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Preface

It is our pleasure to introduce the proceedings of the tenth edition of the EAI International
Conference on Advancements of Science and Technology (EAI ICAST 2022). EAI
ICAST is an annual conference, the 2022 edition took place at Bahir Dar Institute of
Technology, Bahir Dar University, Bahir Dar, Ethiopia. The conference covered topical
science and technology issues and brought together researchers, engineers, developers,
practitioners, scholars, scientists, and academicians from around the world.

The technical program of EAI ICAST 2022 consisted of seven main tracks: Track
1, Sustainable Processes for Green Technologies; Track 2, Artificial Intelligence and
Digitalization for Sustainable Development; Track 3, River Basin Management and
Trans-boundary Cooperation; Track 4, Agro-Mechanization and Manufacturing Sys-
tems; Track 5, Advances in Electrical and Computer Engineering; Track 6, Advances
in Green Energy Technologies; and Track 7, Materials for Emerging Technologies. A
total of 217 full papers were submitted, from which 90 papers were accepted in a peer
reviewed process. Each paper was reviewed by on average three reviewers who are
experts in the area. After a thorough evaluation process, the technical program consisted
of 64 high quality full research papers in oral presentation sessions in the seven main
conference tracks. In this LNICST volume, out of the 45 papers initially submitted to
the tracks related to artificial intelligence and digitalization, 18 papers were accepted for
publication.

The technical programof EAI ICAST2022 also featured two general session keynote
and ten track session keynote speeches along with exhibitions and poster presentations.
The two keynote speakers were Sossina Haile from Materials Science and Engineering
at Northwestern University, USA andAsregedewKassaWoldesenbet fromConstruction
Management at the Ethiopian Institute of Architecture Building Construction and City
Development, Addis Ababa University. The keynote speakers shared their research and
industry experience, respectively, in electrochemistry and construction. We sincerely
appreciate the work of the Steering Committee chair and members; the Organizing
Committee chair, Kibret Mequanint; the Organizing Committee co-chairs, Mekuanint
Agegnehu and Muluken Zegeye for their constant support and guidance which ensured
the success of the conference. It was also a great pleasure to work with such an excel-
lent Organizing Committee. We are grateful to the Technical Program Committee TPC
Co-chairs: Zenamarkos Bantie (Track 1), Abdulkerim Mohammed (Track 2), Birhanu
Kebede (Track 3), Assefa Asmare (Track 4), Teketay Mulu (Track 5), Eshetu Getahun
(Track 6), and Addisu Alemayehu (Track 7). The team performed exceptionally well
to handle the peer-review process and design a high-quality technical program. We are
also grateful to the conference manager, Veronika Kissova, for her support and guidance
throughout the process, and all the authors who submitted their papers to the EAI ICAST
2022 conference.



vi Preface

We are convinced that the EAI ICAST 2022 conference provided a good forum
for all scientific communities and a scientific body of knowledge we could use to dis-
cuss all science and technology aspects relevant to each track. We also expect that
future EAI ICAST conferences will be as successful and stimulating, as indicated by the
contributions presented in this volume.

Bereket H. Woldegiorgis
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Amharic Text Complexity Classification Using
Supervised Machine Learning
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2 ICT4D Research Center, Bahir Dar Institute of Technology, Bahir Dar University, Bahir Dar,

Ethiopia

Abstract. Amharic documents tremendously increase after the proliferation of
the internet. It uses a variety of lexicons to organize the document. Some of them
may not be familiar to second language learners and low literacy readers which
can cause difficulty to comprehend the idea. Text complexity is focused on how
difficult or easy a text is to read and understand based on the reader’s level of
knowledge. The appropriateness of text for a certain learner group needs to be in
line with their proficiency level. A document that contains complex lexicons can
also reduce the performance of NLP tasks such as machine translation. Studying
the complexity classification model for the Amharic text helps in solving text
complexity for a target population and NLP applications. In this paper, we have
developed a complexity classification model for Amharic texts using supervised
machine learning. For the experiment, 5126 sentences are used. TFIDF and BOW
with bigram language modeling are applied for vectorizing the text document and,
Support Vector Machine (SVM), Random forest (RF), and Naïve Bayes (NB)
algorithms are used for the experiment. SVM has better classification accuracy
with a result of 87.1% using bag-of-words (BOW) feature extraction and 10-
fold cross-validation. The RF and NB algorithms score an accuracy of 83% and
80.3% respectively. For error analysis, we have used Mean Square Error (MSE)
and Root Mean Square Error (RMSE) metrics. In this study, we have addressed
the classification of Amharic text complexity. The simplification process of such
identified complex texts is our recommendation for future research works.

Keywords: Text complexity · Supervised classification · Lexical complexity

1 Introduction

Natural language processing (NLP) is one of the emerging areas in the machine learning
research community (Santucci et al. 2020). It is applicable in many application areas
such as text classification for automatically understanding, processing, and categorizing
text data, Information extraction, and sentiment analysis. To present language learners
and low literacy readers with texts suitable to their level the morphological, lexical,

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2023
Published by Springer Nature Switzerland AG 2023. All Rights Reserved
B. H. Woldegiorgis et al. (Eds.): ICAST 2022, LNICST 455, pp. 1–12, 2023.
https://doi.org/10.1007/978-3-031-28725-1_1
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syntactic, and discursive complexity of a text is to be considered. NLP became interested
in automatically classifying the complexity of a text, typically using lexicon features is
a key solution for presenting documents appropriate to concerned bodies (Kurdi 2019).
Text documents utilize a wide variety of vocabularies, some of those words seem to be
unfamiliar to low literacy readers and increase document complexity. This complexity
is the degree of difficulty in reading and comprehending a text, which can be determined
based on a variety of characteristics such as familiarity of words, knowledge demands,
and the educational background of readers. The appropriateness of a text for a certain
learner group needs to be in line with the proficiency level of the learners (Knapp and
Antos 2016).

Lexical complexity is one of the text complexity issues that can happen due to the
existence of unfamiliar words in the document and it plays a critical role in readabil-
ity, particularly for children second language learners and poor readers because of their
laborious interpreting and word recognition skills (Gala and Ziegler 2016). Classifying
documents that contain complex lexicons which are considered hard to understand for a
target population is a vital step for text simplification (Shardlow et al. 2020). Text com-
plexity classification help to provide documents that can appropriate for certain readers
and to make information more accessible to a large variety of people with low literacy
levels including children, non-native speakers, and people with cognitive disabilities
(Rello et al. 2013) furthermore text complexity classification is a valuable preprocessing
stage for different NLP tasks, such as machine translation (Sulem et al. 2018), relation
extraction.

The Amharic language is a Semitic family and morphologically rich language which
is largely spoken in Ethiopia. Like other languages, the Amharic language is also one
research area for many NLP applications. Amharic documents can be organized using a
variety of words (lexicons). Some of the lexicons in the document may not be familiar
to certain readers which can cause difficulty to comprehend the idea of the content for
second language learners and low literacy readers (Belete et al. 2015). Ethiopia Early
GradeReadingAssessment studywhichwas conducted in 2010 and 2018 for 6 languages
in Ethiopia, such as Amharic, Somali, Tigrinya, Afan Oromo, Sidamigna, and Harrigan.
The study targeted grade 2 and grade 3 students. The assessments included letter sound
fluency, naming fluency of unfamiliar words, reading comprehension, and the ability of
listening comprehension. Fidel naming fluency in grade 3 scores are significantly higher
than those of grade 2 however children in all languages have limited skills in reading
and understanding new and unfamiliar words (Yigzaw 2018). To overcome the issue
of text complexity many researches are conducted for different languages such as Text
Complexity Classification Based on Linguistic Information for Italian text (Santucci
et al. 2020), Efficient Measuring of Readability to Improve Documents Accessibility for
Arabic Language Learners (Bessou and Chenni 2021). However, the complexity of text
depends on the language script, structure, and morphology. So, studying the complexity
classification model for the Amharic language helps in solving text complexity for a
target population. It can also help to improve the performance of NLP applications,
such as parsing, information extraction, and Machine translation (Sulem et al. 2018).
Furthermore, classifying Amharic text complexity is the base for future research work
on text simplification. Due to unavailability of such a complexity classification model
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for Amharic documents, we have developed an Amharic text complexity classification
using a supervised machine learning method. In this paper, we have compared different
supervised machine learning algorithms for classifying Amharic documents that contain
complex lexicon using TermFrequency-InverseDocument Frequency (TFIDF) andBag-
of-Word (BOW) feature extraction techniques.

2 Related Work

Recently due to the increase in the availability of text documents, machine learning-
based text classification becomes one of the key techniques for organizing text data
(Gasparetto et al. 2022), by exploiting a supervised learning method to assign prede-
fined labels to documents based on the prospect suggested through a trained set of labels
and documents (Zhang et al. 2008). One application area of those supervised machine
learning algorithms is text complexity classification.Measures appropriateness of text to
particular readerswidely in the education field to select texts thatmatch a learner’s under-
standing level and to support educationalists in conscripting textbooks and curricula that
much with students (Review 2021). Text complexity measurement and classification are
key in a variety of NLP applications such as sentiment analysis, text simplification, and
automatic translation for non-native readers of the language farther more the suitability
of a text for a certain learner group should be in line with the proficiency level of the
learners (Knapp and Antos 2016).

Measuring the complexity of a text using a supervised classificationmodel by using a
dataset of texts produced by linguistics and language experts for evaluating the language
abilities of non-native speakers of Italian (Santucci et al. 2020). They have used 692
sentences which have 336,022 tokens and 29,983 unique tokens collected from certifi-
cation materials. Based on their evaluation Random Forest and Support Vector Machine
resulted better than other models with an accuracy of 72.5% and 71.7% respectively.
Automatic text complexity classification model they proposed helps to introduce objec-
tivity in teaching tasks. The use of semantic features and automatic augmentation for
syntactic is uncovered tasks in the study.

The study conducted in reading for Ethiopia’s achievement developed monitoring
and evaluation (Read 2019), which concerns the subtasks of familiar words reading, new
words reading, and reading comprehensionof early-grade students. For the study, the data
is collected from 459 schools and evaluated by 17,879 students in grades 2 and 3. Their
result helps to determine students’ understanding of the text and their ability to answer
factual questions and make inferences based on what they read. So, using familiar words
concerning student’s grade level is help students easily read and recognize a text which
is their part of the conclusion. Supervised machine learning methods for identifying
Arabic text complexity using both count and TF-IDF feature representation techniques
and applied NB, LR, SVM, and RF (Bessou and Chenni 2021). Based on the author’s
experimental result SVM achieves the optimal result using TF-IDF Vectors trained by a
combination of word-based unigrams and bigrams. The accuracy of the selected model
was 87.14%. Covering additional domains for exploring deeper features like syntactic
and semantic features by increasing the corpus is their future research direction.
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3 Methodology

In this research work, we have followed an experimental research design for Amharic
text complexity classification for manipulating the effect of different variables such as
dataset size, text preprocessing, and feature representation technique on the result of the
accuracy of such Amharic text complexity classification task. The following phases are
the main components of our work dataset collection, dataset annotation, preprocessing,
word representation, train machine learning model, and evaluate the performance of the
model.

3.1 Amharic Text Dataset

The dataset for the Amharic text complexity classification task using a machine learning
model is collected from academic textbooks (from grade 6th to grade 12th), fiction,
and social media sources. These sources contain complex text identified by linguistics
and book authors (Endalemaw et al. 2012). We have used such resources because, for
appropriate data collection it is better to determine what types of data and sources
are needed (Muhammad and Kabir 2018). Such dataset collection process is the main
component of our research work that needs to be collected and analyzed appropriately.
In addition to this, we have conducted a sample survey evaluated by three Amharic
lingusts. The survey contains six pages of Amharic text which was randomly taken from
written material such as student textbooks, news, and fiction for the reader to identify
the sentence that contains unfamiliar words from the paragraph.

As we evaluated we found that 123 sentencess are indentified that contains complex
terms by all three annotators. They have identified sentences that contain words like

. Then based on the respondents we have collected a total of 5126
sentences, half of such sentences contain a complex word that is labeled as complex and
the rest are labeled as non-complex texts. Then before we vectorize the text data and
train the machine learning model we have applied different preprocessing stages for it.

Text Preprocessing. This stage is a very common task in NLP applications even the
way of preprocessing is depending on the type of dataset and the language. We have
used different preprocessing stages for our dataset because we have collected the dataset
from different sources which contains noise in various forms like special characters,
punctuation, different writing formats, and common words (the words which are not
content bearing). To develop an optimized model, appropriate data are required, and
preprocessing is a vital part of acquiring such data (Woo et al. 2020).

Tokenization. At this stage segment the annotated Amharic dataset into a list of tokens.
The process is performed for both the training and testing dataset and removing special
characters like because the existence of these characters does not have a
significant contribution to increase the performance of the classification model rather it
increases irrelevant features at the time of model training.

Stop-word Removal. Eliminating those stop-words from our dataset not only saves
time but also reduces the size and vector space of the text. In many natural lan-
guage processing applications, an appropriate stop-word extraction technique is required
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(Kaur 2018). Our aim in this stage is to remove low-level information, allowing
us to focus on the most important information. The existence of these stopwords
results in reduce the performance of the model (Qiang et al. 2016). Words like

are removed from our tokenized dataset.

Normalization. Some Amharic words can be written in a different format for the same
representation and function (homophones). To reduce such word variation, we have
transformed those words into a single representation (homophone normalization). Due
to historical sound changes, some of the graphemes that represent different sounds in
Ge’ez are now pronounced the same in Amharic. For example, the phoneme /h/ can be
represented by the series of graphemes (Zupon 2019) to reduce
such Fidel variation in Amharic words we have applied this normalization stage.

Morphological Analysis. Morphological analysis of highly inflected languages is a non-
trivial task and Amharic is one of the most morphologically complex languages (Goebel
2014). At this stage, we have reduced morphological variants of Amharic tokens to their
representative morpheme by removing affixes. To do this morpheme extraction process
we have used the hybrid technique of our root analyzer algorithm with HornMorpho
(Gasser 2011). The reason for a hybrid of such methods is to handle words that are
not analyzed by HornMorpho and to enable the analyzer to work with document-level
analysis.

Feature Extraction. To build a machine learning model for Amharic text complexity
classification, it is necessary to apply feature extraction operations on text data, in order
to transform it into computer understandable format (Gasparetto et al. 2022). This stage
is a very common part of the machine learning model building process because to train
the models the feature should be represented in numeric format. We have converted
the preprocessed text to numeric format using Term Frequency Inverse Document Fre-
quency (TFIDF)which is themost commonly used featureweighting technique formany
research (Das et al. 2021) and Bag of Words (BOW) with bi-gram language modeling to
handle the context and order of the tokens. Those techniques are common and popular
feature representation techniques for supervised machine learning models.

N-gram Language Modeling: The N-gram language model helps to predict the proba-
bility of a given N-word within any sequence of words in the language. We have used
this language modeling for handling the sequence of words in the document and exper-
imented with selected machine learning models based on the feature extracted using
TFIDF and BOW (Katona et al. 2021). Specifically for our study, we have used the
bigram feature by considering the sequence of two adjacent elements of tokens (Nur-
maini et al. 2021), for the arrangement represents of n-gram for n = 2 (Gbenga et al.
2021). The frequency distribution of eachword in the training dataset is considered using
such bigram language modeling and is used for context handling. The bigrammodel that
we have used approximates the probability of a word given all the previous words, by
using only the conditional probability of the last preceding word (using two words to
predict the probability)

p = (Wn|Wn−1) = p(wn − 1,wn)

p(wn − 1)
(1)
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where P is the conditional probability of the chosen feature (word) w.

3.2 Classification Model

Train machine learning models for classifying the document as complex or noncomplex
were the next task after the dataset was represented in the form of a vector. Since the text
dataset is converted to a multi-dimensional numeric vector representation by computing
the linguistic features of text, it is now possible to train the required model. We have
applied the classification model to analyze text and then assign a set of predefined
tags or categories (complex or noncomplex) based on the context of the document. For
this binary classification task, supervisedmachine learning algorithms are used.We have
selected such supervisedmachine learningmodels because, under limited computational
complexity of data, classical machine learning models outperform than deep learning
models (Li et al. 2021). To compare and select the appropriate classification algorithm,we
have trained Support Vector Machine, Random Forest, and Naïve Bayes, using selected
BOW and TFID feature extraction techniques with bigram language modeling.

4 Experiment

We have conducted an experiment on three supervised machine learning algorithms to
compare and select appropriate classification models using 5126 Amharic sentences.
The 85/15 dataset split rule is applied to experiment the models. We have selected this
85/15 split instead of 90/10, 80/20, 75/25 because when we experimented using these
different split ratios, during the 85/15 ratiowehave a balanced feature distribution (37126
features for training and 6442 features for testing) and we have got better classification
accuracy. So this split ratio is selected rather than others. For cross-validation, we have
used 10-fold cross-validation technique to take single validation data in every 10 intervals
of training data. It is a preferred validation technique for our model because when we
increase the k-fold size the validation size is too small and it is not preferred to measure
the progressive improvement of the model. The dataset distribution for the experiment
is summarized in Table 1. To handle the context by assigning a weight to every term
that appears in each document bi-gram language modeling was applied. The experiment
was conducted using Support Vector Machine, Random Forest, and Naïve Bayes by
setting some hyperparameters. These selectedmodels are trained using TFIDF andBOW
feature extraction with bi-gram language modeling. The performance of those models
is evaluated using precision, recall, f1-score, and accuracy.

Table 1. Dataset distribution for the experiment

Dataset split Dataset size (sentences) Total tokens Unique features

Training data 4,357 37,126 7,011

Testing data 769 6,442 2,527
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4.1 Experiment-1 Support Vector Machine

We have used degree of optimization (C= 0.9), flexibility control of the decision bound-
ary (degree = 1) to train the SVM model, small value for boundary decision is applied,
because we have binary classification operation which does not need higher degree of
flexible decision boundary, and linear kernel which is common kernel type for clas-
sifying the two categories belonging classification sub-task (Gasparetto et al. 2022).
The training performance of the model is validated using 10-fold cross-validation. The
overall training accuracy of Support Vector Machine is summarized in Table 2.

Table 2. SVM experimental result

Feature extraction N-gram K-fold cross validation Test accuracy Validation accuracy

BOW 2 10-fold 87.1% 85%

TFIDF 2 10-fold 83.4% 81%

4.2 Experiment-2 Random Forest

Random forest is an ensemble learning algorithm that are robust to noise (Coşkun et al.
2011). We have experimented random forest algorithm using similar dataset with SVM.
The classifier has many advantages i.e. It handles more input variables and which is
lighter than other ensemble algorithms (Rodriguez-Galiano et al. 2012). In the training
phase, the required hyperparameters such as the number of trees the model build before
averaging the predictions (n_estimators = 10), random state of 3, to control the random
sample for each sub node are considered see detail experimental result of RF in Table 3.

Table 3. Random Forest experimental result

Feature extraction N-gram K-fold cross validation Test accuracy Validation accuracy

BOW 2 10-fold 83% 82.5%

TFIDF 2 10-fold 68% 78%

4.3 Experiment-3 Naïve Bayes

In addition to SVM and RF, Navie Bayes is also trained for such text complexity classi-
fication tasks. The algorithm is working based on conditional probability and indepen-
dence assumptions (Coşkun et al. 2011). Its assumption is basedon the occurrence or non-
occurrence of a particular attribute. The result presented in Table 4 is the classification
accuracy of NB model using two feature extraction methods.
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Table 4. NB experimental result

Feature extraction N-gram K-fold cross validation Test accuracy Validation accuracy

BOW 2 10-fold 80.4% 78.2%

TFIDF 2 10-fold 78.8% 76.7%

5 Result and Discussion

Amharic written materials such as academic textbooks utilize a wide variety of vocab-
ularies to organize the document, some of those words seem to be unfamiliar to low
literacy readers. The presence of unfamiliar words in sentences decreases the reading
performance of low literacy readers by 18% (Sauvan et al. 2020), and 73% of the review
indicated that increasing text complexity, decreases the reading rate and reading com-
prehension (Spencer et al. 2019). The appropriateness of a text for a certain learner needs
to be in line with their proficiency level (Knapp and Antos 2016). To detect this text
complexity issue for one of morphologically reach language Amharic we have devel-
oped Amharic text complexity classification model using supervised machine learning.
We have conducted experiments on SVM, RF, and NB using 5126 Amharic sentences
collected from different sources and annotated by experts. TFIDF and BOW feature
extraction techniques are applied for vectorizing the dataset. To consider the context
during feature extraction bi-grams language modeling is used because TFIDF and BOW
do not capture semantics co-occurrences of tokens. Based on the experimental result
the models have better classification accuracy using BOW feature extraction that 87.1%
(SVM), 83 (RF), and 80.4% (NB).

To see the improvement progress of the models we have trained them using 40
iterations of sampling (we have increased the training data size by 60 in each iteration)
with 10-fold cross-validation. As shown in Fig. 1 the training performance of the models
is converge to similar progressive update results after the dataset size reaches 3750,
because the models handle maximum feature to be train (Mukhamediev et al. 2021).
Similarly as shown in Fig. 2 the training loss is also improved (decreased) untile it
reaches the maximum feature.

Fig. 1. Training accuracy of SVM, RF and NB
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Fig. 2. Training loss of SVM, RF and NB

When we see the overall classification performance of the models, the SVM has
better classification accuracy than the other two models (see in Table 5). The reason for
SVM model has better accuracy for Amharic text complexity classification is that it has
convex optimization to find global minimum and our dataset has high dimensional fea-
ture that SVM is aproperate for such feature (Pappu and Pardalos 2013). It has also the
ability for automatically minimize over-fit problems (Jakkula 2011). The overall classi-
fication performance of these three selected supervised machine learning algorithms is
summarized in Table 5.

Table 5. Classification performance of three selected models using BOW feature extraction

Model Precision Recall f1-score Testing accuracy Validation accuracy

SVM 88% 87% 87% 87.1% 85%

RF 87% 83% 83% 83% 82.5%

NB 81% 80% 80% 80.4% 78.2%

As we have seen recently conducted works for classifying text complexity such as
automatic classification of text complexity for Italian language (Santucci et al. 2020),
their experimental result on RF and SVM scores an accuracy of 74.1% and 72.7%. Rea-
sonably we can say that the model that we have developed for Amharic text complexity
classification task achieves state-of-the-art result. In our experiment, the accuracy of
SVM is better than RF because our desired problem is binary class classification task
that SVMwith the linear kernel is better to easily separate two classes using a hyperplane.

5.1 Error Analysis

In some cases, these machine learning models are potential of susceptible to bias and
some error prediction. To identify such causes for further model improvement evaluating
uncertainty of the experimental result of the model is important (Chhetri 2012). In this
section, we have discussed the error analysis of Amharic text complexity classification
models. When we evaluate the model using confusion matrix and error metrics such
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as MSE and RMSE it has some falsely predicted results, which is caused by the algo-
rithm’s internal nature and the dataset nature. When the dataset is increased the training
performance of selected algorithms are increased up to 3750 dataset size. Beyond this,
the models are not significantly improving their training accuracy due to the maximum
feature handling capacity of such supervised machine learning models.

The other point that cause the model falsely predicted the sentence is the existence
of major tokens vector in the opposite of the actual label training dataset, for exam-
ple, the sentence

its
actual label is complex however the models predict it as noncomplex because
of the tokens existed more frequently in the non-
complex training dataset, which means from the total of 7 tokens in a sentence

after preprocessed 5 of the tokens vector is high
in noncomplex data than complex data that cause the model to miss classified it. To eval-
uate the overall error rate of these models we have used confusion matrix, MSE, and
RMSE evaluation metrics. Such metrics help us to measure the amount of error the
machine learning models do by assessing the average squared difference between the
actual labeled value and predicted values. The smaller the value of theMSE, themachine
learning is the best fit (Khan and Noor 2019). By using the mathematical representation.

MSE = y = ŷ

n
(2)

RMSE = √
MSE (3)

The models are tested using 769 unseen sentences and the result evaluation of
these models using confusion matrix, mean square error and root mean square error
are visualized in Table 6 below.

Table 6. Error analysis result of selected algorithms.

Model False positive False negative MSE RMSE

SVM 18 81 13% 36%

RF 2 129 17% 41%

NB 93 58 20% 44%

As presented in the table above (Table 4), from the total of 769 test datasets 99
sentences are misclassified by the SVM model, 131 sentences falsely predicted by the
RF, and 151 sentences by the NBmodel. Some of the reasons for such misclassifications
are like token duplication in both complex and non-complex datasets.

6 Conclusion and Future Work

In this study, we have developed Amharic text complex classification model by employ-
ing three supervised machine learning algorithms (Support Vector Machine, Random
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Forest, andNaïveBayes)with different hyperparameter setups. For the experiment of this
study, we have used 5126 sentences. The feature of the dataset tokens represented using
TFIDF and BOWwith the n-gram language modeling feature extraction technique. The
experiment results indicate that SVM (87.1%) has better classification accuracy com-
pared to RF (83%) and NB (80.4%) algorithms. Both SVM and RF achieves state of art
classification accuracy when we compare the work conducted on Automatic Classifica-
tion of Text Complexity with the accuracy of SVM (72%) and RF (73%). To compute
the error rate of the selected models we have used mean square error and root mean
square error analysis and we have got the misclassification rate of 13% SVM, 17% RF,
and 20% NB of mean square error. In this study, we have focused on the classification
of text complexity, the simplification process of such detected complex texts through
substituting the complex lexicon with its simpler equivalent, and address the syntactic
(considering spelling and grammar) and morphological complexity of Amharic text are
our recommendations for future research works.
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Abstract. Adhesive joining of composite materials is rapidly increasing in dif-
ferent engineering application areas such as aerospace, maritime and automotive,
due to its potential for lightweight products. However, the use of adhesive join-
ing for this purpose might lead to failure when a tensile load is acting on the
composite. This work focus on the process parameters optimization of single
lap adhesive joint Date palm fiber reinforced polyester composite (DPFRPC) to
improve its joint strength. The study was conducted experimentally by making
single-lap adhesive joining of DPFRPC under tensile testing. The key parameters
influencing the adhesively joint’s performance such as overlapping length (24, 40,
and 56 mm), width (20, 28, and 36 mm), and adhesive thickness (0.5, 0.75, 1 mm)
were studied using L9 orthogonal array experimental design. Artificial neural net-
work (ANN) modeling tool was utilized to relate input and output parameters.
The best parameter combinations were found using a genetic algorithm (GA)
optimization technique. Using this technique, the optimum parameters of single
lap adhesive joint DPFRPC were, 56 mm overlapping length, 36 mm width, and
0.95 mm adhesive thickness, with a load carrying capacity of 9.48 kN.

Keywords: DPFRPC · Single lap · Adhesive joint · ANN · GA · Tensile strength

1 Introduction

Natural fiber reinforced composites (NFRPCs) materials are increasingly used in differ-
ent engineering application areas such as aerospace, maritime and automotive industries,
due to their lightweight and good specific mechanical properties [1–3]. From natural
fibers, date palm fiber (DPF) specifically Phoenix dactyliferal, is the cheapest fiber with
good physical and mechanical properties. All portions of the tree can be used to extract
fibers [4]. This plant is founded abundantly in Bahir Dar, Ethiopia. But these date palms
are fired and thrown as waste after cultivation, leads to environmental pollution and
leads to illness [5]. Using this DPF as a composite material can solve these problems.
When DPF and polyester are combined, gives a date palm fiber-reinforced composite
(DPFRPC) with properties that are distinct from the ingredients [6–8].
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In many NFRPC application domains, NFRPCs are used in joined form for assem-
bling purposes due to the increase in size and geometric complexity of structures made
it impractical and expensive for the composite structure to be manufactured in a sin-
gle shot continuous molding process [9]. This can be solved through adhesive joining,
mechanical fastening, and a combination of the two [10]. The selection of the type of
composite joining depends on the application area, the load needed to be transferred,
and the weight of the joint [10, 11].

Adhesive joining of NFRPC involves the use of a variety of adhesives to attach the
composite. This approach has a lengthy history, having been used in the aerospace sector
in the 1970s and early 1980s [12]. Adhesive joining is widely accepted as a potential
substitute for mechanical joints in modern industries (marine, automotive, aeronautical,
construction, and so on) for different applications [13, 14]. With adhesive joining, there
is no need to drill the composite; instead, alternative adhesives are used [15]. The type of
adhesives utilized in the composite joining has an impact on its tensile strength. Epoxies,
acrylics, polyester, urethanes, and other adhesives are used to assemble composites [16].

There are various types of adhesive joints, including single lap, double lap, scarf
type, shim insert, strap type, stepped lap, and others. Single and double lap joints are
the most popular and appropriate adhesive joining methods. Due to its simple geometry
and great structural efficiency, single lap is employed more than double lap [12, 16].
This research focuses on a single lap joint for a uniform cross-section in the NFRPC
application area as shown in Fig. 1.

 Adhesive 

Composite material 

Fig. 1. Single lap adhesive joining of composite material

The joint configuration has an effect on adhesive joint quality during composite
adhesive joining [12, 17]. However, geometric parameter optimization of the adhesive
joining of composite had failed miserably, which leads to excessive or insufficient use
of joining geometry parameters. This made the joined to be either overweighted or weak
to resist the applied load. Nevertheless, optimizing overlap width, length, and adhesive
thickness of joint was not studied adequately yet. Hence, this research work aims to
optimize the joining geometry process parameters of adhesive joining of DPFRPC.

The joining geometry parameters in the adhesive joining process have an impact on
the strength of a joined composite. Overlap length, width, adhesive thickness, and type
of adhesive are the most important factors that help to achieve a high joint quality [18].
Overlapwidth is amore significant design feature than overlap length, even though joints
with bigger surfaces have better strength. Due to stress concentration at the joint’s ends,
joint strength improves slightly with overlap length up to a limit, then remains constant.
A joint with a long and narrow bond area is inferior to one with a short and wide bond
area [18].
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2 Materials and Methods

2.1 Manufacturing of Composites

Date palm fiber reinforced polyester composite (DPFRPC) was manufactured using date
palm fiber and polyester. The fiber was extracted from the rachis of date palm tree, from
Bahir Dar, Ethiopia, due to its availability and better physical andmechanical properties.
The fiber was extracted using a biological approach and then chemically treated with 1%
NaOHalkali for 5 h to improve the fiber quality. Hand lay-up techniquewas used tomake
the composite, due to its simplicity, with low-cost, easy processing. The composite mold
was made of wood with dimensions of 200× 360× 3.5 mm3, as shown in Fig. 2. In this
study, the composite was made under 30% fiber loading with unidirectional orientation.
Figure 2 represents the steps involved in the fabrication of DPFRPC.

Fig. 2. DPF preparation process; (a) rachis of date palm tree, (b) extracted DPF, (c) over its mold
for composite making, (d) fabricated composite

The composite was made by coating the mold with gel to provide a weak bond
between the mold and the DPFRPC during demolding. Then polyester was poured over
the mold followed by putting the DPF over it, followed by rolling to remove air gaps.
Finally, the layup was then covered with a concrete block capable of exerting 12.5 kPa
pressure. After 5 h, the DPFRPC was demolded.

2.2 Adhesive Joining of DPFRPC

Following the fabrication ofDPFRPC, single lap adhesive joining ofDPFRPCwasmade.
In this study polyester (parentmatrix) thatwas used tomakeDPFRPCwas also employed
to make adhesive joining, due to its non-reactivity with the parent composite and helps
to make comparable strength with the adherend. The polyester has been applied to the
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joining area of the specimens at the specified geometric area and adhesive thickness.
Three joining parameters (overlap length, overlap width, and adhesive thickness) were
considered with their corresponding levels as shown in Table 1. These variables were
chosen based on how frequently they occurred and how they affected the tensile strength
of adhesive joining. According to a review of the literature, the strength of an adhesively
bonded composite is significantly influenced by the overlap length, overlap breadth, and
adhesive thickness of the prior experiments [12, 19–22]. The specimen thickness and
free length were 3.5 mm and 130 mm respectively. Figure 3 shows single-lap adhesive
joint DPFRPC specimens.

Table 1. Parameters and levels of DPFRPC bolted joining

No. Factors Levels

Level 1 Level 2 Level 3

1 Overlap length, OL (mm) 24 40 56

2 Overlap width, OW (mm) 20 28 36

3 Adhesive thickness, t (mm) 0.5 0.75 1

    (a) (b) (c)
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Fig. 3. Adhesive joining; (a) width of specimen, (b) overlap length side view of specimen, and
(c) overlap length side view of the specimen

2.3 Design of Experiment

The tensile properties of DPFRP were characterized using fiber loadings of 30% under
unidirectional fiber orientations. After the tensile properties of DPFRPC were deter-
mined, an orthogonal array was used to identify the significant variables with the least
number of trials possible, saving both time and money. Three factors and levels were
used as shown in Table 1, which are overlap length, width, and adhesive thickness. As
a result, the L9 orthogonal array was used, as shown in Table 2.
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Table 2. Design of experiment using L9 orthogonal array

No. Overlap length Overlap width Adhesive thickness

1 24 20 0.5

2 24 28 0.75

3 24 36 1

4 40 20 0.75

5 40 28 1

6 40 36 0.5

7 56 20 1

8 56 28 0.5

9 56 36 0.75

2.4 Tensile Test

The tensile property of DPFRPC and single lap adhesive joint DPFRPCwere determined
using tensile testing machines. Tensile testing was carried out with a UTM:WAW-600D,
as illustrated in Fig. 4.

Fig. 4. Tensile testing machine, UTM: WAW-600D

2.5 Model Development and Optimization Using ANN-GA Approach

The optimization technique helps to get a combination of levels of parameters of single
lap adhesive joining of DPFRPC that will result in the best tensile load carrying capacity.
For this study, artificial neural network (ANN) modeling and the genetic algorism (GA)
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optimization approach were utilized to identify the appropriate joining geometry param-
eters. Because it’s highly accurate modeling, predicting, and optimizing tool and it can
be used by other researchers for different targets. ANN takes input data, trains itself to
detect patterns, and then predicts the output for a new collection of similar data by using
the network shown in Fig. 5. ANNmodel was made using three layers; input layers, hid-
den layer, and output layers. The input layer contains the input process parameters (OL,
OW, t), whereas the output layer contains the failure load (Fl). The hidden layer consists
of many interconnected neurons that have been determined through training, testing, and
validation. The sum of inputs is transferred as output by each neuron’s transfer function
(activation function). The weight value is assigned to each connection [23].

Hidden layer
Input layer

Overlap 
width (OW)

Adhesive 
thickness (t) 

Ove lap
length 
(OL)

Output layer 

Failure 
load

Fig. 5. ANN architectural model of adhesively joined DPFRPC

In this work, GAwas employed to optimize the ANNmodel’s input space to get a set
of optimum levels of process parameters. The fitness function of previously developed
ANN model was used for GA to determine the optimal solutions using the flow chart
shown in Fig. 6. The constraints used for GA to optimize the process parameters were
overlap length from 24mm to 56mm, overlapwidth from 20mm to 36mm, and adhesive
thickness from 0.5 mm to 1 mm.

3 Results and Discussions

3.1 Tensile Properties of DPFRPC

The tensile properties of DPFRPC, which was made under 30% fiber loading with unidi-
rectional fiber orientation,were determined through tensile testing. From the experiment,
the ultimate tensile strength of DPFRPC was found to be 145 MPa as shown in Fig. 7.
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Fig. 6. GA model flow chart
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Fig. 7. Stress-strain curves DPFRPC

3.2 Tensile Properties of Joined DPFRPC Subjected to Tensile Load

Based on the design of experiments, experimental testing was conducted to examine
the influence of geometric joining variables of single lap adhesive joint DPFRPC. From
the result, different joint geometries show different load-carrying capacities. From the
experiment, a maximum of 9.3 kN load caring capacity exists in experiment number 9
as shown in Table 3.

The effect of input parameters with its load carrying capacity was related through
surface plots as shown in Fig. 8. Each plot has been made by taking the lowest levels of
the remaining parameters.

The higher load carrying capacity was found at maximum overlap length and width
because the bonding area increases with an increase in overlap width and length help to
sustain higher loads and vice versa. On the other hand, maximum load carrying capa-
bility was found at medium adhesive layer thickness, because excessive adhesive layer
thickness resulted in a thick bond line, which caused tiny cracks in the manufacturing
due to vacancies.
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Table 3. Experimental results of single lap adhesive joining of DPFRPC

No. Overlap length
(mm)

Overlap width
(mm)

Adhesive
thickness (mm)

Tensile failure
load (kN)

Failure
behavior

1 24 20 0.5 3.2 Thin layer
cohesive

2 24 28 0.75 5.6 Fiber tear

3 24 36 1 6.5 Adhesive

4 40 20 0.75 5.2 Cohesive

5 40 28 1 5.7 Cohesive

6 40 36 0.5 7.2 Adhesive

7 56 20 1 4.9 Adhesive

8 56 28 0.5 7.8 Stock break

9 56 36 0.75 9.3 Stock break

Fig. 8. Surface plot of failure load vs (a) OL and OW, (b) OL and t, (c) OW and t of single lap
adhesive joint DPFRPC

3.3 Failure Behavior of Joined DPFRPC

The adhesive joint fails as the load applied over it exceeds its load-carrying capacity.
Structural failure, cohesive failure, fiber-tear failure, and adhesive failure occurred, as
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shown in Fig. 9. Adhesive failure, Fig. 9 (3,6, and 7), as one side bonded more than the
other side. Cohesive failure, Fig. 9 (4 and 5), where the adhesive thickness was at a higher
level, the adhesive was too weak to resist the applied load. The stock failure, Fig. 9 (8
and 9), where the adherent fails rather than the joint and adhesive joint was strong. Fiber
tear failure, Fig. 9 (1 and 2), due to the weak bond during DPFRPC manufacturing.

1 2 3 4 5 6 7
8 9

Fig. 9. Failure mechanism of adhesive joined DPFRPC

3.4 Modeling of ANN

The experimental findings were used to create an artificial neural network model. The
developed ANNwas trained with 9 sets of input (OL, OW, t), and output (Fl) parameters
that emerged from the experiments conducted. Two-thirds of the samples were used
for training, while the remaining one-third were used for testing and validation of the
model using trainlm. After several trials, the best ANN model for single lap adhesive
joint DPFRPC was determined to be 3-5-1-1 (three for input layer neurons, five for
first hidden layer neurons, one for second hidden layer neuron, and one for output layer
neuron) as shown in Fig. 10. The activation functions for convergence in the first and
second hidden layers, respectively, were the hyperbolic tangent and the linear transfer
function.

Fig. 10. Architecture of ANN model of single lap adhesive joint DPFRPC

The training performance curve for neural networks is depicted in Fig. 11 below,
where adhesive joining ANNmodel convergence to mean square error (MSE) was deter-
mined to be 0.15049 made within 1000 epochs or iterations. However, MSE reaches
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saturation in the third iteration. Beyond this threshold, when an iteration increases, MSE
begins to deviate from its optimal value.

Fig. 11. Convergence of MSE during training of the ANN model

The training, validation, and testing patterns were investigated in the regression plot
as shown in Fig. 12. The regression study revealed that the correlation coefficient (R)
for single lap adhesive joint DPFRPC was 0.9896, implying that the experimental and
expected responses are highly correlated.

There was relatively little variation between the experimental and predicted ANN
model, as shown in Fig. 13, with a maximum error of 0.53427%.

3.5 Optimization of Process Parameters by GA

GA always seeks to minimize the objective function, so the negative of the proposed
fitness function was minimized. Convergence was used to decide on the GA parameter
setting. The GA-specific parameters were as follows: probability of crossover of 0.8,
mutation rate of 0.01, population size of 50, and the number of generations over which
GA evolved was 300. After 50 generations there was no significant difference in fitness
value, also there was a gradual decrease in population size after each generation. After
80 generations the optimal adhesive joining was designated from a pool of ANN/GA
responses on the idea of the highest fitness value.

The optimum process condition of single lap adhesive joining obtained from the
hybrid ANN/GA were overlap length of 56 mm, overlap width of 36 mm, and adhesive
thickness of 0.982 mm. These optimum parameters were used by ANN to predict the
optimum output (failure load), which was found to be 9.48 kN.



Process Parameter Optimization of Single Lap-Adhesive Joint 23

Fig. 12. ANN model simulation results in comparison with experimental results during training,
validation, and testing.
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Fig. 13. Comparison of experimental and ANN predicted failure load values of adhesively joined
DPFRPC
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3.6 Confirmation Test

Based on the optimized ANN-GA result, a confirmation test was undertaken as shown
in Table 4 to validate the model. Although 0.982 mm of adhesive thickness pro-
vided the greatest strength, 0.95 mm of adhesive thickness was chosen for the precise
manufacturing of the joint.

Table 4. Conformation test result single lap adhesive joint DPFRPC

Experiment Overlap length
(mm)

Overlap width
(mm)

Adhesive
thickness (mm)

Failure load (kN)

GA optimal
solution

56 36 0.982 10.114

Experimental
solution

56 36 0.95 9.48

Error – – – 0.634

The optimum process parameter levels found through GA were predicted with the
developed ANN model. From the confirmation experiment, a maximum of 9.48kN load
carrying capacity obtained with an error of 0.634, indicates the confirmation test output
values agreed well with the ANN-GA model predicted values. From the experimental
study, the maximum tensile strength of unjointed DPFRPC was 145 MPa. Therefore,
the adhesively joined DPFRPC showed less strength when it was compared to unjointed
DPFRPC parent material.

4 Conclusion

In this study, DPFRPC was made from DPF and polyester matrix through hand layup
approach at the fiber loading and orientation of 30% and 0/0o respectively. A single lap
adhesive joining of DPFRPCwasmade using L9 orthogonal array design of experiments
with three parameters and levels of overlapping length (24, 40, and 56 mm), width (20,
28, and 36 mm), and adhesive thickness (0.5, 0.75, 1 mm). ANN model was developed
to relate these input parameters and failure load through training, testing, and validation
of the model. The best ANN architecture of adhesively joined DPFRPC was determined
to be 3-5-1-1 with an activation function of hyperbolic tangent and the linear transfer
function in the first and second hidden layers, respectively. GA optimization technique
was used by taking ANNmodel result as an input to get the optimum parameters. Using
this technique, the optimum process parameters of single lap adhesive joint DPFRPC
were, 56 mm overlapping length, 36 mmwidth, and 0.95 mm adhesive thickness, with a
load carrying capacity of 9.48 kN. The test result indicates that, the increase in overlap
length and overlap width the load carrying capacity of single lap adhesive joining of
DPFRPC. However, it increases up to the optimum level of adhesive thickness and starts
to fall beyond that point of thickness.
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Abstract. Natural fiber reinforced polymer composites are widely employed in
automotive, aerospace, and civil applications due to their high strength-to-weight
ratios and these applications require joining composite. Bolt joining of composite
materials is the most prevalent way of joining, due to its efficiency of transfer-
ring load and ease of disassembly. However, bolt joining of composite is largely
influenced by geometrical parameters such as edge to diameter ratio (E/D), width
to diameter ratio (W/D), and fiber orientation. This work emphases on the pro-
cess parameters optimization of single lap bolt joint date palm fiber reinforced
polyester composite (DPFRPC) to improve the joint strength. The study was con-
ducted experimentally by making single lap bolt joining of DPFRPC under tensile
testing. The important factors affecting the performance of the adhesively joint
such as E/D (1.5, 2.5, and 3.5), W/D (2.5, 3.5, and 4.5), and fiber orientation
(0/0°, 45/−45°, and 0/90°) was studied using L9 orthogonal array experimen-
tal design. Artificial neural network (ANN) was used to model the experimental
results. Genetic algorithm (GA) optimization technique was used to determine the
optimum process parameters. Using this technique, the optimum parameters of
single lap bolt joint DPFRPC were, 3.5 E/D, 4.5 W/D, and 56.5° fiber orientation,
with a load carrying capacity of 9.52 kN.

Keywords: DPFRPC · Single lap · Bolt joining · ANN · GA · Tensile strength

1 Introduction

In today’s world, there are many more composite materials available. Researchers are
more interested in natural fiber reinforced polymer matrix composite material because
of its high strength-to-weight ratio [1, 2]. Amongst natural fibers, date palm fiber (DPF)
specifically Phoenix dactyliferal, is the most cost-effective fiber with good physical and
mechanical characteristics. The fiber can be extracted from all parts of date palm tree
[3]. It is founded abundantly in Bahir Dar, Ethiopia. When date palm fiber and polyester
are combined, gives date palm fiber reinforced composite (DPFRPC) with properties
that are distinct from the ingredients [4, 5].
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In a variety of application domains, natural fiber reinforced composites (NFRPCs)
are used in joined form for assembling purposes, since the making of long and complex
geometry structure composite using a single mold is impractical and expensive [6].
NFRPCs cannot be welded due to their electrical nonconductivity. Adhesive joining,
mechanical fastening, and hybrid joining can all be used to tackle this problem [7]. The
type of composite joining is determined by the application area, the load to be transferred,
and the weight of the joint [7, 8].

Bolt joining is the most prevalent way of joining several materials such as metal,
nonmetals, and composites to each other and other materials [9, 10]. Furthermore, unlike
adhesive joining, bolted joints have no environmental impact and transfer higher stresses
between the joined structures. Several previous works evidenced that net tension, shear
out, and cleavage failures exist under this joining method. Bolt joining can achieve 40–
80% joint efficiency during joining of NFRPCs. Bolt joining of NFRPCs can be designed
over the adhesive joint, if weight is not an issue [11]. In adhesive joining, there is no
delamination due to the absence of holes and weight decrease. But it can’t be used for
structures that require disassembly [12, 13].

The most prevalent and appropriate bolt joining methods are single and double lap
joints. Single lap is preferred over double lap because of its simple geometry and high
structural efficiency [6]. This research focuses on a single lap bolt joint of DPFRPC as
indicated in Fig. 1 for a uniform cross-section in the NFRPC application area.

Bolt & nut 

Composite material 

Fig. 1. Single lap bolt joining of composite material.

Drilling a hole is required, and damage happens at the beginning and end of the
drilling operation [14]. The fiber layers peel up as the drill enters the NFRPCs. However,
the bottom fiber layers are pushed out as the drill enters the bottom of the NFRPCs [6].
In general, inappropriate drilling causes delamination, resin erosion, and fiber breakout
in composites. Low feed and high drilling speed are the optimum conditions for drilling
to overcome these damages [15]. To avoid fretting in the clearance hole, the bolt must fit
snugly in this joint. Interference fittings can cause composite delamination, thus using
washers helps to protect the clearance hole [16].

During composite material bolt joining, the joint configuration has an impact on bolt
joint strength [17, 18]. However, geometric parameter optimization of composite bolt
joining failed horribly, resulting in overuse or underuse of joining geometry parameters.
As a result, the joint became overweight or weak (unable to withstand the applied load).
Hence, this study focuses to optimize joining geometry process parameters of bolt joint
DPFRPC. The strength of bolt joint composite is highly influenced by joint geometry
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parameters such as composite thickness, type of lap, number of lap, number of bolt,
hole diameter, W/D ratio, E/D ratio, and composite thickness [19]. Most research found
that geometrical variables like W/D, E/D, and fiber orientation had an impact on the
failure process [4, 20]. The optimum process parameters for strong single lap bolt joint
DPFRPC are discovered in this study.

2 Materials and Methods

2.1 Manufacturing of the Composite

In this study, date palm fiber reinforced composite was manufactured using date palm
fiber and polyester. The fiber was extracted from the rachis of date palm tree, from Bahir
Dar, Ethiopia, due to its availability and better physical and mechanical properties. The
fiber was extracted using a biological approach and then chemically treated with 1%
NaOH alkali for 5 h to improve the fiber quality. Due to its simplicity, low cost, and
ease of processing, the composite was manufactured utilizing the hand lay-up approach.
The composite mold was made of wood with dimensions of 200 × 360 × 3.5 mm3, as
shown in Fig. 2(c). In this study the composite was made under 20%, 30% and 40% fiber
loading with unidirectional orientation. The steps involved in fabricating DPFRPC are
depicted on Fig. 2.

Fig. 2. DPFRPCmaking process; (a) rachis of date palm tree, (b) extracted DPF, (c) over its mold
for composite making, (d) fabricated composite.

The composite was made by coating the mold with gel to provide a weak bond
between the mold and the DPFRPC during demolding. Then a polyester was poured
over the mold followed by putting the DPF over it, followed by rolling to remove air
gaps. Finally, the layup was then covered with a concrete block capable of exerting
12.5 kPa pressure. After 5 h, the DPFRPC was demolded.
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2.2 Bolt Joining of DPFRPC

Bolt joining was made after drilling DPFRPC specimen using drilling machine. To
achieve a nice drilled hole, a fast drill speed, low feed, and drill diameter are needed
[6]. In this study, the hole was made using 8 mm HSS drill bit under a rotational speed
of 2000 RPM and feed of 45 mm/min. Finally, the bolt joint was made using M8 bolt.
The bolt joint strength is highly affected by fiber orientation, E/D, and W/D [21]. Three
joining parameters such as W/D (2.5, 3.5, and 4.5) and E/D (1.5, 2.5, and 3.5) were
selected for this study as shown in Table 1 and Fig. 3. The specimen thickness and free
length were kept constant at 3.5 and 130 mm, respectively.

Table 1. Parameters and levels of single lap bolt joint DPFRPC

No. Factors Levels

Level 1 Level 2 Level 3

1 Fiber orientation (°) 0/0 45/−45 0/90

2 Edge to diameter ratio (E/D) 1.5 2.5 3.5

3 Width to diameter ratio (W/D) 2.5 3.5 4.5

(a) (b) (c) (d)
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Fig. 3. Bolt joint specimens (a) W/D, (b) E/D, (c) side, and (d) isometric view

2.3 Design of Experiment

The tensile properties of DPFRPCwere characterized using fiber loadings of 20%, 30%,
and 40% under unidirectional fiber orientations. After the tensile properties of DPFRPC
were determined, an orthogonal array was used to identify the significant variables with
the least number of trials possible, saving both time and money. Three factors with
three levels were selected for single lap bolt joining of DPFRPC (E/D, W/D, and fiber
orientation) as shown in. As a result, L9 orthogonal array design of the experiment was
adopted in Table 2. In order to ensure that all levels of all components are taken into
account equally, L9 orthogonal arrays were chosen.
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Table 2. Experimental design of single lap bolt joint DPFRPC using L9 orthogonal array

No. Edge to diameter ratio (E/D) Width to diameter ratio (W/D) Fiber orientation (°)

1 1.5 2.5 0/0

2 1.5 3.5 45/−45

3 1.5 4.5 0/90

4 2.5 2.5 45/−45

5 2.5 3.5 0/90

6 2.5 4.5 0/0

7 3.5 2.5 0/90

8 3.5 3.5 0/0

9 3.5 4.5 45/−45

2.4 Tensile Test

The tensile properties of DPFRPC and single lap bolt joint DPFRPC were determined
using UTM: WAW-600D tensile testing machine, as illustrated in Fig. 4. The WAW-
600D is a computer-controlled hydraulic universal testing machine that uses hydraulic
loading and computer displays for ease of use.

Fig. 4. Tensile test of single lap bolt joint DPFRPC using UTM: WAW-600D

2.5 Model Development and Optimization Using ANN-GA Approach

To determine the appropriate joining geometry parameters, artificial neural network
(ANN) modeling and genetic algorism (GA) optimization method was used for this
study, because this method is highly accurate modeling, predicting and optimizing tool,
and the developed model can be used by other researchers for different targets [6, 22].
ANN takes input data, trains itself to detect patterns, and then predicts the output for a
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new collection of similar data by using the network shown in Fig. 5. ANN model was
made using three layers; input layers, hidden layer, and output layers. The input layer
contains the input process parameters (FO, E/D,W/D), whereas the output layer contains
the failure load (Fl). The hidden layer is made up of many linked neurons determined
through training, testing, and validation. The sum of inputs is transferred as output by
each neuron’s transfer function (activation function) and the weight value is assigned to
each connection [22].

Hidden layer
Input layer

W/D 

Fiber 
orienta-

tion 
(FO)

E/D 

Output layer 

Failure 
load

Fig. 5. ANN architectural model of bolt joint DPFRPC

In this study, GA was used to optimize the input space of the ANN model to obtain
a set of optimum process parameter levels. Using the flow chart illustrated in Fig. 6, the
fitness function of a previously created ANN model was used for GA to discover the
optimal solutions. The constraints used for GA were E/D from 1.5 to 3.5, W/D from
2.5 to 4.5, and fiber orientation from 0 to 90 (degree). The GA parameters settings were

Fig. 6. GA model flow chart
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determined based on past research and convergence. The GA-specific parameters are as
follows: probability of crossover of 0.8, mutation rate of 0.01, population size of 50, and
the number of generations over which GA evolved was 300.

3 Results and Discussions

3.1 Tensile Properties of DPFRPC

The tensile strength of DPF and polyester was determined experimentally before
DPFRPC was made, and they were found to be 230 MPa and 45 MPa respectively. Ulti-
mate tensile strength and stiffness of polyester resin were 79.13% and 62.2% lower than
DPF respectively. The tensile properties of DPFRPC, which was made under 20%, 30%,
and 40% fiber loading with unidirectional fiber orientation, was determined through ten-
sile testing. From the experiment, the strongest DPFRPCwas found at 30%fiber loading,
145 MPa, which was 58.6% lower than DPF and 66.8% higher than polyester matrix as
shown in Fig. 7. There was 3.6 and 18.6% increase in tensile strength for 30% fiber load-
ing compared to 40% and 20% fiber loading respectively. The tensile strength increases
up to optimum fiber loading and starts to fall beyond that level of loading. This indicates
that the DPFRPC joint has to be made using 30% fiber loading.
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Fig. 7. Tensile properties (a) stress-strain curves (b) tensile strength and modulus of DPF,
polyester, and DPFRPC with various DPF loadings.

3.2 Tensile Properties of Joined DPFRPC Subjected to Tensile Load

The experimental testing was carried out to analyze the effect of geometric joining
variables of single lap bolted joint DPFRPC based on the design of experiments. From
the result, different joint geometries showdifferent load-carrying capacities.Amaximum
of 9.5 kN load caring capacity was found in experiment number 9 as shown in Table 3.
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Table 3. Experimental results of single lap bolt joint DPFRPC

No. E/D W/D Fiber orientation (°) Failure load (kN) Mode of failure

1 1.5 2.5 0/0 4.7 Net tension

2 1.5 3.5 45/−45 5.8 Net tension

3 1.5 4.5 0/90 7 Shear out

4 2.5 2.5 45/−45 4.8 Net tension

5 2.5 3.5 0/90 6 Composite failure

6 2.5 4.5 0/0 9.5 Cleavage tension

7 3.5 2.5 0/90 4 Net tension

8 3.5 3.5 0/0 9 Net tension

9 3.5 4.5 45/−45 9.45 Composite failure

Fig. 8. Surface plot of failure load vs (a) W/D and E/D, (b) E/D and fiber orientation, (c) W/D
and fiber orientation of single lap bolt joint DPFRPC

The effect of input parameters with its load carrying capacity were related through
surface plots as indicated in Fig. 8, shows the surface plots of responses of failure load
with E/D, W/D and fiber orientation.

The highest load-carrying capacity was found at maximum E/D and W/D and min-
imum fiber orientation. An increase in E/D ratio and W/D ratio tends to increase load-
carrying capacity (failure load),whereas the decreasing trendof failure loadwasobserved
with increased values of fiber orientation. This might be due to the fact that as then E/D
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and W/D increase, the joint area increases which help to sustain higher loads, whereas
increased fiber orientation reduces the composite’s strength, causing it to fail under a
lesser load.

3.3 Failure Behavior of Joined DPFRPC

Post failure analysis of the fracture surfaces was examined after testing in terms of failure
type (shear out, net tension, bearing). Figure 9 shows the failure single lap bolt joint of
DPFRPC.

1 2 3 4 5 6 7 8 9

Fig. 9. The failure mechanisms of single lap bolt joint DPFRPC

According to the results of the experiment, net-tension failure occurs when the spec-
imen’s W/D ratio was too low (Fig. 9 experiment number 1, 2, 4,7, and 8). As the W/D
ratio decreases, the side length decreases, reducing the force applied area. Shear-out
failure was discovered along the shear-out plane on the hole boundary (Fig. 9 experi-
ment number 3). It occurs when the E/D of the DPFRPC was small. On the other hand,
composite failure (Fig. 9 experiment number 5 and 9) exists when the load acted on the
specimen is beyond the load carrying capacity of DPFRPC. The combination of shear
out and net tension (cleavage tension failure) exists, Fig. 9 experiment number 6, when
E/D and W/D are nearly equal. The frequently existed failure was net tension, so the
W/D has a significant effect than other parameters on the tensile strength of single lap
bolt joining DPFRPC. Net tension and shear out can be avoided by increasing edge and
width of specimen, whereas bearing exists in all types of failure before it fractures, and
any change in the geometry will not be enough to avoid it.

3.4 ANN Modeling

The results of the experiments were used to develop an artificial neural network model.
The developed ANN was trained with 9 sets of input (E/D, W/D, FO), and output
(Fl) parameters emerged from the experiments conducted. The model was trained with
two-thirds of the samples, and the remaining one-third was utilized for testing and
validation with trainlm. The best ANN architecture for a single lap bolt joint DPFRPC
was discovered after multiple attempts to be 3-6-1-1 (three neurons for the input layer,
five neurons for the first hidden layer, one neuron for the second hidden layer, and one
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neuron for the output layer) as shown in Fig. 10. The activation functions for convergence
in the first and second hidden layers, respectively, were the hyperbolic tangent and the
linear transfer function.

Fig. 10. Architecture of ANN model of single lap bolt joint DPFRPC

The performance of neural network training was conducted as shown in Fig. 11
curve, with the convergence to mean square error (MSE) of 0.045012 achieved after
1000 iterations or epochs. However, MSE reaches saturation in the second epoch itself.
If an iteration increases beyond this, MSE begins to deviate from its optimal value.

Fig. 11. Convergence of MSE during training of the ANN model

The network was validated by plotting the relationship between the network’s out-
puts and the targets in a regression plot. The training, validation, and testing patterns
were investigated in this regression plot as shown in Fig. 12. The correlation coefficient
(R) for DPFRPC bolt joining was 0.996 in regression analysis, indicating a reasonable
correlation between experimental and projected ANN response. The correlation coeffi-
cient (R) for single lap bolt joint DPFRPC was 0.996 in regression analysis, indicating
a reasonable correlation between experimental and projected ANN response.
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Fig. 12. ANN model simulation results in comparison with experimental results during training,
validation, and testing.

There was relatively little variation between the experimental and predicted values
of the ANN model, as shown in Fig. 13. From the analysis, the maximum error exists at
experiment number six which was 0.4578%, and a minimum of zero error at experiment
number eight. The error was within the acceptable range [22], so the model is accurate
to relate the input and output parameters. The fitness function of this model can be used
for genetic algorism to get the optimum input process parameters.

3.5 Optimization of Process Parameters by GA

The negative of the intended fitness function, obtained from ANN, was minimized
because GA always minimizes the objective function. The GA parameters settings were
determined based on convergence. The GA-specific parameters were 0.8 probability of
crossover, 0.01% mutation rate, 50 population size, and 300 generations of evolution.
With 56 generations, the mean fitness value of GA approaches the dominant fitness.
According to GA, the best process parameters are 3.5 E/D, 4.5 W/D, and 56.4534° of
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Fig. 13. Comparison of experimental and ANN predicted failure load values of single lap bolt
joined DPFRPC

fiber orientation. The optimum output (failure load) was found to be 9.584 kN using
these optimum settings, as predicted by ANN.

3.6 Confirmation Test

Based on the optimized ANN-GA result, a confirmation test was undertaken as shown
in Table 4 to validate the model.

Table 4. Confirmation test result for bolt joined DPFRPC

Experiment E/D W/D Fiber orientation (°) Failure load (kN)

GA optimal solution 3.5 4.5 56.4534 9.584

Experimental solution 3.5 4.5 56.5 9.52

Error – – – 0.064

The optimum process parameters levels found through GA were predicted with the
developed ANNmodel. From the confirmation experiment, a maximum of 9.52 kN load-
carrying capacity existed with an error of 0.064. So, the confirmation test output values
agreed well with the ANN-GA model predicted values.

4 Conclusion

In this study, DPFRPC was made from DPF and polyester matrix through hand layup
approach at the fiber loading of 20%, 30%, and 40% under unidirectional fiber orienta-
tion. A single lap bolt joining of DPFRPCwas made using L9 orthogonal array design of
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experiments with three parameters and levels of E/D (1.5, 2.5, and 3.5), W/D (2.5, 3.5,
and 4.5), and fiber orientation (0/0°, 45/−45°, and 0/90°). ANN model was developed
to relate these input parameters and failure load through training, testing, and valida-
tion of the model. The best ANN architecture of single lap bolt joined DPFRPC was
determined to be 3-6-1-1with an activation function of hyperbolic tangent and the linear
transfer function in the first and second hidden layers, respectively. GA optimization
technique was used by taking ANN model result as an input to get the optimum process
parameters. Using this technique, the optimum process parameters of single lap bolt
joint DPFRPC were, E/D of 3.5, W/D of 4.5, and fiber orientation of 56.5°, with a load-
carrying capacity of 9.52 kN. An increase in E/D ratio and W/D ratio tends to increase
load-carrying capacity (failure load), whereas the decreasing trend of failure load was
observed with increased values of fiber orientation. This might be due to the fact that as
then E/D and W/D increase, the joint area increases that helping to sustain higher loads,
whereas increased fiber orientation reduces the composite’s strength, causing it to fail
under a lesser load.
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Abstract. Rotating machines are commonly used mechanical equipment in var-
ious industrial applications. These machines are subjected to dynamic and harsh
operating conditions over a long time leading to various types of mechanical fail-
ures, thereby resulting in undesirable downtime. Consequently, research on fault
diagnosis is practically significant to enhance the safety of machinery. Over the
years, several fault diagnosis methods have been developed for rotating machines.
Of these, artificial intelligence-based diagnosis methods have gained increasing
attention due to their reliability, robustness in performance, and capability for
adaptation. However, the selection of suitable artificial intelligence methods for
specific types of faults or machines is still dependent on the experience of users.
The recent research achievements in intelligent fault diagnosis are not reviewed,
and future research directions are not clearly stated. To fill these gaps, this paper
provides a review of artificial intelligence techniques applied for fault diagnosis
of rotating machines, with a special emphasis given to deep learning methods
published in the last five years (2017–2022). The research challenges and some
possible prospects in this field are discussed to provide valuable guidelines for
future research development. The present work can be extended to review the
applications of transfer learning for fault diagnosis of rotating machines.

Keywords: Artificial intelligence · Deep learning · Fault diagnosis ·Machine
learning · Rotating machine

1 Introduction

In modern industrial systems, there is an increasing trend toward the need for more
reliable machines. Rotating machines are commonly used mechanical equipment in
various industrial applications. They accounts for more than 90% of industrial machines
[1]. As these machines usually operate under dynamic and harsh conditions for a long
time, they often suffer from various types of mechanical failures. Any type of failure in
rotating machines, even minor failure, cannot be accepted as it can significantly affect
the entire system, and can even lead to undesirable downtime, huge economic losses and
serious safety problems [2, 3]. Consequently, research on fault diagnosis is practically
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significant to enhance the reliability of machines, reduce economic losses, and avoid
safety problems [4, 5].

Over the last decades, numerous methods have been presented to diagnose the faults
of rotatingmachines. These methods fall into three broad classes: model-basedmethods,
statistical methods, and artificial intelligence-based methods [6]. Model-based meth-
ods are formed based on the physical characteristics of a monitored machine with the
necessary assumptions to establish an explicit mathematical model [7]. However, it is
challenging to establish an exact mathematical model for complex systems [8]. The high
complexity of industrial faults and the cost of model-based methods limit their appli-
cability in fault diagnosis of machines. Statistical methods assume that historical data
can be used to establish the fault modes and the future mechanism of machine failure
[9]. However, this assumption might not hold in practical scenarios because the failure
mechanisms of machines are complex, nonlinear, and involve the coupling of differ-
ent physical processes. Nowadays, artificial intelligence-based fault diagnosis methods
are the focus of academic and industrial research for overcoming the problems in the
fault diagnosis of complex industrial machines [10]. The primary reason is that artificial
intelligence methods are instrumental if they can be improved as compared with other
methods. Artificial intelligence can be easily extended and modified. These methods can
also be made adaptive by integrating new data [11].

Motivated by the advantages of artificial intelligence methods, intelligent fault diag-
nosis methods have gained great attention in recent decades. Therefore, this paper pro-
vides a review of artificial intelligence methods applied for fault diagnosis of rotating
machines, with a special emphasis given to deep learning methods published from 2017
to 2022. This paper analyzes the strengths and weaknesses of each method, so as to
give valuable guidance for researchers in selecting an appropriate intelligent method for
specific applications instead of choosing randomly. The research challenges in this field
are also discussed to provide possible research directions for further exploration.

The remainder of this paper is organized as follows. Section 2 provides a general
overview of intelligent fault diagnosis of rotatingmachines. Section 3 presents a detailed
review of the applications of deep learning methods in the fault diagnosis of rotating
machines. Section 4 discusses the observations of the review, research challenges, and
future direction in this area. Finally, conclusions are drawn in Sect. 5.

2 Overview of Intelligent Fault Diagnosis of Rotating Machines

In the last decades, traditional machine learningmethods have beenwidely applied in the
intelligent fault diagnosis of rotating machines. These methods mainly comprise three
consecutive steps: data acquisition, feature extraction, and fault classification [12, 13].
In the data acquisition stage, a variety of signals such as vibration, acoustic emission,
noise, temperature, etc., are acquired from target machines by sensor systems [14]. In
the feature extraction stage, fault-sensitive information from sensor signals is manu-
ally extracted using different types of signal processing methods [15]. Such processes
rely too much on the step of feature extraction, which requires prior signal processing
knowledge and diagnosis experience [16, 17]. Finally, the extracted features are fed into
the traditional machine learning methods for classification [18, 19]. However, the tradi-
tional machine learning methods are designed for specific types of faults or machines
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and therefore are case dependent and not used for general applications [20]. Moreover,
these methods are not efficient for processing high-dimension data [21]. In general,
traditional intelligent diagnosis methods have low diagnosis performance for machines
that operate under adverse and complex conditions [22]. These reasons can seriously
restrict the applicability of traditional machine learning methods for rotating machine
fault diagnosis.

Recently, deep learningmethods have received great interest and achieved significant
successes in machine fault diagnosis, which overcomes the limitations of traditional
machine learning methods [23, 24]. Deep learning-based fault diagnosis methods can
extract the learnable features from large amounts of sensor data directly by constructing
deep network architecture with multiple layers of linear and non-linear transformations
and performs an end-to-end fault diagnosis [25, 26]. In the following section, the most
common deep learning methods have been discussed.

3 Deep Learning Methods in Fault Diagnosis of Rotating Machines

This section reviews the applications of the most common deep learning methods and
their corresponding variants in fault diagnosis of rotating machines.

3.1 Convolutional Neural Network (CNN)

Convolutional neural network (CNN) is a biologically inspired feed-forward neural net-
work used to extract local features from the raw sensor data to perform classification
[27]. The typical convolutional neural network model consists of multiple hidden lay-
ers, namely, the convolution layer, pooling layer, and fully connected layer [28]. The
convolution layer is composed of a series of learnable filters (also known as kernels)
that can extract different features of input data to generate new feature maps as the input
to the next layer. The pooling layer is the down-sampling layer which decreases the
size of the input and the number of parameters, and thus it can decrease the number of
computations and prevent overfitting. The fully connected layer is used to compute the
class scores [29].

Convolutional neural network (CNN) was originally designed for processing two-
dimensional (2D) or three-dimensional (3D) input data such as images and video frames
[30]. The traditional CNN is not suitable for fault diagnosis of mechanical equipment
since most measured signals are one-dimensional (1D) signals. Thus, the input 1D data
needs to be converted into 2D data through somemethods to complete the feature extrac-
tion and classification [31]. Studies by [32, 33] proposed CNN-based fault diagnosis
methods by converting the original 1D signals into 2D images for differentmachine diag-
nosis tasks. However, the process of converting the original signal is time-consuming,
and may certainly cause the loss of faulty data. The emergence of a one-dimensional
convolutional neural network (1D-CNN) provides a feasible solution to avoid the above
problems. Compared with 2D-CNN, 1D-CNN has a simpler and more compact network
structure, and it can effectively diagnose the faults ofmachineswith limited training data.
Using one-dimensional vibration signals as input data, researchers often utilize a 1D-
CNN to diagnose the faults of different rotating machine components, such as bearings
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[12, 20, 34], automobile engines [35], and gearboxes [36]. Abdeljaber et al. [37] used a
one-dimensional convolutional neural network (1D-CNN) for structural damage detec-
tion based on vibration signals. Yin et al. [38] combined 1D-CNNwith self-normalizing
neural networks (SNN) to improve the diagnosis accuracy and generalization capability
of rotating machine fault diagnosis.

Many researchers have made significant efforts on developing novel CNN-based
models and have achieved considerable progress. Jia et al. [39] developed a deep nor-
malized CNN for imbalanced fault classification of machines frommechanical vibration
signals. In [40, 41], an adaptive deep CNN model was to diagnose the faults of rolling
bearings.Kolar et al. [42] proposed amulti-channels deepCNNmodel for rotarymachine
fault diagnosis from the raw vibration data. Sun et al. [43] presented a convolutional
discriminative feature learning (CDFL) approach to diagnose the faults of the motor.
Dilated CNN methods have been used for bearing fault diagnosis from raw vibration
signals [44, 45]. Liu [46] developed a dislocated time series CNN to diagnose the faults
of an induction motors. Zhang et al. [47] utilized a CNN model with wide first-layer
kernels for rolling bearing fault diagnosis using one-dimensional vibration data. Chen
et al. [48] developed a novel deep capsule networkwith stochastic delta rule (DCN-SDR)
for rolling bearing fault diagnosis. Ye and Yu [49] proposed a deep morphological CNN
for fault diagnosis of the gearbox. Wang et al. [50] developed a novel multiple-input,
multiple-task CNNmethod for roller bearing fault diagnosis. Studies [51–53] proposed a
hierarchical convolutional neural network (HCCN) for fault diagnosis of different rotat-
ing machine components. Zhang et al. [54] developed an intelligent method based on
multi-level information fusion and hierarchical adaptive CNN to diagnose the faults of
centrifugal blowers. Jiang et al. [55] developed a multiscale convolutional neural net-
work (MSCNN) for fault diagnosis of wind turbine gearboxes.Wang et al. [56] proposed
a cascade CNN with progressive optimization for motor fault diagnosis under dynamic
working conditions.

3.2 Recurrent Neural Network (RNN)

Recurrent neural network (RNN) is the deepest neural network with both feedforward
connections and internal feedback connections between network layers. Varying from
feedforward neural networks like CNN, RNN can exploit temporal information from
multiple sequential data because of its internal memory. Neurons of RNN can not only
receive information from other neurons but also receive their information to form a net-
work structurewith loops. RNNhasmore advantages in exploiting temporal information.
Thus, it has been widely utilized in machine fault diagnosis. Hu et al. [57] utilized an
improved deep RNN for rotating machine fault diagnosis. Huang et al. [58] proposed
the RNN-based variational auto-encoder (VAE) for motor fault detection. However,
RNN has gradient vanishing and exploding problems, thus it has inherent limitations in
capturing long-term information [59, 60]. To overcome the limitations of the recurrent
neural network, researchers have proposed long short-termmemory (LSTM) [61], gated
recurrent unit (GRU), and other improved RNN models.

As an improved recurrent neural network, LSTM resolves the problems of gradient
vanishing and exploding, and captures long-term dependencies and nonlinear dynamics
of time series data [62]. As a result, the LSTM model with memory function has gained
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increasing attention in machine fault diagnosis. For instance, Yin et al. [63] developed
an optimized fault diagnosis method based on the cosine loss LSTM neural network
for the wind turbine gearbox. Yang et al. [64] developed an improved long short-term
memory model to diagnose the faults of electromechanical actuators. However, LSTM
cannot make full use of data since it can only process data in one direction [65]. Further-
more, unidirectional LSTM has a relatively high network complexity, thus the training
process takes a long time [66]. Bi-directional LSTM is an improvement of LSTM that
can address the limitations of unidirectional LSTM. Bi-directional LSTM can extract
features from both forward and backward directions. Cao et al. [67] developed a novel
intelligent method based on deep bi-directional LSTM diagnose the faults of wind tur-
bine gearboxes. Han et al. [68] combined Bi-LSTM and a Capsule Network with a CNN
for rotating machine fault diagnosis. The bi-directional LSTMwas used to complete the
feature denoising and fusion, which was extracted by a convolutional neural network
and used a capsule network to achieve the fault diagnosis for insufficient training data.
Li et al. [69] utilized Bi-LSTM to detect the faults of rolling bearings. Thus, Bi-LSTM
has higher diagnosis accuracy and efficiency than unidirectional LSTM.

Compared with the LSTM model, a gated recurrent unit (GRU) can better handle
large training data with a simple network structure and fewer parameters, thus it greatly
reduces the calculation efficiency [70]. Liu et al. [71] utilized aGRU todiagnose the faults
of rolling bearings. Tao et al. [72] utilized a multilayer GRU method for fault diagnosis
of spur gear from vibration signals. To verify its superiority, the proposed method was
compared with LSTM, multilayer LSTM, and support vector machine (SVM). Besides
the most basic GRU structure, Bidirectional GRU (Bi-GRU) has also been employed
for fault diagnosis. Bi-GRU can learn information from both forward and backward
directions of the input data at the same time. For this reason, Lv et al. [73] proposed a
new heterogeneous Bi-GRU method based on fusion health indicators. Zhao et al. [74]
utilized a local feature-based GRU network for bearing fault diagnosis. This method
used an enhanced bi-directional gated recurrent unit to extract high-level features from
vibration data.

Recurrent neural network and its improvement have also been combined with other
machine learning methods. Fu et al. [75] combined a CNN with a LSTM to monitor and
warn of the fault of wind turbine gearbox bearing using temperature data. Zhao et al.
[76] also combined bi-directional LSTM with CNN to address tool wear prediction
tasks. In this study, convolutional neural network was used to extract local features from
the sequential input, and bi-directional long short-term memory was used to encode the
temporal information. Qiao et al. [77] combined a deep CNNwith LSTM to complete an
end-to-end bearing fault diagnosis under variable loads and different noise interferences.
Liao et al. [78] developed a fault diagnosis method for hydroelectric generating units
based on one-dimensional convolutional neural network andGRU from the raw vibration
signal collected under different operational conditions.

3.3 Generative Adversarial Network (GAN)

In practical engineering scenarios, the faulty data collected from the target machine
is usually more limited than the normal data, i.e., the model training data is highly
imbalanced. The deep learning method trained with imbalanced data is prone to poor
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generalization performance. The generative adversarial network is a well-known data
generative model inspired by the game theory that can address the data imbalance prob-
lem [79]. The generative adversarial network (GAN) model is mainly composed of a
Generator and a Discriminator [80]. The generator receives the original data to generate
new data that have a similar distribution to the real data, thus expanding the training
dataset. The generated new data are imported to the discriminator with the original data
to predict whether the input data are real or false data [81]. As a result, GAN has been
successfully employed to fault diagnosis. For instance, Liu et al. [82] developed a fault
diagnosis method based on global optimization generative adversarial network to solve
the unbalanced data problem of rolling bearings. Ding et al. [83] proposed a novel fault
diagnosis method for rotating machines based on GAN, and validated the effectiveness
through small sample rolling bearing and gearbox datasets.

Recently, researchers have made many improvements and developed a wide variety
of generative adversarial network variants. For instance, Yan et al. [84] developed a
fault detection and diagnosis method that utilizes the conditional Wasserstein GAN to
overcome the imbalanced data problem for air handling units. Zheng et al. [85] proposed
a conditional GANmodel with a dual discriminator for imbalanced rolling bearing fault
diagnosis. Studies by [86–89] used a deep convolutional GAN for fault diagnosis of
rotating machines with imbalanced data. Luo et al. [90] utilized a conditional deep con-
volutional GAN to address the data imbalance problem in machine fault diagnosis. Shao
et al. [91] utilized an auxiliary classifier GAN to generate fake sensor signals to solve
unbalanced fault data problems and diagnose the faults of the induction motor. Xiong
et al. [92] utilized aWasserstein gradient-penalty GANwith a deep auto-encoder (DAE)
to diagnose the faults of rolling bearing. However, Wasserstein gradient-penalty GAN
has the shortcomings of vanishing gradient and mode collapse. As a result, Li et al. [93]
proposed a rotating machine fault diagnosis model based on a deep Wasserstein GAN
with gradient penalty for the imbalanced data problem. Zareapoor et al. [94] developed a
newmodel namedMinority oversampling GAN for class-imbalanced fault diagnosis. Zi
et al. [95] proposed a novel multitask redundant lifting adversarial network (MRLAN),
and the results confirm its satisfactory performance under sharp speed fluctuation and
little data. Liu et al. [96] developed a variational auto-encoding GAN model with deep
regret analysis for bearing fault diagnosis. The study by [97] combined an auxiliary clas-
sifier GAN with a stacked denoising auto-encoder for fault diagnosis of rolling bearing.
Liu et al. [98] proposed a categorical adversarial auto-encoder (CatAAE) for fault diag-
nosis of rolling bearings under different working conditions and achieved satisfactory
performance and high clustering indicators even in different working conditions.

While GAN and its extensions have yielded certain success for the imbalanced train-
ing dataset problem, there are still some practical problems that need further exploration.
For example, sometimes GAN generates no reasonable data due to the lack of auxiliary
information in the deep features of input data. Besides, to create sufficient fault data, a
generative adversarial network consumes a huge computing resources and takes a long
training time. Consequently, it is practically significant to develop novel fault diagnosis
methods based on GAN to overcome these real problems.
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3.4 Auto-Encoder (AE)

Auto-encoder (AE) is an unsupervised feed-forward neural network that uses a back-
propagation algorithm to learn discriminative features in an unsupervised manner by
minimizing reconstruction error between the input data and the output data [99, 100].
The typical AE consists of the input layer, hidden layer, and output layer. The input and
hidden layers form the encoder network, whereas the hidden and output layers form the
decoder network [101]. The encoder transforms the high-dimensional input data into
low-dimensional hidden features and the decoder reconstructs the input data from the
learned hidden features [102].

Compared with supervised deep learning methods like CNN and RNN, the auto-
encoder possesses the properties of unsupervised learning, high-efficiency training, sim-
ple structure, and easy implementation. As a result, auto-encoders had been applied for
fault diagnosis of bearings [103], electric motors [104, 105], turbines [106], and other
components. However, the standard auto-encoder (AE) has limited feature extraction
capability for fault diagnosis tasks due to the lack of label data [107]. Moreover, in most
practical situations, the measured signals are always polluted by heavy background
noises, which decreases the performance of the standard auto-encoder. To overcome the
aforementioned challenges, several variants of the auto-encoder have been introduced
into rotating machine fault diagnosis. The common variants are denoising auto-encoder
(DAE), sparse auto-encoder (SAE), contractive auto-encoder (CAE), and variational
auto-encoder (VAE) [108]. The AE, DAE, SAE, and CAE can be stacked to extract
deep features with better representative ability, which are named stacked auto-encoder
(SAE), stacked denoising auto-encoder (SDAE), stacked sparse auto-encoder (SSAE),
and stacked contractive auto-encoder (SCAE), respectively. The following subsection
reviews their applications in machine fault diagnosis.

Stacked Auto-Encoder (SAE). The structure of the stacked auto-encoder (SAE) is
composed of multiple auto-encoders stacked that can extract more implicit features
from high-dimensional complex data and reduce the dimensionality of input data than a
single auto-encoder [109]. In SAE, the output of the formerly hidden layer is used as the
input to the next hidden layer [110]. Since SAE is an unsupervised learning method, it
cannot be directly employed for machine fault diagnosis. Consequently, a classification
layer is usually added at the end of the network structure of the model. In this context,
Liu et al. [111] proposed a stacked auto-encoder (SAE) based deep learning method for
gearbox fault diagnosis. Studies by [112, 113] utilized SAE to develop new methods for
fault diagnosis of roller bearings. Karamti et al. [114] developed a fault diagnosismethod
based on stacked auto-encoders for diagnosing rotating system faults with imbalanced
samples. An et al. [115] developed a batch-normalized stacked auto-encoder method for
intelligent fault diagnosis of rotating machines. The effectiveness of this method was
validated through motor bearing and gearbox datasets. Shao et al. [116] also proposed
an improved SAE to diagnose the faults of rotating machines, and its effectiveness was
validated through sun gear and roller bearing datasets.

Denoising Auto-Encoder (DAE). The denoising auto-encoder (DAE) is an AE
obtained by adding noise to the input data with some statistical characteristics to increase



48 F. Kibrete and D. E. Woldemichael

the anti-noise capability [117]. DAE can automatically extract robust features from cor-
rupted and partially destroyed data, so it is more suitable for fault diagnosis of different
rotating machines. For instance, studies by [118, 119] employed a DAE to diagnose the
faults of rolling bearings. Lu et al. [120] applied the stacked denoising auto-encoder
(SDAE) for rolling bearing fault diagnosis. Zhao et al. [121] developed a deep learning
method using a SDAE for motor fault diagnosis. Chen and Li [122] applied a deep neural
network based on a SDAE to diagnose the faults of the rotor system. J. Yu [123] proposed
a manifold regularized SDAE (MRSDAE) for planetary gearbox vibration signals. Zhan
et al. [124] also utilized a SDAE combinedwith a SVMclassifier for a permanentmagnet
synchronous motor used in an electric vehicle. Xu et al. [125] proposed an intelligent
fault diagnosis method for metro traction motor bearings based on an improved SDAE.
Xiao et al. [126] proposed a noisy domain adaptive marginal SDA for fault diagnosis
of gear and motor using acoustic signals. Godói et al. [127] proposed a new denoising
convolutional AE method configuration employed to the condition monitoring of rotat-
ing machines. Zhao et al. [128] combined a one-dimensional denoising convolutional
auto-encoder (DCAE) with a 1D-CNN for rotating machine fault diagnosis under noisy
environments. Although DAE can extract robust features and achieve remarkable results
in fault diagnosis, it takes more time to select the most suitable corruption level and
corrupt the input data into corrupted inputs of the DAE.Moreover, the extracted features
by DAE may consist of some useless features for fault diagnosis.

Sparse Auto-Encoder (SAE). As an extension of AE, the sparse auto-encoder (SAE)
is a widely used auto-encoder that introduces the sparse penalty term, adding constraints
to the hidden layer for a concise expression of the input data [129]. Compared with other
deep learning methods, SAE is superior in extracting sparser features, highly discrimi-
native, and useful for classification. As a result, many researchers have widely used SAE
for fault diagnosis of rotating machines. For instance, Xin et al. [130] combined a sparse
auto-encoder with softmax regression to diagnose the fault of the attachment on the
blades of the marine current turbine. Zhao et al. [131] proposed a semi-supervised deep
SAE with local and non-local information for fault diagnosis of rotating machines. Kim
et al. [132] utilized a sparse SAE to develop a new fault diagnosismethod for the gearbox.
Qi et al. [133] developed an intelligent fault diagnosis method based on a SSAE, and
its effectiveness was validated through rolling bearing and gearbox vibration datasets.
Sun et al. [101] developed a novel intelligent diagnosis method of automatic feature
learning and classification of rotating machines based on SSAE. Studies by [134–137]
proposed new fault diagnosis methods based on sparse stacked denoising AE for bearing
fault diagnosis. Zhang et al. [138] also developed a stacked pruning sparse denoising AE
method for rolling bearing fault diagnosis. Wen et al. [139] proposed a new fault diagno-
sis method based on stack pruning sparse denoising auto-encoder and CNN to detect and
categorized the actuator damage fault of the unmanned aerial vehicle, and showed good
fault diagnosis accuracy in an actual high noise environment. Jia et al. [140] developed a
local connection network (LCN) constructed by normalized sparse autoencoder (NSAE)
for fault diagnosis of rotating machines. The superiority of the proposed NSAE-LCN
was verified using gearbox and bearing datasets. However, the accuracy and generaliza-
tion ability of sparse stacked auto-encoder is affected by its hyperparameter settings and
there is no clear rule for determining the optimal hyperparameter values, which heavily
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depends on experimental experience. Moreover, the standard learning method employed
in sparse stacked auto-encoder is time-consuming.

Contractive Auto-Encoder (CAE). The contractive auto-encoder (CAE) is a well-
known AE variant that can automatically learn more robust features and is thus suitable
for dealing with noise-overwhelmed signals. The robustness of the data description is
obtained by adding a contractive penalty to the error function of the reconstruction. This
penalty is used for penalizing the attribute sensitivity in the input variations. CAE can
handle noisy data without knowing noise intensity and has been applied successfully
for robust feature extraction and fault classification. Qi et al. [141] proposed a new
deep fusion network that combined the SSAE and CAE for fault diagnosis of bearing
and gearbox. Fu et al. [142] also proposed a deep contractive auto-encoding network
(DCAEN) for fault diagnosis of bearing. Shen et al. [143] applied a stacked contractive
auto-encoder (SCAE) for feature extraction and fault diagnosis of rotating machines.
Gao et al. [144] proposed a new ensemble deep CAE method for machine fault diag-
nosis under noisy environments. The effectiveness proposed method was verified using
bearing, gearbox, and self-priming centrifugal pump datasets. However, CAE still has
higher reconstruction errors during the encoding and decoding process of input features
to the network that cause difficulty to capture the useful information within the feature
space.

Variational Auto-Encoder (VAE). As a generation model, variational auto-encoder
(VAE) can augment the dataset by generating meaningful synthetic data similar to the
original real data and has been successfully employed in fault diagnosis of different
rotating machines [145]. In [146–148], a variational auto-encoder has been employed to
create fault data of bearings. Sun et al. [149] developed a novel fault diagnosis method
called conditional variational auto-encoder generative adversarial network for plane-
tary gearboxes to solve small sample problems. However, the data augmented by the
variational auto-encoder is not always real data. Thus, how to make the data samples
generated by variational auto-encoder more real is still a challenge that requires further
exploration.

3.5 Deep Belief Network (DBN)

Deep belief network (DBN) is a probability generation model composed of several
layers of restricted Boltzmann machines (RBMs), where the output of the previously
hidden layer is utilized as the input of the next layer [150] and the last layer is the
backpropagation neural network. The training process of DBN comprises two stages:
forward unsupervised greedy layer-by-layer pre-training and backward supervised fine-
tuning process. The forward pre-training phase is an unsupervised training process that
aims to extract features from bottom to top layer-by-layer. After the pre-training of
multiple RBMs, the fine-tuning phase is then utilized with a backpropagation algorithm
to optimize the parameters and structure of the pre-trained network to further enhance the
classification accuracy. In fine-tuning, the weights and biases of every layer are updated
continuously until the iteration reaches the limit [151].
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Since deep belief network (DBN) is suitable for processing one-dimensional data, its
applications in fault diagnosis are reported frequently. For instance, Shang et al. [152]
proposed a diagnosis method based on DBN for rolling bearings, which reduces the
complicated network structure to some extent. Qin et al. [153] proposed a new fault
diagnosis method using a DBN for planetary gearboxes of wind turbines. Yan et al.
[154] also proposed a rotor unbalance fault diagnosis method using a multi-deep belief
networkmodelwithmulti-sensor information.Han et al. [155] combined theDBNmodel
with wavelet packet energy entropy and multi-scale permutation entropy to diagnose
gear faults. The authors of [156] proposed a new condition monitoring method for
rolling bearings by using the DBNmodel optimized by themulti-order fractional Fourier
transformfiltering algorithmand the sparrow search algorithm.Zhang et al. [157] applied
a DBN algorithm to diagnose the fault of the power system, and enhanced the ability of
feature extraction and fault classification by enhancing the networkmodel. Yu et al. [158]
proposed a novel fault diagnosis method by hybridizing DBN with Dempster-Shafer
theory for diagnosing the wind turbine system.

The performance of deep belief networks inmachine fault diagnosis depends heavily
on their structure. To obtain an optimal network structure with high performance and
training speed, researchers utilized various optimization techniques. In the literature
[159, 160], the network structure and learning rate of DBN were optimized by using the
PSO algorithm, and the diagnosis accuracy was improved. Wen et al. [161] combined
the deep belief network with a fuzzy mean clustering algorithm for rolling bearing fault
diagnosiswithout using data labels.Gao et al. [162] optimized the network architecture of
a deep belief network using a salp swarm algorithm and utilized it for rolling bearing fault
diagnosis. Similarly, Kamada et al. [163] used the neuron generation annihilation and
layer generation algorithm to propose the adaptive structure learningmethod of restricted
Boltzmann machine and deep belief network, and achieved remarkable success. Shen
et al. [164] developed an improved hierarchical adaptive DBN optimized by Nesterov
momentum (NM) for bearing fault diagnosis.

4 Discussion, Existing Challenges and Future Directions

As seen from the review provided, traditional machine learning methods and deep learn-
ing methods are widely applied in intelligent machine fault diagnosis. Intelligent fault
diagnosis methods based on traditional machine learning have been widely investigated
in the field of fault diagnosis of rotating machines, but they have limitations in process-
ing massive amounts of data as useful features are extracted manually with prior expert
experience. Different from traditional machine learning methods, deep learning meth-
ods can extract abstract features from massive and heterogeneous mechanical signals
with the help of their multilayer nonlinear mapping ability to perform an end-to-end
fault diagnosis. Table 1 reveals the strengths and weaknesses of deep learning methods
applied in fault diagnosis of industrial machines.

Although deep learning methods have achieved tremendous success in fault
diagnosis, there are still some practical problems that need further exploration.

1. Most existing deep learning methods often need a sufficient amount of labeled data
for model training, which achieves great results in laboratory experiments since
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Table 1. Strengths and weaknesses of deep learning methods.

Deep learning method Strengths Weaknesses

CNN 1. Good for multi-dimensional
data
2. Good in extracting local
features
3. Suitable to process image data

1. Complex architecture, and
hence hard to train
2. Require sufficient training data
3. Overfitting problem

RNN 1. Suitable for sequential data
2. Detect changes over time

1. Difficult to train and
implement since the architecture
is complex
2. Gradient vanishing and
exploding problem

GAN 1. Efficient for small dataset 1. Difficult to train
2. Limited data generation ability
in case of very small training
data

AE 1. Easy to implement
2. Takes small training time
3.Does not require labeled data

1. Requires lots of training data
2. Requires more information
compared to relevant information
3. Ineffective when errors are
present in the first few layers

DBN 1. Most suitable for
one-dimensional data
2. Extract large-scale features
from the input data
3. High performance in handling
complex data without data
preparation steps
4. Difficulties in avoiding poor
local optima and optimization are
mitigated

1. Training is very slow because
of complex initialization and
computationally expensive
2. Multiple stochastic hidden
layers lead to inferences and
intractable learning

there is sufficient labeled data. However, it is hard to acquire massive data or even
impossible in practical industrial scenarios as most machines operate in healthy
conditions.

2. Existing deep learning methods can recognize faults accurately with the assumption
that the training dataset and the testing dataset are drawn from the same machine
under the sameworking conditions. This assumptionmay not hold inmany real cases
due to variations inmachineworking conditions, interference of environmental noise,
etc., which leads to significant diagnosis performance deterioration.

3. In practical industrial applications, the collected sensor signals from rotating
machines are usually polluted by various forms of noise, thereby reducing the
performance of the existing fault diagnosis methods.
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4. For long-term monitoring, it is essential to achieve early fault detection of rotat-
ing machines. However, in real practice, it is quite difficult to realize the faults at
the earliest stage due to the weakness of impulse signals and the interference of
environmental noise.

5. Furthermore, rotatingmachines operate for a long time under changeable conditions,
and compound faults may occur simultaneously. Not only this, multiple rotating
machine components may fail at a time. Most existing studies have ignored the
existence of simultaneous fault problems.

Therefore, it is of great significance to resolve these practical problems and advance
intelligent diagnosis methods for promising employment in modern industrial applica-
tions. The following are some possible research directions given to researchers, readers,
and engineers who aim to contribute to the advancement of artificial intelligence in the
fault diagnosis of rotating machines.

Active research area toward promising results.

1. The emergence of transfer learning provides a feasible solution to overcome the
abovementioned gaps. Different from deep learning, transfer learning targets to
extract knowledge obtained in the source domain and transfer it to resolve a dif-
ferent but similar problem in another domain task. Therefore, transfer learning is
becoming an active research area in the field of intelligent machine fault diagnosis.

2. Based on the review provided, some deep learning methods have strong feature
extraction capabilities and others have limitations in fault classification. To break
the limitation of a single method, researchers still have great possibilities to propose
hybrid deep learning-based fault diagnosis methods for rotating machines.

5 Conclusions

This paper reviewed the applications of artificial intelligencemethods for the diagnosis of
the faults of rotating machines. The observations, research gaps, and some new research
prospects in this research area are discussed. From the review, it is concluded that deep
learning methods have better feature learning ability, better adaptability, and a more
flexible network structure as compared with conventional machine learning methods.
However, their applicability in fault diagnosis is highly restricted by the amount and
quality of the training data, the variation of operating conditions, the disturbance of
background noise, the weakness of early failure detection, and the occurrence of hidden
simultaneous faults. To address these limitations, transfer learning is becoming a hot
research topic in machine fault diagnosis. In addition, new intelligent diagnosis methods
are needed to be able to combine the advantages of both methods in the future. In the
future, the authors will continue to review the applications of transfer learning for the
diagnosis of faults of rotating machines.
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Abstract. In this paper, dynamic modeling of a differential drive mobile robot
(DDMR) using Langrage formulation and terminal sliding mode trajectory track-
ing control is presented. The proposed controller is a cascaded controller designed
to improve the dynamic response of the system, i.e. kinematic and dynamic prob-
lems, asymptotical convergence, and chattering problem using terminal sliding
mode control (TSMC). The terminal sliding mode control provides faster con-
vergence and higher-precision control than the conventional linear hyperplane
sliding control which guarantees the asymptotic stability. This is due to fact that
the terminal sliding mode control system guarantees a finite time convergence to
the sliding phase. The entire control design consists of an outer loop kinematics
control and inner loop speed control system. Here, outer kinematic control system
provides an appropriate velocity control input for the inner loop angular velocity
control of each wheel. An angular and linear velocity control input is designed
in order to make angular and posture error to converge to zero in a finite time
based on global fast terminal sliding mode control (GFTSMC). Then, the inner
loop GFTSMC of the robot is designed to ensure that the tracking error between
the actual and desired angular velocity of each wheels converges to zero in a finite
time. Both the inner and outer closed loop controllers achieve path following in
a finite time and avoids high frequency switching in the closed loop such that the
overall dynamic response of the system is improved using the cascaded control
technique and the stability of each controller was checked using lyapunov criteria.
Generally, the proposed control system shows the performance and effectiveness
of the proposedmethod compared to conventional SMC, and the simulation results
indicate good convergence and robustness of the system for circular trajectories
under bothmodel uncertainty and randomGaussian disturbances using GFTSMC.

Keywords: Differential drive mobile robot · Langrage formulation approach ·
TSMC · Finite time · Trajectory tracking
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1 Introduction

Wheeled mobile robotics is one of the most developed fields in robotics, having many
uses in different fields like entertainment, military, and exploration. Mobile robots have
caught the interest of many researchers in robotic control because of their complications
in control schemes and practice applications [1]. Non-holonomic constraint is a feature
of a wheeled mobile robot. The problem of tracking control of a mobile robot has
been addressed by a number of control approaches [2, 3]. Two models (kinematic and
dynamic) are used to categorize research approaches in two axes and the tracking control
problem as a kinematic or dynamic challenge [4]. In [5], a navigation system slide mode
control was proposed for a mobile robot, but in the paper, the influence of dynamics of
the mobile robot was not well thought-out and only steering system (kinematic problem)
controller was designed. A back stepping controller for a Wheeled Mobile Robot was
presented by the authors in [6]. The kinematic control unit’s job was to provide velocity
outputs to the robot, which assisted to keep the posture mistakes to a minimum. The
response, on the other hand, was slow. Due to the large amount of difficult computations,
the control has a reduced reaction time [7]. Authors in [8] designed a cascaded control
system that has amaster feedbackkinematic and slave feedbackdynamics basedPIDwith
the translational velocity kept constant and only the robot’s rotational velocity controlled,
i.e., the robot’s pose is controlled by varying the rotational velocity alone, resulting in a
low response time. In [9], a traditional sliding mode control (SMC) system which used
Gao’s reaching method was implemented for a mobile robot, while a fuzzy kinematic
controller with dynamic proportional integral control was designed for a mobile robot
in [10]. The results show that the controller has finite time convergence problems.

In this paper, a controller is proposed to eliminate the chattering occurrence and
asymptotical convergence in traditional sliding mode control systems by using cascaded
robust finite time global fast terminal SMC for trajectory tracking of a differential drive
mobile robot. Furthermore, accuracy and effectiveness of the proposed control system is
evaluated using different performance index such as ITSE, IAE and ITAE and compared
to conventional SMC.

This remaining sections of the paper are structured as follows. Section 2 describes the
kinematic model of the differential robot and proposed Langrage formulation. Section 3
describes both the GFTSMC and SMC controller design. Section 4 presents the analysis
and simulation results, and Sect. 5 concludes the paper.

2 Kinematic and Dynamic Model of DDMR

In this section, both kinematic model and dynamic model of differential drive mobile
robot was derived.

2.1 Kinematic model of DDMR

We consider the following a differential drive mobile robot which has two wheels and
one castor wheel at front. Geometrical parameters of the differential drive mobile robot
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Fig. 1. Posture description of DDMRM

is specified such that the radius of R is placed with a distance L from the center of the
mobile robot which illustrated in Fig. 1.

In Fig. 1, let’s assume that the robot can never slidewhichmakes the robotsmovement
along y axis always zeros, i.e. Ẏr = 0. Since, the robot is subjected to Nonholonomic
constraints, namely: pure rolling constraints and no side move (forward and backward)
motion only. A two different coordinate system (frames) must be defined to characterize
the WMR’s position in its environment such as world coordinate and robot coordinate
system.

The linear velocity of the robot in its robot coordinate system frame is:

Ẋr = R�̇r

2
+ R�̇l

2
(1)

Given the speeds �̇r and �̇l of the right and left wheels, respectively, the rotational
velocity is expressed as:

θ̇ = R�̇r

2
+ R�̇l

2
(2)

The differential drive mobile robot’s velocities can be obtained also in the inertial
frame (world frame) with respect to the robot coordinate system as follows using the
rotational matrix along z axis:

⎛
⎝
ẋI
ẏI
θ̇I

⎞
⎠ =

⎛
⎝

Rcos θ
2

R cos θ
2

R sin θ
2

R sin θ
2

R
2L − R

2L

⎞
⎠

(
�̇r

�̇l

)
(3)

The relationship of linear and angular velocities to angular velocities of the wheels
are given by Eqs. (1) and (2).

(
v
ω

)
= M

[
ωr

ωl

]
(4)

where, M =
[ R

2
R
2

R
2L − R

2L

]
which forward kinematics of DDMR.
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2.2 Langrange Formulation of Dynamic Model of DDMR

We begin by describing the Lagrangain (L) of the mobile robot as the difference of its
kinetic energy (T) and potential energy (U) [11].

The kinetic energy of the robot is expressed as:

Tc = 1

2
mcv

2
c + 1

2
Icθ̇

2 (5)

While the kinetic energy of the right and left wheel is expressed as:

Twr = 1

2
mwv

2
wr + 1

2
Im θ̇2 + 1

2
Iw�̇2

r (6)

Twl = 1

2
mwv

2
wl +

1

2
Im θ̇2 + 1

2
Iw�̇2

l (7)

where,mc is themass of theDDMR,mw is themass of each drivingwheel (with actuator),
Ic is the moment of inertia of the DDMR about the vertical axis through the center of
mass, Iw is the moment of inertia of each driving wheel with a motor about the wheel
axis, and Im is the moment of inertia of each driving wheel with a motor about the wheel
diameter. All velocities are first articulated as a function of the generalized coordinates
using the general velocity equation in the inertial/world frame.

v2i = x2i + y2i (8)

The kinetic energy of the system is then written conveniently by

T
(
q, q′) = 1

2
m

(
x2i + y2i

)
+ mcaθ̇

(
cos θẏI − sin θẋI

) + 1

2
Iθ̇2 + 1

2
Iw(�̇2

r + �̇2
l ) (9)

where, the following new parameters are introduced as follows, m = mc + 2mw, and
I = 2mwD2 + mca2 + 2Im + Ic and the potential energy of the DDMR is considered to
be zero, because the DDMR is travelling in the xi- yi plane.

The dynamic equations are simplified to the following form using state space
representation, we get

(
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(
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)

4L2

)
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(10)
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(11)

where, the angular velocities of right and left wheel (ωr,ωl) of the DDMR and the
driving motor torques ((τr, τl) are right and left wheel torque respectively.
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3 Controller Design

To have improved motion over all control performance speed control system must
employed because, due to additional load, surface, dynamics of mobile robot and among
others perfect velocity tracking impossible. In this case the controller structure should
be split into two stages as shown Fig. 2 [13].

Inner loop used for control of angular velocity of each wheel’s, depending on the
mobile robot dynamics.Whereas, the outer loop position control system is used to control
both the translational and rotational positions of the mobile robot steering system. The
outer loop finds suitable or desired velocity control inputs, which stabilize the kinematic
closed loop control.

Fig. 2. Entire closed loop control system for DDMR.

3.1 Kinematic Outer Loop Global Fast Terminal Sliding Mode Controller Design

This control method is specially implemented to the kinematic differential drive mobile
robot systems which are controlled by linear and angular velocity inputs.

The posture error pe = (
xe, ye, θe

)T can be expressed as using from Fig. 3, [12].

⎛
⎝
xe
ye
θe

⎞
⎠ =

⎛
⎝

cos θ sin θ 0
− sin θ cos θ 0

0 0 1

⎞
⎠

⎛
⎝
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yd − y
θd − θ

⎞
⎠ (12)

The sliding surface is chosen as:

s = θ̇e + αθe + βθ

q
p
e (13)

rearranging Eq. (13), we get

θ̇e = ωd − ω = −αθe − βθ

q
p
e (14)
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Fig. 3. Posture error description.

Then, the control law can be obtained as [14]:

ωd − ω = −αθe − βθ

q
p
e = ω = ωd + αθe + βθ

q
p
e (15)

When, θe converges to zero, ωd = ω.
The error model becomes to be as follows taking derivative of Eq. (12), we get

x′
e = yeωd − v + vd (16)

y′
e = −xeωd (17)

By setting,

z = xe − ye (18)

The control law can be found from the global fast terminal sliding mode as [14]:

ż + αz + βz
p/q = 0 (19)

So, the result can be obtained as:

ż = −αz − βz
p/q (20)

By using the Eqs. (16), (17), and (20), we have

ż = ẋe − ẏe = yωd − v + vd + xωd (21)

The control law can be obtained as:

ż = ẋe − ẏe = yeωd − v + vd + xeωd (22)

ż = −αz − βz
p/q (23)
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The control law can be obtained as:

(
v
ω

)
=

⎛
⎝yeωd + vd + xeωd + αz + βz

p/q

ωd + αθe + βθ

q
p
e

⎞
⎠ (24)

Analysis of stability of the control system is performed by selecting the lyapunov
function as follows

v1 = 0.5θ2e (25)

By differentiating the Eq. (25) is given as:

v̇1 = θeθ̇e = −αθ2e − βθ

p/q+1
e < 0 (26)

It was observed that v1 > 0 and v̇1 < 0, thus, the error state variables, θe and θ̇e are
stabilized at the equilibrium point.

The posture error control system stability is proved using the lyapunov function as
follows

v2 = 0.5z2 (27)

By differentiating the Eq. (27) is given as:

v̇2zż = −αz2 − βz
p/q+1

< 0 (28)

It can be seen that, v2 > 0 and v̇2 < 0, thus, the error state variables, z and ż are
stabilized at the equilibrium point.

3.2 Inner Loop Speed Control System Using Global Terminal Sliding Mode
Controller Design

Considering the linear and the terminal sliding surfaces, a newglobal fast terminal sliding
surface is proposed given by Eq. (29).

s = ẋ + αx + βx
q
p (29)

where, x ∈ R, α, β > 0 and p > q are positive odd numbers [14].
First by describing the tracking error as follows

ėi = ei+1 and ei = xid − xi (30)

where, ei is tracking error.
By choosing the sliding surface for angular velocity of right and rightwheel according

to GFTSMC, we have,
⎧⎨
⎩
s1 = ė1r + αe1r + βe

q
p
2r

s2 = ė1l + αe1l + βe
q
p
2l

(31)
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where, s1 and s2 sliding surface & e1l = ωld − ωl, e1r = ωrd − ωr is error b/n desired
and actual angular velocity.

The control law for first order given by,

si = 0 (32)

Therefore, the dynamic equation in Eqs. (10) and (11) using the state space
representations are given by Eqs. (33) and (34).

⎧⎨
⎩
ẋ1 = (m1τr − m2τl − m1V(x1 − x2)x1 − m2V(x1 − x2)x2) 1

m2
1−m2

2

ẋ2 = (m2τr − m1τl − m2V(x1 − x2)x1 − m1V(x1 − x2)x2) 1
m2
2−m2

1

(33)

where, m1 = Iw + R2
(
mL2+I

)
4L2

, m2 = R2
(
mL2−I

)
4L2

, V = R
L

(
R2mca
2L

)
, x1 = ωr and x2 = ωl.

The linear and angular velocity speed control system using GFTSMC is given by
⎧⎪⎪⎨
⎪⎪⎩

u1 = (
m2

1 − m2
2

)(
αe1 + βe

q
p
2 + ω̇rd

)
+ m1V(x1 − x2)x1 + m2V(x1 − x2)x2

u2 = (
m2

2 − m2
1

)(
αe1 + βe

q
p
2 + ω̇d

)
+ m2V(x1 − x2)x1 + m1V(x1 − x2)x2

(34)

where, u1 = m1τr − m2τl and u2 = m2τr − m1τl.
In a finite amount of time, we can bring the system state to a condition of equilibrium

ts given by such that the initial state x(0) �= 0 attains at x = 0,

ts = p

α(p − q)
ln

αx(0)
(p − q)/p + β

β
(35)

By designing α, β, p, q [15].

3.3 Inner Loop Speed Control System Using Conventional Sliding Mode Control

In conventional sliding mode control, sliding surface is given by

si =
(

λ + d

dt

)n−1

ei (36)

where, si is sliding surface, n is order of system and ei tracking error [15].
Sliding surface is chosen as follow for angular velocity of right and left wheel:

{
s1 = e1r
s2 = e1l

(37)

Taking the derivative of Eq. (37), we obtain

{
ṡ1 = ė1r
ṡ2 = ė1l

(38)
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where, e1r = ωrd −ωr and ωrl −ωl is difference b/n actual and desired angular velocity
of right and left wheel.

Then, the control law can be obtained as,
{
ė1r = ω̇rd − ω̇r = −ηsign(s1)
ė1l = ω̇ld − ω̇l = −ηsign(s2)

(39)

where, η is positive constant,
Therefore, the control law of speed control systems for inner control using traditional

control system is given by Eq. (40).

{
u1 = (

m2
1 − m2

2

)
(ηsign(s1) + ω̇rd) + m1V(x1 − x2)x1 + m2V(x1 − x2)x2

u2 = (
m2

2 − m2
1

)
(ηsign(s2) + ω̇ld) + m2V(x1 − x2)x1 + m1V(x1 − x2)x2

(40)

4 Simulation Results and Analysis

Ntrol parameters for the proposed system assuming vd = 2m/s, andωd = 2 rad/s
are α = 10, β = 1, q = 3, and p = 5 for outer GFTSMC, β = 2,η = 50,000, q =
3, and p = 5 for inner GFTSMC and for SMC, η = 50,000. The numerical parameter
used for demonstration of the proposed control is listed in Table 1 for the DDMR [16].

Table 1. Numerical parameter value of DDMR used for simulation.

Parameter Value and unit

The mass of the DDMR without the driving wheels and actuators [mc] 6 [kg]

The mass of each driving wheel (with actuator) [mw] 0.5 [kg]

The moment of inertia of the mobile robot about the vertical axis through the
center of mass [Ic]

3 [kgm2]

The moment of inertia of each driving wheel with a motor about the wheel
axis [Iw]

0.01875 [kgm2]

The moment of inertia of each driving wheel with a motor about the wheel
diameter [Im]

0.5 [kgm2]

Radius of mobile robot wheel [R] 0.05 [m]

Half of the distance between the wheels [L] 0.5 [m]

Distance between center of mass of robot to the cut axis point of robot [a] 0.1 [m]

In order to test the robustness of the inner loop GFTSMC and the SMC speed
control system against random gaussian disturbance shown in Fig. 4 is applied after 5 s
of simulation time.

The accuracy and effectiveness of both inner and outer loop controllers againstmodel
uncertainty and random external disturbance was tested using different performance
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Fig. 4. Random Gaussian external disturbance.

Table 2. Performance index of outer loop controller.

Error along X, Y, and theta GFTSMC-GTFSMC GFTSMC-SMC

ITSE IAE ITAE ITSE IAE ITAE

Theta 0.000686 0.05354 0.01489 0.007078 0.05745 0.02279

X axis 0.001383 0.07725 0.01114 0.1022 0.6755 0.3016

Y axis 0.01594 0.2469 0.03027 0.1242 0.7078 0.3148

Table 3. Performance index of inner loop controller.

Error along X, Y, and theta GTFSMC SMC

ITSE IAE ITAE ITSE IAE ITAE

Right 0.1146 0.2323 1.712 4.081 2.512 12.53

X axis 0.1146 0.2296 1.712 4.06 2.639 12.53

index measurements such as integral absolute error (IAE), integral time square error
(ITSE), and integral time absolute error (ITAE) as presented in Tables 2 and 3.

The results reveal that the along θwith external and uncertainty disturbance achieved
the least error 0.000686 using GFTSMC (ITSE), while the largest error was achieved
along θ with (0.05745) using SMC (IAE). Similarly, least error along X and Y axis
0.001383 and 0.01594 respectively using GFTSMC (ITSE). The largest error 0.6755
and 0.7078 achieved along X and Y axis respectively using SMC (IAE) as indicated
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Table 2. The results show that the right and left wheel angular velocity achieved the
least error of 0.1146 using GFTSMC (ITSE), while the Left and right wheel angular
velocity achieved the largest error (12.53) with SMC (ITAE) as presented in Table 3.
The performance index versus time of GFTSMC and conventional SMC illustrated in
Fig. 5 and Fig. 6 respectively. It was observed from Fig. 5 that GFTSMC gives good
convergence under model uncertainty and Gaussian external disturbances.

Fig. 5. Performance index of inner loop GFTSMC.

Fig. 6. Performance index of inner loop SMC.
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From Fig. 7, an initial tracking error along X axis, Y axis, and rotation position

starting from point
(
1, 2, pi

6

)
approached to zero in finite time.

Fig. 7. Tracking error along x, y and orientation of mobile robot using GFTSMC.

From Figs. 8 and 9, it was observed that control signal input angular and linear
velocity generated using outer loop GFTSMC changed in to angular velocity of each
wheels using transformational matrix in Eq. (4).

Fig. 8. Right and left wheel angular velocity speed tracking

The inner loop GFTSMC speed control system makes the actual linear and angular
velocity to track the desired linear and angular velocity of 2m/s and 2 rad/s respectively.
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Fig. 9. Angular and linear velocity control signals

XY 2D movement of the mobile robot shown in Fig. 10. The robot starts from the initial
point (1 m, −1 m) and moves to the desired circular trajectory radius of 1 m.

Fig. 10. Circular trajectory tracking starting from point (1, −1)

Similarly, the Fig. 11 shows the inner loop GFTSMC speed control system perfor-
mance which shows the error between the angular velocity of each wheel to zero at
a finite time. In this case, random Gaussian disturbance was applied after 5 s for both
wheels and a model uncertainty of ρ = 0.1∗sin(20 ∗ t) a was taken to test the robustness
of the controller, but the inner loop controller is suitable for both disturbances inputs.

In traditional SMC, sliding mode parameters can be adjusted to get faster error
convergence, however, this will in turn increase the control gain, whichmay cause severe
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Fig. 11. Inner loop GFTSMC angular velocity each wheels tracking error

chattering of the sliding surface and, therefore, deteriorate the system performance as
shown in Fig. 13. But, sliding surface GFTSMC smooth which means that it is free from
chattering problems as shown in Fig. 12.

Fig. 12. Sliding surface of inner loop GFTSMC

As observed in Fig. 14, the mobile robot approaches the desired trajectory starting
from (0, 0). Here, starting error along X, Y and theta will be (2, 1, pi/6).
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Fig. 13. Sliding surface of inner loop SMC

Fig. 14. Circular trajectory tracking starting from another point (0, 0)

5 Conclusion

In this paper, the dynamics of DDMR is obtained using Langrage formulation. The
trajectory tracking control for the DDMR is designed to achieve the desired reference
trajectory such that the angle error and posture error comes to zero with a finite time
global fast terminal sliding mode control (GFTSMC). The GTSMC without chattering
effect for kinematic outer closed loop and dynamic inner loop velocity controller was
designed to achieve velocity tracking so that errors between the actual and desired veloc-
ity control input are reduced to zero at a finite time. The robustness of both controllers
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was tested using different performance indexes. The results show that both controllers
are insensitive to any random external and model uncertainty disturbance. Moreover,
the overall dynamic response of the system was improved by integrating the dynamics
using cascaded motion control approach for the DDMR.
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Abstract. Breast cancer and cervical cancer are two of the most common and
deadly malignancies in women. Early diagnosis and treatment can save lives and
improve quality of life. However, there is a shortage of pathologists and physicians
in most developing countries, including Ethiopia, preventing many breast and cer-
vical cancer patients from early cancer screening. Many women, particularly in
low resource settings, have limited access to early diagnosis of breast and cervical
cancer and receive poor treatment which in turn increases the morbidity and mor-
tality due to these cancers. In this paper, an integrated intelligent decision support
system is proposed for the diagnosis andmanagement of breast and cervical cancer
using multimodal im-age data. The system includes breast cancer type, sub-type
and grade classification, cervix type (transformation zone) detection and classifi-
cation, pap smear image classification, and histopathology-based cervical cancer
type classification. In addition, patient registration, data retrieval, and storage as
well as cancer statistical analysis mechanisms are integrated into the proposed
system. A ResNet152 deep learning model was used for classification tasks and
satisfactory results were achieved when testing the model. The developed system
was deployed to an offline web page which has added the advantage of storing the
digital medical images and the labeled results for future use by the physicians or
other researchers.

Keywords: Breast cancer · Cervical cancer · Decision support system ·
Screening · Histopathological images · Cancer management

1 Introduction

The world health organization (WHO) estimated that there were 9.6 million cancer-
related deaths and 18.1 million new cases worldwide in 2018 [1]. Breast cancer and
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cervical cancer, which are the second and fourth most common cancer types in women
globally, are the most common and lethal of all known cancer kinds [1].

According to statistics provided by the Addis Ababa City Cancer Registry Quadren-
nial Report of 2012–2015 investigation, women made up two-thirds of the city’s cancer
burden, with breast cancer accounting for the majority of that burden. Cervical cancer
was the next most common cancer to affect the city’s female population [2].

The two most prevalent cancers, breast cancer and cervical cancer, are also the
two that kill the most women from cancer worldwide. Through improvements in early
diagnosis methods and prescreening procedures, illness survival can be increased. A
clinical examination, imaging-based screening, and pathological evaluation (a biopsy
test) are often used diagnostic techniques.

Unfortunately, most underdeveloped nations [3–5] including Ethiopia have a physi-
cian and pathologist scarcity, whichmakes it difficult formanywomenwith breast cancer
and cervical cancer to receive an early diagnosis. Due to this, many women, especially
those living in rural regions, miss out on the opportunity to receive an early diagnosis of
breast cancer and cervical cancer [6]. Because of these illnesses, the death rate of moth-
ers has increased. In addition, pathologists must review a lot of biopsy samples each day,
which exhausts them. Moreover, the complexity of the cancer cells and their subjective
decision, which is dependent on expert’s performance, may lead to misdiagnosis of the
subtypes and grade of the diseases from biopsy tests, which is essential to understand
the biological characteristics and clinical behavior of the cancer cells.

Even though, Pap smear test, Biopsy test and colposcopy image tests are the common
screening and diagnosing techniques for cervical cancer and breast cancer [7–9] they
are sometimes prone to misdiagnosis. That is, their result can be either over interpreted
or under interpreted. Over interpreted means that women without cancer are exposed to
potentially harmful treatments and unnecessary expenses. On the other hand, inaccurate
interpretation (under interpretation) of biopsy result could prevent women from getting
the treatment early causing the cancer to grow more to invasive stage.

Now a days, machine learning and deep learning techniques are applied in different
medical image and signal analysis works [10–18] in order to automate diagnosis systems
and help physicians in getting support for making accurate decision. Artificial intelli-
gence’s (AI) application in the analysis of medical images can help increase diagnosis
accuracy and reduce subjective variability and misdiagnosis rate by reducing the work
load of pathologists.

In this project, an integrated breast cancer and cervical cancer diagnosis decision
support system is developed in the form of web application.

2 Methodology

2.1 System Development and Technologies Used

When properly developed, clinical decision support systems can greatly improve the
quality of treatment by delivering more accurate diagnoses, fewer mistakes, reduced
costs, and more patient and provider satisfaction [19].

An automatic breast cancer and cervical cancer diagnosing system is developed and
tested. The essence of this project is to develop an integrated web application which
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can be installed in any desktop or personal computer of users. It is designed as a deci-
sion support system for physicians. Furthermore, the system has many added features
which can help researchers to acquire important information like statistical data of the
prevalence of the diseases and organized labeled digital images for future studies can be
acquired from the systems database.

Thedevelopedofflinewebapplicationhas the ability of classifyingdigital histopatho-
logical image of breast cancer in to binary (benign and malignant) classes and has
the ability of classifying the given image into further eight subtypes (adenosis tumor,
fibroadenoma tumor, phyllodus tumor and tubularadenoma tumor subtypes under the
benign class and Ductal carcinoma, Lobular carcinoma, Mucinious Carcinoma and Pap-
pilary Carcinoma as a subtypes under the malignant cancer types), and classifies digital
histopathological image of cervical cancer in to precqancerous cells, squamous carci-
noma and adenocarcinoma. Furthermore, the developed system is capable of classifying
pap smear images as normal and abnormal cells. Furthermore, using a colposcopy image
as input, physicians can use the developed system to classify cervix type as type 1, type
2 and type 3. This information will help physicians to exactly know the transformation
zone of the cervix.

To develop the overall systemDjango frameworkwas used.Django is an open source
high-level pythonweb framework that enables rapid development of secure andmaintain-
able websites [20]. For front end development HTML, CSS, JavaScript, Bootstrap, and
AJAX were used. For backend development python is used for storage SQLite database
is used. Furthermore, the classification models were developed by using ResNet152
pretrained model. Finally, the Incremental Development Model was utilized to create
the web application. This is a software development process in which a web application
is developed, implemented, and tested gradually, with little adjustments made until the
application is complete.

2.2 Image Classification System

2.2.1 Data

Microscopic histopathology images of breast cancer were collected from datasets pro-
vided by Jimma University Medical Center (JUMC), “break-his,” [10] and “zendo”
[11] repositories for the purposes of model training, validation, and testing. The images
from JUMC were collected using an Opti-ka-vision camera attached to a simple light-
microscope with four magnification powers (40X, 200X, and 400X), and a resolution
of 2592 X 1936. The images were stained using the H&E staining process. Similar to
how images from the break-his dataset were collected, different magnification factors
were used to capture the images (40X, 100X, 200X, and 400X). The image frames were
obtained from areas that had been affected by tumor growth.

A total of 915 Hematoxylin and Eosin (H&E) stained histopathology images from
Jimma University Medical Center (JUMC) and St. Paul Hospital were obtained for the
classification of cervical cancer. The OPTIKA light microscope with mounted digital
camera, a smartphone camera, and a digital scanner was used to gather the data. 4x, 10x,
40x, and 100x magnification powers were used to capture microscopic images, with
resolutions ranging from 419 × 407 to 2048 × 1536.
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For the classification of cervix types, a total of 4005 pictures were gathered. After
applying 5% acetic acid to the cervix, 133 colposcope images from Tercha General
Hospital were obtained via a speculum (to reach the cervix) and 13MP and 18MP
Tecno smartphone cameras. Three experienced gynecologists, including a seniormedical
doctor and an integrated emergency surgical officer (IESO), categorized the images after
they had been gathered. The remaining pictures are from the Kaggle dataset, which
is accessible to everyone [20]. Prior to data collection, Jimma Institute of Health’s
intuitional research review board granted ethical permission.

For testing and training, the Herlev Pap smear dataset (general public) was used. It
includes 917 pictures of single cervical cells that have been classified and segmented
using ground truth [16].

2.2.2 Classification Model

An image is recognized based on its visual information by the intricate image classifi-
cation system used in computer vision. The accuracy of classification is primarily influ-
enced by the characteristics of the dataset, the complexity of the analytical problem, and
the efficiency of the classificationmethod. Inference time,memory usage, computational
complexity, recognition accuracy, and model complexity can all be used to assess how
effective a classification method is. It is difficult to train a highly deep neural network
because of the vanishing gradient problem. The gradient becomes exceedingly small as
a result of repeated multiplication since it propagates back to earlier layers. Whenever
the result of a network grows deeper, its performance also reaches a saturation point or
soon drops [21, 22].

For the cancer classification tasks, the state-of-the-art pre-trained classification
model, ResNet152, was used to classify all the multi class histopathology images, col-
poscopy images and Pap smear images. Themodel was trainedwith raw images acquired
from the data repositories. Adam optimizer with a learning rate of 0.0001, maximum of
300 number of epochs, and loss function of sparse categorical cross entropy, were used
for training. The models were validated using train-test split technique. Finally, new data
were used to test the performance of the model for the different classification tasks.

2.3 Key Functions of the System

The web application provides several key functions including:

• Doctor’s login: the doctor/ physician will be able to login after inputting the assigned
username and password on the provided space.

• Diagnosis: the system is able to diagnose breast cancer and cervical cancer from
histopathological images and screen cervical cancer from digital Pap smear images
and colposcopy image.

• Store patient information and data: the system has the ability of saving all recorded
and diagnosed cases for future use.

• Statistics: the system statistically provides the prevalence of the disease in the form
of charts, so that researchers and health professionals can take necessary measures.

• View and print results: the doctor will be able to view all the diagnosed results and
images and print out the results in case needed.
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3 Result

3.1 Classification

For the BC binary classification, classification in to benign and malignant breast cancer
types, better validation was achieved at the 120th epoch with a validation loss of 0.1284.
at this epoch, 96.53% training accuracy and 94.62% validation accuracy. For the BC
benign subtype classification, the lowest validation loss (0.4628) was achieved at the
170th epoch having a training accuracy of 82.14% and validation accuracy of 82.83%.
For BC malignant subtype classification task, the lowest validation loss (0.1725) was
achieved at the 276th epoch with a training accuracy of 97.7% and validation accuracy
of 95.42%. Figure 1 indicates the model’s accuracy and loss result obtained for BC

Fig. 1. Model accuracy (left) and loss plots (right)A. BC binary classification,B.Benign sub-type
classification, C. BC Malignant subtype classification
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histopathological image binary classification, BC benign subtype classification and BC
malignant subtype classification.

Furthermore, the models were further evaluated using unseen test dataset. The test
results for the trained models on the binary classification, benign subtype classification
and malignant subtype classification are demonstrated below using the ROC plot in
Fig. 2.

Fig. 2. ROC forBCA.Binary classificationmodel,B. Binary subtype classification,C.Malignant
subtype classification

For cervical cancer classification from histopathological image using ResNet152 the
lowest validation loss (0.1515) was achieved at the 151th epoch with training accuracy
95.49% and validation accuracy of 96.17%. For cervix type classification the lowest
validation loss of 0.7179 with training accuracy of 76.53% and validation accuracy of
67.91%. For pap smear classification the model achieved the lowest validation loss at
the 173th epoch with a training accuracy of 86.1% and validation accuracy of 87.27%.
Figure 3 shows training accuracy and loss results of ResNet152 model for classifying
cervical cancer from histopathological images, cervix type classification task and pap
smear image classification task respectively.

The trained models to perform cervix type classification and Pap smear digital image
classification task were further evaluated using unseen test dataset. The test results for
the models to perform the necessary classification are shown below using the ROC plot
in Fig. 4.
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Fig. 3. Model accuracy (left) and loss plots (right) A. Cervical cancer histopathological image
classification, B. Cervix type classification, C. Pap smear image classification

Fig. 4. ROC graph A. cervix type classification model, B. Pap smear image classification
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3.2 Developed Web Page Result

The first interaction between the user and the web app is through the login page as
indicated on Fig. 5. A registered doctor/physician who have been given a username and
password by the admin of the system can login in to the system by inserting his/her
unique ID /username and password. This page will help to restrict other people who are
not given access to use the system from accessing patient’s information on the web app.
This will increase patient data confidentiality.

After a successful login by the doctor, the homepage will appear as shown in Fig. 6.
This section provides brief information regarding Breast cancer and cervical cancer. This
page also directs to different functions of the system like diagnosis, browsing patient
records and images, statistical information etc.

As indicated in Fig. 7, Diagnosis/screen option on the left side of the home page
will allow doctors to fill personal information about the patient and create new ID, if the
patient is registering as a new patient. Or the doctor can use the patients ID to retrieve
previously saved information and results of the patient. Then, the doctor can continue
by selecting the type of analysis he/she is intending to do as demonstrated in Fig. 8. For
example: if the doctor’s intention is to do breast cancer diagnosis. Then he will choose
breast cancer and click on “select image for analysis” this will direct the doctor to
either capture new image or browse saved image from the computer. Figure 9 indicates
the page where the doctor can upload or acquire image. Once the image is captured or
browsed as shown in Fig. 10, the image will be displayed as indicated in Fig. 11. After
that, by clicking the “Start processing”, the system will start to analyze the class and
subclass of the given image based on the deep learning model’s knowledge. Finally, the
result will be displayed in the form of percentage as indicated in Fig. 12. As the system
is developed to be a decision support system for doctors, he/she will take the result of

Fig. 5. Login page of BCCDMS
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the system as an input and the final decision on the diagnosis result will be made by the
doctor. Finally, the result achieved with the detail patient’s information can be saved and
printed as indicated in Fig. 13.

Fig. 6. Homepage of BCCDMS

Fig. 7. Patient registration page
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Fig. 8. Selecting the type of analysis

Fig. 9. Image Upload or Capture option
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Fig. 10. Image Browsing

Fig. 11. Selected image processing
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Fig. 12. Breast cancer analysis result

Fig. 13. Patient details and result printing Option

Furthermore, the system allows data retrieving through the Browse data option the
available data can be filtered through the diagnosis type or just by inserting individual
patients ID or name. This feature of the developed systemwill help researchers to find an
organized digital dataset. Figure 14 shows each analyzed image saved under its labeled
class/folder. Moreover, the system will help researchers and other concerned bodies to
knowhowprevalent the diseases are in a given area. Figure 12 shows example of the chart
indicating the frequency of the diseases from all up to date analyzed images (Fig. 15).
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Fig. 14. List of images under their respective class/ folder

Fig. 15. Statistical representation of analyzed data

4 Discussion

In this paper, a web page was developed based on deep learning model in order to help
pathologists and physicians in their decision making process when diagnosing breast
cancer and cervical cancer.

For deep model training, validation and testing, histopathological images of breast
cancer were obtained from BreakHis online dataset and locally acquired from Jimma
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University Medical Center (JUMC). For the cervical cancer classification, histopatho-
logical images were acquired from JUMC, and St. Paul Hospital. For cervix type classi-
fication, 4,005 cervix colposcopy images were acquired from Tercha General Hospital.
For the Pap smear image classification, a total of 1,417 images were collected from local
health facilities and online public datasets. All images were pre-processed by applying
data augmentation, image resizing and normalization techniques prior to model training.

For breast cancer binary classification (benign and malignant), ResNet152 model
was trained for 120 epochs with 0.0001 learning rate, an Adam optimizer, and
sparse_categorical_crossentropy loss function. A validation accuracy of 94.62% was
achieved. Similarly for the benign subtype classification (Adenosis, Fibroadenoma,
phyllodus, and tubularadenoma) the model was trained for 220 epochs and a valida-
tion accuracy of 82.83% was achieved. For the malignant breast cancer classification
task (Ductal, Lobular, Mucinous, and papillary) the model was trained for 300 epochs
and 95.42% validation accuracy was achieved. Finally, the trained models were tested
and the satisfactory result was achieved as shown in the ROC in Fig. 2.

For the cervix type classification (Type 1, Type 2 and Type 3 cervix), the model
(ResNet152) was trained for 400 epochs with similar learning rate, optimizer and loss
function. A result of 76.53% validation accuracy was achieved. For the cervical cancer
classification (‘Squamous cell carcinoma’, ‘Precancer’, ‘Normal’,’Adinocarcinoma’)
from histopathological image using ResNet152 having the same parameters a validation
accuracy of 96.17% was achieved. For Pap smear classification the model was trained
for 200 epochs and a validation accuracy of 87.27% was attained. Finally, the models
for the cancer classification, cervix type classification and Pap smear classification were
tested with new images and a satisfactory result was achieved as shown in the ROC in
Fig. 4.

All the classificationmodels were integrated in oneweb based application for pathol-
ogists and physicians to perform the necessary tasks in an easy way. The developed web
app as indicated in Fig. 5 has a login page that will restrict other people who are not
given access to use the system from accessing patient’s information on the web app. This
will help to increase patient data confidentiality. After a successful login by the doctor,
the homepage will appear as shown in Fig. 6. It has brief information regarding Breast
cancer and cervical cancer. The page will also direct to different functions of the system
like diagnosis, browsing patient records and images, statistical information etc.

Thiswork presents an integrated diagnosis and screening systemwhich has an advan-
tage over the previous literatures [10–18] proposed in a way that it integrates both breast
cancer and cervical cancer diagnosis and screening options to help in reducing mis-
diagnosis rate, fatigue on doctors and to increase the reliability of test results on the
diagnosis. Besides, the developed system, through its option to save the images, has the
ability to store the analyzed images with their result (the system will save the images
as labeled images). This is one of the major contributions offered by the system to the
existing health care system and the research world. As a result, anyone who wants to
retrieve previous data can easily have access to it as indicated in Fig. 14.

In summary, in this paper, a full-fledged, integrated, magnification power indepen-
dent and robust system is proposed for cervical cancer screening and diagnosis system
by automating both the pre-screening (cervix type classification) and cervical cancer
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type classification tasks. We acknowledge that, staging of cervical cancer has not been
included in this work. Moreover, adding more data may improve the accuracies of the
proposed systems.

5 Conclusion

The proposed intelligent web-based tool is a robust decision support system designed to
diagnose and manage breast and cervical cancer using multimodal image data including
histopathological images, pap smear digital images and colposcopy images by employing
the state-of-the-art artificial intelligence technique. The developed system will help in
the reduction of cancer misdiagnosis, minimize the work load of physicians and improve
management of breast and cervical cancer diagnosis. Moreover, the system has added
a unique feature of storing labeled images to solve the existing problem of lack of
organized labeled digital medical data. This will allow researchers and other health care
professionals to easily retrieve digital images for further analysis and research.
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Abstract. Rollover crashworthiness concerns the ability of a vehicle’s structural
system and components to absorb energies with complete protection of occu-
pants in dynamic (rollover) crash scenarios. First, this study aims to analyze a
locally built midibus structure in rollover crashes using numerical investigation
(LS-DYNA) as stated by United Nations Regulation 66 (UNECE R66). Also,
this study considered the quasi-static simulation to determine the energy absorb-
ing and load-deformation behavior of the midibus frame sections. Then, the two
alternatives in design optimization were presented via reinforcement design and
numerical optimization (Successive Response Surface Method in LS-OPT) to
improve the strength and weight of the midibus structure. As a rollover simulation
result, the maximum deformation of the baseline structure occurred at pillar A and
three bays. As a result, the baseline midibus structure failed the standard require-
ment and has unacceptable strength in both quasi-static and rollover simulation.
Moreover, related to the baseline model, the structure’s weight of the reinforced
Model was effectively reduced by 5.2%. However, an optimized model (using the
Successive Response Surface Method) has reduced the weight of the reinforced
model by 5.6%. Lastly, the Energy Absorption and Specific Energy Absorption
of the baseline and the two alternative models were evaluated and compared.

Keywords: Crashworthiness · Deformation · FE methods · Midibus ·
Reinforcement · Rollover

1 Introduction

Locally built buses (midibuses) and public transport vehicles are frequently used in
Ethiopia. Moreover, most buses are locally manufactured in Ethiopia from ISUZU N-
Series truck chassis with accessible materials. However, these locally built midibuses are
not analyzed and tested using numerical or experimental approaches. Also, for approval,
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most midibuses are expected to conform to the set parameters, usually spatial (length,
width, and height), seating, and weight measurement. However, this approval technique
leads to low strength and overheavy bus structure [1]. Moreover, rollover crashes fre-
quently happen due to the reasons of rolling down into a cliff, collision with vehicles
and rotating sideways by obstacles (ditch, kerb, or objects) [2–4]. Most rollover crashes
happen on the road of curved (tangent) sections in Ethiopia due to the pedestrian’s prior-
ity and fast-moving (high speed) crashes [5]. Additionally, bus rollover accidents occur
under the circumstance of dropping down into a cliff in this country. Consequently, These
accidents led to 50% of fatalities and 50% of passengers’ injuries in 2004 [6]. Mainly,
the bus rollover accidents obtained serious structural deformation and severe injuries &
fatalities to the passengers [2, 3]. The public transport vehicles (buses) involved high
numbers of fatalities and injuries during crashes. In Ethiopia, fatalities by bus crash
involved nearly 35.42% (1,324 road traffic deaths) in 2018. (UN ECE 2020) reported
that in Ethiopia, the crash tendency increased on average by 9% from 2010–2018 [7].
Specifically, rollover crashes consist of 17.34% fatalities & 17.17% of injuries within
six years (2005–2011) [5].

Crashworthiness is the ability to absorb vehicle crashes and protect the occupants in
survival space [8, 9]. Structural crashworthiness is concerned with designing a vehicle’s
structural system and components, which requires absorbing the dynamic energies and
loads and energies in dynamic case (collision (impact) occasion) [10, 11]. Therefore,
after the design of the bus, the numerical simulation by FEMethod is a better approach to
visualize the strength and decrease the development time of the bus beforemanufacturing
and testing. In a quasi-static analysis, (Micu et al., 2014; Nurhadi & Zain, 2010) [12,
13] presents a study of quasi-static loading test on bus body sections by regulation
of UNECE R66 via both FEM simulation (ANSYS) and experimental test. Likewise,
(Nor & Baharin, 2014) [14] studied a quasi-static simulation test by ANSYS Explicit
Dynamic Analysis using the standard of UN ECE R66. According to (Mahajan et al.,
2003; Na et al., 2014) [15, 16], the bus structure resistance of rollover by experimental
setup for the rollover test of bus section and numerical model with FEM (LS-DYNA
solver). Moreover, (Bai et al., 2019; Phadatare, 2017; Rogov Petr Sergeevich & Orlov
Lev Nikolaevich, 2015; Thosare & Patil, 2017; Zhou et al., 2019) [2, 17–20] studied the
rollover of a bus frame (structure) analyzes by the experimental method and detailed
FEM method. Also, (Wang, Pan, Zhang, & Cui, 2015) [32] discussed and analyzed the
system’s energy dissipation and the effects of energy-absorbing of the main structure in
the rollover crash process using experiment tests and FE model. Again, (Yang & Deng,
2015) [21] analyzed and studied the structural optimization and lightweight of the bus
body skeleton using the numerical Model by Hyperworks.

M. K. Mohd Nor & M. Z. Dol Baharin, 2014) [14] studied the numerical simu-
lation (ANSYS) of a heavy vehicle bus structure according to FMVSS 220 & ECE
R66 for quasi-static and rollover analysis. Lastly, (Karliński et al., 2014) [4] focused
on the strength of the Volkswagen LT vans bus structure according to ECE R66 using
a numerical model & simulation using FEM. (Korta & Uhl, 2013) [22] analyzed and
studied multi-material optimization of bus structure using Genetic Algorithm (GA) opti-
mization and numerical simulation for different materials. Similarly, (Reyes-ruiz et al.,
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2013) [23] optimized and analyzed the passenger bus frame by using the design con-
cept, numerical analysis, and simulation for different materials with FE Method on the
parameters of strength (torsion, bending), dynamics (vibration response) constants and
the thickness of bus frame structure. Then again, (Hu et al., 2012; Li et al., 2012a;
Yusof & Afripin, 2013) [24–26] studied that bus superstructures undergo rollover events
through experimental tests and numerical simulation with FEM. Lastly, (Su et al., 2011;
Yusof et al., 2012) [3, 27] discovered the bus frame and validated it through a single box
model experiment and FE analysis for the masses effects and bus structure strength.

Consequently, (Bojanowski & Kulak, 2011; Tech & Iturrioz, 2009) [28, 29] studied
the bus structure using numerical simulation with FEM by LS-DYNA, Multi-Objective
(MO) Optimization, and optimization by super-beam elements by plastic hinge lateral-
base union of two samples. On the other hand, (Matolcsy 1997) [30] focuses on severe
conditions and parameters in rollover accidents of bus structures through statistical and
qualitative data analysis using standards and general testing methods. (R. P. Sergee-
vich & O. L. Nikolaevich, 2015) [20] focused on verifying and analyzing the bus body
structure components in the rollover test by experimental and numerical crashworthiness
investigations of the bus structure for each element. According to (Friedman et al., 2006)
[31], the composite roof structures in transit buses are implemented and analyzed. (Lan
et al., 2004; Cho Chung Liang&Le, 2009; Lin&Nian, 2006) [32–34] studied the design
and analysis of the bus frame structure during a rollover by numerical simulation of bus
structure sections and optimized throughLS-OPT (successive_respond_surface_method
(SRSM)). (Rahman, 2011) [35] The numerical modeling and analysis of the middle
section of the bus structure are only designed and analyzed. According to (Park et al.,
2006) [36], the beam’s analytical and numericalModel and non-linear spring elements of
the bus structure in a rollover are discussed. (Tech et al., 2007) [8] studied experimental
and theoretical predictions of the collapse of basic bus structure with FEM (LS-DYNA)
for plastic hinges by a super-beam element of the bus section in a rollover. (C. C. Liang&
Nam, 2010) [37] studied the bus rollover protection using the numerical simulation using
FEM (ANSYS) according to ECE R66 & FMVSS 220. (Subic & He, 1997) [38] dis-
cussed the experimental and analytical modal analysis of the bus roll-cage structure by
an Alternative Research Approach. And also (Bojanowski et al., 2011; Valladares et al.,
2010) [39, 40] studied the experimental setup and numerical Model of a paratransit bus
for roof crush and rollover.

Accordingly, this study mainly focuses on the rollover crashworthiness analysis and
optimization of the locally built midibus structure with the FE Approach according
to UNECE R66 Standard. Foremost, the existing midibus structure is carefully stud-
ied using FE Method (LS-DYNA) according to the testing standard of UNECE R66.
This approach visualizes which structure components lead to low strength and over-
weight. And then, two techniques of structural optimization were developed, structural
modification (reinforcement) and numerical optimization (SRSM) in LS-OPT. Lastly,
the comparison of the three models (baseline, reinforced (Model – I), and optimized
(Model – II) model) was measured according to the structural strength and weight.
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2 Methodology

In Ethiopia, the size of the midibuses depends on the chassis model types and specifi-
cations used by local manufacturers. Nevertheless, local manufacturers commonly used
ISUZUNPR71K chassis tomanufacture amidibus inAddis Ababa, Ethiopia [1]. Hence,
this study focuses on the locally built midibus (using ISUZU NPR 71K chassis model),
which has a twenty-nine (28 + 1) passenger capacity. And also, the mass of the unladen
kerb (Mk) and Gross Vehicle Weight (GVW) are 4500 kg and 7350 kg, respectively.
The existing (baseline) model of a locally built midibus structure has six parts: front,
roof, rear, floor, left, and right frame, as shown in Fig. 1. Therefore, the FEModel devel-
opment consists of quasi-static and rollover crash analyses of the midibus structure.
LS-DYNA is the best and most efficient for explicit dynamic analysis because of using a
return mapping algorithm and the central difference method to avoid expensive numeri-
cal iteration and matrix inversion [41]. Accordingly, the rollover crash FE analysis with
the quasi-static FE analysis is developed using the explicit code of LS-DYNA R11.0 as
stated by the standard of UNECE R66.

Fig. 1. Main parts of the baseline midibus structure

The material used for all parts (sections) of the bus frame is conventional structural
steel. Moreover, the material properties of conventional structural (CS) steel, such as
density (kg/mm3), Yield Strength (MPa), Ultimate Tensile Strength (MPa), Elongation
(%), and Young’s Modulus (MPa) are 7850, 260, 360, 30, 210, respectively. Conse-
quently, the material input data of the FE Simulation needs the effective stress versus
the effective plastic strain curve, as shown in Fig. 2.

The input data of thematerial in numerical simulation (LS-DYNA)needs the effective
stress versus the effective plastic strain curve. The true stress (σt) and the true plastic
strain (εt) determined by:

σt = σeng(1 + εeng) (1)
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Fig. 2. Effective stress vs plastic strain curve for conventional structural steel

εt = ln[1 + εeng] (2)

where: σeng - the engineering stress and εeng - the engineering strain.

2.1 Quasi-static and Rollover Simulation Using ECE R66

Procedures for the Quasi-static Analysis
The quasi-static simulation uses to check whether the bus sections and their bays with-
stand the rollover crash or not [42, 43]. Hence, the body sections and their bays evaluate
whether they failed or passed the quasi-static loading test. Once studying structure roof-
crush and buckling behavior, the LS-DYNA explicit time integration is the best to bring
reliable results [44]. Thus, the quasi-static simulation procedures have been done accord-
ing to UNECE R66 using explicit code in LS-DYNA Software to study and analyze the
bus structure energy absorbing and load-deformation behavior. This paper develops the
bus superstructure model as a shell element for fast and high computational simula-
tion. The selected Belytschko-Lin-Tsay shell element is defaulted to calculate the shell
element formulation in LS-DYNA R11.0. Moreover, this shell element has high com-
putational efficiency compared to others [42, 45]. Furthermore, the residual space and
rigid plate (impactor) model are developed for the quasi-static simulation, as shown in
Fig. 3.

The FE model for quasi-static simulation is developed as a shell element (quadri-
lateral and triangular), as shown in Fig. 3. Also, due to the variation of frame size, the
maximum and minimum element sizes of the bus body frame are 10 mm & 2.5 mm.
Thus, the total quasi-static FE model consisted of 885,722 shell elements with 905,923
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Fig. 3. FE Model for quasi-static simulation

nodes with an average element size of 15 mm (see Table 1). Hence, the weld for-
mulation between all frame parts is modeled as spot welds (rigid nodes) through the
‘CONSTRAINED_SPOTWELD’ card without defining the failure force [26, 42, 46–
48]. Experimentalmaterial properties of structural steelwere executed into theFEmodels
formulation. The PIECEWISE_LINEAR_PLASTICITY (MAT_24) material definition
was implemented [42]. A rigid plate (the impactor) is developed by the material model
of Rigid (MAT_20). A null (MAT_09) material is used to represent occupant space.

Table 1. Statistics of the existing (baseline) FE Model for the quasi-static analysis

Description Bus structure Residual Space &
Impactor

Entire Model

Material type Pieces-wise Linear
Plasticity (MAT_24)

Rigid (MAT_20) & Null
(MAT_09)

-

Min. element size (mm) 2.5 - 2.5

Max. element size (mm) 10 15 15

Number of parts 355 2 357

Number of nodes 572,578 333,345 905,923

Number of elements 553,040 332,682 885,722

Loading and Boundary Conditions. During the simulation, the rigid rectangular plate
(impactor) touches the roof frames at an angle between the vehicle’s longitudinal vertical
center plane (VLCP) and the load direction [43]. A quasi-static load is distributed on
the cant rail section with a rectangular plate (impactor). Thus, the quasi-static loading
rate is applied quasi-equally for the 500 mm displacement with a short incremental time
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of 2.25 s. However, the computational time of the simulation takes 1.75 s to reach the
passenger compartment. The external load card ‘LOAD_BODY_Z’ is applied as the
gravity of the bus structure.

Fig. 4. Loading direction (left) and fixed supports (right) in the quasi-static simulation.

The fixed supports are causing no effect on the structure’s deformation. These sup-
ports are applied to the underfloor structure section (see Fig. 4 (right)). The angle between
the load direction & the vehicle’s longitudinal vertical center plane (VLCP), (α) is
determined by

α = π

2
− sin−1

(
800

Hc

)
(3)

where: Hc- height of the vehicle’s cant rail (in mm) from the horizontal plane (see Fig. 4
(left)).

The penalty-based contacts are contacts algorithms used in crash simulation [47].
The contact algorithm of ‘AUTOMATIC_SINGLE_SURFACE’ is appropriate for self-
contacting cases. This contact type was used to state the contact between all bus section
components. The contact ‘AUTOMATIC_SURFACE_TO_SURFACE’ is defined as the
contact relationship between the bus section and a rigid plate (impactor). The static
and dynamic friction coefficient for steel-to-steel contact is a value of 0.15 and default,
respectively [49].

Evaluation Criteria for Quasi-static Simulation Results. According to theUNECER66
standard, theminimumenergy absorbed by the structure (body sections) (Emin) is equals
to the sum of the energy of the ith bay and calculated by:

Emin =
s∑
i

Ei = ET

s∑
i
mi

M
(4)
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Then, the total absorbed Energy (ET) by the vehicle is calculated by:

ET = 0.75Mg �h (5)

where: M(Mk) – the unladen kerb mass of the vehicle, g – the gravitational constant
(9.81 m2/s), �h – the vertical distance of the vehicle center of gravity in the rollover
test, - the energy absorbed by the “ith” bay, and mi – the mass of the “ith” bay.

By substituting Eq. (5) into Eq. (4), the minimum energy absorbed by the structure
(Emin) is determined by:

Emin = 0.75 g �h
s∑
i

mi (6)

In the quasi-static loading test, the energy absorbed by the structure (Est,a) passes if:

Est,a ≥ Emin (7)

Otherwise, the structure fails the tests, even if only one of the bays is touched the
residual space. Moreover, energy absorption (Est,a) and reaction force are indicators
of the crashworthiness capability of the structure. The energy absorption (Est,a) of the
structure can be determined by integrating of the load-displacement curve. Furthermore,
it can be formulated by:

Est,a =
∫ l

0
Pd δ (8)

where: P – applied load (reaction force), l – length of the crushed structure, and δ –
displacement.

The specific energy absorption (SEA) is also vital to the design of structural parts
that involve the reduction of weight of the structure. Therefore, the Specific Energy
Absorption capacity define as the energy absorbed per the mass of the structure [50] and
determined by

SEA = Est,a

m
(9)

where: m – mass of the structure.

Procedures for Rollover Analysis.
According to the UNECE R66 standard, the rollover test of a vehicle is used to evaluate
the crashworthiness capability and occupant safety during rollover crashes. The rollover
crashworthiness via finite element analysis (FEA) is extensively done due to the experi-
mental test’s long time and extreme cost [2]. In the bus rollover crash, passenger safety
is affected by structure, seats, and seat belt strength [51]. In this study, the bus structure
and seat frames are the main components of the bus to study the strength and crash-
worthiness behavior using LS-DYNAwith the explicit time integration code. Moreover,
the tare-weight load (Unladen Kerb Mass (Mk)) of the locally built midibus (NPR 71K
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Table 2. Components of Unladen Kerb Mass (Mk) of NPR 71K Chassis midibus

Items Qty Total mass (kg)

Seat (each 8.5 kg) 29 + 1 255

Self-weight of the structure – 577

Chassis body with fuel tank, engine, and battery, wheel, axle (NPR
71K)

– 3668

Unladen Kerb Mass (Mk) 4500

Chassis midibus) is 4500 kg (4.5 tons). Table 2. Illustrates the quantities and masses of
components in the case of tare weight loading.

In this study, the bus skin, glasses, and other sensitive parts of the vehicle are not
modelled due to the difficulty of modelling and simulation. However, the structure and
seat are developedbydirectmeasurement from localmanufacturers (bodybuilders). First,
the chassis components are modeled using the ISUZUN-series body builder manual and
guide [52–54].However, the structure and seat are developedbymeasuring andobserving
the bus construction from the available local manufacturers (bodybuilders). Then, the
bus structure, chassis, seat frame, tilt platform, and other assembled components were
imported to the LS-Prepost as an Initial Graphics Exchange Specification (IGES) file
format to develop a finite element mesh.

As shown in Fig. 5, the main parts of the bus structure, such as the cant-rail, window
rail, waist rail, A & B pillar, vertical pillars, and skirt rail, are mentioned. Moreover, the
structures’ eight bays (B1–B8) are also arranged.

Fig. 5. Components of existing bus body structure

To decrease the computational time of the simulation, the entire rollover model is
developed as a Belytschko-Lin-Tsay shell element. However, the thickness of the shell
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element is defined by its section properties and values. Hence, the weld connection
between all structural parts with seats frame and rail is modeled as spot welds (rigid
nodes) using a card ‘CONSTRAINED_SPOTWELD’without defining the failure forces
and coefficients [26, 42, 46–48]. The keyword ‘CONSTRAINED_RIGID_BODIES’
defines the assembly between the rigid parts of the chassis by assigning one of them as
a master part and merging the others [55].

Fig. 6. FE Model for rollover simulation

The bus structure, chassis, seat frame, tilt table, ground, residual space, and element
mass of other components are considered for the tare-weight vehicle rollover simulation
without bus skin and other deformable parts, as shown in Fig. 6. Also, in this study, the
bus skin, glasses, and other sensitive parts of the vehicle are not considered because of
their difficulties in modeling and simulation.

In this section, the bus structure element size is constructed similarly to the quasi-
static analysis case. The entire rollover FE Model consisted of 1,771,305 shell elements
with 1,790,729 nodes (see Table 3.). The overall existing tare weight FEModel contains
412 parts. Hourglass control type (type 4, 5) defines ranges of coefficient between 0.03
to 0.05 for parts of the structure, which is used to reduce the response of non-physical
stiffening [56]. The shell elements of FE models, such as fully integrated (type 16) and
Belytschko-Tsay (type 2) elements, are the most accurate and have high computational
efficiency in crashworthiness simulation [46]. Thus, this study also conducts Belytschko-
Tsay (default type) shell element and hourglass control type 4 with a coefficient of 0.05
for all FE rollover models. The computational time decrease when the entire rollover
model is developed as a Belytschko-Lin-Tsay shell element.

Table 4 describes the mesh quality of the rollover FE model. The numbers
of quadrilateral and triangular elements are 1,757,153(99.2%) and 14,149(0.799%),
respectively. Hence, the weld connection between all structural parts with seats
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Table 3. Statistics of baseline FE model for rollover simulation

Parameters Bus structure and
seat frame

Tilt table, residual
space & ground

Chassis body Entire model

Min. element size
(mm)

2.5 – – 2.5

Max. element size
(mm)

10 15 30 30

Number of Parts 391 3 18 412

Number of Nodes 904,442 818,935 80,076 1,790,729

Number of
Elements

885,012 805,934 88,718 1,771,305

frame and rail is modeled as spot welds (rigid nodes) using a card ‘CON-
STRAINED_SPOTWELD’ without defining the failure force [26, 42, 46–48]. The key-
word ‘CONSTRAINED_RIGID_BODIES’ defines the assembly between the chassis’
rigid parts by assigning them as a master part and merging the others [55]. The material
properties of the rollover structure are similar, as mentioned in the quasi-static analy-
sis. The material model used for all structural frames and seat rail is executed by using
PIECEWISE_LINEAR_PLASTICITY (MAT_24) material definition [4, 34, 42, 49]. In
most rollover impacts, the chassis parts are in motion but not directly affected by the
crashes [57]. Hence, the chassis, tilt table, and ground are developed by rigid material
models (MAT_20). A Null (MAT_09) material is used as a symbolic representation for
occupant space [58].

Table 4. Summary of shell element quality report for rollover FE model

Criteria Allowable (threshold) value

Min side length (mm) 3

Max side length (mm) 30

Aspect ratio 10

Warpage 10

Min quad. angle (deg) 45

Max quad. angle (deg) 135

Min tria. angle (deg) 30

Max tria. angle (deg) 120

Taper 0.7

Skew (deg) 45

Jacobian 0.6

#Quads (%): 1,757,153 (99.2%), #Trias (%): 14,149 (0.799%)
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In the rollover simulation, ‘ELEMENT_MASS_NODE_SET’ is used to lump the
mass of passengers, luggage, battery, and engine [46, 59, 60]. In this study, the mass
element of the passengers is assigned to the seat frame node. And also, the mass of
luggage, battery, fuel tank, engine, and other miscellaneous parts are equally distributed
on the chassis and structural components of the bus. During the rollover simulation,
the complete vehicle is initially tilted in an unstable (equilibrium) position and a ditch
of 800 mm [43]. The angle of the tilt table shall be greater than 35° and the trial &
error simulation is needed to obtain the minimum tilt table angle that is used to trigger
the vehicle to tip over [48, 61]. Hence, the minimum angle of the tilt table is 49° in
an unstable equilibrium position. The bus’s initial angular velocity should not exceed
0.0875 rad/s (5 deg/s) [43]. The external load card ‘LOAD_BODY_Z’ is applied as the
gravity of the bus [58]. Furthermore, A card ‘INITIAL_VELOCITY_GENERATION’
defines the initial angular velocity of the bus [62].

The contact algorithm ‘AUTOMATIC_ SURFACE_TO_SURFACE’ defines the
contact relationship between the structure & ground. Moreover, the coefficient
of friction for steel-to-concrete contact is 0.65 [17, 42, 63, 64]. The con-
tact definition between tilt table & tires (rubber-to-steel) is developed using
‘AUTOMATIC_NODE_TO_SURFACE’ [36]. In this contact, the value of the
coefficient of friction is 0.7 [42]. The self-contact between bus body frames
(bus section components) and seats (steel to steel) define using ‘AUTO-
MATIC_SINGLE_TO_SURFACE’, with its coefficient of friction is 0.15 [42]. More-
over, The Switch ‘DEFORMABLE_TO_RIGID_AUTOMATIC’ was highly recom-
mended for flexible switch activation and easy use application. This switch is commonly
used for a component to switch deformable as well as rigid automatically by the change
of contact surface force or rigid wall force [17, 65, 66] hence, the rollover simulation of
a vehicle needs to change from deformable material to rigid material or vice versa using
a ‘DEFORMABLE_TO_RIGID_AUTOMATIC’ switch. The first switch activates all
model parts, from deformable to rigid. The second switch activates only the structure
and seat with seat rail to deformable material. The two switches are paired and related
to each other to switch back and forth using a contact force automatically.

The overall rollover simulation (Elapsed) time took over two days (48 h) by using
the Intel CORE (R) i7-7700HQ CPU @ 2.80 GHz processor, depending on the initial
and finish contact time. For accurate energy distribution with stable models during sim-
ulation, the option of mass-scaling was considered to regulate the time step (DT2MS)
[57]. During the tare–weight rollover case, the time step is reduced from 1.00e−5 to
1.00e−6 s between simulation time of 1.62–2.25 s. This rollover procedure is used to
minimize computational time [42]. However, the computational time of the simulation
takes 2.25 s until the vehicle reaches motionless.

FE Verification of Energy Balance in Rollover simulation. The numerical simulation
error assesses by the task of the model verification of the FE model [46]. In the rollover
simulation, checking the energy balance is the main factor in assessing the solution’s
errors. this verification guidelines presents the concept of energy conservation laws [42,
46, 67]. The applied total energy of the structure can be determined as stated by ECE
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R66 [43]:

ETotal = 0.75Mg �h or

ETotal = 0.75 Mg

⎛
⎝

√(
W

2

)2

+ H2
o − W

2H

√
H2 − (800)2 + (800 ∗ Ho)

H

⎞
⎠ (10)

where: W – the overall width of the bus, I – the height of the bus, and Ho – the height of
the center of gravity.

The LS-DYNA total energy (ETotal) is the sum of six components such as cur-
rent internal energy (EI ), current kinetic energy (EK ), current sliding energy (ESli),
current hourglass energy (EHG), current system damping energy (ED), and current
stonewall/rigid wall energy (ERW ) and also must be equal with the sum of initial total
energy (ETotal,o) & work done by external loads (WExt) [68, 69]:

ETotal = EK + EI + ESli + ERW + EDamp + EHG = ETotal,0 + WExt (11)

ETotal,0 = EK0 + EI0 (12)

where: EI0
– the initial internal energy & EK0 – the initial kinetic energy

Angular Deformation Index (DIθ) is a quantitative measure used to evaluate a margin
of safety and a deformation extent in rollover simulation [42, 46]. Thus, this index also
measures the structure’s strength during rollover crashes. Figure 7 shows the angle
between wall & floor ("3), angle of waist rails (θ2), and angle between roof & wall (θ1)
with a measured angular deformation. The Angular Deformation Index (DIθ) can be
determined as [46]:

DIθ = l

400
tan(�θ3) + (1250 − l)

400
tan(�θ2) (13)

where: �θ3 – the angle changes between wall & floor, �θ2 – the angle changes of waist
rails and l – the distance from the floor to waist rails.

2.2 Structural Reinforcement and Optimization of the Structure

Optimization is the development of objective functions with constraints to maximizing
or minimizing the desired value [70]. In the computer-based optimization process, the
simulation requires a high number of iterations, the performance of computers, and
large numbers of design parameters [46]. However, reinforcement optimization is a
technique to strengthen the vehicle’s body [1, 71]. Therefore, this study’s primary goal
is to specify the two alternative design solutions. However, this process was done by use
of practical reinforcement (model – I (RD)) and numerical optimization technique using
the Successive Response Surface Method (SRSM) in LS-OPT (Model – II (SRSM)) for
dynamic (rollover) conditions.

Structural Reinforcement Design.
Most local bus manufacturer experiences the design of the structure’s construction
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Fig. 7. The concept of deformation angle and angular deformation index [46]

through the try and error methods, this approach outcomes in low structural strength
and safety of the passengers during accidents. The existing bus structure needs a struc-
tural design analysis and improvement to maximize the strength and minimize the struc-
ture’s weight. First, the existing bus structure carefully examines using the manufacturer
constraint and the dynamic rollover simulation to select the component’s layout and
cross-sections that might be changed. When these components lead to low strength, the
change in in the cross-section and layout of structural components were measured. As
shown in Fig. 8, the most local bus bodybuilder used the wall support members as sup-
port and cover of the walls. However, Due to high number of wall support, the weight of
the bus structure was increased. Even though, these components do not strengthen the
bus structure in rollover conditions due to their arrangements and cross-sections.

In this study, the design modification (reinforcement) conducts the addition and
replacement of the structural components. First, the layout of the structure and the shape
of the cross-section in the structural elements are changed. Next, the supports were added
to assemble the section of the structure. As a result, the rectangular (lying orientation)
profile has a much higher energy absorption for oblique impact load directions than
the square cross-section [72]. The other important consideration for the rollover case is
the strength of the floor-wall connection. Hence, the supporting member attaches at the
corner of the floor and sidewall section on the front, medium, and rear portions to reduce
the structural deformation.

Accordingly, the baseline design defects improve through additional support and
change the layout and cross-section of the structure, as shown in Fig. 9. Therefore, the
newmodified (reinforced)midibus structure has been considered the following structural
design modifications:

• Roof arc members to strengthen the roof -parts using rectangular cross-section (RHS)
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Fig. 8. Selected Configurations to improve the baseline design

• Inclined connecting elements (Supporting members – #1) at the left & right sections
of frames

• Supporting members from #2 to #4 developed to build a connection between roof
and sides pillars with rear pillars, Support for extended floor section & chassis, and
Support for connection side walls and floor during the rollover, respectively

• Inclined front (A) pillar at the front section of the structure (square cross-section
(SHS)) to strengthen the front pillar

Fig. 9. Illustrates the improved configurations of the reinforced design

The comparison of masses of the components of baseline and reinforced configu-
rations is described, as shown in Table 5. In sum, using this reinforcement design, the
baseline model decreases its weight from 577.13 kg to 547.15 kg (29.98 kg).
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Table 5. Components with its mass of baseline and reinforced (Model - I) configuration

Component Cross-section Quantity Mass (kg)

Baseline Model - I Baseline Model - I Baseline Model - I Baseline Model - I

Front
inclined
pillar

Front
inclined
pillar

L-angle SHS 2 2 2.26 4.53

Roof arc
member

Roof arc
member

SHS RHS 8 8 36.06 44.74

Wall
support
member

Supporting
member
– #1

U – channel SHS 44 11 77.11 19.7

– Supporting
member -
#2

– SHS – 5 – 2.58

– Supporting
member -
#3

– L-Angle – 2 – 7.86

– Supporting
member -
#4

– RHS – 12 – 6.12

Total mass of the parts 115.43 85.53

Optimization Method via Succussive Response Surface Method (SRSM)
Optimization methods using Response Surface Method (SRSM) are commonly used in
design optimization of crashworthiness [34, 42, 73, 74]. Moreover, the main aim of this
optimization is to maximize the reinforced structure’s strength within a maintained level
of weight during the rollover case. However, the analysis was carried out using LS –
DYNA and LS-OPT (successive response surface method (SRSM)). Furthermore, the
optimization task was done to identify the significance of the section of the reinforced
structure in response to the loading experienced in ECE – R66 quasi-static testing proce-
dures. FromEq. 6, theminimum requirement of absorbed energy of the reinforced design
(Model – I) was equal to 4.86 kJ. Moreover, it is a fact that the highest value of energy
absorption indicates a better strength of the structure. Consequently, Multi-objective
optimization was done by reducing the total mass of the selected parts (objective func-
tion) and keeping the structure’s energy absorption above 4.86 kJ (constraint). Thus, the
energy absorption capacity should be greater than or equal to 4.86 kJ because the energy
absorption capability is one of the parameters that indicates the structure’s strength level.
The energy absorption response was specified on the history output by integrating the
structure’s reaction force vs displacement. The interactive approach used to classify a
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single best compromise solution by objective and constraint function [70]:

minimize f1(t)

subject to f2(t) ≥ c

and t ∈ 	

(14)

where: 	 – sets of the lower and the upper bounds on inputs variable (tL ≤ t ≤ tU) and
c – the bounds of the outputs (cmin ≤ c ≤ cmax).

And the only difference was that the constraint of this optimization is absorbed
energy response. Furthermore, it can be expressed as:

Minimize the total mass of selected parts

Subjected to: Absorbed Energy(Est) ≥ 4.86 kJ

Figure 10 displays the selected parts of the structure for optimization tasks. In the
design of experiments (DOE), The design variables are the thickness of the parts. First,
these parts are grouped based on their assembly section. Then, the initial thickness
values for these parts and the manufacturable lower and upper bounds (ranges) in the
experiment design are listed, as shown in Table 6.

Table 6. The selected part’s thickness and their range of values from reinforced structure

Sections Symbols Cross-section Initial thickness (mm) Ranges of mfg. values (mm)

Roof troof RHS & SHS 1.5 1, 1.5, 2, 2.5, 3

Rails trail SHS 1.5 1, 1.5, 2, 2.5, 3

Pillars tplr RHS 1.5 1, 1.5, 2, 2.5, 3

Figure 11 displays the optimization process to minimize the total mass of the struc-
tural member in the three thickness parameters (trail, troofa, and tplr) using LS-OPT.
First, the three parameters are assigned for all selected parts in the Finite Element (FE)
quasi-static model using LS – DYNA.

Moreover, it is imported to the optimization tool of LS-OPT. Then, linear ordered
polynomial sampling is selected to identify the seven simulation points usingD – optimal
selection using LS-OPT.Next, the response ofmass parts, internal energy, reaction force,
and absorbed energy was formulated. Moreover, the output history of reaction force,
displacement, and force vs. displacement plot were defined. Lastly, the objective and
constraint of the optimization process was developed using a Genetic Algorithm for two
iterations. The overall optimization iteration was performed within the linear response
surface approximation. These approaches requested seven jobs per iteration. This means
the optimization runs 14+ 1 jobs for all quasi-static simulations. Thus, the optimization
approach using successive response surface methods took over ten days (238 h) for all
simulations by Intel® Core™ i7-7700HQ CPU @ 2.80 GHz processor.

Study of Sensitivity via ANOVA and Global (GSA/Sobol)
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Fig. 10. Selected parts of the reinforced structure for quasi-static case optimization.

Fig. 11. Flow chart of the structural optimization of the reinforced structure in quasi-static
simulation via LS-OPT

Figures 12 and 13 shows sensitivity analysis results for the total mass of the parts
and responses absorbed energy by Global Sensitivity Analysis (GSA) with Sobol’s and
Analysis of Variance (ANOVA) approach. The trails and troofa are the minor influence
variables for the mass parts. However, the thickness of the vertical pillars (tplr) is the
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essential variable, and it has a 95% confidence interval of the response function. More-
over, the roof members also do not influence the response of absorbed energy, as shown
in Fig. 13.

Iteration 1 

Iteration 2 

Fig. 12. Sensitivity (ANOVA) plot for the response of absorbed energy for all iterations

Iteration 1 

Iteration 2 

Fig. 13. Global Sensitivity (GSA/Sobol) plot for the response of mass of the parts and absorbed
energy for all iterations

Figure 14 displays the tradeoff between the absorbed energy and total mass of the
selected parts in all iterations.As shown in thefirst iteration of the design space, responses
and design points have resulted in a most extensive and widely spread. Thus, the more
focused design points are identified to obtain a new optimum result. During metamodel
adequacy, when determining the best quality of the fit for responses, the error of root
mean square (RMS) and the square (R2) should be small and higher, respectively [46,
75]. Thus, the perfect fit (R2 = 1)was found in both iterations for themass parts response.
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However, the R2 of the absorbed energy response in the first and second iterations equals
0.987 and 0.999, respectively. This result denotes an almost perfect fit for all iteration.

Fig. 14. The response of absorbed energy vs mass of the parts at the design variables

In Fig. 15, the optimization history presents the response of mass parts and absorbed
energy. The decreasing rail and roof thickness reduced the mass of all parts from 0.176
tons (176 kg) to 0.145 tons (145 kg), equal to 17.6% (31 kg). At the same time, the
increase of the thickness in the vertical pillars (trail) increases the value of absorbed
energy. Moreover, it improves the energy absorbing capacity of the bus structure (energy
requirement of ECE R66 Standard).

Fig. 15. Optimization history of the absorbed energy of the models (left) and the mass of the parts
(right)
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3 Result and Discussion

The reaction force and absorbed energy parameterswere determined during a quasi-static
simulation. The contour of stress specifies the maximum stress present at the contact
area of impactor (rigid plate) loading, the joint areas of the vertical pillar-roof, and the
vertical pillar-floor section, as shown in Fig. 16. A vertical pillar is highly intruded
into residual space (RS) from the baseline simulation, as shown in Fig. 16 b). During
the quasi-static simulation, the impactor load gradually increased until it touched the
residual space. Perhaps, At the displacement of 375 mm, the simulation was motionless.
Although the peak reaction forces for each model change differently based on the load
resistance capacity. Figure 17(a) displays the reaction force developed on the baseline
model, Model – I, and Model – II are 14.5 kN, 17.7 kN, and 16.3 kN. In addition, only
the reinforced force converged after the displacement of 280 mm.

Fig. 16. Stress distribution in baseline model of quasi-static simulation: a) initial stage and b)
final deformed condition

Figure 17(b) describes the minimum requirement of absorbed energies and energy
absorbed by the structure (Est) of the three structure models. The Absorbed energy of
the baseline model, Model – I (RD), andModel – II (SRSM) are 4.43 kJ and 5.67 kJ, and
5.32 kJ, respectively. Accordingly, the energy-absorbing capability of the bus structure
(Est,ext) is lower than theminimum value of energy absorbed by the existing bus structure
(Emin). This result also implies that the existing (existing) bus structure fails the tests
cause one of the bays is touched the residual space. However, the reinforced energy
absorption capacity (Est,RD) is greater than the minimum requirement energy-absorbing
structure (Emin,RD). Therefore, it was found that the reinforced structure passed the tests.

Moreover, model – II (SRSM) also passed the standard requirement. Notably, the
reinforced Model (Model – I) is stronger than the baseline and Model – II (SRSM)
models. This important finding is undoubtedly an equivalent method for the rollover
test, as stated by UNECE R66.

Furthermore, all the models for the quasi-static analysis, shown in Fig. 18, follow the
same deformation pattern when the cages’ deformation is reached in a residual space.
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Fig. 17. Quasi-static simulation results for all models; a) Force versus displacement curves and
b) Energy Absorption vs displacement curves

However, one of the baseline structural parts intruded the residual space, as shown in
Fig. 18 a).

Fig. 18. Deformed models after quasi-static simulation: a) baseline model; b) model – I (RD);
and c) model – II (SRSM)
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The comparison of baseline and two alternative solutions using specific energy
absorption capacity vs mass of the models were explained, as shown in Fig. 19. Thus,
The Specific energy absorption of the Baseline model, Model – I, and Model – II are
7.68 J/kg, 10.36 J/kg, and 10.31 J/kg, respectively. This result shows that Model – I has
a better energy absorption capacity than others. However, Model – II is more effective
for better energy absorption capacity and less structure weight than others.
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Fig. 19. Specific energy absorption vs mass of the three models

In a baseline (existing) tare–weight rollover case, the value of the internal energy
of structure and seats are estimated. Significantly, the internal energy of the structure’s
main components and bus sections compared to visualize their capacity throughout
the simulation. During the tare–weight rollover case, the maximum deformation of the
existing structure and seat frame was located at pillar A and bays (B1 – B3), as shown
in Fig. 20. Additionally, the high deformation of seats presents at the first and second
seats of the passenger.

In the tare-weight rollover, the structure and seat’s internal energies are 23.3 kJ and
0.85 kJ, respectively, as shown in Fig. 21. This result shows the internal energy of the
structure is higher than the internal energy of the seat frames. Moreover, this finding
shows that when the absorbed energy of the frame is higher, the structural part of the
midibus is the most significant for the strength of the rollover case. A similar conclusion
was reached by (Cezary Bojanowski, 2009), [46], where the author showed the effect of
skin parts on the strength of a bus in a rollover crash test.

Although, the maximum internal energy for six sections of the structure is displayed,
as shown in Fig. 22 (left). Accordingly, the minimum and maximum internal energy of
2.25 kJ and 6.56 kJwere obtained at the roof and right section of the bus structure because
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Fig. 20. Deformation of the existing structure and seats frame in tare – weight rollover case: a)
initial phase and b) maximum deformation
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Fig. 21. Internal energy of the bus structure and seats in tare-loading cases

they are highly deformed until the rollover crash is stopped, leading to more energy
absorption. Furthermore, the roof and front section have the lowest energy absorbing
capacity because the rollover crash is not directly affected.

The sum of each component’s internal energy contributes to the overall energy capa-
bility of the structure after the crash. In addition, Fig. 22 (right) shows the internal energy
of each component. The absorbed energy of the components differs depending on the
deformation throughout the crash. Hence, the internal energy of the A & B pillar, roof
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Fig. 22. Internal energy of the sections (left) and the components (right) of the baseline model in
tare-weight rollover case

arc member, vertical pillars, window-rail, waist rail, and skirt pillar are 1.42 kJ, 2.15 kJ,
1.90 kJ, 5.85 kJ, 0.15 kJ, 0.83 kJ, and 0.19 kJ, respectively. This result shows that the
lower and greater internal energy occurred at the window-rail and vertical pillar. Due
to the high impact on the roof arc members and vertical pillar, the absorbed energy of
these components is high compared to other components.

Fig. 23. Comparison of deformation in the tare-weight rollover: (a) Baseline model; (b)Model – I
(RD); and (c) Model – II (SRSM)
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In this section, angular deformation index and internal energy parameters are esti-
mated to compare the crashworthiness capacity of the baseline model and alternative
solutions during the tare-weight rollover scenario. The final deformations of these three
models are displayed, as shown in Fig. 23. First, a baseline model is intruded on the
residual space and is highly deformed (See Fig. 23 (a). Furthermore, model – II (SRSM)
is less deformed than a baseline model. However, Model – I (RD) is less deformed than
baseline andModel – II. Next, a model – I (RD) is less deformed than all models, and the
residual space is far from the Model’s frame, as shown in Fig. 23(b). Figure 24 displays
the internal energy of the baseline model and two alternative designs in the tare – weight
scenario. Thus, the internal energy of the baseline model, Model – I, and Model – II are
24.15 kJ, 28.3 kJ, and 25.7 kJ, respectively. As shown in Fig. 24, the internal energy of
the baseline model, Model – I, and model – II are converged similarly from 0.0–0.2 s.
The above results show that model – II (SRSM) has less weight with enough energy
absorbing capacity than the baseline model.

Fig. 24. Comparison of Internal energy between three models

The Angular deformation index (DIθ) is another parameter to identify the crashwor-
thiness capability of the structure during a rollover crash. Moreover, the angular defor-
mation index of the structure response was measured based on angles between nodes
with time in LS-DYNA. The rating of the angular deformation index (DIθ) indicates the
strength of structure during structural deformation. Therefore, this section evaluates the
angular deformation index to compare the three models in tare-weight rollover simula-
tion. The maximum DIθ of the baseline model, Model – I and Model – II are 1.07, 0.70,
and 0.78, respectively, as shown in Table 7. These maximum deformation indexes are
located at pillar A with bays (B1–B3) for all models in the tare-wight rollover scenario
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except Model – III (bays (B4–B8)). As depicted in Table 7, the change of plastic hinge
angles and themaximum angular deformation index at the pillar and bays of the structure
are described in the tare-weight scenarios for all three models.

Table 7. Comparison of deformation index among three models in tare-weight scenario

Change of
angles (deg)
and DI

Pillar A & bays (B1–B3) Bays (B4–B8)

Baseline M- I (RD) M-II (SRSM) Baseline M- I (RD) M-II (SRSM)

�θ1 −32.9 −19.6 −22.7 5.8 2.2 2.6

�θ2 2.6 8.4 12.0 0.6 0.5 0.5

�θ3 17.5 7.6 6.8 −17.8 −8.4 −10.7

�θ4 26.4 18.2 21.9 18.8 −12.3 −20.4

�θ5 6.5 9.4 13.1 21.4 11.9 21.5

�θ6 −10.9 −3.9 −2.8 5.9 3.2 3.1

DIθ 1.07 0.70 0.78 0.69 0.40 0.59

Figure 25 compares the deformation index vs time curves of the baseline model
and alternative models in the tare – weight rollover case. In this scenario, the baseline
structure has an unacceptable and poor strength. This strength describes that the entire
structure failed due to high deformation at pillar A and bays (B1-B3). These results imply
that the total structural strength of the baseline model is weak to survive in this rollover
crash case. Moreover, both Model – I (RD) and Model – II (SRSM) have acceptable
strength in tare–weight cases.

4 Conclusion

This research paper also facilitates the rollover crashworthiness capability of the structure
in quasi-static loading and tare-weight rollover scenarios. In addition, the two alterna-
tive designs for rollover were conducted using reinforcement design and optimization
by successive response surface method using LS-OPT for all quasi-static and rollover
analyses. From both analysis and optimization results, the following conclusions are
mentioned:

• The energy absorption of the existing (baseline) model is less than the minimum
requirement energy by ECE R66 in quasi-static simulation, which means the existing
bus structure fails the rollover tests due to one of the bays is touched the residual
space. However, all design alternative solutions pass the test because of fulfilling the
requirement of the standard.

• During the tare-weight rollover case, the baseline structure and seat frame contain
96.5% and 3.5% of internal energy, respectively. The entire structure failed due to
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Fig. 25. Comparison of deformation index between three models

high deformation at pillar A and bays (B1–B3). Moreover, the lower and greater
internal energy occurred at the skirt and vertical pillars. As per the tare – weight
rollover analysis and optimization results of baseline and two alternative models,
the internal energy and angular deformation index (DIθ) are the main parameters to
identify the crashworthiness capacity.

Generally, it can be determined that the baseline model, Model – I (RD), and
Model – II (SRSM) have unacceptable, acceptable, and intermediate strengths, respec-
tively. Therefore, the first design approach is that the reinforced design experiences
sufficient strength by adding the support and change of cross-section on the front pil-
lars. Moreover, a model – II (SRSM) has less weight with adequate energy absorbing
capacity than a reinforced model by varying the thickness of pillars, windows, and waist
rails. Moreover, a model – II (SRSM) has less weight with adequate energy absorbing
capacity than a baseline model.
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Abstract. Breast cancer stage identification is an important prerequisite for early
treatment to increase the chance of survival, and predict the recurrence of cancer.
Researchworks done so farweremainly focused on the classification of breast can-
cer types while many of them are neglecting to stage of breast cancer. Obtaining an
adequate labeled breast cancer image dataset for training machine learning algo-
rithms is challenging. In this paper, we propose a pre-trainedConvolutional Neural
Network (Pretrained-CNN)model for Breast Cancer Stage Identification. The pro-
posed method is designed by leveraging transfer learning techniques. Further, the
performance of the pre-trained model is compared with CNN-based models that
are trained from scratch. The performance of the proposed model is tested using
a publicly available breast cancer-image dataset taken and achieved a promising
result with an overall classification accuracy of 90%

Keywords: Breast cancer · Pre-trained model · CNN · Segmentation · Transfer
learning

1 Introduction

In many clinical practices, the detection and identification of diseases including breast
cancer diagnostic and medical image interpretation have been made by the expertise
of individual clinicians and/or physicians (Chen et al. 2022; Birtukan et al. 2020). The
medical decision mainly relies on the physician’s knowledge, and experience which
results in large variability in interpreting medical images (Chen et al. 2022). To address
such problems various types of research proposed machine learning-based models for
interpreting and analysis of medical images (Birtukan et al. 2020). Artificial Intelligence
(AI)-based models have been widely applied in medical image processing including
diagnosis and staging and detection of breast cancer from digital mammography (Li et al.
2020;Dabeer et al. 2019). These tools help to detect the suspicious region inmammogram
images and classify the suspicious regions into different classes. Compared to themanual
detection of breast cancer, such AI-assisted systems improve the accuracy of diagnosis
and detection of the stage of breast cancer (Dembrower et al. 2020; Tahmooresi et al.
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2018). Furthermore, as a simultaneous assistant to a radiologist, the use of these AI-
enabled cancer detectors can identify other cancers (Kim 2022; Schaffter et al. n.d.;
McKinney et al. 2020).

Breast cancer is one of the most prominent cancer types and is the leading cause of
death inwomen (Birtukan et al. 2020; Boughorbel et al. 2016). Generally, breast cancer is
classified into five stages (Birtukan et al. 2020). In clinical settings, the stages of breast
cancer are usually expressed on a scale of 0 through IV where stage 0 denotes non-
invasive cancer and stage IV denotes invasive cancers (Birtukan et al. 2020; Boughorbel
et al. 2016) (Breastcancer.org. 2018). Sample images of the five breast cancer images
taken from (Birtukan et al. 2020) are illustrated in Fig. 1.

Fig. 1. Sample images of the five breast cancer stages (Birtukan et al. 2020)

Advances in deep learning and its remarkable success in clinical applications has
attracted the attention of researcher in medical domains (Boughorbel et al. 2016;
Goswami 2018; Saha 2015). Despite the success, the lack of a labeled image dataset has
been the major bottleneck in developing a robust deep learning-based model for medical
image analysis (Chen et al. 2022; Birtukan et al. 2020). This is also true in breast can-
cer detection and identification. Therefore, various researchers (Breastcancer.org. 2018;
Nadig 2017; McCowan et al. 2007) use CNN and handcrafted feature-assisted classi-
cal machine learning algorithms for breast cancer detection and staging. Since these
handcrafted features consist of limited information about the image, the recognition
performance of the models was very limited (Birtukan et al. 2020).

Nowadays, to overcome the shortage of training datasets, researchers employ transfer
learning techniqueswherebymodels are first trained on a problem and one ormore layers
from the trainedmodel are then used in a second newmodel of a related problem (Li et al.
2020; Kim 2022). As a continuation of our previous work (Birtukan et al. 2020), which
employed CNNs and traditional machine learning algorithms as feature extractors and
classifiers respectively, this paper presents a model with pre-trained CNN backbones by
leveraging transfer learning techniques for Breast cancer staging.

The rest of the paper is organized as follows: Sect. 2 reviews the relevant methods
and related works. The proposed methods and training settings are described in Sect. 3.



Transfer Learning with Pre-trained CNNs 129

Section 4 presents all experiments and results obtained from the experiments. Finally,
Sect. 5, presents conclusions and future research directions.

2 Related Works

The existing breast cancer detection and staging models can utilize either handcrafted or
automatic features. Methods belonging to the first category were mainly applied before
the introduction of deep learning and follows step-wise routines. In contrast, the second
approach integrated the feature extraction and classification steps and trained from end
to end. Therefore, in this section, we review the research trends in breast cancer detection
and the existing state-of-the-art techniques that are applied for medical image analysis
where labeled images are very limited.

A k-Means basedGaussianMixtureModel (GMM) is proposed to detect and classify
breast cancer as benign or malignant (Dheeba 2019). The authors developed a model
by following three steps. First, they found a region of interest by using the K-means-
based GMM segmentation technique, and then they applied texture feature extraction
and optimization of features of theRegion of Interest (ROI) by using aGeneticAlgorithm
(GA). Finally, classified the detected abnormality as benign or malignant. To develop
and evaluate the model they used the publicly available Mammographic Image Analysis
Society (MIAS) dataset and got an accuracy of 95.8%. They classified images as benign
or malignant but they did not work on identifying stages of detected malignant breast
cancer.

Researchers in (Shen 2017) also developed a deep learning algorithm that can detect
breast cancer on screening mammograms by using an end-to-end training approach.
They used a combined dataset of publicly available Digital databases for Screening
mammograms (CBIS-DDSM) and a private dataset of Full-Field Digital Mammography
(FFDM) from the INbreast database. They achieved 86.1% of sensitivity and 80.1% of
specificity in CBIS-DDSM and 86.7% of sensitivity and 96.1% of specificity in FFDM
of the INbreast dataset. The mammograms are classified as cancer or normal. It did not
identify whether the cancerous are benign or malignant and at which stage the cancerous
case is reached.

Another CNN-based approach for cancer diagnosis on the histopathological image
was also proposed in (Dabeer et al. 2019). They used datasets from theBreakHis database
and reported 99.86% of accuracy. They introduced deep learning architecture for breast
cancer detection as benign andmalignant but they did not work onwhich stagemalignant
breast cancer reach that is used to start treatment, estimate recurrence, and increase
survival from cancer.

The breast cancer histopathology image classification scheme was also proposed
by researchers in (Zhu et al. 2019) by assembling multiple compact CNNs. They used
two breast cancer datasets these are the BreakHis database which contains 7909 images
taken from the breast tissue biopsy side and the BreAst Cancer Histology (BACH)which
contains 400 breast histology images and achieved 84.4% accuracy. They classified
breast cancer histopathological images based on multiple compact CNN as cancer or
not cancer.

CNN was used by researchers for breast cancer screening as a multi-view deep
CNN (Geras et al. 2017). They used a mammography-based breast cancer screening
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Breast Imaging Reporting and Database System (BI-RADS) dataset having 886,000
images to study the impact of training set size and image size on CNN cancer prediction
accuracy. They focused on identifying the impact of the training set size and image
size on the prediction of cancer accuracy. They did not consider how can identify and
classify stages of malignant breast cancer since identifying stages of breast cancer. A
similar work (Dalmış et al. 2018) also proposed a CNN-based model for breast cancer
screening from a Magnetic Resonance Image (MRI). 385 MRI scans, containing 161
malignant lesions.

Nine-layer CNN with the parametric rectified linear unit and rank-based stochastic
pooling is also employed for abnormal breast identification. Researchers focused on how
to select the optimal number of convolution layers and the effect of data augmentation
on breast cancer detection. They were using a mini-MIAS database that contains 209
normal breast images and 113 abnormal breast images. They achieved results over 100
test sets with 94.0% of accuracy, 94.5% of precision, 93.4% of sensitivity, and 94.6
specificity by combiningReLU and rank-based stochastic pooling. They did not consider
the classification of stages of abnormal breast images.

Researchers in (Wang et al. 2014) used convolutional neural network features by
combining them with handcrafted features for Mitosis detection in breast cancer pathol-
ogy images. They used the public ICPR12 mitosis dataset that has 226 mitoses and 15
testing HPFs and got an F-measure of 0.7345. They considered mitosis count for grad-
ing of breast cancer they did not work on the identification of stages of breast cancer
necessary to start treatment and for better treatment suggestions.

CNN was used for automated breast ultrasound lesions detection (Yap et al. 2018).
They used two different datasets of US images that were obtained from US systems.
Dataset A contains 306 images with 246 benign and 60 malignant cases. Dataset B
contains 163 images with 110 benign and 53 malignant cases. The proposed model
detects lesions either benign or malignant.

Researchers in (Nadig 2017) proposed stage-specific predictive models for breast
cancer survivability by using three different machine learning methods (naïve Bayes,
Logistic regression, and decision tree). And compared their accuracy to predict surviv-
ability. They used a publicly available SEER dataset. Unlike image-based staging, they
considered text-based stage information as a factor. The other method for the prediction
of breast cancer using big data analytics by using the K-nearest neighbor algorithm was
also proposed in (Shailaja et al. 2018). The Wisconsin breast cancer dataset taken from
the UCI machine learning repository that contains 699 instances with 11 attributes are
classified as either benign or malignant by using KNN.
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Though there are limited labeled breast cancer training datasets, nowadays, the detec-
tion of breast cancer for early diagnosis from image data is becoming common andmany
researchers reported promising results employing Deep convolutional neural networks
(Breastcancer.org 2018). Hence, in this paper, we propose a method that can overcome
the issue of labeled training image scarcity with a great emphasis on the identification of
stages of breast cancer. The following sections give a detailed overview of the proposed
breast cancer stinging model.

3 Materials and Methods

In this section, we describe the breast cancer dataset employed in model development
and elaborate on the details of the proposed breast cancer staging model architecture. To
develop the breast cancer stages identification models we follow experimental research
which consists of dataset preparation, model training, and evaluation.

3.1 Dataset

In the era of deep learning, the shortage of training datasets is one of the bottlenecks that
limit the development of robust models for disease diagnosis in general and specifically
for breast cancer staging. Few datasets have been used in various works on breast cancer
detection (Dheeba 2019). Many of the datasets used in the literature consist of very
limited images that are prepared for a very specific use case. Recently, an updated
and organized breast cancer staging dataset has introduced by (Birtukan et al. 2020)
where the images were collected from various sources including the Curated Breast
Imaging Subset of DDSM (CBIS-DDSM) (Lee et al. 2017) and it is publicly available
in Kaggle at [https://www.kaggle.com/datasets/tesfahunegn/breast-cancer-stage-identi
fications]. This dataset consists of 1469 Images in MINIST files that are split as training
and testing data. The details of the dataset used in this experiment are summarized in
Table 1.

Table 1. Number of breast cancer images in each stage

No Classes Image format Number of images

1 Stage 0 Png 395

2 Stage 1 Png 495

3 Stage 2 png 310

4 Stage 3 Png 173

5 Stage 4 Png 96

Total 1469

Sample breast cancer images are illustrated in Figs. 2 and 3.

https://www.kaggle.com/datasets/tesfahunegn/breast-cancer-stage-identifications
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Fig. 2. Sample enhanced breast cancer image (Birtukan et al. 2020). (A) Original image, (B)
image after filtering and enhancement

Fig. 3. Example of ROI segmentation (Birtukan et al. 2020)

3.2 The Proposed Model Architecture

Considering the nature and size of the dataset, we propose two experimental setups. The
first approach employs a CNN-based architecture which is trained from scratch while
the second breast cancer stage identification approach uses pre-trained CNN models
as a backbone. The two proposed approached and the overall model architectures are
depicted in Figs. 4 and 5 respectively.

The network architecture in the first approach consists of the feature learner that takes
the segmented image of the breast cancer and encodes it to a high-level feature vector
representation and the classification layers (which consists of a fully connected layer
with softmax) which are responsible to produce the probability distribution of breast
cancer stages over a given input feature vectors. The architecture of the CNN-based
model that is trained from the scratch is illustrated in Fig. 4.

This CNN-basedmodel consists of seven convolution layers and the number of filters
that are used to control the depth of the output volume was 64, 128, and 256 filters also
a 3× 3 filter size at a single layer have used. We applied the ReLU activation function, a
pooling size of two (2× 2) after the two consecutive convolution layers, dropout layers
with dropping probability (p) = 0.25, 0.4, and 0.5 at each fully connected layer, batch
normalization, Adam optimizer as an optimization function, a learning rate of 0.003,
categorical cross-entropy as a loss function. The model was for 25 epochs with a batch
size of 32. Unlike our previous work (Birtukan et al. 2020), in this paper, we haven’t
applied data augmentation.
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Fig. 4. Proposed CNN model architecture

The second approach employed a pre-trained CNN in which the model reuses the
already learning method for other tasks. This approach is commonly called transfer
learning. In this experimental setup, the pre-trainedVGG16model trainedwith ImageNet
recognition tasks is applied for breast cancer stage identification where the number of
class labels is set to five. To demonstrate the effect of the depth of fine-tuned layers
on recognition performance, we fine-tuned some of the specific layers (up to 3 layers),
while the remaining layers are set to freeze. Since the pre-training VGG net input size
was 224× 224, we changed the input tensor size of the breast cancer image to a similar
size of 224 × 224. During loading the pre-trained VGG16 model, we don’t load the
fully connected layers; thus, we add custom fully connected (FC) layers which will be
trained together. The fine-tuned and frozen layers of the pre-trained VGG net model are
illustrated in Fig. 5.

Fig. 5. Pre-trained VGG net setups: all frozen layers except the last three and custom fully
connected layers

In both experimental setups, thewhole dataset is split as 80/20 for training and testing
respectively and after that again we classified the remaining training data as 80/20 for
the training and validation phase respectively that is we used 60% for training the model,
20% for validating the model and to remove bias to training dataset and 20% for testing
and evaluating the model.
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4 Experimental Results

Experiments were conducted using the dataset (Birtukan et al. 2020), which is a
freely available breast cancer dataset. The model architecture and experimental setups
described in Sect. 3 are implemented using Keras Application Program Interface (API)
with a Tensor Flow as a backend. To select a suitable model parameter, different values
of these parameters were considered and tuned during model training. In addition to
dropouts, we also employ early stopping to avoid over-fitting The best results recorded
during experimentation are reported in Table 2. The performance of both models is
measured using an accuracy metric.

We compared the accuracy of the CNN-based model trained from the scratch with a
pre-trained CNN model, and our pre-trained CNN model outperforms the classification
accuracy of the model that was trained from scratch by a large margin.

Table 2. Summary of comparison of models based on testing accuracy

Dataset used Model Testing accuracy

Full mammogram images CNN-SoftMax 39%

Pretrained-CNN model 42%

Segmented ROI images CNN- SoftMax 84%

Pretrained-CNN model 90%

5 Conclusion

Early identification of stages of breast cancer allows one to get better treatment, expect
recurrence and survival, and control the spread of cancer to the other part of the body.
Extensive research has been done on breast cancer detection, and many of them are
focusing on breast cancer type classification while neglecting the stage of breast cancer.
Therefore, in this paper, two CNN-based models are proposed for breast cancer stage
identification. The first model is trained from scratch while the second model leverages
the concept of transfer learning through which knowledge is reused from other pre-
trained models. The proposed models are then evaluated using the publicly available
breast cancer dataset and it achieves promising results with an over-recognition accuracy
of 90% Based on the results observed during experimentation, using pre-trained CNN
models gives significant discrimination performance compared to the CN-based models
that are trained from scratch. To improve the performance of the proposed model, as part
of future work, other pre-trained CNN models could be explored and investigated. In
addition, instead of developing independent models, we plan to develop a multi-tasking
deep learning model that can learn the breast cancer type and stage simultaneously.

Author Contributions. Conceptualization, T.M. and B.S; Methodology, T.M. and B.S.; Writ-
ing—original draft preparation, T.M. and B.S.; Writing—review and editing, B.H. All authors
have read and agreed to the published version of the manuscript.



Transfer Learning with Pre-trained CNNs 135

References

Birtukan, S., et al.: Breast cancer Stage identification usingMachine learning.Univerity ofGondar,
Gondar, Ethiopia (2020)

Breastcancer.org.: Breast cancer stages: 0 through iv. (2018). Retrieved from http://www.breast
cancer.org/symptoms/diagnosis/stagi

Zhu, C., et al.: Breast cancer histopathology image classification through assembling multiple
compact CNNs. BMC Med. Inform. Decis. Mak. 19(1), 1–17 (2019). https://doi.org/10.1186/
s12911-019-0913-x

Dheeba, S.S.: A research on detection and classification of breast cancer using k-means gmm &
CNN algorithms. Int. J. Eng. Adv. Technol. 8(6), 501–509 (2019). https://doi.org/10.35940/
ijeat.F1102.0886S19

Goswami, T.: Impact of deep learning in image processing and computer vision. In: Anguera, J.,
Satapathy, S.C., Bhateja, V., Sunitha, K.V.N. (eds.) Microelectronics, Electromagnetics and
Telecommunications. LNEE, vol. 471, pp. 475–485. Springer, Singapore (2018). https://doi.
org/10.1007/978-981-10-7329-8_48

Wang, H., et al.: Mitosis detection in breast cancer pathology images by combining handcrafted
and convolutional neural network features. J. Med. Imaging 1(3), 034003 (2014). https://doi.
org/10.1117/1.jmi.1.3.034003

McCowan, I.A., et al.: Collection of cancer stage data by classifying free-text medical reports. J.
Am. Med. Informatics Assoc. 14, 736–745 (2007). https://doi.org/10.1197/jamia.M2130

Dembrower, K., et al.: Effect of artificial intelligence-based triaging of breast cancer screening
mammograms on cancer detection and radiologist workload: a retrospective simulation study.
Lancet Digit. Health 2(9), e468–e474 (2020). https://doi.org/10.1016/S2589-7500(20)30185-0

Geras, K.J., et al.: High-resolution breast cancer screening with multi-view deep convolutional
neural networks. arXiv, 1–9

Shailaja, K., et al.: Prediction of breast cancer using big data analytics. Int. J. Eng. Technol 7,
223–226 (2018). https://doi.org/10.14419/ijet.v7i4.6.20480

Kim, H., e.: Transfer learning for medical image classification: a literature review. BMC Med.
Imag. (2022). https://doi.org/10.1186/s12880-022-00793-7

Yap, M.H., et al.: Automated breast ultrasound lesions detection using convolutional neural net-
works. IEEE J. Biomed. Heal. Inform. 22(4), 1218–1226 (2018). https://doi.org/10.1109/JBHI.
2017.2731873

Tahmooresi, M., et al.: Early detection of breast cancer using machine learning techniques. J.
Telecommun. Electron. Comput. Eng. 10, 21–27 (2018)
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Abstract. A free flying space robot manipulator system (FFSRMS) is
made up of a six degrees of freedom (DOF) spacecraft and n degree of
freedom manipulator mounted on the base spacecraft. The space robot
manipulator is used to perform a variety of tasks in space or on orbit
service (OOS), such as assembling and repairing spacecraft, refueling
satellites in orbit, and removing space debris. Unlike ground-based robot
manipulators, a space robot manipulator has no fixed base. As a result,
the base and manipulator are strongly coupled. Furthermore, the system
operates in unstructured and zero gravity environment. The kinematics
and dynamics of a FFSRMS has been developed based on chaseles theo-
rem and Euler-Lagrangian equation of motion respectively. The stability
of the system and the convergence of the tracking errors to the origin has
been checked using Lyapunov stability criterion. This work used a fuzzy
sliding mode controller (FSMC) to examine a space robot manipulator
trajectory tracking control capability in joint space and robustness. The
proposed controller has been simulated in MATLAB/Simulink consid-
ering external disturbance and parametric variation and compared with
the sliding mode controller to evaluate how effective it is. The results
reveal that the proposed controller is robust and has good trajectory
tracking capability with a reduced Integral Time Absolute Error (ITAE)
and it eliminate the chattering effect. The comparative study shows that
FSMC has reduced ITAE than SMC.

Keywords: FFSRMS · FSMC · OOS · Robust · Trajectory tracking

1 Introduction

Space robotic manipulator technology is the new frontier field of study which
attracts the attention of many countries to take space power and a subsequent
study has been conducted over the past 40 years. Space robotic manipulator
plays a significant role for servicing a spacecraft after they are deployed on
orbit (OOS) that would prolong the life span of a spacecraft and would be too
risky and time consuming if performed by an astronaut, such as assembling,
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constructing or repairing a space station in orbit [1], on orbit refueling [2], space
debris removal [3,4] and extravehicular activity(EVA) support [1].

The historical development and advancement of space robotic manipulator
was presented in [5]. Shuttle Remote Manipulator System (SRMS) also known
as canadarm1 was the first manipulator mounted on space shuttle orbiter on
second mission of the space shuttle (STS-2) to capture Hubble Space Telescope
(HST) and to positioning astronauts during extravehicular activity (EVA) in
1981. There are some other robotic manipulator mounted on international space
station (ISS) such as; Space Station Remote Manipulator System (SSRMS) also
known as canadarm2, the Japanese Experiment Module Remote Manipulator
System (JEMRMS), European Robotic Arm (ERA), Robonaut1 and Robo-
naut2 [8].

In order to capture a target spacecraft, a series of stages must be taken. The
first step is planning of how the robot arm should capture the target spacecraft
by observing the motion and collecting information about the physical property
of the target spacecraft using different sensors like vision, radar sensors. The
second stage is controlling the base spacecraft to move to the capturing location
(for free flying case) such that, the manipulator is ready to grasp the target
satellite. The third step is the actual capturing of the target space robot by the
end effector. Lastly, the captured spacecraft is stabilized along with the capturing
satellite manipulator by considering the servicing and target spacecraft as one
system, this is called post capturing stage [8].

An accurate and precise trajectory tracking of space robot is required when
the space robot manipulator is commanded to capture some target spacecraft
or object. However, unlike ground-based robot manipulator, space robot has no
fixed base, which makes the system dynamics strongly coupled and difficult to
formulate both the kinematic and dynamic motion of the space robot manipula-
tor system accurately and to design the controller. In addition, the space robot
is working in zero gravity and unstructured environment. Moreover, to cope up
external disturbances and parametric variations due to, thrust firing and addi-
tional payload carried by the manipulator, a robust controller is required. Many
scholars have proposed different path planning algorithm and controller scheme
for space robot manipulator system. Researchers in [10–13] presented adaptive
controller as a feasible solution to overcome the following two problems: The
dynamic equation of the system cannot linearly parameterized and the uncer-
tainty in kinematic mapping from inertial space to joint space when the base is
free floating. Gu You-Liang and Yangsheng Xu [10] proposed a normal augmen-
tation approach to adaptive control by modeling the entire free floating space
robot system as extended robot. The simulation result shows that the proposed
controller asymptotically stabilized the space robot manipulator system to track
a given trajectory in Cartesian space. However, the proposed approach requires
large computation and it requires measurement of spacecraft accelerations. To
alleviate the drawback in [10], Parlaktuna et al. [11] proposed an adaptive con-
troller based on an extended robot approach and an on-line adaptive estimation
law for an unknown parameter along with a computed torque controller. Sim-
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ulation of a two link planner space robot system is conducted using MATLAB
and the simulation result shows that the proposed controller has a good position
trajectory tracking performance. However, the algorithm that the authors follow
to eliminates the measurement of acceleration requires, a large computation.

In [12], the parameterization problem of dynamic equation and adaptive
control of free floating space robot are discussed. Abiko et al. [13] proposed
adaptive control of fully free floating space robot with dynamic and kinematic
model uncertainty. The authors discussed adaptive control for a torque controlled
space robot without acceleration measurement. Limin Xie et al. [14] proposed a
robust fuzzy slide mode controller for controlling the free floating space robot
manipulator system, so that it can correctly track the required trajectory while
also suppressing vibration induced by the flexible joints and flexible link. The
simulation, however, is conducted in two dimension with two-link manipulator.
Meanwhile, the error convergence speed is also slow. Yicheng Liu et al. [15]
proposed trajectory tracking for a dual arm free floating space robot with a
class of general non-singular predefined time terminal sliding mode. Simulation
using MATLAB has been conducted to check the performance of the control
and the simulation result shows that the joint angles successfully track the given
trajectory. However terminal slide mode controller has chattering problem for
bounded random-changing external disturbances. In order to solve this problem,
the authors adopt a continuous function scheme at the cost of high gain.

Xin Zhang et al. [16] proposed adaptive robust decoupling control of multi-
arm space robots using time delay estimation technique. The paper is focused
on decoupling and counteracting the coupling between the base and the manip-
ulator. The simulation is conducted using MATLAB for decoupling control of
multi-arm space robot and they have made comparative analysis of computed
torque control (CTC) based SMC and time delay estimation (TDE) based SMC
and the result demonstrates that the TDE based SMC with a reduced time delay
length still achieve a guaranteed control performance. However, the measure
taken to reduce the effect of chattering problem of SMC controller is replacing
the switching control action by saturation control action operated based on the
boundary layer width. Meanwhile, the authors select the boundary layer width
randomly (they do not use optimal selection algorithm.) because, if the bound-
ary layer width variable is selected as large the control input will be smooth,
but the robustness of the controller degrade, which may causes a steady-state
error. Shiyuan Jia and Jin J. Shan [17], presented a trajectory tracking control
of space manipulator in the presence of actuator uncertainties, such as actuator
fault, actuator saturation and the bias control torque. In addition they have
considered parametric uncertainty and external disturbance. In order to resolve
the problem mentioned, the authors applies a continuous integral slide mode
controller for trajectory tracking control of the space robot manipulator.

This paper focused on trajectory planning and tracking control of free fly-
ing space robot manipulator and stabilization of base spacecraft position and
orientation using fuzzy slide mode controller. The attitude of base spacecraft
is represented using Euler angles. The fifth order polynomial trajectory plan-
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ning technique is adopted for the manipulator joint and spacecraft attitude
desired trajectory. A slide mode controller is a robust controller that can com-
pensate external disturbance and parameter uncertainty change in the system
while maintaining the manipulator tracks it’s given trajectory with a minimum
error and fast convergence. However, SMC suffers a chattering problem due to
a high frequency switching control law, in order to alleviate this problem, we
adopt a fuzzy logic controller.

The main contributions of this paper are:

1. A fuzzy sliding mode controller is designed for trajectory tracking control of
a free flying space robot manipulator system that allows the manipulator to
track the desired trajectory with a minimum error and that can reject an
external disturbances and parameter uncertainties while the base spacecraft
positions and orientations are stabilized in a desired position with a minimum
errors.

2. Most of the above mentioned research works such as [14,16,17] analyzed the
performance of their controller in 2D plane. However, for real space mission
a 3D motion analysis and response is required. So, we are conducted a 3D
simulation of a 9 DOF (Six for base positions and attitudes, three for the
manipulator joint angles) free flying space robot.

3. As most studies point out, controlling all of the 6+n DOF without decoupling
the system dynamics is difficult, especially for a free-flying space robot, where
the base spacecraft and the manipulator are strongly coupled. This paper,
however, uses no decoupling strategies.

2 Modeling of Space Robot Manipulator System

2.1 Assumptions

The formulation of kinematics and dynamic motion of a free flying space robot
manipulator system requires the following assumptions.

1. The space robot manipulator system is assumed to be rigid and works in
micro-gravity or no gravity environment (g = 0).

2. The orbital mechanics is not considered (the body frame is assumed to be
aligned with the orbiting frame).

3. As explained in [19], there are several external disturbance torques acting on
spacecraft in orbit. In this paper all the disturbances considered are assumed
to be bounded.

2.2 Kinematics of Space Robot Manipulator System

A spacecraft equipped with a single n rigid links connected by a revolute joints
is shown in Fig. 1. The base spacecraft is defined as link 0, with joint 0 coinciding
at the space robot base center of mass. The end- effector is located at a virtual
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Fig. 1. Geometry of a free flying space robot manipulator system

joint n+1. For ground base robot manipulator system, the relationship between
these two spaces is non-linear. However, as mentioned in [20], the position and
orientation of the end effector of a free flying space robot manipulator may not
have a closed form solution, since the motion of the end effector depends on the
past history of the manipulator motion. This makes difficult to formulate the
inverse kinematics. Thus, the kinematics is formulated at velocity level.

To develop the kinematics of FFSRMS, we use four coordinate systems; An
inertial coordinate system with origin Ω, body coordinate system located at the
center of mass of the base spacecraft with origin Qb, a set of n + 1 joint fixed
coordinate systems Ji with origin, Qi(i = 0 : n + 1), and a set of n link fixed
coordinate systems, Li located at the center of mass of each link. The orientation
of the base spacecraft with respect to the inertial frame is expressed in Euler
angle specified by a rotation matrix in Eq. (1). In order to be free of singularity
we would prefer to choose roll-pitch-yaw (φ, θ, ψ) rotation sequence [22].

R0b = RφRθRψ =

⎡
⎣

1 0 0
0 cφ −sφ
0 sφ cφ

⎤
⎦

⎡
⎣

cθ 0 sθ
0 1 0

−sθ 0 cθ

⎤
⎦

⎡
⎣

cψ −sψ 0
sψ cψ 0
0 0 1

⎤
⎦

R0b =

⎡
⎣

cψcθ cψsθsφ − sψcφ sψsφ + cψsθcφ
sψcψ sψsθsφ + cψcφ sψsθcφ − cψsφ
−sθ sθsφ sθcφ

⎤
⎦ (1)
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The body fixed angular velocity (ωx, ωy, ωz) is related to the Euler angle rate
by; ⎡

⎣
ωx

ωy

ωz

⎤
⎦ =

⎡
⎣

1 0 sθ
0 cφ sφcθ
0 −sφ cφsθ

⎤
⎦

⎡
⎣

φ̇

θ̇

ψ̇

⎤
⎦ (2)

where, the notation c and s is for cosine and sine of the respected Euler angle.
The rotation matrix of the manipulator, iRi−1 from joint Ji to joint Ji−1 is
built using Denavit-Hartenberg (DH) convention as specified in [23]. In this
convention the transformation matrix, Ti is represented as a product of four basic
transformation with four DH parameters. θi,li,αi, and di as shown in Table 1

Ti = (rotz,θi
)(transz, di)(transx, li)(rotx,αi

)

Ti =

⎡
⎢⎢⎣

cθi −sθicα sθisα licθi

sθi cθicα −cθisα lisθi

0 sα cα di

0 0 0 1

⎤
⎥⎥⎦ (3)

Consider Fig. 1, the position of the end-effector pe, is given by;

Table 1. DH parameters and their geometric meaning.

DH parameters Name Geometric meaning

θi Joint angle Rotation from xJi to xJi+1about zJi

li Link length Distance along the common normal between zJi and zJi+1

αi Link offset Rotation from zJi to zJi+1about xJi+1

di Link twist Distance between Oi and xJi+1 along zJi

pe = r0 + b0 +
n∑

i=1

li (4)

Where, r0, b0, li are the position of center of mass of base spacecraft, the position
of first joint coordinate system with respect to spacecraft center of mass and
length of link i respectively.

By derivating Eq. (4) and substituting Eq. (8) and (9) on it, the linear and
angular velocity of the end effector is given as;

[
ve

ωe

]
=

[
vb

ωb

]
+

[
ωb × (pe − r0) +

∑n
j=1 (kj × (pe − pj))θ̇j∑n

j=1

(
kj θ̇j

)
]

(5)

Where, vb and ωb are the linear and angular velocity of the base spacecraft
respectively, kj is he rotation axis of the ith revolute joint usually defined as
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the z axis in the corresponding link frame, θ̇j denotes the angular velocity of ith

rotational joint. Equation (5) can be expressed in canonical form as:
[
ve

ωe

]
=

[
Jsφ̇ + Jmθ̇

]
(6)

Where, φ̇ = [vb, ωb]T is the generalized linear and angular velocity vector of the
base spacecraft, θ̇ = [θ̇1, θ̇2 . . . θ̇n] are joint angular velocities. Js ∈ R6×6 is the
Jacobian of the base spacecraft, Jm ∈ R6×n is the standard Jacobian of a ground
base robot manipulator.

Js =
[
I3,3 − (pe − r0)

×

03,3 I3,3

]
, Jm =

[
k1 × (pe − p1) . . . ki × (pe − pi) 03,n−i

k1 . . . ki 03,n−i

]

The notation r× is used to denote the skew symmetric matrix associated with
the vector r = [rx, ry, rz]T can be written in matrix form as [24].

r× =

⎡
⎣

0 −rz ry

rz 0 −rx

−ry rx 0

⎤
⎦

2.3 Dynamics of Space Robot Manipulator System

The equation of motion of a free flying space robot manipulator system as shown
in Fig. 1 is formulated using Euler-Lagrangian equation of motion. The potential
energy is set to zero, as it is mentioned on assumption 1. Hence, the Lagrangian
(L) is equals to the system kinetic energy (T).

L = T =
1
2

(
n∑

i=0

(
ωT

i Iiωi + miv
T
i vi

)
)

(7)

where,

vi = vb + ω×
b (ri − r0) +

i∑
j=1

(
k×

j (ri − pj) θ̇j

)
(8)

ωi = ωb +
i∑

j=1

(
kj θ̇j

)
(9)

Substituting Eq. (8) and (9), into Eq. (7) yields;

L =
1
2

(
ωT

b Ibωb + mbv
T
b vb

)
+

1
2

⎛
⎝ωb +

i∑
j=1

kj θ̇j

⎞
⎠

T

Ii

⎛
⎝ωb +

i∑
j=1

kj θ̇j

⎞
⎠

+
1
2
mi

⎛
⎝vb + ωb × (ri − r0) +

i∑
j=1

(kj × (ri − pj)) θ̇j

⎞
⎠

T

⎛
⎝vb + ωb × (ri − r0) +

i∑
j=1

(kj × (ri − pj))θ̇j

⎞
⎠

(10)
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By proper re-arrangement and simplification of Eq. (10) we will get;

L = T =
1
2

[
vT

b ωT
b θ̇T

i

]
⎡
⎣

Hv Hvω Hvm

Hωv Hω Hωm

Hmv Hmω Hm

⎤
⎦

⎡
⎣

vb

ωb

θ̇i

⎤
⎦ (11)

where,
Hv = mtot(I3,3)

Hvω = −
n∑

i=1

mir
×
0i

Hvm =
n∑

i=1

(miJTi)

Hω = I0 +
n∑

i=1

(Ii − mir
×
0ir

×
0i)

Hωm =
n∑

i=1

(IiJRi + mir0iJTi)

Hωv = HT
vω

Hωm = HT
mω

Hmv = HT
vm

Hmω = HT
ωm

Hm =
n∑

i=1

JT
RiIiJRi + miJ

T
TiJTi

JTi =
[
k1

× (ri − p1) . . . ki
× (ri − pi) 03,n−i

]
,∀ (1 ≤ i ≤ n)

JRi =
[
k1

× . . . ki
× 03,n−i

]
, ∀ (1 ≤ i ≤ n)

The ith link moment of inertia matrix with respect to inertial frame of reference
is given by;

Ii = RLi
CMIiR

T
Li (12)

where,CMIi is moment of inertia at center of mass. Now select the manipulator
joint angle vector, q and the spacecraft linear and angular position vector, ẋb =
[vT

b , ωT
b ] as a generalized coordinate, Eq. (11) can be re-written as;

L = T =
1
2

[
ẋT

b q̇T
i

] [
Hb Hbm

HT
bm Hm

] [
ẋb

q̇i

]
(13)

Hb =
[

Hv Hvω

HT
ωv Hω

]
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Hbm =
[

HT
vω

HT
ωm

]

Where, Hb ∈ IR6×6,Hm ∈ IRn×n, are the inertia matrix of the spacecraft and the
manipulator respectively, Hbm ∈ IR6×n, is the dynamic coupling inertia matrix,
which represent the contribution of the manipulator to the base spacecraft and
vice-versa: JTi, JRi, are the linear velocity and the angular velocity Jacobian
matrix for the ith link center of mass respectively. Simplifying Eq. (13) will give
as;

L =
1
2
ẋT

b Hbẋb +
1
2
ẋT

b Hbmẋb +
1
2
q̇T Hmq̇ +

1
2
q̇T HT

bmq̇ (14)

The Euler-Lagrangian equation of motion is given by;

d

dt
(
∂L

∂ẋb
) − (

∂L

∂xb
) =

[
fb

τb

]
(15)

d

dt
(
∂L

∂q̇
) − (

∂L

∂q
) = τm (16)

Now apply Euler-Lagrangian equation of motion onto Eq. (14) will result the
dynamic equation of motion of a free flying space robot manipulator system
given in Eq. (17)

[
Hb Hbm

Hmb Hm

] [
ẍb

q̈

]
+

[
Ḣb Ḣbm

Ḣmb Ḣm

] [
ẋb

q̇

]
−

[
Cb

Cm

]
=

⎡
⎣

fb

τb

τm

⎤
⎦ (17)

With,

Cb =
1
2

∂

∂xb
(ẋT

b Hbẋb + ẋT
b Hbmẋb + q̇T Hmq̇ + q̇T HT

bmq̇)

Cm =
1
2

∂

∂q
(ẋT

b Hbẋb + ẋT
b Hbmẋb + q̇T Hmq̇ + q̇T HT

bmq̇)

Equation (17) can be expressed in a canonical form as;

Hϕ̈ + Cϕ̇ = τ (18)

With,

C = Ḣ −
[

Cb

Cm

]

Where, ϕ̈ = [ẍb, q̈]T is a generalized acceleration vector and τ = [fb, τb, τm]T is
a generalized force and torque vector term.

3 Controller Design

In this section, a free flying space robot manipulator control system based on
a fuzzy sliding mode controller is designed in such away that, the manipulator
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can track a desired trajectory in joint space, while the position and attitude of
the base spacecraft are stabilized in the direction that guarantee communication
with ground station. If we take into account disturbances and uncertainty, the
dynamic model given in Eq. (18) is modified to;

Hϕ̈ + Cϕ̇ + τd + Δu = τ (19)

τd = [τd1, τd2 . . . τdn]T represents the bounded disturbance force or torque vector
applied on base spacecraft(|τd| ≤ di) and manipulator,Δu denotes the bounded
uncertainty dynamics. i.e.,|Δu| ≤ ui.

Lemma 1. The inertial matrix H and the Coriolis force C in Eq. (19) are
bounded with λIn,n ≤ H ≤ λmaxIn,n and ||C|| ≤ ||cϕ̇||, where λ,λmax and c
are positive constants [25].

Fig. 2. Sliding surface manifold [27]

3.1 Sliding Mode Controller Design

SMC is one of the variable structure control system (VSCS) approaches. VSCS
is a variable high-frequency switching controller [26]. Designing of a slide mode
controller (SMC) majorly consists of two procedure;

1. Select sliding surface vector as;

s = ė + Kpe + Ki

∫ t

0

e(τ)dτ (20)

Where, Kp,Ki are a diagonal and positive definite matrix (sliding surface
gains), e,ė ∈ IR(6 + n × 1) are an error and rate of error vectors respectively,
and they are given as follow;

e = ϕdi − ϕi (21)
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ė = ϕ̇di − ϕ̇i (22)

Where, ϕdi, ϕ̇di are desired linear, angular position and velocity of base and
the manipulator respectively. ϕi = [x, y, z, φ, θ, ψ, θ1, θ2, . . . , θn] are the actual
base position and attitude and manipulator joint angles. Differentiating Eq.
(20) with respect to time yields;

ṡ = ë + Kpė + Kie (23)

Solving for ϕi in Eq. (20), then substitute it with Eq. (22) into Eq. (23) and
set ṡ = 0 in Eq. (23), the equivalent control law can be obtained as;

τeqv = H(ϕ̈di + Kpė + Kie) + Cϕ̇ + τd + Δu (24)

Where, τeqv is the equivalent control law, considering disturbance and uncer-
tainty that makes the system trajectory moving on the sliding surface as
indicated in Fig. 2.

2. Select an appropriate reaching control law. In this work, a constant plus
proportional reaching control law is adopted as expressed in Eq. (25).

ṡ = −Kss − Gsgn(s) (25)

Where, G, Ks are a diagonal and positive definite matrix switching gains and
reaching control law gains respectively. sgn(s) denote a signum function.

sgn(s) =
{−1, if s < 0

1, if s > 0

Finally, the total control law can be obtained as;

τtot = τeqv + H(Gsgns + Kss) + τd + Δu (26)

3.2 Fuzzy Logic Controller Design

In this subsection, a fuzzy logic controller based on zero order Sugeno infer-
ence mechanism is designed. The control law expressed in Eq. (26) suffers with
chattering problem due, to a high frequency switching control law represent by
Gsgn(s).

In this paper, a singleton MF is used for the output variable since, it improves
the efficiency of the defuzzification process or simplifies the computation required
by the Mamdani method, that finds the centroid of a two dimensional function
instead of integrating across the two dimensional function to find the centroid,
it is better to use the weighted average of a few data points.

− Gsgn(s) = −GΔu (27)

Now a fuzzy logic controller can be design to smooth the switching controller
expressed in Eq. (27) with a FLC output Δu.
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1. Fuzzify Inputs: Firstly, the sliding surfaces, s and the fuzzy logic controller
outputs, Δu has taken as input and output variables of fuzzy inference system
respectively. Then, a triangular and a singleton membership functions are
assigned for fuzzy input and output variables respectively, as shown in Fig.
(3) with a seven linguistic variables; Negative Large (NL), Negative Medium
(NM), Negative Small (NS), Zero (Z), Positive Large (PL), Positive Medium
(PM) and Positive Small (PS). The range of input and output variables has
taken from [−5 5]. Additionally, the width of both input and output fuzzy
MF β = 5

3 , as shown in Fig. 3a & 3b.

Remark 1. The input MF range is selected based on the range sliding surfaces
from SMC simulation result and the output MF range is based on the range of
signum function (since, FLC is chosen to substitute the switching control law of
SMC and to produce a continuous control signal as shown in Fig. 3c.

Fig. 3. Membership function of input and output of fuzzy logic controller:(a) Input
membership function, (b) Output membership function (c) Overall input output curve

2. Fuzzy rule construction: The fuzzy rules are designed based on the
methodology that the high frequency switching control law have direct and
positive relationship with sliding manifold.
if s is NL, then Δu is NL
if s is NM, then Δu is NM
if s is NS, then Δu is NS
if s is Z, then Δu is Z
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if s is PS, then Δu is PS
if s is PM, then Δu is PM
if s is PL, then Δu is PL

3. Computing the output of fuzzy logic controller as;

− GΔu = −G

5∑
i=−5

μi(s)i
μi(s)

(28)

where, μi(s) is the strength of the ith rule and i is the associated single
membership function of Δu

3.3 Trajectory Planning

In this study, a fifth order polynomial path planning technique is adopted to
plan the desired trajectory of the space robot base attitude and manipulator
joint position.

ϕ̇i(t) = a1 + 2a2t + 3a3t
2 + 4a4t

3 + 5a5t
4 (29)

The velocity and acceleration can be obtained by taking the first & second
derivative of Eq. (29) respectively.

ϕ̇i(t) = a1 + 2a2t + 3a3t
2 + 4a4t

3 + 5a5t
4 (30)

ϕ̈i(t) = 2a2 + 6a3t + 12a4t
2 + 20a5t

3 (31)

where t0 ≤ t ≤ tf and ai, for i = 0, 1 . . . 5 are coefficients of the polynomial and
determined by solving the following polynomial equation. the ai parameter can
be found as;

⎡
⎢⎢⎢⎢⎢⎢⎣

a0

a1

a2

a3

a4

a5

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

1 t0 t20 t30 t40 t50
0 1 2t0 3t20 4t30 5t40
0 0 2 6t0 12t0

2 20t0
3

1 ttf t2tf t3tf t4tf t5tf
0 1 2ttf 3t2tf 4t3tf 5t4tf
0 0 2 6ttf 12t2tf 20t3tf

⎤
⎥⎥⎥⎥⎥⎥⎦

−1 ⎡
⎢⎢⎢⎢⎢⎢⎣

ϕi (0)
0
0

ϕi (tf)
0
0

⎤
⎥⎥⎥⎥⎥⎥⎦

4 Stability Analysis

In this section the stability of the designed controller is proved using Lyapunov
function technique (Fig. 4). Select a lyapunov function candidate as;

V =
1
2
sT s (32)
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Fig. 4. Overall control system structure

Differentiating Eq. (32) with respect to time and substituting Eq. (19) and (26)
into it gives;

V̇ = sT ṡ

= sT (ϕ̈di − ϕ̈i + Kpė + Kie)

= sT (ϕ̈di − H−1(τtot − Cϕ̇ − τd − Δu) + Kpė + Kie)

= sT (ϕ̈di − H−1(τeqv + GΔf + Kss − Cϕ̇ − τd − Δu) + Kpė + Kie)

= sT H−1 (−GΔf − Kss + τd + Δu)

= sT (H−1(τd + Δu) − |sT |H−1(G) − sT H−1Kss

(33)

By choosing appropriate values G and Ks which satisfy V̇ ≤ 0 and the matrix
H−1 is positive definite, Eq. (33) is always less than zero. Therefore the stability
is proven.

5 Simulation Results and Discussion

In this section, simulation of three link free flying space robot as shown in Fig. (5)
is conducted using MATLAB. The initial and terminal time for trajectory plan-
ing is set as t0 = 0 and tf = 20 second respectively. The inertia and DH param-
eters of a FFSRMS are specified in Table 2 and Table 3 respectively.

Table 2. Kinematic ad dynamic parameters of the FFSRMS [29]

m(kg) l(m) a(m) b(m) Ixx(kgm2) Iyy(kgm2) Izz(kgm2)

Base 100 – – 0.5 30 30 30

Link1 8 0.5 0.25 0.25 0.2 0.0064 0.2

Link2 10 1 0.5 0.5 0.008 0.8 0.8

Link3 10 1 0.5 0.5 0.008 0.8 0.8
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Table 3. DH parameters of the FFSRMS

α(rad) l(m) d(m) θ(rad)

Link1 0.5π 0.5 0.5 θ1

Link2 0 1 0 θ2

Link3 0 1 0 θ3

Fig. 5. Free flying space robot manipulator system

The initial configuration of space robot are given as;

[φ0, θ0, ψ0]T = [
5π

180
,
20π

180
,
10π

180
]T (rad)

[x, y, z]T = [0.11, 0.2,−0.3]T (m)

[θ10, θ20, θ30]T = [
10π

180
,
10π

180
,
10π

180
]T (rad)

The final values of a FFSRMS are set to be;

[φf , θf , ψf ] = [0, 0, 0](rad)

[xf , yf , zf ] = [0, 0, 0](m)

[θ1f , θ2f , θ3f ] = [
40π

180
,
60π

180
,
−30π

180
](rad)

The change in mass of fuel due to thruster firing and unknown payload car-
ried by the manipulator end-effector are considered as parametric uncertainty,
as a result the mass of space robot in turn the mass and inertia parameters
are also changed. For simulation the mass and inertia of link three and base
spacecraft Table 2 are changed to mb = 90 kg,m3 = 11 kg, I0xx = I0yy = I0zz =
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27 kgm2, I3xx = 0.0088 kgm2, I3yy = 0.88 kgm2, I3zz = 0.88 kgm2. The distur-
bance force or torques are chosen as [30].

τdm = [0.1sin(1.2t), 0.108sin(0.1t),−0.1sin(0.6t)]

τdb = [0.4sin(0.3t), 0.3cos(0.1t), 0.2sin(0.3t)]

fb = [0.1sin(0.3t), 0.01cos(0.1t), 0.02sin(0.3t)]

Where, τdb,fb,τdm are disturbance force & torque on the base spacecraft posi-
tions, attitudes and manipulator joints respectively. The parameter of con-
troller are selected by trail and error method which fulfill our desired objectives.
Kp = 3I9,9,Ki = 1.5I9,9,Ks = 2I9,9,G = 0.1I9,9.

Figure 6 shows the desired base spacecraft position, orientation and manipu-
lator joint angle trajectories planned using fifth order polynomial path planning
technique. The manipulator joint angles and the base spacecraft positions &
orientations as well as the end effector position trajectory tracking capability
with an initial errors are shown in Fig. 7. The result indicates the manipulator
joint angles track their desired trajectories and the base spacecraft positions and
attitudes are re-oriented at their target location (zero). Figure 7d depicts that
the end effector successfully follow the prescribed path in Cartesian space. The
simulation results in Fig. 7b & 7c are used to demonstrate the situation in which
the base spacecraft must change its attitude or position to re-orient the earth
pointing antenna so as not to loss ground communication or to keep the solar
panel aligned with the sun for maximum power.

Due to an initial deviation of the system states, the manipulator joint torques
as well as, the base spacecraft thrust forces & attitude torques are high initially,
as shown in Fig. 8a, 8b, 8c respectively. However, the magnitude of this manip-
ulator and base spacecraft torques and forces are bounded within ±0.5Nm,
±2Nm and ±1N as shown in Fig. 8 respectively at steady state. Practically the
base spacecraft attitudes are controlled by either reaction or moment wheel and
they have limited torque up to ±5Nm & ± 1Nm respectively. Thus, the result
confirms this reality.

Figure 9 shows the sliding surface are asymptotically converges to the origin
and staying there over time. Therefore, all the states of the system (errors in
this case) are attracted to it and stay along with the slide surface.

Figure 10 shows the trajectory tracking errors of the manipulator joint angles
and the base spacecraft position & orientation angles as well as the thrust forces
and torques of the system due to the addition of external disturbances.

Figure 11 shows the control torques and thrust forces of the system with
FSMC & SMC. This results indicate that SMC has chattering problem. However,
this problem is solved by employing a fuzzy logic controller along with SMC, as
shown in Fig. 11. Table 4 shows the integral of time multiplied by absolute error
(ITAE) of the system with nominal model, disturbance and parametric variation
of both controller. The proposed controller has a relatively smaller ITAE than
the sliding mode controller, as indicated in Table 4. Thus, the results show that
FSMC has better trajectory tracking performance than SMC.
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Fig. 6. The desired trajectory of base position and attitude as well as the manipulator
joint angle designed using fifth order polynomial path planning technique:(a) Desired
trajectory of spacecraft position and attitude (b) Desired joint angle trajectory

Fig. 7. Manipulator joint angles and Base spacecraft position & orientation and end
effector trajectory tracking:(a) Manipulator joint angles trajectory tracking (b) Base
spacecraft position trajectory tracking (c) Base spacecraft orientation trajectory track-
ing (d) end effector trajectory tracking
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Fig. 8. Manipulator joint angle and base spacecraft torques & forces:(a) Manipulator
joint angle torques (b) base spacecraft thrust forces (c) base spacecraft torques

Fig. 9. Sliding surface of the base spacecraft positions and orientations and the manipu-
lator joint angles:(a) Sliding surface of spacecraft positions and orientations (b) Sliding
surface of the manipulator joint angles
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Fig. 10. Manipulator joint angle and base spacecraft position & attitude angle errors
and the corresponding torques & forces with disturbance (a)Manipulator joint angle
errors (b) base spacecraft position errors (c) Manipulator joint torques (d) base space-
craft forces & torques

Fig. 11. Manipulator joint and base spacecraft torques & forces with FSMC & SMC
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Table 4. ITAE for a FFSRMS with FSMC

x(m) y(m) z(m) φ(rad) θ(rad) ψ(rad) θ1(rad) θ2(rad) θ3(rad)

FSMC-nominal 5.052 × 10−2 1.516 × 10−1 1.010 × 10−1 5.752 × 10−2 4.174 × 10−2 2.822 × 10−2 4.409 × 10−2 1.763 × 10−1 8.817 × 10−2

SMC-nominal 6.933 × 10−2 2.284 × 10−1 1.482 × 10−1 7.825 × 10−2 5.425 × 10−2 1.586 × 10−2 5.951 × 10−2 2.680 × 10−1 1.229 × 10−1

FSMC-disturbance 5.568 × 10−2 1.553 × 10−1 1.080 × 10−1 1.005 × 10−1 1.055 × 10−1 2.224 × 10−2 1.745 × 10−1 5.247 × 10−1 9.796 × 10−1

SMC-disturbance 6.935 × 10−2 2.284 × 10−1 1.482 × 10−1 8.314 × 10−2 8.443 × 10−2 1.570 × 10−2 1.820 × 10−1 7.333 × 10−1 1.453 × 100

FSMC-parametric change 5.607 × 10−2 1.676 × 10−1 1.109 × 10−1 6.019 × 10−2 4.459 × 10−2 2.659 × 10−2 9.721 × 10−2 2.232 × 10−1 1.650 × 10−2

SMC-parametric change 6.627 × 10−2 2.164 × 10−1 1.402 × 10−1 7.520 × 10−2 5.138 × 10−2 1.525 × 10−2 5.607 × 10−2 2.464 × 10−1 1.337 × 10−1

6 Conclusion

In this paper a fuzzy sliding mode controller for trajectory control of a free flying
space robot manipulator system was studied. The dynamics and kinematics of
a the system has been formulated. A fuzzy logic controller is employed to sub-
stitutes the switching control algorithm, which causes for a chattering problem
in SMC. To see the effectiveness of the proposed controller, simulation is con-
ducted using MATLAB and it is compared with sliding mode controller. The
result shows that, the proposed controller has better trajectory tracking perfor-
mance and it is robust. The comparative study shows that FSMC has a reduced
ITAE than SMC. Furthermore, the proposed controller(FSMC) has successfully
eliminates the chattering problem. However, in this paper the coriolis /centerifu-
gal matrix are computed following Euler-Lagrangian equation of motion which is
not computational efficient. In the future, we will develop the same controller for
dual arm free flying space robot system, which has a great capability to perform
a complex tasks than a single arm.
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Abstract. Teff is one of the main ingredients in everyday food for most Ethiopi-
ans, and its production mainly depends on natural conditions of the climate,
unpredictable changes in the climate, and other growth factors. Teff production
is extremely variable on different occasions and creates complex scenarios for
prediction of yield. Traditional methods of prediction are incomplete and require
field data collection, which is costly, with the result being poor prediction accu-
racy. Remotely sensed satellite image data has proven to be a reliable and real-
time source of data for crop yield prediction; however, these data are enormous in
size and difficult to interpret. Recently, machine-learning methods have been in
use for processing satellite data, providing more accurate crop prediction results.
However, these approaches are used in croplands covering vast areas or regions,
requiring huge amounts of cropland mask data, which is not available in most
developing countries, and may not provide accurate household level yield predic-
tion. In this article, we proposed a machine learning based Teff Yield Prediction
System for smaller cropland areas using publicly available multispectral satellite
images, that represent spectral reflectance information related to the crop growth
status collected from different satellites (Landsat-8, Sentinel-2). For this, we have
prepared our own satellite image dataset for training. A Convolutional Neural
Network was developed and trained to be fit for a regression task. A training loss
of 3.3783 and a validation loss of 1.6212 were obtained; in other words, the model
prediction accuracy was 98.38%. This shows that our model’s performance is very
promising.

Keywords: Teff yield ·Multispectral satellite images ·Machine learning ·
Convolutional neural network

1 Introduction

Crop farming in Ethiopia comprises large variations in both the variety of crops and
growing areas. According to a study (Alemayehu 2012), small sized crop lands constitute
96% of farm land and yield a significant portion of total production for the major crops,
including teff, maize, wheat, barley, and sorghum. Among these crops, teff is the most
staple food in the country, and the same study shows that teff accounts for nearly 20%
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of the harvested land. As one of the most important elements in everyday food for most
Ethiopians (Lee 2018; Nandeshwar et al. 2020), the country is considered the largest
teff producer in the world (Firdisa 2016; Tamirat and Tilahun 2020). In most places,
it is sown by hand with the seeds left exposed (Sate and Tafese 2016). Teff covers the
largest farmland (28% of crop area) in the country (FAO 2015; Firdisa 2016; Nascimento
et al. 2018; Wato 2019), but its yearly production is very low as compared to other crops
(Lakew and Berhanu 2019; Tesfahun 2018).

In terms of teff production area, the largest producing regions are Amhara (around
85%) and Oromia (around 87%) (Lee 2018). These regions also constitute the largest
populations that consume this crop. Teff is a warm-season annual cereal that provides
significant and unique nutritional qualities for health-conscious consumers. Nonetheless,
it is not yet fully exploited and its contribution to food security requires further study.
Teff is a low-risk crop that can withstand a variety of biotic and abiotic challenges. It
can also continue to be a reliable source of food to meet the world’s rapidly rising needs.
Ethiopia is currently the world’s largest producer of teff and it is only in this country that
it is used as a staple crop, although other continents like the US and European countries
are starting to promote its production and utilization (Lee 2018). Although there is a
growing interest in the global market, in comparison to other important cereals, teff
productivity is quite low (14.8 q/h) (CSA (Central Statistical Authority) 2016), having a
number of factors to consider, including reduced fertility of soil, improper management
of fertilizers and weeds, and irregular distribution of rainfall (Fenta 2018; Wakjira 2018;
Tamirat and Tilahun 2020).

Teff is, and will continue to be, the most important and highly demanded crop
due to its specific benefits and increasing international attention. As a result, increased
production of this remarkable crop must be prioritized. Climate and other environmental
changes have an impact on teff productivity, which is largely determined by natural
climate conditions, which have a significant impact on teff yield.

Crop yield estimates before actual production is necessary in regions that depend on
rain-fed agriculture with climatic uncertainties for taking various policy decisions. The
results of yield estimates improve the timely availability of information for food security,
allowing authorities to take necessary preparations to prevent famine, particularly during
natural disaster years. Traditionally, in Ethiopia, the annual estimation of crop land area
and production has been conducted by ECSA (Ethiopia Central Statistical Agency) at
the national level (Fikre 2015).

In addition, estimation of crop yield in general is critical for food producers, pol-
icymakers, importers/exporters, seed producers, growers, and farmers in Ethiopia to
improve national food security. However, due to several complicated aspects, the task is
highly difficult and varies according to growing region and time of production. Identify-
ing and addressing the difficulties is an overriding issue for understanding the stochastic
nature of crop yield and devising ways to address them. Several crop yield prediction
models have been developed to enhance the accuracy of yield estimations. However,
getting accuracy is not easy due to the complexity and variability of natural settings,
since many factors influence crop production and hence crop output.
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Due to the limitations of traditional methods, modernmethods such as artificial intel-
ligence and machine learning (ML) have been introduced for efficient crop yield predic-
tion. Considerable research efforts have been made in applying multivariate regression,
decision trees, association rule mining, and artificial neural networks for crop prediction.
Many key characteristics make ML methods to be potentially applied in yield predic-
tion problems. These methods can be used to tackle complex and nonlinear real-world
classification and regression problems. Not only does machine learning provide a pow-
erful and flexible framework for data-driven decision making, but it also allows for the
integration of expert knowledge into the system (Anna 2018).

In this research,weproposed ayield predictionmodel for teff cropusingmultispectral
satellite images for training the model, downloaded from different sources in different
years for the selected sample sites based on a ML technique, specifically a type of
deep learning algorithm called the Convolutional Neural Network (CNN) model. The
selected model is trained using a series of multiple-band satellite images cropped from
the downloaded satellite images for specific plots of land for the main teff growing
season, which is the duration from the sewing month to before harvest month (June 25–
November 30 is considered) in the selected prominent Teff growing sites in the region.
For ground truth data, average teff yield data was collected for the different plots for 10
years from 2010 to 2020. Primary data was collected on site by interviewing farmers.
Data from CSA and other sources was also used to verify the correctness of the data
provided by the farmers.

The main contributions of the paper include:

1. A dataset consisting of multiple bands of multispectral images showing temporal
variation in biomass of Teff growth for different years, fromdifferent satellite sources

2. The use of freely available satellite images for crop prediction in developing countries
(which may not afford commercial satellite data), which opens a window of further
research for other applications

3. The use of modern deep learning technique for Teff yield prediction purpose
4. A basic CNN model was adjusted at the output layer (replacing sigmoid activation

with ReLU) to be used for a regression problem (mostly, CNNs are effectively used
for classification problems)

The rest of the paper is structured as follows. In Sect. 2, different related papers
are reviewed. In Sect. 3, we discussed the problem setting and model of the proposed
system. In Sect. 4, step-by-step procedures for developing and implementing the model
are presented. Implementation, results, and analysis are presented in Sects. 5 and 6,
respectively. Section 7 provides a conclusion and future work.

2 Related Works

In many countries, traditional crop production forecasting approaches have been used to
collect data from field trips and reports. However, a number of problems and challenges
are associated with these methods. The subjectiveness and insufficient ground truth data
of these methods expose them to the introduction of large errors. Sampling and data
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collection is too costly and time consuming, and may not represent the real picture on
the ground. Due to this, other methods like crop model-based monitoring systems and
remote sensing-based forecasting methods (that are based on NDVI) have been drawing
the attention of many researchers. Crop monitoring and yield forecasting with remote
sensing in Ethiopia was largely done at the regional/national level, covering broad areas
with low-resolution imagery (Rojas 2006; Greatrex 2012).

Crop yield estimation and crop growth monitoring using geospatial and remote sens-
ing technology are used for clustered crop areas to save money and time but require
accurate data, technology, and expertise. It assists growers, government agencies, and
crop insurance firms in planning and contributing to the national goal of food security
with the following limitations to this type of research: (1) for several years, some of the
areas have lacked local level ground truth data; (2) the approach necessitates additional
regression analyses based on selected machine learning algorithms; (3) future analyses
based on a variety of variables such as climate, agronomic factors, crop factors (e.g.,
harvest index), and others, in addition to ground truth; and (4) their hypothesis was to
explore the yield estimation under different scenarios based on the capability of GIS
technology in conjunction with machine learning algorithms in clustered areas, how-
ever, this will require additional testing for fragmented cropping systems (Hailu et al.
2022).

Ethiopian crop agriculture grows a variety of crops in many regions of the country.
According to Alemayehu’s research, Ethiopia’s agricultural economy depends primarily
on five primary cereals such as teff, wheat, maize, sorghum, and barley, which cover 75%
of total cultivated land and 29% of agricultural GDP in 2005/06 (14% of the country’s
overall GDP) (Alemayehu 2010). In Ethiopia, Abiy introduced a GIS and RS based
crop yield prediction model for the maize crop in the south Tigray Zone derived from
time series data of SPOT VEGETATION, actual and potential evapotranspiration, and
rainfall estimate satellite data for the years 2003–2012. Through correlation analyses,
he used the input data to validate the grain yield from CSA and processed the data to
forecast maize yield and map it. He got a rainfall estimate and an average NDVI that
associate to maize output with 85% and 80% of the variation, respectively, by validating
the generated spectro-agro-meteorological yield model by comparing it to the estimated
zone level yields from CSA (r2 = 0.88, RMSE = 1.405 qha1, and a 21% coefficient of
variation) (Abiy 2014).

Aklilu et al. in (Fikre 2015) filled the gap of Abiy in (Abiy 2014) in maize yield
prediction in the south Tigray Zone by developing a model to forecast wheat yield for
the year 2014 for the east Arsi zone, Ethiopia using remote sensing and GIS using time
series data of SPOT VEGETATION, actual and potential evapotranspiration, rainfall
estimate, and satellite data for the years 2004–2013. He employed CSA ground truth
data to evaluate the indices’ strength, and used correlation analysis to find relationships
between crop yield, spectral indices, and agrometeorological variables for wheat crops
over the long wet season (Meher). He discovered indices with a strong relationship
to wheat yield which are highly correlated with the average Normalized Difference
Vegetation Index (NDVIa) and rainfall, with 96% and 89% correlations, respectively.

Amachine learning approach has been introduced to solve the limitations of conven-
tional, remote sensing, and geospatial methods in crop yield. One of the approaches is
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deep learning. The researchers (You et al. 2017) introduced a deep learning framework
for crop yield prediction models based on histograms and a Deep Gaussian Process
framework to avoid spatially correlated errors and inspire other applications in remote
sensing and computational sustainability using publicly available remote sensing data
to improve existing techniques using hand-crafted features and a novel dimensionality
reduction technique to train a CNN or LSTM. They tested the method on county-level
soybean yield prediction in the United States and found that it beat other methods.

Other researchers (Sun et al. 2019) introduced a deep CNN-LSTM model using
weather data, MODIS Land Surface Temperature (LST) data, MODIS Surface
Reflectance (SR) data, and historical soybean yield data to train the model for both
end-of-season and in-season soybean yield prediction in the CONUS at the county level.
All of the training data was combined and turned into histogram-based tensors for deep
learning using the Google Earth Engine (GEE). The proposed model outperformed
the pure CNN or LSTM model in both end-of-season and in-season scenarios, with an
average RMSE of 329.53 from 2011 to 2015 and an R2 of 0.78 for the 5 years combined.

A deep learning framework based on CNNs and RNNs was proposed in (Khaki et al.
2020) for crop yield prediction utilizing environmental data and management strategies.
Utilizing historical data, the CNN-RNN model was used to forecast corn and soybean
yields over the whole Corn Belt (containing 13 states) in the United States using random
forest (RF), deep fully connected neural networks (DFNN), and LASSO. It had a root-
mean-square-error (RMSE) of 9%and8%of their respective average yields, respectively,
significantly surpassing all other methods examined.

The authors in (Debalke and Abebe 2022) introduced a maize yield forecast model
using time series data from the Moderate Resolution Imaging Spectroradiometer NDVI,
actual evapotranspiration, and potential evapotranspiration, and Climate Hazards Group
Infrared Precipitation, with the indicators’ correctness checked against official grain
yield data from CSA in Kafa Zone, Ethiopia. The average NDVI and the Climatic
Hazards Group Infrared Precipitation using station data reveal significant connections
with maize productivity, with correlations of 84% and 89%, respectively. The spectro-
agro meteorological yield model (r2= 0.89, RMSE= 1.54 qha1, and 16.7% coefficient
of variation) satisfactorily matched the CSA’s predicted Zone level yields.

Another prediction system based on machine learning techniques such as decision
tree, multivariate logistic regression, and k-nearest neighbor model was developed in
(Cedric et al. 2022) to predict by combining climatic data, meteorological data, agricul-
tural yields, and chemical data with hyper-parameter tuning methodology for the yield
crops (rice, maize, cassava, seed cotton, yams, and bananas) at the country-level in West
African countries throughout the year. The decision tree model performed well with a
coefficient of determination (R2) of 95.3%, while the K-Nearest Neighbor model and
logistic regression performed well with R2 = 93.15% and R2 = 89.78%, respectively.
As a result, the decision tree and K-Nearest Neighbor models’ prediction outputs are
associated with the predicted data, demonstrating the efficacy of the model.

Ayalew et al. in (Ayalew et al. 2022) proposed a hybrid CNN-DNNmodel and com-
pared with other machine learning algorithms such as the XGBoost machine learning
(ML), CNN-DNN, CNN-XGBoost, CNN-RNN, and CNN-LSTMhow performs against
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various performance criteria. They tested their findings using a publicly available soy-
bean dataset with 395 characteristics, including meteorological and soil conditions, and
25,345 samples. The suggested model outperforms other models, with an RMSE of
0.266, MSE of 0.071, and MAE of 0.199. The model’s predictions fit with an R2 of
0.87. The XGBoost model came in second place, taking less time to run than the other
DL-based models.

In contrast to other approaches that use cropland masks that span broad areas, we
generated and used an individual plot of land multispectral satellite image based dataset
in our research. This enables farmers to anticipate teff yields based on individual house-
holds,which aids in agricultural fieldmanagement. For prediction, our approach employs
satellite biomass photos, which can be simply downloaded without the need for any
additional software or physical field visits. CNN is most commonly employed for image
classification, but it was also used for regression in our system, similar to the approach
followed in (Adrian 2021), by modifying the fully connected output layer, activation
function, and loss functions used in classification problems.

3 Problem Setting

The traditional technique of crop yield prediction in Ethiopia is practiced by collect-
ing data based on field visits and reports which are subjective, costly, time consuming
and prone to errors due to incomplete ground observation that leads to poor crop yield
assessment and delay in reporting appropriate actions to be taken. This article proposed
Teff Yield Prediction Model using Multispectral Satellite Imaging and Machine learn-
ing (ML) Approach with the following specific objectives: 1) Preparation of dataset that
consists of multitude of multi-layer data from different sources 2) Devising data fusion
framework for combining input data from different sources for model training 3) Explor-
ing appropriate ways of combining ML and statistical methods for improved accuracy
4) Design of the proposed model and 5) Implementation and testing of the model.

For training the model, we downloaded multiple bands of multispectral images of
the selected areas from different sources, in different years for the selected sites. The
multispectral bands used are related to temporal variation in biomass. The machine
learning model is trained using a series of multiple-band satellite images cropped from
the downloaded satellite images for specific plots of land for the main Teff growing
season, which is the duration from the sewing month to before harvest month (June 25–
November 30 is considered) in the selected prominent Teff growing sites in the region.
For ground truth data, average teff yield data was collected for the different plots for 10
years from 2010 to 2020, with primary data collected on site, by interviewing farmers.
Data from CSA and other sources was also used to verify the correctness of the data
provided by the farmers.

One of the biggest challenges in data collection was obtaining an exact source of
data for the specific plot, since not enough documented information was available from
the farmers, agricultural extension workers, or even from woreda agricultural offices.
Therefore, we had to rely on the interviews with farmers and agricultural extension
workers for ground truth data preparation. Another challenge was that a specific plot
of land does not grow Teff continuously (as farmers use crop rotation, or leaving the
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land fallow to reduce soil stress). This creates a set of satellite image data outliers since
different crops were grown and harvested during the rotation season, and since the
biomass images of Teff and other crops/non-crops.

For each of the five selected regions, shown in Fig. 1, we have collected both satel-
lite image and ground truth data for ten plots in each region. The minimum plot size
considered was 1ha since we used free satellite data, which has poor resolution. Since
the land management in the region is very fragmented, finding a plot with an area of
1ha or more was challenging. Therefore, we had to combine contiguous lands to get a
larger area as used in (Mengesha et al. 2018). Totally, image data was collected for 500
satellite data from two satellites (Landsat L1, L2 and Sentinel A, B) with ground truth
collected (five regions × 10 plots per region × 10 years for each plot). In each of the
500 satellite data sets, multispectral images the area of the selected plots depends on the
size of the available contiguous land at each site.

Satellite data: One of the sources from which data is obtained is the Landsat Pro-
gram. NASA and the US Geological Survey jointly operate the Landsat Program, which
consists of a series of Earth-observing satellite missions. It is the world’s largest collec-
tion of moderate-resolution remote sensing data that is continuously acquired. Landsat
8 and Landsat 9 are the currently orbiting, active satellites. The data has been obtained
uninterruptedly starting from 1972 capturing different parts of the earth, and being a
valuable source of information for research in various fields (U.S. Geological Survey
2020).

Fig. 1. Map of the study area.

For this article, we have used the Level-2 and Level-1 data from Landsat Collection
2 multispectral data. In addition, we have also used similar data downloaded from the
Copernicus Sentinel-2 mission, which comprises a constellation of two polar-orbiting
satellites that aim at monitoring variability in land surface conditions. This mission has
a wide swath (290 km) and a high revisit time of 10 days at the equator with 1 satellite
and 5 days with 2 satellites. We have downloaded data from both satellites (SA and SB)
with a revisit time of nearly 5 days at the selected sites.
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4 Materials and Methods

4.1 Data Sources

As previously stated, the dataset was created using multispectral temporal satellite
images. As indicated in Table 1, the downloaded data includes a variety of remote sensing
data, including multispectral images obtained at various bands. The whole zipped folder
was downloaded for all times of visit within the given years (2005–2020). Each of the
Landsat satellite’s sensors was intended to collect data for a number of different frequen-
cies in the electromagnetic spectrum. Landsat 8 measures a number of frequency bands
across the electromagnetic spectrum (each range is called a band). There are numerous
bands on Landsat 8. The full list of bands can be found in Table 1.

The images from the Landsat 8Operational Land Imager (OLI) and Thermal Infrared
Sensor (TIRS) have nine spectral bands, each with a spatial resolution of 30 m. Coastal
and aerosol research benefit from the new band 1 (ultra-blue). The new band 9 is benefi-
cial for detecting cirrus clouds. Band 8 (panchromatic) has a resolution of 15m. Thermal
bands 10 and 11 are collected at 100 m and are effective for delivering more accurate
surface temperatures. The picture spans 170 km north to south and 183 km east to west
(106 mi by 114 mi). Bands 1–9 are used to collect image data. Sentinel-2A Multispec-
tral Instrument (MSI) data has spectral bands that are quite similar to Landsat 8 and 9
(with the exception of the thermal bands of Thermal Sentinel). The spectral bands in
the Sentinel-2A Multispectral Instrument (MSI) data are fairly comparable to those in
Landsat 8 and 9 (except for the thermal bands of the Thermal Infrared Sensor (TIRS)).
Sample footprints acquired from Landsat and Sentinel sources are shown in Fig. 1.

Table 1. Landsat 8 list of bands

Bands Wavelength (µm) Resolution

B1-Coastal aerosol 0.433–0.453 30 30 m

B2-Blue 0.450–0.515 30 m

B3-Green 0.525–0.600 30 m

B4-Red 0.630–0.680 30 m

B5-Near Infrared (NIR) 0.845–0.885 30 m

B6-SWIR 1 1.560–1.660 30 m

B7-SWIR 2 2.100–2.300 30 m

B9-Cirrus 1.360–1.390 30 m

B10-Thermal Infrared (TIRS) 1 10.6–11.2 100 m

B11-Thermal Infrared (TIRS) 2 11.5–12.5 100 m

4.2 Data Collection

The coordinates used for downloading satellite data were acquired using a hand-held
Garmin 70 GPS. In order to get a good resolution image and to compensate for the
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moderate resolution of the publicly available satellite images, we had to search for
larger contiguous plots of land. The minimum contiguous/single plot assumed was 1 Ha
(100m× 100m). However, this gave us very poor resolution of downloaded and cropped
images (e.g. only 5 × 5 pixels with a 20-m resolution satellite). The satellite data was
downloaded from the U.S. Geological Survey (USGS) Earth Explorer (EE). This online
earth explorer portal has a number of features including searching and browsing data
online, viewing images, downloading zipped data and exporting metadata. Through
enhanced user interface. Downloading was done manually by entering the coordinates
and other attribute values in the USGS portal. An example attribute setting is shown
in the table below, for the Motta site, plot 1. A total of more than 500 GB of 10-year
data was downloaded for the 5 sites, each with 10 plots, for the different months in the
harvest season of each year. Ground truth yield data was collected on site by interviewing
landowners and agricultural extension workers (Table 2).

Table 2. USGS portal attribute settings/ filter criteria for downloading the plot with four corner
coordinates (11.0709, 37.8955, 11.0694, 37.8972) which represent East Gojjam – Motta – Plot1

Attribute Setting

Search Criteria

Cloud cover 0–40%

Geocoding method Address/Space

Shape Predefined area

Coordinates (opposite corners – Lat, Long) 11.0709, 37.8955
11.0694, 37.8972

Dataset

Satellites Landsat Collection-2 Level-2, Landsat 8-9
OLI/TIRS C2 L2

Landsat Collection 2 Level-1, Landsat 8-9
OLI/TIRS C2 L1

Sentinel-2

4.3 Dataset Preparation

Most research works on crop yield prediction focus on a wide area of cropland, or
for a certain region, using cropland masks already available, and some are based on
multispectral images taken in real time using unmanned aerial vehicles. However, both
of these methods do not apply to teff since no prior data is available. On the other hand,
predictions made for large areas give only a general picture of production information
over a region andmaynot accurately indicate individual farmer yield information.Hence,
we had to prepare our own dataset that represents specific plots of land, particularly for
the teff crop. For this purpose, we used the data from multispectral bands of satellite
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images downloaded from the two satellites. The satellites used for remote sensing crop
growth images have sophisticated sensing instruments that allow them to capture detailed
information about the biomass on the earth’s surface.

TheLandsat-8 satellite usesOperational Land Imager (OLI) and theThermal Infrared
Sensor (TIRS) sensors for acquisition of seasonal coverage of the global landmass at a
spatial resolution of 30m (visible, NIR, SWIR) [landsat.gsfc.nasa.gov/satellites/landsat-
8/]; 100m (thermal); and 15m (panchromatic) of different bands at differentwavelengths
of the electromagnetic spectrum. The downloaded data contains a large amount of infor-
mation, but we only used the 9 bands: 0–9 of multispectral images. As mentioned above,
the downloaded footprint covers a very large area (relative to a single plot), and the plots
of land to be studied had to be cropped out of this footprint for each band, and separately
stored. For cropping and analysis of the downloaded geospatial images, the open-source
QGIS 3.24.2 desktop application was used. Every image was cropped manually, and a
total of more than 45,000 images were cropped from the 5 sites. These images were
saved in a hierarchical directory structure for clarity and ease of access. Figure 2 shows
the results of sample cropped images. (The procedures for downloading and cropping
and saving image data are described in Appendix-A).

Fig. 2. Cropped images from Landsat L2 for the Gozamn area, site 1, captured on 2016-11-14,
representing bands B1, B5 and B9

4.4 ML Models for Prediction

As discussed in the literature, machine learning models have proved to be much more
efficient than traditional statistical models in prediction tasks. The models provide var-
ious supervised and unsupervised techniques to predict future outcomes from historical
data by employing predictive models of regression. In regression, relationships between
two or more variables (dependent/target and independent/predictor) are estimated, by
discovering key patterns in data sets, and using simple linear regressions or complex and
deep neural networks in a supervised manner.
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Fig. 3. The basic architecture of the CNN based teff yield prediction model

Deep learning, a branch of machine learning, is currently the most widely used
model in various applications due to its various features, including its adjustable model
parameters, powerful features learning ability, and end-to-end learning capability. Deep
learning relies on model training based on an objective function that is related to the
purpose of the model. A number of different types of deep learning models have been
in use, but the Convolutional Neural Networks (CNNs) are becoming more and more
efficiently employed in cropprediction tasks.CNNscanhandle large amounts of complex
labeled input, including image data, and computation.

The basic architecture of CNN consists of input, feature extraction, and classifica-
tion/regression components (Fig. 3). Input data is represented as a multidimensional
array and every portion of an input image is extracted by assigning input neurons, which
are called receptive fields. The feature extraction layer consists of convolution, which
produces feature maps, and a pooling layer, which reduces features. The classification
layer consists of a fully connected network and an output layer. The convolution layer
creates feature maps out of input data. Feature maps are filtered by applying a convolu-
tion operation using a convolution filter, which is a weight matrix that extracts certain
features from the input image. The pooling layer decreases the size of the feature map
by reducing the spatial size of images, which reduces computational cost. The Fully
Connected (FC) layer consists of the weights and biases along with the neurons and is
used to connect the neurons between two different layers.
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The different steps of training algorithm: 
1. Prepare dataset:
 Preprocess images (cloud cover removal, image resizing to 32x32 pixels).
2. Import necessary modules from Keras and other libraries
3. Load dataset:

Divide dataset into training and testing sets;
 Load variables: train_input, train_target, test_input, test_target;
4. Process data:
 Normalize pixel intensity to [0,1]
 Reshape array into appropriate dimensions (instances, pixels(x,y), channels)
5. Create sequential model:
 Model = sequential()
 Init number of layers;
 For each layer,

Create layers: CONVOLUTION, ReLU, Batch_N, MAX_ POOL
  X=Convolve_2D(train_input)
  X=Activation(ReLU)(train_input)
  X=Batch_Normalization(train_input)
  X=Max_Pooling2D(pool_size)
 Create dense layer for regression with linear activation
 Create single output layer
 Construct model: Model(inputs, x)
6. Compile model:

Loss function = Mean_Sq_Err, Mean_Abs_Err
 Model_Optimizer = Adams
 Metrics = accuracy
7. Train model
 Model.fit(train_input, test_input, batch_size, num_ epochs)
8. Produce statistics:
 MSE,avg_prediction_result

5 Implementation

For implementing the prediction system, we have created a deep learning model with
input, hidden, and output layers. The model was created using Keras and Tensorflow
tools. The algorithm was implemented using Python and the Jupyter Notebook environ-
ment. Due to resource limitations on our local machines, a Google Colab notebook was
used.

Most of the CNNmodels that exist in literature using images as input are for classifi-
cation purposes. However, with some adjustments to the basic CNN architecture, CNNs
can be used for regression problems similar to yield prediction. In our experiment, we
used RMSE as the loss function, and replaced the sigmoid activation with ReLU to
enable regression on a CNN. In addition, the output FC layer used for classification
has to be changed to a single node, since only a single value of prediction is expected.
The sigmoid function for the output layer is also replaced with linear regression. For
optimization, we used the Adam optimizer with a learning rate of 0.001, which is fast
and efficient, and has a higher convergence rate compared to other adaptive models.

Model definition: The implemented CNN model consists of the following layers:
The input layer: consists of a sequence of preprocessed multispectral spatio-temporal
images that represent the teff plant growth at different growth status. Since the cropped
images are of variable size, the images are resized to 32× 32 pixels. So the input consists
of 32 × 32 pixels, single channel image data. The convolution layer: extracts valuable
features from the input image. Multiple layers of convolutions were tested, using 3 × 3
filters. Pooling layer:Max pooling operation with 2× 2windowswas used.Model hyper
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parameters: In CNN (and other ML models), there are a number of hyper parameters
that are required to configure the model. The research in (Aszemi and Dominic 2019)
summarizes two classes of hyper parameters listed below:

a) Hyper parameters that determine the network architecture:

• Kernel Size – convolution filter size.
• Stride – number of steps the kernel moves over the input image.
• Padding – adding 0s at the borders of the image to account for filtering the edge

of the image.
• Hidden layers—layers the sequence of convolution layers between input and

output layers.
• Activation functions – allow the model to learn nonlinear prediction boundaries.

b) Hyper parameters that determine the network training:

• Learning rate – determines how weights are updated.
• Momentum – determines how the previous weight update influences the current

weight update.
• Number of epochs – number of iterations of the entire training.
• Batch size – the number of inputs to be input before the updating weight.

These parameters, which are external to the model, greatly influence model perfor-
mance. However, it is very difficult to have optimal values for a specific model. So the
parameters are usually set by rules of thumb or heuristics, or based on previous research
recommendations. The hyper parameters used and their settings are listed in Table 3.

Table 3. Hyper parameter settings for training the CNN model

Hyper parameter Value

Kernel size 5 × 5

Stride 2

Padding Yes, 0

Number of hidden layers
(COV- > ReLU- > POOLING)

12

Activation functions ReLU for conv. Layers, linear for output

Learning rate 0.01

Batch size 30

Number of epochs 30, 100, 200, 300
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6 Results and Analysis

The proposed model training was done by varying the number of epochs while keeping
other parameters fixed. Table 4 shows training loss and validation loss for the different
epochs used for training. The results show that clearly, for lower epochs, larger values of
loss were obtained. The very promising thing is that both training and validation losses
were rapidly reduced as the epoch increased. This is also shown in Fig. 4a–d. However,
at 300 epochs, unstable validation loss is observed as shown in Fig. 4d, so the best result
obtainedwas at 200 epochs, with a training loss of 3.3783 and a validation loss of 1.6212.

Table 4. MSE for the different epochs tested during training

No. of epochs 30 100 200 300

Training loss (%) 55.15 13.42 3.38 1.24

Validation loss (%) 8.05 2.37 1.62 1.23

Fig. 4. Training and validation losses at different epochs of: (a) 30, (b) 100, (c) 200, (d) 300
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Fig. 4. (continued)

7 Conclusion and Future Work

In this research, we have implemented a machine learning based teff yield prediction
system usingmultispectral satellite images collected from different satellites (Landsat-8,
Sentinel-2). For this, we have prepared our own satellite image dataset for training. A
CNN network was trained, with some modifications of the model to fit for regression. A
training loss of 3.3783 and a validation loss of 1.6212 were obtained; in other words, the
model prediction accuracy was 98.38. This shows that our model’s performance is very
promising. The results can be further improved and used for implementing household
level yield prediction systems, such asmobile apps, so that farmers can use it for cropland
management.

This work is only a start in teff yield prediction using a machine learning approach
and can be extended or improved in a number of ways. A machine learning model is as
accurate as the quality of training data. We have used only representative data and fewer
samples from sample sites. The accuracy was obtained using satellite image data only.
This accuracy can be further improved in a number of aspects. First, a large amount of
dataset is required for training the CNN, so preparing such a dataset that incorporates
many teff-growing regions in the country is a huge task that requires expertise and
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budget. On the other hand, one can extend this work for better results by incorporating
environmental and soil datawith the image data for training, using data fusion techniques.

Implementing and testing machine learning-based regression algorithms other than
CNN could also be another future work. The trained model can also be used as a good
starting point for prediction of teff yield in other regions of the country, by applying
techniques like transfer learning. Apart from that, the dataset can be enriched by using
more accurate remote sensing images of specific croplands taken using unmanned aerial
vehicles. Due to time and budget constraints, we were not able to develop a mobile app
for household level prediction purposes. In the future, we plan to develop such an app
that integrates with the system, and provides yield prediction at any stage of the growth
of teff to the farmers, by acquiring the most recent available satellite image data.

Acknowledgments. This research was fully funded by Bahir Dar Institute of Technology, BiT,
Bahir Dar University, and we would like to acknowledge BiT for providing the funding.

Appendix-A: Training Progress for 30 Epochs

Epoch 1/30
120/120 [=======================] -5s 16ms/step-loss: 305.3471-val_loss: 382.2482
Epoch 2/30
120/120 [=======================] -2s 14ms/step-loss: 256.0030-val_loss: 381.8294
Epoch 3/30
120/120 [=======================] -2s 13ms/step-loss: 216.2533-val_loss: 327.8867
Epoch 4/30
120/120 [=======================] -2s 13ms/step-loss: 174.1100-val_loss: 233.1403
Epoch 5/30
120/120 [=======================] -2s 14ms/step-loss: 136.8061-val_loss: 134.1799
Epoch 6/30
120/120 [=======================] -2s 14ms/step-loss: 107.5622-val_loss: 55.5419
Epoch 7/30
120/120 [=======================] -2s 13ms/step-loss: 87.1361-val_loss: 22.9324
Epoch 8/30
120/120 [=========================] -2s 14ms/step-loss: 74.8587-val_loss: 12.3104
Epoch 9/30
120/120 [=========================] -2s 14ms/step-loss: 62.5622-val_loss: 10.0009
Epoch 10/30
120/120 [=========================] -2s 14ms/step-loss: 64.1516-al_loss: 10.5025
Epoch 11/30
120/120 [=========================] -2s 13ms/step-loss: 60.1122-val_loss: 6.8759
Epoch 12/30
120/120 [=========================] -2s 13ms/step-loss: 59.9180-val_loss: 9.5608
Epoch 13/30

120/120[==========================] -2s 14ms/step-loss: 55.1472-val_loss: 8.0470
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Appendix-B: Sample Ground Truth Data from CSA
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Abstract. Amharic is the working language in the Federal Democratic Republic
of Ethiopia. The Amharic alphabet has a large number of symbols and there is a
close resemblance among shapes of the different symbols available in the language
which challenged the task of machine-based optical character recognition systems
in the language. The absence of a standardized labeled dataset for the Amharic
language created additional barriers for different researchers. Our aim in this
paper is to design a deep convolutional neural network based architecture that
could extract features and classify Amharic characters with significant confidence
of accuracy that could be utilized for real-world applications. A total of 90,000
characters are prepared for training the proposed architecture and an additional of
25,000 characters are reserved for testing purpose. Due to the occurrence of a large
number of symbols and a close resemblance in the shapes of the different characters
available in the language, a relatively complex convolutional Neural Network is
utilized to capture those features and categorize them into the correct characters.
Dropout layers are utilized to avoid overfitting. The character recognition system
proposed in this paper achieved an accuracy of 99.27%on the testing dataset which
is a significant improvement for the Amharic language. The implementation was
done using Tensorflow on Keras neural network layers and Opencv in python to
pre-process image data which enables us to make the system readily available for
software developers as an API.

Keywords: Amharic recognition · Character recognition · Deep convolutional
neural networks · Deep learning application

1 Introduction

Amharic which is one of widely spoken Semitic language is the working language in
the Federal Democratic republic of Ethiopia. Alphabets of the Amharic language which
are also called Ethiopic alphabet is an indigenous writing alphabet used for writing
different languages in Ethiopia including Amharic, Geez, Tigrinya, Agaw and several
other languages in Ethiopia, Eritrea and northern parts of Sudan. The Amharic alphabets
are believed to have been derived from the ancientGeez languagewhich is today confined
to only for church services in theEthiopian andEritreanOrthodox andCatholic churches.
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Different historical, political, socio-cultural and academic documents are found written
in different languages using the Ethiopic alphabet.

Manyof the ancient scientific, historical and sacredbooks ofChristianity and Judaism
are also found on different parts of the world written in the Geez language using the
Ethiopic alphabet [1].

In this decade, researchers havemade amajor breakthrough in creating deep learning
based models for character recognition mainly on languages such as English, Chinese
and someotherLatino based languages.However, there is nomuch research on languages
which use the Ethiopic alphabet like Amharic and Tigrinya [2].

Amharic alphabet has large number of symbols and there is a close resemblance
among shapes of the different symbols available in the language which made machine
based character recognition systems of the language challenging. The absence of a stan-
dardised labelled dataset for Amharic language created additional barriers for different
researchers. In this research paper, we have proposed a model for Amharic character
recognition system using Deep Convolutional Neural Network. The model has multiple
convolutional layers that could capture the variations in the features of closely resembling
characters in the language.

1.1 Features in the Amharic Alphabet

The Amharic has 34 base characters. Unlike English where different sounds of a con-
sonant are written with different combinations of the five vowels, in Amharic language,
the different sounds of a base character are represented with different symbols. There
are seven basic vowels in Amharic which are shown in the following figure (Fig. 1).

Fig. 1. The seven vowels in Amharic

The language has an additional 8th vowel which is not used quite often, but available
in conservative writers of the language and in other languages like Geez and Tigrinya.

Each of the 34 base characters produce a total of 34 * 8 = 272 symbols which
represent the different sounds generated by combination of those base characters with
the eight vowels. A partial view of the Amharic character set is shown in Fig. 2 below.

Taking the Ethiopic base character as an example, we can generate the eight
symbols derived from this base character. The 8 symbols generated with combina-
tion of this base character with the 8 vowels are , , , , ,

, and . In addition to these alphabetic symbols, there are more than
10 punctuation marks and 20 numeric symbols resulting more than 300 symbols in the
language.

In addition to the large number of distinct symbols in the language, most of the
Ethiopic alphabets have a higher degree of morphological structure similarities making
the recognition process much difficult to recognize the characters as expected. Some-
times, even for our own eyes, it might be difficult to differentiate accurately among
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Fig. 2. A partial view of the Amharic alphabet

slightly deformed characters in the language. We can take an example of “ ” and “ ”,
“ ” and “ ”, “ ” and “ ”, or “ ” and “ ” which looks alike. The different symbols
for vowel combinations of a base character is usually derived by adding small strokes at
the right of the base or introducing a small structural variation on the base character.

For example consider the base character, whose eight derivations are ,
, , , , , and .

As we can see, there is a close resemblance in the morphological structure among
most of the eight derivative symbols of the base character. Image processing algorithms
should be carefully designed during recognition of Amharic characters in order not to
remove or erode these little extensions or strokes available in the alphabet.

1.2 Offline Character Recognition System

The process of character recognition involves the conversion of images containing
handwritten or printed texts into machine-readable text format.

Character recognition complexity depends on the distinct shapes, strokes and the
number of characters available in the language.

In general, there are two types of text recognition approaches: off-line and on-line
systems. Off-line text recognition system involves converting already existing scanned
image or image captured through digital camera into text; whereas on-line text recog-
nition system involves converting the different strokes and lines emanating from a real
time stream of data captured through different transducers such as electromagnetic or
pressure sensitive touch pens of tablet into sequences of characters.

In offline character recognition system the document is first generated, digitized,
stored in computer hard disk and then it is processed latter. It is not real a time process.

Off-line handwritten character recognition refers to the process of recognizing char-
acters in a document that have already been scanned or captured through a digital camera
which might be from a sheet of paper or a label plate and are then stored in digital format
image.

The character recognition process involves extracting different features from an
image containing characters; and approximating some groups of extracted features to
the nearest resembling character based on a previously “learned knowledge” of feature-
to-character map.
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1.3 The Deep Convolutional Neural Network

In the recent years, deep neural networks brought key breakthrough in different appli-
cation areas like computer vision, image recognition, natural language processing and
in speech recognition. In the past decade, deep networks have enabled machines to rec-
ognize images, speech and even play games at accuracy even impossible for humans.
Likewise, a number of Artificial Neural Network Based methods have been used for
character recognition for different languages.

Morphological/Rank/Linear Neural Network (MRL-NN) [3], where the different
combinations of inputs in every node is formed by hybrid linear and nonlinear (of the
morphological/rank type) operations, was studied for handwritten digit recognition. A
hybrid Multilayer Perceptron Support Vector Machine (MLP-SVM) model was used
for recognition of English numerals [4] and Chinese character [5] recognition. Support
Vector Machine (SVM) with Radial Basis Function (RBF) network was also used for
character recognition of English language [6].

In the last decade, Convolutional Neural Networks (CNN) is found efficient for
handwritten character recognition due to its capability of capturing spatial information
[7].

CNN exploits local spatial correlation by introducing local connectivity constraints
between neurons of adjacent layers, which made CNN very well-suited for classification
problems. Convolutional Neural Networks also provides some degree of translational
invariance which made them further suitable for extracting and classifying patterns from
an image. A CNN based model has shown a significant improvement on the accuracy of
English character recognition. A CNN based model was tested on UNIPEN [6] English
character dataset and found recognition rates of 93.7% and 90.2% for lowercase and
uppercase characters, respectively [8].

A Deep Convolutional Neural Network (DCNN) contains multiple neural network
layers. There are particularly three different types of layers used in convolutional neural
network model; these are the convolutional layers, pooling layers and fully connected
layers as shown in Fig. 3 below.

The Convolutional Layer: This layer is used to extract local features from matrix that
come from an input image using different filters. This mimics receptive neurons in
biological nervous system of living organisms. The convolutional layer will enable us
to extract different features from an input image by utilizing several filters parallely.

Pooling Layers, (aka down sampling). Performs dimensionality reduction, which
involves reducing the number of parameters from the input by applying an aggrega-
tion function to the values generated at the convolutional layer. Two types of pooling
filters or matrices are available; max pooling and average pooling filters.

Fully Connected Layer: The last stage in a convolutional neural network is commonly
made of one or more fully connected layers. The fully connected layer performs classi-
fication of features that are extracted from the input image at using the previous layers
of the network. The convolutional and pooling layers usually utilise the ReLu activation
functions for extraction of features from the input image, whereas, fully connected layers
usually implement a softmax activation function which always produce either 0 or 1 for
classification of features extracted at the previous stages.
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Fig. 3. Components of a convolutional Neural Network

In this paper, we have developed a DCNN based deep learning model for recognition
of Amharic text.

Deep learning algorithms depends heavily on data. Different machine learning algo-
rithms use different dataset and the dataset is highly specific to the particular model.
Dataset is one of the most crucial aspects that makes algorithm training possible and it
highly affect the performance of a machine learning algorithm. To achieve high level of
accuracy, large amount of dataset is needed for training and henceforth powerful com-
puting power is needed to train deep neural networks. Data preparation is one of the
most difficult steps in most machine learning project.

There is no sufficient public accessible dataset for Amharic character recognition. In
the absence of such dataset, we have prepared a dataset of Amharic characters collected
from different news and magazines published in Amharic language.

During the dataset preparation, first we have collected the images that contain the
desired characters using a scanner. After the image is accessed, different image pro-
cessing algorithms were used to improve quality of the image; then line and character
segmentation algorithms were used to separate segments of images that contain charac-
ters. These segments of pixels that represent characters are finally stored as a matrix of
those fragmentswithin sub folderswith labels that represent the classes of each fragment.

The DCNN is used to classify those segments to the correct characters and produce
a binary encoded output for each class of characters by comparing them to an already
trained state of the network.

Finally those binary coded outputs of themodel are post-processed to produce human
understandable outputs such as decoding binary coded outputs to human readable sym-
bols, representing character spacing, word spacing and line breaking. However, the post
classification process is not implemented in this research paper in order not to scatter
quite broad idea in a single paper.

The basic phases of data preparation and classification stages are shown in the
following Fig. 4.
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Fig. 4. Block diagram of the character recognition system

2 Data Acquisition

In this research we have collected more than 120 pages of Amharic document from
different fiction books, Addis Zemenmagazine, Ethiopian church documents fromwww.
eotmk website and from Ethiopian Code of Civil rights. Those documents were also
synthetically reformatted with different font families available in Amharic in order to
generate images of characters with different shapes.

3 Image Pre-processing

Most of the time the image captured through a camera or scanner may not have the
required quality for extracting features that represent characters. Therefore, first the
acquired image should pass through a series of image pre-processing algorithms in
order to enhance the quality of images required for preparing a dataset.

3.1 Grey Scale Conversion

Image captured through camera or scanner has always three channels which represent
the Red, Green and Blue channels of the image. Since colour does not have significant
information content except adding some aesthetic value to the document, the RGB scale
input image should be converted to a gray scale imagewhichwill subsequently reduce the
processing time and complexity of the neural network used for the recognition process.

http://www.eotmk
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3.2 Noise Removal

Image acquired through scanner or digital cameras is usually associated with some noise
due to factors like malfunctioned devices, misalignment of paper, poor light intensity
during image capturing or scanning,

Different filters such as median filter and Gaussian filter with different kernels are
tested for removing noise which could be approximately modelled with salt and paper
noise. However, due to a common feature of thin horizontal extensions available in
Amharic alphabet, those filters have the tendency to average out those extensions to the
background pixel or degrade them (Fig. 5).

Fig. 5. Thin horizontal extension in Amharic alphabet

An adaptive Gaussian filter with an asymmetric kernel resulted in relatively better
performance for removing such salt and paper noise with reduced degrading effect on
the lateral extensions. In order to minimize this erosion of small lateral extensions, we
have used asymmetric kernel of (5, 3) for the Gaussian filter. Relatively small value
is deliberately used in the x-axis which enabled us to preserve those small horizontal
strokes commonly available in the language.

3.3 Binary Image Conversion

Once the images are converted to grayscale and the irrelevant noises are removed from
the images, the image is converted to binary scale image where the image is converted
into binary images so that the image is composed of pixels having a colour value of either
black (pixel value of 0) or white (pixel value of 255). An adaptive threshold filter is used
to classify pixels into white or dark value adaptively depending on the local variance
using a kernel size of 5. The [5] kernel is used to select local matrix from the region
along the image surface and a threshold filter is applied on this local matrix to classify
pixels to either 0 (text pixel) or 1 (background pixel) depending on a local threshold
value. The kernel or window is then slided horizontally and vertically with the step
size until the whole pixel available within the image are classified to 0 or 1. This could
effectively classify pixels into dark and white values from an image with variable spacial
background intensity since the threshold value is calculated locally depending on the
local pixel variance. The input image as shown in Fig. 6/A has background with variable
intensity along the vertical axis. This variable background is effectively removed using
the adaptive threshold as shown in Fig. 6/B below.
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Fig. 6. A) Input Image with variable background. B) Binary scale conversion using adaptive
threshold followed by background inversion.

During this adaptive threshold binarization process, there are noise introduced into
the imagedue tomisclassificationof somebackgroundpixels as text pixelswhich result in
small black pixels randomly distributed across the image. Therefore, the resulting binary
image is further passed through Gaussian noise in order to remove such salt and paper
noise introduced during the binarization process. A global, inverted threshold algorithm
is then used to correct smoothening or blurring effect introduced by the Gaussian filter
and to invert the colour scale such that the background is represented with black (pixel
values of 0) and the foreground or characters with white (pixel values of 255).

3.4 Skew Correction

Sometimes due tomisalignment of paper during the scanning process, or while capturing
through camera, lines of the text are rotated randomly with small angle. This creates
sever problem in subsequent stages during segmentation of lines of characters from the
image. A skew detection and correction algorithm is utilized. The algorithm first finds
all the pixel coordinates that are part of the foreground image. Then the rotation angle
of the rectangle is calculated based on the collected pixel coordinates. Then by using
the calculated rotation angle, we will find the rotation matrix with respect to the centre
coordinates of the image which will be used to rotate the input binary image as shown
in Fig. 7.
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Fig. 7. Skew corrected image

3.5 Segmentation

Segmentation is the process of breaking the whole image into subparts to process them
further. Segmentation is a critical step in the handwritten recognition process and it highly
affects the accuracy of the recognition process. There are three levels of segmentation
in character recognition.

Line Segmentation
This involves cropping each line of text out of the image and store them in a sorted
manner. Thus, using those lines, words and characters can be extracted from each line
with the original order. Horizontal histogram projection is used to segment the individual
lines of text from the image.

During the horizontal projection

• Rows that represented a text pixel in a line have high number of foreground pixels,
which corresponds to higher peak values in the histogram.

• Rows that represent the gaps in-between the lines have high number of background
pixels, which correspond to lower peaks in the histogram.

Therefore, rows that correspond to lower peaks in the histogram can be selected as
the segmenting lines to separate the lines.

Figure 8 shows vertically expanded view of the histogram of the first 9 lines. As
shown in the figure, the picks of the histogram represent lines that represent text since
text are represented with white pixels (255) whereas, pixels that represent gaps between
lines will have minimum point in the histogram since there will not be text along those
lines. Partitioning the image regions horizontally using a threshold pixel value could
effectively segment the image into lines as shown in Fig. 9.
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Fig. 8. Histogram of lines in horizontal projection

Fig. 9. Segmented lines

Word and Character Segmentation
Once the lines are segmented successfully word and character segmentation is carried
out to crop out segments of each character from an image which contain a line of charac-
ters. Vertical histogram projection technique resulted in poor result during segmenting
characters from within a line due to too narrow space in between characters within a
word or due to overlapping pixel of neighbouring characters of a word. The problem is
much worse in texts that contain oblique font styles. Consider Amharic text fragments

where the first character has a forward stroke, whereas the second character
has backward structural extension which make the gap between the neighbouring char-
acters zero. The problem becomes worse when the text is in italic font style resulting
an overlapped regions between characters. This made isolating characters using vertical
projection technique inefficient. For the character segmentation, we have used contour
detection segmentation method which involve the following steps;

1. Accept the list of lines which are returned from the line segmentation stage.
2. Find all contours/characters on the line and return a list of coordinates for each

contour.
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3. Crop the characters from the threshold text line images using the returned
coordinates.

4. Iterate through each line.

Fig. 10. Segmented characters

This could segment characters of a line into separate chunks as shown in Fig. 10.

4 Dataset Preparation

Due to existence of relatively large number of symbols and resemblance in the morpho-
logical shapes among the different characters available in the language,we have designed
relatively complex convolutional Neural Network with significantly larger number of
trainable parameters which would be able to map features available in the language.
Such neural network models with large number of parameters require large and diver-
sified dataset in order to be able to capture those large number of diverse features and
categorize them into the correct character; and avoid over fitting of the model which is
a cause of degraded performance of a model on a real-world data.

However, there is limited public accessible datasets for character recognition in
Amharic language. There is one dataset prepared by BirhanuHailu Belaywhich contains
the first 231 synthetically generated text-line images with Power Geez and Visual Geez
fonts with each image 32 * 32 size. The dataset does not contain all characters available
in the language; and numeric symbols and punctuation marks are not included, either.

Therefore, we have prepared an additional dataset that contain Amharic characters,
numerals and punctuation marks.We have collected 105 pages of Amharic text collected
from Amharic fiction books, Addis Zemen Gazetta and Ethiopian Code of civil Rights
and from Ethiopian Orthodox church documents. Those documents are reformatted
using different Amharic font families and segmented into 32 * 32 separate character
segments to generate a dataset which contain most of the characters, numeric symbols
and punctuation marks in Amharic language. This dataset then merged with the dataset
which is found from the aforementioned source and then shuffled and augmented to a
representative dataset.

5 Data Augmentation

Data segmentation is a set of techniques to artificially increase the amount and quality
of data by generating new slightly modified data points from the existing data. Data
augmentation techniques enable machine learning models to be more robust by creating
variations that the model may came across in the real world. We have increased size
and “quality” of the dataset using 5° rotation, adding some Gaussian noise and rescaling
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with a ±5% factor. The resulting dataset is shuffled to produce a randomly distributed
dataset.

This dataset is finally separated into groups of their respective symbols, with images
of different characters placed in different folders where folders named in an extended
alphabetical order. Labels for each class of the dataset will be subsequently generated
from folder labels using Tensorflow.

A total of 90,000 characters are prepared for training the proposed architecture and
an additional 25,000 characters are reserved for testing purpose.

6 DCNN Architecture for Recognition

Naturally, the number of trainable parameters available in a neural network model
is proportional to the complexity of the task the model has to perform; requiring a
proportional amount of examples or labelled dataset, to get good performance. In
this research paper, the proposed model for recognition of Amharic characters is Deep
Convolutional Network. A CNN primarily composed of two components: a feature
extractor module which is composed of convolutional and pooling layers with a ReLu
activation function followed by a trainable DNN classifier.

The convolutional neural network contains the following layers:

Input layer which accepts batches of image matrices of 32 * 32 size.
Convolution layer will take images from an input layer or from preceding layers and
convolve its inputwith a specified number of filters to create featuremaps. The number of
feature maps extracted is equal to the specified number of filters used at a convolutional
layer. Convolutional layers are generally used with the ReLu activation function.

As stated previously, the Amharic character set contains relatively large number
of symbols with each symbol containing highly resembling morphological features. In
order to be able to map such features, we have selected three stages of feature extraction
with each stage extracting different depths of features. Each stage is consists of two
convolutional layers separatedwith batch normalization layers followedby amaxpooling
layer and dropout layer.
Pooling layer will down sample the 2D activation maps along the height and width
dimensions. Pooling operators aggregate the values of a sub-matrix generated by a
convolutional filter into one single output value that represent the “meaning” associated
with that special region.
Dropout layer will regularize weights in the fully connected layers of a convolutional
neural network and feed forward networks to avoid overfitting. Too much cooperation
between neurons makes the neurons dependent on each other and they fail to learn
distinct features which usually result in doing classification well on a training dataset
but produce incorrect prediction if tested on somewhat different dataset, which is an
overfitting problem.

In order to solve this overfitting problem in Deep Neural Networks, a specified
proportion of neural network units is randomly dropped at training time for each training
sample in a mini batch. This makes the remaining neurons learn important features all
by themselves without relying on cooperation from other neurons. In this model, we
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have used four dropout layers each in between the three stages and one in between the
dense connected layer and the output layer.

We have used padding of 2 for both dimensions (width and height) at each con-
volutional layer; and maxpooling layers with a pool size of (2,2) at the end of each
convolutional stage.
Fully connected layers are dense feed forward neural layers that receive different sets
of weights from the preceding layers. Each neuron in this layer will be connected either
to all the neurons in the previous layer or to all the neurons in the next layer. There are
two fully connected layers; one hidden layer and the output layer. For classification, the
output neurons receive inputs from the final hidden fully connected layers and generate
the appropriate class for the particular input pattern.

We have considered 300 Amharic characters, punctuation marks and numeric digits;
therefore the output layer should have 300 neurons which produce one-hot encoded
output for each character in the Amharic language (Fig. 11).

Fig. 11. A general structure of the convolutional Neural Network Model

7 Training CNN Model

The process of training a neural network is simply the process of updating the weights
of the neural networks. Unlike, the Multi-Layer Perceptions (MLP), in CNN neurons
share the same weights among them and also, they are followed with pooling layers.
In which the sharing of weights among the neurons and pooling layers will help to
decrease the overall weights of the neural network and computational power. Commonly
an activation layer particularly sigmoid and ReLU activation function is placed between
the convolutional and pooling layers. Once the image passes through these processes,
the features from the image will be extracted and then unzipped into a 1D vector which
will then be used by the successive dense layers of the network for classifying the input
imag. Consider I is a two-dimensional image vector and K is filtering window which
has a size of w*h, then the convolution process can be given as:

(1 + K)ij =
w−1∑

m=0

h−1∑

n=0

km, n ∗ Ii + m, j + n + b (1)
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The weights in the neural network architecture are calculated using this convolution
operation which is why this architecture is named Convolutional Network.

Backpropagation:
It is one of the most commonly used training algorithms in neural network. The process
of training a neural network requires a greater computational power so, we need to make
our design and training process as efficient as possible. The process of training CNNs
can be also called convolution operations which utilize the mathematical correlation
operation. Training a neural model involves updating the weight and biase parameters
available in the network. In the case of backpropagation, the weights are not the only
things to be updated also the deltas should be updated.

The updates to the weights can be computed using the expression;

∂E

∂wl
m′,n′

, (2)

The gradient components of each weight can be calculated using a chain role which
is expressed using the following mathematical expression.

∂E

∂wl
m′,n′

=
H−k1∑

i=0

H−k2∑

j=0

δli,jo
l−1
i+m′,j+n′ (3)

∂E

∂wl
m′,n′

= rot180◦{δli,j} ∗ ol−1
m′,n′ (4)

The summation represents all the sum of the gradients from δli,j coming from the
output layer l in which the double summation is for the shared weights of the filter
kernel. The chaining role used in the above equation is used for the optimization of
the backpropagation training process. As can be understood from this discussion, in
the backpropagation training method, we use a chain role to optimize the training pro-
cess of the CNN architecture. Stochastic Gradient Descent (SGD) algorithm utilize the
Backpropagation in order to calculate the gradient or derivative of the loss function.

Then, after the inputs to each neuron is calculated using the forward propagation,
the output of the network is used in backward fashion to update the weights based on
the chosen loss function.

The total error of prediction of the different classes is calculated using the mean
squared error equation or using cross entropy from the network output y for a true
output t as shown in the following equations.

E = 1

2

∑

p

(t − y)2 (5)

E = −
∑

p

y log(t) (6)

Training the DCNN was handled interactively using Tensorflow.
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Table 1. Different parameters in the proposed model

Output of the network parameters generated during the training process is shown in
the following Table 1.

The input to the model is batches of images with their respective labels which con-
tained dataset of the Amharic characters and one-hot encoded labels of each character.
Each of the characters are reshaped to a size of 32× 32 pixels. This relatively large pixel
size is chosen in order not to lose small features differences between the different charac-
ters available in the language. The images are fed in batches as four-dimensional tensors
where the first dimension is specific to the image index in the batch, second and third
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dimensions are specific to the height and width of the image. The model contains three
successive feature extraction stages. Each of those stages contains convolutional layers
which could be able to extract different levels of features successively; and maximum
pooling layer.

8 Experimental Result and Discussion

The experiments were conducted using Tensorflow with keraz neural layers in Python.
The input of the network is a dataset of 32 * 32 sized images. Images for each symbol are
stored in separate folders with each folder labelled in ascending order of the Amharic
characters in the Unicode encoding order. Then, during the data reading stage, those
images are read and one-hot encoded labels for each image are generated from folder
names. Therefore, image fragments which are found within the same folder represent
instances of the same character and are all associated with the same output label. This
process of fetching data and associating them to output labels is handled in a separate
python routine that generates training and testing datasets from input images and their
labels is handled in a separate python routine.

The resulting dataset is passed to the DCNN model and trained using the ‘Adam’
optimizer algorithm, which took about one hour to train the model for 20 epochs on a
local machine. The model took significantly longer time for the training process due to
the large number of training parameters available in the model and the slow processor
speed of the local machine. The output of the training process on the Pycharm terminal
is displayed in the following table.

Table 2. Training the proposed model for 20 epochs
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The model was run tuned with hyper parameters shown in Table 2 above. The choice
of the hyper parameters is empirical with a focus on the learning behavior of the model.

As shown in the following figures, the model rapidly converges around 8 epochs and
gained only a little improvement in the accuracy after the 8th epoch. Therefore, around
25 min are required to train the model with a reasonable accuracy of prediction, which
is achievable at the 8th epoch. The loss curve shows a drop from 5.75 to 0.0286 on the
validation dataset and to 0.0292 on the test dataset; whereas the accuracy jumped to
99.32% on the training dataset and to 99.27% on the test dataset, as shown in Table 2
above.

Fig. 12. Loss of the DNN model for 20 epochs

Fig. 13. Accuracy of the DNN model for 20 epochs

Aswe can see from the graphs at Fig. 12 and 13, it could achieve a prediction accuracy
of 99.27% on the test dataset. This model misclassified around 7 characters out of a text
containing 1000 characters, which is very good accuracy of prediction in comparison to
previous models which have been proposed for Amharic recognition [10].

9 Conclusion and Future Work

The main objective of this research is to design a CNN based character recognition
architecture for theAmharic language. The researchwork included image pre-processing
techniques that could be utilized for the implementation of the system for real world
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applications. We have prepared a dataset merged with an existing database to generate
a representative dataset in further research on the recognition of the Amharic language.
The dataset contains 90,000 training images and 25,000 testing images consisting of
symbols of most of the Amharic characters, punctuation marks and numeric digits.

As we can see from Table 2 shown above, we could achieve an accuracy of 99.27%
on the test dataset. This model misclassified less than 7 characters from a text con-
taining 1000 characters. In contrast to previous works by different individuals where
most of the works on recognition of Amharic or Geez language which have been done
using MATLAB, in this Amharic text recognition system, image pre-processing and
recognition algorithms are all implemented using Tensorflow 2.x with tf.keras network
models using the python language. This would enable us to create an API for android,
desktop-based orweb application software that needs to integrate recognition of Ethiopic
languages.

We have compiled a representative dataset and will try to make it available by
putting it on public accessible repositories for further research on Ethiopic languages
recognition.
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Abstract. Smart cane technology is an assistive technology that allows visually
impaired people to walk more freely and independently. This study reviewed vari-
ous researchers’ works on cane development methodologies. This review’s goal is
to determine the full cane configuration of hardware parts, software architecture,
and cane structure. We discussed object detection methods, object identification
methods, flame detectionmethods, water detectionmethods, and location tracking
methods. Recently, many researchers have focused on the key development of a
smart cane using a computer vision systemwith Python andYoloV5 deep learning
algorithms to identify objects or obstacles in cane users’ paths. The hardware part
is used to connect sensors to the Raspberry Pi module, which is mostly used as a
controller. The ergonomics of cane structure are cane tip and handle shape, which
is the key future of cane design. Finally, this study concludes that themost effective
methods and materials for making and improving smart cane are described.

Keywords: Smart cane · Cane ergonomics · Deep learning · Location tracking ·
Feed-back system · Visually impaired

1 Introduction

According to a WHO study, at least 2.2 billion people worldwide have a near-or distant
visual impairment [1]. Over 39 million people were completely blind, including 19 mil-
lion children (below 13 years of age). Around 80% of people with vision impairment
or blindness live in low- and middle-income countries, where expensive assistive tech-
nologies are out of reach. Those who are visually impaired face numerous challenges in
their daily lives, both socially and economically, as well as psychologically [2]. Because
of this, they have difficulty living independently, especially if they cannot move freely.
To solve this problem, different assistive technologies were implemented. Smart cane is
one of those technologies that is rapidly growing [3]. A smart cane is an assistive elec-
tronic technology that allows visually impaired people to walk independently without
encountering any obstacles. Smart canes are used to simplify the day-to-day activities
of visually impaired people [4]. Smart cane can be developed in different electronic
devices, mechanical components, and manufacturing processes for different tasks [5].
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Previously visually impaired people utilize awhite cane or a guide dog as a temporary
aid.When a guided dog is utilized, the person can go to the places where the dog has been
trained to go. It’s considerablymore difficult to care for a dogwhen you’re blind. Inmany
ways, technological developments will benefit the blind. In the realm of electronics, a
lot of work is being done to produce navigation support for visually impaired people [6].
An Electronic Travel Aid (ETA) gadget has recently been invented that captures ambient
data and communicates it to the user, allowing for autonomous movement [7]. ETAs,
in general, use one or more sensors to identify impediments in the user’s way and offer
feedback to the participant via audio or hepatic devices. The primary benefit of an ETA
over a conventional white cane is its ability to identify obstructions above the waistline,
enabling more independent and secure walking [8].

Obstacle detection and object recognition in the user’s micro-environment have been
intensively investigated, and a variety of technologies have been employed to warn the
user of the presence of an obstacle in real time. Vision-based, sensor-based, and crowd-
assisted technologies are the three basic categories in which these technologies can be
classed. The most effective technology option in this category is computer vision. It is
utilized in urban contexts to detect and identify obstacles and signs (such as crosswalks,
traffic lights, and road signage). Yolo object detection and deep learning algorithms are
the most commonly used and effective methods in object detection and identification
systems for visually impaired systems.

2 Review of Smart Cane Hardware Part

2.1 Environmental Modeling and Configuration

Microcontroller
Various studies employ a variety of object detection mechanisms via a variety of sensors
and controllers. Before the cane is activated, a specialized camera module with a PIR
sensor is used in the design to find moving objects or people. A photo is taken and
cross-referenced with the database when the PIR sensor picks up a moving object.
Additionally, there is an ultrasonic sensor that is utilized to identify objects [9]. The
configuration diagram is shown in Fig. 1.

Fig. 1. Configuration of cane circuit with Arduino Uno controller [9].

Recently, a smart cane has been developed with a microprocessor for processing
data gotten from sensors and cameras to detect objects [10]. A mini-and single-board
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computer called a Raspberry Pi can be used to learn programming and carry out practical
tasks. It is an excellent piece of equipment for electronic work [11]. The Raspberry Pi
is a controller that outperforms the Arduino controller. It can also be used to detect
obstructions, lights, potholes, and traffic lights, among other things. Because it makes
use of the camera module, this controller is preferred. The object is detected by this
camera module, which then delivers the information to the controller [11]. This study,
the Raspberry Pi processor is configured with many sensors and a camera as shown in
the Fig. 2.

Fig. 2. Configuration of Cane circuit with a raspberry pi [11].

The Raspberry Pi 4 features a faster processor and can connect to the raspberry pi
camera, GPS module, and GSM modules [12].

Feedback Devices
Vibration Motor

In the system design, a vibrationmotor is used, which vibrates at three distinct intensities
based on the distance from the barrier. If the obstruction is really close, the vibration
intensity will be very high. As the distance between the obstruction and the motor
increases, the intensity of the motor reduces [13].

Buzzer
A buzzer is a sound-signaling device. It may be a mechanical, electromechanical, or
piezoelectric device. By applying DC voltage, it produces a steady single tone. This
type can be employed where enormous sound volumes are required by using a well-
built resonant system [14]. Many of the most common varieties are grouped by type,
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sound level, frequency, rated voltage, size, and packaging type at father electronics [13]
(Fig. 3).

Fig. 3. Buzzer [13]

Audio device
The Raspberry pi receives information from the input devices. A text file is given to the
Raspberry Pi after the detection. The output information in text format is then delivered
as input to Google Text to Speech. Then this turns the text data into an audio signal, and
the participant receives it via Bluetooth earphones [11].

Input Devices
Ultrasonic sensor
Anultrasonic sensorwill detect an obstruction in front of the smart cane andwill function
in conjunction with a buzzer to provide an audio indication to the participant when an
impediment is identified [15]. When a fall is detected, the buzzer will also sound [16].
The non-contact measuring range of the HC-SR04 ultrasonic sensor is 2 cm to 400 cm,
with a variable precision of 3 mm. The module includes ultrasonic transmitters and
receivers and a control circuit. A 5V and 15 mA power supply is required. The signal
from the IO sensor is greatly increased for at least 10 s [6] (Fig. 4).

Fig. 4. Ultrasonic sensor [6]

Water sensor
Water Detector Whether a blind person is wearing shoes or not, he/she will not notice if
there is any water on the floor, and the moist surface can cause slipping [17]. To prevent
slipping, a water sensor can be placed at the end of the cane. When water sensors detect
the presence of water, a signal is sent to the processor, which causes the buzzer to sound,
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Fig. 5. Water level sensor [18].

alerting the blind person. As a result, the blind individual will be more cautious [18].
(Fig. 5)

Flame sensor
A flame sensor, also known as a heat sensor, detects heat radiation from a great distance
[15]. Because blind people can’t always perceive heat, we equipped the stick with a heat
sensor that detects the presence of heat, such as a fire or something burning, and then
alerts the blind person by making the buzzer peep with a different noise, allowing the
blind to avoid danger sooner [18] (Fig. 6).

Fig. 6. Flame Sensor [15]

2.2 Cane Ergonomics

To design an ergonomically good smart cane, different conditions must be considered.
Most of them are dependent on each other. The interdependence and relations of those
conditions are described in Table 1. The table describes the interdependence of one
property over the other out of 9 values, and then the total dependence and independence
are calculated.

Table 1. Relationship Matrix of Independence [19]

Feature Steadiness Safety weight Battery
life

price Transport
ability

Simplicity Ergonomics Total
dependency

Steadiness 9 9 0 3 3 1 1 26

Safety 3 0 9 0 0 9 0 21

(continued)



Assistive Smart Cane Technology 201

Table 1. (continued)

Feature Steadiness Safety weight Battery
life

price Transport
ability

Simplicity Ergonomics Total
dependency

Weight 3 0 3 0 3 3 3 15

Battery life 0 9 3 3 3 1 0 19

Price 1 9 0 9 0 9 3 31

Transportability 3 1 3 1 0 1 3 12

Simplicity 0 9 3 1 9 3 1 26

Ergonomics 3 3 3 0 1 9 1 20

Total
independency

13 40 21 23 16 21 25 11 170

Handle Shape
The shape model of the smart cane handle part may vary for different constructions.
The most common smart cane handle shapes are shown in Figs. 7, 8 and 9. Since most
sensors and controllers are packed in the handle, design of the handle is the most critical
issue [20].

Fig. 7. Wewak cane

Fig. 8. Ultra-cane

Fig. 9. BAWA Cane
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Tip of the Cane
The most common tip of smart canes are marshmallow and sphere type tip as shown in
Figs. 10 and 11.

Fig. 10. Marshmallow type cane tip

Fig. 11. Sphere type cane tip

2.3 Position of Camera in the Cane

As the person goes towards the location, the smart cane with the camera module may be
tilted. Figure 12 depicts the many positions in which the walking stick can be used when
the individual is walking. As a result, when the user walks normally, the stick makes
an angle of 300–400 degrees, ensuring coverage of 1500–1600 FOV [9]. The camera
should record all of the things in the area, even if it is angled. This is beneficial because
if the individual drops the cane, the angle will be abrupt. It’s being examined as a means
of delivering an alarm to families about the situation [9].

Fig. 12. Different positions of the smart cane during movement [9].



Assistive Smart Cane Technology 203

2.4 Power Source and Charging System

The Raspberry Pi is an excellent choice for a portable device, and the Pi Sugar battery
provides a solderless alternative for the battery [14]. The Pi Sugar battery module is
connected to the backside of the Pi Zero via little spring pins. The battery is the same
size as the Pi Zero board. Because direct contact between the battery and the board
is undesirable, a magnet is utilized to attract the battery to the board and maintain the
distance between the two [21] (Fig. 13).

Fig. 13. Pi sugar battery for raspberry pi [21].

3 Review of Software Design of Cane

3.1 Object Detection Algorisms

YOLO is built on a Convolutional Neural Network (CNN) that recognizes things [5].
YoloRCNNs are earlyCNNs that accurately detect objects based on howYOLOworks in
two phases. It begins by identifying the region in the photos that needs to be categorized.
Second, use a CNN to classify this region of interest. It calculates the probability and
bounding box for each region in the image [17]. The specific class of image is identified
based on the confidence in each of the bounding boxes and the correlating probabilities
of these boxes [22]. The general steps for yolo object detection in deep learnings are.

• Segmentation: The image is segmented into individual character sub-images.
• Pre-processing: Skew Correction, Linearization, and Noise Removal are the three
processes in pre-processing. The skew correction is carried out until the horizontal
axis is aligned. For further processing, the noise created during capture is eliminated.

• Feature Extraction: The text is extracted by detecting the edges of the photos.
• Character recognition: Individual characters can be identified.
• Text-to-speech conversion: Image characters are converted into vocal output via a
speaker [23].
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The Pi-camera turns on when the push button is pressed; otherwise, the camera
remains off. The text from a picture is captured by the Pi-camera and analyzed using
OCR technology. An image of alphanumeric characters is recognized and transformed
into speech [5] (Fig. 14).

Fig. 14. General working principles of object detection [21].

The steps to Haar algorithmic feature extraction approaches for object recognition.

1. To train the classifier, a large number of positive and negative images, both with and
without faces, are required.

2. Next, using a type of ‘filter’ known as Haar features, extract features from photos.
3. The idea is to look at one part of the image by applying this filter to it.
4. Then, for each window, the pixel light intensities of the white and black parts are

added together.
5. The extracted feature’s value is the total of the two summations subtracted [19]

(Fig. 15).

Alphanumeric Detection
“Text recognition” is another name for optical character recognition. OCR’s basic func-
tions are to examine scanned text documents and then use the information for data
processing [25]. The printed text images are scanned using an optical scanner or specific
circuitry, and software analyzes the acquired image characters for further processing.
OCR converts non-editable documents into editable ones, allowing the user to search
for the content by characters, just like in a word document [26] (Fig. 16).
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Fig. 15. Steps of smart system of cane [24].

Fig. 16. Alpha numeric detection [9].

Noise Reduction
Noise reduction is a technique for avoiding unnecessary noise from the core audio
signals received from Bluetooth headphones’ microphone. Individuals who are partially
deaf will benefit from this technique [25]. They find it difficult to communicate with
the speaker in many places, such as marketplaces and roads, because they can’t hear the
speaker’s sound or the person talking to the challenged person’s speech adequately owing
to background noise. Deep learning approaches can effectively filter out disturbances
from the fundamental audio stream [27].

3.2 Navigation and Location Tracking

This navigation system module aids visually impaired people in navigating without
assistance. The user must communicate their destination via voice message. With the
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use of GPS, the position of their location is provided through the headset as a voice
note. GSM is also utilized to send the user’s current location to their caretaker via text
message [28]. During an emergency, the message notification is sent to the saved phone
number of a caretaker to track the location of a visually challenged person [29].

GPS module for raspberry pi
The Global Positioning System module should be integrated with the Raspberry Pi to
enable proper and exact location tracking of the user. This allows relatives to receive the
address of the participant when needed, particularly in sudden emergency conditions.
The GPS data is transferred to the processor, where it is saved in a database [20].

GSM module for Raspberry Pi
The Raspberry Pi is connected to the GSMmodule, whose major function is to commu-
nicate the user’s location to relatives via SMS, which is especially useful in the event of
a disaster for the blind [30].

4 Conclusions

These studies showed smart cane development with different approaches and method-
ologies. The primary problem is detecting obstacles and guiding in cane configurations
with constraints. However, using sensors and giving feedback via haptic response is a
solution for smart cane applications. The most recent object identification approaches
are processed in computer vision systems and deep learning algorithms using high-pixel
cameras and ultrasonic sensors. Due to its good accuracy in object identification, Yolo
deep learning is the most widely used method. Various types of microprocessors are
suitable for analyzing for smart cane applications, particularly the Raspberry Pi module,
which is suitable for computer vision systems due to its high processing capacity, com-
pact design, and compatibility with various modules. And the cane guiding system and
location tracking system use a GPS module integrated with a GSM-sim module to send
location information to their caretaker. Sensors are also utilized for detecting and mea-
suring the obstacle objects with a feedback system of buzzers and vibration motors. The
Smart Cane’s other future is an audio feed-back system that uses Bluetooth earphones to
notify the user of path conditions. In general, many limitations must be addressed in the
development of smart cane technology, such as cane affordability, battery charging sys-
tem and durability, object detection accuracy, and cane ergonomics. As a result, future
development of smart cane technology will necessitate addressing those issues in order
to improve the lives of visually impaired people.
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Abstract. The Heart Rate (HR) is detected using the Reflectance Photoplethys-
mography (PPG) Technique, which is a non-invasive approach for measuring
changes in blood volume in tissue using an appropriate light source and detector.
This study presents a new headphone-based Heart Rate and Heart Rate Variabil-
ity (HRV) monitoring device. The system is portable and built into conventional
headphones. Because the device is built into the headphone, the HR and HRV are
recordedwithout causing any disruption or inconvenience to the personwearing it.
The captured data iswirelessly transferred to and displayed on a cell phone through
Bluetooth communication. In this work, an android interface was developed and
used to show data obtained in the form of beats per minute (BPM) using the MIT
App Inventor 2 Bluetooth connectivity application. The device is powered by 5 V
by the Intex Wireless Roaming Headset, which contains two AAA batteries that
provide 1.5 V each. Because the headphone only provides 3 V, we need a DC-DC
Boost Converter Step Up Module 1–5 V to 5 V 500 mA to provide the appropri-
ate supply voltage to the system. Tests on various persons utilizing the prototype
system built demonstrated the scheme’s usefulness. Data from eight friends were
used in the assessment study. The accuracy of the heart rate measuring device was
evaluated with −0.5± 2.13BPM as a tolerance during the normal resting period
using the standard device “WEAL Pulse Oximeter Fingertip” manufactured by
WEAL.

Keywords: Photoplethysmography (PPG) · Pulse rate · Reflectance ·
Transmittance ·Massachusetts Institute of Technology (MIT)) App inventor ·
Infrared sensor · Signal conditioning circuit · Filters

1 Introduction

Heart rate describes the number of heartbeats per minute [1–4]. However, the beat of
a healthy heart is not regular [4]. Fluctuations in the time intervals of adjacent heart-
beats are referred to as heart rate variability (HRV) [4]. Measuring heart rate variability
(HRV) can help determine the autonomic nervous system’s functioning and the ratio of
sympathetic and parasympathetic activity [2]. To assist us in adjusting to environmental
and psychological difficulties, HRV is an emergent trait of interdependent regulatory
systems that function on various time scales [3]. The regulation of autonomic balance,
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blood pressure (BP), gas exchange, gut, heart, and vascular tone the size of the blood
vessels that control BP are all reflected in HRV. It may also represent the modulation of
facial muscles [4].

Noninvasive wearable heart rate monitoring units have recently been used for real-
time distant and uninterrupted medical monitoring, owing to a large number of benefits
for both physicians and patients through medium- and long-term recording of health
indicators during daily life activities [5]. The measurement of heart rate (HR) and heart
rate variability (HRV) is an important aspect of any person’s cardiovascular health [5–8].
The traditional way of measuring heart rate is to physically place fingers or thumbs over
the wrist to detect the arterial pulse [8]. In this method, the felt pulse is counted for one
minute, and the number of beats per minute (BPM) is roughly calculated or assessed
[8]. However, this strategy is unsuitable for continual inspection [9, 10].

According to [5, 11], ECGs are often recorded using torso-mounted, disposable adhe-
sive electrodes. ECG signals may be distorted during long-term acquisitions during the
wearing subject’s typical activities as a result of sweat, contact, or movement artifacts
[4, 5, 12]. When electrodes are affixed to their skin, people may feel uneasy and exhibit
very little compliance. Drying the electrode-applied conductive gel and allergy reac-
tions may affect the time-dependent results. Standard electrode placement necessitates
a skilled operator because improper electrode location could lead to a flawed recording.

Photoplethysmography (PPG) has been developed as an alternative method for mea-
suring HRV through the surrogate monitoring of pulse rate variability to address some
of these issues and to promote the dissemination of portable and easily wearable devices
(PRV) [5]. Due to the high signal amplitude that may be achieved in comparison to other
sites, PPG sensors are usually placed on the fingers because the high signal amplitude on
the fingertip can be accomplished compared with other body surfaces [8, 9]. According
to [10], this arrangement is not appropriate for continuous measuring in daily activities
involving the use of the fingers.

The utilization of downsizing technologies, aswell as the integration of a PPG sensor,
microcontroller, Bluetooth, andDC-DC converter incorporated into headphones near the
ear, can help to eliminate motion artifacts caused by torsion or contact. PPG sensors and
devices are non-invasive since they have no electrical interaction with the human body
[13]. They are also less expensive and require less maintenance than ECG equipment.

A method of measuring blood volume variations caused by the pulsing of blood
that occurs with each heartbeat is called plethysmography. Small, wearable pulse rate
sensors have been created using photoplethysmography (PPG) technology [14]. These
gadgets, made of infrared light-emitting diodes (LEDs) and photodetectors, provide
a straightforward, dependable, and affordable method of noninvasively measuring the
pulse rate [11, 16]. PPG uses sturdy, low-maintenance optical sensors that are reasonably
priced [11]. In this study, it is the perfect portable device because it uses very little power
and can be supplied by a battery pack with a 5 V power supply.

From thePPGsignal, a variety of clinically important characteristics can be extracted,
including heart rate, respiratory rate, respiratory-induced intensity variations (RIIV),
ventilatory volumes, and autonomic dysfunction [15].

The most basic PPG sensor comprises an infrared LED and a photodetector that
is housed inside the same plastic housing in Fig. 1 [15]. The sensor is attached to the
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surface of the body using items such as headphones, earbuds, eyeglasses, etc. The sensor
can be either a reflecting or a transmitting kind, as indicated in the figure below.

Fig. 1. Reflective optical sensor with transistor output (TCRT1000). (a) TCRT1000 IC; (b)
TCRT1000 symbol; (c) TCRT1000 circuit.

In this study, the low-cost, non-intrusive Heart Rate (HR) Monitoring System with
Headphones contains a Bluetooth interface that links to the microcontroller is designed,
which shows the pulse rate on an Android mobile. The maximum and minimum beat
rates per minute are displayed if the monitoring device is connected to the Android
phone via an app written using App Inventor 2. Everyone nowadays has access to a
home environment where they can monitor and study their heart rate.

The user is free to concentrate solely on exercising with his or her Android phone
while running, driving, biking, or performing another activity without having to con-
stantly check their heart rate. This improved form of exercise is shaping the future
of driving, training, and exercise because the gadget is less expensive, portable, and
safe than constantly monitoring yourself. Additionally, it reflects several physiological
states such as biological workload, stress at work, and attention to tasks, as well as the
autonomic nervous system’s active state.

The number of heartbeats in total that take place over the course of aminute is referred
to as heart rate. However, Heart rate variability (HRV) is the term used to describe the
normal variation in heart rate that takes place throughout time as shown in Table 2. The
variation in the peak-to-peak interval is used to calculate it. Calculate the heart rate for
each beat as illustrated in (Fig. 2) below by using the LabView oscilloscope to measure
the interval between peaks of a PPG signal. The oscilloscope’s time per division is set to
200 ms. We can calculate the heart rate variability using the PPG graph in Fig. 2 below
using time domain analysis.
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Fig. 2. Heart rate variability from PPG signal

Heart rate variability time-domain indices assess the amount of HRV detected over
monitoring periods ranging from 1 min to 24 h [16]. The variation of beat-to-beat inter-
vals, also known as R-R intervals, is referred to as HRV [7]. The average heart rate
variability is expressed using the standard deviation of all RR intervals [7]:

HRV =
√∑N

i=1

(
RRi − RR

)2
N − 1

2 Materials and Methods

The volunteer’s eight healthy friends took part in the study, in which they were moni-
tored using wearable devices while performing various activities. The proposed system
components are integrated with the headphone, as shown in Fig. 3 below.

Fig. 3. The position of the system’s components on the headphones is suggested.

The integrated components in Fig. 3 include the battery, sensor, signal conditioning
circuit, Bluetooth, Arduino pro-mini, and DC-DC step-up converter.
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2.1 General Block Diagram of the Proposed System

The general block design of the proposed system’s hardware is depicted in Fig. 4 and uses
reflecting photoplethysmography (PPG) to measure heart rate and heart rate variability
through headphones. The PPG signal is made up of a large DC component as well as a
pulsatile (AC) component. The AC component, which contains vital information such
as heart rate, is much weaker than the DC component, and the PPG signal from the
phototransistor is weak and noisy. To obtain a photoplethysmograph (PPG) signal, we
need an amplifier and filter circuits to boost and clean the signal. The Arduino pro-mini
board, which is used for signal processing, is the heart of the project and is responsible
for all of the major digitalization of the PPG signal and beat rate calculation. The average
heart rate in one minute is calculated using an Arduino pro-mini microcontroller, and
the beat per minute is displayed on an Android phone via Bluetooth communication. If
someone wants to use the LCD instead of the Android phone display, there is another
display system in this device.

Signal conditioning Signal acquisition 
IR Trans-
mitter

IR Re-
ceiver

Android device 
display 

HC-05 Blue-
tooth 

Signal Pro-
cessing

High Pass 
filter 

2.33 Hz 
Low Pass 

LCD display

Fig. 4. The block diagram of the system

2.2 The Sensor Output Signal

The output voltage from the phototransistor without a filtering circuit consists of the
pulsatile AC signal and slow varying high DC voltage. The output waveform of the
sensor is shown below on different surfaces of the body.
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Fig. 5. Signal from a fingertip sensor output

A fingertip Comparing the PPG signal without a signal conditioning circuit, from
the sensor to other body surfaces depicted in Fig. 5 above, the AC signal is considerably
high and the DC voltage is low and slowly fluctuating.

Fig. 6. Near-ear surface sensor output signal

The output signal from the sensor placed close to the ear is depicted in Fig. 6 above.
In comparison to the sensor placed on the fingertip, the slow-varyingDC voltage is larger
and the AC signal is lower. We can get rid of the AC signal and slowly vary the DC
voltage by using a signal conditioning circuit.

2.3 Signal Conditioning

The two-stage signal condition circuits are used to eliminate unwanted signals.High-pass
filter and low-pass filter circuits are cascaded in the first-stage and second-stage signal
conditioning circuits. The high pass signal conditioning circuit produces the necessary
information, which will smother the significant DC component from the sensor. The
HPF’s cut-off frequency is set at 0.5 Hz. The high pass filter’s cut-off frequency is
determined by the resistor R1 and capacitor C1, as shown in Fig. 8. However, low
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pass signal conditioning will eliminate the significant DC component and enhance the
weak pulsatile AC component, which conveys the necessary data. The cut-off frequency
is determined by the resistor R2 and capacitor C2 as indicated in Fig. 8. The cutoff
frequency in the circuit above was set to roughly 2.33 kHz, which corresponded to a
maximum heart rate of 140 bpm. To achieve this, we used a resistor R2 of value 680 k
and a capacitor C2 of value 100 nF.

As depicted in Fig. 7, the PPG output signal from the first stage signal conditioning
circuit contains a low, slowly fluctuating DC voltage and a high AC signal.

Fig. 7. PPG signal from the first stage of signal conditioning

The output signal from the first signal conditioning stage is not a pure sinusoidal
waveform and is too faint to be used for beat calculation. As a result, HPF/LPF is
employed for additional filtering and amplification in the second stage. The Second
Stage high pass circuit, which is essentially a replica of the First Stage circuit, now
receives the output from the active Low Pass Filter.

Similar HPF and varied gains from the first stage LPF circuits are also present in the
second stage. A second Op-amp that is set up as a non-inverting buffer with G2 gain is
now fed the two-step amplified and filtered signal. The necessary analog PPG signal is
provided at the output of the second step. The PPG signal’s amplitude, which is visible
in the second stage’s output, can be managed using the Gain G2.

Therefore, the two cascaded stages’ combined voltage gain is G = G1*G2 =
101*20.4= 2063.28. Beats per minute (BPM)= 60*f, which is the relationship between
the frequency (f) of these pulses and heart rate (BPM).
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Fig. 8. Full schematic PPG signal acquisition

2.4 Prototype Unit of the Proposed System

Figure 9 shows the hardware circuit created from the circuit layout shown in Fig. 8 using
a breadboard and the NI ELVIS II. The laptop uses a LabVIEW oscilloscope to display
the waveform. Without taking into account the current and power used by the Bluetooth
and Arduino pro tiny LEDs, the hardware circuit uses up to 160mA of current and
roughly 1.2W of power. Due to the high power consumption of Bluetooth and Arduino
Pro Mini devices, the batteries can only power the circuit for a few lengths of time.

Fig. 9. Prototype hardware setup on NI ELVIS board



A Headphone-Based Heart Rate and Heart Rate 217

2.5 Data Acquisition System

Theworkspace for the initial design and development of the hardwarewasNIELVIS, and
DAQ from LABVIEWwas utilized for signal conditioning with a band-pass filter block
and computer-based output signal display. Before being used by the signal conditioning
circuit, the sensor’s output signal is digitally filtered using the filter express VI from
LABVIEW.

Fig. 10. Signal conditioning using LAB VIEW

PPG signal from the signal conditioning circuit is depicted in Fig. 11 using the
LabVIEW waveform Graph 0 display depicted in Fig. 10.
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Fig. 11. PPG signal from the second stage signal conditioning circuit

In this study, to calculate heart rate and heart rate variability, first, the PPG signal
has been converted into digital pulses that are close to transistor-transistor logic (TTL),
as illustrated in Fig. 12. The condition of TTL outputs is often limited to narrower limits
of 0.0 V to 0.4 V for a “low” and 2.4 V to VCC for a “high,” offering at least 0.4 V of
noise protection. The analog PPG signal is given to Arduino pro mini analog pin A0.
For this, we identify peaks in the PPG waveform when the slope of the curve changes
from positive to negative and the size of the signal exceeds 80% of the threshold. So
when the ADC reaches more than the threshold value, the signal will count as a pulse
unless ADC values drop to 0.

Fig. 12. TTL pulse from Arduino
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2.6 Trial PPG Signal Waveform with Car

A brief test using a prototype arrangement on the car was done to determine the sensor’s
position. The primary goal of the test is to determine whether the PPG signal is stable
and whether the heart rate varies while driving on the three body surfaces of the temple,
nose, and near ear, as indicated in Fig. 13 below. As seen in Fig. 10, throughout this test,
we recorded the data utilizing the LabVIEW block referred to write-to measurement file.

Fig. 13. Sensor position during car test

As shown in Fig. 14, the three sensors were attached to the driver’s eyeglasses and
signal conditioning circuit, power supply module, Bluetooth, etc. held by the back seat
of the car using a breadboard, Elvis board, and laptop.

Fig. 14. Experimental test setup in the car

PPG signal from Temple Sensor
The PPG signal from the Temple sensor remained rather constant during the trial and
was less impacted by the road’s potholes, as seen in Fig. 15.
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Fig. 15. PPG signal from Temple sensor

PPG signal from near Ear Sensor
According to Fig. 16, the PPG signal from the ear sensor was steady and not as signif-
icantly impacted by road imperfections. However, the sensor placed on the ear is not
comfortable for continuous monitoring.

Fig. 16. PPG signal from near Ear sensor.
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PPG signal from the surface of the Nose.
The PPG signal from the nose’s surface is not very steady and is heavily influenced by
road imperfections, as illustrated in Fig. 17.

Fig. 17. PPG signal from Nose surface sensor.

2.7 Powering of the Board

In this study, a Bluetooth and Arduino board are mounted on the headband of an Intex
Wireless Roaming headset, which uses two AAA batteries, each of which provides
1.5 V for sensor integration on the ear pad and holding the signal conditioning board.
The maximum output voltage from these headphones is 3 V, however, we require a 5 V
source to operate them. The DC-DC Boost Converter Step-Up Module 1–5 V to 5 V
500 mA is used to obtain the necessary voltage from headphones to power the board.

2.8 Printed Circuit Board (PCB) Design and Fabrication

Components have been installed on a dual-layer PCB, as shown in Fig. 18 PCB layouts,
on both the component and solder sides.

Capacitor and resistor placement is on the component side, while SMD Op Amp,
SMD transistor, and SMDZener diode soldering is done on the solder side, as illustrated
in Fig. 18 from left to right. This PCB has seven holes for the TP3-TP6 connector for the
IR TCRT1000 sensor, 5 V, GND, and PPG output (TP7). The 5V and GND are linked
to the DC-DC Boost Converter Step Up Module 1–5 V to 5 V 500 mA, TP7 is attached
to the analog port (A0) of the Arduino Pro Mini, and TP3–TP6 is either directly wired
or connected via a jumper to the TCRT1000 sensor (Fig. 19).
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Fig. 18. Dual layers PCB of signal conditioning part

Both Bluetooth and the sensor are built into the headphone earpad and headband,
respectively. Figure 20 below shows the PPG signal waveform displayed on the laptop
using LabVIEW software and the heart rate displayed on the Android mobile using
Bluetooth and the MIT-app Inventor app.

Fig. 19. Heart rate monitoring system integrate with headphones

The headphone, as shown in Fig. 20, is a component of the system; the HR and HRV
are recorded without any disruption or inconvenience to the person wearing the device.
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Fig. 20. Heart rate monitoring system and android display

The recorded data is wirelessly transmitted to a cellphone and displayed via Bluetooth
communication.

3 Result and Discussion

3.1 Measuring the Performance of the System

Eight volunteers were used in this trial to test and validate the device’s accuracy in
measuring heart rate with a tolerance of ±3 beats during a typical time of rest using
WEAL’s standard device, the “WEALPulseOximeter Fingertip.” Table 1 belowdisplays
the heart rate readings obtained from a few friends to compare to their actual heart rates.
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Table 1. Heart rate readings

Subject Age Male/Female Actual heart rate
(bpm)

Measured heart rate
(bpm)

Difference (bpm)

A 33 M 60 62 -2

B 33 M 60 63 -3

C 24 M 92 93 -1

D 25 M 76 78 -2

E 28 M 78 76 + 2

F 25 M 78 80 -2

G 24 M 82 80 + 2

H 28 M 90 88 + 2

3.2 Measurements of Heart Rate Variability (HRV)

In the second phase, the heart rate variability was obtained frommy heart rate at different
periods of the day with fixed time intervals. To know the heart rate variation the data was
recorded at hour intervals of the day. The data showed a considerable change in heart
rate activeness to sleep shown in Table 2 below.

Table 2. Heart rate variation of a subject at a fixed time interval

Time 7:00
AM

9:00
AM

11:00
AM

1:00
AM

3:00
PM

5:00
PM

7:00
PM

9:00
PM

11:00
AM

1:00
AM

3:00
AM

1:00
AM

Measured
HR(bpm)

84 87 84 84 90 80 81 84 83 80 75 88

3.3 Analysis of the Differences Between Measurement

In this study, Bland and Altman used a graphical method to quantify the difference
between actual and measured heart rates. For the analysis, the mean of the difference
in measurement methods and the standard deviation was obtained to represent mean
bias and the limits of agreement. Second, the data points can be restricted using + 2
SD to demonstrate a 95% confidence interval (CI; precisely defined: mean 1.96 SD) of
distributed data [17]. The mean difference (mean bias) for this measurement was -0.5,
with a standard deviation of 2.13. To understand the dispersion of variables, create a
scatterplot with an X-axis (average) and a Y-axis (difference). The upper limit in this
study can be calculated using mean + 1.96 × SD (−0.5 + 1.96 × 2.13 = 3.69) and the
lower limit using mean −1.96 × SD (−0.5–1.96 × 2.13 = −4.69). The following is an
appropriate statement to use in the manuscript: The Bland-Altman plot revealed a mean
bias ± SD between the first and second heart rate measurement as −0.5 ± 2.13 PBM,
with the limits of agreement set at −4.69 and 3.69 (Fig. 21).
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Fig. 21. Bland altman plot

4 Conclusion

This paper describes how a Reflectance PPG sensor-based heart rate monitoring system
was put into practice utilizing a low-cost Pro Mini Arduino board, HC-05 Bluetooth,
and other readily accessible components integrated into the headphone. Through HC-05
Bluetooth connectivity, data transmission was accomplished from the Arduino to the
smartphone A minute’s worth of heartbeats are counted, and the results are displayed
on an Android device using the MIT App Inventor 2 application. This product’s design
aims to create a tool that can serve as a personal trainer, sleepy driving detector, and
anger detector. Using his or her Android phone, the motorist can monitor their level of
drowsiness at any moment. Hospitals can also use this system. Here, by the suggested
system, a doctor is not required to be present when the heart rate is being monitored.
The patient’s heart rate can be sent to the doctor remotely.
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Abstract. Word sense disambiguation (WSD) plays an important role, in increas-
ing the performance of NLP applications such as information extraction, infor-
mation retrieval, and machine translation. The manual disambiguation process by
humans is tedious, prone to errors, and expensive. Recent research in Amharic
WSD used mostly handcrafted rules. Such works do not help to learn differ-
ent representations of the target word from data automatically. Moreover, such a
manual disambiguation approach looks at a limited length of surrounding words
from the sentence. The main drawback of previous works is that the sense of
the word will not be detected from the synset list unless the word is explicitly
mentioned. Our study explores and designs the Amharic WSD model by employ-
ing transformer-based contextual embeddings, namely AmRoBERTa. As there
is no standard sense-tagged Amharic text dataset for the Amharic WSD task,
we first compiled 800 ambiguous words. Furthermore, we collect more than 33k
sentences that contain those ambiguous words. The 33k sentences are used to
finetune our transformer based AmRoBERTa model. We conduct two types of
annotation for our WSD experiments. First, using linguistic experts, we annotate
10k sentences for 7 types of word relations (synonymy, hyponymy, hypernymy,
meronomy, holonomy, toponymy, and homonymy). For the WSD disambiguation
experiment, we first choose 10 target words and annotate a total of 1000 sentences
with their correct sense using the WebAnno annotation tool. For the classification
task, the CNN, Bi-LSTM, and BERT-based classification models achieve an accu-
racy of 90%, 88%, and 93% respectively. For the WSD task, we have employed
two experiments. When we use the masking technique of the pre-trained contex-
tual embedding to find the correct sense, it attains 70% accuracy. However, when
we use the FLAIR document embedding framework to embed the target sentences
and glosses separately and compute the similarities, our model was able to achieve
71% accuracy to correctly disambiguate target words.
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1 Introduction

Natural language processing (NLP) is a field of artificial intelligence that assists comput-
ers in understanding, interpreting, and manipulating human language. Natural language
is now being used to exchange information among humans and has now reached the
extent of being an evolution criterion for technology (Reta 2015). To properly access
and understand the information on the internet, there is a need for people all over the
world to be able to use their language. This requires the existence of NLP applications
such as machine translation, information retrieval, information extraction, and others.
These downstream NLP applications rely on tools such as word sense disambiguation
for their reasonable performance.

Most of the words in natural languages are polysemic, which means that they have
several meanings (Hassen 2015). Amharic is one of the languages that have many words
with multiple meanings. It is like other Semitic languages with a morphologically com-
plex structure (Senay 2021). The ability to recognize the meaning of a word from its
context and solve the ambiguity is one of the most difficult problems in natural lan-
guage processing (Alian et al. 2016). Ambiguity is defined as a word, term, notation,
sign, or symbol interpreted in more than one way (Mindaye et al. 2010). Word Sense
Disambiguation is a hard and challenging task in NLP, intending to determine the exact
sense of an ambiguous word in a particular context (Huang et al. 2019). When WSD is
used in conjunction with other NLP approaches, it improves the efficiency of identifying
accurate keywords for use as features in classification, searching, and many more NLP
application (Senay 2021).

Knowledge-based, corpus-based, and hybrid machine learning methods are the main
categories of approaches for WSD tasks (Pal and Saha 2015). Knowledge-based WSD
approaches are based on different knowledge sources such as machine-readable dictio-
naries (WordNet), thesauri, etc. LESK, semantic similarity, selection preference, and
heuristic are the main algorithms for knowledge-based approaches. There are two sets
of data for training and testing in supervised approaches. This approach toWSD systems
employs machine learning techniques based on manually created sense-annotated data.
The training set, which consists of examples related to the target word, could be used
to learn a classifier. The supervised approach includes techniques such as Naïve Bays,
decision lists, and K-nearest neighbor algorithms. Unsupervised WSD methods do not
rely on external knowledge sources, machine-readable dictionaries, or sense-annotated
data sets, rather, they use the information found in un-annotated corpora to differentiate
the word meaning.

Recently, contextual embedding methods like BERT, ELMO, and GPT-2/3 learn
sequence-level semantics by considering the sequence of all the words in the input sen-
tence (Chawla et al. 2019). These methods are characterized by their high performance,
and the ability to extract a lot of information from raw text. These recent language mod-
els, especially the BERT model is trained to predict the masked word(s) of the input
sentence (El-razzaz et al. 2021). To weigh, the relationship between each word in the
input sentence and the other words in the same sentence, BERT learns self-attention by
giving a vector for each word. The vector represents the relationship of one word with
other words in the input sentences and is used to generate word embedding. In this work,
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we have employed AmRoBERTa, a RoBERTa model trained for Amharic (Yimam et al.
2021).

2 Related Works

The research by Kassie (2009) tried to demonstrate WSD for Amharic language using
semantic vector analysis. A total of 865wordswere selected from the EthiopianAmharic
language legal statute documents. Instead of using sense-tagged words, the researcher
evaluates WSD using pseudo-code words (artificial words). The developed algorithm
outperformed the one used by Lucene, according to their comparison of the two. The
achieved result is an average precision and recall of 58% and 82%, respectively. The
author recommended developing resources such as Corpora, Thesaurus, and WordNet,
that could be useful to advance the research in information retrieval, and word sense
disambiguation.

Mekonnen (2010) conducted the Amharic WSD study using a corpus-based, super-
vised machine-learning approach. The author used the Naïve Bayes algorithm for
Amharic WSD to classify a word to its correct sense using Weka 3.62 package in both
the training and testing phases. A total of 1045 English sense examples for the five
ambiguous words were gathered from the British National Corpus (BNC). The dictio-
nary is used to translate the sense illustrations back into Amharic. For each sense of the
ambiguous word, a total of 100 sentences were collected where the accuracy achieved
ranged from 70% to 83.5% for all classifiers.

Assemu (2011) tried to develop corpus-basedAmharicWSD through the use of unsu-
pervised machine learning. A total of 1045 English sense examples for the five ambigu-
ous words were gathered from the British National Corpus (BNC). Using the Amharic-
English dictionary, the sense examples were converted to Amharic and prepared for
experimentation. The result showed that the accuracy of unsupervised Amharic WSD is
state-of-the-art result than the supervisedmachine learning approach,with an accuracy of
83.2% and 70.1%, respectively. For better Amharic WSD, the researcher recommended
using linguistic tools like the Thesaurus, Lexicon from WordNet, machine-readable
dictionaries, and machine translation tools.

Wassie (2014) utilized a semi-supervised learning strategy, and present aWSDproto-
type model for Amharic words. Unsupervised machine learning approach for clustering
based on instance similarity and supervised machine learning approach after unlabeled
data are applied. To cover all the senses of each target word available, annotated corpora
are highly insufficient. The development of the Adaboost Bagging and ADtree algo-
rithms perform at 84.90%, 81.25%, and 88.45%, respectively. The author concludes that
Semi-supervised learning using bootstrapping algorithm performs better.

The research by Hassen (2015) developed an Amharic WSD knowledge-based app-
roach based on WordNet to extract knowledge from word definitions and relationships
between words and senses. They manually created the Amharic WordNet for this study
and chose 2000 words, including ambiguous words. They carried out two tests to com-
pare Amharic WordNet’s impact with and without a morphological analyzer, and the
results showed an accuracy of 57.5% and 80%, respectively. A two-word window on
either side of the ambiguous word is sufficient for Amharic WSD, according to their
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research into the optimal window size. In this experiment, they have concluded that
Amharic WordNet with a morphological analyzer can have better accuracy than without
a morphological analyzer. They recommended automatic the development of Amharic
WordNet and to apply a hybrid approach.

Tesema, Tesfaye and Kibebew (2016) applied supervised machine learning tech-
niques to a corpus of Afaan Oromo language to automatically gather disambiguation
information. This method is known as a corpus-based approach to disambiguation. To
determine the prior probability and likelihood ratio of the sense in the provided con-
text, they have utilized the Naïve Bayes approach. A total of 1240 Afaan Oromo sense
examples were gathered for the chosen five ambiguous words, and the sense examples
were manually tagged with their appropriate senses. The author used a corpus of Afaan
Oromo sentences based on the five selected ambiguous words to acquire disambiguation
information automatically. The system attains an accuracy of 79%, and it was discovered
that the Afaan OromoWSD can handle four words on either side of an ambiguous target
word.

Siraj (2017) attempts to develop a system for word WSD that uses data from Word-
Net and tagged example sentences to determine the sense of ambiguous Amharic words.
Information from WordNet was extracted using the LESK algorithm and Python pro-
gramming. TheWordNet is made up of 17 ambiguous words from various classes, along
with developed synonyms and glossary definitions. Based solely on the Jaccard Coef-
ficient and Cosine Similarity, Amharic WSD’s accuracy performance reached 84.52%
percent and 85.96%, respectively. The average accuracy of the Jaccard Coefficient with
Lesk scores is 89.83%which is a better result, compared to cosine similarity with LESK
(86.69%). The researcher suggests for future work to use the Adaptive LESK algorithm
and improve the performance of the WSD system.

Mulugeta (2019) attempts to develop an Amharic WSD system that uses Amharic
WordNet hierarchy as a knowledge base. They use context to gloss overlap augmented
semantic space approach. Most previous research on Amharic WSD focused on verb
class; yet, Mulugeta (2019) tried to solve all open classes (verb, noun, adverb, and
adjective) by developing WordNet. The WordNet contains about 250 synsets and does
not include all relationships for single-sense words in the WordNet. The main challenge
in this study was the unavailability of lexicon resources (WordNet), and the stemmer
algorithm used in the preprocessing does not cover all exceptions and has limitations
in returning the root word. Experimental result shows that context-to-gloss followed by
augmented semantic space has achieved the highest recall of 87% and 79% for three
target words at word and sentence level respectively. And the highest average accuracy
of 80% and 75% at word-level and sentence level are achieved by this approach. Their
recommendation is to develop a better stemmer or morphological analyzer and fully
constructed WordNet containing relationships for non-ambiguous words.

Tadesse (2021) proposed a machine learning based WSD model for the Wolaita
language. A total of 2797 sense instances were gathered to complete the investiga-
tion. Language specialists assessed the acquired data before creating five datasets for
five ambiguous words, including “Doona,” “Ayfiya,” “Aadhdha,” “Naaga,” and “Ogiya.”
They used quantitative and experimental research to discover the ideal machine combi-
nation algorithms for learning and methods for extracting features. AdaBoost classifier
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utilizing BOW, TF-IDF, and Wor2Vec features as an extraction approach and the Sup-
port Vector Classifier, Bagging, Random Forest Classifier, and AdaBoost as classifier
for the five datasets. In this study, precision and recall were used as the primary metrics
for evaluation. Support Vector Classifier and Bagging classifiers with TF-IDF obtain an
accuracy of 83.22% and 82.82%, respectively.

Recently, Senay (2021) has developed Amharic WSD by using a deep-learning app-
roach. A total of 159 ambiguous words, 1214 synsets, and 2164 sentence datasets were
used to create three distinct deep learning algorithms in three separate experiments. As a
methodology, they used a design science research strategy. The author used different deep
learningmodels for classification such as LSTM, CNN, and Bi-LSTM that are trained on
the dataset using different hyperparameters. The results showed that LSTM, CNN, and
Bi-LSTM obtained 94%, 95%, and 96% accuracy during the third experiment, respec-
tively. But for disambiguation, they used handcrafted rules without applying any model.
To increase the performance of the model, using lemmatization in the preprocessing,
and using an attention mechanism are recommended.

Generally, Amharic word sense disambiguation was done by different researchers
using different machine learning approaches. However, there is no easy and automatic
Amharic word sense disambiguation, and there is no research that used the transfer learn-
ing algorithm for the disambiguation purpose. Generally, most of the literature tries to
develop AmharicWSD but there is a gap in solving the problems of word sense. Most of
them follow a manual approach for extracting word sense. Recent research used hand-
crafted rules or directly fetching the meaning of an ambiguous word from the synset
list or in the WordNet but did not learn different representations from data automat-
ically. The WSD developed by researchers requires manually labeled sense examples
for every word sense. Previous researches also require defining features explicitly; but
transfer learning algorithms aim to learn different representations from data automati-
cally (Bouhriz et al. 2016); solve ambiguity problem based on sentence semantics. In
this research, we attempt to employ transfer learning for Amharic WSD.

3 Amharic Language

Amharic is one of the northern Semitic languages in the part of the Afro-Asiatic families
and it becomes a countless contribution in the area of literature in the 17th century up
to the 19th century (Kebede at el. 1993). After Arabic, Amharic ( ) is the second
most broadly spoken Semitic language (Gezmu et al., 2019). In addition, the language
has a significant number of speakers in all regional states of the country (Salawu and
Aseres 2015) and also in Canada, the USA, Eritrea, and Sweden (Mulugeta 2019).

3.1 Amharic Writing System

The Amharic language has its own alphabet, known as /fidäl, which was inherited
from the Geez. /Fidäl is a syllabary writing system in which the consonants and
vowels coexist within each graphic symbol. Unlike most Semitic scripts such as Arabic
and Hebrew, Amharic fidäl is written from left to right. The writing system consists of
231 core characters, 33 consonants, each of which has 7 orders depending on the vowel
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with which it is combined, and some additional orders of ‘ ’/ fidäl are called dikala
hoheyat/ (Getaneh 2020).

To separate each word and sentence in a formal Amharic writing system, the main
punctuation marks are discussed as follow. The Ethiopic comma ( ) to separate words,
Ethiopic full stop ( ) to end the sentence, Ethiopic semicolon ( ) to separate Amharic
words or phraseswith similar concepts, the Ethiopic double dash ( ) to separate Amharic
sentences with a similar concept and Ethiopic question mark ( ) to end the question are
the main unique Ethiopic punctuation marks. Nowadays, the Ethiopian modern writing
system uses a single space rather than an Ethiopic comma ( ) to separate words.

3.2 Ambiguity in Amharic Language

Different scholars define ambiguity in a different way. According to Mindaye et al.
(2010), ambiguity is described as the attribute of being ambiguous, where a word, term,
notation, sign, symbol, phrase, sentence, or any other form used for communication is
deemed ambiguous if it can be understood in more than one manner. Amare (2001) also
define ambiguity as the quality of any thought, idea, statement, or claim whose meaning,
intention, or interpretation cannot be determined decisively by a set of rules or processes.

Based on the study of Amare (2001), there are six types of ambiguities in Amharic
language, namely Lexical Ambiguity, phonological ambiguity, structural ambiguity, ref-
erential ambiguity, semantic ambiguity, and orthographic ambiguity. These ambiguities
are summarized below.

Lexical Ambiguity: Lexical ambiguity occurs when a lexical unit falls into separate
part-of-speech categories with different senses, or when a lexical unit has more than one
sense, all of which fall into the same part-of-speech category (Abate and Menzel 2007).
Phonological Ambiguity: The placement of pause within the word may lead to phono-
logical ambiguity. When speakers use pauses and without pauses during speaking leads
to ambiguity (multiple meanings) of a word (Kassie 2009, Mekonnen 2010).
Semantic Ambiguity: It determines the possible meanings of a sentence by focusing on
the interactions among word-level meanings in the sentence. Polysemy, idiomatic and
metaphorical word relations in a sentence are causes of semantic Ambiguity (Siraj 2017,
Hassen 2015).
Syntactic Ambiguity: Structural ambiguity can give more than one meaning by the
order of the word and holds more than one possible position or arrangement in the
grammatical structure of the sentence.
Orthographic Ambiguity: Geminate and non-geminate sounds are causes of ortho-
graphic Ambiguity. This type of ambiguity can be solved using the context meaning of
the sentence (Kassie 2009, Assemu 2011).
Referential Ambiguity: This ambiguity arises when a pronoun stands for more than
one possible antecedent. a pronoun is understood by default even if it is not written
grammatically.

4 Methodology

Algorithm: For this research we compared three models CNN, BiLSTM, and BERT
to classify weather the word is ambiguous or not. Our experimental result showed that
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BERT has better result than CNN and BILSTM because BERT used self-attention-based
transformer architecture,which, in combinationwith amasked languagemodeling target,
allows to train themodel to see all left and right contexts of a target word at the same time
(Chawla et al. 2019). After identifying whether the word is ambiguous or not the next
task is assigning the meaning of ambiguous word. So, to disambiguate the ambiguous
word we apply the AmRoBERTa model with the flair document embedding technique.
It is a recent transfer learning approach that gives better performance in the available
datasets (Yimam et al. 2021).

Dataset Collection and Preparation. Since there are no labeled datasets available for
Amharic word sense disambiguation, the main task for this thesis work is to prepare
labeled datasets for WSD. We have collected 10k sentences and 800 ambiguous words
from Amharic news, Amharic dictionary, Amharic Quran, Amharic Bible, Abissinica
online dictionary and Amharic textbooks (from grade 7–12). A total of 33,297 sen-
tences are used to finetune the AmRoBERTa model (transfer learning). The collected
data passes through data preprocessing to prepare the data for experimentation. Data
preprocessing is critical for improving the performance of the model. To make our
data more suitable for the experiment, we use various data preprocessing techniques
such as tokenization, stopword removal, special character removal, normalization, and
morphological analysis.

Dataset annotation: In our study, we selected annotators to keep the nature and behav-
iors of Amharic language texts and to acquire quality and reliable data.We annotate both
relationship of the sentence and the sense of the word in the sentence. For the dataset
annotation, we have done two different annotations. The first annotation is to know
whether the data set contains all the selected relationships of a word or not. Therefore,
we selected three Amharic language and linguistic experts to annotate the data. The
experts annotated the relationship between the sentences.

The second annotation is for disambiguation or to know the sense of the word. For
this task, we have also used the WebAnno annotation tool to annotate the ambiguous
word in the sentence.We selected two annotators and one curator fromAmharic language
native speakers. Themain advantage of theWebAnno annotation tool is getting the value
for inter annotation agreement (such as Fleiss kappa, and Cohen’s kappa) is easy. We
used Cohen’s kappa as a measure of inter-annotator agreement.

5 Result and Discussion

5.1 Experimental Result of CNN Model

We have trained the CNN model with 2 dense layers with sigmoid activation functions
and binary_crossentropy loss functions We also used 0.00001 for the learning rate, 64
batch-size, and a dropout rate of 0.2, which are optimal for our experiment (Fig. 1).
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Fig. 1. Training and validation accuracy and loss graph for CNN model.

5.2 Experimental Result of BiLSTM Model

Experimental results of the Bi-LSTM model were analyzed and interpreted. We have
trained the Bi-LSTM model with 2 dense layers with sigmoid activation functions and
binary_crossentropy loss functions.We employed 64 neurons in the first dense, for a total
of 128 neurons in both the forward and backward directions. We used, the maximum
dropout rate of 0.2, the training epoch value of the model is 60, the learning rate that
changes the weight of the training algorithm and we set the value of 0.00001. We set the
batch-size to 64 (Fig. 2).

Fig. 2. Training and validation accuracy and loss graph from BiLSTM model

5.3 Experimental Result of BERT Model

We have used 60 epochs to train the model with a 0.00001 learning rate. To reduce
overfitting, we set the dropout rate to 0.2. We have also used the Adam optimizer, RELU
for the hidden layer, and Sigmond for the output layer is used as an activation function.
To build the model we have used three dense layers, for the first dense we have used 64
neurons and a 0.2 dropout-rate. For the second dense layer we used 32 neurons. Lastly
for the output layer we have used 2 neurons (Fig. 3).

For this research we select BERT for classification because BERT is better than both
CNN and BiLSTM algorithms for semantic understanding.

5.4 Experimental Result of Disambiguation Model

We In our research, we have used the finetuned AmRoBERTa model with the FLAIR
document embedding technique to disambiguate Amharic words in the given sentence.
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Fig. 3. Training and validation accuracy and loss graph from BERT model

AmRoBERTa fine-tuning: We fine-tuned the AmRoBERTa model using 33,297 sen-
tences and 800 ambiguous words. When we train the model, we have used a maximum
of eight contextual meanings for a single ambiguous word. Our experiment is conducted
using an epoch of 200 and a batch_size of 64 using anNVIDIAGeForce RTX 1080/2080
Ti generations of GPU server, where each GPU has 12GB memory, with 32 CPU cores
and 252 RAM to run our experiments. We have conducted our experiment with 100 and
150 epochs but the performance was not optimal. We set it to 200 epochs which is the
optimal iteration for our data set. We have also experimented with batch-size of 32, 64,
and 248. But we have selected batch-size 64 as the optimal batch size because when the
batch-size is below 64 it takes more training time. When the batch-size is more than 64,
there is faster training, but the performance is low.

AmRoBERTAwithmasking: AmRoBERTamodel handles the context throughmasked
language modeling by randomly masking the 15% of the sentence in each epoch of
iteration. With a proper finetuning, our assumption is that, if we mask the ambiguous
word, it should predict the correct word with the right sense. From the experiment, we
take the following sentence predictions as an example.

Example: From this
sentence the ambiguous word (lik) is disambiguated as follow.

Based on our experimental result, The sentence
“ ” the model masks the
ambiguous word (lk) then the top 4 meaning of the masked word are predicted.

Word Sense Disambiguation with Flair embedding technique: For this experiment,
we have used the finetuned pre-trained contextual model to disambiguate the correct
sense of the ambiguous words. We have used the fine-tuned AmRoBERTa model with
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the FLAIR document embedding technique. For the disambiguation task, we have fol-
lowed a similar approach as Huang et al. (2019), where we have to prepare the target
sentence and gloss sentence pairs. However, there is noWordNet for Amharic to employ
for this task. Hence, we have selected 10 words that are previously annotated using
the WebAnno annotation tool. These words are (Wana), (Menged), (Sale),

(Akal), (Waga), (Gena), (Qena), (haq), (Hayil), and (Lik). Then
we constructed a gloss for 10 words, which contains the ambiguous word and possible
senses with examples sentences. During disambiguation, we select a target sentence that
contains ambiguous words where the sense is already annotated by the annotators. We
use the FLAIR document embedding with the finetuned contextual pre-trained model
to compute the similarity between the target sentence and the glosses. The sense which
has a high similarity value with the target sentence would be the correct meaning of the
ambiguous word. Based on the given sentence in the gloss, the model disambiguates the
target word into its correct sense. Example 1 below shows a target sentence and glosses
as examples.

Example 1: The sentence: “ ” is disam-
biguate as follow.

Based on the result of our experiment, for the
target sentence” ” the correct
sense of the ambiguous word (wana) is (Chibt -main point), as it has higher
similarity with the target sentence (0.5702) compared to the other senses, which are

(Aynetegna - principal) and (Meri/Halafi -leader) with similarity scores
of 0.5347 and 0.3580 respectively.

Example 2: The sentence: “
”

is also disambiguated as follow.
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Based on the result of our experiment, for the target sentence “
”

the correct sense of the ambiguous word is (Godana – street), as it has higher
similarity with the target sentence (0.8098) compared to the other senses, which are

(Akahiad - approach), (Astesaseb - thinking), (Aserar - procedure),
and (Huneta - situation) with similarity scores of 0.4688, 0.4052, 0.3305,0.3136
and 0.2925 respectively.

6 Conclusion

This study has developed an Amharic word sense disambiguation model by using a
transfer learning approach. The process of identifying the correct meaning based on its
context is known as word sense disambiguation. WSD is improving the performance of
different NLP applications like machine translation so, to advance NLP research WSD
is important. In addition, WSD will be abasis to build Amharic WordNet. These issues
motivated us to conduct this research.

As far asweknow, there is no standard sense-taggedAmharic text dataset forAmharic
WSD task. So, we have collected 10k sentences from Amharic news, Amharic dictio-
nary, Amharic Quran, Amharic bible, and Amharic textbooks. For the Amharic WSD
task, we have collected 800 ambiguous words from different sources such as Amharic
dictionaries, Amharic textbooks, and Abissinica online dictionary. A total of 33,297
sentences are used to finetune the AmRoBERTa model for the transfer learning.

In our study, we have compared different models to select the most suitable model
for WSD classification. To select the best fit model, we have conducted different experi-
ments. For the classification task, we have experimentedwith CNN,BiLSTM, andBERT
algorithmswith 2dense layers and a sigmoid activation function.According to the results,
CNN, Bi-LSTM, and BERT obtained 90%, 88%, and 93% accuracy respectively. Based
on our findings, the model based on BERT has achieved the vesting result.

As AmRoBERTa is a general-purpose pre-trained language model, we have fine-
tuned it with 33,294 sentences and 800 ambiguous words. Finally, the AmRoBERTa
model has been applied and when we use the masking technique to find the correct
sense, it attains 70% accuracy. We have also employed the FLAIR document embedding
framework to embed the target sentences and glosses separately. We then compute the
similarity of the target sentence with the glosses embedding. The gloss with the higher
score disambiguates the target sentence. Our model was able to achieve an accuracy
score of 71%.
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Abstract. In the fifth generation (5G) and future mobile networks,
the design of efficient detectors for massive multiple-input multiple-
output (MIMO) is essential. The main challenge in designing detectors is
the trade-off between performance and computational complexity; that
is, efficient detectors incur higher computational costs, while compu-
tationally cheaper detectors have lower efficiency. Recently, many deep
learning-based detectors have been proposed in the literature to fill in
such gaps. However, most of the existing MIMO detectors work only
with real-valued parameters. First, they transform the complex received
MIMO signal into an equivalent real-valued parameter by concatenating
the real and imaginary parts and then train a network based on the real-
valued data. Such an approach has several disadvantages. On one hand,
the number of trainable parameters will be doubled; on the other hand,
the phase information, which is important in the communication signals,
might be lost or distorted. In this work, we aim to investigate the applica-
tion of complex-valued neural networks for MIMO signal detection based
on Wirtinger Calculus. To do so, we propose a simple feedforward archi-
tecture that directly works with the complex-valued QPSK and 16-QAM
modulation signals. Our method is simple and computationally cheaper.
Simulation results show that the proposed approach can improve the per-
formance of the existing detectors while providing a lower computational
cost.

Keywords: Complex-valued neural networks · MIMO detector ·
Wirtinger calculus

1 Introduction

Massive multiple-input multiple-output (MIMO) is a key technology for 5G and
future mobile networks. One of the issues that must be addressed in order to
make the promising benefits of this technology a reality is signal detection. Sig-
nal detection is the process of recovering information that has been transmitted
through a noisy channel in a wireless communication system [1]. Due to inter-
ference, noise, and fading channel conditions, detection becomes increasingly
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difficult in massive MIMO systems. Furthermore, because of the high num-
ber of antennas, computational complexity is one of the key challenges in this
technology [2,3].

As a result, different categories of traditional detectors are proposed in the
literature to realize the promises of massive MIMO technology [4–6]. Besides
the traditional ones, neural network-based detectors are also a promising class
of MIMO detectors [7–9]. Deep neural network (DNN) detectors can operate in
data-driven, model-driven, or hybrid modes. The performance of these detec-
tors has shown a significant improvement compared with their traditional coun-
terparts. However, one of these detectors’ limitations is that they only work
with real-valued parameters. Most existing DNN-based applications are tuned
to work with real-valued parameters in order to take advantage of the computing
resources available in the existing DNN libraries [10].

One of the key reasons behind the success of supervised deep learning (DL) in
several tasks is its ability to learn a useful hierarchical representation of data [11].
Eventually, it has been used in difficult scenarios where tractable mathematical
models cannot characterize a problem. In such cases, the DL architecture is
represented by a black box and optimized through learning from data to solve
a specific problem. In various domains of applications, such as computer vision,
such a representation has surpassed human-level performance [12]. Since the
nature-made signals (RGB images, videos, . . . ) appear as real-valued signals,
most DNN libraries are built to process real-valued signals.

When it comes to engineering applications, including wireless communica-
tion, the situation is rather different. On the one hand, the information signals
are synthetically generated by humans. Hence, applying the DL to these signals
(man-made) doesn’t guarantee the best performance as that of nature-made
signals [13]. On the other hand, unlike most nature-made signals, the communi-
cation signals are represented in a complex baseband form, in which the phase
information is as important as the magnitude. As such, it is critical to resolve
these issues in order to effectively use the DL in wireless communications. In the
first case, the work in [13] has analyzed the applications of DL in the physical
layer of communication systems. In that work, it is shown that DL can be effi-
ciently applied to signal detection tasks. Nevertheless, the dataset used for the
analysis was transformed from complex to real.

In this work, we address the second issue by investigating the use of complex-
valued neural networks for MIMO signal detection. The use of complex numbers
when working with communication signals allows for precise representation of
both magnitude and phase [14]. The main challenge in complex analysis, how-
ever, is the diffentiability problem, which is described by the Cauchy-Riemann
equations [15]; i.e., in the DL, the partial derivatives of a real-valued cost func-
tion with respect to the complex-valued parameters in the back-propagation do
not exist. As such, we resort to Wirtinger Calculus, which allows us to fully
exploit the power of complex-valued signal processing [16]. To the best of our
knowledge, this is the first study to apply complex-valued neural networks to
the MIMO detection problem.
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Related Works: Several DNN-based detectors for massive MIMO have been
proposed [17]. We chose two detectors with superior performance in [7] and [9],
for ease of generation of training data. However, because of the aforementioned
complex-analysis issues, the data in these detectors must first be transformed
to the real-valued equivalent. This means that an n-dimensional complex-valued
vector will be converted to a 2n-dimensional real-valued vector: i.e., Cn �→ R

2n.
As a result, in those works, the network parameters are fully trained using real-
valued calculus and the output is converted back to complex. This method has
two major drawbacks: first, besides increased dimensionality (doubling the num-
ber of trainable parameters), it may be ineffective for nonlinear functions because
the functional form may not be easily separated into real and imaginary parts;
second, phase information may be lost or distorted.

The method we extend, however, can easily compute complex-valued gradi-
ents without requiring a transform into the real equivalent. For scalar quantities,
Brandwood [18] and Adali [16] show that the derivitive of the real-valued cost
function with respect to the complex-valued parameters exists. We show that
the same approach is valid for complex-valued vectors as well. Furthermore, we
present a design of a simple feedforward DL architecture for MIMO signal detec-
tion that can be trained fully in a complex domain. We will demonstrate through
simulation that complex-valued neural networks can be efficiently designed for
detecting MIMO signals.

The remainder of this paper is organized as follows. Section 2 provides pre-
liminary knowledge and operations that will be useful in the subsequent sections.
Section 3 describes the system model and problem formulation. Section 4 presents
the proposed network architecture and offline training procedures. Section 5 dis-
cusses several numerical results demonstrating the validity of the complex-valued
DNN for MIMO detection problems, and Sect. 6 concludes this work.

2 Preliminaries

2.1 Complex Matrix Multiplication

Suppose that W = Wr + jWi and b = br + jbi are complex matrix and
vector, respectively, Where the elements in Wr,Wi,br,bi are real quantities,
and j =

√−1. Then a complex matrix multiplication which results in a vector
h can be written as

h =Wb (1a)
=Wrbr − Wibi + j(Wibr + Wrbi), (1b)

The formulation in (1b) is a basis for various signal processing models that deal
with complex-valued parameters. Several algorithms, including the DL appli-
cations, use this approach to transform the results of their computation from
complex to real-domain and vice versa. Now notice that (1b) can be represented
as a real vector by concatenating its real and imaginary parts, which produces
a double dimensionality h′ = [hr,hi]T . In this work, we utilize the compact
complex form as in (1a).
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2.2 Wirtinger Calculus

Let f(ω) = u(ωr, ωi) + v(ωr, ωi) is a complex function, where ω = ωr + jωi. If
the continuous partial derivatives u(ωr, ωi), v(ωr, ωi) with respect to ωr and ωi

exist, then a generalized complex derivatives can be defined as [16]

∂f

∂ω
=

1
2

(
∂f

∂ωr
− j

∂f

∂ωi

)
,

∂f

∂ω∗ =
1
2

(
∂f

∂ωr
+ j

∂f

∂ωi

)
(2)

Formally, the complex derivative can be calculated by considering f to be a
bivariate function f(ω, ω∗) and ω and ω∗ to be independent variables. The
Wirtinger Calculus can generalize the standard complex calculus, as discussed
in [16]. As such, instead of taking partial derivatives with respect to the real and
imaginary components, it is more efficient to use the approach described above:
Rewrite f(ω) as f(ω, ω∗) and differentiate with respect to one by treating the
other as a constant.

3 System Model and Problem Formulation

3.1 System Model

1

K

1

M

s H y

Fig. 1. A MIMO system with s transmit symbols, and y received signal vector over a
channel matrix H.

Consider a MIMO communication system model shown in Fig. 1. We assume
that the transmitter side contains K single antenna user terminals (UT)s, and
the receiver is a base station (BS) equipped with M antennas. We denote the
spatially-multiplexed UTs transmitted symbols vector as s = [s1, s2, · · · , sK ]T

and its corresponding received signal vector as y = [y1, y2, · · · , yM ]T , where
sk, yj represent the transmitted symbol from the k-th UT, and the received
signal by the j-th BS antenna, respectively. Each sk is drawn from a set S
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of rectangular complex QPSK, and 16-QAM alphabets. We assume that the
complex propagation channel H ∈ C

M×K , is a flat fading and Rayleigh dis-
tributed, whose entries are independent and identically distributed (i.i.d) with
CN ∼ (0, 1). Then, the received signal vector y in a matrix form can be written
as

y(i) = Hs(i) + υ(i), i = 1, 2, · · · ,m, (3)

where υ ∈ C
M , a complex additive white Gaussian noise (C-AWGN), and m

is the number of transmission instants. Here, we also assume that the channel
state information is known to the transmitter.

In the existing works the complex-valued parameters in the above model is
transformed into equivalent real model [9]

y(i)
r = Hrs(i)

r + υ(i)
r , i = 1, 2, · · · ,m, (4)

where

s(i)
r =

[
Re(s(i))
Im(s(i))

]
∈ S2K

r , H(i)
r =

[
Re(H(i)) −Im(H(i))
Im(H(i)) Re(H(i))

]
∈ R

2M×2K ,

y(i)
r =

[
Re(y(i))
Im(y(i))

]
∈ R

2M ,υr =
[
Re(υ(i))
Im(υ(i))

]
∈ R

2M , i = 1, 2, · · · ,m.

(5)

Notice that the transformation in (5) follows the formulation in (1b). It is clear
from (5) that the dimension of each parameter is doubled when we attempt
to work with complex-valued parameters in the equivalent real. As discussed
above, the main issue in such an approach is that besides computational burden
in the network, the phase information will be lost or easily distorted, since the
network only optimizes the real parameters. In this work, however, we ignore
the transformation in (5) and directly work with the complex parameters in (3).

3.2 Problem Setup

Given (3), the goal of a MIMO detector is to recover the transmitted symbols
s(i) from the received signal y(i) relying on the knowledge of the channel at each
transmit instant i. Now, assuming all the information symbols in S are chosen
(transmitted) with equal probability, the optimum MIMO detector known as
maximum likelihood (ML) can be written as

s(i)
ML = argmin

s(i)∈SK

‖y(i) − H(i)s(i)‖2
2, i = 1, 2, · · · ,m. (6)

However, solving ML problem (6) globally is NP-hard since it requires |S|K
evaluations, where | · | denotes cardinality of a set. Because the computational
complexity in ML detection is prohibitively expensive, we resort to a suboptimal
solution that achieves near-ML performance while requiring less computational
complexity. In this work, we propose a complex-valued neural network architec-
ture as a supervised learning model that can take the complex received signal
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vector y as an input and return an estimate of the transmitted symbol s. Math-
ematically, this can be written as a machine learning problem

ŝ(i)
DL = argmin

f(·,θ)

E
(L(f(y(i);θ), s(i))

)
, (7)

where L(·) is some specific loss function, E(·), is expectation operator, and θ is
a set of trainable parameters. In (7), our goal is, through exploiting DNN, to
learn an optimal function f(·,θ) and its corresponding parameter θ in the sense
that it can minimize the objective function L(·).

4 Complex-Valued Feed-Forward Networks

In this section, we describe the proposed complex-valued feed-forward network
or a multilayer perceptron (MLP), which from now on will be referred to as
“cFFDnet.”

4.1 Forward Propagation

The cFFDnet, like its real counterpart, MLP, performs feature mapping dur-
ing forward propagation. There are two basic operations: linear and non-linear
mappings, which are briefly described as follows. The network takes the noisy
received signal y which is denoted as a0 as an input, and returns the estimated
symbol ŝ as an output.

Suppose that N denotes the number of units (neurons), and � denotes the
number of layers. Let W� ∈ C

N�×N�−1
,b� ∈ C

N�

denote the complex weight
matrix and bias term respectively. Then the linear and non-linear mapping at
each layer can be written as [19]

z� = W�a�−1 + b�, (8a)

a� = σ(z�), � = 1, 2, · · · , L, (8b)

where σ(·) is the non-linearity (activation function). For notation consistency,
we consider the input as a 0-th layer; i.e., a0 = y.

At each layer, the linear mapping in (8a) computes a complex-matrix mul-
tiplication to obtain a vector z� ∈ C

N�

. Then it goes through σ(·), a non-linear
mapping. Here, σ(·) is a pointwise activation function that brings non-linearity
to the network. There are several classes of activation functions proposed for
complex-valued architectures. In this work, we utilize the modified tanh [20]

σ(z) = tanh
(||z||) � z

||z|| , (9)

where || · || denotes magnitude, and � denotes a point-wise multiplication. The
main advantage of this activation function is that it keeps the phase information.
The corresponding set of trainable parameters can be defined as

Θ = {W1,b1, · · · ,WL,bL}. (10)
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Backward pass

Forward pass

Key

Fig. 2. A Computational graph representation of the proposed cFFDnet for the MIMO
detection.

4.2 Back Propagation

In this subsection, we describe the back propagation process that characterizes
the learning steps of cFFDnet.

Let Y = C
M denotes M -dimensional feature space and S ′ = [s1, s2, · · · , sK ]T

denotes the label space. Then the training dataset can be described as D ={(
a

0(i)
, s(i)

)}m

i=1
, where a0 ∈ Y, s ∈ S ′, are the input feature and true label,

respectively, and m is the number of training examples. Then, the detection
task in the cFFDnet can be defined as a mapping function fΘ : Y �→ S ′. In other
words, the fΘ is a regression function that minimizes a loss function to find the
best parameter Θ that will be used estimate the transmit symbol s. The loss
function is defined here as the mean-squared-error (MSE) between the true label
s and the estimated network output aL (see Fig. 2). To do so, let us define the
error corresponding to each symbol as

ek = sk − aL
k , k = 1, 2, · · · , NL = K. (11)

Then, the MSE loss produced by the network is

L =
1
K

K∑
k=1

eke∗
k, (12)

where ∗ denotes a complex conjugate operation. Alternatively, in vector notation,
it can be written as

L =
1
K

(
(s − aL)†(s − aL)

)
,

=
1
K

(
s†s − (

aL
)†

s − s†aL +
(
aL

)†
aL

)
,

(13)

where † denotes hermitian operation (transpose of a complex conjugate), and
aL ∈ C

K represents the estimated output of the network. The superscript (i)
is ignored for notational simplicity; i.e., the loss function is defined for a single
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training example. Now notice that the loss function (13) is a real quantity (L :
C

K ×C
K �→ R

K), while the network parameters are complex. As discussed in the
previous sections, the Wirtinger Calculus can lay the groundwork for computing
complex gradients with respect to the real-valued loss function. A modification
required here is that the generalization of dimensionality since the results of
Wirtinger Calculus are provided for scalar quantities. Proposition 1 discusses
this extension.

Proposition 1. Let f : Cn1 �→ R
n2 be a real valued vector function of a complex

vector w. Let f(w) = g(w,w∗), where g : Cn1 × C
n1 �→ R

n2 is a real-valued
vector function of two complex vector variables. Then computing ∂g

∂w∗ = 0 is a
necessary and sufficient condition to determine the stationary point of f .

See Appendix A for the proof. A complex-valued network can be effectively
trained utilizing the result in proposition 1 and the chain rule in the Wirtinger
Calculus [21]. The gradient computation in the back propagation starts at the
output (L-th layer) by computing the loss function (the error between true label
s and the estimated symbol vector ŝ.

The main objective of learning in this work is to minimize the loss function
(13) with respect to the complex set of parameters Θ. To briefly describe this
procedure, let us use da, dz, dW, db to denote the gradients corresponding to

∂L
∂a∗L

,
∂L

∂z∗L
,

∂L
∂W∗L

,
∂L

∂b∗L
,

respectively. As shown in the computation graph in fig.2, at the output layer, the
network first computes the gradient daL and step by step goes back to compute
gradients in each layer. For instance, the gradient with respect to the linear
activation dzL can be computed by applying the chain rule as

dzL =
∂L

∂z∗L
=

∂L
∂aL

∂aL

∂z∗L
+

∂L
∂a∗L

∂a∗L

∂z∗L
. (14)

Similarly, during back propagation, other gradients will be computed and
updated. For the learning, we use the standard stochastic gradient descent (SGD)
method.

5 Numerical Results and Discussion

In this section, we present different numerical results that can demonstrate the
effectiveness of the proposed methods.
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5.1 Implementation Details

All detectors are implemented in python 3.6 using TensorFlow 2.4 library, and
Table 1 lists the basic parameters.

Table 1. A list of network parameters.

Parameter Quantity

Number of hidden layers 5

Average epoch 3, 000

Batch size 1024

Training data size 90, 000

Validation data size 20, 000

Maximum number of units in each layer 512

Maximum number of trainable parameters 1.3 million

�2 regularization factor 0.0001

Dropout ratio (max.) 0.3

Given the complex system model in 3, the dataset is generated as follows:
In all realizations (offline training and online detection phases), the channel is
chosen to be the classical i.i.d. Rayleigh fading, and fixed. The transmit symbols
are drawn from the QPSK, and 16-QAM constellations. The noise variance is
randomly sampled from complex AWGN, and the signal to noise ratio (SNR) in
each training sample computed as SNR = 10 log ||Hs||2

||υ ||2 . Then, the dataset D is
generated as the definition in Sect. 4.2.

After the network is successfully trained (minimum overfitting and underfit-
ting is obtained), it will be tested in online detection by using newly generated
data that follows the same distribution as the training dataset. In the testing
stage (online detection), the generalization ability of the network (detector) will
be evaluated compared with the existing detectors. For this purpose, we employ
the classical symbol-error-rate (SER) versus SNR performance analysis by run-
ning several Monte Carlo simulations. The numerical results for offline training
and online detection are presented in the following subsections.

5.2 Learning History: Offline Training Phase

We begin our discussion of the proposed methods’ performance analysis by
assessing the offline learning characteristics. Figures 3(a),(b) show the basic
training history parameters, training/validation loss and accuracy. We can see
from these figures that the training loss is decreasing smoothly (Fig. 3(a)) or that
the training accuracy is increasing continuously (Fig. 3(b)). This implies that the
network is learning efficiently from the given dataset. On the other hand, we can
see that the validation loss declines very closely to the training loss, or that
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(a) Training and validation losses. (b) Training and validation accuracy.

Fig. 3. The offline learning histories for a QPSK modulated, (M = 16, K = 4) MIMO
system.

the validation accuracy increases consistently with the training accuracy until
it reaches a maximum (≥ 95%). This demonstrates that the network was less
overfitted during offline training, implying that generalization ability in online
detection will be improved.

5.3 SER: Online Detection Phase

Since running simulation results for the optimal ML detector is very difficult
for larger MIMO sizes, we use the classical suboptimal detector SDR [4] as a
reference. Furthermore, we compare our proposed method with efficient existing
detectors that are based on the model-driven deep learning approach.

Figures 4(a)–(d) show the online detection performance in terms of SER ver-
sus SNR for QPSK and 16-QAM modulations and different MIMO sizes. As
shown in the Fig. 4(a), the proposed method has outperformed the existing
model-driven methods (DetNet, ADMM-PSNet) in a significant range of SNR.
It is evident from this figure that the proposed cFFDnet has achieved a perfor-
mance very close to SDR particularly in the lower SNR regime.

To further investigate the performance of the proposed method, we increased
the modulation to 16-QAM with different MIMO sizes. The corresponding results
of this scenario are depicted in Figs. 4(b)–(d). As it is clear from the figures, the
performance of the proposed method is consistently improved under the given
scenarios. In Fig. 4(d), it is also evident that even though the proposed detector
achieved improved performance compared to the existing detectors, it seems to
lag behind the SDR with a noticable range of SNR. This is due to the fact that
as K increases, training the network with the same parameter settings results
in limited efficiency. Because the size of the input data is limited (M = 64), it
is difficult to achieve the required level of training accuracy. However, it is clear
from the above results that once the network is properly trained, it can achieve
significantly improved performance near the sub-optimal detector.
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(a) QPSK, (M = 16,K = 4) MIMO system. (b) 16QAM, (M = 32,K = 8) MIMO system.

(c) (M = 64,K = 8) MIMO system. (d) (M = 64,K = 16) MIMO system.

Fig. 4. SER performance comparison between the proposed and the existing detectors
in different modulations.

Fig. 5. Computational complexity comparison between the proposed and existing
detectors for M = 64, and varying K MIMO sizes.
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5.4 Computational Complexity

Apart from the SER performance improvement, the proposed detection method
can also provide a lower computational cost compared to the existing methods.
To show this, we use the standard number of floating point operations (Flops)
as a performance measure.

Figure 5 illustrates the computational complexity comparison between the
proposed and existing detectors. The results in this figure are obtained by count-
ing the number of complex-vector multiplications for different MIMO sizes with
M = 64, and varying K. As it is clear from the figure, the computational com-
plexity of the proposed detector is significantly reduced compared to the exist-
ing model-driven detectors for a wide range of K. The main reason for such
an improvement is that the proposed method is a simple feedforward network.
During the training phase, since the network involves forward and backward
propagation, its computational cost is higher (it takes longer time to learn). In
the online detection, however, we only pass information forward, in which the
network performs simple computations such as matrix-vector multiplication and
pointwise activation. As a result, once properly trained, it has a lower computa-
tional cost.

6 Conclusion

The use of complex numbers plays a vital role in processing communication sig-
nals. When it comes to MIMO signal detection, several DL-based detectors have
been proposed in the literature. However, they failed to work with complex-
valued parameters. In this work, we have analyzed the application of complex-
valued neural networks for MIMO signal detection for QPSK and 16-QAM sig-
nals. Numerical results have shown that the proposed approach can improve the
performance of the existing detectors. Moreover, the computational complexity
of the proposed approach is very low compared with the existing methods.

Appendix A Proof of Proposition 1

Proof. By considering an element wise operation on the elements of the real
vector f , the proof is straightforward from [18]. Further, since g is a real function,
∂g
∂w , ∂g

∂w∗ are conjugates of each other; i.e., ∂g
∂w∗ =

(
∂g
∂w

)∗. Hence, it is sufficient
to compute the term ∂g

∂w∗ .

References

1. Shannon, C.E.: A mathematical theory of communication. ACM SIGMOBILE
Mobile Comput. Commun. Rev. 5(1), 3–55 (2001)

2. Marzetta, T.L.: Noncooperative cellular wireless with unlimited numbers of base
station antennas. IEEE Trans. Wireless Commun. 9(11), 3590–3600 (2010)



Deep Complex-Valued Neural Networks for Massive MIMO Signal Detection 251

3. Yang, S., Hanzo, L.: Fifty years of MIMO detection: the road to large-scale MIMOs.
IEEE Communi. Surveys Tutorials 17(4), 1941–1988 (2015)

4. Wai, H.T., Ma, W.K., So, A.M.C.: Cheap semidefinite relaxation mimo detection
using row-by-row block coordinate descent. In: IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pp. 3256–3259 (2011)

5. Shahabuddin, S., Juntti, M., Studer, C.: Admm-based infinity norm detection for
large mu-mimo: Algorithm and vlsi architecture. In: IEEE International Sympo-
sium on Circuits and Systems (ISCAS), pp. 1–4 (2017)

6. Wu, Z., Zhang, C., Xue, Y., Xu, S., You, X.: Efficient architecture for soft-output
massive mimo detection with gauss-seidel method. In: 2016 IEEE International
Symposium on Circuits and Systems (ISCAS), pp. 1886–1889 (2016)

7. Samuel, N., Wiesel, A., Diskin, T.: Learning to detect. IEEE Trans. Signal Process.
67(10), 2554–2564 (2019)

8. Xiaosi, T., et al.: Improving massive MIMO message passing detectors with deep
neural network. IEEE Trans. Veh. Technol. 69(2), 1267–1280 (2020)

9. Tiba, I.N., Zhang, Q., Jiang, J., Wang, Y.: A low-complexity ADMM-based massive
MIMO detectors via deep neural networks. In: IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pp. 4930–4934 (2021)

10. Tiba, I.N., Kulimushia, B.B., Kajuna, C.K.: Massive MIMO data detection using 1-
dimensional convolutional neural network. In: IEEE/CIC International Conference
on Communications in China (ICCC), pp. 483–488 (2020)

11. Tishby, N., Zaslavsky, N.: Deep learning and the information bottleneck principle.
In: 2015 IEEE Information Theory Workshop (ITW), 26 Apr, pp. 1–5. IEEE

12. He, K., Zhang, X., Ren, S., et al.: Delving deep into rectifiers: surpassing human-
level performance on imagenet classification. In: 2015 IEEE International Confer-
ence on Computer Vision (ICCV), pp. 1026–1034 (2015)

13. Bjornson, E., Giselsson, P.: Two applications of deep learning in the physical layer
of communication systems [lecture notes]. IEEE Signal Process. Mag. 37(5), 134–
140 (2021)

14. Adalı, T., Li, H., Haykin, S: Complex-valued adaptive signal processing. Adapt.
Signal Process. Next Gener. Solutions (2010)

15. Ablowitz, M.J., Fokas, A.S.: Complex Variables. Cambridge University Press, Cam-
bridge (2003)

16. Adali, T., Schreier, P.J., Scharf, L.L.: Complex-valued signal processing: the proper
way to deal with impropriety. IEEE Trans. Signal Process. 59(11), 5101–5125
(2011)

17. Albreem, M.A., Juntti, M., Shahabuddin, S.: Massive MIMO detection techniques:
a survey. IEEE Commun. Surv. Tutorials 21(4), 3109–3132 (2019)

18. Brandwood, D.H.: A complex gradient operator and its application in adaptive
array theory. In: IEE Proceedings H-Microwaves, Optics and Antennas, pp. 11–16
(1983)

19. Sun, R.: Optimization for deep learning: theory and algorithms. arXiv preprint
arXiv:1912.08957 (2019)
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Abstract. Power systems are frequently viewed as complex, nonlinear, and
dynamic systems. This system is constantly subjected to small disturbances that
can result in synchronization loss and system failure. To fix this issue, power
system stabilizers are applied to generate extra excitation control signals. Con-
ventional power system stabilizer (CPSS) is difficult to track the dynamic nature
of the load since stabilizer gains are determined under specific working condi-
tions. In this paper, a multi-level fuzzy-based stabilizer uses the variation of rotor
speed and acceleration as an input tomitigate low-frequency oscillations (LFOs) in
single-machine infinite bus systems. The system is represented mathematically by
the Heffron Philips K-coefficients model. The controller’s performance was inves-
tigated for disturbances exposed to inputs of various membership functions, such
as a triangular, gaussian, generalized bell, and trapezoidal. Eachmembership func-
tion is compared. For instance, a multi-level fuzzy-based stabilizer with a triangu-
lar membership function settled the rotor angle, rotor speed, and electrical torque
deviations 29.5%, 5.9%, and 39.7% faster than the gaussian membership function
fuzzy-based PSS, respectively. The study’s findings revealed that the triangular
membership function performed better than other membership functions.

Keywords: LFOs · Multi-Level Fuzzy · Single-Machine System

1 Introduction

Power system stability is the capacity of a power system to establish restorative forces
equal to or greater than the disturbing forces to preserve balance. This concept applies
to the nation’s interconnected power system since it is a highly nonlinear system that
operates in a constantly changing environmentwhere loads, generator outputs, and essen-
tial operating parameters change. Low-frequency oscillation is caused by an imbalance
between the damping and synchronization torque in power systems, which modifies the
generator voltage angle [1].
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Small-signal stability, a subset of phase angle-related instability concerns, is the
capacity of synchronous machines in an interconnected power system to maintain syn-
chronism after being subjected to a slight disruption [2]. This occurs as a result of
a balance between the electromagnetic and mechanical torques of each synchronous
machine linked to a power system [3]. For instance, insufficient synchronizing torque
results in “aperiodic” or non-oscillatory instability while inadequate dampening torque
results in low-frequency oscillations [4]. Both of these small signal stability problems
have resulted from poor damping caused by high gain voltage regulators to cancel the
effect of synchronizing torque.

In excitation control, a high gain regulator has a binding effect of eliminating syn-
chronizing torque but negatively affects the damping torque [5]. To solve the unwanted
effect of these voltage regulators, other supplementary signals are introduced in the feed-
back loop. The additional signals are primarily caused by speed divergence, excitation
divergence, or accelerating power, which is achieved by injecting a stabilizing signal
into the excitation system, and the error signal drives the regulator [6].

The power system stabilizer is divided into three stages: lead-lag compensator, wash-
out, and gain block [7]. To compensate for the lag between the PSS output and the
subsequent electrical torque developed, lead-lag compensators use phase-lead circuits.
A washout circuit functions as a high-pass filter. The amount of damping associated with
rotor oscillation is determined by the gain of the power system stabilizer. Traditional
control theory and a linearized system model are used to design conventional power
system stabilizers (CPSS) that provide optimal behavior under fixed operating conditions
[8]. A conventional controller, on the other hand, fails to achieve effective control in
systems with frequently fluctuating parameters. These pique one’s interest in developing
a fuzzy logic controller (FLC). FLCs employ feasible reasoning, which is similar to how
humans make decisions [9]. This enables knowledge and experience gained from the
system to be applied in such a way that adequate control for the design is provided
even when the system configuration and conditions change. As a result, control systems
based on fuzzy logic can solve intelligent control tasks, adapt to changing environments,
and make sound decisions [10]. A hybrid of the fractional PID controller and a single
fuzzy logic-based stabilizer has been proposed to improve the stability of a single-
machine infinite bus (SMIB) power system [11]. However, the controllers’ capabilities
are limited due to the need for an expert to design the best possible solution [12]. To
address this issue, a type-2 fuzzy logic controller withmore degrees of freedom to handle
nonlinearities and uncertainties has been developed, improving power system stability
[13]. The study’s results, however, necessitated a complete mathematical model of the
system, which was difficult due to the power system’s dynamic and nonlinear nature.
This triggers the researcher to find a new design to handle low-frequency oscillations
with the best performance index when the systems are subjected to various small-signal
disturbances.

2 Mathematical Modeling

Mathematicalmodeling of a power systemconsists of a synchronousmachine, excitation,
power system stabilizer, and multi-level fuzzy-based stabilizer.
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2.1 Synchronous Machine Modeling

The complete model of the synchronous generator, which includes six electrical and two
mechanical nonlinear dynamic equations, is shown below [14].

T′
do
dE′

q

dt
= −E′

q − (
Xd − X′

d
)
[
Id − X′

d − X′′
d

(X′
d − Xls)

2

(
ψ1d + (
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)
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)
]
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2H

ωs

dω

dt
= TM − X′′

d − Xls

(X′
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(X′
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q − Xls
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q − X′′
d
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(6)

where,

E′
d,q Transient voltage in d-/q-axis T′

do,qo The transient time constant of
d-/q-axis

Efd Field voltage T′′
do,qo Sub transient time constant of

d-/q-axis

H Inertia constant TFW Additional damping torque prop. to
speed

Id,q Current in d-/q-axis TM Mechanical torque

Xls Leakage reactance X′
d,q Transient reactance in d- /q-axis

δ Rotor angle X′′
d,q Sub transient reactance in d-/q-axis

ω Rotor speed ψ1d Flux linkage d-axis damper winding

Equations (1) and (2) describe the dynamics in the d-axis, while Eqs. (3) and (4)
describe the dynamics in the q-axis. Equation (5) and (6) represents thewell-knownswing
equations. The torque component TFW, which introduces damping torque proportional
to rotational speed, can be extra damping in all models.

2.2 Excitation System Model

The ST1A thyristor control model was used in the study because it allows negative field
current to enable generator de-excitation, as shown in Fig. 1 [2].
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∑

Exciter GainVoltage Transducer

Fig. 1. Block diagram of an excitation system

A simplified model of ST1A excitation that is shown in Fig. 1, is linearized as:

�Et = ed0
Et0

�ed + eq0
Et0

�eq (7)

Efd = KA(Vref − VI) (8)

In terms of perturbed values;

�Et = KA(−�VI) (9)

In the preceding equations, Efd is the e.m.f. due to d-axis flux, and Vref is the steady-
state magnitude of the terminal voltage. VR is the output voltage, and TR is the time
constant.

2.3 Single-Line Diagram Representation of a Test System

In this study, the system that operates to the infinite bus is obtained in [6] and detailed
machine constants are given in Appendix, as shown in Fig. 2, which is for simulation.
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G
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Fig. 2. A single-line diagram of the case study’s single machine power system

The Heffron-Phillips model of the SMIB system shown in Fig. 3 is used in this
paper [15]. H is the inertia constant, �w is a deviation of speed, wo is rated speed, s
is the Laplace operator, K1 to K6 are known as K constants (which are the functions



256 T. A. Mezigebu and B. B. Gessesse

of machine inertia constant, transmission line reactance, field time constant, machine
loading conditions and exciter time constant), KA is exciter gain, TR, Tdo, and TA are
time constant of voltage transducer, field circuit, and exciter, respectively. The numerical
values of the constants are given in Appendix.

+
∑

∑∑ + +

Fig. 3. A linearized model of a single machine connected to an infinite bus

2.4 Design of Conventional Power System Stabilizer

The expression of GEP(s) can be derived from Fig. 3 as follows [1]:

GEP(s) = K2K3Gexc(s)(
1 + sT

′
d0K3

) + K3K6Gexc(s)
(10)

The transfer function of the excitation system is as follows:

Gexc(s) = KA

1 + sTA
(11)

Thus, Eq. (10) becomes:

GEP(s) = K2K3KA

TAT
′
d0K3s2 + (

TA + T
′
d0K3

)
s + K3K6KA + 1

(12)

From Fig. 4, the contribution of the PSS to the torque-angle loop is given by:

�TPSS

�ω
= GEP(s)PSS(s) (13)
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∑

∑

Fig. 4. Block diagram of a power system stabilizer with speed as an input

The state-space representation of the test system with exciter has become:

⎡

⎢⎢
⎣

�δ̇

�ω̇

�Ė
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⎣
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⎥⎥⎥
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�Vref (14)

The eigenvalues of the system became calculated as:

|A − λiI| = 0;
λ1,2 = −0.0181 ± 9.9433i; λ3,4 = − 2.6971 ± 10.8965i

where A denotes the system matrix, the corresponding damping factor (ξ) of the given
SMIB is given in the Table 1 below.

Table 1. Damping ratio, undamped natural frequency, and frequency of oscillation

Eigen values σ ωn (rad/sec) f (Hz) ζ

λ1,2 −0.0181 ± 9.9433i −0.0181 9.9433 1.582525 0.002

λ3,4 −2.6971 ± 10.8965i −2.6971 10.8965 1.734232 0.2403

The eigenvalues obtained above prove that the system λ1,2 is poorly damped com-
paredwithλ3,4. So, a conventional power system stabilizer is applied to damposcillation.
During the conventional power system stabilizer design process, the following stepsmust
be taken [15];

Step 1. Find the torque-angle loop’s undamped natural frequency in rad/sec using the
Heffron Philips model, ignoring all other sources of damping.

2H

ωs
s2 + K1 = 0, i.e, s1,2 = jωn,where,ωn =

√
K1ωs

2H
= 10 (15)
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Step 2. Find the phase lag of GEP(s) at s = jωn in Eq. (10).

GEP(s)
∣∣s =jωn

= 49.374644

11.597158 + 25.2342j
= 1.78� − 65.31740 (16)

Step 3. In Eq. (13) modify the phase lead of T(s) so that

T(s)
∣∣s =jωn

+ GEP(s)|@s = jωn = 0 (17)

Let

T(s) = KPSS

(
1 + sT1

1 + sT2

)k

(18)

Ignoring the washout filter time constants (T1 and T2), whose net phase contribution
is approximately zero, k = 1 when T1 > T2. Now select T1, and T2 as some values
between 0.02 and 0.15 s [1]. As a result, for T2 = 0.0575 s, their corresponding T1
values are:

� (1 + j10T1) = �
[
(1 + j10 ∗ 0.0575) − 1.78� − 65.31740

]

10T1 = tan
(
83.32130

)
;

T1 = tan
(
83.32130

)

10
= 0.854 s

(19)

Step 4. The phase lead of G(s) cancels the phase lag caused by GEP(s) at the oscil-
lation frequency, and the contribution of the PSS via GEP(s) is a pure damping torque
with a damping coefficient DPSS.

DPSS = 2ξωnM = KPSS
∣
∣T(s)

∣
∣s =jωn

∣
∣GEP(s)|@s = jωn (20)

From Eq. (18), find KPSS, knowing ωn and the desired [1].

KPSS = 2ξωnM∣∣T(s)
∣∣s =jωn

∣∣GEP(s)
∣∣s =jωn

= 2 ∗ 0.25 ∗ 10 ∗ 2 ∗ 2.37

6.65 ∗ 0.9978 ∗ 1.78
= 2

As a result, the final conventional power system stabilizer would be:

Gain Wash-out Compensator

Limiter 

Fig. 5. Block diagram of a designed conventional power system stabilizer
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The conventional power system stabilizer, as shown in the above figure (Fig. 5), is
made up of three blocks: phase compensation, signal washout, and gain. The phase com-
pensation block provides the appropriate phase-lead characteristics to compensate for
the phase lag between exciter input and generator electrical torque. The signal washout
block acts as a high pass filter, removing DC signals. PSS damping is determined by the
stabilizer gain.

2.5 Design of Multi-level Fuzzy Logic Controller-Based Stabilizer

Low-frequency oscillations in a power system are damped using additional control sig-
nals sent to an automatic voltage regulator (AVR) via a speed deviation signal [16]. The
rotor speed and its derivative are used as inputs, and the output is a voltage signal [17].
The fuzzy logic controller output has been multiplied by Kout again to give the appro-
priate control signal �V [18]. Blocks of the fuzzy logic controller with normalization
factors are given in Fig. 6. The scaling factors Kin1 and Kin2 are the normalization
factors for rotor speed and rate of the speed, respectively.

FuzzificationFuzzy 
Inferences 

Knowledge Base 

Defuzzification

Data Rule 

Synchronous

Generator

Efd

∑

-

Exciter 
& AVR∑

Vref Error 

FuzzificationFuzzy 
Inferences 

Knowledge Base 

Defuzzification

Data Rule 

∑

+

Fuzzy-1

Fuzzy-n 

Fig. 6. Block diagram of proposed multi-level fuzzy-based stabilizer
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The input domain can be described by linguistic terms such as positive big (PB),
positive medium (PM), positive small (PS), zero (Z), negative small (NS), negative
medium (NM), and negative big (NB) for seven linguistic variables [19].

Fuzzy Rule Base. A rule that describes the relationship between the input and output
of fuzzy controllers can be set up using accessible knowledge in designing PSS [20].
The rule base is built using prior knowledge from plant dynamics, existing controllers,
and experienced experts [18].

Rule 1. If the speed deviation is NB and the acceleration is PB, the voltage (output of
fuzzy PSS) is NS. This means when the load angle and rotor acceleration decrease, the
excitation system reduces the field voltage required to stabilize the system.

Rule 2. If speed deviation is NM and acceleration is NB, then a voltage (output of fuzzy
PSS) is NB.

Rule 3. If speed deviation is PS and acceleration is PS, then a voltage (output of fuzzy
PSS) is PS, and so on. This means when the load angle and rotor acceleration increase,
the excitation system raises the field voltage needed to stabilize the system.

Table 2 explains all 49 rules that govern the mechanism wherever all symbols are
defined in basic fuzzy logic expressions.

Table 2. Fuzzy logic control rule bases [19]

Acceleration 
Speed

Voltage

NB NM NS Z PS PM PB

NB NB NB NB NB NM NM NS
NM NB NM NM NM NS NS Z
NS NM NM NS NS Z Z PS
Z NM NS NS Z PS PS PM
PS NS Z Z PS PS PM PM
PM Z PS PS PM PM PM PB
PB PS PM PM PB PB PB PB

3 Simulation Results

The performance of the SMIB system with only the excitation system, conventional
PSS (lead-lag), single fuzzy, and multi-level-fuzzy based PSS is analyzed using the
Heffron Philips (K constant) values. A step input signal is used as the prime mover for
a synchronous generator in the Simulink model.
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Fig. 7. SIMULINK model with AVR

Fig. 8. Response of a 100% step-change in TM without PSS

3.1 System Performance with Excitation System Only

Figure 7 shows the Simulink block with only the excitation system for the test system.
The response of the system without any controller applied is as follows:
As illustrated in Fig. 8, the system’s response has oscillatory due to an insufficient

damping coefficient.Without any stabilizer, the settling time of power angle, rotor speed,
and electrical torque deviations takes more than 100 s. As time goes up, the oscillating
amplitude decreases but persists for an extended time, causing the system to become
monotonically unstable. This results in the equipment to be loss of synchronism or



262 T. A. Mezigebu and B. B. Gessesse

being damaged so to protect the system from this proper power system stabilizer became
designed.

3.2 System Performance with Conventional Power System Stabilizer

Figure 9 below shows the Simulink block diagram of the conventional power system
stabilizer for the system. The numerical values of the power system stabilizer block are
determined in the design section.

Fig. 9. SIMULINK model with power system stabilizer

Figure 10 shows the response of the system with conventional stabilizers when there
is a 100% step change in mechanical torque.

Fig. 10. Response of a 100% step-change in TM with CPSS

As shown in Fig. 10, the settling time for rotor angle, rotor speed, and electrical torque
deviations is 6.3019, 6.4544, and 5.9409 s, respectively. This showed that the designed
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stabilizer able to settle small signal disturbances within 7 s. As a result, conventional
power system stabilizers reduced the settling time by 93.698%, 93.546%, and 94.059%
for rotor angle, rotor speed, and electrical torque deviations, respectively, improving the
low-frequency oscillations as compared with the existing system without any stabilizer.

3.3 System Performance with Fuzzy Logic-Based Stabilizer

The Simulink model of a single fuzzy logic controller to damp small signal oscillations
in a single-machine infinite bus system can be shown in Fig. 11.

Fig. 11. SIMULINK model with a single fuzzy logic-based stabilizer

When there is a 100% step change in mechanical torque in the system, the response
of rotor angle, rotor speed, and electrical torque deviation with a single fuzzy-based
power stabilizer is shown in Table 3 with different membership functions below.

Table 3. The response of the system via a single fuzzy logic-based stabilizer

Controller Membership function
Triangular Gaussian

Single 
fuzzy Generalized Bell Trapezoidal

FromTable 3, the settling time of electrical torque deviations for a single fuzzy-based
power system stabilizer with triangular and gaussian membership functions is 2.4478
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and 3.0769 s, respectively, to reach a steady-state value. This indicated that the fuzzy
controller enhances small signal disturbance with minimum time and overshoot as com-
pared to the conventional stabilizer that was seen in the previous session. This makes a
single fuzzy with triangular and gaussian membership function-based power system sta-
bilizer achieved settling time by 58.797% and 48.208% earlier than conventional power
system stabilizers, respectively, for electrical torque deviations. This stated that triangu-
lar membership settles 10.589% quicker than gaussian membership. The response of the
system for power angle deviations via a single fuzzy with triangular and gaussian mem-
bership function-based stabilizer achieved a settling time of 59.757% and 50.578% faster
than conventional stabilizers, respectively. Therefore, the triangular membership func-
tion achieved the settling time 9.179% quicker than the gaussian membership function.
While a single fuzzy with generalized bell and trapezoidal membership function-based
power system stabilizer achieved a settling time of 67.670% and 158.325% slower than
conventional power system stabilizers, respectively. This perceived that generalized bell
and trapezoidal membership resulted in oscillatory amplitude decreases but persist for
a long time even slower than conventional stabilizer. Due to this generalized bell and
trapezoidal membership single fuzzy-based stabilizer is not advisable to improve LFOs.

3.4 System Performance with Multi-level Fuzzy Logic-Based Stabilizer

The SIMULINK model builds to study the performance of a multi-level fuzzy logic
controller to damp LFOs is given in Fig. 12. The proposed controller incorporates the
intelligentmetaheuristic optimization algorithm to optimize the parameters of the system
in addition to the direct fuzzy controller.

Fig. 12. SIMULINK model with multi-level fuzzy logic-based PSS
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Table 4 illustrates the response of themulti-level fuzzy-based power system stabilizer
to dampen low-frequency oscillations for various membership functions.

Table 4. The response of the test system via a multi-level fuzzy logic-based stabilizer

Controller Membership function
Triangular Gaussian

Single 
fuzzy Generalized Bell Trapezoidal

As per results from Table 4, the settling time of electrical torque deviations using a
multi-level fuzzy-based stabilizer with triangular, gaussian, and generalized bell mem-
bership functions takes 0.0627, 0.6376, and 1.4155 s, respectively, to reach the final
steady-state value. This showed that the designed stabilizer can settle small signal dis-
turbances in the smallest time as compared to any stabilizer mechanism. As a result, a
multi-level fuzzy with triangular, gaussian, and generalized bell membership function-
based power system stabilizer settled 95.670%, 55.961%, and 2.231% faster than a
single fuzzy with triangular fuzzy-based power system stabilizer. The response of the
system for power angle deviations via a multi-level fuzzy-based stabilizer with triangu-
lar and gaussian membership settled 34.601% and 5.084% quicker than a single fuzzy-
based stabilizer. While the settling time of electrical torque deviations for a multi-level
fuzzy-based power system stabilizer with a trapezoidal membership function takes more
than 100 s. Consequently, the oscillatory output is produced by a multi-level fuzzy with
trapezoidal membership function-based power system stabilizer. Due to this, trapezoidal
membership multi-level fuzzy-based stabilizer is not applicable to improve LFOs. Thus,
Multi-level fuzzy improves power system stability and removes steady-state error that
occurs in the system within a short time. This, in turn, increases the reliability, quality,
and security of the power system.

3.5 Comparative Analysis of the System

The comparative analysis response graph of electrical torque and power angle deviation
among various stabilizers via various membership functions with a 5%, 25%, 50%, 75%,
and 100% change in mechanical torques is given in Table 5.
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Table 5. Comparison of system response with performance index via various stabilizers

Membership Parameter response for 5% change in mechanical torque
Electrical torque deviation Load angle deviation

Triangular

Gaussian

Generalized
Bell

Trapezoidal

Membership Parameter response for 25% change in mechanical torque 
Electrical torque deviation Load angle deviation

Triangular

Gaussian

Generalized
Bell

(continued)
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Table 5. (continued)

Trapezoidal

Membership Parameter response for 50% change in mechanical torque
Electrical torque deviation Load angle deviation

Triangular

Gaussian

Generalized
Bell

Trapezoidal

Membership Parameter response for 75% change in mechanical torque
Electrical torque deviation Load angle deviation

Triangular

Gaussian

(continued)
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Table 5. (continued)

Generalized
Bell

Trapezoidal

Membership Parameter response for 100% change in mechanical torque
Electrical torque deviation Load angle deviation

Triangular

Gaussian

Generalized
Bell

Trapezoidal

From the above response curve, it can be perceived that with the application of
a fuzzy logic-based stabilizer improves the overshoot and settling time of the system
as compared to AVR and CPSS. The application of a multi-level fuzzy stabilizer to the
system not only improves small signal stability with small overshoot, but it is also robust
to track the dynamic nature of the loads with zero steady-state error in a short time. This,
in turn, increases the reliability, quality, and security of a system. The performance index
via different stabilizers can be summarized in tabular form.
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Table 6. Comparison of system response with performance index via various stabilizers

Controller Maximum 
peak(Mp) 

Overshoot(%) Settling 
time(sec.)

Maximum 
peak(Mp) 

Overshoot(%) Settling 
time(sec.)

Maximum 
peak(Mp) 

Overshoot(%) Settling 
time(sec.)

AVR 1.9899 98.9879 >100 1.3222 99.0020 0.0211 2.111

CPSS 1.6724 67.2440 5.9409 1.2131 82.5834 6.3019 0.01794 1.794 6.4544
Single-
Fuzzy (Tri-
angular)

1.4590 45.8972 2.4478 0.9899 48.9853 2.5361 0.0147 1.470 2.6456

Single-
Fuzzy 
(Gaussian)

1.4722 47.2172 3.0769 0.9960 49.9022 3.1145 0.0148 1.480 3.2802

Single-
Fuzzy (Gen- 
Bell)

1.4815 48.1502 9.9611 0.9805 47.5702 9.9630 0.0149 1.490 13.5371 

Single-
Fuzzy (Tra-
pezed-) 

1.4997 49.9669 0.9890 48.8586 0.0149 1.490

Multi-
Fuzzy (Tri-
angular)

1.0167 1.6722 1.0627 0.6645 0.0182 2.0046 0.0027 0.270 2.2008

Multi Fuzzy 
(Gaussian)

1.0295 2.9630 1.6376 0.6658 0.2146 2.4580 0.00404 0.404 2.2960

Multi Fuzzy 
(General-
ized Bell)

1.2101 21.0061 2.4155 0.7122 7.1947 3.8457 0.0055 0.550 3.8599

Multi Fuzzy
(Trapezoi-
dal) 

1.1976 19.7631 0.7345 10.5442 0.0048 0.480

According to Table 6, the settling time of electrical torque deviations, a multi-level
fuzzy with triangular, gaussian, and generalized bell membership function-based sta-
bilizer was 95.670%, 55.961%, and 2.231% quicker than a single fuzzy with triangu-
lar fuzzy-based stabilizer. This shows a triangular membership-based multi-level fuzzy
stabilizer settled 39.709% quicker than a gaussian.

The settling time of power angle deviations byMulti-level Fuzzy with triangular and
gaussian membership functions achieved 34.601% and 5.084% quicker than a single
fuzzy with a triangular-based stabilizer, respectively for a 25% change in mechanical
torque. As a result, a triangular membership-based stabilizer settled 29.517% faster than
a gaussian. While the settling time of power angle deviations via multi-level fuzzy with
generalized bell and trapezoidal membership function was achieved by 85.255% and
641% slower, respectively, than a single fuzzy with triangular-based stabilizer.

The multi-level fuzzy with triangular and gaussian membership function-based
achieved settling time by 27.030% and 21.245%, respectively, quicker than a single
fuzzy with triangular single fuzzy-based stabilizer for rotor speed deviation. As a result,
a triangular-based stabilizer settled 5.785% faster than a gaussian. Therefore, a multi-
level fuzzy-based stabilizer with triangular membership effectively enhances LFOs with
the smallest overshot, peak amplitude, and settling time as compared with others.

4 Conclusion

This paper is developed to dampen low-frequency oscillations in a single-machine sys-
tem via a multi-level fuzzy logic controller-based stabilizer. The study was simulated
using a MATLAB/SIMULINK model and the performance was compared with a single
fuzzy and conventional stabilizer. The system response via a conventional power system
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stabilizer achieved a settling time of 93.698%, 93.546%, and 94.059% quicker than with
AVR for rotor angle, rotor speed, and electrical torque deviations, respectively.While the
performance of a single fuzzy with triangular and gaussian membership function-based
stabilizer achieved the settling time 58.797% and 48.208% earlier than conventional
power system stabilizer, respectively. Contrary to this, the performance of multi-level
fuzzy with triangular, gaussian, and generalized bell membership function-based stabi-
lizers achieved the settling time 95.670%, 55.961%, and 2.231% quicker than a single
fuzzy, respectively. Therefore, the application of multi-level fuzzy to the system with
a triangular membership settled 29.517%, 5.785%, and 39.709% quicker than gaussian
for rotor angle, rotor speed, and electrical torque deviations, respectively. The proposed
multi-level fuzzy controller is robust and most effective to damp LFOs with small set-
tling time, overshot and steady error and the result of the study has relevant to improve
the power quality, reliability, and security of the power system.

5 Appendices

Appendix A: Parameters of Single Machine Infinite Bus Power System (in p.u) [2]

Appendix B: Computation of Heffron-Philips’s constant (K1-K6)  
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Abstract. Day to day increase in demand of safe and accident free ground vehi-
cle, rapid growth and development of artificial intelligence algorithms and also
rapid growth of microelectronics technology are major motives that are driving
the development and increased attention of Autonomous Ground Vehicle (AGV)
systems. Unstable and non-linear features of AGV need robust control techniques
to control the trajectory tracking tasks of the system. Review of relatedworks sum-
mery shows that sliding mode controller can handle non-linearity and relatively
assure robustness of the system. However; ripple is one of the most common
challenge in sliding mode controllers. In this research, Super Twisting Sliding
Mode controller (STSMC) is designed to resolve the ripple in sliding mode con-
troller for trajectory tracking control of AGV. Optimal parameters of STSMC
controller are tuned using Genetic Algorithm (GA) and Particle Swarm Optimiza-
tion (PSO) technique. To compare the performance of the proposed algorithm,
GA tuned Fractional-Order-PID (FOPID) controller is also designed and imple-
mented. Accordingly, STSMC has less (≈0.0006 s) tracking error than FOPID
controller. The result reveals the outperformance of the proposed algorithm over
FOPID controller.

Keywords: Autonomous Ground Vehicle · Trajectory tracking · Super Twisting
Sliding Mode Controller · Fractional order proportional integral derivative
controller · Optimization algorithms

1 Introduction

1.1 Background

A ground vehicle that can travel in both structured and unstructured situations without
constant human guidance is referred to as an autonomous ground vehicle (AGV), also
known as an intelligent vehicle. Autonomous vehicle systems may vary depending on
the environment in which they are used. Unmanned aerial vehicles (UAVs), also referred
to as flying and aerial vehicles (FAVs), are autonomous vehicles that fly higher than the
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ground. There are also unmanned and autonomous vehicles operating below sea level
which also known as unmanned underwater vehicle (UUV) [1]. This paper focuses on
self-driving vehicles that operate on the ground, also known as AGV.

On its route to a target, which can be a single spot, a region, or a trajectory of sites, an
AGV can recognize and avoid impediments. The complexity of today’s transportation
systems makes management and security more challenging to guarantee. Due to the
exponential growth in the number of vehicles on the road, fundamental human behaviors
are now fraught with danger. This issue may be solved by autonomous vehicles that take
the role of human drivers. Mobile robots (car-like vehicles or autonomous vehicles) are
able to carry out a range of tasks in hazardous environments where humans are unable
to enter, such as those sites where harmful gases or high temperatures exist in a harsh
environment for humans. They can also use autonomous vehicles to ensure the delivery
of goods over long distances on hazardous roads. We can save money by doing a variety
of mundane jobs, [2]. The difficulty of tracking the trajectory of an autonomous ground
vehicle (AGV) has received a lot of attention lately. Due to the quick advancement of
autonomous vehicles, autonomous vehicle control is becomingmore andmore important
in the field of vehicle autonomy research. As a result, it’s critical to upgrade and improve
autonomous vehicle controllers in order to accomplish this goal. These controllers must
be able to handle complicated problems in a range of environments. At the lower level of
control, autonomous vehicles can alsomove laterally and longitudinally. The noteworthy
adaptive cruise control (ACC) and the more sophisticated cooperative adaptive cruise
control (CACC) are examples of longitudinal control that concentrate on speed control,
whereas lateral control handles path following and vehicle steering control [3]. The goal
of this study is to better trajectory track and follow performance by looking into steering
control methods for autonomous vehicles.

PID controllers have been used to control several industrial processes all over the
world for a very long time. The Ziegler-Nichols method, genetic algorithm GA, fuzzy
logic controller, and others are among the most well-known and often used techniques
for altering the PID controller parameters in line with changes in the state of the environ-
ment and the system. The PSO optimization algorithm was another widely used tuning
approach [4].

1.2 Literature Review

This section provides a summary of previous attempts to developAGVcontrollers.When
first building an AGV controller, the knowledge gained from reading various scientific
articles and publications is very valuable.Many academics have recently developed route
tracking control algorithms that take into account the non-holonomic constraints that an
AGVmust follow. In [5], By creating a Lyapunov function, a kinematic controller for the
mobile platform was generated to achieve the necessary velocity. Also suggested was a
stable adaptive tracking controller. According to Lyapunov stability theory, the designed
robust adaptive controller assures overall stability of the closed-loop system. In [6], An
innovative control technique for following the path of mobile robots was developed by
Zhang. An international finite-time angular velocity control law was used to design this
control technique. According to the simulation results, mobile robot angle errors can be
stabilized with good convergence and performance. In [7], Wang developed an adaptive
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trajectory tracking approach based on the kinematics model to solve the non-holonomic
restriction problem of trajectory tracking of the wheeled mobile robot. This technique
builds based on the idea of an artificial field to improve trajectory tracking.

In [8], For the path tracking issue of a mobile robot, Normey developed a traditional
PID controller. The resilience of the closed-loop system was taken into consideration
as a new PID tuning technique based on fundamental control tools was proposed. In
[9], Lee and Chang proposed two strategies for improving a FOPID controller. These
techniques employ electromagnetism and evolutionary algorithms. In order to incorpo-
rate the advantages of both approaches while lessening the computational load on the
electromagnetic algorithm, a hybrid approach was created.

In [10], Using adaptive PID control, P. Zhao introduced and discussed the design
of the “intelligent pioneer” autonomous vehicle’s control system, as well as path track-
ing and motion stability. The experimental implementation of trajectory control of the
mobile robots is presented in [11] considering the dynamics of their subsystems. Taking
in to account subsystem dynamics is benefit what I gained from it. The Particle Swarm
Optimization approach is used in [12] to create fractional order PID controllers that
outperform its integer order counterparts. The requisite peak overshoot and rising time
specifications form the basis for controller synthesis. By minimizing the characteris-
tic equation, the ideal set of controller parameters is obtained. In [13] Under difficult
conditions like as nonlinearity, strong coupling, high uncertainties, and disturbances,
an Adaptive Super Twisting Sliding Mode (ASTSM) Control method is used to con-
trol quadcopter attitudes. It deals with the modeling and control of unmanned aerial
vehicles such as quadcopters and drones (UAVs). The Adaptive Super Twisting Sliding
Mode controller may accomplish robust operationwith disturbance rejection, parametric
variation adaption, and chattering attenuation, according to simulation results.

AGVTrajectory Tracking Control of the lateral dynamicsmodel of the vehicle is cre-
ated using a Genetic Algorithm based on the bicycle model is proposed in [14], in which
PID parameters are optimized by genetic algorithms. The simulation results demonstrate
that even in the presence of outside disturbance, the developed PID controller has good
tracking capability. In [15] AGV Path Tracking Use a Fractional Order Extremum Seek-
ing Controller (FO-ESC) to control a non-holonomic autonomous ground vehicle while
monitoring its behavior along a predetermined reference path.

In general, the majority of their works in the above literature study track the behavior
of the preset reference path for the AGV. Some of them used optimization techniques as
well as checking the tracking performance even in the presence of external disturbance.
Even if their work follows the behavior of a predefined reference path, their tracking
performance and errorminimization technique aren’t very good.As a result, this research
proposes utilizing an STSMC controller with a genetic algorithm and particle swarm
optimization approaches to reduce performance error and manage the orientation and
velocity of the AGV.

2 Mathematical Modelling of Lateral Vehicle Dynamics Based
on Bicycle Model

As indicated in Fig. 1, a bicycle model of the vehicle with two degrees of freedom is
studied [10]. The two degrees of freedom are represented by the vehicle lateral position
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y and the vehicle yaw angle ψ. The vehicle lateral position is measured along the lateral
axis of the vehicle to the point Owhich is the center of rotation of the vehicle. The vehicle
yaw angle is measured with respect to the global X axis. The longitudinal velocity of
the vehicle at the center of gravity is represented by Vx.

Fig. 1. Equivalent bicycle model

Newton’s second law is used to describe motion along y axis.

may = Fyf + Fyr (1)

where ay = d2y/dt2 is the direction that the vehicle’s inertial acceleration at c.g. of the
y axis. Fyf and Fyr are the lateral tire forces of the front and rear wheels respectively.
Two terms contribute to ay: the acceleration ÿ which is due to motion along the y axis
and the centripetal acceleration Vxψ̇.

Hence,

ay = ÿ + Vxψ̇ (2)

Substituting from Eq. (2) into Eq. (1), the equation for the vehicle’s lateral
translational motion is as follows:

m
(
ÿ + Vxψ̇

) = Fyf + Fyr (3)

The equation for the yaw dynamics is given by moment balance about the z axis as

Izψ̈ = lfFyf − lrFyr (4)

where lf and lr are the separations between the front and rear tires in relation to the
center of gravity of the vehicle. To model the lateral tire forces Fyf and Fyr that act on the
vehicle; the lateral tire force of a tire is proportional to the “slip-angle” for small slip-
angles. The angle between the orientation of the tire and the orientation of the wheel’s
velocity vector is known as the slip angle of a tire. The slip angle of the front wheel is:

αf = δ − θvf (5)

where θvf is the angle that the vehicle’s longitudinal axis and the velocity vector make
and δ is the front wheel steering angles. The rear slip angle is similarly given by:

αr = −θvr (6)
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Therefore, the lateral tire force for the vehicle’s front wheels can be written as

Fyf = 2Caf(δ − θvf) (7)

where the proportionality constant Caf is called the front tire cornering stiffness
The lateral tire for the back wheels can be expressed similarly as

Fyr = 2Car(−θvr) (8)

where Car the rear tire cornering stiffness and θvr is the rear tire velocity angle. The
following relations can be used to calculate θvf and θvr:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

tan(θvf) = Vy + lfψ̇

Vx

tan(θvr) = Vy − lrψ̇

Vx

(9)

Using the notation and small angle approximation Vy = ẏ

⎧
⎪⎪⎨

⎪⎪⎩

θvf = ẏ + lfψ̇

Vx

θvr = ẏ − lfψ̇

Vx

(10)

Substituting from Eqs. (5), (6), (9) and (10) into Eqs. (3) and (4), the state space
model can be written as

d

dt

⎡

⎢
⎢
⎣

y
ẏ
ψ

ψ̇

⎤

⎥
⎥
⎦ =

⎡

⎢⎢
⎢
⎣

0 1 0 0
0 − 2Caf+2Car

mVx
0 −Vx − 2Caflf−2Carlr

mVx
0 0 0 1

0 − 2lfCaf−2lrCar
IzVx

0 − 2l2f Caf+2l2r Car
IzVx

⎤

⎥⎥
⎥
⎦

+

⎡

⎢⎢
⎢
⎣

0
2Caf
m
0

2lfCaf
Iz

⎤

⎥⎥
⎥
⎦

δ (11)

As a result, the lateral model created by the aforementioned equations will be rede-
fined in terms of the state error variables: x1, the separation between the vehicle’s center
of gravity and the lane centerline; and x2, a vehicle’s position in relation to the road.

Take into account a car that is moving at a constant longitudinal velocity Vx on a
road of constant radius. Define ẍ1 and x2 as follows

ẍ1 = (
ÿ + Vxψ̇

) − V2
x

R
= ÿ + Vx

(
ψ̇ − ψ̇d

)
(12)

And

x2 = ψ − ψd (13)

Define

ẋ1 = ẏ + Vx(ψ − ψd) (14)
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Equation (14) is consistent with Eq. (12) if the velocity is constant. Hence the app-
roach taken is to assume the longitudinal velocity is constant and obtain a LTI model.
Substituting from Eqs. (15) and (16) into (3) and (4), we find

mẍ1 = ẋ1

[
− 2

Vx
Caf − 2

Vx
Car

]
+ x2[2Caf + 2Car] + ẋ2

[
−2Caflf

Vx
+ 2Carlr

Vx

]

+ ψ̇d

[
−2Caflf

Vx
+ 2Carlr

Vx

]
+ 2Cafδ (15)

And

Izẍ2 = 2Caflfδ + ẋ1

[
−2Caflf

Vx
+ 2Carlr

Vx

]
+ x2[2Caflf − 2Carlr]

+ ẋ2

[

−2Cafl2f
Vx

− 2Carl2r
Vx

]

− Izψ̈d + ψ̇d

[

−2Cafl2f
Vx

− 2Cafl2r
Vx

] (16)

The state space model in tracking error variables is therefore given by

d
dt

⎡

⎢
⎢⎢
⎣

x1
ẋ1
x2
ẋ2

⎤

⎥
⎥⎥
⎦

=

⎡

⎢⎢
⎢⎢
⎢
⎣

0 1 0 0

0 − 2Caf+2Car
mVx

2Caf+2Car
m

−2Caflf+2Carlr
mVx

0 0 0 1

0 − 2Caflf−2Car
IzVx

2Caflf−Carlr
Iz

− 2Cafl
2
f +2Carl2r
IzVx

⎤

⎥⎥
⎥⎥
⎥
⎦

⎡

⎢
⎢⎢
⎣

x1
ẋ1
x2
ẋ2

⎤

⎥
⎥⎥
⎦

+

⎡

⎢⎢
⎢⎢
⎢
⎣

0 0
2Caf
m − 2Caflf−2Carlr

mVx
− Vx

0 0

2Caflf
Iz

− 2Cafl
2
f +2Carl2r
IzVx

⎤

⎥⎥
⎥⎥
⎥
⎦

[
δ

ψ̇d

]

(17)

Note that the longitudinal vehicle speed, which has been assumed to be constant,
determines how the lateral dynamics model is calculated. The state space model in
Eq. (17) is in the form of Ẋ = Ax + Bu where:

A =

⎡

⎢
⎢
⎣

0 1 0 0
0 a22 a23 a24
0 0 0 1
0 a42 a43 a44

⎤

⎥
⎥
⎦ and B =

⎡

⎢
⎢
⎣

0 0
b21 b22
0 0
b41 b42

⎤

⎥
⎥
⎦ (18)

x = [
x1 ẋ1 x2 ẋ2

]T
and u = [

δ ψ̇d
]T

(19)

Therefore, the dynamic equation also becomes (Table 1)

⎧
⎪⎪⎨

⎪⎪⎩

ẋ1 = ẋ1
ẍ1 = a22ẋ1 + a23ẋ2 + a24ẋ2 + b21δ + b22ψ̇d

ẋ2 = ẋ2
ẍ2 = a42ẋ1 + a43x2 + a44ẋ2 + b41δ + b42ψ̇d

(20)

where, a22 =
[−2Caf + 2Car

mVx

]
, a23 =

[
2Caf + 2Car

m

]
,

a24 =
[−2Caflf + 2Carlr

mVx

]
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a42 =
[−2Caflf − 2Car

IzVx

]
, a43 =

[
2Caflf − Carlr

Iz

]
,

a44 =
[

−2Cafl2f + 2Carl2r
IzVx

]

b21 =
[
2Caf

m

]
, b22 =

[−2Caflf − 2Carlr
mVx

− Vx

]

b41 =
[
2Caflf
Iz

]
, b42 =

[
−2Cafl2f + 2Carl2r

IzVx

]

Table 1. Technical specification for the AGV used for evaluation

3 Controller Design

3.1 Sliding Mode Controller

This control method is based on the idea that the configuration of the controller should
be changed frequently to maintain the state variables on the sliding manifold [16, 17].
Design of the sliding surface and design of the control input are two distinct stages of
the Sliding Mode Controller (SMC) synthesis. The construction of the sliding surface
is recognized as the most important stage in the development of the SMC because it is
necessary to respond to the intended control requirements and performances. We should
select the sliding surfaces before designing SMC. Surface types like PD, PI, and PIDmay
be included in the surface. Similar SMC sliding surfaces were used in the construction
of the STSMC controller.
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3.2 Super Twisting Sliding Mode Controller

The main drawback of first order sliding mode controller is chattering. The dis-
continuous control signal that results from the system variables oscillating around the
sliding surface causes this phenomena. This effect might damage or disturb the physi-
cal system. Using HOSM is one of the more exciting ways to eliminate or reduce the
chattering effect. The higher order temporal derivatives of the sliding surface are kept
to zero in this technique [21]. As a result, the chattering impact is reduced as a result of
this activity. However, the fundamental issue in implementing HOSM algorithms is the
growing information need. Thus;

U = ueq + uc (21)

For this system controller design choosing the PD surface as:

S1 = C1e1 + ė1 (22)

whereC1 is a sliding constant and e1 and ė1 are the error and error derivative respectively.
Since u(t) = kpe(t) + kd d

dt e(t)
Let us define the errors as

e1 = x1d − x1 (23)

ė1 = ẋ1d − ẋ1 (24)

ë1 = ẍ1d − ẍ1 (25)

Differentiating the surface S1 of Eq. (22)

Ṡ1 = C1ė1 + ë1 (26)

Inserting Eq. (24) and (25) in Eq. (26)

Ṡ1 = C1(ẋ1d − ẋ1) + (ẍ1d − ẍ1) (27)

Inserting Eq. (20) in Eq. (27)

Ṡ1 = C1(ẋ1d − ẋ1) + (
ẍ1d − a22ẋ1 − a23x2 − a24ẋ2 − b21δ − b22ψ̇d

)
(28)

The Lyapunov theorem, a well-known approach in stability research, is used to
validate the steady convergence behavior of nonlinear controllers [18–20]. We can use
the Lyapunov function to demonstrate the stability as in Eq. (29) with its time derivative
given in Eq. (30).

V = 1

2
s2 (29)

V̇ = sṡ (30)
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With V = 0 and V > 0 for s �= 0. The following reaching criterion must be adhered
to in order to guarantee that the trajectory transitions from the reaching to the sliding
phase while maintaining stability:

V̇ < 0, for s �= 0, ṡ �= 0 (31)

For S1Ṡ1 ≤ 0 Eq. (28) becomes

C1(ẋ1d − ẋ1) + (
ẍ1d − a22ẋ1 − a23x2 − a24ẋ2 − b21δ − b22ψ̇d

) = 0 (32)

C1(ẋ1d − ẋ1) + (ẍ1d − a22ẋ1 − a23x2 − a24ẋ2) = b21δ + b22ψ̇d (33)

Letting b22 = 0 Eq. (33) becomes

C1(ẋ1d − ẋ1) + (ẍ1d − a22ẋ1 − a23x2 − a24ẋ2) = b21δ (34)

δ = C1(ẋ1d − ẋ1) + (ẍ1d − a22ẋ1 − a23x2 − a24ẋ2)

b21
(35)

Letting b21 = 0 Eq. (33) becomes

C1(ẋ1d − ẋ1) + (ẍ1d − a22ẋ1 − a23x2 − a24ẋ2) = b22ψ̇d (36)

ψ̇d = C1(ẋ1d − ẋ1) + (ẍ1d − a22ẋ1 − a23x2 − a24ẋ2)

b22
(37)

Now letting:

ueq1 = δ + ψ̇d (38)

ueq1 =
[
b21 + b22
b21b22

]
(C1(ẋ1d − ẋ1) + (ẍ1d − a22ẋ1 − a23x2 − a24ẋ2)) (39)

For second controller, choosing the sliding surface two:

S2 = C2e2 + ė2 (40)

Let us also define the errors as

e2 = x2d − x2 (41)

ė2 = ẋ2d − ẋ2 (42)

ë2 = ẍ2d − ẍ2 (43)

Differentiating the surface S2 of Eq. (40)

Ṡ2 = C2ė2 + ë2 (44)
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Inserting Eq. (42) and (43) in Eq. (44)

Ṡ2 = C2(ẋ2d − ẋ2) + (ẍ2d − ẍ2) (45)

Inserting Eq. (20) in Eq. (45)

Ṡ2 = C2(ẋ2d − ẋ2) + (
ẍ2d − a42ẋ1 − a43x2 − a44ẋ2 − b41δ − b42ψ̇d

)
(46)

For S2Ṡ2 ≤ 0 Eq. (46) becomes

C2(ẋ2d − ẋ2) + (
ẍ2d − a22ẋ1 − a23x2 − a24ẋ2 − b41δ − b42ψ̇d

) = 0 (47)

C1(ẋ2d − ẋ2) + (ẍ2d − a42ẋ1 − a43x2 − a44ẋ2) = b41δ + b42ψ̇d (48)

Letting the parameter b42 = 0 in Eq. (47) becomes

C2(ẋ2d − ẋ2) + (ẍ2d − a42ẋ1 − a43x2 − a44ẋ2) = b41δ (49)

δ = C2(ẋ2d − ẋ2) + (ẍ2d − a42ẋ1 − a43x2 − a44ẋ2)

b41
(50)

Letting the parameter b41 = 0 in Eq. (48) becomes

C2(ẋ2d − ẋ2) + (ẍ2d − a42ẋ1 − a43x2 − a44ẋ2) = b42ψ̇d (51)

ψ̇d = C2(ẋ2d − ẋ2) + (ẍ2d − a42ẋ1 − a43x2 − a44ẋ2)

b42
(52)

Now letting:

ueq2 = δ + ψ̇d (53)

ueq2 =
[
b41 + b42
b41b42

]
(C2(ẋ2d − ẋ2) + (ẍ2d − a42ẋ1 − a43x2 − a44ẋ2)) (54)

For STSMC;

uc = −K1|
√
s|sgn(s) − K2

t∫

0

sgn(s)dt (55)

Therefore, the controller for STSMC1 designed as,

U1 = ueq1 + uc (56)

Inserting Eq. (39) and (55) in Eq. (60) becomes,

U1 =
[
b21 + b22
b21b22

]
(C1(ẋ1d − ẋ1) + (ẍ1d − a22ẋ1 − a23x2 − a24ẋ2)) +

⎛

⎝−K1|
√
s|sgn(s) − K2

t∫

0

sgn(s)dt

⎞

⎠ (57)

Therefore, the controller for STSMC2 designed as,

U2 = ueq2 + uc (58)

Inserting Eq. (54) and (55) in Eq. (62) becomes,

U2 =
[
b41 + b42
b41b42

]
(C2(ẋ2d − ẋ2) + (ẍ2d − a42ẋ1 − a43x2 − a44ẋ2)) +

⎛

⎝−K1|
√
s|sgn(s) − K2

t∫

0

sgn(s)dt

⎞

⎠ (59)
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3.3 Fractional Order PID Controller

Fractional-order proportional-integral-derivative (FOPID) controllers have attracted a
lot of attention in recent years from both academia and industry. Because they have
five parameter options, they actually provide greater design flexibility than typical PID
controllers (instead of three). This does however imply that adjusting the controllermight
be much more difficult. The integral-differential equation describes the control action
of a fractional-order PID controller as follows:

u(t) = kpe(t) + kiD
−λ
t e(t) + kdD

μ
t e(t) (60)

FOPID’s transfer function is obtained by applying the Laplace transform as follows
(Fig. 2):

U (s) = kp + kis
−λ + kd s

μ (61)

Fig. 2. The fractional order controller block diagram

Objective Functions
TheDefining an objective function is one of themajor tasks while formulating a problem
using an optimization algorithm. The sum of two objective cost functions is the cost
function that minimizes the system’s error, because the proposed autonomous ground
vehicle system is a multiple input multiple output system [22], written as:

J = ITAE =
τ∫

0

t(|e1(t)| + |e2(t)|)dτ (62)

whereas, e1(t) = δref − δact and e2(t) = ψ̇dref − ψ̇dact. Where δ orientation angle and
ψ̇d is velocity.
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4 Results and Discussions

4.1 MATLAB Implementations

The Matlab Simulink is used to design and simulate the proposed system mathematical
model and controller design (Fig. 3).

Fig. 3. The Simulink model of the proposed system STSMC

4.2 Open Loop Response

For a given step and constant input the system the open loop response output is highly
nonlinear and unstable. The open loop response of the proposed system is shown as in
Fig. 4 below:

(a) open loop response for step 
input angle

(b) open loop response for constant 

input velocity

Fig. 4. Open loop response of the proposed system
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4.3 Testing of Trajectories for Closed Loop Responses

After the model of the autonomous ground vehicle and the two STSMC controllers
have been deployed, several case studies are used to simulate and examine the various
trajectories in order to compare how the suggested technique responds to the FOPID
controller. Each instance requires a distinct strategy, as can be seen below:

Test Case-1
A sinusoidal trajectory was created in this instance as a reference trajectory. Whereas,
reference trajectory input is δd = 5 sin(t). To determine the orientation and velocity
inaccuracy, this trajectory was compared to the real trajectory. As a result, the STSMC
controller received the error. The STSMC1 controller’s output offers the control action
that was linked to the left wheel’s motor. The second input serves as a representation of
the intended velocity. The actual speed of the vehicle was contrasted with this speed. The
error that was made when comparing the velocity was sent to the second STSMC2 con-
troller. The velocity controller’s output was coupled to the right wheel’s motor. Figure 5
shows the relationship between the desired and actual trajectory after performing the
simulation. As seen in Fig. 5, the system tracks the sinusoidal reference trajectory very
well. Figure 7 shows the difference between the desired and actual orientation angle and
velocity (Fig. 6).

Fig. 5. The orientation response for a sinusoidal trajectory δd = 5 sin(t) proposed system

Test Case-2
In response to a different scenario and to show how flexible the suggested controller is,
a linear trajectory was created. Creating a constant orientation will guarantee a linear
trajectory using δd = π/4 for interval 0 ≤ t ≤ 20 s. Similarly, Figs. 8a and 8b illustrate
the connection between the desired and actual trajectories. Figure 10 shows the difference
in direction and velocity between the desired and actual values.

In Table 2 the error performance analysis of sinusoidal trajectory δd = 5 sin(t),
we can say that the proposed STSMC controller has better error performance for PSO
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Fig. 6. Orientation angle and velocity response for sinusoidal trajectory δd = 5 sin(t) of FOPID
controller

a) Orientation angle error response
for STSMC

b) Velocity error response for
STSMC

Fig. 7. Orientation angle and velocity error for sinusoidal trajectory δd = 5 sin(t) of STSMC

optimazation technique than GA based for both orientation angle and velocity control.
And the error performance of proposed STSMC controller is much better than GA based
FOPID controller for angle and velocity control. Adding disturbances due to friction of
wheels during vehicle motion which is formed by varying the cornering stiffness value
Caf = Car = 40000 N/rad and mass of 1500 kg has the orientation angle and velocity
error 0.0004 and 0.0008 s respectively for sinusoidal trajectory of proposed PSO-based
STSMC controllers (Fig. 9).
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Table 2. The error performance analysis of the trajectory δd = 5 sin(t)

Controllers Angle error Velocity error

GA-based STSMC 0.0026 0.0212

PSO-based STSMC 0.0006 0.0007

GA-based STSMC 0.0030 0.0538

a) orientation angle response for linear 
trajectory for proposed STSMC controller

b) velocity response for linear trajec-
tory for proposed STSMC controller

Fig. 8. The orientation angle and velocity response for linear trajectory δd = π/4

Fig. 9. The orientation angle and velocity response for linear trajectory δd = π/8 of FOPID
controller

As depicted in Fig. 10a for a linear trajectory of an orientation and velocity error
response highly converges to zero for both GA and PSO based optimization technique of
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proposed STSMC controller. Compared to the orientation angle and velocity response
Fig. 10b of FOPID to the response of proposed system in a Fig. 9, it takes longer time to
track the given linear reference trajectory and its error converges to zero after 0.0024 s
time which is sluggish compared to STSMC error convergence time.

a) the orientation angle and velocity er-
ror response for linear trajectory of pro-
posed STSMC controller

b) the orientation angle and velocity 
error response for linear trajectory of
FOPID controller

Fig. 10. The orientation and velocity error response for linear trajectory δd = π/8 of FOPID
controller

5 Conclusions

This paper discusses the application of STSMC to autonomous ground vehicle systems.
The lateral dynamics of a vehicle were simulated in this work using a simple two-
degree-of-freedom bicycle model. Two distinct control algorithms were used to regulate
the modified lateral motions. An investigation into the trajectory tracking control of
autonomous ground vehicle systems used a super twisting sliding mode controller and
a fractional order PID controller. A simulation was created using MATLAB/Simulink
to test the effectiveness and performance of the controller. The controllers gain was
optimized and tuned using the evolutionary algorithm and particle swarm optimization
method. Finally, the findings show that the system tracks the needed trajectory with a
minimal amount of tracking error. The suggested STSMC robustlymonitors the supplied
irregular reference environments, outperforming fractional order PIDcontrollers in terms
of performance. It is evident from the simulation results that the STSMC was used to
control the orientation steering angle and velocity in order to stabilize the AGV system.
The system’s machine learning algorithm may be established in the future.
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Abstract. Many researchers have become interested in wheeled mobile robot
(WMR) trajectory tracking control in recent years. This is due to the increased
application of mobile robots in the industry, the military, the home, and public ser-
vice. Classically, the movement of WMR is controlled depending on its kinematic
model.However, in real-time applications, both the dynamic and kinematicmodels
of robots and external disturbance and uncertainty affect systemperformance. This
paper proposes backstepping combined with a Nonlinear Proportional-Integral-
Derivative (NPID) controller to control a two-wheeledmobile robot (TWMR). The
kinematic and dynamicmodels of theWMRare derived. The dynamicmodeling is
derived using a Lagrangian approach, and stability of the system is achieved using
the Lyapunov method. The controller gains are optimized using the Genetic Algo-
rithm optimization technique. The proposed algorithms’ performance is tested
using Matlab software. The simulation result shows that the proposed method
achieved preferable reference trajectory tracking with a minimum tracking error.
The proposed controller outperforms the GA-based backstepping plus PID con-
troller in terms of root-mean-square (RMS) of trajectory tracking error (47.36%
in a linear and 60.32% in a nonlinear case). In addition, it shows good unknown
disturbance rejection and initial point change in all scenarios.

Keywords: Backstepping and NPID Controller · Trajectory Tracking ·
Two-Wheeled Mobile Robot · Genetic Algorithm · Lyapunov Stability Analysis

1 Introduction

Amobile robot is a robot that canmove its surroundings and is not fixed to agivenphysical
location. It can be autonomous or semi-autonomous, which means it can navigate in an
uncontrolled environment without needing a personal operator or electro-mechanical
guidance device. A wheeled mobile robot (WMR) is a mobile robot that navigates its
surroundings using a wheel’s rotation. It is a widely used mobile robot due to its ability
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to substitute humans in many fields. For example, in industry, the military, public and
private sector services, and production and distribution companies.

When the application of a WMR increases, the performance acquired from the robot
becomes a critical issue for researchers. The robot’s performance (in the case of trajec-
tory tracking) depends on the position error and orientation error for kinematic control,
while a velocity error will affect the performance in the case of dynamic control. The
movement or navigation of a WMR depends on three control problems: reference tra-
jectory tracking, line following, and point stabilization [1]. One of the main objectives
of reference tracking control is to control a robot’s position on a predetermined trajec-
tory with the minimum position and orientation error. Due to nonholonomic restrictions
in nonholonomic robots, trajectory tracking and motion control are not independent.
Trajectory tracking of nonholonomic robots in the robotic domain involves determining
trajectories from a starting point to a final point while considering mechanical limita-
tions and guiding the robot to follow the proposed trajectories. Several works on the
WMR’s trajectory control problem have been presented. Most of them are focused on
a nonholonomic constraint that depends on posture stabilization and trajectory tracking
[2]. Trajectory tracking makes the robot follow a predefined trajectory.

The two-wheeled mobile robot (TWMR) used in this work has two standard fixed
wheels that are actuated by two similar DC motors and a freewheeler. The freewheeler
is used to balance the robot’s body frame. Many control approaches have been applied
to control WMR trajectory tracking, for example, a kinematics-based backstepping con-
troller [3], Proportional-Integral-Derivative (PID) controller [4], Fuzzy logic controller
[5, 6], and Nonlinear PID controller. Furthermore, various optimization techniques (like;
Genetic Algorithm (GA), Particle Swarm Optimization, Grey Wolf Optimization, and
Neural Network) are used to optimize the controller gains.

In [7, 8], a kinematic controller combined with a torque control law using the back-
stepping control method is proposed for nonholonomic mobile robot control. Hassani
et al. proposed a backstepping method for trajectory tracking control of mobile robots
(MR) [9]. The authors presented kinematic and dynamicmodels. The challenging task of
this approach is that controller gains are obtained by trial and error and are less efficient.

In works by [10], a nonholonomic WMR is controlled by a Nonlinear Proportional-
Integral-Derivative (NPID) neural controller with a particle swarm optimization algo-
rithm. The Neural Network-based PID controller responds smoothly to the external
attenuation disturbance problem. The control method was based on a kinematic model
of the system by ignoring the robot’s dynamic model. In practical applications, both
dynamic and kinematic models of robots affect system performance. In the literature
[11] and [12] kinematic-based backstepping controller is applied to control robot coor-
dinates, and a PID controller is used for motor speed control. In [13], a combination of
PID and backstepping approach is used for trajectory control. However, it lacks control
parameter optimization and leads to the system being controlled only in an interesting
region.

Preferable trajectory tracking of WMR is achieved by considering the disturbances,
noise, or internal model changes (uncertainty) that will affect the system in real-time
applications. Including aWMR system dynamic model is vital for good trajectory track-
ing and stabilization. The main contribution of this paper is the design of a backstepping
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controller combined with an NPID controller for stabilization and trajectory control of
TWMR. The proposed strategies consist of two approaches. A backstepping controller
is used at the control robot’s position, and NPID controls the robot’s velocity. The Lya-
punov method justifies the stability of the system. Kinematic and dynamic models of a
proposed framework are taken into account.

Additionally, the controller parameters are also optimized using a GA optimization
method. The developed control method is tested by simulation on Matlab/Simulink
software. The system’s performance will be analyzed with unknown disturbances and
changes in the initial position. The proposed system tracking capability is comparedwith
a GA-based backstepping controller and a GA-based backstepping plus PID controller.

The next sections of this paper present system modeling, control approach design,
results and discussions, and conclusions.

2 System Modeling

2.1 Kinematic Modeling of the TWMR

A system modeling of the differential drive MR platform in this study consists of kine-
matic and dynamic modeling. As seen in Fig. 1, the WMR is represented in Cartesian
coordinates. The robot setup body has two wheels with a radius of r and a distance L
from the center P and free castor wheels to balance the robot setup body. C is the robot’s
center of mass (CoM), and d is the distance between the CoM and the center of the wheel
axis. The position of the WMR in the inertial reference frame (XI ,YI ) with origin point,
O, and the local robot frame (XR,YR) they are attached to the body frame. The angle
between the local robot and global reference frames is represented as theta (θ) in radian.
Moreover, v and ω are robot linear and angular velocities, respectively.

Let us represent the robot coordinates in inertial and local frames as follows [14]:

qI = [
xI yI θI

]T
(1)

qR = [
xR yR θR

]T
(2)

A robot’s motions in the global frame are translated into motions in the local frame
by using a standard orthogonal transformation matrix and vice versa. I.e.,

q̇R = R(θ)q̇I (3)

where:

R(θ) =
⎡

⎣
cos(θ) sin(θ) 0

− sin(θ) cos(θ) 0
0 0 1

⎤

⎦ (4)

The contribution of the translational and rotational velocity components of the wheel
velocities in the local robot frame is as follows:

[
ẋR, ẏR, θ̇R

]T =
[
1

2
r(ϕ̇r + ϕ̇l), 0,

r

2L
(ϕ̇r − ϕ̇l)

]T
(5)
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Fig. 1. 2D representation of WMR

where
.
ϕr and

.
ϕl is the angular velocity of the right and left wheels, respectively. In an

inertial frame, the differential drive WMR velocity is given as:

[
ẋ ẏ θ̇

]T = r

2

⎡

⎣
cos(θ) cos(θ)

sin(θ) sin(θ)

1/L −1/L

⎤

⎦
[

ϕ̇r

ϕ̇l

]
(6)

In Fig. 1, a wheel presents three kinematic constraints on DWMR. The first constraint
is that DMWR cannot slide sideways, i.e., no non-slipping constraint exists, while the
others are related to the motion of the wheels. The actuated wheels cannot rotate in the
wrong direction. I.e., there are only pure rolling constraints [15, 16].

.
y cos(θ) − .

x sin(θ) − d θ̇ = 0 (7)

ẋ cos(θ) + ẏ sin(θ) + Lθ̇ − rϕ̇r = 0

ẋ cos(θ) + ẏ sin(θ) − Lθ̇ − rϕ̇l = 0 (8)

The nonholonomic constraint in Eqs. (7) and (8) can be written in matrix form as:

A(q)q̇ = 0 (9)

where A(q) is the constraint matrix and
.
q is configuration coordinate given as:

A(q) =
⎡

⎣
− sin(θ) cos(θ) −d 0 0
cos(θ) sin(θ) L −r 0
cos(θ) sin(θ) −L 0 −r

⎤

⎦ (10)

q̇ = [
ẋ ẏ θ̇ ϕ̇r ϕ̇l

]T
(11)

If the inertial and mass of the wheels were neglected, WMR satisfied pure rolling and
non-slipping. As a result, Eq. (10) is reduced to the following matrix:

A(q) = [− sin(θ) cos(θ) −d
]

(12)
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Consider S(q) as a smooth and independent vector field distributed in the null space of
a matrix A(q).

A(q)S(q) = 0 (13)

In this case, S(q) is a linearly independent distributed field vector that is used to transform
velocities w(t) = [v, ω] in terms of the inertial reference frame given as:

S(q) =
⎡

⎣
cos(θ) −d sin(θ)

sin(θ) d cos(θ)

0 1

⎤

⎦ (14)

Therefore, the WMR kinematic model in an inertial frame is formulated as follows:

q̇ = S(q)w(t) =
⎡

⎣
cos(θ) −d sin(θ)

sin(θ) d cos(θ)

0 1

⎤

⎦
[
v
ω

]
(15)

where w(t) is the velocity vector given as w(t) = [
v ω

]T
, w ∈ Rp×1 for all t.

2.2 System Dynamic Modeling

An MR system having an n-dimensional configuration space R, with generalized coor-
dinate q = [q1, q2, ..., qn] and subject to m input constraints can be described as
[15];

H (q)q̈ + C(q, q̇)q̇ = E(q)τ − AT (q)ρ (16)

where H(q) is an inertial matrix represented as n × n positive definite matrix, C(q,
.
q)

is Coriolis and Centripetal torques represented as n × n matrix, ρ is a vector associated
with Lagrange multipliers kinematic constraints, E(q) is the control input of n × m
transformation matrix, AT(q) is matrix associated with constraints, τ is input torque
vector. The generalized Lagrangian form of WMR for fixed conventional wheels is
given as follows [16]:

d

dt

(
∂T

∂
.
q

)
− ∂T

∂q
= E(q)τ − AT (q)ρ (17)

The total lagrangian energy is defined as L = T − W, where T is kinetic energy and W
is potential energy (equal to zero because there is no lateral movement, only horizontal
movement). The total lagrangian energy of the robot is calculated by considering a
dynamic constraint on a fixed standard wheel.

L = 1

2
mt(ẋ

2 + ẏ2) + mt(ẋd θ̇ sin(θ) − ẏd θ̇ cos(θ)) + 1

2
I θ̇2 + 1

2
Iw(ϕ̇2

r
.
ϕ +ϕ̇2

l ) (18)

where mt = mc + 2mw and I = mcd2 + Ic + 2mw
(
d2 + L2

) + 2Im. mc is a mass of
WMR devoid of wheels and motors, and mw is the combined mass of wheel and motor,
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andmt is the total mass of the robot. Ic is the inertia of WMRwithout wheels and motor,
Iw is the inertia of a single wheel and motor around its axis, Im is the inertia of the single
wheel and motor about the y-axis is parallel to the wheel plane, and I is the total inertia
of the robot.

The MR dynamic modeling is obtained by substituting the Lagrangian energy
expression in Eq. (18) into Eq. (17) and, after rearrangements, we obtained as follows:

⎡

⎣
mt 0 mtd sin(θ)

0 mt −mtd cos(θ)

mtd sin(θ) −mtd cos(θ) I

⎤

⎦q̈ +
⎡

⎣
0 0 mtd θ̇ cos(θ)

0 0 mtd θ̇ sin(θ)

0 0 0

⎤

⎦q̇

= 1

r

⎡

⎣
cos(θ) cos(θ)

sin(θ) sin(θ)

L −L

⎤

⎦
[

τr

τl

]
+

⎡

⎣
− sin(θ)

cos(θ)

−d

⎤

⎦(−mt(ẋ cos(θ) + ẏ sin(θ)))

(19)

This dynamicmodel inEq. (20) is simplified and transformed into a proper representation
to eliminate the constraint terms [17]. A simplified dynamic model is given as:

[
mt 0
0 I

][
v̇(t)

ω̇(t)

]

+
[

0 −mtd θ̇

mtd θ̇ 0

][
v(t)

ω(t)

]

= 1

r

[
1 1
L −L

][
τr

τl

]

(20)

3 Proposed Method Design

This section develops two proposed control algorithms: the backstepping controller and
the NPID controller. Figure 2 shows the proposed controller with a TWMR system.

Fig. 2. Kinematic-based backstepping and NPID controller with a proposed system model

3.1 Backstepping Controller

A backstepping control method is a nonlinear controller designed in a recursive way that
combines the choice of a Lyapunov function with the design of a feedback controller.
A Lyapunov stability analysis function guarantees the global asymptotic stability of
the designed controller [18]. In this paper, a backstepping controller is designed based
on a nonlinear kinematic controller, as shown in Fig. 2. The main objective of this
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controller is to determine the system’s angular and linear velocity control laws to track
a given trajectory with reference velocity inputs and a posture error configuration. A
nonholonomic mobile robot trajectory track can be described and formulated as follows:

q̇r = [
ẋr ẏr θ̇r

]T =
⎡

⎣
cos(θr) 0
sin(θr) 0

0 1

⎤

⎦
[
vr
ωr

]
(21)

From Fig. 2, the posture error between a reference trajectory (qr = (xr, yr, θr)) and
current robot pose (q = (x, y, θ)) is given as:

ep =
⎡

⎣
ex
ey
eθ

⎤

⎦ =
⎡

⎣
cos(θ) sin(θ) 0

− sin(θ) cos(θ) 0
0 0 1

⎤

⎦

⎡

⎣
xr − x
yr − y
θr − θ

⎤

⎦ (22)

If a CoM is at the center of the wheel axes (d = 0), the time derivatives of posture error
become:

ėp = [
ėx ėy ėθ

]T =
⎡

⎣
ω ey − v + vr cos(eθ )

−ωex + vr sin(eθ )

ωr − ω

⎤

⎦ (23)

The control law, which makes a system asymptotically stable, will be designed based
on the pose error dynamics obtained. Auxiliary velocity control inputs as a function
of pose error and input velocities will be proposed depending on the pose error’s time
derivatives using Lyapunov theory. Let us present a scalar function V as a Lyapunov
function candidate as:

V = 1

2

(
e2x + e2y

)
+ 1

Ky
(1 − cos(eθ )) (24)

Therefore, for Ky > 0 one can see V ≥ 0 otherwise, V = 0 if ep = 0 and V > 0 if
ep �= 0. The time-derivative of a Lyapunov function V with a posture error as in Eq. (23)
is given as follows:

V̇ = ėxex + ėyey + 1

Ky
ėθ sin(eθ )

= −ex[v − vr cos(eθ )] − sin(eθ )

[
1

Ky
(ωr − ω) − vrey

]
≤ 0 (25)

The auxiliary velocity control input that satisfies the Lyapunov function candidate by
using a backstepping control law is formulated as follows [7]:

wc =
[
vc
ωc

]
=

[
Kxex + vr cos(eθ )

ωr + Kyvrey + Kθvr sin(eθ )

]
(26)

where Kx, Ky, and Kθ are positive constants adjusted to reduce the posture error. The
velocity control rule described above is called a kinematic-based backstepping controller.
The stability of this control velocity is verified by using the Lyapunov function.

V̇ = ėxex + ėyey + 1

Ky
ėθ sin(eθ ) = −Kxe

2
x − Kθ

Ky
vr sin

2(eθ ) ≤ 0 (27)
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It is clear that
.

V≤ 0, otherwise,
.

V= 0 if ep = 0 and
.

V< 0 if ep �= 0. Therefore,
the derivative of a Lyapunov function is a negative-definite function. The system is
asymptotically stable at an equilibrium point ep = 0 under the condition that reference

velocity wr = [
vr ωr

]T
and proposed constant positive gains

(
Kx,Ky, and Kθ

)
are

bounded and continuous.

3.2 Nonlinear PID Controller

A NPID controller is used to control the velocity of a robot at a dynamic control loop
level, as in Fig. 2. A newNPID controller whose architecture is analogous to the standard
PID controller is proposed. However, the proportional and derivative actions are linear,
whereas the integral action has a nonlinear function. Hence, the error input to the integral
action is scaled by a nonlinear gain function in the product of the error and the nonlinear
gain. An NPID controller used in this work is similar to an NPID controller used in work
[19].

The time-domain equation of the NPID controller for velocity control of TMWR is
given as:

Uk(t) = Kpk

[
ec(t) + 1

Tik

∫ t

0
v(t)dt + Tdk

dec(t)

dt

]

= Kpk ec(t) + Kik

∫ t

0
v(t)dt + Kdk

dec(t)

dt
, k = 1,2 (28)

where Uk = [U1, U2]T = [uv, uω]T is NPID controller output, Kpk is proportional
gain constant, Tik is an integral time, Tdk is derivative time, Kik = Kpk/Tik is integral
gain, Kdk = KpkTdk is derivative gain constant in the case of a parallel PID controller.
An error signal ec(t) is given as the difference between the control and actual velocity
(ec(t) = wc − w). The nonlinear scaled error function v(t) in the integral and derivative
control action is given as

v(t) = k(e)ec(t); where k(e) = exp

(
− ec(t)2

2�w2
c

)
(29)

where k(e) is a nonlinear gain function, �wc �= 0 is controlled velocity change, i.e.,
�wc = wc(i) − wc(i − 1) and i denotes the discrete instant of time. According to [19],
a typical value of �wc is 0.5, 1, and 1.5.

3.3 The Controller Gains Optimization by Using a GA

A genetic algorithm is a random search algorithm used to solve nonlinear equations
and optimize complex problems. It employs probabilistic transition rules rather than
deterministic rules and iteratively evolves a population of potential solutions known as
individuals or chromosomes. Each iteration of the algorithm is referred to as a “gen-
eration”. The evolution of solutions is mimicked using a fitness function and genetic
operators such as selection (reproduction), crossover, and mutation [20]. Table 1 shows
a pseudo-code of GA optimization processes.
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The GA optimization tunes a controller gain to obtain the best gains parameters with
a possible minimum objective function. The objective function is obtained using integral
time-weighted absolute error (ITAE).

ITAE =
∫ tf

0
t|e(t)|dt (30)

where e(t) is an error between desired and actual values and tf is time duration. ITAE
penalizes an error that persists long, resulting in more significant discrimination than
IAE or ISE [19].

Table 1. Pseudo-code of the genetic algorithm

Start
Set t = 0;
Generate initial population P(t);
Compute the fitness of an individual in P(t);
do while < Stop condition for not satisfied >

Set t = t + 1;

Select from individual P(t − 1) to set a tentative population P(t);

Perform Cross-over individual in P(t);

Perform Mutation of an individual in P(t);
Compute the fitness of an individual in a new population P(t);
end while
Output the best individual P(t) as the best solution;
Stop

4 Results and Discussions

To investigate a controller’s performance for a capability to track a given reference
trajectory, adaptability, and robustness for an uncertain system model, two scenarios
are considered for the reference trajectory: linear reference trajectory and nonlinear
reference trajectory.

(xr, yr) = (t, 2t), (xr, yr) = (−5 sin(t/5), 10 sin(t/10)), ∀t ≥ 0. (31)

Linear Trajectory Tracking Performance: In linear reference trajectory tracking, a
robot rapidly follows a given trajectory because the controller can easily anticipate
the future behavior of a tracking line or tracking error. The robot simulation parameter
configuration is as in [21]. mt = 120 kg, L = 0.33m, d = 0.1m, r = 0.135m, I =
15.0565 kgm2. A proposed controller gain parameter is optimized by the GA optimiza-
tion method. The obtained controller gains are Kx = 33.3095,Ky = 98.76,Kθ =
10.2058,Kp1 = 71.4881,Kp2 = 99.8081,Ki1 = 0.0441,Ki2 = 0.0251,Kd1 =
0.9483andKd2 = 0.1803.
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As shown in Fig. 3, a robot tracks a given reference trajectory with a minimum
tracking error at q0 = (0, 0, 0) initial states in the x position, the y position, and the
robot steering angle. The tracking errors in the x, y, and steering angles converge to zero
in a short settling time. However, a limitation of the backstepping controller is that it
produces a significant overshoot response when the robot’s initial position is changed.
To see the capability of the robot to track a given trajectory with a proposed controller,
consider a change in the initial state and apply an unknown disturbance to the system.
Hence, change the robot’s initial position from (0, 0, 0) to (2, 1, pi/2) and see in Fig. 4
the change in a simulated robot system dynamics model.

Fig. 3. The x position, y position, and robot angle tracking performance with (0, 0, 0) initial
position: linear trajectory

A trajectory tracking performance is shown in Fig. 4, which clearly shows that the
robot has a considerable peak value at the start of robot motion due to initial position
change. Later this value decreases. The robot adapts to the initial position changes
with a short settling time and a slight overshoot in reference position tracking. Thus,
the proposed method’s trajectory tracking ability in linear reference trajectory inputs
is almost perfect, and the obtained results are smooth and robust to an initial position
change.

Nonlinear Reference Trajectory Tracking Performance: This scenario applies a sinu-
soidal reference input to the system. The robot stabilized and followed a given path with
a minimum trajectory tracking error, as shown in Fig. 5 and Fig. 6.
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Fig. 4. The x position, y position, and steering angle tracking performancewith the initial position
is (2, 1, pi/2): linear trajectory

Fig. 5. Nonlinear trajectory tracking and tracking error performance with initial position is (0, 0,
0).

The robot smoothly tracks its reference trajectory in the x and y positions and a
reference steering anglewith the possibleminimum tracking error. A proposed controller
has better tracking capability than a backstepping plus PID controller, as shown in Fig. 5.
A tracking performance response with (3, 2, pi/2) initial position change in Fig. 7 and
Fig. 8 demonstrated that the proposed control method has a better tracking performance
even if the initial position changed. The backstepping controller produced a significant
overshoot when the robot’s initial position changed. However, the robot quickly tracks its
position after the initial position changes. The proposed controller has a better tracking
performance and can quickly adapt to initial position changes than the backstepping plus
PID controller.
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Fig. 6. The x position, y position, and robot angle tracking performance with the initial position
is (0, 0, 0): nonlinear trajectory.

Fig. 7. Nonlinear trajectory tracking performance with initial position change to (3, 2, pi/2).

Robustness of a Control law with Unknown Disturbance: System model uncertainty
may occur during selecting plant parameters for a simple representation because varying
parameters and all the precise disturbance are not well known. These directly impact
systemperformance in a real-time application. The unknown and unmodeled disturbance
torque in the form of [τd1, τd2] = [0.1sin(2t), 0.1sin(2t)] is applied to both wheels of
the motor, and accordingly, linear trajectory and nonlinear trajectory performances are
depicted in Fig. 9 and Fig. 10, respectively.
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Fig. 8. The x position, y position, and steering angle tracking performance with initial position
is (3, 2, pi/2): nonlinear trajectory

Fig. 9. Robot pose tracking performance with unknown disturbance: linear trajectory

As in Fig. 9 and Fig. 10, the control law has better unknown disturbance rejection.
In linear trajectory tracking cases, the response to the unknown disturbance imposes
change on a tracking response, while sinusoidal reference inputs were less affected by
disturbance. This change has an almost insignificant effect on trajectory tracking errors.
Therefore, the control law is smooth and gave a robust response to unknown disturbance
and initial position change. The nonholonomicWMR has been controlled and stabilized
by a control law in a predefined region with minimum position tracking error. The robot
quickly follows a given reference trajectory, and its position tracking error converged to
zero. In addition, the proposed controller outperforms the GA-based backstepping plus
PID controller in terms of root-mean-square (RMS) of trajectory tracking error (47.36%
in a linear and 60.32% in a nonlinear case).
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Fig. 10. Robot pose tracking performance with unknown disturbance: nonlinear trajectory

5 Conclusion

This paper presented backstepping combined with a nonlinear PID controller in the
trajectory tracking control and stabilization of a two-WMR. The kinematic and dynamic
modeling of a TWMR were formulated. The dynamic system models of the robot were
derived using Lagrangian approaches. A backstepping plus NPID controller is designed
to control a robot’s trajectory tracking. The stability of a proposed controller is achieved
using the Lyapunovmethod. The proposed controller achieved better reference trajectory
trackingwith aminimum tracking error in both scenarios. The robot follows its reference
trajectory quickly if its initial position is changed. It also has better unknown disturbance
rejection. The control law in this work does not update its parameters if the interest
region (desired trajectory) is changed. A control law based on adaptive mechanisms and
a self-taught controller is preferable and recommendable for better tracking capability
in different environments.
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