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Abstract The nonhomogeneous Poisson process (NHPP) has become a useful
approach for modeling failure patterns of recurrent failure data revealed by minimal
repairs from an individual repairable system. This work investigates complex
repairable artillery systems that include several failure modes. We propose a super-
posed log-linear process (S-LLP) based on a mixture of nonhomogeneous Poisson
processes in a minimal repair model. This allows for a bathtub-shaped failure inten-
sity that models artillery data better than currently used methods. The method of
maximum likelihood is used to estimate model parameters and construct confi-
dence intervals for the cumulative intensity of the S-LLP. Additionally, for multiple
repairable systems presenting system-to-system variability, we apply the mixed-
effectsmodels to recurrent failure datawith bathtub-shaped failure intensity, based on
the superposed Poisson process models including S-LLP. The mixed-effects models
explicitly involve between-system variation through random-effects, along with a
common baseline for all the systems through fixed-effects. Details on estimation of
the parameters of themixed-effects superposedPoisson processmodels and construc-
tion of their confidence intervals are examined in this work. An applicative example
of multiple artillery systems shows prominent proof of the mixed-effects superposed
Poisson process models for the purpose of reliability analysis.
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1 Introduction

Modern systems consist of numerous parts working together, making the mainte-
nance action for the systems more difficult. In general, systems can be classified
into repairable and non-repairable systems according to feasibility of maintenance
activity. A repairable system is one that can be restored to an operating condition
without replacement of the entire systemafter some repair activity is executed. For the
repairable system, the patterns of failures collected after successive repairs are very
important to establish an effective maintenance policy. For example, increasing time
intervals between failures suggest reliability improvement, while decreasing time
intervals imply reliability deterioration. Repair processes of this type can emulate a
minimal repair model in which the repair or the substitution of a failed part tends
to have a negligible effect on overall system reliability, restoring the system perfor-
mance to the exact same condition as it was just before the failure. Because the system
is restored to its current state (immediately preceding the most recent failure), the
assumption of minimal repair reveals a failure pattern governed by a nonhomoge-
neous Poisson process (NHPP). The NHPP has garnered significant attention in the
reliability literature [1, 2].

2 Nonhomogeneous Poisson Process Model

TheNHPP is defined by its nonnegative intensity functionλ(t). The expected number
of failures in the time interval (0, t] is obtained by �(t) = ∫ t

0 λ(u) du. The intensity
function λ(t) is equal to the rate of occurrence of failures (ROCOF) associated with
the repairable system [2]. When the intensity function is constant, i.e., λ(t) ≡ λ,
the process reduces to a homogeneous Poisson process (HPP). The NHPP has been
widely used in modeling failure frequency for repairable systems because of its
flexibility and mathematical tractability via its intensity function λ(t) [3].

2.1 Monotonic Failure Intensity Model

The most commonly applied form of NHPP is the power law process (PLP). Crow
[4] suggested a PLP model under “find it and fix it” conditions with the intensity
function

λ(t) = β

α

(
t
α

)β−1
, t > 0 (1)

where β (> 0) and α (> 0) are the shape and scale parameters, respectively. The
corresponding mean cumulative number of failures over (0, t] is �(t) = (

t
α

)β
. As

another functional form of NHPP, a log linear process (LLP) has intensity function
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λ(t) = γ eκt , t > 0 (2)

and the corresponding mean cumulative number of failures over (0, t] is �(t) =
γ κ−1

(
eκt − 1

)
, for the parameters γ (> 0) and κ . The LLP model was first proposed

by Cox and Lewis [5] to model air conditioner failures. The PLP and the LLP
models have been employed to model failure patterns of a repairable system having
monotonic intensity, i.e., decreasing failure patterns (reliability improve- ment) with
β < 1 (κ < 0) or increasing failure patterns (reliability deterioration) with β > 1(κ >

0). When β = 1(κ = 0), , the PLP (LLP) reduces to the HPP.
The intensity function of the PLP model tends to infinity as the system age

increases, whereas the observed failure process may have a finitely bounded intensity
function. Considering NHPPs with a finite and bounded intensity function, Pulcini
[6] proposed a bounded intensity process (BIP) with intensity function

λ(t) = a
[
1 − e− t

b

]
. a, b > 0; t > 0 (3)

The intensity function is increasing and bounded, approaching an asymptote of a
as t tends to infinity.

2.2 Non-monotonic Failure Intensity Model

In some cases, a repairable system is subject to early (or infant mortality) failures
due to the presence of assembly defects that are not screened out completely through
the burn-in process, as well as wear-out failures caused by deteriorating phenomena.
This causes a so-called bathtub-shaped failure intensity, which is typical for large
and complex systems that are characterized by a number of different failure modes
[7]. The PLP and the LLP models are too simplistic to accommodate this bathtub
characteristic of the failure process. As an alternative, unions of several independent
NHPPs called superposed Poisson processes (SPPs) have been developed to model
this kind of non-monotonic failure intensity. When any subsystem failure can inde-
pendently cause the system to break down, the superposed model is a natural model
for the failure of the system. For an SPP based on J independent processes, let N j (t)
be the number of failures in (0, t] for the jth subsystem ( j = 1, 2, ..., J ) with the
intensity function λ j (t) = dE

[
N j (t)

]
/dt . The number of failures in (0, t] for the

system in the SPP is characterized by N(t) =∑J
j=1 Nj(t). If Nj(t), j = 1, 2, ..., J are

independent nonhomogeneous Poisson processes, then N(t) is also the NHPP with
intensity function λ(t) =∑J

j=1 λj(t)
SPPs have found successful application in modeling software reliability, where

early detection and removal of coding errors can sometimes lead to reliability growth,
e.g., the Musa-Okumoto process [8] for modeling recurrent errors in a software.
Pulcini [9] proposed the superposition of two independent power law processes
(called the “superposed power law process” (S-PLP)) to model the bathtub-shaped
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failure pattern of a repairable system with intensity function

λ(t) = β1

α1

(
t
α1

)β1−1 + β2

α2

(
t
α2

)β2−1
, α j , β j > 0, j = 1, 2 (4)

In Pulcini’s model, the parameters β1 and β2 determine the failure patterns of
a repairable system. For example, β1 < 1 models the failure pattern of a system
improving over time, while β2 > 1 models that of a system deteriorating over time.
As a result, the S-PLP with β1 < 1 and β2 > 1 is able to model a repairable
system with the bathtub-shaped failure intensity. Yang and Kuo [10] proposed the
superposition of the Musa-Okumoto process and the power law process as

λ(t) = β1

t+α1
+ α2β2tβ2−1 α j , β j > 0, j = 1.2 (5)

with corresponding mean cumulative number of failures (0, t], �(t) =
β1 ln

(
1 + t

α1

)
+ α2tβ2 . As Hjorth [11] pointed out, this intensity function has

increasing, decreasing, and bathtub types of shapes. Later, Guida and Pulcini [12]
proposed the bathtub bounded intensity process (BBIP) represented by the following
superposed intensity function

λ(t) = ae−t/b + α
(
1 − e− t

β

)
, a, b, α, β > 0, (6)

where the first component represents a log-linear process with decreasing intensity
function and the latter component is a bounded intensity process with increasing
bounded intensity function [6]. Guida and Pulcini [12] showed that the BBIP is able
to model the failure pattern of a repairable system subject to both early failures and
deterioration phenomena, featuring a finite asymptote as the system age increases.

This work is mainly motivated by unscheduled maintenance data of artillery
systems collected during exercise in the field over a fixed period of time from the
Republic of Korea (ROK) army. Some of the artilleries are subject to early failures
due to the presence of defective parts or assembling defects, as well as wear-out
failures caused by deteriorating phenomena. This causes a non-monotonic trend in
the failure data in which the intensity function initially decreases followed by a
long period of constant or near constant intensity until wear-out finally occurs, at
which time the intensity function begins to increase. We found that existing models
including the S-PLP and the BBIP did not adequately capture the non-monotonic
trend in the failure process for this field artilleries. Because of this, we propose a
superposed log-linear process (S-LLP) tomodel ROKArmy artillery system failures,
and we derive the maximum likelihood estimators (MLEs) for the model parameters,
along with their confidence intervals. Based on the NHPP models for a repairable
system, we will go over the application of mixed-effects models for recurrent failure
data from multiple repairable systems for the purpose of reliability analysis.
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3 Superposed Log-Linear Process for Bathtub-Shaped
Intensity

Consider a repairable system with failures observed over the time interval (0, T ].
Suppose that the failures are subject to two different failure modes, and that each of
the modes are modeled by an LLP with parameters α j and β j for j = 1, 2. . We
propose a superposed log-linear process (S-LLP) with intensity function

λ(t) = α1e−β1t + α2e−β2t , α1, α2, β1, β2 > 0, (7)

for t ≥ 0. A key difference between the S-LLP and previously mentioned SPPs is
evident in the parameters β1 and β2. By limiting them to be strictly non-negative, the
superposed process is a mixture of an increasing and a decreasing pair of intensity
functions. Note that if β1 = β2 = 0, , the S-LLP is reduced to the homogeneous
Poisson process (HPP) with a constant intensity λ ≡ α1 + α2. Unlike the S-PLP
intensity function for β1 < 1 or β2 < 1, , the S-LLP intensity function (7) is finite at
t = 0. The first derivative of intensity function λ(t) with respect to t ,

λ
′(t) = −α1e−β1t + α2eβ2t ,

is equal to α2β2 − α1β1 at t = 0, hence λ(t) is initially decreasing if and only if
α1β1 > α2β2, and λ′(t) is equal to 0 at t = τ , where τ is given by

τ = 1
β1+β2

ln
(

α1β1

α2β2

)
(8)

The point with minimum intensity (τ ) lies between 0 and T if 0 ≤
ln(α1β1/α2β2) ≤ (β1 + β2)T . The second derivative of the intensity function is

λ′′(τ ) = α1β
2
1e

−β1τ + α2β
2
2e

β2τ > 0, (9)

and τ represents a unique time-point having minimum intensity value

λ(τ) = α1e−β1τ
(

β1+β2

β2

)
. (10)

That is, the intensity decreases until t = τ , after which it increases from t = τ

to t = T . Thus, the intensity function (7) reflects a bathtub behavior of sequential
failures in a repairable system when the system is subject both to early failures and
to wear-out failures. The expected number of failures up to t is given by

�(t) = t∫
0
λ(u)du = α1

β1

(
1 − e−β1t

)+ α2
β2

(
eβ2t − 1

)
, t ≥ 0. (11)



160 S. J. Bae et al.

Similar to the S-PLP, it is the sum of expected number of failures caused by each
failure mode, and it has an inflection point.

3.1 Maximum Likelihood Estimation

We consider the likelihood function for an NHPP with the first n failure-times,
t ≡ (t1 < t2 < · · · < tn), which are observed until T . Under a failure-truncated
sampling, the log-likelihood function of the S-LLP is

	(α1, α2, β1, β2; t) =
n∑

i=1

ln
[
α1e

−β1ti + α2e
β2ti
]

−
[
α1

β1

(
1 − e−β1tn

)+ α2

β2

(
eβ2tn − 1

)
]

,

(12)

and tn is replaced by T under a time-truncated sampling. The maximum likelihood
estimators (MLEs) of the parameters θ ≡ (α1, α2, β1, β2)

T can be found by solving
the following likelihood equations:

∂	

∂α1
=

n∑

i=1

e−β1ti

α1e−β1ti + α2eβ2ti
− 1

β1

(
1 − e−β1tn

) = 0,

∂	

∂β1
=

n∑

i=1

−α1ti e−β1ti

α1e−β1ti + α2eβ2ti
+
[

α1

β2
1

(
1 − e−β1tn

)− α1tn
β1

e−β1tn

]

= 0,

∂	

∂α2
=

n∑

i=1

eβ2ti

α1e−β1ti + α2eβ2ti
− 1

β2

(
eβ2tn − 1

) = 0,

∂	

∂β2
=

n∑

i=1

α2ti eβ2ti

α1e−β1ti + α2eβ2ti
+
[

α2

β2
2

(
eβ2tn − 1

)− α2tn
β2

eβ2tn

]

= 0, (13)

Obviously, there is no closed form solution to the MLEs in (13), and these equa-
tions must be solved numerically. Even though 	(α1, α2, β1, β2; t) is an amalga-
mation of relatively well-behaved (generally concave) functions, a general search
method such as Newton–Raphson is slow to work across four dimensions. In this
work, we introduce a slightly more efficient numeric method based on a conditional
likelihood method used by Cox and Lewis [5].

Once the MLEs of the model parameters have been obtained, the MLEs of other
quantities of interest, such as the expected number of failures up to a given time,
�(t), as well as the probability distribution of the number of failures occurring in a
future time interval Pr{N (T, T + �) = k}, can be given as

�̂(t) = α̂1

β̂1

(
1 − e−β̂1t

)
+ α̂2

β̂2

(
eβ̂2t − 1

)
, (14)
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and

Pr
∧

{N (T, T + �) = k} =
[
�̂(T+�)−�̂(T )

]k

k! · e−
[
�̂(T+�)−�̂(T )

]

,

for k = 0, 1, 2, . . . and �̂(T ) = n.
We can construct confidence intervals for these and other functions based on

standard errors derived from the (observed) Fisher information matrix. A large-
sample approximation of estimated standard errors of the ML estimators is given by

the estimated variance–covariance matrix �̂
θ̂
for θ̂ ≡

(
α̂1, β̂1, α̂2, β̂2

)T
, where �̂

θ̂

is computed as the inverse of the estimated Fisher information matrix.
We are primarily interested in constructing confidence intervals for�(t) instead of

the basic parameter set θ .We approximate the standard error for�(t) using properties
of �̂

θ̂
and by using the delta method on (14). In general, for a differentiable real-

valued function g(θ), the approximate standard error of ĝ ≡ g
(
θ̂
)
can be obtained

by using the delta method as

s.e.
∧(

ĝ
) =

√
4∑

i=1

(
∂g
∂θi

|
θ̂

)2
Var
∧(

θ̂i

)
+

4∑

i=1

4∑

j �=i

(
∂g
∂θi

|
θ̂

)(
∂g
∂θ j

|
θ̂

)
Cov
∧(

θ̂i , θ̂ j

)
, (15)

where (θ1, θ2, θ3, θ4) ≡ (α1, β1, α2, β2).
When the function g(θ) is invertible, the approximate standard error (15) is

exactly same as that given by the estimated variance–covariance matrix relative to
the log-likelihood function re-parameterized in term of g. On the other hand, when
g(θ) is not invertible (as in the case of �(t)), the log-likelihood function cannot
be re-parameterized directly, and the delta-method seems to be the only available
method that does not require resampling methods [12]. The approximate (1 − γ)%
confidence interval for the function g results in either

ĝ ± zγ /2 · s.e.∧(
ĝ
)

or ĝ exp

{

±zγ /2 · s.e.
∧(

ĝ
)

ĝ

}

using the normal approximation or the lognormal approximation, respectively.
Although the normal assumptions (based on asymptotic properties of the MLE)
are not perfectly realized for �̂(t) at small values of t , we do not consider trans-
formations in this case because confidence intervals for �(t) are of more interest at
values of t not close to zero.
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3.2 Analysis of Artillery Repair Data

The proposed model was applied to field repair data of eight sets of artillery systems.
Each artillery system was subject to minimal repair at time of failure and all failure
data for the eight artillery systems were treated as failure-truncated samples. As
shown in Fig. 1, due to a number of failures observed during the early and final
periods of data collection, the bathtub-shaped failure intensity potentially seems to
be appropriate to describe the failure pattern of the artillery systems.

In practice, decisions concerning failure patterns have been made using graphical
techniques or statistical trend tests [2]. The total time on test (TTT) plot [13] helps
reveal failure patterns through curvature. A bathtub-shaped failure process can be
observed in a TTT plot by an S-shaped function. For example, the first artillery
data set (ID-1) consists of 62 failure-times observed until t62 = 1, 452 hours and
its TTT plot is contained in Fig. 2, which shows a clear indication of a bathtub-
shaped intensity function for failure data of the system. It was observed that the

Fig. 1 Event plot showing failure times for eight sets of ROK artillery repair data across a 1500 h
period of observation
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Fig. 2 Total Time on Test (TTT) plot for failure data of ROK artillery ID-1

bathtub-shaped patterns of failures are also dominant in the other artilleries in the
TTT plots.

As a test for non-monotonic trends in recurrent failures, a large positive value of
Vaurio’s statistic [14]

V =
∑n

i=1|ti − tn/2| − ntn/4

tn
√
n/48

indicates the presence of a bathtub behavior, while a large negative value indicates
the presence of an inverse bathtub behavior. In applying the Vaurio’s trend test to
eight sets of artillery repair data, we summarized the test results in Table 1, along
with their p-values. At significance level α = 0.05, the test results provide statistical
evidence of the bathtub behavior of failure intensity with respect to failure data of
the eight artillery systems.

Based on the log-likelihood in (12), MLEs for S-LLP model parameters were
computed using the artillery data and the details on the algorithm are described
at Appendix A in Mun et al. [15]. Estimates of the S-LLP model, along with
their standard errors, are given in Table 2. To obtain the standard errors of θ̂ ≡
(
α̂1, β̂1, α̂2, β̂2

)T
, the estimated variance–covariance matrix was computed as the

inverse of the estimated Fisher information matrix. For artillery ID-1, for instance,
the estimated variance–covariance matrix is
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Table 1 Statistical trend tests
for eight sets of ROK artillery
repair data

ID Vaurio’s statistic (V ) p-value

1 3.9790 < 0.0001

2 1.9863 0.0235

3 2.5615 0.0052

4 2.5967 0.0047

5 3.3462 0.0004

6 3.6172 0.0001

7 3.5558 0.0002

8 4.3812 < 0.0001

�̂
θ̂

=

⎡

⎢
⎢
⎣

276.0 −12.40 11.80 26.90
0.330 −0.170 −0.331

0.010 0.015
0.023

⎤

⎥
⎥
⎦× 10−6

and the standard errors of θ̂ are the square roots of diagonal elements in �̂
θ̂
.

Approximate 95% confidence intervals for θ can be constructed using the lognormal
approximation.

Using the MLEs for the S-LLP model parameters, we can obtain the MLE for the
expected number of failures, �̂(t), from (14). Figure 3 depicts �̂(t) under the S-PLP
and the BBIP assumption, as well as �̂(t) under the S-LLP assumption. The figure
shows that the S-LLP provides the best representation for the whole data set of eight
artillery systems. Admittedly, the S-LLP model, as well as the S-PLP and the BBIP
models, fails to handle the early failure data. All of the artillery repair data contain
a time-lag to first failure (see Fig. 1), and it is not easy for the superposed models to
represent a bathtub-shaped failure intensity that can explicitly fit the time-lag to first
failure. More complex and highly parameterized models, for instance, that include
the addition of a constant into the intensity functions of S-PLP, BBIP, and S-LLP,may
be an alternative to capture the time-lag, but it will greatly increasemodel complexity
as well. Under the S-LLP model, 90% (pointwise) confidence intervals for �(t) are
plotted for eight individual sets of artillery repair data in Fig. 4.

4 Mixed-Effects NHPP Model

Occasionally, multiple repairable systems may present system-to-system variability
due to changes in operating environments and working intensities of individual
systems. In this case, it may be more reasonable to assume a heterogeneity among
all the systems. Lawless [16] refers to such effects as “unobserved heterogeneity”.
To take the heterogeneity among systems into account, Bayesian methods (both
empirical and hierarchical) have been applied to multiple repairable systems due to
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Table 2 ML estimates of the S-LLP parameters and their standard errors for eight sets of
artillery repair data (corresponding approximate 95% confidence intervals under the lognormal
approximation in parentheses)

ID α̂1 s.e.
∧(

α̂1
)

β̂1 s.e.
∧
(
β̂1

)
α̂2 s.e.

∧(
α̂2
)

β̂2 s.e.
∧
(
β̂2

)

1 0.0850 0.0166 0.0028 0.0006 0.0005 0.0001 0.0037 0.0002

(0.0616,
0.1173)

(0.0020,
0.0039)

(0.0004,
0.0007)

(0.0035,
0.0040)

2 0.0578 0.0147 0.0023 0.0007 0.0071 0.0012 0.0016 0.0001

(0.0381,
0.0879)

(0.0014,
0.0039)

(0.0054,
0.0094)

(0.0014,
0.0019)

3 0.0568 0.0117 0.0018 0.0005 0.0004 8.5 × 10−5 0.0042 0.0002

(0.0405,
0.0796)

(0.0012,
0.0029)

(0.0003,
0.0005)

(0.0039,
0.0045)

4 0.0651 0.0126 0.0019 0.0005 0.0004 0.0001 0.0042 0.0002

(0.0473,
0.0895)

(0.0012,
0.0029)

(0.0003,
0.0006)

(0.0038,
0.0046)

5 0.1131 0.0183 0.0026 0.0004 0.0003 6.1 × 10−5 0.0047 0.0002

(0.0867,
0.1477)

(0.0020,
0.0034)

(0.0002,
0.0004)

(0.0044,
0.0051)

6 0.0795 0.0164 0.0027 0.0006 0.0010 0.0002 0.0037 0.0002

(0.0567,
0.1116)

(0.0019,
0.0040)

(0.0007,
0.0014)

(0.0034,
0.0039)

7 0.1216 0.0200 0.0030 0.0005 0.0005 0.0001 0.0032 0.0002

(0.0928,
0.1593)

(0.0023,
0.0040)

(0.0003,
0.0008)

(0.0029,
0.0036)

8 0.1284 0.0214 0.0034 0.0005 0.0003 5.9e-05 0.0044 0.0002

(0.0976,
0.1688)

(0.0026,
0.0044)

(0.0002,
0.0004)

(0.0041,
0.0047)

their flexibility in accounting for parameter uncertainty and allowing the incorpo-
ration of a prior knowledge into the process under study (see, e.g., Hamada et al.
[17], Reese et al. [18], Arab et al. [19]). System heterogeneity may be described via
the prior distributions of the model parameters, however, there may also be homo-
geneity between individual systems. This homogeneity can be explicitly modeled
by assuming common parameters in the Bayesian model. If prior distributions are
unnecessarily assigned to the common parameters, the prior information employed to
the common parameters can make the parameter estimation procedure more compli-
cated. The computational complexity and the difficulty in choosing proper prior
distributions have been obstacles for reliability engineerswhowish to applyBayesian
methods to such practical reliability problems.

As another approach, the unobserved heterogeneity has been explicitly incor-
porated into the model under study in the formulation of mixed-effects model.
Mixed-effects models, which is also called a “random-effects model”, are widely
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(a) ID-1      (b) ID-2 

(c) ID-3      (d) ID-4 

(e) ID-5      (f) ID-6 

(g) ID-7      (h) ID-8 

Fig. 3 Observed cumulative number of failures along with the expected number of failures �(t)
under the S-PLP, the BBIP, and the S-LLP assumption for eight sets of ROK artillery repair data
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(a) ID-1      (b) ID-2 

(c) ID-3      (d) ID-4 

(e) ID-5      (f) ID-6 

(g) ID-7      (h) ID-8 

Fig. 4. 90% pointwise confidence intervals for �(t) under the S-LLP model for eight sets of ROK
artillery repair data (The vertical axis is log-scaled for better representation of the confidence
intervals)
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used in medical studies [20, 21], because they can model both between-individual
and within-individual variation found in the data. For analyzing the reliability of
multiple repairable systems, the underlying model for each individual system may
be reasonably assumed to be an NHPP. Based on NHPPs with non-monotonic failure
intensities, we will illustrate the inference procedure on the parameters of the mixed-
effects NHPP model. The mixed-effects NHPP model allows explicit modeling and
analysis of between-individual and within-individual variation of recurrent failures,
along with a common baseline for all the individuals. In the formation of a mixed-
effects model, the probability distributions for non-normal data involving both fixed
and random effects is appropriate, a generalized mixed-effects model can be a useful
tool for such purposes. The (generalized) mixed-effects models are easily imple-
mented through commercial softwares such as S-PLUS® NLME library and SAS®

NLMIXED procedure.

4.1 Mixed-Effects NHPP Model Without Covariates

Suppose that there are m independent systems; the system i is observed over the time
interval (0, Ti ) and ni failures are observed to occur, at times ti1 < · · · < tini . For
the parameters θ of the NHPP, the likelihood function is

L(θ) =
m∏

i=1

{
ni∏

j=1
λ
(
ti j ; θ

)
}

exp{−�(Ti ; θ)} (16)

with failure intensity λ(·) and its cumulative mean function �(·). By incorporating
the inter-individual variation into the random effects bi , along with fixed effects ζ

(identical to all the systems), the conditional mean for a failure process of the i th
system t i = (ti1, ..., tin)

T is E[t i |bi ] ≡ μi = �(t i |bi ). The contribution to the
likelihood function (16) having observed failures ni at times ti j for individual system
i is

Li (ζ ) = ∫
bi

⎧
⎨

⎩

ni∏

j=1

λ(ti j |bi )
⎫
⎬

⎭
exp{−�(Ti |bi )}p(bi )dbi

The likelihood function with parameters ζ and bi from the sample of m systems
has the form

L(ζ ) =
m∏

i=1
∫
bi

{
ni∏

j=1
λ(ti j |bi )

}

exp{−�(Ti |bi )}p(bi )dbi , (17)

andmaximizing the likelihood function (17) yields themaximum likelihood estimate
(MLE) of ζ , denoted by ζ̂ .
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4.2 Mixed-Effects NHPP Model with Covariates

Suppose that individual i has a covariate vector xi and a failure intensity
λxi

(
ti j ; θ , ξ i

)
, then the contribution to the likelihood function for individual i with

fixed effects βx and random-effects bi for ξ i ≡ (βx , bi
)T

is given by

Li
(
θ,βx , bi

) = ∫
bi

{
ni∏

j=1
λxi

(
ti j ; θ ,

(
βx , bi

))
}

exp
{−�xi

(
Ti ; θ ,

(
βx , bi

))}
p(bi )dbi .

(18)

The NHPP is flexible in that the covariate information, if exists, can be explicitly
modeled via the failure intensity

λxi

(
ti j ; θ , ξ i

) = λ0
(
ti j ; θ

)
h
(
xi ; ξ i

)
, (19)

where ξ i is the coefficient vector for covariate xi , and h(·) is a positive-valued
monotonic differentiable function, e.g., exp(·) or log(·). The NHPP model with the
failure intensity (19) is called a “proportional intensity Poisson process model” and
λ0
(
ti j ; θ

)
serves as the baseline intensity function. The baseline intensity function

is assumed to be constant across individuals; that is, θ has fixed effects. Inter-
individual variability is instead incorporated in the function h

(
xi ; ξ i

)
. The model

with h
(
xi ; ξ i

) ≡ exp
(
xT
i ξ i

)
has been commonly employed because it is conve-

nient and flexible (e.g., Andersen and Gill [22]). The mean intensity function corre-
sponding to the failure intensity (19) is �xi

(
t; θ, ξ i

) = �0(t; θ)h
(
xi ; ξ i

)
, where

�0(t; θ) = t∫
0
λ0(u; θ) du. The likelihood function (18) can be rewritten by the

factorization as (Cox and Lewis [5], Sect. 5.3)

Li
(
θ ,βx, bi

) =
ni∏

j=1

{
λ0
(
ti j ; θ

)

�0
(
ti j ; θ

)

}

×
∫

bi

{
�0(Ti ; θ)h

(
xTi
(
βx + bi

))}ni

exp
{−�0(Ti ; θ)h

(
xTi
(
βx + bi

))}
p(bi )dbi .

(20)

The likelihood function for a sample of m independent individuals is the product
of terms L1, . . . ,Lm giving

L(θ ,βx

) = L1(θ)L2
(
θ ,βx

)
, (21)

whereL1(θ) is the product of the first terms andL2
(
θ,βx

)
is the product of the second

terms in right-hand side of (20). Lawless [16] considered the following intensity
function

λx
(
ti j ; θ,βx, bi

) = λ0
(
ti j ; θ

)
biexp

(
xT
i βx

)
, (22)
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where bi is assumed to be an i id gamma-distributed random variable with mean 1
and variance φ. In this case the second term in (20) becomes

�
(
ni + φ−1

)

�
(
φ−1
) ·

[
φ�0(τi ; θ) exp

(
xT
i βx

)]ni

[
1 + φ�0(τi ; θ) exp

(
xT
i βx

)]ni+φ−1 ,

which is a negative binomial regression model. The negative binomial model is
a reasonable model to accommodate extra-Poisson variability. For instance, if the
baseline intensity function has a power law process, for θ ≡ (α, β)

L1(θ) =
m∏

i=1

ni∏

j=1

(
β

ti j

)
and L2

(
θ,βx

) =
m∏

i=1

�(ni+φ−1)
�(φ−1)

· [φ(Ti /α)β exp(xT
i βx)]

ni

[1+φ(Ti /α)β exp(xT
i βx)]

ni+φ−1 ,

(23)

4.3 Estimation of Parameters in Mixed-Effects NHPP Model

In general, the integral calculations in the likelihood function (17) and (21) involve
high-dimensional integration, and do not produce closed-form expressions, requiring
numerical integration techniques to estimate the likelihood function. Bae and Kvam
[23] introduced various approximation methods to numerically optimize the like-
lihood function from repeated-measured degradation data of vacuum fluorescent
displays when the distribution of bi is multivariate normal. SAS® NLMIXED
procedure provides several approximation methods including adaptive Gaussian
quadrature [24] and first-order method [25] for the mixed-effects model.

In the NHPP model without covariates, ML estimates of ζ are obtained by maxi-
mizing the likelihood function (17) numerically or using approximation methods (if
necessary). A simple approach to estimation in NHPP model with covariates is to
estimate θ by maximizingL1(θ), and then to maximize (21) with respect to βx , with
θ fixed at their estimates [14]. With the PLP baseline intensity, for example, we can
first estimate β in the likelihood function (23) by maximizing L1 with respect to β,
then plug in β̂ and maximize L2 with respect to φ, α, and βx . Maximization of L2

for fixed β is easy using Newton’s method or the scoring algorithm [26].
The random-effects in themixed-effects NHPPmodel are assumed to have normal

distributions with zero means. Their specific values for a given individual are just
realizations from the normal distributions. These random effects can be efficiently
estimated using empirical Bayes methods [27]. For the failure process of the i th
system t i , empirical Bayes estimates of bi (denoted by b̂i ) is given by the posterior
mean of bi as

b̂i = E(bi |t i ) = ∫bi bi p(t i |bi )p(bi )dbi
∫bi p(t i |bi )p(bi )dbi
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for the conditional probability function of t i given bi , p(t i |bi ). If parametric assump-
tions on the distribution of random-effects are made, e.g., normal, then empirical
Bayes methods are equivalent to best linear unbiased prediction (BLUP) methods
[28].

Confidence intervals can be constructed for the parameters of the mixed-effects
model or their functions based on standard errors derived from the (observed) Fisher
information matrix. In generalized mixed-effects NHPP model without covariates, a
large-sample approximation of standard errors of theML estimators is given through
the estimated variance–covariancematrix �̂ζ̂ , which is computed as the inverse of the

observed Fisher information matrix. That is, �̂ζ̂ ≡ I
(
ζ̂
)−1

for I(ζ̂) = −∂2l/∂ζ2

evaluated at ζ = ζ̂, where l = log L(ζ ). For example, in the NHPP model with
covariates, the asymptotic variance–covariance matrix of

(
θ ,βx

)
is obtained as

I
(
θ̂, β̂x

)−1
, where

I
(
θ̂, β̂x

)−1 ≡
[− ∂2l

∂θ2 − ∂2l
∂θ∂βx

− ∂2l
∂β2

x

]−1

=
⎡

⎣
−
(

∂2l1
∂θ2 + ∂2l2

∂θ2

)
− ∂2l2

∂θ∂βx

− ∂2l2
∂β2

x

⎤

⎦

−1

evaluated at θ = θ̂ and βx = β̂x . Here, l1 = log L1(θ) and l2 = logL2
(
θ ,βx

)
.Then,

similar to the case of the NHPP model without covariates, approximate standard
errors for (or functions of) θ̂ and β̂x are computed using the delta method, and
their Wald-type confidence intervals are also computed. For the random-effects, the
standard errors of b̂i are computed using the delta method and confidence intervals
of the random-effects may be constructed using the Wald-type statistics.

After fitting mixed-effects NHPP model to failure-time data from multiple
repairable systems, we need to assess the significance of the terms in the model.
The significance test can be done through a likelihood ratio statistic. Denote LF as
the likelihood for the full model, and LR as the likelihood for the reduced model.
Then under the null hypothesis that the reduced model is adequate, the likelihood
ratio test (LRT) statistic

2 log(LF/LR) = 2(logLF − logLR)

will approximately follow a χ2 distribution with (ψF − ψR) degrees of freedom,
where ψF and ψR are the number of parameters to be estimated in the full and
reduced model, respectively.

Even though the LRT can assess the significance of particular terms, model selec-
tion procedure via such pairwise comparisons has been criticized owing to an overuse
of hypothesis testing. By contrast, an information-based model selection procedure
allows comparison of multiple candidate models. Two widely used information
criteria for assessing model fit are Akaike’s information criterion (AIC) [29] and
the Bayesian information criterion (BIC) [30]. For the log-likelihood of a model, l,
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the AIC and BIC are, respectively

AIC = −2l + 2p∗, and BIC = −2l + p∗logN

where p∗ denotes the total number of parameters in the model, and N denotes the

total number of observations in the data set; that is, N =
,∑

i=1
ni for the mixed-effects

NHPP model. If we use the AIC to compare several models for the same data, we
prefer the model with the lowest AIC value. Similarly, when using the BIC, we prefer
the model with the lowest BIC value.

Residuals can be set up to provide checks on the assumedmodel. Under the NHPP
model, the quantities�

(
ti j
)−�

(
ti, j−1

)
are independent standard exponential random

variables for j = 1, ..., ni . Therefore, residuals ei j = �̂
(
ti j
)− �̂

(
ti, j−1

)
should look

like standard exponential random variables if the NHPP model under assumptions
is correct. The deviation from the model assumptions can be checked by plotting
(ei j , ei, j−1) to detect serial correlation with respect to j in the ei j ’s. See Lawless [14]
for more details on the properties of residuals and formal model assessment using
the residuals.

4.4 Application of Mixed-Effects NHPP Model to Artillery
Repair Data

Mun et al. [15] analyzed field-repair data of eight sets of artillery systems where
their failure intensities appear bathtub-shaped. Failure frequency also tended to vary
greatly across all the systems.Mun et al. [15] proposed theS-LLPmodel (7) instead of
S-PLPmodel proposed byPulcini [9] to describe the artillery repair datawith bathtub-
shaped failure intensity. To incorporate individual variability into the superposed
NHPP models, we considered both the mixed-effects S-PLP model and the mixed-
effects S-LLP model. For the mixed-effects S-PLP model, the general model for
comparison is a mean failure intensity of the S-PLP with four random-effects

�i j (t) =
(

ti j
ζ1 + bi1

)ϑ1+bi2

+
(

ti j
ζ2 + bi3

)ϑ2+bi4

,

and similarly, the general model for the mixed-effects S-LLP is

�i j (t) =
(

γ1 + bi1
κ1 + bi2

)
(
1 − e−(κ1+bi2)ti j

)+
(

γ2 + bi3
κ2 + bi4

)
(
e(κ2+bi4)ti j − 1

)
,

where the random-effects (bi1, bi2, bi3, bi4) of the two models have general
covariance structures, for i = 1, ...,m, j = 1, ..., ni . After executing
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the LRT procedure and computing the AIC and BIC, the final param-
eter estimates of mixed-effects S-PLP model are: ζ̂1 = 4.1720, ϑ̂1 =
0.6544, ζ̂2 = 1095.51, ϑ̂2 = 12.5636., and (bi1, bi2, bi3, bi4)

T ∼
N (0, 0, 0, 0)T , diag(4.8261, 0.0028, 1.6880 × 104, 14.0611), where diag(·)
denotes a diagonal matrix. The final parameter estimates of the mixed-effects S-LLP
model are: γ̂ 1 = 0.0843, κ̂1 = 0.0020, γ̂2 = 5.4120 × 10−5, κ̂2 = 0.0057,
and (bi1, bi2)

T ∼ N (0, 0)T, diag
(
4.8018 × 10−4, 2.0789 × 10−7

)
, and

bi4 ∼ N (0, 2.0737 × 10−7
)
.

We compared their modeling performance with individually fitted S-PLP and S-
LLP models, correspondingly, in terms of mean square errors. Before comparing
their modeling performance, we performed the diagnostics for the fitted models
based on the residuals derived from each of the super- posed NHPP models. The
histograms of the residuals from the fitted models (Fig. 5) justify the assumptions
for the four superposed NHPP models. Each of superposed NHPP models incor-
porating both fixed-effects and random-effects has smaller MSE than individually
fitted superposed NHPP models (see Table 3). We chose the mixed-effects S-LLP
model which has the smallest average MSE with respect to artillery systems data
for further analytical purpose. Table 4 compares parameter estimates of individually
fitted S-LLP model and those of mixed-effects S-LLP model and their 95% point-
wise confidence intervals using the lognormal approximation for the eight artillery
systems. The parameter estimates of mixed-effects S-LLP model are consistently
smaller than those of individually fitted S-LLP model, and their confidence inter-
vals are consistently shorter than those of individually fitted S-LLP model. We also
observed that mixed-effects S-PLP model has consistently shorter confidence inter-
vals than individually fitted S-PLP model. The estimate of cumulative number of
failures and its 95% (pointwise) confidence intervals are plotted for eight individual
sets of artillery systems data in Fig. 6.

5 Conclusions

Some complex systems show the bathtub-shaped failure intensity that are character-
ized by a number of different failure modes as in the repairable artillery systems.
The monotonic failure intensity models such as the PLP and the LLP models are not
appropriate to model the bathtub-shaped failure pattern. As an alternative, a super-
posed log linear process (S-LLP), which is a mixture of nonhomogeneous Poisson
processes, was developed to model this kind of non-monotonic failure intensity. The
derivedS-LLPmodel is shown to bemuchbetter at fitting the repair data than previous
models that have been derived for bathtub-shaped failure intensities. Although the
estimation problem is computationally cumbersome, the MLEs are straightforward
and can be used to construct approximate confidence bounds for cumulative failure
intensity.

For multiple repairable systems presenting system-to-system variability owing to
operation environments or working intensities of individual systems, we go over the
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(a) Individual S-PLP model                          (b) Mixed-effects S-PLP model

(c) Individual S-LLP model                        (d) Mixed-effects S-LLP model

Fig. 5 Histograms of the residuals from each of the superposed NHPP models for eight artillery
systems

Table 3 Mean squared errors between observed and estimated number of failures from each of
superposed NHPP models for eight artillery systems

ID S-PLP S-PLP-NLMM S-LLP S-LLP-NLMM

ID-1 9.8153 5.0171 3.1279 2.7201

ID-2 6.4003 3.1235 3.5983 2.7279

ID-3 7.3453 4.2244 3.4652 3.2335

ID-4 6.5224 3.2255 3.7683 2.1790

ID-5 14.2063 6.8818 4.7604 3.4388

ID-6 8.2261 4.4996 3.4576 3.1208

ID-7 19.4709 9.6250 5.1072 2.9708

ID-8 21.1419 10.6802 6.1606 4.3777

Total 11.7504 5.9515 4.2018 3.1076
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Table 4 Parameter estimates of both individually fitted S-LLP model and mixed-effects S-LLP
model, along with their approximate 95% confidence intervals under the lognormal approximation
in parentheses

S-LLP S-LLP-NLMM

ID γ̂1 κ̂1 γ̂2
(×10−3

)
κ̂2
(×10−3

)
γ̂1 κ̂1

(×10−3
)

γ̂2
(×10−3

)
κ̂2
(×10−3

)

ID-1 0.085 0.003 0.538 3.725 0.079 2.108 5.412 5.521

(0.045,
0.160)

(0.001,
0.007)

(0.011,
27.337)

(1.653,
8.390)

(0.046,
0.136)

(1.380,
3.221)

(5.409,
5.415)

(4.697,
6.490)

ID-2 0.060 0.002 5.481 1.728 0.064 1.152 5.412 5.255

(0.028,
0.128)

(0.001,
0.008)

(0.836,
35.944)

(0.770,
3.881)

(0.032,
0.125)

(0.530,
2.502)

(5.409,
5.415)

(4.434,
6.228)

ID-3 0.057 0.002 0.370 4.205 0.057 1.508 5.412 5.777

(0.029,
0.112)

(0.001,
0.006)

(0.007,
20.002)

(1.918,
9.218)

(0.027,
0.121)

(0.834,
2.727)

(5.409,
5.415)

(4.950,
6.742)

ID-4 0.063 0.002 0.581 4.085 0.067 1.754 5.412 6.264

(0.033,
0.120)

(0.001,
0.005)

(0.034,
9.845)

(2.243,
7.440)

(0.035,
0.127)

(1.053,
2.919)

(5.409,
5.415)

(5.432,
7.223)

ID-5 0.114 0.003 0.824 3.742 0.108 2.248 5.412 6.119

(0.068,
0.191)

(0.002,
0.005)

(0.042,
16.176)

(1.854,
7.551)

(0.073,
0.161)

(1.511,
3.346)

(5.409,
5.415)

(5.288,
7.080)

ID-6 0.079 0.003 0.635 4.042 0.075 1.943 5.412 6.151

(0.042,
0.152)

(0.001,
0.006)

(0.021,
19.151)

(1.966,
8.308)

(0.042,
0.133)

(1.227,
3.078)

(5.409,
5.415)

(5.320,
7.111)

ID-7 0.122 0.003 0.518 3.196 0.111 2.351 5.412 4.865

(0.074,
0.201)

(0.002,
0.005)

(0.084,
3.188)

(2.032,
5.028)

(0.075,
0.163)

(1.607,
3.438)

(5.409,
5.415)

(4.050,
5.845)

ID-8 0.133 0.003 0.437 3.930 0.114 2.571 5.412 5.651

(0.080,
0.223)

(0.002,
0.007)

(0.083,
2.308)

(2.732,
5.655)

(0.079,
0.166)

(1.816,
3.639)

(5.409,
5.415)

(4.825,
6.618)

application ofmixed-effects models to recurrent failure data frommultiple repairable
systems based on the superposed Poisson process tomodel the bathtub-shaped failure
intensities. The mixed-effects models explicitly involve between-system variation
through random-effects, along with a common baseline for all the systems through
fixed-effects for both normal and non-normal data. Details on estimation of the
parameters of themixed-effects superposed Poisson processmodels and construction
of their confidence intervals are examined. An applicative example shows prominent
proof of the mixed-effects superposed Poisson process models for the purpose of
reliability analysis.
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(a) ID-1      (b) ID-2 

(c) ID-3      (d) ID-4 

(e) ID-5      (f) ID-6 

(g) ID-7      (h) ID-8 

Fig. 6 �̂(t) and 95%pointwise confidence intervals for �̂(t) under themixed-effects S-LLPmodel
for eight sets of artillery systems (The vertical axis is log-scaled for better representation of the
confidence intervals)
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