hadamard Difference Sets. Ph.D Dissertation, University of Maryland,
College Park, 1974

3. Horn R.A., Johnson Ch.R.: Topics in Matrix Analysis. Cambridge University Press, New York
(1991)

4. Hurst S.L.: The Logical Processing of Digital Signals. Crane Rusak, New York (1978)
5. Karpovsky M.G., Stanković, R.S., Astola, J.T.: Spectral Logic and its Applications for the

Design of Digital Devices. Wiley, Hoboken (2008)
6. Langevin Ph., Leader G.: Counting all bent functions in dimension 8. Des. Codes Cryptogr. 9,

203–215 (2011)
7. Laub A.J.: Matrix Analysis for Scientists and Engineers. SIAM (2005)
8. Maiorana J.A.: A Class of Bent Functions. R41 Technical Paper, August 1970
9. McFarland R.L.: A discrete Fourier theory for binary functions. R41 Technical paper, 1971

10. Mesnager S.: Bent Functions: Fundamentals and Results. Springer, Switzerland, 2016
11. Moraga, C., Stanković, M., Stanković, R.S., Stojković, S.: Contribution to the study of

multiple-valued bent functions, in Proc. 43rd Int. Symp. Multiple-valued Logic, pp. 340–345.
IEEE Press (2013)

12. Moraga, C., Stanković, M., Stanković, R.S., Stojković, S.: The Maiorana Method to generate
Multiple-valued Bent Functions revisited, in Proc. 44th Int. Symp. Multiple-valued Logic, pp.
340–345. IEEE Press (2014)

13. Muller D. E.: Application of Boolean algebra to switching circuits design and to error
detection. In: IRE Trans. Electron. Comp., vol. EC-3, 6–12, 1954

14. Radmanović, M., Stanković, R. S.: Construction of subsets of bent functions satisfying
restrictions in the Reed-Muller domain. Facta Universitatis, Ser. Electron. Energetics 31(2),
217–222 (2018)

15. Reed, S.M.: A class of multiple error correcting codes and their decoding scheme. In: IRE
Trans. Inf. Th., vol. PGIT-4, pp. 38–49 (1954)

16. Rothaus O.: On bent functions. J. Combin. Theory. Ser. A 21(3), 300–305 (1976)
17. Stanković, R.S., Astola, J.T., Moraga, C.: Spectral Techniques for Boolean Problems. Origins

and Applications. In: Steinbach, B. (ed.) Further Improvements in the Boolean Domain, pp.
54–63. Cambridge Scholars Publishing, Newcastle Upon Tyne (2018)

18. Stanković, R.S., Stanković, M., Moraga, C., Astola. J.: Quaternary generalized Boolean bent
functions obtained through permutation of binary Boolean bent functions, in Proc. 48th Int.
Symp. on Multiple-Valued Logic, Linz, Austria, May 16–18, pp. 1–6. IEEE Press (2018)

19. Stanković, M., Moraga, C., Stanković, R.S.: Some spectral invariant operations for multiple-
valued functions with homogeneous disjoint products in the polynomial form. In: Proc. 47th
Int. Symp. on Multiple-Valued Logic, pp. 61–66. Novi Sad, Serbia. IEEE Press (2017)

20. Tokareva, N.: Bent Functions—Results and Applications to Cryptography. Elsevier, Amster-
dam (2015)

21. Zhegalkin, I.L.: O tekhnyke vychyslenyi predlozhenyi v symbolytscheskoi logykye. Math. Sb.
34, 9–28 (1927). In Russian

22. Zhegalkin, I.L.: Aritmetizatiya symbolytscheskoi logyky. Math. Sb. 35, 311–377 (1928). In
Russian

Toward System-Level Assertions
for Heterogeneous Systems

Muhammad Hassan, Thilo Vörtler, Karsten Einwich, Rolf Drechsler,
and Daniel Große

1 Introduction

Driven by growth opportunities in various application domains, e.g., Internet of
Things (IOT), many semiconductor vendors are shifting their focus toward a more
integrated solution of high-performance analog/mixed-signal (AMS) designs. Due
to this industry shift, most System-on-Chips (SOCs) today are AMS containing
analog sensors, mixed-signal converters, and digital processors running Software
(SW) on top, tightly integrated on a single die. One characteristic of such SOCs is
that each subsystem interacts simultaneously with each other by internal connec-
tions and reacts to inputs coming from outside. Digital systems behavior usually
exhibits discrete changes in time and value, whereas analog circuits usually exhibit
continuous changes. While this shift has resulted in high-performance and low-area
devices, it has significantly increased the efforts required to develop and verify
these highly complex devices and achieving the required Time To Market (TTM)

M. Hassan (�)
Cyber-Physical Systems, DFKI GmbH, Bremen, Germany
e-mail: muhammad.hassan@dfki.de; hassan@uni-bremen.de

T. Vörtler · K. Einwich
COSEDA Technologies GmbH, Dresden, Germany
e-mail: thilo.voertler@coseda-tech.com; karsten.einwich@coseda-tech.com

R. Drechsler
Institute of Computer Science, University of Bremen and Cyber-Physical Systems, DFKI GmbH,
Bremen, Germany
e-mail: drechsle@informatik.uni-bremen.de

D. Große
Institute for Complex Systems, Johannes Kepler University, Linz, Austria

Cyber-Physical Systems, DFKI GmbH, Bremen, Germany
e-mail: daniel.grosse@jku.at

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. Drechsler, S. Huhn (eds.), Advanced Boolean Techniques,
https://doi.org/10.1007/978-3-031-28916-3_5

67

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-28916-3protect T1	extunderscore 5&domain=pdf

 885 42454 a 885 42454 a

mailto:muhammad.hassan@dfki.de
mailto:muhammad.hassan@dfki.de
mailto:muhammad.hassan@dfki.de

 12074 42454 a 12074
42454 a

mailto:hassan@uni-bremen.de
mailto:hassan@uni-bremen.de
mailto:hassan@uni-bremen.de

 885 46329 a 885 46329 a

mailto:thilo.voertler@coseda-tech.com
mailto:thilo.voertler@coseda-tech.com
mailto:thilo.voertler@coseda-tech.com
mailto:thilo.voertler@coseda-tech.com

 13469 46329 a 13469
46329 a

mailto:karsten.einwich@coseda-tech.com
mailto:karsten.einwich@coseda-tech.com
mailto:karsten.einwich@coseda-tech.com
mailto:karsten.einwich@coseda-tech.com

 885 51310 a 885 51310
a

mailto:drechsle@informatik.uni-bremen.de
mailto:drechsle@informatik.uni-bremen.de
mailto:drechsle@informatik.uni-bremen.de
mailto:drechsle@informatik.uni-bremen.de

 885 56845 a 885 56845 a

mailto:daniel.grosse@jku.at
mailto:daniel.grosse@jku.at
mailto:daniel.grosse@jku.at
https://doi.org/10.1007/978-3-031-28916-3_5
https://doi.org/10.1007/978-3-031-28916-3_5
https://doi.org/10.1007/978-3-031-28916-3_5
https://doi.org/10.1007/978-3-031-28916-3_5
https://doi.org/10.1007/978-3-031-28916-3_5
https://doi.org/10.1007/978-3-031-28916-3_5
https://doi.org/10.1007/978-3-031-28916-3_5
https://doi.org/10.1007/978-3-031-28916-3_5
https://doi.org/10.1007/978-3-031-28916-3_5
https://doi.org/10.1007/978-3-031-28916-3_5
https://doi.org/10.1007/978-3-031-28916-3_5

68 M. Hassan et al.

simultaneously. Nowadays, assertion-based verification (ABV) in combination with
coverage analysis [21, 22, 36] and constrained randomization techniques [19, 50] is
widely used to perform functional verification of digital designs at Register Transfer
Level (RTL). ABV defines temporal properties in order to verify the functional
correctness of the design with respect to expected behaviors. Consequently, the bugs
are found at their source. Furthermore, design observability and controllability is
also improved. Applying the ABV methodology to AMS designs can bring the same
benefits that the digital design community has enjoyed. However, late availability of
RTL in the design process exacerbates the situation.

In this regard, the emergence of virtual prototypes (VPs) at the abstraction
of Electronic System Level (ESL) has modernized the design and verification of
AMS SOCs in many ways [11, 13, 14, 20, 23–25, 33, 41, 47]. Essentially, a VP
is a software simulation model of the entire Hardware (HW) platform, created
by composing models of the individual Intellectual Property (IP) blocks (i.e.,
instruction set simulators, bus and peripheral models, etc.). For this purpose, the
C.++-based system modeling language SystemC together with Transaction-level
Modeling (TLM) techniques [27] and mixed-signal extension SystemC/AMS [4]
is being heavily used in industrial practice [3, 11, 22, 33, 34, 41]. Overall, the
adoption of VPs has led to significant improvements on the design and verification
of SOCs. Because of earlier availability and significantly faster simulation speed as
opposed to RTL, the VPs enable HW/SW co-design and verification very early in
the development flow. Serving as reference for (early) embedded SW development
and HW verification, the functional correctness of VPs is very important. Hence, a
whole VP and its individual components are subjected to rigorous verification.

However, one of the main challenges is the availability of a practical assertions
library for system-level design verification which enables ABV methodologies.
When speaking of unavailability, we also broadly include advanced testbench
concepts based on the Universal Verification Methodology (UVM), or in the future
even more abstract based on Portable Stimulus Specification (PSS). Regardless of
the specific solution, a system-level assertions library is missing which satisfies
the following: (1) expressiveness to represent complex behaviors of heterogeneous
systems, (2) compatibility to SystemC, TLM, and SystemC/AMS, (3) capture of
complex analog-digital interactions, and (4) integration of complex heterogeneous
characteristics like continuous time, frequency analysis, etc.

Contribution In this paper we present a system-level assertions library for het-
erogeneous systems, an advanced ABV environment for SystemC, TLM, and its
mixed-signal extension SystemC/AMS. To overcome the limitations of state-of-the
art libraries (see Sect. 2 for more details), the proposed SystemC assertions library
provides the following features:

• New assertions specification API: An intuitive, user-friendly, and expressive
Application Programming Interface (API) to specify complex behaviors of
nontrivial heterogeneous systems has been developed.

• Compatibility: The library is compatible with SystemC and its extensions, TLM,
and SystemC/AMS.

Toward System-Level Assertions for Heterogeneous Systems 69

• Complex behaviors: Various complex behaviors can be captured like, (1) com-
plex analog-to-digital, (2) digital-to-analog, (3) digital-to-digital, and (4) analog-
to-analog.

• SW and TLM Support: The assertions library supports the checking of TLM
interface and SW/HW interactions.

• Heterogeneous characteristics: The library integrates heterogeneous character-
istics like continuous time, frequency analysis, slopes, equations, attenuations,
differential-algebraic equations (DAE), digital signals, temporal logic, variables,
and events. These characteristics are necessary for expressing complex proper-
ties.

• Improved usability: Debugging of failed assertions is supported.

Considering all these features, we develop a new system-level assertions library
for bridging the gap of ABV for heterogeneous systems. The running example and
experiments on a real-world model of ARM V8-based CPU using ARM fast models
demonstrate the capabilities of the library to improve the system verification in a
significant way.

The paper is organized as follows: Sect. 2 gives a survey of current approaches
concerning heterogeneous/AMS verification. Section 3 discusses the running exam-
ple along with assertions to set up the environment. Section 4 describes our
contribution and the implementation and discusses the approach. This includes syn-
tax and semantics of the system-level assertions library. In Sect. 5 we demonstrate
the benefits of our methodology with experiments. Finally, we conclude and mention
future work in Sect. 6.

2 Related Work

SystemC is widely used for system-level design and verification; however, it still
lacks native temporal assertions support. Several approaches have been proposed for
digital SystemC-based models/VPs. Besides basic work on the temporal language
itself [45], these approaches can be divided into two categories, formal assertion-
based verification (e.g., [7, 12, 17, 18, 29, 31, 46, 48]) and simulation-based
verification (e.g., [5, 6, 9, 13, 15, 40, 44]). The formal approaches aim to fully
explore the state space based on abstract representations of system-level models.
However, these approaches typically run into the state space explosion problem.
Furthermore, the aforementioned simulation-based methods only consider purely
digital models.

In [6, 9, 40] new approaches for transaction-level assertions are introduced.
However, in [40] transactions are mapped to signals, and therefore the approach
is restricted only to transactions which are invoked by suspendable processes. In
[6] transactions are recorded and written into a trace to do post-processing. Trace-
based assertion checking however requires that everything to be recorded must be
annotated in the code and the creation of simulation data bases can become very
resource intensive.

70 M. Hassan et al.

Various works have also been presented for the specification and verification of
analog circuits [32, 35, 39, 42, 43, 51]. Here, too, a distinction is made between
formal and simulation-based methods. One focus of the work was in particular to
develop suitable extensions for the specification of assertions. It should be noted,
however, that the aforementioned works only target analog components and usually
only address the implementation level. The overall heterogeneous systems (incl.
SW) and environment considered here are not supported.

In the area of digital HW/SW co-design and verification, various formal
approaches have been proposed, for example [16, 38, 49]. However, these so
far assume only implementation-level descriptions for the hardware part (e.g., in
Verilog or VHDL). Furthermore, due to the huge state spaces in analog domain,
only small problems can be handled. Recently, abstraction techniques have been
developed, and the hardware parts are abstracted to C level [26, 37]. However, these
methods consider only pure digital designs.

Heterogeneous characteristics like continuous time, frequency analysis, slopes,
equations, attenuations, DAE, digital signals, temporal logic, variables, and events
are insufficiently integrated in all known specification languages. However, these
characteristics in combination with a special time definition are necessary for
expressing complex properties. Therefore, our work considers all these conditions
to develop a new system-level assertions library for bridging the gap of ABV for
heterogeneous designs.‘

3 Preliminaries

3.1 Assertion-Based Verification

ABV is an established technique used nowadays to verify SOCs [10]. To enable
ABV, a language is required based on the general notion of Property Specification
Language (PSL) [28], Linear Temporal Logic (LTL), Finite LTL (FLTL), or Com-
putation Tree Logic (CTL) [30]. Based on the specification assertions (properties)
are typically manually created and capture the design intent. The basic function
of an assertion is to specify a set of behaviors that is expected to be true for a
given Design Under Verification (DUV). Assertions are included in the DUV via
monitors, and they compare the temporal behavior of the assertions against the DUV
during simulation. Assertions are used in the validation environments of TLM, RTL,
and gate level and offer the following advantages: (1) detect design errors at their
source and increase observability, (2) actively monitor a design to ensure correct
functional behavior, and (3) can be used for functional and formal verification. The
widely used assertions library for RTL, SystemVerilog Assertion (SVA) [8], unifies
simulation and formal verification semantics to drive the design for verification
methodology. It takes a layered approach to define the properties of the DUV. More
precisely, properties are composed of four layers: (1) the Boolean layer consists
of propositions and Boolean connectives, (2) the sequence layer adds operators for

Toward System-Level Assertions for Heterogeneous Systems 71

temporal reasoning to the Boolean layer. (3) the property layer defines operations
on sequences, and (4) the verification layer provides indicators for the verification
tools on how to apply the properties. Most often assertions use implication operators
which define some specific sequence of events (known as antecedent) which should
occur before another sequence of events (known as consequent) should occur.

The first three layers define the actual property (intended or error state) that
relates to parts of the DUV, whereas the fourth layer is used to control the high-
level behavior of the verification tools.

3.2 System-Level Running Example

For brevity, we refrain from giving a proper introduction to SystemC, TLM, and
SystemC/AMS. Instead, we present here a heterogeneous system as a running
example (Fig. 1) that will be used to showcase the main ideas of our approach
throughout this paper. The SystemC, TLM, and SystemC/AMS constructs and
semantics necessary to understand the example will be explained as needed. The
running example models a temperature control system covering multiple domains,
i.e., SW, digital HW, and analog behavior. The system is modeled in SystemC/AMS
using differentModels of Computation (MoC), in particular Timed Data Flow (TDF)
and Electrical Linear Networks (ELNs). The overall system as shown in Fig. 1
consists of the following components:

• an ARM V8-based CPU using ARM fast models implemented as SystemC TLM
[2] with Linux operating system and SW running on top,

• four ADT7420 temperature sensors implemented as SystemC/AMS TDF and
discrete event model [1],

• an Advanced Microcontroller Bus Architecture (AMBA) bus that acts as a bridge
device to connect temperature sensors and ARM processor (created in SystemC
TLM)—(COS_AMBA_DEVICE in Fig. 1),

• an environment model (Thermal_Network) that builds 3 connected rooms and
an ambient temperature modeled as a sinus (SIN_SRC_TDF), i.e., each sensor
senses a different temperature (implementation as SystemC/AMS ELN and
discrete event model), and finally

• a heater model implemented as SystemC/AMS ELN that can be used to increase
the temperature.

The communication between SW running on the ARM8 and the connected
sensors is done via registers connected to the bus of the processor. The SW
configures the sensors by writing to addresses on the bus, which in turn creates TLM
transactions. These TLM transactions are written into the corresponding registers of
the ADT7420 sensors. The AMBA bus (COS_AMBA_DEVICE) also translates the
AMBA-PV transactions used by ARM fast models. Additionally, I. 2C transactions of
the sensor model are also translated. To showcase the features of proposed system-
level assertions library, the running example considers the following scenario for
demonstration purposes:

72 M. Hassan et al.

amba_pv_s

dram
<64 >

size = 0x200000000ull
page_size = 0x100000u

AMBA_PV_MEMORY

i_scx_fast_model_config2

configuration_file = "aemv8_external_components.cfg"
scx_initialize = "Base"
core_base_path = "i_top_external_components.Base"

SCX_FAST_MODEL_CONFIG

amba_pv_s sensor_bus

i_cos_amba_device1

COS_AMBA_DEVICE

interrupt

ct

temp_in

i2c_bus

i_adt7420_2

conf_file = "adt7420.par"

ADT7420

interrupt

ct

temp_in

i2c_bus

i_adt7420_1

conf_file = "adt7420.par"

ADT7420

interrupt

ct

temp_in

i2c_bus

i_adt7420_3

conf_file = "adt7420.par"

ADT7420

interrupt

ct

temp_in

i2c_bus

i_adt7420_0

conf_file = "adt7420.par"

ADT7420

heater_sw

t_ambient

t_sens3

t_sens2

t_sens1

t_sens0

i_thermal_network1

v_heater = 230.0
p_heater = 30e3
gw_heater = 50.0
gw_r2 = 40.0
gw_r1 = 30.0
gw_amb = 5.0
c_heater = 100.0
c_r3 = 100.0
c_r2 = 1000.0
c_r1 = 1500.0

THERMAL_NETWORK
tdf_o

i_sin_src_tdf1
<double>

ampl = 15.0
freq = 0.01
offset = 5_C

SIN_SRC_TDF

A

t

i2c_bus heater_sw

i_heater_reg1

HEATER_REG

ambapvbus_m

cos_dev_bus_m

Base

ARMV8A System

s_interrupt_3

s_ct_3

s_interrupt_2

s_ct_2

s_interrupt_1

s_ct_1

s_interrupt_0

s_ct_0
s_heater_sw

Fig. 1 Schematic of running example: temperature control system

• booting a Linux operating system on the ARM processor,
• a control SW is executed on top of Linux. The control SW continuously measures

(monitors) the temperature sensor output,
• if the SW detects that the temperature value falls below a programmed threshold

value, it switches the heater to ON state,
• otherwise, when the temperature exceeds a certain programmed threshold, the

heater is switched to OFF state.

3.3 Assertions for System-Level Running Example

A lot of assertions can be defined for the running example introduced in Sect. 3.2.
However, for the purpose of demonstrating the features of the proposed system-level
assertions library, we focus on only one. The concrete assertion states that:

• When the temperature of Room 1 t_r1 (SystemC TDF signal) is above the
threshold t_threshold (SW-controlled TLM register value), the heater has to be
switched off (heater_sw) within 1ms.

How this heterogeneous assertion can be expressed in our proposed assertions
library can be seen in Listing 1. Please note that we introduce all ingredients (in
particular, API, layers, etc.) from the users’ perspective for the proposed system-
level assertions library in the next sections.

1 auto heater_off = (t_r1 > t_threshhold) ->* (true |
delay(1_SC_MS) | (heater_switch==false));

2 heater_off.default_sampling(1_SC_MS);

Listing 1 Concrete assertion for temperature control system example

Toward System-Level Assertions for Heterogeneous Systems 73

4 System-Level Assertions Library for Heterogeneous
Systems

In this section, we introduce the proposed system-level assertions library and its
components for bridging the gap of ABV for heterogeneous systems. First, we
provide a brief overview of the library. Then, we describe the intuitive API and
the layered architecture of the assertions library in detail while always providing an
example.

4.1 Overview

The system-level assertions library is developed with an intuitive, user-friendly, and
an expressive API. As a result, complex behaviors of heterogeneous systems can be
captured easily. These behaviors are not only limited to events taking place at one
point in time in one domain, rather also temporal behaviors across different domains,
e.g., TLM and analog. To enable the API expressiveness, a layered architecture
inline with SVA-layered architecture [8] is used, i.e., Boolean layer, sequence
layer, property layer, and verification layer. At the back end, first the assertion is
divided into different layers and expressions; then, multiple SystemC processes
are spawned to monitor the signals and events specified in the expressions. The
library uses linear time model where the assumption is that the time is linear. Each
assertion is synchronized to the sampling ticks (notion of discrete time) of DUV
as defined by SystemC/AMS semantics, unless specified. The assertion is evaluated
at each sampling tick. If the specified expressions evaluate to true, the assertion is
satisfied. Additionally, the complete trace of assertion evaluation is displayed to the
verification engineer.

In the following sections, the components of system-level assertions library are
explained in detail.

4.2 Application Programming Interface

The API of the library is designed to enable the expressiveness required for specify-
ing cross-domain behaviors, e.g., TLM and analog. Hence, dedicated functions like
delay(...), repeat(...), default_sampling(...), etc. are defined to specify the behaviors
and make the library user-friendly. Additionally, operators (e.g., pipe (|), -. >*) are
introduced to enable specification of sequences in SystemC.

The concrete assertion (specified in Listing 1) is interpreted in light of the pro-
posed API as follows: an assertion property heater_off is created. The property joins
two sequences via an overlapping implication operator (-. >*). The sequences are,

74 M. Hassan et al.

Table 1 Non-comprehensive list of supported Boolean expressions by system-level assertions
library

Operator Name Data type

+= -= /= *= &= |= Binary assignment operators int, double

.< <= > >= Binary relational operators int, double

.+ − ∗ / Binary arithmetic operators int, double

.&& || == != Binary logical operators int, double

+ - ! ++ – Unary operators int, double

(1) antecedent—(t_r1 . > t_threshhold), (2) consequent—(true | delay(1_SC_MS)
| (heater_switch==false)). The sequences comprise of f our Boolean expres-
sions in total: (1) (t_r1 . > t_threshhold), (2) true, (3) delay (1_SC_MS), (4)
(heater_switch==false). Furthermore, the sampling time of the assertion is written
in Line. 2, i.e., 1_SC_MS.

4.3 Boolean Layer

The Boolean layer describes the behaviors of primitive elements relative to each
other at a particular point in time. The primitive elements in our proposed library
are SystemC events, variables, and SystemC/AMS signals. These primitive elements
are related using arithmetic, logical, or relational operators. Consequently, they
form an expression, e.g., a relational expression. In Listing 1 the expression (t_r1
. > t_threshhold) compares an analog signal t_r1 with a digital threshold value
t_threshhold stored in TLM register. If the relational condition is satisfied, the
expression is evaluated to true. A non-comprehensive list of Boolean expressions
is shown in Table 1.

4.4 Sequence Layer

The sequence layer builds on top of Boolean layer to specify the temporal relation-
ship between primitive elements (Boolean expressions) over time. The sequence
layer also specifies sequences as either a combination of simpler sequences using
sequence operators or as basic Boolean expressions correlated by events. The
proposed API introduces the pipe operator (|) to represent the continuity of a
sequence. This increases readability as well as user-friendliness of the assertion
property. Additionally, the API introduces delay(...), repeat(...) operators to specify
temporal assertions. As a result, a sequence can comprise of delay operators
(Sect. 4.4.1), Boolean expressions, and event expressions. To determine a match of
the sequence, the Boolean expressions are evaluated at each successive sample tick,
defined by a sampling event (SystemC/AMS sampling points) that gets associated

Toward System-Level Assertions for Heterogeneous Systems 75

Table 2 Non-comprehensive list of supported sequence operators by system-level assertions
library

Operator Description

delay Specifies delay from current sampling point until the next

and Sequence and operation

or Sequence or operation

repeat Repetition operator

with the sequence. If all expressions of the sequence are true, then a match of the
sequence occurs. For example, the assertion in Listing 1 has the expressions:

. (true| delay(1_SC_MS)| (heater_switch == false))

The expressions are interpreted as follows: a signal is asserted—true, followed
by a delay operator—delay(1_SC_MS), and after the delay of 1ms, the expression
(heater_switch == false) is evaluated. The sequence returns true only if all the
expressions evaluate to true. A non-comprehensive list of supported sequence
operators is shown in Table 2.

4.4.1 Delay Operator

The system-level assertions library introduces delay operator—delay(delay_cycles)
and delay(min_delay_cycles, max_delay_cycles) which takes delay time as input.
The function of delay operator is to create a relationship between Boolean expres-
sions over a period of time or between the given time constraints.

4.4.2 Repeat Operator

The library also introduces repeat operator—repeat(value) and repeat(min_value,
max_value)—which takes a repetition value as input for how many times the
sequence should be repeated. It helps in cases when a certain set of expressions
are expected to be true over multiple time points.

4.4.3 Sequence “and/or” Operators

The system-level assertions library introduces the sequence “and/or” operators.
The sequences are evaluated in parallel. In case of “and” operator, if one sequence
evaluates to “false”, the evaluation stops and the assertion fails. On the other hand,
in case of “or” operator, the library waits for all sequences to be evaluated.

76 M. Hassan et al.

4.5 Property Layer

The property layer allows for more general behaviors to be specified, i.e., speci-
fication of properties as either a combination of simpler properties using property
operators or as an implication built up from several sequences. In particular, prop-
erties allow users to invert the sense of a sequence (e.g., when the sequence should
not happen), disable the sequence evaluation, or specify that a sequence be implied
by some other occurrence. The properties and their respective sequences (including
Boolean expressions) are evaluated on each sampling event (sampling tick) of the
system’s default sampling time, unless specified. In this concrete assertion (defined
in Listing 1), the property sampling time is set to 1ms (heater_off.default_sampling
(1_SC_MS)). As a result, the assertion property in Listing 1 is evaluated every ms.
The property layer supports implication operators, “not”, and “and/or” operators.

4.5.1 Implication Operator

An implication refers to a situation in which in order for a behavior to occur, a
preceding sequence must have occurred. This preceding sequence in this case is
known as antecedent. The succeeding behavior is known as consequent. Evaluation
of an implication starts through repeated attempts to evaluate the antecedent. When
the antecedent succeeds, the consequent is required to succeed for the property to
hold. Thus, in other words, an antecedent sequence implies a consequent property
expression, as follows:

. antecedent − > ∗ consequent

where − > ∗ = overlapping implication operator

Nonoverlapping Implication

The delay(...) operator is used to implement nonoverlapping implication.

Overlapping Implication

-. >* In the system-level assertion library, we introduce an overlapping implication
operator (-. >*). This means that if the antecedent sequence is evaluated to true, the
consequent sequence is evaluated at the same tick.

As shown in Listing 1, if the expression (t_r1 . > t_threshhold) is true, the
sequence (true |delay(1_SC_MS) |(heater_switch==false)) should be true in next
sampling ticks. A non-comprehensive list of supported property operators is shown
in Table 3.

Toward System-Level Assertions for Heterogeneous Systems 77

Table 3 Non-comprehensive list of supported property operators by system-level assertions
library

Operator Description

Not the evaluation of the property returns the opposite of the evaluation of the
underlying property expression

and The property evaluates to true if, and only if, both property expression 1 and
property expression 2 evaluate to true.

or The property evaluates to true if, and only if, at least one of property expression
1 and property expression 2 evaluates to true.

4.6 Verification Layer

The verification layer specifies which properties are to be asserted or covered.
This layer always associates properties with corresponding verification directives. A
verification directive can be parameterized by the severity level and an info string;
further on it can be specified if the property should be asserted, covered or both. The
proposed library supports only assert at the moment.

5 Experiments

This section describes the experimental evaluation on a real-world model integrating
an ARM V8 CPU via ARM fast models (as described in Sect. 3.2). Fast models are
accurate, flexible programmer’s view models of ARM IP, allowing one to develop
software such as drivers, firmware, OS, and applications prior to silicon availability.
They allow full control over the simulation, including profiling, debug, and trace.
As mentioned, the complete model is implemented as a mixture of a SystemC TLM
model and a SystemC/AMS model.

Several assertions were created to verify the behavior of temperature control
system. The behaviors to verify included but not limited to: (1) SW and TLM
interactions, (2) analog and TLM interactions, (3) analog-digital, (4) digital-analog,
(5) digital events, and (6) analog-analog interactions, etc. In the following, we detail
the results of the concrete assertion from Listing 1.

Partial simulation results of the temperature control system SW are shown in
Fig. 2. The orange sinus signal is the ambient temperature (SIN_SRC_TDF) which
oscillates between 262 K and 293 K. The green waveform signal (t_r1) is the
temperature of room 1. The blue waveform signal (t_r2) is the temperature of room
2. The purple waveform signal (t_r3) is the temperature of room 3. At the bottom
of Fig. 2, digital signals—heater_switch and interrupts (irq0-irq3) from temperature
sensors are displayed.

After booting the Linux OS (approx. 30s), the control SW gets started. The heater
(heater_switch) gets turned on as the temperature in room one (t_r1) is below the
minimum temperature of 292 K. It can be seen how the temperature slowly increases

78 M. Hassan et al.

Fig. 2 Simulation results running the temperature control SW

in all rooms. When the temperature is above the maximum threshold of . 294.15
K, the heater gets turned off. As a consequence, the room temperatures start to
decrease. The sensors have been programmed to generate an interrupt whenever the
temperature is above or below a threshold value (stored in register).

We could see the assertion was satisfied throughout the simulation. However,
if we decreased the delay(...) from 1ms to a smaller value, the assertion was
always violated. This is expected and in accordance with the specifications. They
require that the heater_switch should be turned off within 1ms after the threshold
temperature is crossed. The reason for 1ms is because of the inherent delays
due to reading and writing of registers in different connected devices, and can be
summarized as follows:

• the temperature sensor senses the temperature,
• the sensed temperature is written into the register,
• SW reads the temperature from the ARM processor,
• SW checks whether the sensed temperature value is above the threshold value,
• and writing the heater switch control register depending on the comparison result.

Hence, using the proposed intuitive system-level assertion library, it is possible to
check complex behaviors of the heterogeneous systems, e.g., digital, analog, and
SW behavior.

6 Conclusion

In this paper, we presented a practical system-level assertions library for hetero-
geneous systems. The library comprises of an intuitive and user-friendly API and
offers full compatibility with SystemC, TLM, and SystemC/AMS. As a result, the
library supports specification of SW, TLM, and complex interactions, all necessary
to represent complex AMS behavior. The system-level assertions library prototype

Toward System-Level Assertions for Heterogeneous Systems 79

was used to verify the industrial model using ARM fast models, a temperature
control system SW, environment models, temperature sensors, and assertions.

Acknowledgments This work was supported in part by the German Federal Ministry of Education
and Research (BMBF) within the project AUTOASSERT under contract no. 16ME0117 and by the
LIT Secure and Correct Systems Lab funded by the State of Upper Austria.

References

1. Analog Devices ADT7420 Data Sheet Rev. A (2017). https://www.analog.com/en/products/
adt7420.html

2. ARM Fast Models Version 11.17 User Guide (2022). https://developer.arm.com/
documentation/100965/1117/

3. Barnasconi, M., Adhikari, S.: ESL design in SystemC AMS: introducing a top-down design
methodology for mixed-signal systems. In: DAC, pp. 1–5 (2017)

4. Barnasconi, M., Grimm, C., Damm, M., Einwich, K., Louërat, M., Maehne, T., Pecheux, F.,
Vachoux, A.: SystemC AMS extensions user’s guide. Accellera Systems Initiative (2010)

5. Bombieri, N., Fummi, F., Guarnieri, V., Pravadelli, G., Stefanni, F., Ghasempouri, T., Lora, M.,
Auditore, G., Marcigaglia, M.N.: Reusing RTL assertion checkers for verification of systemC
TLM models. J. Electron. Testing 31(2), 167–180 (2015)

6. Chen, X., Luo, Y., Hsieh, H., Bhuyan, L., Balarin, F.: Assertion based verification and analysis
of network processor architectures. Design Autom. Embed. Syst. 9(3), 163–176 (2004)

7. Cimatti, A., Narasamdya, I., Roveri, M.: Software model checking SystemC. TCAD 32(5),
774–787 (2013)

8. Committee, D.A.S., et al.: Ieee standard for systemverilog unified hardware design, specifica-
tion, and verification language standard IEEE 1800 (2005). http://www.edastds.org/sv/

9. Ecker, W., Esen, V., Steininger, T., Velten, M., Hull, M.: Implementation of a transaction level
assertion framework in SystemC. In: DATE, pp. 894–899 (2007)

10. Foster, H.D., Krolnik, A.C., Lacey, D.J.: Assertion-Based Design. Springer, Berlin (2004)
11. Grimm, C., Barnasconi, M., Vachoux, A., Einwich, K.: An introduction to modeling embedded

analog/mixed-signal systems using SystemC AMS extensions. In: DAC, vol. 23 (2008)
12. Große, D., Drechsler, R.: Formal verification of LTL formulas for SystemC designs. In: ISCAS,

pp. V:245–V:248 (2003)
13. Große, D., Drechsler, R.: Checkers for SystemC designs. In: MEMOCODE, pp. 171–178

(2004)
14. Große, D., Drechsler, R.: Quality-Driven SystemC Design. Springer, Berlin (2010)
15. Große, D., Groß, M., Kühne, U., Drechsler, R.: Simulation-based equivalence checking

between SystemC models at different levels of abstraction. In: GLSVLSI, pp. 223–228 (2011)
16. Große, D., Kühne, U., Drechsler, R.: Hw/sw co-verification of embedded systems using

bounded model checking. In: GLSVLSI, pp. 43–48 (2006)
17. Große, D., Le, H.M., Drechsler, R.: Proving transaction and system-level properties of untimed

SystemC TLM designs. In: MEMOCODE, pp. 113–122 (2010)
18. Habibi, A., Tahar, S.: Assertion and model checking of SystemC. In: North American SystemC

Users Group Meeting, San Diego, California, USA (2004)
19. Haedicke, F., Le, H.M., Große, D., Drechsler, R.: CRAVE: an advanced constrained random

verification environment for SystemC. In: SoC, pp. 1–7 (2012)
20. Hassan, M., Große, D., Drechsler, R.: Enhanced Virtual Prototyping for Heterogeneous

Systems. Springer, Berlin (2022)
21. Hassan, M., Große, D., Le, H.M., Drechsler, R.: Data flow testing for SystemC-AMS timed

data flow models. In: DATE, pp. 366–371 (2019)

https://www.analog.com/en/products/adt7420.html
https://www.analog.com/en/products/adt7420.html
https://www.analog.com/en/products/adt7420.html
https://www.analog.com/en/products/adt7420.html
https://www.analog.com/en/products/adt7420.html
https://www.analog.com/en/products/adt7420.html
https://www.analog.com/en/products/adt7420.html
https://www.analog.com/en/products/adt7420.html
https://developer.arm.com/documentation/100965/1117/
https://developer.arm.com/documentation/100965/1117/
https://developer.arm.com/documentation/100965/1117/
https://developer.arm.com/documentation/100965/1117/
https://developer.arm.com/documentation/100965/1117/
https://developer.arm.com/documentation/100965/1117/
https://developer.arm.com/documentation/100965/1117/
http://www.edastds.org/sv/
http://www.edastds.org/sv/
http://www.edastds.org/sv/
http://www.edastds.org/sv/
http://www.edastds.org/sv/

80 M. Hassan et al.

22. Hassan, M., Große, D., Vörtler, T., Einwich, K., Drechsler, R.: Functional coverage-driven
characterization of RF amplifiers. In: FDL, pp. 1–8 (2019)

23. Herdt, V., Große, D., Drechsler, R.: Enhanced Virtual Prototyping: Featuring RISC-V Case
Studies. Springer, Berlin (2020)

24. Herdt, V., Große, D., Le, H.M., Drechsler, R.: Early concolic testing of embedded binaries with
virtual prototypes: a RISC-V case study. In: DAC, pp. 188:1–188:6 (2019)

25. Herdt, V., Le, H.M., Große, D., Drechsler, R.: Verifying SystemC using intermediate verifica-
tion language and stateful symbolic simulation. TCAD 38(7), 1359–1372 (2019)

26. Huang, B.Y., Ray, S., Gupta, A., Fung, J.M., Malik, S.: Formal security verification of
concurrent firmware in SoCs using instruction-level abstraction for hardware. In: DAC, pp. 1–6
(2018)

27. IEEE Std. 1666: IEEE Standard SystemC LRM (2011)
28. IEEE Std. 1850: IEEE Standard for Property Specification Language (PSL) (2005)
29. Karlsson, D., Eles, P., Peng, Z.: Formal verification of SystemC designs using a petri-net based

representation. In: DATE, pp. 1228–1233 (2006)
30. Kropf, T.: Introduction to Formal Hardware Verification. Springer, Berlin (1999)
31. Lämmermann, S., Ruf, J., Kropf, T., Rosenstiel, W., Viehl, A., Jesser, A., Hedrich, L.: Towards

assertion-based verification of heterogeneous system designs. In: DATE, pp. 1171–1176 (2010)
32. Lämmermann, S., Weiss, R., Ruf, J., Kropf, T., Rosenstiel, W., Jesser, A., Hedrich, L.: An

assertion-based verification methodology for SystemC-AMS designs. In: The 15th Workshop
on Synthesis And System Integration of Mixed Information Technologies, pp. 434–439 (2009)

33. Lora, M., Vinco, S., Fraccaroli, E., Quaglia, D., Fummi, F.: Analog models manipulation for
effective integration in smart system virtual platforms. TCAD 37(2), 378–391 (2018)

34. Ma, K., Van Leuken, R., Vidojkovic, M., Romme, J., Rampu, S., Pflug, H., Huang, L.,
Dolmans, G.: A precise and high speed charge-pump PLL model based on systemC/systemC-
AMS. Int. J. Electron. Telecommun. 58, 225–232 (2012)

35. Maler, O., Ničković, D.: Monitoring properties of analog and mixed-signal circuits. Interna-
tional J. Softw. Tools Technol. Transf. 15(3), 247–268 (2013)

36. Mehta, A.B.: System Verilog Assertions and Functional Coverage: Guide to Language,
Methodology and Applications. Springer, Berlin (2019)

37. Mukherjee, R., Purandare, M., Polig, R., Kroening, D.: Formal techniques for effective co-
verification of hardware/software co-designs. In: DAC, pp. 1–6 (2017)

38. Nguyen, M.D., Wedler, M., Stoffel, D., Kunz, W.: Formal hardware/software co-verification
by interval property checking with abstraction. In: Proceedings of the 48th Design Automation
Conference, pp. 510–515 (2011)

39. Ničković, D., Lebeltel, O., Maler, O., Ferrère, T., Ulus, D.: Amt 2.0: qualitative and quantitative
trace analysis with extended signal temporal logic. Int. J. Softw. Tools Technol. Transf. 22(6),
741–758 (2020)

40. Niemann, B., Haubelt, C., et al.: Assertion-based verification of transaction level models. In:
MBMV, pp. 232–236. Citeseer (2006)

41. Pêcheux, F., Grimm, C., Maehne, T., Barnasconi, M., Einwich, K.: SystemC AMS based
frameworks for virtual prototyping of heterogeneous systems. In: ISCAS, pp. 1–4 (2018)

42. Radojicic, C., Grimm, C., Schupfer, F., Rathmair, M.: Verification of mixed-signal systems
with affine arithmetic assertions. VLSI Design (2013)

43. Steinhorst, S., Hedrich, L.: Model checking of analog systems using an analog specification
language. In: DATE, pp. 324–329 (2008)

44. Tabakov, D., Vardi, M.: Monitoring temporal SystemC properties. In: MEMOCODE, pp. 123–
132 (2010)

45. Tabakov, D., Vardi, M., Kamhi, G., Singerman, E.: A temporal language for SystemC. In:
FMCAD, pp. 1–9 (2008)

46. Vardi, M.Y.: Formal techniques for SystemC verification. In: DAC, pp. 188–192 (2007)
47. Vörtler, T., Einwich, K., Hassan, M., Große, D.: Using constraints for SystemC AMS design

and verification. In: DVCon Europe (2018)

Toward System-Level Assertions for Heterogeneous Systems 81

48. Weiss, R.J., Ruf, J., Kropf, T., Rosenstiel, W.: Efficient and customizable integration of
temporal properties into SystemC. In: Applications of Specification and Design Languages
for SoCs, pp. 101–114. Springer, Berlin (2006)

49. Xie, F., Liu, H.: Unified property specification for hardware/software co-verification. In: 31st
Annual International Computer Software and Applications Conference (COMPSAC 2007),
vol. 1, pp. 483–490. IEEE (2007)

50. Yuan, J., Pixley, C., Aziz, A.: Constraint-Based Verification. Springer, Berlin (2006)
51. Zivkovic, C., Grimm, C., Olbrich, M., Scharf, O., Barke, E.: Hierarchical verification of AMS

systems with affine arithmetic decision diagrams. TCAD 38(10), 1785–1798 (2019)

SAT-Based Key Determination Attack for
Improving the Quality Assessment of
Logic Locking Mechanisms

Marcel Merten, Mohammed E. Djeridane, Sebastian Huhn,
and Rolf Drechsler

1 Introduction

Nowadays, designers can benefit from access to advanced technology nodes without
having the large capital expenditure of operating their own semiconductor foundries.
This is thanks to the distributed manufacturing of the integrated circuits (ICs).
However, such a distribution also yields a growing threat of compromising the
integrity of once trusted IC processes by unauthorized or untrusted users [1]. During
the last decade, complementary metal-oxide-semiconductor (CMOS)-based protec-
tion mechanisms have been the dominant technology for implementing various
protection measures. However, the layout-level obfuscation by using CMOS-based
camouflaging causes a significant overhead with respect to the resulting power
consumption and the required area [2].

Recent research works like [1, 3, 4] have been focusing on achieving high
protection while still preserving low overhead by utilizing reconfigurable silicon
nanowire field-effect transistor-based polymorphic logic gates [1]. In [1], an
algorithm is proposed that replaces gates impacting the original functional behavior
of the circuit by reconfigurable polymorphic logic gates. Afterward, the quality
of the resulting logic locking functionality is assessed by a metric based on the
Hamming distance (HD) of the outputs over randomly applied stimuli and keys.
The result is considered optimal if the HD is 50% of the maximal HD. The formal

M. Merten (�) · M. E. Djeridane
University of Bremen, Bremen, Germany
e-mail: mar_mer@informatik.uni-bremen.de; mar_mer@uni-bremen.de;
djeridam@informatik.uni-bremen.de

S. Huhn · R. Drechsler
University of Bremen, Bremen, Germany

Cyber-Physical Systems, DFKI GmbH, Bremen, Germany
e-mail: huhn@informatik.uni-bremen.de; drechsle@informatik.uni-bremen.de

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. Drechsler, S. Huhn (eds.), Advanced Boolean Techniques,
https://doi.org/10.1007/978-3-031-28916-3_6

83

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-28916-3protect T1	extunderscore 6&domain=pdf

 885 50314
a 885 50314 a

mailto:mar_mer@informatik.uni-bremen.de
mailto:mar_mer@informatik.uni-bremen.de
mailto:mar_mer@informatik.uni-bremen.de
mailto:mar_mer@informatik.uni-bremen.de

 15369 50314 a 15369 50314 a

mailto:mar_mer@uni-bremen.de
mailto:mar_mer@uni-bremen.de
mailto:mar_mer@uni-bremen.de

 -2016 51421 a -2016 51421 a

mailto:djeridam@informatik.uni-bremen.de
mailto:djeridam@informatik.uni-bremen.de
mailto:djeridam@informatik.uni-bremen.de
mailto:djeridam@informatik.uni-bremen.de

 885 56845 a 885 56845
a

mailto:huhn@informatik.uni-bremen.de
mailto:huhn@informatik.uni-bremen.de
mailto:huhn@informatik.uni-bremen.de
mailto:huhn@informatik.uni-bremen.de

 13855
56845 a 13855 56845 a

mailto:drechsle@informatik.uni-bremen.de
mailto:drechsle@informatik.uni-bremen.de
mailto:drechsle@informatik.uni-bremen.de
mailto:drechsle@informatik.uni-bremen.de
https://doi.org/10.1007/978-3-031-28916-3_6
https://doi.org/10.1007/978-3-031-28916-3_6
https://doi.org/10.1007/978-3-031-28916-3_6
https://doi.org/10.1007/978-3-031-28916-3_6
https://doi.org/10.1007/978-3-031-28916-3_6
https://doi.org/10.1007/978-3-031-28916-3_6
https://doi.org/10.1007/978-3-031-28916-3_6
https://doi.org/10.1007/978-3-031-28916-3_6
https://doi.org/10.1007/978-3-031-28916-3_6
https://doi.org/10.1007/978-3-031-28916-3_6
https://doi.org/10.1007/978-3-031-28916-3_6

84 M. Merten et al.

approach proposed in [5] shows the limitations of simulation-based approaches,
unveiling further weaknesses in the protection mechanisms. In [5], a limited number
of corrupting keys are calculated, which later be assessed. Thereby, a corrupting key
is defined as a key that behaves equivalent to the correct key when considering at
least one stimulus.

This work proposes a novel technique to determine corrupting keys, forming the
most critical security breaches. More precisely, a framework is designed to calculate
the most intimidating corrupting keys based on the concept of a SAT-based attack.
In contrast to other techniques, the proposed approach calculates the corrupting keys
based on distinguishing input patterns (DIPs), maximizing the number of equivalent
behaving stimuli. This improves the quality of the assessment of potential security
threats using logic locking mechanisms.

Various experiments have been conducted on the ITC’99 benchmark set. The
results prove that the improved key calculation unveils weaknesses in the protection
structures that remain undetected when using current approaches. The proposed
technique utilizes the concept of a SAT-based attack to provide a metric for
evaluating the threat of a specific corrupting key. In conclusion, the proposed
approach allows a more accurate evaluation of the security of a logic locked circuit.

The remainder of this work is structured as follows: Sect. 2 briefly introduces the
preliminaries of this work. Section 3 describes the proposed key determination pro-
cedure in detail. Finally, Sect. 4 presents the experimental evaluation. A conclusion
and an outlook on future work are given in Sect. 5.

2 Preliminaries

Within the last decade, a lot of research has been spent on enhancing electronic
systems, while the classical CMOS technology has exceeded its physical limits.
Research in the field of reconfigurable technologies has gained a lot of interest
since it has a great potential to realize even more complex systems. This emerging
technology is a promising candidate for overcoming the constraints of Moore’s law
by employing polymorphic logic gates.

2.1 Reconfigurable Field-Effect Transistors

Different concepts have been proposed on realizing a device-level reconfiguration
capability like RFETs. An RFET introduces a control gate that can be configured
between an n-channel and p-channel behavior [2]. The reconfiguration capabilities
of this new emerging technology can be used to implement new protection
mechanisms, e.g., an on-chip key storage by the polymorphic logic behavior [2].
Furthermore, the RFET technology is promising to introduce effective protection
mechanisms against optical reverse-engineering attacks.

SAT-Based Key Determination Attack for Improving the Quality Assessment. . . 85

A popular approach to prevent reverse engineering, even given the entire layout,
is adding logic locking mechanisms to the circuit. The correct functional behavior
of a circuit C is defined in Definition 1.

Definition 1 Given a circuit C, a set of appliable stimuli . S, a set of reachable states
. F , and a set of possible outputs . P , the function .C : S × F → P defines the
intended functional behavior of C. In particular, .C(s, ψ) describes the functional
behavior .∀C, s ∈ S, ψ ∈ F , with .s ∈ S be a stimulus and .ψ ∈ F be an internal
state.

Logic locking encrypts the correct functional behavior by encrypting the circuit C
using a secret key . kc. The functional behavior of a logic locked circuit is defined in
Definition 2.

Definition 2 The functional behavior of a logic locked circuit C is defined given a
stimulus .s ∈ S , an internal state .ψ ∈ F , and a key .k ∈ K. Applying the secret key
. kc yields the correct functional behavior .C(s, ψ, kc) = C(s, ψ).

CMOS-based approaches usually introduce XOR/XNOR key gates [6–8] or MUX
gates [9–12] to obfuscate the correct functional behavior of the circuit, resulting in
a huge overhead regarding the area and power consumption [1]. Figure 1 gives a
basic example of an XOR gate inverting the behavior of the preceding logic when
an incorrect key is applied. In the example, the locked output has the functionality
of a NAND gate instead of the intended AND gate behavior.

Polymorphic logic gates like RFETs realize multiple functionalities in the same
cell and, hence, are an effective way to implement a logic locking mechanism. The
intended functionality is chosen by configuring a control signal. To insert key gates
without the high-performance overhead of CMOS- based techniques, polymorphic
logic gates can replace gates of the original circuit, meaning gates with a high impact
on the primary outputs are replaced [1]. Various functionalities can be implemented
by RFET-based cells like the NAND/NOR- or the XOR/XNOR-RFET. An example
of the RFET visualized in Fig. 2 can be configured as an XOR or XNOR gate,
depending on the control signal serving as a key bit.

2.2 Boolean Satisfiability Problem

The Boolean satisfiability (SAT) problem is one of the first proven NP-hard prob-
lems [13]. However, a lot of research on SAT-solving techniques has significantly

Fig. 1 Simple CMOS-based
logic locking example a

key
b locked

function

intended
function

86 M. Merten et al.

XOR/XNOR-
RFET

a
b

key
out

XNOR

a b key out

XOR

a b key out

0 0 0 0

0 1 0 1

1 0 0 1

1 1 0 0

0 0 1 1

0 1 1 0

1 0 1 0

1 1 1 1

Fig. 2 XOR/XNOR-RFET

increased the effectiveness of SAT solvers over the years. For example, Dynamic
Clause Activation (DCA) allows to activate or deactivate a CNF . Φ with an activation
literal a in an extended .Φa = Φ + a. To satisfy . Φa , . Φ only has to be satisfied if
.a = 0. Therefore, . Φ can be deactivated by setting .a = 1. The application of DCA
in SAT can result in significant speedup [14].

Moreover, some modern SAT solvers are extended to solve pseudo-Boolean (PB)
logic. PB allows defining inequalities in clauses. Furthermore, weights can be
assigned to specific literals or clauses that are not required to be true in a satisfiable
solution. Pseudo-Boolean optimization (PBO) can be used to determine a solution
maximizing or minimizing the weights of a PB instance. The optimization is
performed utilizing an objective function . Θ . The function . Θ is usually defined as
a maximization or minimization of a sum of weighted literals. These PBO-based
optimization techniques have been heavily orchestrated in various domains like IC
testing [15].

2.3 SAT-Based Attacks

While camouflaging and logic obfuscation try to protect intellectual property from
malicious misuse, attackers constantly work on techniques to remove or unlock
such protection mechanisms. A popular attacking algorithm is the SAT attack first
proposed in [16]. The idea of the SAT-based attack is to use SAT to unlock the
circuit by determining the correct key . kc or an equivalent behaving key. First, a
miter structure of two instances of the logic locked circuit is created. By solving the
miter instance, a pair of keys .(k1, k2) and a DIP D is calculated for the primary

SAT-Based Key Determination Attack for Improving the Quality Assessment. . . 87

k2

PIs (D’)

Calculated by
SAT solver

k1

D

Miter

MiterD

D

C(D)

MiterD

C(D)

D

Fig. 3 Basic concept of a SAT-based attack

inputs (PIs). The DIP D is an input pattern, which results in a differing output
behavior using . k1 and . k2, meaning that at least one of the output behaviors of the two
compared keys is incorrect. Next, an unlocked product C of the chip is used to get
the correct output behavior .C(D) for the D. Before the next DIP . D′ is calculated,
the key space of . k1 and . k2 is constrained to satisfy the correct output behavior . C(D)

for the previously calculated DIP D. This is done by adding a SAT-instance . ΦD

consisting of two inverted miters. Each inverted miter forces equivalence between
the logic locked circuit using .keyX and the oracle output .C(D) on the stimuli D.
The basic principle of the SAT-based attack is illustrated in Fig. 3.

2.4 Quality Assessment of RFET-Based Logic Locking
Mechanisms Using Formal Methods

This section describes the SAT-based quality assessment approach proposed in [5].
The assessment framework analyzes a circuit under assessment (CuA) using (RFET-
based) logic locking mechanisms. First, corrupting keys—incorrect keys that result
in correct functional behavior given at least one stimulus—are collected for a later
assessment. A formal definition of a corrupting key . kf is given in Definition 3.

88 M. Merten et al.

CuA -
Corrupted

clock cycle 1

CuA - Healthy
clock cycle 1

PPIs /
PPOs

CuA -
Corrupted

clock cycle 2

CuA - Healthy
clock cycle 2

CuA - Healthy
clock cycle n

CuA -
Corrupted

clock cycle n

Corrupting
key

PIs

cycle 2 Calculated by
SAT solver

(PPIs = 0)

(PPIs = 0)

Correct key CuA

Corrupting key CuA

yCorrect
key

PPIs /
PPOs

Fig. 4 Abstract model of the miter structure

Definition 3 Given a logic locked circuit C, a stimulus .s ∈ S, and an internal state
.ψ ∈ F , a key .kf ∈ K is a corrupting key, iff .kf �= kc and . ∃s, C(s, ψ, kc) =
C(s, ψ, kf).

Therefore, a miter circuit is created from the CuA considering the correct key . kc—
yielding the SAT instance . Φkc—and any incorrect key . ̂K yielding . Φ

̂K. The basic
principle of this construction is given in Fig. 4. The CuA is unrolled for N clock
cycles to consider sequential elements. The FFs are modeled as pseudo primary
inputs (PPIs), initialized with 0.

The entire model is stored as one SAT instance .Φcomp and processed by a
state-of-the-art SAT solver. The inverted miter compares the unrolled .Φkc with the
unrolled . Φ

̂K, i.e., considering any incorrect key .ki �= kc, ki ∈ ̂K. In particular, both
states—defined by the stored FFs’ values—and the primary output values can be
compared for all N observed clock cycles. If a satisfiable solution is determined,
i.e., a corrupting key . kf has been detected, this circumstance results in a functional
equivalent of the CuA given at least one stimulus.

Next, the calculated security threat is assessed. More precisely, every determined
corrupting key . kf is evaluated against possible stimuli leading to functional
equivalence to the correct key . kc. More precisely, the individual corrupting key is
enforced in .Φ

̂K by additional clauses. The key detection procedure—including the
security threat evaluation regarding the discovered corrupting key—is repeated until
.Φcomp is unsatisfiable or a user-defined limit has been exceeded.

3 SAT-Based Key Determination Attack

This section describes the approximative determination of the most intimidating key
to improve the quality assessment of a CuA using logic locking mechanisms. The
key determination procedure is divided into two parts. First, an adapted SAT-based
attack is applied to collect constraints for the keys. In the second step, DCA methods
are combined with the constraints to calculate a key, which forms a maximal threat
to the logic locking mechanism.

SAT-Based Key Determination Attack for Improving the Quality Assessment. . . 89

To collect the constraints narrowing the key space, a miter SAT instance . ΦDIP

is generated to calculate DIPs. Subsequently, the miter structure is constructed from
the CuA while considering the a priori known correct key . kc yielding the SAT
instance .Φkc and any incorrect key in . ̂K yielding . Φ

̂K. The FFs are modeled as
pseudo primary inputs (PPIs) in cycle .n+ 1 and are connected to the corresponding
pseudo primary outputs (PPOs) of the previous cycle n. Furthermore, similar to
the SAT-based approach, the primary inputs use the same stimuli for both unrolled
instances (of the CuA) and are kept constant during the unrolling. Contrary to the
SAT-based assessment framework, in the attack framework, a miter is constructed
to detect functional inequivalence. After the miter has been added, the key is
constrained for both instances of the unrolled CuA. For . Φkc , the correct key . kc

is set by adding clauses implying . kc, whereby .Φ̂K is extended by a conflict clause
excluding . kc. The entire model is stored as one SAT instance .ΦDIP and processed
by a state-of-the-art SAT solver.

Like in the SAT-based assessment framework, the CuA is unrolled for N clock
cycles since for the assessment of sequential circuits, sequential elements—meaning
flip-flops (FFs)—have to be considered [17]. Here, the value N has to be adjusted
for the CuA characteristics. The number of clock cycles required to achieve the
relaxation given a stimuli of the circuit varies depending on the circuit. Similar to
the approach proposed in [5], 0 is assumed as the initialization value for all FFs in
cycle .n = 1.

Next, a DIP .D ∈ D is calculated, distinguishing the behavior of an arbitrary
key from . kc. Similar to a SAT-based attack, a constraint is modeled as instance . ΦD

of the circuit that forces the equivalence to the correct key on this specific DIP.
Only one inverted miter instance is required since the correct key . kc is given. Next,
a new .D′ ∈ D can be calculated. Like in a SAT-based attack, this procedure is
repeated to narrow the search space for the keys until every remaining key results in
a functional equivalent behavior (as yielded when the correct key is being applied).
The algorithm terminates after the calculation of all constraints .ΦX,X ∈ D,
meaning that .ΦD,ΦD′ , ΦD′′ , ... constrain the corrupting key to fully unlock the
circuits. The basic principle of this adapted SAT-based attack is visualized in Fig. 5.

Afterward, DCA is used to add a new activation variable .a ∈ A for . ΦD , such that
.ΦDa = ΦD +a. Next, .ΦDa is added to the final key determination problem instance
.ΦKD , so that .Φkd = Φkd ∗ ΦDa . By assuming .a = 0, .ΦDa = ΦD and, hence
equivalence to the correct key on this specific DIP is forced. Now, the next DIP . D′
can be calculated. In Fig. 6 a complete key determination instance .∀D,D′ ∈ D, and
.∀a, a′ ∈ A is illustrated.

Once .ΦKD is complete, containing all the activatable .ΦDa , the most intimidating
key is determined. First, the weight .w(a) = −1 is assigned for every activation sig-
nal .a ∈ A. PBO-solving techniques are utilized to determine the most intimidating
key. In particular, an objective function . θ , defined in Eq. 1, is used to maximize
the number of activated instances . ΦD . Therefore, the PBO solver increases the
functional equivalence to the correct behavior on the calculated DIPs:

90 M. Merten et al.

Corrupting
key

PIs (D’)

Calculated by
SAT solver

(PPIs = 0)

(PPIs = 0)

Correct
key

D

DIP

MiterD

D

Fig. 5 Adapted SAT-based attack to collect constraints for the key space

Corrupting
key

Calculated by
SAT solver

Da

D’a’

a

a’

KD

Fig. 6 Complete key determination instance including all activatable key-space constraints

.θ = max

(

∑

a∈A

(w(a))

)

(1)

A corrupting key is calculated by solving the problem instance .ΦKD ∗ θ that
satisfies the functional equivalence to . kc on the maximum number of DIPs. The
DIPs of a SAT attack are iteratively narrowing the search space of the keys to find
a key that unlocks the circuit. Therefore, a key is considered a most intimidating
corrupting key that satisfies the maximum number of constraints as given by the
DIPs.Consequently, .ΦKD ∗ θ is solved for a predefined number of keys, which will
be assessed afterward.

The assessment of the detected keys can be performed with an arbitrary
assessment technique, for example, the HD approach or the approach proposed
in [5].

SAT-Based Key Determination Attack for Improving the Quality Assessment. . . 91

4 Experimental Evaluation

This section describes the experimental evaluation of the proposed technique to
determine corrupting keys during the quality assessment of logic locking mech-
anisms. The experiments compare the novel approach with the determination of
corrupting keys proposed in [5], which are used as the baseline. For the assessment
of the detected keys, the assessment framework defined in [5] is used for both key
determination approaches.

All experiments have been executed on an AMD 4750U processor with 32GB
system memory. All implementations are solely in C. ++. For the evaluation,
different benchmark circuits of the ITC’99 benchmark suite are considered. For each
of these circuits, 15 of the NOR, NAND, XOR, and XNOR gates have been randomly
replaced by RFETs, while the functional behavior is retained if the correct key is
applied. Experimental evaluations have shown that 15 RFETs can be considered a
sufficient number of key gates to create logic locking structures with weaknesses
that are nontrivial to analyze and, hence, hard to detect. Consequently, each circuit
has 15 control signals resulting in .215 = 32,768 possible keys. Similar to the results
in [5], the 1024 most intimidating keys are assessed on both the proposed and
the baseline approaches. Furthermore, up to 1024 stimuli with functionally correct
behaving primary outputs (POs) (per corrupting key . kf) are captured.

The FFs of the CuA are initialized with 0, and the stimuli are kept constant over
all five clock cycles. Each circuit has been unrolled for five clock cycles since it has
been proven as an appropriate parameter to cover the functional behavior’s majority
of the considered benchmark circuits [18].

Table 1 shows the detailed results of the two approaches for determining
the corrupting keys. It illustrates the number of detected corrupting keys, their
minimum, the average and maximum number of corrupted stimuli for the novel
SAT-based key determination approach, and the baseline approach proposed in [5].
Furthermore, the number of calculated DIPs for the SAT-attack-based approach is
shown.

For the b05, b07, b08, b09, b12, b14, and b15, the results are equivalent regarding
the number of detected corrupting keys and corrupted stimuli. However, in the case
of the b05, the proposed approach shows that no DIP can be calculated, meaning all
32,768 keys are behaving equivalent. This provides additional information about the
poor quality of the underlying logic locking mechanism. Considering the circuits,
b06, b10, b11, and b13, the novel approach shows that there are more critical
corrupting keys than those ones as detected by the baseline approach. In fact, the
baseline key collection algorithm can lead to a major misjudgment of the quality of
a logic locking mechanism.

Figure 7 presents the number of activated constraints for the corrupting keys
when using the SAT-based key determination technique. The diagram shares further
information about the actual equivalence of the corrupting keys to the correct
behavior. For example, in the case of the b17, 7 corrupting keys are able to fully
unlock the circuit, while 80 corrupting keys can satisfy 2 constraints and 712
corrupting keys are able to satisfy 1 constraint. In the case of the b10, all 1024

92 M. Merten et al.

Table 1 Results—15 key bits

SAT-attack-based approach Baseline approach [5]

#stimuli #stimuli

Circuit DIPs #{. kc} Minimum Average Maximum #{. kc} Minimum Average Maximum

b05 0 – – – – 1024 2 2 2

b06 2 1024 4 4 4 1024 2 3 4

b07 1 3 2 2 2 3 2 2 2

b08 2 63 256 256 256 63 256 256 256

b09 1 1 2 2 2 1 2 2 2

b10 2 1024 1024 1024 1024 1024 256 256 512

b11 1 1024 128 128 128 1024 126 126 128

b12 1 1024 32 32 32 1024 32 32 32

b13 1 1024 1024 1024 1024 1024 512 768 1024

b14 2 1024 1024 1024 1024 1024 1024 1024 1024

b15 2 1024 1024 1024 1024 1024 1024 1024 1024

b17 3 1024 1024 1024 1024 1024 1024 1024 1024

b20 1 0 0 0 0 0 0 0 0

b21 1 0 0 0 0 0 0 0 0

b22 1 0 0 0 0 0 0 0 0

Corrupting keys

C
irc

ui
ts

b05
b06
b07
b08
b09
b10
b11
b12
b13
b14
b15
b17
b20
b21
b22

0 250 500 750 1000

All constraints (#DIPs) #DIPs - 1 #DIPs - 2 #DIPs - 3

Fig. 7 Number of DIPs with correct functional behavior for corrupting keys

assessed keys are able to satisfy the equivalent behavior to the correct key on both
calculated DIPs. Therefore, at least 1024 corrupting keys exist that fully unlock the
circuit’s functional behavior resulting in an unbearable security breach. On the other
hand, the results for the b14 and b15 show that no corrupting key fully unlocking
the circuit’s functional behavior exists.

SAT-Based Key Determination Attack for Improving the Quality Assessment. . . 93

This clearly shows that the novel approach outperforms other approaches of
determining the most intimidating corrupting keys, providing a more appropriate
quality assessment of logic locking mechanisms.

5 Conclusions

This paper presented a novel method of calculating the most intimidating cor-
rupting keys for logic locking mechanisms. In the end, the proposed technique
allows determining keys, which form an enormous security threat, by adapting
the conceptual structure of SAT-based attacks and enhancing the idea with PBO
techniques. The resulting metric ensures the detection of potential security breaches
and outperforms the existing key determination mechanisms. Future work will
investigate a sophisticated weight calculation for the activation signals to prefer
activating instances . ΦD , implying that the most equivalent functional behavior is
achieved.

Acknowledgments This work was financially supported by the German Federal Ministry of
Education and Research BMBF under the framework of VE-CirroStrato and the AI initiative of
the Free Hanseatic City of Bremen. We would like to thank Verific Design Automation Inc. for
providing the SystemVerilog frontend used for the implementation of our technique.

References

1. Alasad, Q., Yuan, J.-S., Bi, Y.: Logic locking using hybrid CMOS and emerging SiNW FETs.
Electronics 6(3), 69 (2017)

2. Rai, S., Srinivasa, S., Cadareanu, P., Yin, X., Hu, X.S., Gaillardon, P.-E., Narayanan, V.,
Kumar, A.: Emerging reconfigurable nanotechnologies: can they support future electronics?
In: IEEE/ACM International Conference on CAD, pp. 1–8 (2018)

3. Alasad, Q., Yuan, J.: Logic obfuscation against IC reverse engineering attacks using PLGs. In:
IEEE International Conference on Computer Design, pp. 341–344 (2017)

4. Alasad, Q., Yuan, J.-S., Subramanyan, P.: Strong logic obfuscation with low overhead against
IC reverse engineering attacks. IEEE Trans. CAD Integr. Circuits Syst. 25(4), 1–31 (2020)

5. Merten, M., Huhn, S., Drechsler, R.: Quality assessment of RFET-based logic locking
protection mechanisms using formal methods. In: IEEE European Test Conference (ETS), pp.
1–2 (2022)

6. Roy, J.A., Koushanfar, F., Markov, I.L.: EPIC: ending piracy of integrated circuits. In: Design,
Automation and Test in Europe, pp. 1069–1074 (2008)

7. Rajendran, J., Pino, Y., Sinanoglu, O., Karri, R.: Security analysis of logic obfuscation. In:
Design Automation Conference, pp. 83–89 (2012)

8. Rajendran, J., Zhang, H., Zhang, C., Rose, G.S. Pino, Y., Sinanoglu, O., Karri, R.: Fault
analysis-based logic encryption. IEEE Trans. Comput. 64(2), 410–424 (2015)

9. Alasad, Q., Bi, Y., Yuan, J.-S.: E2LEMI : energy-efficient logic encryption using multiplexer
insertion. Electronics 6, 1–16 (2017)

10. Wendt, J.B., Potkonjak, M.: Hardware obfuscation using PUF-based logic. In: IEEE/ACM
International Conference on CAD, pp. 270–271 (2014)

94 M. Merten et al.

11. Plaza, S.M., Markov, I.L.: Solving the third-shift problem in IC piracy with test-aware logic
locking. IEEE Trans. CAD Integr. Circuits Syst. 34(6), 961–971 (2015)

12. Lee, Y., Touba, N.: Improving logic obfuscation via logic cone analysis (2015)
13. Cook, S.A.: The complexity of theorem-proving procedures. In: Proceedings of the Third

Annual ACM Symposium on Theory of Computing, pp. 151–158. Association for Computing
Machinery (1971)

14. Eggersgluss, S., Drechsler, R.: Increasing robustness of SAT-based delay test generation using
efficient dynamic learning techniques. In: IEEE European Test Symposium, pp. 81–86 (2009)

15. Huhn, S., Eggersglüß, S., Chakrabarty, K., Drechsler, R.: Optimization of retargeting for IEEE
1149.1 TAP controllers with embedded compression. In: Design, Automation and Test in
Europe Conference and Exhibition, 2017, pp. 578–583 (2017)

16. Subramanyan, P., Ray, S., Malik, S.: Evaluating the security of logic encryption algorithms. In:
IEEE International Symposium on Hardware Oriented Security and Trust, pp. 137–143 (2015)

17. Arora, R., Hsiao, M.: Enhancing SAT-based bounded model checking using sequential logic
implications. In: International Conference on VLSI Design, pp. 784–787 (2004)

18. Finder, A., Sülflow, A., Fey, G.: Latency analysis for sequential circuits. In: IEEE European
Test Symposium, pp. 129–134 (2011)

Autosymmetric and D-reducible
Functions: Theory and Application to
Security

Anna Bernasconi, Valentina Ciriani, and Licia Monfrini

1 Introduction

The multiplicative complexity of a Boolean function f is defined as the minimum
number of AND gates that are necessary and sufficient to represent f with a circuit,
using the two-input Boolean operators AND and XOR, and the negation (NOT).
The basis {AND, XOR, NOT} is widely used to represent Boolean functions in
cryptographic applications [7, 8, 14–16], where the multiplicative complexity plays
a crucial role. In particular, the minimization of the number of AND gates is
important for high-level cryptography protocols such as zero-knowledge protocols
and secure two-party computation, where processing AND gates is more expensive
than processing XOR gates [1]. Moreover, the multiplicative complexity is an
indicator of the degree of vulnerability of the circuits, as a small number of
AND gates in an {AND, XOR, NOT} circuit indicate a high vulnerability to
algebraic attacks [8, 10, 16]. However, determining the multiplicative complexity
of a Boolean function f is a computationally intractable problem [8]. Therefore,
the minimization of the number of AND gates, in circuits composed by the gates
{AND, XOR, NOT}, is important in order to estimate the multiplicative complexity
of the function. For this purpose, Boolean functions can be represented exploiting
XOR-And Graphs (XAGs) [11, 14, 15], and the multiplicative complexity of an XAG
implementation of a Boolean function can be used to provide an upper bound for its
real multiplicative complexity.

A. Bernasconi
Dipartimento di Informatica, Università di Pisa, Pisa, Italy
e-mail: anna.bernasconi@unipi.it

V. Ciriani (�) · L. Monfrini
Dipartimento di Informatica, Università degli Studi di Milano, Milano, Italy
e-mail: valentina.ciriani@unimi.it; licia.monfrini@studenti.unimi.it

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. Drechsler, S. Huhn (eds.), Advanced Boolean Techniques,
https://doi.org/10.1007/978-3-031-28916-3_7

95

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-28916-3protect T1	extunderscore 7&domain=pdf

 885 52970 a 885 52970 a

mailto:anna.bernasconi@unipi.it
mailto:anna.bernasconi@unipi.it
mailto:anna.bernasconi@unipi.it

 885 56845 a 885 56845 a

mailto:valentina.ciriani@unimi.it
mailto:valentina.ciriani@unimi.it
mailto:valentina.ciriani@unimi.it

 11268 56845 a 11268 56845 a

mailto:licia.monfrini@studenti.unimi.it
mailto:licia.monfrini@studenti.unimi.it
mailto:licia.monfrini@studenti.unimi.it
mailto:licia.monfrini@studenti.unimi.it
https://doi.org/10.1007/978-3-031-28916-3_7
https://doi.org/10.1007/978-3-031-28916-3_7
https://doi.org/10.1007/978-3-031-28916-3_7
https://doi.org/10.1007/978-3-031-28916-3_7
https://doi.org/10.1007/978-3-031-28916-3_7
https://doi.org/10.1007/978-3-031-28916-3_7
https://doi.org/10.1007/978-3-031-28916-3_7
https://doi.org/10.1007/978-3-031-28916-3_7
https://doi.org/10.1007/978-3-031-28916-3_7
https://doi.org/10.1007/978-3-031-28916-3_7
https://doi.org/10.1007/978-3-031-28916-3_7

96 A. Bernasconi et al.

The “regularities” of Boolean functions are often exploited for deriving, in
shorter synthesis time, more compact circuits. In the literature, some structural
regularities of Boolean functions have been studied, i.e., autosymmetry [5, 6, 13]
and D-reducibility [4]. These regularities are based on the notion of affine spaces
and are easily expressed using XOR gates. Thus, both these structural regularities
can be exploited for decreasing the multiplicative complexity of an XAG, and to
better estimate the multiplicative complexity of the function. In the literature [3]
a study of the multiplicative complexity of autosymmetric functions and a study
of the multiplicative complexity of D-reducible functions are proposed. Moreover,
experimental results show that about the 9% of these regular functions are both
autosymmetric and D-reducible.

In this paper, we further investigate on regular functions that are both autosym-
metric and D-reducible. In particular, we give a formal characterization of com-
pletely specified autosymmetric and D-reducible functions. Moreover, we study the
case of non-completely specified functions. Finally, we discuss the multiplicative
complexity of functions that are both autosymmetric and D-reducible. The experi-
mental results show that, for functions that are both autosymmetric and D-reducible,
we get a better estimate of the multiplicative complexity in about 27% of the cases
with respect to exploiting autosymmetry or D-reducibility only, with an average
reduction of the number of ANDs of about 27%.

2 Preliminaries

In this section, we review the definitions and properties of autosymmetric and D-
reducible functions, and we introduce our running example. Finally, at the end
of the section, we give a very brief introduction to multiplicative complexity and
XOR-AND Graphs (XAGs). Hereafter, we will consider Boolean functions over n
variables (i.e., described in the Boolean space .{0, 1}n).

2.1 Autosymmetric Functions

In this section, we introduce a particular regularity, i.e., autosymmetry [5, 6, 13],
based on affine spaces.

Intuitively, a Boolean function f over n variables is k-autosymmetric if it can be
projected onto a smaller function . fk that depends on .n − k variables. The regularity
of a Boolean function f is then measured computing its autosymmetry degree k,
with .0 ≤ k ≤ n, where .k = 0 means no regularity. For .k ≥ 1 the Boolean function
f is said to be autosymmetric, and a new function . fk depending on .n − k variables
only, called the restriction of f , is identified. Moreover, an expression for f can
be simply built from . fk: .f (x1, x2, . . . , xn) = fk(y1, y2, . . . , yn−k), where . fk is
a Boolean function on .n − k variables .y1 = ⊕(X1), y2 = ⊕(X2), . . . , yn−k =

Autosymmetric and D-reducible Functions: Theory and Application to Security 97

⊕(Xn−k) and each .⊕(Xi) is a XOR whose input is a set of variables . Xi with . Xi ⊆
{x1, x2, . . . , xn}. Note that .⊕(Xi) can be a single variable, i.e., .Xi = {xj } and
.⊕(Xi) = xj . The autosymmetry test consists of finding the value of k, the restriction
. fk , and each single XOR with its input variables . Xi (reduction equations). Note that
a degenerate function, i.e., a function that does not depend on all the variables, is
autosymmetric. The computational time of the autosymmetry test is polynomial in
the size of the ROBDD representation of f [5].

The restriction . fk is “equivalent” to, but smaller than f , and has . |S(f)|/2k

minterms only, where .S(f) denotes the support of f , and thus .|S(f)| is the number
of minterms of f . Each point of . fk in .{0, 1}n−k corresponds to a set of . 2k points in
.{0, 1}n where f assumes the same value. The function f can be synthesized through
the synthesis of its restriction . fk . As the new .n− k variables are XOR combinations
of some of the original ones, the reconstruction of f from . fk can be obtained with an
additional logic level of XOR gates, whose inputs are the original variables, and the
outputs are the new .n− k variables given as inputs to a circuit for . fk . In general, the
restricted function . fk can be synthesized in any framework of logic minimization.
In this paper we derive an XAG representation of it.

We now recall some properties of autosymmetric functions and of their restric-
tions, which will be useful for the analysis of their multiplicative complexity. As
shown in [5, 6], any k-autosymmetric function f is associated with a k-dimensional
vector space . Lf , defined as the set of all minterms . α s.t. .f (x) = f (x ⊕ α) for
all .x ∈ {0, 1}n. Let .Lf be sorted in increasing binary order, with the vectors
indexed from 0 to .2k − 1. The set of vectors of . Lf with indices . 20, 21, . . . , 2k−1

is called the canonical basis . BL of . Lf . The k variables that are truly independent
onto . Lf are called canonical variables, while the other variables are called non-
canonical. Informally, the canonical variables are the ones that assume all the
possible combinations of .{0, 1} values in the vectors of the vector space . Lf ,
meanwhile the non-canonical variables are the variables that, on . Lf , have a constant
value or are a linear combination of the canonical ones.

The canonical variables can be easily computed from the canonical basis
.v1, . . . , vk , in the following way: for each . vi , let x be the variable corresponding
to the first 1-component from left of . vi . The variable x is a canonical variable.

Finally, the restriction . fk corresponds to the projection of f onto the subspace
.{0, 1}n−k where all the canonical variables assume value 0, while the reduction
equations correspond to the linear combinations that define each non-canonical
variable in terms of the canonical ones (see [5, 6] for more details).

Example 1 Given an arbitrary function f , the vector space .Lf provides the
essential information to compute the autosymmetry degree, the restriction . fk , and
the reduction equations of f . Consider, for instance, the completely specified
Boolean function .f (x1, . . . , x5) described by its minterms as follows: . f = {00001,
.00100, 00110, 01000, 01010, 01101, .10001, 10011, 10100, .11000, 11101, .11111}.
The function f can be represented by the Karnaugh map depicted in Fig. 1. The
“regularity” of the function is highlighted by the colors in the figure. The computa-
tion of the vector space . Lf and of the reduction equations is not straightforward; we

98 A. Bernasconi et al.

Fig. 1 Karnaugh map for the running example (function f), the colors highlight the autosymmetry
regularity

Fig. 2 Karnaugh map for the
reduced function . f2 of the
2-autosymmetric function
shown in Fig. 1

refer the reader to [5] for the complete algorithm. The vector space . Lf associated
with f is .Lf = {00000, 01100, 10101, 11001}. In fact, for any element .α ∈ Lf ,
we have that .f (x) = f (x ⊕ α) for all .x ∈ {0, 1}n. We have that .k = log2 |Lf | = 2;
thus, f is 2-autosymmetric. The canonical basis is .BV = {01100, 10101}. The
canonical variables are . x1 and . x2 (i.e., the variables that correspond to the first
ones from left in the two vectors of the canonical base). The remaining variables
. x3, . x4, and . x5 are non-canonical. The restriction . f2, depicted in Fig. 2, can be
computed starting from the subset of minterms .{00001, .00100, 00110} of f , where
all the canonical variables are equal to 0. In fact, if we project these points in the
space .{0, 1}3, corresponding to the non-canonical variables . x3, . x4, and . x5, we get
.f2(y1, y2, y3) = {001, 100, 110}. Finally, the reduction equations for reconstructing
the original function f are [5]: .y1 = x1 ⊕ x2 ⊕ x3; y2 = x4; y3 = x1 ⊕ x5.

Autosymmetric functions are just a subset of all Boolean functions. Indeed, while
the number of the Boolean functions of n variables is . 22n

, the number of autosym-
metric ones is .(2n − 1)22

n−1
[6]. Therefore, the set of autosymmetric functions is

much smaller than the one containing all the Boolean functions. Nevertheless, a
considerable amount of standard Boolean functions of practical interest falls in this
class. Indeed, about .24% of the functions in the classical ESPRESSO benchmark
suite [17] have at least one truly (i.e., nondegenerate) autosymmetric output [5, 6].
Thus, the interest on autosymmetric functions is motivated by (1) their compact (in

Autosymmetric and D-reducible Functions: Theory and Application to Security 99

terms of number of AND gates) representation, which consists of an XOR layer that
is the input to an XAG for the restriction, and (2) the frequency of autosymmetric
functions in the set of benchmark functions.

2.2 D-reducible Functions

In this section, we summarize the definitions and the major properties of dimension-
reducible Boolean functions, i.e., D-reducible functions. We recall that the Boolean
space .{0, 1}n is a vector space with respect to the exclusive sum . ⊕ and the
multiplication with the scalars 0 and 1. Moreover, an affine space is a vector space
or a translation of a vector space [4], more precisely: let V be vector subspace
of the Boolean vector space .({0, 1}n,⊕) and w be a point in .{0, 1}n, then the set
.A = w ⊕ V = {w ⊕ v | v ∈ V } is an affine space over V with translation point
w. The space V is called the vector space associated with A. Finally, a Boolean
function .f : {0, 1}n → {0, 1} is D-reducible if .f ⊆ A, where .A ⊂ {0, 1}n is an
affine space of dimension strictly smaller than n.

The minimal affine space A containing a D-reducible function f is unique, and
it is called the associated affine space of f . The function f can be represented as
.f = χA · fA, where .fA ⊆ {0, 1}dimA is the projection of f onto A and . χA is
the characteristic function of A. Observe that the smallest affine space contains the
whole on-set of a function f . Thus, this regularity is different from autosymmetry,
since the numbers of minterms of the original function f and of the projected
function . fA are equal to each other. Moreover, as shown in [9], an affine space can
be represented by a simple expression, consisting of an AND of XORs or literals. In
particular, an affine space of dimension .dimA can be represented by an expression
containing .(n − dimA) XOR factors.

The D-reducibility of a function f can be exploited in the minimization process.
The projection . fA is minimized instead of f . This approach requires two steps:
first, deriving the affine space A and the projection . fA and then minimizing . fA

in any logic framework (e.g., XAG). The D-reducibility test [4], which establishes
whether a function f is D-reducible, and the computation of A can be performed
efficiently exploiting the Gauss-Jordan elimination procedure [12], which is used to
find the on-set minterms of f that are linearly independent.

Example 2 Let us consider the running example, analyzed for autosymmetry, i.e.,
the function f shown in Fig. 3. The minimal affine space A containing all the
minterms the function f is highlighted by the color cyan in the figure. Thus, A is a
four-dimension affine space. The canonical basis of the vector space V associated
with A is .{00010, 00101, .01001, 10000}; its canonical variables are . x1, . x2, . x3,
and . x4, while . x5 is non-canonical. The representation, as an AND of XORs, of
A is .x2 ⊕ x3 ⊕ x5. Moreover, the projection of f onto the affine space A is
.fA . = .{0000, .0010, 0011, .0100, 0101, .0110, 1000, .1001, .1010, 1100, .1110, 1111}.
The projection . fA is represented in the Karnaugh map in Fig. 4.

100 A. Bernasconi et al.

Fig. 3 Karnaugh map for the D-reducible function f . The space A of f is highlighted

Fig. 4 Karnaugh map for the
projection . fA of the
D-reducible function f
shown in Fig. 3

2.3 Multiplicative Complexity and XOR-AND Graphs

The multiplicative complexity .M(f) of a Boolean function f is a complexity
measure defined as the number of AND gates, with fan-in 2, which are necessary
and sufficient to implement f with a circuit over the basis {AND, XOR, NOT}.
Moreover, the multiplicative complexity .MC(f) of a circuit C implementing a
Boolean function f over the basis {AND, XOR, NOT} is the actual number of
AND gates in C. Therefore, the multiplicative complexity of a circuit for f only
provides an upper bound for the multiplicative complexity of f , i.e., . M(f) ≤
MC(f). In this work, we consider Boolean functions represented in XOR-AND
graph (XAG) form [11, 14, 15], which are logic networks that contain only binary
XOR nodes, binary AND nodes, and inverters. In particular, we refer to the XAG
model described in [14], where regular and complemented edges are used to connect
the gates. Complemented edges indicate the inversion of the signals and replace
inverters in the network.

Autosymmetric and D-reducible Functions: Theory and Application to Security 101

3 Completely Specified Autosymmetric and D-reducible
Functions

A Boolean function f , which is D-reducible and autosymmetric at the same time,
can be decomposed in two different ways. The first possibility is to apply the D-
reducibility decomposition, and represent f as .f = χAfA, and then to apply the
autosymmetry reduction to . fA. The second possibility consists in decomposing the
function f applying the autosymmetry test and deriving the restriction . fk , and then
applying the D-reducibility decomposition to . fk . In this section, we prove that if
f is a completely specified function, these two strategies provide the same final
representation of the function f .

We first recall from [3] a theoretical result contained in the proof of a theorem,
used to prove our results. For this reason, we report it as a lemma, and we recall
here its proof.

Lemma 1 ([3]) Let f be an autosymmetric function with associated linear space
. Lf . Let f also be a D-reducible function contained in the affine space A. Then,
.Lf ⊆ V , where V is the vector space associated with A.

Proof First of all, we observe that the vector space . Lf is a subspace of the vector
space V associated with A. Let .α ∈ Lf , and let x be any on-set minterm of f . Then,
.f (x ⊕ α) = f (x) = 1, and therefore both x and .x ⊕ α ∈ A. This in turns implies
that .α ∈ (x ⊕ A), i.e., .α ∈ V , since .x ⊕ A = V for any .x ∈ A (we refer the reader
to [9] for more details on affine spaces and their properties). 	

Example 3 Let us consider the function f described in Figs. 1 and 3. In the previous
examples, we have shown that f is both autosymmetric and D-reducible. Example 1
shows that .Lf = {00000, 01100, 10101, 11001}, and from the Fig. 3 of Example 2,
we have that A . = .{00001, .00011, .00100, .00110, .01000, .01010, .01101, . 01111,
.10001, .10011, .10100, .10110, .11000, .11010, .11101, .11111}. The corresponding
vector space is computed as .V = v ⊕A where v is any vector contained in A. Thus,
if we pick .v = 00001 and computing .V = 00001 ⊕ A, we obtain: V . = . {00000,
.00010, .00101, .00111, .01001, .01011, .01100, .01110, .10000, .10010, .10101, . 10111,
.11001, .11011, .11100, .11110}. (Notice that we can use any v in A and we would
obtain the same associated vector V .) We can easily verify that .Lf ⊆ V .

Let k denote the dimension of . Lf and a be the dimension of the vector space V
associated with A. The dimension of an affine space A is defined as the dimension
of the corresponding vector space V .

Proposition 1 The dimension of . Lf is less or equal to the dimension of A, and the
canonical variables of V include all the canonical variables of . Lf .

Proof The first part of the proposition immediately follows from Lemma 1.
For the second part, observe that, since .Lf ∈ V , we can construct a basis for V

extending a basis for . Lf . Each vector in a basis for . Lf corresponds to a canonical
variable of . Lf , and consequently to a canonical variable of V . The remaining

102 A. Bernasconi et al.

.a − k canonical variables of V can be derived from the remaining .a − k linearly
independent vectors in the basis of V . 	

As a consequence, we have the following corollary.

Corollary 1 The .n − k non-canonical variables of .Lf include the .n − a non-
canonical variables of V .

Example 4 Let us consider the running example. Example 1 shows that the
canonical variables of . Lf are . x1 and . x2, and Example 2 shows that the canonical
variables of the vector space V associated with A are . x1, . x2, . x3, and . x4. In this
running example, we have that the function is k-autosymmetric with .k = 2 and that
.a = 4. Moreover, the non-canonical variables of . Lf are . x3, . x4, and . x5. The non-
canonical variable of the vector space V associated with A is . x5. We can verify that
the .n− k = 5−2 = 3 non-canonical variables of . Lf contain the . n−a = 5−4 = 1
non-canonical variable of V .

For completeness, we recall from [3] a theorem stating that if we first apply the
D-reducibility decomposition, we do not loose the autosymmetry property of the
function.

Theorem 1 ([3]) Let f be a completely specified k-autosymmetric Boolean func-
tion depending on n binary variables. If f is D-reducible with associate affine space
A, then the projection . fA of f onto A is k-autosymmetric.

In order to prove that the two decomposition strategies provide the same final
representation of f , we need to prove that the restriction . fk of an autosymmetric
function preserves the D-reducibility property, as shown in the following theorem.

Theorem 2 Let f be a D-reducible completely specified Boolean function
depending on n binary variables, and with associate affine space A. If f is k-
autosymmetric, then the restriction . fk of f is D-reducible with respect to the same
affine space A.

Proof First of all, we notice that the reduction . fk is the result of a projection of f
onto a .(n − k)-dimensional space, where each point of . fk in .{0, 1}n−k corresponds
to a set of . 2k points in .{0, 1}n where f assumes the same value (as reviewed in
Sect. 2.1).

We now show that . fk is D-reducible in .{0, 1}n−k , where it is described by the
variables . yi corresponding to the non-canonical variables of . Lf , and defined by the
reduction equations. Observe that the on-set minterms of . fk , and the corresponding
minterms in the original space .{0, 1}n, are obviously covered by A. Moreover, recall
that . fk is derived by f assigning value 0 to all the canonical variables of . Lf , and
renaming the non-canonical variables with .y1, . . . , yn−k . If we now assign value 0
to the occurrences of the k canonical variables of . Lf in . χA, and we rename the non-
canonical variables of . Lf as .y1, . . . , yn−k , we obtain the characteristic function of
an .a − k dimensional subspace . A′ of A that covers . fk in .{0, 1}n−k . Therefore, . fk is
D-reducible and can be studied in a subspace of dimension .a − k represented by a
product of .(n − k) − (a − k) = n − a EXOR factors, i.e.,

Autosymmetric and D-reducible Functions: Theory and Application to Security 103

. fk = χA′fkA′ ,

where .fkA′ depends on .a − k variables.
Replacing the variables .y1, . . . , yn−k in both . χA′ and .fkA′ with the corresponding

reduction equations, we derive a representation of f as

. f = χA fkA .

Observe that the affine space associated with f and . fk is the same. 	

In summary, we have shown how to decompose the function f with two different

strategies. If we first apply the D-reducibility decomposition, and then exploit the
autosymmetry property on . fA, we obtain .f = χAfAk . If, vice versa, we first exploit
the autosymmetry of f , and then we decompose the restriction . fk using the D-
reducibility property, we get .f = χAfkA. Observe that both functions .fAk and . fkA

depend on the same .a − k variables. Finally, we have the following theorem, which
immediately follows from Theorems 1 and 2, and from the fact that . f = χAfAk =
χAfkA.

Theorem 3 The two decompositions are equivalent, i.e., .fAk = fkA.

The following examples show the two possible strategies implemented on the
running example.

Example 5 (Autosymmetry—D-reducibility) Let us consider the running example.
Now, we first apply autosymmetry and then D-reducibility to the given function
f . Let us consider the function f described in Fig. 1. Example 1 shows that
f is 2-autosymmetric and it computes the restriction . f2 as the set of minterms
.f2(y1, y2, y3) = {001, 100, 110} in .{0, 1}3. We now compute the D-reducibility
decomposition of . f2. The Karnaugh map for . f2 is shown on the left side of
Fig. 5 where the affine space A, which entirely contains . f2, is highlighted in
cyan. The function . f2 can be projected in A obtaining the Boolean function
.f2A(y1, y2) = {00, 01, 11} depicted in the Karnaugh map on the right side of
Fig. 5. The characteristic function of A is .(y1 ⊕ y3). In order to simply describe our
example, we represent the function .f2A in SOP form (i.e., .f2A = (y2 + y1)). Recall
that .f2A can be represented in any form and that we will use the XAG representation

Fig. 5 Left side: Karnaugh map for .f2(y1, y2, y3). The space A of f is highlighted in cyan. Right
side: Karnaugh map for .f2A(y1, y2)

104 A. Bernasconi et al.

Fig. 6 Left side: Karnaugh map for the function .fA(x2, x3, x4, x5). Right side: Karnaugh map for
. fA2(y1, y2)

in the experimental section. In summary, we have that . f2(y1, y2, y3) = χA · f2A =
(y1 ⊕ y3)(y2 + y1). In order to reconstruct the original function f , we replace the
variables . y1, . y2, and . y3 with the corresponding reduction equations computed in
Example 1. We have . f (x1, . . . , x5) = [(x1 ⊕ x2 ⊕ x3) ⊕ (x1 ⊕ x5)] · [x4 + (x1 ⊕
x2 ⊕ x3)], which can be simplified. We finally obtain:

. f (x1, . . . , x5) = χA · f2A = (x2 ⊕ x3 ⊕ x5) · [x4 + (x1 ⊕ x2 ⊕ x3)] .

Example 6 (D-reducibility-Autosymmetry) Let us consider again the running exam-
ple. In this case, we first apply D-reducibility and then autosymmetry to the given
function f . Let us consider the function f described in Fig. 3. Example 2 shows
that f is D-reducible, and the projection .fA(x2, x3, x4, x5) is shown in Fig. 4:
.fA . = .{0000, .0010, .0011, .0100, .0101, .0110, .1000, .1001, .1010, .1100, .1110, .1111}.
We now compute the autosymmetry decomposition of . fA. The Karnaugh map for
. fA is depicted on the left side of Fig. 6. The projection . fA is autosymmetric, and
its associated vector space is .LfA

.= .{0000, .0110, .1010, .1100}. This space has
dimension .k = log2 |LfA

| = 2; thus, . fA in Fig. 6 is 2-autosymmetric. The
canonical basis is .{0110, 1010} and the canonical variables are . x1 and . x2. Thus,
the non-canonical variables are . x3 and . x4. We can now compute the restriction . fA2
using the subset .{0000, 0010, 0011} of the minterms of . fA that have the canonical
variables set to 0. If we project such minterms into the Boolean space .{0, 1}2 of the
variable . x3 and . x4, we obtain the function .fA2(y1, y2) = {00, 10, 11} depicted in
the Karnaugh map on the right-hand side of Fig. 6. The corresponding reduction
equations are: .y1 = x1 ⊕ x2 ⊕ x3; y2 = x4. A SOP form for the function
.fA2 is .SOP(fA2) = y2 + y1. Applying the reduction equations, we have that
.y2 + y1 = x4 + (x1 ⊕ x2 ⊕ x3). Recalling that the characteristic function of A
is .χA = (x2 ⊕ x3 ⊕ x5), we have:

.f (x1, . . . , x5) = χA · fA2 = (x2 ⊕ x3 ⊕ x5) · [x4 + (x1 ⊕ x2 ⊕ x3)] .

Autosymmetric and D-reducible Functions: Theory and Application to Security 105

We finally notice that this decomposition is identical to the one obtained with the
other strategy in the previous example.

4 Incompletely Specified Autosymmetric and D-reducible
Functions

In this section, we discuss the case where an incompletely specified Boolean
function f is D-reducible and autosymmetric at the same time.

The autosymmetry test of an incompletely specified Boolean function specifies
the don’t cares to a 0 or a 1, in order to obtain a completely specified function,
whose degree of autosymmetry is maximum [2]. Therefore, after the autosymmetry
test, the reduced function . fk is completely specified.

Meanwhile, the D-reducibility reduction of an incompletely specified Boolean
function f has the objective to find the smallest affine space A that contains the
minterms of f ; the points of A that are not minterms of f can be 0 or don’t
cares. Thus, the projected function . fA remains an incompletely specified Boolean
function. In any case, if we consider a function f that is both D-reducible and
autosymmetric, the resulting decomposed functions .fkA and .fAk are completely
specified, because of the autosymmetry test.

When the initial function is incompletely specified, the properties proved in
Sect. 3 do not hold. In this case, we have that the completely specified functions . fkA

and .fAk can be different. We show this through an example from the ESPRESSO

benchmark suite [17].

Example 7 Consider the function f that is the first output of the bench bench-
mark defined as follows: .f on

.= .{010001, .011010, .011110, .101001, .101110},
.f off

.= .{000110, .001000, .001001, .001010, .001110, .001111, .100010, . 100101,
.100110}; all the other points are in . f dc. If we first apply D-reducibility and then
autosymmetry, we obtain the Karnaugh maps shown in Fig. 7. On the left side

Fig. 7 Left-hand side: Karnaugh of the projection . fA for bench_0. Right-hand side: Karnaugh
map of the restriction .fA1 for bench_0

106 A. Bernasconi et al.

Fig. 8 Left-hand side:
Karnaugh map of the
restriction . f3 for bench_0.
Right-hand side: Karnaugh
map of the projection .f3A for
bench_0

of the figure, we have the Karnaugh map of the projection . fA, which is a 1-
autosymmetric function. Thus, on the right, we have the Karnaugh map of the
restriction . fA1. Notice that the Karnaugh map on the left contains don’t cares,
since the D-reducibility test does not specify the don’t care conditions. If we first
apply autosymmetry and then D-reducibility, we have the Karnaugh maps shown
in Fig. 8. The incompletely specified function f is 3-autosymmetric. Thus, on the
left of Fig. 8, we have the Karnaugh map of the restriction . f3. On the right side, we
have Karnaugh map of the projection . f3A. Notice that the Karnaugh map on the left
does not contain don’t cares, since the autosymmetry test specifies the don’t care
conditions in order to obtain the best degree of autosymmetry. From this example,
we can observe that the in presence of don’t care conditions, we can have two
different final results, on changing the test ordering.

Finally, considering the results obtained in Sects. 3 and 4, we can define the
following strategy:

• If the function is completely specified, we can use one of the two approaches
(actually, the experiments in Sect. 6 show that performing the D-reducibility and
then the autosymmetry seems to be the more efficient approach).

• If the function is incompletely specified, we should use both approaches and take
the best solution (the experimental results in Sect. 6 show that the running time
cost for performing both approaches is affordable).

5 Multiplicative Complexity

In this section we discuss the multiplicative complexity of a completely specified
autosymmetric and D-reducible function.

Since f is autosymmetric and D-reducible, we can upper bound its multiplicative
complexity by first projecting f onto A, and then by estimating the multiplicative
complexity of the restriction .fAk of . fA, as proved in [3], in the following way
.M(f) ≤ (n − dimA) + M(fAk).

Autosymmetric and D-reducible Functions: Theory and Application to Security 107

Alternatively, we can first compute the restriction . fk and then estimate the
multiplicative complexity of the projection .fk,A of . fk on the affine space A. Indeed,
we have that, since f is autosymmetric, the multiplicative complexity of f (i.e.,
.M(f)) is equal to the multiplicative complexity of . fk (i.e., .M(fk)). In fact, f can be
reconstruct from . fk just replacing the . yi with XORs of literals. Moreover, as proved
in [3] we have that, if f is D-reducible, then .M(f) ≤ (n−dimA)+M(fA). Recall
that we have proved in Sect. 3 that, if f is both autosymmetric and D-reducible,
also . fk is D-reducible. Therefore, we can say that .M(fk) ≤ (n−dimA)+M(fkA).
Since .M(f) = M(fk), we finally have that .M(f) ≤ (n − dimA) + M(fkA), as
expected.

6 Experimental Results

In this section, we report and discuss the experimental results reached applying both
the autosymmetry test and the D-reducible decomposition to Boolean functions in
the benchmarks from ESPRESSO, LGSynth’89 benchmark suite [17] and to some
functions from cryptography benchmarks in the context of multiparty computation
(MPC) and fully homomorphic encryption (FHE) [14, 15].

The experiments have been run on a Intel(R) Core(TM) i7-8565U 1.80GHz
processor with 8.00GB RAM, on Windows 11 for D-reducibility, and on a virtual
machine running OS Ubuntu 64-bit for autosymmetry.

Observe that autosymmetry and D-reducibility are properties of single outputs,
e.g., different outputs of the same benchmark can have different autosymmetry
degrees. Therefore, we perform the autosymmetry and D-reducibility tests on the
single outputs of the considered benchmark suites. We considered each output
as a separate Boolean function, and analyzed a total of 237 D-reducible and
autosymmetric (nondegenerate) functions. The given functions and their restrictions
or projections have been synthesized in XAG form using the heuristic approach
proposed in [14].

We conducted four tests each composed by the following overall strategy: (1)
regularity test (autosymmetry alone; or D-reducibility alone; or first autosymmetry
and then D-reducibility; or first D-reducibility and then autosymmetry); (2) XAG
construction on the projected/reduced function [14]; and (3) reconstruction of the
original function in XAG form (adding XORs from the reduction equations and/or
adding AND of XORs for the characteristic function of the affine space A).

We report in Table 1 a significant subset of functions as representative indicators
of our experiments. The first column reports the name and the number of the
considered output of each benchmark. The following triples of columns report the
multiplicative complexity of the XAG (AND) and the number of XORs (XOR) for
the case we are considering, obtained running the heuristic in [14], and the running
time in seconds. These triples describe the results for the following four different
strategies: autosymmetry alone, D-reducibility alone, first autosymmetry and then
D-reducibility (A. +D), and first D-reducibility and second autosymmetry (D. +A).

108 A. Bernasconi et al.

Ta
bl
e
1

R
es
ul
ts
 f
or
 f
un
ct
io
ns
 t
ha
t
ar
e
bo
th
 a
ut
os
ym

m
et
ri
c
an
d
D
-r
ed
uc
ib
le
.
B
en
ch
m
ar
ks
 w

ith
 “
*”
 a
re
 i
nc
om

pl
et
el
y
sp
ec
ifi
ed
.
T
he
 l
as
t
ro
w
 s
ho
w
s
th
e

av
er
ag
e
va
lu
es
 o
bt
ai
ne
d
fr
om

 a
ll
th
e
be
nc
hm

ar
ks
 c
on
si
de
re
d

A
ut
os
ym

m
et
ry
 [
3]

D
-r
ed
uc
ib
ili
ty
 [
3]

A
. +

D
D

. +
A

B
en
ch
m
ar
k_
ou
tp
ut

A
N
D

X
O
R

T
im

e
(s
)

A
N
D

X
O
R

T
im

e
(s
)

A
N
D

X
O
R

T
im

e
(s
)

A
N
D

X
O
R

T
im

e
(s
)

ap
la
_4
*

18
20

13
.4
5

15
17

2.
60

18
20

13
.7
6

9
5

1.
01

b1
0_
4*

15
10

11
.0
3

14
6

6.
64

15
6

6.
51

15
6

6.
58

be
nc
h_
0
*

2
0

0.
01

5
15

0.
33

2
0

0.
01

3
2

0.
01

cp
s_
74

17
4

9.
11

20
2

11
.5
2

16
2

6.
09

16
2

5.
72

dk
17
_3
*

5
3

0.
39

12
5

3.
19

4
9

0.
05

6
0

0.
01

du
ke
2_
12
*

28
5

15
.8
8

36
25

23
.0
7

23
19

11
.7
1

23
19

11
.4
7

ex
am

_4
*

22
20

13
.2
7

59
45

42
.2
8

22
20

13
.6
5

10
13

2.
95

ex
ep
_6
*

20
0

8.
13

16
0

0.
01

15
0

0.
16

16
0

0.
01

ex
p_
11
*

16
1

9.
21

6
8

0.
39

5
8

0.
46

5
1

0.
01

p1
_1
5*

20
26

6.
60

17
18

13
.5
5

18
12

5.
57

18
12

4.
99

p3
_7
*

32
30

22
.5
5

28
11

14
.0
4

32
30

24
.9
9

18
32

6.
58

pd
c_
3*

45
17

32
.5
0

21
3

65
10
5.
92

45
17

32
.7
0

36
23

20
.2
2

pd
c_
5*

21
21

14
.5
4

27
0

76
12
3.
40

19
25

8.
47

21
25

8.
55

sa
o2
_2
*

7
0

5.
83

27
9

11
.4
9

7
0

1.
66

7
0

1.
56

sp
la
_5
*

67
40

53
.5
3

14
2

55
92

.7
8

70
28

56
.7
0

70
28

52
.7
0

sp
la
_1
2*

64
17

43
.7
2

95
43

56
.8
9

59
24

37
.8
6

95
43

49
.2
5

t1
_2
2

5
0

1.
23

5
2

0.
15

5
0

0.
10

5
0

0.
08

t4
_3
*

11
6

2.
00

15
6

6.
91

12
1

5.
43

5
9

0.
19

x1
dn
_2
*

16
8

6.
58

19
8

6.
35

16
8

5.
18

17
8

2.
47

de
c_
un
til
sa
t_
39

6
0

1.
52

6
0

0.
01

6
0

1.
71

6
0

0.
01

A
ve
ra
ge

10
.4
3

6.
09

5.
13

22
.2
0

9.
82

9.
50

9.
78

5.
89

4.
19

11
.8
1

5.
46

3.
70

Autosymmetric and D-reducible Functions: Theory and Application to Security 109

The experiments show that the functions where the XAG minimization can
benefit from autosymmetry and D-reducibility are about 27%, with an average
reduction of the number of ANDs of about 27.4%; the number of functions where
the estimates of the multiplicative complexity are the same is about 66.7%, while
for the 6.3% of the functions, the method provides a worst result. The worst
result could come from the fact that the approach proposed in [14], for XAG
synthesis, is heuristic. Some particular benchmarks seem to highly benefit from the
proposed strategies. For example, the benchmark t4_3 can be represented using
the D. +A approach with the gain of 55%, in AND gates, with respect to exploiting
autosymmetry alone.We finally observe that the combined methods can also provide
a reduction of the number of XOR gates, due to the XOR factorization in both
approaches.

In conclusion, the experiments show that:

1. Running times deeply depend on the XAG heuristic [14]. Moreover, in general,
the running time for the XAG heuristic depends on the dimension of its input
function. For this reason, in the cases when we perform both the testing
procedures, often the total running times are reduced since the input function
for the XAG heuristic is smaller. In other words, the gain in running time for
constructing the XAG is higher than the running times required for testing the
two regularities.

2. In case of completely specified functions (where A. +D and D. +A give the same
results), the strategy more convenient is D. +A since this strategy has better
running times.

3. In case of incompletely specified functions, it is convenient to test both strategies
A. +D and D. +A in order to find the best solution. The sum of the running times of
the two approaches (A. +D and D. +A) is about the 50% greater than the running
time of the autosymmetry approach alone (which is much more time-consuming
than the D-reducibility test). Therefore, testing both strategies (A. +D and D. +A)
is still computationally convenient.

7 Conclusion

This paper has addressed regular functions that are both autosymmetric and D-
reducible. The theoretical study shows that in the case of completely specified
Boolean functions, the two tests can be performed in any order, obtaining exactly the
same decomposition. In the case of incompletely specified Boolean functions, this
property does not hold. The experimental results validate the proposed approach.
Future works can include the study of other XOR-based regularities for enhancing
the computation of multiplicative complexity.

110 A. Bernasconi et al.

References

1. Albrecht, M.R., Rechberger, C., Schneider, T., Tiessen, T., Zohner, M.: Ciphers for MPC and
FHE. In: Advances in Cryptology—EUROCRYPT Proceedings, Part I, pp. 430–454 (2015)

2. Bernasconi, A., Ciriani, V.: Autosymmetry of incompletely specified functions. In: Design
Automation and Test in Europe (DATE) (2021)

3. Bernasconi, A., Cimato, S., Ciriani, V., Molteni, M.C.: Multiplicative complexity of XOR
based regular functions. IEEE Transactions on Computers (Early Access) (2022)

4. Bernasconi, A., Ciriani, V.: Dimension-reducible boolean functions based on affine spaces.
ACM Trans. Design Autom. Electr. Syst. 16(2), 13:1–13:21 (2011)

5. Bernasconi, A., Ciriani, V., Luccio, F., Pagli, L.: Exploiting regularities for boolean function
synthesis. Theory Comput. Syst. 39(4), 485–501 (2006)

6. Bernasconi, A., Ciriani, V., Luccio, F., Pagli, L.: Synthesis of autosymmetric functions in a
new three-level form. Theory Comput. Syst. 42(4), 450–464 (2008)

7. Boyar, J., Peralta, R., Pochuev, D.: On the multiplicative complexity of Boolean functions over
the basis (∧, +, 1). Theor. Comput. Sci. 235(1), 43–57 (2000)

8. Çalik, Ç., Turan, M.S., Peralta, R.: The multiplicative complexity of 6-variable Boolean
functions. Cryptogr. Commun. 11(1), 93–107 (2019)

9. Ciriani, V.: Synthesis of SPP three-level logic networks using affine spaces. IEEE Trans. CAD
Integr. Circuits Syst. 22(10), 1310–1323 (2003)

10. Goudarzi, D., Rivain, M.: On the multiplicative complexity of Boolean functions and bitsliced
higher-order masking. In: Cryptographic Hardware and Embedded Systems—CHES 2016—
18th International Conference, Santa Barbara, CA, USA, Proceedings, pp. 457–478 (2016)

11. Halecek, I., Fiser, P., Schmidt, J.: Are XORs in logic synthesis really necessary? In: 20th
IEEE International Symposium on Design and Diagnostics of Electronic Circuits & Systems,
DDECS 2017, Dresden, Germany, April 19–21, 2017, pp. 134–139 (2017)

12. Liebler, R.: Basic Matrix Algebra with Algorithms and Applications. Chapman & Hall/CRC
(2003)

13. Luccio, F., Pagli, L.: On a new Boolean function with applications. IEEE Trans. Comput. 48(3),
296–310 (1999)

14. Testa, E., Soeken, M., Riener, H., Amaru, L., Micheli, G.D.: A logic synthesis toolbox for
reducing the multiplicative complexity in logic networks. In: 2020 Design, Automation Test in
Europe Conference Exhibition (DATE), pp. 568–573 (2020)

15. Testa, E., Soeken, M., Amarù, L.G., Micheli, G.D.: Reducing the multiplicative complexity in
logic networks for cryptography and security applications. In: Proceedings of the 56th Annual
Design Automation Conference 2019, DAC, p. 74 (2019)

16. Turan, M.S., Peralta, R.: The multiplicative complexity of boolean functions on four and
five variables. In: Lightweight Cryptography for Security and Privacy—Third International
Workshop, LightSec 2014, Istanbul, Turkey, pp. 21–33 (2014)

17. Yang, S.: Logic synthesis and optimization benchmarks user guide version 3.0. User guide,
Microelectronic Center (1991)

Two-Operand Modular Multiplication to
Small Bit Ranges

Danila Gorodecky and Leonel Sousa

1 Introduction

Residue number system (RNS) and modular arithmetic provide data parallelism by
representing integers as residues given a preselected moduli set . {p1, p2, . . . , pm}
of co-prime numbers, with .Z = p1 · p2 · ... · pm. Each of these residues requires
a significantly lower number of bits than the ordinary representation. Arithmetic
operations on residues are calculated independently for each modulo of the set. A
larger number of smaller moduli provide parallelism and allow fast calculations,
achieving high performance computing. The range of integers represented in the
RNS domain cannot exceed Z different integers.

Implementations of RNS can be found in aircraft systems [1], neural compu-
tations [2], real-time signal processing (pattern recognition) [3], cryptography [4],
and radio astronomy [5]. In general, RNS is efficient for processing large amounts
of data (hundreds and thousands of bits) [6] or repeatedly computed arithmetic
operations, as well as in assuring the reliability of computational arithmetic [2, 7, 8].

Data processing in RNS involves the following steps, as depicted in Fig. 1:

1. input operands .A1, A2, . . . , An are converted from a positional representation
into a modular representation as a set of residues (block (1) on Fig. 1);

2. arithmetic operations with these residues, for each modulo . p1,. p2, , pm, are
computed (central blocks on Fig. 1);

D. Gorodecky (�)
INESC-ID, Instituto Superior Tecnico, Universidade de Lisboa, Lisboa, Portugal
EHU/EPAM School of Digital Engineering, Vilnius, Lithuania

L. Sousa
INESC-ID, Instituto Superior Tecnico, Universidade de Lisboa, Lisboa, Portugal
e-mail: leonel.sousa@tecnico.ulisboa.pt

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. Drechsler, S. Huhn (eds.), Advanced Boolean Techniques,
https://doi.org/10.1007/978-3-031-28916-3_8

111

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-28916-3protect T1	extunderscore 8&domain=pdf

 885 56845
a 885 56845 a

mailto:leonel.sousa@tecnico.ulisboa.pt
mailto:leonel.sousa@tecnico.ulisboa.pt
mailto:leonel.sousa@tecnico.ulisboa.pt
mailto:leonel.sousa@tecnico.ulisboa.pt
https://doi.org/10.1007/978-3-031-28916-3_8
https://doi.org/10.1007/978-3-031-28916-3_8
https://doi.org/10.1007/978-3-031-28916-3_8
https://doi.org/10.1007/978-3-031-28916-3_8
https://doi.org/10.1007/978-3-031-28916-3_8
https://doi.org/10.1007/978-3-031-28916-3_8
https://doi.org/10.1007/978-3-031-28916-3_8
https://doi.org/10.1007/978-3-031-28916-3_8
https://doi.org/10.1007/978-3-031-28916-3_8
https://doi.org/10.1007/978-3-031-28916-3_8
https://doi.org/10.1007/978-3-031-28916-3_8

112 D. Gorodecky and L. Sousa

Fig. 1 RNS structure

3. the residues .S1, S2, . . . , Sn for each modulo are converted back from the RNS
domain to the positional number representation S (block (2) on Fig. 1).

Thus, the RNS structure consists of two types of components: converters and
arithmetic units (adders and multipliers).

A major limitation to the application of RNS in real life is the requirements
of converters, blocks (1) and (2) on Fig. 1. Forward computation of residues
(.X(modP)) and backward recovery of positional representation are indispensable.

There are several memory and combinational hardware realizations of RNS
converters [9]. Memory-free approaches are important for high performance com-
puting, but the main severe restriction on special moduli for the set does not allow
wide-range RNS implementations. Generally, these moduli sets consist of variations
of .2δ ± d [10], where .d = 1, 3, 5, is a natural number, and all selected moduli must
be co-prime numbers. According to this condition, in order to multiply, for example,
two 50-bit integer numbers, the following moduli set can be adopted: . {24 − 5, 24 +
1, 24 + 3, 25 − 1, 26 ± 3, 26 − 5, 27 − 1, 27 ± 3, 28 − 5, 28 + 1, 29 − 3, 29, 210 − 5}.

This set consists of 15 co-prime numbers, and the speed of calculation is limited
by 10-bit multiplication modulo .210 − 5. On the other hand, 50-bit multiplication
can be computed in the scope of a set of 19 more general co-prime integers, such as
.{73, 71, 67, 64, 61, 59, 53, 49, 47, 43, 41, 37, 31, 29, 27, 25, 23, 19, 17}, where the
slowest multiplication is limited by 7 bits, modulo 73.

The memory-based design of arithmetic units by modulo P (converters from
RNS to binary) is organized as a pipeline and reduces the length of inputs X from
k to . δ in a step-by-step manner, where k is bit range of the input and P is .δ-
bit modulo [11]. Commonly, pipelining of memory-based approaches of modulo
calculation consists of .k−δ similar blocks, with each block executing multiplication,
subtraction, and comparison. For instance, conversion of a 100-bit number on
modulo 997 requires 90 stages of pipelining. Thus, this type of converters takes

Two-Operand Modular Multiplication to Small Bit Ranges 113

large area costs and imposes a long calculation latency. Another type of memory-
based approaches uses memory to store all possible pre-computed residues for every
modulo from the moduli set [10]. This technique is based on lookup tables.

Hardware implementation of modular arithmetic is organized similarly to the
conversion operations, i.e., arithmetic operations for a special moduli set are realized
with non-memory techniques and calculation for an arbitrary modulo utilizes
memory.

This chapter proposes a non-memory approach for computing . A · B =
R(mod P), for an arbitrary value for modulo P . Experimental results of the
synthesis of these units on FPGA are presented.

2 Two Operand Modular Multiplication

Allowing an arbitrary modulo may reduce significantly the bit range of multiplica-
tion comparing to multiplication for a special moduli set. Considering multiplication
in RNS for an arbitrary moduli set in 50-bit range, as it has noted in the introduction,
the difference in slower multiplications is 3 bits (i.e., the largest modulo from the
first set is .210 − 5, 10 bits are required, while the largest modulo for the second set
is 73, requiring only 7 bits).

Arithmetic calculation is the main gain of using RNS. RNS splits inputs into sub-
vector of smaller bit ranges; with smaller bit range of sub-vectors, the performance
of calculations increases. On the other hand, RNS deals with special values of
moduli due to the complexity of transformation to/from RNS for an arbitrary value
of modulo.

This research is focused on modular multiplication for an arbitrary value of
moduli, taking into account the idea of efficient transformation [12]. Thus, for
instance, multiplication of two 3000-bit numbers might be represented as the
parallel multiplication by 560 different moduli in RNS, where every modulo does
not exceed 12-bit range. That is why the emphasis on multiplication by moduli up
to 12-bit values.

The architecture of multiplication is based on the idea of constructing small
blocks of adders and multipliers to organize multiplication for any bit range [13].

The idea of the approach consists of three steps, as pictured on Fig. 2: input
splitting, bit-range reducing, and comparing and subtraction.

Fig. 2 Steps of the proposed approach for modular multiplication

114 D. Gorodecky and L. Sousa

2.1 Binary Digit Fragmentation

The first branch of the approach decomposes inputs A and B of Fig. 2 into bits
multiplied by power of two constants and the results added modulo:

.A · B(mod P) =
k∑

i=1

k∑

j=1

(
ai · bj · 2i+j−2)(mod P) = S, (1)

where .A = (ak, ak−1, . . . , a1) and .B = (bk, bk−1, . . . , b1), where k bit is the most
significant bit.

The sum is calculated in a recursive manner, while sum .> 2 · P , according to
Algorithm 1.

Algorithm 1: Algorithm for modular multiplication

Note that the output of Algorithm 1 is the result S, which does not exceed
.2k+2 − 1. Experimentally, it has been detected that recursive sum (the loop part
of the Algorithm) is computed in 2 or 3 cycles for up to 12-bit modulo.

Consider an example for two 3-bit operands .A = (a3, a2, a1), . B = (b3, b2, b1)

and multiplication by modulo .P = 7. Thus, formula 1 takes the form:

Two-Operand Modular Multiplication to Small Bit Ranges 115

.

A · B(mod 7) = a1 · b1(mod 7) + a1 · b2 · 2(mod 7) + a1 · b3 · 22(mod 7)

+ a2 · b1 · 2(mod 7) + a2 · b2 · 22(mod 7) + a2 · b3 · 24(mod 7)

+ a3 · b1 · 22(mod 7) + a3 · b2 · 23(mod 7) + a3 · b3 · 24(mod 7)

= a1 · b1(mod 7) + a1 · b2 · 2(mod 7) + a1 · b3 · 4(mod 7)

+ a2 · b1 · 2(mod 7) + a2 · b2 · 4(mod 7) + a2 · b3 · 2(mod 7)

+ a3 · b1 · 4(mod 7) + a3 · b2 · 1(mod 7) + a3 · b3 · 2(mod 7)

= S ≤ 21,

where .S = (s5, s4, s3, s2, s1).
Note that .S = 21 if . a1 · b1 = a1 · b2 = a1 · b3 = a2 · b1 = a2 · b2 = a2 · b3 =

a3 · b1 = a3 · b2 = a3 · b3 = 1.
Then

.

S = s1 · 20(mod 7) + s2 · 21(mod 7) + s3 · 22(mod 7)

+ s4 · 23(mod 7) + s5 · 24(mod 7)

= s1 · 1(mod 7) + s2 · 2(mod 7) + s3 · 4(mod 7)

+ s4 · 1(mod 7) + s5 · 2(mod 7)

= Stemp ≤ 2 · P.

Actually, the maximum value of .S_temp achieves 8, if . s1 = s2 = s3 = s4 = 1
and .s5 = 0.

The final step of multiplication compares .S_temp with P and subtracts P from
.S_temp if needed.

2.2 Sub-Vector Splitting

The other part of the approach is to segment factors into 2- to 6-bit sub-vectors,
depending on the initial length of the factors, and perform modulo multiplication of
pairs of sub-vectors by power of 2 constants. This technique proposes to consider
the multiplication of sub-vectors by a constant as a system of Boolean functions.
Tools like Espresso [14] and ABC [15] can be used to minimize these systems of
functions.

The question of optimal splitting factors for multiplication in regular arithmetic
has been already investigated in [16]. Results of experiments, for which the bit range
of results is equal to the length of the factors, are shown in Table [16]. This result
was obtained for two-level minimization; multi-level minimization has not been
considered yet.

116 D. Gorodecky and L. Sousa

Table 1 Comparison of Synopsys multiplication and minimized Boolean functions in Espresso

Type of multiplication, Speed of calculations, GHz

BITs . × BITs . → BITs Espresso multiplication Synopsys multiplication

.2 × 2 → 2 6.25 6.66

.3 × 3 → 3 5.55 5

.4 × 4 → 4 5.3 4

.5 × 5 → 5 3.45 3.13

.6 × 6 → 6 2.78 2.85

.7 × 7 → 7 2.39 2.7

.8 × 8 → 8 2 2.43

According to the experimental results in Table 1, 3 by 3, 4 by 4, and 5 by 5 bit
multiplications are preferable. Since 3 by 3 bit multiplication provides the highest
speed, it is used as the base for modular multiplication. If a bit length of an operand
is not divisible by 3, it is split into 3-bit sub-vectors and one 1- or 2-bit additional
sub-vector. For instance, 8-bit operand is split into two 3-bit and one 2-bit sub-
vectors. Thus, binary representations of both factors are split into .�k/q� = v sub-
vectors, where q is the bit range of the sub-vectors with the largest number bits.
For instance, splitting 8-bit operands A and B into 3-bit sub-vectors, .q = 3 and
.v = �8/3� = 3.

In common, k-input A and B values are split into q-bit sub-vectors. Typically, in
the worst case, when .δ = �log2P �+1 = k, the maximum value of S does not exceed
.(P − 1) · v. The most suitable bit range of q is defined experimentally depending on
the hardware features. This research focuses on multiplication .A · B = S(mod P),
where .A,B and P vary from 6 to 12 bits; then, the product of multiplication is
calculated in two steps. On the first step, the sum of products of two sub-vectors is
calculated with Eq. 2.

.A · B(mod P) =
v∑

i=1

v∑

j=1

(
Ai · Bj · 2(i+j−2)·q)

(mod P) = S, (2)

where .A = (Av,Av−1, . . . , A1) and .B = (Bv, Bv−1, . . . , B1) are v dimension sub-
vectors, q is the number of bits per sub-vector, and A and B are k-bit vectors.

Equation 2 is applied while .Stemp ≤ 2 · P , in a recursive manner, according to
Algorithm 2.

Consider an example with .A · B(mod 47), i.e., A and B are 6-bits numbers.
Splitting operands into two, i.e., .v = 2, 3-bit sub-vectors, formula 2 is unrolled as

.

A · B(mod 47) = A1 · B1(mod 47) + A1 · B2 · 23(mod 47)

+ A2 · B1 · 23(mod 47) + A2 · B2 · 26(mod 47) =
= Stemp1 .

Two-Operand Modular Multiplication to Small Bit Ranges 117

Algorithm 2: Algorithm for modular multiplication

.Stemp1 takes the maximum value if .A = 45 and .B = 15, and it equals to the 8-bit
width number .158 = (10011110).

Decimal 45 in binary is .(101101) and 15 in binary is .(001111). Hence, . A1 =
A2 = (101) or 5 in decimal, .B1 = (111) or 7 in decimal, and .B2 = (001) or 1 in
decimal. Returning to formula 2, we have:

.

A · B(mod 47) = 5 · 7(mod 47) + 5 · 1 · 23(mod 47)

+5 · 7 · 23(mod 47) + 5 · 1 · 26(mod 47)

= 35(mod 47)+40(mod 47)+40(mod 47)+45(mod 47) = 158.

The idea behind the iterative implementation of Algorithm 2 is to reduce . Stemp1

to the value which is less than .47 · 2. Let’s assume that .Stemp1 = 158, then

. Stemp2 = 6 + 3 · 23(mod 47) + 2 · 26(mod 47) = 6 + 24 + 34 = 64.

Taking into account that .2 · 47 > 64 > 47, .S = 64 − 47 = 17.
Note that .Stemp1 is precalculated and is specified in the realization.

3 Boolean Representations

The central point of the proposed approach is minimization of a system of Boolean
functions, which represents the multiplication of a sub-vector by a sub-vector and

118 D. Gorodecky and L. Sousa

two sub-vectors by a constant. Additionally these multipliers are used as structural
blocks.

With the primary focus on the synthesis of modular multipliers for FPGAs, it is
crucial to take into account the hardware features of the target devices.

The main circuit of an FPGA is the lookup table (LUT), a memory for
implementing a system of Boolean functions. Typically, FPGA LUTs have four, five,
or six inputs. Thus, we can represent modular multiplication as the superposition of
functions, where the number of variables of each and every function is equal to
the number of inputs of the FPGA. This is a multi-level representation of Boolean
functions.

In some cases two-level representation of systems of Boolean functions might
be more efficiently implemented, as it is shown in [16]. Applications for two- and
multi-level minimization of systems of Boolean functions have been proposed, such
as ABC [15] and FLC2 [17]. The contribution [18] describes in detail the process
and the sense of multi-level minimization for FPGA implementation.

In the experiments we have used a multi-level minimization of Boolean functions
for targeting on five- and six-input LUTs, and two-level minimization in disjunctive
normal form. The first branch of the proposed technique is based on fragmentation
of operands into bits and is characterized by .O(δ2) sums, where . δ is the number of
bits of the inputs. For example, 51 additions are needed for .P = 47. The second
branch of the proposed technique is concluded by summing q-bit vectors and is
characterized by .O(q) sums. For .P = 47, there are six sums needed.

The second branch of the technique consists in representing each operand in
formula 2 as a minimized system of Boolean functions. In the example from the
previous section, .A1 · B1(mod 47), .A1 · B2 · 23(mod 47), .A2 · B1 · 23(mod 47),
.A2 ·B2 ·26(mod 47) are considered as the system of Boolean functions. For instance,
the truth table of .A2 · B2 · 26(mod47) = R realization is represented in Table 2. It
consists on 64 rows and 17 columns, but constant columns are formal, and they
are not included into the truth table during minimization, because the value of the
constant is the same for all lines in the truth table.

Table 2 Truth table for
. A2 · B2 · 26(mod 47)

Constant

.A2 .B2 (.26(mod 47) = 17) R
000 000 10001 000000

000 001 10001 000000

..

001 001 10001 010001

001 010 10001 100010

..

111 110 10001 001001

111 111 10001 100010

Two-Operand Modular Multiplication to Small Bit Ranges 119

4 Hardware Realization of Modulo Multipliers

This section presents the results of the synthesis of modular multipliers . A ·
B(mod P) for moduli: 47, 113, 241, 491, 887, 2001, and 4051.

All multipliers were described on Verilog. The performance is considered as
the critical path in nanoseconds (ns). All approaches are non-memory; the area
is measured as the number of FPGA LUTs. Vivado suite provides the option
to synthesize a scheme without implementing any Block RAM (BRAM) and
multipliers of FPGA. It aims to synthesize a scheme only with LUTs.

The experiments have been conducted on a Kintex-7 (xa7z010clg225-1l) in
Xilinx Vivado 2019.1. Table 3 provides the number of LUTs and the critical
path for the considered multipliers. The technique proposed in Sect. 2.1 Binary bit
fragmentation of Sect. 2 is designated per_bits. The techniques proposed in Sect. 2.2
Sub-Vector Splitting of Sect. 2 are implemented in three different ways:

• two-level minimization (Espresso and FLC2) with exact minimization mode—
2lev;

• multi-level minimization for 5-input LUTs (ABC and FLC2)—5lt;
• multi-level minimization for 6-input LUTs (ABC and FLC2)—6lt.

These four realizations are compared with the standard realization of modular
multiplication by Xilinx Vivado (Standard in Table 3). The advantages of the
proposal in comparison with the standard realizations are highlighted in Table 3.

We may conclude that the implementation of two- and multi-level minimization
are the best to what concerns performance. The length of the critical paths varies
depending on the value of the exact modulo. In fact, Vivado saves area costs with
the implemented algorithm for moduli 113 and 221. Commonly, it is difficult to
define a dependency between the value of modulo and the figures of merit of the
realization: the critical path and the area cost. There is no gain in the per_bits
individual approach for modular multiplication on FPGA.

5 Conclusion and Further Work

Correctness in RNS calculations demands co-prime moduli set. The known
approaches of modular multiplication are oriented to special moduli. This
contribution proposes a technique for efficient modular multiplication in the RNS
domain without any requirement of special moduli. The idea behind the approaches
is to split the inputs into smaller sub-vectors and sum the partial products. The
sub-vector multiplication with reduction is optimized through minimization of
systems of Boolean functions. Experimental results were provided for FPGA
implementations. The experimental results cover a range of moduli represented with
6–12 bits. The main conclusion is that the proposed approach allows to achieve a
trade-off between performance and area costs on FPGAs, and the resulting modular

120 D. Gorodecky and L. Sousa

Table 3 Synthesis Results: LUTs and Critical Path

#LUTs “. +” (advantage) or “. −” Critical path (ns) (“. +” (advantage)

(disadvantage) in % comparing or “. −” (disadvantage) in %

P with the standard) comparing with the standard)

Standard

47 91 24.0

113 81 19.9

241 152 24.7

491 175 24.1

887 231 27.0

2011 221 31.4

4051 298 31.3

2lev

47 54 (. + 41%) 13.9 (. + 42%)

113 122 (. −51%) 18.1 (. + 9%)

241 119 (. + 22%) 19.2 (. + 22%)

491 131 (. + 25%) 18.2 (. + 24%)

887 242 (. −5%) 26.0 (. + 4%)

2011 285 (. −29%) 27.5 (. + 15%)

4051 291 (. + 4%) 27.3 (. + 23%)

per_bits

47 205 (. −125%) 12.3 (. + 51%)

113 260 (. −220%) 70.8 (. −256%)

241 462 (. −203%) 98.5 (. −299%)

491 249 (. −42%) 115.7 (. −380%)

887 360 (. −56%) 44.0 (. −63%)

2011 363 (. −64%) 39.0 (. −24%)

4051 557 (. −87%) 45.1 (. −44%)

5lt

47 51 (. + 44%) 13.7 (. + 43%)

113 116 (. − 43%) 19.3 (. + 3%)

241 140 (. + 8%) 17.9 (. + 27%)

491 125 (. + 29%) 19.3 (. + 20%)

887 244 (. −6 %) 24.3 (. + 10%)

2011 280 (. −27%) 25.2 (. + 20%)

4051 297 (0%) 28.6 (. + 9%)

6lt

47 52 (. + 43%) 14.4 (. + 40%)

113 114 (. −40%) 19.7 (. + 1%)

241 129 (. + 15%) 19.2 (. + 22%)

491 129 (. + 26%) 18.7 (. + 22%)

887 245 (. −6%) 25.3 (. + 6%)

2011 283 (. −28%) 24.5 (. + 22%)

4051 310 (. −4%) 26.7 (. + 16%)

Two-Operand Modular Multiplication to Small Bit Ranges 121

multipliers are more efficient than the ones implemented with FPGA automatic
synthesis tools. Future research may consider to increase the number of operands
up to some dozens in modular multiplication, and to extend the bit range of inputs.
Another path of research is to minimize the Boolean representations of multipliers
within the class of Reed-Muller polynomials.

Further research may include upgrading steps of calculations pictured on Fig. 2:
choosing the most appropriate technique of minimization and bit range of input
splitting (left block of the figure); improving the architectures of reducing (central
block of the figure); and comparing and subtraction (right block of the figure).

References

1. Malashevich, B.M.: Unknown Modular Supercomputers. In: Proceedings of Conference for 50
years of Modular Arithmetic, pp. 50–70. Moscow, Russia (2005)

2. Cherviakov, N.I., et al.: Modular Structures of Parallel Computing Systems for Neuroproces-
sors. Moscow, Russia, 288 p. (2003)

3. Flatt, H., Hesselbarth, S., Flugel, S., Pirsch, P.: A modular coprocessor architecture for
embedded real-time image and video signal processing. In: Embedded Computer Systems:
Architectures, Modeling, and Simulation, 7th International Workshop, 2007, Samos, Greece,
Proceedings, p. 241–250

4. Ozturk, E., Sunar, B., Savas, E.: Low-Power Elliptic Curve Cryptography Using Scaled Modu-
lar Arithmetic. In: Proceedings of the 6th International Workshop Cryptographic Hardware in
Embedded Systems, Cambridge, MA, USA, vol. 3156, pp. 92–106 (2004)

5. Nakahara, H., Sasao, T., Nakanishi, H., Iwai, K., Nagao, T., Ogawa, N.: An FFT circuit using
nested RNS in a digital spectrometer for a radio telescope. In: International Symposium on
Multiple-valued Logic (ISMVL-2016), pp. 60–65 (2016)

6. Montgomery, P.L.: Modular Multiplication without Trial Division Mathematics of Computa-
tion, vol. 44 (170), pp. 519–521 (1985)

7. Sousa, L., Chaves, R.: A universal architecture for designing efficient modulo multipliers. IEEE
Transactions on Circuits and Systems 52(6), 1166–1178 (2005)

8. Zimmermann, R.: Efficient VLSI implementation of modulo addition and multiplication. In:
14th IEEE Symposium on Computer Arithmetic, Adelaide, Australia, pp. 158–167 (1999)

9. Mohan, P.V.A.: Residue Number Systems: Teory and Applications. Birkhauser, Basel (2016)
10. Omondi, A.R., Premkumar, B.: Residue Number System: Theory and Implementation. Impe-

rial College Press, New York (2007)
11. Butler, J.T., Sasao, T.: Fast hardware computation of x mod z. In: 25th IEEE International

Parallel and Distributed Processing Symposium Anchorage, Ak, USA, pp. 289–292 (2011)
12. Gorodecky, D., Villa, T.: Efficient implementation of modular division by input bit splitting. In:

Proceedings of the 26th IEEE Symposium on Computer Arithmetic, June 10–12, 2019, Kyoto,
Japan, pp. 54–60 (2019)

13. Schonhage, A., Strassen, V.: Schnelle Multiplikation groser Zahlen. Computing 7, 281–292
(1971)

14. https://embedded.eecs.berkeley.edu/pubs/downloads/espresso/index.htm
15. http://people.eecs.berkeley.edu/~alanmi/abc/
16. Gorodecky, D.: Multipliers design technique based disjunctive normal form minimizationa

and Fourier transformation. In: Proceedings of the 12th International Workshop on Boolean
Problems, Freiberg, Germany, Sept. 22–23, 2016. ed. by Steinbach, B.: Freiberg University of
Mining and Technology, pp. 145–150

https://embedded.eecs.berkeley.edu/pubs/downloads/espresso/index.htm
https://embedded.eecs.berkeley.edu/pubs/downloads/espresso/index.htm
https://embedded.eecs.berkeley.edu/pubs/downloads/espresso/index.htm
https://embedded.eecs.berkeley.edu/pubs/downloads/espresso/index.htm
https://embedded.eecs.berkeley.edu/pubs/downloads/espresso/index.htm
https://embedded.eecs.berkeley.edu/pubs/downloads/espresso/index.htm
https://embedded.eecs.berkeley.edu/pubs/downloads/espresso/index.htm
https://embedded.eecs.berkeley.edu/pubs/downloads/espresso/index.htm
https://embedded.eecs.berkeley.edu/pubs/downloads/espresso/index.htm
https://embedded.eecs.berkeley.edu/pubs/downloads/espresso/index.htm
http://people.eecs.berkeley.edu/~alanmi/abc/
http://people.eecs.berkeley.edu/~alanmi/abc/
http://people.eecs.berkeley.edu/~alanmi/abc/
http://people.eecs.berkeley.edu/~alanmi/abc/
http://people.eecs.berkeley.edu/~alanmi/abc/
http://people.eecs.berkeley.edu/~alanmi/abc/
http://people.eecs.berkeley.edu/~alanmi/abc/

122 D. Gorodecky and L. Sousa

17. Bibilo, P., Lankevich, Yu.: Minimizing the multilevel representations of systems of Boolean
functions based on Shannon decomposition. Informatika 2, 45–57 (2017)

18. Gorodecky, D., Bibilo, P.: Constant Multiplication Based on Boolean Minimization. In:
Proceedings of the 14th International Workshop on Boolean Problems, Bremen, Germany
(2020)

Low-Latency Real-Time Inference for
Multilayer Perceptrons on FPGAs

Ahmad Al-Zoubi and Goerschwin Fey

1 Introduction

In areas like process control systems, e.g., in particle accelerators, autonomous
driving, and critical infrastructures, control and monitoring systems are increasingly
adapting to the use of neural networks, due to their high accuracy and tolerance to
faulty data [4, 5, 11]. Given the sheer volume of sensor and image data on one
hand, and the critical timing of output inference on the other hand, these systems
are required to process this data with high throughput and low latency. Here,
throughput measures the number of data samples processed within a given time,
while latency measures the time between receiving a data sample and inferring the
related result, e.g., a category that corresponds to a control decision or new control
parameters. While several studies and commercial processing units have focused
on the throughput aspect of the neural networks inference performance, latency-
optimized processors were falling behind. Nevertheless, very low latency is required
for real-time neural network processors in certain applications.

The multilayer perceptron (MLP) is a type of feed-forward neural network
that uses the back-propagation technique for its training. An MLP has an input
layer which acts as a receiver, one or more hidden layers for data computation,
and an output layer which predicts the output. The ability of learning complex
nonlinear relationships, generality, and imposing no restrictions on the input data
distribution resulted in a wide use of this type of neural network. Along with its

A. Al-Zoubi (�)
Hamburg University of Technology, Hamburg, Germany
Center for Data and Computing in Natural Sciences, Hamburg, Germany
e-mail: ahmad.al.zoubi@tuhh.de

G. Fey
Hamburg University of Technology, Hamburg, Germany
e-mail: goerschwin.fey@tuhh.de

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. Drechsler, S. Huhn (eds.), Advanced Boolean Techniques,
https://doi.org/10.1007/978-3-031-28916-3_9

123

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-28916-3protect T1	extunderscore 9&domain=pdf

 885 52970 a 885 52970 a

mailto:ahmad.al.zoubi@tuhh.de
mailto:ahmad.al.zoubi@tuhh.de
mailto:ahmad.al.zoubi@tuhh.de
mailto:ahmad.al.zoubi@tuhh.de

 885 56845 a 885 56845
a

mailto:goerschwin.fey@tuhh.de
mailto:goerschwin.fey@tuhh.de
mailto:goerschwin.fey@tuhh.de
https://doi.org/10.1007/978-3-031-28916-3_9
https://doi.org/10.1007/978-3-031-28916-3_9
https://doi.org/10.1007/978-3-031-28916-3_9
https://doi.org/10.1007/978-3-031-28916-3_9
https://doi.org/10.1007/978-3-031-28916-3_9
https://doi.org/10.1007/978-3-031-28916-3_9
https://doi.org/10.1007/978-3-031-28916-3_9
https://doi.org/10.1007/978-3-031-28916-3_9
https://doi.org/10.1007/978-3-031-28916-3_9
https://doi.org/10.1007/978-3-031-28916-3_9
https://doi.org/10.1007/978-3-031-28916-3_9

124 A. Al-Zoubi and G. Fey

parallel computation model, the MLP presents a worthwhile subject for hardware
acceleration, specifically in real-time settings.

In this work, we propose a low-latency optimized architecture for MLPs. Mainly
focusing on improving the latency of an inference, our architecture uses early eval-
uation by splitting activation functions in piecewise linear segments, specifically the
PLAN approximation of the sigmoid proposed in [8]. Developed using high-level
synthesis (HLS), the architecture’s performance in terms of accuracy, throughput,
latency, and power consumption is then analyzed in comparison with the state-
of-the-art implementation. Specifically, we compare our architecture to another
latency-driven design [3] and to highly tuned commercial IPs provided by the FPGA
vendor [9]. In both cases, our proposed architecture has a significantly lower latency.

The rest of the paper is organized as follows: Sect. 2 presents and discusses
the related work, Sect. 3 describes in detail the proposed MLP architecture, Sect. 4
displays the experimental results, while conclusions and future work are discussed
in Sect. 5.

2 Related Work

Although developed for different applications, several studies have proposed accel-
erated implementations of the MLP; we discuss a representative set of them. In
[10], the authors proposed an FPGA-based implementation of the MLP for gas
classification. The proposed architecture uses a set of parallel lookup table (LUT)-
based processing elements (PE), to handle the multiplications and the additions,
while the activation functions were realized using read-only memory (ROM).
The evaluation has proven a significant speedup in comparison with the software
version. However, the use of memory to store support points to approximate the
activation function limits the speedup as each neuron has to look up for the
appropriate value in an address of a large number of elements, in this specific
case 1001 support points. In [3], the authors proposed an architecture suitable for
requirements given by an activity classification task. Similar to the aforementioned
study, the multiplication-addition were carried in a parallel fashion. However, the
ROM implementation of the activation function was replaced with a set of linear
segments. The proposed implementation did show a 2x speedup as a result. Still,
the architecture retained the sequential order of multiply-add-activate, which leaves
room for further enhancements in the execution flow. In [1], the authors developed
a 32-3-4 MLP neural network (32 input neurons, 1 hidden layer of 3 neurons and an
output layer of 4 neurons) for a multispectral classification of satellite images. Using
VHDL as the prototyping language, the implementation was 8 bits and was capable
of achieving 670 ns of inference speed. Nonetheless, similar to the work in [10],
the implementation of the activation function was memory based and following the
same sequential order of neuron execution, not fully exploiting the parallel nature
of both the MLP and FPGA. Finally, in [2], the authors used the Xilinx System
generator to implement a classifier for blue whale calls. Despite not reaching a true

Low-Latency Real-Time Inference for Multilayer Perceptrons on FPGAs 125

real-time performance, the implementation showed how flexible it is to use a higher
level of abstraction to prototype the MLP model. The examples while showing
varying techniques in implementing the activation function of an MLP on FPGA
all share the sequential execution model of the single perceptron. The novelty of the
architecture proposed here is in the parallel evaluation of the activation values, when
segmented into a set of linear functions, providing significant decrease in design
latency.

3 Implementation

In this section, we discuss the proposed architecture broken into the neuron model
and MLP model, where we show the parallelization of the activation function. In
addition, we discuss the optimizing pragmas inferred in the C/C++ implementation
for HLS, to achieve the final desired performance.

3.1 Neuron Model

The neuron is considered the fundamental block in the structure of the MLP.
Each of the neurons in a given layer receives a set of inputs, where each has
to be multiplied by a set of weights tuned in the training process, before the
accumulated summation of these products undergoes a given activation function.
The mathematical representation of a single neuron is defined as follows:

.yj = f

((
n∑
i

wjixi

)
+ bj

)
(1)

where . yj is the output of the j th neuron, . xi is the ith input, of the neuron, .wji is the
ith element of the trained weight set of the j th neuron, while . bj is the bias of the
neuron and f is the activation function. In this work, to have a fair comparison to the
state of the art and to show the gains of our parallel architecture, we will focus on
the sigmoid as the nonlinear activation function, forming the most computationally
intensive part in our neuron model, which is given in the following formula:

.S(x) = 1

1 + e−x
(2)

Based on the function segmentation technique of nonlinear formulas, we adopt
the PLAN function, as this is one of the best approximations of the sigmoid
activation [8]. Table 1 shows the details of the PLAN function, while the proposed
architectural model of the neuron is illustrated in Fig. 1. As shown in the neuron

126 A. Al-Zoubi and G. Fey

Table 1 PLAN sigmoid
approximation function

Sel X Y = F(x)

0 .0 ≤ |x| < 1 . 0.25 × |x| + 0.5

1 .1 ≤ |x| < 2.375 . 0.0125 × |x| + 0.625

2 .2.375 ≤ |x| < 5 . 0.03125 × |x| + 0.84375

3 .5 ≤ |x| . 1

Fig. 1 Neuron model

model, the input-weight’s multiplication and addition are parallelized for all activa-
tion possibilities at the same level of the activation selection, i.e., we evaluate all
causes of the linear function segments while computing the selective lines.

In order to clarify further the calculations behind this architecture, let us take the
first linear segment from Table 1 as an example. The linear function takes the sum
of products . |x| and adds the bias of the neuron. Knowing the absolute value, the
linear function therefore is evaluated if x is in the range .0 ≤ x < 1 or .0 ≥ x > −1;
hence .−1 ≤ x < 1. The substitution at this stage is as follows:

Low-Latency Real-Time Inference for Multilayer Perceptrons on FPGAs 127

.F(x) = 0.25 ×
((

n∑
i

wjixi

)
+ bj

)
+ 0.5 (3)

Given that .wji and . bj are constants known a priori, the formula can be further
reduced to

.F(x) =
((

n∑
i

cjixi

)
+ bjc

)
(4)

where . cji is the result of multiplying the .wji with 0.25 and . bjc is the neuron . bj bias
multiplied by 0.25 and added to 0.5. This applies analogously for the second and
third formulas, while for values higher than 5 and or lower than . −5, the output is
either 1 or zero, respectively. This implementation allows for pre-computing the set
of coefficients and biases that are needed to be multiplied and added to the neuron
input, saving computational costs on the FPGA, and completely parallelizing the
neuron computations with coefficients stored directly on the FPGA, shortening the
length of the data path. This directly reduces the latency for inferring the output for
given input samples.

3.2 MLP Model

In order to capitalize on the parallel architecture proposed for neuron computations,
the MLP structure is also designed to process all neurons in a single layer all at the
same time, as shown in Fig. 2. In addition, each input neuron has to be normalized,
and a normal maximum has been added after the output layer, so the MLP can be
used as a multi-class classifier. Given the nonlinear form of the soft-max, it naturally
requires more computing resources and, more important, an expensive penalty to
the inference latency. In compliance with the architectural optimization target of
resource and computational complexity savings, the normal maximum has been
chosen over the soft-max.

Fig. 2 MLP model

128 A. Al-Zoubi and G. Fey

3.3 HLS Pragmas

Xilinx Vitis HLS [6] allows prototyping FPGA designs in C/C++ and provides a
wide selection of compiler pragmas that can be used to enhance the performance of
the design under development. In the proposed architecture, the following pragmas
have been applied:

• Loop unrolling: The loop unrolling pragma allows for the replication of oper-
ations found in the body of the loop to be executed in parallel, and therefore
enhances the loop’s performance. However, this pragma is considered one of
the most resource consuming, and for large, high bounded loops, a partial loop
unrolling option is recommended over full unrolling. In our architecture we adopt
a relatively small MLP implementation, and therefore all loops on both neuron
and MLP models have been fully unrolled.

• Pipelining: The pipelining pragma allows for the concurrent execution of the
operations in the selected region, and therefore increases utilization efficiency of
the resources, either on loop, function, or top-level module levels. Similar to the
case of loop unrolling, we adopt a top level pipelining style.

• Array Partitioning: As weights, biases, and coefficients are all stored on the
FPGA side for maximal performance, the implementation of this data was
realized through the complete partitioning option of the pragma, i.e., using
multiple registers instead of the Block-RAM (BRAM) memory.

Note, while prototyping in HLS, restrictions on the target processing elements for
certain operations exist as well. In certain implementations, like in [3], digital signal
processing (DSP) slices were the main processing elements for multiplications
and additions. However, although a DSP is considered faster than an equivalent
functionality in programmable logic (PL) for the same operations, routing the design
can grow problematic, limiting the operational frequency. Therefore, we adopt a
more relaxed approach in realizing the desired architecture, to achieve the fastest
possible implementation with successful timing closure, by allowing the synthesis
tool to alternate its operation target according to the requested clock time.

4 Experimental Results

In this section, we describe the development environment; discuss the performance
of the proposed MLP accelerator in terms of accuracy, latency, resources, and power
consumption; and finally compare the performance of our IP to the state of the art.

Low-Latency Real-Time Inference for Multilayer Perceptrons on FPGAs 129

axi_dma_0

AXI Direct Memory Access

S_AXI_LITE
M_AXI_MM2S

M_AXI_S2MM

M_AXIS_MM2S

S

S_AXIS_S2MM

s_axi_lite_aclk

m_axi_mm2s_aclk

m_axi_s2mm_aclk

axi_resetn

mm2s_prmry_reset_out_n

s2mm_prmry_reset_out_n

mm2s_introut

s2mm_introut

axi_smc

AXI SmartConnect

S00_AXI

S01_AXI M00_AXI

S00_AXI

S01_AXI M00_AXI

M01_AXIaclk

aresetn

mlp_0

Mlp (Pre-Production)

input_data output_data

ap_local_block

ap_local_deadlock

ap_clk

ap_rst_n

ps8_0_axi_periph

AXI Interconnect

S00_AXI

M00_AXI

ACLK

ARESETN

S00_ACLK

S00_ARESETN

M00_ACLK

M00_ARESETN

rst_ps8_0_250M

Processor System Reset

slowest_sync_clk

ext_reset_in

aux_reset_in

mb_debug_sys_rst

dcm_locked

mb_reset

bus_struct_reset[0:0]

peripheral_reset[0:0]

interconnect_aresetn[0:0]

peripheral_aresetn[0:0]

xlconcat_0

Concat

In0[0:0]

In1[0:0]
dout[1:0]

zynq_ultra_ps_e_0

Zynq UltraScale+ MPSoC

M_AXI_HPM0_FPD

S_AXI_HP0_FPDS

S_AXI_HP1_FPD

maxihpm0_fpd_aclk

saxihp0_fpd_aclk

saxihp1_fpd_aclk

pl_ps_irq0[1:0]

pl_resetn0

pl_clk0

Fig. 3 System block design

4.1 Experimental Setup

This work addresses the human activity recognition application, classifying the
activity based on accelerometer sensor data. The network topology is 7-9-9-9-5,
a neural network of 7 inputs, 3 hidden layers of 9 neurons, and 5 outputs for clas-
sification. The aforementioned topology was the result of the MLP training on the
UCI transition-aware human activity recognition dataset [7], using the TensorFlow
framework. In this experiment we rely on seven features (body acceleration standard
deviation of the three axes, the signal magnitude area of body acceleration, and the
gravity acceleration mean of the three axes) in the classification target of five classes
(sitting, walking, standing, activity transition, and laying).

The proposed MLP accelerator has been developed using Vitis HLS, Vivado, and
Vitis Unified software 2021.2 using C/C++. In addition to the latency-optimized
custom design in [3], our comparison includes the deep-processing unit (DPU),
Xilinx commercial IP for neural networks processing. A single-cored DPU-512
implementation was used, and the neural network quantization and compilation
were done using Vitis AI 2.0. The Zynq UltraScale+ ZCU104 evaluation board has
been used to implement the proposed architecture and DPU designs. In Fig. 3, a
system-level view of the proposed architecture can be seen. Given that an MLP
usually falls within an extended processing pipeline, the MLP IP has been provided
with AXI stream interfaces. The clock frequency adopted in our implementation
was 300MHz.

4.2 Model Accuracy

In Table 2, an exploration of the number of neurons and required number of hidden
layers is presented. Each consecutive layer is preceded by a layer of the number of
neurons that yield the highest accuracy. The maximum accuracy was achieved with
a topology of three hidden layers, consisting of nine neurons each. Any additional
increase on the number of the layers did not improve on the accuracy or even
decreased it.

130 A. Al-Zoubi and G. Fey

Table 2 Model’s accuracy Layers

Neurons 1 2 3 4 5

1 84.35 90.69 92.48 93.98 95.2
2 87.21 93.7 94.59 94.5 94.12

3 89.61 95.3 94.64 95.11 93.46

4 90.88 95.44 96.66 97.41 95.2

5 93.65 94.78 98.16 97.69 96.24

6 92.81 94.31 98.77 95.67 96.56

7 89.00 95.67 98.40 97.18 97.32

8 90.13 96.47 97.6 98.59 95.62

9 95.06 97.08 98.87 98.87 96.87

10 94.54 95.58 97.55 97.18 95.91

Fig. 4 Bit width of the weights vs accuracy

Next, we assess the impact of the PLAN, the quantization of the model
parameters (weights and activations), and the inputs/outputs on the accuracy of the
model. When the sigmoid function is replaced with the PLAN, the reduction in
the model’s accuracy was minimal with a drop of 0.67%. In Fig. 4, the accuracy
of the MLP is presented when the weights and activations are quantized to 8, 12,
16, 20, and 24 bits. Note that the accuracy increase when increasing the bit width;
however, a representation of 16 bits is sufficient, as any further increase will yield
the same accuracy level with a higher cost in hardware. Finally, an assessment of
the bit width of the inputs/outputs versus the model’s accuracy is presented in Fig. 5.
For the best accuracy level with minimal cost of hardware, a representation of 12
bits is sufficient.

Low-Latency Real-Time Inference for Multilayer Perceptrons on FPGAs 131

Fig. 5 Bit-width of the inputs/outputs vs accuracy

Table 3 Implementation details

Attributes

Latency (ns) LUT FF DSP BRAM Power (W): PL/PS

– 916 413 3 2 –

86.58 7476 9492 3 2 3.731: 0.976/2.755

In light of the previous discussion on the model’s accuracy, a topology of 7-9-
9-9-5, with model parameters and inputs/outputs of 16 bits, is the one selected for
implementation. Table 3 lists the design latency, resources, and power consumption.
The design resources for both the MLP itself and the entire design are listed as well.
Note that the increase in hardware resources is due to the use of the AXI-DMA and
AXI-Interconnect.

4.3 Comparison to the State of the Art

In order to fairly assess the performance gains of the proposed architecture,
we compare between our IP and the implementation mentioned in [3] and the
official DPU processor from Xilinx. Table 4 highlights the key features of each
implementation. The 16-bit variation of the proposed architecture, with a single
hidden layer of 6 neurons, is the one used in this comparative study, in line with
the selection made in our state-of-the-art review in Sect. 2. Additionally, the clock
frequency has been reduced to 100MHz to match the implementation we are
comparing to.

132 A. Al-Zoubi and G. Fey

Table 4 Comparative analysis

MLP Processor

Attributes Proposed State-of-the-art [3] DPUCZDX8G

Latency (ns) 130 270 43266

Power (W): PL/PS 0.719/2.743 0.241/- 2.006/2.768

Bits 16 16 8

Frequency (MHz) 100 100 300

DSP 3 81 110

LUT 6982 3466 27088

FF 9299 569 36052

BRAM 2 0 28

URAM 0 0 12

First, the proposed design is 2.1x and almost 332.81x times faster than the state
of the art and a conventional neural accelerator like the Xilinx DPU. Second, the
power consumption in the proposed accelerator is second to the design in [3]. One
reason for this increase is the utilization of the Zynq processing system (PS), while
in [3], the MicroBlaze soft processor is used. However, the use of the PS offers
far more capable processing power that fits the domain requirements. A second
reason is the increase in PL power due to the total parallelization of the activation
function, which increased the resource utilization as a result. Third, it is noticeable
that our proposed MLP accelerator has the lowest usage of DSP slices. Instead,
PL implementations of mathematical operations were used to enable the synthesis
tool achieving timing closure, by avoiding the routing complications to an extended
number of DSPs, which could limit the design frequency.

5 Conclusion

In this work, a latency-optimized MLP design has been developed. The design
architecture is based on the full parallelization of the network neurons, down to
the internal computations of each single neuron. A topology of 7-9-9-9-5 has been
proposed after an analysis of the model accuracy with respect to both parameters and
input/output bit representations. Empirical results show that our latency-optimized
MLP design outperforms a throughput-tuned state-of-the-art IP core tuned by the
FPGA vendor by 332.81x orders of magnitude. Even another latency-optimized
design has a significantly higher latency, for which our implementation is 2.1x faster.
Our architecture performs inference for a small MLP architecture in only 130 ns
enabling real-time inference for high-speed control.

Future work is aimed toward the inclusion of more segmented activation
functions, and an online training hardware. We applied our technique to an MLP
architecture using sigmoid activations. Nonetheless, various other architectures

Low-Latency Real-Time Inference for Multilayer Perceptrons on FPGAs 133

can directly reuse this concept, most specifically the rectified linear unit (ReLU),
hyperbolic tangent (Tanh), and soft-max activation functions, which are suitable for
immediate parallelization.

Acknowledgments This work was supported in part by TUHH and HamburgX grant LFF-HHX-
03 to the Center for Data and Computing in Natural Sciences (CDCS) from the Hamburg Ministry
of Science, Research, Equalities and Districts.

References

1. Alilat, F., Yahiaoui, R.: Mlp on fpga: Optimal coding of data and activation function. In: 2019
10th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing
Systems: Technology and Applications (IDAACS), vol. 1, pp. 525–529. IEEE, New York
(2019)

2. Bahoura, M.: FPGA implementation of blue whale calls classifier using high-level program-
ming tool. Electronics 5(1), 8 (2016)

3. Gaikwad, N.B., Tiwari, V., Keskar, A., Shivaprakash, N.: Efficient FPGA implementation of
multilayer perceptron for real-time human activity classification. IEEE Access 7, 26696–26706
(2019)

4. Gupta, L.: Securing critical infrastructure through innovative use of merged hierarchical deep
neural networks. In: 2021 18th International Conference on Privacy, Security and Trust (PST),
pp. 1–8. IEEE, New York (2021)

5. Kocić, J., Jovičić, N., Drndarević, V.: An end-to-end deep neural network for autonomous
driving designed for embedded automotive platforms. Sensors 19(9), 2064 (2019)

6. Mousouliotis, P., Zogas, S., Christakos, P., Keramidas, G., Petrellis, N., Antonopoulos,
C., Voros, N.: Exploiting vitis framework for accelerating sobel algorithm. In: 2021 10th
Mediterranean Conference on Embedded Computing (MECO), pp. 1–5. IEEE, New York
(2021)

7. Reyes-Ortiz, J., Anguita, D., Oneto, L., Parra, X.: UCI Machine Learning Repository:
Smartphone-based Recognition of Human Activities and Postural Transitions Data Set

8. Tisan, A., Chin, J.: An end-user platform for FPGA-based design and rapid prototyping of
feedforward artificial neural networks with on-chip backpropagation learning. IEEE Trans.
Industr. Inform. 12(3), 1124–1133 (2016)

9. Verucchi, M., Brilli, G., Sapienza, D., Verasani, M., Arena, M., Gatti, F., Capotondi, A.,
Cavicchioli, R., Bertogna, M., Solieri, M.: A systematic assessment of embedded neural
networks for object detection. In: 2020 25th IEEE International Conference on Emerging
Technologies and Factory Automation (ETFA), vol. 1, pp. 937–944. IEEE, New York (2020)

10. Zhai, X., Ali, A.A.S., Amira, A., Bensaali, F.: MLP neural network based gas classification
system on Zynq SoC. IEEE Access 4, 8138–8146 (2016)

11. Zhu, J., Chen, Y., Brinker, F., Decking, W., Tomin, S., Schlarb, H.: High-fidelity prediction of
megapixel longitudinal phase-space images of electron beams using encoder-decoder neural
networks. Phys. Rev. Appl. 16(2), 024005 (2021)

Thirty-Six Officers of Euler-New Insights
Computed Using XBOOLE

Bernd Steinbach and Christian Posthoff

1 Introduction

Leonhard Euler (1707–1783) is well recognized as one of the most productive
scientists in both the amount and the significance of his contributions. He is
especially known as a mathematician, but he worked also successfully in other
scientific areas like Mechanics, Movement of the Planets, Fluid Dynamics, Optics,
and others. The key for this success was the use of the analytical methods of
Mathematics. His main contributions to Mathematics are related to Analysis and
Number Theory.

A Latin square is a square of .n × n fields where one of n symbols has been
assigned to each field. The main rule of a Latin square is that each symbol occurs
only once in each row and each column. The name Latin square goes back to Euler
who used Latin characters as symbols; however, other symbols or numbers can
alternatively form a Latin square. The number n is the order of a Latin square.

The well-known number puzzle Sudoku is a Latin square of order 9 with the
additional condition that all symbols occur exactly once within nine sub-squares of
the size .3 × 3.

Two Latin squares can be combined into a single square that contains in each
field the concatenation of the symbols of the associated fields of the Latin squares
given. Two such Latin squares are called orthogonal to each other if all . n2 combined

B. Steinbach (�)
Institute of Computer Science, Freiberg University of Mining and Technology, Freiberg, Germany
e-mail: steinb@informatik.tu-freiberg.de

C. Posthoff
Department of Computing and Information Technology, The University of the West Indies, St.
Augustine Campus, Trinidad & Tobago
e-mail: christian@posthoff.de

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. Drechsler, S. Huhn (eds.), Advanced Boolean Techniques,
https://doi.org/10.1007/978-3-031-28916-3_10

135

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-28916-3protect T1	extunderscore 10&domain=pdf

 885 51863 a 885 51863 a

mailto:steinb@informatik.tu-freiberg.de
mailto:steinb@informatik.tu-freiberg.de
mailto:steinb@informatik.tu-freiberg.de
mailto:steinb@informatik.tu-freiberg.de

 885 56845 a 885 56845 a

mailto:christian@posthoff.de
mailto:christian@posthoff.de
https://doi.org/10.1007/978-3-031-28916-3_10
https://doi.org/10.1007/978-3-031-28916-3_10
https://doi.org/10.1007/978-3-031-28916-3_10
https://doi.org/10.1007/978-3-031-28916-3_10
https://doi.org/10.1007/978-3-031-28916-3_10
https://doi.org/10.1007/978-3-031-28916-3_10
https://doi.org/10.1007/978-3-031-28916-3_10
https://doi.org/10.1007/978-3-031-28916-3_10
https://doi.org/10.1007/978-3-031-28916-3_10
https://doi.org/10.1007/978-3-031-28916-3_10
https://doi.org/10.1007/978-3-031-28916-3_10

136 B. Steinbach and C. Posthoff

pairs of symbols are different. A combined square with this property is referred to
as Graeco-Latin square or Euler square.

Leonhard Euler studied intensively such squares. He developed methods to
construct Graeco-Latin squares of odd orders and orders of .n = 4k, .k = 1, 2, In
1779, he explored the problem of the 36 officers with the aim to construct a Graeco-
Latin square of order .n = 6, but he did not find a solution. Euler was then of the
opinion that Graeco-Latin squares of order .n = 4 · k + 2, .k = 0, 1, . . . will not exist
because he knew that there are no Graeco-Latin squares of order . n = 2. R. C. Bose
and S. S. Shrikhande rebutted this assumption in 1959 by finding counterexamples
[2]. The same authors published together with E. T. Parker in 1960 a paper [3]
containing the proof that Graeco-Latin squares of order .n = 4k+2 for . k = 2, 3, . . .

exist.
Recently a group of scientists from India and Poland mapped this problem

into the quantum domain and proved that absolutely maximally entangled (AME)
quantum states .(4, 6) exist where .N = 4 is the number of parties and .d = 6 the local
dimension [6]. However, we explore in this chapter a detailed quantified version of
the original problem of the 36 officers specified by Euler.

2 Preliminaries

We are going to solve the problem of the 36 officers defined by Euler using the
XBOOLE-monitor XBM 2. This software can be downloaded by everyone free of
charge from the web page:

https://tu-freiberg.de/en/fakult1/inf/xboole/download.
A comprehensive help system supports the user of the XBOOLE-monitor

XBM 2. Many examples to solve tasks from several areas by means of the
XBOOLE-monitor XBM 2 are provided in [7].

The main data structure used in XBOOLE is the ternary vector list (TVL). We
use TVLs in this paper to express DC-clauses of CDC-SAT equations (see Sect. 6.1)
and (partial) solution sets of such equations. The TVL

.x1 .x2 .x3 .x4 .x5 .x6 .x7 .x8 . x9

1 0 0 0 .− .− 0 .− . −
.ODA(f) = 0 1 0 .− 0 .− .− 0 . −

0 0 1 .− .− 0 .− .− 0

has the form predicate ODA (orthogonal disjunctive or antivalence form) and can
therefore be used to express function f in disjunctive (D) or antivalence form (A):

.f = x1x2x3x4x7 ∨ x1x2x3x5x8 ∨ x1x2x3x6x9

= x1x2x3x4x7 ⊕ x1x2x3x5x8 ⊕ x1x2x3x6x9

https://tu-freiberg.de/en/fakult1/inf/xboole/download
https://tu-freiberg.de/en/fakult1/inf/xboole/download
https://tu-freiberg.de/en/fakult1/inf/xboole/download
https://tu-freiberg.de/en/fakult1/inf/xboole/download
https://tu-freiberg.de/en/fakult1/inf/xboole/download
https://tu-freiberg.de/en/fakult1/inf/xboole/download
https://tu-freiberg.de/en/fakult1/inf/xboole/download
https://tu-freiberg.de/en/fakult1/inf/xboole/download
https://tu-freiberg.de/en/fakult1/inf/xboole/download

Thirty-Six Officers of Euler-New Insights Computed Using XBOOLE 137

because the condition of orthogonality is satisfied by these three conjunctions. This
TVL also expresses the solution set of the logic equation .f = 1. Each of these
three ternary vectors contains four dashes (. −). Each dash represents a combination
of the two values 0 and 1. The number of binary vector represented by each of these
three ternary vectors is equal to .24 = 16. Due to the orthogonality of ODA(f), the
solution set of the equation .f = 1 consists of 48 binary vectors. Only 3 ternary
vectors express these 48 binary vectors. The use of dashes exponentially decreases
the number of required ternary vectors.

XBOOLE provides more than 100 operations, which are very efficiently imple-
mented. The most important operation of XBOOLE used in this paper is the
intersection of two TVLs.

3 The Problem to Solve and Its Complexity

Leonhard Euler specified the problem as follows:

“Six different regiments have six officers, each one belonging to different
ranks. Can these 36 officers be arranged in a square formation so that
each row and column contains one officer of each rank and one of each
regiment?” [4]

The answer to this question can be YES or NO. That means that Euler specified
a satisfiability problem (SAT) [1]. Looking for convenient Boolean variables
to determine a possible SAT formula, we noticed that four words are used to
characterize each of these officers: row, column, regiment, and rank. Unfortunately,
three of these words begin with the letter “r.” Using the military unit brigade instead
of regiment and grade instead of rank, we get four words with different first letters.
We define .36 × 36 = 1296 logic variables as follows:

.xrcbg =

⎧
⎪⎨

⎪⎩

1 if the officer on the field determined by row r and
column c belongs to brigade b and has grade g ,

0 otherwise

(1)

where each of the index variables .r, c, b, g = 1, . . . , 6. The encoding by variables
of these four index values provides a direct specification of the row and column of
the square as well as the brigade and grade of the 36 officers.

Using these variables, a requirement clause can be defined for each of the
36 fields. Each of these clauses consists of 36 variables connected by .∨-operations.
We get, for example, the clause:

.

⎛

⎝
6∨

b=1

6∨

g=1

x11bg

⎞

⎠

138 B. Steinbach and C. Posthoff

for field (1,1). This is a disjunction of 36 variables.
Equal index values .(r, c) of two variables determine restrictions of the type

.x1111 ∧ x1112 = 0, which ensure one-hot encoding. That means that only one single
officer can be assigned to each field. This restrictive equation can be transformed
into a characteristic equation .x1111 ∨ x1112 = 1. The left-hand side of this equation
is a clause. The number of clauses to ensure the one-hot encoding on all 36 fields is
equal to

.36 · (35 + 1) · 35

2
= 22,680 . (2)

In order to exclude that the brigade of an officer does not occur on two fields
of the same row, all six possible grades must be taken into account for each of the
selected fields. For fields (1,1) and (1,2), we get the restriction

.

6∨

b=1

⎛

⎝
6∨

g=1

x11bg ∧
6∨

g=1

x12bg

⎞

⎠ = 0 ,

which can be transformed into a characteristic equation of .6 · 36 = 216 clauses

.

6∧

b=1

⎛

⎝
6∧

g=1

x11bg ∨
6∧

g=1

x12bg

⎞

⎠ = 1 .

The number of clauses of these restrictions for all pairs of fields of each of the 6
rows is equal to

.6 · (5 + 1) · 5

2
· 216 = 19,440 . (3)

Similarly, it can be excluded that the grade of an officer does not occur on two
fields of the same row. For fields (1,1) and (1,2), we get the restriction

.

6∨

g=1

(
6∨

b=1

x11bg ∧
6∨

b=1

x12bg

)

= 0 ,

which can be transformed to a characteristic equation of .6 · 36 = 216 clauses

.

6∧

g=1

(
6∧

b=1

x11bg ∨
6∧

b=1

x12bg

)

= 1 .

The number of clauses of these restrictions for all pairs of fields of each of the 6
rows is again equal to

Thirty-Six Officers of Euler-New Insights Computed Using XBOOLE 139

.6 · (5 + 1) · 5

2
· 216 = 19,440 . (4)

The explored conditions must also be satisfied for all six columns. Exchanging
the index r and c, we get the formulas needed to ensure that in each column each
brigade b and each grade g occur only once. The number of clauses related to the
columns is again two times .19,440.

The third rule is that an officer of both the same brigade b and the same grade g
does not occur on two different fields. For fields (1,1) and (1,2) and chosen values
.b = g = 1, we get the restriction:

. x1111 ∧ x1211 = 0 ,

which can be transformed into equation

. x1111 ∨ x1211 = 1 ,

where the left-hand side is a clause. The number of clauses of these restrictions for
all pairs of fields and all 36 combinations of b and g is equal to

.
(35 + 1) · 35

2
· 36 = 22,680 . (5)

The number of clauses of a SAT formula to solve the problem of the 36 officers
is therefore equal to

.nc = 36 + 2 · 22,680 + 4 · 19,440 = 123,156 . (6)

It may be that some restrictive clauses satisfy more than one condition and are
therefore counted twice. However, it is time-consuming to determine and exclude
such doubled clauses.

It seems that the straightforward approach to solve the 36 officer problems using
a SAT equation with 1296 variables and 123,156 clauses is not a convenient method
to solve this problem. The search space of the 1296 logic variables would be . 21296 ≈
1.3 · 10390.

There are several possibilities of a more compact encoding of this problem. The
use of three Boolean variables to encode either the brigade b or the grade g of each
field leads to .36 · (3 + 3) = 216 variables so that the search space is reduced to
.2216 ≈ 1065. However, this encoding increases the number of required variables
of about 100,000 restrictive clauses from 2 to 6. The 22,680 clauses regarding the
one-hot encoding are not needed in this approach, but the number of variables in the
required clauses triples. Hence, this modified approach is also not favorable.

The number of Latin squares reduces the search space furthermore. Unfortu-
nately, there is no formula to easily compute the number of Latin squares. However,
it is known from the literature [8] that .812,851,200 Latin squares of order 6 exist.

140 B. Steinbach and C. Posthoff

Hence, the number of Graeco-Latin squares is equal to

.812,851,200 · 812,851,200 = 660,727,073,341,440,000 ≈ 6.6 · 1017 (7)

and this number is in the range

. 259 < 6.6 · 1017 < 260 .

Such a reduction to 60 Boolean variables also does not help us to solve the problem
of the 36 officers because the constraints regarding repeated officers cannot be
expressed based on these variables.

4 A Quantitative Specification of the Problem to Solve

Using a SAT solver we get either YES or NO as the answer to the problem of
the 36 officers. The answer “there is no solution” of a SAT solver gives us no
information how many different officers could be assigned to the fields of a Graeco-
Latin square. We know from (7) that more than .6.6 ·1017 Graeco-Latin squares exist
and the two digits in each field of the square determine the brigade b and the grade g
of the officer assigned to this field. To get a more significant answer to the problem
of the 36 officers, we declare two additional quantitative questions:

1. How many officers of different brigades b and different grades g can satisfy the
rules of a Graeco-Latin square of order 6?

2. How may such maximal assignments of officers of both a different brigade b and
a different grade g exist on a Graeco-Latin square of order 6?

5 Approaches to Simplify the Problem to Solve

The one-hot encoding requires 1296 logic variables to specify all conditions of the
problem of the 36 officers in a simple manner. A smaller number of variables,
which satisfy the welcome property of the one-hot encoding, would reduce the
effort to solve this problem. We start with .36 × 36 = 1296 Boolean variables
where 36 variables characterize all 36 possible pairs of values .〈b, g〉 on each of
the .6 × 6 fields. Figure 1a depicts this initial state.

Permuting pairs of rows or pairs of columns transforms a given Graeco-Latin
square into another Graeco-Latin square. Hence, . 6! · 6! = 720 · 720 = 518,400
Graeco-Latin squares of order 6 belong to an equivalence class. It is enough to
explore one representative of each of these classes. Knowing one solution for the
representative, we can generate the other .518,399 Graeco-Latin squares of such a
class by permutations of rows and columns.

Thirty-Six Officers of Euler-New Insights Computed Using XBOOLE 141

36 36 36 36 36 36 216
36 36 36 36 36 36 216
36 36 36 36 36 36 216
36 36 36 36 36 36 216
36 36 36 36 36 36 216
36 36 36 36 36 36 216

(a) 1296

36 36 36 36 36 180
36 36 36 36 36 180
36 36 36 36 36 180
36 36 36 36 36 180
36 36 36 36 36 180
36 36 36 36 36 180

(b) 1080

30 30 30 30 30 150
30 30 30 30 30 150
30 30 30 30 30 150
30 30 30 30 30 150
30 30 30 30 30 150
30 30 30 30 30 150

(c) 900

20 20 20 20 20 100
20 20 20 20 20 100
20 20 20 20 20 100
20 20 20 20 20 100
20 20 20 20 20 100
20 20 20 20 20 100

(d) 600

4 4 4 4 4 20
20 20 20 20 20 100
20 20 20 20 20 100
20 20 20 20 20 100
20 20 20 20 20 100
20 20 20 20 20 100

(e) 520

4 4 4 4 4 2
20 16 16 16 16 84
20 16 16 16 16 84
20 16 16 16 16 84
20 16 16 16 16 84
20 16 16 16 16 84

(f) 440

 0

Fig. 1 Steps to exclude variables not required to specify the problem of the 36 officers

This approach of equivalence classes requires the definition of a representative.
Such a representative can be constructed by permutations of rows and columns such
that .b = 1 and .g = r = c occur in the fields of the main diagonal.

The restriction to this representative allows us to reduce the number of Boolean
variables required to solve the problem of the 36 officers. As a result of the fixed
values in the main diagonal, we can exclude .6 · 36 = 216 variables, which express
in the basic approach the values on the main diagonal. There remain . 1296 − 216 =
1080 variables as shown in Fig. 1b.

The fixed value .b = 1 in the main diagonal prohibits six pairs .〈b = 1, g〉, . g =
1, . . . , 6, in all other fields. This knowledge allows us to exclude additionally . 6 · 5 ·
6 = 180 variables leaving us with .1080 − 180 = 900 variables as shown in Fig. 1c.

The representative of the equivalence class regarding .b = 1 determines the values
of g in the fields of the main diagonal as .g = r = c. This knowledge allows us to
exclude additionally .5 ·5 ·6 = 150 variables .xrcbg with .r = g and also . 5 ·5 ·6 = 150
variables .xrcbg with .c = g. That means that the number of required variables can be
reduced from 30 to 20 on each field. Applying these two rules, . 900 − 300 = 600
variables remain as shown in Fig. 1d.

All six values of a brigade b must occur in each row. The value .b = 1 is already
used in the first row on field (1,1). There are .5! = 120 permutations of the values b in
the first row, which determine one more equivalence class. We use the rule .b = c for
row .r = 1 as representative of this equivalence class. The two equivalence classes
are orthogonal to each other and can therefore be combined so that each common
equivalence class represents .120 · 518,400 = 62,208,000 Graeco-Latin squares. As
a result of fixed values .b = c for row .r = 1 and columns .c = 2, . . . , 6, we can
additionally exclude .5 ·4 ·4 = 80 variables. There remain .600−80 = 520 variables
as shown in Fig. 1e.

142 B. Steinbach and C. Posthoff

The fixed values of b for row .r = 1 and columns .c = 2, . . . , 6 allow us to
exclude variables .xrcbg with .b = c in rows .r = 2, . . . , 6 and columns . c = 2, . . . , 6
which are additionally .5 · 4 · 4 = 80. This number takes into account that variables
.xrcbg with .r = g have been already excluded. Finally, .520 − 80 = 440 variables
remain as shown in Fig. 1f.

We are going to answer the two questions of Sect. 4 for the representative of
the equivalence class specified in this section. We already know that . 62,208,000
equivalent solutions can be generated for each found solution.

6 Method to Solve the Problem

6.1 CDC-SAT Model

We take field (1,2) as an example. The requirement clause (disjunction of variables)
of the explored representative is

.(x1223 ∨ x1224 ∨ x1225 ∨ x1226) (8)

because the value b is fixed to 2. The variable .xrcbg = x1221 is excluded due to
.g = r = 1, and the variable .xrcbg = x1222 is excluded due to .g = c = 2.

Six clauses ensure the one-hot encoding of these four variables:

. (x1223 ∨ x1224)(x1223 ∨ x1225)(x1223 ∨ x1226)

∧(x1224 ∨ x1225)(x1224 ∨ x1226)

∧(x1225 ∨ x1226) . (9)

The conjunction of (8) and (9) results in

. (x1223x1224x1225x1226 ∨ x1223x1224x1225x1226

∨ x1223x1224x1225x1226 ∨ x1223x1224x1225x1226) . (10)

Such a disjunction of conjunctions (DC) is called a DC-clause.
The value .g = 3 of .xrcbg = x1223 prohibits the same grade in the other fields of

the first row. Three clauses

.(x1223 ∨ x1443)(x1223 ∨ x1553)(x1223 ∨ x1663) (11)

ensure this condition because .x1333 has been excluded due to .g = c = 3.
Computing the conjunction of (10) and (11) extends the first conjunction of (10)

by the second negated variables of the three disjunctions of (11) but does not change
the other three conjunctions of (10) due to the absorption rule:

Thirty-Six Officers of Euler-New Insights Computed Using XBOOLE 143

. (x1223x1224x1225x1226x1443x1553x1663∨x1223x1224x1225x1226

∨ x1223x1224x1225x1226∨x1223x1224x1225x1226) . (12)

All other restrictions of the problem of the 36 officers have the same structure as
shown in (11). Hence, the principle of extension demonstrated for the values of g
in the first row can be applied for other all types of rules simply by adding negated
variables to the associated conjunction of a DC-clause. The types of rules are:

1. one-hot encoding of the variables belonging to one DC-clause;
2. exclusion of value g of the non-negated variable in all other fields of the same

row;
3. exclusion of value g of the non-negated variable in all other fields of the same

column;
4. exclusion of value b of the non-negated variable in all other fields of the same

row;
5. exclusion of value b of the non-negated variable in all other fields of the same

column;
6. exclusion of the pair of values .〈b, g〉 of the non-negated variable in all other

fields.

Rule 1 is required to model the problem as a conjunction of disjunctions of
conjunctions SAT (CDC-SAT) equation. Rules 2 and 3 ensure that only Latin
squares for grades g belong to the solution. Analogously, rules 4 and 5 ensure that
only Latin squares for brigades b belong to the solution. Rule 6 prohibits that an
officer of the same brigade b and the same grade g occurs in two or more fields.

All four conjunctions belonging to the DC-clause of field (1,2) consist of one
non-negated and 31 negated variables. We generate each DC-clause directly as a
ternary vector list (TVL). Each row of such a list represents one conjunction of
a DC-clause. The non-negated variable is indicated by the value 1 in the ternary
vector, and all negated variables appear as values 0 in the appropriate columns of
the TVL. Figure 2 shows the generated conjunction of the non-negated variable
.xrcbg = x1223 and highlights the rules used to add the required variables to the
conjunction.

x
1
2
2
3

x
1
2
2
4

x
1
2
2
5

x
1
2
2
6

x
1
4
4
3

x
1
5
5
3

x
1
6
6
3

x
2
1
2
3

x
2
4
2
3

x
2
5
2
3

x
2
6
2
3

x
4
1
2
3

x
4
2
3
3

x
4
2
4
3

x
4
2
5
3

x
4
2
6
3

x
4
5
2
3

x
4
6
2
3

x
5
1
2
3

x
5
2
3
3

x
5
2
4
3

x
5
2
5
3

x
5
2
6
3

x
5
4
2
3

x
5
6
2
3

x
6
1
2
3

x
6
2
3
3

x
6
2
4
3

x
6
2
5
3

x
6
2
6
3

x
6
4
2
3

x
6
5
2
3

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

rule 1: one-hot • • •
rule 2: g row • • •
rule 3: g column • • • • • • • • • • • •
rule 4: b row
rule 5: b column
rule 6: b, g fields • • • • • • • • • • • • •

0 0 0 0

Fig. 2 Rules that determine conjunction 1 of the DC-clause of field (1,2)

144 B. Steinbach and C. Posthoff

Fig. 3 Binary vectors of four conjunctions belonging to the DC-clause of field (1,2)

The application of rules 1 and 2 has already been explained above. Figure 2
shows that the conjunction with the selected value .g = 3 in the non-negated variable
does not contain any variable belonging to row 3 because .g = r = 3 has been fixed
for field (3,3) of the main diagonal and all variables with .g = 3 have been excluded
for this row. Brigade 2 is fixed as representative of the equivalence class in field
(1,2). Therefore, only values 3, 4, 5, and 6 of b must be excluded in column 2.
The associated 12 negated variables are indicated by bullets of rule 3. For the same
reason, variables with .b = 2 have been excluded so that no variables for rules 4
and 5 occur. Negated variables with the pair .〈b, g〉 = 〈2, 3〉 must be added to the
conjunction of .xrcbg = x1223 for all fields except row 1 due to .xrcbg = x1223, row 3
due to .g = 3 in field (3,3), column 2 due to .xrcbg = x1223, column 3 due to . g = 3
in field (3,3), and all fields of the main diagonal. There remain 13 negated variables
indicated by bullets in the last line of Fig. 2.

The other three conjunctions of the DC-clause belonging to field (1,2) can be
generated analogously. Figure 3 shows the generated four binary vectors of these
conjunctions as separate TVLs in the m-fold view of the XBOOLE-monitor XBM 2.

The DC-clause of field (1,2) can be represented by a TVL of 4 ternary vectors
and 116 columns. Variables .x1223, .x1224, .x1225, and .x1225 are commonly used by all
four vectors of Fig. 3. All other variables of these vectors are different. Therefore,
we get .4 + (32 − 4) · 4 = 116 columns which correspond to the used variables
of the DC-clause. The four ternary vectors are disjoint so that this TVL can take
the form predicate ODA (orthogonal disjunctive or antivalence form). Each of these

Thirty-Six Officers of Euler-New Insights Computed Using XBOOLE 145

Fig. 4 Numbers of columns
of the TVLs that represent the
30 DC-clauses of the problem
of the 36 officers

116 116 116 116 116
324 278 278 278 278
324 278 278 278 278
324 278 278 278 278
324 278 278 278 278
324 278 278 278 278

four ternary vectors contains .116 − 32 dash elements (. −). The number of binary
vectors represented by this TVL is equal to .4 · 2116−32 ≈ 7.737 · 1025.

The TVLs of all DC-clauses can be generated in the same manner. The number
of generated ternary vectors is equal to the number of variables shown in Fig. 1 (f).
Larger numbers of variables belonging to the fields in rows 2–6 cause more negated
variables in the conjunctions of the DC-clauses and also more variables in the
associated TVL. Figure 4 shows the numbers of columns (variables) the TVLs of
the generated 30 DC-clauses depend on.

The CDC-SAT equation (conjunction of disjunctions of conjunctions) consists
on the left-hand side of 30 DC-clauses which are connected by AND and on
the right-hand side the constant value 1. The solution of this equation requires
the computation of 29 intersections of TVLs, which represent these DC-clauses.
The number of partial solutions after a certain number of intersections of TVLs
belonging to DC-clauses of certain fields determines the number of solutions for the
used subset of fields. The maximal number of used TVLs of selected DC-clauses for
which the number of solutions is greater than 0 answers the first question regarding
the 36 officers specified in Sect. 4. The last computed number of solutions greater
than 0 is the answer to the second question.

6.2 Practical Implementation Using the XBOOLE-Monitor
XBM 2

The XBOOLE-monitor XBM 2 can be used to create TVLs and to compute inter-
sections of them. Elementary tasks are specified in the XBOOLE-monitor XBM 2
by means of commands. These commands can be combined into problem programs
(PRPs), which can be executed command by command, in an uninterrupted fashion
until a break point is reached, or completely until the end. All operations are
executed within several Boolean spaces. The user must specify the maximal number
of variables for each of these spaces. We use a single Boolean space of 440 variables
to solve the problem of the 36 officers.

The utilization of two equivalence classes allows us to reduce the number of
required Boolean variables from 1296 to 440. We reduced the effort required to
specify the problem of the 36 officers from more than 100,000 clauses of a classical
SAT equation to only 30 DC-clauses of a CDC-SAT equation. Nevertheless, we are
faced with a problem hard to solve.

146 B. Steinbach and C. Posthoff

The specification of all conditions of the problem regarding the 36 officers
leads to a PRP of the XBOOLE-monitor XBM 2 that consists of several thousand
commands. Therefore, we split the procedure to solve the problem into four
subtasks:

1. defining a Boolean space of 440 variables, generating the 440 variables regarding
the representative of the combined 2 equivalence classes, and creating equiv-
alently structured TVLs that indicate the requirement rules in the remaining
30 fields of the square;

2. creating the TVLs of the DC-clauses of the first row of the square and computing
the partial solution of this row;

3. creating the TVLs of the DC-clauses of the remaining five rows of the square;
4. computing the solution by intersections using the results of subtasks 2 and 3.

The PRPs of the first three subtasks require more than a thousand commands
each. Therefore, we implemented simple but very fast (. <1 s) programs using the
programming language C++ that generate the required PRPs which are thereafter
executed within the XBOOLE-monitor XBM 2.

Subtask 1 The C++ program of subtask 1 consists of 98 lines of code and generates
a PRP with 1815 lines of commands. The rows of the generated TVLs are associated
with the 36 pairs of values .〈b, g〉. The first six of these pairs .〈1, g〉 are avoided
because pairs with .b = 1 determine the representative of the first equivalence class
and have therefore been excluded from the computation. The rows of these TVLs
store values 0 for variables .xrcbg using the indices .((b−2) ·6)+g. We store values 0
in these TVLs because zeros occur most often in the conjunctions of the DC-clauses.
Values 1 of these variables can easily be computed. Figure 5 shows the TVL in D
form (disjunctive form) for field (2,1). The index of these TVLs can be computed
by .6 ∗ (r − 1) + c.

Subtask 2 The DC-clauses of row 1 are simpler than the DC-clauses of the
remaining rows because fixed values b are used due to the second equivalence class.
The C++ program of subtask 2 consists of 106 lines of code and generates a PRP
with 1353 lines of commands. The generated TVLs of the five DC-clauses of row 1
are so simple that additionally the partial solution of row 1 is computed at the end
of this PRP.

Subtask 3 The creation of the 25 TVLs of the DC-clauses of rows 2–6 is the most
complex task. The use of a C++ program to generate the required PRP is very helpful
for this subtask. Only 147 lines of C++ code suffice to generate the 42,867 lines of
command for the PRP for this subtask.

Subtask 4 This subtask is computationally expensive but very easy to express. This
PRP uses TVL 57 computed as a result of row 1 in subtask 2, TVLs 67–95 of the
DC-clauses of rows 2–6, and computes 25 intersections to solve the problem of
the 36 officers. The PRP consists of 17 lines and solves this task using 2 nested
for-loops, which iterate over the rows and columns. Figure 6 shows the PRP that

Thirty-Six Officers of Euler-New Insights Computed Using XBOOLE 147

x
21

23

x
21

24

x
21

25

x
21

26

x
21

33

x
21

34

x
21

35

x
21

36

x
21

43

x
21

44

x
21

45

x
21

46

x
21

53

x
21

54

x
21

55

x
21

56

x
21

63

x
21

64

x
21

65

x
21

66

−
−
0 − − − − − − − − − − − − − − − − − − −
− 0 − − − − − − − − − − − − − − − − − −
− − 0 − − − − − − − − − − − − − − − − −
− − − 0 − − − − − − − − − − − − − − − −
−
−
− − − − 0 − − − − − − − − − − − − − − −
− − − − − 0 − − − − − − − − − − − − − −
− − − − − − 0 − − − − − − − − − − − − −
− − − − − − − 0 − − − − − − − − − − − −
−
−

D(f7) = − − − − − − − − 0 − − − − − − − − − − −
− − − − − − − − − 0 − − − − − − − − − −
− − − − − − − − − − 0 − − − − − − − − −
− − − − − − − − − − − 0 − − − − − − − −
−
−
− − − − − − − − − − − − 0 − − − − − − −
− − − − − − − − − − − − − 0 − − − − − −
− − − − − − − − − − − − − − 0 − − − − −
− − − − − − − − − − − − − − − 0 − − − −
−
−
− − − − − − − − − − − − − − − − 0 − − −
− − − − − − − − − − − − − − − − − 0 − −
− − − − − − − − − − − − − − − − − − 0 −
− − − − − − − − − − − − − − − − − − − 0

Fig. 5 One result of subtask 1: TVL 7 representing the requirement of field (2,1) expressed by
values 0

computes the intersections between the partial solution of the first row and the TVLs
of the DC-clauses belonging to the fields of rows 2–6.

7 Solutions for the First Row

Values b of the brigades are fixed in the first row due to the chosen representative of
the equivalence classes and for the same reason value g of field (1,1) is constant 1.
Different combinations of values g of grades can be used in fields (1,2), . . . , (1,6)
of the first row. There are .5! = 120 permutations of the numbers 2, . . . , 6 which can
be used in a Latin square.

The representative used restricts the possible combinations of values g in the first
row because the number of permitted values g is restricted to 4 due to .g = 1 in field
(1,1) and .g = r = c in the fields of the main diagonal. Using this restriction, we
get a tighter upper bound on the number of permutations so that instead of . 5! = 120
only .4 · 4! = 96 permutations are required.

148 B. Steinbach and C. Posthoff

1 lds p6666_2
2 set $lastpss 57
3 for $r 2 6
4 (
5 for $c 1 6
6 (
7 if (ne $r $c)
8 (
9 set $f (add (mul 6 (sub $r 1)) $c)

10 set $rule (add $f 60)
11 set $newpss (add 100 $f)
12 isc $lastpss $rule $newpss ; main operation
13 set $lastpss $newpss
14)
15)
16)
17 sts p6666_3_t_d

Fig. 6 PRP of subtask 4: computation of 25 intersections of DC-clauses

Table 1 All 44 permitted combinations of values g in the first row

.g(1, 2) = 3 .g(1, 2) = 4 .g(1, 2) = 5 . g(1, 2) = 6

.〈1, 3, 2, 5, 6, 4〉 .〈1, 4, 2, 3, 6, 5〉 .〈1, 5, 2, 3, 6, 4〉 . 〈1, 6, 2, 3, 4, 5〉

.〈1, 3, 2, 6, 4, 5〉 .〈1, 4, 2, 5, 6, 3〉 .〈1, 5, 2, 6, 3, 4〉 . 〈1, 6, 2, 5, 3, 4〉

.〈1, 3, 4, 2, 6, 5〉 .〈1, 4, 2, 6, 3, 5〉 .〈1, 5, 2, 6, 4, 3〉 . 〈1, 6, 2, 5, 4, 3〉

.〈1, 3, 4, 5, 6, 2〉 .〈1, 4, 5, 2, 6, 3〉 .〈1, 5, 4, 2, 6, 3〉 . 〈1, 6, 4, 2, 3, 5〉

.〈1, 3, 4, 6, 2, 5〉 .〈1, 4, 5, 3, 6, 2〉 .〈1, 5, 4, 3, 6, 2〉 . 〈1, 6, 4, 3, 2, 5〉

.〈1, 3, 5, 2, 6, 4〉 .〈1, 4, 5, 6, 2, 3〉 .〈1, 5, 4, 6, 2, 3〉 . 〈1, 6, 4, 5, 2, 3〉

.〈1, 3, 5, 6, 4, 2〉 .〈1, 4, 5, 6, 3, 2〉 .〈1, 5, 4, 6, 3, 2〉 . 〈1, 6, 4, 5, 3, 2〉

.〈1, 3, 5, 6, 2, 4〉 .〈1, 4, 6, 2, 3, 5〉 .〈1, 5, 6, 2, 3, 4〉 . 〈1, 6, 5, 2, 3, 4〉

.〈1, 3, 6, 2, 4, 5〉 .〈1, 4, 6, 3, 2, 5〉 .〈1, 5, 6, 2, 4, 3〉 . 〈1, 6, 5, 2, 4, 3〉

.〈1, 3, 6, 5, 2, 4〉 .〈1, 4, 6, 5, 2, 3〉 .〈1, 5, 6, 3, 2, 4〉 . 〈1, 6, 5, 3, 2, 4〉

.〈1, 3, 6, 5, 4, 2〉 .〈1, 4, 6, 5, 3, 2〉 .〈1, 5, 6, 3, 4, 2〉 .〈1, 6, 5, 3, 4, 2〉

The PRP of subtask 2 generates the DC-clauses of fields (1,2), . . . , (1,6) and
computes their intersections. The computed TVL 57 consists of 44 rows and 340
columns. Each row in this TVL contains a single value 1, 144 values 0, and 195
dashes. That means that this TVL expresses .44 · 2195 ≈ 2.2 · 1060 binary vectors.
This large number of binary vectors is again a proof of the efficiency of TVLs used
in XBOOLE.

Each of the 44 rows determines exactly one possible combination of values g
in 5 fields to the right of the first row. This number is smaller as the precomputed
upper bound. Does a mistake in the PRP used cause this smaller number? A detailed
exploration confirms that the computed result is correct. The number of permitted
combinations of values g is really only 44. The reason for this restriction is that
one of the numbers 2,. . . , 6 is excluded in each of the five fields to the right of the
first row, and the excluded number differs from field to field. Table 1 enumerates

Thirty-Six Officers of Euler-New Insights Computed Using XBOOLE 149

all 44 tuples of values g of the first row of the square of the 36 officers. It can
be seen that for each of the 4 different values g of field (1,2) exactly 11 different
combinations exist.

8 Analysis of the Computational Effort

The computation of the intersections in subtask 4 is most expensive due to the large
number of variables involved. Figure 7 shows the numbers of ternary vectors after
the use of n DC-clauses using a logarithmic scale.

This computation has been done using the DC-clauses of the fields row by row
top down and from the left to the right within the rows. It can be seen that the
number of rows of a TVL representing a partial solution grows until the maximum of
5,095,920 rows after the use of 18 DC-clauses. Thereafter this number decreases and
reaches the value of 480 after the use of the DC-clause of field (6,3). The solutions
for fields (6,4) and (6,5) are equal to 0. The time to compute all these 29 intersections
using the XBOOLE-monitor XBM 2 on a PC with a processor Intel(R) Core(TM)
i7-5960X CPU @ 3.00 GHz processor is 3.282 s.

A detailed study of Fig. 7 shows that the number of ternary vectors decreases
when the DC-clause of the last field of a row has been included into the sequence
of intersections. This welcome effect results from the restriction that the value of
both b and g of the last fields of a row is already determined by these values in
the other fields of the same row. The exploration of the numbers of rows after each
intersection shows also that the computational effort depends on the order in which
the TVLs of the DC-clauses are used. Figures 1f and 4 show that the largest TVLs
of DC-clauses occur in the first column of the square. An approach that minimizes
the effort therefore:

10 20 30
1

10

100

1,000

10,000

1 · 105
1 · 106

number n of DC-clauses used

nu
m
b
er
 o
f
te
rn

ar
y
ve

ct
or
s

Fig. 7 Number of rows after each intersection using the DC-clauses of the fields from the left to
the right in the rows and top down

150 B. Steinbach and C. Posthoff

10 20 30
1

10

100

1,000

10,000

1 · 105

number n of DC-clauses used

nu
m
b
er
 o
f
te
rn

ar
y
ve

ct
or
s

Fig. 8 Number of rows after each intersection using the DC-clauses of the fields in rows 2–6
column by column from the right to the left

1. computes the intersections of the DC-clauses of the first row from the left to the
right;

2. computes subsequently the intersections of the DC-clauses in the order of
columns from the right to the left and within each column from row 2 down
to row 6.

The computation of the intersections in subtask 4 has additionally been executed
in this modified order from the right to the left. Figure 8 shows the numbers of
ternary vectors after the use of n DC-clauses using a logarithmic scale.

The maximal number of ternary vectors as the result of an intersection in this
changed order is equal to 752,564 reached after the intersection of 16 DC-clauses.
This is less than 15 percent of the previous approach. The solutions for fields
(5,1) and (6,1) are equal to 0. The time to compute all 29 intersections using the
XBOOLE-monitor XBM 2 has been reduced to 1.131 s for this changed order. The
last not empty TVL also consists of 480 ternary vectors, and the results of the
intersections for the fields (5,1) and (6,1) are equal to 0 so that again two free fields
remain.

9 Detailed Evaluation of One Partial Solution

We evaluate the first vector of the partial solution where DC-clauses of the fields
(6,4) and (6,6) are excluded. Using this vector, we fill the pairs of values .〈b, g〉 for
which the function value 1 occur in this vector into the fields of a .6 × 6 square.
The field to assign such a pair of values is determined by value r of the index that
selects the row and value c of the index that selects the column. As a result of this
procedure, we get 34 of 36 fields filled in the square as shown in Fig. 9a.

Thirty-Six Officers of Euler-New Insights Computed Using XBOOLE 151

1,1 2,3 3,2 4,5 5,6 6,4

2,4 1,2 6,6 5,1 4,3 3,5

4,6 5,5 1,3 6,2 3,4 2,1

6,5 3,6 4,1 1,4 2,2 5,3

3,3 6,1 5,4 2,6 1,5 4,2

5,2 4,4 2,5 1,6

(a)

1,1 2,3 3,2 4,5 5,6 6,4

2,4 1,2 6,6 5,1 4,3 3,5

4,6 5,5 1,3 6,2 3,4 2,1

6,5 3,6 4,1 1,4 2,2 5,3

3,3 6,1 5,4 2,6 1,5 4,2

5,2 4,4 2,5 3,3 6,1 1,6

(b)

3,1 6,3

(c)

Fig. 9 Pairs .〈b, g〉 of the maximal solution of the problem regarding the 36 officers determined by
the first of 480 ternary vectors computed for field (6,3): (a) computed partial solution, (b) extension
of fields (6,4) and (6,5) regarding the rules of a Graeco-Latin square with highlighted repeated pairs
of values . 〈b, g〉, (c) missing pair of values . 〈b, g〉

The evaluation of Fig. 9a confirms that this partially filled square:

1. satisfies rules 2 and 3 specified in Sect. 6.1 as a condition of a Latin square of
values g;

2. satisfies rules 4 and 5 specified in Sect. 6.1 as a condition of a Latin square of
values b; and

3. satisfies rule 6 specified in Sect. 6.1 as a condition to exclude the assignment of
any pair of values .〈b, g〉 to more than one field.

Knowing the five pairs of values .〈b, g〉 in columns 4 and 5, it is easy to
complete the assigned pairs of values to a Graeco-Latin square. Figure 9b shows
this extension. The highlighted fields show that two pairs of values (officers) are
assigned to two different fields each. However, this assignment violates rule 6.

The missing 2 pairs of values can be found by evaluation of the 34 different pairs
of values of Fig. 9a. Figure 9c shows the two missing pairs of values .〈b, g〉.

The comparison of the two pairs of values .〈3, 3〉 and .〈6, 1〉 that extend the 34
assignments of Fig. 9a to a Graeco-Latin square as shown in fields (6,4) and (6,5)
of Fig. 9b with the two missing pairs of different values shown Fig. 9c reveals an
interesting property:

• exchanging values b in pairs .〈3, 3〉 and .〈6, 1〉 that complete the Graeco-Latin
square results in pairs .〈6, 3〉 and .〈3, 1〉 which are exactly the missing pairs shown
in Fig. 9c; and

• exchanging values g in pairs .〈3, 3〉 and .〈6, 1〉 that complete the Graeco-Latin
square results in pairs .〈3, 1〉 and .〈6, 3〉 which are also exactly the missing pairs
shown in Fig. 9c.

In summary, we can state that not permitting the exchange of either the values
of grade g or brigade b in 2 fields of the .6 × 6 square prohibits the solution of the
problem of the 36 officers specified by Euler more than 200 years ago.

The evaluated partial solution shown in Fig. 9a is a computed single representa-
tive of an equivalence class. All .62,208,000 equivalent results of this class can be

152 B. Steinbach and C. Posthoff

generated by means of permutations of rows, columns, and values .b = 2, . . . , 6.
Due to the 480 computed representatives of equivalence class in the case of the
excluded fields (6,4) and (6,5), we have already . 480·62,208,000 = 29,859,840,000
partial solutions for this case.

10 Complete Evaluation

The model of Fig. 1f determines the number of ternary vectors of the TVLs for
the 30 DC-clauses. We know from Sect. 8 so far only the partial solutions for two
different excluded pairs of fields: .〈(6, 4), (6, 5)〉 and .〈(5, 1), (6, 1)〉. However, there
are .

(30
2

) = (29+1)·29
2 = 435 different pairs of fields for which the DC-clauses

can be excluded from the CDC-SAT formula. We computed all representatives
of equivalence classes for all these 435 cases. Table 2 summarizes the computed
results.

It is a property of the model being used that the brigades b of the first row are
uniquely determined. Even if the DC-clause of one field of the first row is excluded
from the CDC-SAT formula, the brigade b of this field remains implicitly specified.
Therefore, we must distinguish in Table 2 the general cases where different values
of b are possible in the two excluded fields (upper part of this table) and the special
cases where the value of b is implicitly specified at least for one of the excluded
fields (lower part of this table).

Table 2 shows that the number of representatives of equivalence classes of partial
solutions of the problem of the 36 officers depends on the positions of the 2 excluded
fields.

Table 2 Evaluation for all cases of pairs of unused fields . f1 and . f2

Condition Number of cases Number of representatives

No fixed value of the brigade b
.〈f1, f2〉 are in the same row 50 480

.〈f1, f2〉 in the same column 40 480

.(r(f1) == c(f2)) ∧ (c(f1) == r(f2)) 10 528

.(r(f1) == c(f2)) ⊕ (c(f1) == r(f2)) 80 276

Otherwise 120 708

Sum of these cases 300

At least one fixed value of the brigade b
.〈f1, f2〉 are in the same row 10 480

.〈f1, f2〉 in the same column 20 480

.(r(f1) == c(f2)) ∧ (c(f1) == r(f2)) 5 480

.(r(f1) == c(f2)) ⊕ (c(f1) == r(f2)) 40 144

Otherwise 60 256

Sum of these cases 135

Sum of all cases 435

Thirty-Six Officers of Euler-New Insights Computed Using XBOOLE 153

The first special relation of the two excluded fields is that these fields belong to
the same row of the explored square. There are ten such cases in each of the six
rows of the square. Mirroring of these cases on the main diagonal leads to a second
special relation where the two excluded fields belong to the same column of the
explored square. We computed 480 representatives for all these cases.

The third special relation of the two excluded fields is that these fields are located
symmetric to the main diagonal. That means the index of the row of field 1 . r(f1)

is equal to the index of the column of field 2 .c(f2) and the index of the column of
field 1 .c(f1) is also equal to the index of the row of field 2 .r(f2). We computed 528
representatives for such pairs of excluded fields where the value of the brigade b is
not fixed in one of these fields and 480 representatives otherwise.

The fourth special relation of the two excluded fields is a partial symmetry; either
.r(f1) is equal to .c(f2) or .c(f1) is equal to .r(f2). We computed 276 representatives
for such pairs of excluded fields where the value of the brigade b is not fixed in one
of these fields and 144 representatives otherwise.

In the remaining cases, we computed 708 representatives for such pairs of
excluded fields where the value of the brigade b is not fixed in one of these fields
and 256 representatives otherwise.

All computed representatives are orthogonal to each other due to the condition
that all officers must be different in both the brigade b and the grade g. The number
of all representatives .nar is therefore the sum of the products of the numbers of
cases and the numbers of representatives listed in Table 2: .nar = 193,440. This
number of representatives already includes permutations of rows and/or columns
for which the two excluded fields remain unchanged. However, the number .nar has
been computed under the conditions:

• the brigade .b = 1 in the main diagonal, where at all 6 values are possible;
• the grade .g = r = c in the main diagonal, where at all 6!=720 assignments are

possible; and
• the brigade .b = c in the first row, where at all 5!=120 assignments are possible.

Hence, the number of all partial solutions .naps consisting of 34 of officers satisfying
the condition of Euler and using all fields of the main diagonal is equal to the product
of all representatives .nar and the possible alternatives of the utilized equivalence
classes .nues = 6 · 6! · 5! = 518,400:

. naps = nar · nues = 193,440 · 518,400 = 100,279,296,000 ≈ 1011 .

11 Conclusion

We confirmed the assumption of Euler that there is no possibility to place 36 officers
of 6 different brigades and 6 different grades on a .6 × 6 matrix so that they form a
Graeco-Latin square. A straightforward description of all related conditions as usual

154 B. Steinbach and C. Posthoff

SAT formula would require 1296 Boolean variables and more than 100,000 clauses
in the case that a one-hot encoding is used.

Utilizing equivalence classes of more than 60 million elements and the CDC-SAT
approach, we modeled this problem using only 440 Boolean variables and 30 DC-
clauses. Only one second was needed to compute the required 29 intersections using
the XBOOLE-monitor XBM 2 in the case of an optimized order of the DC-clauses.
Based on the complete evaluation for all pairs of excluded fields located out of the
main diagonal and the utilized equivalence classes, we found that more than . 1011

maximal assignments of 34 different officers partially satisfy the explored problem
of the 36 officers.

The computed quantitative solution of a very hard Boolean problem confirms
once more the power of both the XBOOLE-library and the XBOOLE-monitor
XBM 2. A deep analysis of the problem and the utilization of the detected properties
were important preconditions for this success.

References

1. Biere, A., Heule, M.J.H., van Maaren, H., Walsh, T.: Handbook of Satisfiability, vol. 185. IOS
Press, Amsterdam (2009). ISBN 978-1-58603-929-5

2. Bose, R.C., Shrikhande, S.S.: On the Falsity of Euler’s Conjecture About the Non-Existence
of two Orthogonal Latin Squares of Order 4t+2. In: Proceedings of the National Academy of
Sciences of the United States of America, vol. 45(5), pp. 734–741 (1959)

3. Bose, R.C., Shrikhande, S.S., Parker, E.T.: Further results on the construction of mutually
orthogonal latin squares and the falsity of Euler’s Conjecture. Can. J. Math. 12, 189–203 (1960).
https://doi.org/10.4153/CJM-1960-016-5

4. Euler, L.: Recherches sur une nouvelle espéce de quarres magiques (1782). https://
scholarlycommons.pacific.edu/euler-works/530/, visited on 29/05/2022

5. Posthoff, Ch., Steinbach, B.: Logic Functions and Equations—Binary Models for Computer
Science, 2nd edn. Springer Nature, Cham (2019). ISBN 978-3-030-02419-2

6. Rather, S.A., Burchardt, A., Bruzda, W., Rajchel-Mieldzioc, G., Lakshminarayan, A.,
Zyczkowski, K.: Thirty-six entangled officers of Euler: Quantum solution to a classically
impossible problem. arXiv:2104.05122 [quant-ph]. https://doi.org/10.48550/arXiv.2104.05122

7. Steinbach, B., Posthoff, Ch.: Logic Functions and Equations—Fundamentals and Applications
using the XBOOLE-Monitor, 3 edn. Springer Nature, Switzerland (2022). https://doi.org/10.
1007/978-3-030-88945-6

8. Wikipedia: Latin Square. visited on 2022-08-23. https://en.wikipedia.org/wiki/Latin_square

https://doi.org/10.4153/CJM-1960-016-5
https://doi.org/10.4153/CJM-1960-016-5
https://doi.org/10.4153/CJM-1960-016-5
https://doi.org/10.4153/CJM-1960-016-5
https://doi.org/10.4153/CJM-1960-016-5
https://doi.org/10.4153/CJM-1960-016-5
https://doi.org/10.4153/CJM-1960-016-5
https://doi.org/10.4153/CJM-1960-016-5
https://doi.org/10.4153/CJM-1960-016-5
https://scholarlycommons.pacific.edu/euler-works/530/
https://scholarlycommons.pacific.edu/euler-works/530/
https://scholarlycommons.pacific.edu/euler-works/530/
https://scholarlycommons.pacific.edu/euler-works/530/
https://scholarlycommons.pacific.edu/euler-works/530/
https://scholarlycommons.pacific.edu/euler-works/530/
https://scholarlycommons.pacific.edu/euler-works/530/
https://doi.org/10.48550/arXiv.2104.05122
https://doi.org/10.48550/arXiv.2104.05122
https://doi.org/10.48550/arXiv.2104.05122
https://doi.org/10.48550/arXiv.2104.05122
https://doi.org/10.48550/arXiv.2104.05122
https://doi.org/10.48550/arXiv.2104.05122
https://doi.org/10.48550/arXiv.2104.05122
https://doi.org/10.48550/arXiv.2104.05122
https://doi.org/10.1007/978-3-030-88945-6
https://doi.org/10.1007/978-3-030-88945-6
https://doi.org/10.1007/978-3-030-88945-6
https://doi.org/10.1007/978-3-030-88945-6
https://doi.org/10.1007/978-3-030-88945-6
https://doi.org/10.1007/978-3-030-88945-6
https://doi.org/10.1007/978-3-030-88945-6
https://doi.org/10.1007/978-3-030-88945-6
https://doi.org/10.1007/978-3-030-88945-6
https://doi.org/10.1007/978-3-030-88945-6
https://en.wikipedia.org/wiki/Latin_square
https://en.wikipedia.org/wiki/Latin_square
https://en.wikipedia.org/wiki/Latin_square
https://en.wikipedia.org/wiki/Latin_square
https://en.wikipedia.org/wiki/Latin_square
https://en.wikipedia.org/wiki/Latin_square
https://en.wikipedia.org/wiki/Latin_square

Start Small But Dream Big: On Choosing
a Static Variable Order for Multiplier
BDDs

Khushboo Qayyum, Alireza Mahzoon, and Rolf Drechsler

1 Introduction

With the size of Integrated Circuits (ICs) getting smaller and their functionality
getting more complex, the task to assert the correctness of an IC becomes crucial.
It is imperative that functionality of chips is thoroughly verified before silicon
to prevent bugs from escaping into the final product. These bugs not only cause
malfunctions but are a threat to the security of systems and a cause of monetary
losses [1]. In this regard, formal verification techniques allow reliable verification of
ICs using mathematical proof. Among formal verification methods, Binary Decision
Diagram (BDD)-based methods are widely used to prove the correctness of ICs.
A BDD is a canonical representation of a Boolean function as a Directed Acyclic
Graph (DAG) [2]. Therefore, if two Boolean functions perform the same task, their
BDDs will be the same if the input variables of both functions are in the same order
regardless of how the Boolean function is defined. This attribute of canonicity allows
two circuits to be easily compared and verified. State-of-the-art tools can perform
this verification by a simple root pointer comparison of the BDDs of two Boolean
functions [1].

However, one of the main challenges of using BDDs is to find a good order
of the input variables. The size of BDDs is very sensitive to the input variable
order; therefore, a good order of input variables may produce a size of BDD within
polynomial order, but a bad order can cause the size of a BDD to be of exponential

K. Qayyum (�) · A. Mahzoon
University of Bremen, Bremen, Germany
e-mail: khushboo@uni-bremen.de; mahzoon@uni-bremen.de

R. Drechsler
Institute of Computer Science, University of Bremen and Cyber-Physical Systems, DFKI GmbH,
Bremen, Germany
e-mail: drechsle@uni-bremen.de

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. Drechsler, S. Huhn (eds.), Advanced Boolean Techniques,
https://doi.org/10.1007/978-3-031-28916-3_11

155

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-28916-3protect T1	extunderscore 11&domain=pdf

 885 51863 a 885 51863 a

mailto:khushboo@uni-bremen.de
mailto:khushboo@uni-bremen.de
mailto:khushboo@uni-bremen.de

 11424 51863 a 11424 51863 a

mailto:mahzoon@uni-bremen.de
mailto:mahzoon@uni-bremen.de
mailto:mahzoon@uni-bremen.de

 885 56845 a 885 56845
a

mailto:drechsle@uni-bremen.de
mailto:drechsle@uni-bremen.de
mailto:drechsle@uni-bremen.de
https://doi.org/10.1007/978-3-031-28916-3_11
https://doi.org/10.1007/978-3-031-28916-3_11
https://doi.org/10.1007/978-3-031-28916-3_11
https://doi.org/10.1007/978-3-031-28916-3_11
https://doi.org/10.1007/978-3-031-28916-3_11
https://doi.org/10.1007/978-3-031-28916-3_11
https://doi.org/10.1007/978-3-031-28916-3_11
https://doi.org/10.1007/978-3-031-28916-3_11
https://doi.org/10.1007/978-3-031-28916-3_11
https://doi.org/10.1007/978-3-031-28916-3_11
https://doi.org/10.1007/978-3-031-28916-3_11

156 K. Qayyum et al.

order. This attribute of a BDD calls for the choice of input variable order to be
perceptive. A number of different heuristics have been developed in the past that
try to associate the arrangement of input variables with different aspects of circuits’
architecture or by using searching and sorting techniques [3–7]. These heuristics
can be divided into two main categories based on when the input order is applied to
the BDD construction. In static variable ordering heuristics, the input variable order
is arranged and decided before the construction of BDDs, and in dynamic variable
ordering heuristics, the input variable order is applied during the construction of
BDD.1

The erratic behavior of the BDD size is not just limited to the ordering of the
input variables, but the size is also sensitive to the structure of underlying function.
This behavior is particularly evident in BDDs of complex arithmetic circuits.
Arithmetic circuits make integral part of ICs; therefore, their correct functionality
is essential. Bugs like Pentium FDIV can render a chip useless if they are not
identified before silicon. Within the category of arithmetic circuits, multipliers have
piqued the interest of researchers for a long time as the BDDs of multiplier circuits
tend to explode in size even at substantially small multipliers [2]. Due to this
explosion, constructing the BDDs for multipliers requires tremendous hardware
resources [8]. Furthermore, using systems with insufficient resource requirements
lead to prolonged runtimes only to result in failure at the end. Keeping the concern
for the size of BDDs for multipliers in mind, the choice of an appropriate input
variable ordering for a multiplier becomes paramount as a good input variable
ordering can help in reducing this size explosion. Additionally, an early estimation
of memory requirement can facilitate an appropriate selection of resources and thus
save time and effort.

Contribution In this paper, we present a methodology to choose an optimal static
variable ordering heuristic for larger multipliers with an early estimation of the
endsize, peaksize, and memory required for constructing the BDD nodes. Our
proposed methodology allows a fast and resource-efficient optimal static variable
ordering heuristic selection. The estimation of the size and memory requirements
of the large multiplier allows a more insightful selection of resources for the BDD
construction. In our methodology, we first obtain the smaller version of the target
multiplier and perform analysis using various static variable ordering heuristics. Our
results show that a static variable ordering heuristic that is optimal for a scaled-down
circuit is also optimal for the larger circuit while requiring only a fraction of time
and memory resources. For the endsize estimation, we reuse chosen heuristics and
incrementally increase the size of the circuit to estimate the endsize and the peaksize
of the larger circuits. Using the estimated peaksize of the BDD, a conservative
estimation of the memory requirements for the BDD nodes can be determined with
high accuracy. We perform extensive experiments on multipliers obtained using the
GenMul [9] multiplier generator.

1 In this work, we overlook dynamic variable ordering heuristics as these heuristics can be
counterintuitively slow and thus prohibitive for complex circuits like multipliers.

Start Small but Dream Big: On Choosing a Static Variable Order for Multiplier BDDs 157

2 Related Work

Multipliers have been a subject of interest for a long time, and multiple strategies
have been developed specifically to address the size complexity of the multiplier
BDDs. In [10], the authors address the complexity of multipliers BDDs through the
introduction of input variables although the complexity is reduced but not solved
completely. Recently, in [11] the authors also present a method to decrease the
complexity of verification of the multiplier BDDs; however, an optimal variable
ordering is not addressed. Multiple different static variable ordering heuristics have
been developed in the past. In [5–7] authors exploit circuit architecture to come up
with a suitable input variable ordering, whereas in [3, 4], searching algorithms are
applied to the circuit to find a good input variable ordering. Most of these consider
only the endsize of the BDD and only for a single output.

The memory usage issue of BDDs is addressed by several works [12–15] using
different approaches in constructing and manipulation of the BDDs. The estimation
of size of BDDs has been attempted using timed automata by [16, 17] for generic
circuits.

Our work differs in how the problem is approached with only multipliers as our
target circuits. We focus mainly on choosing an optimal static variable ordering
heuristic from the already developed heuristics. For calculations, we consider all
the outputs for endsize and also consider the peaksize of the BDDs. Additionally,
we focus on memory estimation instead of memory management.

3 Preliminaries

3.1 Binary Decision Diagrams

BDDs are a tree-like representation of a Boolean function created using Shannon
expansion. Once ordered and reduced, these Reduced Ordered BDDs (ROBDDs)
form a canonical DAG for the given Boolean function. In our work, we refer to the
ROBDDs as BDDs. The canonicity of the BDDs is indifferent to the architecture of
the underlying function. That is, given two Boolean functions, their BDDs will be
the same if :

• both the functions perform the same tasks regardless of the underlying architec-
ture and

• both the graphs are made with input variables arranged in the same order.

This makes the comparison of two circuits a trivial task. For this reason,
the BDDs are favored in the area of formal verification. However, the size of
BDDs and their sensitivity to certain circuit architectures sometimes undermines
its performance and ease. The ordering of input variables of a Boolean function
heavily influences the size of its BDD. Thus, a good choice of the input variable

158 K. Qayyum et al.

order plays a decisive role in finding an optimally sized BDD. Although finding an
optimal input variable order for a BDD is NP-hard [2], various heuristics have been
developed to address this problem. Using these heuristics, the input variables can be
arranged during the construction of BDD using dynamic variable ordering heuristics
or before the construction of BDD using static variable ordering heuristic like the
ones given below.

• Initial Order: Input variable order as they are defined in the circuit description.
• Reverse Order: Reverse of the initial order.
• Dependency Order: The variables influencing more outputs of the circuit get

precedence [7].
• Depth-First Search Order: Depth-First Search (DFS) is used to determine input

variable order [3].
• Fanin Order: The inputs that are deeper in the circuit get precedence [6].
• Fanout Order: The inputs with more fanouts in the circuit get precedence [4].
• Random Order: The input variable order is generated randomly.
• Breadth-First Search Order Breadth-First Search is used to determine the

ordering for the given circuit [3].

Although dynamic variable ordering heuristics are capable of producing better
outcomes, their excessive runtimes make them counterproductive. For this reason,
in this work, we only focus on static variable ordering heuristics.

3.2 Multipliers

Multipliers are essential components in modern ICs. Many pivotal applications
like encryption, digital signal processing, etc. require multipliers. Different types
of multiplier architectures have been developed over time to satisfy demands
in aspects like power, speed, area, and accuracy. When individually compared,
these architectures are apparently different, but based on their internal functions,
a multiplier can be broadly represented as a three-stage structure as represented in
Fig. 1. Each of these stages performs the following task:

• Partial Product Generator (PPG): generates the partial product from the multi-
plier and multiplicand.

• Partial Product Accumulator (PPA): reduces and aggregates the partial products.
• Final Stage Adder (FSA): sums up all the result of the PPA to generate the final

product.

The PPGs for multipliers can be implemented using simple AND gates and Booth
encoding algorithm. Likewise, some of the examples of PPAs are array,Wallace tree,
counter-based Wallace, and Dadda tree algorithms. For the FSA stage, architectures
like Brent-Kung, ripple carry, carry look-ahead, Lander-Fischer, Kogge-Stone, and
Carry-skip can be used.

Start Small but Dream Big: On Choosing a Static Variable Order for Multiplier BDDs 159

Fig. 1 Multiplier structure

Partial Product Generator
(PPG)

Partial Product Accumulator
(PPA)

Final Stage Adder
(FSA)

Multiplier Multiplicand

Product

4 Methodology

In this section, we explain our proposed methodology. First, we present an overview
and later we explain each step of our methodology.

4.1 Overview

The overview of our proposed methodology is illustrated in Fig. 2. Our proposed
methodology is comprised of two steps. In the first step, shown in Fig. 2 by the red
solid line, a smaller version of the target multiplier circuit is obtained. The behavior
of BDDs for a number of different static variable ordering heuristics is observed for
the smaller scaled-down circuit, and the most optimal heuristic is identified. Once
the optimal heuristic is selected, the first step of the methodology is concluded
and the second step begins. In the second step, shown as a blue dashed line in
Fig. 2, we build a set of circuits which are also scaled-down versions of the target
multiplier. The circuits in this set have the same structure but incrementally increase
in size. The optimal static variable ordering heuristic is applied to this set of circuits,
and different parameters related to the size of BDDs of each circuit are collected.
Using these parameters, the endsize, peaksize, and memory requirement of the target
multiplier are estimated.

160 K. Qayyum et al.

Original Multiplier

Scale-down

Obtain Results

Run AnalysisApply

Incremental
increase

Multiple
static
variable
ordering
heuristics

Find optimal static
variable ordering

heuristic

Optimal static variable
order

Apply optimal static
variable ordering

Estimate final size of
original circuit

Optimal static variable order
Estimated endsize

Step 1
Step 2
Results

Fig. 2 Proposed two-step methodology

4.2 Optimal Static Variable Order Selection

The first step of our proposed methodology aims to find an optimal static variable
ordering heuristic for the target multiplier. This process is represented in Fig. 2 by
the red solid line. The idea is to work on smaller version of the target circuit to find
the optimal static variable ordering heuristic and then use it for target multiplier.
This helps to reduce the time and resources required for constructing the BDDs that
are otherwise substantial when the larger multiplier is used. Consider a target circuit
that is a .64 × 64 bit signed multiplier with a Array PPA and a Brent-Kung FSA.
The scaled-down version is a .8 × 8 bit signed multiplier with the same Array PPA
and a Brent-Kung FSA. We use GenMul [9] to obtain multiplier circuits in various
structures and sizes. Our proposed methodology is agnostic to the underlying tools,
thus, any BDD construction tool can be adopted that provides information about
the endsize and the peaksize of the BDD. In order to find the optimal variable
ordering heuristic, we use an in-house framework with CUDD [18] at its heart. This
framework finds input variable orders for a given circuit using different heuristics
and then uses these input variable orders to construct BDDs for the circuits. In
addition to the BDD construction, the framework also monitors different parameters
of BDDs like peaksize during construction and endsize. Since the GenMul tool only

Start Small but Dream Big: On Choosing a Static Variable Order for Multiplier BDDs 161

Table 1 Results of static
variable ordering heuristics
for the same multiplier in
different sizes

Static variable ordering
heuristic

Circuit size

.8 × 8 .10 × 10 . 12 × 12

Initial order 6480 50,085 391,891

Reverse order 6386 48,876 374,537
Dependent order 12,916 129,321 1,276,275

Fanin order 6969 51610 390512

Fanout order 6480 50085 391891

Random order 16710 230951 2524622

BFS appending 12618 123378 1178732

Initial order interleaved 12916 129321 1276275

provides circuits in Verilog, we convert the circuits into bench format that can be
processed by our framework. This can be done using the Yosys tool [19].

The framework generates input variable orderings for the scaled-down multiplier
using different heuristics. Using the generated input variable orders, it constructs
the BDDs for the circuit and records their endsizes and peaksizes in a database.
The details of these static variable ordering heuristics are given in Sect. 3.1. Once
the results of all the static variable ordering heuristics are available, the optimal
heuristic is chosen. The choice of the optimal heuristic can be based on different
factors, e.g., smallest endsize and resource usage. With the decision of the optimal
static variable ordering heuristic, the first step of the methodology concludes, and
the second step for the endsize and peaksize estimation for the target multiplier
begins.

Revisiting the earlier example, Table 1 shows the endsizes of the Array PPA
and Brent-Kung FSA multiplier for three different sizes. The bold values show
the smallest values. It can be seen that heuristic that performs well for .8 × 8 also
performs well for the larger .10 × 10 and .12 × 12 multiplier thus in line with our
claim that the heuristic that performs well for smaller circuits also performs well for
larger circuits.

4.3 BDD Endsize and Peaksize Estimation

In the second step, we estimate the endsize and the peaksize of the target multiplier.
Since the BDDs of multipliers usually explode in size, an estimation of the peaksize
and endsize can help in projecting the required resources for the construction of
their BDDs. This process is shown by the blue dashed line in Fig. 2. In this step, we
use the optimal static variable ordering heuristic that is previously selected in the
first step of the methodology. We obtain two or more circuits from the GenMul tool
with the same structure to perform the experiments. These circuits are slightly larger
than the scaled-down version of the target multiplier. In our set of circuits, we obtain
multipliers with the same architecture with .8 × 8, .9 × 9, and .10 × 10 bit-size. Our
framework constructs the BDDs of these circuits and extracts vital information such

162 K. Qayyum et al.

as the endsize and peaksize of the BDDs of each circuit using the selected static
variable order heuristic. Once this information is available, trends are observed with
respect to the growth of BDD. Using these trends, the growth factors are calculated,
and these growth factors are used to estimate the endsize and peaksize of the target
multiplier using the following equations:

.êy = de
y−x × ex . (1)

p̂y = dp
y−x × px (2)

where . êy and . p̂y are the estimated endsizes and peaksizes of the target multiplier
and . ex and . px are the endsize and peaksize of the scaled-down multiplier. x is the
bit-size of the inputs of the scaled-down multiplier and y is the bit-size of the input
of the target multiplier. . de and . dp are the growth factors per bit of the endsize and
peaksize, respectively, for the given multiplier structure. The peaksize of a BDD
shows the maximum number of nodes that were created throughout the construction
of the BDD. Therefore, the peaksize dictates the memory consumption during the
construction of a BDD. Using the peaksize and the memory required by a single
node, the estimation of the memory required by the target BDD is calculated as
follows:

.memory_required = p̂y × size_per_node (3)

However, the memory estimation is conservative as they do not include the auxiliary
memory that maybe required for processing. Regardless, they can allow for a
more insightful resource allocation and thus produce practical runtimes for BDD
construction.

5 Experiments

In this section, we present the experimental results of the proposed methodology
to select the optimal static variable ordering heuristic and estimation of peaksize
and endsize. In our work, we obtained different multiplier structure combinations
using the GenMul tool. We applied our methodology to a wide range of multiplier
structures, but for brevity, we present results for only a few static variable ordering
heuristics and multiplier structures.

5.1 Selection of Optimal Heuristic

Figure 4 shows the endsize and peaksize of different static variable ordering
heuristics for four different .8×8 multiplier structures. The naming of the multipliers

Start Small but Dream Big: On Choosing a Static Variable Order for Multiplier BDDs 163

in the figures is in the X_A_B format where X is the PPG (S = signed simple, U =
unsigned simple), A is the PPA type (AR = Array, WT = Wallace tree, DT = Dadda
tree, CWT = counter-based Wallace tree), and B represents its FSA type (BK =
Brent-Kung, RC = ripple carry, CK = carry skip, LF = Ladner-Fischer). The x-
axis represents the multiplier structure and the y-axis shows the number of nodes.
When choosing the optimal static variable ordering heuristic based on the endsize,
the lowest value would be considered. From Fig. 3a which shows the endsize for
signed multipliers, it can be seen that the reverse order performs well for all the
multiplier structures, but in Fig. 4a which shows the endsize of unsigned multipliers,
initial and fanout ordering heuristics outperforms the other heuristics. The initial
and reverse ordering heuristics are less intuitive, but it is interesting to see that
there are other heuristics like the fanout ordering that produce similar results as that
of initial order. And consequently its performance would match the reverse order.
While some heuristics look oblivious to the structures, heuristics like fanin order
seem to be affected by the structure of the multiplier. The random order performs
the worst for all the selected structures which reinforces that the selection of input
variable order should be rational.

Figures 3b and 4b show the peaksizes using different static variable ordering
heuristics for signed and unsigned multipliers, respectively. When selecting the
static variable ordering heuristic based on the peaksize, the difference seems to be
less obvious. It seems so because on average the peaksize is 10x larger than the
endsize; therefore, the difference between orders is less evident. Within our selected
signed multiplier structures (Fig. 3b), the reverse order performs well but this is
not universal. For the unsigned multiplier of Array and Brent-Kung combination
(U_AR_BK) as evident in Fig. 4b, the BFS produces a much smaller peaksize and
thus would consume fewer resources and therefore would be the choice for optimal
heuristic when the peaksize is considered.

5.2 Estimation of Endsize and Peaksize of the BDDs

From the results of step 1, as evident from Fig. 3a, the reverse order was selected as
the optimal static variable ordering heuristic for the multiplier structure S_AR_BK.
Since our scaled-down version of multiplier was .8 × 8, the circuits in this set for
estimation are of size .9×9, .10×10, and .11×11. Although a set of three increments
would suffice, more incremental circuits would result in a better estimation. We
obtained a set of circuits of all the multiplier structures with incremental increase
in size. However, due to space constraints, we only show the result for one of the
multiplier structure, i.e., signed multiplier with Array PPA and Brent-Kung FSA
(S_AR_BK). As expected in our results, the growth factor of the peaksize was
slightly greater than the endsize (. 2.8 and . 2.6, respectively).

Figure 5a, b shows the estimated endsize and peaksize using Equations 1 and 2
for our selected multiplier structure. The x-axis represents the size of the multiplier
in bits, and the primary y-axis shows the number of nodes, and the secondary y-axis

164 K. Qayyum et al.

Mutliplier

En
ds

iz
e

0

5000

10000

15000

20000

S_AR_BK S_WT_RC S_DT_CK S_CWT_LF

Initial order

Reverse order

Dependent order

Fanin order

Fanout order

Random order

BFS appending

Initial order interleaved

(a)

Mutliplier

Pe
ak

si
ze

0

50000

100000

150000

200000

S_AR_BK S_WT_RC S_DT_CK S_CWT_LF

Initial order

Reverse order

Dependent order

Fanin order

Fanout order

Random order

BFS appending

Initial order interleaved

(b)

Fig. 3 Endsize and peaksize of four 8. ×8 signed multiplier structures for different static variable
ordering heuristics. (a) Endsize for signed multipliers. (b) Peaksize for signed multipliers

Start Small but Dream Big: On Choosing a Static Variable Order for Multiplier BDDs 165

Mutliplier

En
ds

iz
e

0

5000

10000

15000

20000

25000

U_AR_BK U_WT_RC U_DT_CK U_CWT_LF

Initial order

Reverse order

Dependent order

Fanin order

Fanout order

Random order

BFS appending

Initial order interleaved

(a)

Mutliplier

Pe
ak

si
ze

0

50000

100000

150000

U_AR_BK U_WT_RC U_DT_CK U_CWT_LF

Initial order

Reverse order

Dependent order

Fanin order

Fanout order

Random order

BFS appending

Initial order interleaved

(b)

Fig. 4 Endsize and peaksize of four 8. ×8 unsigned multiplier structures for different static variable
ordering heuristics. (a) Endsize for unsigned multipliers. (b) Peaksize for unsigned multipliers

166 K. Qayyum et al.

Multiplier size in bits

N
od

es
 (x

10
^6

)

Pe
rc

en
ta

ge
 e

rr
or

0

50

100

150

200

0

2

4

6

8

10

12

8 9 10 11 12 13 14 15 16 17 18

%age error

Actual
endsize

Estimated
endsize

(a)

Multiplier size in bits

N
od

es
 (x

10
^6

)

Pe
rc

en
ta

ge
 e

rr
or

0

500

1000

1500

2000

2500

0

2

4

6

8 9 10 11 12 13 14 15 16 17 18

%age error

Actual
peaksize

Estimated
peaksize

(b)

Fig. 5 Estimated endsize and peaksize for the signed multiplier with Array PPA and Brent-Kung
FSA (S_AR_BK). (a) Endsize. (b) Peaksize

Start Small but Dream Big: On Choosing a Static Variable Order for Multiplier BDDs 167

gives the percentage error between the actual and the estimated values. The solid
blue lines show the actual endsize and peaksize, and the red dashed lines show the
estimated endsize and peaksize for these circuits. The percentage error is shown by
the bar graph (green) in the background of the respective graphs.

As visible from Fig. 5a, b, the estimated values follow the same trends as
the actual values. Consider the .16 × 16 bit multiplier in Fig. 5, the estimated
endsize is .21, 967, 242 and the estimated peaksize is .279, 660, 485. To calculate the
percentage error, we constructed the BDD for the circuit sizes that were achievable.
For the .16 × 16 bit multiplier, the percentage error in endsize is .≈ 5.9% and for
peaksize it is only .≈ 1.2%. Although the error in the estimated endsize shows
an increasing trend in this case, increasing the number of circuits to calculate
the growth factors will help in decreasing the error percentage. The error in the
estimated peaksize does not show a constant increase as the endsize and is very
small in contrast to the endsize. Thus, the values that are calculated for the memory
required by the BDD nodes using the estimated peaksize can be reliable.

5.3 Memory Usage Estimation

A single node on CUDD package requires 32-bytes when compiled using 64-bit
pointer system (16-bytes for 32-bit pointers) [18]. Table 2 shows the estimated
values for endsize, peaksize, and memory requirement of BDD nodes constructed
using reverse ordering for a signed multiplier with Array PPA and Brent-Kung
FSA (S_AR_BK) for larger sizes. Using these values, for the given structures the
minimum memory requirement for a .16 × 16 multiplier, excluding the auxiliary
memory required by the CUDD package, is . ≈ 9GB memory for 64-bit systems.
Based on the estimated values, for the .18 × 18 multiplier, we ran it on system with
memory resource less than estimated values (Intel(R) Xeon(R) CPU E5-2630 v3 @
2.40GHz, main memory .= 64GB). As expected, the BDD construction failed after
running for an extended period (runtime . > . 24 h). Later, we constructed the BDD on
a system having resources greater than our memory estimate (Intel(R) Core(TM)
i9-11900KF @ 3.50GHz, main memory .= 125GB), and the construction was
successfully completed in a reasonable time (.≈ 1 h). Thus, it reinforces the
confidence in the estimated values and in the idea that an early memory estimation
allows for a more efficient selection of resource and utilization of time.

6 Discussion

In this section, we discuss some observations and possible extensions of our
work. Although we applied our methodology to only traditional BDD construction
methods, we believe that it can easily be adapted to other methods used for
constructing BDDs like the one proposed in [10]. In addition to that, the estimated

168 K. Qayyum et al.

Table 2 Estimated endsize, peaksize, and memory requirement for S_AR_BK multiplier using
reverse ordering

Estimated Estimated Estimated memory

Multiplier sizes endsize peaksize required by CUDDa

.16 × 16 .2.18 × 10^7 .2.80 × 10^8 9GB

.18 × 18 .1.67 × 10^9 .2.30 × 10^9 74GB

.32 × 32 .2.54 × 10^14 .5.87 × 10^15 .1.88 × 10^5 TB

.64 × 64 .3.23 × 10^28 .2.58 × 10^30 .8.26 × 19^19 TB
a conservative estimate for nodes only

memory requirement is not just useful for resource selection for BDD construction;
it can also help in exploring other options for construction of multipliers in case the
available resources appear to be insufficient. The effects of approaches which strive
to reduce memory usage can also be explored and how these methods effect the
growth factors. Another interesting aspect would be the assessment of methodology
for arithmetic circuits other than multipliers, and it would be insightful to see how
the methodology and estimation extends to these circuits.

7 Conclusion

In this paper, we presented a methodology to choose an optimal static variable
ordering heuristic for larger multipliers with early estimation of the endsize,
peaksize, and memory requirements for constructing the BDD. Using the smaller
version of the target multiplier structure, we were able to find an optimal static
variable ordering heuristic that also works equally well for the target multiplier.
For the endsize estimation, we reused the chosen heuristics and collected a set of
multiplier circuits of the same structure with incremental increase in size to find a
growth factor per bit for the endsize and peaksize. This growth factor was used to
estimate the endsize and the peaksize of the target multiplier. Using the estimated
peaksize, we were also able to project the memory required in constructing the
BDD. We demonstrated the applicability of our methodology on various multiplier
circuits.

References

1. Hu, A.J.: Formal hardware verification with BDDs: An introduction. In: PACRIM, vol. 2, pp.
677–682 (1997)

2. Bryant, R.E.: Graph-based algorithms for boolean function manipulation. IEEE Trans. Com-
put. 100(8), 677–691 (1986)

3. Butler, K.M., Ross, D.E., Kapur, R., Mercer, M.R.: Heuristics to compute variable orderings
for efficient manipulation of ordered binary decision diagrams. In: Design Automation
Conference, 417–420 (1991)

Start Small but Dream Big: On Choosing a Static Variable Order for Multiplier BDDs 169

4. Fujii, H., Ootomo, G., Hori, C.: Interleaving based variable ordering methods for ordered
binary decision diagrams. In: International Conference on Computer-Aided Design, pp. 38–
41 (1993)

5. Fujita, M., Fujisawa, H., Kawato, N.: Evaluation and improvement of Boolean comparison
method based on binary decision diagrams. In: International Conference on Computer-Aided
Design, vol. 88, pp. 2–5 (1988)

6. Malik, S., Wang, A., Brayton, R., Sangiovanni-Vincentelli, A.: Logic verification using binary
decision diagrams in a logic synthesis environment. In: International Conference on Computer-
Aided Design, pp. 6–9 (1988)

7. Drechsler, R.: Evaluation of static variable ordering heuristics for MDD construction. In:
International Symposium on Multi-Valued Logic, pp. 254–260 (2002)

8. Drechsler, R., Mahzoon, A.: Polynomial formal verification: Ensuring correctness under
resource constraints. In: International Conference on Computer-Aided Design (2022)

9. Mahzoon, A., Große, D., Drechsler, R.: GenMul: Generating architecturally complex multi-
pliers to challenge formal verification tools. In: Recent Findings in Boolean Techniques, pp.
177–191. Springer, Berlin (2021)

10. Burch, J.R.: Using BDDs to verify multipliers. In: DAC, pp. 408–412 (1991)
11. Kumar, J., Srivastava, A., Fujita, M.: Formal analysis of integer multipliers by building binary

decision diagram of adder trees. In: ISQED, pp. 58–63. IEEE, New York (2022)
12. ichi Minato, S.: Streaming BDD manipulation. IEEE Trans. Comput. 51(5), 474–485 (2002)
13. Shiple, T.R., Brayton, R.K., Sangiovanni-vincentelli, A.L.: Computing Boolean expressions

with OBDDs (1993)
14. Jain, J., Narayan, A., Sangiovanni-Vincentelli, A., Coelho, C., Brayton, R.K., Khatri, S.P.,

Fujita, M.: Decomposition techniques for efficient ROBDD construction. In: Formal Methods
in Computer-Aided Design, pp. 419–434 (1996)

15. Hett, A., Drechsler, R., Becker, B.: MORE: an alternative implementation of BDD packages
by multi-operand synthesis. In: Proceedings EURO-DAC’96. European Design Automation
Conference with EURO-VHDL’96 and Exhibition, pp. 164–169 (1996)

16. Beyer, D.: Improvements in bdd-based reachability analysis of timed automata. In: FME, pp.
318–343. Springer, Berlin (2001)

17. Beyer, D., Lewerentz, C., Noack, A.: Rabbit: A tool for bdd-based verification of real-time
systems. In: International Conference on Computer Aided Verification, pp. 122–125. Springer,
Berlin (2003)

18. Somenzi, F.: CUDD: CU decision diagram package release 2.7.0 (2018). https://github.com/
ivmai/cudd

19. Wolf, C., Glaser, J., Kepler, J.: Yosys-a free verilog synthesis suite. In: Proceedings of the 21st
Austrian Workshop on Microelectronics (Austrochip) (2013)

https://github.com/ivmai/cudd
https://github.com/ivmai/cudd
https://github.com/ivmai/cudd
https://github.com/ivmai/cudd
https://github.com/ivmai/cudd

Index

A
Approximate computing, 17
ARM fast models, 69, 71, 77, 79
Assertions library, 68–70, 72–78
Autosymmetry, 96–99, 101–109

B
Binary decision diagrams (BDDs), vi, 18, 37,

155–168
Boolean function, v, 18, 19, 34–36, 40, 42, 43,

49, 51, 53, 61, 63, 95–103, 105, 107,
109, 115, 116, 118, 119, 155, 157

Boolean minimization, 116, 118, 121
Boolean relation, 34–35, 40–46

C
Camouflaging, 83, 86
Complex Boolean problem, 5
Conjunction of disjunctions of conjunctions

SAT (CDC-SAT), 136, 142–145, 152,
154

CUDD, 160, 166, 168

D
D-reducibility, 96, 99, 101–109

E
Equivalence checking, 33
Estimation, 10, 20, 21, 26, 27, 30, 95, 96,

106, 107, 109, 156, 157, 159, 161–163,
166–168

External don’t cares, v, 33–46

F
Formal methods, 70, 87–88
Formal verification, 70, 155, 157
FPGA, vi, 113, 118, 119, 121, 123–133
Functional verification, 68, 70

G
Graeco-Latin square, 136, 140, 141, 151, 153

H
Heterogeneous systems, v, 67–79

I
IP protection, 86

L
Latin square, 135, 139, 143, 147, 151
Logic obfuscation, 86
Logic synthesis, v, 17–31, 33–46
Low latency, vi, 123–133

M
Maiorana-McFarland bent functions, v, 49–64
Modular multiplication, vi, 111–121
Monitoring under uncertainty, 6–10
Multilayer perceptron (MLP), 123–125,

127–132
Multiplicative complexity, 95–97, 100,

106–107, 109
Multipliers, v, 18, 27–30, 112, 113, 118, 119,

121, 155–168

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. Drechsler, S. Huhn (eds.), Advanced Boolean Techniques,
https://doi.org/10.1007/978-3-031-28916-3

171

https://doi.org/10.1007/978-3-031-28916-3
https://doi.org/10.1007/978-3-031-28916-3
https://doi.org/10.1007/978-3-031-28916-3
https://doi.org/10.1007/978-3-031-28916-3
https://doi.org/10.1007/978-3-031-28916-3
https://doi.org/10.1007/978-3-031-28916-3
https://doi.org/10.1007/978-3-031-28916-3
https://doi.org/10.1007/978-3-031-28916-3
https://doi.org/10.1007/978-3-031-28916-3
https://doi.org/10.1007/978-3-031-28916-3

172 Index

N
Non-linear activation, 125

O
One-hot encoding, 138–140, 142, 143, 154

P
Parallel computation, 123–124
Pseudo-Boolean optimization (PBO), 86, 89,

93

Q
Quantitative safety analysis, 3, 6, 10–12

R
Reed-Muller transform, 50, 53, 54
Residue number system (RNS), 111–113, 119

S
SAT-based attacks, 84, 86–90, 93
Satisfiability modulo theory (SMT), v, 1–13
Static variable ordering heuristics, 156–165,

168
SystemC/AMS, 68, 71, 73, 74, 77, 78
System-level assertions, v, 67–79

V
Virtual prototyping (VPs), 68, 69

X
XBOOLE, vi, 135–154
XBOOLE-monitor XBM2, 136, 144–147, 149,

150, 154
(XOR-)And-inverter graph, 19–20

	Preface
	Contents
	Arithmetic Satisfiability-Modulo-Theory Solving Applied to Non-Standard Analysis Problems of Cyber-Physical Systems
	1 Introduction
	2 iSAT and SiSAT
	3 Sample Applications
	3.1 Exact Monitoring of Cyber-Physical Systems Under Uncertainty
	3.2 Quantitative Safety Analysis of BCI-Enabled Autonomous Systems

	4 Conclusion
	References

	Fast AIG-Based Approximate Logic Synthesis
	1 Introduction
	2 Related Work
	3 Background
	3.1 Notation and Conventions
	3.2 (XOR-)AND-Inverter Graphs
	3.3 Error Metrics

	4 Fast AIG Approximate Logic Synthesis
	4.1 Bucket-Based Approximation Algorithm
	4.2 Approximation Operations
	4.3 Fast Computation of the Weighted Hamming Distance
	4.4 Truth Density Computation

	5 Experimental Evaluation
	5.1 Experimental Setup
	5.2 Scalability
	5.3 Multi-Objective Optimization for Area and `3́9`42`"̇613A``45`47`"603Awhd
	5.4 Truth Density Computation

	6 Conclusion and Outlook
	References

	External Don't Cares in Logic Synthesis
	1 Introduction
	2 Background and Terminologies
	2.1 Boolean Functions and Boolean Relations
	2.2 Logic Networks and Functions in a Network
	2.3 Don't-Care Conditions

	3 Computation of Internal Don't Cares
	4 Definition and Representation of External Don't Cares
	4.1 External Controllability Don't Cares (External SDCs)
	4.2 External Observability Don't Cares
	4.3 Logic Synthesis from a Boolean Relation Perspective
	4.4 Boolean Relation as Unified Representation of External Don't Cares

	5 Optimization with External Don't Cares
	6 Experimental Demonstration
	7 Conclusion and Future Work
	7.1 Multi-Target Resynthesis
	7.2 Propagation and Management of Observability Equivalence Classes

	References

	Maiorana-McFarland Boolean Bent Functions Characterized by their Reed-Muller Spectra
	1 Introduction
	2 Formalisms
	3 The Effect of a Subset of Spectral Invariant Operations
	4 Closing Remarks
	References

	Toward System-Level Assertions for Heterogeneous Systems
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Assertion-Based Verification
	3.2 System-Level Running Example
	3.3 Assertions for System-Level Running Example

	4 System-Level Assertions Library for Heterogeneous Systems
	4.1 Overview
	4.2 Application Programming Interface
	4.3 Boolean Layer
	4.4 Sequence Layer
	4.4.1 Delay Operator
	4.4.2 Repeat Operator
	4.4.3 Sequence ``and/or'' Operators

	4.5 Property Layer
	4.5.1 Implication Operator

	4.6 Verification Layer

	5 Experiments
	6 Conclusion
	References

	SAT-Based Key Determination Attack for Improving the Quality Assessment of Logic Locking Mechanisms
	1 Introduction
	2 Preliminaries
	2.1 Reconfigurable Field-Effect Transistors
	2.2 Boolean Satisfiability Problem
	2.3 SAT-Based Attacks
	2.4 Quality Assessment of RFET-Based Logic Locking Mechanisms Using Formal Methods

	3 SAT-Based Key Determination Attack
	4 Experimental Evaluation
	5 Conclusions
	References

	Autosymmetric and D-reducible Functions: Theory and Application to Security
	1 Introduction
	2 Preliminaries
	2.1 Autosymmetric Functions
	2.2 D-reducible Functions
	2.3 Multiplicative Complexity and XOR-AND Graphs

	3 Completely Specified Autosymmetric and D-reducible Functions
	4 Incompletely Specified Autosymmetric and D-reducible Functions
	5 Multiplicative Complexity
	6 Experimental Results
	7 Conclusion
	References

	Two-Operand Modular Multiplication to Small Bit Ranges
	1 Introduction
	2 Two Operand Modular Multiplication
	2.1 Binary Digit Fragmentation
	2.2 Sub-Vector Splitting

	3 Boolean Representations
	4 Hardware Realization of Modulo Multipliers
	5 Conclusion and Further Work
	References

	Low-Latency Real-Time Inference for Multilayer Perceptronson FPGAs
	1 Introduction
	2 Related Work
	3 Implementation
	3.1 Neuron Model
	3.2 MLP Model
	3.3 HLS Pragmas

	4 Experimental Results
	4.1 Experimental Setup
	4.2 Model Accuracy
	4.3 Comparison to the State of the Art

	5 Conclusion
	References

	Thirty-Six Officers of Euler-New Insights Computed Using XBOOLE
	1 Introduction
	2 Preliminaries
	3 The Problem to Solve and Its Complexity
	4 A Quantitative Specification of the Problem to Solve
	5 Approaches to Simplify the Problem to Solve
	6 Method to Solve the Problem
	6.1 CDC-SAT Model
	6.2 Practical Implementation Using the XBOOLE-Monitor XBM 2

	7 Solutions for the First Row
	8 Analysis of the Computational Effort
	9 Detailed Evaluation of One Partial Solution
	10 Complete Evaluation
	11 Conclusion
	References

	Start Small But Dream Big: On Choosing a Static Variable Order for Multiplier BDDs
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Binary Decision Diagrams
	3.2 Multipliers

	4 Methodology
	4.1 Overview
	4.2 Optimal Static Variable Order Selection
	4.3 BDD Endsize and Peaksize Estimation

	5 Experiments
	5.1 Selection of Optimal Heuristic
	5.2 Estimation of Endsize and Peaksize of the BDDs
	5.3 Memory Usage Estimation

	6 Discussion
	7 Conclusion
	References

	Index

