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Abstract. Rotating machines are commonly used mechanical equipment in var-
ious industrial applications. These machines are subjected to dynamic and harsh
operating conditions over a long time leading to various types of mechanical fail-
ures, thereby resulting in undesirable downtime. Consequently, research on fault
diagnosis is practically significant to enhance the safety of machinery. Over the
years, several fault diagnosis methods have been developed for rotating machines.
Of these, artificial intelligence-based diagnosis methods have gained increasing
attention due to their reliability, robustness in performance, and capability for
adaptation. However, the selection of suitable artificial intelligence methods for
specific types of faults or machines is still dependent on the experience of users.
The recent research achievements in intelligent fault diagnosis are not reviewed,
and future research directions are not clearly stated. To fill these gaps, this paper
provides a review of artificial intelligence techniques applied for fault diagnosis
of rotating machines, with a special emphasis given to deep learning methods
published in the last five years (2017–2022). The research challenges and some
possible prospects in this field are discussed to provide valuable guidelines for
future research development. The present work can be extended to review the
applications of transfer learning for fault diagnosis of rotating machines.

Keywords: Artificial intelligence · Deep learning · Fault diagnosis ·Machine
learning · Rotating machine

1 Introduction

In modern industrial systems, there is an increasing trend toward the need for more
reliable machines. Rotating machines are commonly used mechanical equipment in
various industrial applications. They accounts for more than 90% of industrial machines
[1]. As these machines usually operate under dynamic and harsh conditions for a long
time, they often suffer from various types of mechanical failures. Any type of failure in
rotating machines, even minor failure, cannot be accepted as it can significantly affect
the entire system, and can even lead to undesirable downtime, huge economic losses and
serious safety problems [2, 3]. Consequently, research on fault diagnosis is practically
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significant to enhance the reliability of machines, reduce economic losses, and avoid
safety problems [4, 5].

Over the last decades, numerous methods have been presented to diagnose the faults
of rotatingmachines. These methods fall into three broad classes: model-basedmethods,
statistical methods, and artificial intelligence-based methods [6]. Model-based meth-
ods are formed based on the physical characteristics of a monitored machine with the
necessary assumptions to establish an explicit mathematical model [7]. However, it is
challenging to establish an exact mathematical model for complex systems [8]. The high
complexity of industrial faults and the cost of model-based methods limit their appli-
cability in fault diagnosis of machines. Statistical methods assume that historical data
can be used to establish the fault modes and the future mechanism of machine failure
[9]. However, this assumption might not hold in practical scenarios because the failure
mechanisms of machines are complex, nonlinear, and involve the coupling of differ-
ent physical processes. Nowadays, artificial intelligence-based fault diagnosis methods
are the focus of academic and industrial research for overcoming the problems in the
fault diagnosis of complex industrial machines [10]. The primary reason is that artificial
intelligence methods are instrumental if they can be improved as compared with other
methods. Artificial intelligence can be easily extended and modified. These methods can
also be made adaptive by integrating new data [11].

Motivated by the advantages of artificial intelligence methods, intelligent fault diag-
nosis methods have gained great attention in recent decades. Therefore, this paper pro-
vides a review of artificial intelligence methods applied for fault diagnosis of rotating
machines, with a special emphasis given to deep learning methods published from 2017
to 2022. This paper analyzes the strengths and weaknesses of each method, so as to
give valuable guidance for researchers in selecting an appropriate intelligent method for
specific applications instead of choosing randomly. The research challenges in this field
are also discussed to provide possible research directions for further exploration.

The remainder of this paper is organized as follows. Section 2 provides a general
overview of intelligent fault diagnosis of rotatingmachines. Section 3 presents a detailed
review of the applications of deep learning methods in the fault diagnosis of rotating
machines. Section 4 discusses the observations of the review, research challenges, and
future direction in this area. Finally, conclusions are drawn in Sect. 5.

2 Overview of Intelligent Fault Diagnosis of Rotating Machines

In the last decades, traditional machine learningmethods have beenwidely applied in the
intelligent fault diagnosis of rotating machines. These methods mainly comprise three
consecutive steps: data acquisition, feature extraction, and fault classification [12, 13].
In the data acquisition stage, a variety of signals such as vibration, acoustic emission,
noise, temperature, etc., are acquired from target machines by sensor systems [14]. In
the feature extraction stage, fault-sensitive information from sensor signals is manu-
ally extracted using different types of signal processing methods [15]. Such processes
rely too much on the step of feature extraction, which requires prior signal processing
knowledge and diagnosis experience [16, 17]. Finally, the extracted features are fed into
the traditional machine learning methods for classification [18, 19]. However, the tradi-
tional machine learning methods are designed for specific types of faults or machines
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and therefore are case dependent and not used for general applications [20]. Moreover,
these methods are not efficient for processing high-dimension data [21]. In general,
traditional intelligent diagnosis methods have low diagnosis performance for machines
that operate under adverse and complex conditions [22]. These reasons can seriously
restrict the applicability of traditional machine learning methods for rotating machine
fault diagnosis.

Recently, deep learningmethods have received great interest and achieved significant
successes in machine fault diagnosis, which overcomes the limitations of traditional
machine learning methods [23, 24]. Deep learning-based fault diagnosis methods can
extract the learnable features from large amounts of sensor data directly by constructing
deep network architecture with multiple layers of linear and non-linear transformations
and performs an end-to-end fault diagnosis [25, 26]. In the following section, the most
common deep learning methods have been discussed.

3 Deep Learning Methods in Fault Diagnosis of Rotating Machines

This section reviews the applications of the most common deep learning methods and
their corresponding variants in fault diagnosis of rotating machines.

3.1 Convolutional Neural Network (CNN)

Convolutional neural network (CNN) is a biologically inspired feed-forward neural net-
work used to extract local features from the raw sensor data to perform classification
[27]. The typical convolutional neural network model consists of multiple hidden lay-
ers, namely, the convolution layer, pooling layer, and fully connected layer [28]. The
convolution layer is composed of a series of learnable filters (also known as kernels)
that can extract different features of input data to generate new feature maps as the input
to the next layer. The pooling layer is the down-sampling layer which decreases the
size of the input and the number of parameters, and thus it can decrease the number of
computations and prevent overfitting. The fully connected layer is used to compute the
class scores [29].

Convolutional neural network (CNN) was originally designed for processing two-
dimensional (2D) or three-dimensional (3D) input data such as images and video frames
[30]. The traditional CNN is not suitable for fault diagnosis of mechanical equipment
since most measured signals are one-dimensional (1D) signals. Thus, the input 1D data
needs to be converted into 2D data through somemethods to complete the feature extrac-
tion and classification [31]. Studies by [32, 33] proposed CNN-based fault diagnosis
methods by converting the original 1D signals into 2D images for differentmachine diag-
nosis tasks. However, the process of converting the original signal is time-consuming,
and may certainly cause the loss of faulty data. The emergence of a one-dimensional
convolutional neural network (1D-CNN) provides a feasible solution to avoid the above
problems. Compared with 2D-CNN, 1D-CNN has a simpler and more compact network
structure, and it can effectively diagnose the faults ofmachineswith limited training data.
Using one-dimensional vibration signals as input data, researchers often utilize a 1D-
CNN to diagnose the faults of different rotating machine components, such as bearings
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[12, 20, 34], automobile engines [35], and gearboxes [36]. Abdeljaber et al. [37] used a
one-dimensional convolutional neural network (1D-CNN) for structural damage detec-
tion based on vibration signals. Yin et al. [38] combined 1D-CNNwith self-normalizing
neural networks (SNN) to improve the diagnosis accuracy and generalization capability
of rotating machine fault diagnosis.

Many researchers have made significant efforts on developing novel CNN-based
models and have achieved considerable progress. Jia et al. [39] developed a deep nor-
malized CNN for imbalanced fault classification of machines frommechanical vibration
signals. In [40, 41], an adaptive deep CNN model was to diagnose the faults of rolling
bearings.Kolar et al. [42] proposed amulti-channels deepCNNmodel for rotarymachine
fault diagnosis from the raw vibration data. Sun et al. [43] presented a convolutional
discriminative feature learning (CDFL) approach to diagnose the faults of the motor.
Dilated CNN methods have been used for bearing fault diagnosis from raw vibration
signals [44, 45]. Liu [46] developed a dislocated time series CNN to diagnose the faults
of an induction motors. Zhang et al. [47] utilized a CNN model with wide first-layer
kernels for rolling bearing fault diagnosis using one-dimensional vibration data. Chen
et al. [48] developed a novel deep capsule networkwith stochastic delta rule (DCN-SDR)
for rolling bearing fault diagnosis. Ye and Yu [49] proposed a deep morphological CNN
for fault diagnosis of the gearbox. Wang et al. [50] developed a novel multiple-input,
multiple-task CNNmethod for roller bearing fault diagnosis. Studies [51–53] proposed a
hierarchical convolutional neural network (HCCN) for fault diagnosis of different rotat-
ing machine components. Zhang et al. [54] developed an intelligent method based on
multi-level information fusion and hierarchical adaptive CNN to diagnose the faults of
centrifugal blowers. Jiang et al. [55] developed a multiscale convolutional neural net-
work (MSCNN) for fault diagnosis of wind turbine gearboxes.Wang et al. [56] proposed
a cascade CNN with progressive optimization for motor fault diagnosis under dynamic
working conditions.

3.2 Recurrent Neural Network (RNN)

Recurrent neural network (RNN) is the deepest neural network with both feedforward
connections and internal feedback connections between network layers. Varying from
feedforward neural networks like CNN, RNN can exploit temporal information from
multiple sequential data because of its internal memory. Neurons of RNN can not only
receive information from other neurons but also receive their information to form a net-
work structurewith loops. RNNhasmore advantages in exploiting temporal information.
Thus, it has been widely utilized in machine fault diagnosis. Hu et al. [57] utilized an
improved deep RNN for rotating machine fault diagnosis. Huang et al. [58] proposed
the RNN-based variational auto-encoder (VAE) for motor fault detection. However,
RNN has gradient vanishing and exploding problems, thus it has inherent limitations in
capturing long-term information [59, 60]. To overcome the limitations of the recurrent
neural network, researchers have proposed long short-termmemory (LSTM) [61], gated
recurrent unit (GRU), and other improved RNN models.

As an improved recurrent neural network, LSTM resolves the problems of gradient
vanishing and exploding, and captures long-term dependencies and nonlinear dynamics
of time series data [62]. As a result, the LSTM model with memory function has gained
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increasing attention in machine fault diagnosis. For instance, Yin et al. [63] developed
an optimized fault diagnosis method based on the cosine loss LSTM neural network
for the wind turbine gearbox. Yang et al. [64] developed an improved long short-term
memory model to diagnose the faults of electromechanical actuators. However, LSTM
cannot make full use of data since it can only process data in one direction [65]. Further-
more, unidirectional LSTM has a relatively high network complexity, thus the training
process takes a long time [66]. Bi-directional LSTM is an improvement of LSTM that
can address the limitations of unidirectional LSTM. Bi-directional LSTM can extract
features from both forward and backward directions. Cao et al. [67] developed a novel
intelligent method based on deep bi-directional LSTM diagnose the faults of wind tur-
bine gearboxes. Han et al. [68] combined Bi-LSTM and a Capsule Network with a CNN
for rotating machine fault diagnosis. The bi-directional LSTMwas used to complete the
feature denoising and fusion, which was extracted by a convolutional neural network
and used a capsule network to achieve the fault diagnosis for insufficient training data.
Li et al. [69] utilized Bi-LSTM to detect the faults of rolling bearings. Thus, Bi-LSTM
has higher diagnosis accuracy and efficiency than unidirectional LSTM.

Compared with the LSTM model, a gated recurrent unit (GRU) can better handle
large training data with a simple network structure and fewer parameters, thus it greatly
reduces the calculation efficiency [70]. Liu et al. [71] utilized aGRU todiagnose the faults
of rolling bearings. Tao et al. [72] utilized a multilayer GRU method for fault diagnosis
of spur gear from vibration signals. To verify its superiority, the proposed method was
compared with LSTM, multilayer LSTM, and support vector machine (SVM). Besides
the most basic GRU structure, Bidirectional GRU (Bi-GRU) has also been employed
for fault diagnosis. Bi-GRU can learn information from both forward and backward
directions of the input data at the same time. For this reason, Lv et al. [73] proposed a
new heterogeneous Bi-GRU method based on fusion health indicators. Zhao et al. [74]
utilized a local feature-based GRU network for bearing fault diagnosis. This method
used an enhanced bi-directional gated recurrent unit to extract high-level features from
vibration data.

Recurrent neural network and its improvement have also been combined with other
machine learning methods. Fu et al. [75] combined a CNN with a LSTM to monitor and
warn of the fault of wind turbine gearbox bearing using temperature data. Zhao et al.
[76] also combined bi-directional LSTM with CNN to address tool wear prediction
tasks. In this study, convolutional neural network was used to extract local features from
the sequential input, and bi-directional long short-term memory was used to encode the
temporal information. Qiao et al. [77] combined a deep CNNwith LSTM to complete an
end-to-end bearing fault diagnosis under variable loads and different noise interferences.
Liao et al. [78] developed a fault diagnosis method for hydroelectric generating units
based on one-dimensional convolutional neural network andGRU from the raw vibration
signal collected under different operational conditions.

3.3 Generative Adversarial Network (GAN)

In practical engineering scenarios, the faulty data collected from the target machine
is usually more limited than the normal data, i.e., the model training data is highly
imbalanced. The deep learning method trained with imbalanced data is prone to poor
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generalization performance. The generative adversarial network is a well-known data
generative model inspired by the game theory that can address the data imbalance prob-
lem [79]. The generative adversarial network (GAN) model is mainly composed of a
Generator and a Discriminator [80]. The generator receives the original data to generate
new data that have a similar distribution to the real data, thus expanding the training
dataset. The generated new data are imported to the discriminator with the original data
to predict whether the input data are real or false data [81]. As a result, GAN has been
successfully employed to fault diagnosis. For instance, Liu et al. [82] developed a fault
diagnosis method based on global optimization generative adversarial network to solve
the unbalanced data problem of rolling bearings. Ding et al. [83] proposed a novel fault
diagnosis method for rotating machines based on GAN, and validated the effectiveness
through small sample rolling bearing and gearbox datasets.

Recently, researchers have made many improvements and developed a wide variety
of generative adversarial network variants. For instance, Yan et al. [84] developed a
fault detection and diagnosis method that utilizes the conditional Wasserstein GAN to
overcome the imbalanced data problem for air handling units. Zheng et al. [85] proposed
a conditional GANmodel with a dual discriminator for imbalanced rolling bearing fault
diagnosis. Studies by [86–89] used a deep convolutional GAN for fault diagnosis of
rotating machines with imbalanced data. Luo et al. [90] utilized a conditional deep con-
volutional GAN to address the data imbalance problem in machine fault diagnosis. Shao
et al. [91] utilized an auxiliary classifier GAN to generate fake sensor signals to solve
unbalanced fault data problems and diagnose the faults of the induction motor. Xiong
et al. [92] utilized aWasserstein gradient-penalty GANwith a deep auto-encoder (DAE)
to diagnose the faults of rolling bearing. However, Wasserstein gradient-penalty GAN
has the shortcomings of vanishing gradient and mode collapse. As a result, Li et al. [93]
proposed a rotating machine fault diagnosis model based on a deep Wasserstein GAN
with gradient penalty for the imbalanced data problem. Zareapoor et al. [94] developed a
newmodel namedMinority oversampling GAN for class-imbalanced fault diagnosis. Zi
et al. [95] proposed a novel multitask redundant lifting adversarial network (MRLAN),
and the results confirm its satisfactory performance under sharp speed fluctuation and
little data. Liu et al. [96] developed a variational auto-encoding GAN model with deep
regret analysis for bearing fault diagnosis. The study by [97] combined an auxiliary clas-
sifier GAN with a stacked denoising auto-encoder for fault diagnosis of rolling bearing.
Liu et al. [98] proposed a categorical adversarial auto-encoder (CatAAE) for fault diag-
nosis of rolling bearings under different working conditions and achieved satisfactory
performance and high clustering indicators even in different working conditions.

While GAN and its extensions have yielded certain success for the imbalanced train-
ing dataset problem, there are still some practical problems that need further exploration.
For example, sometimes GAN generates no reasonable data due to the lack of auxiliary
information in the deep features of input data. Besides, to create sufficient fault data, a
generative adversarial network consumes a huge computing resources and takes a long
training time. Consequently, it is practically significant to develop novel fault diagnosis
methods based on GAN to overcome these real problems.
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3.4 Auto-Encoder (AE)

Auto-encoder (AE) is an unsupervised feed-forward neural network that uses a back-
propagation algorithm to learn discriminative features in an unsupervised manner by
minimizing reconstruction error between the input data and the output data [99, 100].
The typical AE consists of the input layer, hidden layer, and output layer. The input and
hidden layers form the encoder network, whereas the hidden and output layers form the
decoder network [101]. The encoder transforms the high-dimensional input data into
low-dimensional hidden features and the decoder reconstructs the input data from the
learned hidden features [102].

Compared with supervised deep learning methods like CNN and RNN, the auto-
encoder possesses the properties of unsupervised learning, high-efficiency training, sim-
ple structure, and easy implementation. As a result, auto-encoders had been applied for
fault diagnosis of bearings [103], electric motors [104, 105], turbines [106], and other
components. However, the standard auto-encoder (AE) has limited feature extraction
capability for fault diagnosis tasks due to the lack of label data [107]. Moreover, in most
practical situations, the measured signals are always polluted by heavy background
noises, which decreases the performance of the standard auto-encoder. To overcome the
aforementioned challenges, several variants of the auto-encoder have been introduced
into rotating machine fault diagnosis. The common variants are denoising auto-encoder
(DAE), sparse auto-encoder (SAE), contractive auto-encoder (CAE), and variational
auto-encoder (VAE) [108]. The AE, DAE, SAE, and CAE can be stacked to extract
deep features with better representative ability, which are named stacked auto-encoder
(SAE), stacked denoising auto-encoder (SDAE), stacked sparse auto-encoder (SSAE),
and stacked contractive auto-encoder (SCAE), respectively. The following subsection
reviews their applications in machine fault diagnosis.

Stacked Auto-Encoder (SAE). The structure of the stacked auto-encoder (SAE) is
composed of multiple auto-encoders stacked that can extract more implicit features
from high-dimensional complex data and reduce the dimensionality of input data than a
single auto-encoder [109]. In SAE, the output of the formerly hidden layer is used as the
input to the next hidden layer [110]. Since SAE is an unsupervised learning method, it
cannot be directly employed for machine fault diagnosis. Consequently, a classification
layer is usually added at the end of the network structure of the model. In this context,
Liu et al. [111] proposed a stacked auto-encoder (SAE) based deep learning method for
gearbox fault diagnosis. Studies by [112, 113] utilized SAE to develop new methods for
fault diagnosis of roller bearings. Karamti et al. [114] developed a fault diagnosismethod
based on stacked auto-encoders for diagnosing rotating system faults with imbalanced
samples. An et al. [115] developed a batch-normalized stacked auto-encoder method for
intelligent fault diagnosis of rotating machines. The effectiveness of this method was
validated through motor bearing and gearbox datasets. Shao et al. [116] also proposed
an improved SAE to diagnose the faults of rotating machines, and its effectiveness was
validated through sun gear and roller bearing datasets.

Denoising Auto-Encoder (DAE). The denoising auto-encoder (DAE) is an AE
obtained by adding noise to the input data with some statistical characteristics to increase
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the anti-noise capability [117]. DAE can automatically extract robust features from cor-
rupted and partially destroyed data, so it is more suitable for fault diagnosis of different
rotating machines. For instance, studies by [118, 119] employed a DAE to diagnose the
faults of rolling bearings. Lu et al. [120] applied the stacked denoising auto-encoder
(SDAE) for rolling bearing fault diagnosis. Zhao et al. [121] developed a deep learning
method using a SDAE for motor fault diagnosis. Chen and Li [122] applied a deep neural
network based on a SDAE to diagnose the faults of the rotor system. J. Yu [123] proposed
a manifold regularized SDAE (MRSDAE) for planetary gearbox vibration signals. Zhan
et al. [124] also utilized a SDAE combinedwith a SVMclassifier for a permanentmagnet
synchronous motor used in an electric vehicle. Xu et al. [125] proposed an intelligent
fault diagnosis method for metro traction motor bearings based on an improved SDAE.
Xiao et al. [126] proposed a noisy domain adaptive marginal SDA for fault diagnosis
of gear and motor using acoustic signals. Godói et al. [127] proposed a new denoising
convolutional AE method configuration employed to the condition monitoring of rotat-
ing machines. Zhao et al. [128] combined a one-dimensional denoising convolutional
auto-encoder (DCAE) with a 1D-CNN for rotating machine fault diagnosis under noisy
environments. Although DAE can extract robust features and achieve remarkable results
in fault diagnosis, it takes more time to select the most suitable corruption level and
corrupt the input data into corrupted inputs of the DAE.Moreover, the extracted features
by DAE may consist of some useless features for fault diagnosis.

Sparse Auto-Encoder (SAE). As an extension of AE, the sparse auto-encoder (SAE)
is a widely used auto-encoder that introduces the sparse penalty term, adding constraints
to the hidden layer for a concise expression of the input data [129]. Compared with other
deep learning methods, SAE is superior in extracting sparser features, highly discrimi-
native, and useful for classification. As a result, many researchers have widely used SAE
for fault diagnosis of rotating machines. For instance, Xin et al. [130] combined a sparse
auto-encoder with softmax regression to diagnose the fault of the attachment on the
blades of the marine current turbine. Zhao et al. [131] proposed a semi-supervised deep
SAE with local and non-local information for fault diagnosis of rotating machines. Kim
et al. [132] utilized a sparse SAE to develop a new fault diagnosismethod for the gearbox.
Qi et al. [133] developed an intelligent fault diagnosis method based on a SSAE, and
its effectiveness was validated through rolling bearing and gearbox vibration datasets.
Sun et al. [101] developed a novel intelligent diagnosis method of automatic feature
learning and classification of rotating machines based on SSAE. Studies by [134–137]
proposed new fault diagnosis methods based on sparse stacked denoising AE for bearing
fault diagnosis. Zhang et al. [138] also developed a stacked pruning sparse denoising AE
method for rolling bearing fault diagnosis. Wen et al. [139] proposed a new fault diagno-
sis method based on stack pruning sparse denoising auto-encoder and CNN to detect and
categorized the actuator damage fault of the unmanned aerial vehicle, and showed good
fault diagnosis accuracy in an actual high noise environment. Jia et al. [140] developed a
local connection network (LCN) constructed by normalized sparse autoencoder (NSAE)
for fault diagnosis of rotating machines. The superiority of the proposed NSAE-LCN
was verified using gearbox and bearing datasets. However, the accuracy and generaliza-
tion ability of sparse stacked auto-encoder is affected by its hyperparameter settings and
there is no clear rule for determining the optimal hyperparameter values, which heavily
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depends on experimental experience. Moreover, the standard learning method employed
in sparse stacked auto-encoder is time-consuming.

Contractive Auto-Encoder (CAE). The contractive auto-encoder (CAE) is a well-
known AE variant that can automatically learn more robust features and is thus suitable
for dealing with noise-overwhelmed signals. The robustness of the data description is
obtained by adding a contractive penalty to the error function of the reconstruction. This
penalty is used for penalizing the attribute sensitivity in the input variations. CAE can
handle noisy data without knowing noise intensity and has been applied successfully
for robust feature extraction and fault classification. Qi et al. [141] proposed a new
deep fusion network that combined the SSAE and CAE for fault diagnosis of bearing
and gearbox. Fu et al. [142] also proposed a deep contractive auto-encoding network
(DCAEN) for fault diagnosis of bearing. Shen et al. [143] applied a stacked contractive
auto-encoder (SCAE) for feature extraction and fault diagnosis of rotating machines.
Gao et al. [144] proposed a new ensemble deep CAE method for machine fault diag-
nosis under noisy environments. The effectiveness proposed method was verified using
bearing, gearbox, and self-priming centrifugal pump datasets. However, CAE still has
higher reconstruction errors during the encoding and decoding process of input features
to the network that cause difficulty to capture the useful information within the feature
space.

Variational Auto-Encoder (VAE). As a generation model, variational auto-encoder
(VAE) can augment the dataset by generating meaningful synthetic data similar to the
original real data and has been successfully employed in fault diagnosis of different
rotating machines [145]. In [146–148], a variational auto-encoder has been employed to
create fault data of bearings. Sun et al. [149] developed a novel fault diagnosis method
called conditional variational auto-encoder generative adversarial network for plane-
tary gearboxes to solve small sample problems. However, the data augmented by the
variational auto-encoder is not always real data. Thus, how to make the data samples
generated by variational auto-encoder more real is still a challenge that requires further
exploration.

3.5 Deep Belief Network (DBN)

Deep belief network (DBN) is a probability generation model composed of several
layers of restricted Boltzmann machines (RBMs), where the output of the previously
hidden layer is utilized as the input of the next layer [150] and the last layer is the
backpropagation neural network. The training process of DBN comprises two stages:
forward unsupervised greedy layer-by-layer pre-training and backward supervised fine-
tuning process. The forward pre-training phase is an unsupervised training process that
aims to extract features from bottom to top layer-by-layer. After the pre-training of
multiple RBMs, the fine-tuning phase is then utilized with a backpropagation algorithm
to optimize the parameters and structure of the pre-trained network to further enhance the
classification accuracy. In fine-tuning, the weights and biases of every layer are updated
continuously until the iteration reaches the limit [151].
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Since deep belief network (DBN) is suitable for processing one-dimensional data, its
applications in fault diagnosis are reported frequently. For instance, Shang et al. [152]
proposed a diagnosis method based on DBN for rolling bearings, which reduces the
complicated network structure to some extent. Qin et al. [153] proposed a new fault
diagnosis method using a DBN for planetary gearboxes of wind turbines. Yan et al.
[154] also proposed a rotor unbalance fault diagnosis method using a multi-deep belief
networkmodelwithmulti-sensor information.Han et al. [155] combined theDBNmodel
with wavelet packet energy entropy and multi-scale permutation entropy to diagnose
gear faults. The authors of [156] proposed a new condition monitoring method for
rolling bearings by using the DBNmodel optimized by themulti-order fractional Fourier
transformfiltering algorithmand the sparrow search algorithm.Zhang et al. [157] applied
a DBN algorithm to diagnose the fault of the power system, and enhanced the ability of
feature extraction and fault classification by enhancing the networkmodel. Yu et al. [158]
proposed a novel fault diagnosis method by hybridizing DBN with Dempster-Shafer
theory for diagnosing the wind turbine system.

The performance of deep belief networks inmachine fault diagnosis depends heavily
on their structure. To obtain an optimal network structure with high performance and
training speed, researchers utilized various optimization techniques. In the literature
[159, 160], the network structure and learning rate of DBN were optimized by using the
PSO algorithm, and the diagnosis accuracy was improved. Wen et al. [161] combined
the deep belief network with a fuzzy mean clustering algorithm for rolling bearing fault
diagnosiswithout using data labels.Gao et al. [162] optimized the network architecture of
a deep belief network using a salp swarm algorithm and utilized it for rolling bearing fault
diagnosis. Similarly, Kamada et al. [163] used the neuron generation annihilation and
layer generation algorithm to propose the adaptive structure learningmethod of restricted
Boltzmann machine and deep belief network, and achieved remarkable success. Shen
et al. [164] developed an improved hierarchical adaptive DBN optimized by Nesterov
momentum (NM) for bearing fault diagnosis.

4 Discussion, Existing Challenges and Future Directions

As seen from the review provided, traditional machine learning methods and deep learn-
ing methods are widely applied in intelligent machine fault diagnosis. Intelligent fault
diagnosis methods based on traditional machine learning have been widely investigated
in the field of fault diagnosis of rotating machines, but they have limitations in process-
ing massive amounts of data as useful features are extracted manually with prior expert
experience. Different from traditional machine learning methods, deep learning meth-
ods can extract abstract features from massive and heterogeneous mechanical signals
with the help of their multilayer nonlinear mapping ability to perform an end-to-end
fault diagnosis. Table 1 reveals the strengths and weaknesses of deep learning methods
applied in fault diagnosis of industrial machines.

Although deep learning methods have achieved tremendous success in fault
diagnosis, there are still some practical problems that need further exploration.

1. Most existing deep learning methods often need a sufficient amount of labeled data
for model training, which achieves great results in laboratory experiments since
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Table 1. Strengths and weaknesses of deep learning methods.

Deep learning method Strengths Weaknesses

CNN 1. Good for multi-dimensional
data
2. Good in extracting local
features
3. Suitable to process image data

1. Complex architecture, and
hence hard to train
2. Require sufficient training data
3. Overfitting problem

RNN 1. Suitable for sequential data
2. Detect changes over time

1. Difficult to train and
implement since the architecture
is complex
2. Gradient vanishing and
exploding problem

GAN 1. Efficient for small dataset 1. Difficult to train
2. Limited data generation ability
in case of very small training
data

AE 1. Easy to implement
2. Takes small training time
3.Does not require labeled data

1. Requires lots of training data
2. Requires more information
compared to relevant information
3. Ineffective when errors are
present in the first few layers

DBN 1. Most suitable for
one-dimensional data
2. Extract large-scale features
from the input data
3. High performance in handling
complex data without data
preparation steps
4. Difficulties in avoiding poor
local optima and optimization are
mitigated

1. Training is very slow because
of complex initialization and
computationally expensive
2. Multiple stochastic hidden
layers lead to inferences and
intractable learning

there is sufficient labeled data. However, it is hard to acquire massive data or even
impossible in practical industrial scenarios as most machines operate in healthy
conditions.

2. Existing deep learning methods can recognize faults accurately with the assumption
that the training dataset and the testing dataset are drawn from the same machine
under the sameworking conditions. This assumptionmay not hold inmany real cases
due to variations inmachineworking conditions, interference of environmental noise,
etc., which leads to significant diagnosis performance deterioration.

3. In practical industrial applications, the collected sensor signals from rotating
machines are usually polluted by various forms of noise, thereby reducing the
performance of the existing fault diagnosis methods.
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4. For long-term monitoring, it is essential to achieve early fault detection of rotat-
ing machines. However, in real practice, it is quite difficult to realize the faults at
the earliest stage due to the weakness of impulse signals and the interference of
environmental noise.

5. Furthermore, rotatingmachines operate for a long time under changeable conditions,
and compound faults may occur simultaneously. Not only this, multiple rotating
machine components may fail at a time. Most existing studies have ignored the
existence of simultaneous fault problems.

Therefore, it is of great significance to resolve these practical problems and advance
intelligent diagnosis methods for promising employment in modern industrial applica-
tions. The following are some possible research directions given to researchers, readers,
and engineers who aim to contribute to the advancement of artificial intelligence in the
fault diagnosis of rotating machines.

Active research area toward promising results.

1. The emergence of transfer learning provides a feasible solution to overcome the
abovementioned gaps. Different from deep learning, transfer learning targets to
extract knowledge obtained in the source domain and transfer it to resolve a dif-
ferent but similar problem in another domain task. Therefore, transfer learning is
becoming an active research area in the field of intelligent machine fault diagnosis.

2. Based on the review provided, some deep learning methods have strong feature
extraction capabilities and others have limitations in fault classification. To break
the limitation of a single method, researchers still have great possibilities to propose
hybrid deep learning-based fault diagnosis methods for rotating machines.

5 Conclusions

This paper reviewed the applications of artificial intelligencemethods for the diagnosis of
the faults of rotating machines. The observations, research gaps, and some new research
prospects in this research area are discussed. From the review, it is concluded that deep
learning methods have better feature learning ability, better adaptability, and a more
flexible network structure as compared with conventional machine learning methods.
However, their applicability in fault diagnosis is highly restricted by the amount and
quality of the training data, the variation of operating conditions, the disturbance of
background noise, the weakness of early failure detection, and the occurrence of hidden
simultaneous faults. To address these limitations, transfer learning is becoming a hot
research topic in machine fault diagnosis. In addition, new intelligent diagnosis methods
are needed to be able to combine the advantages of both methods in the future. In the
future, the authors will continue to review the applications of transfer learning for the
diagnosis of faults of rotating machines.

References

1. Han, T., Zhang, L., Yin, Z., Tan, A.C.C.: Rolling bearing fault diagnosis with combined con-
volutional neural networks and support vector machine. Measurement 177, 109022 (2021).
https://doi.org/10.1016/j.measurement.2021.109022

https://doi.org/10.1016/j.measurement.2021.109022


Applications of Artificial Intelligence for Fault Diagnosis 53

2. Liang, P., Deng, C., Wub, J., Yang, Z.: Intelligent fault diagnosis of rotating machinery via
wavelet transform, generative adversarial nets and convolutional neural network.Meas. J. Int.
Meas. Confed. 159, 107768 (2020). https://doi.org/10.1016/j.measurement.2020.107768

3. Youcef Khodja, A., Guersi, N., Saadi, M.N., Boutasseta, N.: Rolling element bearing fault
diagnosis for rotating machinery using vibration spectrum imaging and convolutional neural
networks. Int. J.Adv.Manuf. Technol.106(5–6), 1737–1751 (2019). https://doi.org/10.1007/
s00170-019-04726-7

4. AlShorman, O., et al.: Sounds and acoustic emission-based early fault diagnosis of induction
motor: a review study. Adv. Mech. Eng. 13(2), 1–19 (2021). https://doi.org/10.1177/168781
4021996915

5. Eren, L., Ince, T., Kiranyaz, S.: A generic intelligent bearing fault diagnosis system using
compact adaptive 1D CNN classifier. J. Signal Process. Syst. 91(2), 179–189 (2018). https://
doi.org/10.1007/s11265-018-1378-3

6. You, D., et al.: Intelligent fault diagnosis of bearing based on convolutional neural network
and bidirectional long short-term memory. Shock Vib. 2021, 1–12 (2021). https://doi.org/
10.1155/2021/7346352

7. Zhang, Y., et al.: A simultaneous fault diagnosis method based on cohesion evaluation and
improved BP-MLL for rotating machinery. Shock Vib. 2021, 1–12 (2021). https://doi.org/
10.1155/2021/7469691

8. Lee, J.-H., Pack, J.-H., Lee, I.-S.: Fault Diagnosis of induction motor using convolutional
neural network. Appl. Sci. 9(15), 2950 (2019). https://doi.org/10.3390/app9152950

9. Wen, L., Li, X., Gao, L., Zhang, Y.: A new convolutional neural network-based data-driven
fault diagnosis method. IEEE Trans. Ind. Electron. 65(7), 5990–5998 (2018). https://doi.
org/10.1109/TIE.2017.2774777

10. Cheng, Y., Lin, M., Wu, J., Zhu, H., Shao, X.: Intelligent fault diagnosis of rotating machin-
ery based on continuous wavelet transform-local binary convolutional neural network.
Knowledge-Based Syst. 216, 106796 (2021). https://doi.org/10.1016/j.knosys.2021.106796

11. Siddique, A., Yadava, G.S., Singh, B.: Applications of artificial intelligence techniques
for induction machine stator fault diagnostics: review. In: IEEE International Symposium
on Diagnostics for Electric Machines, Power Electronics and Drives, SDEMPED 2003 -
Proceedings, pp. 29–34 (2003). https://doi.org/10.1109/DEMPED.2003.1234543

12. Peng, D., Liu, Z., Wang, H., Qin, Y., Jia, L.: A novel deeper one-dimensional CNN with
residual learning for fault diagnosis of wheelset bearings in high-speed trains. IEEE Access
7, 10278–12093 (2019). https://doi.org/10.1109/ACCESS.2018.2888842

13. Jiang, H., Li, X., Shao, H., Zhao, K.: Intelligent fault diagnosis of rolling bearings using an
improved deep recurrent neural network. Meas. Sci. Technol. 29(6), 065107 (2018). https://
doi.org/10.1088/1361-6501/aab945

14. Tiboni, M., Remino, C., Bussola, R., Amici, C.: A review on vibration-based condition
monitoring of rotating machinery. Appl. Sci. 12(3), 972 (2022). https://doi.org/10.3390/app
12030972

15. Zhong, J., Kin, P., Yang, Z.: Fault diagnosis of rotating machinery based on multiple proba-
bilistic classifiers. Mech. Syst. Signal Process. 108, 99–114 (2018). https://doi.org/10.1016/
j.ymssp.2018.02.009

16. Long, Y., Zhou, W., Luo, Y.: A fault diagnosis method based on one-dimensional data
enhancement and convolutional neural network. Meas. J. Int. Meas. Confed. 180, 109532
(2021). https://doi.org/10.1016/j.measurement.2021.109532

17. Chen, Z., Mauricio, A., Li, W., Gryllias, K.: A deep learning method for bearing fault
diagnosis based on cyclic spectral coherence and convolutional neural networks. Mech.
Syst. Signal Process. 140, 106683 (2020). https://doi.org/10.1016/j.ymssp.2020.106683

18. Gundewar, S.K., Kane, P.V.: Condition monitoring and fault diagnosis of induction motor.
J. Vib. Eng. Technol. 9(4), 643–674 (2020). https://doi.org/10.1007/s42417-020-00253-y

https://doi.org/10.1016/j.measurement.2020.107768
https://doi.org/10.1007/s00170-019-04726-7
https://doi.org/10.1177/1687814021996915
https://doi.org/10.1007/s11265-018-1378-3
https://doi.org/10.1155/2021/7346352
https://doi.org/10.1155/2021/7469691
https://doi.org/10.3390/app9152950
https://doi.org/10.1109/TIE.2017.2774777
https://doi.org/10.1016/j.knosys.2021.106796
https://doi.org/10.1109/DEMPED.2003.1234543
https://doi.org/10.1109/ACCESS.2018.2888842
https://doi.org/10.1088/1361-6501/aab945
https://doi.org/10.3390/app12030972
https://doi.org/10.1016/j.ymssp.2018.02.009
https://doi.org/10.1016/j.measurement.2021.109532
https://doi.org/10.1016/j.ymssp.2020.106683
https://doi.org/10.1007/s42417-020-00253-y


54 F. Kibrete and D. E. Woldemichael

19. Liang, C., Chen, C., Liu, Y., Jia, X.: A novel intelligent fault diagnosis method for rolling
bearings based on compressed sensing and stacked multi-granularity convolution denoising
auto-encoder. IEEE Access 9, 154777–154787 (2021). https://doi.org/10.1109/ACCESS.
2021.3129061

20. Chen, C.C., Liu, Z., Yang, G., Wu, C.C., Ye, Q.: An improved fault diagnosis using 1d-
convolutional neural network model. Electron. 10(1), 1–19 (2021). https://doi.org/10.3390/
electronics10010059

21. Patil, S.S., Pardeshi, S.S., Patange, A.D., Jegadeeshwaran, R.: Deep learning algorithms for
tool condition monitoring in milling: a review. J. Phys: Conf. Ser. 1969(1), 012039 (2021).
https://doi.org/10.1088/1742-6596/1969/1/012039

22. Qiao, H., Wang, T., Wang, P., Zhang, L., Xu, M.: An adaptive weighted multiscale con-
volutional neural network for rotating machinery fault diagnosis under variable operating
conditions. IEEEAccess 7, 118954–118964 (2019). https://doi.org/10.1109/ACCESS.2019.
2936625

23. Zhou, F., Sun, T., Hu, X., Wang, T., Wen, C.: A sparse denoising deep neural network for
improving fault diagnosis performance. SIViP 15(8), 1889–1898 (2021). https://doi.org/10.
1007/s11760-021-01939-w

24. Hoang, D.-T., Kang, H.-J.: Rolling element bearing fault diagnosis using convolutional
neural network and vibration image. Cogn. Syst. Res. 53, 42–50 (2019). https://doi.org/10.
1016/j.cogsys.2018.03.002

25. Inyang, U., Petrunin, I., Jennions, I.: Health condition estimation of bearings with multiple
faults by a composite learning-based approach. Sensors 21(13), 4424 (2021). https://doi.org/
10.3390/s21134424

26. Zhang, Y., Zhou, T., Huang, X., Cao, L., Zhou, Q.: Fault diagnosis of rotating machinery
based on recurrent neural networks. Meas. J. Int. Meas. Confed. 171, 108774 (2021). https://
doi.org/10.1016/j.measurement.2020.108774

27. Chen, Z., Gryllias, K., Li, W.: Mechanical fault diagnosis using convolutional neural net-
works and extreme learning machine. Mech. Syst. Signal Process. 133, 106272 (2019).
https://doi.org/10.1016/j.ymssp.2019.106272

28. Kiranyaz, S., Avci, O., Abdeljaber, O., Ince, T., Gabbouj, M., Inman, D.J.: 1D convolutional
neural networks and applications: a survey. Mech. Syst. Signal Process. 151, 107398 (2021).
https://doi.org/10.1016/j.ymssp.2020.107398

29. Wang, Q., Zhao, B., Ma, H., Chang, J., Mao, G.: A method for rapidly evaluating reliability
and predicting remaining useful life using two-dimensional convolutional neural network
with signal conversion. J. Mech. Sci. Technol. 33(6), 2561–2571 (2019). https://doi.org/10.
1007/s12206-019-0504-x

30. Wu,C., Jiang, P.,Ding,C., Feng, F., Chen,T.: Intelligent fault diagnosis of rotatingmachinery
based on one-dimensional convolutional neural network. Comput. Ind. 108, 53–61 (2019).
https://doi.org/10.1016/j.compind.2018.12.001

31. Oh, J.W., Jeong, J.: Convolutional Neural Network and 2-D Image Based Fault Diagnosis
of Bearing without Retraining. PervasiveHealth: Pervasive Computing Technologies for
Healthcare, 134–138 (2019). https://doi.org/10.1145/3314545.3314563

32. Ding, X., He, Q.: Energy-fluctuated multiscale feature learning with deep ConvNet for
intelligent spindle bearing fault diagnosis. IEEE Trans. Instrum. Meas. 66(8), 1926–1935
(2017). https://doi.org/10.1109/TIM.2017.2674738

33. Yuan, L., Lian, D., Kang, X., Chen, Y., Zhai, K.: Rolling bearing fault diagnosis based on
convolutional neural network and support vector machine. IEEE Access 8, 137395–137406
(2020). https://doi.org/10.1109/ACCESS.2020.3012053

34. Wang, H., Liu, C., Du, W., Wang, S.: Intelligent diagnosis of rotating machinery based
on optimized adaptive learning dictionary and 1DCNN. Appl. Sci. 11(23), 11325 (2021).
https://doi.org/10.3390/app112311325

https://doi.org/10.1109/ACCESS.2021.3129061
https://doi.org/10.3390/electronics10010059
https://doi.org/10.1088/1742-6596/1969/1/012039
https://doi.org/10.1109/ACCESS.2019.2936625
https://doi.org/10.1007/s11760-021-01939-w
https://doi.org/10.1016/j.cogsys.2018.03.002
https://doi.org/10.3390/s21134424
https://doi.org/10.1016/j.measurement.2020.108774
https://doi.org/10.1016/j.ymssp.2019.106272
https://doi.org/10.1016/j.ymssp.2020.107398
https://doi.org/10.1007/s12206-019-0504-x
https://doi.org/10.1016/j.compind.2018.12.001
https://doi.org/10.1145/3314545.3314563
https://doi.org/10.1109/TIM.2017.2674738
https://doi.org/10.1109/ACCESS.2020.3012053
https://doi.org/10.3390/app112311325


Applications of Artificial Intelligence for Fault Diagnosis 55

35. Du, C., et al.: Research on fault diagnosis of automobile engines based on the deep learning
1D-CNN method. Eng. Res. Express 4(1), 015003 (2022). https://doi.org/10.1088/2631-
8695/ac4834

36. Qian,W., Li, S., Wang, J., An, Z., Jiang, X.: An intelligent fault diagnosis framework for raw
vibration signals: adaptive overlapping convolutional neural network. Meas. Sci. Technol.
29(9), 095009 (2018). https://doi.org/10.1088/1361-6501/aad101

37. Abdeljaber, O., Avci, O., Kiranyaz, S., Gabbouj, M., Inman, D.J.: Real-time vibration-based
structural damage detection using one-dimensional convolutional neural networks. J. Sound
Vib. 383, 154–170 (2017). https://doi.org/10.1016/j.jsv.2016.10.043

38. Yang, J., Yin, S., Chang, Y., Gao, T.: A fault diagnosis method of rotating machinery based
on one-dimensional, self-normalizing convolutional neural networks. Sensors 20(14), 3837
(2020). https://doi.org/10.3390/s20143837

39. Jia, F., Lei, Y., Lu, N., Xing, S.: Deep normalized convolutional neural network for imbal-
anced fault classification of machinery and its understanding via visualization. Mech. Syst.
Signal Process. 110, 349–367 (2018). https://doi.org/10.1016/j.ymssp.2018.03.025

40. Fuan, W., Hongkai, J., Haidong, S., Wenjing, D., Shuaipeng, W.: An adaptive deep convolu-
tional neural network for rolling bearing fault diagnosis. Meas. Sci. Technol. 28(9), 095005
(2017). https://doi.org/10.1088/1361-6501/aa6e22

41. Islam, M.M.M., Kim, J.M.: Automated bearing fault diagnosis scheme using 2D representa-
tion of wavelet packet transform and deep convolutional neural network. Comput. Ind. 106,
142–153 (2019). https://doi.org/10.1016/j.compind.2019.01.008
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