
Increasing Energy Efficiency and
Flexibility by Forecasting Production
Energy Demand Based on Machine

Learning
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Abstract. The ability of manufacturing companies to compete depends
strongly on the efficient use of production resources and the flexibility to
adapt to changing production conditions. Essential requirements for the
energetic infrastructure (EGI) result from the production itself, e.g., secu-
rity of supply, efficiency and peak shaving. Since production always takes
priority and must not be disturbed, the flexibility potential in terms of
energy efficiency lies primarily in the EGI. Based on this, strategies will be
developed that support companies in increasing their efficiency and flexi-
bility by optimizing the configuration and operation of the EGI, while pro-
duction processes are reliably supplied and not adapted. This is reached
with intelligent operation strategies for the heating and cooling network
based on forecasts, the use of energy storage systems, and the coupling of
energy sectors. This paper presents an approach for energy forecasts used
for the optimization of operation strategies. Hence, an energy-forecast-tool
was developed, which is used for the prediction of electrical and thermal
loads depending on the expected production. Therefore, machine learn-
ing models are trained with past weather, energy, and production data.
Using production planning data and weather forecasts, the model can pre-
dict energy demands as input for an EGI optimization.
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1 Introduction

The exhaustion of fossil energy sources, increased use of renewable energy,
restrictions due to government regulations or international interstate crises and
conflicts, lead to higher energy prices and a weakening of confidence and finan-
cial markets [4,10,16]. In addition, as renewable energy is expanding and a
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generation-based consumption is increasing due to volatility of renewable ener-
gies, industry is increasingly forced to flexibly adapt to energy supply [17,18].
This change ensures a shift of the manufacturing industry towards more efficient
and sustainable systems, thus requiring the identification of energy saving oppor-
tunities and the development of new strategies to improve the energy efficiency
of industrial energy systems [4].

Since manufacturing companies are often under enormous competitive pres-
sure and are forced to constantly optimize their production with regard to costs,
quality and time, interventions in the ongoing production process are associated
with effort and involve risks with regard to these three mentioned central factors
of project management [18]. For this reason, the guiding principle in many areas
is not to affect production. This leaves the energy infrastructure for providing
the energy requirements (in the form of electricity, heating, cooling) of produc-
tion as the only adjusting factor for energy saving potentials. This flexibilization
of the energetic infrastructure (EGI) is being investigated in more detail in the
ProEnergie Bayern research project [13] in order to derive operating strategies
for the EGI using AI-based energy forecasts. These forecasts use production
planning data and weather forecasts to predict load curves for the electricity,
heating and cooling sectors. They can be used to generate an operating strategy
for the EGI components in order, for example, to charge or discharge storage
facilities in an optimized manner, to run energy plants at the optimal operating
point and to reduce load peaks [9,12].

2 Related Work

In this paper, the focus is on the prediction of energetic load curves of the produc-
tion. In recent years, a large number of different prediction methods have been
investigated. For example, significant benefits can be achieved by using simu-
lations to predict energy demand. Due to the effort required for simulations, it
can be more feasible for an SME to use energy measurements and numerical
approaches to identify potential energy savings or efficiency improvements [7].
Therefore, an alternative to simulations are AI methods and thus machine learn-
ing (ML). For example, Artificial Neural Networks (ANN) [11] are well suited for
energy consumption modeling [1,8,19]. Usually, an ANN is trained during the
model development phase using experimental or previous operational data [14].
Among others, the focus for ML predictions in recent years has often been on
energy predictions for buildings [3,6,20] or whole district heating systems, where
the usual load forecasts are based on decision trees or simple neural networks
[2,5].

For industrial energy demand, there is a wide range of techniques for mod-
eling and forecasting. Reinhardt et al. understand energy consumption fore-
casting as a modeling problem and therefore derive their classification scheme
from the input-processing-output cycle of model development. The distinguished
categories are system (consisting of the dimensions factory, multiple machines,
single machine, and machine part), input (consisting of the dimensions energy,
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environment, process, and product), and processing (consisting of the dimen-
sions artificial neural network, fuzzy logic, empirical expression, simulation, and
theoretical expression) [14].

Schmidt et al. suggest a methodology for the reliable prediction of specific
energy consumption of arbitrary manufacturing processes. This methodology is
based on a few energy measurements and requires little effort and previous knowl-
edge due to precise specifications about the machines. Firstly, a decision tree is
provided to categorize production machines into groups according to their energy
consumption. Then for each machine group, an individual procedure is presented
for establishing a prediction model. For this purpose, the energy consumption is
either estimated with an average value or broken down into repeatable energy
consumption components. For the complex machines, the energy consumption
in manufacturing can be estimated using nominal power, exergy, simulation and
empirical modeling [15].

3 Concept

In the solution proposed the adaption and optimization of the configuration
and operation of the EGI is reached through intelligent operation strategies, the
use of electrical and thermal energy storage systems and the coupling of energy
sectors. Therefore, energy forecasts are developed and used for the optimization
of the strategies and the configuration of the EGI. To increase the accuracy of
the forecasts, ML models are trained with past weather, energy and production
data (historical data). As a result, these models can be used to forecast energy
demands on factory, machine group or machine level on basis of production
planning data and weather forecasts (planning data). Two software tools were
developed for this approach: the energy-forecast-tool to predict the electrical and
thermal loads depending on the expected production and the EGI-optimization-
tool to optimize the EGI’s components and operational strategy.

As shown in Fig. 1, historical data from three different sources is used for the
model training in the energy-forecast-tool:

i) production data: information about the processes (e.g. start and end time,
duration), product and plant specific information (e.g. material, geometry,
process id, number of produced parts), the shift schedule and the work center
calendar.

ii) energy demands: the electrical and thermal load profiles for the correspond-
ing plant, section or factory.

iii) weather data: temperature and humidity of the weather station of the fac-
tory or the nearest station of the German Metereologial Service (“Deutscher
Wetterdienst”, DWD).

Since the historical data was acquired from multiple different sources and
was therefore not necessarily synchronized, the data needed to be harmonized in
regard to a defined time interval. In this tool, a one-minute-interval was defined.
For the training of the ML models, a time series was generated with a moving
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Fig. 1. Schematic diagram of the presented concept

window. The size of the window depends on the use case and was set in the
range between 60 min and 10 h. Each window corresponds with one data point
of the energy demand data set. The data was then split into a train and test
set, with a ratio of 75:25. The train set was used to train the models, and the
test set to evaluate the models and to select the best trained model for further
predictions. As shown in Table 1, multiple model architectures were trained and
evaluated with varying hyperparameters in a defined range.

Table 1. Model architectures and hyperparameters

Architecture Hyperparameters

Multi Layer Perceptron (MLP) layers, units per layer

Long Short Term Memory (LSTM) layers, units per layer, dropout

Gated Recurrent Unit (GRU) layers, units per layer, dropout

Convolutional Neural Networks (CNN) layers, units per layer, kernel size

The evaluation of the models is based on selected metrics, e.g. mean absolute
error (MAE), root mean square error (RMSE) and coefficient of determination
(R2). Afterwards, the best trained model can be used to predict energy loads
based on production planning data and weather forecasts (planning data). There-
fore, the data has to go through the same steps of preprocessing as described for
the historical data. The predictions can be exported from this energy-forecast-
tool for further use in the EGI-optimization-tool. The forecasting enables the
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optimization of the operating strategies of the energetic infrastructure. For exam-
ple, with the knowledge of upcoming electrical energy demands, the charging and
discharging of electrical storage systems can be adjusted flexible to avoid load
peaks and to purchase energy economically. In addition, power plants can be
operated at their optimum efficiency level.

The EGI-optimization-tool was developed to simulate the industrial energy
system based on models of the energy consumers, producers and storage sys-
tems. These models were mainly developed as grey-box models to reduce com-
puting times and to increase the generalization and transferability for similiar
components. In the tool, the infrastructure was recreated with components that
include different models and operating strategies that describe the functionality
and purpose of the component within the EGI. The operating strategies include
three types: reduction of peak loads, optimization of self-sufficiency for energy
and increase in energy efficiency (e.g. optimal operating points). The energy
demands are representated by historical load profiles or by the predicted energy
loads from the energy-forecast-tool. The parameters of the energy producers and
storage systems are being defined in entry forms of the tool. Afterwards, opti-
mized operating strategies for the EGI components are simulated to increase the
energy efficiency and flexibility of the EGI.

4 Experimental Evaluation

The concept of the energy-forecast-tool was evaluated on a use case at a manu-
facturing company in the metal processing industry. The research subject were
two laser cutting machines. The aim was to predict the electrical load based
on the production data. Therefore, the data was collected for six months and
included the start and end date of the orders, the duration, the material number
and thickness and the state of the machine, together with the shift schedule and
the work site calendar. The electrical load was captured in 15 min intervals as an
average for the elapsed period. Since these two datasets were not synchronous,
the production data was transformed to a uniform time interval of one minute.
Intervals where no order was produced were zero-filled. The 15 min intervals
of the electrical load were then assigned to the corresponding 15 one minute
intervals of the transformed production data.

The data was then split into a train, validation and test set (ratio of 65:10:25)
without shuffling, so that the periods of the sets are consecutive in the mentioned
order. The models were then trained on the train set and the hyperparameters
were optimized on the validation set for each architecture. For the training of
the models, the Adam algorithm was used as optimizer and the mean square
error (MSE) was used as the loss function. Afterwards, the best trained models
regarding the validation set were evaluated on the test data. As shown in Table 2,
the best results over all metrics were achieved with the model with GRU layers.
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Table 2. Results on test data for each architecture

Architecture MAE RMSE R2

MLP 5.66 kW 9.96 kW 89.0 %

CNN 5.66 kW 10.10 kW 88.7 %

LSTM 5.69 kW 10.01 kW 88.9 %

GRU 5.29 kW 9.93 kW 89.0 %

Fig. 2. Predicted and actual load of one week in the test data with the GRU Model

Figure 2 shows the load predicted with the GRU model compared with the
actual load over an one week period of the test data. A qualitative analysis of
the prediction has indicated that the model was able to approximate the energy
demand of the machine and to predict most of the load peaks. However, there
were slight deviations observed, especially at the upper and lower limits.

5 Discussion and Future Work

The EGI-optimization-tool is used to investigate and optimize changes and
extensions to the energy building infrastructure. The EGI can be configured
dynamically. For example, the integration of generation plants and storage units
can be examined. The optimization currently takes place via a so-called job list
with multiple parameter sets. In the future, it will also be possible to integrate
mathematical parameter optimization.

The energy-forecast-tool is used to predict the electrical and thermal loads
depending on the expected production. The quality of the predictions strongly
depends on the input, especially how accurate the planning data is. The pro-
duction processes are not adapted or optimized, in that way, the tool does not
disturb the production itself.
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With our methodology, we were able to show that the energy demand can be
predicted with ANNs on basis of production data. The best result was achieved
with the GRU model, whereby the quality of the models depend on the amount
of training data and thus could be further improved with data over a longer
period.

AutoML approaches are intended to further reduce the user effort required
to optimize the ML models. AutoML eliminates most of the manual steps of the
classical iterative process (preparation of data, feature engineering, selection of
the appropriate ML models and features, training of the models - incl. hyperpa-
rameter search, prediction by the model). Thus, the user only has to define the
prepared training data as input and an optimized model is created automatically.

In addition, the approach of further developing the ML models with more
and more data will be pursued in the future. Transfer learning will also be
used to reduce the training effort and make it transferable for similar processes.
Additionally, federated learning can be used here to optimize ML models across
company boundaries.
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