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Foreword 

It is my pleasure to write the foreword for this well-edited book: Advances in 
Reliability and Maintainability Methods and Engineering Applications. Contributed 
chapters in the book cover the latest trends in the areas of reliability, maintain-
ability, and safety engineering as well as applications in various fields including 
aviation, power systems, wireless networks, and mechanical engineering systems. 
The chapters have succeeded in achieving a fine balance between theory and practice. 

I am indeed delighted to know that this book was brought on a special occasion 
of the 60th birthday of a dear friend, Prof. Hong-Zhong Huang, who has contributed 
immensely to the field of reliability engineering. He truly deserves this special honor 
and tribute by some of his former Ph.D. students and collaborators. 

Advances in failure rate and degradation modeling of mechanical systems, relia-
bility of wireless body networks and aircraft systems, inspection policies of complex 
systems, opportunistic maintenance of wind turbines, and proactive health manage-
ment are some of the highlights of the book. I am sure that students, research scholars, 
scientists, engineers, and practitioners of reliability engineering will greatly benefit 
from this book. 

I strongly recommend this book for its comprehensive coverage on the advances 
of reliability and maintainability engineering and their practical applications.
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vi Foreword

Many best wishes to you, Prof. Hong-Zhong Huang, on your 60th birthday! 

December 2022 Dr. Hoang Pham 
Editor-in-Chief 

Springer Book Series in Reliability Engineering, 
Fellow of the IEEE, AAIA, IISE 

Distinguished Professor 
Rutgers University 

Piscataway, NJ, USA



Preface 

This book aims at collecting state-of-the-art research works from globally renowned 
scholars in the field of reliability and maintainability to celebrate Prof. Hong-Zhong 
Huang’s 60th birthday in June 2023. Professor Hong-Zhong Huang is Full Professor 
at the School of Mechanical and Electrical Engineering, University of Electronic 
Science and Technology of China, Chengdu, China, where he also serves as Director 
of the Center for System Reliability and Safety. He received his B.Sc. degree at Wuhan 
University in 1983, M.Sc. degree at Chongqing University in 1988, and Ph.D. degree 
at Shanghai Jiao Tong University in 1999. He has held visiting appointments with 
several universities in the USA, Canada, and Asia. He has authored or coauthored 
more than 320 journal papers and eight books in the fields of reliability engineering, 
optimization design, prognostics, and health management. He is ISEAM Fellow, 
Technical Committee Member of ESRA, Co-editor-in-Chief for the International 
Journal of Reliability and Applications, and Editorial Board Member of several 
international journals. In the past 28 years as Graduate Advisor, he supervised and 
co-supervised 18 postdoctoral research fellows, 68 Ph.D. students, and 182 M.Sc. 
students. 

In recognition of Prof. Huang’s excellent and global contributions to the reliability 
and maintainability community, this book is composed of 24 invited chapters from 12 
countries including China, the USA, the UK, Canada, Germany, Portugal, Poland, 
Singapore, Japan, South Korea, Chile, and the Kingdom of Saudi Arabia and 43 
institutions. All these chapters were contributed by worldwide renowned scholars 
and research groups. The layout of this book is as follows: 

In Chapter “Multi-criteria Based Selection of Ship-Based Ballast Water Treat-
ment Technologies”, a multi-criteria-based selection of ship-based ballast water 
treatment technologies is presented. Chapter “A Two-Phase Sampling Approach 
for Reliability-Based Optimization in Structural Engineering” reports a two-phase 
sampling approach to address reliability-based optimization problems in structural 
engineering. In Chapter “Moment Estimation-Based Method of Motion Accuracy 
Reliability Analysis for Industrial Robots”, a novel computational framework is 
proposed to comprehensively evaluate the reliability for kinematic positioning and
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trajectory accuracy of industrial robots. In Chapter “Reliability of Wireless Body 
Area Networks”, the reliability model of wireless body area networks is introduced. 
In Chapter “Sensitivity Estimation of Markov Reward Models and Its Applications 
to Component Importance Analysis”, Markov chain-based component-wise sensi-
tivity analysis is put forth to evaluate component importance measures without any 
system structure function. Chapter “Failure Rate Modeling of Mechanical Compo-
nents and Systems” introduces failure rate modeling of mechanical components 
and systems. Chapter “Statistical Reliability Modeling and Analysis for Repairable 
Systems with Bathtub-Shaped Intensity Function” reports statistical reliability 
modeling and analysis for repairable systems with bathtub-shaped intensity function. 
In Chapter “Multi-state Signatures for Multi-state Systems with Binary/Multi-state 
Components”, signatures for multi-state systems with binary/multi-state components 
are derived. Chapter “Comprehensive Reliability of Aircraft Actuation System” 
presents the essential reliability characteristics of redundant aircraft actuation 
systems and creates a reliability evaluation method for non-similar redundancy 
actuation systems. Chapter “Integration of Reliability Design, Installed Base, 
and After-Sales Services for System Availability” discusses a holistic approach 
to sustain system availability in an integrated product-service framework. Chapter 
“Use of Artificial Neural Networks to Enhance Container Port Safety Analysis 
under Uncertainty” proposes a modified failure mode effect analysis approach by 
using artificial neural networks to predict the operational risks of container terminals. 
Chapter “Usage of Failure Time and Repair Time for Optimization of Maintenance 
and Warranty Policy and Lemon Law Application” reports the usage of failure time 
and repair time for optimization of maintenance and warranty policy and Lemon 
Law application. Chapter “Reliability and Opportunistic Maintenance of Floating 
Offshore Wind Turbines” reviews the state-of-the-art methods and procedures for 
reliability and maintainability analysis of floating offshore wind turbines. Chapter 
“A Summary of Inspection Policies of One Shot Systems” summarizes inspection 
optimization models for one-shot systems. Chapter “Analysis for Influence of Main-
tenance and Manufacturing Quality on Reliability of Repairable Systems” reports 
analysis of the influence of maintenance and manufacturing quality on the reliability 
of repairable systems. Chapter “Quantification of Uncertainty of Warranty Claims” 
reviews warranty, introduces its different types, discusses possible causes of warranty 
claims, and provides an introductory overview of the approaches to modeling 
warranty claims. Manufacturing paradigm-oriented prognostics and health manage-
ment methodologies for cyber-physical systems are introduced in Chapter “Manu-
facturing Paradigm-Oriented PHM Methodologies for Cyber-Physical Systems”. In 
Chapter “Degradation Modeling and Residual Life Prediction Based on Nonlinear 
Wiener Process”, degradation models based on nonlinear Wiener processes under 
univariate and multivariate situations are presented. In Chapter “System Reliability 
Models with Dependent Degradation Processes”, various system reliability models 
with dependent degradation processes are introduced. In Chapter “A Study of Health 
State Transitions for Proactive Health Management”, health state transitions for 
proactive health management are studied. In Chapter “Kalman Filter-Based Systems 
Approach for Prognostics and Health Management of Electric Motors”, a Kalman
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filter-based systems approach is presented for prognostics and health management of 
electric motors. Chapter “Exploratory Fault Detection with Multivariate Data: A Case 
Study on Engine Bearing” studies detection of impending bearing failures using in-
situ field data. Chapter “Novel Approach to Prognostics and Health Management 
to Combine Reliability and Process Optimisation” provides a novel approach for 
prognostics and health management to combine reliability and process optimization. 
Chapter “Current Status and Prospects of Reliability Systems Engineering in China” 
presents a systematic overview of the evolution of reliability systems engineering in 
China and emphatically introduces its latest developments. 

We would like to sincerely acknowledge all the contributors and friends who make 
this book possible. Our special thanks are given to Prof. Dong Ho Park at Hallym 
University, Prof. Carlos Guedes Soares at University of Lisbon Higher Technical 
Institute, Prof. Joe Mathew at Asset Institute, Prof. Krzysztof Kołowrocki at Gdynia 
Maritime University, Prof. Enrico Zio at Politecnico di Milano, Prof. Narayanaswamy 
Balakrishnan at McMaster University, Prof. David W. Coit at Rutgers University, 
Prof. Michael Beer at Leibniz Universität Hannover, Prof. Min Xie at City University 
of Hong Kong, Prof. Zili Wang at Beihang University, Prof. Jin Wang at Liverpool 
John Moores University, Prof. Tadashi Dohi at Hiroshima University, Prof. Won 
Young Yun at Pusan National University, Prof. Joo-Ho Choi at Korea Aerospace 
University, Prof. Loon Ching Tang at National University of Singapore, Prof. Sukjoo 
Bae at Hanyang University, Prof. Xu Han at Hebei University of Technology, Prof. 
Lifeng Xi and Prof. Ershun Pan at Shanghai Jiao Tong University, Prof. Lirong 
Cui at Qingdao University, Prof. Shaoping Wang at Beihang University, Prof. Bo 
Guo at National University of Defense Technology, Prof. Liyang Xie at North-
eastern University, Prof. Renyan Jiang at Changsha University of Science and Tech-
nology, Prof. Liudong Xing at University of Massachusetts Dartmouth, Prof. Dariusz 
Mazurkiewicz at Lublin University of Technology, Prof. Tongdan Jin at Texas State 
University, Prof. Zaili Yang at Liverpool John Moores University, Prof. Shaomin Wu 
at University of Kent for their warm supports on this book, and all the coauthors. 
Last but not least, we would like to thank Prof. Hoang Pham at Rutgers University, 
who gave a warm and great support to the publication of this book. It is also indeed 
our pleasure working with Miss Sharmila Anbu and the Springer editorial team. 

The four editors of this book have a close relationship with Prof. Huang, and they 
are Prof. Huang’s former graduate students. On behalf of all his students, we would 
like to take the opportunity to wish Prof. Huang continuing success, happiness, and 
health in all coming years. 

Chengdu, P.R. China 
Shanghai, P.R. China 
Chengdu, P.R. China 
Lisbon, Portugal 
February 2023 

Dr. Yu Liu 
Dr. Dong Wang 
Dr. Jinhua Mi 

Dr. He Li



Biography of Prof. Hong-Zhong Huang 

Dr. Hong-Zhong Huang is Professor at the School of Mechanical and Electrical 
Engineering, University of Electronic Science and Technology of China (UESTC). 
He serves as Director of the Center for System Reliability and Safety at UESTC. 
Professor Huang received his Ph.D. degree from Shanghai Jiao Tong University, 
China, in 1999. His research interests are reliability engineering, optimization design, 
prognostics, and health management. While reaching 60 years old in June 2023, 
Prof. Huang has achieved remarkable achievements. He has published more than 
320 papers in journals, including Reliability Engineering & System Safety, IEEE 
Transactions on Reliability, IISE Transactions, Annals of Operations Research, and 
Journal of Mechanical Design-Transactions of the ASME. He has also published 
eight books and 10 book chapters and edited 18 international conference proceed-
ings. About 68 of his patents have been granted. Professor Huang is Internationally 
Renowned Scholar, ISEAM Fellow, and Technical Committee Member of Euro-
pean Safety and Reliability Association (ESRA). He serves as Co-editor-in-Chief 
for the International Journal of Reliability and Applications and Editorial Board 
Member of several international journals (e.g., Reliability Engineering & System 
Safety, International Journal of Metrology and Quality Engineering). 

Professor Huang graduated with distinction from the Wuhan University of 
Hydraulic and Electric Engineering (1979–1983), one of the Project 211 and a 
national key university, and merged with Wuhan University in 2000. He received his 
master’s degree from Chongqing University as a top student in 1988 with the honor 
of “Excellent Postgraduate Student”, under the supervision of Prof. Wenji Chen. As 
the part of a National “Seventh Five-Year Plan” Major Scientific and Technological 
Research Project, his master’s thesis contributed to solving problems of strength 
calculation and weight optimization of large excavator booms. He won a special 
prize for the National Major Technical Equipment Achievements issued by the State 
Council of China. Supervised by Prof. Zongwu Hu (1996–1999), his Ph.D. disserta-
tion, entitled “Study on Fuzzy Reliability Theory and Its Application to Mechanical 
Components and Systems”, was awarded as one of the top 100 National Outstanding 
Doctoral Dissertations in China. As Postdoctoral Research Fellow (1999–2001), he
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xii Biography of Prof. Hong-Zhong Huang

worked with Prof. Runfang Li in the State Key Laboratory of Mechanical Transmis-
sion at Chongqing University and was awarded an “Excellent Postdoctoral Fellow” 
by the People’s Government of Sichuan Province. 

He was employed by Southwest Electric Power Design Institute in Chengdu 
(1983–1985). As Institute’s Technical Representative, he oversaw the construction 
of the Chongqing Huayingshan Power Plant. Due to his outstanding performance, 
he undertook the responsibility of designing a coal handling system for Yunnan 
Xiaolongtan Power Plant and an automatic coal unloading line for the dumper of 
Chongqing Baima Power Plant. 

He worked for Southwest Jiaotong University and was appointed as Director of the 
Reliability and Intelligent Design Research Office (1988–1999). He received an early 
promotion to Associate Professor in 1994 and Professor in 1998. During this period, 
Prof. Huang was involved in the preliminary design of a rolling vibration test bench 
for whole locomotives and vehicles of the State Key Laboratory of Traction Power 
(the first largest in Asia and the second largest in the world). His research projects 
were supported by leading funding bodies in his subjects such as National Natural 
Science Foundation of China, China Postdoctoral Science Foundation, Science and 
Technology Development Fund of the Ministry of Railways, Sichuan Province Cross 
Century Distinguished Young Discipline Leader Fund, and Sichuan Province’s First 
Batch of Academic and Technical Leader Training Fund. 

His achievements focused on: 

(1) Fuzzy methods in reliability engineering. He made critical comments on conven-
tional reliability theories and discussed fuzzy reliability theories’ generation, 
development, and application prospects (see Huang 1994). 

(2) Applications of computational intelligence in mechanical engineering. He intro-
duced the concept of fuzzy mechanical science and technology and established 
its theoretical framework (see Huang 1996). 

(3) Design, finite element analysis, and optimization of products. It included CHT12 
container cranes, railway rescue cranes, crane trolleys, ring crushers, impeller 
unloaders, and SH6600 light passenger cars. It also included the development 
of a tower crane safety evaluation expert system and a railway crane conceptual 
design expert system. 

His paper “Research on fuzzy fault tree theories and applications” was awarded 
the Best Paper at the Asia Pacific Symposium on Occupational Safety and Health 
in 1993. In addition, many of his papers were granted the Excellent Paper Awards 
from the Sichuan Association for Science and Technology and Sichuan Mechanical 
Engineering Society. 

He published three books in Beijing, Reliability Theory and Application of 
Mechanical Transmission (by China Science and Technology Press) in 1995, The 
Principle and Application of Fuzzy Optimization in Mechanical Design (by Science 
Press) in 1997, and Fuzzy Design (by China Machine Press) in 1999. He also 
published about 100 papers in such as Microelectronics Reliability, Journal of 
Mechanical Engineering, and China Safety Science Journal.
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He was elected as Distinguished Young Scholar of Sichuan Province, the first batch 
of candidates for academic and technical leaders of Sichuan Province. His deeds were 
reported by Sichuan Daily. He was awarded the “Hongyu Excellent Teacher Award of 
Southwest Jiaotong University” in 1994 and the “Third Outstanding Young Teacher 
Award of Chengdu” in 1996. On July 26, 1995, he was honored by meeting with 
Presidents Zemin Jiang and Jintao Hu at the Great Hall of the People in Beijing. 
His teaching program entitled “A Series of Reforms of Mechanical Design Courses 
in Strengthening Practical Links and Improving Design Ability” was awarded the 
Second Prize of Excellent Teaching Achievements of Southwest Jiaotong University 
in the academic year 1991–1992. Moreover, he received the First Prize of Science 
and Technology Progress Award of the Sichuan Provincial Education Commission 
in 1997 for his project titled “Study on Reliability of Mechanical Transmission”. 

He served as Member of the editorial board of Modern Design Series, the 4th 
editorial board of Journal of Machine Design (August 1999), the Second Committee 
of the Reliability Engineering Branch of China Mechanical Engineering Society 
(October 1995), and Director of the Reliability Society of China Modern Design 
Method Research Society (December 1995). 

He worked for the School of Mechanical Engineering at Dalian University of Tech-
nology (2000–2004), as Director of the Institute of Advanced Design Technology 
and Intelligent Control and Member of the Council of the University. Dr. Huang was 
Adjunct Professor at several universities including Wuhan University. In addition, he 
was Senior Visiting Scholar at the University of Alberta in Canada (2003–2004) and 
Visiting Professor at the National University of Singapore (November–December 
2004). He was elected to the Excellent Young Teachers Funding Program of the 
Chinese Ministry of Education. He also served as Vice Chairman of the Mechanical 
Design Theory and Method Committee of the Mechanical Design Branch of the 
Chinese Mechanical Engineering Society. He was Member of several professional 
societies, including the Third Committee of the Reliability Engineering Branch of 
the Chinese Mechanical Engineering Society, the Fifth Committee of the Mechan-
ical Design Branch of Chinese Mechanical Engineering Society, and the Teaching 
Committee of Mechanical and Electrical Subjects in Colleges and Universities of 
China Education Association of Machinery Industry. As Member of the fourth edito-
rial board of Journal of Machine Design, he also served as General Chair of the 
National Modern Design Theory and Method Committee Council and Academic 
Meeting (2001), the National Reliability Academic Meeting and the Third Committee 
Council of Reliability Engineering Branch (2002), the Session Chair of the 5th Inter-
national Conference on Frontiers of Design and Manufacturing (2002), and the Third 
Cross-Strait Workshop on Manufacturing Technology (2003). 

Professor Huang founded the collaborative laboratory “Joint Research Office of 
Advanced Design and Control Technology” and “Joint Research Center for Advanced 
Technology of Construction Machinery” with the Taiyuan Heavy Machinery Co., 
Ltd., and Guangxi Liugong Group Co., Ltd., respectively, and served as Executive 
Deputy Director.
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During this period, His research focused on fuzzy reliability and intelligent opti-
mization. He received research grants from the National Natural Science Founda-
tion of China, the National Natural Science Foundation of China Projects of Inter-
national (Regional) Cooperation and Exchanges Program, the National Excellent 
Doctoral Dissertation Foundation of the Chinese Ministry of Education, Excellent 
Young Teachers Foundation Program of the Chinese Ministry of Education, Sub-
projects of the National Tenth Five-Year Science and Technology Research Project 
“Development of Automobile Safety Auxiliary Devices”, and some Open Projects 
Fund by the State Key Laboratory. Cooperating with large backbone enterprises such 
as Guangxi Liugong Group Co., Ltd., Taiyuan Heavy Machinery Group Co., Ltd., 
Wafangdian Bearing Group Co., Ltd., and Liaohe Oilfield, he was committed to 
addressing reliability issues of products such as loaders, excavators, bearings, and 
petroleum machinery. 

He also participated in writing the book Chinese Mechanical Design Canon 
and edited three conference proceedings. One of his papers, entitled “Fuzzy multi-
objective optimization methods based on functional-link network”, was awarded the 
Best Paper by the China Mechanical Engineering Society (2001), and his project 
“Design Theory of Mechanical Fuzzy Reliability” won the Second Prize of the 
Natural Science Award of Chinese Ministry of Education (2002). 

Professor Huang has been at the University of Electronic Science and Tech-
nology of China (UESTC) since January 2005, as Dean of the School of Mecha-
tronics Engineering (2006–2013). Currently, he is Director of the International Coop-
eration and Education Committee, Deputy Head of the Science and Technology 
Committee, Director of the Center for System Reliability and Safety, and Member 
of the University’s Academic Committee. 

He was Senior Visiting Scholar at Northwestern University in USA (2005–2006), 
Visiting Professor in the Center for PHM at the City University of Hong Kong (April– 
May 2010), as well as Visiting Professor at the University of Alberta (July–August 
2010). He was appointed as Technical Advisor of XCMG Research Institute Co., Ltd. 
(July 2021–December 2022), and Consultant of Taiyuan Heavy Machinery Group 
Co., Ltd. (August 2022–July 2024). Due to his prominent achievements, he was 
elected as “Grassland Talent” in Inner Mongolia Autonomous Region, China (2016– 
2021), and Distinguished Professor at the Inner Mongolia University of Technology, 
China (2017–2020), where he was nominated as Honorary Dean of the School of 
Mechanical Engineering (2020–2023). 

Professor Huang was also honored with a special government allowance expert 
by China’s State Council and the National Science Fund for Distinguished Young 
Scholars (Type B). He takes leadership in many committees. He has been awarded 
as Model Worker, Academic Leader, Outstanding Expert with Extraordinary 
Contributions, and Leading Innovation Talent of the Sichuan Province. 

Professor Huang served as Member of academic committees in several laborato-
ries, including the State Key Laboratory of Mining Equipment and Intelligent Manu-
facturing, the Key Laboratory of Space Launch Site Reliability Technology, and the 
Key Laboratory of Equipment Support Engineering. He also served as Chairman of
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academic committees at Hebei Provincial Key Laboratory of PHM, Inner Mongolia 
Autonomous Region Key Laboratory of Advanced Manufacturing Technology, etc. 

He has been Fellow of the International Society of Engineering Asset Manage-
ment (ISEAM Fellow) since 2010 and Member of the System Reliability Technical 
Committee of the European Safety and Reliability Society (ESRA) since 2007. He 
also served as Vice President of the Reliability Branch of the Operations Research 
Society of China (April 2013–December 2021), the Reliability Engineering Branch 
of the Chinese Mechanical Engineering Society (2018–present), the Reliability 
Branch of the Chinese Institute of Electronics (2019–present), and the Maintenance 
Professional Committee of Chinese Ordnance Society (2010–present). Meanwhile, 
he has been President of the Reliability Engineering Branch of the Sichuan Mechan-
ical Engineering Society (2016–present), Vice Chairman of the PHM Professional 
Committee of Sichuan Mechanics Society (2019–present), and the Electronic Product 
Reliability and Quality Management Committee of Sichuan Institute of Electronics 
(2019–present). 

Professor Huang has been appointed as Co-editor-in-Chief of the International 
Journal of Reliability and Applications (2016–present) and Associate Editor of 
the International Journal of Metrology and Quality Engineering (2022–present). 
Meanwhile, he serves in the editorial board of several journals, including Relia-
bility Engineering and System Safety (2012–present), Eksploatacja I Niezawodnosc-
Maintenance and Reliability (2012–present), Applied Sciences (2021–present), 
Chinese Journal of Mechanical Engineering (English, 2013–present), Journal of 
Systems Engineering and Electronics (2018–present), International Journal of Reli-
ability, Quality and Safety Engineering (2007–2021). He also serves as Editorial 
Board Member of multiple Chinese journals and books. 

Professor Huang was Founder or Co-founder of several international conference 
series on reliability, including the International Conference on Quality, Reliability, 
Risk, Maintenance, and Safety Engineering (QR2MSE), the International Confer-
ence on Materials and Reliability (ICMR), and the International Conference on 
Maintenance Engineering (ICME), where he has served as General Chair, Co-chair, 
and Program Committee Chair. In addition, he has been invited to give 28 keynote 
speeches in both international and national conferences. 

He has been Principal Investigator (PI) or participator in a number of government-
sponsored projects like the National Natural Science Foundation Project of China, 
the “973 Program”, the “863 Program”, the National Science and Technology Major 
Project, and the National Key R&D Programs of China. In addition, Prof. Huang has 
held over dozens of company-sponsored projects such as Taiyuan Heavy Machinery 
Group Co., Ltd., Yuchai Group, SAIC-GM-Wuling Automobile, and Qiqihar No. 2 
Machine Tool Group Co., Ltd. 

He was awarded seven prizes for his remarkable contribution, including the 
Natural Science Award of the Ministry of Education and the Science and Tech-
nology Progress Award of Sichuan Province. He was granted the “William A. J. 
Golomski Award”, an international academic award in the field of Reliability and 
Maintainability in California, USA, in January 2006. Many of his papers received
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the Best Paper Awards both at international and national conferences. Since 2014, 
he has been recognized as Highly Cited Chinese Researcher (Elsevier) every year. 

In the realm of education, Prof. Huang is also highly accomplished, as Member of 
several teaching steering committees, including the Mechanical Engineering Majors 
in Colleges and Universities of the Ministry of Education (2018–2022), the Indus-
trial Engineering Majors in Colleges and Universities of Chinese Ministry of Educa-
tion (2013–2017), the Mechanical Design Manufacturing and Automation Disci-
pline of China Machinery Industry Education Association (2007–present), and the 
Sichuan Provincial Ordinary Undergraduate Colleges and Universities (Mechan-
ical Engineering Major) (Vice President, 2021–2025). Apart from that, he served 
as Member of the Postgraduate Teaching Resources Construction Committee of 
Mechanical Engineering Discipline of Higher Education Press (2008–present). 
Professor Huang is Member of the Organizing Committee of the Sichuan Division 
of the National College Student Mechanical Innovation Design Competition (2006– 
2013) and the Textbook Editorial Committee of the Intelligent Manufacturing Series 
(2021–present). Also, he has been leading the UESTC’s new engineering education 
project “Intelligent Equipment Reliability Summit Plan” (2022–2026), the Construc-
tion and Practice of the Mechanical and Electrical Innovation and Entrepreneurship 
Talent Training System of the Key Project of Sichuan Higher Education Talent 
Training Quality and Teaching Reform Project “Four Chains Integration” (2021– 
2023), and UESTC’s postgraduate innovation training program “Innovative Talent 
Ability Improvement Plan for High-end Equipment Intelligence and High-Reliability 
Demand” (2021–2022). Two of his Ph.D. students received the HIWIN Doctoral 
Dissertation Award, the most prestigious recognition for Ph.D. students in the field 
of mechanical engineering. Given his distinguished accomplishments in education 
and teaching reform, he received the Second Prize in National Teaching Achievement 
and the First Prize in Sichuan Provincial Teaching Achievement Award (twice). 

References 
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Professor Hong-Zhong Huang at his Master’s defense (April 1988) 

Professor Hong-Zhong Huang (the first person from the right) with his Ph.D. advisor Prof. Zongwu 
Hu (the first person from the left) and the committee members of his doctoral defense (1998) 
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Professor Hong-Zhong Huang at the new product appraisal meeting of Guangxi LiuGong Machinery 
Co., Ltd. (March 28th, 2003) 

Professor Hong-Zhong Huang with Prof. Wei Chen (Member of National Academy of Engineering) 
when he was a senior visiting professor at Northwestern University, USA (November 27th, 2004) 
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Professor Hong-Zhong Huang at ICME2006 (October 17th, 2006) 

Professor Hong-Zhong Huang (the first person from the left in the front) visiting the University of 
Electro-Communications (Japan) with the former president of University of Electronic Science and 
Technology of China (April 4th, 2007) 
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Professor Hong-Zhong Huang with Ji Zhou (the former Minister of Education of China) at Tsinghua 
University (April 28th, 2012) 

Professor Hong-Zhong Huang with some delegates of QR2MSE2014 (July 23th, 2014)
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Professor Hong-Zhong Huang with his students (June 18th, 2017) 

Professor Hong-Zhong Huang visiting Taiyuan Heavy Machinery Group Co., Ltd. (October 15th, 
2018) 
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Professor Hong-Zhong Huang giving a welcome speech at ICMR2019, Jeju Island, South Korea. 
(November 28th, 2019) 

Professor Hong-Zhong Huang giving a plenary speech at CSAA/IET AUS 2022, Nanchang, China. 
(August 19th, 2022) 



Congratulatory Remarks 

Professor Dong Ho Park 
Honorary President, Korean Reliability Society 

Korea 

It is a great privilege for me to address congratulatory remarks for Prof. Hong-Zhong 
Huang who will celebrate his 60th birthday in June 2023. I would like to extend 
my sincere congratulations to him for keeping his health excellent, along with his 
outstanding achievements throughout his academic career in education and research. 
As I recall, I first met Prof. Huang at International Conference on Maintenance 
Engineering (ICME) held in Chengdu, China, in October 2006, and later we met 
again at the RAMS held in Las Vegas, USA, in 2008. Since then, we have been 
in close contacts as colleagues and friends for more than 15 years so far. On the 
occasion of my retirement in 2012, he even came to Korea to address a warm and 
unforgettable congratulatory remarks for me, which I am genuinely grateful for his 
hearty support and kindness. His love and energy for academic excellence and his 
gentle personality impressed me greatly and made me to have a deep respect for him. 

Professor Huang has made a great contribution on several academic fields, espe-
cially on the field of maintenance and reliability engineering throughout his academic
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career as a researcher and an educator. Numerous academic awards from several 
academic societies are the convincing evident of his outstanding academic achieve-
ments, and he surely is deserved for such a recognition for his life-long contribution. 
Professor Huang has been such an insightful and impactful leader, superb scholar, 
and warm and caring colleague, plus valued friend to many of us. He has been on so 
many fronts internationally and in his native land by giving utmost efforts to develop 
the area of maintenance and reliability engineering into a major academic field in the 
science. For international cooperation and mutual communication among worldwide 
researchers, he assumed a leading role to organize several international conferences, 
such as International Conference on Quality, Reliability, Risk, Maintenance, and 
Safety Engineering (QR2MSE) and International Conference on Materials and Reli-
ability (ICMR), which have grown into remarkably productive international forums 
for many researchers to exchange their innovative ideas among them. More signifi-
cant contribution he has made, in my opinion, is his invaluable efforts to produce a 
number of young and talented researchers by running Center for System Reliability 
and Safety Engineering at University of Electronic Science and Technology of China. 
Without his academic aspiration and consistent efforts to educate young students, 
such achievements of producing many excellent researchers would not have been 
possible. 

During the course of many academic activities, we have had in many years, I 
have been very fortunate to get acquainted with a highly respected colleague and 
friend like Prof. Huang. Again, I would like to congratulate Prof. Huang for his 
60th birthday after an exceptionally successful academic career with a good health. 
Although the age of 60 is no longer a young age, it does not necessarily mean the 
downhill of an active academic career, but rather the beginning of a new era for life. 

I wish Prof. Huang, his family, and all his former students the most enjoyable and 
happy life for many more years to come. Most respectfully to all.



Congratulatory Remarks 

Professor Enrico Zio 
Centre de recherche sur les Risques et les Crises 

Sophia Antipolis, France 
Politecnico di Milano 

Milan, Italy 

It is more than 10 years since I first met Prof. Hong-Zhong Huang in beautiful 
Chengdu, China, at the 8th International Conference on Reliability, Maintainability 
and Safety (ICRMS2009) in 2009. Since then, I have had the opportunity to share 
many initiatives with Prof. Huang and the big and productive group that he has been 
able to establish in China to perform quality research in reliability engineering. 
Among these initiatives, I treasure also the opportunity to co-advise a visiting 
Ph.D. student from Prof. Huang’s research group during the years 2016–2018, with 
excellent research outcomes and great personal satisfaction. 

Through my professional relationship and personal friendship, I have learned to 
appreciate very much Prof. Hong-Zhong Huang as a colleague and as a friend. He is a 
worldwide renowned scientist in the field of reliability engineering, and the research
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group led by him has contributed several relevant works related to system reliability 
modeling, maintenance optimization, and reliability-based design optimization. 

Professor Huang’s research group has devoted substantial efforts to developing 
new tools and approaches for tackling important reliability challenges in real-world 
engineering assets, such as machining tools, aeroengines, military vehicles, and 
industrial robots. As a result of their work, many influencing papers have been 
published in top journals, like IEEE Transactions on Reliability, IISE Transactions, 
ASME Journal of Mechanical Design, and others. The contributions of Prof. Huang 
and his research group to both academia and industry have been awarded interna-
tional and national awards, like the William A. J. Golomski Award, ISEAM Fellow, 
Science and Technology Awards from the Chinese government, and others. 

Professor Hong-Zhong Huang also made a great contribution to education and 
knowledge sharing for the entire reliability community of scientists, practitioners, 
and students, by founding the International Conference on Quality, Reliability, Risk, 
Maintenance, and Safety Engineering (ICQR2MSE), the largest and most influencing 
event in Asia on these topics. In 2011, I was greatly honored to be invited to give a 
keynote lecture in the first event of this conference series in Xi’an. Already back then, 
the conference had attracted more than 200 participants from all over the world. To 
date, the annual event has been successfully held for 12 years and has continuously 
grown in participation, reaching a total number of participants of over 500 per year. 

Finally, I like to conclude this (too) short congratulating note by:

• Thanking Prof. Hong-Zhong Huang for his friendship, of which I am honored.
• Thanking Prof. Hong-Zhong Huang for all opportunities of collaboration that he 

has offered me, for which I am truly grateful.
• Complimenting Prof. Hong-Zhong Huang for all that he has done in his 

professional life.
• Sincerely wishing my friend Hong-Zhong a more-than-nice (60th) birthday and 

a happy continuation of life full of personal joy and professional satisfaction.



Congratulatory Remarks 

Professor Joseph Mathew 
Chief Executive Officer, Asset Institute 

Australia 

It is my privilege to offer these congratulatory remarks to you Prof. Hong-Zhong 
Huang on reaching your 60th birthday milestone. 

I offer my warmest congratulations on all your achievements, Prof. Huang and 
wish you even more success in the future. 

I recall that I have known you since 2011 through the QR2MSE series of confer-
ences which you initiated and grew as one of your many accomplishments. I have 
had the privilege of joining you and esteemed colleagues from around the world on 
several occasions in various venues in China and have enjoyable and very memorable 
experiences. No doubt your reputation in the field has attracted high-quality partic-
ipation in the conference and which has resulted in numerous quality publications 
following these events. Of particular note was the opportunity to collaborate with 
you on organizing a joint QR2MSE conference with the 11th World Congress on 
Engineering Asset Management (WCEAM) in the spectacular venue of Jiuzhaigou,
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China, in 2016. That conference has been etched in my mind as one of the most 
memorable of all the WCEAMs I have had the privilege of organizing. 

No doubt, the accolades of your achievements are numerous and will come from 
many quarters around the world. One that I had personal involvement was your 
nomination to become a fellow of the International Society of Engineering Asset 
Management (ISEAM) in 2010—a nomination that is a result of highly notable and 
professional regard and standing in the field of reliability theory and application. 

I would like to wish you a very happy 60th birthday Prof. Huang and I look 
forward to meeting you again in the near future.



Congratulatory Remarks 

Professor Krzysztof Kołowrocki 
President, Polish Safety and Reliability Association 

Gdynia, Poland 

Dear Sir 

Prof. Hong-Zhong Huang 

University of Electronic Science and Technology of China, Chengdu 

The Founder of QR2MSE 

Dear Professor 

Distinguished Jubilee 

On behalf of myself and the Board of the Polish Safety and Reliability Association, 
I would like to express my appreciation to the Professor for many years of scientific 
and didactic activity in the field of reliability. Your committed research, publica-
tion, and training activities as well as the development of new methods and tools 
have significantly contributed to raising the level of knowledge about reliability and 
safety in many companies and institutions and to the proper shaping of reliability
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and safety culture in industry. This has brought measurable benefits in the develop-
ment of young researchers, in ensuring the safety and health protection of industrial 
workers, economic development, and environmental protection. 

We wish you a lot of health and satisfaction in your personal and professional life 
and further research achievements, in conducting the widely recognized development 
of young scientific staff and further managerial continuation of the internationally 
recognized international conference QR2MSE. 

On the occasion of the 60th anniversary of birth.



Congratulatory Remarks 

Professor David W. Coit 
Rutgers University 
Piscataway, NJ, USA 

Prof. Hong-Zhong Huang has well served the engineering and reliability commu-
nity very effectively in multiple ways with his great technical and research abilities 
and his effective leadership skills. This book and the associated chapters provide a 
meaningful tribute to his many achievements and his exemplary character. His abil-
ities and achievements as a researcher alone would be sufficient for such a tribute, 
but his leadership and persistence in promoting our research interests in reliability 
and maintainability is even more important. As a researcher, he has few peers. His 
contributions and recognitions are so many. He has been a leader is conducting 
advanced research in condition monitoring, system reliability models, remaining life 
assessment, failure analysis, and other topics. His research papers always represent 
innovative new ideas that his students and other researchers can learn from and build 
upon. In addition to his achievements as a researcher, he has also been an academic 
leader and effective administrator in his positions of responsibility at the School of
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Mechanical and Electrical Engineering, University of Electronic Science and Tech-
nology of China (UESTC), Chengdu, China, as well as visiting positions in USA, 
Canada, and other Asian countries. For many of us in the international research 
community, Prof. Huang is best known as the founder and leader of the incredibly 
successful QR2MSE conference held annually in different cities in China. I was 
fortunate to attend the first two offerings of this conference in Xi’an and Chengdu 
and attended several other times as well. The success of this conference from the very 
beginning is an amazing accomplishment and so impressive. Professor Huang has 
always been able to bring the very best researchers from China and all other the world 
to share their ideas and then to collaborate with attending students and professors. 
As a professor from Rutgers University in the USA, I had the opportunity to travel 
to China and learn so many new topics and be exposed to so many new ideas, as well 
as to share my own ideas and theories. Finally, I would like to thank Prof. Huang for 
being a good friend. The hospitality he personally provided to me and other visiting 
academics is very appreciated.



Congratulatory Remarks 

Professor Min Xie 
City University of Hong Kong 

Hong Kong, China 

I am pleased to have known Prof. Hong-Zhong Huang for over 20 years, and I 
fondly remember our first meeting when I was with National University of Singapore. 
Professor Huang visited me and we had interesting discussion on a number of topics 
of mutual interest. Since then, we have met many times at conferences and other 
occasions. 

Professor Hong-Zhong Huang has dedicated himself to reliability research for 
over 35 years and developed many new reliability algorithms and tools aiming at 
addressing critical reliability problems in real-world engineering scenarios. These 
research outcomes have been worldwide recognized and received several interna-
tional and national awards, such as William A. J. Golomski Awards and the Science 
and Technology Progress Award of National Defense. 

Professor Hong-Zhong Huang has also dedicated himself to reliability education. 
He is the founder of the Center for System Reliability and Safety at the University

xxxiii



xxxiv Congratulatory Remarks

of Electronic Science and Technology of China (UESTC), China, and supervised 
18 postdoctoral research fellows, 68 Ph.D. students, and 182 graduate students. The 
alumni are now serving very important roles in both academia and industry all over 
the world. I also have had opportunities to work directly with some of his bright and 
talented students. 

Professor Hong-Zhong Huang’s contributions to the reliability community have 
been worldwide recognized. He is the founder and general chair of the largest relia-
bility events in Asian region, titled International Conference on Quality, Reliability, 
Risk, Maintenance, and Safety Engineering. The events have been successfully held 
12 times since 2011. He serves his editorial roles as the co-editor-in-chief of Inter-
national Journal of Reliability and Applications and the editorial board member of 
several prestigious reliability journals such as Reliability Engineering and System 
Safety. He is also a fellow of International Society of Engineering Asset Manage-
ment (ISEAM), the Technical Committee member of European Safety and Reliability 
Association (ESRA), and the vice president of four Reliability Societies of China. 

I was impressed by Prof. Hong-Zhong Huang’s accomplishments and personality, 
and this edited volume served as a nice gift on the occasion of his 60th birthday. I 
also take this opportunity to wish Prof. Hong-Zhong Huang a healthy life full of the 
achievements and joy.
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Multi-criteria Based Selection 
of Ship-Based Ballast Water Treatment 
Technologies 

Eugene Pam, Alan Wall, Zaili Yang, Eddie Blanco-Davis, and Jin Wang 

Abstract The reality of selecting an acceptable ballast water treatment technology 
is a daunting task for end-users, due to availability of numerous treatment options 
and their efficacy in given ship-types and ballast voyages. Six treatment systems 
have been selected from the two generic treatment technology groups (physical solid 
liquid separation and disinfection), and are considered as the decision-making alter-
natives in the proposed model. The proposed model involves the application of the 
Technique for Order Performance by Similarity to the Ideal Solution (TOPSIS), in 
the decision-making analysis. The TOPSIS technique has been applied to obtain the 
performance ratings of the decision alternatives using linguistic terms parameterised 
with triangular fuzzy numbers. A sensitivity study is also conducted to identify the 
effects of changes in input data, and test the suitability of the developed model in 
decision-making analysis of ballast water treatment systems. 

Keywords Multiple criteria · Ballast water · TOPSIS · Decision making 

1 Introduction 

Regulations D2 and D4 of the IMO International Convention for the Control and 
Management of Ships’ Ballast Water and Sediments Ballast Water (2004), stipulate 
that all ships under construction in or after 2009 and having a ballast capacity between 
1500 and 5000 m3, must have ballast water treatment systems fitted to and used on-
board with effect from January 1, 2009 [1]. Compliance to such IMO Regulations 
has propelled the development of numerous ballast water treatment technologies. 
The selection of a particular treatment system for a designated vessel or voyage 
route will have to be pre-determined by technical (safety of crew, ship and cargo), 
cost (production and running) and environmental (sustainability of the marine eco-
systems) variables.
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Evaluating these variables may not be straightforward due to inherent uncertainties 
and inadequacy of historical data. The choice of an appropriate ballast water treat-
ment system can therefore, be a daunting task for both ship-owners and managers. 
Port states and/or regional regulatory authorities are also subject to decision-making 
problems, as they are expected to strike a balance between the sustenance of a 
pollution-free maritime environment, and the promotion of maritime trade of their 
countries/regions. 

A novel model is developed in this paper to deal with multiple criteria decision-
making (MCDM) problems associated with the analysis and selection of ballast water 
treatment systems, under a subjective group decision framework. A group decision-
making problem arises when there are two or more individuals who, characterized by 
their perceptions, attitudes, motivations, and personalities, recognize the existence 
of a common problem and attempt to reach a collective decision [2]. In the developed 
model, fuzzy sets theory (FST), Analytic Hierarchy Process (AHP) and the Technique 
for Order Performance by Similarity to the Ideal Solution (TOPSIS) are used for the 
analysis of decision-making variables in a holistic way. AHP is incorporated into 
the model to determine the importance weights of the decision criteria, while the 
TOPSIS technique is used to obtain the performance ratings of decision alternatives. 

The rest of the paper is structured as described in the next sentences. Following 
a brief literature review of decision-making analysis, a model for selecting the best 
ballast water treatment system is presented. Then the proposed model is demon-
strated using a test case, with a sensitivity analysis to validate the findings, before 
the conclusion at the end. 

2 Background to the Research 

Bellman and Zadeh [3] surveyed decision-making problems using fuzzy sets, and 
initiated a Fuzzy Multiple Criteria Decision Making (FMCDM) methodology to 
resolve the lack of precision, in assigning importance weights of criteria and the 
ratings of alternatives [4, 5]. FMCDM has been applied in broad fields that include: 
the selection of strategic alliances partners for liner shipping [6]; safety assessment 
[7]; tool steel material selection [8]; assessment of climate change [9]; distribution 
centre location selection [10]; selection of a maintenance strategy for marine and 
offshore machinery operations [11]; and airline service quality evaluation [12]. 

A Multiple Criteria Decision Making (MCDM) problem can be defined as follows: 
Let A = {Ai for i = 1, 2, …, m} be a (finite) set of decision alternatives and G = 

{gi for j = 1,2,3, …, n} be a (finite) set of goals according to which the desirability 
of an action is judged. Determine the optimal alternative with the highest degree of 
desirability with respect to all relevant goals gi [13].
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Linguistic term sets used for describing each fundamental parameter are deter-
mined according to the situation of the case of interest [14]. However, some literature 
[15–17] shows that the number of linguistic terms ranging between four and seven 
labels, is commonly acceptable to represent risk factors in engineering risk analysis. 
In this study, five linguistic terms have been used to describe the evaluation criteria. 

TOPSIS is a linear weighting technique which was first proposed in its crisp 
version by Chen and Hwang [18] with reference to Hwang and Yoon’s work [19]. 
The technique was developed based on the concept that the chosen alternative should 
have the shortest distance from the positive ideal reference point (PIRP), and the 
farthest distance from the negative ideal reference point (NIRP) [20]. Assume that 
each attribute in the decision matrix takes either a monotonically increasing or mono-
tonically decreasing utility; it will be easier to locate the positive ideal solution, which 
is a combination of all the best attribute values attainable, while the negative ideal 
solution is a combination of all the worse attribute values attainable [21]. 

TOPSIS has been proved to be one of the best methods in addressing the rank 
reversal issue; that is, the change in the ranking of alternatives when a non-optimal 
alternative is introduced [19]. Moreover, it has been proved to be insensitive to the 
number of alternatives and has its worst performance only in case of a very limited 
number of criteria. TOPSIS has been applied in varied and robust fields such as: 
evaluation and selection of initial training aircraft [5]; outsourcing of third party 
logistics service providers [19]; materials selection [22]; evaluation of competitive 
companies [23]; and the assessment of service quality in the airline industry [12]. 

Fuzzy-TOPSIS is a fuzzy extension of TOPSIS to efficiently handle the fuzziness 
of data to be applied in the decision-making process. A fuzzy approach to TOPSIS is 
often advantageous, because it assigns the relative importance of attributes using 
fuzzy numbers instead of precise numbers. Linguistic preferences can easily be 
converted to fuzzy numbers and TOPSIS allows the use of these fuzzy numbers 
in the calculation. 

In order to apply a fuzzy TOPSIS to a MCDM problem, selection criteria have to 
be monotonic. Monotonic criteria could be classified either as benefits (B) or as costs 
(C). In fuzzy TOPSIS, the cost criteria are defined as the most desirable candidates 
scoring at the lowest, while the benefit criteria are described as the most desirable 
candidate scoring at the highest. Other advantages of the Fuzzy-TOPSIS technique 
include the fact that [19, 23, 24]: 

The logic is rational and understandable. 

• Computation processes are straightforward. 
• The concept permits the pursuit of best alternatives for each criterion depicted in 

a simple mathematical form. 
• It allows the straight linguistic definition of weights and ratings under each crite-

rion, without the need of cumbersome pairwise comparisons and the risk of 
inconsistencies. 

• The obtained weights of evaluation criteria are incorporated into the comparison 
procedures.
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Given the stochastic nature of species assemblages, current inadequacy of histor-
ical data on non-indigenous invasive species (NIS) origin and dispersal mechanisms 
within the bio-geographical regions of the world, the fuzzy TOPSIS model has been 
proposed as an alternative technique for use in the analysis of ballast water treatment 
decision options. While the uncertainty issue is tackled by means of fuzzy logic, the 
application of TOPSIS makes it possible to investigate the distances of each decision 
option from the PIRP and NIRP. Moreover, the way linguistic ratings and weights 
are given is very straightforward. 

The triangular fuzzy numbers are applied in the Fuzzy-TOPSIS used in this study. 
This is because it is intuitively easy for the decision-makers to use and calculate [25]. 
Secondly, modelling using triangular fuzzy numbers has proven to be an effective 
way for the formulation of the decision problem, where the information is subjective 
and imprecise [25]. 

Let Ã and B̃ be two triangular fuzzy numbers denoted by the triplet (a1, a2, a3) 
and (b1, b2, b3) respectively. Then the basic fuzzy arithmetical operations on these 
two fuzzy numbers are defined as [26]: 

Ã(+) B̃ = (a1, a2, a3)(+)(b1, b2, b3) = (a1 + b1, a2 + b2, a3 + b3) (1) 

Ã(−) B̃ = (a1, a2, a3)(−)(b1, b2, b3) = (a1 − b3, a2 − b2, a3 − b1) (2) 

Ã(×) B̃ = (a1, a2, a3)(×)(b1, b2, b3) = (a1b1, a2b2, a3b3) (3) 

Ã(÷) B̃ = (a1, a2, a3)(÷)(b1, b2, b3) =
(
a1 
b3 

, 
a2 
b2 

, 
a3 
b1

)
(4) 

The distance between fuzzy numbers Ã and B̃ can be measured using the vertex 
method [27] and calculated using the following equation: 

d( Ã, B̃) =
/
1 

3

[
(a1 − b1)2 + (a2 − b2)2 + (a3 − b3)2

]
(5) 

3 A Proposed Model for Selecting the Best Ballast Water 
Treatment System 

The proposed model and hierarchical structure describing the decision-making 
process of selecting the best ballast water treatment system is graphically illus-
trated in Fig. 1. The first stage is the identification of decision-making alternatives 
for ship-based ballast water treatment. The decision alternatives are literature-based 
and have been derived from the IMO Ballast Water Convention 2004 and the Lloyds
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Report 2007 [1, 28]. The evaluation process is conducted by decision analysts based 
on their subjective knowledge and judgment. 

The second stage in the model is the identification of the evaluation criteria for 
the identified prototype treatment technologies. In the third stage, AHP is applied 
to obtain the importance weights of the evaluation criteria. In the fourth stage, 
Fuzzy-TOPSIS is applied to obtain the performance ratings of the various decision 
alternatives.

(1) Identification of Decision-Making Criteria for 
Ship-Based Ballast Water Treatment Systems 

Practicability 

(3) Development of Decision Model (Evaluation Hierarchy) for 
Ballast Water Treatment Systems  

Environmental 
Acceptability 

Biological 
Effectivenes 

(4) Determination of Weights of each Criterion using AHP 

(5) Application of Fuzzy-TOPSIS to obtain Performance Rating of 
Decision Alternatives 

(6) Application of Methodology to Test Scenario 

Saving 
in Cost 

(2) Identification of Decision-Making Alternatives 

Surface 
Filtration 

Filtration 
+ UVI  

Safety 

Hydrocyclones Chlorination Biocides 
Treatment 

Ultra-Violet 
Irradiation 

Fig. 1 Hierarchical model of decision making analysis 
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3.1 Identification of Evaluation Criteria 

Five evaluation criteria have been identified for the evaluation of the decision alterna-
tives. The criteria are based on the IMO guidelines for the development of prototype 
treatment technologies for on-board ballast water treatment [28]. They include: 

• Saving in Cost (savings in expense of treatment equipment and operations). 
• Practicability (ease of operating treatment equipment and interference with normal 

ship operations, as well as impact on the structural integrity of the ship). 
• Safety (of crew, ship and cargo). 
• Environmental Acceptability (not causing more or greater environmental impact 

than it solves). 
• Biological Effectiveness (efficacy or effectiveness of removing or otherwise 

rendering inactive harmful non-indigenous invasive species (NIS) in ballast 
water). 

3.2 Identification of Decision-Making Alternatives 

Six decision-making alternatives have been identified and applied in this model, 
including surface filtration, hydro-cyclones, chlorination, biocides treatment, ultra-
violet irradiation, and the combination of filtration and ultra-violet irradiation. The 
treatment systems have been selected from the generic ballast water treatment 
technologies [physical solid–liquid separation (primary treatment) and disinfection 
(secondary treatment)] recommended by the IMO for the global maritime industry 
[1]. 

3.3 Determination of Importance Weights of Decision 
Alternatives Using AHP 

The next step in the methodology is the determination of importance weights of the 
five criteria described above, using the AHP approach involving a panel of domain 
experts. A consistency check is conducted to ensure that the pair-wise comparisons 
in the AHP are within the acceptable consistency. Experts may be revisited for their 
judgements, if the consistency of pair-wise comparisons is outside the required limit.
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3.4 Application of Fuzzy-TOPSIS Approach to Obtain 
Performance Rating of Decision Alternatives 

In this assessment process, all the variables are fuzzy variables represented by 
triangular fuzzy numbers. The process is conducted as follows. 

3.4.1 Construction of Fuzzy Decision Matrix 

A decision matrix is an (m × n) matrix in which elementij indicates the performance 
of alternative Ai when it is evaluated in terms of decision criterion C j (i = 1, 2, 3, …, 
m; j = 1, 2, 3, …, n) [7]. From this definition, it is implied that an MCDM problem 
with a given decision matrix is in essence a problem for a set of known alternatives 
and a set of known criteria [7]. 

Given m alternatives, n criteria and s decision analysts, a typical fuzzy MCDM 
problem can be represented using the following matrix [5, 19]: 

Rk = 

C1 C2 · · ·  Cn 

A1 

A2 
... 

Am 

⎡ 

⎢⎢⎣ 

r̃11 r̃12 · · ·  r̃1n 
r̃21 r̃22 · · ·  r̃2n 
· · ·  · · ·  · · ·  · · ·  
r̃m1 r̃m2 · · ·  ̃rmn 

⎞ 

⎟⎟⎠ (6) 

where, A1, A2,…,  Am represent the decision alternatives; C1, C2,…,  Cn represent the 
evaluation criteria, and r̃i j  represents the rating of the alternative Ai when examined 
in terms of criterion Cj evaluated by the s decision analysts. 

3.4.2 Normalisation of Fuzzy Decision Matrix 

The fuzzy data obtained in the decision matrix are normalised in order to eliminate 
the units of criteria scores, so that numerical comparisons associated with MCDM 
problems can be brought to the same universe of discourse. Normalisation has two 
main aims: for the comparison of heterogeneous criteria, and to ensure that all trian-
gular fuzzy numbers range within the interval between 0 and 1 [5]. The normalised 
fuzzy-decision matrix is conducted using Eqs. 7 and 8 as follows: 

If R̃ denotes the normalised fuzzy decision matrix, then 

R̃ = [
r̃i j

]
mxn, i = 1, 2, . . . ,  m; j = 1, 2, . . . ,  n (7) 

r̃i j  =
(
ai j  
c+ 
j 

, 
bi j  
c+ 
j 

, 
ci j  
c+ 
j

)
j ∈ B; r̃i j  =

(
a− 
j 

ci j  
, 
a− 
j 

bi j  
, 
a j 
ai j

)
j ∈ C (8)
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where 

c+ 
j = max 

i 
ci j  when j ∈ B; a− 

j = min 
i 

ai j  when j ∈ C. 

3.4.3 Construction of Weighted Normalised Fuzzy Decision Matrix 

The process involves multiplying the importance weights of the criteria by their corre-
sponding values in the normalised fuzzy decision matrix. Considering the different 
importance of each criterion, the weighted normalized fuzzy-decision matrix Ṽ is 
constructed as: 

Ṽ = [
ṽi j

]
m×ni = 1, 2, . . . ,  m; j = 1, 2, . . . ,  n (9) 

ṽi j  = R̃i j  × w̃ j (10) 

where w̃ j denotes the importance weight of criterion Cj. 

3.4.4 Determination of the Fuzzy Positive Ideal Reference Point 
(FPIRP) and Fuzzy Negative Ideal Reference Point (FNIRP) 

The FPIRP is obtained by identifying the best score in a criterion. Similarly, the worst 
score of a criterion is identified and recorded as the FNIRP. Against the background 
that all the triangular fuzzy numbers in Ṽ are in the interval (0, 1), the FPIRP (A+) 
(the benefit criterion) and FNIRP (A−) (the cost criterion) are defined as follows [4]: 

(11) 

(12) 

where ṽ+ 
j = (1, 1, 1) and ṽ− 

j = (0, 0, 0), j = 1, 2, …, n. 

3.4.5 Calculation of Distances of Each Alternative to FPIRP 
and FNIRP 

The distance of each alternative (treatment system) from the FPIRP and FNIRP with 
respect to each criterion is calculated as follows. 

d+ 
i = 

n∑
j=1 

d
(
ṽi j  , ṽ

+ 
j

)
(13)
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d− 
i = 

n∑
j=1 

d
(
ṽi j  , ṽ

− 
j

)
(14) 

where d+ 
i denotes the distance of alternative Ai from FPIRP, d

(
ṽi j  , ṽ

+ 
j

)
denotes the 

distance measurement between ṽi j  and ṽ
+ 
j ; d

− 
i is the distance of alternative Ai from 

FNIRP, and d
(
ṽi j  , ṽ

− 
j

)
denotes the distance measurement between ṽi j  and ṽ

− 
j . 

3.4.6 Obtain the Closeness Coefficient and Ranking of Alternatives 

The ranking of the alternatives can be determined after the Closeness Coefficient 
(CCi) associated with Ai is obtained. This allows the decision maker to choose the 
most rational alternative. CCi can be calculated by: 

CCi = d− 
i 

d+ 
i + d− 

i 

i = 1, 2, . . . ,  m (15) 

where CCi is equal to 0 if and only if di − = 0 or  Ai = A−. CCi = 1 when di + = 0 or  
Ai = A+. As a result, the best alternative is the one with the value of CCi closest to 
1. 

4 Application of Methodology to a Test Scenario 

The proposed model will be demonstrated in a decision analysis of selecting on-board 
ballast water treatment technologies. In this study, five qualified and experienced 
experts have been identified to conduct the analysis. The analysts are assigned equal 
ratings and the analysis will be conducted through brainstorming based on their 
knowledge and experience. 

The weight values for the evaluation criteria are obtained as follows using the 
AHP approach [29]: 

Saving in Cost = 0.068 
Practicability = 0.171 
Safety = 0.392 
Environmental Acceptability = 0.237 
Biological Effectiveness = 0.132 

The importance weight distributions for the decision-making criteria show that 
the criterion “Safety” recorded the highest weight (0.392), whereas the lowest weight
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Table 1 TOPSIS decision alternatives and evaluation criteria 

Decision alternatives Evaluation criteria 

A1 Surface filtration C1 Saving in cost 

A2 Hydrocyclones C2 Practicability 

A3 Chlorination C3 Safety 

A4 Biocides C4 Environmental acceptability 

A5 UV irradiation C5 Biological effectiveness 

A6 Filtration + UV irradiation 

(0.068) is associated with the criterion “Saving in Cost”. These importance weights 
will be applied in the next stage of this study, to establish the fuzzy performance 
ratings of the evaluation criteria. 

The six decision alternatives and five evaluation criteria (Table 1) will be used to 
develop the fuzzy decision matrix. 

4.1 Construction of a Fuzzy-TOPSIS Decision Matrix 

The membership functions of the linguistic variables, and scales developed for the 
measurement of the importance of the evaluation criteria, are shown in Table 2. A  
Fuzzy-TOPSIS decision matrix is then constructed as shown in Table 3. 

Table 2 Fuzzy-linguistic scales for measuring performance of evaluation criteria 

Linguistic variable Corresponding triangular fuzzy number 

Very poor (0, 1, 3) 

Poor (1, 3, 5) 

Average (3, 5, 7) 

Good (5, 7, 9) 

Very good (7, 9, 10) 

Table 3 Fuzzy TOPSIS decision matrix 

C1 C2 C3 C4 C5 

A1 5, 7, 9 7, 9, 10 5, 7, 9 7, 9, 10 5, 7, 9 

A2 5, 7, 9 5, 7, 9 5, 7, 9 7, 9, 10 5, 7, 9 

A3 3, 5, 7 5, 7, 9 5, 7, 9 3, 5, 7 5, 7, 9 

A4 3, 5, 7 5, 7, 9 3, 5, 7 1, 3, 5 5, 7, 9 

A5 5, 7, 9 5, 7, 9 3, 5, 7 5, 7, 9 5, 7, 9 

A6 5, 7, 9 7, 9, 10 7, 9, 10 7, 9, 10 7, 9, 10
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Table 4 Fuzzy TOPSIS normalized decision matrix 

C1 C2 C3 C4 C5 

A1 0.5555, 0.7777, 
1.0000 

0.7000, 0.9000, 
1.0000 

0.5000, 0.7000, 
0.9000 

0.7000, 0.9000, 
1.0000 

0.5000, 0.7000, 
0.9000 

A2 0.5555, 0.7777, 
1.0000 

0.5000, 0.7000, 
0.9000 

0.5000, 0.7000, 
0.9000 

0.5000, 0.7000, 
0.9000 

0.5000, 0.7000, 
0.9000 

A3 0.3333, 0.5555, 
0.7777 

0.5000, 0.7000, 
0.9000 

0.5000, 0.7000, 
0.9000 

0.3000, 0.5000, 
0.7000 

0.5000, 0.7000, 
0.9000 

A4 0.3333, 0.5555, 
0.7777 

0.5000, 0.7000, 
0.9000 

0.3000, 0.5000, 
0.7000 

0.1000, 0.3000, 
0.5000 

0.5000, 0.7000, 
0.9000 

A5 0.5555, 0.7777, 
1.0000 

0.5000, 0.7000, 
0.9000 

0.3000, 0.5000, 
0.7000 

0.5000, 0.7000, 
0.9000 

0.5000, 0.7000, 
0.9000 

A6 0.5555, 0.7777, 
1.0000 

0.7000, 0.9000, 
1.0000 

0.7000, 0.9000, 
1.0000 

0.7000, 0.9000, 
1.0000 

0.7000, 0.9000, 
1.0000 

4.2 Normalisation of Fuzzy Decision Matrix 

The normalized fuzzy decision matrix is constructed using Eqs. 7 and 8. The results 
are shown in Table 4. 

4.3 Construction of Weighted Normalised Fuzzy-Decision 
Matrix 

The weighted normalized decision matrix is constructed by applying Eqs. 9 and 
10. The normalized triangular fuzzy numbers are obtained as shown in Table 5. For  
example, the weighted normalized fuzzy number for A3 with respect to C2 is obtained 
as follows. 

(0.500, 0.700, 0.900) × 0.171 = (0.086, 0.120, 0.154)

4.4 Determination of the Fuzzy Positive Ideal Reference 
Point (FPIRP) and Fuzzy Negative Ideal Reference Point 
(FNIRP) 

D+ 
i and d

− 
i are obtained using Eqs. 13 and 14. For example, d+ 

1 and d
− 
1 are obtained 

as follows:
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Table 5 Weighted Normalised Decision Matrix of the Six Ballast Water Treatment Systems 

C1 C2 C3 C4 C5 

A1 0.038, 0.053, 
0.068 

0.119, 0.153, 
0.171 

0.196, 0.274, 
0.352 

0.165, 0.213, 
0.237 

0.066, 0.092, 
0.118 

A2 0.038, 0.053, 
0.068 

0.086, 0.120, 
0.154 

0.196, 0.274, 
0.353 

0.166, 0.213, 
0.237 

0.066, 0.092, 
0.119 

A3 0.023, 0.038, 
0.053 

0.086, 0.120, 
0.154 

0.196, 0.274, 
0.353 

0.071, 0.119, 
0.166 

0.066, 0.092, 
0.119 

A4 0.023, 0.038, 
0.053 

0.086, 0.120, 
0.154 

0.118, 0.196, 
0.274 

0.024, 0.071, 
0.119 

0.066, 0.092, 
0.119 

A5 0.038, 0.053, 
0.068 

0.086, 0.120, 
0.154 

0.118, 0.196, 
0.274 

0.119, 0.166, 
0.213 

0.066, 0.092, 
0.119 

A6 0.038, 0.053, 
0.068 

0.120, 0.154, 
0.171 

0.274, 0.353, 
0.392 

0.166, 0.213, 
0.237 

0.092, 0.119, 
0.132

d+ 
1 =

/
1 

3

[
(0.0378 − 1)2 + (0.0539 − 1)2 + (0.0680 − 1)2

]

+
/
1 

3

[
(0.1197 − 1)2 + (0.1539 − 1)2 + (0.1710 − 1)2

]

+
/
1 

3

[
(0.1960 − 1)2 + (0.2744 − 1)2 + (0.3528 − 1)2

]

+ 
/
1 

3

[
(0.15689 − 1)2 + (0.2744 − 1)2 + (0.3528 − 1)2

]

+ 
/
1 

3

[
(0.0660 − 1)2 + (0.0924 − 1)2 + (0.1188 − 1)2

] = 4.231 

d− 
1 =

/
1 

3

[
(0.0378 − 0)2 + (0.0529 − 0)2 + (0.068 − 0)2

]

+
/
1 

3

[
(0.1197 − 0)2 + (0.1539 − 0)2 + (0.1710 − 0)2

]

+
/
1 

3

[
(0.1960 − 0)2 + (0.2744 − 0)2 + (0.3528 − 0)2

]

+ 
/
1 

3

[
(0.1659 − 0)2 + (0.2133 − 0)2 + (0.2370 − 0)2

]

+
/
1 

3 
[(0.066 − 0)2 + (0.0924 − 0)2 + (0.1188 − 0)2] =  0.788 

The distances of the other decision alternatives to the FRIRP and ENIRP were 
determined in the same way and the results are described in Table 6.
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Table 6 Results of Fuzzy TOPSIS analysis 

Decision making criterion d+ d− Closeness coefficient Ranking 

A1 Surface filtration 4.231 0.788 0.157 2 

A2 Hydrocyclones 4.299 0.724 0.144 3 

A3 Chlorination 4.362 0.663 0.132 4 

A4 Biocides 4.487 0.545 0.108 6 

A5 UV irradiation 4.377 0.649 0.129 5 

A6 Filtration + UV irradiation 4.142 0.870 0.174 1 

4.5 Obtain Closeness Co-efficient and Ranking 
of Alternatives 

The treatment system with a larger CC value is more desirable. The calculation of 
the CC value has been described below using A1 as an example. 

d+ 
1 = 4.231 d− 

1 = 0.788 CC1 = 0.788 

4.231 + 0.788 
= 0.157 

By applying the same method, the Closeness Coefficient values of attributes A2– 
A6 are obtained as shown in Table 6. 

5 Results and Validation of Model 

From the result of the Fuzzy-TOPSIS analysis (Table 6), it can be seen that the 
highest CC value (0.174) is associated with A6 (Filtration + UV Irradiation). The 
lowest CC value (0.108) is associated with A4 (Biocides). The result also shows that 
A2 is ranked third with a CC value of 0.144. A3 is ranked fourth having returned a 
CC value of 0.132, while A5 is placed fifth in the ranking with a CC value of 0.129. 

The result also shows that the CC values of the six decision alternatives are 
marginally separated. This suggests the degree of reasonableness and relative close-
ness of the systems for the treatment of ships’ ballast water. Based on the output 
values obtained in this analysis, the ranking (in order of preference) of the six decision 
alternatives in descending order is: A6 > A1 > A2 > A3 > A5 > A4. 

In order to validate and test the robustness of this model, a sensitivity analysis is 
conducted. The analysis is necessary in order to test the suitability and sensitivity of 
the model for decision analysis of prototype ballast water treatment technologies (as 
decision alternatives). The analysis is conducted under eight conditions as tabulated 
in Table 7.

The first step in the sensitivity analysis process, involves an increment of the main 
values of the positive and negative reference points (d+ and d−), of each decision
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Table 7 Conditions for 
changing output values by 
percentages 

Condition Percentage 

1 Increase d+ by 5% 

2 Increase d− by 5% 

3 Decrease d+ by 5% 

4 Decrease d− by 5% 

5 Increase d+ by 20% 

6 Increase d− by 20% 

7 Decrease d+ by 20% 

8 Decrease d− by 20%

alternative by 5 and 20%. The next step is to decrease the same values separately by 
5 and 20%. 

From the results of the sensitivity analysis (Table 8), it can be seen that the 
ranking order of the six decision alternatives maintain a consistency when d+ and d− 

of each alternative are increased by 5 and 20%. Such a ranking order also maintains 
a consistency when d+ and d− of each alternative are decreased by 5 and 20%. The 
results also show that the Closeness Coefficient values of A1–A6 consistently increase 
in Conditions 1, 2, 5 and 6. The Closeness Coefficient values of A1–A6 consistently 
decrease in Conditions 3, 4, 7 and 8. This pattern in the results is to be expected. 
The model is reasonable and capable of being applied in the analysis of ballast water 
decision-making alternatives.

6 Conclusion 

This model was developed by taking into consideration the legislative requirements of 
Regulation D2–D4 of the IMO Ballast Water Convention 2007, as well as the positive 
contributions of the scientific and technological communities in developing prototype 
ballast water treatment systems. It is pertinent to state that the inadequacy of data 
and/or stochastic nature of species assemblages within the global bio-geographical 
regions pose a great threat to the attainment of the IMO Standards and the utilization 
of any developed treatment systems for the management of NIS. 

It therefore remains uncertain that, a chosen treatment system would be safe, prac-
ticable, cost effective, environmentally acceptable, or biologically effective in mini-
mizing the survivability of ballast tank based NIS. This uncertainty can result in the 
selection of an inappropriate treatment system for the wrong ship type and/or wrong 
voyage route, thus leading to severe environmental and/or financial consequences. 

Powerful MCDM methodologies (AHP and TOPSIS) were applied in this generic 
model, to solve inherent decision-making problems that could be encountered during
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Table 8 Results of sensitivity analysis 

A1 A2 A3 

Condition d+ d− CCi d+ d− CCi d+ d− CCi 

Main 4.231 0.788 0.157 4.299 0.724 0.144 4.362 0.663 0.132 

1 Increase d+ by 
5% 

4.442 0.788 0.151 4.514 0.724 0.138 4.580 0.663 0.126 

2 Increase d− by 
5% 

4.231 0.827 0.164 4.299 0.688 0.138 4.362 0.696 0.138 

3 Decrease d+ by 
5% 

4.019 0.788 0.164 4.084 0.724 0.151 4.144 0.663 0.138 

4 Decrease d− by 
5% 

4.231 0.749 0.150 4.299 0.688 0.138 4.362 0.630 0.126 

5 Increase d+ by 
20% 

5.077 0.788 0.134 4.444 0.724 0.140 5.234 0.663 0.112 

6 Increase d− by 
20% 

4.231 0.946 0.183 4.299 0.869 0.144 4.362 0.796 0.154 

7 Decrease d+ by 
20% 

3.385 0.788 0.189 3.439 0.724 0.174 3.490 0.663 0.160 

8 Decrease d− by 
20% 

4.231 0.630 0.130 4.299 0.579 0.119 4.362 0.530 0.108 

Main A4 A5 A6 

1 Increase d+ by 
5% 

4.711 0.545 0.104 4.596 0.649 0.124 4.349 0.870 0.167 

2 Increase d− by 
5% 

4.487 0.572 0.113 4.377 0.681 0.135 4.142 0.914 0.181 

3 Decrease d+ by 
5% 

4.263 0.545 113 4.158 0.649 0.135 3.935 0.870 0.181 

4 Decrease d− by 
5% 

4.487 0.518 0.103 4.377 0.617 0.124 4.142 0.827 0.166 

5 Increase d+ by 
20% 

5.384 0.545 0.092 5.252 0.649 0.110 4.970 0.870 0.149 

6 Increase d− by 
20% 

4.487 0.654 0.127 4.377 0.779 0.151 4.142 1.044 0.201 

7 Decrease d+ by 
20% 

3.599 0.545 0.132 3.502 0.649 0.156 3.314 0.870 0.208 

8 Decrease d− by 
20% 

4.487 0.436 0.089 4.377 0.519 0.106 4.142 0.696 0.140

the selection process of a ballast water treatment technology under a fuzzy environ-
ment. These methodologies have been applied in different specialized fields as stated 
earlier and found to be effective. 

The model developed in this study is by no means conclusive. It is subject to 
further modification given the acquisition of new data, or current status before its 
utilization by end-users in the industry. Lastly, a sensitivity analysis was conducted to
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partially validate the developed model, and establish its ability to respond to changes 
in input variables. 
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A Two-Phase Sampling Approach 
for Reliability-Based Optimization 
in Structural Engineering 

Danko J. Jerez, Hector A. Jensen, and Michael Beer 

Abstract This work presents a two-phase sampling approach to address reliability-
based optimization problems in structural engineering. The constrained optimiza-
tion problem is converted into a sampling problem, which is then solved using 
Markov chain Monte Carlo methods. First, an exploration phase generates uniformly 
distributed feasible designs. Thereafter, an exploitation phase is carried out to obtain 
a set of close-to-optimal designs. The approach is general in the sense that it is 
not limited to a particular type of system behavior and, in addition, it can handle 
constrained and unconstrained formulations as well as discrete–continuous design 
spaces. Three numerical examples involving structural dynamical systems under 
stochastic excitation are presented to illustrate the capabilities of the approach. 

Keywords Reliability-based optimization · Structural engineering · First-passage 
probability · Metamodel · Stochastic search 

1 Introduction 

Structural engineering practice is inherently related to the design of safe and cost-
efficient systems to satisfy private and public needs. Optimization techniques have 
proved instrumental to this end, whereby suitable design solutions are typically iden-
tified by minimizing a cost function subject to certain constraints [1, 2]. Since the
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systems of interest are unavoidably exposed to external actions and deterioration 
processes that are difficult to predict, the treatment of uncertainties is a key aspect to 
obtain meaningful optimization results. In this regard, reliability-based optimization 
(RBO) offers a rational and theoretically sound framework to incorporate the interac-
tion between uncertainties and design requirements into decision-making processes 
[3–5]. In this setting, system performance metrics are explicitly included in the 
objective and/or constraint functions by means of reliability measures. 

Structural systems of practical interest are characterized by their exposure to envi-
ronmental actions, a relatively large scale, and a complex behavior. In this context, 
the prediction of the system response often relies on complex computational proce-
dures involving, e.g., the numerical solution of nonlinear equations with multiple 
unknowns. Further, their probabilistic characterization using, for instance, random 
fields or stochastic processes requires a relatively large number of random variables, 
which leads to high-dimensional reliability integrals [6]. These features make reli-
ability assessment a challenging task, which is usually addressed using stochastic 
simulation [7]. This, in turn, brings challenges to the solution of RBO problems asso-
ciated with the computational cost, inherent variability, and sensitivity evaluation of 
the reliability estimates [8]. 

Several approaches have been reported to address RBO problems involving high-
dimensional probability integrals. In general, they can be classified in three groups 
based on the adopted search strategy [8], namely, sequential optimization approaches, 
stochastic search-based techniques, and schemes based on augmented reliability 
spaces. Although the most suitable optimization approach depends on the problem 
characteristics, the use of stochastic search-based techniques can be regarded as a 
general and flexible strategy. These methods do not need sensitivity measures and are 
not restricted to a specific class of systems. However, they tend to be computationally 
more intensive than sequential strategies (see, e.g., [9, 10]) or augmented reliability 
formulations (see, e.g., [11, 12]). 

This work presents a stochastic search-based approach for the RBO of structural 
engineering systems including high-dimensional reliability integrals. The method 
is based on a two-phase sampling framework [13–16]. An exploration phase is 
first carried out to obtain feasible designs, which are then used in an exploitation 
phase that ultimately yields a set of close-to-optimal designs. The method can handle 
unconstrained, constrained, discrete and continuous formulations [16]. In addition, 
a suitable metamodel is implemented for improved numerical efficiency [14, 17]. 
Three examples involving a class of structural systems, namely, structural dynam-
ical systems under stochastic excitation, are presented. Overall, the method represents 
a potentially useful tool to address a practical class of RBO problems in engineering 
applications.



A Two-Phase Sampling Approach for Reliability-Based Optimization … 23

2 Reliability-Based Optimization 

2.1 Formulation 

The class of problems of interest can be stated as 

min 
x 

f (x) 
s.t. r j (x) ≤ 0, j = 1, . . . ,  nr 

gk(x) ≤ 0, k = 1, . . . ,  ng 
x ∈ X 

(1) 

where the vector x ∈ X ⊂ Rnx comprises the nx design variables (continuous 
and/or discrete), f (x) is a general objective function, r j (x) ≤ 0, j = 1, . . . ,  nr , 
represent nr constraints in terms of system reliability measures, and gk(x) ≤ 0, 
k = 1, . . . ,  ng , are  ng standard constraints. The vector of design variables is expressed 
as xT = ⟨xT 

c , xT 
d ⟩with xc ∈ Xc ⊂ Rnc and xd ∈ Xd ⊂ Rnc containing, respectively, 

the nc continuous and nd discrete design variables. In this formulation, the set X = 
Xc× Xd characterizes explicit constraints on the design variables. For the continuous 
components, side constraints are imposed as 

Xc =
{
xc ∈ Rnc : x L ci ≤ xci ≤ xU ci , i = 1, . . . ,  nc

}
(2) 

where x L ci and x
U 
ci are the lower and upper bounds of the i th continuous design variable, 

respectively. In addition, the side constraints for the discrete design variables are 
given by 

Xd =
{
xd ∈ Rnd : xdi  ∈ Xdi  , i = 1, . . . ,  nd

}
(3) 

where the set Xdi  =
{
xdi(m), m = 1, . . . ,  ndi

}
contains the ndi  allowable values for 

the i th discrete component of the design vector. For convenience, it is assumed that 
these values are sorted in an ascending order. 

In the previous setting, the objective function f (x) can be related to, e.g., initial 
construction costs, life-cycle costs, or structural performance measures. Further, the 
standard constraints gk(x) ≤ 0, k = 1, . . . ,  ng , are associated with design require-
ments such as material availability, budget restrictions, etc., that do not involve system 
reliability measures. Hence, it is assumed that the functions gk(x), k = 1, . . . ,  ng , are  
relatively inexpensive to compute. In addition, the reliability constraints represent 
design conditions expressed in terms of failure probabilities as 

r j (x) = PFj (x) − P∗ 
Fj 

≤ 0, j = 1, . . . ,  nr (4) 

where PFj (x) is the probability of failure event Fj evaluated at design x, and P∗ 
Fj 

is the corresponding maximum allowable value. The failure events can be defined,



24 D. J. Jerez et al.

e.g., in terms of serviceability conditions, users’ comfort requirements, and partial 
or total collapse. It is noted that, according to this formulation, failure probability 
measures can be involved in the definition of the objective function and/or reliability 
constraints. Thus, the optimization problem stated in Eq. (1) is quite general in 
the sense that it allows the treatment of several RBO formulations. In this regard, 
indicative applications include the design of wind-excited buildings [18], structural 
topology optimization [19], and energy harvester optimization [20]. 

2.2 First-Passage Probabilities 

For a general class of complex engineering systems, a suitable reliability measure 
corresponds to the so-called first-passage probability [21]. This measure quantifies 
the likelihood of performance requirements not being satisfied at any instant of a 
reference period. In this framework, consider a vector of basic random variables θ ∈ 
R

nθ following the multivariate probability density function q(θ |x), i.e., θ ∼ q(θ |x). 
This distribution can depend, in principle, on the vector of design variables x. If that 
is not the case, the random variables are simply distributed as θ ∼ q(θ ). In general, 
the vector θ characterizes the uncertainty in the system properties as well as in the 
external actions over the system. Then, a first-passage failure event F can be defined 
as F = {d(x, θ ) > 1} with normalized demand function d(x, θ ) given by 

d(x, θ ) = max 
t∈[0,tT ] 

max
l=1,...,nη 

ηl(t, x, θ ) 
η∗

l

(5) 

where ηl(t, x, θ ), l = 1, . . . ,  nη, are the system response functions of interest with 
corresponding thresholds η∗

l > 0, and tT is the reference period. In general, these 
functions depend on time, the design variables x, and the basic random variables θ . 
Hence, from the previous description, failure is defined when any response of interest 
exceeds its prescribed maximum allowable value at any instant of a reference period. 
Then, the corresponding first-passage probability can be written as 

PF (x) =
∮

d(x,θ )>1 

q(θ |x)dθ (6) 

For most complex engineering systems, the vector of random variables θ is high-
dimensional and, in addition, the responses of interest are only available through 
involved black-box models. As a result, the evaluation of the previous integral is quite 
challenging, and it is usually carried out using stochastic simulation methods [22]. 
As previously pointed out, this makes the solution of RBO problems a challenging 
task due to the computational cost, noisy behavior and involved sensitivity estimation 
of failure probability functions [8].
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3 Two-Phase Sampling Approach 

3.1 Underlying Idea 

Following the ideas of simulated annealing [23], the solution of the optimization 
problem in Eq. (1) can be equivalently formulated as the generation of designs that 
follow an appropriate probabilistic distribution. Such a formulation stems from the 
concept of canonical distribution in statistical mechanics [24] and the fact that finding 
the minimum of f (x) is equivalent to maximizing the function exp(− f (x)/T ) for 
any T > 0 [23]. Consider the auxiliary distribution 

p(x|T ) ∝ UX (x)exp

(
− 

f (x) 
T

)
(7) 

where T > 0 is the temperature parameter and UX (x) is a uniform distribution over 
the feasible set X , which is defined as 

X = {x ∈ X : r j (x) ≤ 0, j = 1, . . . ,  nr ∧ gk(x) ≤ 0, k = 1, . . . ,  ng
}

(8) 

In Eq. (7), the parameter T affects the spread of the distribution p(x|T ). On the  
one hand, increasing the value of T leads to flatter distributions. In the limit case in 
which T → ∞, the auxiliary distribution becomes uniform over the feasible set, i.e., 
lim 
T→∞p(x|T ) = UX (x). On the other hand, for smaller values of T the distribution in 

Eq. (7) becomes increasingly concentrated around the feasible designs that minimize 
f (x). In fact, when T → 0 the probability mass is uniformly distributed over the 
optimal solution set X∗ 

f , that is, lim 
T →0 

p(x|T ) = UX∗
f 
(x). Thus, by generating samples 

(designs) that follow p(x|T ), T → 0, the optimal solution set corresponding to 
Eq. (1) can be explored. In other words, the solution of the RBO problem can be 
restated as the generation of samples according to the target distribution lim 

T →0 
p(x|T ). 

It is noted that, in a Bayesian framework, the target distribution can be also interpreted 
as a posterior distribution where UX (x) plays the role of the prior distribution and 
lim 
T→0 

exp(− f (x)/T ) of the (unnormalized) likelihood function [16]. 

3.2 Sequence of Intermediate Distributions 

The straightforward generation of samples following lim 
T →0 

p(x|T ) with, e.g., direct 
Monte Carlo simulation is generally unfeasible. To circumvent this issue, a sequential 
strategy is adopted in this work [25–28]. Consider the sequence of non-normalized 
intermediate distributions
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p0(x) = UX (x) 
p j (x) ∝ UX (x)exp

(
− f (x) 

Tj

)
, j = 1, 2, . . .  (9) 

where ∞ =  T0 > T1 >  . . .  >  Tj > .  .  .  is a sequence of monotonically decreasing 
temperature parameters, with Tj → 0 as j → ∞, which are adaptively chosen to 
achieve a smooth transition between distributions. Such a strategy has been adopted 
to address several applications including, e.g., Bayesian model updating [25, 26], 
structural optimization [27, 28], and structural reliability assessment [29]. 

Based on the previous setting, it is seen that the initial distribution is uniform over 
the feasible set, whereas the next distributions in the sequence become increasingly 
concentrated around the optimal solution set as the temperature parameter decreases. 
Thus, the main idea is to generate samples (designs) in a sequential manner. In the 
initial stage ( j = 0), samples uniformly distributed over the feasible set are obtained. 
Then, during stage j = 1, 2, . . .  , samples following the distribution p j (x) are drawn 
based on the samples from the previous stage. The transitional Markov chain Monte 
Carlo (TMCMC) method [25] is implemented for the sample generation process. 
Finally, once a certain stopping criterion is verified, the final designs represent a set 
of close-to-optimal solutions that follow an approximately uniform distribution over 
the optimal solution set. 

The previous formulation requires an initial set of samples uniformly distributed 
over the feasible set X , which is usually difficult to obtain in a direct manner for 
practical cases. Thus, a two-phase sampling approach is adopted in this work [14, 16]. 
First, an exploration phase is carried out to obtain uniformly distributed designs in the 
feasible set. Then, these designs are used as the initial population of an exploitation 
phase which ultimately yields a set of close-to-optimal solutions. 

3.3 Exploration Phase 

To obtain designs following UX (x), consider the auxiliary optimization problem 

min 
x 

h(x) = max

{
0, max 

j=1,...,nr 
r j (x), max 

k=1,...,ng 
gk(x)

}

s.t x ∈ X 
(10) 

From the previous definition, the minimum value of the auxiliary objective 
function h(x) is equal to zero with corresponding optimal solution set [14] 

X∗ 
h =

{
x ∈ X : r j (x) ≤ 0, j = 1, . . . ,  nr ∧ gk(x) ≤ 0, k = 1, . . . ,  ng

}
(11) 

Thus, the optimal solution set in Eq. (11) is equal to the feasible design set in 
Eq. (8), i.e., X∗ 

h = X . In addition, the auxiliary optimization problem in Eq. (10) 
involves only side constraints on the design variables, i.e., x ∈ X . Based on these
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features, consider the sequence of intermediate distributions 

p0(x) = UX (x) 
p j (x) ∝ UX (x)exp

(
− h(x) 

Tj

)
, j = 1, 2, . . .  (12) 

where UX (x) represents a uniform distribution over the set X . In this case, samples 
at the initial stage ( j = 0) can be generated directly, while samples at the final stage 
(Tj → 0) approximately follow a uniform distribution over the feasible set X . The  
TMCMC method [25] is implemented to generate the required samples. To achieve 
a smooth transition between distributions, the temperature parameter Tj+1 satisfies 
the condition [16, 28]

∑n
l=1exp

(
−h
(
x(l) 
j

)(
T −1 
j+1 − T −1 

j

))

[∑n
l=1exp

(
−h
(
x(l) 
j

)(
T −1 
j+1 − T −1 

j

))]2 = 
1 

νn 
(13) 

where x(l) 
j , l = 1, . . . ,  n, are  n samples following p j (x) and ν ∈ (0, 1) is a user-

defined parameter. It is noted that all feasible designs generated during the interme-
diate stages of the sampling process are uniformly distributed over X [14]. Therefore, 
the sampling process is stopped when n f easible  ≥ ntarget , where n f easible  is the total 
number of feasible designs obtained during the different stages and ntarget  is a user-
defined target value. At the end of the exploration phase, a total of n f easible  designs 
uniformly distributed over X are available. 

3.4 Exploitation Phase 

Starting from the set of feasible designs obtained during the exploration phase, which 
are distributed according to p0(x) = UX (x), the exploitation phase ultimately gener-
ates a set of designs lying in the vicinity of the optimal solution set X∗ 

f . In this setting, 
samples following the intermediate distributions p j (x), j = 1, 2, . . .  , in Eq.  (9) are  
obtained using the TMCMC method. The temperature parameter Tj+1 verifies the 
relationship [16]

∑n
l=1exp

(
− f
(
x(l) 
j

)(
T −1 
j+1 − T −1 

j

))

[∑n
l=1exp

(
− f
(
x(l) 
j

)(
T −1 
j+1 − T −1 

j

))]2 = 
1 

νn 
(14) 

where x(l) 
j , l = 1, . . . ,  n, are  n samples following the distribution p j (x), and ν has 

been previously defined. As already pointed out, the distribution becomes uniform 
over the optimal solution set when Tj → 0. For numerical implementation, however, 
a suitable stopping rule must be imposed. In this regard, the optimization procedure
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is finished if (i) a prescribed maximum number of stages, Nmax , are completed, or 
(ii) the sample coefficient of variation (c.o.v.) of the objective function is sufficiently 
small. Specifically, the sampling process stops at stage j = 0, 1, . . .  , if  j +1 = Nmax 

or, alternatively, δ j+1 < γ  δ0, where γ ∈ (0, 1) is a user-defined parameter and 

δ j =
┌||√ 1 

n − 1 

n∑

l=1

(

f
(
x(l) 
j

)
−
[
1 

n 

n∑

i=1 

f
(
x(i) 
j

)])2/(
1 

n 

n∑

l=1 

f
(
x(l) 
j

))

(15) 

is the sample c.o.v. of the objective function f (x) during stage j . The previous 
conditions indicate that the algorithm runs until a prescribed number of stages are 
completed or until δ j+1 becomes smaller than some fraction of the initial sample 
c.o.v. of the objective function, δ0. It is noted that alternative stopping criteria can be 
implemented as well. 

The samples
{
x(1) 
j+1, . . . ,  x(n) 

j+1

}
obtained at the final stage of the procedure can be 

regarded as a set of close-to-optimal designs. Thus, the proposed approach provides, 
in general, designs which are similar between each other in terms of their objective 
function values. This is particularly useful, e.g., in cases with multiple sub-optimal 
regions. Nevertheless, if a single solution is needed, the sample with the smallest 
objective function value can be selected. 

3.5 Remarks 

According to the previously described procedure, a set of close-to-optimal designs 
are obtained in a two-phase sampling framework in which the feasible and optimal 
solution sets are sequentially explored. In this regard, the proposed approach presents 
several advantageous features. First, due to its theoretical foundations and annealing 
properties, the procedure has high chances of reaching a vicinity of the optimal solu-
tion set. This includes cases involving multiple local optima, multiple discontinuous 
sub-feasible regions, and complex feasible design spaces [16]. Second, the formu-
lation of the approach does not impose restrictions on the number of constraints 
or the behavior of the objective and constraint functions. Moreover, the proposed 
approach is not limited to a particular type of reliability assessment techniques. 
Thus, the method is quite general in the sense that, in principle, different classes 
of RBO problems can be treated with the same formulation. Third, the approach is 
suitable for practical implementation. In this regard, the same basic framework (i.e., 
the TMCMC method) is used in the exploration and exploitation phases. In addition, 
few user-defined parameters are required and, since the treatment of the reliability 
and standard constraints is direct, no special constraint-handling techniques such as 
penalty factors are necessary. Fourth, the method produces a set of nearly optimal 
designs rather than a single final solution. This can introduce additional flexibility 
to decision-making processes since an appropriate final design can be selected from
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this set based on alternative considerations. Finally, the designs produced during the 
different stages of the sampling process allow to assess the sensitivity of the problem 
functions with respect to the design variables. This information, which is a byproduct 
of the procedure, gives a valuable insight into the RBO problem at hand. 

4 Implementation Aspects 

4.1 Transitional Markov Chain Monte Carlo Method 

The TMCMC method [25], which has proved effective in several model updating 
applications (see, e.g., [30–33]), is implemented to carry out the exploration 
and exploitation phases. This technique draws samples at stage j + 1, i.e.,{
x(1) 
j+1, . . . ,  x(n) 

j+1

}
, by generating several Markov chains with stationary distribu-

tion equal to p j+1 (exploration phase) or p j+1 (exploitation phase). To this end, 
importance sampling concepts and the Metropolis-Hastings (M-H) algorithm are 
integrated [25]. In this setting, the i th sample, i.e., x(i) 

j+1, is generated as follows: 

• Step 1: Select a lead sample, 
∼ 
x, as a design from the previous stage, 

x(l) 
j , drawn with probability equal to its normalized importance weight 

w (l) j = w (l) j /
∑n 

k=1w (k) j , l = 1, . . . ,  n. The weights are given by w (l) j = 
p j+1

(
x(l) 
j

)
/ p j
(
x(l) 
j

)
for the exploration phase and w (l) j = p j+1

(
x(l) 
j

)
/p j
(
x(l) 
j

)

for the exploitation phase. If the selected sample, x(l) 
j , has been previously drawn, 

then the last state of its corresponding chain is selected as the lead sample 
∼ 
x. 

• Step 2: Draw a candidate design x★ from the proposal distribution p∗
(
x| ∼ 

x
)
. 

An adaptive proposal distribution with independent continuous and discrete 
components is considered [15, 16]. 

• Step 3: Set x(i ) 
j+1 = x★ with probability ρ∗ = min{1, α}, where α = 

p j+1(x
★)p∗

(∼ 
x |x★

)
/p j+1

(∼ 
x
)
p∗
(
x★| ∼ 

x
)

for the exploration phase and α = 

p j+1(x★)p∗
(∼ 
x |x★

)
/p j+1

(∼ 
x
)
p∗
(
x★| ∼ 

x
)
for the exploitation phase. If the candi-

date state is rejected, the lead sample is repeated, i.e., set x(i) 
j+1 =

∼ 
x. 

The previous procedure is iteratively carried out until the required number of 
samples has been obtained. A more detailed description of the TMCMC method, 
from the theoretical and implementation viewpoints, can be found in [25].
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4.2 Proposal Distribution 

The proposed approach requires, in the context of the M-H algorithm, the definition 
of an appropriate proposal distribution to draw samples from the intermediate distri-
butions. As already pointed out, an adaptive proposal distribution with independent 
continuous and discrete components is considered in this work [15, 16]. That is, the 

candidate state is generated from a distribution p∗
(
x| ∼ 

x
)

= p∗
c

(
xc|∼ 

xc
)
p∗ 
d

(
xd |∼ 

xd
)
, 

where p∗
c

(
xc|∼ 

xc
)
is the proposal distribution for the continuous design variables and 

p∗ 
d

(
xd |∼ 

xd
)
for the discrete design variables. 

4.2.1 Continuous Design Variables 

Following some of the ideas in [25], the proposal distribution for the continuous vari-

ables, p∗
c

(
xc|∼ 

xc
)
, is a Gaussian distribution centered at the continuous components 

of the lead sample. The corresponding covariance matrix, 
∼
∑, is taken as 

∼
∑= β2 

n∑

l=1 

w (l) j

(
x(l) 
j,c − x j,c

)(
x(l) 
j,c − x j,c

)T 
(16) 

where β is a scaling parameter, x(l) 
j,c, l = 1, . . . ,  n, are the continuous components 

of the samples at stage j , x j,c = ∑n
l=1w (l) j x

(l) 
j,c, and the normalized weights w (l) j ,

l = 1, . . . ,  n, have been previously defined. The scaling parameter β is adaptively 
tuned according to the observed acceptance rate of the M-H algorithm [34]. 

4.2.2 Discrete Design Variables 

The discrete proposal distribution, p∗ 
d

(
xd |∼ 

xd
)
, considers the discrete components to 

be independent between each other, i.e., 

p∗ 
d

(
xd |∼ 

xd
)

= 
ndπ

i=1 

p∗ 
di  (xdi |x̃di  ) (17) 

where 
∼ 
xd = ⟨x̃d1, . . . ,  ̃xdnd ⟩T contains the discrete components of the lead sample 

and p∗ 
di  (xdi |x̃di  ) is the proposal distribution corresponding to the i th discrete compo-

nent. The definition of this distribution relies on the set of neighbors of the current 
lead sample, x̃di  , within the corresponding set of available values Xdi  . This set is 
defined as
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Adj( ̃xdi  ) =
{
xdi(m), m = 1, . . . ,  ndi  : λ

(
x̃di  , xdi(m)

) ≤ λ∗ 
i

}
(18) 

where λ
(
x̃di  , xdi  (m)

)
is the distance between x̃di  and xdi(m) within the set Xdi  , and λ∗ 

i is 
a user-defined parameter. This distance is defined in terms of the indices of the values 
within the sorted set Xdi  . For instance, if x̃di  is equal to the sth available value, i.e., 
x̃di  = xdi(s), then the distance measure becomes λ

(
x̃di  , xdi(m)

) = λ
(
xdi  (s), xdi(m)

) = 
|s − m|. Based on the previous definitions, the proposal distribution for the i th 
component is given by [15, 16] 

p∗ 
di  (xdi |x̃di  ) =

{ 1−τi 
Card[Adj( ̃xdi  )] , ifxdi  ∈ Adj( ̃xdi  ) 

τi 
ndi−Card[Adj( ̃xdi  )] , otherwise 

(19) 

where τi ∈ [0, 1] represents the probability of randomly selecting a discrete value 
that does not belong to the set of neighbors of the lead sample x̃di  , and Card[·] is the 
cardinality of the set within square brackets. 

In the adopted proposal distribution, the parameters τi and λ∗ 
i jointly characterize 

its corresponding spread. Such parameters can be directly defined by the user or 
adaptively modified during the sampling process. In particular, an adaptive strategy 
is implemented here to update the value of λ∗ 

i at the beginning of each stage of 
the exploitation phase. First, the maximum number of consecutive elements of Xdi  

that were observed during the previous stage, denoted by η, is identified. Then, the 
parameter λ∗ 

i is defined as 

λ∗ 
i ← min

{
λ∗ 
i , L

}
(20) 

with L the largest integer such that L ≤ (η − 1)/2. The updating rule is repeated for 
i = 1, . . . ,  nd . This strategy tends to reduce the value of λ∗ 

i for advanced exploitation 
stages, which can improve the sampling efficiency. Nonetheless, alternative updating 
approaches can also be considered. 

4.2.3 Acceptance Probability 

As previously mentioned, the candidate state x★ = ⟨x★
c 
T , x★

d 
T ⟩T , which is drawn 

from p∗
(
x| ∼ 

x
)
, becomes the next state of the Markov chain with probability ρ∗ = 

min{1, α}. For the exploration phase, the quantity α is given by 

α = I
[
x★ ∈ X

] exp
(
− h(x★) 

Tj+1

)

exp

(
− h

(∼ 
x
)

Tj+1

)
p∗ 
d

(∼ 
xd |x★

d

)

p∗ 
d

(
x★
d |

∼ 
xd
) (21)
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where I [·] = 1 if the expression within square brackets is true and I [·] = 0 otherwise. 
In addition, for the exploration phase the quantity α becomes 

α = I
[
x★ ∈ X

] exp
(
− f (x

★) 
Tj+1

)

exp

(
− 

f
(∼ 
x
)

Tj+1

)
p∗ 
d

(∼ 
xd |x★

d

)

p∗ 
d

(
x★
d |

∼ 
xd
) (22) 

In the previous expressions, the ratio p∗ 
d

(∼ 
xd |x★

d

)
/p∗ 

d

(
x★
d |

∼ 
xd
)
is given by 

p∗ 
d

(∼ 
xd |x★

d

)

p∗ 
d

(
x★
d |

∼ 
xd
) = 

ndπ

i=1 

⎧ 
⎨ 

⎩ 

Card[Adj( ̃xdi  )] 
Card[Adj(x★

di  )] 
, ifx★

di  ∈ Adj( ̃xdi  ) 
ndi−Card[Adj( ̃xdi  )] 
ndi−Card[Adj(x★

di  )] 
, otherwise 

(23) 

4.3 Adaptive Surrogate Model 

The proposed approach requires the sequential generation of samples. Consequently, 
a significant number of first-passage probability evaluations may be required by 
the optimization procedure. To alleviate the corresponding numerical demands, an 
adaptive surrogate model based on kriging interpolants is implemented [17, 35]. 
These metamodels approximate the target function using an underlying Gaussian 
process whose properties depend on the available data points [36, 37]. Some of 
their advantages are that they do not require a regular grid of support points, the 
c.o.v. of the kriging prediction can be directly estimated, and they are exact at the 
support points. Furthermore, given the annealing nature of the proposed approach, 
the effective support of the current distribution is generally contained in that of prior 
stages. Thus, data points from previous stages can be used to construct the metamodel 
at the current stage. As a result, the previous features enable a local and adaptive 
surrogate model in which (i) the support points that lie closer to the candidate design 
are used, and (ii) the database is enriched as new designs in the important region of 
the target distribution are generated. 

Specifically, consider a first-passage probability function, PF (x), involved in the 
definition of one of the problem functions. A kriging metamodel, p

Ʌkr 
(x), is imple-

mented to approximate the logarithm of this function, i.e., p
Ʌkr 
F (x) ≈ lnPF (x). At the  

beginning of the sampling process, a database corresponding to full model evalua-
tions of lnPF (x) is obtained by means of any suitable strategy. Then, the surrogate 
prediction of a candidate design x★ corresponding to a given Markov chain is obtained 
as follows. 

• Step 1: Find the Nsp points in the database of available values of lnPF (x) that 
are closer to the starting seed of the current Markov chain. The Euclidian distance
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is considered to this end, although alternative distance metrics can be adopted 
as well. Construct the kriging metamodel for the current Markov chain, p

Ʌkr 
F (x), 

using this set of designs as the corresponding support points. 
• Step 2: For a given candidate design, x★, verify the following criteria: 

• Step 2-a: Check if x★ belongs to the nx -dimensional convex hull of the support 
points. If not, go to step 4. 

• Step 2-b: Compute the kriging prediction p
Ʌkr 

(x★). If this value is smaller than 
the Q-quantile of lnPF (x) in the database, go to step 4. 

• Step 2-c: Compute the c.o.v. of the kriging estimate. If this value is larger than 
a user-defined tolerance ∈ >  0, go to step 4.  

• Step 3: If all the criteria in step 2 are verified, the kriging prediction is accepted. 

Set PF (x) = exp
(
p
Ʌkr 
F (x)

)
and continue the sampling process. 

• Step 4: If at least one criterion in step 2 does not hold, the kriging prediction is 
rejected. An exact evaluation of PF (x★) is performed and this point is added to 
the database. Continue the sampling process. 

The criteria in step 2 aim to control the quality of the kriging estimate. In addition, 
the set of support points is kept fixed throughout the generation of a given Markov 
chain. This is done to maintain the Markovian property of the chain and to avoid 
potential discontinuities associated with slightly different sets of support points. A 
more detailed description of the strategy can be found in [13, 17, 35]. 

4.4 Parallelization Features 

High-performance computing techniques at the computer hardware level can be 
considered for improved computational efficiency. In this regard, the proposed 
approach is particularly suitable for parallel implementation due to the properties 
of the TMCMC method. First, the initial stage of the exploration phase corresponds 
to direct Monte Carlo simulation and, therefore, it can be fully scheduled in parallel. 
Thereafter, the method produces Markov chains that can be generated independently. 
Since the numerical cost of evaluating the reliability at each design is difficult to 
predict, dynamic scheduling schemes can be beneficial to distribute the function 
evaluations on a first-come-first-serve basis [17, 35]. 

Parallelization strategies can also be integrated with the use of adaptive surro-
gate models to enhance the numerical efficiency of the proposed approach. To this 
end, a total of npar samples are generated simultaneously, and then the database 
of support points is updated. This procedure is repeated during each stage until 
the required sample size is reached. This allows exploiting the parallel features of 
the TMCMC method while enriching the kriging database on a regular basis. The 
parameter npar should be relatively small to promote the adaptability of the surrogate 
model, but not smaller than a certain value beyond which it becomes detrimental to 
the efficaciousness of the parallelization process.



34 D. J. Jerez et al.

5 Application Examples 

Three application examples involving structural dynamical systems under stochastic 
excitation are presented, which include unconstrained, constrained, discrete and 
continuous formulations. In all cases, the structural behavior can be modeled by 
a multi-degree of freedom system satisfying the equation of motion 

M ÿ(t) + C ẏ(t) + K y(t) + κ NL  ( y(t), ẏ(t), q(t)) = f (t) (24) 

where y(t) denotes the displacement vector, κ NL  ( y(t), ẏ(t), q(t)) is the vector of 
nonlinear restoring forces, q(t) comprises the state variables of the nonlinear compo-
nents, and f (t) represents the excitation vector. The matrices M, C , and K char-
acterize, respectively, the mass, damping, and stiffness of the system. In addition, 
the evolution of q(t) depends on an appropriate nonlinear model. Thus, finding 
the system response requires, in general, to solve a set of coupled nonlinear equa-
tions using suitable time integration schemes. Subset simulation [38, 39] is imple-
mented for reliability assessment in all examples. Nonetheless, alternative simulation 
methods can also be considered. 

5.1 Example 1 

The reliability-based design of a bridge system subject to stochastic ground excitation 
is addressed. Figure 1 presents an isometric view of the structural model, which has 
been borrowed from [13, 40]. The bridge is curved in plan and has five spans of 
lengths equal to 27, 25, 23, 20, and 24 m, which give a total length of 119 m. The 
deck is monolithically supported by four piers of 8 m height, and each pier is founded 
on an array of four piles of 35 m height. To model the soil-pile interaction, a series 
of linear translational springs are incorporated along the height of each pile, with 
stiffness constants increasing linearly from 560 T/m at the surface to 11,200 T/m at 
the base. The piers and piles are modeled as column elements with diameters of 1.6 
and 0.6 m, respectively. In addition, the deck cross section is a box girder modeled 
with beam and shell elements. Two sliding bearings are included at each abutment to 
support the bridge deck. These nonlinear devices consist of an upper steel plate with 
a housing cap for the slider, a bottom plate with a concave semi-spherical stainless-
steel surface, and a steel slider [41, 42]. A sketch of the sliding bearing is also shown 
in Fig. 1. Overall, the finite element model of the bridge involves more than 10,000 
degrees of freedom.

For dynamical analysis purposes, it is assumed that the nonlinearities are localized 
in the response of the sliding bearings, while the piers, piles, and deck remain linear. 
In this regard, the linear components are characterized by an elastic modulus equal 
to 2.94 × 1010 N/m2, a Poisson ratio equal to 0.2, and a density of 2500 kg/m3. In  
addition, a 5% of critical damping ratio is considered. On the other hand, the sliding



A Two-Phase Sampling Approach for Reliability-Based Optimization … 35

Fig. 1 Isometric view of the nonlinear bridge model. Example 1

bearings at the abutments are characterized by an experimentally validated model that 
incorporates performance degradation effects. These relate to changes in the friction 
coefficient due to variations in the vertical load, in the relative velocity between plates, 
and in the sliding surface temperature [42]. For illustration purposes, a representative 
displacement-restoring force curve of these devices is shown in Fig. 2. 

As  shown in Fig.  1, the structural model is subject to a seismic excitation applied 
at 40◦ with respect to the y axis. A point-source model [43, 44] is considered to 
characterize the ground excitation as a non-stationary stochastic process. This class 
of models links available knowledge about the geological site with the uncertainty 
of future ground motions. To this end, a white noise sequence is considered along 
with several seismic parameters [43–46]. The duration of the excitation is tT = 10 
s with a time step of 0.01 s. Thus, more than 1000 random variables are involved in 
the characterization of the excitation. 

In this example, the goal is to minimize the failure probability of the system 
subject to side constraints on the design variables [13]. Formally, the corresponding 
RBO problem is formulated as

Fig. 2 Typical 
displacement-restoring force 
curve of the devices. 
Example 1 
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min 
x=⟨x1,x2⟩T 

PF (x) 

s.t. 0.5 ≤ xi ≤ 1.5, i = 1, 2 
(25) 

where x1 and x2 are the design variables, and PF (x) is the probability of F = 
{d(x, θ ) > 1} evaluated at x. The corresponding demand function is 

d(x, θ ) = max
l=1,2,3 

max 
t∈[0,T ] 

|al(t, x, θ )| 
a∗

l

(26) 

where al(t, x, θ ) is the absolute acceleration at the lth control point and a∗
l = 

6.9 m/s2. The control points are located at the two abutments and the deck midpoint. 
The design variables are associated with two model parameters of the sliding bear-

ings, namely, the initial friction coefficient (μ0) and the radius of the concave surface 
(R). For optimization purposes, the intermediate design variables are specified as 
x1 = μ0/μ0 and x2 = R/R with reference values μ0 = 0.106 and R = 2.235 m. 
The initial friction coefficient affects the dissipation capacity of the bearing system, 
while the radius of the concave surface controls its natural frequency. Thus, it is 
expected that both parameters will significantly affect the system behavior. 

To illustrate the effect of the design variables on the objective function, Fig. 3 
presents contours of PF (x) in the design space. The results indicate that the failure 
probability tends to decrease for higher values of the initial friction coefficient and 
lower values of the radius of the concave surface. Further, a close inspection of the 
plot shows that the optimal solution set seems to involve a valley near the lower-right 
corner of the design space. For clarity, this region is highlighted in the figure. Thus, 
multiple solutions with very similar objective function values can be expected in this 
case. 

As previously pointed out, the RBO problem in Eq. (25) involves only side 
constraints on the design variables. Hence, uniformly distributed feasible designs 
can be obtained directly and only the exploitation phase is needed in this case. The 
proposed approach is implemented with n = 500 samples per stage and ν = 0.5.

Fig. 3 Iso-probability curves in the design space. Example 1 
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Fig. 4 Designs obtained during the different optimization stages. Example 1 

In addition, the adaptive surrogate model is implemented with 20 support points,
∈ = 0.1, and Q = 0.05. The database is initialized with all the designs from the 
initial stage. However, alternative initialization strategies can also be considered. 

Figure 4 presents the samples obtained at the different stages of the exploitation 
phase. The initial designs (stage 0) are uniformly distributed over the design space, 
whereas the samples at the final stage lie in a region near the lower-right corner of 
the design space. The final set of designs resembles the optimal region identified in 
Fig. 3, which illustrates the effectiveness of the approach. The corresponding failure 
probability values roughly range between 3× 10−4 and 7× 10−4 . The sample-based 
optimal design is given by xT = ⟨1.32, 0.51⟩ with PF (x) = 3.17 × 10−4 . 

As previously pointed out, an adaptive surrogate model is integrated for improved 
numerical efficiency. To assess its performance, Fig. 5 shows the acceptance rate of 
the kriging predictions after the initial stage. This quantity corresponds to the fraction 
of designs that satisfy all acceptance criteria, and it remains above 80% throughout 
the optimization procedure. Overall, after the initial stage (stage 0), no more than 
8% of the total number of design evaluations are performed with full reliability 
assessment. Thus, the use of kriging greatly improves the numerical efficiency of the 
method without sacrificing the quality of the optimization results.

5.2 Example 2 

The design of a nonlinear 52-story reinforced concrete building is considered as 
the second example. The structural model, which has been borrowed from [14], 
comprises more than 50,000 degrees of freedom. For reference purposes, an isometric 
view of the building and the plan view of each floor are presented in Fig. 6. The  
building includes a core of shear walls and a perimeter of columns with circular cross
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Fig. 5 Metamodel 
acceptance rate during the 
optimization stages. 
Example 1

sections. The nominal value for the corresponding thicknesses and diameters is equal 
to 0.40 m, whereas the slab thickness is equal to 0.20 m. The same material properties 
from the previous example are considered. For improved seismic performance, four 
nonlinear hysteretic devices are placed at each floor to increase the stiffness and 
dissipation capacity of the system. As indicated in Fig. 6, these devices are located 
along the axes 4, 7, 8 and 11. The restoring force in each device is given by κ(t) = 
kev(t) where ke = 2.8 × 109 N/m is the initial stiffness, v(t) = δ(t) − q1(t) + 
q2(t), δ(t) denotes the interstory displacement, and q1(t) and q2(t) are the plastic 
elongations of the device. These variables satisfy the first-order nonlinear differential 
equations [47] 

q̇1(t) = δ̇(t)H
(
δ̇(t)

)[
H
(
v(t) − vy

)v(t) − vy 

vp − vy 
H
(
vp − v(t)

)+ H
(
v(t) − vp

)]

q̇2(t) = −δ̇(t)H
(−δ̇(t)

)

[
H
(−v(t) − vy

)−v(t) − vy 

vp − vy 
H
(
vp + v(t)

)+ H
(−v(t) − vp

)]
(27)

where H (·) is the Heaviside step function, vy = 0.0042 m is the yielding onset, and 
κp = kevp is the maximum restoring force of the device with vp = 0.006 m. 

As illustrated in Fig. 6 (right), the building is subject to a horizontal ground exci-
tation, üg(t), acting along the y axis. This excitation is characterized as a stochastic 
process using a point-source model, as in the previous example. For dynamic analysis 
purposes, each floor is regarded as rigid within its plane when compared with the rest 
of structural components. Thus, by means of appropriate condensation techniques, 
the degrees of freedom of the entire model are linked to three coordinates per floor 
(one rotational and two translational displacements). In addition, a 5% of critical 
damping ratio at the modal level is considered. 

In this case, the variables to be controlled correspond to the dimensions of the 
shear walls and exterior columns (see Fig. 6). In particular, the wall thickness (tw) and 
column diameter (dc) at each floor are linked to an intermediate optimization variable,
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Fig. 6 Isometric view (left) and floor plan (right) of the 52-story building model. Example 2

x , as  tw = twx and dc = dcx , respectively, with nominal values tw = dc = 0.40 m. 
For optimization purposes, a total of nx = 6 intermediate variables are considered. 
These are linked to the design elements of different floors as follows: x1 is associated 
with floors 1–9, x2 with floors 10–18, x3 with floors 19–26, x4 with floors 27–35, 
x5 with floors 36–44, and x6 with floors 45–52. Then, a constrained optimization 
problem is formulated as 

min 
x 

f (x) = 
6∑

i=1 
xi /6 

s.t. PFj (x) ≤ 10−3 , j = 1, 2 
xi+1 ≤ xi , i = 1, . . . ,  5 
0.5 ≤ xi ≤ 1.5, i = 1, . . . ,  6 

(28) 

where the failure probability functions PF1 (x) and PF2 (x) are associated with the 
displacement at the first and top floors, respectively, and the standard constraints 
xi+1 ≤ xi impose that the dimensions of upper floor members cannot be larger than 
those of lower floors. The corresponding first-passage failure events are defined as 
Fj =

{
d j (x, θ ) > 1

}
, j = 1, 2, where 

d j (x, θ ) = max 
t∈[0,T ]

|||uy 
j (t, x, θ )

|||

u∗ 
j 

, j = 1, 2 (29) 

with uy 
1(t, x, θ ) and uy 

2(t, x, θ ) denoting the ground-relative displacement along the 
y direction at the centroid of the first and top floors, respectively. The corresponding 
thresholds u∗

1 and u
∗
2 are equal to 0.08% of the first story height and 0.075% of 

the building height, respectively. The reference period is taken as tT = 15 s with a 
time step of 0.01 s, which leads to more than 1500 random variables involved in the 
corresponding multidimensional probability integrals.
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The proposed approach is implemented by considering n = 500 samples per 
stage and ν = 0.5 for both phases. The exploration phase considers a target sample 
size of ntarget  = 750 as stopping criterion, whereas Nmax = 10 stages are carried 
out in the exploitation phase. In addition, the adaptive surrogate model strategy is 
implemented to approximate the two failure probability functions throughout the 
entire optimization process. In this regard, the corresponding kriging metamodel 
considers 28 support points, ∈ = 0.1 and Q = 0.05. 

First, an exploration phase is carried out. The corresponding final set of samples, 
which comprises 950 feasible designs, is shown in Fig. 7 in terms of two-dimensional 
projections and marginal histograms. These designs have been retrieved from the 
eight TMCMC stages carried out during the exploration phase and approximately 
follow a uniform distribution over the feasible set. The marginal histograms indicate 
that the effective support of the first design variable is smaller than that of, e.g., the 
sixth design variable. Thus, the dimensions of the core walls and columns of lower 
floors seem to be more relevant than of upper floors to determine the feasibility of 
a given design. Finally, validation calculations indicate that the hypervolume of the 
feasible set represents less than 0.01% of the initial search space. This illustrates the 
ability of the proposed approach to explore feasible design spaces with challenging 
geometries in an effective manner.

Starting from the set of samples in Fig. 7, an exploitation phase is carried out 
to explore the optimal solution set. The final designs, which are obtained after ten 
TMCMC stages, are shown in Fig. 8. It is seen that they are densely concentrated near 
a single value in the design space. In fact, the corresponding objective function values 
range between 6.333 and 6.357 at the final stage. These values represent a relative 
variation of less than 0.3% and, thus, they can be considered as equivalent from 
the optimization viewpoint. This illustrates one of the advantages of the proposed 
approach, as it yields a set of nearly optimal solutions which, in turn, provides 
additional flexibility for decision-making purposes. Nonetheless, if a single solution 
is needed, the design with the smallest objective function value can be chosen. Such 
design is xT = ⟨1.489, 1.476, 1.088, 1.011, 0.751, 0.515⟩, with f (x) = 6.333, 
PF1 (x) = 0.999 × 10−3 and PF2 (x) = 0.169 × 10−3 . In addition, the standard 
constraints verify x2/x1 = 0.991, x3/x2 = 0.736, x4/x3 = 0.930, x5/x4 = 0.743, 
and x6/x5 = 0.685. It is seen that the first reliability constraint, whose response of 
interest is the first story drift, and the first geometric constraint can be regarded as 
active at this design from a practical point of view.

As previously pointed out, an adaptive metamodel has been implemented. The 
initial database corresponds to the initial samples of the exploration phase. Numerical 
results indicate that the surrogate acceptance rate remains above 97% throughout the 
different stages of the exploration and exploitation phases, which yields an overall 
speedup factor of more than 16 in this case. Further, validation calculations show that 
the results obtained with and without the use of metamodels are very similar. Thus, 
the use of surrogate modeling techniques together with the proposed approach prove 
instrumental for the effective solution of a class of challenging RBO problems, such 
as those involving complex engineering systems.
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Fig. 7 Set of feasible designs obtained in the exploration phase. Example 2

5.3 Example 3 

The design of the bracing system for a 4-story building is considered as the third 
example. The corresponding structural model, which has been borrowed from [15], 
is illustrated in Fig. 9. Each floor is supported by 48 identical columns. The corre-
sponding cross sections, which are taken from AISC standards [48], are W24 × 131 
for the two lower floors and W24 × 104 for the two upper floors. In addition, six 
nonlinear devices, which follow the same restoring force law from the previous 
example, are implemented at each floor. Finally, a bracing system consisting of 128 
tubular steel elements is incorporated. The braces along axes A, C, D and F act in the 
x direction, while those along axes 1, 2, 7 and 8 in the y direction. The elastic modulus 
and density of the bracing elements are taken as 2.1 × 1011 N/m2 and 7.42 ton/m3, 
respectively.

The system is subject to a ground excitation applied at 45 degrees with respect 
to the x axis (see Fig. 9). As in the previous examples, the ground acceleration is 
represented using a point-source model. A reference period of tT = 15 s is consid-
ered with a time step of 0.01 s and, therefore, more than 1500 random variables
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Fig. 8 Set of designs at the end of the exploitation phase. Example 2

Fig. 9 Floor plan (left) and isometric view (right) of the 4-story building. Example 3
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are involved in the characterization of the stochastic process. For dynamic analysis 
purposes, each floor is assumed as rigid within the x − y plane when compared with 
the horizontal resistant elements. Using condensation techniques, the global system 
response can be characterized with three coordinates per floor. The mass and polar 
inertia of each floor are 5.98 × 105 kg and 1.10 × 108 kg m2, respectively. Finally, 
a 2% of critical damping is considered in the model. 

In this example, the objective function f (x) is related to the total weight of the 
brace elements. A total of four design variables are considered to define the areas of 
the tubular cross sections of the bracing elements. The areas can be chosen from a 
discrete set of 48 available values ranging from 719 to 3063 mm2 [15]. Each design 
variable xi , i = 1, . . . ,  4, is linked to the brace elements of two consecutive floors 
along a certain direction. The variables x1 and x2 represent the areas of the bracing 
elements in the two lower floors along the x and y directions, respectively. For the 
two upper floors, the areas of the brace elements along the x and y directions are 
given by x3 and x4, respectively. In this setting, the initial search space comprises 
more than 5 × 106 available configurations for the bracing system. A constrained 
RBO problem is formulated as 

min 
x 

f (x) = 
4∑

i=1 
f i xi 

s.t. PFj (x) ≤ 5 × 10−4 , j = 1, 2 
xi ∈ X, i = 1, . . . ,  4 

(30) 

where f (x) represents the normalized weight of the bracing system with normalizing 
constants f 1 = f 3 = 8.5 × 10−5 and f 2 = f 4 = 7.8 × 10−5 , PFj (x) is the 
probability of failure event Fj =

{
d j (x, θ ) > 1

}
, and X comprises the 48 available 

discrete values for the areas of the bracing elements. The first failure event is defined 
in terms of the normalized demand function 

d1(x, θ ) = max 
υ=x,y 

max 
t∈[0,T ]

||uυ 
r (t, x, θ )

||

u∗
r 

(31) 

with uυ 
r (t, x, θ ) the displacement at the roof centroid along the x or y direction 

and u∗
r = 0.033 m. Similarly, the normalized demand function corresponding to the 

second failure event is given by 

d2(x, θ ) = max
l=1,...,128 

max 
t∈[0,T ] 

|σl(t, x, θ )| 
σ ∗

(32) 

where σl(t, x, θ ) is the axial stress of the lth brace element and σ ∗ = 3.31× 108 Pa 
(80% of yield stress). 

The proposed approach is implemented considering n = 100 samples per stage 
and ν = 0.5. For illustration purposes, the exploration phase considers a target sample 
size of 250 feasible designs while the exploitation phase stops after twelve stages.
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It is noted that, in this case, all design variables are discrete. For the exploration 
phase the corresponding proposal distribution considers λ∗ 

i = 5, i = 1, . . . ,  4, and 
τ = 0.025, while for the exploitation phase λ∗ 

i = 2 and τ = 0. Finally, the adaptive 
surrogate model strategy is not implemented for this example. 

The feasible designs obtained from the exploration phase are presented in Fig. 10 
in terms of two-dimensional projections and marginal histograms. This set is 
composed of 250 feasible designs obtained in four stages. The results show that 
the range of the design variables associated with the lower floors (x1 and x2) is  
smaller than of those corresponding to upper floors (x3 and x4). Thus, the system 
performance seems to be more sensitive to the stiffness of lower floors than of upper 
floors, which is reasonable from the structural viewpoint. This shows some of the 
advantages of the proposed approach, in the sense that valuable insight about the 
system behavior can be obtained as a byproduct of the sampling process. 

Starting from the designs in Fig. 10, an exploitation phase is carried out. After 
ten stages, the set of samples presented in Fig. 11 is obtained. It is seen that these 
samples densely populate a small portion of the initial search space, i.e., they are

Fig. 10 Set of feasible designs obtained in the exploration phase. Example 3 
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almost coincident. To obtain further insight into the optimization procedure, Fig. 12 
shows the maximum and minimum values of the objective function f (x) observed 
during the different exploitation stages. It is seen that both values are almost coinci-
dent from stage j = 7 on. The sample-based minimum objective value is equal to 
0.6235, which corresponds to xT = ⟨2615, 2216, 1418, 1368⟩ mm2. It is noted that 
this solution imposes larger cross sections for the lower floors, which is consistent 
from an engineering viewpoint. The corresponding failure probability values satisfy 
PF1 (x)/5 × 10−4 = 0.99 and PF2 (x)/5 × 10−4 = 0.05. Thus, the first reliability 
constraint, which is associated with the maximum roof displacement, can be regarded 
as active at this solution. Finally, in terms of numerical efforts, the total number of 
designs evaluated in this case is in the order of 1000. That is, the algorithm is capable 
of exploring the optimal solution set of this RBO problem in an effective manner 
with a relatively small sample size. 

Fig. 11 Set of designs at the end of the exploitation phase. Example 3
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Fig. 12 Maximum and 
minimum objective function 
values obtained during the 
exploitation phase. Example 
3 

6 Conclusions 

A two-phase sampling approach for the reliability-based optimization of structural 
engineering systems has been presented. The method relies on the reformulation 
of the constrained optimization problem as obtaining samples uniformly distributed 
over the optimal solution set. This task is addressed sequentially. An exploration 
phase is first performed to generate feasible designs, which are then used in an 
exploitation phase to yield a set of close-to-optimal designs. Due to its theoret-
ical foundations, the method has high chances to reach a vicinity of the optimum 
solution set. Further, it is relatively simple to implement, it provides flexibility for 
decision-making processes, and it yields sensitivity information as a byproduct of 
the sampling process. To illustrate the capabilities of the approach, three examples 
involving nonlinear structural systems under stochastic ground excitation have been 
presented, which include continuous and discrete design spaces as well as uncon-
strained and constrained formulations. Overall, the numerical results indicate that 
the proposed approach is a potentially useful tool for solving a class of practical 
RBO problems in structural engineering applications. 
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Moment Estimation-Based Method 
of Motion Accuracy Reliability Analysis 
for Industrial Robots 

Dequan Zhang, Shuoshuo Shen, and Xu Han 

Abstract Comprehensive and effective assessment of motion accuracy reliability 
for industrial robot registers a crucial and lasting challenge. In order to ensure the 
precision performance of industrial robots, this study systematically investigates 
the reliability modeling and analysis. For kinematic accuracy reliability, a novel 
computational framework is proposed to comprehensively evaluate the reliability 
for kinematic positioning and trajectory accuracy of industrial robots, in which the 
motion error correlation quantification methods are developed. In terms of dynamics 
accuracy reliability, the rotational sparse grid method and the advanced mixed-
degree cubature formula are inferred to evaluate statistical moments of industrial 
robots’ joint torque subject to multidimensional correlations among uncertain param-
eters. The computational performance of proposed methods is significantly improved 
compared to the traditional competitive approaches. The engineering practicability 
and proficiency of the proposed methods are verified by a series of industrial robot 
examples. 

Keywords Industrial robot · Kinematics · Dynamics · Reliability analysis 
method · Precision performance 

1 Introduction 

Industrial robot, as electromechanical digital equipment, has become an important 
indicator of the automation level for manufacturing science, technology, and their 
high reliability and precision performance are the linchpin to ensure the production 
efficiency of high-tech industries [1, 2]. However, it is generally argued that the 
kinematic and dynamic uncertainties deviate the end effector/manipulator from the 
specified position to negate operational reliability, thus the quality of the products 
[3, 4]. Therefore, to ensure working performance of industrial robots, it is imperative
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to comprehensively evaluate the reliability of motion accuracy in terms of kinematic 
and dynamic uncertainties. 

Motion accuracy reliability of industrial robots can be specified as the probability 
of the motion error that falls below a specified error threshold. Recently, some proba-
bilistic methods, such as sampling-based simulation method [5, 6], analytical approx-
imation method [7–9], surrogate model method [10–12], numerical integration-based 
method [13, 14], etc. have been applied for reliability analysis of industrial robots’ 
motion accuracy. Specifically, Rao and Bhatti [15] employed Monte Carlo Simula-
tion (MCS) to compute the positioning accuracy reliability of industrial robot. Kim 
et al. [16] proposed analytical approach-based method in comprehending the kine-
matic uncertainty parameters of industrial robots to evaluate the positioning accuracy 
reliability subject to normal random variables. Pandey and Zhang [17] put forward a 
fractional moment-based method pertaining to the extreme value distribution method 
for reliability analysis of industrial robot. Wu et al. [18] established a new point esti-
mation method to evaluate positioning accuracy reliability. Out of the context of the 
aforementioned conventional approaches, Lara-Molina et al. [19] explored a novel 
method for analyzing the accuracy reliability of manipulators using fuzzy theory 
by considering the uncertainty of joint clearance. Zhao et al. [20] suggested the 
position error model of manipulators based upon group theory and analyzed the 
time-dependent motion accuracy reliability for industrial robots. Zhang et al. [21] 
developed the moment and copula function-based trajectory accuracy reliability anal-
ysis method, which can effectively quantify intercorrelations among motion errors. 
Yang and Yang [22] applied the hierarchical modularization method to assess the 
kinematic reliability of industrial robots. Cao et al. [23] analyzed the effects of 
epistemic uncertainty and correlation on the accuracy of manipulator position, and 
effectively calculated the reliability of positioning accuracy based upon evidence 
theory. Chen et al. [24] established a robotic dynamic reliability model, and calcu-
lated its accuracy reliability via probability and interval hybrid method. Wu et al. 
[25] developed an improved numerical integration method to approach the industrial 
robots dynamics reliability. In summary, the motion accuracy reliability analysis 
constitutes of kinematic and dynamic accuracy reliability. The mathematical model 
of the kinematic and dynamic accuracy analyses for industrial robots could be highly 
complex. The traditional sample-based method requires a large number of function 
calls and simulation time, and the approximate analytical method may lead to unsat-
isfactory calculation results. Thus, an innovative method to analyze efficiently and 
reliably the kinematics and dynamics reliabilities of industrial robots are yet to be 
developed. 

Numerical integration-based methods have been widely studied for their high 
efficiency and applicability [26]. Dimension-reduction method (DRM) [27] is an  
efficient method to assess multi-dimensional integrals, and the most popular DRM is 
the bivariate dimension reduction method (BDRM). However, for high dimensional 
problems, the computational intensity of DRM is usually intractable. Other numerical 
integral techniques, such as cubature formula [13, 26], sparse grid method [28, 29] 
and point estimation method [30], have also been employed for acquiring statistical 
data of system. To analyze proficiently and efficiently the reliability of industrial
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robot kinematics and dynamics efficiently, moment-based methods should be further 
advanced to explore the uncertainty transfer mechanism. 

Complex correlation for internal systems and input variables often exhibits in 
industrial robots. This correlation may influence the system reliability [31]. There-
fore, it is important to consider the correlation in estimating failure probability. 
Copula functions are rigorous and thus widely used in modeling the correlations 
among mechanical structure parameters and multiple failure modes. In this respect, 
Lu et al. [32] proposed a system reliability analysis method via combining the 
moment-matching method with copula function. Wang et al. [33] applied copula 
function to implement the performance correlation modeling for dynamic systems. 
Furthermore, the vine copula functions have been engaged for representation of the 
multidimensional correlations [34, 35]. For example, Li et al. [36] combined the vine 
copula function and Bayes theorem to develop an estimation approach for structural 
reliability. Jiang et al. [37] integrated vine copula and first-order reliability method to 
establish a new reliability analysis method considering inter-dependent random vari-
ables. In comprehension of the advantages of the above methods, this study applies 
copula functions to approach the inter-correlation of random variables or internal 
robotic system for motion accuracy reliability analysis. 

The novelty of this study lies in a new computational framework for evalu-
ating the kinematic accuracy reliability of industrial robots by integrating numerical 
integration-based methods and probability distribution fitting methods. The eigen-
decomposition method and copula functions are developed to quantify the correlation 
of motion errors. The single coordinate, single point, multiple points, and the trajec-
tory accuracy reliabilities are then comprehensively calculated. A rotational sparse 
grid method and an advanced mixed-degree cubature formula are constructed to 
efficiently calculate the reliability of dynamic performance. 

Following this introduction, the kinematic computational framework and the 
engineering example implementation are presented in Sect. 2. Two moment-based 
methods and one practical dynamic example are exposited in Sect. 3. Conclusions 
are drawn in Sect. 4. 

2 Kinematic Accuracy Reliability Analysis 

2.1 Problem Statement 

The position of an industrial robot in actual operation can be expressed as 

pa = D(e) (1) 

where pa = [pax , pay, paz]T denotes the actual position; D(·) represents the 
kinematic equation; e = [e1, e2, . . . ,  en]T stands for the random variables; e1 = 
[a1, d1, θ1, α1] is the random variables of kinematic parameters.
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Due to the uncertainties in input variables, the error of the actual position from 
the ideal position of industrial robot’s exhibit. When the positioning error of the 
industrial robot in the three coordinate directions is greater than a specified accuracy 
threshold, the single coordinate (SC) positioning performance would be considered 
as a failure. The single point (SP) positioning performance reflects the probability that 
the positional error of point falls below the specified threshold. The multi-point (MP) 
positioning accuracy reliability indicates the probability that the bounding value of 
errors for multiple actual positioning points during its spatial motion stabilize within 
the specific error threshold. Industrial robot trajectory accuracy reliability specifies 
the probability that the actual motion trajectory stays within the specified trajectory 
error range [29]. The failure criterions of single coordinate positioning, single point 
positioning, multi point positioning and trajectory are illustrated in Fig. 1. 

Single coordinate positioning accuracy: Denoting the ideal position as pd = 
[pdx  , pdy, pdz]T, the error pμ can be specified as [18] 

pμ = pa − pd = [εx (e), εy(e), εz(e)]T (2)

(a) Single coordinate                                                         (b) Single point 

Precision 
Sphere 

Failure 
Trajectory 

Ideal 
Trajectory 

Safe 
Trajectory 

(c) Multi point                                                               (d) Trajectory 

Fig. 1 Failure criteria for kinematic accuracy 
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where εx (e), εy(e) and εz(e) indicate functions with respect to e, which represent the 
deviation between the ideal and the actual positions in the three coordinate directions, 
respectively. The specific terms in Eq. (2) can be derived as 

εx (e) = |pax − pdx |, εy(e) =
|
|pay − pdy

|
|, εz(e) = |paz − pdz| (3) 

The performance function in three coordinate directions can be described as 

Gx (e) = εx (e) − rx , Gy(e) = εy(e) − ry, Gz(e) = εz(e) − rz (4) 

where rx , ry and rz denote the accuracy thresholds in three coordinate directions. 
When the probability density functions (PDFs) of εx (e), εy(e) and εz(e) are available, 
the positioning accuracy reliability R(·) and failure probability Pf (·) can be expressed 
as 

⎧ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

Rx = Pr[Gx (e) < 0] =
∮

Gx (e)<0 

fex (e)de, Pf x  = 1 − Rx 

Ry = Pr
[

Gy(e) < 0
] =

∮

Gy (e)<0 

fey(e)de, Pf y  = 1 − Ry 

Rz = Pr
[

Gz(e) < 0
] =

∮

Gz (e)<0 

fez(e)de, Pf z  = 1 − Rz 

(5) 

where fex (e), fey(e) and fez(e) represent the probability density function of 
positioning error in x, y and z coordinate directions, respectively. 

Single point positioning accuracy: The distance between the ideal and the actual 
positions ε(e) can be formulated as [2] 

ε(e) =
/

ε2 x (e) + ε2 y(e) + ε2 z (e) (6) 

The performance function can be written as 

G p(e) = ε(e) − rs =
/

ε2 x (e) + ε2 y(e) + ε2 z (e) − rs (7) 

where rs indicates the accuracy threshold. Reliability Rp and failure probability Pf p  

are then calculated by 

Rp = Pr
[

G p(e) < 0
] =

∮

G p(e)<0 

fe(e)de, Pf p  = 1 − Rp (8) 

where fe(e) stands for the joint PDF.
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Multi point positioning accuracy: The error extreme value εmax(e) at multiple 
positioning points of an industrial robot indicates its multi-point positioning accuracy, 
which takes the form of [29] 

εmax(e) = max
[

ε1(e), ε2(e), . . . , ε j (e), . . . , εn(e)
]

, j = 1, 2, . . . ,  n (9) 

where ε j (e) represents the distance between the ideal and the actual positional points; 
n symbolizes the number of positional points. This performance function can be 
derived by 

Gmp(e) = εmax(e) − rms (10) 

where rms indicates the accuracy threshold of multi-point. Reliability Rmp and failure 
probability Pf mp  can be obtained as 

Rmp = Pr
[

Gmp(e) < 0
] =

∮

Gmp (e)<0 

fe(e)de, Pf mp  = 1 − Rmp (11) 

Trajectory accuracy reliability: For the trajectory accuracy reliability of industrial 
robots, it is prerequisite to assess the coupling of discrete point positioning failure 
[21]. If the trajectory of industrial robot is discretized into n discrete positioning 
points, the trajectory accuracy reliability can be formulated as 

RT = Prob[G1(e) <  0 ∩ G2(e) <  0 ∩ . . .  ∩ G j (e) <  0 . . .  ∩ Gn(e) <  0] 
j = (1, 2, . . . ,  n) (12) 

The failure probability is derived by 

Pf T  = 1 − RT (13) 

2.2 Kinematic Reliability Analysis Method 

The positioning errors of three coordinates are incurred by uncertainties in variables 
and there exhibit approximately linear correlations among three coordinates errors. 
Assuming positioning error as Gaussian distribution, the square of the single point 
positioning error can be approximated by the eigen-decomposition method [21]: 

χ 2 (e) = ε2 (e) = 
3
∑

i=1 

λi (αi + ui )2 (14)
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where λ1, λ2 and λ3 are eigenvalues of covariance matrix among three coordi-
nate directional errors; α = (α1, α2, α3)

T represents vector of the undetermined 
coefficient; u = (u1, u2, u3)T denotes independent standard normal variable. 

For the multi-points positioning error, the error of each positioning point is derived 
first, and the multi-points positioning error is then converted using the extreme value 
theory. The conversion of the extreme value error can be expressed as 

χ 2 max(e) = max[χ 2 1 (e), . . . , χ 2 j (e),  . . . , χ  2 n (e)] (15) 

2.2.1 Positioning Accuracy Reliability Analysis Method 

The i-order origin moments Mi of Y (e) are defined as [13] 

Mi =
∮

Ω

Y i (e) fe(e) de,i = 1, 2, . . .  

SC: Y (e) = εx (e), εy(e) or εz(e); SP : Y (e) = χ(e); MP : Y (e) = χmax(e) (16) 

where Ω is the uncertainty distribution domain. 
Through sparse grid (SPGR) quadrature rule, the multi-dimensional node Sk n can 

be obtained as follows [38], 

Sk n = ∪
k+1≤|m|≤k+n 

Xm1 
1 ⊗ Xm2 

1 ⊗ . . .  ⊗ Xmn 
1 

= ∪
k+1≤|m|≤k+n 

T −1 (Um1 
1 ) ⊗ T −1 (Um2 

1 ) ⊗ . . .  ⊗ T −1 (Umn 
1 ) 

(17) 

where mi (i = 1, 2, …, n) is univariate indicator; Um1 
1 represents Gauss-Hermite 

integration points; Xm1 
1 denotes the integration points to the input random variables 

and Xm1 
1 = T −1(Um1 

1 ); T −1(·) stands for the inverse Rosenblatt transformation; ⊗ 
is the tensor operation that is defined as

{

if : X1 = [a, b]T , X2 = [1, 2]T 
then : X1 ⊗ X2 = {(a, 1), (a, 2), (b, 1), (b, 2)} (18) 

The corresponding weights for each multidimensional node can be inferred as 
[28] 

ωq = (−1)k+n−|m|
(

n − 1 
k + n − |m|

)

ω
m1 
1, j1 ω

m2 
1, j2 · · ·  ωmn 

1, jn (19) 

where ωq represents the weight coefficient to the qth multidimensional point ς q = 
[ς m1 

1, j1 , ς  m2 
1, j2 , . . . , ς  mn 

1, jn ]T ∈ Sk n; ω
m1 
1, j stands for the weight of the one-dimensional
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point ς m1 
1, j . According to the SPGR quadrature rule, Eq. (16) can be approached by 

Mi =
∮

Ω

Y i (e) fe(e) de ≈ 
N
∑

q=1 

ωqY 
i (ς q ), i = 1, 2, . . . (20) 

Saddlepoint approximation (SPA) technique is applied herein to evaluate the reli-
ability of positioning accuracy. The cumulative generating function can be expressed 
as [39] 

KY (t) = ln(MY (t)) = ln 

⎡ 

⎣ 
∞∮

−∞ 

ety  fY (y)dy 

⎤ 

⎦ (21) 

For convenience, Eq. (21) takes up expansion form: 

KY (t) = k1 + 
k2t2 

2! + 
k3t3 

3! + 
k4t4 

4! (22) 

It first two order derivative expressions can be written as 

K '
Y (t) = k1 + 

4
∑

s=2 

ks 
t s−1 

(s − 1)! , K
''
Y (t) = k2 + 

4
∑

s=3 

ks 
t s−2 

(s − 2)! (23) 

where k1, k2, k3 and k4 can be obtained as

{

k1 = M1, k2 = M2 − M2 
1 , k3 = M3 − 3M2 M1 + 2M3 

1 

k4 = M4 − 4M3 M1 − 3M2 
2 + 12M2 M

2 
1 − 6M4 

1 

(24) 

Combining with Eqs. (21)–(24), the saddlepoint ts can be acquired by solving 
K '

Y (t) = rs . 
Positioning accuracy reliability pR can then be approximated by SPA technique 

[40]: 

pR = F(r2 ) = ϕ(w) + φ(w)

(
1 

w 
− 

1 

v

)

(25) 

where φ(·) is the standard normal probability density functions; w and v can be 
computed as 

w = sgn(ts){2[ts y − K (ts)]}1/2 (26) 

v = ts[K ''(ts)]1/2 (27)
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2.2.2 Trajectory Accuracy Reliability Analysis Method 

Multi-points failure mode correlation can be approached based upon the optimal 
copula functions. The specific derivations, which are only briefed herein, are seen 
in Refs. [31, 32]. The correlation coefficient τi j  between two failure modes can be 
expressed by [21] 

τi j  = 4 
1∮

−1 

1∮

−1 

Ĉ
(

ui , u j |ϑ
)

d Ĉ
(

ui , u j |ϑ
)− 1 (28) 

where Ĉ denotes the optimal copula functions. For two-point failures, the joint failure 
probability can be formulated as 

P̃ f i  j  = Ĉ
(

PSPGR-SPA 
f i , PSPGR-SPA 

f j |ϑ) (29) 

where PSPGR-SPA 
f i and PSPGR-SPA 

f j stand for the failure probability at different points, 
respectively. 

For simplicity of presentation, two proposed trajectory accuracy reliability 
analysis methods are denoted as type A and type B, respectively. 

Type A: Ditlevsen’s bound method is applied to assess the kinematic trajectory 
accuracy reliability among multiple points [41]: 

Pf T  
∼= 

M
∑

i=1 

PSPGR-SPA 
f i − 

M
∑

i=2 

max 
j<i

(

P̃ f i  j

)

(30) 

Type B: The trajectory accuracy reliability is derived according to the multivariate 
normal distribution theory [42]: 

RT = Pr[ n ∩
j=1 

(χ 2 j (e) <  r2 s )] = ϕn(0; βZ ,∑Z ) = 
0∮

−∞ 

· · ·  
0∮

−∞ 

fZ (z)dz (31) 

where fZ (z) is the joint probability density function of Z: 
⎧ 
⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎩ 

βZ = [ϕ−1 (PSPGR-SPA 
f 1 ),ϕ−1 (PSPGR-SPA 

f 2 ),  . . . , ϕ−1 (PSPGR-SPA 
f n )]

∑Z = 

⎡ 

⎢ 
⎢ 
⎢ 
⎣ 

1 τ12 · · ·  τ1n 
τ21 1 · · ·  τ2n 
... 

... τi j  
... 

τn1 τn2 · · ·  1 

⎤ 

⎥ 
⎥ 
⎥ 
⎦ 

n×n 

(32)



58 D. Zhang et al.

With the derived βZ and ∑Z , then fZ (z) is expressed as 

fZ (z) = 1 √
(2π)n|∑Z | exp

(

− 
1 

2

(

z − βZ

)T
∑−1 

Z

(

z − βZ

)
)

(33) 

RT can be calculated by substituting Eq. (33) in Eq.  (31), and the failure probability 
is obtained as 

Pf T  = 1 − RT = 1 − ϕn(0; βZ ,∑Z ) (34) 

2.3 Demonstrative Kinematic Examples 

An industrial robot with 6-degree of freedom (6-DoF), as sketched in Fig. 2 [21], 
is exemplified to demonstrate the superiority of the currently proposed methods 
for the single coordinate positioning accuracy, single point positioning accuracy, 
multi-point positioning accuracy and trajectory accuracy reliability analyses. The 
maximum entropy with fractional moments (ME-FM) [17] and MCS are served as 
calibers to validate the proposed methods. 

J1 axis 
Rotates the robot body 

J2 axis 
Moves the robot body 
backward or forward 

J3 axis 
Moves the forearm 

backward or forward 

J4 axis 
Rotates the forearm 

J5 axis 
Moves the wrist 

backward or forward 

J6 axis 
Rotates the wrist 

(a) Sketch for 6-DoF welding robot (b) Mechanism diagram of 6-DoF welding robot 

Fig. 2 A 6-DoF welding robot
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Table 1 Kinematic parameters for industrial robot [21] 

No. θ i di ai αi 

1 θ 1 L1 L4 α1 

2 − 30° 0 L5 0 

3 30° 0 L6 90° 

4 0° L2 0 − 90° 
5 θ 5 0 0 α2 

6 0° L3 0 0 

Table 2 Stats for random 
variables [21] 

Variables Mean Standard deviation Distribution 

L1 463 (mm) 0.463 (mm) Normal 

L2 581.5 (mm) 0.5815 (mm) Normal 

L3 203.2 (mm) 0.2032 (mm) Normal 

L4 220 (mm) 0.220 (mm) Normal 

L5 600 (mm) 0.600 (mm) Normal 

L6 220 (mm) 0.220 (mm) Normal 

α1 90 (°) 0.01 (°) Normal 

α2 90 (°) 0.01 (°) Normal 

2.3.1 Example 2.1: Single Coordinate 

The kinematic parameters and statistical data are summarized in Tables 1 and 2, 
respectively. 

The first-four order origin moments of positioning errors in three coordinate direc-
tions are calculated by the proposed method and MCS are summarized in Table 3. 
Compared with MCS (106 runs), the currently proposed method yields more accurate 
results with only 177 (k = 2, 2 × 82 + 6 × 8 + 1 = 177 runs) and lower maximum 
error around 0.03%.

PDF of three-coordinate positioning errors and failure probability curves of the 
industrial robots are shown in Figs. 3 and 4, respectively. The results by the proposed 
method are more coincident with those by MCS than ME-FM method (500 runs) 
counterpart. It is verified that the proposed methods can efficiently analyze the 
reliability of single coordinate positioning accuracy.

2.3.2 Example 2.2: Single Point 

Table 4 compares the first four order origin moments of the single point positioning 
error from the proposed method and MCS. It can be found that the superiority of the 
proposed method is again verified through this comparison.
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Table 3 Statistical moments of positioning errors in x, y and z coordinate directions 

Coordinates Moments MCS Proposed method (error %) 

X M1 0.4829 0.4829 (0.00) 

M2 0.2372 0.2372 (0.00) 

M3 0.1185 0.1184 (0.02) 

M4 0.0601 0.0601 (0.03) 

Y M1 0.4792 0.4792 (0.00) 

M2 0.2300 0.2300 (0.00) 

M3 0.1105 0.1105 (0.00) 

M4 0.0532 0.0532 (0.00) 

Z M1 0.2922 0.2922 (0.00) 

M2 0.0919 0.0919 (0.00) 

M3 0.0306 0.0306 (0.00) 

M4 0.0107 0.0107 (0.00) 

Ncall 1 × 106 177

Fig. 3 PDFs of three-coordinate positioning errors 

Fig. 4 Failure probabilities of three-coordinate positioning accuracy

Table 4 Statistical moments of single point positioning error 

Moments M1 M2 M3 M4 Function calls 

MCS 0.7450 0.5591 0.4225 0.3216 1 × 106 

Proposed method 
(error %) 

0.7450 
(0.00%) 

0.5591 
(0.00%) 

0.4225 
(0.00%) 

0.3216 
(0.00%) 

177
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Fig. 5 Positioning accuracy reliability analysis results for single point 

The results of PDF and failure probability are shown in Fig. 5. Compared with 
ME-FM method, the curves by the proposed methods accord well with those by 
MCS. Especially in the tail of the failure probability, the curve by ME-FM method 
deviates significantly from those by MCS, which also verifies the superiority of the 
proposed method. 

2.3.3 Example 2.3: Multi-points 

The proposed method is applied to analyze the reliability of multi-points positioning 
accuracy in this example. Driving θ 1 and θ 5 forms a trajectory, as sketched in Fig. 6. 
Table 5 presents the driving schemes for θ 1 and θ 5. Interval points 3, 5, 7, 9 and 11 
on the trajectory are chosen to verify the effectiveness of the proposed method. 

As shown in Table 6, the proposed method can efficiently calculate the first fourth 
order origin moments with a maximum error as low as 0.26%. It can be stated that

Fig. 6 Schematic for 
kinematic trajectory [21]
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Table 5 Driving schemes of θ 1 and θ 5 
Angles 1–8 9–11 12–18 19–21 22–28 29–30 

θ 1 (°) 5 [4: 1: 2]  2 [1: − 1: − 1] − 1 [−2: − 1: − 3] 
θ 5 (°) [72: − 6: 30] 30 [36: 6: 72] 72 [66: − 6: 30] 30

Table 6 Statistical moments for the extremum of multi-point positioning error 

Moments M1 M2 M3 M4 Function calls 

MCS 0.6796 0.4656 0.3217 0.2214 1 × 106 

Proposed method 
(Error %) 

0.6801 
(0.08%) 

0.4664 
(0.16%) 

0.3224 
(0.22%) 

0.2247 
(0.26%) 

177 

Fig. 7 Reliability analysis results of multi-points positioning accuracy 

the proposed methods yield remarkably satisfactory result in the reliability analysis 
of multi-point positioning accuracy. 

Figure 7 compares PDF of the multi-point positioning extremum error and failure 
probability curves by the proposed methods, MCS and ME-FM method. It can be 
found that significantly approximating results to those by MCS are obtained by the 
proposed method. A remarkably favorable note is that the currently proposed method 
is highly more efficient than MCS. 

2.3.4 Example 2.4: Trajectory 

To further validate the proposed method, analysis for the kinematic trajectory 
containing 30 discrete points as shown in Fig. 6 is performed to compute the trajectory 
accuracy reliability. For the 30 discrete points, the nonlinear correlation coefficients 
can be obtained from Fig. 8.

The failure probability of kinematic trajectory from different methods are summa-
rized in Fig. 9. The proposed methods (A and B) yield better fit to those by MCS
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Fig. 8 Correlation coefficients between 30 pairs of discrete points for Example 2.4

than ME-FM method and M-SPA method. Once again, the proposed methods are 
proved to be highly efficient and reliable in analyzing the reliability of the kinematic 
trajectory. 

Fig. 9 Failure probability of 
kinematic trajectory
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3 Dynamic Accuracy Reliability Analysis 

3.1 Problem Statement 

The governing equations of the industrial robot dynamics model can be described as 
[25] 

M(Θ(t)) Θ̈(t) + C(Θ(t), Θ̇(t)) Θ̇(t) + τ f (t) = τ(t) (35) 

where M(·) represents the mass matrix; C(·) stands for inertia forces; τ f (t) and τ(t) 
denote the frictional forces and the joint torque vector, respectively; Θ(t), Θ̇(t) and 
Θ̈(t) indicate the angular displacement, velocity and acceleration, respectively. 

The dynamics performance function can be derived by [25] 

τ(t) = Y(Θ(t), Θ̇(t), Θ̈(t))β (36) 

where Y(·) denotes the regressor matrix; β stands for the system parameters, the 
specific parameters are seen in [25]. 

The angular position, velocity and acceleration of joint i can be obtained by [43] 

⎧ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Θi (t) = 
Ni∑

l=1 

ai l 
ω f l 

sin(ω f l t)− 
bi l 

ω f l 
cos(ω f l t) + Θi0 

Θ̇i (t) = 
Ni∑

l=1 

ai l cos(ω f l t)+bi l sin(ω f l t) 

Θ̈i (t) = 
Ni∑

l=1 

−ai l ω f l sin(ω f l t)+bi l ω f l cos(ω f l t) 

(37) 

where Ni denotes the number of harmonics; ai l and b
i 
l indicate Fourier coefficients; 

ω f represents the fundamental frequency; Θi0 is the angular displacement offset. 
Nc sampling is performed in one trajectory period, Eq. (36) can be reformulated 

as [43] 

⎧ 
⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ξ = Wβ 

W = 

⎡ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎣ 

Y (Θ(t1), Θ̇(t1), Θ̈(t1)) 

Y (Θ(t2), Θ̇(t2), Θ̈(t2)) 
... 

Y(Θ(tNc ), Θ̇(tNc ), Θ̈(tNc )) 

⎤ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎦ 

(38)
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The parameters ai l , b
i 
l andΘi0 in Eq. (37) can be obtained by solving the following 

optimization model, 

⎧ 
⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

Find: f = 1 
Nπ

g=1

(
6Nc∑

k=1 
W 2 kg

)

s.t.: 

|Θi (t)| ≤ Θi−max,
|
|Θ̇i (t)

|
| ≤ Θ̇i−max,

|
|Θ̈i (t)

|
| ≤ Θ̈i−max

Θi (t0) = Θi (tend) = 0, Θ̇i (t0) = Θ̇i (tend) = 0, Θ̈i (t0) = Θ̈i (tend) = 0 

(39) 

where Wkg represents the element in the k-th row and g-th column of the matrix W;
Θi - max, Θ̇i - max  and Θ̈i - max  denote the maximum values of the angular displacement, 
angular velocity and angular acceleration of the i-th joint, respectively; t0 and tend 
stand for the initial and final sampling moments, respectively. 

Due to measurement noise and parameter identification errors, the identified 
dynamic parameters of industrial robots usually exhibit uncertainties to negate the 
joint torque precision of industrial robots. To analyze the reliability of joint torque 
accuracy subject to the influence of uncertain parameters, some relatable system 
parameters are assumed to be uncertain parameters. 

3.2 Dynamic Reliability Analysis Method 

In this section, the rotational sparse grid method is proposed to efficiently evaluate 
the statistical moment for dynamic performance response. For dynamic uncertainty 
parameter correlation problem, an advanced mixed-degree cubature formula is devel-
oped to assess the reliability of dynamic performance by integrating vine copula 
function and Hermite polynomial model. 

3.2.1 Rotational Sparse Grid Method 

For uncertain parameters with complex distribution types in robot dynamics systems, 
a rotational sparse grid integration points strategy is developed. This strategy can 
enlarge the projection rate in the uncertainty space to better capture the distribution 
information of random variables. In the two-dimensional standard normal space, the 
original and rotational (π /6) sparse grid integration points are shown in Fig. 10. 
Form Fig. 10(a), some integration points coincide in X1 or X2 axes projection, and 
the projection rate is only 3/7. However, the rotational integration points ensue a 
projection rate of 1 on two coordinate axes in Fig. 10(b), which can capture sufficient 
probability distribution information.
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Fig. 10 Sparse grid points in 2-dimensional space 

Following the above description, the rotating SPGR integration points can better 
convey information about the probability distribution of random variables. For a 
2-dimensional (k, l) plane in an n-dimensional random space, the rotational matrix 
Rk,l (θ ) can be expressed as [44] 

Rk,l (θ ) = 

⎡ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎣ 

1 · · · 0 · · · 0 · · ·  0 
... 

. . . 
... 

. . . 
... 

. . . 
... 

0 · · ·  cos(θ ) · · ·  − sin(θ ) · · ·  0 
... 

. . . 
... 

. . . 
... 

. . . 
... 

0 · · ·  sin(θ ) · · ·  cos(θ ) · · ·  0 
... 

. . . 
... 

. . . 
... 

. . . 
... 

0 · · · 0 · · · 0 · · ·  1 

⎤ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎦ 

k-th row 

l-th row 

n × n 
k-th l-th 

column column 

(40) 

Accordingly, the rotational matrix of all elements can be derived as 

MR(θ) = 
n
π

k=1 

n
π

l=k+1 

Rk,l (θk,l ) (41) 

where θ = [θ1,2, θ1,3, . . . , θn−1,n]T. 
The n-th multi-dimensional node ςq is rotated as ς̃ q , such that 

ς̃ q = MR(θ )ς q = [  ̃ςq,1, ς̃q,2, . . . ,  ̃ςq,k , ς̃q,l , . . . ,  ̃ςq,n] (42)
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Therefore, the rotated n-dimensional node matrix ς̃ can be obtained as 

ς̃ = [ς̃ 1, ς̃ 2, . . . ,  ̃ς q , . . . ,  ̃ς n]T (43) 

The corresponding weights are consistent with the original SPGR. To obtain the 
optimal integrational points, an optimal rotational angle vector θ can be derived as 
follows. 

According to the SPGR quadrature rule, statistical moments information of perfor-
mance function and random variables, an objective function can be established. The 
statistical moments of performance function with high accuracy are obtained by 
minimizing the objective function. 

With the rotational multi-dimensional points and corresponding weights, the 
statistical moments of performance function can be obtained by [25] 

Mi = 
N
∑

q=1 

ωq G
i
(

ς̃ q
) = 

N
∑

q=1 

ωq G
i
(

MR(θ )ςq

)

= 
N
∑

q=1 

ωq G
i

(
n
π

k=1 

n
π

l=k+1 

Rk,l (θk,l )ς q

)

, i = 1, 2, . . . (44) 

where G(·) represents performance function. The marginal moments are formulated 
as 

Mi,Xt = 
N
∑

q=1 

ωq G
i
(

0, 0, . . . ,  ̃ς q,t (θ), . . . , 0
)

, i = 1, 2, . . . (45) 

in which to facilitate the solution, all random variables except Xt are set to zero. 
In addition, the objective function is established based upon the marginal moments 

of the input random variables. The statistical moments of the performance function 
are thus calculated more accurately when the discrepancy between the estimated 
marginal moments of the input random variables and their exact values is lower. 

The raw moments for the input random variables can be derived by 

Mi,Xt = 
+∞∮

−∞ 

Xi 
t 
f Xt (Xt )dXt , i = 1, 2, 3, 4 (46) 

The objective function can be defined in terms of the maximum relative error 
between the exact and approximate values of the marginal moments: 

J (θ) = emax(θ) = max

{

max 
1≤t≤n

[

eM1,t (θ), eM2,t (θ), eM3,t (θ), eM4,t (θ)
]
}

(47)
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where 
⎧ 
⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎩ 

eM1,t (θ) =
|
|M1,Xt − M1,Xt

|
|

|
|M1,Xt

|
|

, eM2,t (θ) =
|
|M2,Xt − M2,Xt

|
|

|
|M2,Xt

|
|

eM3,t (θ) =
|
|M3,Xt − M3,Xt

|
|

|
|M3,Xt

|
|

, eM4,t (θ) =
|
|M4,Xt − M4,Xt

|
|

|
|M4,Xt

|
|

(48) 

Thus, the optimal rotational angle vector θ is determined by solving the following 
optimization problem: 

⎧ 
⎨ 

⎩ 

find θ 
objective min[J (θ)] 
s.t. θk,l ∈ [0, 2π ] 

(49) 

The intelligent optimization algorithm [45] is applied to explore the optimal rota-
tional angle vector θ. R-SPGR can thus calculate statistical moments more accurately. 
The probability distributions can be approximated by SPA technique in terms of the 
raw moments. 

3.2.2 Advanced Mixed-Degree Cubature Formula 

In terms of multidimensional correlations among uncertain parameters, the corre-
lation of random variables can be quantified via the vine copula function. Drawing 
on the idea of rotational sparse grid method construction, the integral points of the 
mixed-degree cubature formula are enhanced by multidimensional transformation 
matrix and vine copula function to capture more sufficient information for probability 
distribution and correlations of random variables. 

Figures 11(a–c) show the original integration points, the advanced integration 
points (θ = [π/3, π/3, π/3]T ) and the advanced-dependence integration points, 
respectively. The projection numbers of the original integration points on X1–X2, 
X1–X3 and X2–X3 planes are 20, 25, and 28, respectively, while the projection 
numbers of the advanced integration points on different two-dimensional planes 
are all 28. Supposing that the dependencies among 3-dimensional random variables 
are represented by Clayton copula function, and Kendall’s coefficients are 0.6, 0.6 
and 0.78, respectively. The advanced integration points by correlation transformation 
are shown in Fig. 11(c), and the vine copula can be depicted the correlation among 
random variables.

The multi-dimensional node vector of original mixed-degree cubature formula 
(MDCF) can be described as 

Uq = [Uq,1, Uq,2, . . . ,  Uq,n]T (50) 

According to Eq. (41), the rotated multi-dimensional points can be obtained as
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(a) Original integration points                          (b) Advanced integration points 

(c) Advanced-dependence integration points 

Fig. 11 Integration points of mixed-degree cubature formula in 3-dimensional space

Ũq = MR(θ)Uq = 
n
π

k=1 

n
π

l=k+1 

Rk,l (θk,l )Uq = [  ̃Uq,1, Ũq,2, . . . ,  Ũq,n]T (51) 

Thus, the advanced multi-dimensional point matrix can be derived by 

Ũ = [  ̃U1, Ũ2, . . . ,  ̃Uq , . . . ,  ̃UNC ]T (52) 

The statistical moments can be computed by the advanced mixed-degree cubature 
formula (AMDCF, 5th and 7th degree) [26, 46] as follows,  

E
[

Gi (X)
] =

∮

ΩU 

T i (u) fU(u)du ≈ (π )−
n 
2 

NC∑

q=1 

wq p
i ( 

√
2 Ũq )



70 D. Zhang et al.

= (π )−
n 
2 

NC∑

q=1 

wq p
i ( 

√
2MR(θ)Uq ) 

= (π )−
n 
2 ωR,1 

⎧ 
⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎩ 

ωS,1 

n+1
∑

g=1 

[pi ( √2MR(θ)r1vg) + pi (− 
√
2MR(θ)r1vg)] 

+ωS,2 

n(n+1)/2
∑

g=1 

[pi ( √2MR(θ)r1mg) + pi (− 
√
2MR(θ)r1mg)] 

⎫ 
⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎭ 

+ (π )−
n 
2 ωR,2 

⎧ 
⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎩ 

ωS,1 

n+1
∑

g=1 

[pi ( √2MR(θ)r2vg) + pi (− 
√
2MR(θ)r2vg)] 

+ωS,2 

n(n+1)/2
∑

g=1 

[pi ( √2MR(θ)r2mg) + pi (− 
√
2MR(θ)r2mg)] 

⎫ 
⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎭ 

= 
NC∑

q=1

Ʌq p
i ( ̂Uq ) (53) 

The integration points are given as [46] 

Ûq1 = 

⎧ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

√
2 

2 

/

4 + 2n + 2 
√
4 + 2n MR(θ)vq1 , 

q1 = 1, . . . ,  n + 1 

−
√
2 

2 

/

4 + 2n + 2 
√
4 + 2n MR(θ)v(q1−(n+1)), 

q1 = n + 2, . . . ,  2n + 3 √
2 

2 

/

4 + 2n + 2 
√
4 + 2n MR(θ)m(q1−(2n+2)+1), 

q1 = 2n + 4, . . . ,  2n + 4 + ( 
n(n + 1) 

2 
) − 1 

− 
√
2 

2 

/

4 + 2n + 2 
√
4 + 2n MR(θ)m(q1−2n−2−( n(n+1) 

2 )+1), 

q1 = 2n + 4 + ( 
n(n + 1) 

2 
) − 1, . . . ,  n2 + 3n + 2 

(54)
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Ûq1+q2 = 

⎧ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

√
2 

2 

/

4 + 2n − 2 
√
4 + 2n MR(θ)vq1 , 

q1 = 1, . . . ,  n + 1 

−
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where q2 = n2+3n+2. The corresponding weights are seen in [46, 47]. In addition, 
the total number of function calls is as low as NC = 2n2 + 6n + 4. 

The marginal moments can be obtained by integration [25]: 

Mt = [Mt 
1, M

t 
2, M

t 
3, M

t 
4], t = 1, 2, . . . ,  n (56) 

The marginal moments can be also explicitly derived by AMDCF as follows, 
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where all random variables except for the t-th variable are set to the means. 
Setting M̃t = [  ̃Mt 

1(θ), M̃t 
2(θ), M̃t 

3(θ), M̃t 
4(θ)], the maximum relative error of the 

marginal moment is derived by
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For n-dimensional random variable, the maximum relative error can be formulated 
as 

εmax(θ) = max
{[

ε1 (θ), ε2 (θ), . . . , εn (θ)
]}

(62) 

The optimal rotational angle can be approached by minimizing εmax(θ) as follows, 

θ∗ = arg min[εmax(θ)] (63) 

In this way, more information of probability and correlations for random variables 
can be obtained and AMDCF can thus calculate the statistical moments more accu-
rately. The probability distributions are approached by Hermite polynomial model 
[48, 49] in case of inter-dependent random variables. 

3.3 Demonstrative Dynamic Example 

As shown in Fig. 12, an industrial robot dynamics problem is engaged to verify the 
applicability of R-SPGR and AMDCF. MCS again serves as caliber to benchmark. 
Fourier series and dynamic parameters can be referred to [25]. The relevant statistical 
data are shown in Table 7 [46]. For simplicity of demonstration, only the first joint 
torque accuracy is considered in this example.

Figure 13 presents the first-four order raw moments for the time interval [0, 20 s] 
by R-SPGR, SPGR (108 runs) and MCS (106 runs). It can be found that R-SPGR 
exhibits higher accuracy in evaluating the raw moments. It can be observed that the 
overall fluctuation of error with regard to R-SPGR is remarkably lower than that of 
SPGR method. It demonstrates that R-SPGR ensues a highly computational accuracy, 
thus superiority.

The error of the first joint torque can be computed by [25] 

τΔ(t) = τ actual 1 (t) − τ ideal 1 (t) 

where τ actual 1 (t) and τ ideal 1 (t) represent the actual and ideal torques at time instant t. 
The probability distribution curves by R-SPGR, SPGR and MCS at the concerned 

time instants (t = 6, 10 s) are compared in Fig. 13. The comparison indicates that the 
error curve by R-SPGR fluctuates minimally. It demonstrates again the proficiency 
of the currently proposed R-SPGR for this dynamics example. 

The correlations among the random variables in robotic dynamics could be 
explicit. For inter-dependent random variables, as shown in Table 8, their corre-
lations are assumed to be vine copula. The following shows the performance of
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Fig. 12 Industrial robot and joint excitations [46] 

Table 7 Stats for random 
variables in dynamic example 
[25] 

Variables Distribution Mean Coefficient of variation 

Imy1 Lognormal 4.02 0.1 

Imy2 Lognormal 3.21 0.1 

f c3 Weibull 15.27 0.1 

f c4 Weibull 10.00 0.1 

Ixz5 Lognormal 0.97 0.1 

Ixz6 Lognormal 0.76 0.1
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Fig. 13 Statistical moments in time interval [0, 20 s] [25]
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Fig. 14 PDF and failure probability subject to independent random variables [25]

AMDCF relative to dependent random variables. In addition, for dependent random 
variables, set ω f = 0.5π.

The statistical moments by the three different methods are depicted in Fig. 15. 
Compared with AMDCF, the error fluctuation by MDCF is larger. It proves that 
AMDCF can robustly attend the correlation of random variable.

Figure 16 shows PDF and failure probability by MCS, MDCF and AMDCF at 
the concerned time instants (t = 12, 14 s). It can be found that the curves by MDCF 
deviate more from those by MCS than the AMDCF counterpart. It can thus be 
stated that, for such a complex practical engineering problem, the proposed AMDCF 
exhibits high adaptability as well as superiority in computational accuracy.
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Table 8 Pair-copulas data in 
D-vine copula for Example 
3.3 [46] 

Pair-copulas Copula type Kendall’s τ 
C (Imy1, Imy2) Clayton 0.5 

C (Imy2, f c3) Clayton 0.5 

C (f c3, f c4) Clayton 0.5 

C (f c4, Ixz5) Clayton 0.5 

C (Ixz5, Ixz6) Clayton 0.5 

C (Imy1, f c3| Imy2) Frank 0.4 

C (Imy2, f c4| f c3) Frank 0.4 

C (f c3, Ixz5| f c4) FGM 0.09 

C (f c4, Ixz6| Ixz5) FGM 0.09 

C (Imy1, f c4| Imy2, f c3) Clayton 0.5 

C (Imy2, Ixz5| f c3, f c4) AMH 0.5 

C (f c3, Ixz6| f c4, Ixz5) Gumbel 0.8 

C (Imy1, Ixz5| Imy2, f c3, f c4) Gaussian 0.4 

C (Imy2, Ixz6| f c3, f c4, Ixz5) AMH 0.5 

C (Imy1, Ixz6| Imy2, f c3, f c4, Ixz5) Frank 0.5

4 Conclusions 

This study develops novel motion accuracy reliability analysis methods for indus-
trial robots. The computation framework, which integrates sparse grid method, 
saddlepoint approximation technique, extreme value distribution theory and copula 
functions, is proposed to evaluate comprehensively kinematic accuracy reliability. 
Two efficient reliability analysis methods for dynamic accuracy, namely rotational 
sparse grid method and advanced mixed-degree cubature formula, are established 
for assessing the joint torque accuracy reliability of industrial robots subject to 
independent and inter-dependent uncertain parameters, respectively. The proposed 
methods exhibit distinct superiority compared with some other prevailing methods. 
The conclusions could be summarized as follows:

(1) The proposed kinematic accuracy method can comprehensively analyze the 
reliability of single coordinate, single point, multi-point and trajectory accu-
racies. The eigen-decomposition method and the copula functions effectively 
comprehend motion error dependencies, respectively. Compared with ME-FM 
and MCS methods, the proposed methods yield remarkably more accurate 
calculation results in the tail of the failure probability. 

(2) For dynamic accuracy reliability, the marginal moment-matching technique and 
vine copula functions effectively enhance the ability of integration nodes to 
capture sufficient uncertainty and correlation stats. The proposed two methods 
are viable to calculate the statistical moments of joint torques with high accuracy 
and efficiency. Furthermore, the dynamic accuracy reliability of industrial robot 
is corroborated by different probability distribution fitting methods.
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Fig. 15 Statistical moments subject to inter-dependent random variables in time interval [0, 20 s]
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Fig. 16 PDF and failure probability subject to inter-dependent random variables [46]

(3) The kinematic and dynamic uncertain parameters influence the motion perfor-
mance. This study explores transmission mechanism for the error incurred by the 
kinematic and dynamic uncertain parameters, accurately analyzes the mapping 
relationship between input and output uncertainties in industrial robots, and 
comprehensively evaluates the reliability of industrial robot’s motion accuracy. 

The proposed methods open new avenue for motion accuracy reliability assess-
ment of industrial robot. It can serve as theoretical support for industrial robot 
reliability-based design. A note of attention is that this study focuses on the effect of 
stochastic uncertainty parameters on the motion performance of industrial robots. 
However, cognitive uncertainties such as actual operating actions and ambient 
temperature changes may also negate the accuracy and reliability. Therefore, our 
future study will attend the reliability analysis and optimal design of industrial robots 
subject to multi-source uncertainties.
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Reliability of Wireless Body Area 
Networks 

Liudong Xing, Guilin Zhao, and Qun Zhang 

Abstract A wireless body area network (WBAN) is a network of low-power devices 
including smart sensors situated in, on, or around the human body to monitor the 
physiological and motion information for healthcare, military, sports, security, fire-
fighting, as well as other applications and purposes. Reliability is one of the major 
changes to address for delivering the desired quality of services of WBANs. In 
this chapter, a critical review of WBAN reliability-related literature is conducted, 
covering reliability modeling, analysis, and designs. A reliability model is also 
presented for WBANs subject to the probabilistic function dependence and asso-
ciated probabilistic isolation and competing behaviors. The model is demonstrated 
through a case study on the reliability analysis of a WBAN patient monitoring system. 

Keywords Competition · Probabilistic function dependence (PFD) · Probabilistic 
isolation · Reliability · Wireless body area network (WBAN) 

1 Introduction 

A wireless body area network (WBAN), also known as a body sensor network (BSN), 
is a wireless network of wearable and low-power computing devices, including smart 
sensors situated in, on, or around the human body to monitor the physiological and
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motion information [1, 2]. The WBAN technology started around 1995 with the idea 
of collecting personal data via portable devices and implementing wireless commu-
nication technologies on personal area networks. In the past decade, due to the rapid 
development of the Internet and mobile computing technologies, WBAN has been 
significantly developed as one of the most promising fields and has been applied in 
medical applications (i.e., healthcare) and non-medical domains (such as military, 
sports, security, firefighting, etc.). For example, using healthcare WBANs, health 
professionals can keep records of chronic pulmonary patients to design scientific 
patient management to relieve their health conditions [3]. In the military applica-
tion of WBANs, diverse types of sensors (e.g., acoustic, seismic, radar, optical and 
magnetic) as well as global positioning systems (GPS) and the global system for 
mobile communication (GSM) modem, operate collaboratively for the collection 
and processing of an enormous amount of real-time information to protect soldiers’ 
safety and improve the combat capability of an individual soldier (or a small unit) in 
the battlefield [4–6]. 

The reliability issue is one of the most critical challenges for the WBAN to deliver 
the desired quality of service (QoS) [7–9]. Consider the above mentioned chronic 
pulmonary patients care example. If the patient’s respiratory failure is not detected or 
the WBAN system transmits erroneous data to caregivers, their safety may be threat-
ened when they need emergency handling from the care provider. Likewise, for the 
military equipment (e.g., the Tactical Assault Light Operator Suit used for detecting 
fatigue of special forces soldiers in unsafe environments), the malfunction of hard-
ware, high network latency due to multiple routers, or unnecessary bandwidth waste 
due to poorly optimized resource allocation may put soldiers into a dangerous situa-
tion. Due to the life-critical nature of the WBAN applications, reliability modeling, 
analysis, and designs are imperative for the robust operation of WBAN systems. 

Some recent review articles offer comprehensive discussions that address the 
current communication technologies for WBANs (e.g., Bluetooth, ZigBee, Wi-Fi, 
IEEE 802.15.6, etc.) and the possible incorporation of new technologies into WBANs 
(e.g., Software Defined Networking, Energy Harvesting, and Blockchain technology) 
[7, 10, 11]. Different from these existing works, in this chapter, we conduct a critical 
review of WBAN reliability-related literature, covering reliability modeling, anal-
ysis, and designs. A specific reliability model is also presented for WBANs subject 
to the probabilistic function dependence (PFD) and associated probabilistic isolation 
and competing behaviors. 

The remainder of this chapter is organized as follows: Section 2 explains the major 
components that constitute a WBAN system and the dependent relationship among 
the WBAN components. Section 3 presents the literature review on the WBAN 
reliability-related works. Section 4 presents the WBAN reliability analysis method 
addressing the PFD and related isolation and competing behaviors. Section 5 presents 
the case study demonstrating the reliability model. Section 6 concludes the chapter.
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2 WBAN Components and Dependent Relationship 

A WBAN is a wireless network of low-power devices (smart sensors and actuators), 
which may be implanted into the human body or surface-mounted on the body or 
nearby the body by carrying them in bags or clothes pockets [12, 13]. Because the 
energy consumed by data transmissions over wireless links is inversely proportional 
to the square of the transmission distance [14], relays are typically used for conserving 
the limited energy of battery-powered biosensors. 

The WBAN also contains a local processing unit (LPU) or a sink device, which 
can be a smart phone. The LPU may conduct some simple processing on the data 
collected. In the case of detecting any abnormalities, an immediate alert is issued 
to the person wearing the system. The LPU also functions as a router between the 
WBAN components and a central server using the mobile/wireless networks and the 
Internet. After receiving the data, the central server feeds the data into its database 
and performs analysis of the data. Dependent on the degree of abnormalities detected 
from the data analysis, the server may interact with different parties. For example, 
for WBANs used in the healthcare domain, based on the abnormalities detected, 
the server may interact with the patient’s family members, a local physician, or the 
emergency unit of a nearby hospital. 

Figure 1 illustrates the major components and general structure of a WBAN 
system.

There exists PFD between a relay and biosensors that use the relay for trans-
mitting their sensed information to the sink device. In the case of the relay being 
operating correctly, the biosensors send the data to the sink through the relay node 
for conserving their limited battery power. In the case of the relay failing, if the 
biosensor has adequate battery power to enable a direct communication with the 
sink, the data can be transmitted; otherwise, the biosensor is isolated and thus its 
sensed data cannot reach the sink. So, the PFD incurs the probabilistic isolation of 
the biosensors when the relay malfunctions. Moreover, the PFD can incur compe-
titions between the failure of the relay and propagated failures (PFs) of dependent 
biosensors in the time domain. For example, biosensors may be subject to PFs due to 
jamming attacks (launched by continually sending interference data from a compro-
mised biosensor to block legitimate data transmissions to the sink [15, 16]). If such 
PFs take place before the relay fails, the propagation effect may cause extensive 
damages and even crash the entire WBAN. However, if the relay fails before the PFs, 
these biosensors and thus their PFs are isolated with certain probabilities, dependent 
on their remaining battery power levels. In this case, the WBAN may continue to 
operate, dependent on the remaining redundancy. In Sect. 4, a combinatorial relia-
bility model is presented to address the PFD and associated probabilistic isolation 
and competition behaviors in the WBAN reliability analysis.
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Fig. 1 Structure of a typical WBAN system

3 Related Work on WBAN Reliability 

In the past decade, considerable research efforts have been devoted to the reliability 
modeling, analysis, and designs of WBAN systems. This section presents a critical 
review of these efforts. 

3.1 Reliability Modeling and Analysis of WBANs 

A number of proposed methods on reliability modeling and analysis of WBANs 
are targeted towards combinatorial models. Others are geared towards coping with 
state-space models.
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3.1.1 Combinatorial Models 

The combinatorial models for WBAN reliability modeling and analysis systemati-
cally decompose the original complex reliability issue into a set of reduced reliability 
problems that can be efficiently solved by the Binary Decision Diagram (BDD)-based 
or Multi-valued Decision Diagram (MDD)-based analytical approach. The failure 
criteria of the original WBAN system are represented by the dynamic fault trees, 
where a set of static fault tree gates (e.g., AND, OR, and k-out-of-n gates) and dynamic 
fault tree gates (e.g., Function DEPendency and PFD gates) is connected to represent 
the different combinations and dynamic behaviors contributing to the WBAN failure, 
such as the PFD, cascading failures, phased-mission behavior, sequence dependence, 
warm and cold standby sparing, etc. [17]. 

For example, in [16], a BDD-based combinatorial approach was proposed for 
reliability modeling and analysis of WBAN systems with one PFD group or multiple 
independent and non-overlapped PFD groups. Specifically, by applying the simple 
and efficient algorithm (SEA) [18] to the dynamic fault tree (DFT) model of the 
WBAN system, the proposed method separates the PF of the relay first. Building on 
the failure competing events (FCEs) and the probabilistic function dependence cases 
(PFDCs) defined, a set of reduced system fault tree model without the probabilistic 
competing behavior is generated, which can then be evaluated using the SEA-based 
procedure and the BDD-based method. Different parameter settings were used to 
illustrate the interacting improvement and deterioration effects caused by the failure 
isolation. In [19], the analytical model of [16] was extended to address WBAN 
systems where the correlation is involved due to multiple biosensors sharing a relay 
and a biosensor being able to communicate with the sink via more than one relay. In 
[20], an MDD-based combinatorial approach was applied to analyze the reliability 
of WBAN systems with the phased-mission behavior, where systems involve night 
sleep and daytime activities phases in a daily cycle. 

In [21], a combinatorial model was proposed to address the random failure isola-
tion time existing in realistic WBAN systems where in the case of the relay malfunc-
tioning, the direct communication between dependent biosensors and the sink device 
was established and was able to last for a random duration, depending on the power 
level of the biosensor’s battery, the distance between the biosensor and the sink 
device, and the battery discharge model. In [22], a combinatorial model was suggested 
for the reliability modeling and analysis of WBAN systems involving correlated PFD 
groups and random failure propagation time for dependent biosensors undergoing 
PFs. 

In the above-mentioned works [16, 19–22], different types of time-to-failure distri-
butions, including exponential, Weibull, and log-normal distributions, were adopted 
for biosensors to illustrate that the proposed combinatorial methods are applicable 
to arbitrary types of lifetime distributions of WBAN components.



88 L. Xing et al.

3.1.2 State-Space Models 

State space models used for the reliability modeling and analysis of WBAN systems 
include the Markov chain methods and the Petri nets. For example, in [23], a Semi-
Markov process was applied to model the nodes with misbehaviors in WBAN 
systems, and evaluated to derive the WBAN reliability in terms of the network surviv-
ability; the node states are classified into cooperative, selfish, malicious, failed, and 
route states. In [24], the Markov chain model was used to analyze the dynamic 
gate blocks, which were introduced by the proposed Forest Topology Three Tire 
(FTTT) framework against malicious attacks, such as the denial-of-service attacks 
in WBAN systems. In [25], the Markov chain model was used to analyze the failures 
and their influence on the availability indicator of WBAN systems, where nine-
teen states ranging from the “normal condition system” to the “failure of the IoT 
healthcare system” were defined. In [26], the Markov chain model was utilized for 
the reliability and mean time to failure (MTTF) estimation of WBAN systems with 
the consideration of failure rates of biosensors, the patient’s health condition, the 
accuracy of anomaly detection algorithms (measured by the detection rate and false 
positive rate), and the accuracy of transient fault correction measures. 

Some research efforts were also dedicated to the Petri net-based models for reli-
ability modeling and analysis of WBANs. For example, in [27] a Petri Net service 
model was suggested to represent the data flow of sensors so as to track the data from 
the originating source; the reliability was preserved in the content of the data trace-
ability because data traceability may prevent the transparent audit of the streamed 
medical data from possible compromises. In [28], a Stochastic Petri net (SPN) 
model was proposed to address the availability of e-health systems that comprise 
a WBAN system, internet-connected gateways, and cloud and big data support; a 
multi-objective optimization solution was proposed to consider the trade-off between 
the system availability and the cost. 

3.2 Reliability Design for WBANs 

The reliability design for WBAN systems includes several issues from different 
perspectives. 

• From the perspective of the challenges of WBANs: as the components are typically 
powered by batteries, the power consumption is one of the major constraints while 
addressing reliability optimization of the WBAN system. 

• From the perspective of reliability engineering: abundant works that address the 
reliable WBAN system designs are based on fault-tolerant mechanisms coping 
with possible faults to prevent them leading to the WBAN failure.
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• From the perspective of WBAN enabling technologies: for example, allocating 
strategies for WBAN nodes, resource scheduling strategies, communication proto-
cols designs, and artificial-intelligent (AI)-based technology are explored for 
designing reliable WBANs. 

Considering that there are different levels in a WBAN, including node, communi-
cation, data, and system levels, the above issues related to reliability designs at each 
level are discussed below. 

3.2.1 Node Level 

The node level contains physical entities such as wearable/implantable biosensors, 
actuators, relays/hubs/coordinators, and LPU. A reliable WBAN can be obtained 
by optimizing the performance of those physical nodes. For example, in [29], the 
optimization was performed on parameters for an ultra-low power WBAN consid-
ering the power consumed by diverse hardware components such as the low noise 
amplifier, squaring device, analog-to-digital converter, and clock. 

Fault tolerance through redundancy may ensure the reliable operation of WBAN 
nodes. For example, in [30], two sinks were placed in the WBAN system and work 
as backup for each other. 

One of WBAN enabling technologies adopted at the node level is machine 
learning, including but not limited to Artificial Neural Networks (ANN), Deep Neural 
Networks (DNN), Support Vector Machines (SVM), and Decision Trees (DT). For 
example, in [31], these machine learning technologies were applied based on the 
WBAN traffic dataset, the biological dataset, and the synthesized dataset to detect 
faults in WBAN systems. Another WBAN enabling technology at the node level is 
the node allocation technology, which explores the optimal number and positions of 
the nodes in the WBAN. For example, in [32], the best position for the center node in 
the WBAN system was explored considering the energy consumption and different 
places of the center node (at the right hip and chest). 

3.2.2 Communication Level 

The communication level contains software components such as application 
programs, Medium Access Control (MAC) protocols, routing protocols, and commu-
nication protocols (including Bluetooth, Wi-Fi, Zigbee, etc.). The reliability at this 
level can be improved by applying multi-objective optimization for different software 
components. For example, in [33], the optimization was performed for the routing 
protocol considering the energy efficiency of biosensors and the WBAN lifetime. 

Another way to improve the reliability at the communication level is through 
using the fault-tolerant mechanism. For example, in [34], the fault-tolerant commu-
nication approach was designed to improve the reliability of WBANs by minimizing



90 L. Xing et al.

the channel impairment and fading effect with the cooperative communication via 
multiple biosensors and the gateway. 

The MAC protocols design has also been investigated to improve the WBAN 
reliability. For example, in [35], compared to the traditional Time Division Multiple 
Access (TDMA) MAC protocols adopted by the WBAN legacy standards (such as 
IEEE 802.15.4 and IEEE 802.15.6), two new TDMA techniques were suggested 
to achieve a more reliable and energy efficient WBAN system by sufficiently 
considering the reliability of nodes and the channel status. 

3.2.3 Data Level 

The data level reliability design has been performed related to either the optimization 
problem or the fault-tolerant mechanism. As an illustration of the optimization, in 
[36], the reliability of the transmission of emergency critical sensory data was opti-
mized by a resource scheduling strategy based on the deep reinforcement learning 
algorithm. As an illustration of the fault-tolerant mechanism, in [37], the data trans-
mission reliability and efficiency were enhanced by introducing the backup path for 
data transmissions. 

3.2.4 System Level 

The system level reliability design copes with the hardware and software imple-
mentation of WBAN systems. The implementation of a WBAN system involves the 
construction from modules to system architecture, tuning design parameters to opti-
mize the QoS indexes, and designing experiments to verify and validate the perfor-
mance of the prototype WBAN system. For example, in [38], a reliable WBAN 
system was designed and implemented, and the QoS indexes of packet error rate and 
frame error rate were evaluated. In [39], a cooperative software-hardware framework 
including a simulator, a hardware platform, and a code generator, was implemented 
for WBANs; the proposed cooperative framework can verify and compare the perfor-
mance (in terms of energy consumption and throughput) of WBAN systems adopting 
different protocols, such as Adaptive Data Transmission MAC (AT-MAC), Timeout-
MAC (T-MAC), Sensor-MAC (S-MAC), and IEEE 802.15.4 MAC protocols. In [40], 
the simulation and implementation of narrowband physical layer architecture for 
the WBAN system based on IEEE 802.15.6 MAC protocol was performed, where 
the Bose–Chaudhuri–Hocquenghem (BCH) block coding for error detection and 
correction was included to obtain the high reliability in data transmissions. 

Table 1 summarizes the reliability design works reviewed above.
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Table 1 Examples of WBAN 
reliability design methods 

Reliability design Representative references at 
different levels 

Optimization • Node level: [29] 
• Communication level: [33] 
• Data level: [36] 

Fault tolerance • Node level: [30] 
• Communication level: [34] 
• Data level: [37] 

WBAN enabling technologies • Node level: [31, 32] 
• Communication level: [35] 
• Data level: [36] 
• System  level:  [38–40] 

4 Reliability Model Considering PFD 

This section presents a combinatorial reliability analysis procedure for a WBAN 
system while addressing the PFD and associated probabilistic isolation and 
competing behaviors described in Sect. 2. The procedure includes the following 
five steps. 

Step 1 Based on the law of total probability, separate effects of PFs of all non-
dependent biosensors (NDB) from the WBAN unreliability (denoted by UR) solution 
combinatorics using 

UR  = 1−N P  + N P  ∗ CF. (1) 

NP in (1) denotes the probability that none of the NDBs experience PFs. Let qP 
represent the PF probability of an NDB. Then NP is computed as the product of (1 
− qP) for all the NDBs. 

CF in (1) denotes the conditional probability that the WBAN considered becomes 
failed conditioned on no PFs happening to NDBs. In other words, only local failures 
of NDBs are considered in the evaluation of CF. However, the local failure (LF) 
probability of each NDB (denoted by qL) must be revised to a conditional probability 
(denoted by q) given that this NDB does not experience any PFs. When an NDB’s LF 
and PF take place independently, q = qL; when they happen in a mutually exclusive 
manner, q = qL/(1 − qP). The evaluation of CF is performed through the next three 
steps. 

Step 2 Based on the relays in the WBAN, generate the combined relay event (CRE) 
space. Suppose there are M relays, denoted by r1, …,  rM . Then there are 2M CREs in 
the space, summarized in Table 2. The occurrence probability of each CRE, denoted 
by P(CR  Ek) (k = 0, 1, . . . ,  2M −2, 2M −1) can be evaluated based on its definition, 
and the conditional failure probability q derived from the input failure parameters of 
the relays.
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Table 2 CRE space built 
based on relays in the WBAN 

Notation Event definition Event explanation 

CRE0 r1 ∩  · · ·  ∩  r M−1 ∩ r M None of the relays 
malfunction 

CRE1 r1 ∩  · · ·  ∩  r M−1 ∩ rM Only relay rM 
malfunctions 

… … … 

CR  E2M−2 r1 ∩  · · ·  ∩  rM−1 ∩ r M All relays except rM 
malfunction 

CR  E2M−1 r1 ∩  · · ·  ∩  rM−1 ∩ rM All relays malfunction 

Step 3 According to the law of total probability and the CRE space built in Step 2, 
we evaluate CF in (1) as  

CF  = 
2M−1∑

k=0 

P(WBAN fails|CR  Ek) × P(CR  Ek) = 
2M−1∑

k=0 

Wk × P(CR  Ek). (2) 

The evaluation method of P(WBAN fails|CR  Ek) = Wk is discussed under the 
following two cases: 

• Under event CRE0, all the relays are operating correctly, thus no isolation or 
competition happens. In this case, to evaluate the corresponding W0, all the events 
modeling the relay failures in the WBAN reliability model (for example, the fault 
tree) are replaced with constant “0” (meaning FALSE) and Boolean reductions 
are then applied to generate a reduced WBAN fault tree model. The resulting fault 
tree can be evaluated using any existing fault tree analysis method to obtain W0. 
In this work, the BDD-based method is adopted for the fault tree analysis [41]. 

• Under event CREk (k = 1 … 2M − 1), at least one relay malfunctions incurring 
probabilistic isolation and competitions. If CREk happens first, then the proba-
bilistic isolation occurs (denoted by subcase CREk,I ); if any dependent biosensor’s 
PF happens first, then the propagation effect occurs (denoted by subcase CREk,P). 
Based on these two subcases, Step 4 elaborates the evaluation of Wk (k = 1 …  
2M − 1). 

Step 4 Based on the set of dependent biosensors affected by CREk , build the isolation 
event (IE) space. Suppose there are nk dependent biosensors affected by CREk (each 
denoted by dbk,l, l = 1 …  nk), constituting set Sk (for k = 1 … 2M − 1). Table 3 
summarizes the definitions of all the IEs defined under CREk .
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Table 3 The IE space under CREk 

Notation IE definition IE explanation 

IEk,0 dbk,1 ∩  · · ·  ∩  dbk,nk−1 ∩ dbk,nk None of the dependent biosensors are 
isolated 

IEk,1 dbk,1 ∩  · · ·  ∩  dbk,nk−1 ∩ dbk,nk Only biosensor dbk,nk is isolated 

… … … 

I Ek,2nk −2 dbk,1 ∩  · · ·  ∩  dbk,nk−1 ∩ dbk,nk All dependent biosensors except dk,nk are 
isolated 

I Ek,2nk −1 dbk,1 ∩  · · ·  ∩  dbk,nk−1 ∩ dbk,nk All nk dependent biosensors are isolated 

Based on CREk,I and CREk,P defined in Step 3 and the IE space defined in Table 
3, Wk × P(CR  Ek) = P(WBAN fails|CR  Ek) × P(CR  Ek) in (2) for k = 1…2M − 
1 can be evaluated by applying the law of total probability as 

Wk × P(CR  Ek) = P(WBAN fails|CR  Ek) × P(CR  Ek) 

= 
2nk −1∑

j=0

[
P

(
WBAN fails|I Ek, j ∩ CR  Ek,P

) × P
(
I Ek, j ∩ CR  Ek,P

)+ 
P

(
WBAN fails|I Ek, j ∩ CR  Ek,I

) × P
(
I Ek, j ∩ CR  Ek,I

)
]

= 
2nk −1∑

j=0

[
P

(
I Ek, j ∩ CR  Ek,P

)+ 
P

(
WBAN fails|I Ek, j ∩ CR  Ek,I

) × P
(
I Ek, j ∩ CR  Ek,I

)
]

(3) 

In (3), P(IEk,j ∩ CREk,P) and P(IEk,j ∩ CREk,I ) can be evaluated based on the input 
failure parameters of WBAN components and values of isolation factors. To evaluate 
P

(
WBAN fails|I Ek, j ∩ CR  Ek,I

)
in (3), a reduced fault tree model is generated by 

removing the events related to the relay failures and substituting the events associated 
with failures of all biosensors that are isolated due to the occurrence of IEk,j with 
constant “1” (meaning TRUE). 

Step 5 Obtain the final WBAN unreliability by applying (3), (2) and (1) consecutively. 
Fig. 2 gives the flowchart for the WBAN reliability evaluation based on the above 

procedure, where the operations that can be performed in parallel are illustrated. The 
operations in the shaded boxes for different values of k are independent and thus can 
also be performed in parallel given available computing resources.

5 Case Study 

5.1 System Description 

To demonstrate the reliability analysis method of Sect. 4, we consider an example of 
WBANs for patient monitoring in Fig. 3. The system contains four biosensors s1, s2,
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Input WBAN component failure 
time and isolation parameters 

Evaluate 
NP in (1) 

Evaluate conditional 
probability q for all 

NDBs 

Build 
CRE 
space 

Evaluate W0 
under CRE0 

Evaluate 
P(CREk) 

Identify Sk under CREk for 
k=1, …, 2M-1 

Build IE space based on Sk 
for k=1, …, 2M-1 

Evaluate Wk*P(CREk) using (3) for k=1, …, 2M-1Evaluate CF 
using (2) 

Evaluate 
UR using 

(1) 

WBAN 
Unreliability 

Fig. 2 Structure of a typical WBAN system

s3, and s4, which monitor the physiological information of the patient. Specifically, 
biosensors s1 and s2 are used to measure the patient’s electromyogram (EMG) signals 
by detecting regular movement and muscle contraction; biosensors s3 and s4 are used 
to measure the patient’s heart rate and blood pressure, respectively. The example 
WBAN system also contains a relay denoted by r, which, when functioning correctly, 
relays data sensed by s1 and s2 to the LPU.

The smart phone (i.e., LPU) receives and processes data from biosensors and the 
relay, facilitating health professionals to learn the functioning of nerves in the arm 
and the leg [42, 43] and other basic physiological information in response to a nerve’s 
stimulation of the muscle. 

The example WBAN system is reliable when the EMG, heart rate, and blood 
pressure data are all accessible by the LPU. In other words, the system fails when 
both s1 and s2 have failed, or s3 fails, or s4 fails. In this case study, the LPU is assumed 
to be fully reliable during the mission time and, thus, is not considered in the WBAN 
reliability analysis. 

Figure 4 illustrates the fault tree model of the example WBAN system. The PFD 
gate in the fault tree models the PFD behavior that exists between relay r and biosen-
sors s1 and s2. As discussed in Sect. 2, if relay r fails before PFs of biosensors s1 and
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Fig. 3 An example of 
WBANs

s1 

s2 

r 

s3 

s4 

LPU 

s2, s1 and s2 are isolated with certain probabilities, referred to as isolation factors 
and denoted by IFr,s1 and IFr,s2, respectively. The two isolation factors (IFr,s1 and 
IFr,s2) obey the Weibull distribution [19, 20] with the scale and shape parameters of 
(6.0e−3/month, 2) and (3.0e−3/month, 2), respectively.

Each biosensor in the example WBAN system is subject to LFs compromising its 
sensing function. Relay r is subject to LFs compromising its relaying/transmission 
function. Suppose that biosensors s1, s2, and s4 are subject to jamming attacks (i.e., 
PFs). Since jamming attacks are based on transmitting illegal signals without compro-
mising the sensing function, the LFs and PFs of biosensors s1, s2, and s4 are s-
independent events. Assuming time-to-LF and time-to-PF of WBAN components 
obey the Weibull distributions with scale parameter (λ/month) and shape param-
eter β [44]. Table 4 presents values of these parameters for the example WBAN 
components.
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s1 

WBAN failure 

PFD 

s2 

s4s3 

r 
IFr,s1 

IFr,s2 

Fig. 4 Fault tree of the example WBAN system

Table 4 Weibull 
time-to-failure scale 
parameter (λ/month) and 
shape parameter β for WBAN 
components 

WBAN component LF PF 

r (3.0e−3, 1) – 

s1 (8.0e−4, 2) (8.5e−2, 2) 

s2 (4.0e−4, 2) (8.5e−2, 2) 

s3 (3.5e−4, 2) – 

s4 (2.8e−4, 2) (4.0e−2, 2) 

5.2 Reliability Analysis 

The reliability analysis procedure presented in Section 4 is illustrated using the 
example WBAN system. The single relay leads to two CREs: CRE0 = r and CRE1 

= r. According to (2), we have 

CF  = 
21−1∑

k=0 

P(WBAN fails|CR  Ek) × P(CR  Ek) 

= W0 × P(CR  E0) + W1 × P(CR  E1) (4) 

According to case 1 in Step 3, we evaluate W0 = P(WBAN fails|CR  E0) by 
replacing event r with constant “0”, leading to a reduced fault tree as shown in 
Fig. 5a. Using ordering of s3 → s4 → s1 → s2, the reduced fault tree can then be 
converted to the BDD in Fig. 5b, which is then evaluated to obtain W0. Refer to [41] 
for the BDD generation from a fault tree model and the BDD evaluation method.
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s1 

WBAN failure 
under CRE0 

s2 

s4s3 

0 

s1 

1 

s2 

s3 

s4 

(a) (b) 

Fig. 5 Reliability models for evaluating W0. a Reduced fault tree and b BDD 

Under CRE1 (i.e., the relay r fails), since there are two dependent biosensors s1 
and s2, four IEs can be defined in Table 5. According to (3), we have 

W1 × P(CR  E1) = P(WBAN fails|CR  E1) × P(CR  E1) 

= 
3∑

j=0

[
P

(
I E1, j ∩ CR  E1,P

)+ 
P

(
WBAN fails|I E1, j ∩ CR  E1,I

) × P
(
I E1, j ∩ CR  E1,I

)
]

(5) 

Under IE1,0, neither of the two dependent biosensors is isolated. Hence, P(WBAN 
fails|IE1,0 ∩ CRE1,I ) in (5) can be evaluated using the fault tree and BDD in Fig. 5. 
Thus, we have P(WBAN fails|IE1,0 ∩ CRE1,I ) = W0. 

Under IE1,1, biosensor s2 is isolated. According to Step 4 in Sect. 4, the reduced 
fault tree in Fig. 6a is generated by removing the PFD gate from the fault tree in 
Fig. 4 and replacing event s2 with “1”. The reduced fault tree is then converted to the 
BDD in Fig. 6b, which is evaluated to obtain P(WBAN fails|IE1,1 ∩ CRE1,I ) in (5).

Under IE1,2, biosensor s1 is isolated. According to Step 4 in Sect. 4, the reduced 
fault tree in Fig. 7a is generated by removing the PFD gate from the fault tree in 
Fig. 4 and replacing event s1 with “1”. The reduced fault tree is then converted to the 
BDD in Fig. 7b, which is evaluated to obtain P(WBAN fails|IE1,2 ∩ CRE1,I ) in (5).

Table 5 IE space under 
CRE1 

Notation Definition Explanation 

IE1,0 s1 ∩ s2 Neither s1 nor s2 is isolated 

IE1,1 s1 ∩ s2 s1 is not isolated, s2 is isolated 

IE1,2 s1 ∩ s2 s1 is isolated, s2 is not isolated 

IE1,3 s1 ∩ s2 s1 and s2 are both isolated 
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WBAN failure under  
CRE1,I  and IE1,1 

s1 s4s3 0 

s1 

1 

s3 

s4 

(a) (b) 

Fig. 6 Reliability models for evaluating P(WBAN fails|IE1,1 ∩ CRE1,I ). a Reduced DFT, b BDD

OR 

WBAN failure under 
CRE1,I  and IE1,2 

s2 s4s3 0 

s2 

1 

s3 

s4 

(a) (b) 

Fig. 7 Reliability models for evaluating P(WBAN fails|IE1,2 ∩ CRE1,I ). a Reduced DFT, b BDD 

Under IE1,3, both s1 and s2 are isolated. In this case, after replacing events s1 and 
s2 in the fault tree of Fig. 4 with “1”, the fault tree is reduced to “1”, i.e., P(WBAN 
fails|IE1,3 ∩ CRE1,I ) = 1. 

Using input parameters given in Sect. 5.1, we obtain the unreliability of the 
example WBAN system at t = 1 day and t = 1 month as 0.000018 and 0.015922, 
respectively. 

6 Summary 

The fast-growing applications of WBANs in different critical domains pose high 
reliability requirements for WBAN designs and operations. This chapter conducts 
a critical review of reliability modeling, analysis, and design methods, providing
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support for further research on WBAN reliability problems. A combinatorial reli-
ability model is also presented, which offers an efficient solution to the reliability 
analysis of WBANs subject to the PFD and associated probabilistic isolation and 
competing behaviors. The model is demonstrated through a case study on a patient 
monitoring WBAN system. 
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Sensitivity Estimation of Markov Reward 
Models and Its Applications 
to Component Importance Analysis 

Junjun Zheng, Hiroyuki Okamura, and Tadashi Dohi 

Abstract Component importance analysis measures the effect on system reliability 
of components’ reliabilities, enables the analyst to rank each component’s contribu-
tion to the system failure, and identifies the system’s weak components. Thus the 
system reliability can be improved by upgrading the weak components. Component 
importance analysis is commonly used in the design of a system from the reliability 
point of view. However, although dependencies exist among the failure behavior 
of systems in practice, and the dependent failures are known as a risk factor for 
degradation of system reliability, it is difficult to evaluate the component importance 
measures in the presence of failure dependencies analytically. In this chapter, we 
consider the Markov chain-based component-wise sensitivity analysis, which can 
evaluate the component importance measures without any system structure function. 
In particular, three types of component importance measures are derived from the 
viewpoints of both steady-state availability and reliability. Also, numerical examples 
illustrate the component importance analysis with the proposed approach. 
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RBD Reliability block diagram 
IIM Integrated importance measure 
ODE Ordinary differential equation 
MRM Markov reward model 
IB Birnbaum component importance 
AIB Birnbaum availability component importance 
RIB Birnbuam reliability component importance 
AICR Availability criticality importance 
RICR Reliability criticality importance 
AIU Availability upgrading function 
RIU Reliability upgrading function 

Notations 

S A denumerable state space 
X(t) A stochastic process with the denumerable state space S 
Y(t) A reward process 
π(t) State probability (row) vector at time t 
πss Steady-state probability vector 
Q Infinitesimal generator matrix 
A A matrix  
I Identity matrix 
R A column vector 
θ A model parameter 
θ Model parameter vector 
s(t, θ  ) Sensitivity of state probability w.r.t. parameter θ at time t 
sss(θ ) Sensitivity of steady-state probability w.r.t. parameter θ 
S(θ ) Sensitivity of infinitesimal generator w.r.t. parameter θ 
I S Dependability/performance index of system 
I k Dependability/performance index of component k 
rS Reward vector of system 
rk Reward vector of component k 
RS(t) Reliability of system at time t 
Rk(t) Reliability of component k at time t 
AS Steady-state availability of system 
Ak Steady-state availability of component k 
δ j Deviation of IS with respect to θ j that are not correlated to the deviations 

of I1, . . . ,  IK 
δ The column vector whose elements are δ j 
u The column vector whose elements are the sensitivities of system 

dependability/performance index w.r.t. the component performance 
indices
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J The matrix whose elements are the sensitivities of component depend-
ability/performance indices w.r.t. each model parameter 

z The column vector whose elements are the sensitivities of system 
performance index w.r.t. each model parameter

‖δ‖2 2-Norm of vector $\vde$ 
T The transpose operator 
Uk The set of states where component k is up 
Dk The set of states where component k is down 
Us The set of states where the system is up 
Ds The set of states where the system is down 
[·]i The i th element of a vector 
[·]i, j The (i, j)-entry of a matrix 
xk A binary variable meaning the condition of component k 
x State vector of the system whose elements are xk 
φ(x) Structure function of the system
� φ(k, x) The first derivative of structure function w.r.t. the state condition of 

component k 
P(x) A certain probability mass function for $\vx$ 
λk Failure rate of component k 
μk Repair rate of component k 
λk(t) Time-dependent failure rate of component k at time t 

1 Introduction 

System reliability depends on the reliabilities of components; thus, it is important 
to know a thorough understanding of how each of the system components func-
tion and how these functions affect the system operation for improving and evalu-
ating the reliability of a system. Component importance analysis is a quantification 
method of a system that measures the effect on system reliability of components’ 
reliabilities. It enables the analyst to rank each component’s contribution to the 
system failure and identify the weak components. In practice, system failure is often 
caused by the dependent failures among components, such as common-cause failures 
(CCFs), which are defined as any condition or event that affects several components 
inducing their simultaneous failures or malfunction [1]. The dependent failure is 
known as the factor of the degradation of system reliability and is usually caused 
when several processing units share a common software module. In other words, 
when a CCF occurs, all the components affected by the common-cause event will 
fail. Therefore, it is crucial to evaluate the effect of failure dependencies. In the past, 
some researchers have considered computer systems with failure dependencies. For 
example, Fricks and Trivedi [1] evaluated the effect of failure dependencies in relia-
bility models developed by stochastic Petri nets (SPNs) and continuous-time Markov 
chains (CTMCs).
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Assessing and improving the system reliability is always an important topic. 
Computer systems face the threat of reliability degradation due to aging problems. 
In order to achieve a highly reliable system, it is necessary to ensure that the critical 
components in the system are operational with high reliability. To detect the critical 
components in the system, sensitivity analysis [2] is effective. The sensitivity analysis 
is a method to estimate the magnitude of deviations of dependability/performance 
indices when system configuration changes. Generally, the parametric sensitivity is 
considered, which is the first derivative of the dependability/performance measure 
with respect to a model parameter. The parametric sensitivity can also be applied to 
optimizing system dependability/performance by combing mathematical program-
ming and the evaluated effects on parameters. On the other hand, in reliability engi-
neering, the component importance analysis is more preferred over the parametric 
sensitivity analysis. The component importance analysis, called the component-wise 
sensitivity analysis, is to estimate the first derivatives of reliability measures of the 
system with respect to the reliability measures of components. Thus, the component 
importance analysis can directly detect the critical components from the reliability 
point of view and has attracted widespread attention. For example, in [3], Fricks and 
Trivedi considered three types of component importance measures for Markov chains 
using structure function. The structure function represents the relationship between 
components’ failures and system failure and can be obtained using symbolic analyt-
ical logic techniques, such as fault tree (FT) and reliability block diagram (RBD) 
analysis. Also, the authors [4] applied a novel component-wise sensitivity analysis 
to derive the availability upgrading functions under which components are statisti-
cally independent and described by general CTMCs. In [4], the presented method 
can derive the component importance measures only from a CTMC model without 
any system structure function. 

In this chapter, we present a Markov chain-based component-wise sensitivity anal-
ysis approach to evaluate the component importance measures of computer systems 
modeled by MRMs in the presence of failure dependencies. Specifically, both tran-
sient and stationary analysis of Markov reward models (MRMs) are introduced first. 
Then based on the transient and stationary solutions, the parametric sensitivity of 
MRMs is presented. We finally propose the component-wise sensitivity analysis 
using the parametric sensitivity of MRMs and the component importance anal-
ysis using the component-wise sensitivity. In particular, three kinds of importance 
measures are considered. 

The rest of this chapter is organized as follows. Section 2 reviews some related 
works. Section 3 introduces the fundamentals of CTMC and MRMs, and presents the 
parametric sensitivity of MRMs. In Sect. 4 we propose the MRM-based sensitivity 
estimation method and using which we present the component importance analysis in 
Sect. 5. Section 6 is devoted to validating the proposed approach with three systems. 
Finally, we conclude this paper with some remarks in Sect. 7.
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2 Related Work 

Birnbaum importance was first proposed by Birnbaum [5]. In [5], three types of 
importance measures were defined: structure importance, reliability importance, and 
lifetime importance measures. Later on, Lambert [6] introduced the criticality impor-
tance measure. Beeson and Andrews [7] extended the Birnbaum-time dependent life-
time importance to a noncoherent system by separately considering the contribution 
of the component failure to system failure and the contribution of component repair 
to system failure. Shen et al. [8] considered the Birnbaum importance for linear 
consecutive-k-out-of-n systems with sparse d using structure function. Concretely, 
they proposed two kinds of structure functions for Lin/Con/k/n(d) and derived 
the ranking of Birnbaum importance of components for some different patterns for 
Lin/Con/k/n(d). In [9], Si et al. presented the integrated importance measure (IIM). 
They focused on the expected number of component failures in unit time and evalu-
ated how the transition of component states affects the system performance based on 
the probability distributions and transition rates of component states. Based on the 
presented IIM equations of component states, Dui et al. [10] investigated how the 
transition of component states affects system performance under the semi-Markov 
process. 

On the other hand, coping with the failure dependencies in the system is chal-
lenging. Fricks et al. [1] evaluated the effect of failure dependencies in reliability 
models developed using SPNs and CTMCs. Kristiansen et al. [11] pointed out 
that although several approaches to construct component-based software reliability 
models have been proposed, most of these approaches tend to ignore the failure 
dependencies that usually exist among software components. From their works, it 
can be concluded that failure dependencies highly influence system reliability; there-
fore, the dependent failures should never be ignored. Several works have dealt with 
the component importance analysis for dependent failures system. For example, Pan 
and Nonaka [12] presented a quantitative method to evaluate the importance of each 
CCF event. Specifically, they divided the CCFs into two groups; one with a clear 
relationship between the causes and effects and the other without such relationship. 
In particular, the first group of CCFs evaluated the structure–function importance and 
probability importance of the common-root cause events modeled using FT. Also, 
they considered the Birnbaum importance for the second group of CCFs through a 
parametric model. 

3 Preliminaries 

3.1 Continuous-Time Markov Chain 

Continuous-time Markov chain (CTMC) is a stochastic process with discrete state 
space on a continuous time domain. The CTMC is a convenient method to represent
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the state transition of a system, such as normal and failure states, and thus is frequently 
used for the reliability evaluation of the system. In this chapter, we consider the 
parameter sensitivity of CTMC in both steady-state and transient analysis. 

Le {X (t); t > 0} be a time-homogeneous CTMC with the denumerable state space 
S = {1, 2, . . . ,  n} and π(t) is the state probability (row) vector whose i th element 
is the probability P(X (t) = i ). According to the fundamental CTMC analysis, we 
have 

d 
dt  π(t) = π(t)Q, (1) 

where Q is an n-by-n square matrix called the infinitesimal generator. The (i, j )-
entry of Q means the transition rate from state i to state j . Also, when 1 and 0 are 
column vectors where all the elements are 1 and 0, respectively, the diagonal entries 
of Q are given by the negative values such that Q1 = 0. 

In the transient analysis of CTMC, we focus on the probability vector π(t) at 
an arbitrary time under a given initial probability π(0) = π0. In other words, the 
transient analysis solves the initial value problem of the ordinary differential equation 
(ODE) in Eq. (1) In general, by using the matrix exponential, the transient state 
probability vector can also be expressed by 

π(t) = π0exp(Qt), (2) 

where the matrix exponential is defined by exp(A) = I + A + A2/2!  +  · · ·  and I 
is an identity matrix. The uniformization is well-known as one of the most effective 
methods to solve the transient state probability vector [13]. 

On the other hand, the steady-state analysis of CTMC is to derive the steady-state 
probability vector; that is 

πssQ = 0, πss1 = 1. (3) 

Intuitively, the steady-state probability vector πss  corresponds to the (transient) 
state probability vector when t → ∞. The steady-state probability vector can be 
obtained by solving the linear equation with GTH (Grassmann-Taksar-Heyman) 
algorithm, Gauss–Seidel, and SOR (successive over-relaxation). 

3.2 Markov Reward Model 

Markov reward models (MRMs) are a model-based approach for evaluating system 
dependability/performance. The MRM is generally defined by a CTMC and a reward 
function that maps the finite state space S to a real value. Let ρ be a reward function 
in an MRM. Then a rewarding process is given by Y (t) = ρ(X (t)) for the underlying 
CTMC process X (t).
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In fact, several kinds of reward functions have been discussed in the past literature 
[14]. Since this chapter deals with reliability and availability measures, we consider 
instantaneous reward functions in MRM. Let r be a column vector that maps each 
CTMC state i ∈ S to a corresponding real-valued reward ri at time instance. Thus 
the expected instantaneous reward at time t is given by 

E[Y (t)] = π(t)r. (4) 

Also, the expected instantaneous reward in the steady state is also calculated by 
πssr. 

3.3 Parametric Sensitivity of MRMs 

The sensitivity analysis estimates the magnitude of deviations of depend-
ability/performance indices when some parameters change. In particular, parametric 
sensitivity is the first or more derivatives of dependability/performance indices with 
respect to model parameters. The parametric sensitivity can also be applied to opti-
mizing system dependability/performance by combing mathematical programming 
and the evaluated effects on parameters. In this section, we introduce the parametric 
sensitivity of general MRMs with instantaneous rewards. Similar to MRM analysis, 
the parametric sensitivity analysis is also divided into steady-state and transient cases. 

Let θ be a model parameter of MRM. The parametric sensitivity analysis starts 
with computing the following sensitivity functions: 

sss(θ ) = 
∂πss  

∂θ 
, (5) 

s(t, θ  ) = 
∂π(t) 
∂θ 

. (6) 

If these sensitivity functions are obtained, the sensitivity of the depend-
ability/performance index with instantaneous reward is given by 

∂ 
∂θ 

πssr = sss(θ )r + πss  
∂ 
∂θ 

r, (7) 

∂ 
∂θ 

E[Y (t)] = s(t, θ  )r + π(t) 
∂ 
∂θ 

r. (8) 

Note that the above sensitivity functions of dependability/performance indices 
become simple when the reward vector is not sensitive to the parameter θ . 

To obtain the sensitivity function in the case of a steady-state probability vector, 
we take the first derivative of Eq. (3);
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sss(θ )Q + πssS(θ ) = 0, sss(θ )1 = 0, (9) 

where S(θ ) = ∂Q/∂θ . If the steady-state probability vector πss  is already given, the 
sensitivity function sss(θ ) can be solved as the linear equation. 

In the transient case, from Eq. (1), the sensitivity function holds the following 
ODE: 

d 

dt  
s(t, θ  ) = s(t, θ  )Q + π(t)S(θ ). (10) 

By integrating Eq. (1) into the above ODE, we have 

d 
dt  π̃ (t, θ  ) = π̃ (t, θ  ) ̃Q(θ ), (11) 

where 

π̃ (t, θ  ) = (π(t), s(t, θ  )), Q̃(θ ) =
(
Q S(θ ) 

Q

)
. (12) 

Since the diagonal elements of Q̃(θ ) are the same as those of Q, we can apply the 
uniformization to the following matrix exponential form: 

π̃ (t, θ  ) = π̃ (0, θ  )exp
(
Q̃(θ )t

)
. (13) 

4 Sensitivity Estimation Method 

In this chapter, we consider the estimation method for the MRM-based depend-
ability/performance model. As aforementioned, MRMs are a useful approach to eval-
uating the system dependability/performance based on CTMCs. Also, in Sect. 3.3, 
we introduce the parametric sensitivity of MRMs. However, we often encounter 
situations where parametric sensitivities are insufficient to investigate the system 
deviation. For example, the component importance analysis measures the deviation 
of the system reliability when components’ reliabilities change. Except for some 
specific cases, such as s-independent components and an explicit structure function, 
it is not easy to obtain the sensitivity of component reliability on system reliability 
analytically. 

Suppose that the system consists of K components. Let IS and Ik be the depend-
ability/performance indices of system and component k, respectively. This work 
assumes that the dependability/performance indices can be computed by an MRM 
with instantaneous rewards. Also, we define the reward vectors corresponding to IS 
and Ik as rS and rk , respectively. Without loss of generality, we assume
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IS = π rS, (14) 

Ik = πrk, for k = 1, . . . ,  K , (15) 

where π is a state probability vector of the underlying CTMC at an arbitrary time. In 
the case of transient measure, π should be π(t). On the other hand, π is the steady-
state probability vector when the dependability/performance index is a steady-state 
measure. 

In this chapter, we estimate the sensitivities of the system depend-
ability/performance index with respect to component dependability/performance 
indices: 

∂ IS 
∂ Ik 

, for k = 1, . . . ,  K . (16) 

As mentioned before, the above sensitivities cannot be obtained analytically, 
except for the case where IS is explicitly given by a function of I1, . . . ,  Ik . Then 
we consider the estimation from the parametric sensitivities. 

Consider the sensitivity of the system dependability/performance index with 
respect to model parameter vector θ = (θ1, . . . , θm). According to the chain rule 
in partial differentiation, we have 

∂ IS 
∂θ j 

= 
K∑

k=1 

∂ IS 
∂ Ik 

∂ Ik 
∂θ j 

+ δ j 
(17) 

for k = 1, ... K and j = 1, ..., m 
In the above, δ j means the deviation of IS with respect to θ j , which are not 

correlated to the deviations of I1, . . . ,  IK . The above equation can be rewritten as 

z = Ju + δ, (18) 

where 

z = 

⎛ 

⎜⎜⎝ 

∂ IS 
∂θ1 
... 

∂ IS 
∂θm 

⎞ 

⎟⎟⎠, u = 

⎛ 

⎜⎝ 

∂ IS 
∂ I1 
... 

∂ IS 
∂ IK 

⎞ 

⎟⎠, δ = 

⎛ 

⎜⎝ 
δ1 
... 

δm 

⎞ 

⎟⎠, (19) 

J = 

⎛ 

⎜⎜⎝ 

∂ I1 
∂θ1 

· · ·  ∂ IK 
∂θ1 

... 
. . . 

... 
∂ I1 
∂θm 

· · ·  ∂ IK 
∂θm 

⎞ 

⎟⎟⎠. (20)
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In the equation, the matrix J and the vector z can be computed from the parametric 
sensitivity approach described in Sect. 3.3. The problem now is reduced to solving 
the above linear equation with respect to u. However, since the vector δ is also 
undetermined, we should consider how to treat the vector δ. 

If IS is a function of only I1, . . . ,  IK , then the vector δ becomes 0 theoreti-
cally. On the other hand, even if IS has non-zero δ, it is better to estimate the 
deviation of δ as small as possible. For example, we suppose that the system 
dependability/performance index is given by 

IS = I1 + I2 − I1 I2. (21) 

In this case, it is natural to take the following sensitivities; 

∂ IS 
∂ I1 = 1 − I2, ∂ IS 

∂ I2 = 1 − I1. (22) 

However, if I1 I2 is regarded as one variable, namely, I3 = I1 I2, then the 
sensitivities become 

∂ IS 
∂ I1 = 1, ∂ IS 

∂ I2 = 1, ∂ IS 
∂ I3 = −1. (23) 

Although Eqs. (22) and (23) are quite different, they provide the same results on 
the parametric sensitivity. That is, based on Eq. (22), we have 

∂ IS 
∂θ 

= 
∂ IS 
∂ I1 

∂ I1 
∂θ 

+ 
∂ IS 
∂ I2 

∂ I2 
∂θ 

= (1 − I2) 
∂ I1 
∂θ 

+ (1 − I1) 
∂ I2 
∂θ 

. (24) 

When Eq. (23) is applied, the parametric sensitivity is expressed by 

∂ IS 
∂θ 

= 
∂ IS 
∂ I1 

∂ I1 
∂θ 

+ 
∂ IS 
∂ I2 

∂ I2 
∂θ 

+ 
∂ IS 
∂ I3 

∂ I3 
∂θ 

= 
∂ I1 
∂θ 

+ 
∂ I2 
∂θ 

− 
∂ I3 
∂θ 

. (25) 

Therefore, from the mathematical point of view, both are correct. However, the 
former is a better representation of the relationship between the system depend-
ability/performance index and component indices since ∂ IS/∂ I3 can be expressed 
by ∂ IS/∂ I1 and ∂ IS/∂ I2. In other words, it is important to explain the deviation of 
IS as much as possible by using only the deviations with I1 and I2. In Eq.  (25), the 
last term corresponds to δ in Eq. (17). Therefore, it is better to take the estimates of 
u so that δ becomes small. 

Based on the above insight, we formulate the following mathematical program-
ming:
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min 
u

‖δ‖2 2, (26) 

s.t. z = Ju + δ, (27) 

where ‖δ‖2 is a 2-norm of vector δ. The problem is further reduced to the following 
least square problem: 

min 
u

‖z − Ju‖2 2. (28) 

There are several methods to solve the least square problem. The simplest 
approach is to solve the normal equation [15]:

(
JT J

)
u = JT z, (29) 

where T is the transpose operator. Then the estimates of sensitivities are given by 

u = (
JT J

)−1 
JT z. (30) 

5 Component Importance Analysis for MRMs 

This section revisits the component importance analysis for MRMs with the sensi-
tivity estimation method proposed in Sect. 4. Fricks and Trivedi [1] considered 
three component importance measures; Birnbaum importance measure, criticality 
measure, and upgrading function. In particular, they treated the MRM where 
components are statistically independent. 

Suppose that the system consists of K components. In this chapter, the behavior of 
components is not completely separated, i.e., the system behavior with K components 
is only given by a CTMC with an infinitesimal generator Q with finite state space S. 
On the other hand, the states of Q are classified into UP and DOWN states for both 
system and components. Let Uk and Dk be the sets of states where the component k is 
up and down, respectively. Also, US and DS are the sets of states where the system is 
up and down. Note that Uk ∪Dk = ∅, US ∪DS = ∅, Uk ∩Dk = S and US ∩DS = S. 
Then the reward vectors for component k and the system can be defined by 

[rk]i =
{
1, i ∈ Uk, 
0, i ∈ Dk, 

(31) 

and 

[rs]i =
{
1, i ∈ US, 
0, i ∈ DS, 

(32)
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respectively, where [·]i means the i th element of a vector. Using the reward vectors, 
the steady-state availabilities for component k and the system are 

AS = πssrS, Ak = πssrk, (33) 

where πss  is computed by solving Eq. (3). 
On the other hand, if the underlying CTMC does not have transitions from Dk to 

Uk and from DS to US , the reliability functions of component k and the system are 
given by 

RS(t) = π(t)rS, Rk(t) = π(t)rk, (34) 

where π(t) is obtained from Eq. (2). 

5.1 Birnbaum Importance Measure 

Let xk be a binary variable representing the condition of component k; 

xk =
{
1, if component k is up, 
0, if component k is down. 

(35) 

Besides, we define a vector x = (x1, x2, . . . ,  xK ) as a state vector of the system. 
The structure function represents the relationship between components’ failures and 
system failure. In general, the structure function is defined by 

φ(x) =
{
1, if system is up, 
0, if system is down. 

(36) 

For example, if the system is a series system, namely, the system failure occurs when 
any component fails, the structure function is given by 

φ(x) = x1x2 . . .  xK = 
K∏

k=1 
xk . (37) 

If the system failure occurs only when all the components fail, the so-called 
parallel system, then the structure function is given by 

φ(x) = 1 − (1 − x1)(1 − x2) . . .  (1 − xK ) 

= 1 − 
K∏

k=1 

(1 − xk). (38)



Sensitivity Estimation of Markov Reward Models and Its Applications … 115

Birnbaum [5] defined the component importance from the reliability point of view. 
He first considered the first derivative of the structure function (namely, Birnbaum 
structure importance) with respect to the state condition of component k:

�φ(k, x) = 
∂φ(x) 
∂xk 

. (39) 

Let P(x) be a certain probability mass function for x. Then the component 
importance, so-called Birnbaum component importance (IB), can be defined by 

I Bk =
∑
x

�φ(k, x)P(x). (40) 

Birnbaum availability and reliability component importance measures (AIB and 
RIB) become 

AI  Bk = ∂ AS 
∂ Ak 

, RI  Bk(t) = ∂ RS (t) 
∂ Rk (t) . (41) 

In particular, when components are statistically independent, AIB and RIB can 
be obtained from the structure function [1]: 

AI  Bk = φ(1k, A) − φ(0k, A), (42) 

RI  Bk(t) = φ(1k, R(t)) − φ(0k, R(t)), (43) 

where, for K -dimensional vector X, 

(αk, X) = (X1, . . . ,  Xk−1, α,  Xk+1, . . . ,  XK ). (44) 

However, Eqs. (42) and (43) do not hold when components are dependent. 
Thus the estimation method presented in this work can be applied to computing 
∂ AS/∂ Ak and ∂ RS(t)/∂ Rk(t) directly. Concretely, for the model parameter vector 
θ = (θ1, . . . , θm), we compute 

zA = 

⎛ 

⎜⎜⎝ 

∂ AS 
∂θ1 
... 

∂ AS 
∂θm 

⎞ 

⎟⎟⎠, JA = 

⎛ 

⎜⎜⎝ 

∂ A1 
∂θ1 

· · ·  ∂ AK 
∂θ1 

... 
. . . 

... 
∂ A1 
∂θm 

· · ·  ∂ AK 
∂θm 

⎞ 

⎟⎟⎠, (45) 

zR(t) = 

⎛ 

⎜⎜⎝ 

∂ RS (t) 
∂θ1 
... 

∂ RS (t) 
∂θm 

⎞ 

⎟⎟⎠, JR(t) = 

⎛ 

⎜⎜⎝ 

∂ R1(t) 
∂θ1 

· · ·  ∂ RK (t) 
∂θ1 

... 
. . . 

... 
∂ R1(t) 
∂θm 

· · ·  ∂ RK (t) 
∂θm 

⎞ 

⎟⎟⎠. (46)
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Then the estimates of AI  B  = (AI  B1, . . . ,  AI  BK )
T and RI  B(t) = 

(RI  B1(t), . . . ,  RI  BK (t))
T are given by 

AI  B  = (
JT AJA

)−1 
JT AzA, (47) 

RI  B(t) = (
JR(t)T JR(t)

)−1 
JR(t)T zR(t). (48) 

5.2 Criticality Importance Measure 

The criticality measure [16] means the probability that, when the system fails, the 
failure of component k becomes a cause of the system failure. According to Fricks 
and Trivedi [1], the criticality importance measures of availability and reliability 
(AICR and RICR) can be derived by 

AI  C  Rk = 
Ak 

AS 

∂ AS 

∂ Ak 
, (49) 

RI  C  Rk(t) = 
Rk(t) 
RS(t) 

∂ RS(t) 
∂ Rk(t) 

. (50) 

Essentially, these measures can be computed from AI  Bk and RI  Bk , i.e., 

AI  C  Rk = Ak 
AS 

AI  Bk, RI  C  Rk(t) = Rk (t) 
RS (t) RI  Bk(t). (51) 

5.3 Upgrading Function 

The upgrading function is the parametric sensitivity function with respect to a failure 
rate [1]. According to the definition, we have the availability and reliability upgrading 
functions (AIU and RIU) for component k: 

AIUk,λ = 
λk 

AS 

∂ AS 

∂λk 
, (52) 

AIUk,μ = 
μk 

AS 

∂ AS 

∂μk 
, (53) 

RIUk,λ(t) = λk 

RS(t) 
∂ RS(t) 
∂λk 

, (54)
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where λk and μk are failure and repair rates of component k. Note that AIU can 
also be defined for the repair rate. The AIU is essentially the same as the availability 
importance measures discussed by Cassady et al. [17]. 

In [17] and [18], it was assumed that components are independent and each has 
only two states; that is, up and down on the underlying CTMC. On the other hand, the 
authors introduced the method to derive the availability upgrading functions under 
which components are described by general CTMCs. The idea behind the approach 
is to apply the aggregation technique [19]. However, components were assumed to 
be independent even in [4]. In this chapter, by applying sensitivity estimation and 
aggregation, we derive AIUs and RIU for MRMs. 

First, we consider AIUs. Aggregation is a technique to reduce MRM-based avail-
ability models to the 2-state model, which has the same availability as the original 
model. When we focus on the state of one component, the states can be classified 
into Uk and Dk . The aggregation technique converts the original model to the 2-state 
model with transitions from up to down states and up to down state. By applying 
this technique, we obtain failure and repair rates in the steady state that ensure the 
steady-state probabilities of the up (down) states keep the same as those in the orig-
inal model. The obtained failure and repairs in the steady state are called equivalent 
failure and repair rates [19]. 

From the argument of CTMC, the equivalent failure and repair rates of component 
k can be computed as follows. 

λk =
∑

(i, j)∈Uk×Dk 
[πss]i [Q]i, j∑

i∈Uk 
[πss]i 

, (55) 

μk =
∑

( j,i)∈Dk×Uk 
[πss] j [Q] j,i∑

j∈Dk 
[πss] j 

, (56) 

where [·]i, j is an (i, j )-entry of a matrix. By taking account of Ak = μk/(λk + μk), 
AIUk,λ can be rewritten by 

AIUk,λ = 
λk 

AS 

∂ AS 

∂λk 

= 
λk 

AS 

K∑
l=1 

∂ AS 

∂ Al 

∂ Al 

∂λk 

= 
λk 

AS 

∂ AS 

∂ Ak 

∂ Ak 

∂λk 

= 
λk 

AS 

∂ AS 

∂ Ak

(
− μk 

(λk + μk)
2

)

= −  
Ak 

AS 

∂ AS 

∂ Ak 

λk 

λk + μk 

= −  
Ak 

AS 

∂ AS 

∂ Ak 

λk 

λk + μk 
(57)
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Similarly, AIUk,μ becomes 

AIUk,μ = 
μk 

AS 

∂ AS 

∂μk 

= 
μk 

AS 

∂ AS 

∂ Ak 

∂ Ak 

∂μk 

= 
μk 

AS 

∂ AS 

∂ Ak 

λk 

(λk + μk)
2 

= 
Ak 

AS 

∂ AS 

∂ Ak 

λk 

λk + μk 

= (1 − Ak)AI  C  Rk . (58) 

Next, we consider RIU. In this case, the equivalent failure rate cannot 
be computed. Instead we use the time-dependent failure rate, i.e., λk(t) = 
−(dRk(t)/dt)/(1 − Rk(t)). Generally, the relationship between the reliability func-
tion and the failure rate is given by 

Rk(t) = e
− 

t ∫
0 
λk (s)ds  

. (59) 

Based on the above, RIU can be obtained by 

RIUk,λ = 
λk(t) 
RS(t) 

∂ RS(t) 
∂λk(t) 

= 
λk(t) 
RS(t) 

K∑
l=1 

∂ RS(t) 
∂ Rl (t) 

∂ Rl (t) 
∂λk(t) 

= 
λk(t) 
RS(t) 

∂ RS(t) 
∂ Rk(t) 

∂ Rk(t) 
∂λk(t) 

= 
λk(t) 
RS(t) 

∂ RS(t) 
∂ Rk(t) 

(−t Rk(t)) 

= −tλk(t) 
Rk(t) 
RS(t) 

∂ RS(t) 
∂ Rk(t) 

= −tλk(t)RI  C  Rk(t). (60) 

In the MRM, the failure rate of component k is 

λk(t) = −π(t)Qrk 
π(t)rk 

. (61)
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6 Numerical Examples 

In this section, we illustrate the component importance analysis using classic (struc-
ture function-based) and proposed (CTMC-based component-wise sensitivity anal-
ysis) methods for the systems with no dependent failures and the proposed method for 
solving the cases with failure dependencies. The following systems are considered. 

• Two-unit hot standby system. 
• A TMR (triple modular redundancy) system. 
• A 1-out-of-3 system. 

Particularly, for the hot standby system and TMR system, we consider both 
independent and dependent components cases as below: 

• Assumption 1: Components are statistically independent. 
• Assumption 2: Components are failure-dependent. 

6.1 Two-Unit Hot Standby System 

Consider a standby system consisting of two units a and b, each with failure rates 
λa = 0.001 [h−1] and λb = 0.002 [h−1], respectively, and repair rates μa and μb that 
are all 1 [h−1]. Let a be the primary unit and b be the spare one. Suppose that there 
is a perfect fault-detection unit that detects failures in the primary unit and replaces 
it with the spare one, and each one can be repaired first when all units have failed. 
If both primary and spare units are powered up, thus spare can be switched into use 
immediately after the primary unit has failed. In such a case, the system is called hot 
standby redundancy. This subsection considers the two-unit hot standby system. 

6.1.1 Assumption 1: Components Are Statistically Independent 

Figure 1 shows the RBD of the hot standby system. The dynamics of the system 
are modeled by a CTMC (see Fig. 2). The CTMC model defines a system state as 
a combination of operating and failed components. Table 1 enumerates different 
possible states, where “O” indicates an operational component, and “F” indicates a 
failed one. 

Fig. 1 RBD of two-unit hot 
standby system in a simple 
parallel configuration
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Fig. 2 State transition 
diagram for two-unit hot 
standby system 

Table 1 The states of the 
standby systems 

Component State number 

Primary (a) Spare (b) 

O O 1 

F O 2 

O F 3 

F F 4 

Let Ai and Ri (t) be the steady-state availability and reliability of component 
i, i ∈ {a, b}, respectively. Thus according to the parallel configuration in Fig. 1, 
we have the structure function for the system availability 

Ahs = 1 − (1 − Aa)(1 − Ab) 
= Aa + Ab − Aa Ab, (62) 

where component availability Ai = μi /(μi + λi ). In the same manner, the structure 
function for the system reliability is given by 

Rhs(t) = 1 − (1 − Ra(t))(1 − Rb(t)) 
= Ra(t) + Rb(t) − Ra(t)Rb(t). (63) 

In the above, the reliability of component i is computed by Ri (t) = e−λi t . Thus 
the Birnbaum availability importance of components i becomes 

AI  Bi = 
∂ Ahs 

∂ Ai 
=

{
1 − Ab, i = a 
1 − Aa, i = b. 

(64) 

On the other hand, the Birnbaum reliability component importance measure 
RI  Bi (t) can be obtained similarly to Eq. (64). The availability and reliability of 
the system are computed using Markov analysis. For example, for availability eval-
uation, we should be able to repair the system from a failed state. The corresponding
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infinitesimal generator is given by 

Qhs = 

⎛ 

⎜⎜⎝ 

−(λa + λb) λa λb 0 
μa −(μa + λb) 0 λb 

μb 0 −(μb + λa) λa 

0 μb μa −(μb + μa) 

⎞ 

⎟⎟⎠. (65) 

Then the steady-state probability vector of the hot standby system πhs is obtained 
by solving the following linear equations: 

πhsQhs = 0, πhs1 = 1. (66) 

Using structure function and component-wise sensitivity analysis based on the 
CTMC, respectively, we obtain the same results shown in Tables 2 through 4. In  
Table 2, we find that both the availability and reliability of component b are lower 
than those of component a since the failure rates λb > λa . 

Table 3 demonstrates the availability importance measures, whereas Table 4 gives 
the reliability importance measures. Concretely, in Table 3, the Birnbaum importance 
of component a is higher than that of component b. This is because according to 
Eq. (64), the Birnbaum importance of a is determined by the availability of b and 
vice versa, and from Table 2 a has higher availability than b. Besides, the measure 
AICR is computed based on AIB, and AIU is given by AICR so that both AICR and 
AIU have the same trends as AIB. Similar results appear in the case of reliability 
importance. 

Table 2 Availabilities and 
reliabilities (t = 50 h) of 
components and hot standby 
system 

Component Availability Reliability 

a 0.999001 0.951229 

b 0.998004 0.904837 

System 0.999998 0.995359 

Table 3 Availability importance measures of components in the hot standby system 

Component AI  B AI  C  R AIUλ AIUμ 

a 1.996e−3 1.994e−3 −1.992e−6 1.992e−6 

b 9.990e−4 9.970e−4 −1.990e−6 1.990e−6 

Table 4 Reliability 
importance measures of 
components in the hot 
standby system (t = 50 h) 

Component RI  B(50) RIC  R(50) RIUλ(50) 
a 9.516e−2 9.094e−2 −4.547e−3 

b 4.877e−2 4.434e−2 −4.434e−3
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6.1.2 Assumption 2: Components Are Failure-Dependent 

In practice, computer systems often fail due to dependent failures. Suppose that either 
of two units can cause the concurrent failure of a and b in the hot standby system. 
Figure 3 shows the state transition diagram for the hot standby system with failure 
dependency. Note that the transition corresponding to the dependent failure is drawn 
as a dashed line. The figure shows that the two units’ concurrent failures are modeled 
using the β factor method [20]. In the model, we assume that β = 0.02. 

Table 5 demonstrates the time-dependent failure rate of components in the hot 
standby system at time t = 50 h. We see that under the dependent failure case 
(assumption 2), the failure rates of all components increase over time, which causes 
a decrease in both availability and reliability as seen in Table 6, compared with the 
results in Table 2. 

The availability and reliability importance measures are given in Tables 7 and 8. 
The values of most importance measures become smaller in the system with failure 
dependency compared with the case with no dependent failures.

Fig. 3 State transition 
diagram for two-unit hot 
standby system with failure 
dependency 

Table 5 Time-dependent 
failure rates of components in 
hot standby system (t = 50 h) 

Component Initial failure 
rate 

Time-dependent failure rate 

Under 
assumption 1 

Under 
assumption 2 

a 0.00100 0.00100 0.00104 

b 0.00200 0.00200 0.00202 

Table 6 Availabilities and 
reliabilities (t = 50 h) of 
components and hot standby 
system with failure 
dependency 

Component Availability Reliability 

a 0.998961 0.949419 

b 0.997984 0.903955 

System 0.999968 0.992666 
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Table 7 Availability importance measures of components in the hot standby system with failure 
dependency 

Component AI  B AI  C  R AIUλ AIUμ 

a 1.964e−3 1.962e−3 −2.038e−6 2.038e−6 

b 9.756e−4 9.737e−4 −1.963e−6 1.963e−6 

Table 8 Reliability 
importance measures of 
components in the hot 
standby system with failure 
dependency (t = 50 h) 

Component RI  B(50) RIC  R(50) RIUλ(50) 
a 9.300e−2 8.895e−2 −4.609e−3 

b 4.695e−2 4.276e−2 −4.316e−3 

6.2 Triple Modular Redundancy System 

Next, we consider the component importance analysis for a triple modular redun-
dancy (TMR) system. In this system, three non-identical redundant processors carry 
out the same task simultaneously, and a voter compares the outputs from all the 
processors and sides with the majority. The system fails only when two or more 
processors fail, or the voter fails. In other words, the system can tolerate the failure 
of a single processor. A block diagram of the TMR system with a voter is shown in 
Fig. 4, and the corresponding RBD representation is depicted in Fig. 5. From these 
figures, the system is divided into processor and voter subsystems that are described 
by CTMCs. 

6.2.1 Assumption 1: Components Are Statistically Independent 

Figures 6 and 7 separately illustrate the CTMC for processor and voter subsystems. 
In Fig. 6, white and gray nodes represent the operational and failure states of the

Fig. 4 Block diagram for TMR system with a voter
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Fig. 5 RBD representation 
for TMR system

processor subsystem, respectively. More specifically, each state is indicated by three 
characters. The first character means the state of processor 1. When processor 1 is 
operational, the character is given by ‘1’, and if failed, it is ‘0’. The second and third 
characters represent the states of processor 2 and processor 3, respectively, in the 
same manner as the first character. In the CTMC model for the voter, state UP means 
that the voter is operational. If the voter fails, it is denoted by state DN. Also, the 
model parameters are described in Table 9. 

Let Q p and Qv be the infinitesimal generators of CTMCs for the processor 
subsystem and component voter, respectively. Then we have the composite CTMC 
generator for the TMR system by using the tensor sum of matrices [21] as  

QS = Q p ⊕ Qv. (67)

Fig. 6 CTMC of processor subsystem 

Fig. 7 CTMC of the 
component voter
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Table 9 Model parameters 
for TMR system 

Parameter Description Value (h) 

1/λp1 Mean time to processor 1 failure 1250 

1/λp2 Mean time to processor 2 failure 1000 

1/λp3 Mean time to processor 3 failure 500 

1/λv Mean time to voter failure 10, 000 
1/μp1 Mean time to repair processor 1 1 

1/μp2 Mean time to repair processor 2 1 

1/μp3 Mean time to repair processor 3 1 

1/μv Mean time to repair voter 4

Let Ai , and Ri (t) be the steady-state availability and reliability of processor i, i ∈ 
{1, 2, 3}, and Av and Rv(t) be the steady-state availability and reliability of voter, 
respectively. Thus the availabilities and reliabilities of each component and system 
can be computed by using from Eqs. (31) to (34). On the other hand, according to 
RBD analysis (see Fig. 5), the system availability also can be obtained by 

Atmr  = ( A1 A2 A3 + (1 − A1)A2 A3 + A1(1 − A2)A3 + A1 A2(1 − A3))Av 

= ( A1 A2 + A1 A3 + A2 A3 − 2A1 A2 A3)Av. (68) 

Similarly, the reliability of the TMR system is given by 

Rtmr  (t) = (R1 (t)R2(t)R3(t) + (1 − R1(t))R2(t)R3(t) + R1(t)(1 − R2(t))R3(t) 
+ R1(t)R2(t)(1 − R3(t))Rv(t) = (R1(t)R2(t) + R1(t)R3(t) 
+ R2(t)R3(t) − 2R1(t)R2(t) R3(t))Rv(t). (69) 

Table 10 shows the availabilities and reliabilities (t = 50 h) of components and 
system. In the table, the system availability and reliability are computed by using 
Eqs. (68) and (69). Processor 1 has the highest availability/reliability among the three 
processors because it has the longest MTTF (mean time to failure). In addition, the 
voter is more reliable than the processors. 

Based on Eqs. (68) and (69), the Birnbaum availability and reliability importance 
of each component can be easily derived in the same manner as in the hot standby

Table 10 Availabilities and 
reliabilities (t = 50 h) of 
components and TMR system 

Component Availability Reliability 

Proc 1 0.999201 0.960789 

Proc 2 0.999001 0.951229 

Proc 3 0.998004 0.904837 

Voter 0.999600 0.995012 

System 0.999596 0.985141 
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Table 11 Availability importance measures of components in the TMR system 

Component AI  B AI  C  R AIUλ AIUμ 

Proc 1 2.990e−3 2.989e−3 −2.389e−6 2.389e−6 

Proc 2 2.791e−3 2.789e−3 −2.787e−6 2.787e−6 

Proc 3 1.796e−3 1.793e−3 −3.579e−6 3.579e−6 

Voter 9.999e−1 1.000e−0 −3.998e−4 3.998e−4 

Table 12 Reliability 
importance measures of 
components in the TMR 
system (t = 50 h) 

Component RI  B(50) RIC  R(50) RIUλ(50) 
Proc 1 1.340e−1 1.307e−1 −5.227e−3 

Proc 2 1.263e−1 1.219e−1 −6.097e−3 

Proc 3 8.374e−2 7.691e−2 −7.691e−3 

Voter 9.901e−1 1.000e−0 −5.000e−3 

system and are given in Tables 11 and 12. The same results in these tables can also 
be obtained by using CTMC-based component-wise sensitivity analysis. From these 
tables, we see that the voter is the most important component contributing to system 
availability and reliability. On the other hand, processor 3 is the least important in 
terms of Birnbaum and criticality importance measures. 

6.2.2 Assumption 2: Components Are Failure-Dependent 

Consider the CCFs in the processor subsystem. The state transition diagrams of the 
processor subsystem with failure dependencies are illustrated in Fig. 8. The model 
parameters are also shown in Table 9. Here the β factor is also given as 0.02.

Table 13 demonstrates the time-dependent failure rates of components in the TMR 
system at time t = 50 h. Due to the impact of dependent failures, all processors’ 
failure rates increase over time.

Table 14 shows the availabilities and reliabilities at time t = 50 h of components 
and TMR system with failure dependencies. Although the component voter is still 
reliable, as in the case without dependent failures, the system availability/reliability 
is decreased due to the increased failure risk brought by the failure dependencies.

The availability and reliability importance measures of components in the TMR 
system with failure dependencies are represented in Tables 15 and 16, respectively. 
From these tables, it is observed that in either availability or reliability aspect, proces-
sors become more important, compared with the case that components are statistically 
independent. On the other hand, the importance of the voter is still the highest and 
changes not much under different assumptions.
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Fig. 8 CTMC for processor subsystem with failure dependencies

Table 13 Time-dependent 
failure rates of components in 
TMR system (t = 50 h) 

Component Initial failure 
rate 

Time-dependent failure rate 

Under 
assumption 1 

Under 
assumption 2 

Proc 1 0.00080 0.00080 0.00086 

Proc 2 0.00100 0.00100 0.00105 

Proc 3 0.00200 0.00200 0.00203 

Voter 0.00010 0.00010 0.00010

Table 14 Availabilities and 
reliabilities (t = 50 h) of 
components and TMR system 
with failure dependencies 

Component Availability Reliability 

Proc 1 0.999141 0.958025 

Proc 2 0.998945 0.948674 

Proc 3 0.997968 0.903246 

Voter 0.999600 0.995012 

System 0.999533 0.981895

Table 15 Availability importance measures of components in TMR system with failure dependen-
cies 

Component AI  B AI  C  R AIUλ AIUμ 

Proc 1 1.887e−2 1.887e−2 −1.621e−5 1.621e−5 

Proc 2 1.868e−2 1.867e−2 −1.969e−5 1.969e−5 

Proc 3 1.770e−2 1.767e−2 −3.590e−5 3.590e−5 

Voter 9.999e−1 1.000e−0 −3.998e−4 3.998e−4
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Table 16 Reliability 
importance measures of 
components in TMR system 
with failure dependencies 
(t = 50 h) 

Component RI  B(50) RIC  R(50) RIUλ(50) 
Proc 1 1.445e−1 1.410e−1 −6.030e−3 

Proc 2 1.369e−1 1.323e−1 −6.957e−3 

Proc 3 9.504e−2 8.743e−2 −8.894e−3 

Voter 9.868e−1 1.000e−0 −5.000e−3 

Fig. 9 RBD of 1-out-of-3 
system 

6.3 1-Out-of-3 System 

In the case of a system with failure dependencies, we can use the proposed method 
to compute the component importance. However, suppose we just need to obtain the 
importance ranking of components and do not care about the importance values. In 
that case, we can also obtain the importance ranking from the structure function. We 
next consider a 1-out-of-3 system whose RBD is shown in Fig. 9 as an illustrative 
example. The system consists of three identical components A, B, and C, with failure 
rates λA = λB = λC = 0.001 [h−1], and operates if at least one component operates. 

6.3.1 Reliability Function 

In the β-factor model, let qi (t), i ∈ {A, B, C} be the independent failure probability 
of component i at time t . Also, let event E be the concurrent failure of components 
A, B, and C due to the failure of A. The occurrence probability of E is given by 

P(E) = P(E |A)P(A) = β P( A) = βqA(t) = qE (t), (70) 

where β is given as 0.002. Then we have the system failure probability: 

P(SF)(t) = P(A)
(
P

(
E |A)

P(B)P(C) + P(E |A)
)

= (1 − β)qA(t)qB (t)qC (t) + βqA(t) 
= qA(t)qB (t)qC (t) + βqA(t)(1 − qB (t)qC (t)) 
= qA(t)qB (t)qC (t) + qE (t)(1 − qB (t)qC (t)), (71)
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and the reliability function of the system is obtained, 

R1−out−of  −3(t) = 1 − P(SF)(t). (72) 

Thus the Birnbaum reliability importance is deduced from the probability 
importance, 

RI  Bi (t) = 
∂ R1−out−of  −3(t) 

∂ Ri (t)
= 

∂ P(SF)(t) 
∂qi (t) 

= 

⎧⎨ 

⎩ 

(1 − β)qB (t)qC (t) + β, i = A 
(1 − β)qA(t)qC (t), i = B 
(1 − β)qA(t)qB (t), i = C. 

(72) 

6.3.2 CTMC Model 

Figure 10 illustrates the CTMC of 1-out-of-3 system. In this figure, the white and gray 
nodes represent operational and failed states, respectively. The state notations based 
on the current conditions of components are shown in Table 17. We consider three 
concurrent failures defined as states D1, D2, and D3. Note that state D4 represents 
the system failure caused by the independent failures of A, B, and C. 

The system reliability at time t = 50 h is shown in Table 18. The classical method 
corresponds to the importance analysis using structure function. Both classical and 
proposed methods achieve the same results. Table 19 shows the time-dependent 
failure rate and the reliability of each component at time t = 50 h. It is observed that 
the reliabilities of components B and C are lower than that of component A due to 
their higher failure rates. Besides, the occurrence probability of each system failure

Fig. 10 CTMC of 1-out-of-3 system
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Table 17 The states of 
1-out-of-3 system 

State Description 

111 All components are operational 

101 B is failed, A and C are operational 

011 A is failed, B and C are operational 

110 C is failed, A and B are operational 

001 A and B are failed, C is operational 

100 B and C are failed, A is operational 

010 A and C are failed, B is operational 

D1 The concurrent failure of A, B, C 

D2 The concurrent failure of A, C 

D3 The concurrent failure of A, B 

D4 All components are failed independently

event is given in Table 20. The probability that all components fail independently is 
the highest, followed by the probability that all components fail simultaneously. The 
occurrence probabilities of concurrent failures of, A and C, and, A and B, are the 
same. 

Table 21 compares the classical and proposed methods in terms of Birnbaum 
reliability component importance at time t = 50 h. Although the importance values 
under the two methods are somewhat different, their rankings are consistent. The 
other importance measures [i.e., RI  C  R(50) and RIUλ(50)] and their corresponding 
importance rankings obtained by the proposed approach are presented in Table

Table 18 System reliability 
(t = 50 h) Method Reliability 

Classical method 0.999787 

Proposed method 0.999787 

Table 19 Time-dependent 
failure rate and reliability of 
components (t = 50 h) 

Component Failure rate Reliability 

A 0.001000 0.951229 

B 0.001002 0.951137 

C 0.001002 0.951137 

Table 20 Occurrence 
probability of each failure 
event of system 

Event Occurrence probability 

D1 9.286e−5 

D2 2.301e−6 

D3 2.301e−6 

D4 1.158e−4 
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Table 21 Comparison of classical and proposed methods regarding Birnbaum reliability impor-
tance (RI  B(t)) of components (t = 50 h) 
Component Classical method Ranking Proposed method Ranking 

A 4.374e−3 1 4.365e−3 1 

B 2.374e−3 2 2.375e−3 2 

C 2.374e−3 2 2.375e−3 2 

Table 22 Criticality importance and upgrading function measures of components in the 1-out-of-3 
system obtained using the proposed method (t = 50 h) 
Component RIC  R(50) Ranking RIUλ(50) Ranking 

A 4.153e−3 1 −2.076e−4 1 

B 2.260e−3 2 −1.132e−4 2 

C 2.260e−3 2 −1.132e−4 2 

22. The table shows that the importance rankings of components among different 
measures are the same. 

7 Summary 

In this paper, we presented the Markov chain-based component-wise sensitivity anal-
ysis approach to evaluate the component importance measures without any system 
structure function. Concretely, we introduced both transient and stationary analysis 
of Markov reward models and then presented the parametric sensitivity of MRMs. 
Furthermore, the component-wise sensitivity analysis based on the parametric sensi-
tivity of MRMs and the component importance analysis using component-wise sensi-
tivity were proposed. Besides, three types of component importance measures were 
derived from the viewpoints of both steady-state availability and reliability. In the 
numerical examples, we validated the proposed approach with three systems and 
showed that the proposed method did work well. In the future, we will improve 
and extend the method to solve more complicated models, such as non-Markovian 
models like Markov regenerative processes. 
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Failure Rate Modeling of Mechanical 
Components and Systems 

Liyang Xie 

Abstract For products subjected to many times of load action during service, 
product life is dominated by load and its capability against load, referred to as 
strength. This chapter introduces load-strength interference analysis based failure 
rate modelling method, develops component and system failure rate models, and 
illustrates the causal relation between failure rate curve shape and load/strength 
characteristics. For the majority of mechanical components and systems, service 
load can be described as a random process, material property degrades during load 
actions, and the dynamic load-strength relationship makes the failure rate change 
continuously. As failure occurs on load exceeding strength, failure rate models are 
developed by analyzing the competition behavior between load and strength. By such 
failure rate models, the effects of load uncertainty, strength uncertainty and strength 
degradation pattern on failure rate curve shape are demonstrated. Meanwhile, the 
three stages of the bathtub curve are interpreted in terms of stochastic load-strength 
competition behavior, the roller coaster type failure rate curve is attributed to the 
strength diversity of the products in a population. 

Keywords Failure rate definition · Life distribution · Strength degradation ·
Load-strength interference · Bathtub curve 

1 Introduction 

Failure rate is a frequently used metric for product reliability. By definition, failure 
rate at time t is the limit of the probability that a product will fail in a time interval 
(t, t + Δt] when Δt approaches to zero, given the product is functioning at time 
t. Besides direct estimation based on product life data, failure rate function can be 
derived from the probability density function of product life by the formula λ(t) = 
f(t)/R(t), i.e., failure rate at time t equals to the ratio of the life probability density 
at time t to the reliability over time t. This formula presents a one to one mapping
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between failure rate and life distribution. It is easy to know that the exponential life 
distribution yields constant failure rate, the normal (Gaussian) life distribution yields 
increasing failure rate, the log-normal life distribution yields unimodal failure rate 
(first increasing and then decreasing), and the Weibull life distribution may yield 
increasing, decreasing or constant failure rate depending on shape parameter value 
(shown in Fig. 1). 

On the other hand, it is traditionally believed that the failure rate curve of bathtub 
shape is the most typical (shown in Fig. 2). Apparently, none of the commonly used 
life distributions, such as the exponential distribution, the normal distribution, the 
log-normal distribution or the Weibull distribution can yield a failure rate curve of 
bathtub shape, illustrating that either the commonly used probability density func-
tions cannot exactly describe product life distribution, or product failure rate curve 
does not present bathtub shape.

The three stages in a failure rate curve of bathtub shape as shown in Fig. 2 were 
conventionally partitioned as infant mortality stage (the decreasing failure rate stage 
appeared in the early part of the population service life), chance failure stage (the

Fig. 1 Failure rate curves derived from different types of life distributions 



Failure Rate Modeling of Mechanical Components and Systems 135

Fig. 2 A failure rate curve 
of bathtub shape

middle part of the failure rate curve, showing a roughly constant failure rate), and 
wear out stage (the increasing failure rate stage appeared in the last part of the popu-
lation service life) [1]. They are also called as burn-in period, useful life period 
and wear-out period, respectively [2]. It is usually explained that the infant mortality 
stage demonstrates a sub-population dominated by quality-control defects due to poor 
workmanship, out-of-specification incoming parts and materials, and other substan-
dard manufacturing practices. The other two stages were attributed to stochastic load 
and product performance deterioration, respectively [1]. In other words, the high 
failure rate in the initial phase is explained as that there are undiscovered defects 
in the products. These soon show up when the products are activated. When the 
product has survived the infant mortality period, the failure rate often stabilizes at a 
level where it remains for a certain amount of time until it starts to increase as the 
products begin to wear out [2]. 

The features of product failure rate have been analyzed from the aspects of reli-
ability function [3], life distribution [4–8] and strength degradation [9, 10]. Some 
studies on failure rate curve shape thought that mechanical products may not appear 
to have an infant mortality period or chance failure period [1]. 

In practice, product failure rates are estimated by means of various methods and 
models according to life data and/or censored life data. On the other hand, traditional 
reliability calculation is sometimes carried out based on failure rate function [11]. It 
means that failure rate should be obtained based on pertinent information different 
from life distribution or life data. To estimate failure rate directly from product life 
data needs a large size sample. To derive failure rate equation from product life distri-
bution needs exact life probability density function that is hard to obtain. Therefore, 
modeling product failure rate in a way different from life data-based approaches is of 
great significance. Besides, it is helpful to get insight into the meaning of the failure 
rate curves of different shape. 

The complex shape of a bathtub curve implies that failure rate modelling might be 
difficult. To develop a failure rate model, the basic influence factors must be identified 
first. Generally, the service time dependent variation of product failure rate depends 
on load characteristics, product strength, failure mechanism and other operational 
profile [12–14].
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For mechanical components, it is well known that load-strength interference anal-
ysis is the most widely applied method to develop reliability model [15]. However, 
not many studies have been conducted to developed load-strength interference 
relationship-based failure rate model. 

As to the load characteristics and failure mechanisms typical for mechanical 
components and structures, such as deformation or fracture under static load or 
fatigue under cyclic load, the times of load action is a more direct parameter to char-
acterize product service life. For instance, taking into account the effect of multiple 
actions of a random load, a loading number dependent failure probability formula 
for static strength failure (no strength degradation during load actions) was proposed 
[16]: 

P(n) = 1 − 
∞∫

0 

f (x)[ 
x∫

0 

g(y)dy]n dx (1) 

where, P(n) stands for the component failure probability after n times of load (stress) 
action, f(x) stands for the probability density function of component strength, and g(y) 
stands for the probability density function of the stress subjected to the component. 

Obviously, in the situation of one time of load action, Eq. 1 degenerates into the 
traditional load-strength interference model for failure probability calculation: 

P = 1 − 
∞∫

0 

f (x) 
x∫

0 

g(y)dydx (2) 

In principle, failure rate modeling is much the same as failure probability 
modeling, both can be achieved through load-strength interference analysis, since 
both the failure rate and the failure probability is determined by the load distribution, 
strength distribution, the times of load action, and the strength degradation behavior. 

Indeed, life distribution can also be derived by means of load-strength interference 
analysis [17]. Different load distributions and/or strength distributions, together with 
their competition relations, yield different life distributions and different failure rate 
curves [17, 18]. Shown in Fig. 3 are the life distributions and failure rate curves of a 
mechanical component subjected to random loads, with strength degrading linearly 
during load actions. All the curves are drawn according to the respective functions 
formulated based on multiple variates stress-strength interference relationship. The 
stresses are presumed to follow the Weibull distribution, and strengths are presumed 
to follow the normal distribution. Figure 3a and b are the life distribution and failure 
rate curve in the situation of large stress dispersion and small safety margin; Fig. 3c 
and d are the life distribution and failure rate curve in the situation of small stress 
dispersion and large safety margin. Both the life distributions and the failure rate 
curves are considerably different for the two different stress-strength combinations. 
For the large stress dispersion situation, the life distribution is no longer the conven-
tional unimodal curve, the failure rate curve presents bathtub shape; for the small
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(a) Life distribution with large stress scatter (b) Failure rate with large stress scatter 

(c) Life distribution with small stress scatter (d) Failure rate with small stress scatter 
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Fig. 3 Life distribution curves and failure rate curves derived from stress-strength distributions 

stress dispersion situation, the life distribution presents unimodal curve, the failure 
rate curve is monotonically increasing. 

Product life distributions are usually assumed to be one of the conventional forms 
such as exponential, normal, log-normal, Weibull, etc. Since none of those might be 
the true distribution of the product life, the failure rate function derived from life 
distribution may differ considerably from the true failure rate. That will mislead the 
understanding to the roles of the influencing factors. 

This chapter introduces different ways to formulate failure rate model. First, failure 
rate functions are established based on stress-strength competition analysis, and the 
effects of stress distribution and strength distribution on failure rate curve shape are 
analyzed and demonstrated. Such failure rate models can clearly reveal the mecha-
nism resulting in different shape of failure rate curves. For instance, it is illustrated 
that the three parts of a bathtub-shaped failure rate curve are not necessarily incurred 
by different root causes, different influencing factors or different failure mecha-
nisms. Any deteriorate type of failure mechanism such as fatigue under random load 
history may bring about bathtub-shaped failure rate curve, whereas fatigue under 
constant amplitude load history leads to monotonically increasing failure rate curve. 
Besides, failure rate models are formulated based on the definition of failure rate 
in the condition that the time variable is discrete, and by virtual of random events 
operation.
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2 Load Order Statistics and Stress-Strength Based Failure 
Rate Modeling 

Assume that Y1, Y2,…,  Yn are independent continuous random variables with proba-
bility density function g(y), y1, y2,…,  yn are n sample values of the random variables, 
and y(1) < y(2) <…<  y(n) the sorted sample values from the minimum to the maximum. 
With the probability density function g(y) and cumulative distribution function G(y) 
of the random variable Y, the probability density function of the 1st order statistic (the 
minimum) Y(1) (denoted by g1(y)) and that of the nth order statistic (the maximum) 
Y(n) (denoted by gn(y)) are, respectively [19]: 

g1(y) = n[1 − G(y)]n−1 g(y) (3) 

gn(y) = n[G(y)]n−1 g(y) (4) 

For mechanical equipment and components, most of them will experience many 
times of random load action during service. In the situation that a product subjects to 
n times of random load action, the n load values can usually be treated as a set of i.i.d. 
(independent, identically distributed) random variables. For static strength failure, a 
product survives n times of load action means that product strength is greater than 
the maximum load (stress) appeared during the n times of load action. Therefore, the 
maximum statistic of the n random loads is the most direct parameter for failure rate 
calculation. Furthermore, it is evident that product failure probability over n times of 
random load action or failure rate at the nth load action depends on the times of load 
action as well as the scatter of the random ld variable, besides the product strength 
random variable. 

Illustrated in Fig. 4 are the distributions of random load variables and the distribu-
tions of the corresponding maximum load order statistics in samples of size 10, 20, 
50, and 500, respectively. It clearly shows that, for the random loads with different 
degrees of uncertainty, the distributions of the maximum load in n times of load 
action differ from each other considerably.

Incorporating stress order statistic into the conventional stress-strength interfer-
ence model for multiple times of load action situations, dynamic (load action number 
dependent) component failure probability model and failure rate model can be devel-
oped. The dynamic characteristic of such models is attributed to the ever changing 
distribution of the maximum load order statistic. That is, the distribution of the 
maximum load order statistic changes continuously with the increase of the load 
action number. Component failure probability after n times of load action can be 
modeled as the following equation which is equivalent to Eq. 1 (see Fig. 5): 

P(n) = 
∞ ∫
0 
f (x) 

∞ ∫
x 
gn(y)dydx (5)
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(a) Larger load dispersion                     (b) Small load dispersion 
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Fig. 4 Distributions of load random variables and their maximum order statistics (o.s.—order 
statistic)
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Fig. 5 Stress order statistic-strength interference relationship 

In the condition that the times of load action (a discrete variable) is used as the 
time or life metric (it is usually treated as a continuous variable for failure rate 
definition), the failure rate of a product at nth load action, denoted by h(n), can be 
defined as the probability of failure caused by this load action, given that the product 
has survived all the previous (n-1) times of load action. Therefore, the failure rate 
h(n) can be derived by means of the relationship between load distribution and the 
strength distribution of the survived products after (n-1) times of load action, just as 
product failure probability can be derived by means of the relationship between load 
distribution and the strength distribution of the product population. To determine 
failure rate h(n) by means of load-strength interference relationship, it is necessary 
to know the strength distribution of the survived products after (n-1) times of load 
action (denoted by f(x,n)). Obviously, the strength of a survived product will not be 
lower than the maximum load in the (n-1) times of load action (assuming no strength 
degradation during the (n-1) times of load action). Based on the strength distribution 
of the survived products, failure rate can be expressed as 

h(n) = 
∞∫

0 

f (x, n) 
∞∫

x 

g(y)dydx (6)
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where, f(x, n) denotes the strength distribution of the survived products after (n-1) 
times of load action. Note that the strength of the product population is a random 
variable distributed in 0 ~∞ ;, whereas the strength of the products survived (n-1) 
times of load action is a random variable distributed in zn-1 ~∞ ; (zn-1 is the maximum 
stress value corresponding to the maximum load in the (n-1) times of load action). 

Generally, the strength distribution of the survived products can be obtained by 
updating the original strength distribution (shown in Fig. 6). As a probability density 
function, it has to satisfy

∫ ∞ 
0 f (x, n)dx  = 1. It is easy to know that the strength 

distribution of the products survived (n-1) times of load action is 

f (x, n) = 0
(
0 < x ≤ z(n−1)

)

f (x, n) = f (x)∫ ∞ 
z(n−1) f (x)dx  

(z(n−1) < x < ∞) (7) 

where, z(n-1) denotes the maximum stress value in (n-1) times of load action. 
As load is a random variable, the maximum stress z(n-1) appeared during (n-1) times 

of load action is a random variable following the maximum order statistic distribution 
of the stress variable. According to the total probability theorem, a failure rate model 
can be developed (Ref. Figure 7. For the sake of simplification, z(n-1) is denoted simply 
by z in the following). That is, failure rate h(n) equals to the statistical average of 
the probability that failure occurs at the nth load action given survived the previous 
(n-1) times of load action, weighted by the probability distribution of the maximum 
stress z(n-1) appeared during the (n-1) times of load action (the probability density 
function of z(n-1) is denoted by gn-1(z)):

h(n) = 
∞∫

0 

gn−1(z) 

⎧⎨ 

⎩ 

∞∫

z 

f (x, n) 

⎡ 

⎣ 
∞∫

x 

g(y)dy  

⎤ 

⎦dx  

⎫⎬ 

⎭dz (8) 

or

Fig. 6 Strength distribution 
of product population and 
those of the products 
survived a certain times of 
load action 
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Fig. 7 Variables and their 
distributions involved in 
failure rate modeling
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h(n) =
∫ ∞ 

0 
gn−1(z) 

⎧⎨ 

⎩ 

∞∫

z 

g(y) 

⎡ 

⎣ 
y∫

z 

f (x, n)dx  

⎤ 

⎦dy  

⎫⎬ 

⎭dz (9) 

In the situation of deterministic load, i.e., when a constant load is applied n times 
to a product, Eq. 9 degenerates as 

h(1) = 
y∫

0 

f (x)dx (10) 

h(n) = 
y∫

y 

f (x, n)dx  = 0 (n ≥ 2) (11) 

where, y is the constant stress value produced by the constant load. 
These two equations demonstrate that, in the condition that a product subjects to 

many times of action of the same load, the failure rate at the first time of load action 
is equal to the failure probability of the product subjected to one time of load action; 
the failure rate at a load action number equal or greater than two equals to zero. It 
is easy to understand that a product survived one time of load action will survive 
forever, since it means that the strength of the product is greater than the stress, and 
it is assumed that the strength keeps the same during the load actions. 

Equations 8 and 9 can also be respectively written as 

h(n) = 
∞∫

0 

gn−1(z) 

⎧⎨ 

⎩ 

∞∫

z 

f (x) 
1 − F(z) 

⎡ 

⎣ 
∞∫

x 

g(y)dy  

⎤ 

⎦dx  

⎫⎬ 

⎭dz (12)
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h(n) = 
∞∫

0 

gn−1(z) 

⎧⎨ 

⎩ 

∞∫

z 

g(y) 

⎡ 

⎣ 
y∫

z 

f (x) 
1 − F(z) 

dx  

⎤ 

⎦dy  

⎫⎬ 

⎭dz (13) 

and 

h(n) = 
∞∫

0 

gn−1(z) 

⎧⎨ 

⎩ 

∞∫

z 

g(y)

[
F(y) − F(z) 
1 − F(z)

]
dy  

⎫⎬ 

⎭dz (14) 

where, F(•) stands for the cumulative distribution function of product strength. 
The above failure rate equations are developed based on load-strength interference 

relationship. The strength distribution can be either component strength or system 
strength, i.e., a product can be either a component or a system. For a series system (any 
component failure results in system failure) composed of m components, denoting 
by Fi(x) the strength distribution of component i, the strength distribution of such a 
system is 

Fseri  (x) = 1 − 
mπ
i=1 

[1 − Fi (x)] (15) 

for a parallel system (system failure occurs if and only if all components fail) 
composed of m components, the system strength distribution is 

Fpara(x) = 
mπ
i=1 

Fi (x) (16) 

In the situation that all components in a system simultaneously subject to the same 
load, system failure rate can be modeled as 

h(n) = 
∞∫

0 

gn−1(z) 

⎧⎨ 

⎩ 

∞∫

z 

g(y) 
Fsys(y) − Fsys(z) 

1 − Fsys(z) 
dy  

⎫⎬ 

⎭dz (17) 

where, Fsys(x) stands for either the series system strength distribution function Fseri(x) 
or the parallel system strength distribution function Fpara(x). 

3 Failure Rate Modeling Based on the Definition 
with Discrete Time Variable 

Product failure rate function h(n) can also be derived through failure rate definition 
and related events operation. Denote the event that a product fails at the nth load
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action by An, denote the event that no failure occurs during the preceding (n-1) times 
of load action by Bn-1, the failure rate at nth load action is the probability that event 
An occurs given that event Bn-1 has occurred, i.e. 

h(n) = P(An|Bn−1) (18) 

According to the conditional probability theorem, the product failure rate (Eq. 18) 
can be expressed as 

h(n) = P(An|Bn−1) = P(An Bn−1)/P(Bn−1) (19) 

Denote the probability that product life N equals to n by P(N = n), denote the 
product failure probability over n times of load action, i.e., the cumulative probability 
of product life corresponding to n times of load action by P(n), i.e., P(n) = P(N ≤ 
n). 

It is easy to know that 

P(An Bn−1) = P(N = n) = P(n) − P(n − 1) 

and 

P(Bn−1) = 1 − P(n − 1) = R(n − 1) 

Therefore, 

h(n) = 
P(n) − P(n − 1) 

R(n − 1)
= 

(1 − R(n)) − (1 − R(n − 1)) 
R(n − 1) 

= 
R(n − 1) − R(n) 

R(n − 1)
= 1 − R(n) 

R(n − 1) 
(20) 

Equation 20 is equivalent to the failure rate definition in the situation of discrete 
time variable, where failure rate at the nth time of load action is defined as the 
probability that the product fails to the nth time of load action given functioning over 
the (n-1) times of load action, i.e., 

h(n) = 
P((n − 1) < N ≤ n) 
P(N > (n − 1)) 

= 
P(n) − P(n − 1) 

R(n − 1) 

= 
R(n − 1) − R(n) 

R(n − 1)
= 1 − R(n) 

R(n − 1) 
(21) 

It is equivalent to the conventional form of the failure rate defined in the situation 
of continuous time variable: 

h(t) = lim
Δt→0 

P(t < N ≤ (t + Δt)) 
P(N > t) · Δt

= lim
Δt→0 

P(t + Δt) − P(t) 
R(t) · Δt

= 
f (t) 
R(t) 

(22)
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From Eq. 20, 

h(n) = 1 −
∫ ∞ 
0 f (x)

(∫ x 
0 gn(y)dy

)
dx∫ ∞ 

0 f (x)
(∫ x 

0 gn−1(y)dy
)
dx  

(23) 

Or 

h(n) = 1 −
∫ ∞ 
0 gn(y)

(∫ ∞ 
y f (x)dx

)
dy

∫ ∞ 
0 gn−1(y)

(∫ ∞ 
y f (x)dx

)
dy  

(24) 

On the other hand, event An and Bn-1 occur simultaneously means that failure 
occurs and only occurs at the nth time of load action during all the n times of loading. 
The probability that the event An (the event that product fails at the nth load action) 
and the event Bn-1 (the event that no failure occurs during the preceding (n-1) times 
of load action) occur simultaneously is 

P(An Bn−1) = 
∞∫

0 

f (x) 

⎧⎨ 

⎩ 

∞∫

x 

g(y)dy  

⎡ 

⎣ 
x∫

0 

g(y)dy  

⎤ 

⎦ 
n−1⎫⎬ 

⎭dx (25) 

According to Eq. 19, 

h(n) =
∫ ∞ 
0 f (x)

{∫ ∞ 
x g(y)dy  · [∫ x 

0 g(y)dy
]n−1

}
dx

∫ ∞ 
0 f (x)

{[∫ x 
0 g(y)dy

]n−1
}
dx  

(26) 

It is easy to numerically testify that the three types of failure rate equations, i.e. 
Eqs. 9, 23 and 26, yield perfectly coincident failure rate curves as shown in Fig. 8. 

In the situation of deterministic load, i.e., when the same load is applied many 
times to a product, from Eq. 24

Fig. 8 Failure rate curves 
yielded by different 
equations 
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h(1) = 1 − 
∞∫

y 

f (x)dx  = 
y∫

0 

f (x)dx (27) 

h(n) = 0 (n ≥ 2) (28) 

from Eq. 26, 

h(1) = 
∞∫

0 

f (x) 

⎧⎨ 

⎩ 

∞∫

x 

g(y)dy  

⎫⎬ 

⎭dx  = 
∞∫

0 

g(y) 

⎧⎨ 

⎩ 

y∫

0 

f (x)dx  

⎫⎬ 

⎭dy  = 
y∫

0 

f (x)dx  (29) 

h(n) = 0 (n ≥ 2) (30) 

It illustrates that the different types of failure rate equations degenerate into the 
same failure rate equation in deterministic load condition. 

4 Effect of Load/Strength Dispersion on Failure Rate 

To demonstrate the effects of load uncertainty and strength uncertainty on product 
failure rate, failure rate curves corresponding to different load-strength combinations 
are illustrated below. Both the loads and the strengths are assumed to follow the 
normal distribution. The respective expectations and standard deviations are listed in 
Table 1. Where, μy stands for the mean of stress, σy stands for the standard deviation 
of stress; μx stands for the mean of strength, and σx stands for the standard deviation of 
strength. Failure rate curves corresponding to these four load-strength combinations 
are obtained by means of Eq. 9, shown in Fig. 9 as “base line”, “high load std”, 
“high strength std” and “higher load/strength std”, respectively. It is demonstrated 
that the statistical characteristics of load distribution and strength distribution have 
considerable effect on failure rate curve shape. 

The failure rate curves shown in Fig. 9 are decreasing because product strength 
is assumed no degradation during load actions. The decreasing failure rate is due 
to the fact that, after a certain times of load action, the survived products are those 
having higher strength in the population, and the products survived more times of

Table 1 Parameters of four pairs of load-strength distributions 

ID μy σ y μx σ x 
Base line 400 40 600 40 

High load std 400 80 600 40 

High strength std 400 40 600 80 

Higher load/strength std 400 60 600 60
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Fig. 9 Failure rate curves 
corresponding to different 
load-strength combinations

0 

0.002 

0.004 

0.006 

0 2000 4000 6000 8000 10000 

Fa
ilu

re
 ra

te
 

Number of Load cycles 

Base line 
High load std 
High strength std 
Higher load/strength std 

random load action have higher strength than those survived less times of random 
load action. Therefore, at the next time of load action, the products experienced more 
times of random load action have lower failure probability. 

In the situation of deterministic strength, i.e., all the products have the same 
strength, the failure rate equation degenerates from Eq. 8 as 

h(n) = 
∞∫

0 

gn−1(z) 

⎧⎨ 

⎩ 

∞∫

z 

f (x, n) 

⎡ 

⎣ 
∞∫

x 

g(y)dy  

⎤ 

⎦dx  

⎫⎬ 

⎭dz= 
∞∫

x 

g(y)dy (31) 

from Eq. 23 as 

h(n) = 1 −
∫ ∞ 
0 f (x)

(∫ x 
0 gn(y)dy

)
dx∫ ∞ 

0 f (x)
(∫ x 

0 gn−1(y)dy
)
dx  

= 1 −
∫ x 
0 gn(y)dy∫ x 

0 gn−1(y)dy  
= 1 − 

Gn(x) 
Gn−1(x) 

= 1 − G(x) 

= 1 −
∫ x 

0 
g(y)dy  =

∫ ∞ 

x 
g(y)dy (32) 

from Eq. 26 as 

h(n) =
∫ ∞ 
0 f (x)

{∫ ∞ 
x g(y)dy  · [∫ x 

0 g(y)dy
]n−1

}
dx

∫ ∞ 
0 f (x)

{[∫ x 
0 g(y)dy

]n−1
}
dx  

=
∫ ∞ 
x g(y)dy  · [∫ x 

0 g(y)dy
]n−1

[∫ x 
0 g(y)dy

]n−1 =
∫ ∞ 

x 
g(y)dy (33) 

By these equations, it is illustrated that product failure rate is a constant indepen-
dent on the times of load action in condition of deterministic strength. Besides, it is 
proved once more that the three failure rate equations, i.e., Eqs. 9, 24 and 26 are the 
same.



Failure Rate Modeling of Mechanical Components and Systems 147

5 Strength Degradation Effect on Failure Rate 

Under cyclic loading, material property will degrade gradually if the stress is high 
enough, and the strength becomes less and less. Different products or materials have 
different strength degradation patterns. Some materials show an approximate linear 
relationship between residual strength and load action number, others show various 
type of non-linear relationships. First, consider the situation that material strength 
degrades in power law as described by Eq. 34 and shown in Fig. 10. 

S(n) = S0(1 − ( 
n 

N 
)e ) (34) 

where, S(n) stands for the material strength (residual strength) after n times of load 
action, n stands for the number of load actions, S0 stands for the original mate-
rial strength, N stands for the fatigue life under the cyclic stress, e is a constant 
characterizing strength degradation rate. 

With material strength degradation behavior incorporated, the basic failure rate 
equation (Eq. 9) becomes 

h(n) = 
∞∫

0 

gn−1(z) 

⎧⎨ 

⎩ 

∞∫

z 

g(y) 

⎡ 

⎣ 
y∫

z 

fS(x, n)∫ ∞ 
z fS(x, n)dx  

dx  

⎤ 

⎦dy  

⎫⎬ 

⎭dz (35) 

where, fS(x, n) stands for the probability density function of the residual strength 
after (n-1) times of load action. 

Shown in Fig. 11 are the strength distribution of the original products and those 
subjected to a certain times of random load action. Where, “original” is the strength 
distribution of the new products subjected to no load action, “slightly degraded”, 
“moderately degraded” and “seriously degraded” are the products after a small, 
moderate and large numbers of random load actions, respectively. Correspondingly,

Fig. 10 Material strength 
degradation curves—Power 
law 
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shown in Fig. 12 are the strength distribution of the population consist of all the 
products subjected to no load action, and those of the sub-populations consist of 
products survived a small, moderate and large numbers of random load actions, 
respectively. 

For the normal-distributed strength S(n) ~ N(μx(n), σ x(n)), suppose that the mean 
value of strength decreases with load action times n as 

μx (n) = μ0(1 − ( 
n 

N 
)e ) (36) 

where, μ0 stands for the mean of the original strength. 
Under cyclic loading, the dispersion of the residual strength will also change 

gradually. For the sake of simplicity, especially in the situation of no enough strength 
degradation data available, strength standard deviation σ x can be assumed no change, 
i.e., 

σx (n) = constant (37)

Fig. 11 Distributions of 
residual strength 
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Fig. 12 Distributions of 
strength of survivals 
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Fig. 13 Failure rate curves in the situation of strength degrading in power law 

The typical failure rate curves corresponding to different load-strength combi-
nations and different strength degradation rates are obtained by Eq. 35 and shown 
in Fig. 13. It demonstrates that different strength degradation rates yield obviously 
different failure rate curves. 

Some materials show logarithmic strength degradation described by the following 
equation: 

S(n) = S0 + (S0 − σ ) ln(1 − n/(N + 1))/ ln(N + 1) (38) 

where, S(n) stands for residual strength after n times of load action, n stands for the 
number of load actions, N stands for the number of load action to material fatigue 
failure, i.e., the fatigue life under the cyclic stress σ. 

Shown in Fig. 14 are test data of specimens made of normalized carbon steel and 
the logarithmic strength degradation curves, in which the mean of the ultimate tensile 
strength, i.e., the mean original strength is 1180 MPa. 

When the logarithmic strength degradation equation is incorporated into the basic 
failure rate model, the typical failure rate curve of bathtub shape can be yielded by

Fig. 14 Strength degradation test data and the logarithmic residual strength curves 
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Eq. 35 (shown in Fig. 15a). The typical bathtub curve is for a component in the 
condition that stress follows the normal distribution N(450, 202), strength follows 

the normal distribution N
(
600 + 300 × ln(1−n/(N+1)) 

ln(N+1) , 302
)
. Comparing with the 

failure rate curves obtained in the situation of strength degrading in power law, 
it demonstrates that strength degradation pattern influences the shape of failure rate 
curve considerably. Besides, both load distribution and strength distribution influence 
failure rate curve shape considerably, too. In the extreme situation of deterministic 
load, failure rate will increase monotonically with the degradation of strength, so 
it is not surprised to get a monotonically increasing failure rate curve as shown in 
Fig. 15b. The different curves in Fig. 16 correspond to different load distribution— 
strength distribution combinations. Shown in Fig. 17a are the failure rate curve of a 
component in the condition that stress follows the normal distribution N(450, 202), 

strength follows the normal distribution N
(
600 + 300 × ln(1−n/(N+1)) 

ln(N+1) , 402
)
, and the 

failure rate curve of a series system composed of 10 identical components, Fig. 17b 
are a failure rate curve of a component and that of a parallel system consist of 10 
components. 

(a) Bathtub shaped failure rate curve (b) Failure rate under deterministic load 
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Fig. 15 Failure rate curves yielded by Eq. 35 in the situation of logarithmic strength degradation 

Fig. 16 Failure rate curves 
corresponding to different 
load/strength distributions 
(note: parameters shown on 
graph: stress mean-stress 
std-strength mean-strength 
std)
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(a) Component and series system (b) Component and parallel system 
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Fig. 17 Failure rate curves of a components and systems consist of 10 components 

The above situations demonstrate that products (components or systems) failure 
rate curves present on different shapes depending on system configuration, the 
underlying failure mechanism and stress-strength relationship of the components. 

6 Mechanism to Yield Failure Rate Curve of Roller Coaster 
Shape 

As mentioned above, the shape of product failure rate curve depends on many factors 
including product property, load characteristics, failure mechanism, etc. Product 
failure rate may be as simple as a constant value, a monotonically increasing curve 
or a monotonically decreasing curve. It may also be as complicated as a bathtub 
curve or a roller coaster curve as shown in Fig. 18. 

The roller-coaster type of failure rate curve shown in Fig. 18a is obtained in the 
situation that the product population can be divided into two sub-populations. Two 
potential failure modes exist for the population. A product in the population might 
fail in either failure mode with a respective probability. Here, one failure mode is 
related to Weibull distributed stress with shape parameter 2.0 and scale parameter 200,
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Fig. 18 Failure rate curves of roller coaster shape 
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normal distributed strength with original mean 600 and standard deviation 60, the 
mean strength degrades in logarithmic law with a life index 2000; the other is related 
to normal distributed strength with original mean 600 and standard deviation 120, 
the strength mean degrades in logarithmic law with a life index 1000. The probability 
for the first failure mode to take place is 0.7, and that for the second failure mode is 
0.3. That is, 70% products in the population belong to one sub-population, the other 
30% belong to another sub-population. 

Shown in Fig. 18b is the situation of Weibull distributed stress with shape param-
eter 2.0 and scale parameter 150, strength characteristics are the same as mentioned 
above despite that the probability for the first failure mode to take place is 0.9, and 
that for the second failure mode is 0.1. 

By the way, for a failure rate curve of bathtub shape, the high failure rate in the 
infant mortality phase is traditionally attributed to products with material flaw or 
manufacture defect. The fact is that, if the products can be divided into two groups as 
perfect and defective, the failure rate curve will present roller coaster shape as shown 
in Fig. 18. In such a product population, part of the products has manufacture defects 
manifested as lower strength and higher failure probability in the infant motility stage, 
others do not have manufacture defect, and therefore, their failures occur mainly in 
wear out stage. 

Furthermore, it is traditionally believed that after the failures of the defective 
products, the survived products will keep a low and roughly constant failure rate for 
a long time until they begin to wear out. The failure, i.e., the so-called chance failure 
in this period is attributed to unexpected factors. Such an explanation is also plausible, 
since if there are the so called “unexpected factors”, they will exist throughout the 
product service life, not only in the chance failure stage. In fact, the failure rate model 
has illustrated that the roughly constant failure rate in the useful life period is the 
result of stress-stress competition, instead of unexpected factor. 

Since product failure or not during service is determined by the dynamic compe-
tition relationship between load and strength, the decreasing failure rate in the first 
stage of product service life is natural for products subjected to multiple times of 
random load action. If a sub-population, dominated by quality-control defects due 
to poor workmanship, out-of-specification incoming parts and materials, and other 
substandard manufacturing practices, exists in the product population, there will be 
more than one failure mechanisms or failure modes, the corresponding failure rate 
curve will present roller coaster shape. In other words, if only a part of the products 
in a population suffers from a certain failure mechanism leading to shorter lifetime, 
the failure rate curve might present roller coaster shape. 

Strength degradation under repeatedly loading results in increasing failure rate. 
Provide that product property keeps the same during its service life, i.e., no strength 
degrading during load actions, a product will never fail to a load not greater than 
those experienced. That is, such a product can only fail when a load higher than 
all the preceding ones is applied. For a steady random load process, the probability 
for a higher load to appear is less and less with the increase of the loading history. 
Therefore, given that strength keeps no change, failure rate will decrease with the 
increase of product service time as show in Fig. 19a. In the condition that strength
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(a) Decreasing failure rate (b) Increasing failure rate 
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Fig. 19 Failure rate curves in different situations 

degrades gradually, the failure rate is increasing for a component with large safety 
margin or a component subjected to a deterministic load as shown in Fig. 19b. 

Although the shapes of failure rate curve are various, failure is essentially the result 
of the competition between load and strength. In this regard, whether a product fails at 
a certain load action or not depends on the load and the strength at that moment. Like-
wise, failure rate at a certain load action number is determined by load distribution 
and strength distribution including its time dependent degradation behavior. Based 
on load-strength competition behavior, it is easy to understand that the failure rate 
curve of bathtub shape comes from the continuously changing competition relation-
ship between the random load and degrading strength, the failure rate curve of roller 
coaster shape manifests the diversity of product strength in the same population. 

7 Conclusion 

Failure rate models are developed for components and systems based on dynamic 
load-strength competition analysis. It is illustrated that whether the failure rate, as a 
function of the times of load action, takes on bathtub shape or not is mainly determined 
by stress-strength relationship. The reason for decreasing failure rate is the less and 
less probability that a higher load appears with the increase of preceding load action 
numbers, the increasing failure rate is caused by strength degradation. The models, 
together with the failure rate curves corresponding to the models, highlight the effect 
of the statistical characteristics of load and strength on the shape of failure rate curve, 
as well as the role of strength degradation. 

It is clearly demonstrated that if product strength doesn’t degrade, failure rate 
curve takes on the feature of the first two stages of a typical three-stage bathtub-
shaped curve only, i.e., failure rate decreases continuously with the number of load 
actions, with lower and lower gradient. When the effect of strength degradation 
exceeds the effect of the decreasing probability of higher load appearing, the failure
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rate begins to increase. In other words, the decreasing failure rate stage is dominated 
by the statistical risk of load, whereas the increasing failure rate stage is dominated 
by strength degradation. 

For a population containing defective products, the failure rate curve may present 
roller coaster shape. Generally, a failure rate curve of roller coaster shape will appear 
in a population where different failure mechanisms or different failure modes exist 
in different products. 
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Statistical Reliability Modeling 
and Analysis for Repairable Systems 
with Bathtub-Shaped Intensity Function 

Suk Joo Bae, Byeong Min Mun, and Paul H. Kvam 

Abstract The nonhomogeneous Poisson process (NHPP) has become a useful 
approach for modeling failure patterns of recurrent failure data revealed by minimal 
repairs from an individual repairable system. This work investigates complex 
repairable artillery systems that include several failure modes. We propose a super-
posed log-linear process (S-LLP) based on a mixture of nonhomogeneous Poisson 
processes in a minimal repair model. This allows for a bathtub-shaped failure inten-
sity that models artillery data better than currently used methods. The method of 
maximum likelihood is used to estimate model parameters and construct confi-
dence intervals for the cumulative intensity of the S-LLP. Additionally, for multiple 
repairable systems presenting system-to-system variability, we apply the mixed-
effects models to recurrent failure data with bathtub-shaped failure intensity, based on 
the superposed Poisson process models including S-LLP. The mixed-effects models 
explicitly involve between-system variation through random-effects, along with a 
common baseline for all the systems through fixed-effects. Details on estimation of 
the parameters of the mixed-effects superposed Poisson process models and construc-
tion of their confidence intervals are examined in this work. An applicative example 
of multiple artillery systems shows prominent proof of the mixed-effects superposed 
Poisson process models for the purpose of reliability analysis. 
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1 Introduction 

Modern systems consist of numerous parts working together, making the mainte-
nance action for the systems more difficult. In general, systems can be classified 
into repairable and non-repairable systems according to feasibility of maintenance 
activity. A repairable system is one that can be restored to an operating condition 
without replacement of the entire system after some repair activity is executed. For the 
repairable system, the patterns of failures collected after successive repairs are very 
important to establish an effective maintenance policy. For example, increasing time 
intervals between failures suggest reliability improvement, while decreasing time 
intervals imply reliability deterioration. Repair processes of this type can emulate a 
minimal repair model in which the repair or the substitution of a failed part tends 
to have a negligible effect on overall system reliability, restoring the system perfor-
mance to the exact same condition as it was just before the failure. Because the system 
is restored to its current state (immediately preceding the most recent failure), the 
assumption of minimal repair reveals a failure pattern governed by a nonhomoge-
neous Poisson process (NHPP). The NHPP has garnered significant attention in the 
reliability literature [1, 2]. 

2 Nonhomogeneous Poisson Process Model 

The NHPP is defined by its nonnegative intensity function λ(t). The expected number 
of failures in the time interval (0, t] is obtained by Ʌ(t) = ∫ t 

0 λ(u) du. The intensity 
function λ(t) is equal to the rate of occurrence of failures (ROCOF) associated with 
the repairable system [2]. When the intensity function is constant, i.e., λ(t) ≡ λ, 
the process reduces to a homogeneous Poisson process (HPP). The NHPP has been 
widely used in modeling failure frequency for repairable systems because of its 
flexibility and mathematical tractability via its intensity function λ(t) [3]. 

2.1 Monotonic Failure Intensity Model 

The most commonly applied form of NHPP is the power law process (PLP). Crow 
[4] suggested a PLP model under “find it and fix it” conditions with the intensity 
function 

λ(t) = β 
α

(
t 
α

)β−1 
, t > 0 (1) 

where β (> 0) and α (> 0) are the shape and scale parameters, respectively. The 
corresponding mean cumulative number of failures over (0, t] is Ʌ(t) = (

t 
α

)β 
. As  

another functional form of NHPP, a log linear process (LLP) has intensity function
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λ(t) = γ eκt , t > 0 (2) 

and the corresponding mean cumulative number of failures over (0, t] is Ʌ(t) = 
γ κ−1

(
eκt − 1

)
, for the parameters γ (>  0) and κ . The LLP model was first proposed 

by Cox and Lewis [5] to model air conditioner failures. The PLP and the LLP 
models have been employed to model failure patterns of a repairable system having 
monotonic intensity, i.e., decreasing failure patterns (reliability improve- ment) with 
β < 1 (κ < 0) or increasing failure patterns (reliability deterioration) with β >  1(κ > 
0). When β = 1(κ = 0), , the PLP (LLP) reduces to the HPP. 

The intensity function of the PLP model tends to infinity as the system age 
increases, whereas the observed failure process may have a finitely bounded intensity 
function. Considering NHPPs with a finite and bounded intensity function, Pulcini 
[6] proposed a bounded intensity process (BIP) with intensity function 

λ(t) = a
[
1 − e− t b

]
. a, b > 0; t > 0 (3)  

The intensity function is increasing and bounded, approaching an asymptote of a 
as t tends to infinity. 

2.2 Non-monotonic Failure Intensity Model 

In some cases, a repairable system is subject to early (or infant mortality) failures 
due to the presence of assembly defects that are not screened out completely through 
the burn-in process, as well as wear-out failures caused by deteriorating phenomena. 
This causes a so-called bathtub-shaped failure intensity, which is typical for large 
and complex systems that are characterized by a number of different failure modes 
[7]. The PLP and the LLP models are too simplistic to accommodate this bathtub 
characteristic of the failure process. As an alternative, unions of several independent 
NHPPs called superposed Poisson processes (SPPs) have been developed to model 
this kind of non-monotonic failure intensity. When any subsystem failure can inde-
pendently cause the system to break down, the superposed model is a natural model 
for the failure of the system. For an SPP based on J independent processes, let N j (t) 
be the number of failures in (0, t] for the jth subsystem ( j = 1, 2, ..., J ) with the 
intensity function λ j (t) = dE

[
N j (t)

]
/dt . The number of failures in (0, t] for the 

system in the SPP is characterized by N(t) =∑J 
j=1 Nj(t). If  Nj(t), j = 1, 2, ..., J are 

independent nonhomogeneous Poisson processes, then N(t) is also the NHPP with 
intensity function λ(t) =∑J 

j=1 λj(t) 
SPPs have found successful application in modeling software reliability, where 

early detection and removal of coding errors can sometimes lead to reliability growth, 
e.g., the Musa-Okumoto process [8] for modeling recurrent errors in a software. 
Pulcini [9] proposed the superposition of two independent power law processes 
(called the “superposed power law process” (S-PLP)) to model the bathtub-shaped
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failure pattern of a repairable system with intensity function 

λ(t) = β1 

α1

(
t 
α1

)β1−1 + β2 

α2

(
t 
α2

)β2−1 
, α  j , β  j > 0, j = 1, 2 (4) 

In Pulcini’s model, the parameters β1 and β2 determine the failure patterns of 
a repairable system. For example, β1 < 1 models the failure pattern of a system 
improving over time, while β2 > 1 models that of a system deteriorating over time. 
As a result, the S-PLP with β1 < 1 and β2 > 1 is able to model a repairable 
system with the bathtub-shaped failure intensity. Yang and Kuo [10] proposed the 
superposition of the Musa-Okumoto process and the power law process as 

λ(t) = β1 

t+α1 
+ α2β2tβ2−1 α j , β  j > 0, j = 1.2 (5) 

with corresponding mean cumulative number of failures (0, t], Ʌ(t) = 
β1 ln

(
1 + t 

α1

)
+ α2tβ2 . As Hjorth [11] pointed out, this intensity function has 

increasing, decreasing, and bathtub types of shapes. Later, Guida and Pulcini [12] 
proposed the bathtub bounded intensity process (BBIP) represented by the following 
superposed intensity function 

λ(t) = ae−t/b + α
(
1 − e− t 

β

)
, a, b, α, β  >  0, (6) 

where the first component represents a log-linear process with decreasing intensity 
function and the latter component is a bounded intensity process with increasing 
bounded intensity function [6]. Guida and Pulcini [12] showed that the BBIP is able 
to model the failure pattern of a repairable system subject to both early failures and 
deterioration phenomena, featuring a finite asymptote as the system age increases. 

This work is mainly motivated by unscheduled maintenance data of artillery 
systems collected during exercise in the field over a fixed period of time from the 
Republic of Korea (ROK) army. Some of the artilleries are subject to early failures 
due to the presence of defective parts or assembling defects, as well as wear-out 
failures caused by deteriorating phenomena. This causes a non-monotonic trend in 
the failure data in which the intensity function initially decreases followed by a 
long period of constant or near constant intensity until wear-out finally occurs, at 
which time the intensity function begins to increase. We found that existing models 
including the S-PLP and the BBIP did not adequately capture the non-monotonic 
trend in the failure process for this field artilleries. Because of this, we propose a 
superposed log-linear process (S-LLP) to model ROK Army artillery system failures, 
and we derive the maximum likelihood estimators (MLEs) for the model parameters, 
along with their confidence intervals. Based on the NHPP models for a repairable 
system, we will go over the application of mixed-effects models for recurrent failure 
data from multiple repairable systems for the purpose of reliability analysis.
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3 Superposed Log-Linear Process for Bathtub-Shaped 
Intensity 

Consider a repairable system with failures observed over the time interval (0, T ]. 
Suppose that the failures are subject to two different failure modes, and that each of 
the modes are modeled by an LLP with parameters α j and β j for j = 1, 2. . We  
propose a superposed log-linear process (S-LLP) with intensity function 

λ(t) = α1e−β1t + α2e−β2t , α1, α2, β1, β2 > 0, (7) 

for t ≥ 0. A key difference between the S-LLP and previously mentioned SPPs is 
evident in the parameters β1 and β2. By limiting them to be strictly non-negative, the 
superposed process is a mixture of an increasing and a decreasing pair of intensity 
functions. Note that if β1 = β2 = 0, , the S-LLP is reduced to the homogeneous 
Poisson process (HPP) with a constant intensity λ ≡ α1 + α2. Unlike the S-PLP 
intensity function for β1 < 1 or β2 < 1, , the S-LLP intensity function (7) is finite at 
t = 0. The first derivative of intensity function λ(t) with respect to t , 

λ
'(t) = −α1e−β1t + α2eβ2t , 

is equal to α2β2 − α1β1 at t = 0, hence λ(t) is initially decreasing if and only if 
α1β1 > α2β2, and λ'(t) is equal to 0 at t = τ , where τ is given by 

τ = 1 
β1+β2 

ln
(

α1β1 

α2β2

)
(8) 

The point with minimum intensity (τ ) lies between 0 and T if 0 ≤ 
ln(α1β1/α2β2) ≤ (β1 + β2)T . The second derivative of the intensity function is 

λ''(τ ) = α1β
2 
1 e

−β1τ + α2β
2 
2 e

β2τ > 0, (9) 

and τ represents a unique time-point having minimum intensity value 

λ(τ ) = α1e−β1τ
(

β1+β2 

β2

)
. (10) 

That is, the intensity decreases until t = τ , after which it increases from t = τ 
to t = T . Thus, the intensity function (7) reflects a bathtub behavior of sequential 
failures in a repairable system when the system is subject both to early failures and 
to wear-out failures. The expected number of failures up to t is given by

Ʌ(t) = 
t ∫
0 
λ(u)du = α1 

β1

(
1 − e−β1t

)+ α2 
β2

(
eβ2t − 1

)
, t ≥ 0. (11)



160 S. J. Bae et al.

Similar to the S-PLP, it is the sum of expected number of failures caused by each 
failure mode, and it has an inflection point. 

3.1 Maximum Likelihood Estimation 

We consider the likelihood function for an NHPP with the first n failure-times, 
t ≡ (t1 < t2 < · · ·  < tn), which are observed until T . Under a failure-truncated 
sampling, the log-likelihood function of the S-LLP is

l(α1, α2, β1, β2; t) = 
n∑

i=1 

ln
[
α1e

−β1ti + α2e
β2ti
]

−
[
α1 

β1

(
1 − e−β1tn

)+ 
α2 

β2

(
eβ2tn − 1

)
]

, 
(12) 

and tn is replaced by T under a time-truncated sampling. The maximum likelihood 
estimators (MLEs) of the parameters θ ≡ (α1, α2, β1, β2)

T can be found by solving 
the following likelihood equations: 

∂l

∂α1 
= 

n∑

i=1 

e−β1ti 

α1e−β1ti + α2eβ2ti 
− 

1 

β1

(
1 − e−β1tn

) = 0, 

∂l

∂β1 
= 

n∑

i=1 

−α1ti e−β1ti 

α1e−β1ti + α2eβ2ti 
+
[

α1 

β2 
1

(
1 − e−β1tn

)− 
α1tn 
β1 

e−β1tn

]

= 0, 

∂l

∂α2 
= 

n∑

i=1 

eβ2ti 

α1e−β1ti + α2eβ2ti 
− 

1 

β2

(
eβ2tn − 1

) = 0, 

∂l

∂β2 
= 

n∑

i=1 

α2ti eβ2ti 

α1e−β1ti + α2eβ2ti 
+
[

α2 

β2 
2

(
eβ2tn − 1

)− 
α2tn 
β2 

eβ2tn

]

= 0, (13) 

Obviously, there is no closed form solution to the MLEs in (13), and these equa-
tions must be solved numerically. Even though l(α1, α2, β1, β2; t) is an amalga-
mation of relatively well-behaved (generally concave) functions, a general search 
method such as Newton–Raphson is slow to work across four dimensions. In this 
work, we introduce a slightly more efficient numeric method based on a conditional 
likelihood method used by Cox and Lewis [5]. 

Once the MLEs of the model parameters have been obtained, the MLEs of other 
quantities of interest, such as the expected number of failures up to a given time,
Ʌ(t), as well as the probability distribution of the number of failures occurring in a 
future time interval Pr{N (T, T + Δ) = k}, can be given as 

Ʌ̂(t) = α̂1 

β̂1

(
1 − e− β̂1t

)
+ α̂2 

β̂2

(
e β̂2t − 1

)
, (14)
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and 

Pr
Ʌ

{N (T , T + Δ) = k} =
[
Ʌ̂(T +Δ)− ̂Ʌ(T )

]k 

k! · e−
[
Ʌ̂(T +Δ)− ̂Ʌ(T )

]

, 

for k = 0, 1, 2, . . .  and Ʌ̂(T ) = n. 
We can construct confidence intervals for these and other functions based on 

standard errors derived from the (observed) Fisher information matrix. A large-
sample approximation of estimated standard errors of the ML estimators is given by 

the estimated variance–covariance matrix ∑̂
θ̂ for θ̂ ≡

(
α̂1, β̂1, α̂2, β̂2

)T 
, where ∑̂

θ̂ 
is computed as the inverse of the estimated Fisher information matrix. 

We are primarily interested in constructing confidence intervals forɅ(t) instead of 
the basic parameter set θ . We approximate the standard error forɅ(t) using properties 
of ∑̂

θ̂ and by using the delta method on (14). In general, for a differentiable real-

valued function g(θ ), the approximate standard error of ĝ ≡ g
(
θ̂
)
can be obtained 

by using the delta method as 

s.e.
Ʌ(

ĝ
) = 

/
4∑

i=1

(
∂g 
∂θi 

|
θ̂

)2 
Var
Ʌ(

θ̂i

)
+ 

4∑

i=1 

4∑

j /=i

(
∂g 
∂θi 

|
θ̂

)(
∂g 
∂θ j |θ̂

)
Cov
Ʌ(

θ̂i , θ̂ j
)
, (15) 

where (θ1, θ2, θ3, θ4) ≡ (α1, β1, α2, β2). 
When the function g(θ ) is invertible, the approximate standard error (15) is  

exactly same as that given by the estimated variance–covariance matrix relative to 
the log-likelihood function re-parameterized in term of g. On the other hand, when 
g(θ ) is not invertible (as in the case of Ʌ(t)), the log-likelihood function cannot 
be re-parameterized directly, and the delta-method seems to be the only available 
method that does not require resampling methods [12]. The approximate (1 − γ)% 
confidence interval for the function g results in either 

ĝ ± zγ /2 · s.e.
Ʌ(

ĝ
)

or ĝ exp

{

±zγ /2 · s.e.
Ʌ(

ĝ
)

ĝ

}

using the normal approximation or the lognormal approximation, respectively. 
Although the normal assumptions (based on asymptotic properties of the MLE) 
are not perfectly realized for Ʌ̂(t) at small values of t , we do not consider trans-
formations in this case because confidence intervals for Ʌ(t) are of more interest at 
values of t not close to zero.
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3.2 Analysis of Artillery Repair Data 

The proposed model was applied to field repair data of eight sets of artillery systems. 
Each artillery system was subject to minimal repair at time of failure and all failure 
data for the eight artillery systems were treated as failure-truncated samples. As 
shown in Fig. 1, due to a number of failures observed during the early and final 
periods of data collection, the bathtub-shaped failure intensity potentially seems to 
be appropriate to describe the failure pattern of the artillery systems. 

In practice, decisions concerning failure patterns have been made using graphical 
techniques or statistical trend tests [2]. The total time on test (TTT) plot [13] helps 
reveal failure patterns through curvature. A bathtub-shaped failure process can be 
observed in a TTT plot by an S-shaped function. For example, the first artillery 
data set (ID-1) consists of 62 failure-times observed until t62 = 1, 452 hours and 
its TTT plot is contained in Fig. 2, which shows a clear indication of a bathtub-
shaped intensity function for failure data of the system. It was observed that the

Fig. 1 Event plot showing failure times for eight sets of ROK artillery repair data across a 1500 h 
period of observation 
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Fig. 2 Total Time on Test (TTT) plot for failure data of ROK artillery ID-1 

bathtub-shaped patterns of failures are also dominant in the other artilleries in the 
TTT plots. 

As a test for non-monotonic trends in recurrent failures, a large positive value of 
Vaurio’s statistic [14] 

V =
∑n 

i=1|ti − tn/2| − ntn/4 
tn 

√
n/48 

indicates the presence of a bathtub behavior, while a large negative value indicates 
the presence of an inverse bathtub behavior. In applying the Vaurio’s trend test to 
eight sets of artillery repair data, we summarized the test results in Table 1, along 
with their p-values. At significance level α = 0.05, the test results provide statistical 
evidence of the bathtub behavior of failure intensity with respect to failure data of 
the eight artillery systems.

Based on the log-likelihood in (12), MLEs for S-LLP model parameters were 
computed using the artillery data and the details on the algorithm are described 
at Appendix A in Mun et al. [15]. Estimates of the S-LLP model, along with 
their standard errors, are given in Table 2. To obtain the standard errors of θ̂ ≡
(
α̂1, β̂1, α̂2, β̂2

)T 
, the estimated variance–covariance matrix was computed as the 

inverse of the estimated Fisher information matrix. For artillery ID-1, for instance, 
the estimated variance–covariance matrix is
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Table 1 Statistical trend tests 
for eight sets of ROK artillery 
repair data 

ID Vaurio’s statistic (V ) p-value 

1 3.9790 < 0.0001 

2 1.9863 0.0235 

3 2.5615 0.0052 

4 2.5967 0.0047 

5 3.3462 0.0004 

6 3.6172 0.0001 

7 3.5558 0.0002 

8 4.3812 < 0.0001

∑̂
θ̂ = 

⎡ 

⎢ 
⎢ 
⎣ 

276.0 −12.40 11.80 26.90 
0.330 −0.170 −0.331 

0.010 0.015 
0.023 

⎤ 

⎥ 
⎥ 
⎦ × 10−6

and the standard errors of θ̂ are the square roots of diagonal elements in ∑̂
θ̂ . 

Approximate 95% confidence intervals for θ can be constructed using the lognormal 
approximation. 

Using the MLEs for the S-LLP model parameters, we can obtain the MLE for the 
expected number of failures, Ʌ̂(t), from (14). Figure 3 depicts Ʌ̂(t) under the S-PLP 
and the BBIP assumption, as well as Ʌ̂(t) under the S-LLP assumption. The figure 
shows that the S-LLP provides the best representation for the whole data set of eight 
artillery systems. Admittedly, the S-LLP model, as well as the S-PLP and the BBIP 
models, fails to handle the early failure data. All of the artillery repair data contain 
a time-lag to first failure (see Fig. 1), and it is not easy for the superposed models to 
represent a bathtub-shaped failure intensity that can explicitly fit the time-lag to first 
failure. More complex and highly parameterized models, for instance, that include 
the addition of a constant into the intensity functions of S-PLP, BBIP, and S-LLP, may 
be an alternative to capture the time-lag, but it will greatly increase model complexity 
as well. Under the S-LLP model, 90% (pointwise) confidence intervals for Ʌ(t) are 
plotted for eight individual sets of artillery repair data in Fig. 4.

4 Mixed-Effects NHPP Model 

Occasionally, multiple repairable systems may present system-to-system variability 
due to changes in operating environments and working intensities of individual 
systems. In this case, it may be more reasonable to assume a heterogeneity among 
all the systems. Lawless [16] refers to such effects as “unobserved heterogeneity”. 
To take the heterogeneity among systems into account, Bayesian methods (both 
empirical and hierarchical) have been applied to multiple repairable systems due to
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Table 2 ML estimates of the S-LLP parameters and their standard errors for eight sets of 
artillery repair data (corresponding approximate 95% confidence intervals under the lognormal 
approximation in parentheses) 

ID α̂1 s.e.
Ʌ(

α̂1
)

β̂1 s.e.
Ʌ
(
β̂1

)
α̂2 s.e.

Ʌ(
α̂2
)

β̂2 s.e.
Ʌ
(
β̂2

)

1 0.0850 0.0166 0.0028 0.0006 0.0005 0.0001 0.0037 0.0002 

(0.0616, 
0.1173) 

(0.0020, 
0.0039) 

(0.0004, 
0.0007) 

(0.0035, 
0.0040) 

2 0.0578 0.0147 0.0023 0.0007 0.0071 0.0012 0.0016 0.0001 

(0.0381, 
0.0879) 

(0.0014, 
0.0039) 

(0.0054, 
0.0094) 

(0.0014, 
0.0019) 

3 0.0568 0.0117 0.0018 0.0005 0.0004 8.5 × 10−5 0.0042 0.0002 

(0.0405, 
0.0796) 

(0.0012, 
0.0029) 

(0.0003, 
0.0005) 

(0.0039, 
0.0045) 

4 0.0651 0.0126 0.0019 0.0005 0.0004 0.0001 0.0042 0.0002 

(0.0473, 
0.0895) 

(0.0012, 
0.0029) 

(0.0003, 
0.0006) 

(0.0038, 
0.0046) 

5 0.1131 0.0183 0.0026 0.0004 0.0003 6.1 × 10−5 0.0047 0.0002 

(0.0867, 
0.1477) 

(0.0020, 
0.0034) 

(0.0002, 
0.0004) 

(0.0044, 
0.0051) 

6 0.0795 0.0164 0.0027 0.0006 0.0010 0.0002 0.0037 0.0002 

(0.0567, 
0.1116) 

(0.0019, 
0.0040) 

(0.0007, 
0.0014) 

(0.0034, 
0.0039) 

7 0.1216 0.0200 0.0030 0.0005 0.0005 0.0001 0.0032 0.0002 

(0.0928, 
0.1593) 

(0.0023, 
0.0040) 

(0.0003, 
0.0008) 

(0.0029, 
0.0036) 

8 0.1284 0.0214 0.0034 0.0005 0.0003 5.9e-05 0.0044 0.0002 

(0.0976, 
0.1688) 

(0.0026, 
0.0044) 

(0.0002, 
0.0004) 

(0.0041, 
0.0047)

their flexibility in accounting for parameter uncertainty and allowing the incorpo-
ration of a prior knowledge into the process under study (see, e.g., Hamada et al. 
[17], Reese et al. [18], Arab et al. [19]). System heterogeneity may be described via 
the prior distributions of the model parameters, however, there may also be homo-
geneity between individual systems. This homogeneity can be explicitly modeled 
by assuming common parameters in the Bayesian model. If prior distributions are 
unnecessarily assigned to the common parameters, the prior information employed to 
the common parameters can make the parameter estimation procedure more compli-
cated. The computational complexity and the difficulty in choosing proper prior 
distributions have been obstacles for reliability engineers who wish to apply Bayesian 
methods to such practical reliability problems. 

As another approach, the unobserved heterogeneity has been explicitly incor-
porated into the model under study in the formulation of mixed-effects model. 
Mixed-effects models, which is also called a “random-effects model”, are widely
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(a) ID-1      (b) ID-2 

(c) ID-3      (d) ID-4 

(e) ID-5      (f) ID-6 

(g) ID-7      (h) ID-8 

Fig. 3 Observed cumulative number of failures along with the expected number of failures Ʌ(t) 
under the S-PLP, the BBIP, and the S-LLP assumption for eight sets of ROK artillery repair data
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(a) ID-1      (b) ID-2 

(c) ID-3      (d) ID-4 

(e) ID-5      (f) ID-6 

(g) ID-7      (h) ID-8 

Fig. 4. 90% pointwise confidence intervals for Ʌ(t) under the S-LLP model for eight sets of ROK 
artillery repair data (The vertical axis is log-scaled for better representation of the confidence 
intervals)
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used in medical studies [20, 21], because they can model both between-individual 
and within-individual variation found in the data. For analyzing the reliability of 
multiple repairable systems, the underlying model for each individual system may 
be reasonably assumed to be an NHPP. Based on NHPPs with non-monotonic failure 
intensities, we will illustrate the inference procedure on the parameters of the mixed-
effects NHPP model. The mixed-effects NHPP model allows explicit modeling and 
analysis of between-individual and within-individual variation of recurrent failures, 
along with a common baseline for all the individuals. In the formation of a mixed-
effects model, the probability distributions for non-normal data involving both fixed 
and random effects is appropriate, a generalized mixed-effects model can be a useful 
tool for such purposes. The (generalized) mixed-effects models are easily imple-
mented through commercial softwares such as S-PLUS® NLME library and SAS® 

NLMIXED procedure. 

4.1 Mixed-Effects NHPP Model Without Covariates 

Suppose that there are m independent systems; the system i is observed over the time 
interval (0, Ti ) and ni failures are observed to occur, at times ti1 < · · ·  < tini . For  
the parameters θ of the NHPP, the likelihood function is 

L(θ ) = 
mπ

i=1

{
niπ

j=1 
λ
(
ti j ; θ

)
}

exp{−Ʌ(Ti ; θ )} (16) 

with failure intensity λ(·) and its cumulative mean function Ʌ(·). By incorporating 
the inter-individual variation into the random effects bi , along with fixed effects ζ 
(identical to all the systems), the conditional mean for a failure process of the i th 
system t i = (ti1, ..., tin)T is E[t i |bi ] ≡ μi = Ʌ(t i |bi ). The contribution to the 
likelihood function (16) having observed failures ni at times ti j  for individual system 
i is 

Li (ζ ) = ∫
bi 

⎧ 
⎨ 

⎩ 

niπ

j=1 

λ(ti j |bi ) 
⎫ 
⎬ 

⎭ exp{−Ʌ(Ti |bi )}p(bi )dbi 

The likelihood function with parameters ζ and bi from the sample of m systems 
has the form 

L(ζ ) = 
mπ

i=1 
∫
bi

{
niπ

j=1 
λ(ti j |bi )

}

exp{−Ʌ(Ti |bi )}p(bi )dbi , (17) 

and maximizing the likelihood function (17) yields the maximum likelihood estimate 
(MLE) of ζ , denoted by ζ̂ .
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4.2 Mixed-Effects NHPP Model with Covariates 

Suppose that individual i has a covariate vector xi and a failure intensity 
λxi

(
ti j ; θ , ξ i

)
, then the contribution to the likelihood function for individual i with 

fixed effects β x and random-effects bi for ξ i ≡
(
βx , bi

)T 
is given by 

Li
(
θ , βx , bi

) = ∫
bi

{
niπ

j=1 
λxi

(
ti j ; θ ,

(
βx , bi

))
}

exp
{−Ʌxi

(
Ti ; θ ,

(
βx , bi

))}
p(bi )dbi . 

(18) 

The NHPP is flexible in that the covariate information, if exists, can be explicitly 
modeled via the failure intensity 

λxi

(
ti j ; θ , ξ i

) = λ0
(
ti j ; θ

)
h
(
xi ; ξ i

)
, (19) 

where ξ i is the coefficient vector for covariate xi , and h(·) is a positive-valued 
monotonic differentiable function, e.g., exp(·) or log(·). The NHPP model with the 
failure intensity (19) is called a “proportional intensity Poisson process model” and 
λ0
(
ti j ; θ

)
serves as the baseline intensity function. The baseline intensity function 

is assumed to be constant across individuals; that is, θ has fixed effects. Inter-
individual variability is instead incorporated in the function h

(
xi ; ξ i

)
. The model 

with h
(
xi ; ξ i

) ≡ exp
(
xT 
i ξ i
)
has been commonly employed because it is conve-

nient and flexible (e.g., Andersen and Gill [22]). The mean intensity function corre-
sponding to the failure intensity (19) is Ʌxi

(
t; θ , ξ i

) = Ʌ0(t; θ )h
(
xi ; ξ i

)
, where

Ʌ0(t; θ ) = 
t ∫
0 
λ0(u; θ ) du. The likelihood function (18) can be rewritten by the 

factorization as (Cox and Lewis [5], Sect. 5.3) 

Li
(
θ , β x, bi

) = 
niπ

j=1

{
λ0
(
ti j ; θ

)

Ʌ0
(
ti j ; θ

)

}

×
∮

bi

{
Ʌ0(Ti ; θ )h

(
xT i
(
β x + bi

))}ni 

exp
{−Ʌ0(Ti ; θ )h

(
xT i
(
β x + bi

))}
p(bi )dbi . 

(20) 

The likelihood function for a sample of m independent individuals is the product 
of terms L1, . . . ,  Lm giving 

L(θ , β x
) = L1(θ )L2

(
θ , β x

)
, (21) 

whereL1(θ ) is the product of the first terms andL2
(
θ , β x

)
is the product of the second 

terms in right-hand side of (20). Lawless [16] considered the following intensity 
function 

λx
(
ti j ; θ,  β x, bi

) = λ0
(
ti j ; θ

)
bi exp

(
xT 
i β x

)
, (22)
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where bi is  assumed to be an  i id  gamma-distributed random variable with mean 1 
and variance φ. In this case the second term in (20) becomes

┌
(
ni + φ−1

)

┌
(
φ−1
) ·

[
φɅ0(τi ; θ ) exp

(
xT 
i β x

)]ni

[
1 + φɅ0(τi ; θ ) exp

(
xT 
i β x

)]ni+φ−1 , 

which is a negative binomial regression model. The negative binomial model is 
a reasonable model to accommodate extra-Poisson variability. For instance, if the 
baseline intensity function has a power law process, for θ ≡ (α, β) 

L1(θ ) = 
mπ

i=1 

niπ

j=1

(
β 
ti j

)
and L2

(
θ , β x

) = 
mπ

i=1

┌(ni+φ−1 )
┌(φ−1 ) · [φ(Ti /α)β exp(xT 

i β x)]
ni 

[1+φ(Ti /α)β exp(xT 
i β x)]

ni +φ−1 , 

(23) 

4.3 Estimation of Parameters in Mixed-Effects NHPP Model 

In general, the integral calculations in the likelihood function (17) and (21) involve  
high-dimensional integration, and do not produce closed-form expressions, requiring 
numerical integration techniques to estimate the likelihood function. Bae and Kvam 
[23] introduced various approximation methods to numerically optimize the like-
lihood function from repeated-measured degradation data of vacuum fluorescent 
displays when the distribution of bi is multivariate normal. SAS® NLMIXED 
procedure provides several approximation methods including adaptive Gaussian 
quadrature [24] and first-order method [25] for the mixed-effects model. 

In the NHPP model without covariates, ML estimates of ζ are obtained by maxi-
mizing the likelihood function (17) numerically or using approximation methods (if 
necessary). A simple approach to estimation in NHPP model with covariates is to 
estimate θ by maximizing L1(θ ), and then to maximize (21) with respect to β x , with 
θ fixed at their estimates [14]. With the PLP baseline intensity, for example, we can 
first estimate β in the likelihood function (23) by maximizing L1 with respect to β, 
then plug in β̂ and maximize L2 with respect to φ, α, and β x . Maximization of L2 

for fixed β is easy using Newton’s method or the scoring algorithm [26]. 
The random-effects in the mixed-effects NHPP model are assumed to have normal 

distributions with zero means. Their specific values for a given individual are just 
realizations from the normal distributions. These random effects can be efficiently 
estimated using empirical Bayes methods [27]. For the failure process of the i th 
system t i , empirical Bayes estimates of bi (denoted by b̂i ) is given by the posterior 
mean of bi as 

b̂i = E(bi |t i ) = 
∫bi bi p(t i |bi )p(bi )dbi 
∫bi p(t i |bi )p(bi )dbi
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for the conditional probability function of t i given bi , p(t i |bi ). If parametric assump-
tions on the distribution of random-effects are made, e.g., normal, then empirical 
Bayes methods are equivalent to best linear unbiased prediction (BLUP) methods 
[28]. 

Confidence intervals can be constructed for the parameters of the mixed-effects 
model or their functions based on standard errors derived from the (observed) Fisher 
information matrix. In generalized mixed-effects NHPP model without covariates, a 
large-sample approximation of standard errors of the ML estimators is given through 
the estimated variance–covariance matrix Ξ̂ζ̂ , which is computed as the inverse of the 

observed Fisher information matrix. That is, Ξ̂ζ̂ ≡ I
(
ζ̂
)−1 

for I(ζ̂) = −∂2l/∂ζ2 

evaluated at ζ = ζ̂, where l = log L(ζ ). For example, in the NHPP model with 
covariates, the asymptotic variance–covariance matrix of

(
θ , β x

)
is obtained as 

I
(
θ̂ , β̂ x

)−1 
, where 

I
(
θ̂ , β̂ x

)−1 ≡
[− ∂2l 

∂θ 2 − ∂2l 
∂θ ∂β x 

− ∂2l 
∂β2 

x

]−1 

= 

⎡ 

⎣
−
(

∂2l1 
∂θ 2 + ∂2l2 

∂θ 2

)
− ∂2l2 

∂θ ∂β x 
− ∂2l2 

∂β2 
x 

⎤ 

⎦ 
−1 

evaluated at θ = θ̂ and β x = β̂ x . Here, l1 = log L1(θ ) and l2 = logL2
(
θ , β x

)
. Then, 

similar to the case of the NHPP model without covariates, approximate standard 
errors for (or functions of) θ̂ and β̂ x are computed using the delta method, and 
their Wald-type confidence intervals are also computed. For the random-effects, the 
standard errors of b̂i are computed using the delta method and confidence intervals 
of the random-effects may be constructed using the Wald-type statistics. 

After fitting mixed-effects NHPP model to failure-time data from multiple 
repairable systems, we need to assess the significance of the terms in the model. 
The significance test can be done through a likelihood ratio statistic. Denote LF as 
the likelihood for the full model, and LR as the likelihood for the reduced model. 
Then under the null hypothesis that the reduced model is adequate, the likelihood 
ratio test (LRT) statistic 

2 log(LF /LR) = 2(logLF − logLR) 

will approximately follow a χ 2 distribution with (ψF − ψR) degrees of freedom, 
where ψF and ψR are the number of parameters to be estimated in the full and 
reduced model, respectively. 

Even though the LRT can assess the significance of particular terms, model selec-
tion procedure via such pairwise comparisons has been criticized owing to an overuse 
of hypothesis testing. By contrast, an information-based model selection procedure 
allows comparison of multiple candidate models. Two widely used information 
criteria for assessing model fit are Akaike’s information criterion (AIC) [29] and 
the Bayesian information criterion (BIC) [30]. For the log-likelihood of a model, l,
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the AIC and BIC are, respectively 

AIC = −2l + 2 p∗, and BIC = −2l + p∗logN 

where p∗ denotes the total number of parameters in the model, and N denotes the 

total number of observations in the data set; that is, N = 
,∑

i=1 
ni for the mixed-effects 

NHPP model. If we use the AIC to compare several models for the same data, we 
prefer the model with the lowest AIC value. Similarly, when using the BIC, we prefer 
the model with the lowest BIC value. 

Residuals can be set up to provide checks on the assumed model. Under the NHPP 
model, the quantitiesɅ

(
ti j
)−Ʌ

(
ti, j−1

)
are independent standard exponential random 

variables for j = 1, ..., ni . Therefore, residuals ei j  = Ʌ̂
(
ti j
)− Ʌ̂

(
ti, j−1

)
should look 

like standard exponential random variables if the NHPP model under assumptions 
is correct. The deviation from the model assumptions can be checked by plotting 
(ei j  , ei, j−1) to detect serial correlation with respect to j in the ei j  ’s. See Lawless [14] 
for more details on the properties of residuals and formal model assessment using 
the residuals. 

4.4 Application of Mixed-Effects NHPP Model to Artillery 
Repair Data 

Mun et al. [15] analyzed field-repair data of eight sets of artillery systems where 
their failure intensities appear bathtub-shaped. Failure frequency also tended to vary 
greatly across all the systems. Mun et al. [15] proposed the S-LLP model (7) instead of 
S-PLP model proposed by Pulcini [9] to describe the artillery repair data with bathtub-
shaped failure intensity. To incorporate individual variability into the superposed 
NHPP models, we considered both the mixed-effects S-PLP model and the mixed-
effects S-LLP model. For the mixed-effects S-PLP model, the general model for 
comparison is a mean failure intensity of the S-PLP with four random-effects

Ʌi j  (t) =
(

ti j  
ζ1 + bi1

)ϑ1+bi2 

+
(

ti j  
ζ2 + bi3

)ϑ2+bi4 

, 

and similarly, the general model for the mixed-effects S-LLP is

Ʌi j  (t) =
(

γ1 + bi1 
κ1 + bi2

)
(
1 − e−(κ1+bi2)ti j

)+
(

γ2 + bi3 
κ2 + bi4

)
(
e(κ2+bi4)ti j  − 1

)
, 

where the random-effects (bi1, bi2, bi3, bi4) of the two models have general 
covariance structures, for i = 1, ..., m, j = 1, ..., ni . After executing
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the LRT procedure and computing the AIC and BIC, the final param-
eter estimates of mixed-effects S-PLP model are: ζ̂1 = 4.1720, ϑ̂1 = 
0.6544, ζ̂2 = 1095.51, ϑ̂2 = 12.5636., and (bi1, bi2, bi3, bi4)T ∼ 
N (0, 0, 0, 0)T , diag(4.8261, 0.0028, 1.6880 × 104, 14.0611), where diag(·) 
denotes a diagonal matrix. The final parameter estimates of the mixed-effects S-LLP 
model are: γ̂ 1 = 0.0843, κ̂1 = 0.0020, γ̂2 = 5.4120 × 10−5, κ̂2 = 0.0057, 
and (bi1, bi2)T ∼ N (0, 0)T , diag

(
4.8018 × 10−4, 2.0789 × 10−7

)
, and 

bi4 ∼ N (0, 2.0737 × 10−7
)
. 

We compared their modeling performance with individually fitted S-PLP and S-
LLP models, correspondingly, in terms of mean square errors. Before comparing 
their modeling performance, we performed the diagnostics for the fitted models 
based on the residuals derived from each of the super- posed NHPP models. The 
histograms of the residuals from the fitted models (Fig. 5) justify the assumptions 
for the four superposed NHPP models. Each of superposed NHPP models incor-
porating both fixed-effects and random-effects has smaller MSE than individually 
fitted superposed NHPP models (see Table 3). We chose the mixed-effects S-LLP 
model which has the smallest average MSE with respect to artillery systems data 
for further analytical purpose. Table 4 compares parameter estimates of individually 
fitted S-LLP model and those of mixed-effects S-LLP model and their 95% point-
wise confidence intervals using the lognormal approximation for the eight artillery 
systems. The parameter estimates of mixed-effects S-LLP model are consistently 
smaller than those of individually fitted S-LLP model, and their confidence inter-
vals are consistently shorter than those of individually fitted S-LLP model. We also 
observed that mixed-effects S-PLP model has consistently shorter confidence inter-
vals than individually fitted S-PLP model. The estimate of cumulative number of 
failures and its 95% (pointwise) confidence intervals are plotted for eight individual 
sets of artillery systems data in Fig. 6.

5 Conclusions 

Some complex systems show the bathtub-shaped failure intensity that are character-
ized by a number of different failure modes as in the repairable artillery systems. 
The monotonic failure intensity models such as the PLP and the LLP models are not 
appropriate to model the bathtub-shaped failure pattern. As an alternative, a super-
posed log linear process (S-LLP), which is a mixture of nonhomogeneous Poisson 
processes, was developed to model this kind of non-monotonic failure intensity. The 
derived S-LLP model is shown to be much better at fitting the repair data than previous 
models that have been derived for bathtub-shaped failure intensities. Although the 
estimation problem is computationally cumbersome, the MLEs are straightforward 
and can be used to construct approximate confidence bounds for cumulative failure 
intensity. 

For multiple repairable systems presenting system-to-system variability owing to 
operation environments or working intensities of individual systems, we go over the
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(a) Individual S-PLP model                          (b) Mixed-effects S-PLP model 

(c) Individual S-LLP model                        (d) Mixed-effects S-LLP model 

Fig. 5 Histograms of the residuals from each of the superposed NHPP models for eight artillery 
systems 

Table 3 Mean squared errors between observed and estimated number of failures from each of 
superposed NHPP models for eight artillery systems 

ID S-PLP S-PLP-NLMM S-LLP S-LLP-NLMM 

ID-1 9.8153 5.0171 3.1279 2.7201 

ID-2 6.4003 3.1235 3.5983 2.7279 

ID-3 7.3453 4.2244 3.4652 3.2335 

ID-4 6.5224 3.2255 3.7683 2.1790 

ID-5 14.2063 6.8818 4.7604 3.4388 

ID-6 8.2261 4.4996 3.4576 3.1208 

ID-7 19.4709 9.6250 5.1072 2.9708 

ID-8 21.1419 10.6802 6.1606 4.3777 

Total 11.7504 5.9515 4.2018 3.1076
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Table 4 Parameter estimates of both individually fitted S-LLP model and mixed-effects S-LLP 
model, along with their approximate 95% confidence intervals under the lognormal approximation 
in parentheses 

S-LLP S-LLP-NLMM 

ID γ̂1 κ̂1 γ̂2
(×10−3

)
κ̂2
(×10−3

)
γ̂1 κ̂1

(×10−3
)

γ̂2
(×10−3

)
κ̂2
(×10−3

)

ID-1 0.085 0.003 0.538 3.725 0.079 2.108 5.412 5.521 

(0.045, 
0.160) 

(0.001, 
0.007) 

(0.011, 
27.337) 

(1.653, 
8.390) 

(0.046, 
0.136) 

(1.380, 
3.221) 

(5.409, 
5.415) 

(4.697, 
6.490) 

ID-2 0.060 0.002 5.481 1.728 0.064 1.152 5.412 5.255 

(0.028, 
0.128) 

(0.001, 
0.008) 

(0.836, 
35.944) 

(0.770, 
3.881) 

(0.032, 
0.125) 

(0.530, 
2.502) 

(5.409, 
5.415) 

(4.434, 
6.228) 

ID-3 0.057 0.002 0.370 4.205 0.057 1.508 5.412 5.777 

(0.029, 
0.112) 

(0.001, 
0.006) 

(0.007, 
20.002) 

(1.918, 
9.218) 

(0.027, 
0.121) 

(0.834, 
2.727) 

(5.409, 
5.415) 

(4.950, 
6.742) 

ID-4 0.063 0.002 0.581 4.085 0.067 1.754 5.412 6.264 

(0.033, 
0.120) 

(0.001, 
0.005) 

(0.034, 
9.845) 

(2.243, 
7.440) 

(0.035, 
0.127) 

(1.053, 
2.919) 

(5.409, 
5.415) 

(5.432, 
7.223) 

ID-5 0.114 0.003 0.824 3.742 0.108 2.248 5.412 6.119 

(0.068, 
0.191) 

(0.002, 
0.005) 

(0.042, 
16.176) 

(1.854, 
7.551) 

(0.073, 
0.161) 

(1.511, 
3.346) 

(5.409, 
5.415) 

(5.288, 
7.080) 

ID-6 0.079 0.003 0.635 4.042 0.075 1.943 5.412 6.151 

(0.042, 
0.152) 

(0.001, 
0.006) 

(0.021, 
19.151) 

(1.966, 
8.308) 

(0.042, 
0.133) 

(1.227, 
3.078) 

(5.409, 
5.415) 

(5.320, 
7.111) 

ID-7 0.122 0.003 0.518 3.196 0.111 2.351 5.412 4.865 

(0.074, 
0.201) 

(0.002, 
0.005) 

(0.084, 
3.188) 

(2.032, 
5.028) 

(0.075, 
0.163) 

(1.607, 
3.438) 

(5.409, 
5.415) 

(4.050, 
5.845) 

ID-8 0.133 0.003 0.437 3.930 0.114 2.571 5.412 5.651 

(0.080, 
0.223) 

(0.002, 
0.007) 

(0.083, 
2.308) 

(2.732, 
5.655) 

(0.079, 
0.166) 

(1.816, 
3.639) 

(5.409, 
5.415) 

(4.825, 
6.618)

application of mixed-effects models to recurrent failure data from multiple repairable 
systems based on the superposed Poisson process to model the bathtub-shaped failure 
intensities. The mixed-effects models explicitly involve between-system variation 
through random-effects, along with a common baseline for all the systems through 
fixed-effects for both normal and non-normal data. Details on estimation of the 
parameters of the mixed-effects superposed Poisson process models and construction 
of their confidence intervals are examined. An applicative example shows prominent 
proof of the mixed-effects superposed Poisson process models for the purpose of 
reliability analysis.
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(a) ID-1      (b) ID-2 

(c) ID-3      (d) ID-4 

(e) ID-5      (f) ID-6 

(g) ID-7      (h) ID-8 

Fig. 6 Ʌ̂(t) and 95% pointwise confidence intervals for Ʌ̂(t) under the mixed-effects S-LLP model 
for eight sets of artillery systems (The vertical axis is log-scaled for better representation of the 
confidence intervals)
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Multi-state Signatures for Multi-state 
Systems with Binary/Multi-state 
Components 

He Yi and Narayanaswamy Balakrishnan 

Abstract Signature theory, as an important part of reliability theory, provides an 
efficient tool for modeling and analyzing various properties of reliability systems. 
By now, signature theory has become exhaustive for binary-state systems, but for 
multi-state systems which are commonly encountered in practice, there are still a 
lot of issues to examine. In this work, we review important research works that 
have been carried out on signatures of systems with a special focus on signature 
concepts, their properties, computational methods, and some multi-state signatures 
for multi-state systems. We also summarize work that we have done recently on multi-
state signatures, including their definitions, properties, transformation formulas and 
module structures. Finally, we present a number of examples to illustrate various 
notations and associated results described here. 

Keywords Signature · Reliability · Multi-state systems · Multi-state signatures ·
Modeling and analysis 

1 Motivation 

Signature theory plays a very important role in the field of reliability since it was 
first introduced by Samaniego [ 59]. Reliability function of a coherent system can 
be represented through its system signature and its common component lifetime 
distribution; this is useful not only in the reliability calculation of large practical 
systems, but also for developing statistical inference for component as well as sys-
temlifetime distributions. Next, orderings of signatures (such as stochastic ordering, 
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hazard rate ordering and likelihood ordering) result in corresponding orderings of 
system lifetimes, which facilitate lifetime comparisons of reliability systems of the 
same or different sizes with the use of transformation formulas between signatures 
of different sizes. In addition, when a reliability system is working at a certain time, 
signature of the system can also be used to study residual lifetime and stochastic 
comparisons of the system, regardless of whether the number of failed components 
is known or not. 

For reliability systems, there are a lot of measures to describe their structural prop-
erties, of which the structure function is the most common one. However, for some 
complex systems, especially large network systems, their structure functions tend to 
become very complex, which renders further research and applications to be quite 
difficult. In contrast to the structure function, system signature is a vector with the 
same dimension as the number of components in the system, and it possesses clear 
probabilistic interpretation and is completely determined by the system structure. 
System signature can easily be applied and computed for practical systems, which 
makes it to be one of the most important measures to describe system structure and is 
therefore widely used in the fields of reliability and network. Currently, the signature 
theory for binary-state systems seems to be quite advanced, including definitions of 
different signature concepts, properties and applications of these concepts, compu-
tational methods for different signature concepts, statistical inference for component 
as well as system lifetime distributions, and so on. 

Multi-state systems have become a subject of great interest recently. Due to fac-
tors such as aging, a reliability system in practice often goes through some imperfect 
functioning states before entering a complete failure state from the initial perfect 
functioning state, and moreover may often have more than one failure mode. For 
these reasons, multi-state systems exist commonly in practice, and traditional the-
ories and methods for binary-state systems can not meet the requirements for the 
reliability analysis of such practical multi-state systems. Naturally, it will be quite 
useful if signature theory can be generalized from binary-state systems to multi-state 
systems, and it seems that there is still a lot of work to be done in this regard. For 
example, more signature concepts need to be defined for multi-state systems, espe-
cially those that depend only on specific system structures. Then, their stochastic 
properties, computational methods and transformation formulas can all be subse-
quently developed to analyze the corresponding multi-state reliability systems. 

2 Introduction 

The concept of system signature was first put forward by Samaniego [ 59] in 1985, 
and then formally named as such by Kochar et al. [ 29]. It can be readily seen from 
the published literature that signatures have received considerable attention in the 
fields of reliability and network, as well as the associated theoretical research on 
order statistics and distribution theory [ 45]. There are many influential monographs
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in the field of signature, such as [ 6, 24, 34, 60]. In this paper, we provide a review of 
signature theory with respect to four main topics—signature related concepts, prop-
erties of signatures, computational methods for signatures and multi-state signatures 
for multi-state systems. This review also emphasises on some recent developments 
and their possible applications to the analysis of some practical reliability systems. 

2.1 Signature Related Concepts 

System signature, proposed originally by Samaniego [ 59], can be defined in two 
ways: from the view of component failure orderings, or from probability viewpoint. 
The former one is called structural signature, which focuses on the relationship 
of signature and system structure, while the latter is called probabilistic signature, 
which yields reliability function representation of a system. For binary-state coherent 
systems with independent and identically distributed (i.i.d.) components, the two 
definitions are equivalent. Based on this equivalency property, Elperin et al. [ 20] 
proposed a Monte Carlo algorithm for calculating the system reliability of network 
systems, wherein system signature is used and referred to as internal distribution. 
Since then, numerous signature concepts have been proposed (see Table 1 for a list), 
most of which are distribution-free and depend only on system structures, except 
some conditional signatures [ 36]. 

For systems with exchangeable components, Navarro et al. [ 50] proposed minimal 
signature and maximal signature, based on which the upper and lower bounds of sys-
tem reliability were obtained. For network systems, Gertsbakh and Shpungin [ 24] 
defined D-spectrum ( f1, . . . ,  fn) and C*-spectrum (x1, . . . ,  xn) based on compo-
nents failed and components functioning, respectively, and these authors also defined 
the corresponding cumulative D-spectrum ( f1, f1 + f2, . . . ,

∑n 
i=1 fi ), cumulative 

C*-spectrum (x1, x1 + x2, . . . ,
∑n 

i=1 xi ) and BIM spectrum. 
When the number of failed components is known and the system is still function-

ing, for studying the reliability representation and stochastic comparison of remain-
ing lifetimes of systems, Samaniego et al. [ 61] introduced the concept of dynamic 
signature. In this regard, under more general conditions, Mahmoudi and Asadi [ 36] 
proposed conditional signature. For two coherent systems with shared components, 
Navarro et al. [ 52] introduced the notion of joint signature for the first time, and 
Zarezadeh et al. [ 76] extended it from two systems to a more general case and called 
it generalized joint signature. Mohammadi [ 44] similarly defined the joint reliability 
signature of two or more systems. However, these concepts have no unified expres-
sion and need to be discussed case by case. Moreover, the elements involved in these 
concepts have no probabilistic meaning. Therefore, Navarro et al. [ 54] redefined the 
joint signature to give it a unified form and a probabilistic meaning. 

Based on the signature s = (s1, . . . ,  sn), Gertsbakh et al. [ 26] defined the con-
cepts of cumulative signature S = (s1, s1 + s2, . . . ,

∑n 
i=1 si ) and tail signature S ¯ = 

(
∑n 

i=2 si , . . . ,
∑n 

i=n si , 0). Coolen and Coolen-Maturi [ 11] further extended the tail 
signature to systems with multiple types of components, and presented the definition
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Table 1 Definitions of signature concepts 
Field Concept Definition 

Reliability Structural signature A vector of proportions of component failure orderings such that the i th 
component failure causes the failure of the system [ 59]. 

Probabilistic signature A vector of probabilities such that the i th component failure causes the 
failure of the system [ 59] 

Minimal/maximal 
signature 

A vector of coefficients when the reliability function is represented as a 
general mixture of reliabilities of series/parallel systems of different sizes 
[ 50] 

Dynamic signature A vector of conditional probabilities such that the i th component failure 
causes the failure of the system, given the number of failed components 
[ 61] 

Conditional signature A vector of conditional probabilities such that the i th component failure 
causes the failure of the system, given the interval of system lifetime [ 36] 

Generalized joint 
signature 

A matrix of coefficients if the joint lifetime distribution of systems is given 
as a mixture of products of ordered component lifetime distributions [ 76] 

Joint signature A matrix of probabilities such that the i th and j th component failures 
cause systems 1 and 2 to fail, respectively [ 54] 

Joint reliability signature A matrix of coefficients if the joint reliability of several systems is given as 
a mixture of products of reliabilities of ordered components [ 44] 

Cumulative signature A vector of probabilities such that the system is failed at the time of the i th 
component failure [ 26] 

Tail signature A vector of probabilities such that the system is working at the time of the 
i th component failure [ 26] 

Survival signature A matrix of conditional probabilities such that the system is functioning, 
given the numbers of different types of working components [ 11] 

Ordered signature The signature of the qth failed system in a life test of several independent 
and identical/non-identical coherent systems [ 5, 68] 

M-signature A vector of probabilities such that the kth component failure in component 
subset M causes the failure of the system [ 37] 

Subsignature M-signature of any component subset M [ 37] 

Joint survival signature A collection of probabilities such that both systems function at given times, 
given the numbers of working components in each type [ 12]; see also [ 4] 

Network Internal distribution The same as structural signature [ 20] 

D-spectrum The same as structural signature and internal distribution [ 24] 

C*-spectrum A vector of proportions of edge working orderings such that the i th edge 
working causes the network to be in UP state [ 24] 

Cumulative 
D/C*-spectrum 

Cumulative spectrum for D-spectrum/C*-spectrum [ 24] 

BIM spectrum A collection of numbers of permutations such that the first i edges 
(including edge e j ) construct an UP state of the network [ 24] 

of survival signature. For the purpose of saving time and cost in a life test, it is often 
not necessary to keep testing until all systems fail and from this viewpoint, Balakr-
ishnan and Volterman [ 5] proposed the notion of ordered signature for independent 
and identical coherent systems in a life test. For semi-coherent systems, Marichal 
[ 37] put forward M-signature and sub-signature, where M is a non-empty subset of 
the component set and it often does not contain highly reliable components.
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2.2 Properties of Signatures 

The concept of signature was originally proposed for systems with i.i.d. components, 
but with several subsequent developments, this assumption has been gradually weak-
ened, with significant focus on the case of non-i.i.d. components. 

Systems with i.i.d.components: Samaniego [ 59] gave a reliability function repre-
sentation based on system signature, and some discussions on closure properties 
of lifetime distribution classes were also presented. Navarro et al. [ 46] studied the 
reliability function representation based on signature for system remaining lifetimes 
and stochastic comparisons between them. Kochar et al. [ 29] presented sufficient 
conditions on signature for system lifetimes to have stochastic ordering, hazard rate 
ordering and likelihood ordering. Block et al. [ 7] showed that these sufficient con-
ditions are not necessary, and gave the necessary and sufficient conditions. Based 
on signature, Boland [ 8] also discussed the symmetry of indirect voting systems 
and compared their lifetimes with direct voting systems. Boland and Samaniego 
[ 9] proved that for consecutive-2-out-of-n: F systems, their lifetimes decrease in a 
stochstic ordering with an increase in the component number n. Navarro et al. [ 55] 
derived transformation formulas of signatures for systems of different sizes through 
the triangle rule of order statistics, while Lindqvist et al. [ 33] discussed the equiva-
lency of systems of different sizes by using cut sets. Mohammadi [ 42, 43] classified 
the generalized joint signatures of m parallel systems and discussed the transforma-
tion between different classes. Amini-Seresht et al. [ 1] found sufficient conditions 
for system lifetime to be larger with components replaced by better ones in the sense 
of hazard rate, reverse hazard rate and likelihood orderings. 

Systems with exchangeable components: Navarro et al. [ 49] and Navarro et al. 
[ 55] derived sufficient conditions on signature for system lifetimes to have stochas-
tic, hazard rate and likelihood orderings. Koutras et al. [ 30] derived necessary and 
sufficient conditions for the system to have hazard rate and inverse hazard rate order-
ings. Navarro and Rychlik [ 51] constructed a maximal convex/minimal concave 
function by scaling the system signature, giving a reliability function representation 
and upper/lower bounds of the expected system lifetime. Marichal et al. [ 41] proved 
that the exchangeability of components is a necessary and sufficient condition for 
the reliability representation based on signature. 

Systems with non-exchangeable components: Navarro et al. [ 56] studied measures 
like reliability and hazard rate by using averaging system and projection system. 
Navarro et al. [ 53] discussed the reliability function representation and stochstic 
orderings of system lifetimes when the components are independent and dependent. 
Cerqueti and Spizzichino [ 10] reviewed signature-related problems in the case of 
exchangeable and non-exchangeable components. In the cases when the components 
are independent and dependent, Samaniego and Navarro [ 62] discussed lifetime 
comparisons of systems of different sizes based on survival signature and distortion 
distribution, respectively. Navarro and Fernandez-Sanchez [ 47] studied signature-
based reliability representations for coherent systems with identically distributed
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dependent non-exchangeable components. Ding et al. [ 19] considered stochastic 
comparisons of heterogeneous systems with same size or different sizes by using 
survival signatures. 

2.3 Computational Methods for Signatures 

Signature concepts enjoy many useful properties and numerous applications, but 
that is due to the fact that they can be calculated efficiently. There are many different 
methods of calculating system signature, and each of them possess its own advantages 
and disadvantages. 

Definition method [ 29]: Consider all component failure orderings and number of 
components in each ordering that causes the failure of the system; then, the structural 
signature can be obtained. This method is simple and direct, and does not need any 
other theory other than the definition itself. However, it needs a large amount of 
calculations and takes a long time, and would take considerable amount of time, and 
is therefore not suitable for large-scale complex systems. 

Path/cut set method [ 8, 16]: Obtain all (minimal) path/cut sets of the system first, and 
then calculate the signature based on them. This method is more efficient for systems 
whose path/cut sets are known or easy to obtain, since the process of calculating 
path/cut sets itself would be time-assuming. 

Reliability method [ 9, 31, 38, 60]: Calculate reliability polynomial of the system 
first, and then get signature from the polynomial. There are many effective calculation 
methods for reliability polynomials, but every method has its own limitations. 

Binary decision graph method [ 57, 58]: Calculate the system signature based on 
binary decision graph of a network system. This method does not require the (mini-
mal) path/cut sets, but it needs a considerable amount of storage and is therefore not 
suitable for large-scale systems. 

Generating function method [ 63]: Obtain the signature of a consecutive-k-out-of-n 
system based on the generating function. This method gives explicit recursive formula 
for the system signature, but it is applicable only for consecutive type systems. 

Five-component system algorithm[ 48]: Generate minimal cut sets of all coherent 
systems with five components by an algorithm, and then calculate minimal signa-
tures and signatures for all of them. This algorithm gives signatures of all coherent 
systems with five components, but is not applicable for systems with more than five 
components. 

Markov process method [ 64]: Derive the relationship between signature and the 
numbers of non-cut sets of different sizes based on Markov process, and then use it 
to obtain the signature. This method yields explicit formulas for signatures of some
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common consecutive type systems, but it is not always easy to calculate the numbers 
of non-cut sets. 

Module decomposition method [ 13, 15, 21, 23, 26, 28, 40]: Calculate the signature 
through the signature of each module and the signature of the structure. This method 
is suitable for large and complex systems and can be used in combination with other 
methods, but is only suitable for systems with modular characteristics. 

2.4 Multi-state Signatures for Multi-state Systems 

For multi-state systems in the field of reliability and network, some multi-state signa-
ture concepts have been proposed (related definitions are shown in Table 2). Levitin 
et al. [ 32] first defined two-dimensional D-spectrum for network systems, and then 
extended it to multi-dimensional D-spectrum. Subsequently, Gertsbakh and Shpun-
gin [ 25] named marginal spectrums of the two-dimensional D-spectrum as the first 
spectrum and the second spectrum, respectively, and also named the corresponding 
cumulative spectrums as the first cumulative spectrum and the second cumulative 
spectrum. More related research on multi-dimensional D-spectrum in the field of 
network can be found in Lisnianski et al. [ 34]. 

Gertsbakh et al. [ 27] extended the concept of two-dimensional D-spectrum from 
the network field to the reliability field, where it is referred to as bivariate signature, 
and they also proposed bivariate tail signature based on the definition of tail signature 
for binary-state systems. Da and Hu [ 14] gave an equivalent definition of bivariate 
signature from probability viewpoint, and used it to study reliability representation 
of multi-state systems. Later, Ashrafi and Asadi [ 3] added a requirement of i < j 
in the definition of bivariate signature, and called the new concept two-dimensional 
signature. Based on that definition, Zarezadeh et al. [ 75] further gave the definition 
of m-dimensional signature. 

In analogy to the dynamic signature and conditional signature for binary-state 
systems, Ashrafi and Asadi [ 2] proposed the concept of dynamic signature matrix 
to discuss residual lifetimes of multi-state systems. Based on a decomposition of 
the structure functions of multi-state systems, Marichal et al. [ 39] studied two-
dimensional signature and bivariate tail signature of multi-state systems by using 
the joint signature for binary-state systems. 

The above indices are all for multi-state systems with binary-state components, 
and for multi-state systems with multi-state components, De Costa Bueno [ 17] 
defined multi-state signature for the first time, but the exchangebility assumption 
made in it for component lifetimes in all states may not be realistic in practice. 
Subsequently, Eryilmaz and Tuncel [ 22] proposed multi-state survival signature at 
system state level j for multi-state systems with multi-state components. Liu et al. 
[ 35] illustrated an application of this concept to stress-strength reliability systems. 
These laid the foundations for the signature theory for multi-state systems, but com-
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Table 2 Definitions for multi-state signature concepts. 
Field Concept Definition 

Reliability Bivariate signature A matrix of proportions of component failure orderings such that the lth 
component failure causes the failure of the system partially and the r th 
component failure causes the failure of the system completely [ 27] 

Bivariate tail signature A matrix of probabilities such that the system still works at time of the i th 
component failure and is not completely failed at time of the j th 
component failure [ 27] 

Two-dimensional 
signature 

A matrix of probabilities such that the i th component failure causes the 
failure of the system partially and the j th component failure causes the 
failure of the system completely [ 3, 14] 

M-dimensional signature A direct generalization of two-dimensional signature [ 75] 

Dynamic signature 
matrix 

A matrix of conditional probabilities such that i th component failure 
causes the failure of the system partially and the j th one causes it 
completely, given the number of failed components [ 2] 

Multi-state signature A matrix of probabilities such that the i th component that enters states 
below j causes the system to enter states below k [ 17] 

Survival signature A collection of proportions of cut sets in all component state sets such that 
there are si components in state i or above for i = 1, . . . ,  j [ 22] 

Network Two-dimensional 
D-Spectrum 

A collection of proportions of edge failure orderings such that a network 
falls apart into two disconnected clusters at the i th edge failure and then 
falls apart into three clusters at the j th edge failure [ 32] 

Multi-dimensional 
D-Spectrum 

A direct generalization of two-dimensional D-Spectrum [ 32] 

First/second Spectrum A collection of proportions such that a network falls apart into two/ three 
disconnected clusters at the i th edge failure [ 25] 

First/second cumulative 
Spectrum 

A collection of proportions such that a network falls apart into two/ three 
disconnected clusters at the i th edge failure or before [ 25] 

pared to signature theory for binary-state systems, there still remains a lot of work 
to be done on this topic. 

In the following sections, we provide a detailed review of multi-state signature 
concepts in Sect. 3, and then various properties of these concepts in Sect. 4. In Sect. 5, 
we describe comparisons of multi-state systems of different sizes, and in Sect. 6, 
we discuss signature concepts of multi-state systems based on a given structure of 
modules. Finally, several illustrative examples are presented in Sect. 7, and some 
concluding remarks are made in Sect. 8. 

3 Multi-state Signature Concepts 

There are mainly two types of multi-state systems—multi-state systems with binary-
state components and multi-state systems with multi-state components. Multi-state 
signature concepts can be defined for both these types, but the former is relatively 
easier to deal with. For example, considering a multi-state coherent system with state 
space {0, . . . ,  n} and m binary-state components with i.i.d. lifetimes X1, . . . ,  Xm
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from a common absolutely continuous distribution function F(x), x ≥ 0, the multi-
state signature can be defined as follows to describe the structure of the system. 

Definition 3.1 (Multi-state signature) The multi-state signature of the multi-state 
coherent system with m binary-state components is 

s = (si1,...,in , 1 ≤ i1 ≤  · · ·  ≤  in ≤ m), 

where si1,...,in = P{T1 = Xi1:m, . . . ,  Tn = Xin :m}, T1, . . . ,  Tn are the system lifetimes 
in state levels n, . . . ,  1, and Xi1:m, . . . ,  Xin :m are the i1th, . . . ,  inth order statistics 
among the component lifetimes X1, . . . ,  Xm , respectively. See Yi et al. [ 65] for  
pertinent details. 

Similarly, considering two multi-state coherent systems with the same state space 
{0, . . . ,  n} and m shared binary-state components with i.i.d. lifetimes X1, . . . ,  Xm 

from a common absolutely continuous distribution function F(x), x ≥ 0, the multi-
state joint signature can be defined as follows to decribe the structures of the two 
systems. 

Definition 3.2 (Multi-state joint signature) The multi-state joint signature of two 
multi-state coherent systems with m shared binary-state components is defined as 

S = (si1,...,in; j1,..., jn , 1 ≤ i1 ≤  · · ·  ≤  in ≤ m, 1 ≤ j1 ≤  · · ·  ≤  jn ≤ m), 

where 

si1,...,in; j1,..., jn = P{T (1) 1 = Xi1:m, . . . ,  T (1) n = Xin :m, T (2) 1 = X j1:m, . . . ,  T (2) n = X jn :m}, 

and T (1) 1 , . . . ,  T (1) n , T (2) 1 , . . . ,  T (2) n are the lifetimes on states n, . . . ,  1 of the two sys-
tems, Xi1:m, . . . ,  Xin :m, X j1:m, . . . ,  X jn :m are the i1th, . . . ,inth, j1th, . . . ,  jnth order 
statistics among the component lifetimes X1, . . . ,  Xm , respectively. See Yi et al. [ 67] 
for details. 

Considering a multi-state coherent system with state space {0, . . . ,  n} and m 
binary-state components with i.i.d. lifetimes X1, . . . ,  Xm from a common absolutely 
continuous distribution function F(x), x ≥ 0, given that the system is in state k at 
time t with exactly i failed components, the dynamic multi-state signature can be 
defined as follows to describe the structure of the remaining system. 

Definition 3.3 (Dynamic multi-state signature) Let s = (si1,...,in , 1 ≤ i1 ≤  · · ·  ≤  in ≤ 
m) be the multi-state signature of the orginal multi-state coherent system with m 
binary-state components. Then, the dynamic multi-state of the system is given by 

s(k) (m − i) =
(
s(k) 
in−k+1,...,in 

(m − i ), i + 1 ≤ in−k+1 ≤  · · ·  ≤  in ≤ m
)

, 

where
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s(k) 
in−k+1,...,in 

(m − i ) = P
{
Tn−k+1 = Xin−k+1:m, . . . ,  Tn = Xin :m | 
Tn−k ≤ t < Tn−k+1,Xi :m ≤ t < Xi+1:m} 

is the conditional probability that the system enters states k − 1, . . . ,  0 at the in−k+1th, 
. . . ,  inth ordered component failures, respectively, given that it is in state k at time 
t with exactly i failed components. Note that k = 1, . . . ,  n, i = 0, . . . ,  m − 1, T0 = 
0, X0:n = 0, and the component/system lifetimes are denoted in the same way as in 
Definition 3.1. See Yi et al. [ 72] for details. 

Considering l independent and identical multi-state coherent systems in a life 
test, of which system p has state space {0, . . . ,  n} and m binary-state components 
with i.i.d. lifetimes X p 1 , . . . ,  X p m from a common absolutely continuous distribution 
function F(x), x ≥ 0, the ordered multi-state signature can be defined as follows to 
describe the structure of the qth system that enters state n − r or below. 

Definition 3.4 (Ordered multi-state signature) The ordered multi-state system sig-
nature for l multi-state coherent systems is defined as 

sqr = (sqr j1,..., jn , 1 ≤ j1 ≤  · · ·  ≤  jn ≤ m), 

for q = 1, 2, . . . ,  l, r = 1, 2, . . . ,  n, where 

sqr j1,..., jn = P{T p 1 = X p j1:m, . . . ,  T p n = X p jn :m
|
|T q:l 

r = T p r }, 

T q:l 
r is the qth order statistic of lifetimes T 1 r , . . . ,  T l r for systems 1, . . . ,  l at state 

level n − r + 1, and X p j1:m, . . . ,  X p jn :m are the j1th, . . . ,  jnth order statistics of the 
component lifetimes X p 1 , . . . ,  X p m for system p, respectively. See Yi et al. [ 65] for  
related details and see Yi et al. [ 72] for how this definition can be generalized to the 
case of non-identical multi-state coherent systems. 

The above definitions are all for multi-state systems with binary-state components. 
Now, considering a multi-state coherent system with n i.i.d. multi-state components 
and a state space {0, . . . ,  M} for both the system and the components, the multi-state 
survival signature of the system can be defined as follows to describe the structure 
of the system. 

Definition 3.5 (Multi-state survival signature) The multi-state survival signature of 
the multi-state coherent system is given by S = (S(0) , . . . ,  S(M) ), where 

S( j ) =
(
S( j) 
i1,...,iM 

, 0 ≤ iM ≤ . . .  ≤ i1 ≤ n
)

, j = 0, . . . ,  M, 

is the multi-state survival signature at system state level j with 

S( j) 
i1,...,iM 

= P
{
L j > t |m1(t) = i1, . . . ,  mM (t) = iM

}
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being the conditional probability that the system is in state j or above at time t , 
given that ml (t) = il components are in state l or above, for all l = 1, . . . ,  M . Here, 
L1, . . . ,  L M are the system lifetimes at state levels 1, . . . ,  M . See Yi et al. [ 73] and 
Yi et al. [ 71] for details. 

Note that not all assumptions for these multi-state signature concepts are nec-
essary for further work; for example, the systems can be semi-coherent instead of 
coherent, and the common component lifetime distribution can be continuous instead 
of absolutely continuous since its probability density funtion is not needed. 

4 Properties of Multi-state Signatures 

In this section, some important properties of multi-state signature concepts will be 
discussed. These include multi-state signature, multi-state joint signature, dynamic 
multi-state signature, ordered multi-state signature and multi-state survival signature. 

4.1 Multi-state Signature 

Based on the multi-state signature of a multi-state coherent system, the joint reliability 
function of system lifetimes at different state levels can be represented as follows. 

Theorem 4.1 For 0 ≤ t1 ≤  · · ·  ≤  tn ≤ ∞, we have 

P{T1 > t1, . . . ,  Tn > tn} 

=
∑

1≤i1≤···≤in≤m 

si1,...,in
∑

0≤ j1≤i1−1, j1≤ j2≤i2−1, 
..., jn−1≤ jn≤in−1

[
m! 

j1!πn−1 
l=1 ( jl+1 − jl )!(m − jn)!

]

× F j1 (t1)[F(t2) − F(t1)] j2− j1 ×  · · ·  ×  [F(tn) − F(tn−1)] jn− jn−1 Fm− jn (tn). 

Proof See Theorem 2.1 in Yi et al. [ 65]. 

Another important property of multi-state signature is that its stochastic ordering, 
as defined in Yi et al. [ 65] will lead to stochastic ordering of the system lifetimes. 

Theorem 4.2 Suppose s and s̃ are signatures of two multi-state systems with the 
same state space {0, . . . ,  n} and m binary-state components i.i.d. from the same 
absolutely continuous distribution function F(x), x ≥ 0. If  s≤st s̃, then the lifetime 
vectors of the two systems are such that (T1, . . . ,  Tn)≤st( T̃1, . . . ,  T̃n). 

Proof See Theorem 2.2 in Yi et al. [ 65].
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4.2 Multi-state Joint Signature 

Based on the multi-state joint signature of two multi-state coherent systems, the joint 
distribution function of the lifetimes of two systems at different state levels can be 
represented as follows. 

Theorem 4.3 For 0 < t (1) 1 ≤  · · ·  ≤  t (1) n < ∞ and 0 < t (2) 1 ≤  · · ·  ≤  t (2) n < ∞, the  
joint distribution function 

G(t (1) 1 , . . . ,  t (1) n , t (2) 1 , . . . ,  t (2) n ) 

= P{T (1) 1 ≤ t (1) 1 , . . . ,  T (1) n ≤ t (1) n , T (2) 1 ≤ t (2) 1 , . . . ,  T (2) n ≤ t (2) n } 

of the system lifetimes (T (1) 1 , . . . ,  T (1) n , T (2) 1 , . . . ,  T (2) n ) can be expressed as 

G(t (1) 1 , . . . ,  t (1) n , t (2) 1 , . . . ,  t (2) n ) 

=
∑

1≤i1≤···≤in≤m, 
1≤ j1≤···≤ jn≤m 

si1,...,in; j1,..., jn Fi1,...,in; j1,..., jn :m(t (1) 1 , . . . ,  t (1) n , t (2) 1 , . . . ,  t (2) n ), 

based on the multi-state joint signature S given in Definition 3.2, where 

Fi1,...,in; j1,..., jn :m(t (1) 1 , . . . ,  t (1) n , t (2) 1 , . . . ,  t (2) n ) 

= P{Xi1:m ≤ t (1) 1 , . . . ,  Xin :m ≤ t (1) n , X j1:m ≤ t (2) 1 , . . . ,  X jn :m ≤ t (2) n } 

is the joint distribution function of the order statistics Xi1:m, . . . ,  Xin :m, X j1:m, . . . ,  
X jn :m obtained from the i.i.d. component lifetimes X1, . . . ,  Xm. 

Proof See Theorem 2.2 in Yi et al. [ 67]. 

For two multi-state coherent systems with shared components, the comparison 
of their lifetimes is distribution-free and depends only on their joint signature, as 
described in the following theorem. 

Theorem 4.4 For two multi-state semi-coherent systems with a joint signature S, 
their lifetimes are such that 

P(T (1) 1 ≤ T (2) 1 , . . . ,  T (1) n ≤ T (2) n ) 

=
∑

1≤i1≤···≤in≤m,1≤ j1≤···≤ jn≤m,i1≤ j1,...,in≤ jn 

si1,...,in; j1,..., jn . 

Proof See Sect. 3 in Yi et al. [ 67]. 

Stochastic comparisons of two independent pairs of dependent multi-state coher-
ent systems can be presented based on the ordering of their multi-state joint signature.
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Theorem 4.5 For two multi-state joint signatures S and S̃, if  S≤S/E→ S̃, then their 
associated system lifetimes are such that 

(T (1) 1 , . . . ,  T (1) n , T (2) 1 , . . . ,  T (2) n )≤st( T̃ (1) 1 , . . . ,  T̃ (1) n , T̃ (2) 1 , . . . ,  T̃ (2) n ). 

Here, S≤S/E→ S̃ means that there exist matrices A1, . . . ,  Ak of the same dimen-
sion and total mass such that S = A1 →  · · ·  →  Ak = S̃, where Al → Al+1 means 
that Al+1 is obtained from Al by moving a positive mass cl > 0 from the (i1, . . . ,  
in, j1, . . . ,  jn)th term of Al to its (ĩ1, . . . ,  ̃in, j̃1, . . . ,  ̃jn)th term with ĩ1 ≥ i1, . . . ,  ̃in ≥ 
in and j̃1 ≥ j1, . . . ,  ̃jn ≥ jn. 

Proof See Theorem 3.2 in Yi et al. [ 67]. 

4.3 Dynamic Multi-state Signature 

The dynamic multi-state signature can be calculated directly from the corresponding 
multi-state signature and the number of failed components that cause the system to 
be in state k at a given time, as stated in the following theorem. 

Theorem 4.6 The dynamic multi-state system signature s(k) (m − i ) can be given 
from the multi-state signature s = (si1,...,in , 1 ≤ i1 ≤  · · ·  ≤  in ≤ m) as 

s(k) 
in−k+1,...,in 

(m − i ) = 

⎛ 

⎜ 
⎜ 
⎝

∑

1≤i1≤···≤in−k≤i < 
in−k+1≤···≤in≤m 

si1,...,in 

⎞ 

⎟ 
⎟ 
⎠ 

−1

∑

1≤i1≤···≤in−k≤i 

si1,...,in , 

where i + 1 ≤ in−k+1 ≤  · · ·  ≤  in ≤ m. 

Proof See Theorem 3.1 in Yi et al. [ 72]. 

4.4 Ordered Multi-state Signature 

For independent and indentcal multi-state coherent systems in a life test, the ordered 
multi-state signature can be calculated directly from their common multi-state sig-
nature, as described in the following theorem. 

Theorem 4.7 Given the multi-state signature s = (si1,...,in , 1 ≤ i1 ≤  · · ·  ≤  in ≤ m), 
the multi-state ordered signture can be given as sqr = (sqr j1,..., jn , 1 ≤ j1 ≤  · · ·  ≤  jn ≤ 
m), where
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sqr j1,..., jn =
∑

l∈Ll,m

(
l 

li1,...,in , 1 ≤ i1 ≤  · · ·  ≤  in ≤ m

)
⎧ 
⎨ 

⎩

π

1≤i1≤···≤in≤m 

s 
li1 ,...,in 

i1,...,in 

⎫ 
⎬ 

⎭ p
qr 
j1,..., jn |l , 

with pqr j1,..., jn |l being the conditional probability that the qth system that enters state 
n − r or below enters states n − 1, . . . ,  0 or below at the j1th, . . ., jnth component 
failures, respectively, given l in the subset 

Ll,m = 

⎧ 
⎨ 

⎩ l = (li1,...,in , 1 ≤ i1 ≤  · · ·  ≤  in ≤ m) :
∑

1≤i1≤···≤in≤m 

li1,...,in = l 

⎫ 
⎬ 

⎭ . 

Proof See Theorem 3.1 in Yi et al. [ 65]. 

From the formula presented above, we can also readily conclude that the ordered 
multi-state signature is distribution-free. 

Theorem 4.8 The ordered multi-state system signature sqr is free of the underlying 
component lifetime distribution function F, and is thus a distribution-free measure. 

Proof See Theorem 3.1 in Yi et al. [ 65]. 

The main difficulty in calculating the ordered multi-state signature is in the cal-
culation of the required conditional probabilities pqr j1,..., jn |l . The following properties 
of the conditional probabilities will help reduce this computational difficulty. 

Theorem 4.9 The conditional probabilities pqr j1,..., jn |l satisfy the following proper-
ties: (1) If l j1,..., jn = l, then pqr j1,..., jn |l = 1; 
(2) If l j1,..., jn = 0, then pqr j1,..., jn |l = 0; 
(3)

∑l 
q=1 p

qr 
j1,..., jn |l = l j1,..., jn ; 

(4) pqr j1,..., jn |l = p(l−q+1)(n−r+1) 
m− jn+1,...,m− j1+1|rev l . 

Proof See Theorem 3.2 in Yi et al. [ 65]. 

Theorem 4.10 For any multi-state signature s and ordered multi-state signature sqr 

(r = 1, . . . ,  n, q = 1, . . . ,  l), all  sqr j1,..., jn = 0 if and only if s j1,..., jn = 0. 

Proof See Corollary 3.1 in Yi et al. [ 65]. 

Theorem 4.11 The ordered signatures satisfy 1 l
∑l 

q=1 s
qr = s and 

rev sqr = (rev s)(l−q+1)(n−r+1) . 

Proof See Theorem 3.3 in Yi et al. [ 65]. 

Theorem 4.12 For any k ∈ {1, . . . ,  n}, if  si1,...,in = 0 for all 1 ≤ i1 ≤  · · ·  ≤  in ≤ m 
with ik /= a, then s1k =  · · ·  =  slk  = s.
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Proof See Theorem 3.4 in Yi et al. [ 65]. 

Ordered multi-state signatures s1r , . . . ,  slr follow a specific ordering and they 
are equal to each other only under some special cases as described in the following 
theorem. 

Theorem 4.13 (1) For any 1 ≤ q1 < q2 ≤ l, the ordered multi-state signatures sat-
isfy sq1r≤stsq2r ; (2) If sq1r≥stsq2r for any 1 ≤ q1 < q2 ≤ l, then there is at most one 
positive number in s j1,..., jn ( jr = 1, . . . ,  m) for any 1 ≤ j1 ≤  · · ·  ≤  jr−1 ≤ jr+1 ≤ 
· · ·  ≤  jn ≤ m. 

Proof See Theorem 3.5 in Yi et al. [ 65]. 

Note that the properties discussed in this subsection can be generalized to inde-
pendent and non-identical multi-state coherent systems; see Yi et al. [ 72] for related 
details and some further discussions. 

4.5 Multi-state Survival Signature 

Based on the multi-state survival signature of a multi-state coherent system with 
multi-state components, the reliabiltiy function of the system at each state level can 
be represented as follows. 

Theorem 4.14 The reliability of a multi-state system at level k (k = 0, . . . ,  M) is 
defined as the probability that the system is in state k or above at time t . Then, for 
a multi-state system with multi-state survival signature S = (S(0) , . . . ,  S(M) ) and n 
i.i.d. multi-state components, the reliability function of the system at level k can be 
expressed as 

R(k) (t) = P{Tk > t} 

=
∑

0≤i1+···+iM≤n 

S(k) 
i1+···+iM ,...,iM

(
n 

i0, . . . ,  iM

)

[F1(t)]i0 
M−1π

j=1 

[Fj+1(t) − Fj (t)]i j [1 − FM (t)]iM , 

where i0 = n −∑M 
j=1 i j and Fj (t), t ≥ 0 ( j = 1, . . . ,  M) is the common absolutely 

continuous component lifetime distribution at state level j . 

Proof See Sect. 2 in Yi et al. [ 73]. 

Theorem 4.15 Let p j ( j = 1, . . . ,  M) be the probability that each component is in 
state j . Then, the reliability at level k of a multi-state system with survival signature 
S = (S(0) , . . . ,  S(M) ) can be given as 

R(k) ( p0, . . . ,  pM ) =
∑

0≤i1+···+iM≤n 

S(k) 
i1+···+iM ,...,iM

(
n 

i0, . . . ,  iM

) Mπ

j=0 

p 
i j 
j .
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Once reliability polynomials as above are determined for all level k, the multi-state 
survival signature of the system is also determined. 

Proof See Sect. 2 in Yi et al. [ 73]. 

Note that the reliability polynomials provided above can be used to calculate 
multi-state survival signature based on reliability calculation methods. One may see 
Sect. 3 in Yi et al. [ 73] for related discussions based on the finite Markov chain 
imbedding approach. 

5 Comparisons of Multi-state Systems of Different Sizes 

Multi-state systems, no matter whether with binary-state components or with multi-
state components, can be compared with each other througth their multi-state signa-
ture concepts. Multi-state signature concepts are always defined as matrices whose 
dimensions are determined by the numbers of components in the multi-state systems. 
Even though we have shown that stochastic orderings of these multi-state signatures 
lead to stochastic comparisons of associated multi-state systems, for multi-state sys-
tems of different sizes, transformation formulas are still needed for their stochastic 
comparsions, which is what is dicussed in this section. 

5.1 Multi-state Systems of Sizes m and m + 1 

In this subsection, transformation formulas of multi-state signature, multi-state joint 
signature and multi-state survival signature are presented for multi-state systems of 
sizes m and m + 1 (m ≥ 2). 

Theorem 5.1 (Multi-state signature) Let s = (sk1,...,kn , 1 ≤ k1 ≤  · · ·  ≤  kn ≤ m) be 
the multi-state signature of a multi-state coherent or mixed system consisting of m 
binary-state components with i.i.d. continuous lifetimes. Then, its equivalent system 
with m + 1 components has its multi-state signature as 

s∗ =
∑

1≤k1≤···≤kn≤m 

sk1,...,kn s
∗ 
k1,...,kn :m, 

where 

s∗ 
k1,...,kn :m = 

k1 
m + 1 

sk1+1,...,kn+1:m+1 + 
n−1∑

i=1 

ki+1 − ki 
m + 1 

sk1,...,ki ,ki+1+1,...,kn+1:m+1 

+ 
m + 1 − kn 

m + 1 
sk1,...,kn :m+1.
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Here, sk1,...,kn :m+1 is the multi-state signature of a multi-state (kn, . . . ,  k1)-out-of-
m + 1: Fsystem, and evidently, there is only one positive element in sk1,...,kn :m+1. 

Proof See Theorem 2.2 in Yi et al. [ 66]. 

Theorem 5.2 (Multi-state joint signature) Let s = (sk1,...,kn;r1,...,rn , 1 ≤ k1 ≤  · · ·  ≤  
kn ≤ m, 1 ≤ r1 ≤  · · ·  ≤  rn ≤ m) be the multi-state joint signature of two multi-state 
semi-coherent or mixed systems consisting of m binary-state components with i.i.d. 
continuous lifetimes. Then, an equivalent pair of systems with m + 1 binary-state 
components has their joint signature as 

s∗ = (s∗ 
k1,...,kn;r1,...,rn , 1 ≤ k1 ≤  · · ·  ≤  kn ≤ m + 1, 1 ≤ r1 ≤  · · ·  ≤  rn ≤ m + 1), 

where 

s∗k1,...,kn ;r1,...,rn 
= 
k1 ∧ r1 − 1 

m + 1 
sk1−1,...,kn−1;r1−1,...,rn−1+ 

m + 1 − kn ∨ rn 
m + 1 

sk1,...,kn ;r1,...,rn 

+ 
n∑

b=0 

wb+1−1∑

a=wb+1 

ra+1 − ra − 1 
m + 1 

sk1,...,kb,kb+1−1,...,kn−1;r1,...,ra ,ra+1−1,...,rn−1 I{wb+1<wb+1,ra <ra+1} 

+ 
n∑

b=1 

kb − rwb − 1 
m + 1 

sk1,...,kb−1,kb−1,...,kn−1;r1,...,rwb ,rwb+1−1,...,rn−1 I{wb−1<wb,rwb <kb} 

+ 
n∑

b=1 

rwb+1 − kb − 1 
m + 1 

sk1,...,kb,kb+1−1,...,kn−1;r1,...,rwb ,rwb+1−1,...,rn−1 I{wb<wb+1,kb<rwb+1} 

+ 
n−1∑

b=1 

kb+1 − kb − 1 
m + 1 

sk1,...,kb,kb+1−1,...,kn−1;r1,...,rwb ,rwb+1−1,...,rn−1 I{wb=wb+1,kb<kb+1}, 

with k0 = r0 = 1, kn+1 = rn+1 = m + 1 and w j , j = 0, . . . ,  n + 1, being the largest 
one in {i : ri ≤ k j , i = 0, . . . ,  n}. 
Proof See Theorem 3.1 in Yi et al. [ 70]. 

Theorem 5.3 (Multi-state survival signature) Let S = (S(0) , . . . ,  S(M) ), where S(i) =(
S(i) 
i1,...,iM 

, 0 ≤ iM ≤  · · ·  ≤  i1 ≤ n
)

(i = 0, . . . ,  M), be the multi-state survival sig-

nature of a multi-state coherent or mixed system consisting of n i.i.d. multi-state 
components and a state space Ω = {0, . . . ,  M} for both the system and the compo-
nents. Suppose the component lifetimes X (1) 

j , . . . ,  X (n) 
j ( j = 1, . . . ,  M) are i.i.d. with 

a common absolutely continuous distribution function Fj (x), x ≥ 0, and are inde-
pendent for different j . Then, its equivalent system of size n + 1 has its multi-state 
survival signature as 

S∗ = (S(0) 
n+1, S

∗(1) , . . . ,  S∗(M) ) =
∑

k∈K 
sk S∗ 

k:n,
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where S∗ 
k:n = (S(0) 

n+1, S
∗(1) 
k:n , . . . ,  S∗(M) 

k:n ) is the multi-state survival signature of the 
equivalent system of size n + 1 of a multi-state k-out-of-n: G system given by 

S∗(l) 
k:n = S∗(l) 

kl :n =
(
S∗(l) 
kl ,i1,...,iM 

, 0 ≤ iM ≤  · · ·  ≤  i1 ≤ n + 1
)

, l = 1, . . . ,  M, 

with 

S∗(l) 
kl ,i1,...,iM 

= (n + 1)−M 
Mπ

j=1

[
kl, j I{il≥kl, j+1} + (n + 1 − kl, j )I{il≥kl, j }

]

for 0 ≤ iM ≤  · · ·  ≤  i1 ≤ n + 1, and 

K ={(ki, j , i = 1, . . . ,  M, j = 1, . . . ,  M) : 0 ≤ ki, j ≤ kĩ, ̃j ≤ n for any 

1 ≤ i < ĩ ≤ M, 1 ≤ j̃ < j ≤ M}, 

and sk, k ∈ K, can be given as a solution to the set of linear equations

∑

kl=k̃ 

sk = s(l) 
k̃ 

, k̃ ∈ K̃ = {(k1, . . . ,  kM ) : 0 ≤ kM ≤  · · ·  ≤  k1 ≤ n}, l = 1, . . . ,  M, 

with s(l) =
(
s(l) 
k̃ 

, k̃ ∈ K̃
)

= M−1 S(l) and 

M = (
Mi1,...,iM ; j1,..., jM , 0 ≤ iM ≤  · · ·  ≤  i1 ≤ n, 0 ≤ jM ≤  · · ·  ≤  j1 ≤ n

)

being a matrix with all elements Mi1,...,iM ; j1,..., jM = I{i1≥ j1,...,iM≥ jM }, for all i = 
1, . . . ,  M. 

Proof See Theorem 2.2 in Yi et al. [ 71]. 

5.2 Multi-state Systems of Sizes m and m + l 

In this subsection, transformation formulas of multi-state signature, multi-state joint 
signature and multi-state survival signature are presented for multi-state systems of 
sizes m and m + l (m ≥ 2, l ≥ 1). 
Theorem 5.4 (Multi-state signature) Let s = (sk1,...,kn , 1 ≤ k1 ≤  · · ·  ≤  kn ≤ m) be 
the multi-state signature of a multi-state coherent or mixed system consisting of m 
binary-state components with i.i.d. continuous lifetimes. Then, its equivalent system 
with m + l components has its multi-state signature as 

s(l)∗ =
∑

1≤k1≤···≤kn≤m 

sk1,...,kn s
(l)∗ 
k1,...,kn :m,
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where, with k0 = i0 = 0, kn+1 = m + 1, in+1 = m + l + 1, 

s(l)∗ 
k1,...,kn :m =

∑

(i1,...,in )∈Ωm,l (k1,...,kn )

(
m + l 
m

)−1 nπ

s=0

(
is+1 − is − 1 
ks+1 − ks − 1

)I{ks+1 >ks } 
si1,...,in :m+l 

is the multi-state signature of an equivalent system with m + l components for a 
multi-state (kn, . . . ,  k1)-out-of-m: F system with

Ωm,l (k1, . . . ,  kn) ={(i1, . . . ,  in) : 1 ≤ i1 ≤  · · ·  ≤  in ≤ m + l, ks+1 − ks ≤ is+1 − is 
and I{is+1>is } = I{ks+1>ks } for s = 0, . . . ,  n}. 

Proof See Theorem 2.5 in Yi et al. [ 66]. 

Theorem 5.5 (Multi-state joint signature) Let s = (sk1,...,kn;r1,...,rn , 1 ≤ k1 ≤  · · ·  ≤  
kn ≤ m, 1 ≤ r1 ≤  · · ·  ≤  rn ≤ m) be the joint signature of two multi-state semi-
coherent or mixed systems consisting of m binary-state components with i.i.d. con-
tinuous lifetimes. Then, an equivalent pair of two multi-state systems with m + l 
binary-state components have the multi-state joint signature as 

s(l)∗ =
∑

1≤k1≤···≤kn≤m,1≤r1≤···≤rn≤m 

sk1,...,kn;r1,...,rn s
(l)∗ 
k1,...,kn;r1,...,rn :m, 

where 

s(l)∗ 
k1,...,kn;r1,...,rn :m 

=
∑

(i1,...,in; j1,..., jn )∈Ωm,l (k1,...,kn;r1,...,rn )

(
m + l 
m

)−1 (
i1 ∧ j1 − 1 
k1 ∧ r1 − 1

)(
m + l − in ∨ jn 
m − kn ∨ rn

)

× 
nπ

b=0 

wb+1−1π

a=wb+1

(
ja+1 − ja − 1 
ra+1 − ra − 1

)I{wb+1<wb+1,ra <ra+1} nπ

b=1

(
ib − jwb − 1 
kb − rwb − 1

)I{wb−1 <wb ,rwb <kb } 

× 
nπ

b=1

(
jwb+1 − ib − 1 
rwb+1 − kb − 1

)I{wb <wb+1 ,kb <rwb +1} n−1π

b=1

(
ib+1 − ib − 1 
kb+1 − kb − 1

)I{wb=wb+1 ,kb <kb+1} 

· si1,...,in; j1,..., jn :m+l 

is the multi-state joint signature of the equivalent pair of systems with m + l shared 
components for a (kn, . . . ,  k1)-out-of-m: F system and a (rn, . . . ,  r1)-out-of-m: F 
system with m shared components, and

Ωm,l (k1, . . . ,  kn; r1, . . . ,  rn) 
={(k1 + c1, . . . ,  kn + cn; r1 + d1, . . . ,  rn + dn) : 0 ≤ dw0+1 ≤  · · ·  ≤  dw1 ≤ c1 ≤  · · ·  ≤  
dwn−1+1 ≤  · · ·  ≤  dwn ≤ cn ≤ dwn+1 ≤  · · ·  ≤  dwn+1 ≤ l and I{ka=kb} = I{ka+ca=kb+cb}, 
I{ra=rb} ≥ I{ra+da=rb+db}, I{ka=rb} ≥ I{ka+ca=rb+db} for all 1 ≤ a, b ≤ n}.
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Proof See Theorem 3.2 in Yi et al. [ 70]. 

Theorem 5.6 (Multi-state survival signature) Let S = (S(0) , . . . ,  S(M) ), where S(i ) =(
S(i) 
i1,...,iM 

, 0 ≤ iM ≤  · · ·  ≤  i1 ≤ n
)

(i = 0, . . . ,  M), be the multi-state survival sig-

nature of a multi-state coherent or mixed system consisting of n i.i.d. multi-state 
components and a state space Ω = {0, . . . ,  M} for both the system and the compo-
nents. Suppose the component lifetimes X (1) 

j , . . . ,  X (n) 
j ( j = 1, . . . ,  M) are i.i.d. with 

a common absolutely continuous distribution function Fj (x), x ≥ 0, and are inde-
pendent for different j . Then, its equivalent system of size n + l has its multi-state 
survival signature as 

S[l]∗ = (S[l]∗(0) , . . . ,  S[l]∗(M) ) =
∑

k∈K 
sk S

[l]∗ 
k:n , 

where sk, k ∈ K, are as in Theorem 5.3 and 

S[l]∗ 
k:n = (S(0) 

n+l , S
[l]∗(1) 
k:n , . . . ,  S[l]∗(M) 

k:n ) 

is the multi-state survival signature of the equivalent system of size n + l of a multi-
state k-out-of-n: G system given by S[l]∗(i ) 

k:n =
(
S[l]∗(i) 
k;i1,...,iM 

, 0 ≤ iM ≤  · · ·  ≤  i1 ≤ n + l
)

(i = 1, . . . ,  M) with r j ( j = 1, . . . ,  M) being the number of zeros in k1, j , . . . ,  kM, j , 
and 

S[l]∗(i ) 
k;i1,...,iM 

=
∑

h∈Hk 

Mπ

j=1 

⎧ 
⎨ 

⎩ (n + l)−1

(
hr j+1, j − 1 
kr j+1, j − 1

)⎡ 

⎣ 
M−1π

s=r j+1

(
hs+1, j − hs, j − 1 
ks+1, j − ks, j − 1

)I{ks+1, j >ks, j } 
⎤ 

⎦

(
n + l − hM, j 
n − kM, j

)}I{r j <M} 
I{i1≥hi,1,...,iM≥hi,M }, 0 ≤ iM ≤ · · ·  ≤  i1 ≤ n + l, 

with 

Hk ={(hi, j , j = 1, . . . ,  M, i = r j + 1, . . . ,  M) : 1 ≤ hr j+1, j ≤  · · ·  ≤  hM, j ≤ n + l, 

kr j+1, j ≤ hr j+1, j , kr j+2, j − kr j+1, j ≤ hr j+2, j − hr j+1, j , . . . ,  kM, j − kM−1, j 

≤ hM, j − hM−1, j , hM, j ≤ kM, j + l, I{kr j +2, j >kr j +1, j } = I{hr j +2, j >hr j +1, j }, 

. . . ,  I{kM, j >kM−1, j } = I{hM, j >hM−1, j } for all j}. 

Proof See Theorem 2.4 in Yi et al. [ 71]. 

6 Multi-state Systems Based on a Structure of Modules 

For the calculation of signature concepts, module decomposition method is a very 
effective tool since it can be used together with other methods, as long as the system
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has a structure of modules. In this section, we present some results for multi-state 
signature and multi-state survival signature for a series/parallel/recurrent structure 
of modules. 

6.1 Series Structure of Modules 

For two multi-state systems consisting of binary-state components, multi-state signa-
ture can be used to describe their structures, and multi-state signature of their series 
connection can be obtained as given in the following theorem. 

Theorem 6.1 (Multi-state signature) For two independent multi-state coherent sys-
tems φ1 and φ2 with state space {0, . . . ,  M} consisting of binary-state components 
which are i.i.d. from a continuous distribution function F(x), x ≥ 0, the multi-
state signature of a new system formed by their series connection can be com-
puted from their multi-state signatures s1 = (s1 i1,...,iM 

, 1 ≤ i1 ≤  · · ·  ≤  iM ≤ m1) and 
s2 = (s2 i1,...,iM 

, 1 ≤ i1 ≤  · · ·  ≤  iM ≤ m2) as 

s(ser) = (sv1,...,vM , 1 ≤ v1 ≤  · · ·  ≤  vM ≤ m1 + m2), 

where 

sv1,...,vM =
∑

v1−1≤u1≤v1,...,vM−1≤uM≤vM 

(−1)(u1+···+uM )−(v1+···+vM )+M S ¯ v1,...,vM . 

Here, for 0 ≤ u1 ≤  · · ·  ≤  uM ≤ m1 + m2, 

S̄u1,...,uM =
∑

(i1,...,iM )∈Wu1 ,...,u M 

S ¯ 1 i1,...,iM 
S ¯ 2 u1−i1,...,uM−iM 

Mπ

r=0

(
ur+1 − ur 
ir+1 − ir

)(
m1 + m2 

m1

)−1 

with u0 = i0 = 0, uM+1 = m1 + m2, iM+1 = m1, and 

S ¯ r i1,...,iM 
=

∑

i1< j1≤m1,...,iM < jM≤m1 

sr j1,..., jM 
, r = 1, 2, 

Wu1,...,uM = {(i1, . . . ,  iM ) : 1 ≤ i1 ≤ · · ·  ≤  iM ≤ m1, 1 ≤ u1 − i1 ≤ · · ·  ≤  uM − iM ≤ m2} ; 

otherwise, S̄u1,...,uM = S̄u1,max(u1,u2),...,max(u1,...,uM ). 

Proof See Theorem 2.1 in Yi et al. [ 69]. 

For two multi-state systems with multi-state components, multi-state survival 
signature can be used to describe their structures, and multi-state signature of their 
series connection can be obtained as follows.
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Theorem 6.2 (Multi-state survival signature) For two independent multi-state coher-
ent systems φ1 and φ2 with state space {0, . . . ,  M} consisting of multi-state com-
ponents that enters states below r (r = 1, . . . ,  M) at times i.i.d. from a contin-
uous distribution function Fr (x), x ≥ 0, the multi-state survival signature of a 
new system formed by their series connection can be computed from their multi-
state survival signatures D1 = (D1(0) , . . . ,  D1(M) ) and D2 = (D2(0) , . . . ,  D2(M) ) 
as D(ser ) = (D(0) , . . . ,  D(M) ), where, for a = 0, . . . ,  M, 

Dr (a) = (Dr (a) 
i1,...,iM 

, 0 ≤ iM ≤ . . .  ≤ i1 ≤ m1), r = 1, 2, 
D(a) = (D(a) 

u1,...,uM 
, 0 ≤ uM ≤ . . .  ≤ u1 ≤ m1 + m2), 

and 

D(a) 
u1,...,uM 

=
∑

(i1,...,iM )∈Vu1 ,...,u M 

D1(a) 
i1,...,iM 

D2(a) 
u1−i1,...,uM−iM 

Mπ

r=0

(
ur − ur+1 

ir − ir+1

)(
m1 + m2 

m1

)−1 

with u0 = m1 + m2, i0 = m1, uM+1 = iM+1 = 0, and 

Vu1,...,uM = {(i1, . . . ,  iM ) : 1 ≤ iM ≤  · · ·  ≤  i1 ≤ m1, 1 ≤ uM − iM ≤ · · ·  ≤  u1 − i1 ≤ m2} . 

Proof See Theorem 3.1 in Yi et al. [ 69]. 

6.2 Parallel Structure of Modules 

As in the case of series structure of modules, for two multi-state systems consisting 
of binary-state components, multi-state signature of their parallel connection can be 
obtained as presented in the following theorem. 

Theorem 6.3 (Multi-state signature) For two independent multi-state coherent sys-
tems φ1 and φ2 with state space {0, . . . ,  M} consisting of binary-state components 
which are i.i.d. from a continuous distribution function F(x), x ≥ 0, the multi-
state signature of a new system formed by their parallel connection can be com-
puted from their multi-state signatures s1 = (s1 i1,...,iM 

, 1 ≤ i1 ≤  · · ·  ≤  iM ≤ m1) and 
s2 = (s2 i1,...,iM 

, 1 ≤ i1 ≤  · · ·  ≤  iM ≤ m2) as 

s( par) = (sv1,...,vM , 1 ≤ v1 ≤  · · ·  ≤  vM ≤ m1 + m2), 

where 

sv1,...,vM =
∑

v1−1≤u1≤v1,...,vM−1≤uM≤vM 

(−1)(v1+···+vM )−(u1+···+uM ) Su1,...,uM ,
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Here, for 0 ≤ u1 ≤  · · ·  ≤  uM ≤ m1 + m2, 

Su1,...,uM =
∑

(i1,...,iM )∈Wu1 ,...,u M 

S1 i1,...,iM 
S2 u1−i1,...,uM−iM 

Mπ

r=0

(
ur+1 − ur 
ir+1 − ir

)(
m1 + m2 

m1

)−1 

, 

with notations as used in Theorem 6.1 and 

Sr i1,...,iM 
=

∑

1≤ j1<i1,...,1≤ jM <iM 

sr j1,..., jM 
, r = 1, 2; 

otherwise, Su1,...,uM = Smin(u1,...,uM ),...,min(uM−1,uM ),uM . 

Proof See Theorem 2.2 in Yi et al. [ 69]. 

In an analogous way, for two multi-state systems consisting of multi-state com-
ponents, multi-state survival signature of their parallel connection can be obtained 
as given in the following theorem. 

Theorem 6.4 (Multi-state survival signature) For two independent multi-state coher-
ent systems φ1 and φ2 with state space {0, . . . ,  M} consisting of multi-state com-
ponents that enter states below r (r = 1, . . . ,  M) at times i.i.d. from a continu-
ous distribution function Fr (x), x ≥ 0, the multi-state survival signature of a new 
system formed by their parallel connection can be computed from their multi-
state survival signatures D1 = (D1(0) , . . . ,  D1(M) ) and D2 = (D2(0) , . . . ,  D2(M) ) as 
D(par) = (D(0) , . . . ,  D(M) ), where, for a = 0, . . . ,  M, D1(a) , D2(a) , D(a) are defined 
in the same way as in Theorem 6.2 and 

D(a) 
u1,...,uM 

= 

⎧ 
⎨ 

⎩ 1 −
∑

(i1,...,iM )∈Vu1 ,...,u M

[
1 − D1(a) 

i1,...,iM

] [
1 − D2(a) 

u1−i1,...,uM−iM

]

× 
Mπ

r=0

(
ur − ur+1 

ir − ir+1

)(
m1 + m2 

m1

)−1
}

, 

with notations being the same as in Theorem 6.2. 

Proof See Theorem 3.2 in Yi et al. [ 69]. 

6.3 Recurrent Structure of Modules 

As with series/parallel structure of modules, for two multi-state systems consisting 
of binary-state components, multi-state signature of their recurrent connection can 
be obtained as given in the following theorem.
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Theorem 6.5 (Multi-state signature) For N independent and identical multi-state 
coherent systems with state space {0, . . . ,  M} consisting of binary-state components 
which are i.i.d. from a continuous distribution function F(x), x ≥ 0, the multi-state 
signature of a new system formed by their recurrent connection can be computed 
from their common multi-state signature s1 = (s1 i1,...,iM 

, 1 ≤ i1 ≤  · · ·  ≤  iM ≤ m) 
and multi-state survival signature D2 = (D2(0) , . . . ,  D2(M) ) of the connection as 
D(rec) = ( D(0) , . . . ,  D(M) ), where, for a = 0, . . . ,  M, 

D2(a) = (D2(a) 
j1,..., jM 

, 0 ≤ jM ≤  · · ·  ≤  j1 ≤ N ), D(a) = (D(a) 
0 , . . . ,  D(a) 

Nm), 

and 

D(a) 
u =

(
Nm  
u

)−1 ∑

0≤ j1+···+ jM≤N 

D2(a) 
j1+···+ jM ,..., jM

(
N 

j0, . . . ,  jM

)

×
∑

i∈Θu, j0 ,..., jM 

Mπ

r=0

{(
jr 

ir0, . . . ,  irm

) Mπ

k=0

[(
D1(r ) 

k − D1(r+1) 
k

)(m 
k

)]irk
}

with u = 0, . . . ,  Nm, j0 = N −∑M 
l=1 jl , D

1(r) 
k = ∑

iM−r+1>k,1≤i1≤···≤iM≤m s
1 
i1,...,iM 

(r = 1, . . . ,  M), D1(0) 
k = 1, D1(M+1) 

k = 0, and

Θu, j0,..., jM = {i = (irk, 0 ≤ r ≤ M, 0 ≤ k ≤ m) : ir0 +  · · ·  +  irm  = jr 

for any r, and 
M∑

r=0 

m∑

k=0 

kirk  = u

}

. 

Proof See Theorem 4.1 in Yi et al. [ 69]. 

In an analogous way, for two multi-state systems consisting of multi-state com-
ponents, multi-state survival signature of their recurrent connection can be obtained 
as given in the following theorem. 

Theorem 6.6 (Multi-state survival signature) For N independent multi-state coher-
ent systems with state space {0, . . . ,  M} consisting of multi-state components that 
enter states below r (r = 1, . . . ,  M) at times i.i.d. from a continuous distribution 
function Fr (x), x ≥ 0, the multi-state survival signature of a new system formed 
by their recurrent connection can be computed from their common multi-state sur-
vival signature D1 = ( D1(0) , . . . ,  D1(M) ) and D2 = (D2(0) , . . . ,  D2(M) ) as D(rec) = 
(D(0) , . . . ,  D(M) ), where for a = 0, . . . ,  M, D1(a) , D2(a) , D(a) are as defined in The-
orem 6.2, and
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D(a) 
u1+···+uM ,...,uM 

=
(

Nm  
u0, . . . ,  uM

)−1 ∑

0≤ j1+···+ jM≤N 

D2(a) 
j1+···+ jM ,..., jM

(
N 

j0, . . . ,  jM

) ∑

l∈Ωu0 ,...,u M , j0 ,..., jM 

Mπ

r=0
{(

jr 
lir1+···+irM  ,...,irM  , 0 ≤ ir1 +  · · ·  +  irM  ≤ m

) π

0≤ir1+···+irM≤m

[(
D1(r) 

ir1+···+irM  ,...,irM  

−D1(r+1) 
ir1+···+irM  ,...,irM

)( m 
ir0, . . . ,  irM

)]lir1+···+irM  ,...,irM

}

I{0≤u1+···+uM≤Nm} 

with u0 = Nm  −∑M 
l=1 ul , j0 = N −∑M 

l=1 jl , ir0 = m −∑M 
l=1 irl , and

Ωu0,...,uM , j0,..., jM 

= 

⎧ 
⎨ 

⎩ l = (lir1+···+irM  ,...,irM  , 0 ≤ ir1 +  · · ·  +  irM  ≤ m) :
∑

0≤is1+···+isM≤m 

lis1+···+isM  ,...,isM  

= js, 
M∑

r=0

∑

0≤ir1+···+irM≤m 

irslir1+···+irM  ,...,irM  = us for any s

}

. 

Proof See Theorem 4.2 in Yi et al. [ 69]. 

7 Illustrative Examples 

For theoretical results presented in above sections, their illustrative examples can be 
found in related papers, for example, see Yi et al. [ 69] for illustratve examples for 
Sect. 6. In this section, we present several illustrative examples for the transformation 
formulas of multi-state signature, multi-state joint signature and multi-state survival 
signature. 

Example 7.1 (Multi-state signature) From Theorem 5.1, for a ternary-state coherent 
or mixed system consisting of two i.i.d. components that has multi-state signature 

s =
(
s1,1 s1,2 
0 s2,2

)

=
(
0 1/2 
0 1/2

)

, 

its equivalent system with three components has its multi-state signature as 

s∗ = 
1 

2 
s∗ 
1,2:2 + 

1 

2 
s∗ 
2,2:2 = 

1 

2 

⎛ 

⎝ 
0 1/3 1/3 
0 0 1/3 
0 0 0  

⎞ 

⎠ + 
1 

2 

⎛ 

⎝ 
0 0 0  
0 1/3 0  
0 0 2/3 

⎞ 

⎠ = 

⎛ 

⎝ 
0 1/6 1/6 
0 1/6 1/6 
0 0 1/3 

⎞ 

⎠ .
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From Theorem 5.4, its equivalent system with three components has its multi-state 
signature as 

s(2)∗ = 
1 

2 
s(2)∗ 
1,2:2 + 

1 

2 
s(2)∗ 
2,2:2 = 

1 

2 

⎛ 

⎜ 
⎜ 
⎝ 

0 1/6 1/6 1/6 
0 0 1/6 1/6 
0 0 0 1/6 
0 0 0 0  

⎞ 

⎟ 
⎟ 
⎠ + 

1 

2 

⎛ 

⎜ 
⎜ 
⎝ 

0 0 0 0  
0 1/6 0 0  
0 0 1/3 0  
0 0 0 1/2 

⎞ 

⎟ 
⎟ 
⎠ = 

⎛ 

⎜ 
⎜ 
⎝ 

0 1/12 1/12 1/12 
0 1/12 1/12 1/12 
0 0 1/6 1/12 
0 0 0 1/4 

⎞ 

⎟ 
⎟ 
⎠ . 

The same result can also be obtained by using Theorem 5.1 twice; see Sect. 3 in Yi 
et al. [ 66] for details. 

Example 7.2 (Multi-state joint signature) From Theorem 5.2, for two ternary-state 
coherent or mixed systems with two shared i.i.d. components that has multi-state 
joint signature 

s = 

⎛ 

⎝ 
s1,1;1,1 s1,1;1,2 s1,1;2,2 
s1,2;1,1 s1,2;1,2 s1,2;2,2 
s2,2;1,1 s2,2;1,2 s2,2;2,2 

⎞ 

⎠ = 

⎛ 

⎝ 
0 0 1  
0 0 0  
0 0 0  

⎞ 

⎠ , 

their equivalent pair of systems with three i.i.d. shared components has their multi-
state joint signature as 

s∗ = 

⎛ 

⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎝ 

s∗ 
1,1;1,1 s

∗ 
1,1;1,2 s

∗ 
1,1;1,3 s

∗ 
1,1;2,2 s

∗ 
1,1;2,3 s

∗ 
1,1;3,3 

s∗ 
1,2;1,1 s

∗ 
1,2;1,2 s

∗ 
1,2;1,3 s

∗ 
1,2;2,2 s

∗ 
1,2;2,3 s

∗ 
1,2;3,3 

s∗ 
1,3;1,1 s

∗ 
1,3;1,2 s

∗ 
1,3;1,3 s

∗ 
1,3;2,2 s

∗ 
1,3;2,3 s

∗ 
1,3;3,3 

s∗ 
2,2;1,1 s

∗ 
2,2;1,2 s

∗ 
2,2;1,3 s

∗ 
2,2;2,2 s

∗ 
2,2;2,3 s

∗ 
2,2;3,3 

s∗ 
2,3;1,1 s

∗ 
2,3;1,2 s

∗ 
2,3;1,3 s

∗ 
2,3;2,2 s

∗ 
2,3;2,3 s

∗ 
2,3;3,3 

s∗ 
3,3;1,1 s

∗ 
3,3;1,2 s

∗ 
3,3;1,3 s

∗ 
3,3;2,2 s

∗ 
3,3;2,3 s

∗ 
3,3;3,3 

⎞ 

⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎠ 

= 

⎛ 

⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎝ 

0 0 0 1/3 0  1/3 
0 0 0  0  0  0  
0 0 0  0  0  0  
0 0 0  0  0  1/3 
0 0 0  0  0  0  
0 0 0  0  0  0  

⎞ 

⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎠ 

. 

From Theorem 5.5, their equivalent pair of systems with four i.i.d. shared com-
ponents has their multi-state joint signature as
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s(2)∗ = 

⎛ 

⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎝ 

s(2)∗ 
1,1;1,1 s

(2)∗ 
1,1;1,2 s

(2)∗ 
1,1;1,3 s

(2)∗ 
1,1;1,4 s

(2)∗ 
1,1;2,2 s

(2)∗ 
1,1;2,3 s

(2)∗ 
1,1;2,4 s

(2)∗ 
1,1;3,3 s

(2)∗ 
1,1;3,4 s

(2)∗ 
1,1;4,4 

s(2)∗ 
1,2;1,1 s

(2)∗ 
1,2;1,2 s

(2)∗ 
1,2;1,3 s

(2)∗ 
1,2;1,4 s

(2)∗ 
1,2;2,2 s

(2)∗ 
1,2;2,3 s

(2)∗ 
1,2;2,4 s

(2)∗ 
1,2;3,3 s

(2)∗ 
1,2;3,4 s

(2)∗ 
1,2;4,4 

s(2)∗ 
1,3;1,1 s

(2)∗ 
1,3;1,2 s

(2)∗ 
1,3;1,3 s

(2)∗ 
1,3;1,4 s

(2)∗ 
1,3;2,2 s

(2)∗ 
1,3;2,3 s

(2)∗ 
1,3;2,4 s

(2)∗ 
1,3;3,3 s

(2)∗ 
1,3;3,4 s

(2)∗ 
1,3;4,4 

s(2)∗ 
1,4;1,1 s

(2)∗ 
1,4;1,2 s

(2)∗ 
1,4;1,3 s

(2)∗ 
1,4;1,4 s

(2)∗ 
1,4;2,2 s

(2)∗ 
1,4;2,3 s

(2)∗ 
1,4;2,4 s

(2)∗ 
1,4;3,3 s

(2)∗ 
1,4;3,4 s

(2)∗ 
1,4;4,4 

s(2)∗ 
2,2;1,1 s

(2)∗ 
2,2;1,2 s

(2)∗ 
2,2;1,3 s

(2)∗ 
2,2;1,4 s

(2)∗ 
2,2;2,2 s

(2)∗ 
2,2;2,3 s

(2)∗ 
2,2;2,4 s

(2)∗ 
2,2;3,3 s

(2)∗ 
2,2;3,4 s

(2)∗ 
2,2;4,4 

s(2)∗ 
2,3;1,1 s

(2)∗ 
2,3;1,2 s

(2)∗ 
2,3;1,3 s

(2)∗ 
2,3;1,4 s

(2)∗ 
2,3;2,2 s

(2)∗ 
2,3;2,3 s

(2)∗ 
2,3;2,4 s

(2)∗ 
2,3;3,3 s

(2)∗ 
2,3;3,4 s

(2)∗ 
2,3;4,4 

s(2)∗ 
2,4;1,1 s

(2)∗ 
2,4;1,2 s

(2)∗ 
2,4;1,3 s

(2)∗ 
2,4;1,4 s

(2)∗ 
2,4;2,2 s

(2)∗ 
2,4;2,3 s

(2)∗ 
2,4;2,4 s

(2)∗ 
2,4;3,3 s

(2)∗ 
2,4;3,4 s

(2)∗ 
2,4;4,4 

s(2)∗ 
3,3;1,1 s

(2)∗ 
3,3;1,2 s

(2)∗ 
3,3;1,3 s

(2)∗ 
3,3;1,4 s

(2)∗ 
3,3;2,2 s

(2)∗ 
3,3;2,3 s

(2)∗ 
3,3;2,4 s

(2)∗ 
3,3;3,3 s

(2)∗ 
3,3;3,4 s

(2)∗ 
3,3;4,4 

s(2)∗ 
3,4;1,1 s

(2)∗ 
3,4;1,2 s

(2)∗ 
3,4;1,3 s

(2)∗ 
3,4;1,4 s

(2)∗ 
3,4;2,2 s

(2)∗ 
3,4;2,3 s

(2)∗ 
3,4;2,4 s

(2)∗ 
3,4;3,3 s

(2)∗ 
3,4;3,4 s

(2)∗ 
3,4;4,4 

s(2)∗ 
4,4;1,1 s

(2)∗ 
4,4;1,2 s

(2)∗ 
4,4;1,3 s

(2)∗ 
4,4;1,4 s

(2)∗ 
4,4;2,2 s

(2)∗ 
4,4;2,3 s

(2)∗ 
4,4;2,4 s

(2)∗ 
4,4;3,3 s

(2)∗ 
4,4;3,4 s

(2)∗ 
4,4;4,4 

⎞ 

⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎠ 

= 

⎛ 

⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎝ 

0 0 0 0 1/6  0 0 1/6 0 1/6 
0 0 0 0  0  0 0  0  0  0  
0 0 0 0  0  0 0  0  0  0  
0 0 0 0  0  0 0  0  0  0  
0 0 0 0  0  0 0 1/6 0 1/6 
0 0 0 0  0  0 0  0  0  0  
0 0 0 0  0  0 0  0  0  0  
0 0 0 0  0  0 0  0  0  1/6 
0 0 0 0  0  0 0  0  0  0  
0 0 0 0  0  0 0  0  0  0  

⎞ 

⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎠ 

. 

The same result can also be obtained by using Theorem 5.2 twice; see Sect. 4 in Yi 
et al. [ 70] for details. 

Example 7.3 (Multi-state survival signature) For a multi-state linear consecutive 
(2, 1)-out-of-4:G system, its multi-state survival signature can be given as 

S = (S(0) , S(1) , S(2) ) = 

⎛ 

⎝ 
1 1  1  1 1 1  1  1  1  1  1  1  1  1  1  
0 0 1/2 1 1  0  1/2 1  1  1/2  1  1 1 1 1  
0 0  0  0 0 0 1/2 1  1  1/2  1  1 1 1 1  

⎞ 

⎠ 
T 

. 

From Theorem 5.3, the multi-state survival signature of its equivalent system of size 5 
can be given as S∗ = 1 2 S

∗ 
2,0;2,1:4 + 1 2 S

∗ 
3,0;3,1:4, where S

∗ 
2,0;2,1:4 = (S(0) 

5 , S∗(1) 
2,0:4, S

∗(2) 
2,1:4)T 

and S∗ 
3,0;3,1:4 = (S(0) 

5 , S∗(1) 
3,0:4, S

∗(2) 
3,1:4)T with 

S∗(1) 
2,0:4 = 

3 × 5 
25 

S(1) 
2,0:5 + 

3 × 0 
25 

S(1) 
2,1:5 + 

2 × 5 
25 

S(1) 
3,0:5 + 

2 × 0 
25 

S(1) 
3,1:5, 

S∗(2) 
2,1:4 = 

3 × 4 
25 

S(2) 
2,1:5 + 

3 × 1 
25 

S(2) 
2,2:5 + 

2 × 4 
25 

S(2) 
3,1:5 + 

2 × 1 
25 

S(2) 
3,2:5, 

S∗(1) 
3,0:4 = 

2 × 5 
25 

S(1) 
3,0:5 + 

2 × 0 
25 

S(1) 
3,1:5 + 

3 × 5 
25 

S(1) 
4,0:5 + 

3 × 0 
25 

S(1) 
4,1:5, 

S∗(2) 
3,1:4 = 

2 × 4 
25 

S(2) 
3,1:5 + 

2 × 1 
25 

S(2) 
3,2:5 + 

3 × 4 
25 

S(2) 
4,1:5 + 

3 × 1 
25 

S(2) 
4,2:5. 

Then, we clearly have
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S∗ = 
1 

50 

⎛ 

⎝ 
50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 
0  0  15  35  50  50  0  15 35 50 50 15 35 50 50 35 50 50 50 50 50  
0 0 0 0 0 0 0 12 28 40 40 15 35 50 50 35 50 50 50 50 50 

⎞ 

⎠ 
T 

. 

Similarly, the multi-state survival signature of its equivalent system of size 6 can be 
given from Theorem 5.6 as 

S∗ = 

⎛ 

⎝ 
1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1 1  1  1  1 1 1 1  
0 0  1 5 

1 
2 

4 
5 1 1 0  1 5 

1 
2 

4 
5 1 1  1 5 

1 
2 

4 
5 1 1  1 2 

4 
5 1 1  4 5 1 1 1 1 1  

0 0  0  0  0  0 0 0  2 15 
1 
3 

8 
15 

2 
3 

2 
3 

14 
75 

7 
15 

56 
75 

14 
15 

14 
15 

1 
2 

4 
5 1 1  4 5 1 1 1 1 1  

⎞ 

⎠ 
T 

. 

The same result can also be obtained by using Theorem 5.3 twice; see Sect. 3 in Yi 
et al. [ 71] for details. 

8 Concluding Remarks 

Signature theory plays an important role in the field of reliability. Research based 
on signature theory has been reviewed in this work focusing especially on signature 
related concepts, properties of these concepts, their computational methods, and some 
multi-state signatures for multi-state systems. On the topic of multi-state signature 
for multi-state systems, the presented discussions can be summarized as follows: (1) 
concepts such as multi-state signature, multi-state joint signature, dynamic multi-
state signature, ordered multi-state survival signature have been introduced and their 
properties have been discussed; (2) Stochastic comparisons have been presented for 
multi-state systems of different sizes based on multi-state signature, multi-state joint 
signature and multi-state survival signature; and (3) Multi-state systems based on a 
structure of modules have also been considered based on multi-state signatures and 
multi-state survival signatures of modules and structures. It will be of great interest to 
consider statistical inferential problems based on these multi-state signture concepts, 
especially under nonhomogeneous Poisson processes as in [ 18, 74]. We are currently 
working in this direction and hope to report the findings in a future paper. 
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Comprehensive Reliability of Aircraft 
Actuation System 

Shaoping Wang, Jian Shi, and Yajing Qiao 

Abstract Aircraft actuation system receives commands from the flight control 
computer and drives the plane surface to realize the aircraft flight attitude and flight 
trajectory control. The actuation system has a significant influence on the overall 
aircraft flight control performance and safety. This chapter presents the essential 
reliability characteristics of the redundancy aircraft actuation systems, and creates a 
reliability evaluation method for non-similar redundancy actuation systems. Section 1 
summarizes the aircraft actuation system, and explains the interface between the 
flight control system(FCS) and the actuation system. Some typical aircraft hydraulic 
actuation system constructions in current commercial aircraft are provided in Sect. 2. 
Furthermore, Sect. 3 analyzes the architecture and characteristics of A380 aircraft 
actuation system, and provides the comprehensive reliability definition and the reli-
ability calculation method. Afterward, the reliability of actuation system based on 
performance degradation is described. Finally, the integrated reliability evaluation 
case is provided for example of a HA/EHA system, in which HA operates actively 
and EHA follows under normal operating conditions. 

Keyword Reliability · Aircraft actuation system · Flight control system ·
Performance degradation · HA/EHA system 

1 Main Properties of Aircraft Actuation Systems 

There are three key elements for an aircraft, which are lift force, power and manip-
ulation. Aircraft aerodynamic configuration determines aircraft available lift force. 
The engine provides aircraft thrust and onboard power supply, and the flight control 
system (FCS) provides aircraft translational and rotational motion by driving the 
control surfaces [1]. The control surfaces are used directly to control the attitude of 
the aircraft. The control surfaces on aircraft, illustrated in Fig. 1, are generally divided 
into two groups in terms of their contribution to aircraft flight control, i.e., primary
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Rudder 

Elevator 

Ailerons 

Flaps 

Spoilers 

Slats 

Trimmable Horizontal 
Stabilizer 

Z, Yaw 

X, Roll 

Y, Pitch 

Fig. 1 Control surfaces of an advanced commercial aircraft 

control surfaces and secondary control surfaces. The primary flight control surfaces 
include elevators (for pitch control), rudders (for yaw control) and ailerons (for roll 
control), which are dedicated to the control of the roll, yaw and pitch attitudes and 
of the trajectory of the aircraft [2]. The secondary flight control surfaces consist of 
slates, spoilers, flaps et al., which are dedicated to the control of the lift of the wing, 
and help aircraft control during take-off or landing [3]. 

All of the control surfaces on aircraft are driven by several actuators which are 
powered by onboard hydraulic or electric supply. Figure 2 shows a typical schematic 
of aircraft flight control and actuation system [4], which consists of flight control 
computer (FCC), actuator control electronics (ACE), actuator and sensors. Under 
normal operation, FCCs receive pilot control commands, and determine the control 
surface movement for the aircraft to respond in the best way to the pilot’s commands 
and achieve a fast, well damped response throughout the flight envelope. Then, FCCs 
transmit actuation commands to ACE and actuators to drive the control surface to 
desired position. Meanwhile, sensors, e.g. inertial measurement unit (IMU) and air 
data sensors, measure the aircraft response and close the pitch, roll, and yaw control 
loops to ensure that the aircraft possesses well-harmonized control characteristics 
throughout the flight regime [5].

The architecture of the flight control and actuation system, in terms of number of 
actuators per surface, number and distribution of power sources and flight control 
computers, is primarily driven by safety considerations. The safety objectives, as 
defined by the current regulations, require failures, or combinations of failures, 
resulting in the loss of the aircraft to be demonstrated as “Extremely Improbable”. 
This means that their failure rate shall not exceed a probability of 10–9 per flight hour. 
Complete loss of power supply to a fully powered flight control and actuation system, 
which would result in loss of control, falls in this category. As a consequence, the



Comprehensive Reliability of Aircraft Actuation System 213

Fig. 2 Aircraft flight control system

flight control and actuation system shall be supplied from several redundant power 
sources [6]. 

2 Introduction of Aircraft Actuators 

Actuation system is a vital link between the flight control and power supply, providing 
the motive force necessary to move flight control surfaces. Since the flight controls 
need the force to drive the surface motion, several sets of hydraulic supply and 
electrical supply system are used in aircraft. With the development of more electric 
aircraft, diverse actuators, including hydraulic actuator (HA), electro-hydrostatic 
actuator (EHA), Electro-mechanical actuator (EMA), and electrical backup hydraulic 
actuators (EBHA), are used in in aircraft. Among these types of actuators, application 
of EMA is limited due to its airworthiness uncertainty. 

2.1 Hydraulic Actuator (HA) 

HA, also called valve-controlled hydraulic actuator, is widely used in aircraft. It 
is a device converting hydraulic power to mechanical power through the control 
element [7]. Within Hydraulic actuator, a servo-valve (SV) serves as a power interface 
between electrical and hydraulic powers. The basic schematic of hydraulic actuator 
is illustrated in Fig. 3.

The digital fly-by-wire (FBW) commands or direct electrical link demands from 
the flight deck controls are processed by the ACE which supplies an analogue 
command to the actuator SV. This allows aircraft hydraulic power to be supplied
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to the appropriate side of cylinder ram piston moving the ram to the desired posi-
tion. In this implementation, the cylinder ram position is detected by means of a 
Linear Variable Differential Transducer (LVDT) which feeds the signal back to the 
ACE where the loop around the actuator is closed. The conventional HA is contin-
ually pressurized by a centralized hydraulic power supply system whether or not 
there is any demand whereas the actuator demands are minimal in many cases. In 
this situation, most of the energy coming from the hydraulic power supply system is 
converted to heat through the orifice. Therefore, the constant pressure supply actuator 
is efficient in terms of dynamic response but not efficient in terms of energy. 

Modern flight controls are increasingly adopting FBW system, in which the elec-
trical parts replace the mechanical one. As vital elements in a FBW system, actuation 
system must be able to survive any two failures and carry on operating satisfactorily in 
order to meet the aircraft safety requirements. Since the limited reliability of electrical 
control part of SV, aircraft utilizes multiple redundancy actuation system. Figure 4 
illustrates a simplified block schematic diagram of multiple redundant hydraulic actu-
ator, in which four identical lanes solenoid (SOL) are used. The SVs summed before 
applying demands to the control valves. This kind of multiple redundant actuator is 
also called quadruplex actuation system [5].

2.2 Electro-Hydrostatic Actuator (EHA) [8] 

The Electro-Hydrostatic Actuator (EHA) uses state-of-the-art power electronics and 
control techniques to provide more efficient flight control actuation. EHA transmits 
power to the load through a hydrostatic loop which involves variable speed motor, 
fixed displacement hydraulic pump, cylinder and LVDT, as illustrated in Fig. 5. An  
electric power source directly supplies an AC motor that drives a variable displace-
ment pump connected to a hydraulic cylinder. This makes a hydrostatic loop. The
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Fig. 4 Quadruplex actuation system

load is closed loop position-controlled by action on the pump displacement. The 
EHA seeks to provide a more efficient form of actuation where the actuator only 
draws significant power when a control demand is sought. The EHA accomplishes 
this by using the three-phase AC power to feed power drive electronics which in turn 
drive a variable speed pump together with a constant displacement hydraulic pump. 
When a demand is received from the ACE, the power drive electronics is able to 
react sufficiently rapidly to drive the variable speed motor and hence pressurize the 
actuator such that the associated control surface may be moved to satisfy the demand. 
Once the demand has been satisfied then the power electronics resumes its normal 
dormant state. Consequently, power is only drawn from the aircraft buses bars while 
the actuator is moving, representing a great saving in energy. The ACE closes the 
control loop around the actuator electrically as previously described. 

The EHA uses the local hydraulic system, which reduces the need for long pipes 
between the centralized hydraulic power supply and the actuator, and thus decreases 
the corresponding weight [9]. In addition, in case of no demand, the only power 
requirement of EHA is to maintain the control electronics. When the actuator control
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Fig. 5 Electro-hydrostatic actuator (EHA) 
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equipment sends the command, the power rapidly acts on the electronics to drive the 
variable speed motor and pressurizes the actuator resulting in the corresponding 
surface movement. Once the output of the surface satisfies the demand, the power 
electronic resumes its normal dormant state. The ACE electrically closes the control 
loop around the actuator. It is obvious that the power of EHA is only drawn from the 
aircraft buses while the actuator is moving, so EHA can save energy. 

2.3 HA/EHA System 

In order to improve the reliability, the heterogeneous dissimilar redundant actua-
tion system, namely HA/EHA system [8], is used to drive one piece of surface 
simultaneously in more electrical aircraft shown in Fig. 6. 

In Fig. 6, HA accomplished with EHA constitutes the dissimilar redundant actu-
ator system to drive the control surface together. To a HA/EHA system, there are 
two operating modes: HA active/EHA standby and HA fault/EHA active. In normal 
condition, HA drives control surface and EHA follow-up. When hydraulic power 
supply is lost, or HA fails, EHA substitutes HA to drive control surface [10].

Fig. 6 HA/EHA heterogeneous actuation system 
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3 Reliability of A380 Aircraft Actuation Systems 

3.1 A380 Aircraft Characteristics 

Conventional commercial aircraft, including previous Airbus products, are provided 
with 3 hydraulic systems, while they are also equipped with 2 main electrical systems 
for supplying other users, which makes a total of 5 power sources on board. 

The A380 is a plane equipped with high reliability actuation system based on two 
sets of hydraulic power supply and two sets of electrical power supply [11]. This type 
of power source distribution, identified as “2H/2E”, features two hydraulic systems, 
so called Green (G) and Yellow (Y), and two electric systems, E1 and E2, as shown 
in Fig. 7. The hydraulic actuators are normally active while the electrically powered 
actuators are normally stand-by and become operative in the event of a failure of the 
normal, hydraulically supplied, control lane. 

As shown in Fig. 7, the outboard aileron surface and spoiler surfaces on each wing 
are driven by HAs which get power from hydraulic system. The middle, inboard 
aileron surfaces and the elevator surfaces are driven by HAs and EHAs. In this case, 
HA is normally active while EHA is normally stand-by and becomes operative in 
the event of HA failure. The two spoiler surfaces of each wing and rudder are driven 
by the electrical backup hydraulic actuators (EBHA) with features of HA and EHA. 
The trimmable horizontal stabilizer actuator is powered independently by hydraulic 
and electrical power supply.

Fig. 7 “2H/2E” structure of A380 
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The driven modes of A380 actuation systems include: 

• Normal mode—HA mode: HA receives the commands from ACE, and the actuator 
SV control hydraulic power to be supplied to the actuator moving the cylinder 
ram to the desired position. 

• Backup mode—EHA mode: EHA receives the commands from ACE, and the 
electrical motor operates with the electrical power from the aircraft AC electrical 
system. The electrical motor drives the fixed displacement hydraulic pump to 
move the actuator cylinder ram to the desired position. 

By eliminating one hydraulic system and replacing it with a set of electrical 
power supply, the A380 philosophy is more toward the electric flight control actuation 
concept. This approach does have positive effect on the probability of losing the flight 
control actuation system. With two hydraulic systems and two electric systems, the 
A380 is more reliable and safer than other types of aircraft designs. 

3.2 Reliability Assessment Based on Probability Theory 

MIL-HDBK-781 [12] is a standard developed by the US military over a period of 
years to use an analytical bottom-up approach to predicting reliability. It uses type of 
component, environment and quality factor as major discriminators in predicting the 
failure rate of a particular component, module, and ultimately subsystem. Based on 
the guidelines of MIL-HDBK-781, the reliability assessment architecture for aircraft 
actuator system is shown in Fig. 8 [13], which is divided into three levels: component 
reliability model level, subsystem (HA, EHA) reliability model level, and actuation 
system reliability model level.

Reliability data are an essential part of a probabilistic reliability assessment. The 
use of generic component reliability data is therefore unavoidable. A relatively large 
amount of component reliability data is available in the open literature. At the level 
of component reliability model, the basic actuator component reliability data, such 
as failure rate, MTBF, and failure probability, is collected from various reliability 
data handbooks and standard manuals, for example, IAEA-TECDOC-478. 

By establishing HA/EHA subsystem reliability model, the reliability of HA/EHA 
is evaluated at the level of subsystem reliability. The reliability of the entire 
aircraft actuation system is finally obtained by considering the operating mode and 
reconfiguration strategies of hydraulic/electric dissimilarity actuation system [14]. 

Classic probability theory provides a means to analyze the failure probability of 
this complex actuation systems architectures. 

3.2.1 Reliability of Components 

Reliability can be expressed either as the probability that an item or system will 
operate in a satisfactory manner for a specified period of time, or, when used under
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Fig. 8 Aircraft actuation system composition diagram

stated conditions, in terms of its Mean Time between Failures (MTBF) [15]. For 
repairable systems, such as aircraft actuation system, that must operate continuously, 
reliability is usually expressed as the probability that a system will perform a required 
function under specific conditions for a stated period of time. 

Suppose the life distribution of component in aircraft actuation system obeys 
exponential distribution, whose failure rate is shown in Table 1. According to the 
reliability theory based on probability, the reliability of component under exponential 
distribution can be described as 

R(t) = e−λt (1)

where λ is the failure rate of component, t is the operational time. Considering the 
limited flight time of aircraft, the reliability of components can be calculated under 
t = 20h in Table 1.
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Table 1 Failure rate of component in aircraft actuation system 

No Component Failure rate Reliability under 
t = 20h 

Param Value (×10−4/h) Param Value 

1 Engine drive pump (EDP) λED  P 1.4521 RED  P 0.9971 

2 Electrical motor (EM) λEM 1.7029 REM 0.9966 

3 Hydraulic servo valve (SV) λSV 1.0603 RSV 0.9979 

4 Cylinder (Cy) λCy 0.4502 RCy 0.9991 

5 LVDT λLV  DT 0.7506 RLV  DT 0.9985 

6 EHA pump (EP) λEP 1.8530 REP 0.9963

3.2.2 Reliability of Aircraft Actuation System 

(1) Reliability of HA 

To HA, the total lane function will be lost, or no longer available, if any of the 
component fails. The reliability of HA is described as 

RHA(t = 20h) = RED  P  · RSV · RCy  · RLV  DT  = 0.9926 (2) 

The failure rate of HA is expressed as 

λH A  = λED  P  + λSV + λCy  + λLV  DT  = 3.71 × 10−4 /h (3) 

(2) Reliability of EHA 

HA consists of electrical motor, high speed pump, cylinder and LVDT, whose 
reliability is calculated as 

REH  A(t = 20h) = REM  · REP  · RCy  · RLV  DT  = 0.9905 (4) 

The failure rate of EHA is expressed as 

λEH  A  = λEM  + λEP  + λCy  + λLV  DT  = 4.76 × 10−4 /h (5) 

(3) Reliability of HA/HA 

To a redundant actuation system with two HAs in which one HA is powered by 
green power supply and another is powered by yellow power supply, its reliability is 
described as 

RHA/H A  = 1 − [
1 − e−λH At

]2 = 0.99994524 (6) 

The failure rate of HA/HA is shown as
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λH A/H A  = 
2λH Ae−λH At − 2λH Ae−2λH At 

2e−λH At − e−2λH At
= 5.45 × 10−6 /h (7) 

(4) Reliability of HA/EHA 

To an aircraft hydraulic/electric dissimilarity actuator system consisting of HA and 
EHA with the active/standby operation mode, its reliability is described as 

RHA/EH  A  = e−λH At + λH A  

λH A  − λEH  A

[
e−λEH  At − e−λH At

] = 0.99993 (8) 

Its mean time to failure is calculated as 

MT  T  FH A/EH  A  = 1 

λH A  
+ 1 

λEH  A  
(9) 

3.2.3 Reliability of Aircraft Primary Control System 

(1) Mission reliability [16] 

Mission reliability is defined as the probability of the system for being free of failure 
for the period of time required to complete a mission. The probability is a point on 
the reliability function corresponding to the mission length. The mission reliability 
of a system can be described as 

RM (t) = P(T > tM ) (10) 

where RM (t) is the mission reliability of system, P is the probability, T is the life of 
system, and tM is the mission time. 

There are two indices to evaluate the reliability of aircraft actuation system: flight 
safety and mission reliability. According to the aircraft control system design spec-
ification (MIL-F-9490D) [17], the probability of mission failure per flight due to 
relevant material failures in the FCS shall not exceed the applicable limit specified 
below. 

• Overall aircraft mission accomplishment reliability is specified by the procure-
ment activity 

QM(FC S) ≤ (1 − RM )AM(FC S) (11) 

• Overall aircraft mission accomplishment reliability is not specified 

QM(FC S) ≤ 1 × 10−3 (12)
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Table 2 FCS Quantitative 
flight safety requirements 

MIL-F-8785, class III aircraft Maximum aircraft loss 
rate from FCS failure 

Param Value 

All rotary wing aircraft QS(FC S) 5 × 10−7 

MIL-F-8785 class I, II, and IV aircraft QS(FC S) 5 × 10−7 

MIL-F-8785, class III aircraft QS(FC S) 100 × 10−7 

where QM(FC S) is the maximum acceptable mission unreliability due to relevant 
FCS material failures, RM is the specified overall aircraft mission accomplishment 
reliability, and AM(FC S) is the mission accomplishment allocation factor for flight 
control (chosen by the contractor). 

Failures in power supplies or other subsystems that do not otherwise cause aircraft 
loss shall be considered where pertinent. A representative mission to which the 
requirement applied should be established and defined in the FCS specification. 

(2) Safety requirement 

If the overall aircraft flight safety in terms of RS is not specified by the procuring 
activity, the numerical requirements given in Table 2 [18]. 

The probability of aircraft loss per flight due to relevant FCS material failures 
in the FCS shall not exceed QS(FC S) ≤ (1 − RS)AS(FC S), where QS(FC S) is the 
maximum acceptable aircraft loss rate due to relevant FCS material failures, RS is 
the specified overall aircraft flight safety requirement as specified by the procuring 
activity, and AS(FC S) is the flight safety allocation factor for flight control (chosen 
by the contractor). 

At present, the safety requirement of a FCS is 1.0 × 10–7/flight hour for military 
aircraft and 1 × 10–9 ~ 1  × 10–10/flight hour for commercial aircraft. To achieve 
such high reliability requirements, it is necessary to utilize the redundancy design 
method. 

The overall reliability of the aircraft hydraulic actuation system depends on the 
computer control/monitor architecture, which provides the tolerance to hardware 
and software failures, the servo control, and the power supply arrangement. Thus, 
the redundancy, failure monitoring, and system protection emerged in the system 
design. The aircraft safety is demonstrated in the airworthiness regulation. In aircraft 
design, the faults, interaction faults, and external environmental hazards should be 
considered. 

(3) Reliability of primary control system 

Primary flight control includes pitch, roll and yaw, in which the corresponding manip-
ulate surface are elevator, aileron and rudder. In Fig. 7, the elevator and rudder 
adopt dual redundant EHAs respectively. To elevator, two bilateral symmetrical 
sub-surfaces are driven by 2HA/EHAs. These surfaces provide very powerful pitch 
control authority by an agile high performance aircraft. Without the benefit of reli-
able computer driven control system, the aircraft would be uncontrollable and would
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Table 3 Reliability of 
primary flight control system 

Flight controls Surface composition 
(L/R) 

Reliability 

Pitch 2HA/EHA 0.999999995 

Roll HA/HA + 2HA/EHA 0.999999998 

Yaw 2HA/EHA 0.999999995 

Primary control 
system 

Pitch + Roll + Yaw 0.99999943 

crash in a matter of seconds. The roll control is provided the differential motion of the 
aileron, augmented to a degree by spoilers, in which the aileron includes HA/HA + 
HA/EHA + HA/EHA and spoiler composes of HA/HA + 2HA/EHA + 2HA/HA. 
To some extent roll controls are also provided by differential action of the wing 
trailing edge spoilers. However, most of the roll controls are provided by ailerons. 
Yaw control is provided by the upper and lower rudder, in which the sub-surfaces are 
driven by 2 EHAs. Using the reliability theory based on probability, the reliability 
of three-axis control system can be show in Table 3. 

From Table 3, the equivalent failure rate of primary flight control system is 
approximately 10−6/ h, which meets the safety requirement shown in Table 2. 

3.3 Comprehensive Reliability of Actuation System 

3.3.1 Dynamic Performance of Redundant Actuation System 

Since the safety and reliability of flight control system is very important, the redun-
dancy techniques are widely used in actuation system design [8]. Critical surfaces 
(e.g., aileron, elevator, rudder) are driven by two or three actuators, each powered 
by an independent hydraulic or electric distribution network. These can be operated 
in alternating mode (active/standby mode) or in simultaneous mode (active/active 
mode). Any failure of the neighboring actuators must not lead to a loss of control 
of the movable surface with the remaining operable actuator. To decrease the influ-
ence among actuators of the same surface, some functions such as bypass, movement 
damping, and load limiting should be implemented. If actuators simultaneously drive 
the surface, load sensing and compensation should be integrated into the system in 
order to avoid force fighting. 

The effective load/speed operating envelope of the actuator is derived from the 
load profile of the control surface, taking into account the geometric arrangement 
shown in Fig. 9.

The performance requirements include:

• The stall load Fstall = F0; 
• The maximum mechanical power Pmech, max = max(F · ẋ) to be provided by the 

actuator with the load F1 (include friction) and speed x1.
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Fig. 9 Redundant actuator structure

(a)Step response of actuator     (b) frequency response of actuator 

Fig. 10 Dynamic performance requirement of an actuator 

• Maximum speed with corresponding load ( ̇x2, F2) or no load. 

The dynamic performance requirements are shown in Fig. 10. 

3.3.2 Reliability Model Based on Performance Parameter 

Aircraft 380 provides 2H/2E power supply and HA/EHA system structure, which 
has greatly improved the overall performance of the aircraft. However, the reliability 
assessment of actuation system becomes difficult due to the increased complexity. 
On the one hand, whether powered by hydraulic or electrical system, the components 
present a power loss because of performance degradation during the power transmis-
sion process. Besides the power loss behaves multi-state with random characteristics 
affected by operating conditions and other factors. On the other hand, servo actuators 
need to follow the flight control instructions, which means the power transmission
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process is controlled by the flight control computer. It is necessary to describe the 
reliability of actuation system based on performance degradation. 

Suppose the performance degradation parameter as Y, the reliability model based 
on performance degradation can be defined as [16] 

RY (t) =
{
P{Y ≥ Ω|X ∼ D} Y is tread decreasing 
P{Y ≤ Ω|X ∼ D} Y is tread increasing (13) 

whereΩ is the performance threshold, X = {X1, X2, ..., Xn} is the system parameter 
set, D is the probability distribution of the system parameters. 

Actuation system is a typical displacement close-loop system, whose main param-
eters include rapidity, stability and accuracy. When the component deteriorates with 
load spectrum, its performance will degrade and lead to failure. Take the rapidity 
as example, the response time needs to be selected to describe the performance 
reliability as 

RY (t) = P
{
Tr < Trthreshold |X j ∼ fX j

(
x j , t

)}
(14) 

where Trthreshold  is the threshold of the response time, X j is the system parameter set, 
and fX j

(
x j , t

)
is the probability density of system parameters. 

3.3.3 Reliability Analysis Based on Performance of Actuation System 

Modern aircraft use segmentation control surface technology in flight control systems 
for high reliability. In some critical divided surfaces, HA/HA and HA/EHA redundant 
actuation system is adopted to increase the reliability because it uses totally different 
power supply system and actuator. Figure 11 shows a new kind of application in 
A380 aircraft that is based on a HA and EHA, in which HA operates actively and 
EHA follows under normal operating conditions. The EHA assumes operation in the 
case of HA failure [18].

In Fig. 11, HA section consists of the hydraulic power supply system, SV, cylinder, 
and LVDT. The input of the SV is iv , the output force of the HA is Fh , and the 
displacement of the cylinder is xh . The EHA section consists of a brushless motor, 
pump, and cylinder, in which the input to the motor is the control voltage ue, the  
output force is Fe, and the displacement of the cylinder is xe. The inputs to the control 
surface are the displacement of xh , xe, and aerodynamic load FL , whereas the outputs 
are the surface displacement xt and the force acted in both cylinders, Fh and Fe. 

(1) Mathematical model of HA [19] 

In order to get HA mathematical model, the transform function of component is 
developed as follows. 

• SV model
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Fig. 11 HA/EHA system

Suppose the SV control current is iv , the SV spool displacement is xv , and the gain 
of the amplifier is Kv . The transfer function of the SV can then be described as a 
second-order system: 

Qh = Kq Kvω
2 
v 

s2 + 2ξvωvs + ω2 
v 
iv − Kc ph (15) 

where ωv is the characteristic frequency of the SV, ξv is the damping coefficient of 
the SV, Qh is the load flow, ph is the load pressure, Kq is the flow gain, and Kc is 
the flow-pressure coefficient. 

• Cylinder model 

Suppose that the fluid has laminar flow, the fluid temperature is constant, and the 
friction loss and pipe dynamic influence can be neglected. The flow equation of the 
cylinder can then be written as 

Qh = Ah 
dxh 
dt  

+ 
Vth  

4Ey 

dph 
dt  

+ Csh ph (16) 

The force balance equation of the cylinder is 

Ah ph = m ph 
d2xh 
dt2 

+ Bph 
dxh 
dt  

+ Fh + fh (17) 

where Ah is the piston area, xh is the displacement of HA, Vth  is the total volume of 
HA, Ey is the equivalent volume elastic modulus, Csh is the total leakage coefficient,
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Fig. 12 The block transfer function diagram of HA 

m ph is the piston mass, Bph is the viscous damping coefficient, and fh is the friction 
between the piston and the cylinder. 

• LVDT model 

Suppose the LVDT coefficient is Kx , then the measured displacement can be shown 
as 

x '
h = Kx · xh (18) 

The block transfer function diagram of HA is shown in Fig. 12. 

(2) Mathematical model of EHA [20] 

In the EHA channel of the aircraft actuation system, aircraft electrical power drives 
the brushless DC motor which in turn drives the fixed displacement pump based 
on local hydraulic system. The detailed mathematical model can be described as 
follows. 

• DC motor model 

The high-power and high-voltage permanent magnet brushless DC motor for aircraft 
is the core component of EHA, which provides power for EHA. whose potential 
balance equation is 

u = Ceωm + Le 
die 
dt  

+ Reie (19) 

The torque balance equation of motor can be described as 

Kmie = Te + Jm 
dωm 

dt  
+ Bmωm (20) 

where u is control voltage, Ce is back electromotive force coefficient, ωm is motor 
speed, Le is armature inductance, Re is armature resistance, i is current, Km is 
electromagnetic torque constant, Te is output torque, Jm is the total moment of inertia 
of motor and pump, Bm is the total load damping coefficient of motor and pump. 

• High speed pump model
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The output torque of DC motor is the input torque of pump Te: 

Te = 
DP 

2π 
(P1 − P2) (21) 

where DP is the pump displacement, P1 and P2 are pump outlet and inlet pressure. 
Set the parameters of variable piston pump as follows: d is piston diameter, D 

is the diameter of plunger distribution circle, αmax is maximum inclination angle of 
swashplate, smax is corresponding maximum stroke of piston, z is piston number. 
When the output displacement of regulating mechanism is xP , the displacement of 
pump can be calculated by [21] 

DP = 
π 
4 
d2 (smax − xP )z = k3(smax − xP ) (22) 

The flow equation of pump can be described as 

Q P = 
DP 

2π 
ωm = 

d2 

8 
z(smax − xP )ωm = k4(smax − xP )ωm (23) 

The pump flow of inlet and outlet are

{
Q1 = Q p − Cip(P1 − P2) − Cep(P1 − Pcase) 
Q2 = Q p − Cip(P1 − P2) − Cep(P2 − Pcase) 

(24) 

where Cip, Cep are the internal and external leakage coefficient,Pcase is the case 
pressure. 

• Cylinder model 

According to Newton’s second law, the dynamic equation of the cylinder is 

me 
d2xe 
dt2 

= Ae(P1 − P2) − Be 
dxe 
dt  

− Fe (25) 

where Ae is the piston area, xe is the displacement of EHA, Ae is area of EHA 
cylinder, me is the piston mass, Be is the viscous damping coefficient. 

Ignoring the leakage of hydraulic cylinder, the flow pressure equation between 
left and right chambers are

{
Ṗ1 = β 

V0+Aexe 
[Q1 − Ae ẋe − Cel (P1 − P2)] 

Ṗ2 = β 
V0−Aexe 

[Ae ẋe + Cel (P1 − P2) − Q2] 
(26) 

where Cel is the total leakage coefficient. 
The block transfer function diagram of EHA is shown in Fig. 13 [22].

(3) Mathematical model of HA/EHA
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Fig. 13 The block transfer function diagram of EHA

HA adopts the proportional control, and EHA connects the two chambers to follow 
the HA as a damping force fe. Considering that the equivalent mass and connection 
stiffness of a surface are md and Kt , respectively, the motion equation of the control 
surface can be written as 

md 
d2xt 
dt2 

= Fh − Fe − FL 

Fh = Kt (xh − xt ) 
Fe = Kt (xt − xe) 

Fe = m pe 
d2xe 
dt2 

+ Bpe 
dxe 
dt  

(27) 

where m pe is the mass of EHA and Bpe is the viscous damping coefficient of EHA. 
Taking the Laplace transform of the Eq. (27), the control block diagram of the 

HA/EHA actuator is represented in Fig. 14. 

(4) Performance degradation of HA/EHA 

Here, taking the leakage of cylinder as example, the leakage due to wear and tear 
will increase when the cylinder operates shown in Fig. 15 [23].

The leakage flow can be expressed as [24] 

Q = 
πdδ3ΔP 

12μLC 
(28) 

The leakage coefficient can be calculated as

Fig. 14 System block diagram under HA active/EHA follower 
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Fig. 15 The leakage diagram of a cylinder

Csh = 
Q

Δp 
= πdδ3 

12μLC 
(29) 

where d is the piston diameter, δ is the single slit height,Δp is the pressure difference 
between two chambers, μ is the fluid dynamic viscosity, L is the travel distance of 
the piston, and C is the initial laminar correction coefficient. 

With the operation of the cylinder, the wear volume between the cylinder and the 
piston can be described with the abrasive wear formula

ΔV = Ks 
W L '

H 
(30) 

where ΔV is the wear volume, W is the normal load, H is the material hardness, Ks 

is the abrasive wear coefficient, and L’ is the sliding distance. 
Considering the number of actuation cycles n, the wear volume can be described 

as

ΔV = Ks 
Wnl0t 

H 
(31) 

After replacing the wear volume into the leakage coefficient relationship, we 
obtain 

Csh = 
πd(δ0 + Δδ)3 

12μLC
= 

πd
(
δ0 + Ks Wnl0 

Hπ dL  t
)3 

12μLC 
(32) 

where δ0 is the initial slit height. 
Considering the external load disturbance and wear unevenness, the leakage 

coefficient is subject to a normal distribution as follows
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Fig. 16 The dynamic 
performance response under 
different leakage coefficients 

fCsh (Csh, t) = 1 √
2πσ  

e− 

⎡ 

⎢⎢⎢ 
⎣ 
Csh − 

π d
(

δ0+ Ks Wnl0 
H π dL  t

)3 

12μLC 

⎤ 

⎥⎥⎥ 
⎦ 

2 

2σ 2 (33) 

The performance degradation curve can be obtained for different leakage 
coefficient shown in Fig. 16. 

According to the mathematical model in Fig. 12, the system transfer function is 

G(s) = Ah KQ(s)Kt K ph 
H (s) + Ah KQ(s)K phGxF  (s) + Ga4(s)GxF  (s) 

(34) 

Herein, 

KQ(s) = Kq 
Kvw

2 
v 

s2 + 2xvwvs + w2 
v 

(35) 

H (s) = 
Vthm phmd 

4Ey 
s5 +

(
Vthmd Bph 

4Ey 
+ Ktmm phmd

)
s4 

+
(
Ktm Bphmd + A2 

hmd + 
Vth  Ktmd 

4Ey 
+ 

Vthm ph Kt 

4Ey

)
s3 

+
(
Vth  Kt Bph 

4Ey 
+ Ktm Ktm ph + Ktm Ktmd + Ah KQ(s)K phmd

)
s2 

+ (
Ktm Bph Kt + Kt A

2 
h

)
s + Ah KQ(s)K ph Kt (36) 

Ga4(s) = 
Vth  

4Ey 
m phs

3 +
(

Vth  

4Ey 
Bph + Ktmm ph

)
s2



232 S. Wang et al.

+
(
Ktm Bph + A2 

h + 
Vth  

4Ey 
Kt

)
s + Ktm Kt (37) 

GxF  (s) = Kt
(
m pes2 + Bpes

)

(
m pes2 + Bpes + Kt

) (38) 

Ktm = Kc + Csh (39) 

With the aforementioned transfer function, the system performance can be 
described as 

Tr = GTr

(
K j

)
(40) 

The parameter distribution is 

K j ∼ fK j
(
k j , t

)
(41) 

The performance distribution can then be described as 

Tr ∼ gTr (tr , t) (42) 

The performance reliability of actuation system can then be expressed as 

P =
∫ ∞ 

t

∫ vTr 

0 
gTr (tr , t)dtr dt (43) 

Because the mathematical model is very complicated, it is difficult to determine 
analytical solution to the performance reliability; therefore, one needs to resort to 
a numerical solution. The simulation flow chart shown in Fig. 17 can result in a 
solution to the performance reliability of the actuation system [24].

The reliability of the HA/EHA system depends not only on the performance 
degradation, but it can also be related to the critical component reliability. Assuming 
that the performance reliability is independent of the component reliability, we can 
define the integrated reliability of the actuation system as follows: 

R(t, y) = P{Y ∈ Ω, T > t} = P{Y ∈ Ω|T > t} · P{T > t} 
R(t, y) = RT (t) · RY (t) (44) 

where the RT (t) is the component reliability. Because the main components of the 
actuation system consist of an amplifier, SV, cylinder, LVDT, and bypass valve, the 
component reliability is as follows: 

RT (t) = 
5∏

i=1 

Ri 
T (t) = 

5∏

i=1 

e−λi t (45)
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Fig. 17 Reliability simulation flow chart

where Ri 
T (t) is the reliability of components and λi is the component failure rate. 

The failure rate of individual components is listed in Table 4. 
The reliability of the component is then RT (t) = e−0.00128t . 
The required parameters to calculate the performance reliability are listed in Table 

5.

Table 4 The component 
failure rate 

Number Component Failure rate/per hour 

1 Amplifier of servo valve 300 × 10−6 

2 Servo valve 360 × 10−6 

3 Cylinder 270 × 10−6 

4 LVDT 150 × 10−6 

5 Bypass valve 200 × 10−6 
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Table 5 System Parameter Value 

Parameter Value Unit Parameter Value Unit 

ξV 0.7 - Vth 1.47 × 10−4 m3 

ωV 600 rad/s Ey 8.0 × 108 Pa 

KV 1.52 × 10−4 m/A Csh 1.0 × 10−11 (m3/s)/Pa 

Kq 2.7 m2/s Kt 1 × 108 N/m 

Kc 1.75 × 10−11 (m3/s)/Pa md 600 kg 

m ph
(
m pe

)
55 kg Bph

(
Bpe

)
10,000 Ns/m 

Assuming the simulation number N = 2000, the time interval as Δt = 0.5h, 
the response time Tr < 0.6s, and the step input x∗ = 0.03m, and substituting the 
parameters from Table 5 into the performance reliability, we obtain the performance 
reliability curve shown in Fig. 18.

It is apparent that the integrated reliability takes into consideration the perfor-
mance degradation with the system operation in addition to component reliability. 
Furthermore, increasing the simulation number improves the accuracy of the result 
and makes it closer to the real application. 

4 Conclusions 

This chapter summarizes the aircraft actuation system, explains the interface between 
the FCS and the actuation system. After introducing some typical actuation systems, 
the chapter provides some typical aircraft hydraulic actuation system constructions 
in current commercial aircraft. Furthermore, this chapter provides the comprehen-
sive reliability definition and the reliability calculation methods. Through the redun-
dancy and monitoring design, the system reliability can be improved. Afterward, the 
integrated reliability evaluation is provided for example of the actuation system. 
The results indicate that the system design meets the desired system reliability 
requirements.
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(a) Performance reliability curve at 14t = h 

(b) Integrated reliability curve under function and performance reliability 

Fig. 18 Integrated reliability of an actuation system
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Installed Base, and After-Sales Services 
for System Availability 

Tongdan Jin, Wenjin Zhu, and Ziqi Jiang 

Abstract System availability is a fundamental measure to evaluate the reliability 
performance of capital goods. Traditional approaches to availability management, 
such as reliability-redundancy allocation, preventive maintenance, and spare parts 
logistics, usually focus on a particular phase of system life. This paper discusses a 
holistic lifetime approach to sustaining system availability in an integrated product-
service framework. Our approach seamlessly incorporates reliability, redundancy, 
maintenance, repairable inventory, and installed base information into a unified 
availability measure. A superimposed renewal process is adopted to characterize 
spare part demands considering the effect of installed base and proactive replace-
ments. Extensive simulations are conducted to analyze the spares demand profile in 
terms of maintenance time, lifetime distribution, inventory lead time, and repair and 
renewing capacity. The study reveals that: (1) system availability is jointly deter-
mined by ten performance drivers across the product design, manufacturing, and 
after-sales market; (2) Poisson spare parts demand assumption is valid provided the 
item lifetime is much longer than the inventory replenishment time; and (3) installed 
base information provides a causal approach for spares demand forecasting during 
the new product introduction phase. 
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1 Introduction 

High system availability is essential to the daily operations in private and public 
sectors, such as manufacturing, transportation, telecommunication, energy genera-
tion, and homeland security, among others. Downtime of capital goods often results 
in staggering amounts of production loss or even risk to human life. For instance, 
when an A330-200 plane is grounded for a routine maintenance, it usually takes 
3 days and consumes 150 man-hours. The total fixed cost of maintenance can be as 
high as $67,000, including aircraft leasing costs, labor hours, and spare parts. The 
opportunity cost because of 3-day ground may reach $700,000 assuming the plane’s 
revenue is $50 per passenger-hour. To ensure system availability, the original equip-
ment manufacturers (OEM) strive to design reliable products as well as to provide 
responsive maintenance, repair and overhaul (MRO) services. If the system is down, 
MRO is expected to be carried out promptly to reduce the downtime. We focus on 
the integrated OEM who designs and produces capital equipment and also provide 
repair and spare parts in the after-sales market. In literature, the strategy unifying 
product design, manufacturing, and sustainment is also referred to as an integrated 
product-service system (PSS) or integrated product-service offering (PSO) [1–3]. 
Throughout the paper, equipment, product and machine are used interchangeably, 
representing a repairable system comprised of multiple items or parts. 

Three approaches have been frequently discussed in literature with the goal of 
achieving high system reliability and availability performance. These are reliability-
redundancy allocation (RRA), preventative maintenance (PM), and spare parts logis-
tics (SPL). Albeit the effectiveness, existing methods usually focus on certain period 
of the product lifetime. For instance, RRA usually concentrates on product design and 
manufacturing phase, while PM and SPL are confined to the post installation. In fact, 
reliability and availability performance is dependent upon design method, produc-
tion technology, maintenance policy, repair capacity, and spares inventory. Hence 
it is imperative to seek a holistic management solution throughout the product’s 
lifetime. To that end, this paper presents an integrated reliability-maintenance-
inventory (RMI) approach to manage the availability of repairable systems through 
the synthesis of RRA, PM, SPL and installed base information. Particularly, it aims 
to guide the OEM to allocate reliability, redundancy, maintenance, spare parts, and 
repair resources to achieve high system availability goal at a low cost. 

Our study contributes to reliability modeling and service logistics management 
in three aspects. First, the RMI approach represents a first-of-its-kind by integrating 
reliability, redundancy, maintenance, spares inventory, and repair capacity in a unified 
framework. This type of product-service integration model has rarely been discussed 
in reliability engineering and operations management literature. Second, the model 
can handle both homogeneous and non-homogenous Poisson spares demands. For 
Poisson demand, two parallel Erlang-C queues are adopted to cope with failure and 
planned replacements, respectively. The queues can differentiate the levels of repair 
skillset, cost, and hands-on time of two types of replacement demands. For non-
homogenous Poisson demand, repair and renewing turn-around time is approximated



Integration of Reliability Design, Installed Base, and After-Sales … 241

based on the coefficient of variation of parts arrival time and service time. Third, 
over 500,000 simulations covering a large scope of parameter values are conducted 
to demonstrate the applicability of the proposed RMI approach. 

The remainder of the paper is organized as follows. Section 2 reviews existing 
RRA, PM and SPL models. Section 3 discusses the needs of implementing an 
integrated reliability-maintenance-inventory solution for achieving high system 
availability. Section 4 estimates the failure and the planned replacements for a 
stationary system fleet based on superimposed renewal theory. Section 5 uses 
the Boeing 787 fleet to characterize the lead time spares demand under a growing 
installed base. In Sect. 6 simulation programs are developed to validate the lead time 
Poisson spares demand. Section 7 presents the system availability model with the 
integration of RRA, PM and SPL. Section 8 concludes the work. Table 1 lists the 
parameters of the integrated system availability model.

2 The State-of-the-Art 

A large body of literature is available pertaining to the optimization of RRA, PM and 
SPL at the component and system level. In this study, component, part, item, and 
modules are used interchangeably, representing a line replaceable unit (LRU) of a 
system. In RRA, the system’s mean-time-between-failures (MTBF) can be improved 
through the adoption of advanced design, durable materials, or redundant compo-
nents subject to resources or cost constraints [4]. An early review of RRA models is 
available in the work of [5], and two recent ones are referred to [6] and [7]. Since 
the RRA problem turns out to be an NP-hard issue, various solution techniques 
have been proposed, including branch-and-bound [8], genetic algorithm [9], Tabu 
search [10], artificial bee colony [11], multi-objective [12], Pareto optimality [13], 
importance measure [14], among others. The majority of RRA models concentrate 
on the product design and manufacturing phase, while maintenance and repair in the 
after-sales market are not explicitly considered. 

The purpose of PM is to periodically inspect the system and proactively replace 
the parts prior to the incipient failure. For instance, in age- or usage-based mainte-
nance, an LRU is replaced either it reaches a predefined threshold or fails randomly 
[15]. Flexible age replacement policy has been investigated as well, and the pros and 
cons are compared with fixed age replacement policy [16–18]. With the wide use of 
sensor technology, predictive maintenance or condition-based maintenance (CBM) 
has been gaining growing attention. In CBM, the health condition or degradation 
precursor (e.g., electrical, thermal and mechanical signals) is monitored via in-situ 
sensors. The remaining useful life (RUL) is predicted through a diagnostic and prog-
nostic health management (PHM) program. The replacement action is taken when the 
RUL approaches, but not exceeds, a pre-defined threshold. PHM program is typically 
established upon statistical model, Bayesian inference, machine learning algorithms, 
or other analytics methods [19, 20]. A dynamic maintenance policy integrates peri-
odic preventive maintenance, reactive maintenance and opportunity maintenance is
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Table 1 Notation of model 
parameters 

Notation Comment 

A Availability of single-item system 

R(t) Reliability function of line replaceable unit 
(LRU) 

F(t) Cumulative distribution function 

M(t) Number of renewals or replacements during [0, 
t] 

N(t) Number of systems installed during [0, t] 

S(t) Cumulative spares demand of a fleet in [0, t] 

D(t) Inventory lead time demand during [t, t + l] 
Tp Mean downtime in a planned replacement 

Tq Mean downtime in a failure replacement 

TMTBR Mean time between replacements of LRU 

TMTBF Mean time between failures of LRU 

Bq Probability for a part waiting in a repair queue 

Bp Probability for a part waiting in a renewing 
queue 

Wi Installation time of system i for i = 1, 2, …, N(t) 

f(t) Probability density function of LRU lifetime 

α, β Weibull scale and shape parameters, respectively 

λp Aggregate fleet part demand rate of planned 
replacement 

λq Aggregate fleet part demand rate of failure 
replacement 

ρp, ρq Renewing and repair traffic intensity rate, 
respectively 

μp, μq Part renewing rate and repair rate, respectively 

k Minimum required working item in a system 

l Lead time for replenishing the spares inventory 

m System fleet size or installed base 

n Total number of components in a system 

tp Part renewing turn-around time 

tq Part repair turn-around time 

ts Hands-on time for replacing a part 

s Base-stock level of spare parts for LRU 

τ Maintenance interval for LRU 

p Number of renewing channels or servers for 
LRU 

q Number of repair channels of servers for LRU
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proposed by [21]. Reviews on the state-of-the-art of PM and CBM can be found in 
the works by [22–24]. 

SPL aims to reduce the equipment downtime by promptly supplying a spare item 
to replace the failed unit through a service supply chain. The goal of the SPL model 
is to locate the stockrooms and allocate the spares inventory to meet the intermittent 
demand generated by geographically dispersed customers [25, 26]. In the SPL model, 
trade-offs must be made between the cost and the supply chain variables, such as 
the inventory level, the stock location, and transportation time. Typical performance 
measures are fill rate, backorders, parts availability, inventory capital, and holding 
cost [27–29]. Recently, much attention is paid to jointly allocating spares inventory, 
maintenance policy, and repair capacity because many RLU can be renewed, refur-
bished, and reused. Along this line, De Smidt-Destombes et al. [30] jointly optimize 
the maintenance initiation, the spare parts, and the repair capacity to minimize the 
ownership cost of a single k-out-of-n system. Jin et al. [31] propose a principal-agent 
model that jointly allocates the maintenance time, spares inventory, and parts repair 
and renewing capacity for minimizing the annualized fleet cost of k-out-of-n systems. 
Basten and Ryan [32] investigate the impact of delay in performing planned replace-
ment on the optimal spares inventory policy. Zhu et al. [33] consider the impact of 
logistic delay when optimizing the maintenance policy for a wind turbine. An early 
survey on SPL models was made by Basten and van Houtum [34], and a more recent 
one is available in the work of [35]. 

Although various models pertaining to RRA, PM and SPL have been developed 
to achieve the system reliability and availability goal, the majority are focused on 
a particular phase of the product lifetime. There is a lack of lifetime availability 
approach in which reliability, redundancy, maintenance, spares, repair, and installed 
base are jointly considered. This study aims to incorporate RRA, PM, SPL, and 
fleet size into a unified system availability framework for both stationary and non-
stationary installed bases. 

3 Reliability-Maintenance-Inventory Integration 

3.1 Best Practice of Product-Service Offering 

To understand the motivation of reliability-maintenance-inventory integration, we 
present an industry case to show how the product and the service are seamlessly 
integrated to attain the system availability goal of field installation. Automated test 
equipment (ATE) is a capital-intensive machine widely used for wafer probing and 
device testing in semiconductor manufacturing plants. Users of ATE include Intel, 
IBM, Texas Instruments, Samsung, Philips, TSMC, among others. The cost of an 
ATE machine varies between $1 million to $3 million depending on the equipment 
configuration and performance. Modularity design is adopted to facilitate the system 
maintenance and repair tasks. Due to the complexity of technology, the OEM is
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responsible for the ATE design, manufacturing, maintenance, repair, and spare parts 
supply. Upon failure, the bad module is swapped with a spare item so that the machine 
can be restored to the production promptly. The bad module is returned to the repair 
center for root-cause analysis. After fixing, it is returned to the spares inventory for 
future use. 

Figure 1 shows how the OEM leverages global resources to design, manufacture 
and sustain the ATE fleet in various customer sites. The product-service supply chain 
spans across Asian Pacific, North America, South America, Europe, and Middle East 
regions. For instance, the ATE design is done in Boston, MA and San Jose, CA, USA. 
The software and application programs are outsourced to the subcontractors in India. 
The printed circuit boards (i.e., the LRU) are made in Charlotte, NC, USA and then 
shipped to the factory in Shanghai, China where the ATE system is assembled. The 
assembled machine is then shipped to different customers in the world. 

To ensure system availability, spare parts inventory is co-located at the customer 
sites. As shown in Fig. 1, spares stockrooms are established in Europe, East Asia, 
and North America where large amounts of systems are installed. To provide 24/7 
repair services, two repair crews are established in the Philippines and Costa Rica, 
respectively. Both countries are chosen because of low labor cost and less stringent 
labor laws. All repaired or renewed parts are shipped to the central warehouse in 
Memphis, TN, from where spare parts are further distributed to regional stockrooms.

Memphis 
(Central Stock) 

Boston 
(design)San Jose 

(design) 

Costa Rica 
(repair) 

Indian 
(software) 

Cebu, Philippines 
(repair) 

Shanghai 
(assembly) 

Charlotte, NC 
(manufacturing 
) 

Product design Manufacturing, repairing or  
centrally stocking parts 

Customer sites or 
local stockrooms 

Fig. 1 The integrated product-service supply chain of ATE industry [36] 
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Returns of pro-active replacements 

Spare Parts 
Logistics (SPL) 

Spares 
Inventory 

with s units 
Repair Shop 
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M/M/q/ 
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M/M/p/ 

Age-Based Preventive 
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Fig. 2 Single echelon supply chain for system availability support 

3.2 Modeling Reliability-Maintenance-Inventory Integration 

Without loss of generality, Fig. 2 shows a single-echelon supply chain that offers 
integrated product-service capability. In this setting, a field fleet comprised of m 
systems is sustained under age-based maintenance. Critical items within the system 
are inspected at a pre-defined time interval τ. A spares inventory is located in 
proximity to the system fleet to facilitate corrective and pro-active replacements. 

If the item survives and reaches τ , it is pro-actively replaced with a good part 
supplied by the local stockroom. The replaced item, though functional, is sent back 
to the repair shop for renewal. If the item fails prior to τ , a corrective replacement is 
performed, and the failed unit is sent back to the repair shop for troubleshooting. 

Queueing model has long been used to characterize the performance of repairable 
inventory systems in literature [27, 37]. Poisson demand is usually assumed in the 
repairable inventory literature because of mathematical tractability and technical 
applicability. Figure 3 graphically shows the working principle of the part repair 
and renewal processes. Since less recourse and time are consumed in renewing a 
degraded part than repairing a failed unit, two separate queues are adopted to model 
the renewing and the repair jobs. Particularly, we use M/M/q/∞ to characterize the 
repair process, and M/M/p/∞ queue to characterize the renewing process. Note that 
q and p are the number of repair and renewing servers, respectively.

3.3 Repair and Renewing Queues Under Poisson Demand 

The M/M/q/∞ queue is also known as the Erlang-C model. It is appropriate to 
characterize repairable inventory system as it accommodates a waiting line when 
all repair servers are busy. For an Erlang-C repair queue, the probability that an 
incoming part needs to wait is given as follows [38]:
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−1 
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where λq is the part arrival rate, and μq is the part repair rate per server. Note ρq = 
λq/(qμq) is called the repair traffic intensity rate. The repair shop queue is stable if 
and only if ρq < 1.  

Figure 4 depicts the relation between q and Bq at different ratios of λq and μq. The  
lines from the left to the right, represent λq/μq = 0.5, 0.9, 1.5, 2, and 3, respectively. 
It shows the waiting probability quickly decreases as the repair servers increase. For 
instance, given λq/μq = 0.5, the waiting probability is 0.5 for q = 1, and it drops to 
0.1 for q = 2. Similarly, given λq/μq = 0.9, the waiting probability is 0.9 for q = 
1, and it drops to 0.28 for q = 2. If λq/μq ≥ 1, at least two servers are required to 
maintain the queue stability. 
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When the transportation time between the repair shop and the spares inventory is 
small compared to the repair time, the repair turn-around time (TAT), denoted as tq, 
is the sum of the part waiting time and the actual hands-on repair time. That is 

tq = Bq 

qμq − λq 
+ 

1 

μq 
(2) 

Similarly, we can analyze the part renewal process using M/M/p/∞ queue where 
p is the number of renewal servers. The probability that an incoming part needs to 
wait prior to being renewed is given by 

Bp = (pρp)
p 

p!(1 − ρp
)

⎡ 

⎣ 
p−1∑

j=0 

(pρp) j 

j ! + (pρp)
p 

p!(1 − ρp
)

⎤ 

⎦ 
−1 

(3) 

where λp is the renewing part arrival rate, and μp is the renewing rate per server. 
Note that ρp = λp/(pμp) is called the renewing traffic intensity rate. The renewing 
queue is stable if and only if ρp < 1. The renewing turn-around time, denoted as tp, 
is the sum of the part waiting time and the hands-on renewing time. That is 

tp = Bp 

pμp − λp 
+ 

1 

μp 
(4) 

3.4 Repair and Renewing Queues for Non-Markovian 
Process 

One of the key characteristics of homogenous Poisson process (HPP) is that the 
coefficient of variation (CV) is equal to one. CV is defined as the ratio of the standard 
deviation to the mean of the population. The higher the CV, the greater the dispersion 
of the demand. If CV < 1, Eq. (2) or (4) tends to overestimate the delays while the 
opposite is true if CV > 1. Since exact or closed-form solution for non-Markovian 
multi-server queues is still not available, several good approximations have been 
proposed [38, 39]. Let tq,G be the part repair TAT with general or non-Markovian 
arrival process, then we have 

tq,G = tq
(
CV  2 aq + CV  2 sq

)
/2 (5)  

where CVaq 
2 and CVsq 

2 are the square of the CV of the part inter-arrival time, and 
the part repair time, respectively. Note that tq is the repair TAT given in Eq. (2). 
Similarly, let tp,G be the part renewing TAT in a non-Markovian queue. Then we 
have
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tp,G = tp
(
CV  2 ap + CV  2 sp

)
/2 (6)  

where CVap 
2 and CVsp 

2 are the square of the CV of the part inter-arrival time and 
renewing time, respectively. Note that tp is the TAT given in Eq. (4). 

4 Spares Demand Under Preventive Maintenance 

4.1 Aggregate Fleet Spare Parts Demand 

The demand formed by the union of item replacements of a fleet is called the super-
imposed renewal process (SRP). Cox and Smith [40] have proved that, as the fleet 
size approaches infinity, the SRP becomes an HPP regardless of the lifetime distri-
bution of the items. Wang [41] further shows that the occurrence times between two 
successive replacements can be approximated exponentially if: (1) the fleet size is at 
least ten, and (2) item failures are mutually independent. Both conditions are gener-
ally satisfied in real-world applications where a group of machines of the same type 
are used. For instance, The US Southwest Airlines has nearly 750 aircraft, and they 
all belong to the Boeing 737 family [42]. More discussions on SRP and its variants 
can be referred to [43]. 

Two spares demand streams are generated under PM. One is due to the failure 
replacement, and the other is due to the planned replacement. Figure 5 shows how 
the two demand streams are generated from m systems under age-based PM. Without 
loss of generality, each system contains one LRU only. If the system fails prior to τ , 
a corrective replacement is performed; otherwise, a pro-active replacement is made 
at τ . All systems independently generate corrective or pro-active replacements over 
time. The aggregate fleet failures are the superposition of the corrective replace-
ments of m systems. Similarly, the aggregate fleet planned replacements are the 
superposition of the planned replacements of m systems.

4.2 Mean Time Between Consecutive Failures 

It is worth mentioning that the HPP spares demand model in Sect. 4.1 is established 
upon corrective maintenance. New theoretical exploration is needed to show how 
consecutive failure replacements behave under age-based PM. Let Y be the time 
between two consecutive failure replacements. Then Y is a random variable and can 
be represented by 

Y = N τ + T (7)
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where T is the time-to-failure after N planned replacements. The random number N 
has a geometric distribution and its expected value is given by 

E[N ] = 
∞∑

n=0 

n Pr{N = n} =  
R(τ ) 
F(τ ) 

(8) 

Now E[Y ] can be obtained as follows 

E[Y ] = E[N ]τ + E[T ] = 
τ R(τ ) 
F(τ ) 

+ 1 

F(τ ) 
τ ∫
0 
(F(τ ) − F(t))dt  = 1 

F(τ ) 
τ ∫
0 
R(t)dt  

(9) 

In defense and military logistics literature, E[Y ] is also referred to as the mean 
time between unscheduled removals. 

4.3 Mean Time Between Consecutive Planned Replacements 

Under age-based PM, the time between two consecutive planned replacements is also 
random. Let Z be the time between two consecutive planned replacements. Then Z 
is a random variable that can be estimated as 

Z = MT  + τ (10) 

where T is the time-to-failure of the system, and M is a random number representing 
the consecutive failure replacements prior to the last planned replacement. Note that
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M follows the geometric distribution, and the expectation is obtained as follows 

E[M] = 
∞∑

m=0 

m Pr{M = m} =  
F(τ ) 
R(τ ) 

(11) 

Finally, the expectation of Z is obtained as follow 

E[Z ] = E[M]E[T ] + τ = 1 

R(τ ) 
τ ∫
0 
R(t)dt (12) 

Equations Eq. (9) and (12) show that Y and Z depends on τ and R(t) or  F(t). More 
detailed discussions can be referred to [31]. 

4.4 Demand Characterization Using Simulation 

Besides the analytical approach, simulation and design of experiments are also 
the effective methods to investigate the spare parts demand behavior. This section 
presents the simulation result of spares demand under PM originally reported in 
[44]. Assuming Weibull lifetime distribution, the key parameters include Weibull 
scale and shape parameters α and β, fleet size m, maintenance interval τ , planning 
horizon H and system installation time W. Without loss of generality, we set α = 
1. The simulation is conducted on a fleet of single-item systems, but the result is 
applicable to muti-item systems. Table 2 summarizes the range of the parameters in 
the simulation. 

A total of 14 cases are investigated. Cases 1–12 assume all systems are installed 
at W = 0. For Cases 13 and 14, the system installation time is uniformly distributed 
between [0, 0.5TMTBF] where TMTBF is the system mean-time-between-failures. In a 
case such as β = 1.5, m = 5, τ = 0.5 TMTBF , H = 5TMTBF , and W = 0, the inter-arrival 
times of spare demands of the fleet are simulated and recorded for both failure and 
planned replacements, respectively. The inter-replacement times are further used for 
exponential fitting. Two observations are made by [44]. First, among all the cases, the 
aggregate fleet failures follow an HPP independent of W. Second, the aggregate fleet 
planned replacements tend to be HPP for W = 0. However, the planned replacements 
tend to be an NHPP if W is uniformly distributed. Thus, Eqs. (5) and (6) shall be 
used to estimate the repair and renewing TAT under NHPP, respectively.

Table 2 Key parameters in simulation under PM with α = 1 
Range β m τ H W 

Lower limit 1.5 5 0.5TMTBF 5TMTBF 0 

Upper limit 5 20 2TMTBF 30TMTBF 0.5TMTBF 
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5 Spare Parts Demand Under a Growing Installed Base 

5.1 Relation Between Parts Demand and Installed Base 

The demand analysis thus far is applicable to a system fleet with a stable size. This is 
typically the case when the market enters the mature phase. During the introduction 
of a new product, the fleet size or the installed base keeps growing due to the market 
expansion. This process may last for years or even several decades depending on 
the nature of the product. For instance, car manufacturers usually introduce a new 
model every 2–4 years, therefore, the fleet size of the new model keeps growing 
during the introduction period. For wind turbines and airplanes, the fleet size of a 
particular model will grow for 10–20 years. Figure 6 shows Boeing delivered the 
first three B787 planes in 2011, the installed base reached 1008 by 2022 [45]. The 
annual installation varies significantly between 2011 and 2022. The largest delivery 
occurred in 2019 with 158 new planes shipped. On average, each year 84 new planes 
are added to the existing fleet with a standard deviation of 60 planes. 

As the fleet size expands over time, the spares inventory must operate dynamically 
and possess sufficient parts to handle the time-varying demand rate. The existing fleet 
continues to generate the demand for spare parts because of corrective and planned 
replacements. On the other hand, since new systems are being added, more spare 
parts are needed on top of the current installed base. Thus, the spares demands 
are generated by the superposition of the existing systems and the newly installed 
systems. In fact, the spares demand turns out to be a non-stationary process with 
increasing mean and variance under a growing installed base. 

Figure 7 shows how the number of spare engines goes up per annual to meet 
the preventive maintenance as the Boeing 787 fleet size expanded between 2011 
and 2022. Assuming an engine requires an overhaul service after accumulating
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10,000 flight hours. In 2011, only 4 engines required the overhaul. This estima-
tion is made assuming a plane is powered by two engines and operates 16 h per day. 
The engine demand increases with the installed base of the aircraft. By 2022, there 
are 1177 engines requiring overhaul services as the fleet size reaches 1008. Similar 
observations can be made when the engine PM interval becomes 5000 and 7500 h. 

If an engine needs to be overhauled, it can be removed and replaced with a spare 
engine. This enables the plane to continue the service without an extended period of 
grounding for maintenance. Assume the engine’s overhaul turn-around time is one 
week. When the fleet size is small, a small number of spare engines are needed to 
meet the maintenance demand. For instance, in 2013 the inventory needs to provide 
three spare engines under the 10,000-h PM policy. However, the spare engine stock 
level goes up with the growing installed base. In 2022, when the number of planes 
in service reaches 1008, the inventory must hold at least 23 spare engines so that the 
overhaul demands can be satisfied. This represents a huge amount of asset cost. The 
Rolls-Royce engine, one of two engines for the Boeing 787 jetliner, costs about $20 
million at list price [46]. The cost of purchasing and stocking 23 spare engines will 
reach $460 million. If the engine’s maintenance interval is reduced from 10,000 to 
5000 h, the inventory level almost doubles and 45 spare units are needed to meet 
the overhaul demand as shown in Fig. 8. As a result, the total inventory asset cost 
increases to $900 million.

5.2 Cumulative Spare Parts Demand Model 

Since spares demand is correlated with the fleet size, it is imperative to incorporate 
the installed base information into the demand forecasting. Below we present a spares 
demand forecasting model that synthesizes the renewal integral equation with the 
uncertain growth of the installed base. This model was originally presented in the
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Fig. 8 Base stock level of spare engines under a growing aircraft fleet

work of [47]. Assume the first system is installed at time 0. There will be N(t) 
+ 1 systems installed in [0, t], where N(t) is a random variable representing the 
systems installed in (0, t]. Under the corrective maintenance, the cumulative spare 
parts demand of the fleet in [0, t], denoted as S(t), can be estimated as 

S(t) = M(t) + 
N (t)∑

i=1 

M(t − Wi ), for t ≥ 0 (13) 

where 

M(t) = F(t) + 
t ∫
0 
M(t − x)dF(x) (14) 

Here M(t) is the number of replacements during [0, t] for the system installed at time 
0. Similarly, M(t − Wi) is the number of replacements during [Wi, t] for the  ith system 
installed at Wi > 0. Note that Wi is a random variable because customer’s decision 
on purchasing a new system is unknown. Equation (14) is called the renewal-integral 
equation, and F(t) is the cumulative distribution function of the system lifetime. 
M(t) is rather difficult to be solved for general lifetime distributions. An explicit 
solution for M(t) is available only for certain distributions, such as exponential or 
Erlang lifetime.
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5.3 Lead Time Spare Parts Demand Model 

The spare parts demand during the inventory replenishment lead time is of particular 
interest to a maintenance planner. Lead time is the time that elapses from when the 
order is placed to when the part is received by the inventory. Let l be the replenishment 
lead time. Then the spares demand during [t − l, t], denoted as D(t), is obtained as 
follows. 

D(t) = S(t) − S(t − 1) (15) 

where S(t) is the cumulative demand in Eq. (13). If the system lifetime is exponential 
with failure rate α, and the fleet size increases in a Poisson counting process with 
rate λ, the mean and variance of D(t) can be explicitly derived as follows [48], 

E[D(t)] = α(1 + λt)l + 
1 

2 
αλl2 , for 0 ≤ l ≤ t. (16) 

Var(D(t)) = α(1 + λt)l +
(
1 

2 
αλ + a2 λt

)
l2 

+ 
1 

3 
a2 λl3 , for 0 ≤ l ≤ t. (17) 

Below two cases are used to illustrate how Eqs. (5) and (6) can effectively capture 
the non-stationary behavior of D(t). In Case 1, we have α = 0.1 failure/week, λ = 
1 system/week, and l = 1 week. In Case 2, we have α = 0.1 failure/week, λ = 0.5 
system/week, and l = 3 weeks. Figure 9 shows the mean and standard deviation 
(Stdev) of both cases. Two observations can be made. First, as expected, the mean 
demand and its standard deviation increase with the fleet size. For given α and λ, 
E[D(t)] increases linearly with t, and the Stdv(D(t)) goes up with t1/2. Second, the 
value of l has a major impact on the safety stock level. For instance, the value of 
l in Case 2 is two times longer than that in Case 1. As a result, larger E[D(t)] and 
Stdv(D(t)) are observed in Case 2 even if the fleet size of Case 2 is only half of Case 
1.

Let d be the average spare parts demand per unit time during [t − l, t], and can 
be estimated by 

d = 
E[D(t)] 

l
= α(1 + λt) + 

1 

2 
αλl = α + αλ(t + 0.5l) (18) 

As the inventory evolves, it implies d is independent of l because of t + 0.5 l≈t 
for large t. Two necessary conditions are associated with an HPP: (1) the demand rate 
is constant; and (2) the variance-to-mean ratio (VMR) is unity. The first condition is 
stratified for t >> l. Below we show that the second condition also holds by computing 
the VMR of D(t) as follows
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V M  R  = 
Var  (D(t)) 
E[D(t)] 

= 1 + α2λtl2 + 1 3 α
2λl3 

αl + αλtl  + 1 2 αλl2 
< 1 + 

α2λtl2 + 1 3 α
2λl3 

αλtl  + 1 2 αλl2 
< 1 + αl. 

(19) 

Equation (19) shows that VMR ∼= 1 if  αl << 1. For critical parts used in capital 
equipment, condition αl << 1 generally holds because system’s mean-time-to-failure 
(1/α) is much larger than l, hence αl≈0. Thus it can be concluded that the inventory 
lead time demand can be approximated as an HPP provided αl << 1. 

6 Lead Time Demand Analysis Using Simulation 

In this section, we use Matlab software to develop a simulation program to charac-
terize the spare parts demand under a growing fleet size. The purpose of the simulation 
is to verify whether the spares demand during the inventory replenishment lead time 
is a Poisson process. The key parameters in the simulation are the part replacement or 
failure rate α, new system installation rate λ, new product introduction period v, and 
inventory lead time l. 

Table 3 shows the input data for the simulation, and the values are estimated based 
on the maintenance interval of Boeing 787 engines. For instance, if an engine is over-
hauled every 5000 flight hours, we have α = 365× 16/5000=1.168 replacement/year 
assuming engine’s daily operating time is 16 h. If engine’s mean-time-to-overhaul 
is 10,000 h, the replacement rate α is 0.584. From 2011 to 2022, Boeing delivered a 
total of 1008 planes with 82 planes per year on average. Thus, we set λ to be 50, 100, 
and 200, respectively. Values are also appropriately assigned to v and l. The number 
of different scenarios or cases in simulation reaches 2 × 3 × 3 × 2 = 36.

Given a particular case, say α = 0.584, λ = 100, v = 5, and l = 2, the simulation 
is repeatedly run 5000 times. The total number of runs for 36 cases is 5000 × 36
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Table 3 Simulation 
parameters based on Boeing 
787 fleet engines 

Parameters Values in simulation Unit 

α {0.584, 1.1680} Replacement/year 

λ {50, 100, 200} Installation/year 

v {5, 10, 20} Year 

l {2, 4} Week

= 180,000. For each run, the program randomly generates plane installation time, 
engine replacement time, and spares demands for the planes installed between [0, 
v]. At the fleet level, the inter-arrival time between two consecutive replacements is 
recorded, and the lead time spares demands are tested against the HPP hypothesis. The 
confidence level of an HPP is estimated for each case and the result is shown in Table 
4. Among the 36 cases, the lowest confidence level is found in Cases 7 and 34 with 
94.9%, and the highest confidence level is observed in Cases 4 and 31 with 95.1%. 
The average confidence level is 95%. As a result, it can be stated that the lead time 
of spares demand of 36 cases follows the Poisson process with 95% confidence.

Analysis of Variance (ANOVA) is performed to examine how parameters α, λ, v, 
and l influence the HPP hypothesis test on the lead time demand in Table 5. Note  
that DF represents the degrees of freedom, SS stands for the sum of square, and MS 
is the mean of square. Since the P-value of all the parameters is larger than 0.05, 
indicating α, λ, v, and l are significant to the confidence level. Particularly, λ and l 
are the most influential to the lead time demand behavior because their P-values are 
much higher than those of α and v.

7 System Availability with Reliability-
Maintenance-Inventory Integration 

7.1 Single-Item System Availability 

In previous sections, the repairable inventory system is characterized by two parallel 
Erlang-C queues: one handles failure returns and the other rejuvenates deteriorated 
items. The lead time spares demands are investigated under a fixed installed base and 
a growing installed base, respectively. In both cases, the Poisson demand behaviors 
are examined analytically and further verified by simulation. This section presents a 
system availability model that seamlessly integrates reliability-redundancy, mainte-
nance time, spares inventory, repair and renewing capacity, and installed base infor-
mation. We first estimate the single-item system availability, and then extend it to 
the multi-item system. A generic system availability model is given as follows 

A = TMT  B  R  

TMT  B  R  + TMDT  
, (20)
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Table 4 Simulation inputs and results for 36 cases 

Case α λ l v Confidence for HPP (%) 

1 0.584 50 0.037 5 94.97 

2 0.584 50 0.037 10 95.02 

3 0.584 50 0.037 20 95.05 

4 0.584 50 0.07407 5 95.11 

5 0.584 50 0.07407 10 94.91 

6 0.584 50 0.07407 20 95.03 

7 0.584 100 0.037 5 94.89 

8 0.584 100 0.037 10 94.99 

9 0.584 100 0.037 20 94.97 

10 0.584 100 0.07407 5 94.92 

11 0.584 100 0.07407 10 94.99 

12 0.584 100 0.07407 20 95.06 

13 0.584 200 0.037 5 95.00 

14 0.584 200 0.037 10 94.97 

15 0.584 200 0.037 20 95.00 

16 0.584 200 0.07407 5 94.95 

17 0.584 200 0.07407 10 95.01 

18 0.584 200 0.07407 20 94.99 

19 1.168 50 0.037 5 94.92 

20 1.168 50 0.037 10 95.04 

21 1.168 50 0.037 20 94.95 

22 1.168 50 0.07407 5 94.99 

23 1.168 50 0.07407 10 95.01 

24 1.168 50 0.07407 20 94.98 

25 1.168 100 0.037 5 94.98 

26 1.168 100 0.037 10 95.06 

27 1.168 100 0.037 20 94.99 

28 1.168 100 0.07407 5 95.01 

29 1.168 100 0.07407 10 95.07 

30 1.168 100 0.07407 20 95.01 

31 1.168 200 0.037 5 95.13 

32 1.168 200 0.037 10 94.99 

33 1.168 200 0.037 20 95.05 

34 1.168 200 0.07407 5 94.91 

35 1.168 200 0.07407 10 95.03 

36 1.168 200 0.07407 20 95.04
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Table 5 ANOVA for analyzing Poisson lead time demand 

Source DF SS MS F-value P-value 

α 1 0.00344 0.00344 1.1 0.303 

λ 2 0.00113 0.00056 0.18 0.836 

l 1 0.00010 0.00010 0.03 0.860 

v 2 0.00610 0.00305 0.98 0.388 

Error 29 0.09056 0.00312 

Total 35 0.10133

where TMTBR represents the mean time between replacements, and TMDT represents 
the system mean downtime. Under age-based PM, the TMTBR can be estimated by 

TMT  B  R  = 
τ ∫
0 
R(t)dt  = 

τ ∫
0 
(1 − F(t))dt  = τ − 

τ ∫
0 
F(t)dt (21) 

If corrective maintenance policy is adopted, TMTBR is equal to the mean-time-to-
failure. To estimate TMDT, both failure replacement and planned replacement shall 
be considered under the PM policy. Let Tq and Tp be system’s failure downtime and 
planned downtime, respectively. Then, 

Tq = ts + tq Pr{D > s} (22) 

Tp = ts + tp Pr{D > s} (23) 

where ts is the hands-on replacement time, D is the lead time demand of the spares 
inventory, and s is the spares stock level. In Eq. (22), for example, Tq is equals to 
ts if D ≤ s. When the spare is out of stock (i.e., D > s), the downtime is prolonged 
because of waiting for the spare item. The average waiting time equals tq given in 
Eq. (2). A similar interpretation can be applied to Tp and tp is given in Eq. (4). For 
non-Markovian queues, Eqs. (5) and (6) shall be used to substitute for tq and tp. Now  
the system downtime can be further expressed as follows [49] 

TMDT  = Tq F(τ ) + Tp R(τ ) 
= (

ts + tq Pr{D > s})F(τ ) + (
ts + tp Pr{D > s})R(τ ) 

= ts +
(
tp R(τ ) + tq F(τ )

)
Pr{D > s} 

= ts +
((

Bp 

pμp − λp 
+ 

1 

μp

)
R(τ ) +

(
Bq 

qμq − λq 
+ 

1 

μq

)
F(τ )

)
Pr{D > s} 

(24) 

Note that F(τ ) and R(τ ) are the probability of failure and planned replacement 
at τ , respectively. By substituting Eqs. (21) and (24) into (20), the availability of a
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single-item system can be estimated by [49] 

A =
∫ τ 
0 R(t)dt  

∫τ 
0 R(t)dt  + ts +

((
Bp 

pμp−λp 
+ 1 

μp

)
R(τ ) +

(
Bq 

qμq−λq 
+ 1 

μq

)
F(τ )

)
Pr{D > s} 

(25) 

Equation (25) represents an integrated reliability-maintenance-inventory 
approach to modeling system availability. This is because reliability R(t), main-
tenance time τ , spares inventory s, repair capacity q, and renewing capacity p are 
incorporated into a single formula. Note that Bq and Bp are given in Eqs. (1) and (3), 
respectively. In addition, there is no specific assumption on the inventory lead time 
demand. 

7.2 Redundant System Availability 

A redundant system is a type of multi-item system with the configuration of several 
identical items. For a k-out-n active redundant system, the system is available if k 
items are good for k ≤ n. The availability of an active redundant system, denoted as 
Ard , can be expressed as follows 

Ard  = 
n∑

i=k

(
n 
i

)
Ai (1 − A)n−i (26) 

where A is the availability for the single-item system given in Eq. (25). The avail-
ability of a cold-standby system can also be estimated using Eq. (26). Unlike active 
redundant components, an item in cold standby is not in the operational state. If an 
active component fails, the cold-standby item is switched to the operational mode for 
the failure substitution. In addition, the spares demand rate of a cold-standby redun-
dant system fleet is lower than that of active redundant systems. This is because the 
former has a smaller number of active items in operation at a given instant of time. 

7.3 Numerical Experiment 

We demonstrate the application of the integrated reliability-maintenance-inventory 
approach in an ATE system fleet. An ATE can be treated as a k-out-of-n active 
redundant system where k is the minimum required working items, and n is the 
total items in a system. Tables 6 shows the key parameters associated with design, 
manufacturing, maintenance, repair, and spares stocking for a type of ATE system. To 
meet the system availability target of 0.99, the OEM minimizes the annualized system
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Table 6 Parameters for integrated reliability-maintenance-inventory optimization model 

Parameters Value Unit Comments 

α 0.4 Failures/year Weibull scale parameter 

β 3.5 n/a Weibull shape parameter 

k 7 n/a Minimum required working items 

n 10 n/a Total items in a system 

r 0.05 Discount rate Interest rate 

ts 24 Hour Hands-on replacement time 

tp 9 Day Renewing TAT 

tq 18 Day Repairing TAT 

cLRU 100,000 $/item Part or item unit cost 

cu 6000 $/renewing Renewing cost per item 

cv 9000 $/repair Repair cost per item 

ch 20,000 $/item/year Inventory holding cost 

cp 480,000 $/server Cost of renewing server 

cq 640,000 $/server Cost of repairing sever 

cost by optimizing redundant items x, maintenance time τ , spare parts inventory s, 
renewing servers p, and repair servers q under different sizes of install base. The 
detailed formulation of the reliability-maintenance-inventory optimization model 
can be referred to [49]. Figure 10 depicts the optimal solutions of x, τ , s, p, and q as 
the installed base m increases from 5 to 100. 

Three observations are made from this numerical experiment. First, when the 
installed base is small, such as m = 5 or 20, component or item redundancy (i.e., x = 
1) is preferred over spares inventory as it results in a lower annualized system cost. 
The annualized system cost includes: (1) the system’s initial capital; (2) the overhead
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of repairing and renewing parts; (3) the spare parts inventory; and (4) the expense 
of operating repair and renewal facilities. However, as m becomes larger, it is more 
economical to invest spares inventory, and repair and renewing capacities to achieve 
the system availability target. Second, maintenance time τ is relatively independent 
to the installed base. It is found that τ varies between 2 and 2.5 regardless of m. 
Third, the value of s, p, and q increases with m. This is expected because a larger 
installed base will generate more failure and planned replacements, hence requiring 
more spare parts, repair, and renewal services. 

8 Conclusion 

This study investigates the availability management of repairable systems across 
the design, manufacturing and after-sales market. The proposed system availability 
model seamlessly incorporates reliability, redundancy, maintenance, repair, spares 
inventory, and installed base into a unified formula. The study represents a first-of-its-
kind in managing system availability through an integrated reliability-maintenance-
inventory allocation approach. The method is applicable to a stationery system 
fleet or a growing installed base. The research findings can be highlighted in 
three aspects. First, the aggregate fleet spares demand under preventive mainte-
nance can be decomposed into a failure stream and a planned replacement stream, 
each being approximated as the Poisson process. Second, when the installed base 
changes and increases, both the analytical model and the simulation results show 
that the inventory lead time demand can be treated as a Poisson process with 
95 percent of confidence on average. Third, the numerical experiment shows that 
redundancy strategy is economical for a small installed base, while spares inven-
tory is more cost effective for a large fleet size. As future efforts, we would like 
to expand the product-service supply chain network that involves multi-echelon, 
multi-location with parts transshipment. Another direction is to compare the product 
lifetime cost between reliability-maintenance-inventory integration and the separated 
management strategies. 
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15. Dursun İ, Akçay A, Van Houtum GJ (2022) Age-based maintenance under population 
heterogeneity: optimal exploration and exploitation. Eur J Oper Res 301(3):1007–1020 

16. Jin L, Yamamoto W (2017) Adaptive age replacement using on-line monitoring. Procedia Eng 
174:117–125 

17. Zhao X, Al-Khalifa KN, Hamouda AM, Nakagawa T (2017) Age replacement models: a 
summary with new perspectives and methods. Reliab Eng Syst Saf 161:95–105 

18. Jiang R (2019) Risk-sensitive cost models of age replacement policy: comments and proposals. 
J Oper Res Soc 70(4):548–554 

19. Peng Y, Dong M, Zuo MJ (2010) Current status of machine prognostics in condition-based 
maintenance: a review. Int J Adv Manuf Technol 50(1):297–313 

20. Zhao Q, Jia X, Cheng ZJ, Guo B (2018) Bayes estimation of residual life by fusing multisource 
information. Front Eng Manage 5(4):524–532 

21. Zhu W, Fouladirad M, Bérenguer C (2016) A multi-level maintenance policy for a multi-
component and multifailure mode system with two independent failure modes. Reliab Eng 
Syst Saf 153:50–63 

22. Alaswad S, Xiang Y (2017) A review on condition-based maintenance optimization models 
for stochastically deteriorating system. Reliab Eng Syst Saf 157:54–63 

23. Li Y, Peng S, Li Y, Jiang W (2020) A review of condition-based maintenance: its prognostic 
and operational aspects. Front Eng Manage 7(3):323–334 

24. Hu Y, Miao X, Si Y, Pan E, Zio E (2022) Prognostics and health management: a review from 
the perspectives of design, development and decision. Reliab Eng Syst Saf 217:108063 

25. Sherbrooke CC (1968) METRIC: A multi-echelon technique for recoverable item control. Oper 
Res 16(1):122–141 

26. Muckstadt JA (1973) A model for a multi-item, multi-echelon, multi-indenture inventory 
system. Manage Sci 20(4-part-i):472–481 

27. Lee HL (1987) A multi-echelon inventory model for repairable items with emergency lateral 
transshipments. Manage Sci 33(10):1302–1316 

28. Alfredsson P (1997) Optimization of multi-echelon repairable item inventory systems with 
simultaneous location of repair facilities. Eur J Oper Res 99(3):584–595 

29. Lau HC, Song H (2008) Multi-echelon repairable item inventory system with limited repair 
capacity under nonstationary demands. Int J Inventory Res 1(1):67 

30. de Smidt-Destombes KS, van der Heijden MC, van Harten A (2009) Joint optimisation of spare 
part inventory, maintenance frequency and repair capacity for k-out-of-N systems. Int J Prod 
Econ 118(1):260–268



Integration of Reliability Design, Installed Base, and After-Sales … 263

31. Jin T, Tian Z, Xie M (2015) A game-theoretical approach for optimizing maintenance, spares 
and service capacity in performance contracting. Int J Prod Econ 161:31–43 

32. Basten RJ, Ryan JK (2019) The value of maintenance delay flexibility for improved spare parts 
inventory management. Eur J Oper Res 278(2):646–657 

33. Zhu W, Castanier B, Bettayeb B (2019) A dynamic programming-based maintenance model 
of offshore wind turbine considering logistic delay and weather condition. Reliab Eng Syst Saf 
190:106512 

34. Basten RJI, van Houtum GJ (2014) System-oriented inventory models for spare parts. Surv 
Oper Res Manage Sci 19(1):34–55 

35. Mouschoutzi M, Ponis ST (2022) A comprehensive literature review on spare parts logistics 
management in the maritime industry. Asian J Shipping Logistics 

36. Jin T (2019) Reliability engineering and services. Wiley, New Jersey Chapter 10 
37. Diaz A, Fu MC (1997) Models for multi-echelon repairable item inventory systems with limited 

repair capacity. Eur J Oper Res 97(3):480–492 
38. Winston W (2004) Operations research: applications and algorithms. 4th edn. Brooke/Cole 

Cengage Learning, Belmont (Chapter 20) 
39. Allen AO (1978) Probability, statistics and queueing theory, with computer science applications. 

Academic Press, New York 
40. Cox DR, Smith WL (1954) On the superposition of renewal processes. Biometrika 41:91–99 
41. Wang W (2012) A stochastic model for joint spare parts inventory and planned maintenance 

optimisation. Eur J Oper Res 216(1):127–139 
42. Southwest Airlines (2022) Southwest airlines fleet details and history, available at https://www. 

planespotters.net/airline/Southwest-Airlines. Accessed on 8 Nov 2022 
43. Wu S (2019) Superimposed renewal processes in reliability. Wiley Stats Ref: Statistics 

Reference https://doi.org/10.1002/9781118445112.stat08228 
44. Jin T, Li H, Sun F (2021) System availability considering redundancy, maintenance and spare 

parts with dual repair processes. In: Proceedings of the IIE annual conference. Institute of 
Industrial and Systems Engineers (IISE), pp 590–595 

45. Wikipedia (2022) Boeing 787 Dreamliner, available at https://en.wikipedia.org/wiki/Boeing_ 
787_Dreamliner. Accessed on 2 Oct 2022 

46. Scott A (2016) Japanese airline ANA to replace 100 rolls engines on 787s. Aerospace and 
defense, August 31, 2016, available at https://www.reuters.com. Last Accessed on 4 Oct 2022 

47. Jin T, Liao H (2009) Spare parts inventory control considering stochastic growth of an installed 
base. Comput Ind Eng 56(1):452–460 

48. Jin T, Taboada H, Espiritu J, Liao H (2017) Allocation of reliability–redundancy and spares 
inventory under Poisson fleet expansion. IISE Trans 49(7):737–751 

49. Jin T, Zhu W (2022) Optimizing redundancy, maintenance and spare parts for system 
availability under decentralized repair. Texas State University Working Paper

https://www.planespotters.net/airline/Southwest-Airlines
https://www.planespotters.net/airline/Southwest-Airlines
https://doi.org/10.1002/9781118445112.stat08228
https://en.wikipedia.org/wiki/Boeing_787_Dreamliner
https://en.wikipedia.org/wiki/Boeing_787_Dreamliner
https://www.reuters.com


Use of Artificial Neural Networks 
to Enhance Container Port Safety 
Analysis Under Uncertainty 

Hani Al Yami, Ramin Riahi, Jin Wang, and Zaili Yang 

Abstract This chapter proposes a modified failure mode effect analysis (FMEA) 
approach using Artificial Neural Networks (ANNs) to evaluate and predict the oper-
ational risks of container terminals. It effectively integrates two established methods 
in one framework to realise complex risk analysis from a whole system perspective, 
including fuzzy rule based Bayesian networks (FRBN) for risk analysis of partic-
ular hazards in ports and fuzzy evidential reasoning (FER) for safety evaluation of 
ports in a systematic way. During this process, ANNs are integrated with FRBN and 
FER respectively to create two sub-models. The first sub-model is FRBN-ANN that 
incorporates Bayesian networks (BNs) with ANNs to facilitate risk prediction of each 
identified hazard in a container port. The second sub-model is FER-ANN, which uses 
ANNs to simulate the FER method to ease the aggregation of all the hazards to obtain 
the safety level of the port. Finally, the two sub-models are combined into a single 
safety model, which can help simplify risk prediction, and realise real-time safety 
evaluation of ports at hazard or whole system levels. The Levenberg–Marquardt 
(trainlm) back-propagation algorithm trial and error approach was used to determine 
the optimal ANN architecture. The proposed ANN model produced small deviations 
that indicate high predictive accuracy with satisfactory determination coefficients 
(i.e., the regression) for forecasting operational risks of container ports. It provides 
an effective risk prediction tool for complex port safety systems, and significantly 
simplifies the port safety analysis and prediction in a feasible, versatile, and accu-
rate manner. It, through the black box approach of ANN, provides a mathematically 
unsophisticated solution and hence aids the visualisation of risk analysis outcomes 
without the need of the end users to understand the complicated computing process

H. Al Yami 
Faculty of Maritime Studies, King Abdulaziz University, Jeddah, Saudi Arabia 

R. Riahi 
Columbia Shipping Management (Deutschland) GmbH, Hamburg, Germany 

J. Wang · Z. Yang (B) 
Liverpool Logistics Offshore and Marine (LOOM) Research Institute, Liverpool John Moores 
University, Liverpool, UK 
e-mail: z.yang@ljmu.ac.uk 

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 
Y. Liu et al. (eds.), Advances in Reliability and Maintainability Methods and Engineering 
Applications, Springer Series in Reliability Engineering, 
https://doi.org/10.1007/978-3-031-28859-3_11 

265

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-28859-3_11&domain=pdf
mailto:z.yang@ljmu.ac.uk
https://doi.org/10.1007/978-3-031-28859-3_11


266 H. Al Yami et al.

of the risk inference. It makes significant contributions to port safety analysis and 
management in practice. 

1 Introduction 

Innovative technologies, advanced safety management methodologies, and hazards-
driven risk mitigation regimes have resulted in increasing safety standards in 
container ports. Advanced risk models such as fuzzy rule-based Bayesian networks 
(FRBN) [1] and fuzzy evidential reasoning (FER) [2] focusing much on result accu-
racy and reliability assurance, often compromise their easiness, hence revealing 
problems in their practical applications. New approaches that enable to simplify 
the complicated risk analysis and prediction process become necessary. Artificial 
Neural Networks (ANNs) have been successfully applied for real-time risk predic-
tion in various sectors over the past decade, due to their reliable, robust, and salient 
capturing of non-linear relationships between complex system variables (i.e., multi-
input/output). On the other hand, failure mode and effect analysis (FMEA) is one 
of the most widely applied hazard identification and risk analysis methods, due to 
its visibility and easiness. ANNs can enhance FMEA performance by overcoming 
its incapability of tackling data uncertainty; at the same time, it can ease stake-
holders’ burden of handling a complex large amount of data to measure, predict, and 
improve system safety and reliability performance. Research has shown that ANNs 
have powerful pattern classification and recognition capabilities. Inspired by biolog-
ical systems, particularly research into the human brain as a large-scale nonlinear 
drive system, ANNs offer a computational paradigm that learns and generalises from 
experience. It also has many egregious functions, such as adaptive learning, real time 
operation, self-organisation, thinking and reasoning, judging and memory, and fault 
tolerance [3, 4]. Since the 1980s, research on ANNs has made remarkable develop-
ments, and has been successfully applied in a wide variety of domains, including 
risk and safety studies, but not yet in port risk and safety studies. 

In the past decade, applications of ANNs in risk assessment are seen in medical 
research [5–7], financial investigations [6, 8–12], and civil engineering studies [13– 
18]. However, very few studies use ANN in risk analysis in maritime systems. Ung 
et al. [19] applied ANNs to predict the risk level of sea-lane navigation within port 
areas by incorporating fuzzy set theory and ANNs. Although, showing a unique 
conception of applying ANNs in the maritime port industry, however, the approach 
has only considered the fuzziness, incapable of modelling the other types of uncer-
tainties in data (e.g. incompleteness and randomness), which releases a research 
gap. 

Although FRBN and FER have proven their ability to evaluate risks in container 
ports, their complexity in handling a large amount of data and in dealing with two 
separate software packages forces the stakeholders to navigate non-user-friendly 
processes and reduces their applicability in practice. This chapter aims to develop 
an integrated risk analysis method for container ports, using ANNs to predict and
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evaluate the criticality of hazardous events (HEs) in a container port. The ANN 
approach is used to simplify and integrate two established methods in one framework 
to realise complex risk analysis from a whole system perspective. They include FRBN 
for risk analysis of particular hazards in ports [20] and FER for safety evaluation of 
ports from a systematic way [21]. Furthermore, we implement experimental data to 
train ANNs in a rational structure and develop an applicable, new risk-based decision 
support tool for risk prediction of container ports in practice. 

In order to clearly map and explain the proposed models, this chapter is organised 
as follows. Section 2 introduces ANN principles and the relevant background infor-
mation. Section 3 describes the methodology of a novel ANN framework. Section 4 
uses ANN to simulate FRBN so as to evaluate the criticality of each identified HE 
in a container port locally. Section 5 uses ANN to simulate FER so as to evaluate 
the safety of the port system as well as the HEs of the most risk contribution to the 
system safety level globally. Section 6 presents the integrated ANN model to predict 
the risk index of each HE and provide an overall safety evaluation of the operational 
systems of a container port. Section 7 concludes the chapter with the possible future 
studies. 

2 Artificial Neural Networks (ANNs) 

In 1942, McCulloch and Pitts [22] proposed modelling neural nets as a single 
neuron form in terms of the computational “nervous activity” model, which describes 
the neuron as a linear threshold-computing unit with multiple inputs and a single 
output to solve character recognition problems [23]. In 1949, Hebb built the missing 
link between single neurons and network in his classic book The Organization of 
Behaviour. Rosenblatt developed a network in 1958 using McCulloch and Pitt’s 
model, based on a unit called the “perceptron” [24]. Rosenblatt [25] and others 
explored and developed many types of perceptron based ANNs in the 1960s. The 
topic rapidly faded in the 1970s, however, because of two main problems: first, 
the practical difficulties of solving many real-world problems; and secondly, the 
serious limitations among perceptron which could not be solved by simply adding 
neuron layers [26]. It was also determined that the perceptron was incapable of repre-
senting simple, linearly inseparable functions, as in the famous “exclusive or” (XOR) 
problem [26, 27]. However, the primary problem was the absence of any learning 
algorithm to train such networks. 

Hopfield [28] poured new life into this field by introducing two key concepts that 
overcame Minsky and Papert’s identified limitations: first, the nonlinearity between 
total input received by a neuron and its produced output; secondly, the possibility of 
feedback coupling outputs with inputs [27]. Since then, ANNs have seen an explosion 
of interest, together with a paradigm change in recent years. They were intensively 
and extensively used as problem solving algorithms for application development, 
rather than accurate representations of the human nervous system [27, 29]. They 
have been successfully applied across an extraordinary range of domains [30–35].
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A review by Liao and Wen [29], based 10,120 articles about ANN methodologies 
and application developments from 1995 to 2005, uses data mining to disclose the 
wide range of ANN applications in many fields of studies. Other researchers have 
explored the use of hybrid ANNs with deferent methods, such as neuro-fuzzy for 
time series modelling [36], neuro-fuzzy rule-based for stock market decision support 
modelling [37], Bayesian neural networks for medicine [38], and Dempster-Shafer 
neural network for navigation technology [39]. This sweeping success are largely 
attributed to its advantages, explored in Siegel et al. [40], Haykin [41] and Taha [42]. 

ANNs are computational modelling tools with flexible structures that capture and 
simulate complex input/output relationships. They are comprised of densely inter-
connected adaptive and simple processing elements, capable of performing massive 
parallel computations for data processing and knowledge representation [29, 43, 
44]. The ANN terminology has been developed from a biological model that uses 
artificial neurons to imitate the learning process of the human brain (i.e., natural 
neurons) to a system that processes nonlinear and complex data, even when the data 
are imprecise and noisy. However, solving complex problems requires knowledge 
of biological network functionality rather than a replication of biological system 
operation [23, 29]. 

The complexity of real neurons is highly abstracted when modelling artifi-
cial neurons. ANNs consist of inputs (synapses), which are multiplied by weights 
(strength of respective signals), and then computed by a mathematical function, 
which determines the activation of the neuron; then another function (possibly iden-
tity) computes the artificial neuron’s output. As a result, ANNs’ mechanisms combine 
all artificial neurons to process information. The greater an artificial neuron’s weight 
is, the stronger its input. A neuron’s computation depends on weights and differs 
if the weight changes, because the weight is multiplied by input. By adjusting an 
artificial neuron’s weights, the output can be obtained as desired for specific inputs. 
However, when an ANN consists of hundreds or thousands of neurons, manually 
finding all the necessary weights becomes complicated. Weight algorithms can find 
and adjust ANN weights in order to obtain desired network output. This process of 
weight adjustment is called learning or training [41]. 

A complex system may be deconstructed into simpler elements in order to under-
stand and handle it. Simple elements can then be gathered to produce a complex 
system; networks represent one approach for achieving this [45]. There are many 
network types, but they all contain the following components: 

• A set of nodes: nodes can be seen as computational units. They receive and process 
inputs to obtain an output. This processing may be very simple (summing the puts) 
or quite complex (a node might contain another network). 

• Connections between nodes: connections determine information flow between 
nodes and can be unidirectional, when information flows only in one sense, and 
bidirectional, when information flows in either sense. 

Node interactions through connections lead to a network’s global behaviour, 
which cannot be observed through the network’s elements. This global behaviour
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is described as “emergent,” meaning that the networks abilities supersede those of 
its elements, making networks a very powerful tool [41]. 

A neuron is a real function of the input vector
(
x1 . . .  x j

)
. The output y is obtained 

as 

f
(
y j

) = f

(

α + 
k∑

i=1 

wk j  x j

)

(1) 

where f is a function (functions will be explained in detail in Sect. 3.1), x1, x2, x3,….. 
xj are the input signals, wk1, wk2, wk3,…wkj are the synaptic weights of the kth neuron, 
and α is the bias. 

A graphical presentation of a neuron is given in Fig. 1. Mathematically, a multi-
layer perceptron network is a function consisting of compositions of functions’ 
weighted sums corresponding to neurons [41]. 

ANNs as a data processing system consist of a large number of simple, highly 
interconnected processing elements in an architecture inspired by the brain’s cerebral 
cortex structure, and there are several architecture ANN types. Simpson [46] lists 26 
different types of ANNs, Maren [47] lists 48, and Pham [48] estimates more than 
50. Some networks are more proficient in solving perceptual problems, while others 
are more suitable for data modelling and functional approximation, but feed forward 
networks (e.g., Back-Propagation network) and recurrent networks are among the 
most widely used [23]. 

In Fig. 2, the BP information flows in one direction along connecting pathways, 
from the input layer via the hidden layers to the final output layer. There is no feed-
back (i.e., all links are unidirectional and there are no same layer neuron-to-neuron 
connections), and the output of any layer does not affect that same or preceding layer. 
These networks are the most widely used types and are considered the workhorse of

Fig. 1 A single neuron 
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ANNs because of their flexibility and adaptability in modelling a wide spectrum of 
problems in many application areas [49]. 

The recurrent network in Fig. 3 differs from feed forward network architectures 
in that there is at least one feedback loop. Thus, these networks have one layer with 
feedback connections; they may also have neurons with self-feedback links (i.e., a 
neuron’s output is fed back into itself as input). 

Fig. 2 Feed forward network 

Fig. 3 Recurrent network
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This study uses BP because of three main reasons: its ability to learn mapping 
from one data space to another using examples; high accuracy in capturing data’s 
nonlinearity in (i.e., the relationship between inputs and outputs); and the simplicity 
in searching, accelerating, and stabilising the training process. 

Multiple types of neural network software have been developed, including 
Environment for Computer Aided Neural Software Engineering (ECANSE) [50]; 
MATLAB: Neural Network Toolbar [51]; Neuroshell 1 and 2 [52]; and Statistica 
Neural Network [52]. Among ANN software, Matlab is a high-level language and 
interactive environment for numerical computation, visualisation, and programming 
that allows for analysing data, developing algorithms, and creating models and appli-
cations. Matlab computer language, tools, and built-in math functions can explore 
multiple approaches and reach a solution faster than with spreadsheets or traditional 
programming languages. It also has the functions to integrate based algorithms with 
external applications and other programming languages. In this work, the Neural 
Network Toolbox Version 7.8 of MATLAB® mathematical software predicts risk 
evaluation for a container terminal. 

3 Methodology 

The purpose of this section is to propose the framework of using ANNs to combine the 
two separate methods of FRBN and FER, which were developed to evaluate container 
port risks at hazard and port system levels, respectively. The FRBN [20] provides a 
realistic and flexible method to describe input failure information for specific risk 
estimates of individual HEs at the bottom level of a risk analysis hierarchy as shown 
in Fig. 4, which contains 24 HEs in container ports.

It was found that when considering the risk levels of individual HEs, the most 
significant include [20]: 

• Collision between the quay crane and the ship (HE4). 
• Collision between two quay cranes (HE5). 
• Crane break down due to human error (HE6). 
• Person slips, trips and falls whilst working on surfaces with presence of oils 

(HE15). 
• Collision between Terminal Tractor (TT) and trailer (HE1). 
• Person slips, trips and falls whilst working on surfaces with presence of leaking 

cargo (HE13). 
• Moving the crane without raising the Boom (lifting arm) of the gantry crane 

(HE7). 

While the FER approach [21] is used to aggregate the risk estimates of all 
HEs collectively, allowing safety evaluation of container ports from a systematic 
perspective. As a result, the most significant HEs are as follows.

• Ignition sources from equipment near dangerous goods premises (HE9).
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• Leakage/ emission of dangerous goods from a container (HE8). 
• Crane break down due to human error (HE6). 
• Moving the crane without raising the boom (lifting arm) of the gantry crane (HE7). 
• Person struck by falling object/s (HE16). 
• Person handling dangerous goods in containers that have not been declared 

(HE17). 

Although showing some attractiveness in port risk analysis, the two models have 
been criticised in terms of their complex inference processes. The proposed models 
using ANNs are constructed to ease the risk inference analysis of ports at both HE 
and system levels. During this process, HE6, HE7 and HE16 are selected for the 
demonstration purpose due to their high-risk indexes. 

A multilayer perceptron neural network model is designed, consisting of an experi-
mental data (ED) set collection used for model training and testing, network creation 
and configuration based on pre-processing and analysis of the data set, network 
training and validation, and finally, simulations and predictions [53] 

The three parts for developing novel ANNs to model FRBN and FER are outlined 
in three steps as follows. 

1. Design the ANN model to simulate the FRBN method in Alyami et al. [21]. 
FRBN has 12 inputs based on the four risk parameters (i.e., Likelihood, Conse-
quence, Probability of hazards not being detected, and Impact of the hazard to the 
port system safety) and the linguistic terms for each risk parameter (i.e., High, 
Medium, and Low). The risk evaluation output for each identified HE has three 
linguistic terms (i.e., High, Medium and Low). 

2. Design the ANN model to simulate the FER method. FER has nine inputs based 
on three HEs (i.e., HE6, HE7 and HE16) of high-risk evaluations resulting from 
the ANN in Step 1 and each of the investigated HE has three risk parameters 
(i.e., High, Medium, and Low). It has only one output processed in FER. 

3. Construct the ANN model to simulate the combined the ANN models related to 
FRBN and FER in Steps 1 and 2 respectively. It creates a risk prediction tool 
that provides a panoramic view of the safety level of a container port’s operation 
performance. 

3.1 Algorithms of Modelling Performance Criteria 

In a typical ANN, the input layer is composed of the ED (Xi), which is associated 
with the input layer’s neurons (1, 2…,i,… m). The input signals are fed into the input 
layer, then transferred to the hidden layers’ neurons (1, 2…, j,… n), where processing 
takes place by multiplying connection weights (wij) between two neurons and using 
the summation function to deliver output signals to the output layers (1, 2…, k,… p) 
[54]. 

Each layer’s input data is processed to outputs using an activation (i.e., transfer) 
function, a nonlinear mathematical function known as a “transfer function.” The most
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widely used transfer functions are tansig, logarithmic sigmoid (logsig), and purelin, 
described respectively below and illustrated in Fig. 5. The  tansig activation function 
offers slightly better predictions than the others and is most commonly used in the 
hidden layer and the purelin activation function is used in the output layer [55–57]. 

Each layer’s input data is processed to outputs using an activation (i.e., transfer) 
function, a nonlinear mathematical function known as a “transfer function”. The most 
widely used transfer functions are tansig, logarithmic sigmoid (logsig), and purelin, 
described respectively below and illustrated in Fig. 5. The  tansig activation function 
offers slightly better predictions than the others and is most commonly used in the 
hidden layer and the purelin activation function is used in the output layer [55–57]. 

f (x) = 1 

1 + e−x 
(2) 

f (x) = 
ex − e−x 

ex + e−x 
(3) 

f (x) = x (4) 

The data flow process for a single neuron in the network starts with each input 
streaming multiplied by a weight (w) and summed using the summation function. 
Then, this single value is processed through a transfer function to produce the output 
value of a neuron, as illustrated in Fig. 6 [55].

Selecting a training algorithm and activation function is crucial for robust ANN 
model performance. In general, linear functions are used for input and output layers, 
and nonlinear transfer functions for hidden layers [58]. 

Levenberg Marquardt Back Propagation (LMBP) is the most widely used optimi-
sation algorithm for a variety of ANN problems [53, 58–62]. The LMBPA optimisa-
tion is a standard technique for nonlinear, least square problems, and was applied in 
this study to simulate actual risk estimation values for constructing a risk prediction 
system. The LMBPA data training algorithm procedure is as follows [23, 61, 63] 

1. Initialise the weights and thresholds in the hidden and output layers, often in the 
range of [−1, 1]. 

2. Calculate the hidden layer y value:

Fig. 5 Graphical representation for activation (transfer) functions 
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Fig. 6 Data flow process in a neuron

y j (p) = tan sig

[
n∑

i=1 

xi ( p)wi j  (p) − θ j

]

(5) 

where tansig is the transfer function. n is the number of neurons in the hidden layer, 
xij is the ith inputs, wij is the weight of xij, and θ is the threshold value. 

3. Calculate the output layer y value: 

yk(p) = tansig 

⎡ 

⎣ 
n∑

j=1 

xik(p)w jk(p) − θk 

⎤ 

⎦ (6) 

where m is the number of neurons in the hidden layer and θ is the threshold value. 

4. Calculate the output layer error: 

δk(p) = yk(p)[1 − yk(p)]ek(p) (7) 

ek(p) = yd,k (p) − yk( p) (8) 

5. Correct the output layer weight w:

Δw jk(p) = αy j (p)δ(p) (9)

Δw jk(p + 1) = w jk(p) + Δw jk(p) (10)
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6. Calculate the hidden layer error δ: 

δ(p) = y j (p)
[
1 − y j (p)

] 1∑

k=1 

δk(p)w jk(p) (11) 

7. Correct the hidden weight w:

Δwi j  (p) = αxi (p)δ j (p) (12) 

wi j  (p + 1) = wi j  (p) + Δwi j  (p) (13) 

The steepest descendent method has a very fast convergence speed; however, 
when the optimal point is reached due to a decreasing gradient, the convergence 
speed slows. Therefore, the Newton method is integrated with the steepest descen-
dent method to obtain excellent convergence effects when approaching the optimal 
point [64]. Accordingly, the performance function has the form of a square sum and 
represents the Hessian matrix, which is as follows: 

H = J T J (14) 

g = J T e (15) 

where J is the Jacobian matrix, containing the first order differentiation of the network 
error against weight and partial weight, and 

e is the network error vector and g is the gradient. 
The basic principles of the Newton Method are: 

Xk+1 = Xk − A−1 
k gk (16) 

where Ak is the Hessian matrix, namely, the second order differentiation of the 
performance function in the weights and partial weights. 

Ak = ∇2 f (X ) (17) 

gk = ∇  f (X ) (18) 

The LMBP algorithm uses the Hessian matrix value to correct the Newton method: 

Xk+1 = Xk −
[
J T + μI

]−1 
J T e (19)
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where parameter μ ensures that matrix inversion will always produce a result, and 
this parameter will depend on evaluation of sum of squared errors. 

3.2 Algorithms of Modelling Assessment Criteria 

Output values are compared with target values (i.e., experimental results) to assess 
model predictions. The differences between predicted and target values are evaluated 
against the modelling performance criteria established within the ANN algorithm. 
Hence, it is necessary to reprocess output values if modelling performance criteria 
are not met [54, 55]. 

The Minimum Mean Squared Errors (MSE) and the R2 value are the most common 
performance criteria for the ANN model performance evaluation. The optimum 
number of neurons was determined by the minimum MSE value from the training 
and prediction dataset. The MSE represents the difference between an approximating 
function F(w,xi) of the adjustable weight (w) for the predicted values and target values 
(i.e., the error) with a range from 0 to 1 where the lower values of MSE are prefer-
able [55, 59, 60]. R2 shows the percentage of variability between ED and predicted 
data. R2 values range between zero and one, in which R2 value ≈ 1 means a greater 
correlation and stronger relationship between predicted and actual values [55]. The 
MSE and R2 values provide information on general error ranges between predicted 
and target values. 

The above criteria are commonly used for validating models and their predictions. 
Notably, however, the ED quality is an essential requirement for modelling work; 
otherwise, the results of statistical tests and model predictions will be inaccurate 
[65]. 

3.3 Development of ANN Modelling in Maritime Ports 

The FRBN approach evaluates the criticality of the 24 HEs in a container terminal, 
using four risk parameters: HE occurrence probability (L), HE consequences/severity 
(C), the probability of HE being undetected (P) and HE impacts on the resilience of 
port operational systems (I). The four risk parameters are constructed to form the IF 
part in an IF–THEN rule base, while the risk estimate (R) of hazards is presented in 
the THEN part associated with three linguistic grades (i.e., High, Medium and Low). 
Degree of Belief (DoB) of High (H), Medium (M), and Low (L) are employed to 
describe L, C, P, I, and R. The degrees of the parameters, calculated by the FRBN 
method for each HE, are based on knowledge accumulated from past events, taking 
into account domain experts’ judgements. The process is illustrated in Fig. 7.

FERR uses the results from FRBN and the evidential reasoning method to aggre-
gate the 24 HEs and evaluate their collective criticality in a container port. The risk 
level of the System (RoS) is a single value for a container port, shown in Fig. 8.
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Fig. 7 FRBN process 
(where (X = 1, 2 … 24) is 
the HE number.)

Fig. 8 FRBEvR process 
with ANNs 

Two three-layers ANN models were developed to predict risk evaluation of a 
container port operation for each HE individually and aggregated collectively. An 
optimal network architecture was determined to include one hidden layer with 40 
neurons using the LMBP algorithm, with transfer function tansig at the hidden layer 
and transfer function purelin at the output layer. 

Although the two models have the same features, they differ in trajectories 
concerning input and the output structures. The number of neurons in the input 
layer is twelve and nine, while the number of neurons in the output layer is three and 
one for the ANNs of FRBN and FER, respectively. As a result, the network architec-
tures for are constructed as (12–40–3) and (9–40–1), respectively. It is noteworthy 
that there are no clear guidelines for choosing an appropriate number of neurons in 
the hidden layer; this is generally optimised by trial and error [53–58, 60, 65–68]. 

3.4 Experimental Data Processing 

The EDs in this study are obtained (i.e., actual data for testing) from previous studies 
[20, 21]. As aforementioned, the relationship between the ANNs for the FRBN and 
FER approaches is that the outputs of the former are used as inputs for the latter. 

As mentioned in the introduction of Sect. 3, HE6, HE7, and HE16 are selected 
for the development of the ANNs given their high-risk indexes from previous rele-
vant studies. Although it was challenging to obtain the required EDs for training 
ANNs due to lack of objective failure data in container terminals, EDs were created 
and obtained using the Python program [69, 70]. The generated EDs’ objective is 
to make the relationship between inputs and outputs maximally informative, while 
ensuring that the EDs adequately cover the region between zero and one with plau-
sible inference intervals and maintaining each model’s characteristics. Above all, 
the constructed models based on generated EDs makes them applicable for any
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other maritime container terminal for risk evaluation and prediction. More details on 
generating EDs and the ANNs are presented in Sects. 4–6. 

4 The ANN Model to Simulate FRBN for Risk Analysis 
of HE in Container Ports 

The ANN model consists of 12 inputs representing the four risk parameters—L, C, 
P, and I, each of which has three grades (i.e., High, Medium and Low) and three 
outputs representing the R (risk estimate of the identified HE6, HE7 and HE16) in 
FRBN (i.e., ANN target). The simulation of FRBN using ANNs include the three 
steps of ED analysis, model optimisation and results validation. 

4.1 ED Analysis of FRBN-ANN 

To generate the ED to train and test the ANN model with the best prediction results, 
the simulated processes (i.e., predicted input and output values) should be inside the 
variables’ domain, meaning that every possible risk parameter assessment should be 
included. Therefore, a 0.2 inference interval variation is applied to the DoB of each the 
three grades of each risk parameter, which not only narrows the range of deviation 
between input and consequently output values, but also adequately increases the 
training dataset. 

Transferring the inference interval of 0.2 DoB from zero to one resulted in 
21 possible combinations among the associated three grades of each of the four 
risk parameters. Accordingly, the sum of all possible combinations is calculated as 
194,481 (=21 × 21 × 21 × 21). As a result, the ED containing 194,481 sets, with 
12 inputs and three outputs in each set, is obtained and partially shown in Table 1.

4.2 Optimisation of the FRBN-ANN Model 

After selecting trainlm as the training algorithm for the ANN model and having 
analysed the ED set, the optimal ANN model architecture and its parameter variation 
is determined. This is accomplished by selecting the optimum number of neurons in 
the hidden layer based on the minimum MSE value and the observed and predicted 
training and testing set values. 

There is not a specific rule regarding the amount or percentage of data for training 
or testing and validation. The general guideline is that training data should be more 
than the testing and validation data [55, 68]. Hence, out of the total ED sets (i.e., 
194,481) that was randomly divided by trainlm, 70% (i.e., 136,137) was used for
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Table 1 ANNs experimental datasets generated for TRBN 

ANNs model inputs ANNs model 
outputs 

Risk 
parameters 

L C P I R 

Risk grades H M L H M L H M L H M L H M L 

1 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 

2 1 0 0 1 0 0 1 0 0 0.8 0.2 0 0.95 0.05 0 

3 1 0 0 1 0 0 1 0 0 0.8 0 0.2 0.95 0 0.05 

4 1 0 0 1 0 0 1 0 0 0.6 0.4 0 0.9 0.1 0 

… … … … … … … … … … … … … … … … 

194,478 0 0 1 0 0 1 0 0 1 0 0.6 0.4 0 0.15 0.85 

194,479 0 0 1 0 0 1 0 0 1 0 0.4 0.6 0 0.1 0.9 

194,480 0 0 1 0 0 1 0 0 1 0 0.2 0.8 0 0.05 0.95 

194,481 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1

training, 15% (i.e., 291,72) for the testing, and 15% (i.e., 291,72) for the validation. 
In optimising the network, 15 neurons were used in the hidden layer as an initial 
trial, then the number of neurons was changed by increasing 10 neurons in each trial. 

The preliminary trials indicated that the learning and prediction ability of 25 
neurons in the hidden layer networks was better than that of 15 neurons. This was 
realised after several attempts to gradually increase the number of neurons and 
observe their effect on the predicted value. The training data error decreased, while 
that of validation data increased. Six local minimum MSE values were observed at 
neuron numbers of 15, 25, 35, 38, 40, and 45. However, the neural network architec-
ture with 40 hidden neurons reached the minimum MSE when training, validating, 
and testing the ANN model. Thus, 40 neurons were chosen as the optimum number 
for the hidden layer. The network structure was 12–40-3 (12 neurons in the input 
layer, 40 in the hidden layer, and three in the output layer). The optimal ANN, together 
with a flowchart of the LMBP algorithm, is shown in Fig. 9. The training ended after 
1000 iterations (trainlm, Epoch 1000) for the LMBP, when the differences between 
training and validation errors started to increase.

4.3 Results Validation 

The network’s MSE was very high, with 15 hidden neurons (MSE = 0.0524618), 
and it significantly decreased to a value of 0.0017914 with 25 hidden neurons. The 
number of neurons then increased from 25 to 35, and a gradual decrease of MSE was 
observed to a value of 0.00002151. Next, when the 35 hidden neurons increased to 45, 
MSE became 0.001394. 40 neurons were therefore tested, and the MSE reached its
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Fig. 9 Optimal FRBN-ANN structure with a flowchart of the LMBP

minimum value of 0.000001334. The neural network containing 40 hidden neurons 
(MSE 0.000001334) was chosen as the best case. When the number of neurons was 
less than 40, the MSE showed a slight increase from 0.000001334 to 0.000002164 
at 38 neurons, as depicted in Fig. 10. This increment can be attributed to the char-
acteristics of this study’s MSE performance index and input vector, and it shows the 
dependence between MSE and number of hidden layer neurons for the LMBP. 

The training, validation, and test’s mean squared errors for the ANN using the 
LMBP algorithm are illustrated in Fig. 11. It shows that, with 40 neurons, the effect 
on training data error decreased while that on validation data increased.

The regression analysis of the network response between the ANN outputs and the 
corresponding targets was performed. The graphical output of the plotted network 
outputs versus the targets as open circles is illustrated in Fig. 12. Taking into 
account the data’s non-linear dependence, linear regression shows a perfect agree-
ment between the ANN outputs (predicted data) and the corresponding targets (i.e.,

Fig. 10 MSE for the 
FRBN-ANN tuning 
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Fig. 11 Training, validation, and test’s mean squared errors for the FRBN-ANN

ED). The solid red, blue, green, and black lines, representing the testing, training, 
validation, and the combination of all three respectively, indicate the perfect linear 
fit that R2≈ 1. 

Fig. 12 The FRBN-ANN regressions
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The previous statistical analysis shows that ANN model predictions are very close 
to the ED. In addition, to confirm the developed model’s robustness and predictive 
capability, the optimal ANN model’s performance was evaluated using another data 
set consisting of the actual data obtained from [20]. Consequently, a simulink model 
of the ANNs was constructed, and the results, along with the correlation coefficient 
between the actual and predicted datasets, shows a high accuracy and a perfect match. 

5 The ANN Model Design to Simulate the Use of FER 
in Port Safety Evaluation 

As aforementioned, FER model’s inputs are taken directly from the FRBN model. 
Therefore, the ANN model for FER in this section is based on results directly taken 
from the ANN model for FRBN in Sect. 4. Similarly, the FER simulation using ANN 
is conducted through ED analysis, model optimisation and results validation. 

5.1 ED Analysis of FER-ANN 

This ED analysis is similar to the one in Sect. 4.1. However, the input parameters 
are the three grades (i.e., High, Medium and Low) of the three selected HEs (i.e., 
HE6, HE7, and HE 16). Therefore, the sum of all possible combinations of the DoB 
variations of the associated grades of the three HEs is calculated as 9261 (=21 × 21 
× 21). Therefore, the EDs contained 9261 sets with nine inputs and one output in 
each set. This is obtained and partially shown in Table 2. 

Table 2 The experimental datasets generated for the FER-ANN 

No. ANN model inputs ANNs 
model 
outputs 

HE 1 HE 2 HE 3 

High Medium Low High Medium Low High Medium Low RI 

1 1 0 0 1 0 0 1 0 0 1 

2 1 0 0 1 0 0 0.8 0.2 0 0.9778 

3 1 0 0 1 0 0 0.8 0 0.2 0.9556 

4 1 0 0 1 0 0 0.6 0.4 0 0.9529 

… … …. …. …. …. …. …. …. …. …. 

9258 0 0 1 0 0 1 0 0.6 0.4 0.075 

9259 0 0 1 0 0 1 0 0.4 0.6 0.0471 

9260 0 0 1 0 0 1 0 0.2 0.8 0.0222 

9261 0 0 1 0 0 1 0 0 1 0
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5.2 ANNs Model Optimisation 

The same training algorithm used in Sect. 4.2 is used to optimise the ANN for FER 
(i.e., trainlm), including the same performance and assessment criteria with typical 
process and sequence of neurons number trails selection. 

During several preliminary trial attempts to gradually increase the number of 
neurons and observe their effect on the predicted value, the training data error 
decreased and validation data error increased. It indicated that the learning and predic-
tion ability of 25 neurons in the hidden layer networks was better than that of 15 
neurons. Six local minimum MSE values were observed at neuron numbers of 15, 25, 
35, 38, 40, and 45. However, the neural network architecture with 40 hidden neurons 
reached the minimum MSE. Consequently, 40 neurons were chosen as the optimum 
number for the hidden layer. Finally, the structure of the network was 9–40-1 (nine 
neurons in the input layer, 40 in the hidden layer, and one in the output layer). The 
LMBP training stopped at 51 iterations when the differences between training and 
validation error started to increase. In this process, out of the total datasets (i.e., 
9,261) that was randomly divided by trainlm, 70% (i.e., 6483) was used for training, 
15% (i.e., 1389) for testing, and 15% (i.e., 1389) for validation. 

5.3 Results Validation 

The network’s MSE was very high for the 15 hidden neurons (i.e., 0.556) and 
decreased significantly from 25 to a value of 0.0000679. Then, as the number of 
neurons increased from 25 to 35, the value dropped to 0.0000617. Next, it increased 
again given that the hidden neurons increased from 35 to 45. Therefore, 40 neurons 
were tested, and the MSE reached at its minimum value of 0.00001344. Therefore, 
the neural network containing 40 hidden neurons was chosen as the best case, as 
seen in Fig. 13. 

The FER associated ANN training, validation, and test’s mean squared errors for 
using the LMBP algorithm are illustrated in Fig. 14. It clearly shows that, with 40 
neurons, the effect on training data error’s effect decreased, while that of validation 
data increased.

Fig. 13 MSE for FER-ANN 
optimisation 
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Fig. 14 Training, validation, and test mean’s squared errors for the FER-ANN 

The regression analysis of the network response between FER-ANN outputs and 
corresponding targets was performed. The graphical output of the plotted network 
outputs versus the targets as open circles is illustrated in Fig. 15. Taking into 
account the data’s non-linear dependence, linear regression shows a perfect agree-
ment between FER-ANN outputs (i.e., predicted data) and corresponding targets (i.e., 
ED). The solid red, blue, green, and black lines, representing the testing, training, 
validation, and the combination of all three respectively, indicate the perfect linear 
fit that R2 ≈ 1.

6 Implications 

How the integrated FRBN-ANN and FER-ANN aids operators to enhance 
container port safety analysis under uncertainty. 

The previous sections described the FRBN ANN and FER ANN models, which 
can be integrated to realise real time risk predication of a container port operation 
and provide a panoramic view on risk inference. The integration of the simulated BN 
and ER using ANNs was created within dynamic system simulation for MATLAB. 
Consequently, the simulink model of the integrated ANN network was constructed 
as illustrated in Fig. 16.
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Fig. 15 FER ANN regressions

7 Conclusion 

This chapter proposed a novel integrated ANN approach for evaluating and predicting 
the criticality of HEs in a container port system. It provides a panoramic view on 
container port risk analysis and prediction and useful insights for port safety manage-
ment. Two three-layer BP neural networks were optimised to evaluate and predict 
the maritime container ports’ operation safety. The configuration of the BP neural 
networks that generate the smallest MSE is conducted using the LMBP training 
algorithm of tansig transfer function at the hidden layer of 40 neurons and a purelin 
transfer function at the output layer. The optimal architecture for the FRBN-ANN and 
FER-ANN models were optimised as twelve and nine neurons in the input layers 
with three and one in the output layers, respectively. The two three-layer ANN-
based models showed precise and effective predictions with satisfactory determina-
tion coefficients. The simulation of FRBN and FER using ANNs, with the presented 
results, showed that neural network modelling can effectively simulate and predict 
container terminal operation safety in one integrated framework. The developed soft-
ware package using MATLAB can be used to facilitate the risk analysis, diagnosis 
and prediction by industrial stakeholders. They can obtain the updated safety perfor-
mance of the investigated ports by simply providing the evaluations of the four risk 
parameters of any involved HE.
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Fig. 16 Simulink model of the integrated ANN network

Furthermore, use of ANNs in FMEA can help overcome its incapability in tackling 
uncertainty in data and at the same time ease the evaluation process on the stake-
holders ensuring the easiness of traditional risk priority number approach in FMEA. 
Although the aid from the associated software packages (i.e., Hugin for FRBN and 
IDS for FER), the separate FRBN and FER methods are still not user friendly for 
mathematically unsophisticated users. ANNs are proven to be effective to integrate 
different but correlated risk analysis methods collectively to deliver a reliable and 
robust risk prediction tool for container ports.
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In the current study, the HEs are identified mainly from an operational perspective. 
Given the new ANN model’s capability in handling high uncertainty in data, it will 
be feasible and beneficial to include other risk concerns influencing container port 
safety in future studies, including natural disasters, environmental, and political risks. 
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Abstract This chapter reviewed several optimization problems to determine its 
optimal relevant decision variables minimizing the expected warranty costs during 
certain intervals, such as life cycle, warranty period or post-warranty mainte-
nance period. The decision variables of our interest include the length of warranty 
period, inter-PM interval and length of post-warranty maintenance period. All of 
the warranty models presented in this chapter are based on the renewable minimal 
repair-replacement (MRR) warranty under which both repair time and failure time 
are considered at the same time upon the system failure. Furthermore, the warranty 
conditions under the MRR warranty is somewhat similar to the ones regulated under 
the lemon law which aims to protect the buyers of the defective motor vehicles. The 
warranty model applicable to the lemon law is also presented in this chapter. 

Keywords Failure time · Repair time · Lemon law · Maintenance · Warranty 

1 Introduction 

The subject of optimal warranty and maintenance policy for repairable system has 
been an important research issue in the field of reliability engineering for a long time 
and many researchers have studied and proposed a number of solutions for finding 
the best possible policies in the literature. In order to keep the repairable system in 
the operating state longer with a lower maintenance cost, it is a common practice 
for the manufacturer or the user to adopt an appropriate warranty and maintenance 
policy during the system’s life cycle. This chapter discusses several optimization 
problems to find the best possible warranty and maintenance policies which minimize

M. Park 
College of Business Administration, Hongik University, Seoul, South Korea 
e-mail: mjpark@hongik.ac.kr 

D. H. Park (B) 
Industry Academic Cooperation Foundation, Hallym University, Chuncheon, South Korea 
e-mail: dhpark@hallym.ac.kr 

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 
Y. Liu et al. (eds.), Advances in Reliability and Maintainability Methods and Engineering 
Applications, Springer Series in Reliability Engineering, 
https://doi.org/10.1007/978-3-031-28859-3_12 

295

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-28859-3_12&domain=pdf
mailto:mjpark@hongik.ac.kr
mailto:dhpark@hallym.ac.kr
https://doi.org/10.1007/978-3-031-28859-3_12


296 M. Park and D. H. Park

the expected cost incurred for maintaining the system during its life cycle under a 
certain cost structure. 

As for the warranty policy, there exist several types of warranties based on 
different conditions, such as number of dimensions, methods of compensation offered 
in a warranty contract, and renewable warranty or non-renewable warranty. One-
dimensional warranty is based only on the failure time, but two-dimensional warranty 
policy considers both age and usage simultaneously to determine the warranty 
benefit and has been studied by many authors. As for the methods of compensations, 
free replacement/repair warranty(FRW), combination warranty(CMW) and pro-rata 
warranty(PRW) have been discussed in the literature. Under FRW and PRW, a failed 
system is repaired/replaced free of charge to the user and is charged prorated to the 
user in proportion to the usage of the system, respectively. CMW is a combination 
of both features of FRW and PRW, which often consists of two step warranties, 
the first one with a free warranty followed by a pro-rata warranty as a second step 
warranty. Under the renewable warranty, the warranty policy is renewed whenever 
the replacement occurs during the warranty period and the contract term is exactly 
the same as the original one. When the warranty is non-renewable, the system is 
warranted only during the original warranty period and once the warranty is expired, 
the system is warranted no further. Thus, the expected length of warranty period is a 
constant, not depending on the failures during the warranty period. Many different 
warranty models have been discussed in Blischke [1], Blischke and Murthy [2] and 
Park and Pham [3]. 

Maintenance actions are, in general, classified into two categories, preventive 
maintenance (PM) and corrective maintenance (CM). The PM is performed while 
the system is still in operating state and aims to slow down the system’s degradation 
and the CM is carried out at the time of the system’s failure and brings it back to an 
operational state. At each PM the system is inspected and upgraded to improve the 
performance by reducing its failure rate or age. Canfield [4] proposes a well-known 
failure rate reduction maintenance model, under which each PM lowers the failure 
rate to that existing during certain time units prior to the current PM time. Later, Kim 
et al. [5] suggest another type of failure reduction model adopted at each PM, where 
the failure rate is adjusted somewhat lower and the level of reduction is determined 
by an improvement level. More discussions on PM is given in Sect. 3. 

In Sect. 2 we study a renewable minimal repair-replacement warranty strategy, 
which relies on both failure time and length of repair time simultaneously for the 
failed system. Under such a two-dimensional warranty policy, a repair time threshold 
is pre-determined and if the repair work for the failed system can’t be finished 
within the repair time threshold, the system is replaced by a new one. By setting 
the threshold necessary to repair the system failures, the warranty can protect the 
user more effectively from a long wait for the completion of minimal repair on each 
system failure, in spite of the cost increase from the manufacturer’s perspective. 
Such a two-dimensional warranty model originally has been proposed in Park et al. 
[6]. Other type of two-dimensional warranty utilizing two factors, age and usage, 
has been considered by many researchers in studying the warranty policy. In this 
warranty model, the age of the system can be observed easily, but the usage could
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be quite difficult to obtain in many situations. However, the failure time and length 
of repair time can be readily obtainable on each failure of the system and thus the 
two-dimensional warranty model based on both failure time and repair time can be 
more beneficial for the user to adopt due to the accessibility of such data. The two-
dimensional warranty model we analyze in this chapter works as follows. When the 
system stops operation or malfunctions during the warranty period, the manufacturer 
would provide the minimal repair service first. If the minimal repair can be finished 
within the pre-determined repair time threshold, the repaired system is returned back 
to the operation and the warranty remains unchanged as it is. However, in case the 
minimal repair can’t be finished within the repair time threshold, then the failed 
system is replaced with a new one and the warranty is renewed. Thus, if a certain 
number of replacements occur during the warranty period, the warranty is extended 
proportionally to the number of replacements. If no replacement occurs during the 
warranty period, the current warranty period stands with no further extension. 

Another important aspect of warranty model we consider in this chapter is 
regarding the lemon law, which is being enforced in many countries. This chapter 
also discusses an optimal maintenance policy applicable under the lemon law, which 
is originally for the motor vehicles being the major target. The lemon law aims to 
protect consumers from purchasing defective systems, which meet certain conditions 
regarding the number of failures or the accumulated repair time for a new system 
during a pre-specified period. Such a period is in general within the warranty period. 

A “lemon” is defined as a defective system and while the conditions for declaring 
a system as a lemon are generally similar in most of enforcing countries, they differ 
slightly in several details depending on the state or the country. For example, in 
California, a system is determined to be a lemon if the accumulated repair time takes 
more than 30 days or if the number of failures exceeds a pre-determined failure 
number threshold. The lemon law obligates the manufacturer or the seller to refund 
all or part of the purchasing price to the user or replace the lemon with a new one. 
Some references dealing with lemon laws specifically include Goldberg and Paz [7], 
Snyder and Daskin [8], Iskandar and Husniah [9], Wang et al. [10] and Park et al. 
[11, 12]. The optimal maintenance and warranty policies applicable to the lemon law 
are presented in Sect. 5. 

This chapter presents several types of optimal warranty and maintenance models 
by determining the relevant decision variables, which minimize the expected 
warranty and maintenance costs incurred during certain intervals such as the life 
cycle of the system or the warranty period. The decision variables of our interest 
to be determined in this chapter include length of warranty period, length of post-
warranty maintenance period, length of inter-PM interval during the warranty period, 
etc. In Sect. 2 some notations and assumptions are given and the renewable minimal 
repair and replacement warranty model is described in details. Sections 3 and 4 
present several optimal maintenance policies incorporating the renewable repair and 
replacement warranty model from the perspectives of both manufacturer and user. 
A few possible research issues of interest are discussed in concluding remarks in 
Sect. 6.
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2 Two-Dimensional Minimal Repair-Replacement 
Warranty Model 

The search for an optimal warranty policy is a critical issue for the manufacturer to 
make a decision to reduce the possibility of the system failures during the warranty 
period which in turn lowers the warranty cost. On the other hand, the user is charged 
a certain portion of warranty cost even during the warranty period in most situations. 
Furthermore, once the warranty expires, the maintenance of the system becomes 
a sole responsibility of the user. In this regard, the user is concerned to find the 
best possible warranty and maintenance strategy during the life cycle of the system, 
especially during the post-warranty maintenance period. Due to such necessity to 
develop an optimal warranty and maintenance policy, a large number of works have 
been done and proposed in the literature from the perspectives of both manufacturer 
and user. Nakagawa [13] is an excellent article to refer for such research works. 

A warranty is an obligation that requires the manufacturer to provide compen-
sation for the user according to the warranty terms in case the warranted system 
fails to conform to their intended functions. From the user’s perspective, a warranty 
which is offered by the seller or the manufacturer at the time of purchasing the 
system provides a certain degree of protection for the user in case the system failures 
occur due to the low reliability of the system or the system’s poor performance. On 
the other hand, the warranty also helps the manufacturer as well since the warranty 
gives a kind of limitation for the manufacturer’s responsibility explicitly in terms of 
length of warranty and type of compensation upon the system failures. Recently, it 
appears that the warranty needs to be more comprehensive and becomes costly due to 
complexity of the system and intense competitions among the competing manufac-
turers and thus the warranty becomes longer and covers wider range of system fail-
ures. Consequently, many researchers have worked on optimal maintenance polices 
incorporating various types of warranty models in the last several decades and there 
exist a number of maintenance and warranty models proposed in the literature. 

In this section, we discuss a warranty model which is affected by two factors of 
failure time and repair time simultaneously when the system failures occur during 
the warranty period. 

2.1 Assumptions and Notations 

The following assumptions and notations are commonly used throughout this chapter. 

2.1.1 Assumptions 

• The system is assumed to be repairable and deteriorating as it ages. 
• All the warranty claims are valid and accepted.
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• All repairs are assumed to be minimal and the failure process of the system follows 
the NHPP. 

• Minimal repair cost is free of charge to the user in the warranty period. 
• Necessary times for replacement and minimal repair of the failed system is 

excluded from the warranty period. 
• Necessary time for the PM action is assumed to be negligible. 
• Once the warranty expires, the system is maintained solely by the user and all 

post-warranty maintenance costs are charged to the user. 

2.1.2 Nomenclature and notations 

Nomenclature 

• NHPP: Non-Homogeneous Poisson Process 
• EC R(·): Expected Cost Rate 
• MRR: Minimal Repair-Replacement 
• cdf, pdf: cumulative distribution function, and probability density function, 

respectively 
• r.v.: random variable 
• i.i.d.: independent and identically distributed 
• PM: Preventive Maintenance 
• T, Y: random variables representing failure time and repair time of the system, 

respectively. 

Notation 

• λ(·): intensity function of the NHPP for the system failure 
• f(·), F(·), F(·): pdf, cdf and reliability function of failure time T , respectively 
• g(·), G(·), G(·) : pdf, cdf and reliability function of Y , respectively 
• h(t) : failure rate function of T 
• f pm(·), Fpm(·), h pm(·): pdf, cdf and failure rate function of T with PM adjustment 
• δm : fixed length of post-warranty maintenance period 
• δ: PM period between two successive periodic PM actions 
• α: PM restoration level 
• �: warranty region which is censored by both repair time threshold and warranty 

period 
• Cr , Cm, Cpm,C f : random variables representing total replacement cost, total 

minimal repair cost, total PM cost, and total failure cost, respectively 
• cr , cm, cpm,c f : unit replacement cost, unit minimal repair cost, unit PM cost, and 

unit failure cost, respectively 
• Cc, Cn, Cre: random variable representing warranty cost due to critical and non-

critical component failures and refund cost, respectively, under the lemon law 
• cc, cn : unit minimal repair cost for critical and non-critical component failures, 

respectively. 
• NR : number of replacements during the warranty period under renewable MRR
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• NT : total number of system failures in the warranty period under renewable MRR 
• N� : number of minimal repairs without PM in the warranty period under 

renewable MRR 
• NM : number of minimal repairs conducted during the warranty period when PM 

actions are taken. 
• Nnp: total number of system failures during the post-warranty maintenance period 
• r0: repair time threshold 
• M: number of PMs conducted in the post-warranty period 
• δp: length of inter-PM interval during the post-warranty period 
• ω, ω0: length of original warranty period and extended warranty period, respec-

tively 
• EC(·)(ω, δ): expected total warranty cost when the warranty period equals ω and 

the optimal PM interval equals δ 
• Hm

(
ω, δp

)
: expected number of minimal repairs occurred during the post warranty 

period 
• I j : inter-replacement time interval elapsed between the ( j − 1)st  and the j th 

replacement during the warranty period, j = 1, 2, · · ·  NR 
• m(ω, r0): mean length of I j , j = 1, 2, · · ·  . 
• �x�: integer part of number x 

2.2 Renewable Minimal Repair and Replacement 

The warranty policy we study in this section is a renewable two-dimensional warranty 
policy with a pre-specified repair time threshold. Many authors, including Iskandar 
et al. [14], Jung and Bai [15], Chen and Popova [16], and Ye et al. [17] among many 
others, have considered two-dimensional warranty policies based on the system’s age 
and usage when the product’s failure occurs during the warranty period. Blischke 
and Murthy [2] also develop a two-dimensional warranty in terms of usage and 
age. Unlike these approaches, a warranty model using the repair time and failure 
time as two factors was first proposed by Park et al. [6] and was utilized to develop 
the optimal post-warranty maintenance policy. Such a two-dimensional warranty is 
referred to as a renewable minimal repair-replacement (MRR) warranty throughout 
this chapter. Park et al. [6] assert that two factors of repair time and failure time are 
easier to access than the traditional two factors of system age and usage in practice. 

2.2.1 Description of Renewable MRR Model 

Consider a renewable MRR model with the original length of warranty period, 
denoted by ω, and the failure time threshold, denoted by r0. Under such a warranty 
model, the manufacturer is responsible for providing the replacement/minimal repair 
services upon the system failures in the warranty period. When the repair work 
exceeds the repair time threshold, a replacement is provided and the warranty policy



Usage of Failure Time and Repair Time for Optimization … 301

is renewed for the replaced system with exactly the same warranty terms as the 
original ones. 

The graphical representation for the renewable MRR model is shown in Fig. 1. 
For j = 1, 2, · · ·  , we let I j (< ω) denote the inter-replacement time interval elapsed 
between the ( j − 1)st  and the j th replacement of the system during the warranty 
period. In Fig. 1, if  I1 < ω,  then under the renewable MRR model, the replace-
ment service for the failed system will be carried out by the manufacturer and the 
replacement cost will be either free or pro-rated to the user depending on the type 
of MRR warranty policy. Starting from I1, the system which has been replaced will 
have the same renewable warranty with the length of period of ω again as shown 
in Fig. 1. Since the warranty is extended by ω each time the replacement occurs, 
the length of actual valid warranty period becomes a random variable (r.v.). Let W0 

denote the length of warranty cycle which is defined as the time interval starting 
from the purchasing time and ending at the expiration of warranty. It is clear that 
for a non-renewable MRR warranty, a warranty cycle coincides with the warranty 
period of ω. However, for a renewable MRR model, W0 is a r.v. depending on the total 
number of system replacements, the inter-replacement times between two successive 
replacements in the warranty period and the original length of warranty period. Let 
NT = N� + NR be the total number of system failures in the warranty period, where 
NR and N� are the number of replacements and the number of minimal repairs, 
respectively. Then, W0 can be expressed as a function of ω as follows. 

W0 = L(ω) = I1 + I2 +  · · ·  +  INR + ω (1) 

Fig. 1 Diagram for renewable MRR model
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Figure 1 describes the case for which the first replacement occurs at time I1 and 
the second replacement is not provided until the warranty expires. It is clear that 
ω0 = I1 + ω where ω0 is the realization of W0. In Fig.  1, Tj and Y j , j = 1,2,· · ·  
denote the time at which the j th failure occurs and the length of its corresponding 
repair time, respectively. Let � denote the warranty region which is censored by the 
warranty period and the repair time threshold. 

This section mainly considers the probabilistic aspects of the two-dimensional 
warranty model, which is affected by both the time of system failure and the length 
of its corresponding repair time. For such purpose, the notion of repair time threshold 
is newly introduced as a criterion to determine whether the failed system would 
be replaced or minimally repaired during the warranty period. In this context, we 
formulate the cost model incorporating the two-dimensional warranty policy under 
study. Then we evaluate the manufacturer’s expected warranty cost incurred during 
the warranty period and decide the optimal warranty length so as to minimize the 
expected warranty cost. 

2.2.2 Length of Warranty Period 

To derive a formula to evaluate the expected cost rate (ECR) incurred in the warranty 
period under the renewable MRR warranty model, we need to find the expected length 
of warranty period by deriving the probability distribution of L(ω), defined in Eq. (1). 
Assume that the system is replaced NR times in the warranty period. Though the 
system has additional failures during the warranty period which need only minimal 
repairs, these failures have no effects on the length of warranty period. Note that the 
warranty is renewed to extend the warranty period only when the replacement occurs. 
By adding the lengths of inter-replacement intervals, the extended warranty length 
becomes equal to L(ω) = ∑NR 

j=1 I j + ω, and thus the expected length of warranty 
period, conditioned on NR = n, can be obtained as 

E(L(ω)|NR = n) = 
NR∑

j=1 

E
(
I j + ω|NR = n

)

= 
NR∑

j=1 

E
(
Tj |Tj ≤ ω, Y j ≥ r0, NR = n

)+ ω (2) 

Replacement by a new system is given by the manufacturer only when the system 
failure occurs in the warranty period and its repair time exceeds the pre-specified 
repair time threshold. Thus, the total number of system replacements in the warranty 
period has the following geometric distribution. 

P(NR = n) = {
F(ω) + F(ω) · G(r0)

} · {F(ω) · G(r0)
}n 

, n = 0, 1, 2, · · ·  . (3)
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Taking the expectation on E(L(ω)|NR = n), given  in  Eq. (2), with respect to NR, 
we obtain the expected warranty length as 

E(L(ω)) = 
∞∑

j=0

{
F(ω) + F(ω) · G(r0)

}

· {F(ω) · G(r0)
} j ·

{

j ·
∫ ω 
0 t · f (t)dt  
F(ω) · G(r0) 

+ ω

}

= 
ω∫

0 

t · f (t)dt/{1 − F(ω) · G(r0)
}+ ω (4) 

by applying Eq. (3). 
The expected warranty length under the renewable MRR, given in Eq. (4), can be 

used to formulate the expected cost rate (ECR), which is to be used as an objective 
function for optimization problem in the subsequent sections. 

3 Optimal Warranty Policy from the Manufacturer’s 
Perspective 

It is a common practice in the market that at the sale of the system, the manufacturer 
or the seller offers a certain type of warranty to the user regarding the maintenance 
of the system under the manufacturer’s responsibility during a certain length of time. 
From the manufacturer’s perspective, a profitable and attractive warranty policy is 
an important issue not only for enhancing the system’s sale, but also for reducing the 
warranty cost incurred during the warranty period. In this regard, many researchers 
have studied various types of warranty policies along with the maintenance strategy 
during the entire life cycle of the system for a long time. In general, the life span of 
the system begins with the installation of a new system and ends when it is replaced 
by another system. One of the main purposes of maintenance policy is to minimize 
the maintenance cost incurred either during the life cycle of the system or during the 
warranty period from the manufacturer’s point of view, while keeping the product at 
maximum availability. The effectiveness of a maintenance policy may count on the 
nature of the warranty policy. In this respect, many studies have been carried out on 
the subject of optimal maintenance policy, such as those by Park and Pham [3] and 
Shafiee and Chukova [18], who discuss various warranty policies and their related 
optimization aspects. 

The warranty policy can be classified into several types of warranties based on 
different conditions, such as free or pro-rata warranty, renewable or non-renewable 
warranty, and so on. Another way of differentiating the warranty is either one-
dimensional or two-dimensional warranty, which is determined by the number
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of factors affecting the warranty. The warranty is usually referred to as a two-
dimensional when two factors, such as failure time and usage, affect the warranty, 
while one-dimensional warranty is dependent only on the time of system failure. 

In this section, we present two optimal warranty policies for the manufacturer to 
offer by considering the renewable MRR warranty, which is discussed in Sect. 2. 
For that purpose, the PM action is briefly discussed in this section. The PM is a 
maintenance action taken while the system is still in operation and is known to be 
very effective scheme to keep the system in an operating state longer and is most 
widely used to maintain the system. Under the renewable MRR warranty, the lengths 
of the warranty period and the inter-PM interval in case the periodic PM actions 
are warranted by the manufacturer in the warranty period are two major decision 
variables for the manufacturer to make a decision for its optimization. This section 
presents the optimal warranty policies by determining these two variables so that the 
expected cost rate incurred is minimized. 

3.1 Preventive Maintenance During Warranty Period 

A periodic PM is a well-known preventive action to slow down the deterioration 
of the repairable system, while the system is still in operation. The periodic PM 
action inspects the performance of the system and improves the system’s reliability 
periodically by lowering its failure rate or age to some extent. The manufacturer of 
motor vehicles usually provides the periodic oil and filter changes for the vehicle, new 
or used, for a certain length of period, which can be considered as a good practical 
example for such a periodic PM action. Although the frequent PMs increase the 
maintenance cost during the life span of the system, such actions may help to lower 
the chance of system failures by improving the operating conditions of the system. 
In this regard, the optimal trade-off between the maintenance cost and the number 
of PM actions becomes an important subject to solve for both the manufacturer and 
the user. As a result, many researchers have been studying to propose a number of 
optimal PM policies in the literature. Canfield [4] proposes a periodic maintenance 
model, under which the failure rate of the system is reduced at each PM action. 
Later, Shafiee et al. [19] also discuss optimal PM warranty strategies with respect 
to the level of PM, the PM interval, and the number of PM actions. Many other 
references for optimal maintenance models considering PM actions can be found 
therein. Two-dimensional warranty utilizing age and usage has also been discussed 
in Huang et al. [20], Wang et al. [21, 22], Huang et al. [23], Su and Wang [24] and 
others, regarding the PM policies for the repairable systems. Besides, there exist 
several optimal maintenance policies incorporating the PM actions for the second-
hand system as well. To mention a few of them, Lim et al. [25], Khatab et al. [26], 
Yeh et al. [27], Su and Wang [28] and many others have considered the periodic PM 
actions to study the optimal maintenance problem for the second-hand product. 

Canfield [4] has proposed a failure reduction model, which has been widely used 
by researchers to improve the system performance at each PM. In Canfield’s model,



Usage of Failure Time and Repair Time for Optimization … 305

each PM lowers the failure rate to that existing during certain time units prior to the 
current PM time. Such time units are referred to as the level of restoration that is less 
than or equal to the PM interval. The failure rate function of the system with the PM 
action under Canfield’s [4] model can be expressed as 

h pm(t) =
⎧ 
⎪⎪⎪⎨ 

⎪⎪⎪⎩ 

h(t) f or  0 ≤ t ≤ δ 
k∑

i=1 

{h((i − 1)(δ − α) + δ) − h(i (δ − α))} 
+h(t − kα) 

f or  kδ <  t ≤ (k + 1)δ, k = 1, 2, · · ·  , 

(5) 

where h(t) denotes the failure rate of the system before the first PM is conducted 
and δ is the length of inter-PM interval between two successive periodic PMs. Here, 
α is a measure to indicate the level of restoration with 0 ≤ α ≤ δ, which measures 
the PM effect. Note that α = 0 implies no PM effect and α = δ implies the perfect 
PM effect. 

Recently, Kim et al. [5] propose other type of PM model, which reduces the 
current failure rate to a certain extent determined by an improvement level, to study 
an optimal maintenance policy for a second-hand system. Under Kim et al.’s [5] 
model, the failure rate of the system can be adjusted to 

hα(t) =
{

h(t), x ≤ t < x + ξ 
kα{h(x + ξ) − h(x)} + h(t − kξ), x + kξ ≤ t < x + (k + 1)ξ 

(6) 

after k periodic PM actions are taken for k = 1, 2, · · ·  . Here  α denotes the improve-
ment level and as the value of α is taken smaller, the reduction of failure rate becomes 
larger. Thus, α = 0 implies that the failure rate is reduced to that of a new system 
and α = 1 implies that no improvement is made at all. 

3.2 Optimal Length of Warranty Period Under Renewable 
MRR Model 

An effective warranty policy becomes an important issue at the sale of the system 
for the manufacturer in terms of its sales volume and warranty cost. A certain kind 
of warranty is offered to the user whenever the transaction of the system is made 
in most situations and the contract terms of warranty affect not only the sale of the 
system, but also the warranty cost incurred in the warranty period from the manufac-
turer’s perspective. In this respect, many authors have worked on the optimization 
of maintenance strategy incorporating the warranty policy for a repairable system in 
the last several decades.
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The main objective of this subsection is to determine an optimal length of warranty 
period minimizing the warranty cost under the renewable MRR warranty model, 
discussed in Sect. 2. Most recently, Park et al. [29] propose an optimal warranty 
policy under the renewable MRR warranty model by finding an optimal length of 
warranty period minimizing the expected cost rate per unit time in the warranty 
period. Park et al. [29] discuss such an optimization problem for both free warranty 
and pro-rata warranty for replacement cost incurred in the warranty period. 

Let Cr , Cm and C f denote the r.v.’s representing total costs for replacement, 
minimal repair, and failure, respectively, during the warranty period from the manu-
facturer’s perspective. Then the expected total warranty cost can be obtained as 
E(Cr ) + E(Cm) + E

(
C f
)
. Firstly, we evaluate the expected replacement cost under 

the assumption that the system is replaced by a new one NR times during the warranty 
period. Under the renewable pro-rata MRR, the replacement cost, denoted by Cr , is 
evaluated as a function of I j as follows. 

Cr = cr · 
NR∑

j=1

(
1 − 

I j 
ω

)
. 

In case of a renewable free MRR model, Cr = cr · NR . Throughout this section, 
we consider only the renewable MRR model with pro-rata replacement cost. Let 
Tj denote the j th  failure time of the system. Then, the expected replacement cost, 
conditioned on NR = n, can be evaluated as 

E(Cr |NR = n) = cr 

⎧ 
⎨ 

⎩ E 

⎛ 

⎝ 
NR∑

j=1

(
1 − 

I j 
ω

)
|I j ≤ ω, NR = n 

⎞ 

⎠ 

⎫ 
⎬ 

⎭ 

= cr
{
n − 

1 

ω 
·
∑n 

j=1 
E
(
Tj |Tj ≤ ω, Y j ≥ r0

)}

= cr

{

n − 
n 

ω 
·
∫ ω 
0 t · f (t)dt  
F(ω) · G(r0)

}

(7) 

Note that NR has the geometric distribution, as given in Eq. (3). Thus by taking 
the expectation on E(Cr |NR = n) of Eq. (7) with respect to NR , the expected total 
replacement cost is obtained as 

E(Cr ) = E(E(Cr |NR = n)) 

= 
∞∑

j=0

{
F̄(ω) + F(ω) · G(r0)

} · {F(ω) · Ḡ(r0)
} j 

·
{
j · cr ·

(
1 − 

∫ω 
0 t · f (t)dt  

ω · F(ω) · Ḡ(r0)

)}
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= cr ·
(

ω · F(ω) · Ḡ(r0) − ∫ω 
0 t · f (t)dt  

ω
(
1 − F(ω) · Ḡ(r0)

)

)

(8) 

Next, we consider the expected minimal repair cost and failure cost, which are 
free to the user. The system is minimally repaired for its failure which occurs during 
the warranty period and the repair work can be completed within the repair time 
threshold r0. Let N� denote the number of minimal repairs in the warranty period. 
Then the minimal repair cost can be expressed as Cm = cm · N� . Since N� can be 
counted as 

N� = 
I1∫

0 

h(t)dt  + 
I2∫

0 

h(t)dt  +  · · ·  +  

INR∫

0 

h(t)dt  + 
ω∫

0 

h(t)dt, 

for given NR = n, the conditional expectation of Cm can be obtained as 

E(Cm |NR = n) = cm · 
⎛ 

⎝n · 
A∫

0 

h(t)dt  + 
ω∫

0 

h(t)dt  

⎞ 

⎠, (9) 

where A =
∫ ω 
0 t · f (t)dt  
F(ω)·G(r0) 

. By taking the expectation again on E(Cm |NR = n) of Eq. (9) 
with respect to NR, the expectation for total minimal repair cost can be evaluated by 
the following equation. 

E(Cm) = cm ·
(

F(ω) · G(r0) 
1 − F(ω) · G(r0) 

·
∫ A 

0 
h(t)dt  +

∫ ω 

0 
h(t)dt

)

(10) 

When the system failure occurs, we assume that a certain amount of failure cost 
may occur and is paid by the manufacturer. Since the total number of failures in 
the warranty period, denoted by NT , equals NT = NR + N�, the total failure cost 
can be obtained as C f = c f · (NR + N�). By adding the replacement cost, minimal 
repair cost and failure cost, we obtain the total warranty cost from the manufacturer’s 
perspective as 

C(ω) = Cr + Cm + C f = cr · 
NR∑

j=1

(
1 − 

I j 
ω

)
+ cm · N� + c f · (NR + N�). (11) 

By taking the expectation on C(ω) given in Eq. (11), it can be shown that the 
expected total warranty cost can be expressed as 

E(C(ω)) = cr ·
(

ω · F(ω) · G(r0) −
∫ ω 
0 t · f (t)dt  

ω
(
1 − F(ω) · G(r0)

)

)

+ c f ·
(

F(ω) · G(r0) 
1 − F(ω) · G(r0)

)
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+ (
cm + c f

) · 
⎛ 

⎝ F(ω) · G(r0) 
1 − F(ω) · G(r0) 

· 
A∫

0 

h(t)dt  + 
ω∫

0 

h(t)dt  

⎞ 

⎠. (12) 

For more detailed discussions on derivation of E(C(ω)), you may refer to Park et al. 
[29]. To determine the optimal length of warranty period under the renewable MRR 
warranty model, we utilize the expected cost rate(ECR) per unit time in the warranty 
period. Denoting the ECR under our proposed warranty model by EC R(1)(ω), we 
have 

EC R(1)(ω) = 
E(C(ω)) 
E(L(ω)) 

, (13) 

where E(L(ω)) and E(C(ω)) are given in Eqs. (4 and 12), respectively. 
By utilizing EC R(1)(ω), given  in  Eq. (13), as an objective function to find an 

optimal solution for ω, denoted by ω∗, the optimization problem can be formulated 
as 

Find ω∗, satisfying EC R(1)
(
ω∗) = min 

ω 
EC R(1)(ω) 

Due to a complex nonlinear functional form of EC R(1)(ω), an explicit solution 
for ω may not be tractable and thus the Nelder-Mead downhill simplex method is 
used to find ω∗, optimal length of warranty period. This method is known not to 
require the existence of derivatives of the objective function and is widely used in 
finding the solution for such a nonlinear function. 

3.3 Optimal PM Period Under Renewable MRR Model 

Although the frequent PM actions increase the warranty cost from the manufacturer’s 
perspective, such actions may reduce the likelihood of the system failures. In this 
regard, it is necessary for the manufacturer to find an optimal PM strategy minimizing 
the total warranty cost during the warranty period. 

In this subsection, we consider a renewable MRR warranty model, under which 
the periodic PM actions are taken by the manufacturer during the warranty period 
and obtain an optimal length of PM period between two successive PMs, which 
minimizes the expected total warranty cost from the manufacturer’s perspective. 
Under the renewable MRR warranty, the warranty is renewed each time the broken 
system is replaced and thus the warranty is extended further proportionately to the 
number of replacements that occur while the warranty is in effect. Note that the 
warranty is terminated when no replacements occur in the renewed warranty period. 
The expected length of extended warranty under the renewable MRR warranty is 
given in Eq. (4).
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To evaluate the expected total warranty cost incurred during the warranty period 
under the renewable MRR warranty with the PM actions, we consider replacement 
cost, minimal repair cost, PM cost and failure cost. In this study we assume that 
a certain portion of each replacement cost is charged to the user pro-rated to the 
usage duration of the system and all other warranty costs are at the expense of the 
manufacturer. Let ω denote the length of original warranty period and let I j (< ω) 
denote the inter-replacement time interval elapsed between the ( j − 1)st  and the jth 
replacement of the system during the warranty period for j = 1, 2, · · ·  . Then the 
length of extended warranty, denoted by ω0, can be expressed as ω0 = ∑NR 

j=1 I j + ω. 
Let Cr , Cm, Cpm and C f denote the r.v.s representing replacement cost, minimal 
repair cost, PM cost and failure cost incurred during the extended warranty period 
of length ω0, respectively when the periodic PM period equals δ. Then the total 
warranty cost, denoted by C(ω, δ), is obtained by summing these costs as C(ω, δ) = 
Cr +Cm +Cpm +C f . Thus the expected total warranty cost, denoted by EC(1)(ω, δ), 
can be evaluated as EC(1)(ω, δ) = E(Cr ) + E(Cm) + E

(
Cpm

)+ E
(
C f
)
. 

Under the renewable MRR warranty model under study in this subsection, the 
failure rate is adjusted lower to improve the performance of the system by applying 
the Canfield’s [4] failure rate reduction model at each PM during the warranty period. 
Let T and h pm(t) denote the failure time and failure rate of the system, respectively, 
when the periodic PMs are conducted during the warranty period. Then, by applying 
the inversion formula, the pdf and cdf of T can be obtained as functions of h pm(t) 
as follows. 

f pm(t) = h pm(t) · exp 
⎧ 
⎨ 

⎩
− 

t∫

0 

h pm(t)dt  

⎫ 
⎬ 

⎭ and Fpm(t) = 1 − exp 

⎧ 
⎨ 

⎩
− 

t∫

0 

h pm(t)dt  

⎫ 
⎬ 

⎭ , 

where h pm(t) is the adjusted failure rate under Canfield’s [4] model, which is given 
in Eq. (5). 

We note that the sequence of random variables, I1, I2, · · ·  , INR , are i.i.d. with a 
mean of 

E(I1) = E(T |T < ω,  Y > r0) =
∫ ω 
0 t · f pm(t)dt  

Fpm(ω) · G(r0) 
= m(ω, r0). (14) 

Here, Y is the r.v. representing the length of repair time and we denote r0 the repair 
time threshold. Thus, m(ω, r0) can be interpreted as the mean length of life cycle of 
the new system that replaces the failed system during the warranty period of length 
ω. Note that the broken system is replaced by a new one only when the repair time 
exceeds the repair time threshold r0. 

Since the number of replacements occurred during the warranty period, denoted 
by NR , has the following geometric distribution, the pdf of NR has the following 
expression. 

P(NR = n) = {
F pm(ω) + Fpm(ω) · G(r0)

} · {Fpm(ω) · G(r0)
}n 

,
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n = 0, 1, 2, · · ·  , (15) 

where G(·) is the cdf of repair time Y and G(·) = 1 − G(·). 
It follows from Eq. (15) that the expected number of replacements occurred during 

the warranty period can be obtained as 

E(NR) = Fpm(ω) · G(r0) 
1 − Fpm(ω) · G(r0) 

. (16) 

Next, we derive the expected number of minimal repairs that would be carried 
out until the warranty expires. Note that the warranty expires when no replacements 
occur during the warranty period of the new system. Since the random variables 
I1, I2, · · ·  , INR are i.i.d. with a mean of m(ω, r0), we have  E(I1) = E(I2) =  · · ·  =  
E
(
INR

) = m(ω, r0) by Eq. (14). Let NM
(
I j
)
be the expected number of minimal 

repairs conducted in the interval
(
0, I j

)
. Then, we have 

NM
(
I j
) = 

I j∫

0 

h pm(t)dt. (17) 

By replacing I j of integration in Eq. (17) with m(ω, r0), we obtain the 
approximation of ENM

(
I j
)
as follows. 

ENM
(
I j
) ∼= 

m(ω,r0)∫

0 

h pm(t)dt. (18) 

Thus, the expected number of minimal repairs that would be carried out until the 
warranty expires, given NR = n, can be evaluated as 

E(NM |NR = n ) = 
n∑

j=1 

ENM
(
I j
)+ 

ω∫

0 

h pm(t)dt  

∼= n · 
m(ω,r0)∫

0 

h pm(t)dt  + 
ω∫

0 

h pm(t)dt. (19) 

The second term in Eq. (19) is added to include the number of minimal repairs 
conducted during the renewed warranty period following the nth replacement, where 
no replacements occur. 

The replacement cost during the warranty period under the renewable pro-rata 
MRR warranty can be expressed as a function of I j , j = 1, 2, · · ·  as
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Cr = cr · 
NR∑

j=1

(
1 − 

I j 
ω

)
. 

Let Tj , j = 1, 2, · · ·  , denote the failure time of the system, which has been 
replaced at I1 + I2 +  · · ·  +  I j−1. Then, the expected replacement cost, conditioned 
on NR = n, can be evaluated as 

E(Cr |NR = n) = Ecr 

⎧ 
⎨ 

⎩ 

⎛ 

⎝ 
NR∑

j=1

(
1 − 

I j 
ω

)
|NR = n 

⎞ 

⎠ 

⎫ 
⎬ 

⎭ 

= 
NR∑

j=1 

cr

(

1 − 
E
(
I j
)

ω 
|NR = n

)

= cr 

⎧ 
⎨ 

⎩ n − 
1 

ω 
· 

n∑

j=1 

E
(
Tj |Tj ≤ ω, Y j ≥ r0

)
⎫ 
⎬ 

⎭ = cr

{

n − 
n 

ω 
·
∫ ω 
0 t · f (t)dt  
F(ω) · G(r0)

}

(20) 

Here, Y j is a r.v. representing the repair time corresponding to Tj . Using the fact 
that NR has a geometric distribution as given in Eq. (15), we obtain the expected 
replacement cost by taking the expectation for E(Cr |NR = n) of Eq. (20) with 
respect to NR as follows, 

E(Cr ) = E(E(Cr |NR = n)) = cr · Fpm(ω) · G(r0) − 1 
ω

∫ ω 
0 t · f pm(t)dt  

1 − Fpm(ω) · G(r0) 
. (21) 

Although the replacement cost is pro-rated to the user, we assume that the minimal 
repair cost, PM cost and failure cost are free of charge to the user. By multiplying 
the unit minimal repair cost, denoted by cm , by  E(NM |NR = n ), given in Eq. (19), 
the conditional expectation on Cm , given that NR = n, is obtained as 

E(Cm |NR = n) = cm · E(NM |NR = n) 

= cm · 
⎛ 

⎝n · 
m(ω,r0)∫

0 

h pm(t)dt  + 
ω∫

0 

h pm(t)dt  

⎞ 

⎠. (22) 

By taking the expectation again on E(Cm |NR = n) of Eq. (22) with respect to 
NR, the expectation for total minimal repair cost can be obtained as, 

E(Cm) = cm · 
⎛ 

⎝ Fpm(ω) · G(r0) 
1 − Fpm(ω) · G(r0) 

m(ω,r0)∫

0 

h pm(t)dt  + 
ω∫

0 

h pm(t)dt  

⎞ 

⎠. (23)
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Let δ be the PM period between two successive PMs during the warranty period. 
Since the length of warranty period is extended proportionately to the number of 
replacements, it is assumed that the total number of PM actions conducted under 
our proposed renewable MRR warranty model is obtained by dividing the length of 
extended warranty period by the PM period. Thus, the PM cost during the extended 
warranty period can be evaluated as 

Cpm = cpm · 
⎢⎢ 
⎢ 
⎣ 

⎛ 

⎝ 
NR∑

j=1 

I j + ω 

⎞ 

⎠/δ 

⎥⎥ 
⎥ 
⎦, (24) 

where �x� denotes the integer part of number x . 
By taking the double expectation on Cpm in Eq. (24), conditioned on NR = n, 

we obtain E
(
Cpm

)
as 

E
(
Cpm

) = E 

⎛ 

⎝E 

⎛ 

⎝Cpm | 
NR∑

j=1 

I j + ω 

⎞ 

⎠ 

⎞ 

⎠ 

= cpm · 
⎢ 
⎢⎢ 
⎣E 

⎛ 

⎝E 

⎛ 

⎝ 
NR∑

j=1 

I j |NR = n 

⎞ 

⎠ 

⎞ 

⎠ + ω/δ 

⎥ 
⎥⎥ 
⎦ 

= cpm ·
⌊ ∫ ω 

0 t · f pm(t)dt  

1 − Fpm(ω) · G(r0) 
+ ω/δ

⌋

(25) 

The failure cost incurs whenever the system failure occurs in the warranty period 
and the total failure cost is obtained by multiplying the unit failure cost by the total 
number of failures. Thus, we have 

C f = c f · (NR + NM ). 

By using the formula for E(NM |NR = n ), given  in  Eq. (19), we can obtain the 
conditional expectation on C f , given that NR = n, as 

E
(
C f |NR = n

) = c f · 
⎧ 
⎨ 

⎩ 

⎛ 

⎝n + n 
m(ω,r0)∫

0 

h pm(t)dt  

⎞ 

⎠ + 
ω∫

0 

h pm(t)dt  

⎫ 
⎬ 

⎭ . 

Thus, we have 

E
(
C f
) = E

(
E
(
C f |NR = n

))
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= c f · 
⎧ 
⎨ 

⎩ 
Fpm(ω) · G(r0) 

1 − Fpm(ω) · G(r0) 

⎛ 

⎝1 + 
m(ω,r0)∫

0 

h pm(t)dt  

⎞ 

⎠ + 
ω∫

0 

h pm(t)dt  

⎫ 
⎬ 

⎭ 

(26) 

Let EC(1)(ω, δ) denote the expected total warranty cost under the renewable pro-
rata MRR warranty with the periodic PM actions from the manufacturer’s perspective. 
Then, by adding each expected cost given in formulas (21, 23, 25 and 26), we obtain 

EC(1)(ω, δ) = E(Cr ) + E(Cm) + E
(
Cpm

)+ E
(
C f
)

(27) 

Park et al. [11] derive the formula given in Eq. (27). Utilizing Eq. (27) as an objec-
tive function to find an optimal value of δ, the optimization problem of minimizing 
the expected total cost under study is formulated as follows, 

Find δ∗ satisfying EC(1)
(
ω, δ∗) = min 

δ 
EC(1)(ω, δ). 

The objective function, given in Eq. (27), has a complex nonlinear functional 
form and its explicit solution for δ may not be obtainable analytically. Thus, the 
Nelder-Mead downhill simplex method is implemented to find δ∗, optimal length of 
inter-PM interval. You may refer to Park et al. [11] for more detailed discussions on 
the subject of this subsection. 

4 Optimal Post-Warranty Maintenance Strategy 
from the user’s Perspective 

The manufacturer usually makes a certain type of warranty contract with the user at 
the sale of a system and the warranty provides the user a protection for the repairable 
system during the warranty period by assuring the operation of the system without 
failures. Recently, the system becomes more multi-functional and complex which 
makes the maintenance of the system more costly and difficult and thus, many users 
tend to prefer an extended warranty for a certain length of time following the expi-
ration of the original basic warranty, especially for high-priced products or fragile 
kind of systems. To mention a few research works regarding the extended warranty, 
Lam and Lam [30] suggest an extended warranty model after a free replacement 
warranty is expired and Wu and Longhurst [31] investigate the operating cost of 
system warranted by basic and extended warranty policies with a non-renewing free 
replacement from the user’s perspective. Bouguerra et al. [32] discuss the adoption 
of an extended warranty period for random failure systems with a free minimal repair 
warranty. Although the extended warranty may help the user to prolong the protection 
for the system longer, the user should take over the maintenance works for the system



314 M. Park and D. H. Park

once the warranty expires. After the expiration of warranty, the user is solely respon-
sible for maintaining the system and is taking the risk of the system failures. In this 
regard, the post-warranty maintenance strategy becomes an increasingly important 
issue for the user in order not only to keep the system in the functioning conditions, 
but also to minimize the maintenance cost. 

Sahin and Polatoglu [33] propose two types of post-warranty replacement policies 
subject to certain conditions and investigate the costs incurred during the life cycle of 
the system. Jung and Park [34] extend their replacement models by allowing the PM 
actions and propose the optimal maintenance policies in the post-warranty period. 
Jung et al. [35] propose an optimal replacement policy after the replacement warranty 
expires by developing a measure unifying the cost and downtime of the system. 
Various post-warranty maintenance policies have been studied incorporating many 
different types of warranty policies by Yeh et al. [36], Chen and Chien [37], Chien 
[38] and others. Yeo and Yuan [39] study a warranty model with the imperfect repair 
and extends the Yeh et al.’s [36] model. Jung et al. [40] define the life cycle anew 
from the customer’s perspective and develop new optimal post-warranty maintenance 
policies under the renewable warranty policy. Later, Jung et al. [41] study an extended 
post-warranty maintenance model after the original two-phase warranty expires and 
determine an optimal length of maintenance period. 

This section presents two optimal maintenance policies from the user’s perspective 
after the warranty expires. During the warranty period, we adopt the renewable MRR 
warranty model which was first proposed in Park et al. [6]. Firstly, we consider a 
situation where the user maintains the system for a fixed length of time following 
the warranty period, which is referred to as a maintenance period throughout this 
section. During the maintenance period, only minimal repairs are conducted when 
the system failures occur and at the end of maintenance period the life cycle of the 
system ends and the system may be replaced by a new one. The second situation 
we consider in this section is as follows. The system undergoes the periodic PMs a 
pre-determined number of times following the expiration of warranty and conducts 
the minimal repair upon each inter-PM failures. At the time of last scheduled PM, the 
system is replaced by a new one ending the life cycle of the system. The optimization 
of post-warranty maintenance policy is obtained by finding the optimal values for 
the length of maintenance period and the length of inter-PM interval minimizing the 
expected cost rate per unit time in the life cycle of the system. 

4.1 Optimization of Post-Warranty Maintenance Period 
Under Renewable MRR Warranty 

During the warranty period, the maintenance of a system is mainly the responsibility 
of the manufacturer and whenever the system failure occurs, either the replacement 
or the minimal repair is carried out by the manufacturer. However, once the warranty 
expires the system maintenance is entirely the user’s responsibility and thus, the user’s
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main concern would be to search for an optimal maintenance strategy in the post-
warranty period. The criteria for the optimization is usually regarding the reliability 
of the system or the maintenance cost incurred in the life cycle of the system. 

In this subsection, we consider a situation where a new system is purchased 
with the renewable MRR warranty with a fixed length of original warranty period 
and whenever a replacement occurs, the warranty is renewed with exactly the same 
warranty term as the original one. Note that the replacement takes place only when 
the repair time for the failed system exceeds the repair time threshold within the 
warranty period. Once the warranty expires, the maintenance of the system is solely 
the responsibility of the user during a fixed length of post-warranty maintenance 
period and only a minimal repair is provided whenever a failure occurs. At the end 
of maintenance period, the life cycle of the system ends. The main objective is to 
determine an optimal length of maintenance period minimizing the expected cost 
rate in the life cycle of the system. The life span of the system is defined as the 
length of time elapsed from the purchase of the system until the replacement of the 
system by a new one in the post-warranty maintenance period. Park et al. [6] propose 
the renewable MRR warranty model during the warranty period, which is discussed 
in Sect. 2 and incorporate such warranty model to obtain an optimal post-warranty 
maintenance policy. 

Let Cr , Cm and C f be the r.v.’s representing the replacement cost incurred during 
the warranty period and the costs for minimal repair and system failure during the 
life cycle of the system, for which the user is responsible, respectively. Then, the 
total maintenance cost charged to the user in the life cycle of the system would be 
equal to E(Cr ) + E(Cm) + E

(
C f
)+ cr , where the last term cr is added due to the 

assumption that the replacement is done at the user’s expense when the life cycle of 
the system ends. 

Under the renewable MRR warranty we consider in this subsection, the minimal 
repair cost and failure cost are assumed to be free of charge to the user in the warranty 
period. However, the replacement cost is charged to the user pro-rated in proportion 
to the usage of the system relative to the warranty period ω. Thus, the replacement 
cost charged to the user can be evaluated as a function of I j ’s as follows. 

Cr = 
NR∑

j=1 

cr · I j 
ω 

(28) 

During the post-warranty maintenance period, only the minimal repair is 
conducted upon the system failure by the user with no repair time threshold. Since it 
is assumed that no minimal repair cost is charged to the user even during the warranty 
period, the user’s minimal repair cost is obtained by multiplying the unit minimal 
repair cost, denoted by cm, by the expected number of system failures during the 
post-warranty maintenance period. Assume that the failure process of the system 
follows the NHPP with intensity function of λ(·). Let  Nnp denote the number of 
failures during the post-warranty maintenance period. Then the pdf of Nnp is given 
by
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P
(
Nnp = n

) = 
e− ∫

ω ω+δm λ(t)dt
{∫ ω+δm 

ω λ(t)dt
}n 

n! , 

where δm denotes the length of post-warranty maintenance period. It follows that 

E
(
Nnp

) = 
ω+δm∫

ω 

λ(t)dt. 

Since the failure cost during the post-warranty maintenance period incurs upon 
each failure, it is also obtained by multiplying the expected number of failures by 
the unit failure cost. Thus we have 

Cm = cm · Nnp and C f = c f · Nnp (29) 

By adding the costs obtained in Eqs. (28 and 29), the total maintenance cost 
charged to the user in the life cycle of the system can be expressed as 

C(ω, δm) = 
NR∑

j=1 

cr · 
I j 
ω 

+ Nnp ·
(
cm + c f

)+ cr . 

Given Nnp = n, the conditional expected total maintenance cost can be evaluated 
as 

E
(
C(ω, δm)|Nnp = n

)

= 
cr 
ω 

· 
NR∑

j=1 

E
(
Tj |Tj ≤ ω, Y j ≥ r0

)+ E
(
Nnp

) · (cm + c f
)+ cr 

= n· cr 
ω 

·
∫ ω 
0 t · f (t)dt  
F(ω) · G(r0) 

+ (
cm + c f

) · 
ω+δm∫

ω 

λ(t)dt  + cr (30) 

By taking the expectation on E
(
C(ω, δm)|Nnp = n

)
of Eq. (30) with respect to 

Nnp, the user’s expected total maintenance cost in the life cycle of the system under 
the renewable MRR warranty model can be expressed as 

EC(2)(ω, δm) = E
(
E
(
C(ω, δm)|Nnp = n

))

= 
∞∑

j=0

{
E
(
C(ω, δm)|Nnp = j

)} · P(Nnp = j
)

= 
∞∑

j=0

{
F(ω) + F(ω) · G(r0)

} · {F(ω) · G(r0)
} j
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· 
⎧ 
⎨ 

⎩ j · 
cr 
ω 

·
∫ ω 
0 t · f (t)dt  
F(ω) · G(r0) 

+ (
cm + c f

) · 
ω+δm∫

ω 

λ(t)dt  + cr 

⎫ 
⎬ 

⎭ 

= 
cr 
ω 

·
∫ ω 
0 t · f (t)dt  

1 − F(ω) · G(r0) 
+ (

cm + c f
) · ·  

ω+δm∫

ω 

λ(t)dt  + cr . (31) 

Under the renewable MRR warranty, the expected length of warranty period, 
denoted by E(L(ω)) is give in Eq. (4). Thus, the expected length of life cycle of the 
system is obtained as 

E(L(ω)) + δm =
∫ ω 
0 t · f (t)dt  

1 − F(ω) · G(r0) 
+ (ω + δm). (32) 

By dividing EC(ω, δm), given  in  Eq. (31), by E(L(ω)) + δm of Eq. (32), we 
establish the expected cost rate per unit time in the life cycle of the system as 

EC R(2)(ω, δm) = 
cr 
ω ·

∫ ω 
0 t · f (t)dt  

1−F(ω)·G(r0) 
+ (

cm + c f
) · ∫ ω+δm 

ω λ(t)dt  + cr
∫ ω 
0 t · f (t)dt  

1−F(ω)·G(r0) 
+ (ω + δm) 

, (33) 

which can be used as an objective function to find an optimal length of post-warranty 
maintenance period. Letting r0 become close to zero, EC R(2)(ω, δm) of Eq. (33) is  
reduced to 

EC R(2)(ω, δm) 

= 
cr 
ω ·
∫ ω 
0 t · f (t)dt  + F(ω) · (cm + c f

) · ∫ ω+δm 
ω λ(t)dt  + F(ω) · cr

∫ ω 
0 t · f (t)dt  + F(ω) · (ω + δm) 

as r0 → 0, 

which is the same result as in Sahin and Polatoglu’s [33] replacement model. 
The optimization problem to find an optimal solution for δm , denoted by δ∗

m , can 
be formulated as 

Find δ∗ 
m satisfying EC R(2)

(
ω, δ∗ 

m

) = min 
δm 

EC  R(2)(ω, δm) 

Again, the Nelder-Mead downhill simplex method is used to find δ∗
m , optimal 

length of post-warranty maintenance period from the user’s perspective. Park et al. 
[6] present more detailed discussions regarding the renewable MRR warranty model 
and an optimal post-warranty maintenance policy, which is given in this chapter.
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4.2 Optimization of Post-Warranty PM Period Under 
Renewable MRR Warranty 

The post-warranty maintenance strategy adopted by the user gives significant influ-
ences not only on the performance of the system, but also on the maintenance 
cost charged to the user following the expiration of warranty. In this respect, a 
number of authors have been studying to search for an optimal post-warranty mainte-
nance strategy incorporating different types of warranty policies adopted during the 
warranty period. Among them, Park et al. [6] introduce a renewable MRR warranty 
model to introduce an optimal post-warranty maintenance policy by determining the 
optimal length of maintenance period from the user’s perspective. 

Jung and Park [34] utilize Canfield’s [4] failure reduction model for upgrading 
the failure rate at each PM to obtain the optimal number of PMs and the optimal 
length of inter-PM interval following the expiration of one-dimensional warranty 
by optimizing the post-warranty PM model. This subsection develops an optimal 
post-warranty PM policy minimizing the maintenance cost incurred during the post-
warranty period from the user’s perspective, which is an extension of Jung and 
Park’s [34] maintenance model to the situation where a two-dimensional warranty is 
adopted depending on failure time and repair time simultaneously. The maintenance 
model we present in this subsection works as follows. During the warranty period, a 
renewable MRR model with a pre-determined repair time threshold is adopted and 
when the warranty expires, the user solely maintains the system by performing the 
PM actions (L − 1) times periodically. Then, at the next scheduled time of PM the 
system is replaced by a new and the life cycle of the system ends. For the system 
failures between two successive PMs, only a minimal repair is conducted. 

The main goal of this subsection is to determine an optimal length of inter-PM 
interval during the post-warranty maintenance period, which minimizes the expected 
cost rate during the life cycle of the system. The life cycle of the system starts from 
the purchase of the new system and ends at the scheduled time of Lth PM during the 
post-warranty period. The following results are given in Park et al. [42]. 

Let Cr , Cm, C f and Cpm denote the r.v.’s representing the replacement cost, 
minimal repair cost, failure cost and PM cost, respectively, incurred during the life 
cycle of the system from the customer’s perspective. Then the total warranty cost, 
denoted by C

(
ω, δp

)
, is obtained by summing these costs as C

(
ω, δp

) = Cr +Cm + 
C f +Cpm , where δp denotes the length of inter-PM interval during the post-warranty 
period. Thus the expected total maintenance cost charged to the user during the life 
cycle can be evaluated as EC

(
ω, δp

) = E(Cr ) + E(Cm) + E
(
C f
)+ E

(
Cpm

)+ cr , 
where the last term cr is added since it is assumed that the replacement occurs at the 
user’s expense at end of the system’s life cycle. 

Under the renewable MRR warranty we consider in this subsection, the minimal 
repair cost is free of charge to the user and the replacement cost is prorated to the user 
as in subsection 4.1. However, the failure cost is entirely charged to the user in the 
life cycle of the system. Since the replacement cost incurs only during the warranty 
period from the user’s perspective, we have
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Cr =
∑NR 

j=1 
cr · 

I j 
ω 

, 

which is exactly the same as Eq. (28). Thus, we obtain 

E(Cr ) = cr · E(E(Cr |NR = n)) = 
cr 
ω 

·
∫ ω 
0 t · f (t)dt{

1 − F(ω) · G(r0)
} (34) 

Let Hm
(
ω, δp

)
denote the expected number of minimal repairs occurred during 

the post-warranty maintenance period where the PMs are conducted (L − 1) times 
periodically. At each PM, the failure rate is upgraded by applying Canfield’s [4] 
failure rate reduction model, given in Eq. (5). Then by applying similar arguments 
as in Jung and Park [34], we obtain 

Hm
(
ω, δp

) =
{

L−1∑

k=1 

k∑

i=1

{
h
(
(i − 1)

(
δp − α

)+ (
δp + ω

))− h
(
i
(
δp − α

)+ ω
)}

·δp + h(t − kα) + 
L−1∑

k=0

∫ (k+1)δp+ω 

kδp+ω 
h(t − kα)dt

}

(35) 

Since no minimal repair cost is charged to the user in the warranty period, the 
expected minimal repair cost can be evaluated by multiplying Hm

(
ω, δp

)
of Eq. (35) 

by the unit minimal repair cost. Thus we have 

E(Cm) = cm · Hm
(
ω, δp

)
(36) 

The periodic PMs are conducted (L − 1) times before the life cycle ends and thus 
the expected total PM cost can be obtained as 

E
(
Cpm

) = cpm · (L − 1) (37) 

Let NR denote the total number of system failures in the warranty period. Then 
the expected number of minimal repairs, given NR = n, can be obtained by replacing 
h pm in Eq. (5) by  h(t) as 

E(NM |NR = n ) ∼= n · 
m(ω,r0)∫

0 

h(t)dt  + 
ω∫

0 

h(t)dt  

The failure cost incurs at each failure of the system during the warranty period 
and thus, given that NR = n, the expected failure cost during the warranty period 
can be expressed as 

c f · E(E(NR + NM |NR = n ))
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= c f · 
⎛ 

⎝ F(ω) · G(r0) 
1 − F(ω) · G(r0) 

⎛ 

⎝1 + 
m(ω,r0)∫

0 

h(t)dt  

⎞ 

⎠ + 
ω∫

0 

h(t)dt  

⎞ 

⎠. (38) 

By adding c f · Hm
(
ω, δp

)
to Eq. (38), the expected total failure cost incurred 

during the life cycle of the system is obtained as 

E
(
C f
) = c f · 

⎛ 

⎝ F(ω) · G(r0) 
1 − F(ω) · G(r0) 

⎛ 

⎝1 + 
m(ω,r0)∫

0 

h(t)dt  

⎞ 

⎠ + 
ω∫

0 

h(t)dt  

⎞ 

⎠ 

+ c f · Hm
(
ω, δp

)
, (39) 

where Hm
(
ω, δp

)
is given in Eq. (35). 

Under the renewable MRR warranty, the expected length of warranty period, 
denoted by E(L(ω)), is give in Eq.  (4). Thus, the expected length of life cycle of the 
system under study in this subsection is obtained as 

E(L(ω)) + L · δp =
∫ ω 
0 t · f (t)dt  

1 − F(ω) · G(r0) 
+ (

ω + δp
)
. (40) 

Let EC(3)
(
ω, δp

) = E(Cr ) + E(Cm) + E
(
Cpm

) + E
(
C f
)
denote the expected 

total maintenance cost under the renewable pro-rata MRR warranty with the periodic 
PM actions being conducted (L − 1) times during the post-warranty maintenance 
period, where the formulas for E(Cr ), E(Cm), E

(
Cpm

)
and E

(
C f
)
are given in Eqs. 

(34, 36, 37 and 39), respectively. Then the objective function for the optimization 
problem to optimize the length of inter-PM interval is the expected cost rate per unit 
time incurred during the life cycle of the system, denoted by EC R(3)

(
ω, δp

)
. By  

dividing EC(3)
(
ω, δp

)
by E (L(ω)) + L · δp, we have  

EC R(3)
(
ω, δp

) = EC(3)
(
ω, δp

)

E(L(ω)) + L · δp 
= 

E(Cr ) + E(Cm) + E
(
Cpm

)+ E
(
C f
)

∫ ω 
0 t · f (t)dt  

1−F(ω)·G(r0) 
+ (

ω + δp
) (41) 

The optimization problem to find an optimal solution for δp, denoted by δ∗
p, can 

be formulated as 

Find δ∗ 
p satisfying EC R(3)

(
ω, δ∗ 

p

) = min 
δp 

EC  R(3)
(
ω, δp

)

The Nelder-Mead downhill simplex method is used to find δ∗
p, optimal length of 

inter-PM interval during the post-warranty maintenance period from the customer’s
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perspective. Park et al. [42] give more detailed discussions regarding the optimization 
problem given in this subsection. 

5 Optimization of Two-Dimensional Warranty Based 
on Age and Usage with Lemon Law Application 

This section presents an optimal two-dimensional warranty policy which considers 
both age and usage simultaneously to determine an optimal warranty length. The age 
of a system refers to its calendar age, which is measured as the time elapsed since the 
system was newly purchased, regardless of whether the system has been in operation 
or not, whereas the usage is counted as an actual operating time of the system. 
Obviously, the usage of a system is always shorter than the age except the situation 
where the system is operating continuously without interruption from the installment 
of the system. In many cases, the manufacturer suggests a two-dimensional warranty, 
which expires when the system arrives at the specified age or the specified usage. 
For instance, a typical warranty contract for new motor vehicle is a two-dimensional 
warranty consisting of an age limit (in years) and an odometer mileage limit (in 
mileage). 

Another issue we consider in this section is the concept of refund which can be 
adopted instead of replacement upon the system failure. In many countries including 
USA, Europe and Asia, a regulation governing the failure and repair of the system 
named “lemon law” has been enacted to enforce the replacement or refund for the 
system which meets certain defective conditions, mostly for motor vehicles. 

5.1 Description of Lemon Law 

The lemon law [43, 44], which aims to provide more protection for the users who 
purchase defective motor vehicles, either new or second-hand, regulates that, when 
the failures occur more than a certain number of times within a certain time interval or 
an accumulated repair time exceed a pre-determined threshold, the manufacturer must 
replace the vehicle or make a refund to the user. The lemon law was mostly applicable 
to motor vehicles initially. However, its application becomes more widespread to 
other goods such as electrical appliances. Although the detailed conditions defining 
the defective system, which is referred to as a “lemon”, are somewhat different 
depending on the country or the region, the system is determined to be a lemon 
in general by judging based on the number of failures and the accumulated repair 
time. For instance, in California, a system is declared “lemon” if the accumulated 
repair time exceeds 30 days or if the system fails more than a pre-specified failure 
number threshold. The lemon law being enacted in Korea since 2019 specifically 
regulates the conditions to determine the lemon and enforces the manufacturer to
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make a refund to the user. Part of such conditions necessary to claim the refund are 
as follows. (i) the car has been owned by the original customer for less than a certain 
span, which is referred to as an age limit, (ii) the car has been driven for less than a 
certain distance, referred to as a usage limit, and (iii) the number of breakdown of 
either critical components or non-critical components exceed each failure number 
threshold. 

In this section we discuss an optimal warranty policy applicable under lemon 
law by utilizing the similar techniques as being adopted in the renewable MRR 
warranty. The warranty conditions regulated under the lemon law is stochastically 
quite similar to the ones that is assumed in the renewable MRR warranty and Park 
et al. [45] suggest an optimal two-dimensional warranty strategy based on usage and 
ages by adopting some conditions regulated under the Korean lemon law and by 
utilizing the techniques presented in Sect. 2. 

5.2 Prior Works Related to Lemon Law 

The lemon law enforces the manufacturer to refund or replace the defective system 
with a new one if the system is declared to be a lemon and thus it affects the warranty 
policy significantly from the manufacturer’s perspective. Since the lemon law became 
available in many countries, many researchers have worked on several aspects of 
lemon law which was originally enacted for the buyers of motor vehicles. The earlier 
works regarding the subject of lemon law are mostly concerned with the legal and 
economic aspects of the regulation brought about by protecting the buyers from 
purchasing the defective vehicles. Later, Park et al. [6] work on the renewable MRR 
warranty with a pre-determined repair time threshold in which the warranty benefit 
is shown to be similar to the obligation of the manufacturer enforced under the lemon 
law as far as the repair time is concerned. Since then Iskandar and Husniah [9] analyze 
the warranty cost incurred when implementing the lemon law for one-dimensional 
warranty in case the number of failures exceed a threshold. They also examine the 
refund and replacement cases, which is considered to be the first work dealing with 
the warranty policy under the lemon law. They extend the results to two-dimensional 
case later. Park and Park [12] investigate an optimal warranty strategy based on 
two factors, usage and age of the motor vehicle, applicable to the Korean lemon 
law and determine the optimal length of warranty period. Liu et al. [46] develop 
a maintenance model for warranty systems under lemon law attached to a rebate 
warranty policy with two limiting conditions. Husniah et al. [47, 48] extend Iskandar 
and Husniah’s [9] results to the cases of multi-component system and second-hand 
system, respectively. Zhang et al. [49] study an optimal extension of two-dimensional 
warranty policy based on lemon laws to maximize the manufacturer’s expected profit 
by balancing the trade-off between the warranty cost and the sales quantity. 

It seems that there exist only a limited number of research works concerning the 
maintenance and warranty optimization with regard to the lemon law by very few 
authors in the literature so far. In the next subsection, we present the results of Park
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et al. [45] which optimizes the two-dimensional warranty strategy based on usage 
and age by utilizing the techniques similar to those of the renewable MRR warranty. 

5.3 Optimization of Warranty and Refund Policy with Lemon 
Law Application 

The warranty model we consider in this subsection is similar to the renewable MRR 
warranty model discussed in Sect. 2. However, the major difference is that in this 
work the warranty is affected by two factors of age and usage of the system and the 
warranty period is partitioned into two parts, one for refund and the other for minimal 
repair. Consider the situation where the system is warranted as follows. At the sale of 
a new system, the manufacturer suggests a two-dimensional warranty policy based on 
the usage and age of the system, and the warranty expires when the system reaches the 
age-based or the usage-based warranty boundary, whichever comes first. In addition, 
each warranty period is partitioned into refund period and minimal repair period. The 
user can claim the refund only when the system is determined to be a lemon within 
the age-based or usage-based refund period. For the remaining warranty period, 
only a minimal repair is warranted upon each failure by the manufacturer. Once the 
warranty expires, the system is solely maintained by the user until its life cycle ends. 

Figure 2 shows the relationship between the usage range and the age range in 
which the warranty and the refund are valid when the system is proved to be a 
lemon. In Fig. 2, WL and UL denote the warranty periods based on age and usage, 
respectively, whereas W0 and U0 denote the age limit and the usage limit for a valid 
refund period under the lemon law. The intervals [0, W0] and [0, U0] are referred to 
as refund periods throughout this subsection and the shaded region represents the 
minimal repair region. 

In this study, we deal with the motor vehicle as a system regulated by the lemon 
law and the minimal repair cost is free of charge to the user and the refund cost is

Fig. 2 Warranty regions 
with refund and minimal 
repair period 
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prorated to the user based on the usage of the vehicle when the vehicle is declared to 
be a lemon. When a refund is issued, the refund amount charged to the manufacturer, 
denoted by Cre, can be evaluated as 

Cre  = Ps ·
(
1 − U 

150, 000

)
+ c0, (42) 

where Ps, U and c0 denote the original purchasing price, usage of the vehicle and 
other additional cost, respectively. When the system is recognized by a lemon, the 
manufacturer gives the user a refund, as given in Eq. (42) and the maintenance of 
the failed product is finished from the manufacturer’s perspective. U is assumed to 
be distributed independently of the system failures in this work. Equation (42) is  
the equation proposed in the Korean Lemon Law to measure the refund amount and 
this equation reflects the fact that the refund amount decreases proportionately with 
increasing usage. 

As for the structure of the system, we assume that the system has two components 
groups, critical components and non-critical components and we denote π1 and π2, 
respectively, the portions of critical and non-critical components in the system. For 
i = 1, 2, we let fi (·), Fi (·), λi (·) and Fi (·), respectively denote the pdf , cdf , intensity 
function, and reliability function for critical components (i = 1) and non-critical 
components (i = 2). One criterion to determine the defective vehicle as a lemon is 
the number of failures within the refund period. Thus we assume that a vehicle is 
declared to be a lemon when either the failure number for critical components reaches 
lc or the failure number for non-critical component failures reaches ln , whichever 
comes first, during the refund period. 

Let Lc and Ln be r.v’s representing the failure numbers for critical and non-critical 
component, respectively. Since the component failures follow the NHPP with the 
intensity functions of λ1(·) and λ2(·), respectively, for the critical and non-critical 
components, the pdf ’s for Lc and Ln can be expressed as 

P(Lc = n) =
[∫ W 

0 λ1(t)dt
]n 
e− ∫ w 

0 λ1(t)dt  

n! , 

P(Ln = m) =
[∫ W 

0 λ2(t)dt
]m 

e− ∫ w 
0 λ2(t)dt  

m! (43) 

It follows that the expected failure numbers for critical and non-critical compo-
nent, respectively, in an interval [0, W ] are given by 

ELc = 
W∫

0 

λ1(t)dt, ELn = 
W∫

0 

λ2(t)dt (44)



Usage of Failure Time and Repair Time for Optimization … 325

In the next, we derive the expected warranty cost which can be used as an objective 
function for the optimization problem to find an optimal warranty length. For such a 
purpose, we adopt a univariate approach to make the two-dimensional process based 
on both usage and age to be a univariate model by defining the usage rate. Define the 
usage rate as 

R = 
U (t) 
t 

for t > 0, 

where U (t) denote the usage during the interval [0, t]. We assume that R is a r.v. with 
the cdf of G(r) = P(R ≤ r ). Given  R = r, U (t) can be expressed as U (t) = r · t 
and the conditional intensity function can be defined as λ(t |r ) = ψ(t, U (t)), where 
ψ(·) is a non-decreasing function of t and U (t). We assume that a minimal repair 
is carried out for the component failure with negligible repair time and for given 
R = r, the critical and non-critical component failures take place according to the 
NHPP with the conditional intensity functions λ1(t |r ) and λ2(t |r ), respectively. As 
an example of ψ(·), the following functional forms of conditional intensity functions 
are assumed for λ1(t |r) and λ2(t |r ) in this study. 

λ1(t |r ) = θ1 + θ2r + θ3T (t) + θ4U (t), λ2(t |r ) = θ5 + θ6r + θ7T (t) + θ8U (t) 
(45) 

where θ ′
i s, i = 1, · · ·  , 8, are positive constants. These types of polynomial functions 

have been used in several related studies, such as Murthy et al. [50] and Su and Wang 
[24]. 

To formulate the expected warranty cost incurred by adopting the two-dimensional 
warranty under study, we define the age-based warranty period (Wr 

L ) and the age-
based refund period (Wr 

0 ) as follows. 

Wr 
L = min{WL , UL /r} =

{
WL , i f  r  ≤ UL /WL 

UL /r, i f  r  > UL /WL , 
(46) 

and 

Wr 
0 = min{W0, U0/r} =

{
W0, i f  r  ≤ U0/W0 

U0/r, i f  r  > U0/ W0. 
(47) 

Here, the interval of
[
0, Wr 

0

]
is for the refund and within the interval of

[
Wr 

0 , Wr 
L

]
, 

the manufacturer provides only minimal repairs upon the system failures. 
Note that lc and ln denote the failure number thresholds for the critical and non-

critical components, respectively, under the lemon law with lc < ln . This indicates 
that when either the failure number of critical component reaches lc or the failure 
number of non-critical component reaches ln within the interval

[
0, Wr 

0

]
, whichever 

comes first, the manufacturer obligates to refund all or part of the original purchasing 
price to the customer under the lemon law, as defined in Eq. (42), and the life cycle of
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the system ends. In case the numbers of critical and non-critical component failures 
are less than lc and ln within the interval

[
0, Wr 

0

]
, each failure is only minimally 

repaired and the system is returned to the previous operating state. By utilizing the 
conditional intensity functions, denoted by λ1(t |r ) and λ2(t |r ), and by applying the 
NHPP failure processes for critical and non-critical failures, the pdf ’s for Lc and Ln 

can be expressed as 

P(Lc = n) =
[∫ Wr 

0 
0 λ1(t |r)dt

]n 
e− ∫0 Wr 

0 λ1(t |r )dt  

n! f or  n  = 0, 1, · · · (48) 

and 

P(Ln = m) =
[∫ Wr 

0 
0 λ2(t |r )dt

]m 
e− ∫0 Wr 

0 λ2(t |r )dt  

m! f or  m  = 0, 1, · · · (49) 

Assuming independence of Lc and Ln , the probabilities of lemon 
caused by critical and non-critical component failures can be respec-
tively calculated as P(Lc = lc, Ln ≤ ln − 1) = P(Lc = lc)P(Ln ≤ ln − 1) and 
P(Ln = ln, Lc ≤ lc − 1) = P(Ln = ln)P(Lc ≤ lc − 1). The probability that 
a lemon does not occur during the refund period can be calculated as 
P(Lc ≤ lc − 1, Ln ≤ ln − 1) = P(Lc ≤ lc − 1)P(Ln ≤ ln − 1). 

To evaluate the expected warranty cost, we let cc and cn denote the unit minimal 
repair costs for critical component failures and non-critical component failures, 
respectively. If the system is declared to be a lemon, the refund is made to the 
user and the warranty is terminated from the manufacturer’s perspective. Since the 
expected cost due to the critical component failures, denoted by ECc, can be evalu-
ated by adding the expectations of repair cost for critical component failures, repair 
cost for non-critical component failures that occur before the lemon is declared and 
the refund cost. Thus we have 

ECc =
[

cc{lc − 1} + E(Cre) + 
ln−1∑

m=1 

mP{Ln = m}cn
]

P(Lc = lc)P(Ln ≤ ln − 1), (50) 

where E(Cre) is obtained by replacing U with E(U ) in Eq. (42). In a similar manner, 
the expected warranty cost due to the non-critical component failures, denoted by 
ECn , can be obtained as 

ECn =
[

cn{ln − 1} + E(Cre) + 
lc−1∑

n=1 

nP{Lc = n}cc
]

P(Ln = ln)P(Lc ≤ lc − 1) (51)
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If no lemon is declared during the refund period, then only minimal repairs are 
provided during the interval of

[
Wr 

0 , Wr 
L

]
. Thus the expected warranty cost when no 

lemon is declared, denoted by ECnl , is evaluated as 

ECnl =
[

cc 

lc−1∑

n=1 

nP{Lc = n} + cn 
ln−1∑

m=1 

mP{Ln = m} 

+ cc 

Wr 
L∫

Wr 
0 

λ1(t |r)dt  + cn 

Wr 
L∫

Wr 
0 

λ2(t |r )dt  
⎤ 

⎥ 
⎦· 

P(Lc ≤ lc − 1)P(Ln ≤ ln − 1). 

(52) 

By adding Eqs. (50, 51 and 52), the expected total warranty cost of the system for 
given R = r, denoted by C

(
Wr 

L

)
, during the warranty period can be evaluated as 

C
(
Wr 

L

) = ECc + ECn + ECnl . (53) 

Note that if lc and ln become equal to ∞, then the above approach would be used 
to obtain an optimal minimal repair policy without a refund. 

By taking the expectation of Wr 
L and C

(
Wr 

L

)
, which are respectively given in Eqs. 

(46) and (53), with respect to r, the expected warranty length and the total expected 
warranty cost during the warranty period, denoted by E(WL ) and E[C(WL )], can be 
obtained as 

E[WL ] = 
rmax∫

rmin 

Wr 
LdG(r ) and E[C(WL )] = 

rmax∫

rmin 

C
(
Wr 

L

)
dG(r ), (54) 

respectively, where G(·) is the cdf of r.v. R. The formula for E[C(WL )], given  in  
Eq. (54) evaluates the expected warranty cost from the manufacturer’s perspec-
tive when both age and usage are considered for the two-dimensional policy when 
applying the lemon law conditions considered in this study. 

By using Eq. (54), the expected cost rate during the warranty period is given by 
dividing the expected total warranty cost E[C(WL )] by the expected warranty length 
E(WL ) as 

EC R(4)(WL ) = 
E[C(WL )] 

E(WL ) 
. (55) 

Note that since we obtain the ECR during the warranty period, we use E(WL ), not 
the expected length of time elapsed until the warranty is terminated by the occurrence 
of lemon within the warranty period, as a denominator in Eq. (55). 

The optimal warranty length, denoted by W ∗ 
L , can be obtained by minimizing the 

EC R(4)(WL ) as
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EC R(4)
(
W ∗ 

L

) = min 
WL 

E[C(WL )] 

E(WL ) 
. 

For more complete discussions on the optimal warranty length under study in this 
subsection, you may refer to Park et al. [45]. 

6 Concluding Remarks 

This chapter has reviewed several optimization problems to determine its optimal 
relevant decision variables minimizing the expected warranty costs during certain 
intervals, such as life cycle, warranty period or post-warranty maintenance period. 
The decision variables of our interest include the length of warranty period, inter-
PM interval and length of post-warranty maintenance period. All of the warranty 
models presented in this chapter are based on the renewable minimal repair-
replacement(MRR) warranty under which both failure time and repair time are 
considered at the same time upon the system failure. Furthermore, the warranty 
conditions under the MRR warranty is somewhat similar to the ones regulated under 
the lemon law which aims to protect the buyers of the defective motor vehicles and 
the warranty model applicable to the lemon law is also presented in this chapter. 

As the system becomes more complex and multi-functional in recent years, the 
subject of optimization for the warranty and maintenance of the repairable system 
has emerged as very important issue to challenge in the field of reliability engineering 
and many authors have worked on this subject and proposed a number of optimal 
maintenance policies incorporating various types of warranty models. The MRR 
warranty is one of such warranty models that has been developed in 2013 and, 
although only a few maintenance policies utilizing the MRR warranty are reviewed 
in this chapter, many other research results concerning the optimization of warranty 
and maintenance strategy based on the MRR warranty have been proposed in the 
literature. 

Recently, the optimal maintenance policy applicable under the lemon law attracts a 
lot of attention from many authors due to the fact that such policy affects the warranty 
cost from the manufacturer’s perspective. Since the manufacturer is obligated to 
refund or replace the failed system when the defective system meets some conditions 
within a certain interval, the optimal maintenance policy in consideration of the lemon 
law would become an important issue to challenge in the future research works. 
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Reliability and Opportunistic 
Maintenance of Floating Offshore Wind 
Turbines 

He Li and C. Guedes Soares 

Abstract This chapter reviews the state-of-the-art methods and procedures for the 
reliability and maintainability of floating offshore wind turbines. First, a new failure 
identification and critical failure determination schedule is introduced, according to 
which failure prevention actions are determined. Subsequently, failure rate and reli-
ability analysis models are reviewed, in particular, the assessment of failure rates of 
floating offshore wind turbines based on the onshore counterpart data. Finally, an 
opportunistic maintenance model is described for better scheduling of the mainte-
nance crew, allowing limited preventive maintenance after corrective maintenance. 
Overall, methods and procedures introduced in this chapter contribute to failure and 
risk management, reliability improvements, and maintenance strategy planning of 
floating offshore wind turbines and can apply to other complex systems. 

Keywords Floating offshore wind turbine · Failure identification and prevention ·
Failure rate and reliability · Opportunistic maintenance 

1 Introduction 

The last decades have seen extensive developments in renewable energies, including, 
but not limited to, solar, hydro, nuclear, and wind energy [1]. Wind energy is booming 
and is taking over the market share of conventional fossil energy-based energy 
production structures [2]. Practical evidence is that with about 94 GW (Gigawatt) 
wind power capacity added in the single year of 2021, including more than 21 GW 
from offshore, the total wind power capacity around the world reached 837 GW, 
indicating a 12% year-over-year growth [3]. 

Wind energy is stepping into waters at the coasts as a consequence of satisfactory 
wind profiles and away from the dense crowd. Floating offshore wind is a relatively 
new concept which is also a promising technique proposed to deal with electricity
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generation in deeper (typically more than 50 m) waters [4]. Floating offshore wind 
technology holds good adaptability to all waters than other types of equipment. 
However, the longer distance to the coast and ports and the lower accessibility of 
floating wind farms challenge the operation and maintenance (O&M) efficiency of 
floating offshore wind turbines (FOWTs). The mentioned factors also pulled up the 
O&M cost of such devices. For instance, the O&M cost of floating offshore wind 
turbines can be 35% of the overall cost, at least 5% higher than bottom-fixed offshore 
wind turbines, knowing that the same cost of onshore devices is 20–25% [5, 6]. Hence, 
academia and industry turn to reliability and maintainability investigations to clarify 
failure properties of floating wind turbines, find preventive actions to prevent failures’ 
occurrence, reduce failure effects, or conduct efficient maintenance to restart the 
failed devices. 

Reliability and maintainability of FOWT include failure identification and preven-
tion, failure data correction and reliability analysis, and maintenance strategy 
planning. To be specific: 

• Failure identification and prevention are to determine failures that potentially 
happen to floating offshore wind turbines, identify their critical failure behaviours, 
and find preventive means so as to cut failure propagation chains of floating devices 
[7, 8]. 

• Failure data correction and reliability analysis evaluate the reliability and failure 
rate of FOWTs, components, and elements based on the collected failure data and 
the constructed analytic model that reflects failures of FOWTs [9, 10]. 

• Maintenance strategy planning is to decide the elements to be fixed, the mainte-
nance actions, and the time to start the maintenance under restrictions of main-
tenance resources such as personnel, tools, vessels, and accessibility of floating 
wind farms [11, 12]. 

This chapter aims to review state-of-the-art methods and tools implemented in 
failure identification and prevention, failure data correction and reliability analysis, 
and opportunity maintenance strategy planning to support the reliability and oppor-
tunistic maintenance of FOWTs, see Fig. 1. The chapter’s outcomes would contribute 
to a deep understanding of the failure mechanisms, failure properties and reliability 
issues, maintenance actions and requirements of FOWTs.

The rest of this chapter is organized as follows. Sections 2–4 review solutions 
on failure identification and prevention, failure data correction and reliability anal-
ysis, and opportunity maintenance strategy planning proposed and accepted by 
the ARCWIND project (http://www.arcwind.eu/), respectively. The conclusion is 
provided in Sect. 5.

http://www.arcwind.eu/
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Fig. 1 Flowchart of failure, reliability, and maintainability investigations

2 Failure Identification and Prevention 

Failure identification lists failures that may potentially happen to FOWTs during 
their 20–25 years of operation. Failure identification supports risk assesment, relia-
bility analysis and improvement, availability accessment, and maintainance strategy 
palnning of FOWTs [13, 14]. It indicates the essential information to the mentioned 
subsequent studies, as these investigations are based on failures that already or poten-
tially happen to FOWTs. To be specific: (1) risk analysis and control ascertain the 
most critical failures and design possible failure prevention actions [15]; (2) reliability 
is assessed based on the failure data statistics, representing a crucial performance 
index of systems [16]; (3) availability balances the normal working time and down-
time resulting from failures, preventive maintenance, and windless conditions [17, 
18]; (4) maintainability is a procedure of recovering/restarting floating offshore wind 
turbines from failures [19]. 

Failure prevention ascertains preventive actions such as design modifications, 
inspection and adjustment of the maintenance crew, resource preparation of 
supportive staff and suppliers, and so on. It prevents FOWTs from unwanted failures 
or a slight failure developing into a severe failure with unbearable consequences. The 
key to failure prevention is to determine failure behaviours and preventive actions 
to cut/impede the failure propagation chain so that critical failure causes would not 
happen or they would not give rise to critical consequences [8]. 

However, FOWTs (SPAR, Tension-Leg Planform, or Semi-Submersible struc-
tures) are relatively new concepts with very few installations [20–22]. Hence,
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failure data from floating wind farms is still insufficient. Subsequently, reliability 
and maintainability related investigations of such devices are restricted by no-data 
conditions. 

An applicable way to address data restrictions is to learn failure information 
from the onshore sector where the failure data is well accumulated, transforming 
failure data of floating devices from onshore ones. The following procedure was 
proposed to accomplish failure identification and prevention based on the transformed 
failure data, including potential failure determination, critical failure identification, 
and preventive action design. 

2.1 Potential Failure Determination 

Potential failure determination discovers failures that may happen to FOWTs during 
long-term operations [23]. As operational data of this kind of wind turbines is 
still unavailable, the potential failure determination relies on summarizing failures 
happened to onshore and bottom-fixed offshore equipment and expert judgments, 
see Fig. 2. 

Failures of onshore and bottom-fixed offshore equipment provide a reference of 
FOWTs with the assistance of experts who determine: (1) if or not the onshore wind 
turbine failures would happen to float offshore facilities? (2) are there any additional 
failures that could happen to FOWT under the impact of harsh sea conditions? 

The potential failure determination step consists of failure collection and expert 
adjustment application. Regarding Failure collection, 423 failures and their mainte-
nance actions of 76 multi-MW (Megawatt) wind turbines in four wind farms were 
collected [24]. Overall, the observation consists of 1.44 million operation hours; the 
failure data of bottom-fixed offshore devicesd are collected from publications [5, 14, 
25, 26]. With the information above, an initial failure sheet with 29 failure modes 
and 53 failure causes that happened in 15 components is summarized.

Fig. 2 Potential failure determination of FOWTs 
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Table 1 Specialists involved [6] 

Experts Duty Working period/In the floating offshore 
sector 

No. 1 System design (in company) 4 Years 

No. 2 Components design (in company) 3 Years 

No. 3 Quality engineer (in company) 4 Years 

No. 4 Researcher (in university) 6 Years 

No. 5 Chief technical officer (in company) 11 Years 

Regarding expert adjustment, five experts were employed, see Table 1. The experts 
are mostly from wind companies (designers and maintenance crew), except for one 
from a university. The selection of the experts should be close to the industry and 
with different duties, guaranteeing the diversity of information sources and involving 
more knowledge and experiences. Another criterion of expert selection is the working 
period, the longer the better. 

The experts’ adjustment, see Fig. 3, determines the final failure sheet of FOWTs 
based on the onshore and bottom-fixed wind turbines’ failures. The initial failure 
sheet was distributed to experts. They deleted unlikely failure items (in the initial 
failure sheet) or added new failure items, e.g., new failure causes to existing failure 
modes or new failures (component-failure mode-failure cause). 

Failure Mode and Effect Analysis (FMEA) [27] is applied to critical failure iden-
tification. Accordingly, risk indices (severity, occurrence, and detection) are obtained 
by consulting with experts. Two documents should be prepared and distributed to 
experts: (1) the final failure list (Appendix A); and (2) rating guidance of indices, 
which can be three level, four level, ten level and other options.

Fig. 3 Experts’ adjustment 
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2.2 Critical Failure Identification 

Critical failure identification determines critical failures of FOWTs, which is the 
connection between potential failure determination and failure prevention [28]. Crit-
ical failure identification selects the most critical failures of FOWTs and finds actions 
for failure prevention. In engineering, critical failure identification is mandatory as the 
maintenance resource and tools are limited to cover all failures. It is worth mentioning 
that not all potential failures would happen during the operation of floating offshore 
wind turbines, as the required inherent reliability and resistance have been designed 
and manufactured in the elements and components. But failures would still likely 
happen due to uncertainties in the material, manufacturing, supplier, installation, 
weather condition, operation, etc. 

The main concern of the FMEA-based critical failure identification is that convinc-
ingly construct a Risk Priority Number (RPN) for each failure item. Critical failure 
items include critical components, dangerous failure modes, and risky failure causes. 
The purpose of failure identification is displayed in Fig. 4. 

Conventional FMEAs are criticized for their weaknesses when applying to the 
critical failure identification of FOWTs, including [28]: (1) The subjective input data 
(severity, occurrence, and detection) makes RPNs subjective, without any physical 
meaning, and cannot be compared with others computed on different offshore wind 
turbines; (2) Assigning equal importance to experts and risk indices resulting in 
various failure items with the same RPN, and the hidden meaning of each could be 
completely different; (3) constructing decision-making indixes such as RPN based on 
subjective indices and ignored operational factors like failure cost; (4) independent 
failures assumptions. For convincingly constructing RPNs of failure items, several 
developments of FMEAs have been conducted, see Table 2, including:

1. Assign weights to indices [6]. A group of experts is employed. Unlike decision-
making based on a single information source, critical failure identification 
becomes a group decision-making problem. Under this situation, assigning 
weight to evidence given by experts according to their working period (the years 
of working) in the floating offshore wind sector is required. 

2. Assign weights to indices [8]. Severity, occurrence, and detection reflect different 
aspects of the risk of failure of FOWTs. However, the wind industry, especially its

Initial failure sheet 

15 components 
29 failure modes 
53 failure causes 

Critical failure sheet 

Critical components 

Dangerous failure modes 

Risky failure causes 

Convincing  RPN 
construction

- Severity
- Occurrence
- Detection 

Fig. 4 The purpose of critical failure identification 
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Table 2 FMEA developments 

Refs. Development Model property Key index Key 
parameter 

[6] Assign weights 
to experts 

αk = WPk∑i 
k=1 WPk 

Weights of the 
expert k (αk ) 

Working 
period 
(WPk ) 

[8] Assign weights 
to indices 

ωj =
[ ∑3 

j=1 δS j 

3

∑3 
j=1 δO j 

3

∑3 
j=1 δD j 

3

]T 

Weights of the 
indices (ωj) 

Experts’ 
judgments 
(δX j  ) 

[28] Model 
economic 
factors 

CR  P  N  = S × O × D × C Cost-and-risk 
Priority Number 
(CRPN): 

Cost of 
failures (C) 

[29] Model failure 
correlations 

RP  N  (Final) 
= RP  N  (Fi  x .) + RP  N  (Var.) 
= S × O × D + S × ΔP × D 

Failure correlation 
level (ΔP) 

Bayesian 
network 
model 

O&M, focuses more on the failure consequences (severity). Accordingly, high-
lighting severity in RPN calculation contributes to obtaining close-to-practice 
critical failures.

3. Model economic factors (costs of failures) [28]. FOWTs are economy-risk-key 
systems where one should consider both risks of failures and economic perfor-
mance. Hence, modelling the cost of failures to reflect economic aspects during 
O&M would support robust decision-making in critical failure identification. 

4. Model failure correlations [29]. FOWTs are complicated systems with correlated 
failures resulting from common cause failures (several failures sharing the same 
failure cause). Hence, in criticality modelling, the impact of a failure item on 
other failures should be considered. 

Accordingly, critical failure items of FOWTs are identified with the assistance of 
the developed models in Table 2, including: 

• Critical systems (contribute more than 50% RPN to the total): support structure 
(46%) and energy production system (33%); 

• Critical components (contribute more than 50% RPN to the total): moorings 
(22%), generator (15%), gearbox (13%), and floating foundation (11%); 

• Fourteen Critical failure modes (each contributes more than 2.4% RPN to the 
total): generator (3 failure modes, 3 FM), gearbox (1 FM), convertor (1 FM), 
transformer (1 FM), tower (2 FM), floating foundation (3 FM), and mooring (3 
FM); 

• Twenty-four Critical failure causes (each contributes more than 1% RPN to the 
total): generator (4 failure causes, 4 FC); gearbox (1 FC), converter (1 FC), 
transformer (1 FC), tower (5 FC), floating foundation (6 FC), and mooring (9 
FC).
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2.3 Failure Behaviours and Failure Preventions 

Failure behaviour is a chain of failure initiation, propagation, and occurrence [28]. 
It indicates a failure cause results in a failure mode(s) of a component(s) and subse-
quently give rise to a failure of a system(s) until the malfunction of FOWTs. Fifteen 
failure behaviours are summarized according to the critical failure identified, see 
Fig. 5.

Failure prevention action is the preparation, measures, and activities for preventing 
critical failure from occurrence by cutting their propagation chains (failure 
behaviours). Accordingly, 18 failure prevention actions are found to avoid the critical 
failure behaviours identified, see Table 3.

3 Failure Data Correction and Reliability Analysis 

3.1 Failure Rate Correction 

Failure rates are inherent failure properties reflecting the failure likelihood of FOWT 
components under sea conditions [30]. Practically, failure rates are computed based 
on failure data statistics. The FOWT, however, is a new concept with limited instal-
lations and operation times. It resulted in a few failures collected and is sufficient for 
reliability, availability, and maintainability investigations. To this end, failure rate 
correction is mandatory to transform failure data of well-accumulated onshore wind 
turbines to floating offshore ones. 

The failure occurrence in Sect. 2.2 is served as the benchmark of the failure 
rate correction, knowing that failure rate (objective evidence) and failure occurrence 
(subjective evidence) represent a similar physical index: failure likelihood [24]. The 
idea is to compute the differences between failure occurrences given by onshore (7 
maintenance crew are employed) and floating offshore (5 experts in Sect. 2.1) experts 
and apply these differences in failure rate quantification. Accordingly, failure rates 
of elements of FOWTs can be calculated with the known failure rate of onshore wind 
turbines. 

It is noted that at least two failure rate correction models are required to ascertain 
the failure rates of all items:

• For components with corresponding components in onshore wind turbines. The 
model is constructed based on the differences between failure likelihood of 
compoments equipted in both onshore wind turbines and FOWTs. 

• For components without corresponding components in onshore wind turbines. 
The model is constructed based on the failure likelihood differences between 
similar components in FOWTs. Specifically, the failure rate of items in floating
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Fig. 5 Failure behaviours of FOWTs [8]
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Table 3 Failure prevention action of FOWTs 

System Failure prevention actions 

Energy-receiving system • Blade: improve manufacturing processes and enhance blades 
test; 

• Blade: lightning prevention; 
• Hub and blade: improve installation processes for connection 
parts 

Energy-producing system • Main bearing: strengthen surfaces of bearing tracks; 
Welding quality inspections. 
• Generator: electric corrosion prevention; 
• Generator: upgrade cooling systems; 
• Gearbox: fatigue prevention of gears; 
• Generator and gearbox: high-quality lubrication 

Energy-transforming system • Converters and transformers: reliable cooling system; 
• Converters and transformers: prevent voltage/current overload 
offsetting 

Auxiliary System • Pitch: monitor pitch angles; 
• Yaw and pitch: high-quality hydraulic systems 

Support structure • Devices: improve mooring lines, anchor pickup device, 
transitional chain, mooring winch, fairlead, and accumulators; 

• Crew: operators and maintenance members training; 
• Tower: reinforce welding; 
• Structure failure: enhance pipe joint welding; platform 
monitoring; avoid transition pieces failures like corrosion and 
fatigue; 

• Environment factors: consider the impacts of strong 
wind/waves on support structures

foundations, transition pieces, and moorings are corrected according to the differ-
ences in failure occurrences between the mentioned components and mechanical 
components of onshore wind turbines like towers and nacelle.

It is concluded that the failure rate of FOWTs is 26% (based on the globalized 
model in [31]) or 28% (based on the localized model in [24]) higher than that of 
onshore wind turbines. The primary results are listed in Table 4 (at the subcomponent 
level) and Fig. 6 (at the component level).

3.2 Reliability Analysis 

Reliability is the degree to which a FOWT operates as designed under a given time 
and working condition, based on which failure rate and mean time to failure (MTTF) 
can be computed [33]. Reliability analysis is a process of reliability computation. 
It infers the reliability of FOWTs and their components based on the failure rate 
corrected in Sect. 3.1.
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Table 4 Failure rates and the corresponding correction factors of subcomponents [24] 

Components Subcomponents Correction factor Failure rates 
onshore 

Failure rates 
correctedAmount Rank 

Rotor Blades 1.353 5 0.173 0.234 

Hub 1.224 7 0.069 0.085 

Main bearing 0.909 10 0.012 0.011 

Main shift 1.371 4 0.012 0.012 

Generator Generator 1.211 8 0.878 1.063 

Gearbox Gearbox 1.232 6 0.335 0.413 

Electrical 
Facilities 

Convener 1.531 3 0.693 1.060 

Transformer 1.555 2 0.042** 0.066 

Monitoring and 
SCADA 

– – 0.300 0.300* 

Weather Unit – – 0.127 0.127* 

Electronics and 
controller 

1.688 1 0.730** 1.235 

Pitch and yaw Pitch system 0.906 11 0.416 0.377 

Yaw system 1.166 9 0.092 0.108 

Cooling and 
hydraulic 

Cooling system – – 0.809 0.809* 

Hydraulic – – 0.843 0.843* 

Auxiliary Crane – – 0.012 0.012* 

Climbing aid – – 0.012 0.012* 

Brake – – 0.035 0.035* 

Nacelle – – 0.104 0.104* 

*: Failure rates without correction; **: Failure rates computed based on that reported in [8] and  
[32]; Failure rates in Failures/Year 

Fig. 6 Failure rates correction of components [24]
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Bayesian networks (BNs) are applied to model the failure casualties of FOWTs, 
knowing that BNs can model correlated failures caused by common cause failures. 
Overall, two BNs are constructed for reliability computation, including: 

• A hierarchical Bayesian network model for reliability analysis of support struc-
tures [34]. Failures of FOWTs are hierarchically structured, for instance, systems-
components-failure causes, see Appendix A. A hierarchical Bayesian network 
model is constructed to model hierarchical failure causalities due to its better 
interpretability and capability to represent hierarchical systems. 

• A Bayesian network model for reliability analysis of FOWTs [32]. A Bayesian 
network model completes the reliability analysis of entire FOWTs where 
correlated failures are considered. 

It is concluded that a FOWT may fail 7.9 times per year with an MTTF of 1103 h 
[32]. Overall, the predicted failure rate and MTTF of FOWTs and their systems and 
components provide fundamental evidence for spare parts backup, logistic arrange-
ment, maintenance resources preparation, and maintenance strategy planning of 
FOWTs and wind farms. Primary reliability analysis results of FOWTs are listed 
in Table 5 and Figs. 7 and 8. 

Table 5 Reliability functions of FOWT systems (power function) [32] 

Functions Parameters 95% Confidence bounds RMSE 

a b c a b c 

SS 0.035 −5.723 4.0E−5 (0.035, 
0.035) 

(−6.564, − 
4.882) 

(−9.1E−5, 
1.7E−4) 

1.519E−4 

PS 0.314 −2.036 7.2E−3 (0.298, 
0.330) 

(−2.333, − 
1.739) 

(−0.015, 
6.1E−4) 

5.952E−3 

GB 2.889 −0.124 −2.153 (−0.614, 
6.391) 

(−0.299, 
0.051) 

(−5.676, 
1.371) 

1.744E−2 

GE 0.411 −1.412 −0.025 (0.381, 
0.440) 

(−1.688, − 
1.315) 

(−0.046, − 
0.004) 

1.014E−2 

AS 0.193 −2.450 −0.002 (0.186, 
0.199) 

(−2.709, − 
2.191) 

(−0.005, 
4.0E−4) 

2.439E−3 

SS Support Structure; PS Pitch System; GB Gearbox; GE Generator; AS Auxiliary System; RMSE 
Root Mean Square Deviation
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Fig. 7 Predicted reliabilities of FOWTs and their systems [34] 

Fig. 8 Reliability analysis of systems of FOWTs [34]
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4 Opportunistic Maintenance Strategy Planning 

4.1 Maintenance Actions and Times 

According to the analysis of 423 failures of the 76 multi-MW (Megawatt) wind 
turbines mentioned in Sect. 2.1, eight maintenance measures are implemented, see 
Table 6. 

According to maintenance records, a maintenance procedure for a failure is 
divided into Reaction Time (RT), Traveling Time (TT), and Time to Repair (TR), 
see Fig. 9. The statistics of RT, TT, and TR of wind turbines are in Table 7.

Table 6 Maintenance measures 

Maintenance 
measure 

Action Material 
asuumution 

State of wind 
turbine 

State of 
maintenance crew 

Repair Repairing No Working None 

Replace Repairing Yes Working None 

Repaired and 
waiting for 
replacement 

Repaired Yes Working Waiting for 
replaceable parts 

Checked and 
waiting for 
replacement 
(operating) 

Checked without 
repair 

No Working Waiting for 
replaceable parts 

Checked and 
waiting for 
replacement 
(stopped) 

Checked without 
repair 

No Stopped Waiting for 
replaceable parts 

Waiting for the 
supplier 
(operating) 

Checked without 
repair 

No Working Waiting for the 
maintenance crew 
of suppliers 

Waiting for the 
supplier 
(stopped) 

Checked without 
repair 

No None Waiting for the 
maintenance crew 
of suppliers 

Waiting for 
further 
instructions 

The failure is unable to repair as (1) Unknow failure cause; (2) Lacking 
maintenance experience; (3) Minor failures with limited impact; (4) Beyond 
the authority of the maintenance crew; (5) Huge and expensive structural 
failures 
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Fig. 9 RT, TT, and TR of wind turbines

4.2 Opportunistic Maintenance 

Opportunistic Maintenance combines preventive and corrective maintenance, 
allowing to conduct limited preventative maintenance in the same visit for correc-
tive maintenance [35]. The accessibility of floating offshore wind farms is low and 
restricted by weather windows, vessels, and other uncertain maintenance resources 
[36]. Hence, the crew should complete as many maintenance activities as possible 
in one visit to floating offshore wind farms. Opportunistic maintenance supports 
the maintenance efficiency improvement of FOWTs as it manages more preventive 
maintenance after the corrective maintenance has been completed, but no additional 
resources are required, including vessels, tools, labour, and so on. 

Theoretically, opportunistic maintenance provides the maintenance crew with a 
checking list, according to which the maintenance crew conducts preventive main-
tenance within a limited period between planned corrective maintenance and return 
to port or motherboard. Following the potential failure identified in Sect. 2.1, the  
checking list prescribes clear information on failure and components to be checked. 
Figure 10 displays the logic of the checking list made for opportunistic maintenance 
of FOWTs.

An FMEA-BN model [35] is proposed to model the criticalities of FOWTs’ failure 
items. The key idea of the model are as follows: 

• Create a mirrored BN model according to the FMEA structure. The BN model 
reflects failure affiliations of the FMEA-based failure structure. 

• Assign a risk index RI  (RI  = S× P×D, where S and D are in line with Sect. 2.2, 
P is updated by the BN model) to failure items of FOWTs to reflect the following 
operational states: operation conditions like the strong wind; failures impact of 
components on others; maintenance actions’ impact on other components; The 
combinations of the above factors. 

• The FMEA-BN model updates suggestions (checking list) according to (a) given 
operational state(s). 

Four cases are examed to validate the effectiveness and applicability of the FMEA-
BN model, including:

• Periodical preventive maintenance. It is to rank failure items to be inspected under 
the working condition;
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Fig. 10 Checking list for opportunistic maintenance

• Practical operation scenario. It is to determine failure items to be inspected under 
the situation of long-term unstable electricity output of wind turbines but no 
failures are reported by the SCADA; 

• Specific maintenance was applied. It is to identify the failure items to be inspected 
after corrective maintenance of a component, such as generator, has been done; 

• Dangerous weather conditions. It is to update the order of failure items to be 
inspected after dangerous weather conditions like storms. 

Take the unstable electricity output as an example. Given the unstable electricity 
output state, the criticality of 11 failures is increased, but 6 decreased, see Table 8. 
The top 3 components in the checking list are the pitch subsystem, lubrication of 
generator bearings, and sensors placed on the generator. 

Table 8 Criticalities of failure causes under the unstable electricity output state [35] 

Failure causes Criticalities changes Failure causes Criticalities changes 

Amount De/In-crease Amount De/In-crease 

WT-BL-FM1-#1 10 ↙ TT-TP-FM34-#58 13 ↗
WT-MB-FM7-#7 26 ↗ FF-FFE-FM35-#63 10 ↙
WT-MSH-FM9-#9 11 ↙ FF-FFE-FM37-#80 24 ↗
WT-GE-FM11-#15 13 ↗ MS-ML-FM38-#82 17 ↗
WT-CV-FM20-#35 13 ↗ MS-ML-FM38-#83 10 ↗
WT-TR-FM22-#39 10 ↗ MS-ML-FM38-#84 31 ↗
WT-PS-FM23-#41 16 ↗ MS-ML-FM39-#88 10 ↙
WT-PS-FM25-#43 12 ↗ MS-ML-FM39-#91 10 ↙
TT-TO-FM31-#50 10 ↙ ↗/↙: Increased/Decreased
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5 Conclusion 

This chapter reviewed the state-of-the-art methods and procedures proposed and 
conducted by the authors for reliability and maintainability issues of floating offshore 
wind turbines. It is concluded that: (1) a new failure identification and critical failure 
determination schedule is proposed according to which failure prevention actions 
are determined. The proposed program provides a new understanding of failures 
under the no-data situation; (2) failure rate correction and reliability analysis models 
are constructed and applied to assess the failure rates and reliability of floating 
offshore wind turbines and their components. The results provide urgently needed 
information, knowing that the same evidence is still insufficient for the floating 
offshore wind sector; (3) an opportunistic maintenance model is presented for a 
better arrangement of maintenance crew working period, which allows conducting 
limited preventive maintenance after corrective maintenance. The proposed model 
provides real-time opportunistic maintenance of floating offshore wind turbines. 
Overall, methods and procedures introduced in this chapter contribute to failure and 
risk management, reliability improvement, and maintenance strategy planning of 
floating offshore wind turbines and apply to other complex systems. 

Ackowledgements This work contributes to the Strategic Research Plan of the Centre for Marine 
Technology and Ocean Engineering (CENTEC), which is financed by the Portuguese Founda-
tion for Science and Technology (Fundação para a Ciência e Tecnologia—FCT) under contract 
UIDB/UIDP/00134/2020. 

Appendix: Failure modes and causes of the floating offshore 
wind turbine [8] 

Failure mode level Failure cause level 

Code Failure modes End effects Code Failure causes 

WT-BL-FM1 Blades cracks Wind turbine stop 
working 

#1 Manufacturing error 

WT-BL-FM2 Delamination Wind turbine stop 
working 

#2 Insufficient lighting 
protection 

WT-BL-FM3 Gear teeth slip Blades fail to attack 
wind properly 

#3 Wear, fatigue, etc 

WT-HB-FM4 Fracture in the shell Rotor break #4 Manufacturing error 

WT-HB-FM5 Error in positioning Blades break away 
from the hub 

#5 Manufacturing error 
and/or fitting error 

WT-MB-FM6 Bearing damage Wind turbine stop 
working 

#6 Wear, fatigue, etc

(continued)
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(continued)

Failure mode level Failure cause level

Code Failure modes End effects Code Failure causes

WT-MB-FM7 Bearing vibration Abnormal working 
condition 

#7 Substandard 
lubrication 

WT-MS-FM8 Cracks Collapse of wind 
turbine 

#8 Welding defects 

WT-MS-FM9 Fracture Collapse of wind 
turbine 

#9 Fatigue 

WT-GE-FM10 Bearing deformation No, abnormal or 
unbalanced electricity 
generation 

#10 Improper grease 

#11 Over tighten 

#12 Electric corrosion of 
rollaway nest 

#13 Shaft wear 
deformation 

WT-GE-FM11 Overheat (GE) Offshore wind turbine 
shutdown 

#14 Turbine overload 

#15 Cooling system 
failure 

#16 Partial short circuit 
on stator winding 

WT-GE-FM12 Winding failure No, abnormal or 
unbalanced electricity 
generation 

#17 Cable insulation 
failure 

#18 Connecting plug fall 
off 

#19 Interturn short circuit 

#20 Winding corrosion 

WT-GB-FM13 Wear gears Exceeded vibration or 
unstable electricity 
output 

#21 Wear, fatigue 

#22 Dirty or lacking 
lubrication 

WT-GB-FM14 Seized gears No electricity output #23 Sudden shock exceed 
limitation 

WT-GB-FM15 Fractured gear teeth Exceeded vibration or 
unstable electricity 
output 

#24 Sudden shock exceed 
limitation 

#25 Fatigue 

WT-GB-FM16 Wear bearing Exceeded vibration #26 Fatigue 

WT-GB-FM17 Overheat (GB) Offshore wind turbine 
shutdown 

#27 Wear 

#28 Lubrication dried out 

#29 Leaking 

WT-GB-FM18 Shift crack Offshore wind turbine 
shutdown 

#30 Fatigue 

WT-CV-FM19 Short circuit Converter shutdown #31 Over heat 

WT-CV-FM20 Open circuit Disconnect to grid #32 Load mutation

(continued)
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(continued)

Failure mode level Failure cause level

Code Failure modes End effects Code Failure causes

#33 Invert power input 
fault 

#34 Overload 

#35 Cooling system fault 

WT-TR-FM21 Short circuit Transformer 
shutdown 

#36 Over heat 

WT-TR-FM22 Open circuit Disconnect to grid #37 Constant overload 

#38 Iron core corrosion 

#39 Overcurrent 

#40 Overvoltage 

WT-PS-FM23 Wrong pitch angle Decrease of 
electricity output 

#41 Poor calibration 

WT-PS-FM24 Pitting Gears Vibration increase #42 Wear, fatigue 

WT-PS-FM25 Misalignment 
bearings 

Decrease of 
electricity output 

#43 Wear, excessive 
vibration 

WT-YS-FM26 Seizure bearings Over heat #44 Poor lubrication 

WT-YS-FM27 Corrosions Pitting of raceways #45 Presence of corrosive 
substances 

WT-YS-FM28 Hydraulic leakage Rotor fails to stop #46 Wear or degradation 
on hydraulic lines 

WT-CE-FM29 Short circuit Offshore wind turbine 
shutdown 

#47 Moisture penetration 

WT-CE-FM30 Open circuit Offshore wind turbine 
shutdown 

#48 Lightning strike 

TT-TO-FM31 Tower collapse Failure of whole 
facility and vast 
economic loses 

#49 Strong wind/wave 

#50 Lightning strike 

#51 Hit by blades 

#52 Ice storm 

#53 Braking system 
failed 

TT-TO-FM32 Abnormal vibration Potential collapse #54 Resonance 

TT-TO-FM33 Crack Potential collapse #55 Faulty welding of 
Tower 

#56 Material fatigue 

TT-TP-FM34 Transition piece crack Potential collapse #57 Material fatigue 

#58 Corrosion 

#59 Plastic deformation 

#60 Cyclic degradation 

#61 Strong wind/wave

(continued)
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(continued)

Failure mode level Failure cause level

Code Failure modes End effects Code Failure causes

#62 Faulty welding 

FF-FF-FM35 Hit by dropped 
objects 

Damage to the 
facility, vast 
economic loses 

#63 Planes crash 

#64 Biological collision 

#65 Strong wind/wave 

FF-FF-FM36 Watertight fault Potential failure #66 Inefficient detection 

#67 Pipe joint corrosion 

#68 Pipe joint weld defect 

#69 Pipe joint fatigue 

#70 Pillar damage 

#71 Excessive fouling of 
platform 

FF-FF-FM37 Additional structures 
fail 

Potential failure #72 Navigation and work 
lights fail 

#73 Helicopter assistance 
equipment fail 

#74 Handrails corrosion 

#75 Ladders corrosion 

#76 Dynamic umbilical 
connection fail 

#77 Towing 
brackets/bollards fail 

#78 Vents fail 

#79 Bilge piping / pumps 
fail 

#80 Sensors for platform 
monitoring fail 

#81 Manholes fail 

MS-ML-FM38 Abnormal mooring 
lines 

Mooring line strength 
decrease or broken 

#82 Mooring lines wear 

#83 Mooring lines fatigue 

#84 Mooring lines 
corrosion 

#85 Abnormal stress 

#86 Not effective 
maintenance 

MS-ML-FM39 Mooring lines broken Malfunction of the 
whole system, the 
facility cannot locate 
in water 

#87 Transitional chain 
wear 

#88 Friction chain wear 

#89 Mooring winch 
failure

(continued)
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(continued)

Failure mode level Failure cause level

Code Failure modes End effects Code Failure causes

#90 Buoys friction chain 
wear 

#91 Anchor pickup 
device damage 

#92 Hydraulic motor 
failure 

#93 Accumulator failure 

#94 Over pressure 

#95 Connectors failure 

#96 Mooring interface 
structure failure 

MS-FL-FM40 Fairlead failure The anchor cannot be 
dropped and lift 

#97 Fairlead corrosion 

#98 Fairlead fatigue 

MS-AC-FM41 Anchor failure Anchor failure #99 Abnormal working 
conditions 

#100 Cyclic degradation 

MS-RE-FM42 Abnormal functions Anchoring accuracy 
decrease 

#101 Poor operation 
environment 

#102 Insufficient 
emergency 
measurement 

#103 Human Error 

#104 Analysis and 
calculation fault 
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A Summary of Inspection Policies of One 
Shot Systems 

Qian Qian Zhao, Ha Won Kim, and Won Young Yun 

Abstract In this chapter, we consider one shot systems, long-term repairable storage 
systems, which are in storage and can be used at an unknown time point once, whose 
failure only can be detected by inspection. Due to the system failure can incur a loss 
of life and economic damage, inspections and maintenance should be carried out 
to maintain a high level of storage reliability. However, since these inspections are 
usually costly, inspection times should be optimized to achieve a balance between 
undetected failure costs and inspection costs. Therefore, it is necessary to suggest 
appropriate optimization criteria and inspection policies according to the system 
structure and function characteristics of one shot system. In recent years, performance 
evaluation and inspection optimization problems have attracted many researchers’ 
attention. This study summarizes the existing literatures related to the reliability 
and inspection optimization models of one shot systems. Firstly, this paper reviews 
the recent advances in storage reliability modeling for evaluating the performance 
of one shot systems. On this basis, the inspection optimization models of one shot 
systems with various structures are established and the key ideas of optimization 
methods in each optimization inspection problem are summarized. In summary, this 
contribution provides a survey on optimization methods for the inspection policy 
of one shot systems, with emphasis on the optimization methods under the different 
scales of systems, such as single-unit and multi-unit, as the target system. In addition, 
a qualitative comparison is performed to provide some general guidelines for the 
range of applicability of the approaches discussed in this contribution. 
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1 Introduction 

A ‘one shot’ system is defined as a system that only can be used once, after use; 
the system is destroyed or must undergo an extensive rebuild. The system typically 
speeds its life in dormant storage readiness. Generally, storage reliability is used to 
evaluate the ability of a dormant system to keep its required function and is defined 
as the probability that the system can perform the expected function on demand after 
a certain storage time. The system storage reliability gradually declines with time, 
because some of its units are affected by various environmental pressures and then 
degrade with time, such as oxidation, corrosion, rust, and aging, and then suddenly 
fail at a random time, but the existing failure cannot be detected. The failure states 
of the one shot system can only be identified when it is inspected or used. Therefore, 
to prevent it from failing to perform its function when needed, we need to inspect 
periodically whether it is in a working state and maintain it as required. 

For these repairable systems, system availability is more appropriate as the system 
performance measure. Many others have also researched storage availability models: 
See Cui et al. [1], Kim and Yun [2], Kitagawa et al. [3, 4] and Zhao and Yun [5]. 
Among them, this study mainly reviewed main models of the storage availability and 
inspection policies of single-unit and multi-unit one shot systems. During storage, the 
availability of the one shot system can be improved by timely inspection and mainte-
nance of failures. The storage environment of this kind of system is strict, and changes 
in the environment could accelerate the degradation of the units. Excessive removal 
of the system from the original environment may reduce storage reliability and incur 
high inspection and maintenance costs. Therefore, the inspection interval for one shot 
systems should be optimized to achieve a balance between the system availability 
and maintenance costs. 

Most inspection optimization models for the one shot system considered instan-
taneous and mean availabilities [3, 4], and overhaul time [6], which are related to 
system performance, as one of the optimization criteria. The expected cost rate [3, 4, 
6–10] and the expected total cost until replacement or detection of failure [1, 11–13] 
are taken as another cost-related optimization criterion. Wolde and Ghobbar [14] 
considered reliability, availability, and cost as optimization criteria in their inspec-
tion optimization model. Researches on the inspection optimization model based 
on periodic inspection has been done for decades, and various inspection policies 
have been proposed. Refer Ito and Nakagawa [6, 8, 11, 12], Cho and Lee [10], Kita-
gawa et al. [4, 9]. For an aging system with increasing failure rate, the inspection 
policy with periodic interval is not optimal. It would be reasonable to inspect less 
frequently when the system is of its early age and to inspect more frequently as 
they deteriorate. The inspection interval should be shortened with time. Kitagawa 
et al. [3] and Nakagawa et al. [13] considered a non-periodic(sequential) policy in 
their optimization model assuming that units in one shot systems have following the 
Weibull distribution with an increasing failure rate. 

The optimization of non-periodic(sequential) inspection is always a challenging 
problem in reliability area. The determination of each inspection time point is related
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to the maintenance history and maintenance model of each unit after the inspection. 
Meta-heuristics have been developed for inspection scheduling problems under the 
non-periodic inspection policy. For example, Golmakani and Moakedi [15] proposed 
an A*search algorithm to determine an optimal non-periodic inspection scheme for 
a multi-unit repair system, which is based on a branch-and-bound method. Kitagawa 
et al. [3] used a simulated annealing (SA) algorithm to obtain optimal inspection 
intervals and the number of minimal repairs until replacement under an aperiodic 
inspection policy. A genetic algorithm (GA) with a heuristic method has been applied 
for the inspection optimization models of multi-unit systems [16, 17]. Zhao and Yun 
[18] designed a hybrid estimation of the distribution algorithm (EDA) to find the 
optimal inspection time points to minimize the life cycle cost and satisfy the interval 
availability required. 

For the one shot system, in addition to inspection policies, optimization problems 
such as operational use (launching order) [19], and functional redundancy allocation 
[20] were also studied, which are not included in this review study. Although a 
number of inspection optimization models for various systems in reliability area have 
been published, there are a limited number of inspection models for one shot systems. 
Therefore, this study mainly reviews the existing inspection optimization models and 
methodology for one shot systems, intending to serve as guidance to both engineers 
and researchers so that decision-makers in reliability area of one shot systems can 
find the optimal inspection strategy of the one shot system. To summarize, in the area 
of reliability and cost optimization of one shot systems, the problem being actively 
studied is to determine the inspection intervals when a given target value is satisfied 
and the optimization problems to achieve this goal are classified into: 

• Calculating the storage reliability/availability of a one shot system (considering 
inspection equipment errors). 

• Determination of periodic/sequential inspection interval of a one shot system with 
repair. 

• Determining the optimal inspection interval of a one shot system consisting of 
multiple units. 

• Determination of the optimal inspection time points and preventive maintenance 
threshold of a one shot system that satisfies the target interval availability. 

This chapter is organized as follows. In Sect. 2, we introduce the one shot systems 
and summarized the characteristics of the system operation environment [21], system 
structures [22], and unit failure modes. Section 3 discusses the performance measures 
for one shot systems, including instantaneous availability and interval availability 
models. Storage availability models are established for a single-unit one-shot system 
and a one shot system with multi-units. Then, several optimum inspection models for 
one shot systems under different inspection and maintenance policies are reviewed 
in Sect. 4. Section 5 concludes the paper with directions for further research.
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2 One Shot Systems 

One shot system is a storage system that remains inactive (non-operating mode) 
in a particular environment for a long period of time when no missions need to be 
performed [23]. For example, fire extinguishers, missiles, and airbags are typical one 
shot systems. As a multi-unit system, such as the mid-range infantry-guided missile 
(MRIGM) system, the one shot system consists of missile-like one shot devices and 
portable or vehicle-mounted facility-like support equipment, as shown in Fig. 1. 

In general, units with a series structure in the one shot devices are usually divided 
into two types of independent units. Type 1 units in missiles are electronic devices 
(e.g., coolant pump, guidance unit) that fail at random times during storage period 
according to general failure distributions. In the existing literature, exponential and 
Weibull distributions are commonly used for describing the time to failures of type 
1 units. The failed units can be identified at inspection. Corrective maintenance 
(repair/replacement) is done to restore their function. If the failure time of the type 
1 unit follows an exponential distribution, we need to detect the failures of the units 
but it is not effective to maintain the units preventively. If the failure time of the

Fig. 1 An example of one shot system with regular equipment 
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type 1 unit follows a Weibull distribution with an increasing failure rate, the failure 
possibility of units may increase over time. To improve the system performance 
(system availability), it is useful to maintain the aging working units preventively 
at the inspection points, replacing the old type 1 unit that reached the preventive 
maintenance threshold with a new one. Type 2 units in one shot systems can be ejec-
tion unit, propulsion unit, main warhead, precursor warhead, thermal battery, and 
fuse, and their state deteriorates gradually and degradation beyond specific limits 
makes the system incapable of normal operation. Generally, the failures of type 2 
units can only be detected by destructive testing and the predetermined useful lifetime 
which is determined based on their reliability test in the development phase is given 
in advance. For example, the lifetime of the thermal battery is 10 years, and the other 
type 2 units in a missile are about 14–15 years. Type 2 units experience degradation 
during their storage period due to corrosion, thermal fatigue, or repeated shock load. 
It is hard to know the exact state of type 2 units, the degradation function is assumed 
to be known and the units fail when the degradation level exceeds a failure threshold. 
For preventing failures, the type 2 units whose degradation level reaches a preven-
tive maintenance threshold are replaced by new ones. Brownian motion, compound 
poisson process [24], gamma process [25, 26], and randomized degradation func-
tions proposed by Li and Pham [27] are widely used for modeling degradation in the 
reliability area. Some one-shot systems consist of one-shot devices and regular equip-
ment together and the one shot system functions normally on demand when the one 
shot device and regular equipment work together [22]. For example, a missile system 
needs support equipment to launch a missile and it is also composed of several units 
in series structure. As shown in Fig. 1, support equipment units such as the launch 
control, optics, and housing assembly in the launchers fail randomly, and the failure 
of units can be repaired upon failure because the failure can be detected immediately. 
The failure times of units follow some specific failure distributions, just like the type 
1 units in one shot devices. Without the assistance of support equipment, a one shot 
device cannot operate even if it is in a working state on demand. 

3 Storage Reliability (Availability) of One Shot Systems 

The systems like missiles, airbags, and fire extinguishers are required to survive 
prolonged periods of storage and perform a function successfully once only if needed. 
The ability of systems in a dormant state to keep their required functions is measured 
by storage reliability [28]. The reliability of a one shot system is defined as the 
probability that it performs the required function only once, and only when demanded, 
under stated conditions and for a specified period of time [19]. System reliability has 
been widely used as a system performance measure to assess storage systems [23]. 
The assessment of system storage reliability has been widely studied for several 
decades; see Merren [29], Zhao and Xie [30], Zhao et al. [31]; Su et al. [32], Zhang 
et al. [33], Liu and Liu [34]; Zheng and Xin [22].
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In particular, Zhang et al. [28] classified the analysis approach of storage reliability 
into three categories, namely physics-of-failure approaches, analytical modeling 
involving lifetime data, and accelerated storage test measures. Jang and Son [22] 
proposed a reliability estimation model of one shot system using quantal-response 
data expressed as success or failure numbers in samples to be tested at an arbi-
trary time point in the destructive inspection, and these data usually are collected by 
testing of one shot systems such as missile and airbag. Parametric, nonparametric, and 
Bayesian methods can be used to estimate reliability based on the quantal-response 
data. In destructive testing, it is difficult to collect sufficient lifetime information on 
the devices, an accelerated life-test (ALT) is usually performed in order to collect 
more failures in a short period of time [35–37], and usually, the lifetime distribution 
of the system is also unknown [38, 39]. Thus, the estimation problem of the system 
reliability of one shot system is the key but difficult one in the reliability research 
area. The reliability of the one shot system is affected by aging or degradation during 
storage periods and its reliability declines over time. To meet its high-reliability 
requirements, the system is periodically inspected, and the failed units are main-
tained. For these repairable systems, system availability is a more appropriate index 
to evaluate system performance. 

Inspection models for systems in which system failures can be detected only 
by inspection have been studied by many researchers in the reliability area [40]. 
Recently, Sarkar and Sarkar [41] studied the instantaneous availability and steady-
state availability of a safety system, which is maintained under periodic inspection 
and a perfect repair policy with constant repair time. Cui and Xie [42] did similar work 
by considering random downtime caused by repair. Tang et al. [43] investigated the 
system availability of a protective system considering non-negligible downtime and 
they obtained instantaneous availability and steady-state availability of a periodically 
inspected system with multiple failure modes. Qiu et al. [44] derived instantaneous 
availability and steady-state availability for a system suffering from hidden failures 
and steady-state availability is considered an optimization criterion to obtain the 
optimal inspection interval. 

Most works on instantaneous and steady-state availability of protective and safety 
equipment assumed hidden failures and they studied optimal inspection policies to 
detect failures. However, On the other hand, Martinez [45] first proposed a storage 
reliability problem for predicting the reliability of devices that must be in storage 
or dormant period for long time periods prior to usage. Storage reliability is defined 
as “the probability a device will perform its intended function after several years 
of storage,” and these devices are periodically tested while in storage. Even though 
the storage reliability model of Martinez [45] described well the characteristics and 
situations of many real one shot systems, few studies refer to this model when dealing 
with storage reliability (availability) and inspection problems. Kim and Yun [2] 
derived the instantaneous availability models before and after inspection respectively, 
when the time to system failure follows exponential and Weibull distributions. Perfect 
repair is considered in the exponential case, and minimal repair is considered in the 
Weibull distribution case. They also assumed that undetected failures cannot be 
detected until the system reaches its lifetime.
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In general, the steady-state (average/mean/limiting) availability is defined as the 
average proportion over a long time period when the system can operate, and it is 
usually used as a main reliability measure to evaluate the performance of complex 
repairable systems. Kitagawa et al. [3] assumed minimal repair is performed when a 
failure is detected, and the one shot system is replaced when the nth failure is detected. 
They derived the mean availability for a single-unit one shot system. The duration 
between two successive replacements is regarded as one cycle and the downtime 
due to inspection, minimal repair, and replacement is considered. Kitagawa et al. [4] 
formulated the mean availability for a sing-unit one shot system when it is replaced 
after nth failure and at the mth periodic inspection point, respectively. However, since 
one shot system performs tasks suddenly at an unknown time point, (for example, the 
pop-up airbags in a car accident), availability during finite horizon is more suitable 
as an optimization criterion to analyze and optimize the one shot systems. Hence, 
interval availability which is the average probability that the one shot system is in a 
functioning state between the inspection times can be used as a measure to evaluate 
the performance of one shot systems. Yun et al. [21, 26], and Zhao and Yun [5] 
considered interval availability as the average proportion of time where the one shot 
system is functioning within a given inspection interval. 

Table 1 summarizes the various availability models for one shot systems that 
are studied in existing reliability and availability models. Based on the operation 
model, methodology, and performance measure, the existing models can be cate-
gorized. Three papers considered four phases in the operation situation of one shot 
systems and some papers estimated the system availability by simulation. Instanta-
neous and interval availabilities were used as the system performance measurement. 
Monte Carlo and discrete event simulation models are used to evaluate the interval 
availability of one shot systems with complex structures.

In this section, we introduce basic storage reliability (instantaneous availability) 
models for a single-unit one shot system with several operation phases and inspection 
errors in Sect. 3.1. In Sect. 3.2 an interval availability model based on periodic 
inspection for a multi-unit one shot system is also introduced. 

3.1 Instantaneous Availability for a Single- Unit One Shot 
System 

In this sub-section, we introduce two basic instantaneous availability models in which 
the one shot system has four operation phases. The one shot system is inspected 
(tested) periodically to detect the failures of parts and the parts that failed are sent 
back to storage after repair. Figure 2 shows the four phases and expresses an operation 
model that determines the storage reliability of the system after the system is produced 
in the factory and before use on demand. The system operation procedure in Martinez 
[45] is divided into factory test (Phase 1), Shipping transportation handling (Phase 
2), Pre-acceptance checkout (Phase 3), and Storage (periodic inspection, Phase 4)
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Table 1 Summary of contributions to one shot system availability 

Contribution System structure Operation model Methodology Performance 
measure 

Martinez [45] Single system; 
Single unit 

Four phases Mathematical Instantaneous 
availability 
(reliability) 

Cui et al. [1] Single system; 
Single unit 

One phase Mathematical Instantaneous 
availability and 
Limiting average 
availability 

Yun et al. [21] Single system; 
Multi-unit; Series 

One phase Mathematical and 
discrete-event 
simulation 

Interval 
availability 

Yun et al. [26] Single system; 
Multi-unit; Series 

One phase Discrete-event 
simulation 

Interval 
availability 

Kim and Yun 
[2] 

Single system; 
Single unit 

Four phases Mathematical Instantaneous 
availability 

Kitagawa et al. 
[3] 

Single system; 
Single unit 

Four phases Mathematical 
(descent method) 

Mean availability 

Kitagawa et al. 
[4] 

Single system; 
Single unit 

One phase Mathematical 
(approximation) 

Mean availability 

Liu et al. [17] Multiple system; 
Multi-unit; Series 

One phase Discrete-event 
simulation 

Interval 
availability 

Zhao and Yun 
[18] 

Multiple systems; 
Multi-unit; Series 

One phase Discrete-event 
simulation 

Interval 
availability 

Zhao and Yun 
[5] 

Single system; 
Multi-unit; Series 

One phase Mathematical and 
Monte Carlo 
simulation 

Interval 
availability

before use, and in phase of storage, periodic inspection is performed. Each phase has 
a different time period and failure rate and the failed system detected by inspection 
is maintained and returned to storage. 

Fig. 2 Storage reliability model under periodic inspection [45]
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3.1.1 Martinez Storage Availability Model 

Martinez [45] calculated the number of expected failures in the pre-storage stage as 
the sum of expected failures occurring in Phases 1–3 as shown in (Eq. 1), considering 
inspection errors. 

F3 = (1 − α1)λE T1 + (1 − α3)(λS2T2 + λE T3) (1) 

Then, the system reliability before storage is 

R = e−F3 (2) 

During the T 4 period, the one shot system stays in storage, and then the system 
is powered on for inspection during the TT period. After inspection, the system is 
turned off and goes back to storage. Then, the time to turn the system on and off for 
inspection is the time the system is operated during the storage period. Hence, the 
expected number of failures during one cycle in the storage state is given in (Eq. 3). 

FP = λS4T4 + λE TT + λCC (3) 

where λC is the power on–off cycling failure rate and C is the number of test cycles 
in the test interval. Using (Eqs. 1 and 3), the system reliability is calculated before 
and after N th inspection. 

RN (Min) = e−[(N−1)(1−α4)FP+F3] × e−λS4T4 (4) 

RN (Max) = e−[N (1−α4)FP+F3] (5) 

3.1.2 Kim-Yun Instantaneous Availability Model 

Kim and Yun [2] modified the storage reliability model under periodic inspection 
in the one shot system of Martinez [45] in which the failures of one shot system 
during four operation phases follow exponential distributions, which can be applied 
to a system with a general failure distribution model. System instantaneous avail-
ability can be obtained by calculating the reliability of each phase. Let Ri denote the 
probability that the system is working after the inspection of phase i. Thus, R1 is the 
probability that the system is passed at factory test, which includes the probability 
that the system is not failed until inspection at the factory, and the probability that 
the system fails, but the failure is detected and maintained to a new one. R2 is the 
probability that the system survives at the pre-acceptance checkout, including the 
probability that the system survives until arrival at the storage location after trans-
portation and the probability that the system is failed, the failure is detected and
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maintained to a new one. In addition, R3 is the probability that the system survives 
at periodic tests after long-term storage, which includes three types of probabilities. 
The first one is the probability that the system survives the test after storage, the 
second one is the probability that the failure does not occur at the C times on–off 
tests of inspection equipment, and the last one is the probability that the failures 
are detected by inspection and maintained to a new one. Exponential and Weibull 
distributions are considered as the distribution of the time to system failure. 

3.1.3 Exponential Case 

If the failure time of the system follows an exponential distribution, reliability before 
and after the test can be obtained. 

R1 = e−λE T1 + α1(1 − e−λE T1 ) 

R2 = e−λS2 T2−λE T3 + α3(1 − e−λS2 T2−λE T3 ) 

R3 = e−λS4 T4−λE TT · (1 − λc)
C + α4

{
(1 − e−λS4T4 ) + e−λS4T4 · (1 − e−λE TT ) 

+ e−λS4T4−λE TT ( 
C−1∑

i=1 

λC (1 − λC )
k

}

(6) 

Storage availability (RN ) is defined as the probability that the system is working 
at N th inspection after storage. Thus, the storage availabilities before and after N th 
inspection, RN(min) and RN(max), are derived. 

RN (min) = (R1 · R2 · RN−1 
3 ) · e−λS4 t 

RN (max) = R1 · R2 · RN 
3 (7) 

3.1.4 Weibull Distribution Case 

When the time to failure of the one shot system at each phase has a Weibull distri-
bution with the same shape parameter. In order to derive the system availability, 
the cumulative exposure model (CEM) to failure distributions at different phases is 
assumed [46]. When the system is failed, the failure is maintained at the inspection, 
and the system is assumed to be repaired minimally (minimal repair assumption) and 
be restored to the same condition as the condition before the failure. 

The probabilities that the system is working at the inspection of phase i(i = 1, 2, 
3) are given
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R1 = e−(λE Ta )β + α1

{
1 − e−(λE Ta )β

}

R2 = 
e−{λs2 (T 

∗
a +Tb)}β−{λE (T ∗ 

b +Tc)}β 

e−(λs2T ∗a )β−(λE T ∗ 
b )

β
+ α3

(

1 − 
e−{λs2 (T 

∗
a +Tb)}β−{λE (T ∗ 

b +Tc)}β 

e−(λs2T ∗a )β−(λE T ∗ 
b )

β

)

R3 = 
e−{λs4 (T 

∗
c +Ts)}β−{λE (T ∗s +TT )}β 

e−(λs4T ∗c )β−(λE T ∗s )β
× (1 − λC )

C 

+ α4

[(

1 − 
e−{λs4 (T 

∗
c +Ts)}β 

e−(λs4T ∗c )β

)

+ 
e−{λs4 (T 

∗
c +TT )}β 

e−(λs4T ∗c )β ×
(

1 − 
e−{λE (T ∗s +TT )}β 

e−(λE T ∗S )β

)

+ 
e−{λs4 (T 

∗
c +TT )}β−{λE (T ∗d +TT )}β 

e−(λs4T ∗c )β−(λE T ∗s )β
× 

C−1∑

k=0 

λC (1 − λC )
k

]

(8) 

where T ∗a = λE 
λs2 

Ta, T ∗ 
b = λs2 

λE

(
T ∗a + Tb

)
T ∗c = λE 

λ4

(
T ∗ 
b + Tc

)
, T ∗s = λs4 

λE

(
T ∗c + Ts

)

Thus, the availability just before and after N th inspection are: 

RN (Min) = 

⎧ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

R2 × 
e−{λs4 (T 

∗
c +Ts)}β−{λE (T ∗s +TT )}β 

e−(λs4T ∗c )β−(λE T ∗s )β
+

(

1 − 
e−{λs4(T ∗c +Ts)}β 

e−(λs4T ∗c )β

)

+
(
e−{λs4(T ∗c +TT )}β 

e−(λE T ∗s )β
×

(

1 − 
e−{λE (T ∗s +TT )}β 

e−(λE T ∗s )β

))

, N = 1 

RN−1 × 
e
−

{
λs4

(
T ∗TN−1

+Ts
)}β −

{
λE

(
T ∗sN−1

+TT
)}β 

e−(λs4T ∗ 
TN−1 

)β−(λE T ∗sN−1 
)β

+ 

⎛ 

⎝1 − 
e
−

{
λs4

(
T ∗TN−1

+Ts
)}β 

e−(λs4T ∗ 
TN−1 

)β 

⎞ 

⎠ 

+ 

⎛ 

⎝ e
−

{
λs4

(
T ∗sN−1

+TT
)}β 

e−(λE T ∗sN−1 
)β

× 

⎛ 

⎝1 − 
e
−

{
λE

(
T ∗sN−1

+TT
)}β 

e−(λE T ∗sN−1 
)β 

⎞ 

⎠ 

⎞ 

⎠, N ≥ 2 

(9) 

RN (Max) =
{
R3, N = 1 
RsN  , N ≥ 2 

(10) 

3.2 Interval Availability for a Multi-Unit One Shot System 

In the previous section, we introduced the instantaneous availability models of a 
single-unit one-shot system with multi-phases. In this section, we consider a multi-
unit one-shot system with a series structure. Zhao and Yun [5] proposed a storage 
availability (interval availability) model for a multi-unit one shot system with an 
imperfect inspection. The failure of each unit in the system can be detected with a
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Fig. 3 Interval availability of one shot system [5] 

constant probability, α. In their model, the one shot system is perfect and all units 
in the one shot system are working at the starting point of the first storage. The one 
shot system is inspected periodically and there are two cases in which undiscovered 
failures can be detected at the following inspections or are no longer detected. For 
the one shot system under periodic inspection, the interval availability is proposed to 
evaluate the performance of the one shot system. The interval availability, A(k, T ), 
is defined as the mean proportion of uptime within the inspection interval under the 
condition that the one shot system is working at the starting time point, as shown in 
Fig. 3. 

The interval availability between kT and (k + 1)T is 

A(k, T ) = 
UT  (k, T ) 

T
= 

y1(k, T )
∫ (k+1)T 
kT R(x, T )dx  

T 
= y1(k, T ) · Aav(T ) (11) 

where R(x, T ) is the reliability at x when the inspection interval is T, the  Aav(T ) 
is the expected fraction of operating time during a given interval T. The  y1(k, T ) 
represent the probability that the system working at the time kT, k = 1,2, …, K, 
which is calculated differently, depending on the assumption whether the discovered 
failure can be detected again. 

Thus, the interval availability between 0 and kT, can be calculated from A(i, T ), 
i = 0, 1, …, k − 1. When the failure times of units follow exponential distributions 
with failure rates, λi, i = 1,..,n, Aav(T ) is  

Aav(T ) = 
1∑n 

j=1 λ j

(
1 − e− ∑n 

j=1 λ j T
)

T 
(12) 

Because the one-shot system has a series structure. 

3.2.1 Case in Which Undiscovered Failures Cannot Be Detected 
Eventually 

The system is perfect before the first storage, and the probability is y1(0, T ) = 1. 
When k > 1, y1(k, T ) is the achievement of two independent probabilities, namely 
the probability of the system working at the time (k-1)T, y1((k − 1), T ), and the
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probability of the system being functional after interval T, p(1,1,…,1): 

y1(k, T ) =
{
1, k = 0 
y1((k − 1), T ) × p(1, 1,...,1), k > 0 

(13) 

The state vector (1, 1, …, 1) means that all units are in a working state, and the 
probability of state vector (1, 1, …, 1) after one cycle T is 

p(1,1,...,1) = 
nπ

j=1 

R j (T )+αF1(T ) 
nπ

j=2 

R j (T )+ · · · +αn−1 
n−1π

j=1 

Fj (T )Rn(T ) 

+ αn 
nπ

j=1 

Fj (T ) (14) 

where Rj(T ) is the storage reliability of unit j at time t. and α is the probability that 
a failures is detected. 

3.2.2 Case in Which Undiscovered Failures Can Be Detected Again 

This case considers the probability that the failures being undiscovered at the (k − 
1)th inspection, detected and repaired at the kth inspection, which is denoted by 
(z(k − 1), T ). 

y1(k, T ) = 

⎧ 
⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

1, k = 0 
nπ

j=1 

R j (T ) + αF1(T ) 
nπ

j=2 

R j (T ) + ... 

+αn−1 R1(T ) 
nπ

j = 2  

Fj (T ) + αn 
nπ

j=1 

Fj (T ), 

k = 1 

y1((k − 1), T ) · p(1, 1,...,1) + z((k − 1)T ), k > 1 

(15) 

where 

z((k − 1), T ) = y0,1,...,1((k − 1), T )α 
nπ

j=2 

R j (T ) + · · ·  +  y0,0,...,1((k − 1), T )αn−1 Rn (T ) 

+ 

⎛ 

⎝y0,1,...,1((k − 1), T ) 
nπ

j=2 

Fj (T ) + · · ·  +  y0,0,...,1((k − 1), T )Fn (T ) 

+ y0,0,...,0((k − 1), T )αn
)

Since there are n units in the model, and the unit state xi (i = 1,2,..,n) also has ‘0’ 
and ‘1’ state, then y0, 1,…,1((k-1), T ) is the probability that the system fails and the 
units are in the state (0, 1, …, 1) at (k − 1)T.
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For problems where it is difficult to calculate interval availability analytically, 
researchers also used the Monte Carlo [5] or discrete event simulations [17, 21, 26] 
to evaluate the interval availability when one shot systems having multiple units, 
complex failure modes and maintenance processes are under consideration. 

4 Inspection Policies of a Single One Shot System 

In Sect. 3, we introduced the instantaneous availabilities of a single-unit one shot 
system and the interval availability of a multi-unit one-shot system. One shot system 
like airbags needs to ensure that their functions are successfully implemented as 
needed throughout the lifetime, regardless of their storage time. However, during 
storage, the electric and chemical parts of the system can be affected by many kinds 
of environmental factors such as temperature, humidity, and mechanical stresses. 
The one shot system can fail to perform the function required on demand because 
some kinds of electronic and electric parts degrade over time [47, 48]. The state of 
the one shot system only can be observed when the system is operating or inspected. 
Therefore, maintenance-related actions (inspection, repair, and replacement) are 
required to ensure high storage reliability throughout the lifetime of the one shot 
system. Conducting either periodical or continuous inspection is an effective way of 
observing the state of standby [49, 50], safety [51], protection [51], hidden failure 
[43, 44] or storage system and assessing their degradation. Nakagawa [40] reviewed  
and summarized several inspection models 413 for systems with standby units. Naka-
gawa and Mizutani [52] reviewed three inspection models over a finite time span: 
periodic inspection, sequential inspection, and asymptotic inspection. 

For the one shot system, Ito and Nakagawa [7] considered the periodic inspection 
policy for a one shot system with two units. The system is inspected periodically 
until the system reliability is equal to or lower than a predetermined value q, at which 
time the system is overhauled. After each inspection, unit 1 is maintained as a new 
one, while the failure rate of unit 2 remains unchanged. An optimal inspection time 
that minimizes average cost, including inspection and overhaul costs, is obtained. 
Ito et al. [8] further extended the work of Ito and Nakagawa [7] and considered 
unit 2 that consists of units 2–1 and 2–2. Unit 2–1 is replaced at the inspection, but 
unit 2–2 is not replaced. Expected total cost, including inspection cost and downtime 
(time elapsed between failure and its detection) cost, is considered as an optimization 
criterion to determine the optimal inspection interval. Later, Ito and Nakagawa [11] 
assumed that the system is replaced at inspection time points or before failure when 
its reliability becomes lower than q. In the periodic inspection policy of Ito and 
Nakagawa [12], unit 2 is assumed to have two failure rate functions, where one 
is degraded with time, and the other one is degraded at each inspection. Ito and 
Nakagawa [6] further extended this model by considering the expected cost rate 
model. Then they obtained the optimal inspection time that maximizes overhaul time 
and minimizes the expected cost rate. Cui et al. [1] derived instantaneous availability 
and limiting average availability models under periodic inspection for a single-unit
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storage system. Kitagawa et al. [9] proposed a periodic inspection policy for a multi-
unit one shot system. When a failure is detected, the unit is minimally repaired, and 
all units are replaced when nth failure is detected. Kitagawa et al. [4] proposed and 
compared number-of-failure-based (NOFB) and periodic policies for a single-unit 
one shot system with the periodic inspection. 

However, during the inspection, the age of the unit changes after each maintenance 
action, which depends on the maintenance model of each unit. This information 
should be used to decide upon the timing of the next inspection. Therefore, aperiodic 
inspection is more appropriate for the general distribution model. Nakagawa et al. 
[13] assumed that the system deteriorates with age and fails according to general 
distribution. They summarized two inspection policies (periodic and sequential) by 
considering a random working time. Then, they proposed an inspection policy that 
the system is inspected at every completion of the nth working times. Finally, a 
back review model that the system goes back to the latest inspection time when it has 
failed is appeared. Yun et al. [21] formulated an interval availability model to obtain 
an optimal inspection interval under the periodic policy. In addition, for a general 
distribution model, they used simulation to estimate the interval availability and life 
cycle cost under the aperiodic policy. Kitagawa et al. [3] also formulated an expected 
cost rate and mean availability under periodic and aperiodic inspection policies. 

Considering the effect of inspection, the inspection can be divided into perfect 
and imperfect ones. In most existing inspection models, it has been assumed that 
the inspection is perfect and can identify all system failures. However, in practice, 
Imperfect inspection is a common situation observed in the industry. Due to some 
operation errors, the aging of inspection equipment and other uncertain factors, the 
inspection may give a wrong result. Some failures in imperfect inspection remains 
unrevealed, and a functioning system is regarded as a failure; some researchers 
considered this practical situation in their inspection models; see Kaio and Osaki 
[53], Badia et al. [54], and Berrade et al. [55]. For one shot system, few studies 
consider inspection errors in their inspection models. In the availability models of 
Martinez [45] and Kim and Yun [2], due to inspection error, some failures remain 
unrevealed during all phases. Cho and Lee [10] presented a two-stage inspection 
policy in which the system is inspected by a simple inspection at periodic times. 
Later, a precise inspection was carried out to confirm the final state of the system 
if the result of the simple inspection showed that the system is in a state of failure. 
The probability of two types of errors were considered in the simple inspection: one 
is that an operating system might be regarded as failing with a constant probability 
a (0 ≤ a ≤ 1) and the other is the failure remains undiscovered with a constant 
probability b (0 ≤ b ≤ 1). 

This section summarizes, classifies, and compares inspection policies of one shot 
systems. Table 2 lists the various inspection policies for a single one shot system that 
is summarized from a number of existing optimal inspection models. From Table 2, 
Yun et al. [21] studied an inspection policy problem for a one shot system with two 
types of units over a finite time span, in which type 1 units should be maintained at 
inspection and type 2 units should be replaced by new ones at predetermined times.
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They proposed a heuristic method to find an optimal inspection interval, which satis-
fies a target interval availability when the time to failure of type 1 units follows an 
exponential distribution. In addition, when the failure time of type 1 units follows 
different distributions, a simulation-based optimization procedure with a genetic 
algorithm was proposed to find global optimal inspection times for the one shot 
system. Later, Yun et al. [26] considered a gamma process to model the degradation 
process of type 2 units and apply a gamma-bridge sampling method for simulating 
the gamma process. Preventive maintenance policies for type 1 and 2 units are consid-
ered to improve system interval availability. Zhao and Yun [5] recently proposed an 
imperfect model based on periodic inspection, and they assumed that the probability 
for failure identification, α, is a constant value. They derived interval availability 
and life cycle cost models that are considered as optimization criteria to obtain the 
optimal inspection interval analytically. They also used Monte-Carlo simulation to 
evaluate the interval availability and life cycle cost when a large-sized system is 
under consideration. A heuristic algorithm is proposed to find the optimal solutions.

This section explores the optimation problems to determine the optimal inspection 
interval or inspection time points of the one shot systems studied so far and reviews 
the typical methodologies. Section 4.1 introduces inspection policies for the single-
unit one shot system. Section 4.2 introduces inspection policies for the multi-unit 
one shot systems. 

4.1 Optimal Inspection Policies for Single-Unit One Shot 
Systems 

In this subsection, we introduce periodic and sequential inspection policies of single-
unit one shot systems in Kitagawa et al. [3]. In the paper, a single-unit one shot system 
is inspected with equal interval (periodic inspection model) or different intervals 
(sequential inspection model). The failure distribution of the one shot system is IFR 
(increasing failure rate). When the failure of the system is detected, the system is 
repaired minimally. At the nth failure of the system, the system is replaced by a new 
one. The objective is to find the optimal number of failures before replacement and 
the inspection intervals to minimize the expected cost rate ensuring a specified mean 
availability. 

4.1.1 Periodic Inspection Policy with Minimal Repair 

An optimal inspection interval and the number of minimal repairs before replacement 
are determined, which minimizes the expected cost rate and ensures a specified mean 
availability. The mean availability and expected cost rate under periodic inspections 
are given.
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Table 2 Summary of contributions on optimal inspection models for a single one shot system 

Contribution System 
structure 

Inspection 
policy 

Optimization 
criteria 

Methodology Decision 
variables 

Ito and 
Nakagawa [7] 

Single 
system; 
Two units 

Periodic Expected cost 
rate 

Mathematical Optimal 
inspection 
time; 
Time to 
overhaul 

Ito and 
Nakagawa 
[11] 

Single 
system; 
Two units 

Periodic Total expected 
cost until a 
replacement 

Mathematical Optimal 
inspection 
time 

Ito and 
Nakagawa 
[12] 

Single 
system; 
Two units 

Periodic Expected total 
cost until the 
detection of 
failure 

Mathematical Optimal 
inspection 
time 

Ito et al. [8] Single 
system; 
Three units 

Periodic Expected cost 
rate 

Mathematical Optimal 
inspection 
time; 
Optimal 
inspection 
number; 
Optimal 
replacement 
number 

Ito and 
Nakagawa [6] 

Single 
system; 
Two units 

Periodic Overhaul time 
Expected cost 
rate 

Mathematical Optimal 
inspection 
times T* 

Cho and Lee 
[10] 

Single 
system; 
Single-unit 

Imperfect 
Periodic 

Expected cost 
rate 

Mathematical Optimal 
inspection 
time T* and  
number of 
inspections N* 

Cui et al. [1] Single 
system; 
ingle-unit 

Periodic Expected cost 
until the 
detection of 
failure 

Mathematical Instantaneous 
availability 
and 
Limiting 
average 
availability 

Yun et al. [21] Single 
system; 
Multi-unit; 
Series 

Periodic 
Aperiodic; 
Replacement 

Interval 
availability; 
Life cycle cost 

Mathematical 
and Simulation 
model; 
GA and 
Heuristic 

Optimal 
inspection 
intervals

(continued)
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Table 2 (continued)

Contribution System
structure

Inspection
policy

Optimization
criteria

Methodology Decision
variables

Yun et al. [26] Single 
system; 
Multi-unit; 
Series 

Aperiodic Interval 
availability; 
Life cycle cost 

Simulation 
model; 
GA and 
Heuristic 

Inspection 
intervals; 
Preventive 
replacement 
ages; 
Preventive 
maintenance 
thresholds 

Kitagawa 
et al. [9] 

Single 
system; 
Multi-unit; 

Periodic Expected cost 
rate 

Mathematical; 
Monte-Carlo 
simulation 

Optimal 
inspection 
interval 

Kitagawa 
et al. [3] 

Single 
system; 
Single-unit 

Periodic and 
aperiodic 
Minimal 
repair 

Mean 
availability; 
Expected cost 
rate 

Mathematical; 
Simulated 
annealing 

Optimal 
number of 
failures until 
replacement; 
Optimal 
inspection 
interval 

Kitagawa 
et al. [4] 

Single 
system; 
Single-unit 

Periodic Mean 
availability; 
Expected cost 
rate 

Mathematical Number of 
failures until 
replacement or 
number of 
inspections; 
Optimal 
inspection 
interval; 

Zhao and Yun 
[5] 

Single 
system; 
Multi-unit; 
Series 

Imperfect; 
Periodic 

Interval 
availability; 
Expected life 
cycle cost 

Mathematical 
and 
Monte-Carlo 
simulation 

Optimal 
inspection 
interval; 
Number of 
inspections

Aav(n, T ) =
∑n 

l=1 μ
(l) 

(T + mI )
∑n 

l=1

∑∞ 
k=0 (kT  ) + (n − 1)m R + m P 

(16) 

C(n, T ) = CI
∑n 

l=1

∑∞ 
k=0 F 

(l) 
(kT  ) + (n − 1)CR + CP 

(T + mI )
∑n 

l=1

∑∞ 
k=0 F 

(l) 
(kT  ) + (n − 1)m R + m P 

(17) 

where CI , CR and CP refer to the inspection, minimal repair, and replacement 
costs, respectively; and mI , mR and mP refer to the mean duration of inspection, 
minimal repair, and replacement, respectively. The μ(l) denote the mean operating 
time between(l-1)th failure and lth failure. 

For a periodic inspection policy, the mean availability is unimodal with respect 
to inspection interval in many cases when the failure occurrences follow Weibull
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distribution. Let T * be the inspection interval that gives the maximum mean avail-
ability. Then, the expected cost rate is strictly decreasing for T > T *. Let  T 1 and 
T 2 be inspection intervals that satisfy Aav(n,T 1) = Aav(n,T 2) = AT and T 1 < T 2. A  
heuristic method is proposed to find the optimal T * for given n as follows. 

Step 1 Obtain T * using the golden section method. 
Step 2 If Aav(n, T*) <  AT , the optimal solution does not exist. Otherwise, get T 1, 

T 2 and C(n, T 2). 
Step 3 Get a minimal expected cost rate for [T 1, T *] using a descent method, and 

compare it to C(n, T 2). The lower one is the minimal expected cost rate and 
T is optimal. 

Then, we change the value of n, compare the expected cost rates and finally 
determine the optimal (n, T ). 

4.1.2 Sequential Inspection Policies with Minimal Repair 

In the sequential (non-periodic) inspection model, the inspection interval is changed 
after the failure of the system is detected and the system is repaired minimally. 
T (1),…,T (n) are inspection intervals between minimal repairs and the system is 
replaced when nth failure is detected. If the failure time of the system follows a 
Weibull distribution with scale parameter η and shaper parameter β (β > 1) and the 
system failures can be detected immediately, the mean operation time between the 
(l-1)th failure and the lth failure is 

μ(l) = 
∞∮

0 

[H (t)]l−1 

(l − 1)! e
−H(t) dt  = 

η 
β

┌(l + 1
/

β − 1)
┌(l) 

(18) 

where H(t) is the cumulative hazard rate function. The mean availability of the system 
and expected total cost rate are given. 

Aav(T 
(1) , . . . ,  T (n) ) =

∑n 
l=1 μ

(l)

∑n 
l=1

∑∞ 
k=0

{
(T (l) + mI )F 

(l) 
(kT  (l))

}
+ (n − 1)m R + m P 

(19) 

C(T (1) , . . . ,  T (n) ) = CI
∑n 

l=1

∑∞ 
k=0 F(l)

(
kT  (l)

) + (n − 1)CR + CP
∑n 

l=1

∑∞ 
k=0

{
(T (l) + mI )F 

(l) 
(kT  (l))

}
+ (n − 1)m R + m P 

(20) 

In order to obtain the optimal n and T (1),…,T (n), a simulated annealing algorithm 
is used and the procedure for a fixed n is shown as follows.
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Step 1 Choose an initial solution {T (1), …, T (n)} that satisfies Aav≥AT , and calculate 
its expected cost rate. 

Step 2 Change inspection intervals randomly from each present interval within + 
3.0. 

Step 3 Calculate the expected cost rate and mean availability. If the new availability 
satisfies Aav≥AT and the new expected cost rate is lower than the old one, 
renew the solution. However, if the new availability satisfies Aav≥AT and 
the new expected cost rate is larger, renew the solution with probability 
exp(−D/t), where t is temperature and D is the difference in expected cost 
rate. Otherwise reject the new solution. 

Step 4 If the solution is not improved during 200 times repetitions in a series, 
determine the optimal solution as the present solution. Otherwise, multiply 
t by 0.95 (geometric cooling schedule) and go to step 2. 

Then, change the value of n, compare the expected cost rates and finally determine 
the optimal (n, T (1), …, T (n)). 

4.2 Optimal Inspection Policies for Multiple Units One Shot 
Systems 

In this subsection, we introduce periodic and sequential inspection policies for multi-
unit one shot systems. In the paper, multi-unit one shot systems are inspected with 
equal intervals (periodic inspection model) or different intervals (sequential inspec-
tion model). Some units can be maintained and other units cannot be maintained in 
multi-unit one shot systems at inspection. Additionally, the system is replaced based 
on pre-specified conditions, for example, at periodic times NT to hold high reliability. 
The objective is to find the inspection intervals to minimize the expected cost rate 
ensuring a specified system performance measure (for example, availability). 

4.2.1 Periodic Inspection Policy of a One Shot System with Two Types 
of Units 

Ito and Nakagawa [7] proposed a basic inspection optimization model for a multi-unit 
one shot system They assume that a one shot system consists of two types of units 
and unit i has a cumulative hazard function Hi(t)(i = 1, 2). The system is inspected 
and maintained at periodic times NT (N = 1, 2….) and is overhauled if the reliability 
is small or equal to q. Unit 1 is maintained and becomes new after every NT and unit 
2 is not done, i.e., its hazard rate remains unchanged by any inspection. 

Inspection and overhaul costs are considered, and the expected cost rate is derived. 
The optimal inspection interval T and inspection number N to minimize the expected 
cost rate are obtained from the required system reliability, q. The time to overhaul is 
NT + t0, where t0(0 < t < T ) and exp[−H1(t0) − H1(t0)] = q should be satisfied.
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The expected cost rate C(T ) = Nc1 + c1/NT  + t0, and the optimal inspection 
interval T minimizes the expected cost rate and satisfy the equation. Ito and Nakagawa 
[11, 12] proposed a periodic inspection of a one shot system with two types of units 
in which unit 1 is inspected and maintained at each inspection, but unit 2 is not 
done. The system is replaced at the inspection of failure or at the time when the 
reliability is below pre-specified reliability. Ito et al. [8] considered three types of 
units in a one shot system in which unit 1 is maintained at each inspection, unit 2 
is not maintained at each inspection but is replaced after N th inspection, and unit 
3 is not maintained and replaced. Ito and Nakagawa [6] considered the degradation 
effect of power on–off cycles for the hazard rate of the one shot system. 

Yun et al. [21] introduced periodic inspection policies for a one shot system with 
two types of units. Exponential and general distributions are assumed for the failure 
times of type 1 units and type 2 units are replaced at pre-determined time points. 
They proposed two optimization models to find optimal inspection intervals over 
a finite time period. They derived the interval availability under the assumptions 
of exponential distribution for failure times of type 1 units and series structure. 
Therefore, the failure rate of the system is the sum of all failure rates of type 1 units, 
λs. The expected uptime in an inspection interval T is 

T∮

0 

tλse
−λs t dt  + T e−λs T (21) 

and let ta and tb is the system moving times in which none of the units fail or at least 
one unit fails, respectively. 

The expected total time of one inspection cycle is 

T + tae−λs T + tb(1 − e−λs T ) (22) 

Thus, the interval availability A(0, T ), is the proportion of the expected uptime 
within an inspection interval T, 

A(0, T ) = 1 − e−λs T 

λs
[
T + tae−λs T + tb(1 − e−λs T )

] (23) 

The objective is to determine optimal inspection intervals with given replace-
ment times of type 2 units and they use the following heuristic procedure to obtain 
reasonable inspection intervals to satisfy the target interval availability. 

Step 1 Input data of reliability and maintainability of units and set the target interval 
availability, AT . 

Step 2 Generate the initial inspection schedule only with replacement times of type 
2 units. 

Step 3 Obtain the interval availability, Ak (for all k) for the current inspection 
schedule [refer to (Eq. 24)].
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a. If AT ≤ Ak (for all k), terminate the procedure. 
b. If AT > Ak (for some k), select the longest period among inspection 

periods that does not satisfy the target interval availability and go to Step 
3. 

Step 4 Add another inspection point in the inspection period, and go back to Step 
2. 

4.2.2 Periodic and Sequential Inspection Policies of Multi-unit One 
Shot Systems 

Yun et al. [21] considered also another inspection optimization problem of a multi-
unit one shot system in which the failure and repair times of type 1 units follow general 
distributions. Additionally, they considered a preventive maintenance in which type 1 
units deteriorated are maintained preventively at inspections time points. They used 
the interval availability and life cycle cost as the optimization criteria, which are 
estimated by the discrete-event simulation model, in which the age reduction factor 
is used to calculate the ages of type 1 units after repair and preventive maintenance 
at inspection times. the expected life cycle cost consists of the total inspection cost 
(IC) total repair cost for type 1 units (CM), total replacement cost (RM) for type 2 
units, and penalty cost (Pl). The objective function is expressed as follows 

Min TCl = IC  + 
N1∑

i=1 

CMi+ 
N2∑

j=1 

RM  j + Pl 

Subject to Alk ≥ AT (24) 

where AT is the target availability, and penalty cost of alternative l, Pl = TCl × 
(AT − Alk) × ω (ω is weighting factor) and the penalty cost is added to the fitness 
value in the genetic algorithm (GA). 

A heuristic method and GA are used for generating alternative solutions. The 
concept of the heuristic method is to update the inspection intervals obtained from 
the GA, that is, to extend the inspection interval until the target interval availability 
is satisfied. 

Step 1 Input the data for simulation and set the target interval availability. 
Step 2 Generate alternative solutions (inspection intervals) from GA, and calculate 

the corresponding interval availability and life cycle cost by simulation. 
Step 3 Check whether the interval availability for each inspection interval k satisfies 

the target interval availability. If not, go back to Step 2. Otherwise, update 
the inspection interval by a heuristic method. 

Step 4 Generate statistics from the global best solution.



A Summary of Inspection Policies of One Shot Systems 377

4.2.3 Sequential Inspection Policy with Preventive Maintenance 

The one shot system considered in Yun et al. [26] is the one shot device introduced 
in Sect. 2, which is composed of two types of units, as shown in Fig. 4. Type 1 
units fail at a random time, and a general distribution model is used to describe 
their failure time. Because type 1 units, such as the guidance system assembly in 
missile, are intended to age over time [47]. A Weibull distribution with an increasing 
failure rate is generally used as its failure time distribution. The failures of type 1 
units can be detected and maintained at inspection. Type 2 units, such as the main 
warhead in missiles, degrade with time, and defects of type 2 units grow according 
to deterioration processes modeled as gamma processes. The failures of type 2 units 
only can be identified by destructive inspection. Therefore, an age-based preventive 
maintenance policy for type 1 units and a condition-based preventive maintenance 
policy [56] for type 2 units are applied to improve the system performance measure. 

Inspection with maintenance policies proposed are summarized as follows: 

• The one shot system is inspected at time tp (p = 1, 2,…). 
• Corrective replacement is performed when failures of type 1 units are detected 

at inspection or the degradation level of type 2 units exceeds a pre-determined 
failure threshold. 

• A preventive replacement is performed when the age of type 1 units exceeds a 
preventive replacement age, or degradation level of a defect exceeds a preventive 
maintenance threshold at inspection.

Fig. 4 A one shot system in Yun et al. [26] 
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Life cycle cost (LC) is used as an optimization criterion to evaluate the system 
performance, including the inspection operation cost (CI ) of the system and correc-
tive maintenance (CI 

CM) and preventive maintenance (CI 
PM ) costs of each unit i (i = 

1, 2,…, N) in the one shot system based on the maintenance actions. Interval avail-
ability is also included, defined as a mean proportion of uptimes within the inspection 
intervals, as another optimization criterion. They aimed to simultaneously determine 
the optimal inspection interval, preventive replacement ages of type 1 units, and PM 
thresholds of type 2 units in the one shot system that satisfies the target interval 
availability (AT ) and minimizes the total life cycle cost. 

The objective function for a one shot system is formated as : 

Min E[LC] = CI × T I+ 
N∑

i=1

{(
Ci 
CM  × E

[
CMi

]) + (
Ci 

PM  × E
[
PMi

])}

subject to AIp ≥ AIT , ∀p (25) 

where TI is the total number of inspections and AIP is the interval availability of pth 
period. 

To solve this optimization inspection model, they proposed a method to optimally 
determine inspection intervals of a one shot system. First, a simulation-based opti-
mization procedure using a hybrid genetic algorithm is proposed. A gamma-bridge 
sampling method [57] is applied to simulate the gamma process for describing the 
degradation process of type 2 units. Second, they explained a hybrid genetic algorithm 
with a heuristic method to generate alternatives. In the hybrid genetic algorithm, they 
first generated the decision variables using a genetic algorithm, and then the heuristic 
method is used to improve the interval availability by adjusting the generated decision 
variables. Finally, the adjusted decision variables are checked again. 

Similar to the optimization approach of Yun et al. [21], a hybrid genetic algorithm 
with a heuristic method is used to solve the problem. The detailed procedure is as 
follows: 

Step 1 Input simulation data and set target availability. 
Step 2 Generate alternatives using the hybrid genetic algorithm with a heuristic 

method. 

a. Generate inspection intervals, preventive replacement ages of type 1 
units, and PM thresholds of type 2 units by the genetic algorithm. 

b. Improve the interval availability of alternatives by the heuristic method. 

Step 3 Estimate the interval availability and life cycle cost through simulation. 

a. If AIp ≥ AT (for all p), set the current best solution as the global best 
solution and terminate the procedure. 

b. If AIp ≥ AT (for at least one period), go back to Step 2 to generate new 
alternatives.
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5 Conclusions and Further Studies 

Over the past decades, the importance of modeling one shot systems for system reli-
ability and inspection optimization policies has been recognized by researchers and 
field engineers. We summarized the existing literature on system structure, unit failure 
mode characteristics, operation environment, and other descriptions. The storage 
reliability quantification methods and the optimization inspection strategies under 
different inspection and maintenance policies are classified and reviewed. 

Martinez [45] proposed firstly a storage reliability throughout the life cycle of 
storage devices from the perspective of inspection, to consider the inspection error 
from the factory inspection to the storage inspection cycle. Several papers continu-
ously provided more rigorous analysis and improvements of the mathematical model 
in Martinez [45], including the refinement of the system from the single unit to multi 
units, and the generalization of the failure time distribution of the units in the relia-
bility model. Since the one-shot systems are maintained after inspection, the systems 
are included to repairable systems and the instantaneous or mean availabilities as 
the performance evaluation criteria of the system are more suitable. Yun et al. [21] 
proposed and defined the interval availability between inspections since the missions 
of one shot system can occur suddenly between inspections, which is more suitable to 
evaluate the performance of a system subjected to continuous inspection and main-
tenance activities during the storage period. Then, the interval availability model 
for a multi-unit one shot system when the inspection is imperfect and periodic was 
summarized. Later, the interval availability model of multi-unit one-shot systems 
under periodic and imperfect inspection [5] and the discrete-event simulation model 
considering a more complex operation, inspection, and maintenance processes with 
support equipment were discussed respectively. 

Through classification analysis, we found that availability and cost terms are 
mainly used as optimization criteria in the research on inspection optimization 
problems. The common inspection optimization inspection models for one shot 
systems include (1) determine the inspection and maintenance policies (inspec-
tion interval/inspection time point/overhaul time point, etc.) to maximize avail-
ability(instantaneous, mean, or interval availability); (2) determine the minimum 
costs (expected cost rate, expected cost over the renewal cycle or life cycle cost) of 
the inspection and maintenance plan; (3) determine the inspection and maintenance 
plan that satisfies the cost constraint and maximizes the availability; (4) determine 
the inspection and maintenance plan that satisfies the availability constraint and mini-
mizes the cost. Based on the earlier works on optimization models and unit character-
istics analysis, Yun et al. [26] further considered the age-based PM for type 1 units, 
which age over time, and the condition-based PM for type 2 units, which degrades 
with time. They determined the optimal inspection times, the optimal preventive 
maintenance age for type 1 units, and the optimal preventive maintenance threshold 
for type 2 units simultaneously by simulation. 

With the increasing scale and more complex inspection and maintenance poli-
cies of one shot systems, the interval availability and life cycle cost are hard to
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be obtained by an analytical method. Instead, Monte Carlo and discrete-event simu-
lations have frequently appeared in the recent literature as system availability evalu-
ation methods. Several meta-heuristic methods are designed to find the optimal solu-
tions for inspection optimization problems. Even though the proposed approach is 
capable of addressing complex optimization problems of one-shot systems involving 
realistic models and general failure distributions, more efficient simulation and opti-
mization algorithm are required and the analytical models and optimization topics 
are still promising research area. 

The existing research results of storage reliability and inspection models of one-
shot systems this topic can be extended to the modeling and maintenance optimization 
of the availability of hidden failures, stand-by structure, protection systems and safety 
systems with the nature of “the time of failure is unknown and the system state can 
only be identified by inspection”. 

Based on the above review, the following ideas can be used as the research direction 
or topics for further research. 

• One shot systems usually have batch and long-term storage modes. Therefore, the 
more scientific sampling method and the availability model of one-shot systems 
under different sampling inspection methods are worth for further discussion. 

• The repair network (operation, inspection, and maintenance) of one shot systems 
like missiles is a multi-echelon maintenance system. Under different storage plans, 
the inspection policy and corresponding maintenance actions are also a research 
direction that needs further exploration 

• More practical unit failure models and mechanisms could be discussed; Multiple 
failure modes of electronic units, such as intermittent or cycle type failures, 
cascading failures, coupling effect between electronic and chemical units, and 
interaction between failure and inspection. 
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Analysis for Influence of Maintenance 
and Manufacturing Quality 
on Reliability of Repairable Systems 

Renyan Jiang, Wei Xue, and Yu Cao 

Abstract Reliability of a repairable system is usually modeled by a failure point 
process with system age as underlying variable. The system may undergo a reliability 
improvement process due to possible technology upgrades as well as manufacturing 
or/and maintenance quality improvement. New methods are needed to evaluate their 
influence on the reliability. This chapter aims to address this issue through introducing 
a maintenance experience measure and concept of system technology age. They 
are used as the underlying variables to analyze the influence of the maintenance 
and manufacturing quality on the reliability, respectively. A signal-to-noise-ratio-
based cluster analysis approach is also proposed to identify the change point of a 
function. The proposed approach can be used to determine whether or not the system 
undergoes a reliability growth. These concepts, approach and their appropriateness 
are illustrated through analyzing a real-world example that deals with a fleet of air 
conditioning systems of jet airplanes. The results show that the maintenance quality 
is poor and the fleet may undergo a reliability growth due to manufacturing quality 
improvement rather than due to technology upgrade. 

Keywords Repairable system · Maintenance experience measure · Maintenance 
quality · Technology age · Manufacturing quality · Cluster analysis 

1 Introduction 

An important topic for a fleet of repairable systems is to build the reliability models 
of systems and their key components. The resulting models can be used to optimize 
preventive maintenance decision of the system and to forecast spare parts demand 
of the components [1–3]. Since the inter-failure times (IFT) of the systems depend 
on maintenance depth (e.g., minimal repair or overhaul) and maintenance quality, 
the IFT data of a repairable system are generally not independent and identically
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distributed so that a life distribution is inappropriate as a system-level reliability 
model; and a failure point process is usually used as the system reliability model 
[4–6]. A typical model is the non-homogeneous Poisson process with a power-law 
mean cumulative function (MCF), whose underlying variable is system age. When 
the shape parameter (denoted as β) of the power-law model (PLM) is smaller than 
one, the system improves with its age; when β >  1, the system deteriorates; and 
when β = 1, the system is stationary. 

The reliability improvement can be achieved through improving manufacturing 
quality (including technology upgrade) [7] or maintenance quality improvement 
resulting from the accumulation of maintenance experience [8–10]. Few works deal 
with the reliability analysis in such situations though the maintenance quality prob-
lems have been explored in the literature [11–13]. Thus, new analysis methods are 
needed to evaluate the influence of the maintenance and manufacturing quality on 
the reliability. This chapter aims to address this issue. 

The concept of system technology age is introduced, a maintenance experience 
measure is defined, and a signal-to-noise-ratio-based cluster analysis approach is 
proposed. The maintenance quality can be evaluated through examining the short-
IFT-event point process with the maintenance experience measure as the underlying 
variable; and the overhaul quality can be evaluated through comparing the MCFs 
before and after the overhaul. Similarly, the influence of manufacturing quality [tech-
nology upgrade] on reliability can be evaluated through examining the change point 
of the mean time between failures (MTBF) [mean time to the first failure (MTTFF)] 
as a function of the technology age. These concepts, approach and their appropriate-
ness are illustrated through analyzing a real-world example that deals with a fleet of 
air conditioning systems of jet airplanes. The results show that the quality of both 
repair and overhaul is poor and the fleet may undergo a reliability growth due to 
manufacturing quality improvement. 

The chapter is organized as follows. Section 2 deals with the technology age 
and maintenance experience measure, and Sect. 3 presents the non-parametric esti-
mator of MCF and PLM. The proposed cluster analysis approach is presented in 
Sect. 4. Sections 5 and 6 deal with the evaluation of the maintenance quality and 
manufacturing quality, respectively. The chapter is concluded in Sect. 7. 

2 Concepts of Different Ages 

2.1 System Age, Technology Age and Maintenance 
Experience Measure 

Consider a fleet of nominally identical repairable systems, and each system is called 
a unit. Referring to Fig. 1, let  Ti denote the time for the i th unit (1 ≤ i ≤ n) to be  
put into use, wi denote the length of the observation window of the i th unit, and 
W = max(wi ) denote the length of the observation window of the fleet. The origin
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Fig. 1 Observation windows of fleet and its units 

of calendar time T is defined as the left end point of the observation window of the 
fleet, which is the earliest time when a certain unit is put into operation. Without loss 
of generality, assume that the right end points of the observation windows of all the 
units are the same. Thus, the observation window of the i th unit can be written as 
(Ti , W ) with Ti = W − wi . 

The IFTs of the  i th unit are denoted as 

(xi j  , 1 ≤ j ≤ ni ) (1) 

where ni is the total failure number of Unit i . The time to the first failure (TTFF) of 
unit i is xi1, and the MTTFF of the fleet is given by 

μ0 = 
1 

n 

n∑

i=1 

xi1 (2) 

The MTBF of Unit i is given by 

μi = 1 

ni − 1 

ni∑

j=2 

xi j (3) 

which excludes the influence of xi1, or  

μi = 
1 

ni 

ni∑

j=1 

xi j (4) 

which includes the influence of xi1. The MTBF of the fleet based on (3) is defined as
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μB = 1 

N0 − n 

n∑

i=1 

(ni − 1)μi (5) 

where N0 = ∑n 
i=1 ni . 

The age of Unit i at the j th failure is given by 

ti j  = 
j∑

k=1 

xik . (6) 

Let δi = wi − tini (δi ≥ 0) denote the time between the ni -th failure event and 
censoring event, which is a right-censored time. Let s(T ) denote the number of the 
units under operation at calendar time T , which is given by. 

s(T ) = 
n∑

i=1 

I (T > Ti ). (7) 

where I (.) = 1 if T > Ti ; otherwise, I (.) = 0. 
Generally, the maintenance quality problems decrease with accumulation of main-

tenance experience. Jiang et al. [14] use  T to describe the accumulation amount 
of maintenance experience. It is more reasonable to define the total number of 
repairs (denoted as N (T )) of the fleet over (0, T ) as a maintenance experience 
measure. Its introduction allows us to examine whether the unit undergoes a reliability 
improvement process due to the accumulation of maintenance experience. 

The manufacturing quality may get improved and the manufactured unit may 
undergo technology upgrades at some calendar times. Reference [14] defines Ti as 
the technology age of unit i . Its introduction allows us to examine whether the unit 
undergoes a reliability improvement process due to the technology upgrade or/and 
manufacturing quality improvement. 

2.2 A Real-World Example 

The data shown in Table 1 come from [1] and deal with the IFTs (in days) of the 
air conditioning systems of a fleet of Boeing jet airplanes. The data with an asterisk 
means that a major overhaul is completed at some time after that failure. To facilitate 
the analysis, it is assumed that the overhaul is conducted immediately after that 
failure and the time to complete the overhaul is omitted.

Since no information is available about the values of Ti and δi , we assume 

δi = 
μi 

2 
. (8) 

The length of the observation window of the i th unit is given by
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Table 1 IFTs of air conditioning systems 

Unit xij 

1 194 15 41 29 33 181 

2 413 14 58 37 100 65 9 169 447 184 

36 201 118* 34 31 18 18 67 57 62 

7 22 34 

3 90 10 60 186 61 49 14 24 56 20 

79 84 44 59 29 118 25 156 310 76 

26 44 23 62* 130 208 70 101 208 

4 74 57 48 29 502 12 70 21 29 386 

59 27* 153 26 326 

5 55 320 56 104 220 239 47 246 176 182 

33* 15 104 35 

6 23 261 87 7 120 14 62 47 225 71 

246 21 42 20 5 12 120 11 3 14 

71 11 14 11 16 90 1 16 52 95 

7 97 51 11 4 141 18 142 68 77 80 

1 16 106 206 82 54 31 216 46 111 

39 63 18 191 18 163 24 

8 50 44 102 72 22 39 3 15 197 188 

79 88 46 5 5 36 22 139 210 97 

30 23 13 14 

9 359 9 12 270 603 3 104 2 438 

10 50 254 5 283 35 12 

11 130 493 

12 487 18 100 7 98 5 85 91 43 230 

3 130 

13 102 209 14 57 54 32 67 59 134 152 

2 14 230 66 61 34

wi = δi + tini (9) 

and the time to be put into use is calculated by 

Ti = W − wi . (10) 

Table 2 shows the observation windows and life characteristics of units. As seen, 
the observation window of the fleet is determined by Unit 3 with W = w3 = 4665.

From (2) yields μ0 = 163.4, and from (5) yields μB = 88.45. These imply that 
the units are deteriorating with time.
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Table 2 Observation windows and life characteristics of units 

Unit xi1 μi , (3) μi , (4) δi wi Ti 

1 194 59.80 82.17 29.90 988 3677 

2 413 81.27 95.70 40.64 2735 1930 

3 90 83.29 83.52 41.64 4665 0 

4 74 124.6 121.3 62.32 4303 361 

5 55 136.7 130.9 68.35 3719 945 

6 23 60.86 59.60 30.43 3650 1014 

7 97 76.04 76.81 38.02 3900 765 

8 50 64.74 64.13 32.37 3645 1019 

9 359 180.1 200.0 90.06 3429 1236 

10 50 117.8 106.5 58.90 2498 2167 

11 130 493.0 311.5 246.5 1509 3156 

12 487 73.64 108.1 36.82 1957 2708 

13 102 79.00 80.44 39.50 2624 2041

Once Ti becomes known, the number of units under operation of the fleet at T can 
be calculated by (7), whose plot is shown in Fig. 2 and looks S-shaped. Similarly, it 
is easy to determine N (T ), whose plot is shown in Fig. 3 and also looks S-shaped. 

Fig. 2 Plot of s(T ) versus T 

Fig. 3 Plot of maintenance 
experience measure as a 
function of calendar time
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3 Mean Cumulative Function of a Failure Point Process 

3.1 Non-Parametric MCF Estimator 

According to (6), the failure time sequence of the i-th unit (1 ≤ i ≤ n) is given by 
(ti j  , j = 1, 2, .  .  .). Ignoring the repair times, the counting process (denoted as Ni (t)) 
represents the number of failure events of the i-th unit in (0, t]. That is, Ni (t) = j 
for ti j  < t < ti, j+1. Let  NF(t) denote the failure number per unit in a fleet. When the 
observation windows of all the units are the same, we have 

NF (t) = 
1 

n 

n∑

i=1 

Ni (t). (11) 

The MCF (denoted as M(t)) is the expectation of NF (t), which is the mean failure 
number per unit in (0, t]. For a given dataset, the empirical MCF can be obtained 
using the Nelson estimator [15]. Specific details are as follows. 

Pool the time-to-failure data (i.e., ti j  ’s) together and sort them in an ascending 
order. The sorted data are denoted as 

(tk; 1 ≤ k ≤ N0). (12) 

Let s(tk) denote the number of units at risk at time tk . If  wi = W for all the units, 
s(tk) = n; otherwise, s(tk) decreases with k. The former [latter] case is called the 
single censoring [multiple censoring]. The MCF at t+ 

k is defined as 

M
(
t+ 
k

) = M
(
t+ 
k−1

) + 1/s(tk), t0 = 0, M(0) = 0. (13) 

Since the Nelson estimator is a staircase function, we have M
(
t− 
k

) = M
(
t+ 
k−1

)
. 

We define the smoothed MCF at tk as 

M(tk) =
[
M

(
t+ 
k−1

) + M
(
t+ 
k

)]
/2. (14) 

The plot of the empirical MCF can have many different shapes [16]. According to 
the shape of the plot of the empirical MCF, one can select a proper theoretical model 
to approximate the empirical MCF. Let M0(t; θ ) denote the theoretical model with 
parameter set θ . The parameters can be estimated using the least squares method, 
which minimizes the sum of squared errors (SSE) given by 

SSE  = 
N0∑

i=1 

[M0(ti ; θ ) − M(ti )]2 . (15) 

The most widely used MCF model is the PLM given by 

M0(t) = (t/η)β; β, η > 0. (16)
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When β >  1, it is convex and can describe the failure behavior of a deteriorating 
system; when β <  1 it is concave and can describe the failure behavior of an 
improving system; when β ≈ 1, it is linear and can describe the failure behavior of a 
stationary system. Though it is flexible, the PLM is not always suitable to approximate 
an empirical MCF due to the complexity of shape of the empirical MCF [16]. 

3.2 Failure Intensity Function and Life Characteristics 

For a given M(t), the failure intensity function or the rate of occurrence of failure of 
the unit is defined as 

m(t) = dM(t)/dt. (17) 

Typical shapes of m(t) are increasing, decreasing and bathtub-shaped. 
An instantaneous MTBF function can be defined as 

μ(t) = dt/dM(t) = 1/m(t). (18) 

The interval MTBF function can be defined as 

μ(t0, t) = (t − t0)/[M(t) − M(t0)]. (19) 

Specifically, when t0 = 0, we have  

μ(0, t) = t/M(t). (20) 

3.3 Illustration 

Consider the data shown in Table 1. Figure 4 shows the plot of the empirical MCF 
of the fleet. As seen, the plot is inverse S-shaped; its left-hand side can be well 
approximated by the PLM with parameters β = 1.235 and η = 150.4; and the 
right-hand side can be well approximated by another PLM with β = 1.358 and η = 
200.2. Applying the two PLM approximations to (18) yields the instantaneous MTBF 
function shown in Fig. 5. As seen, the MTBF decreases with the unit age, and hence 
the unit is deteriorating. Since M(t) = 23.92 at t = 2074, the interval MTBF in 
(0, 2074) is 87.38, which is very close to μB (= 88.45).
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Fig. 5 Plot of μ(t) versus t 

4 Cluster Analysis and Change Point 

This section focuses on a signal-to-noise ratio (SNR) based cluster analysis method 
and its extension, which is useful for detecting the change point of a function. 

4.1 Cluster Analysis for a Monotonic Dataset 

Suppose that the IFT data given by (1) can be divided into two classes: small and 
large IFTs. The purpose of cluster analysis is to determine their boundary or crit-
ical value. The K-means approach is a widely used cluster analysis method [17]. 
For a one-dimensional dataset, Jiang [18] proposes a simple approach based on a 
similarity measure. The proposed method is applied to machine classification, group 
maintenance and inventory classification. For the situation where there are more than 
two classes, the approach will be repeatedly applied for several times. To simplify, 
Jiang and Huang [19] propose a SNR-based approach. Specific details are outlined 
as follows.
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The starting point is a one-dimensional dataset like (1). Sort the data in an 
ascending order, and denote the sorted data as 

(xk; 1 ≤ k ≤ K ) (21) 

Then, consider an arbitrary data point, say xp, which divides the dataset into two 
groups: (xk; 1 ≤ k ≤ p) and (xk; p + 1 ≤ k ≤ K ). The group means are calculated 
by 

μ1 = 
1 

p 

p∑

k=1 

xk, μ2 = 1 

K − p 

K∑

k=p+1 

xk . (22) 

The within-group variances are calculated by 

v1 = 
1 

p 

p∑

k=1 

(xk − μ1)
2 , v2 = 1 

K − p 

K∑

k=p+1 

(xk − μ2)
2 . (23) 

The between-groups distance is defined as |μ2 − μ1|, and the within-group 
distance is defined as the square root of sum of within-group variances given by √

v1 + v2. A clustering quality measure called the SNR is defined as 

SN  R  = |μ2 − μ1|/√v1 + v2. (24) 

For a good bisecting point xp, the between-group [within-group] distance should 
be as large [small] as possible. As a result, the SNR should be as large as possible. 
Generally, the plot of SN  R  versus p provides intuitive information about the number 
of clusters and their boundaries, which corresponds to the global and local maxima 
of SN  R. For a bisecting case, let p0 denote the value of p that corresponds to the 
global maximum of the SNR. 

Equation (24) does not allow p = K , which corresponds to the case where dataset 
is not classified. In this case, the SNR can be defined as 

SN  R  = μ1/
√

v1. (25) 

That is, the dataset does not need to be divided into two groups if SN  R|p=K is 
the global maximum. 

4.2 Cluster Analysis for a Non-Monotonic Dataset 

In the above subsection, the dataset for clustering is not decreasing. In this subsection, 
we consider a two-dimensional dataset given by
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τi , yi ; 1 ≤ i ≤ K (26) 

Here, τ1 ≤ τ2 ≤  · · ·  ≤  τK is a sequence of ordered time values while the dataset 
for clustering is (yi ; 1 ≤ i ≤ K ), which does not meet the following monotonical 
relation: y1 ≤ y2 ≤  · · ·  ≤  yK or y1 ≥ y2 ≥  · · ·  ≥  yK . Equation (26) is actually a 
function relation: yi = f (τi ). In this case, dividing the dataset (yi ; 1 ≤ i ≤ K ) into 
two group with boundary point p = p0 is equivalent to find the change point of the 
function, which is at τ = τp0 . 

The approach is the same. We still use (24) and (25) to compute the SNR for 
dataset (yi ; 1 ≤ i ≤ K ). If the plot of SN  R  versus p has a global maximum at 
p = p0, the dataset given by (26) can be divided into two phases with change point 
τp0 : (τi , yi ; 1 ≤ i ≤ p0) and (τi , yi ; p0 + 1 ≤ i ≤ K ). If the global maximum is at 
p = K , the function does not have the change point. 

4.3 Summary 

In this section, the SNR-based clustering method presented in [19] has been extended 
to the following two cases: the case of p = K and the case of detecting the change 
point of a function. These will be applied in the following two sections. 

5 Analysis for Influence of Maintenance Quality 
on Reliability 

Assume that the failures before and after the overhaul are corrected by minimal 
repairs. Generally, the minimal repair and overhaul are carried out by different tech-
nicians while the skill of the technicians responsible for minimal repairs may get 
improved as N(T ) increases. Thus, two issues associated with the minimal repair 
are: (1) evaluation of minimal repair quality, and (2) to examine whether the minimal 
repair quality gets improved with the accumulation of maintenance experience. For 
those units that have experienced an overhaul, two issues are: (1) evaluation of over-
haul quality, and (2) to examine whether the overhaul times are appropriate. This 
section addresses these issues. 

5.1 Evaluation for Quality of Minimal Repairs 

Among the 213 IFT data shown in Table 1, there are many data that can be thought 
to be small. For example, there are 20 data that are smaller than or equal to 10. A 
small IFT may result from poor maintenance quality. This necessitates determining a
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critical value (denoted as xc) between “small IFT” and “large IFT”. The SNR-based 
approach presented in Sect. 4.1 can be used to determine the value of xc. Clearly, xc 
should be much smaller than the average of all the IFT data. For the example presented 
in Sect. 2.2, this average is µx=93.02 and corresponds to K = 144. Therefore, we 
first consider the dataset (xi ; 1 ≤ i ≤ 144). Figure 6 shows the plot of SN  R  versus 
p. As seen, the SNR achieves its maximum when p0 = 91, which corresponds to 
x91 = 44. In this case, the proportion of the small IFT data is P = 0.4272. Obviously, 
this proportion is a too large and a further clustering for the dataset with 1 ≤ p ≤ 91 
is needed. 

Figure 7 shows the plot of SN  R  versus p for the dataset (xi ; 1 ≤ i ≤ 91). In this 
case, the SNR achieves its maximum when p0 = 65, which corresponds to x65 = 27 
and P = 0.3052. These imply that the quality of minimal repairs is poor. 

Fig. 6 Plot of SN  R  versus p for the data with xi < μx 

Fig. 7 Plot of SN  R  versus p for the dataset with 1 ≤ p ≤ 91
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5.2 Evaluation of Repair Quality Improvement 

The maintenance quality improvement can be modeled by the point process of short 
IFT events with the underlying variable being the maintenance experience measure 
N (T ). This process is modeled as a marked point process, where long IFT events 
are marked as zero and short IFT events are marked as one [5]. Let Ns(T ) denote 
the number of short IFT events in (0, T ); and the event proportion is given by 
P(T ) = Ns(T )/N (T ). Figure 8 shows the plot of P(T ) versus N (T ). As seen, 
P(T ) has an increasing trend, implying that no repair quality improvement occurs. 

To confirm, we use the approach presented in Sect. 4.2 to find the change points of 
function P(T ). The results are displayed in Fig. 9. As seen, there are obviously two 
change points; one is at p0 = 26 and the other is at p0 = 141. They divide the range 
of p into three intervals: (1, 26), (27, 141) and (142, 213). The interval averages of 
P(T ) are 0.2217, 0.2863 and 0.3120, respectively. This confirms that P(T ) really 
has an increasing trend. More information is needed to explain this phenomenon. 
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Fig. 8 Plot of P(T ) versus N (T ) 

Fig. 9 Change points of P(T )
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Fig. 10 Plots of MCFs of two cycles for Units 2–5 

5.3 Evaluation of Overhaul Quality 

Consider the data of Units 2–5 shown in Table 1. Each of them has experienced an 
overhaul, which divides their failure processes into two phases or two cycles: the 
phases before and after the overhaul. The time origin of the second cycle is the time 
just after the overhaul. Figure 10 shows the plots of MCFs of two cycles for Units 
2–5. From the figure, we have the following observations: 

• The shape of the MCF of the first cycle is roughly inversely S-shaped, and the 
right-hand side of the plot can be well approximated by the PLM with β = 1.533 
and η = 288.0. Since β ≫ 1, the MCF quickly increases after t = 1474, implying 
that an overhaul can be scheduled at some time after 1474. 

• The MCF of the second cycle looks concave, and can be well approximated by 
the PLM with β = 0.8664 and η = 65.08. Since β <  1, the failure intensity 
function is decreasing, implying that the overhaul quality is poor. 

• The TTFFs of the four units are 413, 90, 74 and 55, respectively, their MTTFF 
is 158.0; and the MTBF of the first cycle evaluated at t = 1851 is 108.4. On the 
other hand, the TTFFs after the overhauls are 34, 130, 153 and 15, respectively, 
their MTTFF is 83.0; and the MTBF of the second cycle evaluated at t = 717 
is 96.7. These imply: (1) the overhaul is not as good as new and the degree of 
restoration is low, and (2) the overhaul quality is poor. 

5.4 Optimization of Overhaul Time 

The overhaul is usually expensive, and hence the overhaul time needs to be optimally 
determined. Let cr and cO denote the costs of a minimal repair and an overhaul, 
respectively. The cost rate function is defined in [3] as  

J (t) = [cO + cr (M(t) − 1)]/t (27)
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The optimal overhaul time corresponds to the minimum of J (t). When it is hard 
to fit the empirical MCF to a proper parametric model, (27) can be written into the 
following non-parametric form: 

J (tk) = [cO + cr (M(tk) − 1)]/tk (28) 

A curve-fitting approach can be used to fit those data points that are adjacent to 
the global minimum point to a regression model such as [20] 

y(t) = a + bt + c/t (29) 

Letting dy(t) dt  = 0 yields the approximate optimal solution, given by 

t∗ = 
√ 
c/b (30) 

For the example considered in this chapter, we take cr = 100 and cO = 800. 
Figure 11 shows the plot of cost rate function, whose global minimum point is at 
t = 1620. For the data points with t ≥ 1314, regressing yields the coefficients of 
(29): a = −2.972, b = 3491 and c = 0.001305. From (30) yields t∗ = 1636. 

The overhaul times of Units 2–5 are at t = 1851, 1705, 1314 and 1678, respec-
tively. Clearly, the overhaul times of Units 3 and 5 are fairly close to t∗, but the  
overhaul time of Unit 2 [Unit 4] is much larger [smaller] than t∗. For different cost 
ratio cO /cr , the conclusion can be slightly different.
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5.5 Summary 

According to the above analyses, we can conclude: 

• For xc = 27, the proportion of short IFT events reaches 30.52%, implying 
that the quality of minimal repairs is poor. In addition, no maintenance quality 
improvement occurs. 

• The overhauls are imperfect, the overhaul quality is poor, and the overhaul times 
are not optimal. 

6 Analysis for Influence of Manufacturing Quality 
on Reliability 

In this section, we use the clustering approaches presented in Sect. 4 to examine 
whether the system undergoes a reliability improvement process due to technology 
upgrade or/and manufacturing quality improvement. 

6.1 Analysis for Possible Reliability Improvement Due 
to Technology Upgrade 

If the system undergoes a technology upgrade at certain technology age Tc, the  
MTBF given by (4) may have a significant increase after Tc. In other words, the 
dataset (Ti , μi ; 1 ≤ i ≤ n) exists a change point at Tc. 

For the example considered in this chapter, the values of Ti are shown in the last 
column of Table 2 and the values of μi are shown in the fourth column. Applying 
the approach presented in Sect. 4.2 to non-monotonical dataset (μi ; 1 ≤ i ≤ n) 
yields the plot of SN  R  versus p shown in Fig. 12. As seen, the SN  R  achieves its 
global maximum at p0 = n = 13, implying that the MTBF does not have a change 
point within the observation window of the fleet. In other words, the system has not 
undergone a technology upgrade.

6.2 Analysis for Possible Manufacturing Quality 
Improvement 

The manufacturing quality can be represented by the TTFF, whose values are shown 
in the second column of Table 2. The TTFF as a function of Ti is shown in Fig. 13. 
The plot of SN  R  versus p associated with the TTFF dataset is shown in Fig. 14. As  
seen, the SN  R  achieves its global maximum at p0 = 6, implying that the TTFF has 
a change point at about T = 1020. The average of the six [seven] MTTFs before
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[after] T = 1020 is 64.83 [247.9]. Clearly, there is a significant reliability growth 
after the change point, as shown in Fig. 13 (i.e., the staircase line). 

Fig. 13 Plot of xi1 versus Ti 

Fig. 14 Plot of SN  R  versus k0 for the TTFF data
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It is noted that the smallest TTFF (i.e., 23) occurs before the change point and is 
smaller than xc = 27. Clearly, it is an early failure, which results from manufacturing 
quality problems. Since no technology upgrade occurs, the reliability improvement 
after the change point can be thought to be due to manufacturing quality improvement. 

6.3 Summary 

The approach to examine whether a function has a change point has been used to 
evaluate possible reliability improvement that may be due to technology upgrade or 
manufacturing quality improvement. For the example considered in this chapter, no 
technology upgrade occurs and there is a reliability growth due to the manufacturing 
quality improvement. 

7 Conclusions 

In this chapter, we have introduced the concepts of technology age and maintenance 
experience measure for a fleet of repairable systems, and the SNR-based cluster 
analysis method has been extended to a more general case so as to evaluate possible 
reliability growth due to the improvement of maintenance or/and manufacturing 
quality. These have been illustrated through analyzing a real-world example. The 
analysis found: 

1. The proportion of short IFT events is high, implying that the repair quality is 
poor. Furthermore, no maintenance quality improvement occurs. 

2. The system deteriorates with unit age, and hence the overhaul is necessary. The 
completed overhauls are imperfect, the overhaul quality is poor, and the overhaul 
times are not optimal. 

3. The system has undergone a reliability growth probably due to manufacturing 
quality improvement rather than technology upgrade. 

The concepts and analysis method presented in this chapter have a potential to 
evaluate the effectiveness of a reliability improvement program. 

Other factors such as use conditions and environment factors affect the reliability 
of a repairable system. Modeling and analyzing their effect on system reliability is 
an open topic for future research. 
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Quantification of Uncertainty 
of Warranty Claims 

Ming Luo and Shaomin Wu 

Abstract This chapter reviews the definition of warranty, introduces its different 
types, discusses possible causes of warranty claims, and then provides an introductory 
overview of the approaches to modelling warranty claims. When only warranty claim 
related data are available, statistical models are suggested to model the frequency 
of warranty claims. This approach is referred to as the black-box approach in the 
chapter. When the physical structure and the failure mechanism are known, both 
statistical models and physical models can be applied in modelling the frequency of 
warranty claims. This approach is referred to as the white-box approach. The chapter 
suggests that models that can reflect the real-world claim patterns should be the focus 
studied by researchers in the future. 

Keywords Warranty · Point process · Uncertainty · Reliability · White-box 
approach · Black-box approach 

1 Introduction 

Warranty is a contractual obligation provided by a manufacturer to its product 
consumer in connection with the sale of the product. It guarantees that the product 
will meet certain requirements and perform its functions as specified in the warranty 
agreement. If the product does not meet these expectations, the manufacturer is obli-
gated to either repair or replace the product at no charge or at a partial cost to the 
buyer. Warranty plays an important role in protecting consumers’ interests. 

There are two types of warranty: base warranty and extended warranty. Base 
warranty is bundled with the product at no additional cost to the buyer and extended
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warranty is an agreement that covers repair costs after the base warranty has expired 
and is purchased separately and voluntarily by the buyer. 

A warranty policy defines the duration of the warranty, how the product will be 
used, how the product will be repaired/replaced upon its failure, and how the cost 
of repair will be burdened. Warranty policies can be categorized into renewing or 
nonrenewing warranty policies. Under the renewing warranty policy, a failed product 
item can be replaced with a new identical item whose warranty will be renewed. 
Under the non-renewing warranty policy, a failed product item can either be repaired 
or replaced but the warranty of the repaired/replaced item cannot be renewed. 

From the perspective of the length of warranty coverage, warranty can also be 
categorized into short term warranty and long-term warranty. Long term warranty 
can cover the lifetime of the product. 

When a product item under warranty fails, one of the three remedy options may 
be offered to the buyer: a free repair/replacement, a pro rata refund, or a combination 
of free replacement and pro rata refund. With free replacement, the warrantor is 
responsible for paying the entire cost of the remedy if the product under warranty 
fails. Under a pro rata refund warranty, the warrantor is responsible for repair or 
replacement, and the cost extent of the warrantor’s obligation is determined based 
upon the age or wear of the product at the time of failure [1]. For products sold with 
warranty, manufacturers bear additional cost incurred due to warranty servicing. Such 
warranty cost is generally substantial. For example, Volkswagen’s total warranty cost 
in 2021 was 9.27 billion euro with 4.5% claim rate [2]. 

From the consumer’s point of view, a warranty plays a protectional role in product 
purchase transactions because it provides a means of compensation if the product 
fails to perform as specified by the manufacturer under proper use. From the manu-
facturer’s point of view, a warranty can be also a protection, as the warranty policy 
specifies the proper use and conditions of use for the product. If the product is 
misused, the coverage of warranty will be limited or cancelled. The warrantor is 
protected from the unexpected loss by the specification of requirements for care and 
maintenance of the product in the warranty policy [3]. Additionally, warranty also 
plays a promotional role in marketing a product. Many consumers believe a longer 
warranty indicates a more reliable product. Using warranty as a marketing tool is 
particularly important in promoting new products, which may be considered having 
a higher level of uncertainty than existing products [3]. In this sense, a warranty 
is an instrument which provides the consumer with a degree of assurance against 
uncertainty, which means the occurrence of failures of a product cannot be predicted 
with certainty. 

A warranty does not eliminate the uncertainty of failures but transfers the burden 
of uncertainty from the consumer to the manufacturer during the specified period. 
From the manufacturer’s perspective, at the strategic level, uncertainty appears at 
all stages from technical and commercial aspects, including design, manufacturing, 
marketing, etc., of the product. At the operational level, the manufacturer needs to 
deal with the uncertainty associated with warranty claims to achieve an efficient 
administration of warranty resulting in effective management of cost and reputation. 
Most of the warranty claims are triggered by the failures of product items; uncertainty
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appears, for example, in the time to failure, when a product is put into operation. 
Moreover, it should also be noted that some users’ behavior (i.e., human factors) 
may contribute to warranty claims [4], the related uncertainty needs to be considered 
in some cases. For example, when a failure occurs, the user can subjectively decide 
whether they will make a claim or not [5]. 

The word “uncertainty” is explained as a situation in which something is not 
known, or something that is not known or certain in the Cambridge Dictionary. 
In daily conversation, risk is another term related to this situation, and sometimes 
these two words are interchangeable. However, in the context of business studies, 
risk refers to situations under which the outcome is unknown, but the likelihood 
of occurrences of all potential outcomes are known, whereas uncertainty refers to 
situations under which either the potential outcomes and/or their probabilities of 
occurrences are unknown [6]. Risk can be measured by appropriate measures like 
variance, value-at-risk, etc., and it can be used as a handle to discuss uncertainty. 

Quantifying the uncertainty of warranty claims has two tasks, (i) modeling 
the uncertainty and (ii) measuring the uncertainty. Quantifying the uncertainty of 
warranty claims is crucial for the manufacturer that offers warranty as they need to 
prepare resources for warranty claims. This motives our research in this chapter. 

The remainder of this chapter is structured as follows. In Sect. 2, we start  
with reviewing the warranty claim process, identifying the uncertainties implied in 
different warranty claim routes, and discussing the methods of modeling the uncer-
tainties. Following it, the methods of measuring the uncertainty are reviewed in 
Sect. 3. Then, this chapter is concluded in Sect. 4. 

2 Warranty Claim Process and Uncertainty 

The uncertainty of warranty claims has multiple sources including, but not limited 
to, the uncertain quality of individual products, the random operating environment, 
the different usage patterns, and the unknown misconception of failure of consumers. 
As shown in Fig. 1, the causes of warranty claims can vary. They can be due to the 
following causes: 

(a) poor performance and management of the customer care team, e.g., poor internal 
training programs, poor access to product information, etc.,

Fig. 1 Causes of warranty 
claims
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(b) users-related, for example, abuse of product, abuse of the warranty claim 
process, wrong expectation of functions, 

(c) product performance related, for example, hardware failure, software failure, 
etc., and 

(d) product usability related, for example, missing accessories, poor design of 
product manual, etc. 

The different causes of warranty claims result in different types of uncertainties, 
which are introduced into the warranty claim process at different stages. A today’s 
product may be composed of a hardware subsystem and a software subsystem. Appar-
ently, the main causes of warranty claims are related to the failures of hardware and 
software subsystems, on which a typical warranty claim process starts when the user 
believes the product is failed and results in five different routes [5], as shown in 
Fig. 2. 

Route 1 shown in Fig. 2 describes the most typical and well-studied scenario, in 
which the warranty claims are triggered by the failures of the hardware subsystem and 
dealt with repair or replacement provided by the manufacturer. Routes 2 and 3 have 
been described by [4], the author indicates an absence of warranty claims is not a ‘no 
failure’ situation, it is possibly due to failed-but-not-reported (FBNR) phenomena, 
i.e. some users do not make warranty claims when the product items fail during

Fig. 2 Warranty claim process [5] 
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the warranty period; meanwhile, not all warranty claims result from product failures, 
because non-failed but reported (NFBR) claims can occur due to user’s misconception 
of the product’s designed functions. The FBNR and NFBR do not generate any 
conventional warranty claim cost but can lead to extra administration costs which 
should be taken into account. In these scenarios, the uncertainty is introduced by 
users’ human behaviors. The methods of quantifying the uncertain human factors 
are provided in [4], which will be discussed later. Routes 4 and 5 represent the 
emerging scenarios in which the warranty claims result from the failures of a software 
subsystem. Nowadays, lots of products have a software system embedded and are 
connected to external data collection networks or condition monitoring networks. 
The complex interplays within a product and with the external environment also 
influence the level of uncertainty. The difference in the reliabilities of the software 
subsystem and the hardware subsystem should be considered in modelling warranty 
claims as well. 

In the real world, new and used products are considered separately in devel-
oping warranty policies or conducting warranty studies. The studies of new product 
warranty are dominating. New products can be classified into three categories, 
consumer durables, industrial and commercial products for the provision of services 
(commercial products), and government acquisitions [8]. Most of the consumer 
durables are standard off-the-shelf products, while a considerable number of commer-
cial products are custom-built or specialised. This taxonomy is used in the following 
discussions where it is necessary. 

2.1 The Uncertainty of Warranty Claims on Hardware 

Warranty claims due to the failures of the hardware subsystem are well-studied, most 
of the existing studies of warranty do not specify whether the research objective is due 
to the hardware subsystem or the software subsystem, but they are developed based on 
some assumptions or features of hardware subsystems, for example, the degradation 
of physical parts. Warranty claims are closely associated with the reliability of the 
hardware subsystem and influenced by the reliability of the software subsystem. 
In addition to the subjective decisions mentioned in Routes 2 and 3 above, several 
uncertain factors including usage (mode and intensity), operating environment, user 
skills, and maintenance also introduce uncertainty into warranty claims, as shown 
in Fig. 1. However, to initiate the discussion, we start with an assumption that all 
warranty claims are triggered by actual failures of product items, and the user makes 
warranty claim immediately after a failure occurred. 

Overall, there are two approaches to modelling the uncertainty of warranty 
claims, black-box and white-box approaches. The black-box approach literally means 
treating the product as a black box with unseen internal details, and the uncertainty 
of failures is modelled without considering the mechanisms that is responsible for 
failure. This approach is found very useful in modeling and analyzing the warranty
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claims of many products [7]. Most of the black-box approach based models are data-
driven. In contrast, the white-box approach requires the knowledge of the product’s 
internal design and the underlying mechanism of failure [7]. In most cases, a product 
comprises of many components, the failure of one or more critical components can 
lead to the failure of the entire product. Therefore, the white-box models are largely 
structure-related and more complex than the black-box models, but they may produce 
very valuable research outcomes to real world managers when modeling the warranty 
claims of specialized products. 

2.1.1 The Black-Box Approach 

In the black-box approach, products can be categorized into non-repairable and 
repairable. If a product is non-repairable, only data on times to first failures, i.e. 
times to the first warranty claims, need to be collected in modelling the survival time 
distribution of a product. If the product is repairable, data regarding times between 
claims must be collected for modelling the number of claims during the warranty 
coverage. 

Data associated with two variables for modelling warranty claims: the time to 
next claim and the cost of each claim, need collecting. In case of two-dimensional 
warranty claim analysis, data relating age, accumulated usage, and relevant costs need 
collecting. The uncertainty of the time to the first claim is modeled by a continuous 
probability distribution defined as F(x; θ ) = P{X ≤ x |θ }, where x and θ denote 
the time to first claim and the set of parameters of the distribution, respectively. The 
actual form of the distribution used in a study is decided based on the availability of 
data and related information. There are two distributions extensively used in studies, 
the Weibull distribution and the exponential distribution. The cumulative distribution 
function (CDF) of the Weibull distribution is defined as 

F(x; α, β) = 1 − e−( x α ) β 
, (1) 

where α is the scale parameter and β is the shape parameter. The exponential distri-
bution is a special case of the Weibull distribution when β = 1. Normally, the  CDF  
of the exponential distribution is defined as 

F(x; λ) = 1 − e−λx . (2) 

where λ is often called the rate parameter. 
Estimating the cost caused by a warranty claim could be a complicated task in 

practice. For managerial and accounting purposes, the cost of supplies, the cost of 
labor, and all the cost of any related activities may be considered in the real cases. 
However, for the simplicity of modeling, the simplest way is to assume a constant 
cost per claim or a constant expected cost per claim [9]. The former ignores the 
uncertainty of warranty claim cost and the latter recognizes it. Some studies express
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the structure of warranty claim cost as 

Ci = A + Qi , (3) 

where Ci is the cost of the i th claim, A is a constant, and Qi is a random variable 
[10, 11]. The individual warranty claim costs of a product over a time interval can 
be modeled by a sequence of random variables {Xi , i = 1, 2, . . .  }. When Xi are 
independent, the actual distribution of Xi is determined according to the information 
available in specific cases, and the lognormal distribution is commonly used [12]. 

Warranty claims may occur for many times over the warranty period of a product 
item, no matter whether the product is repairable or not. If the product is non-
repairable, the failed product item will be replaced by a new one at the first warranty 
claim. The uncertainty of the time to next claim can be modeled by the same distri-
bution of the time to first claim. The time spent on replacement is uncertain in some 
cases, but it could be negligible if it is relatively small compared to the warranty 
duration. If the product is repairable, the times between subsequent claims are influ-
enced by the type of repair. One commonly assumed type of repair is minimal repair, 
which restores the failed product to the status as just before it failed, in other words, 
minimal repair brings the product back to a working state but does not improve the 
reliability of it [13]. 

When the repair time is negligible, the number of warranty claims on a product 
over the warranty period and its uncertainty can be modeled by a continuous time 
and discrete valued stochastic process [3], which is referred to as a point stochastic 
process. Such a stochastic process is denoted by {N (t), t ≥ 0} with a value space 
{0, 1, 2, . . .  }, where N (t) is the total number of points/claims in time interval (0, t]. If  
the numbers of points in disjoint time intervals, i.e. N (t3) − N (t2) and N (t2)− N (t1) 
for t1 < t2 < t3, are independent from each other, the process has independent 
increment. If the numbers of point in any two time intervals of equal length, i.e. 
N (t2) − N (t1) and N (t2 + γ ) − N (t1 + γ ) for t2 > t1 and ∀γ >  0, have the  same  
distribution the process has stationary increment [14]. 

For a non-repairable product covered by a free replacement warranty, the distri-
butions of the time to first claim and the time between subsequent claims are inde-
pendent and identical. Then, the number of claims over the warranty period can be 
modeled by a renewal process. If the time between claims follows an exponential 
distribution with CDF F(x; λ) = 1 − e−λx , this process is a homogeneous Poisson 
process (HPP), in which 

P{N (t) = n} = 
(λt)n e−λt 

n! , n = 0, 1, 2, . . . (4) 

The expected time between claims is 1 
λ , and the expected number of claims in 

(0, t] is λt . 
For a repairable product covered by a free repair warranty, normally, minimal 

repairs are assumed and conducted upon warranty claims. The reliability of the hard-
ware subsystem is changing over time, largely declining, when imperfect repairs
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including minimal repairs are applied [13]. The claim arrival process is rarely 
regarded to be stationary. If the process has independent increment, and the time 
between claims follows the exponential distribution with time-varying rate parameter, 
the process is a non-homogeneous Poisson process (NHPP), in which 

P{N (t) = n} = 
(⌃(t))n e−⌃(t) 

n! ; n = 0, 1, 2, . . .  ,

⌃(t) = 
γ +t∫

γ 

λ(t)dt; ∀γ ≥ 0. (5) 

Here⌃(t) is referred to as the cumulative failure intensity, and it is a positive-valued, 
continuous, non-decreasing function [14, 15].⌃(t) is the expected number of claims 
in (0, t). In practice, the extensively used cumulative rate is defined by the power-law 
function, 

λ(t) = αβtβ−1; α >  0, β  >  0,⌃(t) = 
γ +t∫

γ 

λ(t)dt  = αtβ . (6) 

This process is also called a Weibull process as the time to the first claim follows 
the Weibull distribution. It should be noted that HPP is a special case of NHPP 
when λ(t) is a constant λ. Different from the HPP, the interarrival times, i.e. the time 
between claims, of NHPP are neither independent nor identically distributed [14]. 

In above discussion, the times between claims are modeled by the exponential 
distribution and the Weibull distribution, but in practice the distribution is not limited 
to these two. If we impose the times-between-claims following an identical non-
negative distribution, the stochastic process becomes a renewal process [16, 17]. 
For instance, the ordinary renewal process (ORP) can be quoted to model the claim 
occurrence when a product receives perfect repairs at warranty claims and is restored 
to the as-good-as-new condition because of repair, and the times between claims are 
independent and identically distributed [17]. The expected number of claims in (0, t] 
is defined by a renewal equation:

⌃(t) = F(t) + 
t∫

0 

F(t − s)d⌃(s), (7) 

where F(t) is the CDF of the time to first claim and also that of the time between 
subsequent claims. Obviously, the HPP is a special case of ORP, and it is one of a few 
special ORPs who have closed form solution of the above renewal equation [17–19]. 

Then, the G-renewal process, aka, generalized renewal process, relaxes the 
assumptions of perfect repair and minimal repair. This process provides high flex-
ibility by assuming the effectiveness of repair to be a status between perfect repair
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(i.e., replacement) and minimal repair, it can also model the effectiveness of repair to 
the situation of worse-than-old to better-than-new repair [17–19]. In [17], To adopt 
the different assumptions of repair, the repair effectiveness parameter, q, is created; 
and the concept virtual age is introduced 

An = An−1 + qXn, n = 1, 2, . . . (8) 

where An is the virtual age of the product immediately after the n th repair, A0 = 0, 
and Xn is the time between (n − 1) th and n th claims. The distribution of the time 
to (n + 1) th claims after the n th repair is defined by the following conditional CDF 

F(x |An = y) = 
F(x + y) − F(y) 

1 − F(y) 
, (9) 

where F(x) is the CDF of X1, the time to first claim of a new product. The 
expected number of claims in (0, t] is defined by the renewal equation is defined 
by a generalized renewal equation:

⌃(t) = 
t∫

0 

⎛ 

⎝g(τ |0) + 
τ∫

0 

h(x)g(τ − x |x)dx  
⎞ 

⎠dτ, (10) 

where g(t |x) = f (t+qx) 
1−F(qx) is the conditional probability density function (PDF) and 

g(t |0) = f (t). When q = 0, the above GRP models the process under the perfect 
repair assumption. When q = 1, it models the process under the minimal repair 
assumption. However, due to the complexity, the closed form solution of the above 
generalize renewal equation has not been obtained so far. There are many different 
formalizations of GRP developed by researchers. 

One of the popular generalizations of the renewal process is the geometric process 
(GP), which is used to model the monotonous stochastic point process with increasing 
or decreasing times between events/claims [20, 21]. For example, GP can be applied 
to model times-between-failures of the hardware subsystem whose successive oper-
ating times after repair are decreasing due to deterioration [20]. If the times between 
claims of a product is modelled by a sequence of independent nonnegative random 
variable {Xn, n = 1, 2, . . .  }, and the distribution of Xn is defined by a CDF F

(
an−1x

)
for a > 0; this claim arrival process is said to be a geometric process, and a is the 
ratio of this GP. When 0 < a ≤ 1, this GP is stochastically increasing; and when 
a ≥ 1, it is stochastically decreasing. Denote the CDF and PDF of X1 as F and f , 
respectively, and set the expected value of X1, E[X1] =  1 

λ . Then we have 

E[Xn] = 1 

λan−1 
. (11) 

GP is extended to the doubly geometric process (DGP) in [21]. That is, GP 
becomes a special case of DGP. DGP can model a nonmonotone point process in
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which the distribution of times to claim can have varying shape parameters. Based 
on a dataset of warranty claims on network cards, which were collected from a 
network card manufacturer in the UK, DGP outperforms GP in terms of the Akaike 
information criterion. 

So far, repair is assumed to be instantaneous in the aforementioned models. 
However, in the real world, it is not rarely to see that the mean time to failure 
(MTTF) is not far longer than the mean repair time, and the time spent on repair is 
not negligible. The repair time can be random, and the uncertainty of this variable 
should be modeled in these cases as well [22]. 

2.1.2 The White-Box Approach 

The white-box approach requires the knowledge of the internal design of a product 
including the details of subsystems, components, and interactions between them. In 
this approach, the claims or failures are modeled at the component level based on 
the understanding of relevant degradation mechanisms, which can be classified into 
two categories, over-stress and wear-out failures [3]. 

Over-stress failures may occur with the following physical phenomena, brittle 
fracture, ductile fracture, yield, buckling, large and elastic deformation, due to the 
degradation of material strength or/and changing stress over time. The time to failure 
is the first time instant when the strength falls below the stress. Wear-out failures are 
due to the damage of wear accumulates over time. The accumulated damage can 
be modeled by a stochastically increasing variable, and the failure occurs when the 
value of this variable reaches a threshold [3]. 

In recent years, warranty for complex systems or products with multiple compo-
nents attract more attentions from researchers. In the daily life, lots of smart products 
are introduced into the market, these products, at least, have two subsystems, hard-
ware and software. If these products are treated as single-component products or 
black-box systems, the important internal structure information is ignored, then, the 
estimation of warranty cost may be inaccurate [23], because the failure of individual 
components and the interaction between them can influence the reliability of product. 

The configuration of the internal system structure can determine the dependence of 
component failures in the system. Basically, if the system has a parallel configuration, 
the product probably does not fail until all components fail. If the configuration is 
series, one component fails the product fails [23]. In reality, the system configuration 
can be a combination of parallel and series structures and even have a more complex 
structure. The interaction between components can influence the system reliability. 
Murthy et al. [24] describes three types of failure interactions: Type I interaction 
is called induced failure interaction. It assumes that the failure of a component can 
induce a simultaneous failure of the other components. Type II interaction is called a 
failure rate interaction, it assumes the failure of a component can change the failure 
rate of another component. Type III interaction is a combination of Types I and II. 

However, a product item may be composed of multiple components at a lower 
level. It is not possible to model the details of all structures. To balance the efficiency
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and accuracy, the individual component at a certain level can be treated as a black-
box. Then, the failures of individual components will be modeled in the black-box 
approach, and the failures of the product will be modeled by considering the system 
configuration and the interaction between components. For instance, if the system 
configuration of a product is series, whenever a component fails the product fails. If 
the failed component will be replaced by a brand new one, the failure process of the 
component can be modeled by a renewal process. Therefore, the failure process of 
this product can be modeled by a superimposed renewal process [25]. 

2.2 The Uncertainty of Warranty Claims on Software 

Generally, if the warranty claims are made immediately after the software subsystem 
failed, the warranty claim arrival process of the software product can be modeled 
by a stochastic point process like those applied on hardware products. However, 
the main difference between hardware failure and software failure by nature is the 
potential faults or causes of failures are introduced into the software during its devel-
opment process. Once the fault of the software is diagnosed and removed in operation, 
relevant errors in codes may be debugged. These activities can result in a growing 
reliability of the software system. In recent years, to deal with customer’s concern of 
software reliability, manufacturers may provide warranty on the embedded software. 
Similar to warranty on hardware systems, during the warranty period, the warrantor 
provides assurance to the customers that the software will work properly and if any 
defect is found, the warrantor may either repair or replace the software system without 
charging the customer. Different from the remedy actions conducted on hardware, 
the software faults can be repaired by releasing patches or updates online, and these 
updates can improve the reliability of all software products in the same batch [5]. 

2.3 Summary 

The common interest of warranty management to be analysed and evaluated is the 
expected total warranty cost over the warranty period as well as the lifecycle of the 
product. This measure and the uncertainty associated summarize the financial risk 
or burden carried by manufacturer and even consumer [n]. 

3 Measuring the Uncertainty 

If we come back to the discussion in the introduction section, uncertainty refers to 
situations under which either the potential outcomes and/or their probabilities of
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occurrences are unknown. Once the uncertainty is modeled by appropriate mathe-
matic tools, the likelihood of occurrences of all potential outcomes are known, then 
we can investigate the risk and give numeric measures of uncertainty [6]. 

Risk measures are initially introduced in financial area to meet the requirement 
of quantifying the losses that may be incurred. The variance of a random variable 
is a dominating risk measure in financial studies. However, since the variance is 
a symmetric risk measure, researchers turn to using downside risk measures, such 
as Value-at-Risk (VaR) and Conditional VaR (Expected Shortfall) to highlight the 
possible worst loss [27]. Furthermore, if multiple components or products are consid-
ered, using variance as a risk measure is normally applied under the assumption that 
the correlations between the variables of interest are linear. However, this an assump-
tion is not imposed in the VaR and CVaR theories, potentially, VaR and CVaR can 
be adopted in more scenarios. 

4 Conclusion 

This chapter provided an introductory review on modelling the uncertainty of 
warranty claims. It first introduced different types of warranty claims, causes 
of warranty claims, and then discussed black-box and white-box approaches to 
modelling times between warranty claims and time to the first claims. 

Our future work aims to develop models that can better reflect the real-world appli-
cations. For example, many articles in www.warrantyweek.com show that warranty 
claim rates are normally quite low, which implied that performing preventive main-
tenance policies, the focus of many warranty-related research papers, is not cost-
effective. A challenge is then on the development of cost-effective approaches to 
reducing the cost on warranty claims. 
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Manufacturing Paradigm-Oriented PHM 
Methodologies for Cyber-Physical 
Systems 

Ershun Pan, Tangbin Xia, and Lifeng Xi 

Abstract In today’s competitive environment of Industry 4.0, cyber-physical 
systems (CPS) of various advanced manufacturing paradigms have brought new 
challenges to maintenance managements. Efficient prognostics and health manage-
ment (PHM) policies, which can integrate both individual machine deteriorations 
and different manufacturing paradigms, are urgently needed. Newly proposed PHM 
methodologies are systematically reviewed in this chapter: as the decision basis, an 
operating load based forecasting algorithm is proposed for machine health prog-
nosis; at the machine level, a dynamic multi-attribute maintenance model is studied 
for diverse machines in CPS; at the system level, novel opportunistic mainte-
nance policies are developed for complex flow-line production, mass customization 
and reconfigurable manufacturing systems, respectively. This framework of PHM 
methodologies has been validated in industrial implementations. 

Keywords Maintenance · Dynamic programming · Manufacturing paradigms ·
Cyber-physical systems 

1 Introduction 

In the global competition and technique innovation, many manufacturing enter-
prises are pursuing a shift to cyber-physical systems (CPS) of advanced manufac-
turing paradigms [1]. In practice, complex flow-line production, mass customization 
and reconfigurable manufacturing paradigms have been applied to satisfy change-
able customer demands and keep enterprise core competitiveness [2–4]. However, 
these CPS systems, machines and accessorial sensors have also become technolog-
ically more advanced, and more difficult to manage. This transformation provides
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motivation for improving maintenance methodologies. It is important to efficiently 
predict machine health statuses, eliminate unnecessary production breaks, achieve 
maintenance cost reduction and decrease systemic decision-making complexity 
[5, 6]. 

In the recent decades, numerous valuable studies have been devoted to the main-
tenance scheduling [7–9]. Prognostics and health management (PHM) has been 
crucial to keep CPS systems and their machines in good condition [10]. Cyber-
physical systems usually consist of diverse machines, which have different degrading 
processes that will finally lead to failures and interrupt the normal production [11– 
13]. Considering CPS characters of integrated computational and physical capabil-
ities such as actuation, sensing and communication to physical world, PHM should 
provide a systematical view of the machine health prognosis, the machine-level 
maintenance scheduling and the system-level maintenance optimization. To develop 
proper PHM methodologies for advanced manufacturing paradigms, it is necessary 
to comprehensively consider maintenance opportunities and manufacturing char-
acters to make maintenance schedules in a cost-effective manner. However, clas-
sical opportunistic maintenance policies are insufficient to provide feasible solu-
tions because of complex series–parallel structures, changeable batch orders and 
open-ended system reconfigurations [14–17]. Thus, PHM policies that can decrease 
decision-making complexity, avoid breakdowns of batch production, and adapt to 
diverse reconfigurations are urgently needed. 

PHM methodologies for advanced manufacturing paradigms are complex due to 
the hierarchical levels of systematical maintenance decision-making: (a) accurate 
machine health prediction at the physical level; (b) dynamic maintenance scheduling 
at the machine level; (c) effective opportunistic maintenance policies at the system 
level. In a CPS system, recent advances in sensing and information technologies 
enable enterprises to on-line collect, store and process information that characterizes 
machine health statuses [18]. Thus, these statuses are utilized to predict machine 
deteriorations for supporting PHM decision-making. Furthermore, designed infor-
mation transfer between the machine level and the system level should not be a 
“push” process, but a “pull” process. By pulling machine-level outputs, this inter-
active scheduling mode promotes opportunistic maintenance policies to dynami-
cally optimize system-level schedules by integrating maintenance opportunities and 
manufacturing paradigms. 

The remainder of this chapter is organized as follows: Sect. 2 presents a systemat-
ical PHM framework for advanced manufacturing paradigms. Section 3 proposes the 
W-variable forecasted-state rolling grey model (WFRGM) by considering the effect 
of operating loads. Section 4 develops the multi-attribute model (MAM) by utilizing 
the multiple attribute value theory and imperfect maintenance. Section 5 discusses the 
maintenance time window (MTW) for complex flow-line production, the advance-
postpone balancing (APB) for mass customization, and the reconfigurable mainte-
nance time window (RMTW) for reconfigurable manufacturing, respectively. Finally, 
conclusions and perspectives are drawn in Sect. 6.
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2 A Systematical Framework of PHM Methodologies 

Cyber-physical systems (CPS) are defined as transformative technologies for 
managing interconnected systems between its physical assets and computational 
capabilities [19]. Recent advances in manufacturing industry have paved way for a 
systematical deployment of CPS, within which information from all related perspec-
tives is closely monitored and synchronized between the physical factory floor and the 
cyber computational space. Moreover, by utilizing advanced information analytics, 
networked machines will be able to perform more efficiently, collaboratively and 
resiliently. Cyber-physical systems are ubiquitous in power systems, transportation 
networks, industrial control processes, and critical infrastructures. These systems 
need to operate reliably in the face of unforeseen failures [20]. 

For understanding the impact of CPS and the relation to the manufacturing field, 
Monostori et al. [21] comprehensively studied cyber-physical systems in manufac-
turing. This important survey can help us: (1) to identify potentially impactful articles 
that are related to CPS and (2) to find out how CPS has evolved with respect to prob-
lems, applications and techniques. Wang et al. [22] presented the current status and 
advancement of cyber-physical systems and their future research directions when 
applied to manufacturing. The characteristics of CPS were outlined together with 
those of Systems of Systems (SoS), Internet of Things (IoT), Big Data and Cloud 
technology. Like cloud-enabled prognosis can leverage advanced manufacturing by 
using data and information from across the manufacturing hierarchy [23], PHM 
methodologies for CPS have been designed to improve efficiency, productivity, 
and profitability by integrating monitored information, failure prediction, system 
structure and manufacturing characteristics. 

In industry, modern manufacturing systems with CPS technologies could be 
widely used in advanced manufacturing paradigms, such as complex flow-line 
production, mass customization and reconfigurable manufacturing paradigms. Since 
machine statuses are available from sensors within the cyber computational space, 
PHM decisions to optimize maintenance arrangements should be made in the phys-
ical factory floor by considering different manufacturing characters. Without prop-
erly integrating the special characters of advanced manufacturing paradigms, valu-
able information collected by CPS technologies can achieve rapid responsiveness 
and cost effectiveness for modern manufacturing systems. At this point, several key 
issues need to be addressed in the developed PHM methodologies for CPS. 

(1) Based on monitored and synchronized information, it will improves fore-
cast accuracy by incorporating real-time influencing factors (i.e., operating load) 
for machine health prognosis; (2) With failure frequency predictions, it is impor-
tant to accurately describe hazard rate evolutions of individual machines and model 
machine-level maintenance operations with multiple objectives; (3) By pulling 
machine-level outputs, cost-effective system schedules should be studied to avoid 
decision-making complexity caused by series–parallel structures for complex flow-
line paradigm; (4) For mass customization paradigm, an opportunistic maintenance 
strategy is required to handle changeable batch orders due to customer demands
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and eliminate unnecessary production breaks; (5) For reconfigurable manufacturing 
paradigm, real-time maintenance schedules should be made to respond rapidly to 
diverse open-ended reconfigurations and flexible system structures. 

The designed PHM framework consists of three levels, where CPS maintenance 
decisions are dynamically made through the machine health prognosis, the machine-
level maintenance scheduling and the system-level maintenance optimization. The 
hierarchical scheme is shown in Fig. 1. 

• Physical level: Cyber-physical systems of advanced manufacturing paradigms are 
defined as the decision objects. With rapid innovations of monitoring techniques 
and sensoring tools, efficient prognostic algorithm is developed to forecast accu-
rate machine health trends for supporting the PHM decision-making process in 
real time, rather than over time. 

• Machine level: For each individual machine, preventive maintenance (PM) inter-
vals are dynamically scheduled by considering multiple attribute value theory, 
imperfect maintenance assessment and sequential PM scheduling mode. If a 
machine fails between successive PM actions, minimal repair recovers it to the 
failure rate that it had when it failed.

Fig. 1 Scheme of hierarchical PHM decision-making for CPS
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• System level: By pulling PM intervals, novel opportunistic maintenance poli-
cies are presented to utilize maintenance opportunities and manufacturing char-
acters to make dynamic maintenance schedules in a cost-effective manner. 
The manufacturing characters of CPS are thoroughly investigated. Thus, the 
proposed PHM methodologies can adapt to advanced manufacturing paradigms 
and achieve significant reduction of maintenance cost, production downtime and 
decision-making complexity. 

The notation used in this chapter is listed in Table 1.

3 WFRGM Algorithm for Machine Health Prognosis 

Machine health prognosis plays an important role in PHM methodologies. For 
complex CPS consisting of multiple machines, it is necessary to utilize mainte-
nance opportunities and avoid production losses by forecasting machine degrada-
tions. Conventional forecasting methods can be categorized into quantitative fore-
casting and qualitative forecasting, including Delphi method, time series, exponential 
smoothing, linear regression, expert systems and neural networks [24–26]. Generally, 
large amounts of machine statuses are required to construct prognosis models, which 
limit their practical uses for CPS. In recent decades, grey model (GM) forecasting 
has achieved good prognosis accuracy with limited statuses by using approximate 
differential equations to describe future tendencies for a time series [27, 28]. The GM 
method, which was first proposed by Deng [29], focuses on information insufficiency 
and model uncertainty in analyzing future trends through studies on conditional anal-
ysis, prediction and decision making based on scarce and fuzzy information. This 
forecasting model is suitable for real-time prediction with limited data available. 

To further increase GM accuracy, the novel philosophy comprising of utilizing 
practical industrial influencing factors, besides the time series itself, is needed. This 
study tries to achieve the following GM improvements: (1) incorporating real-time 
influencing factors (such as operating loads) that affect machine health trends; (2) 
taking new statuses into consideration and avoiding too old ones that cannot reflect 
current machine degradations; (3) dynamically evaluating the generating coefficient 
W values to overcome the shortage of static W = 0.5 in original GM(1,1). Thus, a W-
variable Forecasted-state rolling grey model (WFRGM) is proposed to increase the 
accuracy of CPS health prognosis. This WFRGM algorithm includes the following 
steps:

(1) Health data acquisition: With sensing technology of CPS, health statuses 
of machine failure frequency at sequential time d are collected online 
as the in-sample testing data x (0), which can be represented by x (0) = 
(x (0) (1), x (0) (2), ..., x (0) (d), ..., x (0) (p)), p ≥ 4. 

(2) Dynamic W fitting: In grey model, enumerate W values and select optimal ones 
(W1, W2, W3, ..., Wp) at time d = 1, 2, 3, …,  p. Evaluate the correlation coef-
ficient (CR) of W values and corresponding operating load change rate L values
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Table 1 Notation W : Generating coefficient of 
grey model 

L: Operating load change rate 

x (0): Actual status of  
machine 

x
Ʌ(0) : Forecasted status of 
machine 

i : Index of PM cycles at 
machine level 

j : Index of machine M j 

Ai j  : Availability of the i th 

PM cycle for M j 

cri  j  : Cost rate of the i th PM 
cycle for M j 

Tpi j : Time duration of PM 
action 

T f i  j  : Time duration of minimal 
repair 

Cpi j : Cost of PM action C f i  j  : Cost of minimal repair 

λi j  (t): Hazard rate function 

prior to the i th PM 

Toi j : PM interval of machine 
level 

ai j  : Age reduction factor bi j  : Hazard increase factor 

Tw: Maintenance time 
window 

k: Index of PM cycles at system 
level 

t jk : PM time point of M j at 
system level 

tk : PM execution point at 
system level 

ET  C : Excepted total system 
maintenance cost 

cd j  : Downtime cost rate 

u: Index of batch Bu T Bu : Time duration of batch Bu 

ti j  : Time point of PM from 
machine level 

tbu : Set-up time point after Bu 
at system level

Θ( j, tbu ): Maintenance 
decision at tbu 

Gu : PM combination set after 
Bu 

SC A j (u+1): Saved cost of 
PM advancement 

SC Pj (u+1): Saved cost of PM 
postponement 

AP  B  j (u+1): 
Advance-postpone balancing 

cs j  : Set-up cost rate  

Tpumax : Maximum duration 
for PM actions 

h: Index of manufacturing stage 
MSh 

TRh : Time duration of the 
hth reconfiguration 

tRh : Time point of the hth 
reconfiguration 

TWh : Time width of RMTW 
in MSh

Θ( j, tk ): Maintenance decision 
for M j at tk

(L1, L2, L3, ..., L p). Then construct the relationship of W = f (L).

CRWL  =
∑p 

d=1

(
Wd − W

)(
Ld − L

)

/
∑p 

d=1

(
Wd − W

)2
/

∑p 
d=1

(
Ld − L

)2 
(1)
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(3) WFRGM reconstruction: With forecasted W (Wp+1, Wp+2, ..., Wp+q ) related to 
real-time L (L p+1, L p+2, ..., L p+q ), WFRGM is reconstructed by taking advan-
tages of forecasted-state rolling and generated values calculating with dynamic 
W in Accumulating Generation Operation (AGO). 

(4) Health trend prediction: Then WFRGM is used to forecast the out-of-sample 
predictive data (x

Ʌ(0) 
(p+1), x

Ʌ(0) 
(p+2), x

Ʌ(0) 
(p+3), ..., x

Ʌ(0) 
(p+q)). Forecasted-

state rolling process and dynamic W values ensure a high-precision prediction, 
which is essential for supporting PHM scheduling. The rolling process recon-
structs the grey model whenever a new status rolls in. It takes newer infor-
mation into consideration and eliminates older statuses that cannot show the 
new machine health trend. Furthermore, in original rolling GM, the generating 
coefficient W is customarily given as 0.5. The static W value does not consider 
real-time influencing factors. Therefore, by analyzing the relationship between 
dynamic W values and variable L data, WFRGM can generate better forecasts. 

(5) Performance evaluation and application: To evaluate the predicting perfor-
mance, different error criteria are introduced and used, such as the mean absolute 
percentage error (MAPE) and the mean absolute error (MAE). 

4 MAM Method for Machine-Level Maintenance 
Scheduling 

Based on the machine health prognosis, decision makers can make maintenance 
schedules. With age and usage, each machine undergoes increasing wear, which 
finally leads to a failure and breaks the normal production. Conventional mainte-
nance models usually suffer from a critical problem of setting periodic intervals 
to perform PM actions. However, it has been noticed that insufficient maintenance 
inevitably leads to unnecessary downtime and huge cost; on the other hand, plethoric 
maintenance will increase maintenance cost and decrease manufacturing profit [30]. 
The innovative idea of this research is to incorporate the multiple attribute value 
theory, the imperfect maintenance assessment and the sequential PM scheduling 
mode. Proper machine-level PM intervals of diverse machines will be the solid base 
for the opportunistic maintenance policies at the system level [31]. 

This research focuses on three crucial questions for optimally scheduling PM 
intervals: Firstly, the traditional assumption of perfect PM that covers a machine 
to the “as good as new” status is plausible [32]. For most machines, even though 
some components are replaced, the cumulative wear on adjacent components may 
deteriorate unnoticed. This leads to the imperfect effects of maintenance activities. 
In practice, a machine after PM is not as good as brand new one, that is, the hazard 
rate value is decreased while always greater than zero. Simultaneously, each machine 
tends to have more frequent maintenance since the hazard rate increases more quickly 
than it did in the previous PM interval. To sum up, PM not only decreases the hazard 
rate to a certain value but also changes the slope of the hazard rate function. Secondly, 
most existing maintenance models were concerning cost. In fact, it should consider
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other machine-level PM objectives according to practical requirements. Thus, this 
study utilizes the multiple attribute value theory in building the PM model. Last 
but by no means the least, for responding quickly to system-level PHM pulling, a 
dynamic model-iteration mode is proposed to output PM intervals cycle by cycle. 
Since conventional static long-time planning focuses on the maintenance modelling 
and analysis for the whole designed lifetime and arranges PM actions in advance 
without considering the real-time machine degradation, which is usually not appli-
cable in a practical factory. In our dynamic model-iteration mode, sequential PM 
intervals are obtained according to the real-time hazard rate evolution of the current 
cycles, not being relative to the whole lifetime. 

The multi-attribute model (MAM), which is illustrated in Fig. 2, provides real-
time PM intervals Toi j , even if there are L objectives (O1i j  , O2i j  , ..., OLi j  ). The 
comprehensive objective function is minimized to schedule optimal PM intervals. If 
a smaller Oli j  (such as the maintenance cost cri  j  ) is preferred, Δl = 0; if a larger 
Oli j  (such as the machine availability Ai j  ) is preferred, then Δk = 1. 

Vi j  = w1i j  
(−1)Δ1 O1i j  

O∗ 
1i j  

+ w2i j  
(−1)Δ2 O2i j  

O∗ 
2i j  

+  · · ·  +  wLi  j  
(−1)ΔL OLi  j  

O∗ 
Li  j  

(2) 

In this model, the machine availability Ai j  and the maintenance cost rate cri  j  
may be considered as two objectives related to the efficiency and the economy, 
respectively:

Fig. 2 Illustration of machine-level MAM method 
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Ai j  = Tai j  

Tai j  + (Tpi j + T f i  j
∫ Tai j  
0 λi j  (t)dt) 

(3) 

cri  j  = Cpi j + C f i  j
∫ Tci j 
0 λi j  (t)dt  

Tci j + (Tpi j + T f i  j
∫ Tci j 
0 λi j  (t)dt) 

(4) 

For each next PM cycle, with the actual interval Ti j  from the system-level feedback, 
the relationship between hazard rates of consecutive cycles can be defined as: 

λ(i+1) j (t) = bi j  λi j
(
t + ai j  Ti j

)
, t ∈ (0, T(i+1) j ) (5) 

In imperfect maintenance effects, the age reduction factor ai j  , ai j  ∈ (0, 1) indi-
cates that imperfect PM causes the machine’s initial failure rate to become λi j  (ai j  Ti j  ); 
meanwhile, the hazard increase factor bi j  >1 reflects that PM increases the failure rate 
bi j  λi j  (t). 

5 Opportunistic Maintenance for Various Cyber-Physical 
Systems 

Nowadays, there has been a growing interest in PHM methodologies of multi-unit 
systems for leading enterprises. It is essential to investigate and model the compli-
cated machine interactions and the diverse manufacturing characters, which provide 
maintenance opportunities for CPS of advanced manufacturing paradigms. Oppor-
tunistic maintenance refers to the scheme where PM can be performed at opportuni-
ties with the advantages of combining individual PM actions and saving much group 
maintenance cost [33, 34]. To overcome the exponential decision-making complexity 
with machine number increasing and apply the system-level PHM methods to 
advanced manufacturing paradigms, novel opportunistic maintenance policies will 
be presented in detail. 

5.1 MTW Policy for Complex Flow-Line System 

Complex series–parallel cyber-physical systems have been widely used to satisfy 
flow-line productions. In this article, a general PHM decision-making policy is 
proposed by considering both machine degradation and system structure. This main-
tenance time window (MTW) policy can help enterprise managers to make dynamic 
maintenance schedules based on not only single-machine plans, but also the whole-
system global programming. MTW programming is applied by pulling real-time 
machine-level PM intervals. A breakdown caused by one machine is utilized to 
carry out PM actions on non-failed ones, thus unnecessary breakdown of CPS
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could be avoided. This maintenance-driven opportunistic maintenance policy aims to 
systematically obtain system-level maintenance schedules in a cost-effective manner. 

(1) MTW-separation in parallel subsystem: According to machine-level PM inter-
vals, the MTW value Tw provides a criterion to separate PM actions in subsys-
tems. MTW-separations can avoid the unnecessary downtime of upstream and 
downstream machines. 

(2) MTW-combination in series subsystem: Pulling the outputs from MAM and 
MTW-separations cycle by cycle, MTW is defined as the criterion to combine 
PM actions within [tk, tk + Tw]. The time point tk is when one machine is 
preformed PM, which also means maintenance opportunities for other machines 
in series. 

(3) System performance evaluation: The total system maintenance cost (ET  C) by  
using MAM policy can be evaluated based on system-level maintenance sched-
ules. The total maintenance cost of the kth cycle for machine j can be evaluated 
by: 

λ(i+1) j (t) = bi j  λi j
(
t + ai j  Ti j

)
, t ∈ (0, T(i+1) j ) (6) 

where Θ( j, tk) = 0 means no maintenance action is initiated on Mj at the time point 
tk , but this machine will be down; Θ( j, tk) = 1 means the PM action is combined 
to be performed in advance; Θ( j, tk) = 2 means no maintenance action is initiated 
and the machine continues to operate. Thus, the total system maintenance cost for 
the CPS in its mission lifetime can be obtained by: 

ET  C  = 
K∑

k=1 

⎛ 

⎝ 
J∑

j=1 

ET  Ckj  

⎞ 

⎠ (7) 

5.2 APB Policy for Mass Customization System 

As one of advanced manufacturing paradigms, mass customization is widely used 
to response quickly to changeable customer demands. In mass customization, batch 
orders are processed through CPS with following production characteristics: (1) 
Batch orders are independent with diverse lot size; (2) Batches are sequentially 
ordered only a transient time beforehand; (3) One set-up work happens when a batch 
switches to another; (4) It prefers no interruptions in each batch cycle to ensure 
product quality. To meet the requirements of mass customization, there has been a 
great need to propose a new type of opportunistic maintenance that considers machine 
degradations and manufacturing characteristics [35].
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In this study, a production-driven opportunistic maintenance policy is presented 
to eliminate unnecessary production breaks and achieve significant cost reduction. 
According to sequential batch orders and machine-level PM intervals, the advance-
postpone balancing (APB) policy utilizes the set-up works and analyzes the cost 
savings to schedule real-time PM adjustments. Each set-up time between successive 
batches is used to perform PM actions, thus unnecessary breakdown during batch 
productions can be avoided. We apply APB programming to analyze the cost savings 
of PM advancement and PM postponement, and then choose the better PM adjustment 
to ensure no-disruptions and reduce maintenance cost. 

This production-driven APB policy has the advantages for the mass customiza-
tion paradigm: (1) APB satisfies no-disruption requirements during changeable batch 
orders, other than traditional constant production assumption; (2) It utilizes planned 
production downtimes as maintenance opportunities to advance or postpone PM 
actions, which significantly reduces the complexity of system-level scheduling; (3) 
By choosing the greater cost savings between PM advancement and PM postpone-
ment at each set-up opportunity, APB ensures that the maximization of ETC-saving 
can be achieved. The procedure of APB programming is illustrated in Fig. 3. 

When each batch Bu has been finished, and the next batch Bu+1 has not started, 
this moment tbu is utilized as the decision time to schedule APB. On the one hand, if 
machine M j is prevented maintained now, the saved cost by advancing PM in batch 
Bu+1 can be evaluated as:

Fig. 3 Flowchart of APB policy for mass customization CPS 
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SC A j(u+1) = SC Ad 
j(u+1) + SC A f j(u+1) − SC Ap 

j (u+1) 

= Tpi j
(
cd j  − cs j

) + 

⎡ 

⎢ 
⎣ 

T ∗oi j∮

0 

λi j  (t)dt  − 

T ∗oi j−(ti j−tbu )∮

0 

λi j  (t)dt  

⎤ 

⎥ 
⎦C f i  j  

− ti j  − tbu 
T ∗ 
oi j −

(
ti j  − tbu

)Cpi j (8) 

where SC Ad 
j (u+1) is the downtime cost saving, SC A f j (u+1) is the minimal repair cost 

saving, SC Ap 
j (u+1) is the PM cost saving of PM advancement. 

On the other hand, if PM of machine M j is postponed to the next set-up time 
point tbu+1, the minimal repair cost saving will be a negative value (prolonged PM 
interval leads to increasing cumulative failure risk and more minimal repair cost) 
and the PM cost saving will be a positive value (longer intervals mean that less PM 
actions would be needed in the same scheduling horizon). Therefore, the saved cost 
by postponing PM in batch Bu+1 can be evaluated as: 

SC P j(u+1) = SC Pd 
j (u+1) − SC P f j(u+1) + SC P p j(u+1) 

= Tpi j
(
cd j  − cs j

) − 

⎡ 

⎢ 
⎣ 

T ∗ 
oi j+(tbu+1−ti j  )∮

0 

λi j  (t)dt  − 

T ∗ 
oi j∮

0 

λi j  (t)dt  

⎤ 

⎥ 
⎦C f i  j  

+ tbu+1 − ti j  
T ∗ 
oi j +

(
tbu+1 − ti j

)Cpi j (9) 

where SC Pd 
j (u+1) is the downtime cost saving, SC P f j (u+1) is the minimal repair cost 

saving and SC P p j (u+1) is the PM cost saving of PM postponement. 
According to the values of SC A and SC P , AP  B j (u+1) could be defined as the 

criterion to decide whether to advance or postpone this PM action: 

AP  B j (u+1) = SC A j (u+1) − SC Pj (u+1) (10) 

5.3 RMTW Policy for Reconfigurable Manufacturing System 

The system structure of reconfigurable manufacturing CPS can be adjusted to meet 
various future products and changeable market demands [36, 37]. In other words, the 
main advantage of reconfigurable manufacturing is the adaptability to the uncertain-
ties of the open system architecture with reconfigurable system structures. For the 
entire system, those different reconfigurations are caused by the changing needs in 
terms of capacity and functionality, while the production process will be separated
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into sequential manufacturing stages. Each manufacturing stage (MSh) has its own 
system structure designed for its current production requirements. If the system-
level maintenance policy has to be rebuilt according to each different structure, its 
responsiveness and flexibility will be obviously weakened [38]. 

By extending the previous research from both reconfigurable structure and manu-
facturing paradigm aspects, this study presents a reconfiguration-oriented oppor-
tunistic maintenance policy to achieve rapid responsiveness and cost effectiveness for 
future reconfigurable manufacturing. Other than rebuilding new system-level poli-
cies for different stationary structures, the developed reconfigurable maintenance 
time window (RMTW) focuses on the structure analysis to extract reconfigured 
parallel subsystems and series subsystems in each manufacturing stage. Faced with 
different system structures, the RMTW policy utilizes reconfiguration characters and 
maintenance opportunities to constantly redefine reconfiguring scheduling criteria 
within a uniform method. This manner is more suitable for rapidly adapting to new 
system structures in reconfigurable manufacturing systems (RMS). 

The production scenarios in Fig. 4 can be taken as an example to illustrate the 
RMTW scheduling for system-level reconfigurations. After the original design, the 
RMS enters service at time t = tR1 = 0 with its initial system structure (5 machines). 
In the first manufacturing stage MS1, the time width value of RMTW TW1 is defined 
as a criterion to separate PM actions in parallel subsystems and combine PM actions 
in series subsystems based on machine-level PM intervals. 

Fig. 4 Production scenarios of reconfigurable manufacturing CPS
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At the reconfiguration time tR2, the structure is redesigned for the second manufac-
turing stage MS2. In the time duration of this reconfiguration TR2, M1 is replaced with 
a new M6, and M7 is added in parallel with M5. Then, the RMS continues produc-
tion with a new structure, while a redefined time width of RMTW TW2 is applied for 
reconfigured parallel/series subsystems to minimize the total system maintenance 
cost. 

Similarly, in the next reconfiguration before MS3, M3 is removed, while M8 
is added in parallel with M2 and M4. In contrasted to the traditional manner of 
rebuilding new system-level policies for different structures, RMTW scheduling 
focuses on reconfiguring scheduling criteria TWh  within a uniform method for rapidly 
adapting to new structures. Above structure analysis of each manufacturing stage is 
essential for RMTW scheduling. Then, the process flowchart of the proposed RMTW 
programming is shown in Fig. 5. 

Fig. 5 Flowchart of RMTW policy for reconfigurable manufacturing CPS
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6 Case Study of PHM Methodologies 

6.1 Effectiveness of WFRGM Algorithm 

To prove the prognosis accuracy of the proposed WFRGM algorithm, the increasing 
health statuses of a monitored machine’s deterioration during a maintenance interval 
are collected. The twelve status data points of failure frequency from monitoring 
points 1–12 are regarded as the in-sample test data, which reflects the increasing 
failure risk. The remaining six states from cycles 13–18 are used for out-of-sample 
forecasting. 

Results of the linear regression model (LRM) with x
Ʌ(0) 

(d) = 0.0362d + 
0.0211, the original GM(1,1) model with x

Ʌ(0) 
(d) = (

1 − e−0.147
)
(x (0) (1) + 

0.0951/0.147)e0.147(d−1), the actual-state rolling grey model (ARGM), the 
forecasted-state rolling grey model (FRGM) and the proposed WFRGM algorithm 
have been presented in Table 2. The plot of actual versus forecasted machine states 
from above five models is shown in Fig. 6.

From the result comparisons in Table 2, it can be found that the MAPE (5.19%) 
and MAE (0.0395) of WFRGM are all lower than LRM (MAPE = 21.26%; MAE 
= 0.1608), GM (MAPE = 17.74%; MAE = 0.1415), FRGM (MAPE = 15.73%; 
MAE = 0.1263) and ARGM (MAPE = 9.80%; MAE = 0.0729), indicating the 
highly accurate forecasting ability. Thus, WFRGM algorithm can provide real-time 
machine health information to dynamic PHM decision-making. 

6.2 Effectiveness of MAM Method 

A 5-unit series–parallel system with the initial system structure in Fig. 4 is selected 
as an example for numerical experiments using the proposed MTW policy. In 
this manufacturing system, PM intervals of each machine are dynamically sched-
uled by the MAM method according to individual machine degradation. The reli-
ability of each machine is formulated by a Weibull failure probability function: 
λ1 j (t) = (m j /η j )(t/η j )m j−1 , which has been widely used to fit repairable equip-
ment in electronic and mechanical engineering. Machine e parameters are shown in 
Table 3.

From the results of industrial implementations [33], the proposed machine-level 
MAM method reveals following conclusions: (1) The PM interval decreases while 
PM cycle increases, since the underlying hazard rate evolution becomes faster with 
the degradation process; (2) Machine availability will be lower and maintenance cost 
will be higher as a machine ages due to the consideration of maintenance effects; (3) 
Ignoring the effects of a maintenance activity will lead to less availability and extra 
cost, and MAM contributes to more practicality of PM intervals.
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Table 2 Forecasting results of different methods 

Monitoring point Actual status LRM GM FRGM ARGM WFRGM 

1 0.0837 0.0573 0.0837 0.0837 0.0837 0.0837 

2 0.0864 0.0935 0.1157 0.1157 0.1157 0.1157 

3 0.1705 0.1297 0.1340 0.1340 0.1340 0.1340 

4 0.1732 0.1659 0.1552 0.1552 0.1552 0.1552 

5 0.2110 0.2021 0.1798 0.1798 0.1798 0.1798 

6 0.2122 0.2383 0.2082 0.2082 0.2082 0.2082 

7 0.2388 0.2745 0.2412 0.2412 0.2412 0.2412 

8 0.2448 0.3107 0.2794 0.2794 0.2794 0.2794 

9 0.2856 0.3469 0.3236 0.3236 0.3236 0.3236 

10 0.4144 0.3831 0.3749 0.3749 0.3749 0.3749 

11 0.4219 0.4193 0.4342 0.4342 0.4342 0.4342 

12 0.5318 0.4555 0.5030 0.5030 0.5030 0.5030 

In-sample testing statuses (1–12) 

13 0.6316 0.4917 0.5827 0.5827 0.5827 0.6207 

14 0.6401 0.5279 0.6749 0.6586 0.6857 0.6743 

15 0.6812 0.5641 0.7818 0.7649 0.7762 0.7074 

16 0.7483 0.6003 0.9056 0.8849 0.8421 0.8285 

17 0.8540 0.6365 1.0490 1.0315 0.9130 0.8589 

18 0.9026 0.6727 1.2151 1.1953 0.9976 0.9830 

Out-of-sample forecasting statuses (13–18) 

MAPE (%) 21.26 17.74 15.73 9.80 5.19 

MAE 0.1608 0.1415 0.1263 0.0729 0.0395 

Fig. 6 Comparison of actual and forecast machine health states
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Table 3 Machine parameters 

j m j η j Tpi j T f i  j Cpi j C f i  j cdi  j ai j bi j  

1 3.0 8000 140 600 5000 35,000 80 i /(15i+5) (17i+1)/(16 i+1) 

2 2.0 7000 120 200 6000 18,000 40 0.03 1.04 

3 1.5 12,000 200 350 2000 15,000 30 i /(20 i+20) 1.03 

4 3.0 13,000 80 300 7500 22,000 45 0.025 (16i+3)/(15 i+3) 

5 2.5 16,000 300 800 2500 25,000 75 i /(16 i+14) 1.05

6.3 Effectiveness of MTW Policy 

To validate the MTW policy for complex flow-line systems, we program the system-
level maintenance schedule with machine parameters in Table 3. Taken Tw = 800 h 
for the MTW programming as an example, the CPS mission lifetime is 25,000 h. 
Table 4 provides the system-level maintenance schedule results. 

The influence of MTW-value and the effectiveness of MTW programming is 
shown in Fig.  7. It is proven that MAM policy can reduce ETC up to 27% comparing 
with Individual maintenance mode (IMM) of Tw = 0 and Simultaneous maintenance 
mode (SMM) of Tw = 25,000. Besides, it can be concluded that larger MTW value 
enables more machines to take advantage of maintenance opportunities, but too large 
MTW causes extra maintenance and more ETC will be needed for CPS.

Moreover, traditional opportunistic maintenance policies calculate the cost-
savings of all possible combinations at each cycle with the exponential decision-
making complexity of O(2J −1). For example, Zhou et al. [16] took a 3-unit system 
to illustrate the opportunistic PM scheduling algorithm, while the cost savings for 4 
possible combinations were calculated at each opportunity. For our presented MTW 
policy, since the numbers of parallel/series subsystems and their respective machines 
are all smaller than J , the maximal decision-making complexity at each opportunity 
is less than 2J 2. Thus, the MTW complexity is just polynomial with total machine 
number J , which means even a complex flow-line CPS with a large number of 
machines can be handled.

Table 4 System-level maintenance schedule based on MTW 

j Time point of PM activity (hours) 

1 3319 6911 10,020 13,121 15,134 17,940 20,212 22,789 

2 3319 6911 10,020 15,134 19,105 22,789 

3 5108 10,020 15,134 20,212 

4 6911 14,455 21,984 

5 5108 10,020 15,134 20,212 
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Fig. 7 ETC of the flow-line CPS with various MTW

6.4 Effectiveness of APB Policy 

Faced with sequential batch orders, APB dynamically utilizes set-up works and 
analyzes the cost savings to reduce the total system maintenance cost. PM inter-
vals and various batch orders are pulled to make opportunistic maintenances 
cycle by cycle. For a 7-unit mass customization CPS, results of production-driven 
opportunistic maintenance are presented in Table 5. 

The results from mass customization CPS (Fig. 8) reveal that the mechanism 
of APB policy can ensure the lowest ETC. On the one hand, huge downtime cost 
saving ensures that ETC of APB policy is lower than those of maintenance-driven 
opportunistic maintenance policies (e.g. IMM, SMM and MTW). On the other 
hand, APB dynamically compares cost savings and chooses PM adjustment with 
Max

{
SC A ju, SC Pju

}
, which is thus a more cost-effective policy than Advanced 

maintenance mode (AMM) and Postponed maintenance mode (PMM). Therefore, 
APB policy achieves significant cost reduction by considering batch characteristics 
and making PM adjustment based on maximum cost saving for each machine at each 
set-up time.

Table 5 APB results in sequential batch cycles 

APB (cost) B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 

M1 − 9204 − 3269 − 2725 4022 

M2 2262 33 1865 1746 2790 

M3 392 − 6332 105 − 902 
M4 − 110 4033 4555 

M5 − 78 5762 5934 3687 1758 − 1640 
M6 526 − 2332 336 151 

M7 6490 1951 2250 
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Fig. 8 Results comparison of opportunistic maintenance policies 

6.5 Effectiveness of RMTW Policy 

The RMTW policy is performed on a reconfigurable manufacturing CPS with change-
able system structures shown in Fig. 4. In the first manufacturing stage (MS1), 
TW 1 = 800 is applied for the RMTW programming as an example, while TW2 = 600 
and TW3 = 1000 are taken for MS2 and MS3 separately. Table 6 shows the RMTW 
scheduling results for reconfigured system structures. At each system-level PM 
execution point tk , Θ( j, tk) = 0 means no PM action but this machine will be down 
according to the system structure; Θ( j, tk) = 1 indicates a PM action is combined 
to be performed; while Θ( j, tk) = 2 evinces no PM and this machine continues 
working. Newly added or removed machines are considered in each manufacturing 
stage.

From the results of reconfigurable manufacturing CPS, we can find that different 
CPS structures with various machine reliabilities and changeable system-level recon-
figurations would lead to different ETC-saving rates. However, RMTW policy is 
exactly designed to redefine the time width of TWh  for minimizing the ETC in each 
manufacturing stage. Therefore, this optimization mechanism ensures that RMTW 
policy can not only be rapidly adapt to new diverse system structures, but also achieve 
cost effectiveness for the whole-CPS maintenance scheduling. In Fig. 9, results indi-
cate that the ETC-saving rate (28.105% comparing to IMM) achieved by RMTW 
scheduling is much higher than traditional opportunistic maintenance policies (IMM, 
SMM and static MTW). It can be concluded that proposed RMTW policy is a viable 
and effective policy to achieve rapid responsiveness and cost reduction for future 
reconfigurable manufacturing.
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Fig. 9 ETC-saving rate comparison with various methods 

7 Conclusions and Perspectives 

In this chapter, we have presented systematic PHM methodologies for cyber-physical 
systems of three advanced manufacturing paradigms. With monitored and synchro-
nized information from the cyber computational space, PHM methodologies inte-
grating manufacturing characters in the physical factory floor can improve the 
health management. These developed prognosis algorithm, scheduling model and 
opportunistic maintenance policies achieve significant improvements in following 
aspects: (1) WFRGM algorithm provides real-time and accurate health predictions 
by incorporating updated information and influencing factors; (2) MAM method can 
output sequential PM intervals based on individual machine health for supporting 
the system-level opportunistic maintenance; (3) MTW policy schedules PM separa-
tions/combinations according to series–parallel structures for reducing maintenance 
cost and decision-making complexity; (4) APB policy achieves huge cost savings 
by utilizing set-up times to makes real-time PM optimizations and handle variable 
batch orders; (5) RMTW policy efficiently achieves rapid responsiveness and cost 
effectiveness for diverse open-ended reconfigurations and flexible system structures. 

In sum, both cyber factors (information technologies) and physical factors (manu-
facturing paradigms) are essential for the health management of future CPS. Some 
industrial enterprises (i.e., port machinery manufacturers and automobile manufac-
turing companies) have already benefited from these novel PHM methodologies. 
Future work is needed to extending this hierarchical PHM framework to other 
burgeoning manufacturing paradigms, such as sustainable manufacturing, green 
production and cloud manufacturing.
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Degradation Modeling and Residual Life 
Prediction Based on Nonlinear Wiener 
Process 

Bo Guo 

Abstract Residual life estimation plays a significant role in scheduling maintenance 
activities for high-reliability products. In the literature, most of the existing studies 
dealt with this issue by considering only one-dimensional performance characteristic. 
However, it may be unreasonable since a product can have multiple performance 
characteristics. Generally, these performance characteristics are dependent due to 
the common influences from the environments. Moreover, the nonlinearity of the 
product’s degradation process should also be taken into account. In this chapter, 
degradation models based on nonlinear Wiener process is presented to address the 
issue under univariate and multivariate situations. Based on the proposed method, 
a closed-form of the probability density function (PDF) of the product’s residual 
life can be approximately obtained. Numerical examples concerning fatigue cracks 
demonstrate the validity of the proposed method. 

Keywords Residual life estimation · Performance characteristic · Nonlinearity ·
Wiener process 

1 Introduction 

Due to the internal and external environments, the product’s performance can degrade 
over time, leading to reduced reliability. The lower the reliability, the higher the failure 
probability of product. With respect to high-reliability products such as manned 
spaceships, satellites and aircraft engines, unexpected failures may lead to loss of 
human lives, negative impact on the environment, and financial loss. Therefore, the 
residual life (RL) of a product needs to be precisely predicted, and then served as 
an important basis for reliability improvement, failure prevention, and utilization 
maximization of the product through implementing optimal maintenance actions. 
Generally, a product’s RL can be defined as the time length between the beginning and 
the end of its finite life. From the degradation point of view, a product can be viewed
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as failure when its degradation value of the healthy state exceeds the corresponding 
failure threshold [1, 2]. In this regard, the degradation process and the product’s RL 
should be appropriately described and predicted. Generally. degradation models can 
be developed based on exponential models [3], autoregressive models [4], stochastic 
process models [5], neural network models [6], and so on. 

Considering the random effects induced by the operating environments, The 
stochastic process models are usually employed to model the degradation of a product 
[7]. Among them, the Wiener process is widely used in degradation analysis owing to 
its useful mathematical properties. For the linear degradation processes, the Wiener 
process with a linear drift has a wide application [5]. When it comes to nonlinear 
degradation processes, the non-linearity should be fully considered in degradation 
modeling. Otherwise, the dynamics during the degradation process cannot be prop-
erly captured, which can further lead to wrong results of the RL prediction. Therefore, 
we pay more attentions to the degradation modeling with a nonlinear Wiener process. 
Moreover, most of the existing studies on RL prediction assumed that the product’s 
health state can be completely characterized by a performance characteristic (PC) [3– 
5, 7–9]. In fact, a product may have multiple performance characteristics (PCs), most 
importantly, the degradations of these PCs may be dependent due to the common 
effects from the environments [10–13]. For the sake of estimating the RL of a product 
with multiple PCs, it is necessary to construct multivariate degradation models to 
properly capture the degradation behaviors of the PCs. 

2 Degradation Modeling and Residual Life Prediction 
with a Univariate Nonlinear Wiener Process 

Suppose that one PC with nonlinear degradation behavior can characterize a product’s 
health state. When the value of the PC exceeds the degradation threshold D, the  
target product is regarded as failed. Next, we will describe the degradation modeling 
principle and the probability density function (PDF) of the RL using a nonlinear 
Wiener process. 

2.1 Degradation Modeling 

Denote X (t) as the cumulative degradation of a PC at time t , and it is written as: 

M1 : X (t) = aΛ(t; θ ) + σ B(τ (t; γ )) (1) 

where both Λ(t; θ ) and τ (t; γ ) are linear/nonlinear consecutively increasing func-
tions in t ∈ [0, ∞). B(·) denotes the Brownian motion (BM), and it is utilized to 
characterize the temporal uncertainty of the degradation process. θ , γ , and σ are
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fixed effects that describe the population’s common degradation characteristics. a is 
a random effect that captures the product-to-product variability. Here, a is supposed 
to be normally distributed with mean μ0 and variance σ 2 0 . 

Owing to the measurement error or other types of factors, the degradation process 
can be polluted by noise. In this regard, the degradation measurement at time t can 
be calculated by adding a measurement error ε(t) to X (t), formulated as: 

M2 : Y (t) = X (t) + ε(t) (2) 

where ε(t) obeys a normal distribution with mean 0 and variance ξ 2. Furthermore, 
the measurement errors at different time instances are assumed to be independent, 
that is, 

cov
(
ε
(
t j
)
, ε(tl )
) =
{

ξ 2 , j = l; 
0, j /= l. 

Particularly, the proposed model in Eq. (2) encompasses the following special 
cases: 

(1) If ξ → 0, M2 reduces to M1; 
(2) Given Λ(t; θ ) = τ(t; γ ), the generalized Wiener process becomes a regular 

Wiener process with a time-scale transformation [10]; 
(3) If Λ(t; θ ) = τ(t; γ ) and σ0 → 0, M2 reduces to the model proposed in [14]; 
(4) If Λ(t; θ ) = τ(t; γ ) = t , M2 becomes the model studied in [15]; 
(5) By specifying Λ(t; θ ) and τ(t; γ ) in different forms, M2 can be extended to 

cover different degradation models. 

Let t0 = 0,ΔY1 = Y (t1), ΔY j = Y (t j ) − Y (t j−1), ΔΛ(t j ; θ ) = Λ(t j ; θ ) − 
Λ(t1; θ ), and Δτ (t j ; γ ) = τ(t j ; γ ) − τ(t j−1; γ ). Given  a, we have  

cov
(
ΔY j ,ΔYl |a

) = 

⎧ 
⎪⎪⎨ 

⎪⎪⎩ 

σ 2Δτ
(
t j ; γ
)+ ξ 2, j = l = 1, 

σ 2Δτ
(
t j ; γ
)+ 2ξ 2, j = l > 1, 

−ξ 2, l = j + 1 or  l = j − 1, 
0, otherwise. 

(3) 

Furthermore, the increment of the degradation measurement ΔY j , given  a, is  
normally distributed, that is,

ΔY j |a ∼
{
N
(
aΔΛ
(
t j ; θ
)
, σ  2Δτ

(
t j ; γ
)+ ξ 2

)
, j = 1, 

N
(
aΔΛ
(
t j ; θ
)
, σ  2Δτ

(
t j ; γ
)+ 2ξ 2

)
, j > 1. 

(4) 

LetΔY = (ΔY1,ΔY2, . . . ,ΔYn)
',ΔΛ = (ΔΛ(t1; θ ),ΔΛ(t2; θ ), . . . ,ΔΛ(tn; θ ))'. 

According to Eqs. (3) and (4), we have

ΔY |a ∼ N (aΔΛ, Σ) (5)
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with the joint PDF as: 

fΔY (ΔY |a) = (2π )−
n 
2 |Σ |− 1 

2 exp

(
− (ΔY − aΔΛ)'Σ−1 (ΔY − aΔΛ) 

2

)

where Σ is the conditional variance–covariance matrix of ΔY with the ( j, l)th 
element as cov(ΔY j ,ΔYl |a). 

2.2 Degradation Model Updating 

To accurately predict a product’s RL, the future degradation behavior is expected to 
be properly captured. Hence, the degradation model is updated using the historical 
degradation data at each time point, making it possible to characterize the real degra-
dation process as close as possible. Subsequently, the RL can be timely estimated 
based on the updated degradation model and historical data. 

Assume that a product is not failed at current time th and denote the true cumulative 
degradation value as X (th). One can represent the degradation process of a product 
as: 

X (th + l) = X (th) + aΔΛ(th + l; θ ) + σ B(Δτ (th + l; γ )) (6) 

where ΔΛ(th + l; θ ) = Λ(th + l; θ ) − Λ(th; θ ) and Δτ (th + l; γ ) = τ(th + l; γ ) − 
τ(th; γ ). 

Given X (th), the dynamics of X (th + l) can be captured. However, to reduce 
the uncertainty in estimation, the extrapolation of the future degradation should be 
timely related to the degradation history, rather than the current degradation value 
[5]. Thus, we reconstruct Eq. (6) as:

{
a j = a j−1 + η, 
X
(
t j
) = X
(
t j−1
)+ a j−1ΔΛ

(
t j ; θ
)+ ς j , 

(7) 

where η ∼ N (0, Q) and ς j ∼ N (0, σ  2Δτ (t j ; γ )). Based on degradation history 
X1:h = (X (t1), X (t2), . . . ,  X ((th))), ah could be estimated by Eq. (7). The dynamics 
of X (th + l) can then be denoted as: 

X (th + l) = X (th) + ahΔΛ(th + l; θ ) + σ B(Δτ (th + l; γ )) 

For the sake of convenience, the entire process is referred as degradation model 
updating.
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However, due to measurement errors, only the history of the degradation measure-
ments Y 1:h = (Y (t1), Y (t2), . . . ,  Y ((th))) is known whereas X1:h remains unknown. 
Therefore, the degradation model cannot be directly updated by Eq. (7). Thus, we 
rewrite Eq. (7) as:  

⎧ 
⎪⎨ 

⎪⎩ 

a j = a j−1 + η, 
X
(
t j
) = X
(
t j−1
)+ a j−1ΔΛ

(
t j ; θ
)+ ς j , 

Y
(
t j
) = X
(
t j
)+ ε j , 

(8) 

where ε j ∼ N (0, ξ  2). Now, both  a j and X (t j ) can be seen as hidden states. 
To estimate the hidden states ah and X (th), we rewrite Eq. (8) as:

{
X̃ j = F j, j−1 X̃ j−1 + υ

(
t j
)
, 

Y
(
t j
) = H X̃ j + ε j , 

(9) 

where X̃ j = (a j , X (t j ))', υ(t j ) = (η, ς j )', H = (0, 1), and F j, j−1 =[
1 0

ΔΛ(t j ; θ ) 1

]
. The covariance matrix of υ

(
t j
)
is presented as: 

M j =
[
Q 0 
0 σ 2Δτ

(
t j ; γ
)
]

Given Eq. (9), the hidden states can be estimated using a Kalman filter The 
following steps describe the main estimation steps. 

Step 1: Initialize the hidden states 

ˆ̃X0 = (μ0, 0)', P0|0 =
[

σ 2 0 0 
0 0

]
, j = 0 

Step 2: Set j = j + 1, calculate the one-step prediction of X̃ j as: 

ˆ̃X j+1| j = F j+1, j 
ˆ̃X j (10) 

P j+1| j = F j+1, j P j | j F'
j+1, j + M j (11) 

Step 3: Estimate the hidden state as: 

ˆ̃X j+1| j+1 = ˆ̃X j+1| j + K j+1

(
Y j+1 − Ŷ j+1| j

)
(12)
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where Ŷ j+1| j = H ˆ̃X j+1| j , K j+1 = P j+1| j H '(H P j+1| j H ' + ξ 2)−1 ; 

Step 4: Update the variance of the hidden state by: 

P j+1| j+1 =
(
I − K j+1 H

)
P j+1| j (13) 

where I =
[
1 0  
0 1

]
; 

Step 5: Repeat step (2) to step (4) until j = h. 
Ultimately, ah and X (th) can be estimated. Their uncertainty can be respectively 

reflected as: 

ah ∼ N
(
âh, P1,1 

h|h
)
, X (th) ∼ N

(
X(th)
Ʌ

, P2,2 
h|h
)

(14) 

where (âh, X (th)
Ʌ

)' = ˆ̃Xh and P
l,l 
h|h is the (l, l)th element of Ph|h . When new degrada-

tion measurement information becomes available, we can again estimate the hidden 
states by the above procedures. 

2.3 Residual Life Prediction 

Given the updated degradation model, a product’s RL at the current time point is 
represented as: 

Lh = inf{l : X (t + l) ≥ D} (15) 

Let Z (l) = X (th + l) − X (th), i.e., 

Z(l) = ahΔΛ(th + l; θ ) + σ B(Δτ (th + l; γ )) 

Clearly, Lh is the first passage time that Z (l) exceeds Dh = D − X (th). Since the 
nonlinearity may exist in either Λ(t; θ ) or τ(t; γ ), it is difficult to obtain the PDF of 
Lh in a closed-form. Given ah and X (th), the PDF of Lh can be approximated as [7]: 

fLh (l|ah, X (th)) ∼= 
1 

ALh 

gLh (l|ah, X (th)) (16) 

where 

gLh (l|ah, X(th)) = 1 
√
2πΔτ  (th + l; γ )
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(
DYh (Δτ (th + l; γ ))

Δτ (th + l; γ )
+ 

ahη'
h(Δτ (th + l; γ ); θ ) 

σ

)

× exp

(

−
(
DYh (Δτ (th + l; γ ))

)2 

2Δτ (th + l; γ )

)
dΔτ (th + l; γ ) 

dl 
, 

ALh =
∫∞ 
0 gLh (l|ah)dl, DYh (sh) = 1 

σ (Dh − ahηh(sh; θ )), ηh(sh; θ ) = ΔΛ(th + 
ν(sh; θ ); θ ), ν(sh; γ ) is the inverse of Δτ (th + l; γ ) by setting sh = Δτ (th + l; γ ), 
and ahη'

h(sh; θ ) = dηh (sh ;θ ) 
dsh 

. 
Then, the unconditional PDF of Lh can be formulated by using the law of total 

probability: 

fLh (l) ∼= 
¨

Ω

fLh (l|ah, X (th))dahdX  (th) (17) 

However, the closed-form of fLh (l) is hard to be derived owing to ALh . Therefore, 
it is necessary to obtain a new approximation. 

Suppose that Z ∼ N (μZ , σ  2 Z ), we the have 

EZ

(
exp

(
− 

(K1 − K2 Z )
2 

2K3

))
=
/

K3 

(K2σZ )
2 + K3 

exp

(

− 
(K1 − K2μZ )

2 

2
(
(K2σZ )

2 + K3
)

)

(18) 

and 

EZ

(
Z exp

(
− 

(K1 − K2 Z )
2 

2K3

))

= 
(σZ )

2 K2K1 + μZ K3 

(K2σZ )
2 + K3 

/
K3 

(K2σZ )
2 + K3 

exp

(

− 
(K1 − K2μZ )

2 

2
(
(K2σZ )

2 + K3
)

)

. 
(19) 

Here, the law of total probability is firstly applied on gLh (l|ah, X (th)) with respect 
to ah : 

gLh (l|X (th)) =
1

Δτ (th + l; γ ) 
/
2π
(
B2 P1,1 

h|h + C
)
dΔτ (th + l; γ ) 

dl 

×
(

Dh − A 
B P1,1 

h|h Dh + âhC 

B2 P1,1 
h|h + C

)

exp 

⎛ 

⎝−
(
Dh − âh B

)2 

2
(
B2 P1,1 

h|h + C
)

⎞ 

⎠, (20) 

where A = ηh(Δτ (th+l; γ ); θ )−η'
h(Δτ (th+l; γ ); θ )Δτ (th+l; γ ),B = ηh(Δτ (th+ 

l; γ ); θ ),C = σ 2Δτ (th + l; γ ). Since Dh = D − X (th) and X (th) ∼ (X (th)
Ʌ

, P2,2 
h|h),
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Dh ∼ N (Dh, P2,2 
h|h). By integrating Dh out of gLh (l|X (th)), we get 

gLh (l) =
1

Δτ (th + l; γ ) 
/
2π
(
B2 P1,1 

h|h + C
)
dΔτ (th + l; γ ) 

dl 

× 

⎛ 

⎝
(

1 − AB  P1,1 
h|h 

B2 P1,1 
h|h + C

)
P2,2 

h|h âh B + Dh

(
B2 P1,1 

h|h + C
)

P2,2 
h|h + B2 P1,1 

h|h + C
− AâhC 

B2 P1,1 
h|h + C 

⎞ 

⎠ 

×
┌||√ B2 P1,1 

h|h + C 
P2,2 

h|h + B2 P1,1 
h|h + C 

exp 

⎛ 

⎝−
(
âh B − Dh

)2 

2
(
P2,2 

h|h + B2 P1,1 
h|h + C

)

⎞ 

⎠. (21) 

Finally, we approximate fLh (l) as: 

fLh (l) ∼= 
1 

A'
Lh 

gLh (l) (22) 

where A'
Lh 

= ∫∞ 
0 gLh (l)dl. Based on Eq. (22), fLh (l) can be approximately expressed 

in a closed-form. For example, given Λ(t; θ ) = tb and τ(t; γ ) = tγ , fLh (l) is written 
as: 

fLh (l) ≈ 
1 

A'
Lh 

γ (th + l)γ −1

Δτ (th + l; γ ) 
√
2π B0 

/
B0 

B0 + P2,2 
h|h 

exp 

⎛ 

⎝−
(
D̄h − âhΔɅ(th + l; θ )

)2 

2
(
B0 + P2,2 

h|h
)

⎞ 

⎠ 

×
((

1 − 
AΔɅ(th + l; θ )P1,1 

h|h 
B0

)
P2,2 

h|h âhΔɅ(th + l; θ ) + D̄h B0 

P2,2 
h|h + B0 

− 
Aâhσ 2Δτ (th + l; γ ) 

B0

)
, (23) 

where A = ΔΛ(th + l; θ ) − b(th+l)b−γ Δτ (th+l;γ ) 
γ

and B0 = ΔΛ(th + l; θ )2 P1,1 
h|h + 

σ 2Δτ (th + l; γ ). 
Until now, given Y 1:h , we can estimate the PDF of Lh by Eq. (22). 

2.4 Parameters Estimation 

Before estimating a product’s RL, some parameters, denoted as Θ = 
(θ , γ , μ0, σ0, σ, ξ,  Q), should be determined. To this end, we divide Θ into two 
parts, including Θ1 = (θ , γ , μ0, σ0, ξ, σ  )  and Q. Specifically, Θ1 characterizes the 
population-based degradation characteristics and Q describes the product’s dynamic
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characteristics. Therefore, to estimate Θ1 and Q, the population-based degradation 
information and the historical degradation information are employed, respectively. 

Suppose that the population-based degradation information is composed of 
m products’ degradation measurements, where the degradation value of the 
i th product is tested at ni times. Denote the degradation measurement infor-
mation of the i th product in the j th test as Yi (ti, j ) (i = 1, 2, . . . ,  m, 
j = 1, 2, . . . ,  ni ). Let ΔY i = (ΔYi,1,ΔYi,2, . . . ,ΔYi,ni )

' and ΔΛi = 
(ΔΛ(ti,1; θ ),ΔΛ(ti,2; θ ),  . . . , ΔΛ((ti,ni ; θ )))', where ΔYi, j = Yi (ti, j ) − Yi (ti, j−1),
ΔΛ(ti, j ; θ ) = Λ(ti, j ; θ ) − Λ(ti, j−1; θ ). According to Eq. (5), we have:

ΔY i |a(i) ∼ N
(
a(i )Λi , Σ i

)

where a(i) is a realization of a with respect to the i th product, and Σ i is the covariance 
matrix of ΔY i conditional on a(i). The  ( j, l)th of Σ i is given as: 

Σ i, j,l = 

⎧ 
⎪⎪⎨ 

⎪⎪⎩ 

σ 2Δτ
(
ti, j ; γ
)+ ξ 2, j = l = 1, 

σ 2Δτ
(
ti, j ; γ
)+ 2ξ 2, j = l > 1, 

−ξ 2, l = j + 1 or  l = j − 1, 
0, otherwise. 

where Δτ (ti, j ; γ ) = τ(ti, j ; γ ) − τ(ti, j−1; γ ). Then, conditional on a(i), the moment 
generating function of ΔY i is given as: 

MΔY i |a(i ) (wi ) = E
(
exp
(
w'

iΔY i
)) = exp

(
a(i)w

'
iΔΛi
)
exp

(
w'

i Σ i wi 

2

)
(24) 

Since a(i) ∼ N (μ0, σ  2 0 ), the unconditional moment generating function of ΔY i 

can be obtained by using the law of total probability, and it is formulated as: 

MΔY i (wi ) = exp
(
μ0w

'
iΔΛi
)
exp

(
w'

i
(
Σ i + σ 2 0 ΔΛiΔΛ'

i

)
wi 

2

)

(25) 

Thus,

ΔY i ∼ N
(
μ0ΔΛi , Σ i + σ 2 0 ΔΛiΔΛ'

i
)

(26) 

LetΔY = (ΔY '
i ,ΔY '

2, . . . ,ΔY '
m)', the log-likelihood function of Θ1 can then 

be calculated by:

l(Θ1|ΔY ) = −  
m∑

i=1 

ni 
2 
log(2π ) − 

1 

2 

m∑

i=1 

log
(||Σ i + σ 2 0 ΔΛiΔΛ'

i

||)
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− 
m∑

i=1 

(ΔY i − μ0ΔΛi )
'(Σ i + σ 2 0 ΔΛiΔΛ'

i
)−1 

(ΔY i − μ0ΔΛi ) 
2 

. 

(27) 

Set σ̃ 2 = σ 2 
σ 2 0 
, ξ̃ 2 = ξ 2 

σ 2 0 
, and Σ̃ i = Σ i 

σ 2 0 
, the log-likelihood function can be 

reconstructed by:

l
(
Θ̃1|ΔY

)
= −  

m∑

i=1 

ni 
2 
log(2π ) − log

(
σ 2 0
)

m∑

i=1 
ni 

2
− 

1 

2 

m∑

i=1 

log
(|||Σ̃ i + ΔΛiΔΛ'

i

|||
)

− 
m∑

i=1 

(ΔY i − μ0ΔΛi )
'
(
Σ̃ i + ΔΛiΔΛ'

i

)−1 
(ΔY i − μ0ΔΛi ) 

2σ 2 0 
, 

where Θ̃1 = (θ , γ , μ0, σ0, ξ̃ ,  ̃σ). Upon differentiating l
(
Θ̃1|ΔY

)
with respect to 

μ0 and σ 2 0 , respectively, we obtain: 

∂l
(
Θ̃1|ΔY

)

∂μ0 
= 

m∑

i=1

ΔΛ'
i

(
Σ̃ i + ΔΛiΔΛ'

i

)−1 
(ΔY i − μ0ΔΛi ) 

σ 2 0 
(28) 

∂l
(
Θ̃1|ΔY

)

∂σ 2 0 
= −  

m∑

i=1 
ni 

2σ 2 0 
+ 

m∑

i=1 

(ΔY i − μ0ΔΛi )
'
(
Σ̃ i + ΔΛiΔΛ'

i

)−1 
(ΔY i − μ0ΔΛi ) 

2σ 4 0 
(29) 

For specific values of θ , γ , ξ̃ 2, and σ̃ 2, the maximum likelihood estimate (MLE) 
values of μ0 and σ 2 0 can be obtained by setting Eqs. (28) and (29) to 0, respectively, 
i.e., 

μ̂0 =
∑m 

i=1 ΔΛ'
i

(
Σ̃ i + ΔΛiΔΛ'

i

)−1
ΔY i

∑m 
i=1 ΔΛ'

i

(
Σ̃ i + ΔΛiΔΛ'

i

)−1
ΔΛi 

(30) 

σ̂ 2 0 =
∑m 

i=1

(
ΔY i − μ̂0ΔΛi

)'(
Σ̃ i + ΔΛiΔΛ'

i

)−1(
ΔY i − μ̂0ΔΛi

)

∑m 
i=1 ni 

(31)
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By substituting μ̂0 and σ̂ 2 0 into l( Θ̃1|ΔY ), the profile likelihood function of θ , γ , 
ξ̃ 2, and σ̃ 2 can be yielded, it is written as:

l
(
θ , γ , ξ̃ ,  ̃σ |ΔY

)
= −
∑m 

i=1 

ni 
2 
log(2π ) −

∑m 
i=1 ni 
2

− log
(
σ̂ 2 0
)
∑m 

i=1 ni 
2 

− 
1 

2

∑m 

i=1 
log
(|||Σ̃ i + ΔΛiΔΛ'

i

|
||
)

(32) 

Using a multiple-dimensional search approach, the optimal estimates of θ , γ , ξ̃ 2, 
and σ̃ 2 can be estimated by maximizing l(θ , γ , ξ̃ ,  ̃σ |ΔY ). Based on these estimates, 
the values of μ̂0 and σ̂ 2 0 can be obtained according to Eqs. (30) and (31), respectively. 
In addition, the confidence intervals and standard errors for the MLE results can also 
be obtained by applying the parametric bootstrap method [16]. 

Let a0:h−1 = (a0, a1, a2, . . . ,  ah−1) and denote the product’s historical degra-
dation measurement as Y 1:h . Thus, the likelihood function of a0:h−1 and Q are 
represented by: 

L(Y 1:h |Q, a0:h−1) = 
hπ

j=1 

fΔY j

(
ΔY j |a j−1

)
(33) 

where fΔY j (ΔY j |a j−1) denotes the conditional PDF of ΔY j obtained from Eq. (5). 
Owing to the existence of a0:h−1, it is hard to directly estimate Q. Hence, we solve 
this problem using a Bayesian approach. 

Suppose that the prior PDF of Q is π(Q). Then, the joint prior PDF of a0:h−1 and 
Q is given by: 

π (Q, a0:h−1) = 
h−1π

j=1 

fa j
(
a j |a j−1, Q

)
fa0 (a0)π (Q) (34) 

where 

fa j
(
a j |a j−1, Q

) = 1 √
2π Q 

exp

(

−
(
a j − a j−1

)2 

2Q

)

fa0 (a0) =
1 

σ0 

√
2π 

exp

(
− 

(a0 − μ0)
2 

2(σ0)
2

)

According to the Bayesian formula, the joint posterior PDF of a0:h−1 and Q are 
represented by: 

π (Q, a0:h−1|Y 1:h) ∝ L(Y 1:h |Q, a0:h−1)π (Q, a0:h−1) (35)
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With a non-informative prior for Q, the Markov chain Monte Carlo (MCMC) 
method can be utilized to generate multiple samples with respect to Q from 
π(Q, a0:h−1|Y 1:h), and the mean of these samples is treated as the estimate of Q. 

2.5 Degradation Modeling and Residual Life Prediction 
with a Multivariate Nonlinear Wiener Process 

In this section, the degradation behavior of a product is supposed to be characterized 
by multiple PCs and the degradation behavior of each PC is nonlinear. Moreover, 
these PCs are dependent with each other due to the influence from the environments. 
The target product is viewed as failure when any of these PCs firstly exceeds the 
corresponding degradation threshold. 

2.6 Degradation Modeling 

A Wiener process with a nonlinear drift is assumed to characterize the degradation 
process of each PC. The cumulative degradation value of the kth PC at time point t 
can be represented as: 

X (k) (t) = β(k) Λ(k)
(
t; γ (k)
)+ σ (k) B(k) (t) (36) 

The dependent relationship between the PCs is represented as: 

X(t)|β ∼ N (A(t)β, tΣ) (37) 

where X(t) = (X (1) (t), X (2) (t), . . . , X ( p) (t))', β = (β(1) , β(2) , . . . , β( p) )', A(t) = 

( Ak,l (t))p×p, Σ = (Σk,l )p×p, Ak,l (t) =
{

Λ(k) (t; γ (k) ), k = l 
0, other wise  

, and Σk,l =
{

(σ (k) )2, k = l 
ρk,l σ (k) σ (l) , other wise  

. In order to characterize the degradation variabilities 

between different product, we assume that β ∼ N (μβ , Σβ ). 

Denote X i (ti, j ) = (X (1) 
i (ti, j ), X (2) 

i (ti, j ), . . . ,  X ( p) 
i (ti, j ))' as the degradation 

measurement of product i at time point ti, j (i = 1, 2, . . . ,  m, j = 1, 2, . . . ,  ni ). 
Set Δti, j = ti, j − ti, j−1, ΔX (k) 

i (ti, j ) = X (k) 
i (ti, j ) − X (k) 

i (ti, j−1), ΔA(ti, j ) = 
A(ti, j ) − A(ti, j−1), and ΔX i (ti, j ) = (ΔX (1) 

i (ti, j ),ΔX (2) 
i (ti, j ),  . . . , ΔX ( p) 

i (ti, j ))'. 
Thus, we have:

ΔX i
(
ti, j
)|β i ∼ N

(
ΔA
(
ti, j
)
β i ,Δti, j Σ

)
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With X i = ((X i (ti,1))', (X i (ti,2))', . . . , (X i (ti,ni ))
')', the likelihood function of θ 

can be represented as: 

L(θ |X i ) = 
∞∮

−∞ 

∞∮

−∞ 

. . .  
∞∮

−∞ 

niπ

j=1 

f
(
ΔX i
(
ti, j
)|β i

)
fβ
(
β i

)
dβ (1) i dβ (2) i . . .  dβ ( p) i (38) 

where θ = (μβ , Σβ γ , Σ) and γ = (γ (1) , γ (2) , . . . ,  γ (p) )'. f (ΔX i (ti, j )|β i ) repre-
sents the conditional PDF of ΔX i (ti, j ) given β i = (β (1) i , β  (2) i , . . . , β  ( p) i )'. fβ

(
β i

)

represents the joint PDF of β i . On account of that different products are independent, 
the likelihood function of θ is thus represented as: 

L(θ |X) = 
mπ

i=1 

L(θ |X i ) (39) 

where X = (X '
1, X '

2, . . . ,  X '
m)'. 

2.7 Degradation Model Updating 

Denote the product’s degradation measurements at the current time point th as 
X(th) = (X (1) (th), X (2) (th), . . . ,  X ( p) (th))'. Now, we investigate the future behavior 
of X(t) from the current time point, and it is intuitively written by: 

X(t) = X(th) + ( A(t) − A(th))β + ξ t,th (40) 

where ξ t,th is normally distributed with mean 0 and variance (t − th)Σ . Consid-
ering the latest historical degradation information, a state-space model is utilized to 
reconstruct Eq. (40), formulated as:

{
β( j ) = β( j−1) 

X
(
t j
) = X

(
t j−1
)+ ΔA

(
t j
)
β( j−1) + ξ t j ,t j−1 

(41) 

where t0 = 0, X(t0) = 0, ΔA(t j ) = A(t j ) − A(t j−1). ξ t j ,t j−1 
and β(0) are normally 

distributed with mean 0 and μβ , variance t j −t j−1)Σ and Σβ , respectively. Since β( j) 
is depended on the historical degradation information, it is treated as the latent state. 
Thus, the product’s degradation measurements of the target product are rewritten by: 

X(t) = X(th) + (A(t) − A(th))β(h) + ξ t,th 

Apparently, how to estimate β(h) using the historical degradation information 
becomes a critical issue. To solve this issue, the strong tracking filter (STF) [17] is
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applied. Set Y (t j ) = X(t j )−X(t j−1) ( j = 1, 2, . . . ,  h), the following steps describe 
the steps of the estimation process. 

Step 1: Set β̂(0) = μβ , P0|0 = Σβ , α, and κ . Here, α (α ≥ 1) and κ (0 < κ  ≤ 1) 
are the soften factor and the forgetting factor, respectively, and heuristic methods are 
employed to select proper values [17]; 

Step 2: Compute the fading factor φ(t j ) using φ(t j ) = max{φ0, 1}, where the 
subscript j starts from j = 1. φ0 is calculated by: 

φ0 = 
tr
(
N
(
t j
))

tr
(
M
(
t j
)) (42) 

where N(t j ) = V 0(t j ) − α(t j − t j−1)Σ , M(t j ) = ΔA(t j )P j−1| j−1ΔA(t j )
'. tr  (N) 

denotes the trace of matrix N, and 

V 0
(
t j
) =
{
r1r '

1 j = 1 
κ V 0(t j−1)+r j r '

j 

1+κ , j > 1 

where r j = Y (t j ) − ΔA(t j ) ̂β( j−1); 

Step 3: Estimate the latent state β( j ) by: 

β̂( j ) = β̂( j−1) + K j r j (43) 

where 

K j = P j | j−1ΔA
(
t j
)'(

ΔA
(
t j
)
P j−1| j−1ΔA

(
t j
)' + (t j − t j−1

)
Σ
)−1 

P j | j−1 = 
diag
(
φ
(
t j
)
, φ
(
t j
)
, . . . , φ

(
t j
))

p×p P j−1| j−1; 

Step 4: Calculate the covariance of β( j) by: 

P j | j =
(
I − K jΔA

(
t j
))
P j | j−1 (44) 

where I = diag(1, 1, . . .  ,  1)p×p; 

Step 5: Set j = j + 1, and repeat Steps 2 to Step4 until j = h. 

As a result, the latent state β(h) is estimated using X1:h = (X(t1), X(t2), . . . , X(th))', 
and it approximately obeys a normal distribution with mean β̂(h) and covariance 
matrix Ph|h .



DegradationModeling andResidual Life PredictionBased onNonlinear… 459

2.8 Residual Life Prediction 

Assume that X (k) (t) is always below the corresponding failure threshold D(k) until 
time point th , the RL of the kth PC, denoted as L

(k) 
h , can be written as: 

L(k) 
h = inf

{
l : X (k) (l + th) ≥ D(k)|X1:h, X (k)

(
t j
)

< D(k) , j = 1, 2, . . . ,  h
}

(45) 

Denote the product’s RL at time point th as Lh , and it can be represented by: 

Lh = min
{
L(1) 
h , L(2) 

h , . . . ,  L( p) 
h

}
(46) 

Then, the PDF of Lh can be calculated based on β(h) and X1:h according to the 
total law of probability: 

fLh (l|X1:h) = 
∞∮

−∞ 

∞∮

−∞ 

. . .  
∞∮

−∞ 

fLh

(
l|β(h), X1:h

)
fβ(h)

(
β(h)|X1:h

)
dβ (1) (h)dβ (2) h . . .  dβ ( p) h 

(47) 

where fβ(h) (β(h)|X1:h) represents the joint PDF of β(h), formulated as: 

fβ(h)

(
β(h)|X1:h

) ≈ (2π )− p 2 |Ph|h|− 1 
2 exp 

⎛ 

⎜ 
⎝−
(
β(h) − β̂(h)

)'
P−1 

h|h
(
β(h) − β̂(h)

)

2 

⎞ 

⎟ 
⎠ 

However, the closed-form of fLh (l|β(h), X1:h) is almost impossible to be obtained 
because the PCs are nonlinear and dependent. In this context, two methods, i.e., the 
simulation-based method and the approximate method, are employed to tackle this 
issue. 

The core of the simulation-based method is to generate multiple residual lives 
of the product with multiple PCs by simulation, and the product’s RL can then be 
estimated based on these simulated residual lives. The following steps describe the 
RL estimation given the product’s historical degradation information up to X1:h . 

Step 1: Estimate β(h), and it is expressed as β(h) ∼ AN ( ̂β(h), Ph|h); 

Step 2: Generate M realizations of β(h), denoted as β(h),i (i = 1, 2, . . . ,  M), from 

N ( ̂β(h), Ph|h); 

Step 3: Simulate M possible residual lives based on β(h),i (i = 1, 2, . . . ,  M). By 
setting T0 = th , j = 0, and X i (T0) = X(th), the simulated degradation measurement 
value at time point Tj+1 = ( j + 1)Δl + th can be calculated by: 

X i
(
Tj+1
) = X i

(
Tj
)+ β(h),i

(
A
(
Tj+1
)− A
(
Tj
))+ √

ΔlWu  j+1 (48)
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whereΔl denotes the discretization step, W is a lower triangular matrix that satisfies 
WW ' = Σ . u j+1 is a column random vector generated from N (0, I ). In Eq.  (48), 
if the condition, i.e., ∃k ∈ {1, 2, . . . ,  p} such that X (k) 

i (Tj+1) ≥ D(k), holds, the 
product’s simulated RL can be calculated by Lh,i = ( j + 1)Δl. Then, another 
simulated RL can be obtained by setting i = i + 1(i < M) and repeating Step 3. 
Otherwise, set j = j + 1, the simulated degradation process is rerun until a failure 
occurs; 

Step 4: Calculate the mean value and the PDF of the product’s RL at time point th . 
The mean value of the product’s RL at time point th is estimated using the mean 
value of Lh,i (i = 1, 2, . . . ,  M). Moreover, parametric or non-parametric methods 
are utilized to obtain the PDF of the product’s RL using the simulated residual lives. 

Generally, it necessary to obtain a closed-form the PDF of the product’s RL in 
real-world applications such as the maintenance arrangement. To this end, parametric 
distribution models such as the Weibull distribution and the log-normal distribution 
can be used to fit these simulated residual lives. However, uncertainty exists since 
the estimation is conducted using simulated residual lives. Thus, the approximate 
method is employed here. 

In accordance to Eq. (46), given β(h), one can obtain 

P
(
Lh ≥ l|β(h), X1:h

) = P
(
L(1) 
h ≥ l, L(2) 

h ≥ l, . . . ,  L( p) 
h ≥ l|β(h), X1:h

)
(49) 

Set Y (k) (l) = X (k) (l + th) − X (k) (th), P(Lh ≥ l) is rewritten as: 

P
(
Lh ≥ l|β(h), X1:h

)

= P
(
sup 
s≤l 

Y (1) (s) ≤ D(1) 
h , sup 

s≤l 
Y (2) (s) ≤ D(2) 

h , . . . ,  sup 
s≤l 

Y ( p) (s) ≤ D( p) 
h |β(h), X1:h

)

(50) 

Denote the CDF of sup 
s≤l 

Y (k) (s) as Fk,h(y, l). According to Sklar’s theorem [18], 

there exists a unique copula function, denoted as C(u1, u2, . . . ,  u p), such that 

P
(
Lh ≥ l|β(h), X1:h

) = C
(
F1,h

(
D(1) 

h , l
)
, F2,h

(
D(2) 

h , l
)
, . . . ,  Fp,h

(
D( p) 

h , l
))

(51) 

The conditional PDF of Lh can then be represented by: 

fLh

(
l|β(h), X1:h

) ≈ 
p∑

k=1 

∂C
(
F1,h

(
D(1) 

h , l
)
, F2,h

(
D(2) 

h , l
)
, . . . ,  Fk,h

(
D( p) 

h , l
))

∂ Fk,h 

fL(k) 
h

(
l|β (k) (h), X1:h

)
(52)
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fLh (l|X1:h) can be further approximately calculated by: 

fLh (l|X1:h) ≈ 
1 

M 

M∑

i=1 

fLh

(
l|β(h),i , X1:h

)
(53) 

Now, how to obtain the first partial derivative of C(u1, u2, . . . ,  u p) becomes 
a critical issue. Here, a proper approximation method is presented. Suppose that 
p continuous random variables, denoted as, X1, X2, . . . ,  X p, and denote their 
joint CDF as F(x1, x2, . . . ,  xp). Let  fk(xk) and Fk(xk) respectively represent the 
PDF and the CDF of Xk . Given  C(u1, u2, . . . ,  u p) such that F(x1, x2, . . . ,  xp) = 
C(F1(x1), F2(x2), . . . ,  Fp(xp)), one can obtain 

C
(
u1, . . .  ui−1, ui+1, . . . ,  u p|ui

)|uk=ũk ,k=1,2,..., p 

= F
(
x1, . . .  xi−1, xi+1, . . . ,  xp|xi

)|xk=x̃k ,k=1,2,..., p 
(54) 

where x̃k = F−1 
k ( ̃uk) (k = 1, 2, . . . ,  p). 

Set Y sup,−k = (sup 
s≤l 

Y (1) (s), . . . ,  sup 
s≤l 

Y (k−1) (s), sup 
s≤l 

Y (k+1) (s),  . . . ,  sup 
s≤l 

Y ( p) (s))'. 

Thus, the first partial derivative of C(u1, u2, . . . ,  u p) with respect to uk 
can be estimated using the conditional CDF of Y sup,−k given sup 

s≤l 
Y (k) (s) 

and β(h). Set Y−k = (Y (1) (l), . . . ,  Y (k−1) (l), Y (k+1) (l), . . . ,  Y ( p) (l))', thus, 
FY−k |Y (k)(l)(y(1) , · · ·  , y(k−1) , y(k+1) , . . . ,  y( p)|Y (k) (l) = y(k) ), the conditional CDF of 
Y−k given Y (k) (l) and β(h) is used to approximate the value of the conditional CDF 
of Y sup,−k . One can then obtain 

fLh

(
l|β(h), X1:h

)

≈ 
p∑

k=1 

FY−k |Y (k)(l)
(
D(1) 

h , . . . ,  D(k−1) 
h , D(k+1) 

h , . . . ,  D( p) 
h |Y (k) (l) = D(k) 

h

)

fL(k) 
h

(
l|β (k) (h), X1:h

)
(55) 

Set Y = (Y (1) (l), Y (2) (l),  . . . ,  Y (p) (l))'. Given  β(h), one can obtain 

Y |β(h) ∼ N
(
( A(l + th) − A(th))β(h), lΣ

)

Thus, given Y (k) (l) and β(h), Y−k also obeys the normal distribution. 
Since sup 

s≤l 
Y (k) (s) = Y (k) (l) (k = 1, 2, . . . ,  p), it is reasonable to approximate the 

conditional CDF of Y sup,−k using the conditional CDF of Y−k for non-decreasing 
degradation processes. Here, a Wiener process with a nonlinear drift is used to char-
acterize the evolution of Y (k) (l). In this case, the degradation rate over time is accel-
erated. When l takes a large value or σ (k) (k = 1, 2, . . . ,  p) takes a small value, 
the probability of the degradation increment in a time interval that is less than zero
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will be close to zero. Therefore, Y (k) (l) gets close to sup 
s≤l 

Y (k) (s) (k = 1, 2, . . . ,  p), 

leading to a reasonable approximation. 

2.9 Parameters Estimation 

Here, we use the expectation–maximization (EM) algorithm solve the parameter 
estimation problem where β i (i = 1, 2, . . . ,  m) is treated as the latent variable. 
Specifically, two steps, i.e., the E-step and M-step, are iteratively conducted until the 
terminal condition is reached. 

E-step: Calculate the expectation of the log-likelihood function of β i (i = 
1, 2, . . . ,  m) based on the current value of θ and the observed degradation data X ; 

M-step: Update θ by maximizing the expectation of the log-likelihood function result 
of the E-step. 

Given the random effects β i (i = 1, 2, . . . ,  m) and the complete data Z = 
(X ', β1, β2, . . . ,  βm)'. Then, the complete log-likelihood function of θ can be written 
as: 

l(θ |Z) = 
m∑

i=1

{
− 

p 

2 
ln(2π ) − 

1 

2 
ln |Σβ | −  

1 

2

(
β i − μβ

)'(
Σβ

)−1(
β i − μβ

)

− 
ni p 

2 
ln(2π ) − 

1 

2 

ni∑

j=1 

ln |Δti, j Σ | 

− 
1 

2 

ni∑

j=1

(
ΔX i
(
ti, j
)− ΔA

(
ti, j
)
β i

)'(
Δti, j Σ

)−1(
ΔX i
(
ti, j
)− ΔA

(
ti, j
)
β i

)
⎫ 
⎬ 

⎭ . 

(56) 

Denote θ (I ) , μ (I ) β , Σ (I ) β , γ (I ), and Σ (I ) as the current values of θ , μβ , Σβ , γ , and 
Σ after I iterations, respectively. Thus,

(
β i |θ (I ) , X

) ∼ N
(
μ (I ) β i 

, Σ (I ) β i

)
(57) 

where 

μ̄ (I ) β i 
= ∑̄

(I ) 
β i 

⎛ 

⎝ 
ni∑

j=1

ΔX i
(
ti, j
)'(

Δti, j∑
(I )
)−1

ΔA(I ) 
i, j
(
ti, j
)+ μ (I )'β

(
∑

(I ) 
β

)−1 

⎞ 

⎠

'

(58) 

and
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∑̄
(I ) 
β i 

= 

⎛ 

⎝ 
ni∑

j=1

ΔA(I )
(
ti, j
)(

Δti, j Σ
(I )
)−1

ΔA(I )
(
ti, j
)+
(
Σ (I ) β

)−1 

⎞ 

⎠ 
−1 

(59) 

The expectation of l(θ |Z) at the (I + 1)th iteration can thus be represented by: 

E
(
l
(
θ |θ (I ) , X

)) = 
m∑

i=1

{
− 

(ni + 1)p 
2 

ln(2π ) − 
1 

2 
ln |Σβ | 

− 
1 

2

(
tr
((

Σβ

)−1
∑

(I ) 
β i

)
+ μ (I )'β i

(
Σβ

)−1 
μ (I ) β i 

− 2μ'
β

(
Σβ

)−1 
μ (I ) β i 

+ μ'
β

(
Σβ

)−1 
μβ

)

− 
1 

2 

ni∑

j=1

{
ln |Δti, j Σ | + ΔX i

(
ti, j
)'(

Δti, j Σ
)−1

ΔX i
(
ti, j
)

− 2ΔX i
(
ti, j
)'(

Δti, j Σ
)−1

ΔA
(
ti, j
)
μ (I ) β i 

+ tr
(
ΔA
(
ti, j
)(

Δti, j Σ
)−1

ΔA
(
ti, j
)
∑

(I ) 
β i

)

+μ (I )'β i
ΔA
(
ti, j
)(

Δti, j Σ
)−1

ΔA
(
ti, j
)
μ (I ) β i

}}
, (60) 

In the M-step, the following equations are obtained: 

∂ E(l(θ |X)) 
∂μβ 

= 
m∑

i=1

{(
Σβ

)−1 
μ (I ) β i 

− (Σβ

)−1 
μβ

}
= 0 (61) 

∂ E
(
l
(
θ |θ (I ) , X

))

∂
(
Σβ

)−1 = 
1 

2 

m∑

i=1

{
Σβ −

(
∑

(I ) 
β i 

+ μ (I ) β i 
μ (I )'β i 

− 2μβ μ (I )'β i 
+ μβ μ

'
β

)}
= 0 

(62) 

∂ E(l(θ |X)) 
∂(∑)−1 = 

1 

2 

m∑

i=1 

⎧ 
⎨ 

⎩ ni Σ − 
ni∑

j=1 

1

Δti, j

{
ΔX i
(
ti, j
)
ΔX i
(
ti, j
)'

− 2ΔA
(
ti, j
)
μ̄ (I ) β i

ΔX i
(
ti, j
)'

+ΔA
(
ti, j
)
Σ̄ (I ) β i
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(
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(63) 

Therefore, the iterative formulas of μ (I +1) 
β , Σ (I +1) 

β , and Σ (I +1) can be expressed 
as: 

μ (I +1) 
β =

∑m 
i=1 μ (I ) β i 

m 
(64)
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Σ (I +1) 
β = 

1 

m 

m∑

i=1

(
∑

(I ) 
β i 

+ μ (I ) β i 
μ (I )'β i 

− 2μ (I+1) 
β μ (I )'β i 

+ μ (I +1) 
β μ (I +1)'

β

)
(65) 

Σ (I +1) = 
1 

m∑

i=1 
ni 

m∑

i=1 

ni∑
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Δti, j
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ΔX i
(
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)
ΔX i
(
ti, j
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(
ti, j
)
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(
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)
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(I ) 
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ΔA
(
ti, j
)+ ΔA

(
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)
μ (I ) β i 

μ (I )'β i
ΔA
(
ti, j
)}

. (66) 

Now, E(l(θ |θ (I ) , X)) can be substituted with μ (I +1) 
β , Σ (I +1) 

β , and Σ (I+1) . Denote 

the corresponding function of γ as Q(γ |θ (I ) , μ (I +1) 
β , Σ (I +1) 

β , Σ (I +1) , X). By maxi-

mizing Q(γ |θ (I ) , μ (I +1) 
β , Σ (I +1) 

β , Σ (I +1) , X), a new value of γ , denoted by γ (I+1), 
can be obtained. Here, the MATLAB function “fminsearch” is used to conduct the 
multi-dimensional search of γ .. Finally, by substituting γ (I +1) into Eq. (66), the value 
of Σ (I +1) can be obtained. The entire procedures can be summarized as follows. 

Step 1: Initialize μ (0) β , Σ (0) β , γ (0), and Σ (0) . Details are provided in the Appendix; 

Step 2: Compute μ (I ) β i 
and∑

(I ) 
β i 

(i = 1, 2, . . . ,  m) based on μ (I ) β , Σ (I ) β , γ (I ), and Σ (I ) ; 

Step 3: Calculate μ (I +1) 
β , Σ (I +1) 

β , γ (I +1), and Σ (I +1) ; 

Step 4: Repeat Step 2 to Step 3 until the deviation of the expectations of the log-
likelihood function in the two adjacent iterations is less than a predefined threshold. 

3 Illustrative Examples 

In this section, two numerical examples are set to verify the effectiveness of the 
proposed methods. 

3.1 Illustrative Example for the Univariate Nonlinear Wiener 
Process 

The original degradation data is collected from [19] where 21 products with initial 
crack length of 0.9 inches are tested for fatigue crack development. When the cumu-
lative crack length exceeds 0.7 inches (or the crack length crosses over 1.6 inches), 
the product is regarded as failed. The measured frequency is 0.01 millions of cycles. 
Here, the degradation data for each product with terminated time of 0.09 millions of 
cycles are used. ξ is set as 0.01, and the simulated measurement errors are added to 
the original degradation data with respect to each measurement time. The simulated 
degradation measurements are shown in Fig. 1.
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Fig. 1 The measurements of crack length over time 

To make use of the proposed degradation model, a transformation of substituting 
Y (t) with Y (0) is conducted on the degradation data. It is observed that nonlinearity 
exists in the degradation paths. Therefore, a nonlinear degradation model is employed 
such that the dynamics of the degradation can be captured. As investigated in [20], 
the mean deterioration is often in proportion to time with a power law, namely, 
E(X (t)) ∝ tb. With respect to model M2, E(X (t)|a) = aΛ(t; θ ). As a result, 
Λ(t; θ ) and τ(t; γ ) are assumed to be tb and tγ , respectively. Notably, it is readily 
to extend to other forms of Λ(t; θ ) and τ(t; γ ). 

We treat the transformed degradation data as the population-based degradation 
data and use both M2 and M1 to fit it. The log-LF under model M2 is 483.9778 and that 
under model M1 is 480.0056, respectively. Their AIC values are − 955.9556 and − 
950.0112, respectively, indicating that model M2 fits the data better than model M1. 
Table 1 lists the estimates of parameters of model M2, including the point estimate, 
standard deviation (Std), and 95% confidence interval. 

Table 1 Parameter estimation results under model M2 

Para Estimate Std 2.5% 97.5% 

μ0 10.1219 0.9246 8.3098 11.9341 

σ0 2.9792 0.4791 2.0401 3.9182 

σ 0.3229 0.0519 0.2211 0.4247 

ξ 0.0088 0.0014 0.0060 0.0116 

b 1.3216 0.0238 1.2749 1.3683 

γ 1.7722 0.1689 1.4411 2.1033
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Fig. 2 PDFs of the failure time based on model M1 and M2 (fatigue cracks) 

Based on the parameter estimation results, the PDFs of the failure time based on 
model M1 and M2 can be calculated, and they are plotted in Fig. 2, where some 
distinct differences exist between the two PDF curves. 

Now, the product’s degradation path can be generated, as shown in Fig. 3, via  
simulation with sampling interval of 0.0001 millions of cycles. For comparison, the 
true value of degradation, denoted as X (t), is also presented. Intuitively, the product’s 
failure time is 0.1087 millions of cycles.

Figure 4 shows the product’s RL estimation results at different time points (i.e., 
t1:10 = (0.01, 0.02, . . .  ,  0.1)). In Fig. 4, the actual RL and the estimated RL at each 
time point are marked with different shapes. The corresponding 95% confidence 
interval of the estimated RL is listed in Table 2. Apparently, the actual RL always 
falls within the range of the estimated PDF at each time point. Moreover, the variance 
of RL exhibits a decreasing trend as the time increases.

In the proposed method, the population-based degradation data is utilized to esti-
mate the value of Θ1. Here, a sensitivity analysis is conducted regarding the relative 
errors with respect to Θ1 is investigated. Specifically, the value of θl is multiplied 
by a positive factor, denoted as ρ. Meanwhile, other parameters are unchanged. For 
illustration purpose, we assume that the actual failure time of product s is Ts . In  
addition, denote ts, j as the cumulative operating time at measurement epoch j and 
ls, j the predicted RL at time ts, j ( j = 1, 2, . . . ,  Is). Thus, the relative error is defined 
as: 

REs = 
1 

Is 

Is∑

j=1 

|ts, j + ls, j − Ts | 
Ts 

(67)
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Fig. 3 The product’ degradation path
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Fig. 4 The product’s RL estimation results

Subsequently, the relative errors under various settings of ρ, i.e., 
{0.9, 0.95, 1.05, 1.1}, are calculated. Table 3 lists the corresponding sensitivity 
analysis results. It is observed that when there is a moderate departure from the 
estimate of Θ1, the relative error is robust.
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Table 2 Point estimate and 95% confidence interval of the estimated RL 

th True Mean 2.5% 97.5% 

0.01 0.0987 0.1154 0.0889 0.1559 

0.02 0.0887 0.0951 0.0777 0.1193 

0.03 0.0787 0.0865 0.0699 0.1054 

0.04 0.0687 0.0752 0.0625 0.0947 

0.05 0.0587 0.0664 0.0534 0.0805 

0.06 0.0487 0.0519 0.0420 0.0658 

0.07 0.0387 0.0448 0.0348 0.0586 

0.08 0.0287 0.0318 0.0237 0.0436 

0.09 0.0187 0.0187 0.0134 0.0252 

0.10 0.0087 0.0080 0.0043 0.0131

Table 3 Sensitivity analysis results of relative errors with respect to Θ1 

Para ρ 
0.9 0.95 1.05 1.1 

μ0 0.0839 0.0722 0.0508 0.0409 

σ0 0.0631 0.0619 0.0601 0.0594 

σ 0.0592 0.0605 0.0618 0.0626 

ξ 0.0598 0.0603 0.0615 0.0621 

b 0.0670 0.0576 0.0742 0.0979 

γ 0.0682 0.0641 0.0582 0.0561 

3.2 Illustrative Example for the Multivariate Nonlinear 
Wiener Process 

Motivated by the  works in [10, 11], a product is assumed to have three possible fatigue 
crack positions with initial crack length of 0.9 inches, and the corresponding crack 
lengths increasing over time are respectively represented as PC1, PC2, and PC3. In 
addition, the failure threshold with respect to PC1, PC2, and PC3 are respectively set 
as 1.25, 1.45, and 1.61 inches. For illustration purpose, the dataset in [19] is taken 
and used under these parameter settings. To conduct the experiments, the original 
data with terminated time of 0.09 millions of cycles is artificially categorized into 
three groups, representing the degradation measurements from a PC1, PC2, and 
PC3, respectively. The grouped data are viewed as the degradation measurements 
of 7 products with three PCs, as shown in Fig. 5. Clearly, nonlinearity exists in the 
degradation of each PC. Therefore, a nonlinear structure is appropriate and should 
be considered. In the proposed degradation model, the nonlinearity involved in the 
degradation process of the kth PC is characterized by Λ(k) (t; γ (k) ). Without loss of 
generality, Λ(k) (t; γ (k) ) is set to be tγk (k = 1, 2, . . . ,  p).
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Fig. 5 The development of crack sizes over time 

We treat the data in Fig. 5 as the population-based degradation data and estimate 
the unknown parameters, and they are: 

μβ = (6.5558, 12.4143, 18.8090)', γ = (1.2977,1.4122, 1.4606)', 

Σβ = 

⎛ 

⎝ 
0.6172 0.9896 1.7226 
0.9896 1.5895 2.7254 
1.7226 2.7254 5.4640 

⎞ 

⎠, and Σ = 

⎛ 

⎝ 
0.0055 0.0018 0.0045 
0.0018 0.0082 0.0069 
0.0045 0.0069 0.0213 

⎞ 

⎠ 

Notably, the estimating results of γk (k = 1, 2, 3) confirm the embedded nonlin-
earity. For illustration purpose, these estimated results will be regarded as the ground 
truth for result comparison. Given β, the correlation coefficient matrix of X(t) is 
expressed as: 

Cor  = 

⎛ 

⎝ 
1 0.2680 0.4158 

0.2680 1 0.5221 
0.4158 0.5221 1 

⎞ 

⎠. 

Simulation process is conducted to generate the product’s degradation measure-
ments. In order to obtain an exact product’s failure time, the simulation process 
proceeds until a failure occurs. Figure 6 illustrates the product’s simulated degra-
dation path. It is observed in Fig. 6 that a failure occurs at the 0.0999 millions of 
cycles (the discretization step is set to be 0.0001 millions of cycles) and the main 
cause is related to PC1. For demonstration purpose, we choose measurement time
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Fig. 6 Simulated degradation path of the target product over time 

points t1:9 = {0.01, 0.02, . . .  ,  0.09} and set the current time th (h = 1, 2, . . . ,  9) to  
estimate the product’s RL. 

Here, both a simulation-based method and an approximated method are presented 
to estimate the product’s RL. Specifically, the Weibull distribution with the scale 
parameter as 0.0835 and the shape parameter as 10.2883 is used in the simulation-
based method to fit those simulated residual lives. The RL estimation results at time 
th = 0.02 under both two models are calculated and the results are depicted in Fig. 7. 
Apparently, the approximated method has a better performance. Therefore, it will be 
used to estimate the product’s RL in the following part.

Figure 8 presents the PDFs, means, CDFs of the product’s RL. Intuitively, both 
the PDFs and the CDFs have a regular change at each measurement time point. 
Particularly, the variance of the PDF of the product’s RL decreases as the degradation 
data accumulates. Moreover, the actual RL always falls within the range of the 
estimated PDF at each measurement time point. The mean of the estimated RL is 
close to the real RL and the maximal deviation is merely 0.0042. This value, however, 
will arise to 0.0095 if the dependency between PCs is ignored.

Now, we can conclude that the proposed method achieves a good performance 
in estimating the product’s RL in such parameter settings. A sensitivity analysis 
is conducted regarding the relative error with respect to each parameter of the 
proposed degradation model is investigated. Specifically, the value of θ is multi-
plied by a positive factor, denoted as ρ, and the value of which is selected from
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Fig. 7 PDFs of the estimated RL at time 0.02 under two methods

Fig. 8 The PDFs, means, and CDFs of the product’s RL at each measurement time point

{0.9, 0.95, 1.05, 1.1}. Meanwhile, other parameters are unchanged. Here, H and T 
are set to be 9 and 0.0999, respectively. Table 4 lists the sensitivity analysis results, 
where νk (k = 1, 2, 3) is the standard deviation of β(k). It is observed that when 
there is a moderate departure from the estimate of each parameter, the relative error 
remains stable.

In order to conduct a further illustration, the degradation paths of 50 products are 
simulated based on the proposed degradation model. With respect to each product, 
its RLs are firstly estimated at time points t1:8 = {0.01, 0.02, . . .  ,  0.08} and the 
relative error is then calculated. If a product failed before 0.08 millions of cycles,
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Table 4 The sensitivity analysis results of the relative error with respect to the model parameters 

Para ρ 
0.9 0.95 1.05 1.1 

μ1 0.02152 0.02028 0.01929 0.02048 

μ2 0.01961 0.02152 0.01949 0.01724 

μ3 0.02473 0.02403 0.01832 0.01879 

ν1 0.01972 0.02132 0.02101 0.02013 

ν2 0.02142 0.02078 0.02014 0.02029 

ν3 0.01894 0.02016 0.02139 0.02201 

σ (1) 0.02064 0.01992 0.01862 0.02086 

σ (2) 0.01967 0.02135 0.02166 0.01987 

σ (3) 0.02154 0.02029 0.01895 0.02044 

ρ1,2 0.01964 0.01944 0.01964 0.01947 

ρ1,3 0.02027 0.02001 0.01991 0.02084 

ρ2,3 0.02087 0.02001 0.02091 0.01987 

γ1 0.02628 0.01934 0.02192 0.01923 

γ2 0.03481 0.02065 0.02099 0.02548 

γ3 0.04113 0.02619 0.03028 0.03651

it is discarded and the simulation process runs again until the terminal condition is 
satisfied. Here, the relative error of a product based on the RL estimates at t1:4 is also 
evaluated, and the results are shown in Fig. 9. Except in the case of few products, 
more degradation information can induce a smaller relative error. Inspired by this 
phenomenon, it is better to update estimation results in a real-time manner so as to 
obtain an accurate estimation result.

Figure 10 shows the comparison results of relative errors in the dependent and 
independent cases. The results indicate that, for most of the products, ignoring 
the dependency between PCs can lead to a larger relative error, emphasizing the 
significance of taking account of the dependency between PCs.

4 Summary 

In this work, we focus on nonlinear degradation modeling and residual life predic-
tion by using Wiener process, both univariate nonlinear and multivariate nonlinear 
situations are addressed in detail. In the univariate nonlinear scenario, a generalized 
Wiener process-based degradation model with measurement errors is developed. 
The proposed model can subsume many existing Wiener process-based models.
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Fig. 9 Relative errors under RL estimates at t1:4 and t1:8

Fig. 10 Relative errors in the dependent and independent cases

Moreover, for meeting the practical requirements in maintenance decision, a closed-
form of the PDF of the product’s RL can be approximately obtained. With respect 
to the multivariate nonlinear scenario, a multivariate Wiener degradation process 
model with nonlinear drifts is given and explored to estimate the product’s RL. The 
numerical examples verities the effectiveness of the proposed method.
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System Reliability Models 
with Dependent Degradation Processes 

Zhanhang Li, Chenyu Han, and David W. Coit 

Abstract Interest and associated research for reliability and health prediction and 
maintenance of infrastructure and industrial products have increased continuously. 
The study of reliability and health prognosis has become an indispensable field in 
the overall design and evaluation of systems, industrial products and engineering 
projects. Previously, the common approaches and mathematical models to describe 
the condition of products were usually based on the statistical lifetime distribution of 
the target production. The lifetime distribution is obtained based on the observation 
and analysis of large quantities of components. However, when it comes to a single 
component, it can only quantify whether the component is functioning or not, rather 
than the detailed working condition or deterioration behavior. Therefore, degradation 
models are introduced to quantify the health conditions of the component based on 
time dependent observations. Alternatively, on the basis of the degradation model, 
by introducing the degradation threshold of product failure, the reliability model and 
the remaining useful life of the product and the corresponding maintenance strategy 
can also be derived. In practice, the evaluation of the degradation behavior of the 
system often needs to introduce multiple degradation processes while modeling, and 
these degradation processes are not always independent of each other. Due to factors 
inherent in the system or from the external environment, these degradation processes 
often affect each other and show some commonalities. Examples of such degradation 
include LED lighting systems (Sari et al. in Qual Reliab Eng Int 25:1067–1084, 
2009), operating data of heavy-duty machine tools (Mi et al. in Reliab Eng Syst Saf 
174:71–81, 2018), fatigue cracks of two terminals of an electronic device (Rodríguez-
Picón et al. in Appl Stoch Model Bus Ind 35:504–521, 2019), etc. In this chapter, 
we will introduce various degradation models, as well as modeling approaches and 
reliability analysis to study dependent processes, such as dependent Markov chains, 
shared shock exposure models, joint distribution functions of degradation paths, and 
dependent random effects stochastic processes.
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1 General Degradation Processes 

One of the common degradation models is a random effects model, which is a time-
dependent function with coefficients as random variables [4, 5]. To be specific, the 
observed degradation data for unit i at time t j can be given by Eq. 1: 

Xi j
(
t j

) = ηi j  + εi j  = η
(
t j ;ϕ,Θi

) + εi j (1) 

where η
(
t j ;ϕ,Θi

)
is the actual path of unit i at time t j , with unknown parameters;

ϕ is the vector of fixed-effect parameters, which is usually common for all units;
Θi is the vector of the i-th unit random-effect parameters, representing individual 
units; and εi j  ∼ N

(
0, σ  2 i

)
is the measurement error with constant variance σ 2 i . For  a  

monotonic function, the reliability evaluation can be expressed as Eq. 2: 

R(t) = Pr
{
Xi j  (t) < H

}
(2) 

H represents a known failure threshold. Figure 1 shows an example of this type 
of degradation model, whose degradation function is given by Eq. 3: 

η(t) = Θ1 + Θ2t (3) 

Θ1 represents the common initial degradation amount of all tested units, which 
follows normal distribution, N (10, 3); Θ2 represents the degradation rate, which 
varies from unit-to-unit, and also follows a normal distribution, i.e., N (7, 3). The  
degradation path of the given example can be observed in Fig. 1 

Random effects models have been used to analyze degradation data of GaAs 
lasers [6], solid oxide fuel cells [7], modules of fighter aircrafts [8], etc. However, 
the temporal variability has not been considered into the random effect model. For 
example, when the time-relevant deterioration function is linear, a single inspection

Fig. 1 An example to the 
random effects degradation 
model 
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already completely reveals the future deterioration evolution, just as Fig. 1 shows. 
Therefore, the random effects model has also been combined or extended with 
other stochastic process-based degradation models, by letting the physical related 
parameters in the corresponding degradation model to be a random variable, such 
as combining with a gamma process [9], inverse Gaussian process [10, 11], Wiener 
process [12–14], etc. 

Another type of degradation model is Markov degradation processes. The Markov 
processes can reflect the temporal variability of the degradation behavior, by letting 
the degradation level change at time steps or continuously depending on the previous 
state. Although the Markov chain can be used to access the condition and reliability 
of the system [15], for a component experiencing deterioration processes, such as 
battery degradation, concrete degradation, wear metal corrosion and fatigue, the 
deterioration process is usually a continuous process which can be difficult to be 
divided into discrete states. The stochastic processes as gamma process, Gaussian 
process, compound process, etc., would be more suitable for degradation processes 
modeling. 

The compound Poisson process [16, 17] is a typical representative of the jump-
shock degradation model. Compound Poisson process assumes that the degradation 
process is caused by incoming shocks in finite time intervals, whose interarrival time 
follows the exponential distribution and the size are iid-positive random variables. 
The total degradation level of one component at time t can be given by Eq. 4: 

X (t) = 
N (t)∑

i=1 

Di (4) 

where N (t) is a Poisson random variable, Di are iid-positive random variables. 
Figure 2 shows an example of a compound Poisson process. The compound Poisson 
process has been applied in data analysis to ultra-thin gate oxide data [18], furnace 
wall degradation [19], etc. 

Fig. 2 Example of a 
compound Poisson process
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The Weiner process or Brownian motion with drift is a continuous non-monotonic 
stochastic process, whose degradation level at time t for a linear process can be given 
by Eq. 5: 

X(t) = μt + σ W(t) (5) 

where μ is the drift parameter and σ is the volatility parameter, W (t) represents a 
standard Brownian motion. The Brownian motion with drift has independent incre-
ments, for any independent time interval. Therefore, Brownian motion with drift is 
suitable to describe the degradation process with alternating increases and decreases 
of degradation resistance. The cumulative distribution function (cdf) of first hitting 
time TD(z) when the degradation process first time hits level z can be given with 
Eq. 6: 

FFH  T(t, z) = Pr[TD(z) ≤ t] 

= ϕ

(
μt − z 
σ 
√
t

)
+ exp

(
2μz 

σ 2

)
ϕ

(
− 

μt + z 
σ
√
t

)
(6) 

Figure 3 shows an illustrative example of Brownian motion with drift, whose 
parameters are μ = 2 and σ = 3. Ye et al.  [20] developed a mixed effects model 
which has several existing Wiener processes as its limiting cases and applied the 
model to the wear problem of magnetic heads of HDDs, and a light intensity degra-
dation problem of light-emitting diodes. Liao et al. [21] adopted the Brownian 
motion with drift to model a step-stress accelerated degradation test problem On 
the basis of Brownian motion, the optimization approach to the common variables, 
such as sample size, measurement frequency, and termination time optimization 
were studied. Son et al. [22] combined a principal component analysis approach 
with Brownian motion and applied the combined model to multivariate time series 
data that are generated via a thermo-dynamical simulation model for the aircraft 
engine. The estimation result for the remaining useful life indicates the superiority 
of their Wiener-based model to the non-probabilistic model with similarity-based 
prognostic method. Dong and Cui [23] developed a Wiener-gamma degradation 
model, where the failure thresholds including an alarm threshold, and thresholds 
regarding degradation amount and duration are used to model system reliability.

However, as a non-monotonic degradation process, Brownian motion with drift 
may have negative increments and is inadequate in modeling deterioration which 
is monotone. In contrast, a gamma process and inverse Gaussian process are more 
suitable for modeling monotonic degradation process. Gamma process is a non-
negative stochastic process, which has following properties: (1) the increments
ΔX(t) = X(t + Δt) − X(t) follows gamma distribution, and (2) the increments
ΔX(t) in the gamma process are independent.

X(t + Δt) − X(t) ∼ g(x; α(t + Δt) − α(t), β)
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Fig. 3 Example of a 
Brownian motion with drift

g(x; α(t + Δt) − α(t), β) = 
βα(t+Δt)−α(t)xα(t+Δt)−α(t) exp(−βt)

┌(α(t + Δt) − α(t)) 
(7)

Figure 4 shows an example of a non-linear gamma process whose parameters 
α(t) = 6e0.2t − 6, and β = 200. The gamma process can be regarded as having 
an infinite number of jumps in finite time intervals, which is suitable for describing 
gradual damage by continuous use. 

There is also significant amounts of degradation research based on gamma process 
models. Park and Padgett [24] provided the approximate distribution of the first 
hitting time, which is given by a form of the Birnbaum-Saunders distribution, given 
the initial degradation level x0. Tseng et al. [25] introduced a step-stress acceler-
ated degradation test model when the degradation process follows a gamma process

Fig. 4 Example of a non-linear gamma process 
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and determined the corresponding optimal settings such as sample size, measure-
ment frequency, and termination time. Pan and Balakrishnan [26] discussed the 
modeling for multiple performance characteristics based on gamma processes, by 
using a bivariate Birnbaum-Saunders distribution and its marginal distributions to 
approximate the reliability function. Tsai et al. [27] used a two-variable accelerated 
degradation test model based on a gamma process to fit the lumen degradation of 
LEDs. Zhou et al. [28] introduced a two-stage degradation model which contains a 
time-to-event initiation stage and a gamma process propagation stage, and applied it 
to the rebar corrosion modeling. Li et al. [29] used a two-stage degradation model, 
where both degradation stages are modeled by gamma processes, to characterize the 
rebar corrosion process. Then, they used machine learning approaches to control the 
prediction bias of the gamma-gamma two-stage model. 

The inverse Gaussian process is also a monotonic stochastic process with indepen-
dent increments, for any independent time interval. For this model, the degradation 
increment follows inverse Gaussian distribution: 

X(t + Δt) − X(t) ∼ IG(x;Ʌ(t + Δt) − Ʌ(t), η[Ʌ(t + Δt) − Ʌ(t)]2 ) 

where Ʌ(t) is a monotone increasing function. 

f IG(x; a, b) =
/

b 

2π x3 
exp

[
− 
b(x − a)3 

2a2x

]
(8) 

and x > 0. Therefore, an inverse Gaussian process is strictly monotone. Peng et al. 
[30] inferred the cdf of first hitting time of an inverse Gaussian process in terms 
of degradation level. The same author also demonstrated the applicability of the 
Bayesian method for degradation analysis with the inverse Gaussian process models. 
Ye et al. [11] studied the optimal constant-stress accelerated degradation tests plan-
ning when the underlying degradation follows the inverse Gaussian process. Guo 
et al. [31] proposed an improved inverse Gaussian process which considers the depen-
dency between degradation increments and prior degradation states and performed 
reliability analysis to the crack length growth data based on the proposed model. 

1.1 Dependency in Reliability Models 

Functional or physical dependence refers to the phenomenon that failure or degra-
dation of one component directly influences others, perhaps in a cause-and-effect or 
symbiotic relationship. For example, the degradation of the reinforcement concrete 
used for road bridges and the embedded rebar affects and promotes each other. 
Specifically, the degradation of concrete leads to the appearance of cracks, which 
allows moisture and ions to erode the embedded rebars. Meanwhile, the expansion 
of rebars during the corrosion process in turn promotes the propagation of concrete
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cracks. Therefore, the degradation processes of concrete and rebar in the same block 
of reinforcement concrete are dependent. According to Nicolai and Dekker [32], 
stochastic dependence (s-dependence) refers to the dependence between compo-
nents that is expressed by a change of the conditional distribution of any of the 
related components when the other components are altered. 

Covariance or correlation are measures of how much two random variables vary 
together, shown as Eqs. 9 and 10. When covariance is greater than 0, random variables 
at time t , X1(t) and X2(t), appears to be dependent. 

Cov(X1(t), X2(t)) = E[X1(t)X2(t)] − E(X1(t))E(X2(t)) (9) 

ρX1(t)X2(t) = 
Cov(X1(t), X2(t)) 

σ1σ2 
(10) 

Common cause failure [33] is one of the most widely studied dependent failure 
modes in terms of failure time. It often occurs when multiple components fail due to 
an external shock or event that simultaneously causes multiple failures. The frequency 
of common-cause events leads to dependent failures. 

A load-sharing system refers to a system consisting of multiple components, where 
when any component fails, the same workload must be shared by the remaining 
surviving components, resulting in an increased load on each surviving component. 
Ye et al. [34] derived the time to degradation failure of such the system, estimated 
the system probability of failure, and investigated the optimal designs to minimize 
the long run average cost of a future system. 

To model the dependent failure times, Markov chains [35, 36] and joint distribu-
tion functions (include copula function) [37–39] and other methods have often been 
adopted. 

2 Markov Chain in Multistate Degrading System 

It is common that a variety of systems experience deterioration and unforeseen shock 
damages. A complicated system with many components degrades over time as its 
constituent parts fail and deteriorate. Markov chains are an analytical tool that can 
be used to model state degradation behavior for the components as they collectively 
degrade within a system. 

The majority of repairable systems, including computers, power genera-
tors, nuclear systems, and airplanes, can be brought back to operational status 
through repair or refurbishment. In contrast, non-repairable systems are replaced 
wholly when they fail. Recent technological advancements have led to hybrid systems 
with a variety of functions that are more complicated and hybrid in nature. Each 
subsystem and component in these complex systems may be subject to one or more 
degradation processes. Assessing the reliability and planning the maintenance of
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such complex systems requires a more accurate evaluation of the degradation status 
of its components and the propagation of degradation processes in the future [40]. 
Existing literature on maintenance optimization gives a number of methodologies 
for reliability analysis of such complex systems [41, 42] 

Reference [43] categorized the interdependencies between components as 
economical, structural, and stochastic (s-dependence). As a result of economic 
dependence, maintenance costs can be decreased by performing maintenance on 
many components simultaneously rather than individually. Structural dependence 
is founded on the premise that specific components fundamentally compose a unit 
(subset of the system), and hence maintenance of one component in a unit necessi-
tates the maintenance of other components. s-dependence refers to system interac-
tion in which one component’s degradation or failure process is influenced by the 
degradation status of one or more interrelated and/or adjacent system components 
[44, 45]. Several research efforts have addressed s-dependence between components 
with either two possible degradation states (binary states) or multiple discrete degra-
dation stages [46, 47] or [48–51]. Not as much progress has been made in examining 
s-dependence among multistate components with more than two but a finite number 
of alternative degradation stages for each component [52, 53]. 

Numerous complex systems, such as aircraft engines, wind turbines, and power 
generation systems, are composed of multiple components arranged serially to 
complete successive missions [54, 55]. During the interim between two missions, 
maintenance procedures can be performed to increase the likelihood of success-
fully completing the subsequent mission. Due to the limited availability of main-
tenance resources, it is crucial to choose the maintenance strategy (e.g., the subset 
of components to maintain and the number of maintenance operations) in light of 
the system requirements. This sort of maintenance has received increasing attention 
more recently [55]. Many research studies on maintenance policy have recommended 
formulating it as an optimization problem, assuming that all components are stochas-
tically independent. However, often components in several complex engineering 
systems, particularly mechanical and electrical systems, do affect the degrading 
behavior of other components. 

The degradation of a component in an electronic system may result in a consid-
erable rise in temperature, which in turn may accelerate the degradation of other 
temperature-sensitive components [56, 57], which may or may not be directly related. 
Similarly, in power grid systems, the deterioration of generators or transformers in a 
sub-network may raise the demand on other network elements, creating an increase 
in their loading profiles and so accelerating their deterioration [48]. 

A system could be defined as a multistate system if there is a finite number 
of discrete performance rates. One of the approaches to modeling the multi-state 
system is using the Markov chains to analyze the system state transition process 
[58]. The system states are defined by the combination of component states. As 
the number of components increases, the state of system could increase rapidly. 
Therefore, the system structure function should be adopted to help define system 
states [59]. Figure 5 shows the state transition behavior of dependent Markov Chains 
at a certain time, which consists of N multistate dependent components and each
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Fig. 5 State space of N dependent Markov chains at a certain time 

Fig. 6 Failure time for two dependent components modeled by Markov chain with different level 
of dependency 

component has M + 1 different performance levels. Figure 6 shows the simulated 
failure time of a dependent Markov chain. In the simulation, there are 2 different 
components. For each component, there are states 0 to 5, state 5 is failure state. 
Transition time from state 0 to 1 for components 1 and 2 follow, T01 ∼ exp(1/80) and 
T02 ∼ exp(1/100). While degrading, the transaction rate λ increases by λ(1 + α)i , 
i is the higher degradation state between two components. Degradation for one 
component can then affect λ for another component as well. 

Xue and Kang [59] combined Markov processes with s-coherent multistate 
system theory, performed reliability analyses to the multistate system. They also 
conducted the general reliability function for s-coherent multistate systems. Refs. 
[60–62] discussed the optimal maintenance strategy for multistate systems which 
have discrete degradation states resulting from cumulative damage. Zhang et al. [63] 
assumed that the system deterioration could be stochastic and the maintenance of 
such a system could be “imperfect”, which indicates that the component after repair is 
not as good as new. They studied the replacement policy based on the failure number 
of such a multistate system. The same researchers [64] also extended their work by 
considering component working age and failure times in an imperfect maintenance 
policy. Since imperfect maintenance may not necessarily result in a perfect condi-
tion, the maintenance cost is less than if a perfect action were performed. However, 
the difficulty of the selective maintenance optimization problem is increased by 
including imperfect maintenance activities. Moreover, the majority of prior research
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in hybrid maintenance policy has assumed that the quality of incomplete maintenance 
activities is predetermined [52, 65]. 

In a complex and hybrid system, components might be viewed as inter-dependent; 
hence, the component dependency must be considered when modelling system degra-
dation and planning maintenance measures [66, 67]. Liu and Huang [68] proposed an 
optimal replacement strategy for multistate systems incorporating imperfect mainte-
nance quality. They assumed that the transition rate in the Markov model of multistate 
system to be “age correlated”. That is, the component would be restored to its best 
functional state, but with higher state transition intensities after replacement, which 
means that components degrade more rapidly to a lower performing state. A non-
homogeneous continuous time Markov model, where the state transition intensity 
varies with time, was applied to model the aging of components in such a system. 
Shahraki et al. [69] considered s-dependency between correlated components. In 
their model, component degradation is assumed to follow a continuous time Markov 
process, with transition times between component states following an exponential 
distribution. The degradation rate of a component consists of two elements: the 
intrinsic degradation rate, and the interaction effect on degradation rate caused by 
other degrading components. The interaction is a function of overall system perfor-
mance at time t , as well as number of influencing components transitioning to a 
lower state at time t . By considering interaction effects in the state transition rate, 
they addressed the dependency between components in their Markov model, and the 
selective maintenance optimization problem could be determined. 

3 Shared Shock Exposure Models 

The single degradation mechanism has been extensively applied to numerous items. 
Due to the complexity of the product and the unpredictability of external circum-
stances, the degradation process is frequently accompanied by a range of failure 
mechanisms in practice. Moreover, failure mechanisms frequently exhibit coupling 
relationships that influence the degrading characteristics of the product. This differs 
from the conventional single-mechanism degradation processes. For electronics and 
mechanics, competing failure processes have been widely studied. In this chapter, 
multiple dependent competing failure processes are addressed and further analyzed 
as an example. 

There are numerous system design and optimization problems where each compo-
nent is simultaneously exposed to deterioration and shocks, leading to s-correlated 
or s-dependent component failure processes. When there are two or more dependent 
failure processes and several components, many standard reliability techniques can 
be insufficient or inappropriate. In reliability modeling, there are difficult problems 
caused by the inter-dependency between failure processes and between component 
failure times. Shared shock exposure models create such a scenario where a system
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is exposed to random shocks, and when the system is exposed to a shock, all compo-
nents experience shock effects. Degradation is the sum of a continuous degradation 
process and cumulative effect of shocks. 

Before introducing the shared shock exposure model, it is necessary to briefly 
introduce the random shock model [70–73], which describes the degradation model 
caused by the impact of environment such as sudden and unexpected usage loads, 
e.g., accidental dropping onto hard surfaces. Random shock models can be classed 
into four categories: (1) extreme shock model; (2) cumulative shock model; (3) run 
shock model; (4) δ-shock model. Alternatively, the types of failures due to shocks 
can be divided into soft and hard failures. Soft failure occurs when the system overall 
degradation level, which is contributed by an internal degradation process and addi-
tional abrupt shock damage, exceeds a preset critical threshold H . Hard failures 
occurs when the load magnitude from a single shock exceeds a critical strength level 
D. Peng et al. [74] studied the system considering both soft and hard failure as a 
dependent competing failure process, by assuming the same random shock can not 
only contribute to soft failure, but can also trigger hard failure, depending on which 
failure occurs first. In their model, the random shock events occur as a Poisson 
process with arrival rate λ; shock damage size are i.i.d. random variables following a 
certain distribution. The probability that the component survives the stress from the 
i th shock is: 

P(Wi < D) = FW(D), for i = 1, 2, . . . ,  ∞ (11) 

The cumulative damage caused by shocks until time t can be given as: 

S(t) = 

⎧ 
⎨ 

⎩ 

N (t)∑

i=1 
Yi , if N(t) > 0 

0, if N(t) = 0 
(12) 

where N (t) is the total number of shocks that have arrived by time t . Then the cdf 
of total degradation at time t is: 

FX(x, t) = 
∞∑

i=0 

P(X(t) + S(t) < x |N(t) = i ) P(N(t) = i ) (13) 

Figure 7 shows a soft failure process and a hard failure process.
Song et al. [75] extended the above failure model into a system with multiple 

dependent component failure processes. In their proposed model, the same random 
shock contributes to both soft failure and hard failure for all components in the 
system, which results in s-dependent component failure processes and failure times. 
If a component fails relatively frequently, then the number of underlying shocks are 
more likely to be relatively large. Since these shocks affect all components, they may 
also cause other components to fail more frequently. Consider n components in such 
a system with series configuration, the system reliability function can be given as 
Eq. 14:
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Fig. 7 Two dependent competing failure processes: soft failure process and hard failure process

R(t) = P
{[
W11 < D1, W12 < D1, . . . ,  W1N (t) < D1, Xs1(t) < H1

]

∩ [
W21 < D1, W22 < D1, . . . ,  W2N (t) < D1, Xs2(t) < H2

] ∩ . . .  
∩[

Wn1 < D1, Wn2 < D1, . . . ,  WnN (t) < D1, Xsn(t) < H1
]}

(14) 

where Wi j  is the j th shock for component i ; Xsi(t) is the cumulative degradation 
level for component i at time t . 

They proved such dependency by demonstrating that the covariance of these 
failure events for any two components is positive, given the presence of shocks. 
Song et al. [76] then conducted a more advanced model considered the scenario 
where shocks with specific scale, frequency or function that can selectively affect 
one or more components in the system but not necessarily all components. The 
authors used a MEMS (micro-electromechanical systems) oscillator as a typical 
system to illustrate the reliability analysis and maintenance policy based on the 
proposed model. Furthermore, the same researchers studied the situation [77] where 
two failure processes for each component are dependent in additional ways other 
than external shocks. In their consideration, system shocks are transmitted to the 
component level, but likely to be dependent. If damage to one component is large, it 
is probabilistically likely damages on other components are also large. Yousefi et al. 
[78] studied the maintenance optimization model for such a shared shock exposure 
model by minimizing the average long run maintenance cost rate.
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4 Joint Function of Degradation Paths 

The modeling of a degrading process is usually based on two modeling frameworks, 
the general path model and the stochastic process model. The general path model 
is established by referring to some form of a regression model, and by defining the 
parameters as random variables to account for the variability. Lu et al. came up with 
a model for general path process and joint distribution function [79]. The equation 
for the proposed model is shown as Eq. 15: 

yi jk  = gi j
(
tik, xi , wi j ; η j

) + ∈i jk (15) 

yi jk  represents the measurement for unit i on the j th degradation measure at time tik . 
xi =

(
xi1, . . . ,  xip

)'
denotes a vector that contains all the covariate variables for unit 

i , where xiv denotes the vth covariate for unit i . ∈i jk  ∼ N
(
0, σ  2 j

)
is the independent 

measurement error which has a common variance of σ 2 j for measurements on the 
j th degradation character. wi j  stands for the random effects parameter associated 
with unit i for the j degradation characters, which follows a multivariate normal 
distribution (MVN) given by wi = (

wi1, . . . , wi j
)' ∼ MV  N  (0,∑), and ∑ is a 

variance–covariance matrix. gi j(·) can be highly non-linear and based on a physical 
model. The dependent paths are caused by the joint distribution function for wi . 
Additionally, Ref. [79] also derived the reliability analysis for the general path model 
and a parameter estimation approach based on an expected maximum algorithm. The 
reliability assessment for the general path model can be expressed by Eq. 16 below: 

R(t) = Pr{T1 ≥ t, . . . ,  TJ ≥ t} 
= Pr

{
g1

(
t, x, w1; η1

) ≥ d1, . . . ,  gJ
(
t, x, wJ ; η J

) ≥ dJ
}

= Pr
{
ln

[−g1
(
t, x, w1; η1

)]

≤ ln(−d1), . . . ,  ln
[−gJ

(
t, x, wJ ; ηJ

)] ≤ ln(−dJ )
}
. (16) 

The reliability R(t) depends on the joint failure time distribution for all the J 
degradation character measurements. It also depends on the functional form of g j (·), 
which is based on a physical model. 

Ye et al. [80] proposed a multi-stress acceleration model with interaction effects 
based on the general path model. In their model, the effects of the multiple stresses 
applied on the component can be divided into main stress effects and interaction 
effects. The degradation rate μ(S) under N multiple stresses S can be expressed as 
Eq. 17: 

μ(S) = 
Nπ

k=1 

αk hk(Sk, βk) (17)
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hk(·) denotes the explicit functional form; Sk is the k-th stress; βk is a constant. αk 

is the interaction effect term, which can be expressed as: 

αk = λk · gk((S\{Sk}), γk) (18) 

where λk and γk are unknown parameters; S\{Sk} denotes the stress variables except 
Sk ; gk(·) is the explicit functional from of the interaction, which can be obtained 
based on the exponential and power laws [81, 82]. 

The other method for dependent degradation modeling is based on stochastic 
processes. Compared with the general path model, this type of method focuses on 
establishing a joint distribution function of the multivariate degradation process. 
Mercier and Pham [83] adopted a bivariate non-decreasing Lévy process to model 
a two-unit system, and presented the failure threshold under various cases. Tri-
variate reduction approach, proposed by Cherian [84], provides an approach to 
construct the bivariate gamma process. The framework of the approach can be 
summarized as following: let {Y1(t)}t≥0, {Y2(t)}t≥0, and {Yu(t)}t≥0 be three inde-
pendent univariate gamma process with parameters (α1, β), (α2, β), and (αu, β). 
Let X1(t) = Y1(t) + Yu(t), and X2(t) = Y2(t) + Yu(t). Therefore, the process 
{X (t)}t≥0 = {(X1(t), X2(t))}t≥0 is a bivariate subordinator with gamma marginal 
processes and parameters (ai , β), where ai = αi+αu, i = 1, 2. The linear correlation 
coefficient between two degradation processes X1(t) and X2(t) is ρ = αu √

a1a2 
. 

Liu et al. [85] derived the joint probability distribution function (pdf) and cdf of 
such a bivariate gamma process, and investigated the condition-based maintenance 
policy for a two-unit system in the finite-horizon setting. Pan and Balakrishnan [26] 
developed a bivariate gamma process by considering a constant correlation coefficient 
of the increment between two gamma processes, and approximated the reliability by 
a bivariate Birnbaum–Saunders distribution and its marginal distributions. Liu et al. 
[86] and Dong et al. [87] used the covariance matrix to capture the dependency 
between two degradation processes, and developed the degradation model based on 
a Wiener process. 

In addition to these approaches, the copula function is another frequently used 
approach for constructing joint distribution functions. Copula functions are functions 
that connect multivariate distribution functions to their one-dimensional marginal 
distribution functions. Alternatively, copulas are multivariate distribution functions 
whose one-dimensional intervals are uniform on the (0,1) interval. For mathematical 
definitions and properties of copula, please refer to [88]. In general, the framework 
of copula can be written as Eq. 19: 

C(u1, u2, . . . ,  ud ) = P(U1 < u1, U2 < u2, . . . ,  Ud < ud ) (19) 

where Uk is a uniform random variable between [0, 1]. The relationship between 
multivariate distribution functions and their univariate margins in terms of copula 
can be explained by the Sklar’s theorem [88]:
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Let H be a joint distribution function with margins F1, F2, . . . ,  Fd. Then there 
exists a copula C such that for all x1, x2, . . . ,  xd in R, 

H(x1, x2, . . . ,  xd ) = C(F1(x1), F2(x2), . . .  Fd (xd ) 

If Fk are continuous, then C is unique. Conversely, if C is a copula and Fk 

are distribution functions, then the function H is a joint distribution function with 
margins F1, F2, . . . ,  Fk . 

By letting Fk characterize the distribution of one of the dependent degradation 
processes, with a proper copula function, the joint distribution function of the depen-
dent degradation processes can be obtained. Therefore, the corresponding pdf can 
be derived as Eq. 20: 

f (x1, x2, . . . ,  xd ) = c(F(x1), F(x2), . . . ,  F(xd )) 
dπ

k=1 

fk(xk) (20) 

where fk(xk) is the marginal pdf of Xk and c(F(x1), F(x2), . . . ,  F(xd )) is the 
copula density function. Common copula functions include Gaussian copula [89, 
90], Clayton copula [91, 92], Gumbel copula [90], and Frank copula. Figure 8 shows 
common copulas and their applicable scenarios for a particular system reliability 
model. Figure 9 shows Gumbel copula and Clayton copula, which have strong head 
correlation and tail correlation, respectively.

Fang et al. [94] developed a framework for bivariate dependent degradation model, 
where the dependency was charactered by a copula function. The parameter estima-
tion approaches were also derived. Liu et al. [95] used a Clayton copula function 
to construct a bivariate gamma process, as well as, conducted the reliability anal-
ysis and life cycle cost analysis. Xu et al. [51] applied a vine copula to reliability 
functions associated with three performance characteristics, while each performance 
characteristic had its own failure threshold. The reliability joint distribution of all 
degradation metrics of a smart electricity meter was obtained. Li et al. [93] who solved 
an optimization problem of the multi-dimensional gamma process model based on 
copula to determine inspection times and preventive maintenance policies. Sun et al. 
[13] analyzed the bivariate and multivariate dependent accelerated degradation data 
respectively by means of the copula theory. 

5 Dependent Random Effects Stochastic Process 

In addition to constructing the joint distribution function of the degradation level of 
the stochastic process directly, it is also a practical modeling approach to examine 
the correlation of the stress factors, which reflects the parameters in the stochastic 
processes, to construct the correlation model at the parameter level of the stochastic 
degradation process. For the dependent random effects stochastic process model, the
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Fig. 8 Overview diagram of copula method [93] 

Fig. 9 Graphs of Clayton and Gumbel copulas [95]

degradation processes are in accordance with a stochastic progress and the process 
parameter(s) are random variables, which could share a random variable in a function, 
or can be described by a joint distribution function, such as copula functions.
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Cui and Song [96] developed a bivariate gamma degradation model, where the 
dependency between the two degradation processes is captured by a common random 
effect naturally. The equation of two correlated gamma process can be given as 
follows: 

X1(t)|λ ∼ G(λμ1, a1η(t; b1)), X2(t)|λ ∼ G(λμ2, a2η(t; b2)) 

where λ ∼ G(β, β). η(t; bk) is a non-decreasing function of t with η(0; bk ) = 0, and 
the parameter bk has a critical role in transforming the time scale. They also further 
developed the MLEs of the model parameters and the RUL prediction methods. Xu 
et al. [97] proposed a bivariate Wiener process model, where the degradation process 
of two performance characteristics share a common random coefficient parameter. To 
be specific, the degradation process of the sth performance characteristic is modeled 
as Eq. 21: 

Ys(t) = αβshs(t, γs) + σs Bs(hs(t, γs)), s = 1, 2 (21) 

where βs and σs denote the drift parameter and diffusion parameter. hs(t, γs) is a 
nondecreasing function and hs(0, γs) = 0. Bs(·) is a standard Brownian motion. The 
dependency between two performance characteristics is determined by parameter 
α, which follows a normal distribution N

(
1, σ  2

)
. The bivariate distribution of Y1(t) 

and Y2(t) can be derived based on the distribution of α, which is shared by both 
performance characteristics. Hong et al. [98] proposed a dependent Wiener process 
where the parameter of the dependent Wiener process can be described by a common 
distribution, which is constructed via copula function. The model can be expressed 
as Eq. 22: 

D j (t) = D j
(
t; x, ω  j

) = ω jɅ j (t; x) + σ j B
(
Ʌ j (t; x)

)
(22) 

ω = (
ω1, . . . , ωp

)' ∼ C
(
F1(ω1), . . . ,  FP

(
ωp

))
; C(·) is a selected copula func-

tion, Fj
(
ω j

)
is the marginal cdf for parameter ω j . Conditional on ω j , each D j (t) is 

an independent process. 
Consider a scenario in which components exist in a shared environment, and 

factors like temperature, humidity, etc. can affect degradation of all or some compo-
nents. Therefore, components in the same clusters degrade together or dependently. 
For example, drive combs in MEMS accelerometers experience the similar harsh 
environment. Figure 10 shows an illustrative example of two clusters of degradation 
paths for seven identical components in a system. Yousefi et al. [99] proposed a 
degradation model considering clusters of components, where degradation is based 
on a random effects gamma process. They further developed reliability analysis for 
series and parallel layout systems. To be specific, each degradation path is modeled 
as a random effects gamma process as showing below: 

Xi (t2) − Xi (t1) ∼ Ga(xi ; vi (t2) − vi (t1), θ  (i ))
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Fig. 10 Two clusters of degradation paths for seven identical components in a system [99] 

where θ (i ) = α0,i + α1,i θ1 +  · · ·  +  αk,i θk is the shape parameter; where each θ j 
corresponds to a cluster; α j,i is a sensitivity factor which defines the degree which 
component i belongs to cluster j ; vi(t) is the scale parameter. 

Wu et al. [100] proposed a multivariable degradation model based on a Wiener 
process and considered the dependency in the same clusters. The authors utilized 
the expectation–maximization (EM) algorithm to estimate the model parameters and 
used a tangent approximation approach to conduct the reliability function of the 
proposed model. 

6 Conclusion 

In this chapter, we first introduced general degradation models, including random 
effects model, compound Poisson process, Wiener process, gamma process, inverse 
Gaussian process. Among them, the general degradation path model is based on some 
form of a regression model, and the compound Poisson model is suitable to describe 
the system degradation caused by finite shocks. The remaining processes are suitable 
to describe the gradual degradation process of the system, where the Wiener process 
is non-monotonic and the others are monotonic degradation processes. 

By investigating and identifying the multiple degradation states, the dependent 
Markov chain is an intuitive approach to modeling the dependent degradation 
processes. By clarifying the state space of each component in detail, we can use 
Markov chains to model the obtained multi-state system. The dependence between 
different components is mainly reflected in the state transition probability of the 
Markov chain. This transition probability can by influenced by age of the components, 
the number of failures, or the current state of other components. 

Shared shock exposure models assume that the system is exposed to random 
shocks, and when the system is exposed to a shock, all components experience 
shock effects. Degradation is the sum of a continuous degradation process and the 
cumulative effect of shocks. The shock may affect all the components or only some 
of the components in the system. Also, the dependency between components not only 
can come from the impact of shocks, but the inherent dependency of components 
themselves on each other.
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Apart from the dependent Markov Chain and shared shock exposure model, a 
common idea to address system condition in terms of multiple dependent degrada-
tion processes is to construct a joint distribution function of the marginal degradation 
processes. By introducing coefficients that follow a certain multivariate distribution, 
a general path model can be applied to characterize such dependencies. A covari-
ance matrix can also contribute to constricting multivariable Wiener process. For 
multivariable gamma processes, tri-variate reduction could be a reasonable approach 
in assisting the modeling. Alternatively, copula functions, despite difficulties in 
selecting a proper copula function or deriving the analytical form for the reliability 
indices, is an important tool to analyze the multivariate dependent degradation data. 

The dependent random effects stochastic process model is dedicated to charac-
terizing the dependency among random processes, by introducing correlated param-
eters, which can originate from a multivariate distribution or combined and approx-
imated by copula functions. Wiener process model and gamma process model with 
dependent parameter vector are the examples of this approach. Meanwhile, this 
chapter introduces degradation process considering clusters of components, where 
components could suffer from similar environmental stress or impact by inherent 
bindings and show similar degradation behavior, as an approach to character the 
dependency of different degradation processes. 
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A Study of Health State Transitions 
for Proactive Health Management 

Lirong Cui, Weixin Jiang, Mengqian Wang, and He Yi 

Abstract The proactive health management is a new medical mode which is 
becoming an important issue for national health management. Proactive health 
management is very similar to reliability, the health state of an individual or a group 
of people is the key issue. Thus, it is significant to focus on the related researches in 
both theory and applications. In the chapter, a new Markov process is developed for 
describing the evolution process of health states via considering the health state itself 
and the invention events, and based on the Markov model, the formulas for several 
related measure indexes in health states are derived. Meanwhile, some analyses on 
the sensitivity of parameters appeared in the model and some numerical examples 
to illustrate the related measure indexes are presented. This research may shed light 
on further studies in proactive health management. 

Keywords Proactive health management · Health state · Transition · Markov 
process · Probability 

1 Introduction 

The health issue becomes much significant as our society developed rapidly. On 
the other hand, as science and technology development, the ideas and attitudes for 
people’s health is changing. The traditional medicine faces some huge challenges, 
many patients cannot get their desired treatments. Thus, some new ideas, modes 
and medicine emerges, in which a so-called “proactive health management” has
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been proposed [1, 2]. Its main ideas are that it is a medical model to realize the 
body enhancement mechanism or chronic disappear via inputting proactively some 
controllable stimulations which promote the body’s micro complexity increasing and 
increase the body’s various adaptability. In proactive health management, the health 
states can be classified into several categories. For example, in [1], it proposed a 
body behavior mode: PAMS model (Pose, Action, Motion, Style) and proactive 
health model: SAEE model (Stimulation, Adaption, Evolution, Emergence). It is 
clear that the classification of health states to distinguish and measure the different 
health states, which are useful for the proactive health management, thus the related 
studies are significant in both theory and practice. 

In the proactive health management, the stimulations can be treated as intervention 
events which may include physical excises, healthy diets, good behaviors and other 
healthy actions, which can also be thought of as shocks like in reliability field. 
Because of the diversity of each individual or a group of people, such as age, habitus, 
gender and other individual physical features, we treat them a system with some 
features. In fact, human body is a huge system which is more complex than our image. 
In this chapter, we shall mimic the way used in reliability to study the classification 
of proactive health states via using a finite state time homogenous Markov process. 
Meanwhile, the aggregated stochastic Markov processes are also used in the Chapter, 
which is a powerful tool to handle some problems. 

The related literature is reviewed simply as follows. For proactive health manage-
ment, there are few papers, which included Li’s PhD dissertation [1, 2], both in 
Chinese, but it has not found some English literature on proactive health manage-
ment. For the related Markov processes, there are many papers, for example, Zheng 
et al. [3] studied a single-unit Markov repairable system with repair time omission, 
Bao and Cui [4] considered a series repairable system with neglected or delayed 
failures, Cui et al. [5] studied a single unit system with state aggregation, Rubino 
and Sericola [6] considered the sojourn times in finite Markov processes. For aggre-
gated stochastic Markov processes and their applications in reliability, there are a lot 
works, for example, Colquhoun and Hawkes [7], Cui et al. [8, 9], Hawkes et al. [10] 
and Yin and Cui [11]. For multi-state reliability systems, the related literature also 
has many, for example, Eryilmaz [12] and Wu et al. [13]. For shock models, there 
are much literature, for example, Cha and Finkelstin [14], Cui and Kang [15] and 
Yin and Cui [11]. All literature mentioned above will be valuable for our reference 
in this chapter work. 

The contributions of this Chapter are: (i) To develop a new Markov process for 
describing the evolution process of health states via considering the health state itself 
and the invention events, (ii) to derive the formulas for serval related measure indexes 
in health states, (iii) to give some simple analyses on the sensitivity of parameters 
appeared in the model and, (iv) to present some numerical examples to illustrate the 
related measure indexes and some parameter effects on the results. 

The reminder of the chapter is organized as follows. In Sect. 2, the assumptions 
to be needed in the development model are presented, then the reasons why these 
assumptions are raised are discussed simplify. The modelling and analyses are done 
in Sect. 3, in this section, a new Markov process is proposed to describe the evolution
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of the health states, in which two processes are used, one is Markov process, another 
marked renewal process. After modelling, several measure indexes are considered, 
then their computation formulas are derived. In Sect. 4, a sensitivity of parameters is 
considered simply. A numerical example is presented to illustrate the results obtained 
in the Chapter in Sect. 5, in which include some sensitivity analysis. Finally, a 
conclusion is given in Sect. 6. 

2 Assumptions 

We have the following assumptions which will be used throughout the chapter. 

(1) Suppose the evolution process of health states, denoted as {X (t), t ≥ 0}, follow 
the time homogenous finite state Markov process with transition rate matrix QX 

and state space SX = {0, 1, . . . ,  m} without any intervention acts. 
(2) The intervention events, denoted as {N (t), t ≥ 0}, arrive according to a renewal 

process with rate μ(μ> 0) with marks {Y (t), t ≥ 0}, the marks indicating the 
effect amounts of health states are either 1 or 2 with corresponding probabilities 
p and 1 − p, respectively. That is to say, where t1 < t2 < · · ·  < tn < · · ·  are 
the renewal instants, p ∈ [0, 1] 

Y (ti ) =
{
1, with probability p, 
2, with probability 1 − p, 

(3) Both stochastic processes {X (t), t ≥ 0} and {Y (t), t ≥ 0} are independent with 
each other. 

(4) The initial state of {X (t), t ≥ 0} is α0 = (α0, α1, . . . , αm), and it is assumed 
that state i is better than state j if i < j , i.e., the states of {X (t), t ≥ 0} get 
worse as the labeling number of states increases. 

(5) The transition rate matrix QX is given by where λi > 0, λi j  > 0, (i, j ∈ 
SX ), this implies that, if without any intervention, the health state can only be 
transferred from a better state to a worse state, and only the two nearest worse 
states can be reached directly after one transition. 

QX = 

⎛ 

⎜⎜⎜⎜⎜⎜⎜⎝ 

−λ0 λ01 λ02 0 

−λ1 λ12 
. . . 

. . . . . . λ(m−2)m 

. . . λ(m−1)m 

0 −λm 

⎞ 

⎟⎟⎟⎟⎟⎟⎟⎠ 

, 

(6) The intervention act can improve the health state, and it is assumed that the 
health state process, denoted as {H (t), t ≥ 0}. 

The reasons why these assumptions are used are: (i) The evolution process is 
described, in general, with discrete states (multi-state), via a Markov process, this is
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way the {X (t), t ≥ 0} is used to describe the evolution of health states without any 
intervention. And the transitions are limited at most two states, which may be coinci-
dent with real world situations without jump transitions or small step transitions. (ii) 
The invention events, described via a marked renewal process with a constant rate, 
and marks may be 1 and 2, which corresponds to the stimulations in health states 
cannot be jumped or small jumps. (iii) Other assumptions are very natural to fit real 
world situation in proactive health management and simple model consideration. 

3 Modelling and Analyses 

The evolution process of the health state transitions can be modeled by a finite state 
time homogeneous Markov process. Based on the assumptions, we can get that this 
stochastic process is {H (t), t ≥ 0} such that 

H (t) d= 

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

X (t), with initial states α0, when t < t1, 
X (t − t1), with initial state [X (t1) − Y (t1)] ∨  0, when t1 ≤ t < t2, 
X (t − t2), with initial state [X (t2 − t1) − Y (t2)] ∨  0, when t2 ≤ t < t3, 
· · ·  
X (t − tn), with initial state [X (tn − tn−1) − Y (tn)] ∨  0, when tn ≤ t < tn+1, 
· · ·  , 

where the instants t1 < t2 < · · ·  < tn < · · ·  are renewal points of {N (t), t ≥ 
0}, the symbol 

d= indicates the same distribution on both sides, the symbol ∨ is 
maximal operator, i.e., a ∨ b = max{a, b}. The  {H (t), t ≥ 0} has a state space 
S = {0, 1, . . . ,  m}. It is easy to know that the transition diagram of {H (t), t ≥ 0} is 
given by Fig. 1. 

The transition rate matrix for {H (t), t ≥ 0} is 

Q = QX + QY , 

where

Fig. 1 The transition diagram of {H (t), t ≥ 0} 
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QY = 

⎛ 

⎜⎜⎜⎜⎜⎜⎜⎜⎝ 

0 0 
μ −μ 

(1 − p)μ pμ −μ 
(1 − p)μ pμ −μ 

. . . . . . . . . 
0 (1 − p)μ pμ −μ 

⎞ 

⎟⎟⎟⎟⎟⎟⎟⎟⎠ 

. 

This is because we can treat the process {Y (t), t ≥ 0} as a time homogenous 
Markov process, and its role is to improve the health state of {X (t), t ≥ 0}. 

Then we have 

Q = 

⎛ 

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ 

−λ0 λ01 λ02 0 
μ −(μ + λ1) λ12 λ13 

(1 − p)μ pμ −(μ + λ2) λ23 
. . . 

(1 − p)μ pμ −(μ + λ3) 
. . . λ(m−2)m 

. . . . . . . . . λ(m−1)m 

0 (1 − p)μ pμ −(μ + λm) 

⎞ 

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ 

The initial states of {H (t), t ≥ 0} is the same as that of {X (t), t ≥ 0}, i.e., 
β0 = α0 = (α0, α1, . . . , αm). 

In the following, we shall present some analyses and computation formulas on 
the health state process {H (t), t ≥ 0}. 
(1) The instantaneous probability that the health state stays in a given set S1 = 

{0, 1, . . . ,  n1} at time t . 

Based on the theory of Markov process, we have 

P{H (t) ∈ S1} =  β0 exp(Qt)ũT 
1 , 

where the vector ũ1 = (1, . . . ,  1︸ ︷︷ ︸
n1 

, 0, . . . ,  0),, the superscript T is a transpose operator. 

(2) The instantaneous probability that the health state stays in a given set S1 at time 
t and at most sojourns at set S2 = S/S1 = {n1 + 1, . . . ,  m} one time Based on 
the definition of the probability, we can know that the possible paths of health 
state by time t is shown in Fig. 2. 

Thus, we have

Fig. 2 The possible paths of 
{H (t), t ≥ 0} 
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ϕ1(t) := P{H (t) ∈ S1, H (u) stays in S2 for at most one time when 0 < u < t} 

= β1 exp(Q11t)uT 
1 + β1 

⎡ 

⎣ 
¨ 

0≤u+v≤t 

G12(u)G21(v) exp(Q11(t − u − v))dudv 

⎤ 

⎦uT 
1 , 

where the vector β1 is the part elements with dimension 1×n1 such that β0 = (β1, β2), 
u1 = (1, . . . ,  1)1×n1 , the matrix Q11 with dimension n1 × n1 is a submatrix of Q, 
i.e., 

Q =
(
Q11 Q12 

Q21 Q22

)
, 

and G12(t) is a matrix with dimension n1 × n2 whose elements are defined as 

Gi, j 
12 (t) = lim

�t→0 

1

�t 
P{H (t) stays in S1 from time 0 to time t, and leaves S1 

forstate j between t and t + �t |H (0) = i}, i ∈ S1, j ∈ S2. 

G21(t) is a similar quantity resulting from G12(t) by replacing 1 and 2 by 2 and 1, 
respectively. Both G12(t) and G21(t) are probability density functions for the sojourn 
times in subsets S1 and S2 respectively, for details of these contents, see Colquhoun 
and Hawkes [7]. 

The convolution operation may be difficult for the related calculations directly, 
but we can use the Laplace transform to express and compute them concisely and 
simply. The Laplace transform of G12(t)(or G21(t)) is  

G∗
12(s) = (sI − Q11)

−1Q12, (G∗
21(s) = (sI − Q22)

−1Q21), 
where I is an identity matrix with proper dimension. 
Furthermore, we have the Laplace transform of ϕ1(t) as 

ϕ∗ 
1 (s) = β1[(sI − Q11)

−1 + G∗ 
12(s)G

∗ 
21(s)(sI − Q11)

−1]uT 
1 

= β1[(sI − Q11)
−1 + (sI − Q11)

−1 Q12(sI − Q22)
−1 Q21(sI − Q11)

−1]uT 
1 

=β1(sI − Q11)
−1[I + Q12(sI − Q22)

−1 Q21(sI − Q11)
−1]uT 

1 . 

(3) The Instantaneous probability at state i(i ∈ S) 

Similar to the results in (1), we have that the instantaneous probability at state i is 
given by 

ηi (t) := P{H (t) = i} =  β0 exp(Qt)ũT 
1,i , 

where ũ1,i = (0, . . . ,  0, 
i th︷︸︸︷
1 , 0, . . . ,  0), 

Similarly, the Laplace transform can be used for computation easily. Thus we 
have
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η∗ 
i (s) = β0(sI − Q)−1 ũT 

1,i , 

(4) The steady-state probability 

When looking at the health state of an individual or a group people during a long 
period of time, we can use the steady-state probability. i.e., 

πi = lim 
t→∞ 

P{H (t) = i}, i ∈ S. 

It is well-known that the steady-state probabilities satisfy the following linear set 
of equations, if let π = (π0, π1, . . . , πm)T , 

⎧⎪⎨ 

⎪⎩ 

QT π = 0, 
m∑
i=0 

πi = 1, 

which is equivalent to the following linear set of equations 

Q̃1π = B1 

where the vector B1 = (1, 0, . . . ,  0)T , and 

Q̃1 = 

⎛ 

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ 

1 1 1 1 · · · 1 
λ01 −(μ + λ1) pμ (1 − p)μ 0 

λ02 λ12 −(μ + λ2) pμ 
. . . 

λ13 λ23 −(μ + λ3) 
. . . (1 − p)μ 

. . . . . . . . . pμ 
0 λ(m−2)m λ(m−1)m −(μ + λm) 

⎞ 

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ 

. 

Based on Cramer rule, we have 

πi = 
det[ Q̃1,i ] 
det[ Q̃1] 

, i = 0, 1, . . . ,  m, 

where Q̃1,i is a matrix obtained via replacing the i th column of Q̃1 by the vector B1. 

(5) The interval probability that the health state stays in a given subset S1 during 
the interval [t, t + a] (a ≥ 0) 

Let A([t, t +a]) = P{H (u) ∈ S1, for any t ≤ u ≤ t +a}. Then based on the theory 
of aggregated Markov processes, we have 

A∗([t, t + a])(s)
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= α1 

∞∑
r=0

[
G∗ 

S1S2 (s)G
∗ 
S2S1 (s)

]r 
P∗ 
S1S1 (s)PS1S1 (a)uT 

1 + α2G∗ 
S2S1 (s) 

∞∑
r=0

[
G∗ 

S1S2 (s)G
∗ 
S2S1 (s)

]r 
P∗ 
S1S1 (s)PS1S1 (a)uT 

1 

= α1
[
I − G∗ 

S1S2 (s)G
∗ 
S2S1 (s)

]−1 
P∗ 
S1S1 (s)PS1S1 (a)uT 

1 + α2G∗ 
S2S1 (s)[

I − G∗ 
S1S2 (s)G

∗ 
S2S1 (s)

]−1 
P∗ 
S1S1 (s)PS1S1 (a)uT 

1 

= [
α1 + α2G∗ 

S2S1 (s)
][
I − G∗ 

S1S2 (s)G
∗ 
S2S1 (s)

]−1 
P∗ 
S1S1 (s)PS1S1 (a)uT 

1 

= [
α1 + α2(sI − Q22)

−1 Q21
][
I − (sI − Q11)

−1 Q12(sI − Q22)
−1 Q21

]−1 

(sI − Q11)
−1 exp(aQ11)uT 

1 , 

where α0 = (α1, α2). 
The other way for the interval probability is 

A([t, t + a]) = β1 exp(Qt)(I, 0) exp(aQ11)uT 
1 . 

(6) The limit interval probability that the health state stays in a given subset S1 
during the interval [t, t + a] (a ≥ 0) 

Let A([a]) = lim 
t→∞ 

A([t, t + a]) = P{H (u) ∈ S1, for any ∞ ≤  u ≤ ∞  +  a}. 
Thus we have 

A([a]) = (π0, . . . , π|S1|) exp(aQ11)uT 
1 . 

(7) What is the condition for p ∈ [0, 1] such that 
n1∑
i=0 

πi > ρ1 and 
m∑

i=n1+1 

πi < ρ2, 

where the parameters ρ1, ρ2 ∈ [0, 1]. 
It is clear that p meets the following equality 

p∗ =  max 
p∈[0,1]{p : 

n1∑
i=0 

πi > ρ1 and 
m∑

i=n1+1 

πi < ρ2}, 

This is because
∑n1 

i=0 πi decrease in p and
∑m 

i=n1+1 πi decreases too in p, although 
the rigorous proof needs much effort. 

(8) Special cases 

There are two special cases needed to be considered. (i) p = 0 and (ii) p = 1. For  
case of p = 0, the marked renewal process {Y (t), t ≥ 0} is with rate μ and mark 2
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at each renewal point, which indicates the strongest invention events happened. For 
case of p = 1, the marked renewal process {Y (t), t ≥ 0} is with rate μ and mark 1 
at each renewal point, which indicates the weakest invention events happened. 

(9) Mean and variance of H(t) 

The mean of {H(t), t ≥ 0} is given by 

M1(t) := E[H (t)] =  
m∑
i=0 

i P{H (t) = i} =  
m∑
i=0 

i ηi (t) 

and its Laplace transform is 

M∗ 
1 (s) = 

m∑
i=0 

i η∗ 
i (s) = 

m∑
i=0 

i β0(sI − Q)−1 ũT 
1,i . 

The second moment of {H(t), t ≥ 0} is given by 

M2(t) := E[H 2 (t)] =  
m∑
i=0 

i2 P{H (t) = i} =  
m∑
i=0 

i2 ηi (t) 

= 
m∑
i=0 

i2 β0(s I − Q)−1 ũT 
1,i . 

Thus the variance of {H (t), t ≥ 0} is given by 

Var [H (t)] =  M2(t) − [M1(t)]2 . 

4 Sensitivity Analyses on Parameters 

The model (Markov process) involves the following non-negative parameters listed 
in Table 1. There are total 2m + 3 parameters in the model. 

In the sequel, we shall simply discuss the sensitivity of parameters in two cases: (i) 
Parameters in the input intensity {N (t), t ≥ 0} and, (ii) parameters in the evolution 
process of health states.

Table 1 Parameters in the 
model 

Y (t) X (t) 

p, μ  
λi (i+1), λi (i+2), i = 0, 1, . . . ,  m − 2. 
λ(m−1)m 
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Case 1. Parameters in the input intensity {N (t), t ≥ 0}. 
There are two parameters in {Y (t), t ≥ 0}: p and μ. It is intuitively to know 

that the health states will be in better states when p decreases or μ increases under 
other parameters being fixed, which have been shown in the numerical example. The 
average input intensity is 

pμ + 2(1 − p)μ = 2μ − pμ = (2 − p)μ. 

Similarly, if the average input intensity increases, then the health states will stay 
in better states. The special cases: p = 0 and p = 1, have been considered in Sect. 3 
already. 

Case 2. Parameters in the evolution process of health states. 

There are 2m + 1 parameters in {X (t), t ≥ 0}. The detailed discussion for the sensi-
tivity of parameters will be difficult and complicated. But if some λi (i+1) decrease, 
then the health states will stay in better states under other parameters being fixed. 
The situations become complicated when some λi(i+1) decrease and some λi(i+1) 
increase, in which we need to give the results based on the numerical calculations. 

5 Numerical Example 

In this section, a numerical example is given to show the related results presented 
Sect. 3. It is assumed that  m = 5, p = 0.8, μ  = 5, and the transition rate matrix of 
{X (t), t ≥ 0} is 

QX = 

⎛ 

⎜⎜⎜⎜⎜⎜⎜⎝ 

−3  1 2 0 0  0  
0 −2 1 1 0  0  
0 0  −4 2 2 0  
0 0 0  −2 2 0  
0 0 0 0  −5 5  
0 0 0 0 0  0  

⎞ 

⎟⎟⎟⎟⎟⎟⎟⎠ 

, 

the initial state is β0 = α0 = (0.2, 0.1, 0.2, 0.4, 0.1, 0), S1 = {0, 1, 2}. 
Using Maple software and the results presented in Sect. 2, we have  

(1) The instantaneous probability in S1 at time t 

QY = 

⎛ 

⎜⎜⎜⎜⎜⎜⎜⎝ 

0 0 0 0 0 0  
μ −μ 0 0 0 0  

(1 − p)μ pμ −μ 0 0 0  
0 (1 − p)μ pμ −μ 0 0  
0 0 (1 − p)μ pμ −μ 0 
0 0 0 (1 − p)μ pμ −μ 

⎞ 

⎟⎟⎟⎟⎟⎟⎟⎠
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= 

⎛ 

⎜⎜⎜⎜⎜⎜⎜⎝ 

0  0 0 0 0 0  
5 −5  0 0 0 0  
1 4  −5  0 0 0  
0 1 4  −5 0 0  
0 0 1 4  −5 0  
0 0 0 1 4  −5 

⎞ 

⎟⎟⎟⎟⎟⎟⎟⎠ 

. 

Q = QX + QY = 

⎛ 

⎜⎜⎜⎜⎜⎜⎜⎝ 

−3  1 2 0 0 0  
5 −7 1 1 0 0  
1 4  −9 2 2 0  
0 1 4  −7 2 0  
0 0 1 4  −10 5 
0 0 0 1 4  −5 

⎞ 

⎟⎟⎟⎟⎟⎟⎟⎠ 

. 

The curve of P{H (t) ∈ S1} is shown in Fig. 3. 
(2) The instantaneous probability in S1 at time t with at most one sojourn in S2 

The curve of ϕ1(t) is shown in Fig. 4.

(3) The Instantaneous probabilities at state i (i ∈ S) 

The curves of ηi (t)(i = 0, 1, . . . ,  5) are shown in Fig. 5.

(4) The steady-state probability 

The steady-state probability of {H (t), t ≥ 0} is given by 

π = (0.3237, 0.1612, 0.1652, 0.1439, 0.1030, 0.1030).

Fig. 3 The instantaneous 
probability in set S1 at time t 
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Fig. 4 The instantaneous 
probability in S1 at time t 
with at most one sojourn in 
S2

Fig. 5 The instantaneous 
probabilities at state i(i ∈ S)

(5) The interval probability in S1 during [t, t + a] 
The curves of A([t, t + a]) are given in Fig. 6.
(6) The limit interval probability in S1 during [t, t + a] 
(7) The impact of p on the limit probability in S1 

The curve of the impact of p on the limit probability in S1 is given in Fig. 8.

(8) Mean and variance of H(t) 

The curves of mean and variance are presented in Fig. 9, respectively.
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Fig. 6 The interval 
probabilities in S1 during 
[t, t + a] for a = 1, 2, 3, 
respectively 

Fig. 7 The limit interval 
probability in S1 during 
[t, t + a] for a ∈ [0, 5]

6 Conclusion 

The evolution process of proactive health states via a new Markov process combining 
a Markov process and a marked renewal process, in which the quantitative transitions 
are described. Based on this new model, some measure indexes are proposed, and their 
calculation formulas are derived, some of them expressed via the Laplace transforms 
and some via matrix forms by using knowledge of Markov processes and aggregated 
Markov processes. A simple discussion on sensitivity of parameters appeared in the 
model are given, which may be useful in applications. Some numerical examples are 
presented to illustrate the results obtained in the chapter. The future related research 
may be done on semi-Markov process and other ways on intervention events such 
as dependent cases and complicated shock-like cases.
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Fig. 8 The limit probability 
in S1 for p ∈ [0, 1]

Fig. 9 Mean and variance of 
H (t)
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Abstract A Kalman filter-based framework is proposed for the prognostics and 
health management of DC electric motors by treating them as a system. The control 
signals of the motor are used to estimate the current health and predict the remaining 
useful life (RUL) of the motor and its components, such as bearings and permanent 
magnets. The framework consists of an online health diagnosis to estimate the health 
status of the motor and each component, and an offline failure prognosis to predict the 
RULs. The approach is demonstrated with the aid of two real examples: the reaction 
wheel motor for advanced attitude control of satellites and the driving motors in a 
quadcopter to lift and control flight operations. In each example, the motors were 
subjected to accelerated degradation tests, motor control data were collected for 
each cycle, and RULs were predicted against failure thresholds critical to motor 
performance. The results showed that the framework can be used to effectively predict 
the RUL of a degraded motor, thereby enabling failure prevention and proactive 
maintenance scheduling.
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1 Introduction 

The accurate prediction of impending failure or remaining useful life (RUL) of 
mission-critical systems improves safe system operations and offers economic bene-
fits to the industry. Extensive research on the prognostics and health management 
(PHM) of various assets with different perspectives has already been conducted by 
academic researchers and industrial engineers [1, 2]. Among these, the PHM of elec-
tric motors has been widely researched because of its ability to provide the drive and 
control of various equipment and processes in the industry. To conduct PHM, motor 
current or vibration signals are typically employed to assess and predict the health of a 
motor [3]. Traditionally, the failure modes of a motor have been identified by time and 
frequency analyses of the signals, such as by estimating the harmonic components 
of the fault frequencies and locating them in the spectrum [4–7]. Currently, artificial 
intelligence (AI)-based approaches, which are known to be powerful and possess 
improved performance over the conventional approaches, are widely adopted. These 
approaches consist of classification tools and algorithms, such as neural networks 
[8], fuzzy logic [9], support vector machines [10], and deep learning [11]. A general 
review of AI-based approaches for electric motors is presented in Ref. [12]. 

Most engineering systems consist of multiple components designed to perform a 
specific function. Because these components interact with each other in a complex 
manner, their degradation can affect the overall system performance in a non-trivial 
way. Recently, an appropriate framework that estimates the health of the components 
and predicts their RUL was proposed by Kim et al. [13, 14]. They also demonstrated 
the framework using a DC motor, considering it as a system because it has mechanical 
parts, that is, the bearing, shaft, and electrical components such as the stator winding 
and magnets. Because the performance degradation of the motor originates from 
these components, it is desirable to employ a systems approach to implement the 
PHM for motors. The framework consists of online diagnostics to monitor the status 
of each component and the overall health of the motor, as well as an offline failure 
prognosis to predict the RULs against the failure threshold conditional on motor 
performance. 

Prognostic methods applied in PHM can be categorized into model-based and 
data-driven approaches. The model-based approach assumes that a physical model 
describing the behavior of the system is available and combines the model with 
measured data to identify the model parameters. Conversely, the data-driven approach 
uses data from past failures to establish a prediction model based on machine learning. 
The model-based approach is advantageous for DC motors because it is a dynamic 
model that enables estimation of the model parameters using the measured signals, 
which are indicative of the component’s health. Hence, several researchers have 
applied model-based approaches to the PHM of DC motors. In this approach, the 
Kalman filter (KF) is the most widely used technique for estimating the model param-
eters in a recursive manner while incorporating the model and measurement uncer-
tainties. Rahimi et al. [15] applied an unscented KF with a high-fidelity model to esti-
mate health parameters for each motor fault scenario. El Sayed et al. [16] performed
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parameter estimation using an extended KF (EKF) and an unscented KF (UKF) to 
diagnose stator faults and their severity. Others, such as Singleton et al. [17], used 
a KF to estimate motor speed and conducted fault detection based on a comparison 
with the actual speed. However, a common drawback of the aforementioned studies is 
that no one has explored the systems approach, wherein the RUL prediction accounts 
for component degradation and their influence on the overall motor performance. 

This section addresses the application of the systems approach, in which the KF 
is used with motor-current signals to estimate the present health status of individual 
components and performance degradation. The advantages of the systems approach 
are two-fold. First, it does not require large volume of data until failure, which is 
critical to the training process in the data-driven approach. Second, additional sensors, 
such as accelerometers, are not required because the motor load current signal, which 
is acquired during operation, is used for the PHM. In Sect. 2, the overall prognostics 
framework for the systems approach is reviewed briefly. In Sect. 3, simulations 
are conducted using the motor dynamic equations in which the two most critical 
components, that is, the permanent magnet and bearing, are artificially degraded 
over cycles, and virtual measurements are performed accordingly to illustrate the 
process of RUL prediction. Next, two case studies of real motors are presented to 
demonstrate their implementation. The first is presented in Sect. 4, which considers 
the degradation of the reaction wheel (RW) motor, which stabilizes the attitude 
control of satellites against external environmental factors. The second is presented 
in Sect. 5 for the motors driving the quadcopter to lift and control flight operations. In 
both examples, the motors were subjected to accelerated degradation and the motor-
current signals were collected with regular time interval during operation. A systems 
approach is employed wherein the performance of the motor is properly defined. The 
health of each motor component is assessed based on this, and the RUL, after which 
the motor is no longer able to perform its normal function, is predicted. In Sect. 6, a  
detailed discussion and conclusions are presented. 

2 Systems Approach for PHM 

The overall framework of the systems approach for fault diagnosis and failure prog-
nosis based on a physical model-based approach is described in this section. Figure 1 
describes the framework which consists of two phases: construction of the system 
dynamics model on the left and the PHM implementation on the right.

The system model is developed using simulation tools or algorithms such as 
Simulink, lumped parameters, or ordinary differential equations. A group of param-
eters is identified during development; the inputs are the operation parameter u and 
the health parameter h of the critical components that affect system degradation. 
The outputs are the state variable x , the system performance variable S, and the 
measurement variable z used to estimate the present health status of the system 
and its components. Three models are established: the state model—typically in a 
recursive form in the time domain—the measurement model relating the state with
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Fig. 1 Framework for physics-based approach [13]

the measurement, and the performance model of the system. The three models are 
defined as follows: 

ẋ = f (x, h, u), (1) 

z = g(x, h), (2) 

S = sys(x). (3) 

The PHM implementation phase consists of two parts: online estimation and 
diagnosis in the upper-right figure, as well as offline training and prognosis in the 
lower-right figure. In the online estimation, state x in a single cycle is estimated for 
the input operation parameter u, from which the system performance S is evaluated 
using the performance model. Depending on the availability of health parameter h, 
the online estimation phase comprises two stages. In the estimation stage, h and x 
are estimated as unknowns using the measured data z. The unknown parameters are 
estimated by the state model and updated by the measurement model. In the prediction 
stage, h is known as a priori and there are no measurements; in this case, state x is 
predicted with the given input h. In both stages, the system performance is computed 
using the obtained state x . Using the measurement z obtained in every cycle, the 
health parameters up to the current cycle k, i.e., h0:k, can be estimated. They are then 
transferred to offline training and prognosis. To describe the degradation trend more 
efficiently, the health parameters are typically represented by either a physical model 
or an empirical model: 

hcyc = d(t, θ |h0:k), (4)
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where hcyc denotes the health parameters as a function of cycles, d is the mathematical 
model, θ is the model parameter, and t is the cycle. Once the model is fitted to h0:k, 
it can be extrapolated to predict h in the future. The predicted h is transferred to 
the prediction stage from which state x and the system performance S in the future 
are predicted. The predicted S is transferred to the offline training phase to obtain 
the future evolution of the system performance, as matched with that of the health 
parameter h in the future. Upon evaluating the RUL of the system performance 
against the failure threshold, one can identify the most critical health parameter (i.e., 
specific component) that leads to the earliest system failure and its remaining cycles, 
which provides valuable information in maintenance management. 

The overall procedure is illustrated in Fig. 2. For the implementation phase, 
the online estimation and diagnosis part of Fig. 1 can be best accommodated by 
a Bayesian approach, such as the Extended Kalman or Particle Filter algorithms. 
Thereafter, the health parameter h and state x are estimated in the form of a distribu-
tion, such as the mean and covariance, or the samples which reflect the uncertainty in 
the process. The offline training and prognosis parts can also be similarly performed; 
however, a simpler linear/nonlinear regression can also be employed to this end. The 
degradation model parameter θ in d(·) is estimated based on the accumulated values 
h0:k until the current cycle. The degradation in the future is then predicted by θ with 
uncertainty, which is usually expressed by the confidence bounds in the result. 

Fig. 2 Overall procedure for physics-based approach as illustrated
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3 Simulation Study 

3.1 Problem Statement 

In this section, the simulation data are used to illustrate the system approach procedure 
for a DC motor. Most of the contents here are extracted from the authors’ previous 
study [13]. Virtual measurement data are generated by adding random noise to the 
simulation results of the motor dynamics that converts electrical energy into mechan-
ical power. When an electric current passes through a coil in a magnetic field, the 
magnetic force produces torque that drives the DC motor. As shown in Fig. 3, a DC  
motor consists of electrical and mechanical parts that are coupled together; failure in 
one part affects the others. For example, because magnetic flux enables conversion 
of electrical energy into mechanical force, its defects can degrade mechanical perfor-
mance. The mechanical and electrical parts of the DC motor dynamics are expressed 
as: 

J 
dω 
dt  

+ bω = kT i − TL = To, (5) 

L 
di  

dt  
+ Ri = V − kT ω, (6) 

where ω, i, and To represent the angular velocity, current, and output torque, respec-
tively. The two equations share the common parameter kT , which represents the 
electromechanical coupling coefficient, and Table 1 lists the parameters and their 
values used for the simulation [18]. The duration of a single cycle is 3 s, and a 
voltage of 10 V is applied for the first 1.5 s and subsequently turned off. Figure 4 
shows the time histories of ω, i , and To as outputs from the dynamic equations in (5) 
and (6), respectively. The angular velocity ω rapidly reached the desired value on 
application of power and decreased to zero when turned off. Similarly, load current 
i and output torque To rapidly increased to the peak value at the start, followed by a 
gradual decrease when the voltage was turned off.

Fig. 3 DC motor system 
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Table 1 Parameter setting 
for simulation 

Symbol Description Value 

R Armature resistance 11.2 

L Armature inductance 0.1215 H 

J Moment of inertia 0.022145 kg m2 

b Viscous friction coefficient 0.002953 N m s/rad 

kT Electromechanical coupling 
coefficient 

1.28 Nm/A 

V Input voltage 10 V 

TL Load torque 0.05 Nm 

Fig. 4 Simulation result of DC motor system 

3.2 Simulation of Component Degradation 

Challenges with system-level prognosis arise because multiple components degrade 
over time, which affect system performance in a complex manner. To simulate this 
situation, two components with associated failure modes were selected from [19]. 
The first is degradation of the permanent magnet owing to prolonged overheating, 
also called flux weakening, that results in reduction of rotor magnetic-field strength. 
This can be described by decreasing the electromechanical coupling coefficient,
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kT . The second is bearing lubrication failure, which can be modeled by a change 
in the load torque TL applied to the motor. The system performance is given by 
the motor output torque To, which may decrease as the two components degrade. 
The degradation behaviors of the magnet and bearing are assumed to be linear and 
exponential functions of the cycles, respectively. 

kT (t) = α1 + α2t, (7) 

TL (t) = β1e
β2t , (8) 

where α1 and β1 represent the initial degraded status, and α2 and β2 describe the 
cycle-dependent behavior. 

Three cases are considered, as shown in Fig. 5: (1) degradation of the magnet with 
α2 = −5.7974× 10−4, (2) degradation of the bearing with β2 = 3.3 × 10−3, and (3) 
simultaneous degradation with the α2 = −5.7974 × 10−4 and β2 = 3.9× 10−3. The  
output torque for each case was obtained by solving the system equations with the 
degraded values of kT and TL , as shown in Fig. 5a–e; results for the output torque 
are presented in Fig. 5b, d, and f. It can be observed that the maximum value of the 
output torque gradually decreases with degradation, thereby indicating degradation 
of the system performance. Furthermore, it is evident from Fig. 5b, d, and f that when 
two or more components degrade simultaneously, the system performance degrades 
at a faster rate.

In this example, the system performance S is defined by a scalar value, namely 
the maximum output torque: 

S = max T0 = max(kT i − TL ). (9) 

A system is regarded as a failure when the system performance decreases below 
70% of its initial value. Therefore, it is necessary to predict the number of cycles that 
remain before failure, as well as the responsible component to be replaced. 

3.3 Application of Physics-Based Approach 

As mentioned in the previous section, the first step in the physics-based approach 
is construction of the system dynamics model, as shown in (1), where the state 
variable x (denoted by a vector hereafter) consists of velocity ω and current i , that is, 
x = [ω, i]T while the input operation parameter u is voltage V . The health parameter 
h contains kT and TL or h = [kT , TL ]T . The state model can be constructed using 
(5) and (6) as follows:

[
ω̇ 
i

]
=

[− b 
J 

kT 
J 

kT 
L − R 

L

][
ω 
i

]
+

[ TL 
J 
V 
L

]
. (10)
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Fig. 5 Output torque due to components degradation, a health parameters and b output torque of 
case 1, c health parameters and d output torque of Case 2, and e health parameters and f output 
torque of Case 3
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Note that the equation describes the transient response of the state variable x. 
Because the state variable can be acquired from the control unit during operation, 
the measurement model is expressed as: 

z =
[
1 0  
0 1

][
ω 
i̇

]
+ ν, (11) 

where z is the measurement variable, and ν is the zero-mean multivariate Gaussian 
noise. The measurement data were gathered at 0.005 s time intervals. 

The models were used for online estimation and diagnosis. In this study, an EKF 
algorithm was employed. In the estimation stage, the state variable is augmented 

by the unknown health parameter h and denoted by x = [
xT , hT ]T 

. The state and 
measurement models in (10) and (11) can be rewritten in recursive matrix form: 

State model: xt = F(xt−1) + wt or 

⎡ 

⎢⎢⎣ 

ωt 

it 
kT,t 

TL ,t 

⎤ 

⎥⎥⎦ = 

⎡ 

⎢⎢⎣ 

(1 − b · dt/J )ωt + dt/J
(
kT,t−1 · it−1 − TL ,t−1

)
−dt/L · kT ,t−1 · ωt−1 +

(
1 − R L

)
it−1 + V · dt/L 

kT,t−1 

TL ,t−1 

⎤ 

⎥⎥⎦ + wt . (12) 

Measurement model: zt = H (xt ) + ν t or 

zt =
[
1 0 0 0  
0 1  0 0

]⎡ 

⎢⎢⎣ 

ωt 

it 
kT,t 

TL ,t 

⎤ 

⎥⎥⎦ + ν t , (13) 

where kT ,t and TL ,t denote the kT and TL at the current time t , respectively. Process 
error wt is given by the zero-mean multivariate Gaussian noise with covariance, 
whose diagonal elements are I × 10−9, where I is the identity matrix. The measure-
ment noise ν t is set as 0.1 and 0.01, which can be determined by evaluating the 
dispersion of the measured data. More details on the EKF can be found in literature 
[17, 20]. 

The initial state variables are given as x0 = [0, 0, 1.28, 0.05]T based on the 
evaluation of kT and TL at the initial stage of motor operation. The estimation stage 
was performed in two steps, as shown in Fig. 1. The first is prior estimation by the 
state model under a given input u. Next is the posterior update by the measurement 
model, which leads to the estimated state variable and health parameters. Figure 6a, 
b show the estimated state variable x (velocity and current) and health parameters 
h (kT and TL ) along with 95% prediction and confidence intervals, respectively. As 
shown in Fig. 6b, the health parameters rapidly converged to their true values. The 
values at the end of the voltage application (i.e., 1.5 s) were used as the estimated 
health of each component to assess the system performance given by (9).



Kalman Filter-Based Systems Approach for Prognostics and Health … 525

(a) (b) 

0 0.5 1 1.5 
0 

5 
Ve

lo
ci

ty
 

Measurement 
True 
95% P.I 
Median 

0 0.5 1 1.5 
Time[sec] 

0 

0.5 

1 

C
ur

re
nt

 

0 0.5 1 1.5 
1.1 

1.2 

1.3 

k T
 

True 
95% C.I 
Median 

0 0.5 1 1.5 
Time[sec]

-0.1 

0 

0.1 

0.2 

T L
 

Fig. 6 Online estimation and diagnosis in a cycle by physics-based approach: a state variable x 
and b health parameters h 

Once the health parameters h are estimated for each cycle, the next step is to 
transfer them to the offline stage, as shown in Fig. 1. The results are shown in Fig. 7a, 
c, and e for all three cases; the black dots denote health parameters estimated up to 
the current cycle. Using these data, the degradation models of each health parameter 
were fitted, i.e., the model parameters α and β in (7) and (8) were estimated. For 
this purpose, the Markov Chain Monte Carlo (MCMC) method, which determines 
the parameters by large samples (104 in this study) to represent the uncertainty, 
is applied for the likelihood between the data and the model. Future degradation 
behaviors were also predicted by extrapolating the model. In Fig. 7a, c, and e, these 
are represented by the median and 95% predictive interval (PI) curves. Note that the 
associated uncertainty is so small that it nearly overlaps in this example. Once the 
health parameters h are predicted for future cycles, they are transferred to the online 
stage, as shown in Fig. 1. In this case, they are used for the prediction stage wherein 
only the state variables x are estimated by the state model, because h is known. 
Subsequently, the system performance in the future cycles obtained as samples are 
transferred to the offline prognosis over cycles. The results are given by the median 
and 95% PI in Fig. 7b, d, and f for the three cases, respectively. It is worth noting 
that establishing a degradation model for the system performance is not necessary 
because these are obtained from the online estimation stage as samples.

Because true solutions are available, they are superimposed by solid black lines 
and compared with the predictions. The prediction results at the current cycle agree 
well with the true solutions for all three cases. It should be noted that the system 
failure is defined as 70% of its initial value, depicted by the horizontal green line in 
the figure. The end of life (EOL) was found at 683, 617, and 369 cycles in terms of 
the median for the three cases. The reason for the shorter life in Case 3 is attributed to 
the acceleration effect caused by the simultaneous degradation of both components. 
In Fig. 7a, c, and e, the blue dotted horizontal lines indicate the failure thresholds of 
each health parameter. They are defined by the corresponding values at EOL when
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Fig. 7 Offline trending and prognosis over cycles by physics-based approach: a components health 
degradation for Case 1, b system health degradation for Case 1, c components health degradation 
for Case 2, d system health degradation for Case 2, e components health degradation for Case 3 
and f system health degradation for Case 3
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the system undergoes degradation of each component. The threshold values for kT 
and TL are 0.884 and 0.3897 at EOLs 683 and 617 from cases 1 and 2, respectively. 

Once the system prognostics information is available, the maintenance effect 
of individual components on the system health can be evaluated. This process is 
illustrated in Case 3 wherein two components degrade simultaneously. Note that 
all subsequent computations are based on median values, unless stated otherwise. 
First, the current conditions are assessed by introducing the health index (HI) and 
RUL. The HI indicates the current health status, whereas the RUL estimates how 
many cycles remain until final failure. HI is defined by the ratio of degradation at the 
current cycle to that at the EOL and ranges from 0 (normal) to 1 (failure). Because the 
kT values at the initial, current, and EOL cycles are 1.28, 1.1, and 0.88, respectively 
(Fig. 7a), the index is (1.28 − 1.10)/(1.28 − 0.88) = 0.45. The indices for the other 
parameters can be obtained in a similar manner. RUL is defined as the difference 
between EOL and the current cycle. For kT and TL in Fig. 7e, the EOLs are found 
at the cycles crossing the threshold lines (not shown here), which are approximately 
721 and 513, respectively. Because the current cycle is 109, the RULs of kT and TL 
are approximately 609 and 412, respectively, and the system RUL is 361 − 109 = 
252 cycles. 

All the results are summarized in Table 2 and plotted using bar charts in Fig. 8a, b. 
Note in Table 2 that the HI of kT has degraded (increased) to 0.1507, which is greater 
(worse) than the 0.0789 of TL . However, its RUL is approximately 609, which is 
longer than the 412 of TL . This is because of their different degrees of influence on 
the overall system performance. 

Subsequently, a what-if study was performed for scenarios in which one of the 
components was repaired or replaced by a new one. The health parameter is reset 
to the original value and the system performance is predicted under the renewed 
condition when the components that influence the health are replaced. These results 
are shown in Fig. 8c, d when the components that influence factors kT and TL are 
repaired. The new EOLs of the components that influence factors kT and TL got 
extended to approximately 512 and 701 cycles, respectively, thereby yielding new 
RULs of approximately 403 and 592, respectively, as shown in Fig. 8d. Among the 
choices regarding which component to repair, repairing the bearing (TL ) is more

Table 2 Results for 
simulation 

Name Flux Bearing System 
performance 

Symbol kT TL S 

Current cycle 109 109 109 

End of life 718.0811 521.1807 361 

Remaining useful 
life 

609.0811 412.1807 252 

Initial value 1.2796 0.05 0.9971 

Current value 1.22 0.0768 0.9278 

Threshold 0.884 0.3897 0.6978



528 H. J. Park et al.

(a) 

(c) 

(b) 

(d) 

1 
Health state 

System 

TL 

kT 

0 100 200 3000 0.2 0.4 0.6 0.8 400 500 600 
RUL (cycles) 

System 

TL 

k T 

0 200 400 600 
Cycles 

0.6 

0.7 

0.8 

0.9 

1 

1.1 

O
ut

pu
t t

or
qu

e 

95% P.I 
Median 
Measurement 
True 
Threshold 

0 200 400 600 
Cycles 

0.6 

0.7 

0.8 

0.9 

1 

1.1 

O
ut

pu
t t

or
qu

e 

95% P.I 
Median 
Measurement 
True 
Threshold 

(e) 

0 200 400 600 800 
RUL (cycles)af

te
r T

L 
re

pa
ir 

af
te

r k
T

 re
pa

ir 

Fig. 8 Maintenance scenario in physics-based approach: a current health status, b RUL of compo-
nent and system, c prognosis with kT repair, d prognosis with TL repair and e system RUL when 
component is repaired

desirable as it leads to a longer RUL. In Fig. 8b, e, the red error bar indicates the 
95% PI of the RUL prediction. Answers to the following significant questions could 
be found from this study: what is the current health condition of the components 
and system, how much longer can the system operate until failure, which component
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should be replaced to extend the system life, and how much longer can the system 
operate after repair. 

In the following section, two real-world examples are addressed to illustrate the 
applications of the proposed framework: motors for the attitude control of satellites 
and driving quadcopters. 

4 Case Study 1: Reaction Wheel Motor in Satellites 

4.1 Problem Definition 

In this section, reaction wheel motors for the attitude control of satellites are consid-
ered. Note that the most of the contents in this case study are from the authors’ 
previous paper [21]. Satellites in space require accurate attitude control and high relia-
bility to conduct their missions fully. The RW actuated by a motor provides consistent 
angular momentum to help stabilize a satellite against external torsion, such as solar 
radiation pressure, and to control its precise attitude. However, owing to continuous 
operation, the functioning of the motor becomes degraded over time, thereby jeopar-
dizing the reliability of the entire satellite control system [22]. According to a survey 
of the failure statistics of satellite components, most failures are attributed to the 
actuators of the attitude and control system (AOCS), such as the RW motor [23]. 
Therefore, the proposed method was implemented to monitor the health and predict 
the degradation of the RW motor to improve their reliability. 

Few studies have addressed the prognostics of RW motors [24, 25]; however, 
motor RUL prediction is conducted at the single-component level. Motivated by 
the aforementioned limitations and requirements, this case study addresses the RUL 
prediction of an RW motor based on the proposed system-level prognostics frame-
work. In this study, we conducted an accelerated life test (ALT) on an RW motor for 
a period of 3 years to acquire real measurement data with a low sampling rate, similar 
to a space environment. A proper failure threshold was imposed on the motor based 
on the characteristic curve given by the design requirement. The RUL is predicted 
using the degradation relation between the system and its components, assuming that 
the data are obtained during space operations. 

4.2 Experimental Setup 

The RW in this study was developed for the Korean Space Launch Vehicle, named 
the Science and Technology Satellite-3 (STSAT-3), and is addressed in Ref. [26]. 
It is actuated by a motor to provide consistent angular momentum and control its 
precise attitude. ALT was performed for this motor; one operation cycle comprises 
a short-term pull-up followed by a longer period at constant speed. During ALT, the
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current and angular velocity signals were acquired at a sampling rate of 2 Hz. The 
pull-up test lasts only for a few seconds, while the rest of the time is given for the 
constant-speed test which extends from 10 to 20 h. Consequently, a day is spent for 
a single-cycle operation, on average, and the entire test lasts for three years. The 
pull-up operation evaluates motor performance by applying maximum voltage to 
the motor. The test was conducted under two extreme temperature conditions, i.e., 
hot (60 °C) and cold (−30 °C), within a thermal vacuum chamber to evaluate its 
reliability and performance. Even after three years there were no failures, but the test 
was stopped considering safety and the abnormally high current consumption. 

4.3 Application of the Systems Approach 

4.3.1 Online Parameter Estimation 

In online diagnosis, the EKF is used to estimate the health status based on the motor 
dynamic model and measured signals from each cycle. The governing equations for 
the mechanical and electrical parts of the motor are the same as those in Sect. 2. 
Table 3 lists the model parameters used in this case study. The health parameters 
responsible for the motor performance degradation are given by h = [kT , b]T which 
are the back EMF and friction coefficients, relating to the permanent magnet health 
and the bearing condition, respectively. The input operation parameter is the voltage 
V at current time t. 

However, unlike the simulation studies, it is difficult to assign initial values to 
the process. Measurement of noise covariance and improper values significantly 
affect and degrade the performance. To overcome this, an Adaptive EKF (AEKF) 
was employed to adaptively estimate the covariance matrices at each step of the 
EKF [27]. The forgetting factor (α = 0.8) is used for adaptive estimation. Note that 
a larger α indicates more weight on previous estimates and incurs less fluctuation 
in the covariance, as well as longer time delays to adapt to changes. In this study, 
α = 0.8 for all studies.

Table 3 Parameter 
description and values for 
extended Kalman filter (EKF) 

Symbol Description Value 

R Armature resistance 22 Ω

L Armature inductance 0.1215 H 

J Moment of inertia 0.001143 kg m2 

b Friction coefficient 1.01 × 10−5 N m s/rad 

kT Electromechanical 
coupling coefficient 

0.054 Nm/A 

V Input voltage 24 V 

TL Load torque 0.0001 Nm 
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4.3.2 Motor System Performance 

To evaluate the performance of the RW motor, a typical characteristic curve that is 
defined by the relation between the output torque (Toutput = J ω̇) and the angular 
velocity ω during the pull-up range was applied. To ensure the minimum actuation 
performance of the RW, the motor must generate at least 5 Nm of output torque at 
ω∗ = 314.16 rad/s, i.e., the motor is considered to have failed when the performance 
falls below this point. This is a design requirement for the STSAT-3 mission, where 
a satellite with an inertial moment of 18 kg m2 needs to maneuver 25° in 40 s. In this 
context, motor system performance is defined by the following expression: 

Psys  = J ω̇|ω=ω∗ , (14) 

and the failure threshold point is given by 5 Nm. 

4.3.3 Offline Prognosis and Monitoring 

In the offline monitoring and prognosis, the health parameters h, estimated from the 
online diagnosis for each cycle, were transferred and monitored until the current 
cycle. An empirical degradation model was introduced to quantitatively describe 
the health degradation over long-term cycles, in which the model parameters were 
estimated using the accumulated health parameters. A particle filter (PF) was used in 
this case study to recursively estimate the probability density function (PDF) of the 
long-term health status and model parameters in the form of particles [28, 29]. The 
future trend was predicted by extrapolating each particle to future cycles. As in the 
EKF, the standard PF also consists of the state transition function f and measurement 
function h, as follows: 

xk = f (xk−1, βk ), (15) 

zk = h(xk, nk), (16) 

where k is the cycle step index, xk is the estimated health state, βk is the degradation 
model parameter, zk is the measurement data (in this case, the health parameter values 
obtained using the online estimation), and nk is the measurement noise. To account 
for degradation, an empirical exponential function was employed for function f 
[30–32]: 

f (xk−1, βk) = exp(βkdt)xk−1. (17) 

The Gaussian PDF assumes the measurement noise, nk ∼ N (0, σk), where σk 

is the unknown standard deviation. Consequently, the unknown parameter to be 
estimated is θ = [x, β, σ  ]T . It should be emphasized that the health parameters are
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estimated by the motor dynamic model using the AEKF for the online stage, whereas 
its trend over long-term cycles is estimated by the degradation model using the PF 
for the offline stage. Once the degradation model is estimated up to the current cycle, 
it is used to predict future RUL values. 

In an offline prognosis, it is often the case that the degradation trend accelerates 
after a certain cycle or initial fault. To account for this in the PF process, a shifting 
kernel PF (SKPF) that can detect when the current cycle deviates from the normal is 
used [33]. To this end, SKPF calculates the likelihood L , and subsequently calculates 
the decision function dk : 

dk = −  ln

(
1 

N 

N∑
i=1 

L
(
zk |xi k, β i 

k, σ  i k
))

. (18) 

When the observed degradation is close to the normal condition, the likelihood 
tends to be high and assumes a negative value; therefore, degradation is not monitored. 
Conversely, when the state degrades in a different fashion, e.g., deviates from the 
normal, the likelihood becomes lower and assumes a positive value. By monitoring 
these cycles and examining when the decision function reaches a positive value, the 
anomaly point is identified. Once detected, the SKPF shifts the kernel function used 
in the resampling step of the PF and adapts to the new degradation trend. 

4.4 Application Results 

In this section, the results of applying the AEKF to the system framework are 
discussed. In the AEKF, the initial values are necessary; they are given as x0 =[
0, 0, 0.054, 10−5

]T 
based on the motor specification, and the first two are the 

state variables [ω, i]T , whereas the remainder are the health parameters [kT , b]T , 
respectively. The initial process and measurement noise covariances were arbitrarily 
assumed as Q = [

10−5 0; 0 10−5
]
and R = [2 0; 0 0.1], respectively. The value at 

the end of time is then used as the health value of the cycle. 
The ALT test ended at 658 and 600 cycles under cold and hot conditions, respec-

tively. Among the results, the degradation of the friction coefficient (b) under cold 
conditions was noticeable, while the others did not change significantly. Therefore, 
the test data under cold conditions were used in this study to verify the proposed 
methodology. Bearing degradation was found to be dominant in this test and was 
responsible for the motor performance degradation. This conforms to the literature, 
which indicate that the bearing is the most vulnerable in RW motors. 

The characteristic curves obtained from the online diagnosis in each cycle are 
shown in Fig. 9a, where the x-axis represents the angular velocity, and the y-axis 
represents the output torque. The graph shows that the slope of the curve constantly 
decreases as the cycle proceeds and approaches the threshold point. Because the 
motor system performance is defined by the torque at ω∗ = 314.14 rad/s, it is marked
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Fig. 9 a Characteristic curve and b system performance data of cold condition test 

by the points in Fig. 9b; the green dashed line indicates the threshold. Even though 
the test lasted over three years with 658 cycles, the results indicate that the motor did 
not fail. 

Using the data up to 658 cycles, the degradation models of each health param-
eter were estimated and their future was predicted using the SKPF. The results for 
both parameters are shown in Fig. 10a, c. The blue dots and triangles represent the 
estimated health values and anomaly points, respectively, detected by the decision 
function. The red dashed and solid lines represent the median and 95% PI, respec-
tively. Figure 10b, d represent the trace of the anomaly decision function. The blue 
line with a circle represents the decision function value, and the red dotted line repre-
sents the anomaly threshold set by the user. The results of parameter b, as shown  
in Fig. 10c, confirm that SKPF successfully detects the initial point of the degrada-
tion trend change after 500 cycles. Few anomalies were detected before 500 cycles, 
which may be attributed to sudden abnormal measurements during normal condi-
tions. When the degradation pattern changed after 500 cycles, the SKPF algorithm 
successfully adapted to the new degradation trend. The trace of the decision function 
shows that dk increases significantly and exceeds the threshold when the estimated 
state becomes incoherent with the observed data.

On completion of prediction for future cycles, the health parameters are transferred 
to the online stage and used in the state model to predict the system performance. 
Subsequently, they are transferred to the offline stage. The results are shown in 
Fig. 10e with the median and 95% PI. With the system threshold given by the green 
dotted line, the EOL cycle for the system was predicted to be 808 cycles and the RUL 
was 150 cycles. It should be noted that the reason for predicting RUL at 658 cycles is 
that the test ended at this cycle. To validate this prediction, test should be continued 
further till 808 cycles; however, it was not conducted owing to limited cost and time.
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Fig. 10 a Prediction of parameter kT by SKPF algorithm and b corresponding decision function 
c prediction of parameter b by SKPF algorithm and d corresponding decision function e prediction 
of system performance based on the health parameters
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5 Case Study 2: Driving Motors in Quadcopters 

5.1 Problem Definition 

Since the commercial launch of quadcopters in early 2000s as unmanned aerial 
vehicles, their use, particularly in the field of aerial imaging, has been burgeoning 
[34]. Several commercial services related to agriculture activities, traffic control, and 
delivery of goods have been launched for quadcopters since the mid-2010s; however, 
safety issues owing to quadcopter failure have become a concern, with a high-risk 
failure factor being the occurrence of falls owing to the performance degradation of 
driving motors [35]. 

Based on a literature survey, it was found that most studies on the health diag-
nosis of quadcopter motors have been conducted to aid the design of robust flight 
controllers [36–38]. Therefore, they do not focus on health management or failure 
prevention based on the PHM framework. The recent studies in this direction that 
exploit parameters such as the vibration, current, or rotational speed have mainly been 
sensor-based approaches requiring attachment of additional sensors to the quadcopter 
[39–42]. 

The quadcopter can record various flight information, such as posture and angular 
velocity, position and linear velocity, and motor control data during flight. By 
exploiting these data and KF algorithms, it is possible to estimate the forces and 
moments acting on the aircraft and the degradation of the motor performance. In 
this case study, a PHM framework is presented that evaluates the health of individual 
motors and predicts their RUL based on the systems approach. It is applied to a Parrot 
Mambo drone (PMD), a micro quadcopter, to demonstrate the RUL prediction of the 
driving motors. Practically, the PMD structure is vulnerable to failure, and placing 
sensors to diagnose motor conditions is challenging. The PMD is more suitable for 
application of the framework proposed in this study. 

5.2 Experimental Setup 

The PMD used in this case study is a miniature quadcopter manufactured and sold by 
Parrot, France, measuring 7.1 × 7.1 inches and weighing 63 g [43]. The parameters 
for the PMD quadcopter dynamic analysis that were obtained using the MathWorks 
Simulink Parrot Minidrone model and actual measurements are summarized [44, 
45]. The PMD is equipped with an 8520 coreless DC motor whose parameters were 
obtained from experiments based on the data from previous studies [46]. 

The overall framework for prognostics of quadcopter motor comprises two phases 
as shown in Fig. 11. The first step in online diagnosis is the state estimation of the 
quadcopter using a KF. The force and moment acting on the aircraft, as well as 
the rotational speed of the four motors were estimated using the flight data in the 
dynamics model of the quadcopter. The second step in the online diagnosis is the
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Fig. 11 The Quadcopter PHM framework 

health estimation of motors using an EKF. The friction coefficient representing the 
degree of motor degradation was estimated by applying the estimated rotational speed 
of each motor to its dynamic model. Consequently, thrust, which represents a HI of 
the motor, was obtained. Offline observations identify the decreasing trend of thrust 
in each motor over long-term cycles and predict the RUL until failure. To realize 
this, an empirical degradation model was introduced, and the RUL of each motor 
was predicted using a regularized PF (RPF). Here, failure is defined as a situation 
in which the quadcopter cannot hover, i.e., it cannot sustain its own weight during 
lift-off. 

5.3 Application of the Systems Approach 

5.3.1 State Estimation of Quadcopter Using KF 

The first step in online diagnosis involves the application of flight data collected 
during hovering to the quadcopter dynamics model to estimate the force and moment 
applied to the aircraft. The rotational speeds generated by the motors are estimated 
based on data obtained from hovering flights in this study. During hovering, there are 
nearly no roll, pitch, or yaw motions to maintain posture. Consequently, the equations 
for the translational and rotational degrees of freedom are obtained as follows: 

z̈ = 
uz 

m 
− g, φ̈ = 

uφ 

Jx 
, θ̈ = 

uθ 

Jy 
, ψ̈ = 

uψ 

Jz 
(19)
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In this equation, the vector [z φ θ  ψ]T denotes the altitude z and rotational angles, 
i.e., the roll, pitch, and yaw motions, respectively, and its 2nd derivative

[
z̈ φ̈ θ̈ ψ̈,

]T 
is 

the vertical acceleration and corresponding rotational-angular accelerations, respec-
tively. The vector

[
mJx Jy Jz

]T 
is the mass and rotational inertia, and g is the grav-

itational acceleration. The vector
[
uz uφ uθ uψ

]T 
is the vertical force and moment 

acting on the quadcopter aircraft. 
The flight data collected during hovering are the position vector [zφ θ  ψ]T and its 

derivative: the velocity vector
[
ż φ̇ θ̇ ψ̇,

]T 
. By applying these to (19), the vector of 

the vertical force and moments
[
uz uφ uθ uψ

]T 
can be estimated. To implement this, 

a KF in which the system and measurement models are defined in recursive form, is 
applied [47]. Once the force and moments are obtained, the rotational speed ωi of 
each motor can be obtained as follows [48]. 
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where ωi are the rotational speed of each motor, respectively; c is the motor thrust 
coefficient; l is the length of the arm; and d is the motor drag coefficient. The motor 
thrust fi is proportional to the square of the speed ω2 

i and is expressed as follows: 

fi = c · ω2 
i (21) 

5.3.2 Health Estimation of Motors by Extended KF 

In the second step of the online diagnosis, the friction coefficient of each motor 
was estimated by applying the estimated rotation speed of the motor to its dynamic 
model. The motor dynamic model comprises the same governing equations as the 
physics-based approach described in Sect. 2. When a cycle lasts for an extended 
period, performance degradation of the motor occurs due to various factors. The 
most representative is an increase of frictional force owing to wear of mechanical 
parts, such as bearings or brushes, which corresponds to coefficient b [49]. 

Once the motor friction coefficient b is estimated using the EKF, it can be directly 
used as a health indicator. However, it is preferable to use the maximum thrust under 
the corresponding degraded condition. This is because the quadcopter fails when 
the sum of the maximum thrust of the four motors is lower than the thrust required 
to maintain the takeoff and hovering of the quadcopter. By exploiting this in the 
prognosis, RUL can be predicted using this as a failure threshold. The threshold can 
be calculated using the following formula:
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Fhov = m(g + a) + fd , fd = Cd 
1 

2 
ρv2 A (22) 

where Fhov is the thrust required for hovering, m is the mass of the quadcopter, g 
is the acceleration due to gravity, a is the takeoff acceleration, fd is the drag force, 
Cd is the drag coefficient, ρ is the air density, v is the takeoff speed, and A is the 
cross-sectional area of the quadcopter in the horizontal plane [44]. The maximum 
thrust of the motor is obtained by calculating the rotation speed using the motor 
dynamic model under the current value of the friction coefficient at the maximum 
input voltage condition and applying it to (21). 

5.3.3 RUL Prediction of Motors by PF 

The maximum thrust of the motor decreases with each cycle as the motor perfor-
mance degrades due to the increase in mechanical friction. During offline monitoring, 
these cycle trends are monitored in two stages. First, the anomaly detection which 
detects the cycle at which a deviation occurs from the normal condition due to fault 
development. Next, the degradation prediction after anomaly detection in which the 
thrust begins to decrease exponentially as the cycle continues. The degradation trend 
is suitably described by introducing an empirical model and RUL until failure is 
predicted. 

In this study, the anomaly is detected by the Naïve Bayes classifier which explores 
the first prediction time (FPT), i.e., the cycle point where the normal and fault condi-
tions are divided [50]. Once the anomaly is detected, it is presumed that the degrada-
tion begins to increase, and an empirical degradation model is employed to describe 
this trend. The PF algorithm is used to estimate the model parameters and predict 
the RUL, similar to that of Case study 1. 

5.4 Application Results 

5.4.1 Online Estimation and Diagnosis of the PMD Motors 

As the first step of online diagnosis, the KF is used to estimate the rotational speed of 
each motor during 5–50 s of hovering motion. In the KF, the standard deviations of 
the process and measurement noises are given by 0.1 and 1 × 10−5, respectively. The 
mean values are 1809.12, 1809.12, 1809.12, and 1809.11 rad/s, and the rotational 
speeds are nearly identical to maintain a stationary posture during hovering. To 
calculate the maximum thrust as the second step of the online diagnosis, the motor 
friction coefficient was first estimated using the dynamic model of the motor and 
EKF. The results are shown in Fig. 12. The standard deviations of the process and 
measurement noises were 1 × 10−13 and 1 × 10−3, respectively. As is evident from 
these figures, the friction coefficient rapidly converges to a constant value, although it
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Fig. 12 Friction coefficient of motors during PMD hovering 

tends to fluctuate around the mean, which is 3.31 × 10−6, 3.43  × 10−6, 3.27  × 10−6, 
and 3.25 × 10−6, respectively. The maximum thrust of each motor can be obtained 
by applying the maximum input voltage, which was 2.7 V in this case. After passing 
through the motor dynamic model under this condition and the friction coefficient of 
each motor, the rotational speeds were obtained as 2217, 2199, 2224, and 2226 rad/s. 
Consequently, the maximum thrust becomes 0.232, 0.2282, 0.2335, and 0.2339 N, 
respectively, according to (21). 

5.4.2 Offline Monitoring and Prognosis 

To implement the RUL prediction of the PMD motors, Motor 4 was chosen to perform 
accelerated degradation until failure occurred, which occurred after 106 h. During 
degradation, 48 cycles of hovering tests were performed at intermittent intervals and 
flight data were collected. The target was that the altitude should be maintained at 
1.1 m with a rotational angle of 0 rad during the hovering mode. The RUL of Motor 
4 was predicted using the RPF. The failure threshold of the PMD was determined as 
0.2224N using (22). In the calculation, a is 2.5 m/s2, fd is 0.0776 N, Cd is 0.0624, 
ρ is 1.225 kg/m3, v is 2.5m/s, and A is 0.325m3. 

The maximum thrust was obtained by the KF-based online estimation at each 
cycle for the motors until the 48th cycle. Figure 13 shows the results for Motor 1
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Fig. 13 Online estimation 
of maximum thrust at each 
cycle 

(normal) and Motor 4 (degraded), and it can be observed that Motor 1 maintains 
a maximum thrust value between 0.2435 and 0.237 N, whereas Motor 4 gradually 
degrades after approximately 30 cycles. 

Two exponential functions were employed for the RPF degradation model as 
follows. 

f = β1exp(β2t) + β3exp(β4t) (23) 

where f is the maximum thrust of the motor, t is the long-term cycle index (don’t be 
confused with the time in on-line diagnosis), and βi (i = 1, . . . ,  4) are the parameters 
in the degradation model. 

x0 ∼ U (0.23, 0.25), β2 ∼ U (0.10, 0.15), β3 ∼ U (0.2, 0.3), 
β4 ∼ U (−0.1, 0.0), and σ ∼ U (0, 0.01). 

From these, 3000 particles were generated for use in the subsequent process, and 
the thrust at the current cycle as well as the future values were predicted recursively 
using the RPF. Figure 14 shows the RUL prediction performed at 39 cycles. The 
filled and empty black dots represent the data collected up to the current and future 
cycles until failure, respectively. The red dashed and dotted lines after 39 cycles 
illustrate the median and 90% PI of the future thrust prediction. The magenta-colored 
horizontal line represents the failure threshold, and the black vertical line represents 
the anomaly point. The prediction results show excellent performance because the 
true EOL resides within the PI and is close to the median of the predicted distribution.
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Fig. 14 RUL prediction at cycle 39 

6 Conclusion 

In this study, a system framework that takes advantage of the motor dynamics and 
KF estimation was presented to conduct the PHM of DC motors using a model-
based approach. Most previous studies treat the motor as a single component and 
used a data-driven approach in which the raw signal of electric current or vibration 
was extracted and used for RUL prediction. However, in this study, the motor was 
considered as a system with multiple components; the health of the components 
was estimated individually, from which the RUL with respect to the motor system 
performance was predicted. In the literature, the degradation model for the system 
was typically used to predict future behavior. However, in this study, it was not 
introduced but obtained because of component degradation. The proposed framework 
is validated using two case studies, that is, a satellite RW and the driving motors of 
a quadcopter. The results demonstrate that the proposed method can provide an 
effective means to aid decision making in practical applications for DC motors. 

Several benefits are expected from this approach; however, we do not have to 
generate an enormous volume of run-to-fail data for training the data-driven models 
because we employed the model-based approach. The approach can also be applied in 
a straightforward manner to other types of motors, provided that the associated model 
parameters are available or measured a priori. This is in contrast to the data-driven 
approach, which requires training whenever a motor is changed. 
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Exploratory Fault Detection 
with Multivariate Data: A Case Study 
on Engine Bearing 

An-Kuo Chao, Min Huang, and Loon Ching Tang 

Abstract This paper presents a case study on using statistical method for detecting 
impending bearing failures using in-situ field data. We first explore the relationships 
between a few variables of interest using a matrix plot. By focusing on variables 
with consistent profile, we analyze the change in these multivariate data over time 
and propose a way to pinpoint impending failure. Due to the way data are generated 
and the inherent large variation, a Gaussian mixture model (GMM) is proposed and 
methods analogous to multivariate SPC are then applied to detect “out-of-control” 
signal. In particular, a phase I analysis using variances corresponding to the within 
and between sorties variations so that the correct control limits can be determined. 
From the actual failure and known conditions from field data, it was found that the 
proposed method is able to signal impending failure before it occurred. 

1 Introduction 

One of the catastrophic failures of the aircraft engine is the failure of its bearing; 
particularly during flight [1]. Early detection of bearing failure has been of great 
importance, particularly for the military and aviation industries. In this paper, we 
examine a set of in-flight data and identify the most sensitive subset which has 
demonstrated great promise in flagging impending failures. 

Engine bearing operates under extreme stresses as it not only supports the main 
engine shaft that rotates at high speed but also withstands gyroscopic loading gener-
ated from tail-spinning maneuvers. In addition to extreme loadings, the engine 
bearing also operates under high temperature that results in the thinning of lubricant 
and, in turn, leads to higher wear rates. It was reported that this has been the major 
cause of failure [2]. Traditionally, engineers have been relying on oil debris/condition
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monitoring, and vibration analysis to provide early warning signals [3]. Much effort 
has been devoted to spectrum analysis in the bearing characteristic frequency range 
and enveloping analysis in the high frequency range [4]. Most of these studies utilized 
data collected in laboratories with specially designed test rigs. However, during field 
deployment, vibration spectrum changes as the bearings deteriorate over time. Quite 
often, the prognostic capability is rather weak, giving rise to false alarms that led 
to unnecessary dismantling of engine assembly and diminishing confidence of the 
ground crews in such analysis. Here, we present a statistical approach in detecting 
impending failures of aircraft bearings based on a data set from a fleet of military 
aircrafts. 

While literature in failure prediction is vast, that for engine bearing is scarce. 
To the best of our knowledge, this work represents the first attempt to provide early 
warning for engine bearing failure using in-flight data. Unlike data collected in a labo-
ratory, in-flight data are usually very noisy. In particular, unlike commercial aircrafts 
which typically fly at cruising speed, military aircrafts often maneuver sprightly, 
and that induces large variations in in-flight data. As a result, it is very challenging 
to detect impending bearing failure as anomaly is confounded by natural variations 
with extremely low signal to noise ratio. Operationally, should there be any abnormal 
signals, the aircraft will then be inspected for potential causes of failure. This will 
typical involve dismantling of the engine assembly which is a major work. It is thus 
important that false alarm rate is small so that users are confident of the proposed 
methodology. At the same time, the proposed method must pick up all impending 
failures as the consequence of the failure during operations is catastrophic. Fortu-
nately, almost all mechanical failures are results of degradation such that signals 
which are indicative of the engine condition will exhibit deteriorating trend over 
time. 

In the following, we give a brief description of the real life data used in this 
paper and present their preliminary analysis. This is followed by the presentation of 
the GMM and EM algorithm for parameter estimation and model validation. The 
proposed multivariate analysis through the use of multivariate T2 statistics is then 
presented with particular emphasis on how the between sorties variance could be 
estimated for the phase I analysis. The resulting control chart is then applied to the 
engine data set for detecting impending failures. Finally, the conclusion follows. 

2 Exploratory Data Analysis 

In this paper, in-flight data were collected from a fleet of military turbofan engines 
with the typical two-stage (low- and high-pressure) engine design. The key variables 
consisting of rotating speeds at high and low pressure sections, the acceleration and 
the velocity of vibration, lubricant oil pressure, lubricant oil temperature, etc. were 
downloaded from the aircrafts after each sortie (this term refers to a trip that an 
aircraft makes). These data were recorded every second by sensors installed in these 
aircrafts during operations (i.e. before takeoff, during flight and after landing). To
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maintain confidentiality, data are masked by transformation. In particular, the two 
rotating speeds are expressed as percentage of their maximum speed. 

The durations of sorties depend on the missions and thus are of varying length 
ranging from 30 min to more than one hour. The number of sorties recorded for these 
engines were left censored, dating back to the latest 30 to 270 sorties. Among a total 
of 38 engines, one engine bearing had failed during flight, 12 aircrafts had reported 
abnormality such as excessive vibration or excessive debris collected at oil filter, 
and 25 were deemed to be working fine. Our key objective is to propose a statistical 
method to pick up signals for the failed engine in advance. 

Figure 1 depicts the matrix plot of the 4 key variables; the two engine rotating 
speeds (R1 and R2), the velocity of vibration (V) and lubricant oil pressure (P). 
There is a clear functional relationship between the two rotating speeds while the 
correlations between other variables are also obvious and strong. Besides anomaly 
in individual variables, changes in these correlation structures may also suggest 
potential problems. Unfortunately, these changes are not always discernible from 
simple scatter plots. For example, Fig. 2 shows the operating profile of the two 
rotating speeds for a good engine bearing (includes all sorties) and those from the 
failed engine bearing at the last five sorties prior to failure over the entire operation 
period. While R1 and R2 seem to be connected through a logistic function which is 
pinned down at both ends with variation in between, there is no discernible difference 
between data from a good engine bearing and data of the failed engine bearing. 
Cranking the data without some pre-processing or stratification is unlikely to yield 
fruitful insight to the problem.

Here, we stratify the data into the three distinct phases of flight operations, i.e. 
before takeoff, during flight, and after landing. As illustrated in Fig. 3, which depicts 
two rotation speeds of the engine for a single sortie, the speeds for takeoff and landing 
is at about (R1, R2) = (30%, 70%). This is used as the cut-off speeds for segregating 
the three phases. It can also be seen from Fig. 3 that some manual judgment is 
needed to make the segregation of data for each sortie as the rotating speeds is 
neither monotone increasing before takeoff or monotone decreasing after landing.

It is noteworthy that as damages were mostly sustained during flight, analyzing 
data after landing may be the soonest that damages could be picked up without 
interrupting the mission and ensuing inspection can be initiated. On the other hand, 
pre-flight check is necessary to ensure that mission is not compromised by mechanical 
failure. It is thus important to stratify data in phases to facilitate fault detection and 
diagnosis. 

3 The Statistical Framework 

After identifying the three distinct phases and the four key variables, namely, two 
rotating speeds, vibration velocity and oil pressure, in this section, we present the 
statistical framework for data analysis.



548 A.-K. Chao et al.

Fig. 1 Matrix plot of the four variables in a typical sortie 

Fig. 2 The scatter plot of the two rotating speeds of good and failed bearings



Exploratory Fault Detection with Multivariate Data: A Case Study … 549

0 500 1000 1500 2000 2500 3000 3500 4000 4500 
0 

20 

40 

60 

80 

100 

120 

1 2  3  

Time (sec) 

R
ot

at
in

g 
Sp

ee
d 

(%
) 

1: Before Takeoff    2: During Flight    3: After Landing 

R1 R2 

Fig. 3 The two rotating speeds of a typical sortie

Figure 4 displays the four variables of a typical sortie before takeoff and after 
landing. It can be seen that the two rotating speeds are quite stable except several 
transitions to higher speeds. As the rotating speeds transited, the velocity of vibration 
and lubricant oil pressure would also transit. Analysis based on data including these 
transitions may lead to a biased result. Therefore, statistical classification methods 
can be applied to separate the transitions from the stable state. Besides, as the rotating 
speeds are the controllable variables, it is desirable to compare the velocity of vibra-
tion and lubricant oil pressure between sorties while keeping the rotating speeds at 
the stable state. A representative statistic should be computed based on data from the 
stable state for each variable.

Among various statistical classification methods, the Gaussian mixture model 
(GMM) has been successfully applied to profile monitoring (see, e.g. [5–7]). For 
an arbitrary sample by x ∈ R p, the assumption of GMM is that x may come from 
K possible Gaussian distribution with corresponding probabilities. The probability 
density function of x can be expressed as: 

f (x|θ ) = 
K∑

k=1 

Pk f
(
x|μk,∑k

)

where Pk represents the prior probability of the kth Gaussian Component, 
f
(
x|μk,∑k

)
is the conditional probability density function of the kth Gaussian
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Fig. 4 The variables of a typical sortie before takeoff and after landing

Component with mean vector μk and variance–covariance matrix ∑k , and θ = 
{P1, . . .  PK , μ1, . . . ,  μK ,∑1, . . . ,∑K }. Moreover, the probability density function 
f
(
x|μk,∑k

)
is given by: 

f
(
x|μk,∑k

) = 1 

(2π)p/2|∑k | exp
[
− 
1 

2

(
x − μk

)T
∑−1 

k

(
x − μk

)]

and the prior probability Pk satisfies 

Pk ≥ 0, k = 1, . . . ,  K and 
K∑

k=1 

Pk = 1 

Based on the Bayesian inference, the posterior probability of x belonging to the 
kth Gaussian component can be computed by 

wk = P
[
μk,∑k |x

] = Pk f
(
x|μk,∑k

)
∑K 

j=1 Pj f
(
x|μ j ,∑ j

)
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Let {x1, x2, . . . ,  xT } be a series of samples recorded every second. The parameters 
θ can be estimated by the expectation and maximization (EM) algorithm which 
iterates the following E-step and M-step. 

• E-step 

w(s) 
tk  = 

P (s) 
k f

(
xt |μ (s) k ,∑

(s) 
k

)

∑K 
j=1 P

(s) 
j f

(
xt |μ (s) j ,∑

(s) 
j

) , t = 1, . . . ,  T and k = 1, . . . ,  K 

• M-step 

P (s+1) 
k =

∑T 
t=1 w

(s) 
tk∑K 

j=1

∑T 
t=1 w

(s) 
t j  

μ (s+1) 
k =

∑T 
t=1 w

(s) 
tk  xt∑T 

t=1 w
(s) 
tk

∑
(s+1) 
k =

∑T 
t=1 w

(s) 
tk

(
xt − μ (s+1) 

k

)(
xt − μ (s+1) 

k

)'

∑T 
t=1 w

(s) 
tk  

, k = 1, . . . ,  K 

where w(s) 
tk  denotes the posterior probability that the sample recorded at the tth second 

comes from the kth Gaussian component at the sth iteration, and P (s+1) 
k , μ (s+1) 

k , and
∑

(s+1) 
k are the prior probability, mean vector, and variance–covariance matrix of the 

kth Gaussian component at the (s + 1)th iteration. 
There are two issues for estimating GMM parameters by the EM algorithm: the 

need of selecting the number of components and the requirement of careful initializa-
tion. Figueiredo and Jain [8] proposed an algorithm which can automatically deter-
mine the number of components and is not sensitive to initialization. However, Yang 
et al. [9] demonstrated an example showing that this algorithm may stop with too 
many Gaussian components. As Fig. 4 displays that there are two Gaussian compo-
nents, the stable state and transitions, we use the EM algorithm described above with 
two Gaussian components. Also, in order to avoid being influenced by initialization, 
we repeated the EM algorithm 100 times with random initial conditions and took the 
result that maximizes the likelihood function in (1). 

It is noted that there may be some sorties having more than two Gaussian compo-
nents. As the rotating speeds during takeoff and landing are quite stable, we can 
draw the corresponding s chart for each rotating speed in the stable state to assess 
whether two Gaussian components are enough for modeling purpose. Clearly, the 
estimated standard deviation would be larger if there are more than two Gaussian 
components. The s charts of the two rotating speeds are shown in Fig. 5. We check 
the out-of-control sorties sequentially and found that all out-of-control sorties have



552 A.-K. Chao et al.

three Gaussian components except two of them which have four Gaussian compo-
nents. Figure 5 also shows that the variability of the rotating speeds before takeoff is 
larger than that after landing. This is could be due to some initial checking procedure 
that involves testing the range of engine rotation before takeoff and the fact that the 
engine has fully warmed up after landing. Analysis based on data collected after 
landing would reveal the true condition of the engine. The resulting signal can be 
plotted to reveal impending failure which may also exhibit deterioration after some 
damages were sustained. 

Let k∗ denote the Gaussian component of the stable state. The representative 
statistics for the four variables of the stable state can be computed by the equations in 
the M-step, where ŵtk  is from the E-step and xt now is the vector of all four variables. 
For the ith sortie, let yi = μ

Ʌ

ik∗ 
i 
and Si = ∑

Ʌ

ik∗ 
i 
. For the following analysis, we first 

check the homogeneity of the variance–covariance matrices and then compare the 
mean vectors through Hotelling’s T2 statistics. 

Note that the homogeneity of the variance–covariance matrices in this case means 
that the variability structure among the four variables within each sortie is identical. 
The often used quantity for measuring the overall variability is the determinant of 
the variance–covariance matrix |S|, which is called the generalized variance. Alt [10] 
proposed an approach in developing a generalized variance chart by using the first 
two moments of |S|: 
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However, this approach may not be appropriate because the distribution of the 
generalized variance is different from the Gaussian distribution. Goodman [11] 
proved that the distribution of the generalized variance is a constant times the product 
of p independent chi-square random variables with 2n, 2(n − 1), . . . ,  2(n − p + 1) 
degrees of freedom respectively, where n is the number of observations for calcu-
lating S. As  n is usually much greater than p, the logarithm of the generalized variance 
can be regarded as the sum of p independent and identical random variables, which 
is more suitable for the 3-sigma control limits. Since the logarithm of the general-
ized variance of each sortie can be regarded as an individual observation, we drew 
the individual control charts, where the variability is estimated by the moving range 
method, along with the histograms of the logarithm of the generalized variance in 
Fig. 6. It can be seen that the homogeneity assumption of the variance–covariance 
matrix is valid even though there are a few out-of-control points. Figure 6 also shows 
that the variability after landing is smaller than that before takeoff. 

Next, we perform Phase I analysis for constructing a suitable control chart based on 
the Hotelling’s T2 statistics for monitoring the mean vector y of each sortie. Suppose 
that m = 200 sorties are used for Phase I analysis. Note that the between-sortie 
variability cannot be estimated by averaging the variance–covariance matrices, i.e.∑m 

i=1 Si /m Since Si represents the variability of the stable state within each sortie, it 
may be much smaller than the between-sortie variability. Instead, we consider using 
the mean square successive difference to estimate the between-sortie variability [12]. 
This approach is less sensitive to nonrandom patterns, such as trends and shifts, and 
thus it is useful for identifying nonrandom patterns in Phase I analysis.
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Let vi = yi+1 − yi and V =
[
v1, . . . ,  vm−1

]T 
. The variance–covariance matrix 

can be estimated by 

S = VT V 
2(m − 1) 

The corresponding Hotelling’s T2 statistic is given by 

T 2 i = (yi − y)T S−1 (yi − y) 

where y = ∑m 
i=1 yi /m. 

It is noted that the exact distribution of T 2 i is hard to obtain and there are a few ways 
of determining the upper control limit (UCL). Sullivan and Woodall [13] proposed 
an approximate UCL 

UC  L  = 
(m − 1)2 

m 
β( p/2,( f −p−1)/2)(1 − α) 

where f = 2(m − 1)2/(3m − 4). Mason and Young [14, 26–27] suggested an 
adjustment to this approximation 

UC  L  = 
( f − 1)2 

f 
β( p/2,( f −p−1)/2)(1 − α) 

William et al. [15] observed that the asymptotic distribution of T 2 i is a chi-
square distribution with p degrees of freedom. Montgomery [16, 509] suggested 
using simulation to find the UCL since the cost is reasonable. 

In this study, we found that the mean square successive difference approach would 
make the control charts overly sensitive which would give rise to more false alarms. 
As the condition of the engine was acceptable for most sorties in Phase I analysis, 
we use the pooled variance covariance matrix instead: 

S = 1 

m − 1 

m∑

i=1 

(yi − y)(yi − y)T 

The corresponding UCL is [17] 

UC  L  = 
(m − 1)2 

m 
β( p/2,(m−p−1)/2)(1 − α) 

Figure 7 displays the Hotelling’s T2 control charts for Phase I analysis with α = 
0.0027. It can be seen that there are a few individual out-of-control points and a shift 
from 78 to 95th sorties for both charts. For diagnosis purpose, the individual control 
charts for the four variables are plotted in Fig. 8. Clearly, the individual out-of-control
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Fig. 7 The Hotelling’s T2 control charts for Phase I analysis

points are mainly due to unusual lubricant oil pressure, and the shift is because of 
relatively low rotating speeds. The control charts picked up some sorties that may 
contain potential fault. However, since these out-of-control signals appeared to be 
sporadic and there was no engine failure associated with these sorties used for Phase 
I analysis, the control charts constructed are acceptable. 

The UCL for the Phase II analysis is given by 

UC  L  = 
p(m − 1)(m + 1) 

m(m − p) 
F( p,m−p)(1 − α) 

The Hotelling’s T2 control charts for the Phase II analysis with α = 0.0027 are 
shown in Fig. 9. From Fig.  9a, the engine exhibited instability from the 225th sortie 
and experienced two extremely unusual sorties before the engine bearing failed. 
From Fig. 9b, there is a major shift starting from the 253rd sortie, and an extremely 
out-of-control point right before the bearing failed. The individual control charts for 
the four variables in Phase II are displayed in Fig. 10, where the center line and 
control limits are from the Phase I analysis. For the before takeoff part, the control 
charts indicate that the fluctuation of the Hotelling’s T2 control chart was caused by 
the two rotating speeds and the lubricant oil pressure, and the extreme signals before 
failure were because of the high lubricant oil pressure. On the other hand, for the 
after landing part, it can be seen that the shift resulted from the velocity of vibration, 
and the last extreme signal was due to the unusually high lubricant oil pressure. 
Moreover, by comparing individual control charts for both before takeoff and after 
landing parts, we found that the patterns of the two rotating speeds are similar, and
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Fig. 8 The individual charts for Phase I analysis

the shift in the velocity of vibration was clearer after landing. As the engine bearing 
failed at the 271st sortie, the velocity of vibration and lubricant oil pressure could be 
the most related variable to the failure.

4 Conclusion 

In this study, a series of graphical analysis of a set of in-flight data from an aircraft 
engine with the aim of detecting impending bearing failure and identify the key 
variables related to the failure have been presented. We first divided the sortie into 
three parts, and then applied the Gaussian mixture model to separate the stable 
state from transitions and extract the representative statistics. We proposed a control 
chart based on the logarithm of the generalized variance to check the goodness of 
fit of the Gaussian mixture model. From our example, this control chart is more 
suitable for the 3-sigma control limits. To monitor the between sortie variability with 
reasonable sensitivity, the Hotelling’s T2 statistics based on variance–covariance 
matrix estimated by the mean square successive difference estimator and the pooled 
estimator were compared. In the current case, the latter is adopted as it has much fewer 
false alarms and capable to indicate the impending failure. Besides, we also found that 
control charts based on the after landing data would show clearer signals and follow-
up actions can be taken. Finally, it should be noted that the four variables presented
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Fig. 9 The Hotelling’s T2 control charts for Phase II analysis 
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here are the result of some pre-screening and engineering judgment. Through the 
analysis, the two variables, namely, the velocity of vibration and the lubricant oil 
pressure are further reaffirmed as the key variables associated to the failure. 
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Novel Approach to Prognostics 
and Health Management to Combine 
Reliability and Process Optimisation 

Dariusz Mazurkiewicz, Yi Ren, and Cheng Qian 

Abstract Prognostics and Health Management (PHM) supports users with an inte-
grated view of the health of any technical asset, and it consists of many different 
tasks based on data that are usually obtained from multisensory systems. The effec-
tive implementation of PHM does not, however, end with predicting remaining useful 
life (RUL). PHM has untapped potential to go beyond failure prediction and support 
of optimal maintenance actions and scheduling, along with logistics decisions. Both 
data captured by reliability systems and standard production data are generally used 
separately for different purposes. For higher effectiveness, these data have to be inte-
grated in a combined approach. This can be achieved with the help of Digital Twin 
analytics that can support effective data use for parallel or combined purposes, such 
as classifying states, predicting failures or enhancing production efficiency. Further-
more, these seemingly independent concepts can be integrated into the same data 
collection approach. Previous studies have demonstrated that the afore-mentioned 
combined solution to classification and prediction challenges is yet only a standard 
approach to PHM, one that makes it possible to predict RUL, degradation track and 
optimal time to intervention. Consequently, a new solution is proposed, one that takes 
into consideration the possibility of intelligent and sustainable production in combi-
nation with online predictive maintenance and continuous process optimisation. The 
prediction of degradation and remaining useful life with the use of multisource data 
integration facilitates production process optimisation to gain additional use time. 
This, in turn, brings about incomparably greater financial effects than is the case with 
the traditional approach to PHM.
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1 Introduction 

Industry 4.0 and related philosophies such as Maintenance 4.0 have radically changed 
the priorities in innovation and new technologies. Given the current trends in the 
development of industry and its economic transformation, with production compa-
nies playing the dominant role, the challenges and expectations for production engi-
neering R&D are particularly enormous today. On the other hand, production engi-
neering has all the necessary components and characteristics to play a significant 
role in innovative development, becoming both an inspiration for this development 
and its main driving force. Also, it can take into account sustainable development 
along with its social, economic and environmental challenges. 

An analysis of recent trends in R&D demonstrates the growing significance of 
smartness. Technologies become smart; smart or even autonomous machines are 
implemented in smart production or assembly lines, and the maintenance of their 
elements is based on smart reliability. In addition, all these technologies and systems 
require smart sensors and also all together they create smart factories. Smart factories 
consist of smart machines and sensors or robotic platforms generating on the shop 
floor enormous amounts of data that are usually processed separately for different 
purposes, such as monitoring, reliability, logistics or production line management. 
As mentioned by Vališ and Mazurkiewicz [1], typical system operation data should 
be considered as a valuable source of information which can bring significant and 
tangible financial benefits at negligible costs if used properly in decision making. 
Unfortunately, a lack of understanding of the essence of data value or so-called infor-
mation overload as well as difficulties with fast and effective analysis or processing of 
collected data due to the need of sophisticated tools, extensive knowledge and expe-
rience pose serious challenges to every company. No wonder that the engineering 
sector seeks to address these problems by innovation-supporting activities, where one 
of the information overload solutions for data mining is data dimensionality reduc-
tion. There also exist many other problems and challenges related to data collection, 
transfer, warehousing and analysis for effective decision-making, and they pertain 
to aspects such as data quality and the fact that data can be unlabelled, incomplete 
or uncertain. 

Speaking only of reliability, it can be observed that production equipment must 
be maintained in constant operational efficiency, which can be ensured by effective 
monitoring and control of the technical condition of machines and devices [2–4]. It is 
particularly vital that potential failures of a given production system and its elements 
be known in advance and that the full operational efficiency of the system be restored 
in the shortest possible time, so as not to affect the manufacturing process. This 
requires the use of adequate maintenance strategies, techniques and tools, particularly 
in terms of data management, operations and executive actions. Several studies [5– 
13] have proved that the incorporation of advanced data analytics into reliability 
results in better decision-making support and higher operational efficiency. 

One of the widely recognized and well-described practical approaches to relia-
bility challenges is Prognostics and Health Management (PHM), which helps reduce
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maintenance expenses effectively. PHM is of great importance in real-world appli-
cations as a tool for evidence-based planned maintenance actions and strategies. 
Machine health monitoring is considered a key component of modern manufacturing 
systems that have fully embraced the Big Data and Industry 4.0 revolution. According 
to [14], in contrast to top-down modelling provided by the traditional physics-based 
models, data-driven machine health monitoring systems offer a new paradigm of 
bottom-up solution for the detection of faults after the occurrence of certain failures 
(diagnosis) and the prediction of future working conditions and remaining useful life 
(prognosis). 

Although prognostics has been applied in the field of maintenance for more than 
10 years [15], the majority of its currently known real-world applications only address 
forecasting or remaining useful life (RUL) prediction. This is just a single facet of 
PHM among its many other highly valuable benefits. Data collected from different 
areas of the production system and its production floor for monitoring, logistics, 
PHM or process management are usually directed to separate databases and are also 
analyzed by different experts who work in isolation from one another. In partic-
ularly unfavourable circumstances, a considerable amount of data either remain 
unprocessed in information databases or are not processed as effectively as they 
need to be. This is a big mistake and a huge loss at the same time because it is 
well known that effective data processing and more advanced integration of data 
collected from different sources can improve the production process efficiency and 
operational management of the company. Importantly, too, predictions and decision 
models should dynamically react to changing production conditions and require-
ments of the Industrial Internet of Things (IIoT), which provides promising oppor-
tunities for developing novel industrial applications. The IIoT-based maintenance is 
an emerging research field with a great potential for industrial applications. 

As noted by Koulali et al. [16] and Zhao et al. [14], the Industrial Internet of Things 
and data-driven techniques have revolutionized manufacturing by enabling computer 
networks to collect huge amounts of data from connected machines and to turn large 
machine data into actionable information. This information has to be transferred into 
knowledge, which will allow one to perform effective executive actions. In Industry 
4.0, all these steps should be implemented in a smart system. 

The above-mentioned problems, operational imperfections and limitations open 
up new opportunities and research challenges. First of all, the difficulties with the 
transition from data to knowledge and executive actions based on knowledge for 
different purposes require the development of new analytical tools and strategies with 
solutions for Big Data problems. Furthermore, the currently used solutions for failure 
predictions do not consider qualitative characteristics, sustainability or non-technical 
aspects of the production infrastructure. Therefore, they must be taken into account 
when developing smart analytical approaches. As an engineering discipline, PHM 
aims to provide users with an integrated view of the health of a machine or a general 
system, and its application consists of many different tasks, from sensing (usually 
with the use of multisensory systems) to prediction. Each task benefits from different 
modelling or data acquisition techniques; therefore, the typical PHM application 
does not necessarily depend on a single approach. For greater effectiveness, these
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approaches have to be combined to go beyond reliability and thus take into account 
broader aspects of the problem. This can be achieved with the use of Digital Twin 
analytics to support effective data use for parallel or combined purposes. 

To prove the validity of the above assumptions, a new solution is proposed, taking 
into consideration the possibility of intelligent and sustainable production in combi-
nation with online predictive maintenance and continuous process optimisation. For 
this purpose, first of all, an overview of the state of the art in PHM, its definitions, 
methods and R&D challenges is given (Chap. 2). Data-based approaches to PHM are 
also analysed (Chap. 3) in order to show the role of data acquisition and advanced data 
processing. Strengths and weaknesses of currently used data processing algorithms 
for PHM purposes are systematized. Since advanced and challenging data analytics 
needs cutting-edge solutions, the concept of Digital Twin is described (Chap. 4) as an  
effective PHM support tool for classifying states, predicting failures and enhancing 
production efficiency. After that, previous research results are presented (Chap. 5) 
to demonstrate that advanced and effective solutions to classification and prediction 
challenges—even when combined—are merely a standard approach to PHM. In light 
of the above, a new solution is proposed, taking into consideration the possibility of 
intelligent and sustainable production as a result of online predictive maintenance 
and continuous process optimisation integration. The prediction of degradation and 
remaining useful life with the use of multisource data integration and Digital Twin 
modelling facilitates production process optimisation to gain additional use time of a 
given asset. As a result, incomparably greater financial effects can easily be achieved 
in this way than with the standard approach to PHM. 

2 Prognostics and Health Management 

Modern machines and technical systems are extremely complex and comprise of 
many advanced interactive components and electronics. This complexity highlights 
the importance of technical system reliability. Failure of any technical element may 
result in a catastrophic system failure and thus generate huge costs. Therefore, the 
development of a usable system framework that is capable of early detection and 
isolation of an incipient fault of its components or subsystems is highly required. 
One of the best solutions in this respect is an effective PHM model that provides 
users with an easy-to-implement tool to monitor fault progression and support them 
in making decisions and creating maintenance strategies or schedules. 

Widely used in the literature, the acronym PHM (Prognostics and Health Manage-
ment) describes an important maintenance element of many systems and engineering 
products in which algorithms are used to detect anomalies, diagnose faults and predict 
remaining useful life. PHM is very often understood as an approach used for fore-
casting and reliability management or forecasting and management of the condition 
of a technical facility. As defined by Lee et al. [15], health management is the process 
of taking appropriate maintenance actions, on operational demand, and making accu-
rate logistics decisions based on the results of available diagnostics and prognostic
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resources. It focuses on assessing the impact of failures and minimizing negative 
results of any loss with maintenance management. 

In the approach proposed by Li et al. [17], PHM is defined as a set of possibili-
ties that cover both diagnostics and prognosis. Diagnostics refers to the process of 
detecting failures, whereas prognostics is the process of predicting the future condi-
tion of an asset or its RUL, depending on the current or historical conditions that are 
represented by e.g. measurement data. The diagnostics unit of PHM uses measure-
ments for collecting necessary data, models and software to perform incipient fault 
detection. Models and software are also used by its prognostics unit for condition 
assessment and failure progression prediction. In this way, PHM provides users with 
the ability to determine the health state of any part, asset, subsystem or system. 

PHM is also defined Sutharssan et al. [18] as a process of preventing failures 
and predicting reliability and remaining useful life. For engineering systems (espe-
cially technologically advanced ones) and strategic elements of production lines, this 
process is of vital importance because failure can not only cause serious damage to 
the system and environmental losses, but also pose a substantial threat to the safety of 
users or the environment. In economic terms, it can result in significant repair costs, 
unplanned operating costs in the future, or in crucial social and environmental losses. 
PHM is therefore widespread and at the same time recognized as an effective and 
practical approach to maintenance strategies and their challenges. Repair and mainte-
nance costs can be reduced, for example by converting unplanned maintenance tasks 
into evidence-based scheduled preventive maintenance. An evidence-based sched-
uled maintenance strategy reduces inspection costs, the number of skilled workers 
required to complete the inspection, system downtime and lifecycle costs, as well 
as eliminates unscheduled maintenance actions and their impact on the environment 
and users. 

As reported by Zhang et al. [19], PHM methods can be roughly classified as either 
physical model-based or data-driven. Similarly, one can also distinguish three types of 
RUL prediction models [20]: model-based methods, data-driven methods and hybrid 
methods. Data-driven methods attempt to acquire hidden knowledge from empirical 
data, infer about the current health state of an item of interest and predict its RUL. 
Data-driven methods can be classified as supervised and unsupervised, depending 
on whether the raw data are labelled or not. With the growing data overflow in 
industry causing Big Data problems and the widespread popularity of computing 
power as well as information and communication technologies, data-driven methods 
are considered as offering more opportunities in PHM applications. With the use 
of PHM data-driven maintenance strategies, reliability engineers are able to predict 
when equipment failure might happen and perform in advance maintenance actions 
to keep machines or systems in operation. 

According to Rezaeianjouybari and Shang [21], PHM has emerged as a key tech-
nology to overcome the limitations of traditional reliability analysis and maintenance 
strategies. PHM focuses on utilizing sensory signals acquired from an engineered 
system to monitor health condition, detect anomalies, diagnose faults, and, what is 
more important, predict the RUL of a system over its lifetime. The health information
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thereby obtained provides advance warning of potential failures, creating an oppor-
tunity to implement failure prevention measures by reducing system downtime and 
maintenance costs. 

The condition of a technical object can be effectively assessed [22] as a degree 
of deviation or deterioration in relation to the expected typical operational perfor-
mance that must be precisely defined to prevent potential failures. It is also necessary 
to determine which operating parameters contribute to that degree of deviation or 
degradation. There exist two different approaches to assessing the degradation or 
extent of deviation from the expected performance to assess system reliability and 
RUL forecasting via PHM: a data-driven approach (using statistical or machine 
learning methods) and a model-based approach. 

PHM applications can be classified into two main categories [18, 20]:

• Real-time PHM, usually referred to as online PHM.
• And off-line PHM, which is deployed where system safety is not critical and the 

probability of failure is very low. 

Most of the currently used machines or systems require real-time PHM (referred 
to as on-board health monitoring). Real-time PHM is also known as built-in self-test 
(BIST) or self-scanning lines [18]. PHM can be more effective if life cycle loads 
and other technological or reliability parameters are monitored in real time. This 
approach is particularly needed with critical machines and technological systems. 
PHM is also an effective tool for developing systems, machines or products to ensure 
their expected performance in compliance with relevant reliability requirements. 

According to Lee et al. [15], PHM should be treated as an evolved form of the 
condition-based maintenance (CBM). CBM techniques are widely used to provide 
input for prognostic models in PHM and to support accurate and timely decision-
making for preventing downtime. Given its ability to assess health status and predict 
the occurrence of failure and downtime, PHM is considered to be the foundation of 
any reliability system, when complemented with other techniques (self-maintenance, 
resilient and engineering immune systems). 

In the context of PHM, a lack of representative high-quality data sets has 
obstructed the broad usage and adaptation of its approaches in industrial applications 
[23–26]. For effective PHM approaches, several sources of information are required, 
including historical, monitoring or modelling data. These data can be processed 
to obtain information or new knowledge with the use of a statistical or machine 
learning approach. In the statistical approach, predictions are made based on known 
or unknown underlying probabilistic distributions. As emphasised by Sutharssan 
et al. [18], under the parametric approach, parameters associated with probability 
distribution are calculated from data. Typically, data will represent healthy system 
performance under expected typical operating conditions. Healthy, or normal oper-
ating data can be defined by these parameters and are assumed to be a representative 
probability ability distribution, which is then used to detect anomalies and predict 
RUL. Once the system’s healthy or normal operating data are defined by a probability 
distribution, new monitored data can be classified or applied for predictions using 
different methods based on the probability distribution.
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For this approach historical data are necessary, which is not always feasible. In 
particular, the users of new machines or systems with no available historical reliability 
or usage data emphasize that the principal disadvantage of the data-driven approach 
is that under these circumstances predictions are either inaccurate or possible only 
after a longer period of data collection. In some instances, to overcome these limi-
tations, one can use laboratory aging methods to obtain necessary data [27–29]. 
Nevertheless, the successful application of aging processes, accelerated load tests 
and semi-supervised strategies may require long time and expensive tests, and still 
fail to generate these data. Aging processes and accelerated load tests are applied to 
cause the investigated object to fail more quickly than under regular use conditions. 
The semi-supervised learning approach is used to define a healthy status of an object, 
assuming that new machines or technological lines would not fail for a certain period 
of time. 

Despite numerous research achievements, there are still several challenges related 
to prognosis and health management applications, including:

• Anomaly detection, feature extraction, remaining useful life estimation, main-
tenance strategies development and implementation according to Industry 4.0 
requirements [30].

• Research on heterogeneous unsupervised domain adaptation, particularly to 
complex physical systems, has been very limited, but has great potential to be 
impactful, particularly for advanced industrial applications [23–26].

• A lack of visualization tools for the dissemination of PHM information or 
decision-making support [15].

• The integration of PHM in the smart manufacturing paradigm should go beyond 
monitoring and data analysis for an individual component. This is challenging 
and requires a great deal of computational resources to determine and manage 
interactions between components, subsystems and systems. There is a lack of 
embedded sensors within manufacturing equipment that can be used to identify 
conditions showing changes in failure distribution. It is necessary to utilize the 
IIoT and predictive analytics to identify a state shift in the failure distribution, 
with a further development of the predictive maintenance policy that will be able 
to reschedule maintenance accordingly [31]. 

3 Data-Based Approaches to PHM 

A typical monitoring or measurement system consists of sensors installed in a phys-
ical system in order to analyse, observe and control the production system or its assets 
in real time. There exist many types of professional instruments for acquiring and 
analysing signals from a machine or process, such as sensors, counters, or controllers 
that are designed to diagnose a given machine or its components. Having access to 
several data sources, including historical sets of healthy and failure data (i.e., labelled 
data), one can apply the supervised learning approach to predict an output for new
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input data. Most PHM-related problems can be treated as supervised learning prob-
lems, and, as a result, techniques such as machine learning algorithms can be used 
to fuse the measurements for the same variable from multisensory, and many others 
may be successfully applied. Machine learning approaches, which can be classified 
as data driven, make predictions based on acquired data by converting the data into 
useful information that can be used in conjunction with current sensor data to provide 
future predictions. Depending on the type of algorithm, data-driven methods can be 
categorized into statistical data-driven methods and deep learning-based methods. 

Data engineering is an important aspect of Maintenance 4.0. For various relia-
bility and process data sources, adequate acquisition methods, feature and knowl-
edge fusion strategies as well as architectures have been developed over the last few 
decades. As highlighted by Roemer et al. [32], the fusion of relevant sensor data, 
maintenance database information and outputs from various diagnostic and prog-
nostic technologies has proven effective in reducing false alarm rates, increasing 
confidence levels in early fault detection and predicting time to failure or degraded 
condition requiring maintenance action. Generally, the objective of data fusion is 
to combine their respective information in the most diagnostically efficient method 
possible. Multisensory data fusion refers to intelligent processing of an array of 
several sensors that have cooperative, complementary and competitive qualities. It 
is estimated that there exist probably hundreds of techniques for performing data 
fusion, feature fusion or knowledge fusion [32]. 

As emphasized by Sankavaram et al. [33], depending on the type of information 
used, prognostic techniques can be categorized into three types: data-based time-to-
failure, stressor-based and degradation-based. Time-to-failure data-based methods 
use failure time data to estimate the lifetime of a component (e.g. Weibull anal-
ysis). Stressor-based methods consider operating conditions such as temperature, 
humidity, vibrations, load, input current, and voltage. Degradation-based methods 
estimate and track degradation parameters and predict when the total degradation or 
damage exceeds a predefined functional failure threshold for the constructed mono-
tonic health indicator (HI) (Fig. 1). These degradation parameters can be indepen-
dent variables that are directly measured from the system or can be acquitted as 
a fusion of multiple parameters. Among several applications of this approach, the 
dynamic updating method of failure threshold depending on the confidence interval 
was proposed by Merh [34] and Li et al. [35] for zero RUL time estimation.

According to Yan et al. [20], in most existing RUL predictions, the estimated 
RUL was a determinate value and provided limited sensor-equipped machine status 
information, which was not conducive to enterprises making the corresponding main-
tenance decision. Therefore, a wider scope of application for advanced measurement 
techniques, together with smart maintenance supported by expert systems with its 
promising potential for PHM applications, is particularly well positioned to offer 
solutions to the following problems [24, 30, 36–38]:

• Automatic data processing of massive amounts of several multisensory system 
data.
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Fig. 1 PHM-based RUL prediction and optimal maintenance action scheduling

• Automatic extraction of useful features from high-dimensional, heterogeneous 
data sources.

• Ensuring good ability to distinguish functional and temporal relationships 
between and within the time series of condition monitoring signals.

• Knowledge transfer between different units.
• Precise RUL estimation to reduce unnecessary maintenance activities and elim-

inate potential risks, thereby improving sensor-equipped machine production 
efficiency and reliability. 

There are a wide variety of algorithms in the field of PHM data engineering, 
depending on the application and available infrastructure. Each of them has several 
strengths and weaknesses when considered as a PHM solution [15, 20, 39–43], 
including:

• The Fourier transform, which usually presents signals with good spectrum 
resolution, is not suitable for nonstationary signals.

• Principal component analysis is able to reduce multidimensional data sets to lower 
dimensional data sets, but its performance varies for different applications.

• Logistic regression is appropriate when the output is considered between 0 and 
1, but it is not appropriate when the output is unbounded.

• The Kalman filter is capable of both estimating the current state and predicting 
the future state, but it only works with linear systems and Gaussian noise.

• The use of decision trees allows for good visualization, easy interpretation 
and quick analysis ability for decision making, but their structure design and 
interpretation require experience and knowledge.
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• Although the Support Vector Machine (SVM) is efficient for large datasets and 
real-time analysis, there is no standard method for choosing the kernel function, 
which is the key process for SVM. The use of SVM requires both experience and 
good knowledge. 

It is well known that the main objective of maintenance engineers is to find a 
PHM architecture that can start inference and executive actions with very little prior 
knowledge about machine behaviour. This means that such architecture should be 
able to detect novel behaviours and learn from new incoming data. Also, it should 
be able to do the following [44]:

• Allow simultaneous monitoring of machines distributed worldwide.
• Help collect data in a structured way, offering labels associated with each 

observation, i.e., low-frequency data associated with high-frequency data.
• Provide an early indication of anomalous and novel behaviours.
• Learn from experience in different contexts, as well as perform different functions 

depending on the specific component and the whole machinery. 

Most of the prognostic approaches reported in the literature consider one or two 
categories of data. More significantly, they are component-centric and primarily focus 
on predicting the remaining useful life of one particular component in isolation 
[33]. Although the approach to fault prognosis in coupled systems involving the 
combination of three types of data: failure time data, static environmental and status 
parameter data as well as dynamic data, was proposed as a novel framework for data-
driven, semi-supervised and partially online PHM applications in industries [44], it 
does not include RUL estimation. 

Despite their several disadvantages which outnumber the advantages, machine 
learning methods have attracted intense interest for PHM applications due to their 
representation power, automated feature learning capability and a very good perfor-
mance in solving complex problems with the use of multisensory data. Li et al. [35] 
observe that given the increasing amount of data collected by sensors in industrial 
production, data-driven approaches hold great promise in leveraging monitoring data 
to enable the prediction of performance degradation in complex mechanical systems. 

Measurement data collected with the appropriate sampling frequency are most 
often a time series of observations showing the change in the examined phenomenon 
over successive periods. There are two basic methods of time series analysis in main-
tenance [13, 45]. The first one is related to the study of relationships between elements 
of a given time series (correlation analysis). The aim of this approach is to estimate 
the correlation function using parametric methods. The second approach is related to 
the analysis of frequency characteristics of a series (spectral analysis of time series). 
Various spectral, asymptotic and functional techniques are used for this purpose. The 
time series is also characterized by four basic factors: trend, seasonality, cyclicity, 
and randomness. Nevertheless, the time series does not always contain all these four 
factors. Several studies assume the existence of random factors. Another important 
factor is the stochastic trend that occurs in the time series as a result of the integration
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of past disturbances. The time series can also be stationary or nonstationary. Time-
series data represent dependencies [19] that are usually crucial for fault diagnosis and 
may also contain cross correlations amongst multiple, multisensory measurements. 

As mentioned by [17], a number of applications have been developed in recent 
research for asset-specific modelling and predictions with the use of time series. 
Consequently, there is some inconsistency in the understanding of key concepts for 
designing prognostic systems. To progress from the application-specific solutions to 
structured, consistent and efficient implementations of the PHM system, the devel-
opment and use of a suitable methodology is essential. Such methodology should 
address the following high-level requirements [4]:

• It should be unambiguous, that is, the concepts and terminology used should be 
defined precisely, without being open to multiple competing interpretations.

• It should be comprehensive, that is, it should cover all essential steps in developing 
a PHM system.

• It should be pragmatic, that is, researchers and practitioners alike should be able 
to apply the methodology in a straightforward fashion. 

In addition to that, according to Sankavaram et al. [33], the time series-based 
approaches to prognostic health management are component-centric and do not make 
use of widely available data in archived databases. Nevertheless, with the currently 
used tools, this limitation can be overcome [46]. Notwithstanding the above, many 
publications draw a conclusion that real-world tests and implementations are missing 
outside of academic studies. Han et al. [47] emphasize that modern manufacturing 
systems comprise of complex manufacturing equipment, processing personnel and 
workshop environments. Numerous studies have investigated the RUL of manufac-
turing equipment based on machine operating data in the industrial Internet environ-
ment. However, these studies mainly focus on the performance state degradation of a 
single machine in complex systems. No system-level RUL target has yet been estab-
lished to dynamically characterize, analyse and optimize the overall operational state 
of a manufacturing system. The difficulty with measuring functional failures lies at 
the system level. The degradation process of mechanical equipment in a complex 
manufacturing system is not an independent stochastic degradation process; rather, it 
is affected by many factors. Not only is it difficult to establish a physical model repre-
senting the above-mentioned decisive factors for RUL estimation around a single 
device, but it is also hard to guarantee the accuracy of estimation results. Therefore, 
the RUL of a manufacturing system depends not only on the performance state of 
each manufacturing equipment but also on the ability of the whole manufacturing 
system to complete a given production task. Tao et al. [48] claim that under the new 
production paradigm known as smart manufacturing, a manufacturing factory must 
be flexible enough to allow multiple variations of production sequences as well as to 
adapt changes in the manufacturing system to new customized/individualized product 
offerings. According to Leng et al. [49], various advanced manufacturing strategies 
are employed for increasing manufacturing system automation to achieve smart-
ness. Especially with customized products, traditional manufacturing systems face
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a considerable challenge to realize customized production with large-scale produc-
tion efficiency, because they cannot integrate information, equipment and services 
on time. 

Under the Delphi-based scenarios for the 2030 maintenance in digitalised manu-
facturing [50] and according to several other future Industry 4.0 trends [51, 52], 
real-time control, predictability, efficiency and safety are recognised as key chal-
lenges of Maintenance 4.0. It has been proved that the effective implementation of 
PHM is one of the possible solutions. The PHM process does not end with remaining 
useful life estimation. It goes beyond failure predictions and, additionally, supports 
optimal maintenance actions and scheduling together with logistics decisions. In 
all of them, available resources are taken into account, together with the operating 
context and the sustainability consequences of different actions. That is why, Lee 
et al. [15] describe health management as a process of taking timely and optimal 
maintenance actions based on the outputs of diagnostics and prognostics, available 
resources and operational demand. PHM helps to assess and minimize the opera-
tional impact of failures, while at the same time taking into account the control of 
potential maintenance costs. 

4 Digital Twin as PHM Support 

Observations made by Van Horenbeek and Pintelon [53] show that even though 
condition-based maintenance takes advantage of the known state of components, 
setting a degradation threshold beyond which preventive maintenance is carried out is 
not always an optimal solution compared to predictive maintenance, especially when 
considering interdependent multicomponent systems. In addition to current degra-
dation information, predictive maintenance also makes use of predictive information 
in the form of the RUL of components to optimally schedule maintenance actions, 
while condition-based maintenance only uses current component state information. 
Proactive maintenance decisions can be made based on predictive information, which 
results in a dynamic maintenance schedule. Moreover, predictive information makes 
it possible to include component interdependencies in the maintenance schedule. 
To do so, adequate time series modelling is necessary [54]. This, however, is not 
the only challenge in that regard. Another perspective to address Maintenance 4.0 
and PHM challenges is to create a simulation environment and adapt the knowledge 
obtained therefrom to real-life applications. Such approach is possible with the use of 
Digital Twin (DT) concept. This research and development direction is particularly 
interesting, as data will most likely be sufficient in the source domain. 

Digital Twin is capable of creating connections between physical and virtual 
spaces for smart maintenance solutions and is considered one of the strategic priori-
ties shared by all major manufacturing concepts, such as Industry 4.0 and the Indus-
trial Internet of Things or Machine to Machine Communication. Sensors and data 
transmission technologies are now increasingly used in production plants to collect 
data throughout different stages of a product lifecycle, including product design,
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manufacturing, distribution, maintenance, and recycling. Digital Twin analytics can 
support effective data use to classify states, predict failures and enhance produc-
tion efficiency. According to Tao et al. [48], Kritzinger et al. [55], and Barricelli 
et al. [56], despite the increasing popularity of DT research, no efforts have been 
made to review DT applications in industry. The integration of DTs and services is 
a promising research direction. Not only can DTs enable new services, but they can 
also enhance the existing services by supplying new data. Many research problems 
such as maintenance scheduling or service optimization should be addressed in the 
future paradigm of DT-driven service integration. As summarized by Qi and Tao [57] 
and Tao et al. [48], the DT-driven PHM is characterized by the following:

• It shows great advantages over traditional PHM methods in terms of four aspects, 
i.e., model, data, interaction, and decision making. The DT-driven PHM holis-
tically merges physical data and virtual data, real-time data and historical data, 
as well as enables data fusion. In this way, it corresponds to the broad trend that 
smart manufacturing is driven by big data.

• It integrates four dimensions of modelling (i.e., geometry, physics, behaviour, and 
rule modelling) to depict a practical situation more accurately.

• It connects physical and virtual spaces. In this way, not only can the physical entity 
be better controlled, but the virtual model can also be progressively optimized and 
upgraded.

• It helps maintenance decision making to be driven by high-fidelity virtual 
models on top of traditional optimization algorithms, leading to a more rational 
maintenance strategy. 

Whatever the implementation or execution method, data-based predictive main-
tenance has nowadays become a new trend in prognostics and health management 
(PHM) for complex equipment. Data collected from different sources and monitoring 
systems of different forms and contents require the use of appropriate processing 
methods. The more accurate the data are and the more effective the processing 
method is employed, the better the prediction results might be achieved. Unfor-
tunately, there exist [54] a number of several identified limitations to this approach, 
including nontechnical or sustainable aspects which have to be taken into consider-
ation when designing decision support models. Digital Twin analytics can support 
effective data use to classify states, predict failures and enhance production efficiency. 

5 Predictive Maintenance of Machine Tool System 
Combining Process Optimization 

Innovative manufacturing companies usually adopt maintenance systems within their 
flexible production structures. It can be noticed that every machine (be it designed, 
added, removed or updated) has its own degradation process and that rebuilding 
system-level maintenance scheduling according to a different system structure leads
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to huge computational complexity. In addition, machines consist of multiple compo-
nents that are predisposed to cascading failures, where one possibility is that the 
failure of a component will lead to more workloads of other components. This 
loading dependence can result in failure propagation, causing the whole produc-
tion line or system to be more susceptible to failure and making the maintenance 
decision-making process more difficult. Thus, maintenance becomes even more 
important because it is likely to benefit from a systematic prognostic and health 
management (PHM) framework. Not only can the system change its structure for 
flexibility and responsiveness, but it can also update the health prognosis based on 
monitored degradation signals in real time. Therefore, the novel transformation of 
traditional maintenance systems into smart maintenance should also take into account 
the requirement to be more adaptive, which, additionally, creates a need for further 
advances in research and development. There are very few studies investigating flex-
ible structures in terms of maintenance optimization. An adaptive multiunit main-
tenance policy for sequential different structures can provide an important basis for 
the generalization and application of adaptive manufacturing systems. Most existing 
maintenance solutions focus on a manufacturing system with a fixed structure, which 
means that each dedicated strategy or single action is individually designed for 
each element of the system structure. As a result, maintenance strategies for adap-
tive manufacturing systems are still missing, and one of the research challenges 
is to develop actionable models. The literature review shows that several studies 
have made appreciable progress with regard to model creation, diagnosis analytics, 
problem identification, and RUL prediction. Given that operations, process optimisa-
tion and maintenance become analytics-driven, it is also important to develop more 
efficient models that provide end-users with actionable outcomes as automatic exec-
utive actions. As demonstrated by Yucesan et al. [30], instead of merely detecting 
that the bearing in a machine is starting to fail or that the bearing has 3 more months 
of useful life, analytics should be able to support decisions regarding measures to be 
taken to extend RUL and identify the root cause of the rate of unwanted degradation. 

According to the maintenance theory, a PHM system should accomplish various 
functions based on a specific single component, which means that the functions 
should be performed separately, depending on the analysis goal. In addition to that, 
most definitions or studies consider maintenance and logistics to be the only bene-
ficiaries of the PHM process. Nonetheless, this perspective is changing, and some 
researchers are looking for solutions that would combine different functionalities. 
In Lindström et al. [58], the authors investigate the possibility of intelligent and 
sustainable production that would combine and integrate online predictive mainte-
nance and continuous quality control. The rationale for combining and integrating 
the two aspects is that continuous quality control can provide input to online predic-
tive maintenance whenever no there are signs of maintenance problems, inadequate 
output is produced and process parameters cannot be adjusted to meet output specifi-
cations. Lindström et al. [58] effectively demonstrate that continuous quality control 
can be used as an additional indicator for maintenance needs, which may also involve 
check-ups and verification of the monitoring sensors and their function. Furthermore,
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these two concepts can be successfully integrated into the same data collection, moni-
toring and analytics platform, as they are both based on sensor data combined with 
additional data modelled to obtain an input for making decisions. For the combined 
predictive maintenance of different types of technical objects Lee et al. [59] proposes 
that AI-based algorithms are applied to monitor the cutting tool and the spindle motor, 
which are two critical machine product families. 

The objective of the project titled “Innovative measurement technologies 
supported by digital data processing algorithms for improved processes and products” 
is to ensure predictive maintenance of machine tool system and process optimization, 
while at the same time combining different functionalities of data engineering. This 
approach was inspired by several recent studies on machine multi-sensor systems 
and signal processing to develop a model for supporting the decision-making process 
in determining the service life of a cutting tool [12, 13, 46, 60–62]. One of the devel-
oped models [13, 62] supports the identification of parameters affecting the cutter 
condition. The predictive ability of the obtained model was assessed with the use 
of classification quality assessment indicators. The proposed method proved to be 
a simple way of cutter state identification. The results were promising, which was 
confirmed by the prediction model quality indicators. The obtained sensitivity was 
0.98 and the false alarm rate was 0.0193. The proposed analytical solution, which 
was verified using real data from an industrial machine tool, can be used as part of 
the system for determining the wear rate of a cutting tool in the production process 
by acoustic signal analysis. Each task produced very good modelling results, even 
though it benefited from different modelling or data acquisition techniques. 

Another inspiring approach to affective transition from raw industrial data 
to knowledge-based executive actions without human action was proposed by 
Kozłowski et al. [10], where the remaining useful life prediction was made via the 
combined use of Support Vector Machine (SVM) as a classification tool and Auto 
Regressive and Integrated Moving Average (ARIMA)-based identification (Fig. 2).

The results demonstrated that the use of historical data for the development of the 
SVM classifier followed by identification and prediction based on current monitoring 
data led to obtaining the required information with fewer errors as well as at lower 
costs and in a shorter time than before. This effective solution to classification and 
prediction challenges—even though combined—is only a standard approach to PHM, 
one that makes it possible to predict RUL, degradation track and optimal time to 
intervention (Fig. 3).

By predicting the degradation and remaining useful life with the use of multisource 
data integration, we are able to optimize the process to gain additional use time (T3, 

Fig. 4).
In this way, any necessary maintenance intervention may take place later, which 

provides some added value to the maintenance process. Obtained modelling results 
will be ready for implementation in an expert system constituting the basis of 
a Computerised Maintenance Management System (CMMS). Based on the PHM 
functions such as current health assessment and RUL prediction, self-maintenance 
or self-optimisation will be also achievable. The terms self-maintenance and self-
optimisation refer to the ability of a smart machine to perform regular checks by
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Fig. 2 RUL prediction and tool classification based on process data [10]

Fig. 3 Typical PHM-based RUL prediction and optimal maintenance action scheduling
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Fig. 4 PHM-based RUL prediction and optimal maintenance action scheduling with and without 
process optimisation

itself, detect possible anomalies and make immediate repairs if necessary by using 
stocked spare parts to avoid potential catastrophic loss. If stocked parts are unavail-
able, the self-optimisation part of the Digital Twin will be able to gain additional use 
time. 

The above concept is under investigation within the framework of the 
PM/SP/0063/2021/1 project titled “Innovative measurement technologies supported 
by digital data processing algorithms for improved processes and products”, launched 
in 2022 and financed by the Ministry of Education and Science (Poland) as part of 
the Polish Metrology Programme. 

The aim of this project, which combines applied metrology and big data processing 
techniques with artificial intelligence and Digital Twin modelling (Fig. 5) as well  
as exploits the complementarity of resources and competences between consortium 
partners, is to develop innovative measurement techniques for industry in the field 
of metrology.

The primary goal of the research is to provide PHM and estimate RUL of compo-
nents of technological machines and production systems. In addition to that, signifi-
cant financial benefits are also expected, such as reduced operating and maintenance 
time and costs, as well as extended remaining useful life. Real-world data obtained 
from multisensory measurement systems will also help speed up the technology 
transfer to industrial applications, which is still very limited.
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Fig. 5 Proposed digital twin concept for PHM with additional process optimisation to extend RUL 
of a process or its element
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6 Conclusions 

The state-of-the-art analysis demonstrates that recent advances in multi-sensor tech-
nologies and data-driven methodologies with the use of data engineering and Digital 
Twin simulations have significantly enriched the contents of prognostics and health 
management, including predictive maintenance. Still, more advanced analytic tools 
are necessary to adaptively and automatically extract information that is hidden 
in real-time measured streams, in order to perform executive actions combining 
different purposes. According to the concept described in this paper, PHM is consid-
ered as a holistic approach to the effective and efficient management of system 
health and process optimization. Generally, PHM applications require using more 
than one algorithm for different tasks, such as anomaly detection, parameter isolation, 
degradation parameter trending, damage estimation, and RUL prediction. Therefore, 
different types of algorithms can be employed to achieve these individual tasks. 
Under the proposed PHM concept, an added value can be achieved as a synergy 
effect of combining smart maintenance and advanced process management with the 
use of multisensory data and Digital Twin. 

Several further studies are still needed to fill the identified development gaps. Some 
emerging future research and development challenges have been pinpointed by Lee 
et al. [15]. According to these authors, the concept of engineering immune system 
(EIS) will be the next generation of PHM, beyond self-maintenance and resilience 
systems. The EIS concept is explained by analogy with a biological immune system 
which protects against invasion and infection by identifying and killing pathogens. 
EIS can thus address machine maintenance issues in a highly complex and uncer-
tain environment. The objective of EIS is to achieve efficient, near-zero breakdown 
performance with minimal human intervention. Technological visionaries believe 
that EIS should be robust in a diverse and dynamic environment, adaptive to learn 
and respond to new infections, able to retain memory to facilitate future responses, 
and autonomous in its self-controlled ability without the need for external control. 

The demand for benchmarking application seems to be less urgent. The new 
architectures, algorithms, platforms, and frameworks described in this paper are now 
widely used for solving specific PHM problems that used to be unsolvable. Their 
variety creates a need for comparing workloads and final results. 
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62. Jasiulewicz-Kaczmarek M, Antosz K, Wyczółkowski R, Mazurkiewicz D, Sun B, Qian C, 
Ren Y (2021) Application of MICMAC, Fuzzy AHP, and Fuzzy TOPSIS for evaluation of the 
maintenance factors affecting sustainable manufacturing. Energies 14(5):1436



Review Paper



Current Status and Prospects 
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Yi Ren, Qiang Feng, Cheng Qian, Dezhen Yang, and Zili Wang 

Abstract This chapter provides a systematic overview of the introduction and evolu-
tion of reliability systems engineering (RSE) in China, and the latest RSE develop-
ment, including model-based RSE (MBRSE) and Reliability Digital Twin (RDT), are 
emphatically introduced. The chapter summarizes the establishment of the system 
architecture and conceptual models of MBRSE, fundamental theory and method-
ology of MBRSE with a V-model as the core of this approach, development of the 
MBRSE platform and RDT and the effectiveness of their implementations. Finally, 
the prospective trends in the development of RSE in China are outlined. 

Keywords Reliability · Effectiveness ·Model-based systems engineering ·
Reliability system engineering · Reliability digital twins 

1 Introduction 

Modern reliability engineering originated from the Unite States in the 1950s, and it 
has achieved remarkable effects after more than half a century of development. From 
the methodological perspective, it has undergone substantial changes from “passive 
improvement after the fact” to “active test to expose” and then to “active design to 
prevent”. From the professional perspective, it has been developed from individual 
characteristics (such as reliability and safety) to comprehensive characteristics (such 
as the product’s combat readiness, mission success, and effectiveness). From the tech-
nical perspective, it has been developed from statistics-based mathematical methods 
to Physics-of-Failure (PoF) based physicochemical methods, and then to data-driven 
and model-driven integration methods. From the work object perspective, it has been 
developed from hardware to a combination of hardware and software, from macro-
scopic scale to a combination of macroscopic scale and microscopic scale, from 
unit to system, and then it has been developed further to intelligent, networked and 
systematic advanced system.

Y. Ren · Q. Feng · C. Qian (B) · D. Yang · Z. Wang 
School of Reliability and Systems Engineering, Beihang University, Beijing, China 
e-mail: cqian@buaa.edu.cn 

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 
Y. Liu et al. (eds.), Advances in Reliability and Maintainability Methods and Engineering 
Applications, Springer Series in Reliability Engineering, 
https://doi.org/10.1007/978-3-031-28859-3_24 

583

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-28859-3_24&domain=pdf
mailto:cqian@buaa.edu.cn
https://doi.org/10.1007/978-3-031-28859-3_24


584 Y. Ren et al.

However, up to date, reliability has still been a worldwide challenge for complex 
equipment in modern engineering [1–4]. For instance, the underlying causes of many 
accidents, such as the derailment accident of the ICE-1 high-speed train in Europe in 
1998 [5], the crash of space shuttle Columbia in 2003 [6], and a series of accidents 
of the Boeing 737 MAX from 2018 to 2019 [7], are related to the inadequate design 
and misestimation of reliability. 

Different solutions have been proposed globally since the 1960s, especially in the 
US, Europe, and Japan, to tackle reliability problems existing in complex products, 
and design and manufacturing of high-quality products. For instance, in the US, the 
engineering specialty integration and concurrent engineering [8, 9] are proposed to 
provide engineering specialties related to reliability into the design process, so that 
the reliability and maintainability can be regarded as the design characteristics of 
products. The design, production, and support processes of products are conducted 
in parallel and interactively, thereby greatly improving the performance and quality 
of products and reducing the lifecycle cost. In Europe, ISO 9000–4 (dependability 
program management) is used to integrate the engineering and management special-
ties related to the inherent reliability of products for controlling the reliability over 
their lifecycles [10]. In Japan, the total quality management and robust design are 
proposed to consider the quality of products as the core and establish a scientific 
and efficient quality system [11]. Based on the aforementioned advanced technology 
and previous experience, Professor Weimin Yang, the pioneer and leader in relia-
bility engineering in China, proposed the concept and theory of reliability systems 
engineering (RSE) with Chinese characteristics [12]. Compared with the relevant 
technologies developed abroad, China’s RSE is an independent discipline system 
with a unified goal and quantifiable indexes that aims to deal with failures focusing 
on a common product. After approximately 30 years of development, the standards, 
procedures, and technologies (related to reliability, maintainability, and safety) of 
RSE have been gradually developed consistent with China’s national conditions, 
and some remarkable application achievements have been made across Chinese 
industries. 

This chapter is accomplished mainly on the basis of the authors’ understanding 
of the theory of RSE and more than 30 years of practical experience from more than 
10 military and civil fields, such as aerospace, shipbuilding, and industrial manufac-
turing, in China. Its motivation and contribution mainly include the following: (1) 
systematically reviewing the introduction and development of RSE and (2) intro-
ducing the latest development of RSE, namely, model-based RSE (MBRSE), and its 
future perspectives. 

The rest of this chapter is organized as follows. Section 2 discusses the devel-
opment and technological framework of RSE. Section 3 presents the conceptual 
and operational models of MBRSE. Section 4 explains the crucial technologies for 
MBRSE operation. Section 5 presents a platform and its application in MBRSE. 
Section 6 provides the conclusions and some representative directions.
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2 Development of RSE 

2.1 History of RSE 

In China, engineers and scientists are committed to developing RSE and solving 
practical reliability problems for the past 27 years. The development trajectory of 
RSE in China is shown in Fig. 1. 

Because China’s industrial foundation, management model, and design culture 
are very different from those of western countries, it was not feasible to completely 
utilize foreign experience to develop reliability engineering technologies in China. 
The major challenges include the following: (1) There is a poor understanding of 
the scientific nature of quality engineering and the concepts of quality forming, 
leading to the fact that reliability does not lead to a prominent status. (2) Each 
characteristic in GQCs is introduced and independently developed with the lack of 
a main line, leading to a severe inconsistency problem. (3) Engineering methods 
and tools are limited to cause nonstandard work with a low efficiency and poor 
effect. (4) Advanced technologies such as prognostics and health management (PHM) 
started late. (5) The effectiveness of technology application is poor; the discrepancy 
between research and development (R&D) and application is large; the technical 
methods are less targeted and adaptable. Under this background, Professor Weimin 
Yang first developed the overall concept and fundamental theoretical framework 
of RSE by considering effectiveness as the goal and product failures as the core 
elements. The preliminary definition of RSE is as follows [12]: RSE is an engineering 
technique used to study the full lifecycle of a product and its actions in terms of 
failure mitigation. Apart from the dialectical relationship between the entirety of 
a product and its surrounding environment, RSE investigates the intercorrelation 
between the reliability and lifetime of a product and the surrounding environment, the 
failure occurrence and evolution, the laws to prevent, detect, mitigate, and eliminate

Fig. 1 Development trajectory of RSE in China 
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these failures, and a series of techniques and management activities to improve 
the reliability, prolong life, and enhance the effectiveness on the basis of various 
approaches, such as experimental research, field investigation, failure analysis, and 
maintenance. Professor Weimin Yang introduced a theoretical framework of RSE by 
analogy with the theories in medical engineering. The RSE of products was found to 
be extremely similar to the medical engineering of humans in many aspects, such as 
the “prevention and treatment of disease” and “good birth and healthcare conditions” 
[13]. RSE proposes a unified goal for integrating multiple specialties in reliability 
design. As such, RSE involves the application of systems engineering theory in 
reliability and the integration of reliability into the systems engineering process. 

In 2005, the comprehensive quality view on three dimensions (CQVTD) 
pertaining to the overall characteristics, full lifecycle, and total system and the view-
point of reforming quality engineering promoted by technology from manufacturing 
to designing the full lifecycle were proposed by Prof. Zili Wang, one of the authors of 
this chapter, to guide the development of RSE and to further strengthen the manage-
ment and design [14]. In the CQVTD, the quality characteristics of a given product are 
divided into special quality characteristics (SQCs) corresponding to its function and 
performance and general quality characteristics (GQCs). At present, studies of GQCs 
in China mainly include reliability, safety, maintainability, testability, supportability, 
and environmental adaptability [13, 15]. Therefore, GQCs are sometimes referred to 
as the “six characteristics” in China. The CQVTD systematically explains the rela-
tionship between RSE and modern quality engineering and clarifies that RSE, with 
effectiveness as its goal and the synthesis of the “six characteristics” as its focus, 
aims to design comprehensive quality characteristics [15]. In 2005, with a focus on 
the prevention, diagnosis, and treatment of failures, the technical framework of RSE 
was further constructed in terms of its fundamental theory, fundamental technology, 
and application technology [14]. 

Based on the development of RSE, the authors of this study proposed a new 
definition of RSE in 2007: RSE is a synthetic cross-technology and management 
activity based on systems engineering theory that uses failures as its core elements 
and effectiveness as its goal and is designed to evaluate the laws of occurrence and 
the evolution of failures, including the stages of prevention, diagnosis, and repair, 
throughout the full lifecycle of a complex system. The definition of RSE was formally 
indexed in the Chinese Military Encyclopedia and General Introduction to Military 
Technology [16] (Shi 2007), and it suggests that RSE has been officially recognized as 
a discipline by the domestic engineering community in China. Since it was proposed, 
the development of RSE has been focused on solving the imbalance and inconsistency 
problems between the designs of GQCs and SQCs [15]. Synthesis within the GQCs, 
between the GQCs and SQCs, and between the technology and management of 
comprehensive quality characteristics must be continuously promoted to solve these 
problems. 

In 2015, the core of RSE was further clarified as a combination of effectiveness 
design and GQC synthesis during the first international RSE conference. With the 
development of model-based systems engineering (MBSE), MBRSE was proposed 
in 2016 [17]. MBRSE integrates a large amount of work that is relevant to GQCs
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to determine the failure laws on the basis of model evolution [18–21] and applies 
these laws to achieve the closed-loop mitigation and control (M&C) of failures by 
using models, such as the product, failure and environment models [22–24], as the 
core elements [17]. Such a process can be integrated into the MBRSE process of 
products. 

2.2 Technological Framework of RSE 

In the 1990s, customer requirements of a product evolved from the product’s func-
tion and performance to effectiveness and cost-effectiveness ratio. Under these 
circumstances, effectiveness has become the synthesis of user concerns including 
product availability, dependability, and capacity. GQCs are an important basis for 
product effectiveness and a key factor in influencing lifecycle costs. By systemat-
ically considering the relationships between effectiveness and GQCs, three princi-
ples of RSE are identified: (1) global view, (2) systematic process, and (3) synthetic 
method. These principles make the RSE studies in China relatively different from 
the corresponding studies in foreign countries. For the “global view,” MBRSE coor-
dinates the functional/performance model groups and GQC model groups in terms 
of the product, function, and usage at the global level by adopting effectiveness 
as the goal. For a “systematic process,” MBRSE is used to plan the model-driven 
reliability work throughout the full lifecycle of products on the basis of multidi-
mensional failure logics such as failure prevention before product delivery and 
failure prognosis and diagnosis during operation. In the “synthetic method,” MBRSE 
achieves data integration, process integration, and characteristic synthesis among 
the functional/performance model groups and GQC model groups to further achieve 
GQC technology and management synthesis, driven by failure identification and 
mitigation. 

On the basis of the above-mentioned principles, the current technological frame-
work of RSE [14] involves three levels: fundamental theory, basic technology, and 
applied technology, as shown in Fig. 2.

1. Fundamental theory 

RSE was developed on the basis of failure recognition theory that elucidates failure 
mechanisms and determines failure laws to support failure prevention, control, and 
maintenance technologies [14]. Failure recognition theory integrates the physics 
of failure (PoF) that occurs under the load response and physicochemical process 
[25], the logic of failure (i.e., statics, dynamics, and emergence logics) [26, 27], and 
human error, which is categorized under performance effect and ability limitation 
[28]. Its mathematical and physical fundamentals are highly related to the certainty 
and uncertainty theories and their combination [23].



588 Y. Ren et al.

Fig. 2 Technological framework of RSE

2. Basic technology 

On the basis of failure laws, a number of basic technologies for failure prevention, 
diagnosis, and treatment can be developed for RSE. The failure prevention technology 
is mainly related to the technology of failure prevention over the full lifecycle of a 
product, including the design, production, and use [29]. Existing redundancy tech-
nology, reduction technology, statistical process control technology, and reliability-
centered maintenance (RCM) technology are all failure prevention technologies.
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Failure diagnosis technology refers to the diagnosis and prediction of failures over 
the lifecycle of a product. Failure diagnosis focuses on the timely monitoring and 
isolation of failures, and it is concerned with the prediction of development trend 
and consequences of failures [30]. On the basis of failure diagnosis technology, 
the failure treatment technology refers to the technology for the timely and effec-
tive recovery of product functions when an uncontrollable failure occurs. It aims to 
repair the product, i.e., to restore the product function quickly, economically, and 
effectively, including the specific technology for repairing product failures, proce-
dures for repairing product failures, and financing and supply of spare parts, tools, 
equipment, and personnel needed to repair product failures. 

3. Applied technology 

The application scope of RSE can be described in terms of three dimensions: Life-
cycle, object, and technology. The lifecycle dimension represents the full process of 
systems engineering activities, including the concept demonstration, research and 
design, test, production, evaluation, validation, and operation. The object dimension 
refers to the physics items of all scales, including the materials, components, assem-
blies, subsystems, and systems. The technology dimension refers to the GQCs that 
can be applied by RSE, including the reliability, safety, maintainability, testability, 
supportability, and environmental adaptability. In particular, RSE can be applied as a 
failure prevention and control (P&C) technology set constructed via the integration of 
overall characterization methods, full lifecycle processes, and total system elements. 
Its core technology involves synthetic GQC integration, including synthetic GQC 
requirement determination with effectiveness simulations as the core, synthetic GQC 
design with unified function and failure models as the core, and synthetic operation 
and maintenance technology with PHM [31] as the core. 

3 Conceptual and Operational Model of MBRSE 

With the transformation of equipment development and application modes with tech-
nologies such as digital engineering and model-based system engineering technolo-
gies, the technical system of reliability system engineering has been gradually devel-
oped and promoted to modelization, digitalization, simulation and intelligence. Inte-
grated with MBSE and RSE, the idea of MBRSE was first proposed by the authors of 
this chapter in 2016, and introduced in the 1st China Aviation Forum. In this section, 
the conceptual model and V-model-based operation mode of MBRSE are introduced. 

3.1 Connotative, Features and Conceptual Models of MBRSE 

On the basis of the product models in MBSE, a unified model system can be estab-
lished by adding several other types of models such as environmental load model,
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fault model, maintenance model, test model and support model. Furthermore, the 
GQC R&D demands are gradually obtained starting from the mission capability and 
support scenarios. Then based on the evolution of unified model, one could gradually 
identify and mitigate faults from the functional perspective to physical perspective, 
synchronously improve and optimize the GQC design, and verify the realization of 
the GQC R&D demands by simulations, as shown in Fig. 3. 

MBRSE is an organic whole technique composed of models, methods, tools and 
environments, as shown in Fig. 4. Models are the key elements of MBRSE and also 
direct reflection of operation. The models in MBRSE include the product’s func-
tional performance models and failure P&C related models with dynamic evolution 
and traceable features. Methods refer to the specific technologies to achieve the 
product’s functional performance and GQC characteristics. They are used to deter-
mine the implementation methods and processes of each task in the evolution of 
unified model. Tools are used to achieve all types of functional performance and 
GQC characteristics. They are mainly GQC related management and technological 
software, ensuring to improve the standardization, efficiency and effect of GQC 
work. Environment is an integration that organically combines models, methods, 
tools, resources, and manpower to achieve the GQC requirements of equipment 
under the support of environment. 

Figure 5 shows the conceptual model of MBRSE. On the basis of usage demand, a 
comprehensive design issue is initially constructed. This comprehensive design can

Fig. 3 Connotative meanings of MBRSE 

Fig. 4 Features of MBRSE 
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be decomposed into function and failure M&C designs. Comprehensive design issue 
can be analyzed and solved with various engineering methods. During the solution 
processing, the above-mentioned two types of designs should cooperate to reduce 
the number of design iterations. A failure M&C design is based on the cognition 
of failures and their control laws. With the ever-deepening cognition of design, the 
product design scheme is becoming increasingly in-depth and detailed and ranges 
from qualitative descriptions to quantitative calculations. The M&C process can be 
used to determine the failures and associated control laws. This understanding is 
based on the knowledge of the operation process/environment (load) that becomes 
increasingly clear with the advance of design processes. After solving all problems, 
system synthesis and evaluation are conducted to assess the solution process and 
verify the solution degree with regard to the comprehensive design issue. The above-
mentioned process may require several iterations during practical product design until 
a satisfactory solution is reached with regard to the comprehensive design issue. 

Fig. 5 Conceptual models of MBRSE
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3.2 Data and Information Sharing Mechanism and Process 
Control Mechanism of MBRSE 

The terminologies in GQC involve a large number of terms and concepts, with 
complex relationships with the product functional performance design concepts. 
Therefore, by using the ontology technology, this chapter provides a unified knowl-
edge model of related concepts and their relationships, to achieve a unified expres-
sion of the functional performance and GQC data knowledge in the whole design 
process, and lay the foundation to establish a unified model for multiple engineering 
disciplines. There are four basic relationships to express integrated design ontology, 
namely, “part (P:),” “class (K:),” “instance,” and “attribute (A:).” “Part” expresses the 
conceptual relationship between parts and the whole; “Class” expresses the inheri-
tance relationship between concepts; “Instance” expresses the relationship between 
the instances of a concept and that concept; “Attribute” expresses that a concept is 
an attribute of another concept. 

According to the relationships among the concepts of products, uses, functions, 
faults and their extended concepts, the established top-level ontology framework 
of the functional performance and GQC integrated design is shown in Fig. 6. The  
product structure consists of product meta, each with a generalized function, and 
various states. The fault is regarded as a state of the product meta. The functions and 
states of the product structure are not a simple sum of product meta. New functions 
and states may emerge, and they have to be expressed independently.

The design of MBRSE follows a bottom-up, iterative search for convergence 
process rule. It uses the process control mechanism of the integrated design to “pre-
cisely” control the entire process, to reduce the randomness in the search and solution 
process, and thus reduce the iterative numbers of the “design-feedback-redesign” 
cycles. Considering the inheritance problem of design meta, the meta-process is 
divided for brand-new product design and inherited product design. 

1. Meta-process for brand-new product design meta 

The new product meta has no prototype product to inherit; its design meta-process 
starts from the requirement model. During product design, on one hand, the design 
parameter x needs to be dynamically adjusted according to the design changes in the 
system; on the other hand, uncertain factors may change and propagate. Therefore, the 
product meta continues to experience the change process of “steady state-instability-
steady state.” The overall trend is that the product meta model is continuously refined, 
thus transformed from the initial functional model to the physical model, and then 
from the initial simple physical model to a detailed and precise physical model. 
Various methods and models based on product meta-models are constantly evolving, 
and the evaluation of various GQC design characteristics of products is also more 
accurate, thus continuously providing a direction for product design to achieve the 
design goals. A complete meta-process for the new product meta design is shown in 
Fig. 7.
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Fig. 6 Ontology framework of the integrated functional performance and GQC design

Moreover, during model evolution, it is necessary to establish relevant design 
analysis models according to all types of requirements, such as establishing reliability 
models of design elements based on reliability requirements (either statistical or PoF 
models), to build a model for different views of the same product. The goal of 
model transformation is to continuously obtain manufacturable products that meet 
various design requirements. The principle and basis of a model transformation are 
the engineering analysis models of these views. 

2. Meta-process for inherited product design meta 

In general product design, most design meta are completed by inheriting the existing 
design meta, and the re-design process is conducted using the similarity inheri-
tance principle. The engineering process starts from the demand model, searches for 
possible matching design metas on the design requirements and loads from the design 
meta knowledge base, inherits design information according to their similarities with 
the source design meta, and generates an instance of the target design meta model. If 
the inherited design meta-template cannot be searched, the design process for a new 
product design meta-template is then started; otherwise, the design process for the



594 Y. Ren et al.

cii(constantly refining 
product meta  ) 

ci0(initial product 
meta) 

cij(constantly refining 
product meta) 

cip(product meta 
that meet the final 

requirements) 

meta-process for product meta ci 

method model set 

Xs0(initial 
requirements model) 

Xsi(changing design 
requirements) 

Xsj(changing design 
requirements) 

Xsp(finalized design 
requirements) 

Lsi(constantly 
accurate load models) 

Lsj(constantly 
accurate load models) 

Ls0(initial use 
condition/load model) 

process monitoring  
design evaluation 

fault-oriented 
model extension 

fault-oriented model 
extension 

fault-oriented model 
extension 

Fig. 7 Meta-process for the new product meta design

inherited design product meta-template is executed. During the design of the inher-
ited product meta, the product meta model library is established by accumulating, 
summarizing and extracting historical experience. Moreover, the models of design 
method related to the product meta are also accumulated into a library, and those 
are connected to the product meta. During the refinement of design meta-model, it 
is necessary to continuously search the product meta-model by reusing the product 
meta-model and associated method model. Taking the advantages of the reuse of 
the model can reduce the number of model iterations in the process, and therefore 
shorten the development process. A complete meta-process for the new product meta 
design is shown in Fig. 8.

3.3 V-Model-Based Operation Model of MBRSE 

The V-model-based MBRSE is innovatively proposed on the basis of the V-model 
of MBSE to organically integrate the function, performance, and GQC model into 
the MBSE process, as shown in Fig. 9. Driven by effectiveness, a complete model 
system is established by using the identification, mitigation, testing, and verification 
of failures as the core elements to achieve digitalized GQC engineering analysis 
throughout the entire product lifecycle. Synthetic function-GQC design and veri-
fication of multilevel products (up to the system of system (SOS) level) can be 
implemented by using approaches, such as multidimensional digital model coevo-
lution, multitype failure simulation, and multithread closed-loop process manage-
ment. Using the PHM technology, highly efficient and precise failure prognosis and
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Fig. 8 Meta-process for inherited product design meta

prediction can be achieved to achieve digital and intelligent product maintenance. 
After the incorporation of GQC digital engineering into the systems engineering 
process, a forward GQC design process can be established. This process uses the 
GQC digital engineering V-model as the core and includes three-dimensional (3D) 
synthesis among performance–failure–health, multilevel product data transmission, 
and synthetic interaction between design analysis and simulation verification. The 
crucial technology required by the specific execution of V-model is shown in Sect. 4. 

Fig. 9 V-model-based MBRSE



596 Y. Ren et al.

Fig. 10 Failure identification and mitigation in total domain during the MBRSE process 

3.4 MBRSE Model Evolution Process 

Based on the unified model evolution, the failure identification and mitigation in total 
domain can be accomplished during the MBRSE process, as shown in Fig. 10. In  
the requirement stage, the GQC requirements are obtained based on the effective-
ness of simulation models. In the design stage, the functional and physical failure 
M&C requirements are obtained based on the functional and physical logic models, 
respectively. In addition, the integrated reliability design problems in multiple fields 
are solved based on the multidisciplinary mechanism model. Generally, the models 
used in the previous stage can provide inputs for the models in the next stage; more-
over, the results obtained from the later stage can be used to verify the models in its 
previous stage model. 

4 Crucial Technology for MBRSE Operation 

4.1 Synthetic GQC Requirement Determination Based 
on Effectiveness Simulation 

The top left side of the V-model indicates the efficiency-oriented, task-motivation-
driven simulation verification techniques to obtain the GQC requirements. Orig-
inating from different tasks, the goal is to convert the equipment effectiveness 
demands into GQC requirements using simulation methods, providing accurate input 
for subsequent designs. 

First, by considering the equipment characteristics such as task parallelism, 
element crossover, and human–machine cooperation, four types of elements, task, 
system, service, and environment, are abstracted as the agents. On this basis, a
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Fig. 11 An agent theory-based modeling and simulation framework 

dynamic layering, partitioning, and flexibility effectiveness modeling and simulation 
framework can be established based on different agents, as shown in Fig. 11. Among 
them, the state of each agent is determined by its own state and the interactions with 
other agents. 

Then, a dual-clock simulation mechanism is constructed to design a dynamic life 
clock for multilevel agents independent of the system simulation clock. On this basis, 
a life clock consumption based failure occurrence mechanism is constructed. In this 
way, when the life clock is cleared to zero, the agent turns into an unavailable state. 
Considering that the components and parts might become unavailable due to multiple 
factors such as degradation, random failure, and external shocks, three consump-
tion mechanisms, uniform consumption, random consumption, and step consump-
tion, were considered. For the life clock of high-level agents, the condition-based 
consumption mechanism can be established according to the failure propagation 
relationships among different elements. 

Next, the maintenance safeguard behavior modeling mechanism is provided based 
on the agent action map and state transition. A unified maintenance event pool is built 
to manage the preventive maintenance, corrective maintenance, and condition-based 
maintenance events. By selecting the most appropriate agent, maintenance opera-
tions are dynamically generated by matching the maintenance personnel, facilities, 
equipment, and spare parts. 

Then, an effectiveness evaluation technology is developed using Monte Carlo 
simulation and multidimensional performance criteria, and a batch of fault criteria 
under spatiotemporal dynamics can be built, including performance loss down to 0, 
space trajectory deviation, and standard coverage area. Then, after statistical analysis 
on all types of simulation process data of functional performance and maintenance, 
system status and changes, consumption status of the consumable resource, occu-
pation status of the unconsumable resource, etc., the system effectiveness can be 
evaluated from the perspectives of performance, state, time, and resources. 

Finally, parameter analysis, balance, comparison, and optimization technologies 
are developed based on the above-mentioned highly precise effectiveness simula-
tions. These technologies can quickly support the simulation determination of GQC 
requirements combined with the batch processing of similar entity attributes.
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To summarize, the proposed synthetic GQC requirement determination technique 
using effectiveness simulations can overcome the limitations of traditional GQC 
requirement demonstration methods, such as the similarity methods and empirical 
methods, and also provide an essential foundation for the independent development 
and innovation of novel equipment. 

4.2 Model-Driven Comprehensive GQC Design 

The left side of V-model indicates the model-driven comprehensive GQC design 
approach, aiming to allocate the reliability requirements obtained from effectiveness 
simulations to the different product levels in a scaled-down sequence and simulta-
neously acquire a corresponding digital design plan [27, 32]. With the continuous 
development of MBSE concept, the GQC design technique has been proposed with 
unified failure modeling and mitigation control as the core, as shown in Fig. 12. 

Fig. 12 GQC design based on failure models and its control
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1. Identification and mitigation of functional failures 

The functional failures can be determined from the perspective of the disappearance 
or reduction in the ability to achieve and maintain functional requirements, as shown 
in Fig. 13. Assuming that product level i contains ni function achievement require-
ments FRij (j = 1, 2, …, ni), it can be easily found that each function achievement 
requirement has multiple states {normal, function loss, discontinuity, incomplete-
ness, offset, …}. When the function achievement requirements lay in the states of 
discontinuity, incompleteness, offset, etc., it means that the ability to maintain the 
function achievement requirements continues to decline, indicating that a fault will 
occur at this time. The potential failure modes of functions can then be gradually 
identified by establishing a functional failure clue sheet. Meanwhile, a functional 
failure model can be established by considering the transfer relationships among the 
effects of these functional failures [33, 34]. Association sets of the key physical failure 
modes can be determined by comprehensively considering the occurrence probabil-
ities and consequences of these failure modes and the increase in the M&C status 
of relevant failures caused by the mitigation of an individual failure mode. Effec-
tive implementation of the corresponding improvement and compensation measures 
should be ensured using a closed-loop mitigation control technology. 

2. M&C of physical failures 

On the basis of the above-mentioned functional failure models and mapping relation-
ships between the functionalities and physical models, physical failure modes can 
be systematically identified according to unmitigated functional failures considering 
physicochemical processes, device/raw material/component characteristics, temper-
ature/vibration, and other internal and external loads [25], as shown in Fig. 14. The  
root causes of the physical failure originate from the physicochemical effects of the 
physical unit, as well as the effect of internal and external loads. In addition to the
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Fig. 13 Functional fault identification process 
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above-mentioned function-physics mapping relationship, the following conditions 
can be further combined to identify the physical faults that cause the relevant fault 
impacts: 

1. The working principle of the physical components, including the component 
structure and materials, information and energy in its physicochemical action 
process 

2. The characteristics of the devices, raw materials, and mechanical parts to 
construct the physical component, such as the tensile strength, flexural strength, 
compressive strength, seismic strength, expansion coefficient, density, dielec-
tric constant of the metals, temperature resistance, and antimagnetic properties 
of electronic materials; For components/raw materials/parts, according to the 
above-mentioned conditions, PoF models can be constructed for fault analysis 
and identification. 

3. The internal and external loads applied on the physical components, including 
vibration, temperature, humidity, electromagnetic, pressure, mold, salt spray, 
sand and dust, and remainder particles. 

Next, under the premise of a clear understanding of the failure mechanisms of 
physical units such as mechanical devices, electronics, and software, association sets
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of the key physical failure modes can be determined by comprehensively considering 
the occurrence probability and consequences of these failure modes and an increase 
in the M&C status of relevant failures due to the mitigation of an individual failure 
mode [35]. PoF-based mitigation mechanisms are introduced to achieve closed-
loop mitigation control for determining and optimizing the design parameters of the 
corresponding physical units, mitigating underlying failure causes, avoiding failure 
occurrence, and preventing physical units from being controlled by these failures. 

3. M&C of coupled failures 

In the synthetic process of a system, system-level failures can be identified by compre-
hensively considering the interface, transmission, error propagation, and potential 
functionality failures. First, the interface relationships in between the i product meta 
are sorted out, and the interface failure modes are analyzed to obtain the interface 
failure mode models. Then, by analyzing the load conditions over the life cycle of 
the system, together with the structure of the system-level product, layout of the 
product meta, and internal loads in the system, the local loads of each product meta 
can be obtained. According to these local loads, the possible new failure modes of 
the product meta, and the functional impacts of the new failure modes on the product 
meta and system are further analyzed. Next, by comprehensively analyzing the func-
tional failure and physical failure modes of each product meta in the system, both 
the functional and the physical failure coupled models can be established. Further-
more, combined with the interface failure mode models, the set of new failure 
modes emerging from system integration can be obtained. This failure mode set, 
together with the system failure modes induced by product meta-faults, composes 
the complete set of system failure modes, as shown in Fig. 15. These system-level 
failures are usually regarded as coupled failures and must be mitigated and controlled 
with their relevant failures [36].

4.3 Multilevel GQC Verification Combined with Practical 
Experiments and Virtual Simulations 

During the integration of a given product, integrated verification should be conducted 
via a scaled-up sequence, starting from the assembly level, via the subsystem and 
system levels, to the SOS level, as shown in Fig. 16. At each level, certain tests and 
weak link analysis steps are conducted to verify the identified failures and defects 
and to determine new failures and defects. The experimental data acquired from 
these tests can be further implemented to verify the product GQCs and effectiveness 
at different levels. The approach combining physical tests with virtual simulations 
has been widely applied for verification due to a notable advancement in simulation 
technology.

1. Verification at the assembly level has usually been conducted via multistress 
synthesis GQC tests (for instance Temperature/Humidity/Vibration Combined
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Fig. 16 Multilayer GQC verification tests 

Environmental Test, Temperature/Humidity/Vibration/Low Pressure Combined 
Environmental Test, etc.) on a physical product, and GQC simulations (for 
instance Finite Element Analysis, Computational Fluid Dynamics, and PoF) on 
its virtual representation.

2. Verification at the subsystem level has usually been conducted via Highly Accel-
erated Life tests, Highly Accelerated Stress Screening tests, and GQC evaluation 
simulations based on system models (for instance Reliability Block Diagram, 
Bayesian Network, and Artificial Neural Network).
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3. Verification at the system level has usually been conducted via product-level full-
scale tests (for instance, Outfield Flight Test, and Full-Scale Simulated Labora-
tory Test of Comprehensive Environment), multisource data-driven virtual GQC 
evaluation simulations, and availability simulations. 

4. Verification at the SOS level has usually been conducted via real-task tests, virtual 
effectiveness simulations (via different types such as all simulation, humans-in-
the-loop, hardware-in-the-loop, and data driven, complementary to the models 
and technologies discussed in Sect. 4.1). 

In recent years, the U.S. has promoted digital engineering technology in defense 
procurement. Digital test qualification plays a central role in digital engineering, and 
it must be integrated with digital engineering activities. During a typical “design-test-
validation” cycle in the product development process, the physical model is used to 
provide the initial design of system performance. The designed system performance 
is tested in various environmental conditions and the test results are then fed back into 
the modeling process to validate or update the physical model. The verified model 
forms the basis for improving the system design or related requirements on modeling 
and simulation validation. In the future, the test data should be extensively collected 
from all the stages in the MBRSE process to validate the GQC characteristics, and 
a “model-test-validation” cycle method should be used to continuously evaluate, 
calibrate, and improve the product at all the hierarchical levels. 

4.4 Operation and Maintenance Using PHM as the Core 
During Operation 

The top right side of V-model indicates the product operation and maintenance using 
PHM technology as the core. As a notable development and supplement to the current 
reliability engineering field, this method focuses on the usage phase of the product 
via an organic integration of GQC. Its concrete implementation includes devel-
opment, operation, and maintenance stages [37]. In the development stage, PHM 
system design and verification are needed, including construction of the PHM index 
system, establishment of the system configuration with total elements, breakthrough 
of the key failure detection and prognosis techniques in the space, time and symptom 
dimensions, and completion of the PHM system on the basis of a variety of tools 
and methods [30, 31]. In this process, the development of PHM system should be 
suitably coordinated with the design of product function, performance, and GQCs. 
At the operation and maintenance phase, the health status of a product containing a 
PHM system can be improved or maintained at a high level through failure predic-
tion to plan reasonable maintenance tasks [38] and support resources and advance 
scheduling on the basis of the concepts of autonomous assurance, task effects, and 
health status. The maintenance cost can be reduced. The main work tasks include 
the following:
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1. In development planning of PHM technology: Chinese industries in aviation, 
aerospace, shipbuilding, and industrial manufacturing need a step-by-step tech-
nology development plan, such as: from the fundamental studies on PoF and 
mechanism models on components and parts, to the subsystem-level product 
monitoring, diagnosis, prediction and fault-tolerant control technology studies, 
and then to the design and development of PHM systems for the product and 
equipment. 

2. In the basic theories of PHM technology: (1) New intelligent sensor studies 
should be carried out for failure diagnosis and prediction. (2) Accurate measure-
ment of system health status should be carried out to determine the health evolu-
tion trend of the system, on different hierarchical levels from components, prod-
ucts to the system. (3) Improvement of the effectiveness and accuracy of predic-
tion should be studied by considering the uncertainty of failure prediction. (4) 
Studies of maintenance decision optimization, health self-healing, and control 
should be effectively achieved for the health management of complex systems. 

3. In engineering application of the PHM technology: (1) Application studies of 
system integration should be carried out to achieve the PHM collaborative design, 
by using the parallel engineering principles to synchronize PHM and design of 
the product. (2) Studies should be focused on the cognition of the diagnosis 
and prediction ability, functional simulation test verification, and quantitative 
performance evaluation. 

4.5 Multithread Closed-Loop Process Management 

Many GQC tasks involve the interaction of people, data, activities, and resources that 
require effective management. Considering the practical application, three threads 
should be conducted as follows: 

1. The first thread is conducted on the basis of the allocation, prediction, and quan-
titative evaluation of GQCs, reflecting the kernel realization of user requirements 
for developers, where various quantitative requirements are subject to hard design 
constraints. 

2. The second thread is conducted on the basis of the implementation and confor-
mance inspection of qualitative GQC criteria. This process reflects the accumula-
tion and reuse of the GQC design experience of the developer that may effectively 
improve the GQC level of similar products. 

3. The third thread is conducted on the basis of the closed-loop mitigation of fail-
ures. This process is mainly applied to identify, eliminate, and control the conse-
quences of new failures caused by new product principles, processes, materials, 
and system integration methods.
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5 MBRSE Platform and Reliability Digital Twin (RDT) 

5.1 MBRSE Platform 

On the basis of the fundamental theory and approaches of MBRSE, the Institute 
of Reliability Engineering at Beihang University developed the model-based 4th 
generation of the MBRSE platform by innovating key technologies for visualizing 
multilayer and multidimensional GQC data, multidimensional failure data analysis, 
flexible process instruction chains, full-scale failure recognition, closed-loop M&C, 
reliability knowledge mapping construction, and mining. This MBRSE platform 
is developed by taking the product, failure and environmental models as the core; 
Fig. 17 shows its entire structure. It includes more than 10 model-driven GQC design 
software tools to greatly reduce the number of reliability work items and improve 
work effectiveness. It also integrates a basic GQC knowledge system with storage, 
mining, and intelligent push functions to further improve the GQC knowledge reuse 
ability, and a dynamic visual monitoring and decision-making system to promote a 
transparent design process of RMS. Furthermore, by integrating a digital develop-
ment environment and unifying technology and management synthesis, the platform 
is capable to achieve a novel model-driven form that combines RMS data, process, 
and characteristics to reach an international leading level.

5.2 RDT 

RDT is the latest technology carrier of MBRSE combing the advantages of both 
the MBRSE technology and digital twin (DT) technology. It changes the traditional 
reliability technology that used to be “soft,” and leads to the revolution and evolution 
of the reliability technology. The concept of DT first appeared as “virtual digital 
representation equivalent to a physical product” proposed by Professor Grieves in 
2003 [39]. In 2014, the release of the DT White Paper established its core architecture 
of “physical space, virtual space and interconnection” [39]. Since its birth, DT has 
had a natural relationship to the reliability technology. For instance, it pays special 
attention on the monitoring and prediction of product failures and health status. The 
U.S. Department of Defense (DoD) has used the DT technology very early to solve 
problems such as the health maintenance of spacecrafts [40].

RDT is not only the enhanced perception of product reliability and health status 
using the DT technology, but also enriches and completes DT owing to the reliability 
technology. The reliability and DT exhibit a complementary and mutually promoting 
relationship to each other, as shown in Fig. 18. On one hand, digital intelligence 
analysis, evaluation, and control can be achieved based on digital entities and twin 
data. On the other hand, high fidelity, high precision, and quasi real-time feedback 
of reliability and health status of reliability and health status can also be provided by 
using the reliability technology. The RDT has the following features and advantages:
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Fig. 17 MBRSE Platform

Fig. 18 Relationship between the reliability and DT technology

• Generation of virtual entities from physical entities: precise mapping from the 
physical space to virtual space.

• Control of physical entities with virtual entities: implementation of virtual entities 
to control physical entities.
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• Interaction between physical and virtual entities: personalized and precise 
intelligent operation and maintenance on virtual entities to enhance physical 
entities.

• Mutual existence of physical and virtual entities: physical and virtual entities 
interact and empower symbiosis and coprosperity. 

RDT needs to be built and implemented in the design stage of the product and 
then used and evolved in the operation phase. It covers the full product lifecycle, 
including the design, test, manufacturing, operation, and maintenance. Its object 
covers all the hierarchical levels of the product, such as materials, components, 
equipment, subsystems, and systems. In the design stage, it is necessary to build a 
digital model that is equivalent to the physical entity considering reliability and other 
GQCs, combined with the functional and performance design of the product. The 
model should also have the ability to interface or map with all types of monitoring, 
test, and operational data during the use of the product, and achieve the simultaneous 
delivery of both the RDT model and physical entity of the product. In the operation 
stage, RDT will serve as an enabling tool for product users, to provide high-fidelity, 
quasi real-time reliability/health status information for the operation and maintenance 
of the product, and thus to provide accurate perception of the system health status 
and dynamic operation and maintenance decision-making based on the status of 
individual units. Furthermore, the RDT model that has been already built and run 
can iteratively feedback more integrated, comprehensive, and real information to 
generate the reliability characteristics required in the design of new products. 

The key RDT technologies mainly include the following: development of the 
MBRSE based RDT technology framework, establishment of high-fidelity RDT 
models, bidirectional mapping of reliability characteristics in between physical enti-
ties and DTs, and real-time update and evolution of RDT models. At present, the 
RDT technology is still in the early stages of development, and faces many challenges 
in the implementation. However, its future development potential and great benefits 
have begun to reach a wide consensus. The Institute of Reliability Engineering at 
Beihang University first designed and developed a brake system RDT test platform 
in China (as shown in Fig. 19) that can be used for RDT-related technology research 
and teaching experiments and can also provide valuable practical experience for RDT 
development of other types of systems.

6 Concluding Remarks and Outlook 

This chapter reviews the history of development of RSE in China over the past 
30 years. The fundamental theories and technologies of RSE have experienced a 
typical development process from statistics-based methods to PoF-based methods, 
and they now occur at a new level that emphasizes collaboration between mathematics 
and physics in addition to integrated optimization. RSE technology has followed 
the development direction on interdisciplinary and professional integration and has
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Fig. 19 Brake system RDT test platform

currently entered the health engineering stage. In particular, equal attention has been 
paid to “good birth” and “healthcare conditions,” and failures have been used as the 
core elements. Health has been used as the goal. Prevention, diagnosis, and treatment 
have been used as the approaches, and the synthetic design of performance and GQCs 
and a PHM-integrated platform have been used as the support. 

The technological framework, conceptual and operational models, crucial tech-
nologies, and methodology of MBRSE are emphatically introduced. Combined with 
PHM, MBRSE has transformed the original concept from RCM to intelligent prog-
nosis and health management by using health as the goal. This approach has been 
transformed from the pursuit of the perfect stage without failure to the allowance of 
disease to a certain extent while ensuring health that occurs more often in practical 
situations. 

Representative directions include but are not limited to the following. 

1. Cross-scale-based synthetic GQC design focusing on the macroscopic effective-
ness, microscale failure mechanisms, and intelligent design processes. SOS level: 
To develop effectiveness simulation analysis and design optimization methods 
of intelligent SOS. System and subsystem level: To study intelligent GQC 
design by providing a preliminary model design, intelligent failure identification, 
and mitigation. Component and part level: Synthesis-based design technology 
considering multiphysics, multiperspectives, new processes, and new materials. 

2. Cognitive computing-based health assessment, diagnosis, and prognosis tech-
niques. These techniques may improve the perception, cognition, and capability 
of failure prediction throughout the full lifecycle of equipment. 

3. Government-industry data exchange program in China. A vast amount of raw data 
can be retrieved by mining with a certain deposition quality; higher profits can be 
obtained through data exchange. This condition can be achieved by establishing a
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quality information exchange platform jointly organized by the military, govern-
ment, and industry with regular/real-time interactive engineering data, failure 
experience data, reliability and maintainability data, and measurement data. 

In the future, RSE technologies and platform will be continuously innovated and 
promoted in the military and civil fields by taking the MBRSE platform as the carrier 
through a variety of means such as trail promotion, comprehensive promotion, and 
upgrade promotion. During these processes, the RSE technologies should also be 
improved from the perspectives of normalization, quantification, and optimization 
abilities. 
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maintenance strategy optimization model considering lifecycle safety. Reliab 
Eng Syst Saf 221:108325 

[5] Li XY, Xiong X, Guo J, Huang HZ, Li X (2022) Reliability assessment of non-
repairable multi-state phased mission systems with backup missions. Reliab 
Eng Syst Saf 223:108462 

[6] Xiahou T, Zeng Z, Liu Y, Huang HZ (2021) Measuring conflicts of multisource 
imprecise information in multistate system reliability assessment. IEEE Trans 
Reliab 71(4):1417–1434 

[7] Guo J, Li YF, Peng W, Huang HZ (2022) Bayesian information fusion method 
for reliability analysis with failure-time data and degradation data. Qual Reliab 
Eng Int 38(4):1944–1956
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[8] Chen Y, Huang HZ Rao Y, He Z Lai P, Chen Y, … Liu C (2022) Degradation 
assessment of 1.2-kV SiC MOSFETs and comparative study with 1.2-kV Si 
IGBTs under power cycling. Microelectron Reliab 132:114528 

[9] Hu JM, Huang HZ, Li YF, Gao HY (2022) Bayesian prior information fusion 
for power law process via evidence theory. Commun Stat-Theory Methods 
51(14):4921–4939 

[10] Qian HM, Huang HZ, Li YF, Wei J (2022) A novel approach for multi-output 
structural system reliability problem with small failure probability. Int J Numer 
Eng 123(23):5986–5999 

[11] Bai S, Li YF, Huang HZ, Ma Q, Lu N (2022) A probabilistic combined high and 
low cycle fatigue life prediction framework for the turbine shaft with random 
geometric parameters. Int J Fatigue 165:107218 

Year of 2021 

[1] Qian HM, Li YF, Huang HZ (2021) Time-variant system reliability anal-
ysis method for a small failure probability problem. Reliab Eng Syst Saf 
205:107261 

[2] Li XY, Huang HZ, Li, YF, Xiong X (2021) A Markov regenerative process 
model for phased mission systems under internal degradation and external 
shocks. Reliab Eng Syst Saf 215:107796 

[3] Liu Y, Zhang Q, Ouyang Z, Huang HZ (2021) Integrated production planning 
and preventive maintenance scheduling for synchronized parallel machines. 
Reliab Eng Syst Saf 215:107869 

[4] Li X, Li YF, Li H, Huang HZ (2021) An algorithm of discrete-time Bayesian 
network for reliability analysis of multilevel system with warm spare gate. 
Qual Reliab Eng Int 37(3):1116–1134 

[5] Huang T, Xiahou T, Li YF, Qian HM, Liu Y, Huang HZ (2021) Reliability 
assessment of wind turbine generators by fuzzy universal generating function. 
Eksploatacja i Niezawodność-Maintenance Reliab 23(2):308–314 

[6] Bai S, Li YF, Huang HZ, Yu A, Zeng Y (2021) An improved petri net for fault 
analysis of an electronic system with hybrid fault of software and hardware. 
Eng Failure Anal 120:105077 

[7] Hu J, Huang HZ, Li YF (2021) Bayesian estimation of a power law process 
with incomplete data. J Syst Eng Electron 32(1):243–251 

[8] Huang P, Huang HZ, Li YF, Qian HM (2021) An efficient and robust structural 
reliability analysis method with mixed variables based on hybrid conjugate 
gradient direction. Int J Numer Methods Eng 122(8):1990–2004 

[9] Qian HM, Huang T, Huang HZ (2021) A single-loop strategy for time-variant 
system reliability analysis under multiple failure modes. Mech Syst Signal 
Process 148:107159 

[10] Huang CG, Huang, HZ, Li YF, Peng W (2021) A novel deep convolutional 
neural network-bootstrap integrated method for RUL prediction of rolling 
bearing. J Manufact Syst 61:757–772
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]11] Huang P, Huang HZ, Li YF, Li H (2021) Positioning accuracy reliability 
analysis of industrial robots based on differential kinematics and saddlepoint 
approximation. Mech Mach Theory 162:104367 

Year of 2020 

[1] Levitin G, Finkelstein M, Huang HZ (2020) Optimal mission abort policies 
for multistate systems. Reliab Eng Syst Saf 193:106671 

[2] Li XY, Li YF, Huang HZ (2020) Redundancy allocation problem of phased-
mission system with non-exponential components and mixed redundancy 
strategy. Reliab Eng Syst Saf 199:106903 

[3] Qian HM, Li YF, Huang HZ (2020) Time-variant reliability analysis for indus-
trial robot RV reducer under multiple failure modes using Kriging model. 
Reliab Eng Syst Saf 199:106936 

[4] Huang CG, Yin X, Huang HZ Li, YF (2019) An enhanced deep learning-based 
fusion prognostic method for RUL prediction. IEEE Trans Reliab 69(3):1097– 
1109 

[5] Li YF, Liu Y, Huang T, Huang HZ, Mi J (2020) Reliability assessment for 
systems suffering common cause failure based on Bayesian networks and 
proportional hazards model. Qual Reliab Eng Int 36(7):2509–2520 

[6] Qian HM, Li YF, Huang HZ (2020) Improved model for computing time-
variant reliability based on outcrossing rate. ASCE-ASME J Risk Uncert Eng 
Syst Part A: Civil Eng 6(4):04020043 

[7] Qian, HM, Huang T, Huang HZ (2020) Time-dependent reliability model of 
structures under different stochastic loads. ASCE-ASME J Risk and Uncert in 
Engrg Sys Part B Mech Eng 6(2):021003 

[8] Huang P, Huang HZ, Huang T, Qian HM (2020) A framework for struc-
tural reliability analysis based on conjugate sensitivity factor and saddlepoint 
approximation. J Mech Sci Technol 34(9):3617–3627 

[9] Yu A, Huang HZ, Li H, Li YF, Bai S (2020) Reliability analysis of rolling 
bearings considering internal clearance. J Mech Sci Technol 34:3963–3971 

[10] Li H, Soares CG, Huang HZ (2020) Reliability analysis of a floating offshore 
wind turbine using Bayesian Networks. Ocean Eng 217:107827 

Year of 2019 

[1] Levitin G, Xing L, Huang HZ (2019) Dynamic availability and performance 
deficiency of common bus systems with imperfectly repairable components. 
Reliab Eng Syst Saf 189:58–66 

[2] Levitin G, Finkelstein M, Huang HZ (2019) Scheduling of imperfect inspections 
for reliability critical systems with shock-driven defects and delayed failures. 
Reliab Eng Syst Saf 189:89–98 

[3] Levitin G, Xing L, Huang HZ (2019) Security of separated data in cloud systems 
with competing attack detection and data theft processes. Risk Anal 39(4):846– 
858
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[4] Zeng Y, Li YF, Li XY, Huang HZ (2019) Tolerance-based reliability and 
optimization design of switched-mode power supply. Qual Reliab Eng Int 
35(8):2774–2784 

[5] Guo J, Huang HZ, Peng W, Zhou J (2019) Bayesian information fusion for 
degradation analysis of deteriorating products with individual heterogeneity. 
Proc Inst Mech Eng Part O: J Risk Reliab 233(4):615–622 

[6] Huang CG, Huang HZ, Li YF (2019) A bidirectional LSTM prognostics method 
under multiple operational conditions. IEEE Trans Ind Electron 66(11):8792– 
8802 

[7] Hu JM, Huang HZ, Li YF (2019) Reliability growth planning based on 
information gap decision theory. Mech Syst Signal Process 133:106274 

[8] Levitin G, Xing L, Huang HZ (2019) Cost effective scheduling of imperfect 
inspections in systems with hidden failures and rescue possibility. Appl Math 
Model 68:662–674 

[9] Qian HM, Huang HZ, Li YF (2019) A novel single-loop procedure for time-
variant reliability analysis based on Kriging model. Appl Math Model 75:735– 
748 

Year of 2018 

[1] Mi J, Li YF, Peng W, Huang HZ (2018) Reliability analysis of complex multi-
state system with common cause failure based on evidential networks. Reliab 
Eng Syst Saf 174:71–81 

[2] Li XY, Huang HZ, Li YF (2018) Reliability analysis of phased mission system 
with non-exponential and partially repairable components. Reliab Eng Syst 
Saf 175:119–127 

[3] Li XY, Li YF, Huang HZ, Zio E (2018) Reliability assessment of phased-
mission systems under random shocks. Reliab Eng Syst Saf 180:352–361 

[4] Zhang X, Gao H, Huang HZ, Li YF, Mi J (2018) Dynamic reliability modeling 
for system analysis under complex load. Reliab Eng Syst Saf 180: 345–351 

[5] Peng W, Balakrishnan N, Huang HZ (2018) Reliability modelling and assess-
ment of a heterogeneously repaired system with partially relevant recurrence 
data. Appl Math Model 59:696–712 

[6] Li XY, Huang HZ Li, YF, Zio E (2018) Reliability assessment of multi-
state phased mission system with non-repairable multi-state components. Appl 
Math Model 61:181–199 

[7] Li H, Huang HZ, Li YF, Zhou J, Mi J (2018) Physics of failure-based reliability 
prediction of turbine blades using multi-source information fusion. Appl Soft 
Comput 72:624–635 

[8] Zheng B, Huang HZ, Guo W Li YF, Mi J (2018) Fault diagnosis method based 
on supervised particle swarm optimization classification algorithm. Intel Data 
Anal 22(1):191–210 

[9] Zheng B Li YF, Huang HZ (2018) Intelligent fault recognition strategy based on 
adaptive optimized multiple centers. Mech Syst Signal Process 106, 526–536
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[10] Zhang X, Gao H, Huang HZ (2018) Total fatigue life prediction for welded 
joints based on initial and equivalent crack size determination. Int J Damage 
Mech 27(7):1084–1104 

[11] Guo J, Li YF, Zheng B, Huang HZ (2018) Bayesian degradation assessment 
of CNC machine tools considering unit non-homogeneity. J Mech Sci Technol 
32:2479–2485 

[12] Zuo FJ, Li YF, Huang HZ (2018) Reliability analysis for fatigue damage of 
railway welded bogies using Bayesian update based inspection. Smart Struct 
Syst 22(2):193–200 

Year of 2017 

[1] Wang HK, Li YF, Huang HZ, Jin T (2017) Near-extreme system condition and 
near-extreme remaining useful time for a group of products. Reliab Eng Syst 
Saf 162:103–110 

[2] Peng W, Li YF, Yang YJ, Mi J, Huang HZ (2017) Bayesian degradation analysis 
with inverse Gaussian process models under time-varying degradation rates. 
IEEE Trans Reliab 66(1):84–96 

[3] Liu Z, Yu L, Li YF, Mi J, Huang HZ (2017) Comparisons of two non-
probabilistic structural reliability analysis methods for aero-engine turbine disk. 
Int J Turbo Jet-Engines 34(3):295–303 

[4] Zhou J, Huang HZ, Peng Z (2017) Fatigue life prediction of turbine blades based 
on a modified equivalent strain model. J Mech Sci Technol 31:4203–4213 

[5] Zhong B, Chen XH, Pan R, Wang J, Huang HZ, Deng WH, Wang ZZ, Xie 
RQ, Liao DF (2017) The effect of tool wear on the removal characteristics in 
high-efficiency bonnet polishing. Int J Adv Manuf Technol 91:3653–3662 

[6] Zhu SP, Lei Q, Huang HZ, Yang YJ, Peng W (2017) Mean stress effect correction 
in strain energy-based fatigue life prediction of metals. Int J Damage Mech 
26(8):1219–1241 

Year of 2016 

[1] Mi J, Li YF, Yang YJ, Peng W, Huang HZ (2016) Reliability assessment of 
complex electromechanical systems under epistemic uncertainty. Reliab Eng 
Syst Saf 152:1–15 

[2] Peng W, Li YF, Mi J, Yu L, Huang HZ (2016) Reliability of complex systems 
under dynamic conditions: A Bayesian multivariate degradation perspective. 
Reliab Eng Syst Saf 153:75–87 

[3] Zhu SP, Huang HZ, Peng W, Wang HK, Mahadevan S (2016) Probabilistic 
physics of failure-based framework for fatigue life prediction of aircraft gas 
turbine discs under uncertainty. Reliab Eng Syst Saf 146:1–12 

[4] Wang HK, Huang HZ, Li YF, Yang YJ (2015) Condition-based maintenance 
with scheduling threshold and maintenance threshold. IEEE Trans Reliab 
65(2):513–524 

[5] Peng W, Li YF, Yang YJ, Zhu SP, Huang, HZ (2016) Bivariate analysis of 
incomplete degradation observations based on inverse Gaussian processes and 
copulas. IEEE Trans Reliab 65(2):624–639
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[6] Yang YJ, Peng W, Zhu SP, Huang HZ (2016) A Bayesian approach for 
sealing failure analysis considering the non-competing relationship of multiple 
degradation processes. Eksploatacja i Niezawodność-Maintenance Reliab 
18(1):10–15 

[7] Yin YC, Huang HZ, PeNG W, Li YF, Mi J (2016) An E-Bayesian method 
for reliability analysis of exponentially distributed products with zero-failure 
data. Eksploatacja i Niezawodność-Maintenance Reliab 18(3):445–449 

[8] Xie C, Wang P, Wang Z, Huang H (2016) Corrosion reliability analysis consid-
ering the coupled effect of mechanical stresses. ASCE-ASME J Risk Uncertain 
Eng Syst Part B: Mech Eng 2(3):031001 

[9] Wang, Z, Zhang, X, Huang, HZ, Mourelatos, ZP (2016) A simulation method 
to estimate two types of time-varying failure rate of dynamic systems. Journal 
of Mechanical Design, 138(12) 

[10] Peng Z, Huang HZ, Wang HK Zhu SP, Lv Z (2016) A new approach to the 
investigation of load interaction effects and its application in residual fatigue 
life prediction. Int J Damage Mech 25(5):672–690 

Year of 2015 

[1] Moghaddass R, Zuo MJ, Liu Y, Huang HZ (2015) Predictive analytics 
using a nonhomogeneous semi-Markov model and inspection data. IIE Trans 
47(5):505–520 

[2] Liu Y, Lin P, Li YF, Huang HZ (2014) Bayesian reliability and performance 
assessment for multi-state systems. IEEE Trans Reliab 64(1):394–409 

[3] Liu Y, Zuo MJ, Li YF, Huang HZ (2015) Dynamic reliability assessment for 
multi-state systems utilizing system-level inspection data. IEEE Trans Reliab 
64(4):1287–1299 

[4] Mi J, Li YF, Liu Y, Yang YJ, Huang HZ (2015) Belief universal generating func-
tion analysis of multi-state systems under epistemic uncertainty and common 
cause failures. IEEE Trans Reliab 64(4):1300–1309 

[5] Peng W, Li YF, Yang YJ, Mi J, Huang HZ (2015) Leveraging degradation 
testing and condition monitoring for field reliability analysis with time-varying 
operating missions. IEEE Trans Reliab 64(4):1367–1382 

[6] Wang HK, Li YF, Liu Y, Yang YJ, Huang HZ (2015) Remaining useful life 
estimation under degradation and shock damage. Proc Inst Mech Eng Part O: 
J Risk Reliab 229(3):200–208 

[7] Li YF, Mi J, Liu YU, Yang YJ, Huang HZ (2015) Dynamic fault tree analysis 
based on continuous-time Bayesian networks under fuzzy numbers. Proc Inst 
Mech Eng Part O: J Risk Reliab 229(6):530–541 

[8] Yang JP, Huang HZ, Liu Y, Li YF (2015) Quantification classification algorithm 
of multiple sources of evidence. Int J Inf Technol Decis Mak 14(05):1017–1034 

[9] Meng D, Li, YF, Huang HZ, Wang Z, Liu Y (2015) Reliability-based multi-
disciplinary design optimization using subset simulation analysis and its 
application in the hydraulic transmission mechanism design. J Mech Des 
137(5):051402
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[10] Zhu SP, Huang HZ, Li Y, Liu Y, Yang Y (2015) Probabilistic modeling of 
damage accumulation for time-dependent fatigue reliability analysis of railway 
axle steels. Proc Inst Mech Eng Part F: J Rail Rapid Transit 229(1):23–33 

[11] Lv Z, Huang HZ, Zhu SP, Gao H, Zuo F (2015) A modified nonlinear fatigue 
damage accumulation model. Int J Damage Mech 24(2):168–181 

[12] Yuan R, Li H, Huang HZ Zhu SP, Gao H (2015) A nonlinear fatigue damage 
accumulation model considering strength degradation and its applications to 
fatigue reliability analysis. Int J Damage Mech 24(5):646–662 

[13] Zuo FJ, Huang HZ, Zhu SP Lv Z, Gao H (2015) Fatigue life prediction under 
variable amplitude loading using a non-linear damage accumulation model. 
Int J Damage Mech 24(5):767–784 

[14] Huang HZ, Wang HK, Li YF, Zhang L, Liu Z (2015) Support vector machine 
based estimation of remaining useful life: current research status and future 
trends. J Mech Sci Technol 29:151–163 

[15] Li YF, Zhu SP, Li J, Peng W, Huang HZ (2015) Uncertainty analysis in fatigue 
life prediction of gas turbine blades using Bayesian inference. Int J Turbo 
Jet-Engines 32(4):319–324 

Year of 2014 

[1] Liu Y, Wang W, Huang HZ, Li Y, Yang Y (2014) A new simulation model 
for assessing aircraft emergency evacuation considering passenger physical 
characteristics. Reliab Eng Syst Saf 121, 187–197 

[2] Peng W, Li YF, Yang YJ, Huang HZ, Zuo MJ (2014) Inverse Gaussian process 
models for degradation analysis: A Bayesian perspective. Reliab Eng Syst Saf 
130, 175–189 

[3] Liu Z, Li YF, He LP, Yang YJ, Huang HZ (2014) A new fault tree analysis 
approach based on imprecise reliability model. Proc Inst Mech Eng Part O: J 
Risk Reliab 228(4):371–381 

[4] Xiao NC, Li YF, Yu L, Wang Z, Huang HZ (2014) Saddlepoint approximation-
based reliability analysis method for structural systems with parameter uncer-
tainties. Proc Inst Mech Eng Part O: J Risk Reliab 228(5):529–540 

[5] Yang YJ, Peng W, Meng D, Zhu SP, Huang HZ (2014) Reliability analysis 
of direct drive electrohydraulic servo valves based on a wear degradation 
process and individual differences. Proc Inst Mech Eng Part O: J Risk Reliab 
228(6):621–630 

[6] Xiao NC, Li YF, Yang Y, Yu L, Huang HZ (2014) A novel reliability method 
for structural systems with truncated random variables. Struct Saf 50:57–65 

[7] Peng W, Liu Y, Li YF, Zhu SP, Huang HZ (2014) A Bayesian optimal design 
for degradation tests based on the inverse Gaussian process. J Mech Sci Technol 
28:3937–3946 

[8] Meng D, Huang HZ, Wang Z, Xiao NC, Zhang XL (2014) Mean-value 
first-order saddlepoint approximation based collaborative optimization for 
multidisciplinary problems under aleatory uncertainty. J Mech Sci Technol 
28:3925–3935
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[9] Huang HZ, Cui PL, Peng W, Gao HY, Wang HK (2014) Fatigue lifetime assess-
ment of aircraft engine disc via multi-source information fusion. Int J Turbo 
Jet-Engines 31(2):167–174 

Year of 2013 

[1] Peng W, Huang HZ, Li Y, Zuo MJ, Xie M (2013) Life cycle reliability assess-
ment of new products—A Bayesian model updating approach. Reliab Eng Syst 
Saf 112, 109–119 

[2] Liu Y, Huang HZ, Wang Z, Li Y, Yang Y (2013) A joint redundancy and 
imperfect maintenance strategy optimization for multi-state systems. IEEE 
Trans Reliab 62(2):368–378 

[3] Peng W, Huang HZ, Xie M, Yang Y, Liu Y (2013) A Bayesian approach for 
system reliability analysis with multilevel pass-fail, lifetime and degradation 
data sets. IEEE Trans Reliab 62(3):689–699 

[4] Xiao NC, Huang HZ, Li YF, Wang Z, Zhang XL (2013) Non-probabilistic 
reliability sensitivity analysis of the model of structural systems with interval 
variables whose state of dependence is determined by constraints. Proc Inst 
Mech Eng Part O: J Risk Reliab 227(5):491–498 

[5] Jin T, Yu Y, Huang HZ (2013) A multiphase decision model for system 
reliability growth with latent failures. IEEE Trans Syst Man Cybern: Syst 
43(4):958–966 

[6] Liu Y, Huang HZ, Ling D (2013) Reliability prediction for evolutionary product 
in the conceptual design phase using neural network-based fuzzy synthetic 
assessment. Int J Syst Sci 44(3):545–555 

[7] Zhu SP, Huang HZ, Smith R, Ontiveros V, He LP, Modarres M (2013) Bayesian 
framework for probabilistic low cycle fatigue life prediction and uncertainty 
modeling of aircraft turbine disk alloys. Probab Eng Mech 34:114–122 

[8] Huang HZ, Zhang X, Meng DB, Wang Z, Liu Y (2013) An efficient 
approach to reliability-based design optimization within the enhanced sequen-
tial optimization and reliability assessment framework. J Mech Sci Technol 
27:1781–1789 

[9] He LP, Huang HZ Pang Y, Li Y, Liu Y (2013) Importance identification for 
fault trees based on possibilistic information measurements. J Intell Fuzzy Syst 
25(4):1013–1026 

[10] Prabhu Gaonkar RS, Xie M, Huang HZ (2013) Optimizing maritime travel time 
reliability. Proc Inst Mech Eng Part M: J Eng Maritime Environ 227(2):167– 
176 

Year of 2012 

[1] Liu Y, Huang HZ, Zhang X (2011) A data-driven approach to selecting 
imperfect maintenance models. IEEE Trans Reliab 61(1):101–112 

[2] Huang HZ, Zhang H, Li Y (2012) A new ordering method of basic events in 
fault tree analysis. Qual Reliab Eng Int 28(3):297–305
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[3] Li YF, Huang HZ, Liu Y, Xiao N, Li H (2012) A new fault tree analysis method, 
fuzzy dynamic fault tree analysis. Eksploatacja i Niezawodnosc-Maintenance 
Reliab 14:208–214 

[4] Huang HZ (2012) Structural reliability analysis using fuzzy sets theory. 
Eksploatacja i Niezawodność-Maintenance Reliab 14, 284–294 

[5] Xiao NC, Huang HZ, Wang Z, Li Y, Liu Y (2012) Reliability analysis of 
series systems with multiple failure modes under epistemic and aleatory 
uncertainties. Proc Inst Mech Eng Part O: J Risk Reliab 226(3):295–304 

[6] Zhang X, Huang HZ, Xu H (2010) Multidisciplinary design optimization with 
discrete and continuous variables of various uncertainties. Struct Multidisc 
Optim 42:605–618 

[7] Huang HZ, Zhang X, Liu Y, Meng D, Wang Z (2012) Enhanced sequential opti-
mization and reliability assessment for reliability-based design optimization. 
J Mech Sci Technol 26:2039–2043 

[8] Wang Z, Li G, Huang HZ, Zhang XL, Li Y (2012) Reliability-based design 
optimization for box-booms considering strength degradation and random total 
working time. J Mech Sci Technol 26:2045–2049 

[9] Wang Z, Huang HZ, Li Y, Pang Y, Xiao NC (2012) An approach to system 
reliability analysis with fuzzy random variables. Mech Mach Theory 52:35–46 

[10] Xiao NC, Huang HZ, Wang Z, Liu Y, Zhang XL (2012) Unified uncer-
tainty analysis by the mean value first order saddlepoint approximation. Struct 
Multidisc Optim 46:803–812 

[11] Zhu SP, Huang HZ, Ontiveros V, He LP, Modarres M (2012) Probabilistic 
low cycle fatigue life prediction using an energy-based damage parameter and 
accounting for model uncertainty. Int J Damage Mech 21(8):1128–1153 

[12] Huang HZ, Gong J, Zuo MJ, Zhu SP, Liao Q (2012) Fatigue life estimation 
of an aircaft engine under different load spectrums. Int J Turbo Jet-Engines 
29(4):259–267 

Year of 2011 

[1] Guo S, Huang HZ, Wang Z, Xie M (2011) Grid service reliability modeling 
and optimal task scheduling considering fault recovery. IEEE Trans Reliab 
60(1):263–274 

[2] Wang Z, Huang HZ, Li Y, Xiao NC (2011) An approach to reliability assess-
ment under degradation and shock process. IEEE Trans Reliab 60(4):852–863 

[3] Pang Y, Huang HZ, He L, Wang Z, Xiao NC (2011) Convex sublattice based 
reliability theory. Eksploatacja i Niezawodność-Maintenance Reliab (3):56–61 

[4] Huang HZ, Wang ZL, Li YF, Huang B, Xiao NC, He LP (2011) A nonprob-
abilistic set model of structural reliability based on satisfaction degree of 
interval. Mechanics 17(1):85–92 

[5] Huang HZ, Zhang X, Yuan W, Meng D, Zhang X (2011) Collaborative relia-
bility analysis under the environment of multidisciplinary design optimization. 
Concurr Eng 19(3):245–254
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[6] Xiao N, Huang HZ, Li Y, He L, Jin T (2011) Multiple failure modes analysis and 
weighted risk priority number evaluation in FMEA. Eng Fail Anal 18(4):1162– 
1170 

[7] Yang J, Huang HZ, He LP, Zhu SP, Wen D (2011) Risk evaluation in failure 
mode and effects analysis of aircraft turbine rotor blades using Dempster– 
Shafer evidence theory under uncertainty. Eng Failure Anal 18(8):2084–2092 

[8] Xiao NC, Huang HZ, Wang Z, Pang Y, He L (2011) Reliability sensitivity 
analysis for structural systems in interval probability form. Struct Multidisc 
Optim 44:691–705 

[9] Wang ZL, Huang HZ, Du L (2011) Competitive failure reliability analysis 
under fuzzy degradation data. Appl Soft Comput 11(3):2964–2973 

[10] Liu Y, Huang HZ (2011) Optimal replacement policy for fuzzy multi-state 
element. J Multiple Valued Log Soft Comput 17(1):69–92 

[11] Liu Y, Chen W, Arendt P, Huang HZ (2011) Toward a better understanding of 
model validation metrics. J Mech Des 133(7):071005 

[12] Qu J, Liu Z, Zuo MJ, Huang HZ (2011) Feature selection for damage degree 
classification of planetary gearboxes using support vector machine. In: Proc 
Inst Mech Eng Part C: J Mech Eng Sci 225(9):2250–2264 

Year of 2010 

[1] Liu Y, Li Y, Huang HZ, Zuo MJ, Sun Z (2010) Optimal preventive maintenance 
policy under fuzzy Bayesian reliability assessment environments. IIE Trans 
42(10):734–745 

[2] Liu Y, Huang HZ (2010) Optimal selective maintenance strategy for multi-state 
systems under imperfect maintenance. IEEE Trans Reliab 59(2):356–367 

[3] Liu Y, Huang HZ (2010) Optimal replacement policy for multi-state system 
under imperfect maintenance. IEEE Trans Reliab 59(3):483–495 

[4] Wu J, Ng TSA, Xie M, Huang HZ (2010) Analysis of maintenance policies 
for finite life-cycle multi-state systems. Comput Ind Eng 59(4):638–646 

[5] Liu Y, Huang HZ (2010) Reliability assessment for fuzzy multi-state systems. 
Int J Syst Sci 41(4):365–379 

[6] Wang Z, Huang HZ, Du X (2010) Optimal design accounting for reliability, 
maintenance, and warranty. J Mech Des 132(1):011007 

[7] Liu Y, Yin X, Arendt P, Chen W, Huang HZ (2010) A hierarchical statistical 
sensitivity analysis method for multilevel systems with shared variables. J 
Mech Des 132(3):031006 

[8] Wang Z, Huang HZ, Liu Y (2010) A unified framework for integrated 
optimization under uncertainty. J Mech Des Trans ASME 132(5):051008 

[9] Zhang X, Huang HZ (2010) Sequential optimization and reliability assess-
ment for multidisciplinary design optimization under aleatory and epistemic 
uncertainties. Struct Multidisc Optim 40:165–175 

[10] Zhang X, Huang HZ, Xu H (2010) Multidisciplinary design optimization with 
discrete and continuous variables of various uncertainties. Struct Multidisc 
Optim 42, 605–618
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[11] Huang HZ, Yu H, Zhang X, Zeng S, Wang Z (2010) Collaborative optimization 
with inverse reliability for multidisciplinary systems uncertainty analysis. Eng 
Optim 42(8):763–773 

[12] Zhang X, Zhang XL, Huang HZ, Wang Z, Zeng S (2010) Possibility-
based multidisciplinary design optimization in the framework of sequen-
tial optimization and reliability assessment. Int J Innov Comput Inf Control 
6(11):5287–5297 

[13] Wang D, Miao Q, Fan X, Huang HZ (2009) Rolling element bearing fault 
detection using an improved combination of Hilbert and wavelet transforms. 
J Mech Sci Technol 23:3292–3301 

Year of 2009 
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