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Abstract For products subjected to many times of load action during service,
product life is dominated by load and its capability against load, referred to as
strength. This chapter introduces load-strength interference analysis based failure
rate modelling method, develops component and system failure rate models, and
illustrates the causal relation between failure rate curve shape and load/strength
characteristics. For the majority of mechanical components and systems, service
load can be described as a random process, material property degrades during load
actions, and the dynamic load-strength relationship makes the failure rate change
continuously. As failure occurs on load exceeding strength, failure rate models are
developed by analyzing the competition behavior between load and strength. By such
failure rate models, the effects of load uncertainty, strength uncertainty and strength
degradation pattern on failure rate curve shape are demonstrated. Meanwhile, the
three stages of the bathtub curve are interpreted in terms of stochastic load-strength
competition behavior, the roller coaster type failure rate curve is attributed to the
strength diversity of the products in a population.

Keywords Failure rate definition · Life distribution · Strength degradation ·
Load-strength interference · Bathtub curve

1 Introduction

Failure rate is a frequently used metric for product reliability. By definition, failure
rate at time t is the limit of the probability that a product will fail in a time interval
(t, t + Δt] when Δt approaches to zero, given the product is functioning at time
t. Besides direct estimation based on product life data, failure rate function can be
derived from the probability density function of product life by the formula λ(t) =
f(t)/R(t), i.e., failure rate at time t equals to the ratio of the life probability density
at time t to the reliability over time t. This formula presents a one to one mapping

L. Xie (B)
Department of Mechanical Engineering, Northeastern University, Shenyang 110819, China
e-mail: lyxie@mail.neu.edu.cn

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
Y. Liu et al. (eds.), Advances in Reliability and Maintainability Methods and Engineering
Applications, Springer Series in Reliability Engineering,
https://doi.org/10.1007/978-3-031-28859-3_6

133

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-28859-3_6&domain=pdf
mailto:lyxie@mail.neu.edu.cn
https://doi.org/10.1007/978-3-031-28859-3_6


134 L. Xie

between failure rate and life distribution. It is easy to know that the exponential life
distribution yields constant failure rate, the normal (Gaussian) life distribution yields
increasing failure rate, the log-normal life distribution yields unimodal failure rate
(first increasing and then decreasing), and the Weibull life distribution may yield
increasing, decreasing or constant failure rate depending on shape parameter value
(shown in Fig. 1).

On the other hand, it is traditionally believed that the failure rate curve of bathtub
shape is the most typical (shown in Fig. 2). Apparently, none of the commonly used
life distributions, such as the exponential distribution, the normal distribution, the
log-normal distribution or the Weibull distribution can yield a failure rate curve of
bathtub shape, illustrating that either the commonly used probability density func-
tions cannot exactly describe product life distribution, or product failure rate curve
does not present bathtub shape.

The three stages in a failure rate curve of bathtub shape as shown in Fig. 2 were
conventionally partitioned as infant mortality stage (the decreasing failure rate stage
appeared in the early part of the population service life), chance failure stage (the

Fig. 1 Failure rate curves derived from different types of life distributions
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Fig. 2 A failure rate curve
of bathtub shape

middle part of the failure rate curve, showing a roughly constant failure rate), and
wear out stage (the increasing failure rate stage appeared in the last part of the popu-
lation service life) [1]. They are also called as burn-in period, useful life period
and wear-out period, respectively [2]. It is usually explained that the infant mortality
stage demonstrates a sub-population dominated byquality-control defects due to poor
workmanship, out-of-specification incoming parts and materials, and other substan-
dard manufacturing practices. The other two stages were attributed to stochastic load
and product performance deterioration, respectively [1]. In other words, the high
failure rate in the initial phase is explained as that there are undiscovered defects
in the products. These soon show up when the products are activated. When the
product has survived the infant mortality period, the failure rate often stabilizes at a
level where it remains for a certain amount of time until it starts to increase as the
products begin to wear out [2].

The features of product failure rate have been analyzed from the aspects of reli-
ability function [3], life distribution [4–8] and strength degradation [9, 10]. Some
studies on failure rate curve shape thought that mechanical products may not appear
to have an infant mortality period or chance failure period [1].

In practice, product failure rates are estimated by means of various methods and
models according to life data and/or censored life data. On the other hand, traditional
reliability calculation is sometimes carried out based on failure rate function [11]. It
means that failure rate should be obtained based on pertinent information different
from life distribution or life data. To estimate failure rate directly from product life
data needs a large size sample. To derive failure rate equation from product life distri-
bution needs exact life probability density function that is hard to obtain. Therefore,
modeling product failure rate in a way different from life data-based approaches is of
great significance. Besides, it is helpful to get insight into the meaning of the failure
rate curves of different shape.

The complex shape of a bathtub curve implies that failure rate modelling might be
difficult. To develop a failure ratemodel, the basic influence factorsmust be identified
first. Generally, the service time dependent variation of product failure rate depends
on load characteristics, product strength, failure mechanism and other operational
profile [12–14].
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For mechanical components, it is well known that load-strength interference anal-
ysis is the most widely applied method to develop reliability model [15]. However,
not many studies have been conducted to developed load-strength interference
relationship-based failure rate model.

As to the load characteristics and failure mechanisms typical for mechanical
components and structures, such as deformation or fracture under static load or
fatigue under cyclic load, the times of load action is a more direct parameter to char-
acterize product service life. For instance, taking into account the effect of multiple
actions of a random load, a loading number dependent failure probability formula
for static strength failure (no strength degradation during load actions) was proposed
[16]:

P(n) = 1 −
∞∫

0

f (x)[
x∫

0

g(y)dy]ndx (1)

where, P(n) stands for the component failure probability after n times of load (stress)
action, f(x) stands for the probability density function of component strength, and g(y)
stands for the probability density function of the stress subjected to the component.

Obviously, in the situation of one time of load action, Eq. 1 degenerates into the
traditional load-strength interference model for failure probability calculation:

P = 1 −
∞∫

0

f (x)

x∫

0

g(y)dydx (2)

In principle, failure rate modeling is much the same as failure probability
modeling, both can be achieved through load-strength interference analysis, since
both the failure rate and the failure probability is determined by the load distribution,
strength distribution, the times of load action, and the strength degradation behavior.

Indeed, life distribution can also be derived bymeans of load-strength interference
analysis [17]. Different load distributions and/or strength distributions, together with
their competition relations, yield different life distributions and different failure rate
curves [17, 18]. Shown in Fig. 3 are the life distributions and failure rate curves of a
mechanical component subjected to random loads, with strength degrading linearly
during load actions. All the curves are drawn according to the respective functions
formulated based on multiple variates stress-strength interference relationship. The
stresses are presumed to follow the Weibull distribution, and strengths are presumed
to follow the normal distribution. Figure 3a and b are the life distribution and failure
rate curve in the situation of large stress dispersion and small safety margin; Fig. 3c
and d are the life distribution and failure rate curve in the situation of small stress
dispersion and large safety margin. Both the life distributions and the failure rate
curves are considerably different for the two different stress-strength combinations.
For the large stress dispersion situation, the life distribution is no longer the conven-
tional unimodal curve, the failure rate curve presents bathtub shape; for the small
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(a) Life distribution with large stress scatter (b) Failure rate with large stress scatter

(c) Life distribution with small stress scatter (d) Failure rate with small stress scatter
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Fig. 3 Life distribution curves and failure rate curves derived from stress-strength distributions

stress dispersion situation, the life distribution presents unimodal curve, the failure
rate curve is monotonically increasing.

Product life distributions are usually assumed to be one of the conventional forms
such as exponential, normal, log-normal, Weibull, etc. Since none of those might be
the true distribution of the product life, the failure rate function derived from life
distribution may differ considerably from the true failure rate. That will mislead the
understanding to the roles of the influencing factors.

This chapter introduces differentways to formulate failure ratemodel. First, failure
rate functions are established based on stress-strength competition analysis, and the
effects of stress distribution and strength distribution on failure rate curve shape are
analyzed and demonstrated. Such failure rate models can clearly reveal the mecha-
nism resulting in different shape of failure rate curves. For instance, it is illustrated
that the three parts of a bathtub-shaped failure rate curve are not necessarily incurred
by different root causes, different influencing factors or different failure mecha-
nisms. Any deteriorate type of failure mechanism such as fatigue under random load
history may bring about bathtub-shaped failure rate curve, whereas fatigue under
constant amplitude load history leads to monotonically increasing failure rate curve.
Besides, failure rate models are formulated based on the definition of failure rate
in the condition that the time variable is discrete, and by virtual of random events
operation.
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2 Load Order Statistics and Stress-Strength Based Failure
Rate Modeling

Assume that Y1, Y2,…, Yn are independent continuous random variables with proba-
bility density function g(y), y1, y2,…, yn are n sample values of the random variables,
and y(1) < y(2) <…< y(n) the sorted sample values from theminimum to themaximum.
With the probability density function g(y) and cumulative distribution function G(y)
of the randomvariable Y, the probability density function of the 1st order statistic (the
minimum) Y(1) (denoted by g1(y)) and that of the nth order statistic (the maximum)
Y(n) (denoted by gn(y)) are, respectively [19]:

g1(y) = n[1 − G(y)]n−1g(y) (3)

gn(y) = n[G(y)]n−1g(y) (4)

For mechanical equipment and components, most of them will experience many
times of random load action during service. In the situation that a product subjects to
n times of random load action, the n load values can usually be treated as a set of i.i.d.
(independent, identically distributed) random variables. For static strength failure, a
product survives n times of load action means that product strength is greater than
the maximum load (stress) appeared during the n times of load action. Therefore, the
maximum statistic of the n random loads is the most direct parameter for failure rate
calculation. Furthermore, it is evident that product failure probability over n times of
random load action or failure rate at the nth load action depends on the times of load
action as well as the scatter of the random ld variable, besides the product strength
random variable.

Illustrated in Fig. 4 are the distributions of random load variables and the distribu-
tions of the corresponding maximum load order statistics in samples of size 10, 20,
50, and 500, respectively. It clearly shows that, for the random loads with different
degrees of uncertainty, the distributions of the maximum load in n times of load
action differ from each other considerably.

Incorporating stress order statistic into the conventional stress-strength interfer-
ence model for multiple times of load action situations, dynamic (load action number
dependent) component failure probability model and failure rate model can be devel-
oped. The dynamic characteristic of such models is attributed to the ever changing
distribution of the maximum load order statistic. That is, the distribution of the
maximum load order statistic changes continuously with the increase of the load
action number. Component failure probability after n times of load action can be
modeled as the following equation which is equivalent to Eq. 1 (see Fig. 5):

P(n) = ∞∫
0
f (x)

∞∫
x
gn(y)dydx (5)
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(a) Larger load dispersion                     (b) Small load dispersion
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Fig. 4 Distributions of load random variables and their maximum order statistics (o.s.—order
statistic)
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Fig. 5 Stress order statistic-strength interference relationship

In the condition that the times of load action (a discrete variable) is used as the
time or life metric (it is usually treated as a continuous variable for failure rate
definition), the failure rate of a product at nth load action, denoted by h(n), can be
defined as the probability of failure caused by this load action, given that the product
has survived all the previous (n-1) times of load action. Therefore, the failure rate
h(n) can be derived by means of the relationship between load distribution and the
strength distribution of the survived products after (n-1) times of load action, just as
product failure probability can be derived by means of the relationship between load
distribution and the strength distribution of the product population. To determine
failure rate h(n) by means of load-strength interference relationship, it is necessary
to know the strength distribution of the survived products after (n-1) times of load
action (denoted by f(x,n)). Obviously, the strength of a survived product will not be
lower than the maximum load in the (n-1) times of load action (assuming no strength
degradation during the (n-1) times of load action). Based on the strength distribution
of the survived products, failure rate can be expressed as

h(n) =
∞∫

0

f (x, n)

∞∫

x

g(y)dydx (6)
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where, f(x, n) denotes the strength distribution of the survived products after (n-1)
times of load action. Note that the strength of the product population is a random
variable distributed in 0 ~∞ ;, whereas the strength of the products survived (n-1)
times of load action is a random variable distributed in zn-1 ~∞ ; (zn-1 is themaximum
stress value corresponding to the maximum load in the (n-1) times of load action).

Generally, the strength distribution of the survived products can be obtained by
updating the original strength distribution (shown in Fig. 6). As a probability density
function, it has to satisfy

∫ ∞
0 f (x, n)dx = 1. It is easy to know that the strength

distribution of the products survived (n-1) times of load action is

f (x, n) = 0
(
0 < x ≤ z(n−1)

)

f (x, n) = f (x)∫ ∞
z(n−1) f (x)dx

(z(n−1) < x < ∞) (7)

where, z(n-1) denotes the maximum stress value in (n-1) times of load action.
As load is a randomvariable, themaximumstress z(n-1) appeared during (n-1) times

of load action is a random variable following themaximumorder statistic distribution
of the stress variable. According to the total probability theorem, a failure rate model
can be developed (Ref. Figure 7. For the sake of simplification, z(n-1) is denoted simply
by z in the following). That is, failure rate h(n) equals to the statistical average of
the probability that failure occurs at the nth load action given survived the previous
(n-1) times of load action, weighted by the probability distribution of the maximum
stress z(n-1) appeared during the (n-1) times of load action (the probability density
function of z(n-1) is denoted by gn-1(z)):

h(n) =
∞∫

0

gn−1(z)

⎧⎨
⎩

∞∫

z

f (x, n)

⎡
⎣

∞∫

x

g(y)dy

⎤
⎦dx

⎫⎬
⎭dz (8)

or

Fig. 6 Strength distribution
of product population and
those of the products
survived a certain times of
load action
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Fig. 7 Variables and their
distributions involved in
failure rate modeling
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h(n) =
∫ ∞

0
gn−1(z)

⎧⎨
⎩

∞∫

z

g(y)

⎡
⎣

y∫

z

f (x, n)dx

⎤
⎦dy

⎫⎬
⎭dz (9)

In the situation of deterministic load, i.e., when a constant load is applied n times
to a product, Eq. 9 degenerates as

h(1) =
y∫

0

f (x)dx (10)

h(n) =
y∫

y

f (x, n)dx = 0 (n ≥ 2) (11)

where, y is the constant stress value produced by the constant load.
These two equations demonstrate that, in the condition that a product subjects to

many times of action of the same load, the failure rate at the first time of load action
is equal to the failure probability of the product subjected to one time of load action;
the failure rate at a load action number equal or greater than two equals to zero. It
is easy to understand that a product survived one time of load action will survive
forever, since it means that the strength of the product is greater than the stress, and
it is assumed that the strength keeps the same during the load actions.

Equations 8 and 9 can also be respectively written as

h(n) =
∞∫

0

gn−1(z)

⎧⎨
⎩

∞∫

z

f (x)

1 − F(z)

⎡
⎣

∞∫

x

g(y)dy

⎤
⎦dx

⎫⎬
⎭dz (12)
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h(n) =
∞∫

0

gn−1(z)

⎧⎨
⎩

∞∫

z

g(y)

⎡
⎣

y∫

z

f (x)

1 − F(z)
dx

⎤
⎦dy

⎫⎬
⎭dz (13)

and

h(n) =
∞∫

0

gn−1(z)

⎧⎨
⎩

∞∫

z

g(y)

[
F(y) − F(z)

1 − F(z)

]
dy

⎫⎬
⎭dz (14)

where, F(•) stands for the cumulative distribution function of product strength.
The above failure rate equations are developed based on load-strength interference

relationship. The strength distribution can be either component strength or system
strength, i.e., a product can be either a component or a system. For a series system (any
component failure results in system failure) composed of m components, denoting
by Fi(x) the strength distribution of component i, the strength distribution of such a
system is

Fseri (x) = 1 −
m∏
i=1

[1 − Fi (x)] (15)

for a parallel system (system failure occurs if and only if all components fail)
composed of m components, the system strength distribution is

Fpara(x) =
m∏
i=1

Fi (x) (16)

In the situation that all components in a system simultaneously subject to the same
load, system failure rate can be modeled as

h(n) =
∞∫

0

gn−1(z)

⎧⎨
⎩

∞∫

z

g(y)
Fsys(y) − Fsys(z)

1 − Fsys(z)
dy

⎫⎬
⎭dz (17)

where,Fsys(x) stands for either the series system strength distribution functionFseri(x)
or the parallel system strength distribution function Fpara(x).

3 Failure Rate Modeling Based on the Definition
with Discrete Time Variable

Product failure rate function h(n) can also be derived through failure rate definition
and related events operation. Denote the event that a product fails at the nth load
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action by An, denote the event that no failure occurs during the preceding (n-1) times
of load action by Bn-1, the failure rate at nth load action is the probability that event
An occurs given that event Bn-1 has occurred, i.e.

h(n) = P(An|Bn−1) (18)

According to the conditional probability theorem, the product failure rate (Eq. 18)
can be expressed as

h(n) = P(An|Bn−1) = P(AnBn−1)/P(Bn−1) (19)

Denote the probability that product life N equals to n by P(N = n), denote the
product failure probability over n times of load action, i.e., the cumulative probability
of product life corresponding to n times of load action by P(n), i.e., P(n) = P(N ≤
n).

It is easy to know that

P(AnBn−1) = P(N = n) = P(n) − P(n − 1)

and

P(Bn−1) = 1 − P(n − 1) = R(n − 1)

Therefore,

h(n) = P(n) − P(n − 1)

R(n − 1)
= (1 − R(n)) − (1 − R(n − 1))

R(n − 1)

= R(n − 1) − R(n)

R(n − 1)
= 1 − R(n)

R(n − 1)
(20)

Equation 20 is equivalent to the failure rate definition in the situation of discrete
time variable, where failure rate at the nth time of load action is defined as the
probability that the product fails to the nth time of load action given functioning over
the (n-1) times of load action, i.e.,

h(n) = P((n − 1) < N ≤ n)

P(N > (n − 1))
= P(n) − P(n − 1)

R(n − 1)

= R(n − 1) − R(n)

R(n − 1)
= 1 − R(n)

R(n − 1)
(21)

It is equivalent to the conventional form of the failure rate defined in the situation
of continuous time variable:

h(t) = lim
�t→0

P(t < N ≤ (t + �t))

P(N > t) · �t
= lim

�t→0

P(t + �t) − P(t)

R(t) · �t
= f (t)

R(t)
(22)
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From Eq. 20,

h(n) = 1 −
∫ ∞
0 f (x)

(∫ x
0 gn(y)dy

)
dx∫ ∞

0 f (x)
(∫ x

0 gn−1(y)dy
)
dx

(23)

Or

h(n) = 1 −
∫ ∞
0 gn(y)

(∫ ∞
y f (x)dx

)
dy

∫ ∞
0 gn−1(y)

(∫ ∞
y f (x)dx

)
dy

(24)

On the other hand, event An and Bn-1 occur simultaneously means that failure
occurs and only occurs at the nth time of load action during all the n times of loading.
The probability that the event An (the event that product fails at the nth load action)
and the event Bn-1 (the event that no failure occurs during the preceding (n-1) times
of load action) occur simultaneously is

P(AnBn−1) =
∞∫

0

f (x)

⎧⎨
⎩

∞∫

x

g(y)dy

⎡
⎣

x∫

0

g(y)dy

⎤
⎦

n−1⎫⎬
⎭dx (25)

According to Eq. 19,

h(n) =
∫ ∞
0 f (x)

{∫ ∞
x g(y)dy · [∫ x

0 g(y)dy
]n−1

}
dx

∫ ∞
0 f (x)

{[∫ x
0 g(y)dy

]n−1
}
dx

(26)

It is easy to numerically testify that the three types of failure rate equations, i.e.
Eqs. 9, 23 and 26, yield perfectly coincident failure rate curves as shown in Fig. 8.

In the situation of deterministic load, i.e., when the same load is applied many
times to a product, from Eq. 24

Fig. 8 Failure rate curves
yielded by different
equations
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h(1) = 1 −
∞∫

y

f (x)dx =
y∫

0

f (x)dx (27)

h(n) = 0 (n ≥ 2) (28)

from Eq. 26,

h(1) =
∞∫

0

f (x)

⎧⎨
⎩

∞∫

x

g(y)dy

⎫⎬
⎭dx =

∞∫

0

g(y)

⎧⎨
⎩

y∫

0

f (x)dx

⎫⎬
⎭dy =

y∫

0

f (x)dx (29)

h(n) = 0 (n ≥ 2) (30)

It illustrates that the different types of failure rate equations degenerate into the
same failure rate equation in deterministic load condition.

4 Effect of Load/Strength Dispersion on Failure Rate

To demonstrate the effects of load uncertainty and strength uncertainty on product
failure rate, failure rate curves corresponding to different load-strength combinations
are illustrated below. Both the loads and the strengths are assumed to follow the
normal distribution. The respective expectations and standard deviations are listed in
Table 1. Where, μy stands for the mean of stress, σy stands for the standard deviation
of stress;μx stands for themeanof strength, andσx stands for the standard deviation of
strength. Failure rate curves corresponding to these four load-strength combinations
are obtained by means of Eq. 9, shown in Fig. 9 as “base line”, “high load std”,
“high strength std” and “higher load/strength std”, respectively. It is demonstrated
that the statistical characteristics of load distribution and strength distribution have
considerable effect on failure rate curve shape.

The failure rate curves shown in Fig. 9 are decreasing because product strength
is assumed no degradation during load actions. The decreasing failure rate is due
to the fact that, after a certain times of load action, the survived products are those
having higher strength in the population, and the products survived more times of

Table 1 Parameters of four pairs of load-strength distributions

ID μy σ y μx σ x

Base line 400 40 600 40

High load std 400 80 600 40

High strength std 400 40 600 80

Higher load/strength std 400 60 600 60
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Fig. 9 Failure rate curves
corresponding to different
load-strength combinations
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random load action have higher strength than those survived less times of random
load action. Therefore, at the next time of load action, the products experienced more
times of random load action have lower failure probability.

In the situation of deterministic strength, i.e., all the products have the same
strength, the failure rate equation degenerates from Eq. 8 as

h(n) =
∞∫

0

gn−1(z)

⎧⎨
⎩

∞∫

z

f (x, n)

⎡
⎣

∞∫

x

g(y)dy

⎤
⎦dx

⎫⎬
⎭dz=

∞∫

x

g(y)dy (31)

from Eq. 23 as

h(n) = 1 −
∫ ∞
0 f (x)

(∫ x
0 gn(y)dy

)
dx∫ ∞

0 f (x)
(∫ x

0 gn−1(y)dy
)
dx

= 1 −
∫ x
0 gn(y)dy∫ x

0 gn−1(y)dy
= 1 − Gn(x)

Gn−1(x)
= 1 − G(x)

= 1 −
∫ x

0
g(y)dy =

∫ ∞

x
g(y)dy (32)

from Eq. 26 as

h(n) =
∫ ∞
0 f (x)

{∫ ∞
x g(y)dy · [∫ x

0 g(y)dy
]n−1

}
dx

∫ ∞
0 f (x)

{[∫ x
0 g(y)dy

]n−1
}
dx

=
∫ ∞
x g(y)dy · [∫ x

0 g(y)dy
]n−1

[∫ x
0 g(y)dy

]n−1 =
∫ ∞

x
g(y)dy (33)

By these equations, it is illustrated that product failure rate is a constant indepen-
dent on the times of load action in condition of deterministic strength. Besides, it is
proved once more that the three failure rate equations, i.e., Eqs. 9, 24 and 26 are the
same.
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5 Strength Degradation Effect on Failure Rate

Under cyclic loading, material property will degrade gradually if the stress is high
enough, and the strength becomes less and less. Different products or materials have
different strength degradation patterns. Some materials show an approximate linear
relationship between residual strength and load action number, others show various
type of non-linear relationships. First, consider the situation that material strength
degrades in power law as described by Eq. 34 and shown in Fig. 10.

S(n) = S0(1 − (
n

N
)e) (34)

where, S(n) stands for the material strength (residual strength) after n times of load
action, n stands for the number of load actions, S0 stands for the original mate-
rial strength, N stands for the fatigue life under the cyclic stress, e is a constant
characterizing strength degradation rate.

With material strength degradation behavior incorporated, the basic failure rate
equation (Eq. 9) becomes

h(n) =
∞∫

0

gn−1(z)

⎧⎨
⎩

∞∫

z

g(y)

⎡
⎣

y∫

z

fS(x, n)∫ ∞
z fS(x, n)dx

dx

⎤
⎦dy

⎫⎬
⎭dz (35)

where, fS(x, n) stands for the probability density function of the residual strength
after (n-1) times of load action.

Shown in Fig. 11 are the strength distribution of the original products and those
subjected to a certain times of random load action. Where, “original” is the strength
distribution of the new products subjected to no load action, “slightly degraded”,
“moderately degraded” and “seriously degraded” are the products after a small,
moderate and large numbers of random load actions, respectively. Correspondingly,

Fig. 10 Material strength
degradation curves—Power
law
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shown in Fig. 12 are the strength distribution of the population consist of all the
products subjected to no load action, and those of the sub-populations consist of
products survived a small, moderate and large numbers of random load actions,
respectively.

For the normal-distributed strength S(n) ~ N(μx(n), σ x(n)), suppose that the mean
value of strength decreases with load action times n as

μx (n) = μ0(1 − (
n

N
)e) (36)

where, μ0 stands for the mean of the original strength.
Under cyclic loading, the dispersion of the residual strength will also change

gradually. For the sake of simplicity, especially in the situation of no enough strength
degradation data available, strength standard deviation σ x can be assumed no change,
i.e.,

σx (n) = constant (37)

Fig. 11 Distributions of
residual strength
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Fig. 13 Failure rate curves in the situation of strength degrading in power law

The typical failure rate curves corresponding to different load-strength combi-
nations and different strength degradation rates are obtained by Eq. 35 and shown
in Fig. 13. It demonstrates that different strength degradation rates yield obviously
different failure rate curves.

Somematerials show logarithmic strength degradation described by the following
equation:

S(n) = S0 + (S0 − σ) ln(1 − n/(N + 1))/ ln(N + 1) (38)

where, S(n) stands for residual strength after n times of load action, n stands for the
number of load actions, N stands for the number of load action to material fatigue
failure, i.e., the fatigue life under the cyclic stress σ.

Shown in Fig. 14 are test data of specimens made of normalized carbon steel and
the logarithmic strength degradation curves, in which themean of the ultimate tensile
strength, i.e., the mean original strength is 1180 MPa.

When the logarithmic strength degradation equation is incorporated into the basic
failure rate model, the typical failure rate curve of bathtub shape can be yielded by

Fig. 14 Strength degradation test data and the logarithmic residual strength curves
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Eq. 35 (shown in Fig. 15a). The typical bathtub curve is for a component in the
condition that stress follows the normal distribution N(450, 202), strength follows

the normal distribution N
(
600 + 300 × ln(1−n/(N+1))

ln(N+1) , 302
)
. Comparing with the

failure rate curves obtained in the situation of strength degrading in power law,
it demonstrates that strength degradation pattern influences the shape of failure rate
curve considerably. Besides, both load distribution and strength distribution influence
failure rate curve shape considerably, too. In the extreme situation of deterministic
load, failure rate will increase monotonically with the degradation of strength, so
it is not surprised to get a monotonically increasing failure rate curve as shown in
Fig. 15b. The different curves in Fig. 16 correspond to different load distribution—
strength distribution combinations. Shown in Fig. 17a are the failure rate curve of a
component in the condition that stress follows the normal distribution N(450, 202),

strength follows the normal distribution N
(
600 + 300 × ln(1−n/(N+1))

ln(N+1) , 402
)
, and the

failure rate curve of a series system composed of 10 identical components, Fig. 17b
are a failure rate curve of a component and that of a parallel system consist of 10
components.

(a) Bathtub shaped failure rate curve (b) Failure rate under deterministic load
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Fig. 15 Failure rate curves yielded by Eq. 35 in the situation of logarithmic strength degradation

Fig. 16 Failure rate curves
corresponding to different
load/strength distributions
(note: parameters shown on
graph: stress mean-stress
std-strength mean-strength
std)
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(a) Component and series system (b) Component and parallel system
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Fig. 17 Failure rate curves of a components and systems consist of 10 components

The above situations demonstrate that products (components or systems) failure
rate curves present on different shapes depending on system configuration, the
underlying failure mechanism and stress-strength relationship of the components.

6 Mechanism to Yield Failure Rate Curve of Roller Coaster
Shape

Asmentioned above, the shape of product failure rate curve depends on many factors
including product property, load characteristics, failure mechanism, etc. Product
failure rate may be as simple as a constant value, a monotonically increasing curve
or a monotonically decreasing curve. It may also be as complicated as a bathtub
curve or a roller coaster curve as shown in Fig. 18.

The roller-coaster type of failure rate curve shown in Fig. 18a is obtained in the
situation that the product population can be divided into two sub-populations. Two
potential failure modes exist for the population. A product in the population might
fail in either failure mode with a respective probability. Here, one failure mode is
related toWeibull distributed stresswith shapeparameter 2.0 and scale parameter 200,
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Fig. 18 Failure rate curves of roller coaster shape
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normal distributed strength with original mean 600 and standard deviation 60, the
mean strength degrades in logarithmic law with a life index 2000; the other is related
to normal distributed strength with original mean 600 and standard deviation 120,
the strength mean degrades in logarithmic lawwith a life index 1000. The probability
for the first failure mode to take place is 0.7, and that for the second failure mode is
0.3. That is, 70% products in the population belong to one sub-population, the other
30% belong to another sub-population.

Shown in Fig. 18b is the situation of Weibull distributed stress with shape param-
eter 2.0 and scale parameter 150, strength characteristics are the same as mentioned
above despite that the probability for the first failure mode to take place is 0.9, and
that for the second failure mode is 0.1.

By the way, for a failure rate curve of bathtub shape, the high failure rate in the
infant mortality phase is traditionally attributed to products with material flaw or
manufacture defect. The fact is that, if the products can be divided into two groups as
perfect and defective, the failure rate curve will present roller coaster shape as shown
in Fig. 18. In such a product population, part of the products has manufacture defects
manifested as lower strength and higher failure probability in the infantmotility stage,
others do not have manufacture defect, and therefore, their failures occur mainly in
wear out stage.

Furthermore, it is traditionally believed that after the failures of the defective
products, the survived products will keep a low and roughly constant failure rate for
a long time until they begin to wear out. The failure, i.e., the so-called chance failure
in this period is attributed to unexpected factors. Such an explanation is also plausible,
since if there are the so called “unexpected factors”, they will exist throughout the
product service life, not only in the chance failure stage. In fact, the failure rate model
has illustrated that the roughly constant failure rate in the useful life period is the
result of stress-stress competition, instead of unexpected factor.

Since product failure or not during service is determined by the dynamic compe-
tition relationship between load and strength, the decreasing failure rate in the first
stage of product service life is natural for products subjected to multiple times of
random load action. If a sub-population, dominated by quality-control defects due
to poor workmanship, out-of-specification incoming parts and materials, and other
substandard manufacturing practices, exists in the product population, there will be
more than one failure mechanisms or failure modes, the corresponding failure rate
curve will present roller coaster shape. In other words, if only a part of the products
in a population suffers from a certain failure mechanism leading to shorter lifetime,
the failure rate curve might present roller coaster shape.

Strength degradation under repeatedly loading results in increasing failure rate.
Provide that product property keeps the same during its service life, i.e., no strength
degrading during load actions, a product will never fail to a load not greater than
those experienced. That is, such a product can only fail when a load higher than
all the preceding ones is applied. For a steady random load process, the probability
for a higher load to appear is less and less with the increase of the loading history.
Therefore, given that strength keeps no change, failure rate will decrease with the
increase of product service time as show in Fig. 19a. In the condition that strength
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(a) Decreasing failure rate (b) Increasing failure rate
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Fig. 19 Failure rate curves in different situations

degrades gradually, the failure rate is increasing for a component with large safety
margin or a component subjected to a deterministic load as shown in Fig. 19b.

Although the shapes of failure rate curve are various, failure is essentially the result
of the competition between load and strength. In this regard, whether a product fails at
a certain load action or not depends on the load and the strength at that moment. Like-
wise, failure rate at a certain load action number is determined by load distribution
and strength distribution including its time dependent degradation behavior. Based
on load-strength competition behavior, it is easy to understand that the failure rate
curve of bathtub shape comes from the continuously changing competition relation-
ship between the random load and degrading strength, the failure rate curve of roller
coaster shape manifests the diversity of product strength in the same population.

7 Conclusion

Failure rate models are developed for components and systems based on dynamic
load-strength competition analysis. It is illustrated that whether the failure rate, as a
functionof the timesof load action, takes onbathtub shapeor not ismainly determined
by stress-strength relationship. The reason for decreasing failure rate is the less and
less probability that a higher load appears with the increase of preceding load action
numbers, the increasing failure rate is caused by strength degradation. The models,
together with the failure rate curves corresponding to the models, highlight the effect
of the statistical characteristics of load and strength on the shape of failure rate curve,
as well as the role of strength degradation.

It is clearly demonstrated that if product strength doesn’t degrade, failure rate
curve takes on the feature of the first two stages of a typical three-stage bathtub-
shaped curve only, i.e., failure rate decreases continuously with the number of load
actions, with lower and lower gradient. When the effect of strength degradation
exceeds the effect of the decreasing probability of higher load appearing, the failure
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rate begins to increase. In other words, the decreasing failure rate stage is dominated
by the statistical risk of load, whereas the increasing failure rate stage is dominated
by strength degradation.

For a population containing defective products, the failure rate curve may present
roller coaster shape. Generally, a failure rate curve of roller coaster shape will appear
in a population where different failure mechanisms or different failure modes exist
in different products.
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