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Preface

The active inference framework, which first originated in neuroscience, can be assim-
ilated to a theory of choice behavior and learning. The basic assumption of this new
theoretical and methodological structure is the distinction between goal-directed and
habitual behavior of an intelligent agent and how they contextualize each other. In this
architecture, the intelligent agent’s main goal is to minimize surprise or, more formally,
its free energy. In particular, in contrast to other approaches, the resulting behavior has
both explorative (epistemic) and exploitative (pragmatic) aspects that are sensitive to
ambiguity and risk respectively. Thus, active inference offers an interesting framework
not only for understanding behavior and the brain, but also for developing artificial
intelligent agents and for investigating novel machine learning algorithms.

In this scope, the present volume presents some recent developments in active infer-
ence and its applications. These papers were presented and discussed at the 3rd Interna-
tional Workshop on Active Inference (IWAI 2022), which was held in conjunction with
the European Conference on Machine Learning and Principles and Practice of Knowl-
edge Discovery in Databases (ECML-PKDD). The workshop took place on September
19, 2022 in Grenoble, France. We received 31 submissions, out of which 25 papers
were accepted for publication after a peer review process. The review process was
double-blind, and three reviewers could score between -3 (strong reject) and 3 (strong
accept). Papers were accepted when a net positive score was obtained. We also awarded
Conor Heins, Ruben van Bergen, and Samuel Wauthier for their contributions, with an
honorable mention for Justus Huebotter and Alex Kiefer.

The IWAI 2022 organizers would like to thank the Program Committee for all
reviews, the authors for their outstanding contributions, VERSES for sponsoring the
awards, Anjali Bhat for her awesome keynote, and all attendees for making it such a
memorable event.

September 2022 Christopher L. Buckley
Daniela Cialfi
Pablo Lanillos

Maxwell Ramstead
Noor Sajid

Hideaki Shimazaki
Tim Verbelen
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Preventing Deterioration of Classification
Accuracy in Predictive Coding Networks

Paul F. Kinghorn1(B), Beren Millidge2, and Christopher L. Buckley1

1 School of Engineering and Informatics, University of Sussex, Brighton, UK
{p.kinghorn,c.l.buckley}@sussex.ac.uk

2 MRC Brain Networks Dynamics Unit, University of Oxford, Oxford, UK
beren@millidge.name

Abstract. Predictive Coding Networks (PCNs) aim to learn a genera-
tive model of the world. Given observations, this generative model can
then be inverted to infer the causes of those observations. However, when
training PCNs, a noticeable pathology is often observed where inference
accuracy peaks and then declines with further training. This cannot be
explained by overfitting since both training and test accuracy decrease
simultaneously. Here we provide a thorough investigation of this phe-
nomenon and show that it is caused by an imbalance between the speeds
at which the various layers of the PCN converge. We demonstrate that
this can be prevented by regularising the weight matrices at each layer:
by restricting the relative size of matrix singular values, we allow the
weight matrix to change but restrict the overall impact which a layer
can have on its neighbours. We also demonstrate that a similar effect
can be achieved through a more biologically plausible and simple scheme
of just capping the weights.

Keywords: Hierarchical predictive coding · Variational inference ·
Inference speed

1 Introduction

Predictive Coding (PC) is an increasingly influential theory in computational
neuroscience, based on the hypothesis that the primary objective of the cortex is
to minimize prediction error [6,19,26]. Prediction error represents the mismatch
between predicted and actual observations. The concepts behind PC go back to
Helmholtz’s unconscious inference and the ideas of Kant [19]. There are also more
recent roots in both machine learning [1,7] and neuroscience [22,24] which were
then unified by Friston in a series of papers around 15 years ago [11–13]. In order
to generate predictions, the brain instantiates a generative model of the world,
producing sensory observations from latent variables. Typically, PC is assumed
to be implemented in hierarchies, with each layer sending predictions down to
the layer below it, although recent work has demonstrated its applicability in
arbitrary graphs [25]. A key advantage of PC over backpropagation is that it
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
C. L. Buckley et al. (Eds.): IWAI 2022, CCIS 1721, pp. 1–15, 2023.
https://doi.org/10.1007/978-3-031-28719-0_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-28719-0_1&domain=pdf
https://doi.org/10.1007/978-3-031-28719-0_1
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requires only local updates. Despite this, recent work has shown that it can
approximate backpropagation [21,27], and it is an active area of research in
both machine learning and neuroscience.

A Predictive Coding Network (PCN) can be viewed as an example of an
Energy Based Model (EBM), with the minimization of errors equating to min-
imization of the network’s energy [12]. Minimizing energy by updating network
node values corresponds to inference and perception, whereas reducing energy
by updating the weights of the network corresponds to learning and improv-
ing the model of the world. The theory has close links with the concept of the
Bayesian Brain [9,15,26] - the process of perception is implemented by setting
a prior at the top layer being sent down the layers and then errors being sent
back up the layers to create a new posterior given observations at the bottom
of the network. This is done iteratively until the posterior “percept” at the top
of the network and the incoming data at the bottom are in equilibrium which is
when the energy of the network is minimized.

As the generative model is learned and the weights of the network are
updated, the ability of the network to infer the correct latent variable (or label)
should, in theory, improve. However, we have observed that, once an optimal
amount of training has occurred, PCNs appear to then deteriorate in classifi-
cation performance, with inference having to be run for increasingly many iter-
ations to maintain a given level of performance. We are aware of only passing
mentions of this issue in the literature [14,28], although it is often discussed
informally. This paper provides an in-depth investigation and diagnosis of the
problem, determines the reasons for it and then implements some techniques
which can be used to avoid it. This allows us to stably train predictive coding
networks for much longer numbers of epochs than previously possible without
performance deterioration.

The remainder of this paper is set out as follows. Section 2 describes a typical
PCN and gives a high level overview of the maths behind predictive coding.
Section 3 analyses the reason for the degradation in performance, starting with
a demonstration of the problem and then explains its causes at increasingly
detailed levels of explanation, ultimately demonstrating that it is caused by a
mismatch between the size of weights in different layers. Once we have identified
this fundamental cause, Sect. 4 then demonstrates techniques for avoiding it such
as weight regularisation or capping. Weight regularisation is a technique which
is common in the world of machine learning to prevent overfitting [2]. However,
we will demonstrate that this is not the problem faced in PCNs - our solutions
are not designed to necessarily keep weights small, but rather to ensure that the
relative impact of different weight layers stays optimal.
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2 Predictive Coding Networks

Fig. 1. Predictive Coding Network in test mode. The PCN
learns to generate images from labels. At test time, the task
of the network is to infer the correct label from a presented
image. This is done by iteratively sending predictions down
and errors back up the network, until the network reaches
equilibrium.

PCNs can be trained
to operate in two dif-
ferent manners. Using
MNIST [16] as an
example, a “gener-
ative” PCN would
generate images from
labels in a single for-
ward sweep, but then
be faced with a diffi-
cult inversion task in
order to infer a label
from an image. Con-
versely, a “discrimi-
native” PCN would
be able to generate
labels from images
in a single forward
sweep but would have
difficulty producing an image for a given label [19]. Throughout this paper we use
generative PCNs. Figure 1 shows a typical PCN. In training, it learns a genera-
tive model which takes MNIST labels at the top of the network and generates
MNIST images at the bottom. When testing the network’s ability to classify
MNIST images, an image is presented at the bottom of the network and the
generative model is inverted using variational inference to infer a label. Deriva-
tions of the maths involved can be found in [3,4,14,18] and we do not derive the
update equations here, but simply give a brief overview and present the update
equations which will be relevant later.

The network has N layers, where the top layer is labelled as layer 0 and the
bottom layer as layer N-1. μn is a vector representing the node values of layer n,
θn is a matrix giving the connection weights between layer n and layer n+1, f is
an elementwise non-linear function and εn+1 := μn+1 −f(μnθn) is the difference
between the value of layer n+1 and the value predicted by layer n. Note that, in
this implementation, (μnθn) represents matrix multiplication of the node values
and the weights, and therefore the prediction sent from layer n to layer n + 1
is a non-linear function applied elementwise to a linear combination of layer n’s
node values. This is simply a specific instance of the more general case, where
the prediction is produced by an arbitrary function f parameterised by θn, and
is therefore given by f(μn, θn).

Training the generative model of the network involves developing an auxiliary
model (called the variational distribution) and minimizing the KL divergence
between that auxiliary model and the true posterior. Variational free energy
F is a measure which is closely related to this divergence and under certain
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assumptions it can be shown that:

F ≈
[ N∑

n

−1
2
εT
n+1Σ

−1
n+1εn+1 − 1

2
log(2π |Σn+1|)

]
(1)

where Σ−1
n is a term known as the precision, equal to the inverse of the variance

of the nodes. It can also be shown that, in order to make the model a good fit
for the data, it suffices to minimize F . Therefore, to train the model, batches of
label/image combinations are presented to the network and F is steadily reduced
using the Expectation-Maximization approach [8,17], which alternately applies
gradient descent on F with respect to node values (μ) on a fast timescale and
weight values (θ) on a slower timescale. The process is repeated over multiple
batches, with F steadily decreasing and the network’s generative model improv-
ing. The gradients can be easily derived from Eq. (1). To update the nodes of
the hidden layers, the gradient is given by:

dF
dμn

= εn+1 Σ−1
n+1 θT

n f ′(μnθn) − εn Σ−1
n (2)

After the node values have been updated, F is then further minimized by
updating the weights using:

dF
dθn

= εn+1 Σ−1
n+1 μT

n f ′(μnθn) (3)

Training is carried out in a supervised manner and involves presentation of
images and their corresponding labels. Therefore the bottom and top layers of
the network are not updated during training and are held fixed with an MNIST
image and a one-hot representation of the image’s MNIST label respectively.
Only the hidden layer nodes are updated. During testing, the task is to infer a
label for a presented image and therefore the nodes of the top layer are allowed
to update. Using the gradient for node updates, gradient descent is run through
a number of iterations, ideally until the nodes of the network are at equilibrium.
The inferred label can then be read out from the top layer. Since this layer
receives no predictions from above, its gradient is slightly different from the
other layers and is truncated to:

dF
dμ0

= ε1 Σ−1
1 θT

0 f ′(μ0θ0) (4)

So far, we have described a supervised training regime. It is also possible to
train in an unsupervised manner, in which case the top layer nodes are not held
fixed during training and are updated in the same way as they are in testing.
In this scenario, the top layer nodes will not be trained to converge to one-hot
labels when inferring an image, but will still try to extract latent variables (see
Appendix D for more discussion).

It is also possible to derive update equations for the precisions [3,12,19], but
in our experiments we hold these fixed as the identity matrix and do not update
them. Details of the network and the gradient descent techniques used are given
in Appendix A.
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3 Analysis

Fig. 2. Deteriorating Inference Accu-
racy. After training progresses beyond a
certain stage, the ability of a PCN to
infer the correct latent variable (“label”)
decreases. This is observed for both test
and training set (black and blue lines)
and therefore cannot be attributed to over-
fitting. This paper demonstrates that we
can prevent this issue by simply capping
size of weights (green line) or by regular-
ising the weights so that the mean weight
size on each layer remains constant (red
line). Each line shows average of 3 net-
works, with standard error shown. (Color
figure online)

Fig. 3. For different levels of train-
ing, development of label accuracy
during iterative inference. During
the early stages of training (roughly
batches 10 to 200), the number of
inference iterations required in testing
reduces. However, after a certain amount
of training, the asymptotic accuracy no
longer improves, and the time taken to
reach that asymptote worsens. This plot
shows results from a single run - different
runs vary slightly, but follow the same
pattern. (Color figure online)

Figure 2 demonstrates a problem which is encountered when training generative
PCNs for inference/classification tasks. In order to assess how well the network
infers labels of MNIST images, we train the network over a large number of mini-
batches and regularly test the accuracy of label inference against a test dataset
(black line), using 1000 iterations of inference. The network quickly improves
with training, but accuracy then appears to deteriorate once training progresses
beyond a certain point. The remainder of the paper demonstrates that this is
caused by a mismatch between the way weights in different layers develop during
training. We then show that simply capping the size of weights or regularising
the weights so that the mean weight size on each layer remains constant prevents
the problem and stabilizes training.

At any step in the iterative inference, it is possible to take a one-hot read-out
from the inferred labels at the top layer. We can therefore construct a trajectory
showing how accuracy develops with number of inference iterations. Figure 3
shows how this label accuracy develops for a network given different amounts
of training. For example, the red line in the figure shows the trajectory of label
accuracy for a network which has received 10 mini-batches of training. The plot
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demonstrates that, as training progresses through the early training batches,
test accuracy improves both in terms of the asymptotic value achieved and in
terms of how quickly the inference process reaches that asymptote. But, after
a certain amount of training the inference process slows down. At batch 200,
asymptotic performance is achieved after approximately 100 iterations. But if
the network is trained for 4000 batches, the accuracy is still improving after 1000
test iterations. It is important to note that, if the inference process were allowed
to run longer, the same asymptotic value would be achieved. Thus, if we infer the
label after a set number of test iterations, performance will seem to deteriorate
as the network gets better trained. This explains why Fig. 2 appears to show
a deterioration in network performance since, following common practice, we
stopped inference after a fixed number of steps (1000).

We have thus discovered the immediate cause of the performance deteriora-
tion - as we increase training, we need more test iterations to infer the correct
label. To gain a deeper understanding of the phenomenon, however, we need
to understand why this is the case. As an energy based model, the process of
inference involves updating nodes until the network reaches equilibrium. Once
this has been achieved, dF

dμ for each node will be zero. It is instructive to examine
whether any specific part of the network is the cause of the increase in the time
to stabilise across epochs. Figure 4 shows that, as training progresses, the equi-
librium F for each layer (which is proportional to the mean square error between
layers) gets lower. Also, the error nodes on layers 2 and 3 stabilise quickly and
even slightly speed up as training progresses. However, F on layer 1 (which is a
measure of the errors between the node values at layers 0 and 1) takes an increas-
ingly long time to settle down to equilibrium. Further investigation shows that
this is caused by the nodes on the top layer taking increasingly long to stabilise,
whereas hidden layer nodes all settle quickly (more details in Appendix B).

(a) F on layer 1 (b) F on layer 2 (c) F on layer 3

Fig. 4. For different levels of training, development of F on each layer during
inference. Figures show the average F per node, for each layer. As training develops,
F on all layers asymptote at lower values. Layers 2 and 3 also increase the speed which
which they stabilise. However, on layer 1 (which represents the difference between the
one-hot labels on the top layer and the nodes on the layer below), the network becomes
slower to stabilise as training progresses. This plot shows results from a single run -
different runs vary slightly, but follow the same pattern.
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Summarising what this means for our 4 layer network as it tries to infer the
label for an image: layer 3 at the bottom is fixed with the image, layer 2 quickly
reaches equilibrium with layer 3, layer 1 quickly reaches equilibrium with layer
2, layer 0 is not at equilibrium with layer 1 and is still updating after many
iterations. Crucially, it is this top layer which is used to read out the inferred
label - thus causing the apparent reduction in label accuracy during training.

We now examine the reason why it is only the top layer which takes an
increasing amount of time to stabilise. Recall that the node values are updated
with Euler integration using dF

dμ from Eqs. (2) and (4) as the gradient. As we
are using fixed precision matrices, we can ignore the precision terms. Also, to
help gain an intuition for these gradients, we ignore the non-linear activation
function for now and assume the connections are simply linear. This allows us
to see that the size of gradients are controlled by sizes of errors and weights:

dF
dμ0

≈ ε1 θT
0 (5)

dF
dμn

≈
[
εn+1 θT

n − εn

]
for n > 0 (6)

Fig. 5. Development with training of mean
weight size for each weight layer. Solid lines
show supervised mode, with top layer clamped in
training - as training progresses, weight size reduces
on the top layer but increases on the hidden layers.
On the other hand, if the network is trained in unsu-
pervised mode, all 3 weight layers increase in size.
(Color figure online)

We have seen already
that F , and therefore the
errors at all layers, reduces
in size as training progresses.
On the other hand, Fig. 5
shows that there is a dis-
parity between the weight
sizes on the layers. As train-
ing progresses through the
batches, the mean weight size
reduces on the top layer but
increases on the hidden lay-
ers. Applying this information
to Eqs. (5) and (6) demon-
strates why training causes
the gradients on the top layer
to reduce, but the hidden lay-
ers to increase: the gradient
for the top layer is the prod-
uct of two decreasing quan-
tities, whereas on the hidden
layers, diminishing errors are
offset by increasing weights.

This leaves one final level of understanding to be dealt with - why do the
weights at the top layer get smaller as training proceeds through the batches
but the weights of hidden layers increase? To understand this, we now turn
to the update equations for the weights which are applied after each batch of
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training (Eq. (3). Again, we ignore the precision and non-linearity in order to
gain intuition and can see that the update equations for each weight layer θn

comprise:

∀n :
dF
dθn

≈ εn+1 μT
n = (μn+1 − μnθn) μT

n = μn+1 μT
n − μn μT

n θn (7)

This gradient is made up of a Hebbian component and an anti-Hebbian
regularisation term and is reminiscent of the Oja learning rule [23] which was
proposed as a technique to prevent exploding weights in Hebbian learning.

Although the equation for the weight gradient is the same for each layer,
there is one crucial difference between the layers: when learning dF

dθn
in the case

n = 0, the nodes μn are fixed, whereas the nodes μn are not fixed for other
values of n. This interferes with the regularisation of those weight layers. As a
result, the weight matrices grow in size when n > 0.

We have thus seen that accuracy of label inference deteriorates after a certain
level of training because the different weight layers are being subject to different
regularisation regimes. The top layer nodes are fixed during training, keeping the
weight updates small, and this has the ultimate effect of causing top layer nodes
to update more slowly as training progresses. The weights of the hidden layers
are updated according to the same equation but with the crucial difference that
the input nodes to the weight matrix are not clamped, reducing the anti-Hebbian
impact of the regularisation term.

4 Techniques to Prevent Deterioration in Inference
Accuracy

In order to prevent this deterioration we examine two possible approaches. One
approach is to ensure that the top weight layer is treated in the same way as
the hidden layers and is not regularised. Alternatively we can ensure that the
hidden layers are regularised in the same way as the top layer. We address these
two techniques in turn.

If we unclamp the top layer in training then we are training the PCN in
unsupervised mode. Because the top layer of nodes is no longer clamped, the
top layer of weights will be treated in the same way as the other layers and the
implicit regularisation is reduced. This is demonstrated by the dotted red line
in Fig. 5, which shows that, in unsupervised mode, the top layer weights now
continue to increase as training continues just like the middle layers. In addition
to monitoring mean weight size of each layer, we can obtain additional intuition
as to what is happening by monitoring the development of the singular values
of each weight matrix. This is briefly discussed in Appendix C.

Because training is now unsupervised, the top layer will no longer categorise
the MNIST labels according to a one-hot label and therefore we cannot measure
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speed of label inference as we did in Fig. 3.1 However, we can analyse the speed
with which each layer reduces F (as we did in Fig. 4 for supervised mode). We
find that there is no deterioration in time to reach equilibrium in any of the
layers (chart not shown) and in fact, like the other hidden layers, the top layer
converges slightly quicker as training progresses. We thus find that there is no
longer a mismatch between the speeds at which the top layer and the hidden
layers reach equilibrium - by having no prior forced on it, the top layer effectively
becomes just another hidden layer.

But what if we want to have a supervised network? In that case, we want to
maintain inference speed by ensuring that the weights on all layers are similarly
regularised. A straightforward way of doing this is to simply ensure that the
mean size of the weights for each layer stays constant throughout training. This
is done by updating the weights as usual using dF

dθ and then simply regularising
them according to the formula

∀i : θi = θi ∗ Target mean size
Σi|θi| , (8)

where target mean size is a hyperparameter we set as described in Appendix A).
The norm of the weight layers are now no longer changing with respect to each
other and so, as predicted by our investigations, this prevents deterioration in
label inference accuracy - shown by the red line in Fig. 2. A possible challenge
to this approach is that this method of regularisation will no longer depend
on purely local updates (although there is much neuroscience literature on the
topic of homeostatic synaptic scaling - see for example [5,29]). We used the same
regularizing factor on each layer (see Appendix A), and we could find no other
configuration of regularizing factor which worked better in terms of classification
performance or speed of inference.

An even simpler, and possibly more biologically plausible, method of pre-
venting exploding weights in supervised learning is to impose a simple cap on
each weight. Empirically, we find that this method also maintains accuracy as
shown by the green line in Fig. 2. Results shown were generated using a weight
cap size of 0.1. It should be noted that this method is sensitive to the cap size
used (although one could argue that evolution in the brain could select the cor-
rect cap size). Also, it may eventually lead to binary weight distribution and
declining performance, although we have not investigated this.

5 Discussion

We have provided a detailed analysis of the dynamics of inference in predictive
coding, and have shown that there is a tendency for that inference to slow down
as training progresses. [20] separates the total energy of an Energy Based Model

1 Note that this does not mean the top layer is no longer useful in terms of representing
an image’s label - energy minimization will still produce a representation at the top
layer which separates the images by their characteristics - see Appendix D.



10 P. F. Kinghorn et al.

into the supervised loss (which depends on the errors at the top layer) and
the internal energy (which corresponds to the energy of the hidden layers). We
have shown that it is only the supervised loss which suffers from a slow-down
in inference. As a result, this pathology does not exist in unsupervised training.
We have also demonstrated that, even in supervised training, the decline can
be prevented if the weights are constrained to ensure any weight regularisation
is consistently applied across all layers. This is not something that happens
automatically in the PCN framework without precisions.

In our implementation we have set all precisions to the identity matrix. We
are aware of little research on the impact of precisions on inference dynamics,
with most mentions of precisions pointing to them as an attention mechanism
and a way of controlling the equilibrium point of the network [10]. But it can
be seen from the update Eqs. (2), (4) and (3), that precisions also act as an
adaptive weighting of the learning rate, both in the fast update of nodes and the
slower update of weights. Therefore, as well as influencing direction of gradient
updates, they should also have a significant impact on speed of update. Future
work therefore needs to address the extent to which the phenomenon we observe
is avoided if well-learned precisions are implemented. Having said that, we have
experimented with different manually enforced relative precisions at each layer
and found little benefit in terms of avoiding inference speed degradation. How-
ever, our testing simply implemented constant precisions for each layer - it is
entirely possible that, by deriving a full covariance matrix, and allowing preci-
sions to change with time, the phenomenon disappears. If precisions do prove to
be a solution, then this paper will have at least pointed out the potential pitfalls
of implementing predictive coding without them, and provided some techniques
for coping with their omission.

Acknowledgements. PK is supported by the Sussex Neuroscience 4-year PhD Pro-
gramme. CLB is supported by BBRSC grant number BB/P022197/1. BM is supervised
by Rafal Bogacz who is supported by the BBSRC number BB/S006338/1 and MRC
grant number MC UU 00003/1.

A Network Details

Network size: 4 layer
Number of nodes on each layer: 10, 100, 300, 784. In both training and test-
ing, the 784 bottom layer nodes were fixed to the MNIST image. In supervised
training mode, the top layer nodes were fixed as a one-hot representation of the
MNIST label.
Non-linear function: tanh
Bias used: yes
Training set size: full MNIST training set of 60,000 images, in batches of 640.
Thus the full training set is used after 93 batches.
Testing set size: full MNIST test set of 10,000 images
Learning parameters used in weight update of EM process: Learning
Rate = 1e−3, Adam
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Learning parameters used in node update of EM process: Learning Rate
= 0.025, SGD
Number of SGD iterations in training: 50
Number of SGD iterations in testing: 1000.
Random node initialisation: Except where fixed, all nodes were initialized
with a random values selected from N (0.5, 0.05)
Weight regularisation: The weight regularisation technique used holds the
L1 norm of each weight matrix constant. Rather than assigning a specific value,
the algorithm measured the L1 norm of the matrix at initialisation (before any
training took place) and then maintained that norm after each set of weight
updates. The weights were randomly initialised using N (0, 0.05), giving a mean
individual weight size of approximately 0.04 on all layers.

B Development of Nodes

(See Fig. 6).

(a) After 500 batches of training (b) After 4000 batches of training (c) After 4000 batches of training
- with more test iterations

Fig. 6. Nodes on top layer take longer to approach equilibrium after many
epochs of training. For a PCN trained in supervised mode, the figures show how the
10 one-hot nodes in the top layer develop during test inference. The black lines represent
the node which corresponds with the presented MNIST image’s label (and therefore
should be the maximum of the 10 nodes). Figure (a) shows the situation relatively
early in training; after less than the 1000 test iterations, the system is inferring the
correct label. But Figure (b) shows the situation when training has run much longer;
the nodes are now much slower to update and therefore the system infers the wrong
label. However, if the system were allowed to carry out inference over more iterations,
the correct label would be inferred (Figure c).
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C Development of SVDs

(See Fig. 7).

(a) No weight constraints -
layer 0

(b) No weight constraints -
layer 1

(c) No weight constraints -
layer 2

(d) Normalized weights - layer0 (e) Normalized weights - layer1 (f) Normalized weights - layer2

(g) Capped weights - layer 0 (h) Capped weights - layer 1 (i) Capped weights - layer 2

Fig. 7. Singular value decomposition of weight matrices. If we do not constrain
the weights (Figures a–c), the SVDs of layer 0 increase in early stages of training,
and then decrease. But layers 1 and 2 steadily increase. In early stages of train-
ing, the distribution of SVDs changes, but after peak inference accuracy has been
achieved at around training batch 500, subsequent changes in the weight matrix can
be viewed largely as a parallel increase in all SVDs. By introducing normalisation
(Figures d–f), the network learning is still able to redistribute the shape of the weight
matrix if the gradients try to do this. But if the gradients are having no effect on the
shape of the matrix then changes are not applied. Similar behaviour is observed for
capped weights (Figures g–i). Monitoring the shape of SVDs could help identify when
there is nothing to be gained from further training, although this would probably also
require monitoring the change in singular vectors.
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D Unsupervised PCN Still Separates Top Layer
into Labels

(See Fig. 8).

Fig. 8. Unsupervised PCN. Because the network is trained in an unsupervised man-
ner, the top layer nodes do not contain a one-hot estimate of the image label. The nodes
still contain a representation of the image, but it is simply in a basis that the network
has created, rather than one which has been forced on it using supervised learning.
tSNE analysis of top layer in testing demonstrates that unsupervised PCN still sep-
arates images according to label, despite lack of labels in training. Each dot shows
the tSNE representation for an MNIST image - different colours represent images with
different labels. (Color figure online)
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Abstract. Under what circumstances can a system be said to have
beliefs and goals, and how do such agency-related features relate to its
physical state? Recent work has proposed a notion of interpretation map,
a function that maps the state of a system to a probability distribution
representing its beliefs about an external world. Such a map is not com-
pletely arbitrary, as the beliefs it attributes to the system must evolve
over time in a manner that is consistent with Bayes’ theorem, and conse-
quently the dynamics of a system constrain its possible interpretations.
Here we build on this approach, proposing a notion of interpretation not
just in terms of beliefs but in terms of goals and actions. To do this we
make use of the existing theory of partially observable Markov decision
processes (POMDPs): we say that a system can be interpreted as a solu-
tion to a POMDP if it not only admits an interpretation map describing
its beliefs about the hidden state of a POMDP but also takes actions
that are optimal according to its belief state. An agent is then a sys-
tem together with an interpretation of this system as a POMDP solu-
tion. Although POMDPs are not the only possible formulation of what
it means to have a goal, this nevertheless represents a step towards a more
general formal definition of what it means for a system to be an agent.

Keywords: Agency · POMDP · Bayesian filtering · Bayesian inference

1 Introduction

This work is a contribution to the general question of when a physical system
can justifiably be seen as an agent. We are still far from answering this ques-
tion in full generality but employ here a set of limiting assumptions/conceptual
commitments that allow us to provide an example of the kind of answer we are
looking for.
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The basic idea is inspired by but different from Dennett’s proposal to use
so-called stances [4], which says we should interpret a system as an agent if
taking the intentional stance improves our predictions of its behavior beyond
those obtained by the physical stance (or the design stance, but we ignore this
stance here). Taking the physical stance means using the dynamical laws of the
(microscopic) physical constituents of the system. Taking the intentional stance
means ignoring the dynamics of the physical constituents of the system and
instead interpreting it as a rational agent with beliefs and desires. (We content
ourselves with only ascribing goals instead of desires.) A quantitative method to
perform this comparison of stances can be found in [12].

In contrast to using a comparison of prediction performance of different
stances we propose to decide whether a system can be interpreted as an agent by
checking whether its physical dynamics are consistent with an interpretation as
a rational agent with beliefs and goals. In other words, assuming that we know
what happens in the system on the physical level (admittedly a strong assump-
tion), we propose to check whether we can consistently ascribe meaning to its
physical states, such that they appear to implement a process of belief updating
and decision making.

A formal example definition of what it means for an interpretation to be
consistent was recently published in [16]. This establishes a notion of consistent
interpretation as a Bayesian reasoner, meaning something that receives inputs
and uses them to make inferences about some hidden variable, but does not take
actions or pursue a goal.

Briefly, such an interpretation consists of a map from the physical/internal
states of the system to Bayesian beliefs about hidden states (that is, probability
distributions over them), as well as a model describing how the hidden states
determine the next hidden state and the input to the system. To be consistent,
if the internal state at time t is mapped to some belief, then the internal state
at time t + 1 must map to the Bayesian posterior of that belief, given the input
that was received in between the two time steps.

In other words, the internal state parameterizes beliefs and the system
updates the parameters in a way that makes the parameterized belief change
according to Bayes law. A Bayesian reasoner is not an agent however. It lacks
both goals and rationality since it neither has a goal nor actions that it could
rationally take to bring the goal about.

Here we build on the notion of consistent interpretations of [16] and show
how it can be extended to also include the attribution of goals and rationality.

For this we employ the class of problems called partially observable Markov
decision processes (POMDPs), which are well suited to our purpose. These pro-
vide hidden states to parameterize beliefs over, a notion of a goal, and a notion
of what it means to act optimally, and thus rationally, with respect to this goal.
Note that both the hidden states and the goal (which will be represented by
rewards) are not assumed to have a physical realization. They are part of the
interpretation and therefore only need to exist in the mathematical sense. Infor-
mally, the hidden state is assumed by the agent to exist, but need not match a
state of the true external world.
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We will see that given a pair of a physical system (as modelled by a stochastic
Moore machine) and a POMDP it can in principle be checked whether the system
does indeed parameterize beliefs over the hidden states and act optimally with
respect to the goal and its beliefs (Definition 5). We then say the system can be
interpreted as solving the POMDP, and we propose to call the pair of system
and POMDP an agent. This constitutes an example of a formal definition of a
rational agent with beliefs and goals.

To get there however we need to make some conceptual commitments/
assumptions that restrict the scope of our definition. Note that we do not make
these commitments because we believe they are particularly realistic or useful
for the description of real world agents like living organisms, but only because
they make it possible to be relatively precise. We suspect that each of these
choices has alternatives that lead to other notions of agents. Furthermore, we do
not argue that all agents are rational, nor that they all have beliefs and goals.
These are properties of the particular notion of agent we define here, but there
are certainly other notions of agent that one might want to consider.

The first commitment is with respect to the notion of system. Generally, the
question of which physical systems are agents may require us to clarify how we
obtain a candidate physical system from a causally closed universe and what the
type of the resulting candidate physical system is. This can be done by defining
what it means to be an individual and/or identifying some kind of boundary.
Steps in this direction have been made in the context of cellular automata e.g.
by [1,2] and in the context of stochastic differential equations by [5,7].

We here restrict our scope by assuming that the candidate physical system
is a stochastic Moore machine (Definition 2). A stochastic Moore machine has
inputs, a dynamic and possibly stochastic internal state, and outputs that deter-
ministically depend on the internal state only. This is far from the most general
types of system that could be considered, but it is general enough to represent
the digital computers controlling most artificial agents at present. It it also sim-
ilar to a time and space discretized version of the dynamics of the internal state
of the literature on the free energy principle (FEP) [7].

Already at this point the reader may expect that the inputs of the Moore
machine will play the role of sensor values and the outputs that of actions and
this will indeed be the case. Furthermore, the role of the “physical constituents”
or physical state (of Dennett’s physical stance) will be played by the internal
state of the machine and this state will be equipped with a kind of consistent
Bayesian interpretation. In other words, it will be parameterizing/determining
probabilistic beliefs. This is similar to the role of internal states in the FEP.

For our formal notion of beliefs we commit to probability distributions that
are updated in accordance with Bayes law.

The third commitment is with respect to a formal notion of goals and ratio-
nality. As already mentioned, for those we employ POMDPs. These provide both
a formal notion of goals via expected reward maximization and a formal notion
of rational behavior via their optimal policy.

Combining these commitments we want to express when exactly a system
can be interpreted as a rational agent with beliefs and goals.
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Rational agents take the optimal actions with respect to their goals and
beliefs. The convenient feature of POMDPs for our purposes is that the opti-
mal policies are usually expressed as functions of probabilistic beliefs about the
hidden state of the POMDP. For this to work, the probabilistic beliefs must be
updated correctly according to Bayesian principles. It then turns out that these
standard solutions for POMDPs can be turned into stochastic Moore machines
whose states are the (correctly updated) probabilistic beliefs themselves and
whose outputs are the optimal actions.

This has two consequences. One is that it seems justified to interpret such
stochastic Moore machines as rational agents that have beliefs and goals.
Another is that there are stochastic Moore machines that solve POMDPs.
Accordingly, our definition of stochastic Moore machines that solve POMDPs
(Definition 5) applies to these machines.

In addition to such machines, however, we want to include machines whose
states only parameterize (and are not equal to) the probabilistic beliefs over
hidden states and who output optimal actions.1 We achieve this by employing
an adapted notion of a consistent interpretation (Definition 3). A stochastic
Moore machine can then be interpreted as solving a POMDP if it has this kind
of consistent interpretation with respect to the hidden state dynamics of the
POMDP and outputs the optimal policy.

We also show that the machines obeying our definition are optimal in the
same sense as the machines whose states are the correctly updated beliefs, so we
find it justified to interpret those machines as rational agents with beliefs and
goals as well.

Before we go on to the technical part we want to highlight a few more aspects.
The first is that the existence of a consistent interpretation (either in terms of
filtering or in terms of agents) only depends on the stochastic Moore machine
that’s being interpreted, and not on any properties of its environment. This
is because a consistent interpretation requires an agent’s beliefs and goals to
be consistent, and this is different from asking whether they are correct. An
agent may have the wrong model, in that it doesn’t correspond correctly to the
true environment. Its conclusions in this case will be wrong, but its reasoning
can still be consistent; see [16] for further discussion of this point. In the case
of POMDP interpretations this means that the agent’s actions only need to be
optimal according to its model of the environment, but they might be suboptimal
according to the true environment.

This differs from the perspective taken in the original FEP literature con-
cerned with the question of when a system of stochastic differential equa-
tions contain an agent performing approximate Bayesian inference [3,5–7,14].2

1 These machines are probably equivalent to the sufficient information state processes
in [9, definition 2] but establishing this is beyond the scope of this work.

2 The FEP literature includes both publications on how to construct agents that
solve problems (e.g. [8]) and publications on when a system of stochastic differential
equations contain an agent performing approximate Bayesian inference. Only the
latter literature addresses a question comparable to the one addressed in the present
manuscript.
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This literature also interprets a system as modelling hidden state dynamics, but
there the model is derived from the dynamics of the actual environment (the so
called “external states”), and hence cannot differ from it. We consider it helpful
to be able to make a clear distinction between the agent’s model of its envi-
ronment and its true environment. The case where the model is derived from
the true environment is an interesting special case of this, but our framework
covers the general case as well. To our knowledge, the possibility of choosing the
model independently from the actual environment in a FEP-like theory was first
proposed in [16], and has since also appeared in a setting closer to the original
FEP one [13].

We will see here (Definition 3) that the independence of model from actual
environment extends to actions in some sense. Even a machine without any out-
puts can have a consistent interpretation modelling an influence of the internal
state on the hidden state dynamics even though it can’t have an influence on
the actual environment. Such “actions” remain confined to the interpretation.

Another aspect of using consistent interpretations of the internal state and
thus the analogue of the physical state/the physical constituents of the system
is that it automatically comes with a notion of coarse-graining of the internal
state. Since interpretations map the internal state to beliefs but don’t need to
do so injectively they can include coarse-graining of the state.

Also note, all our current notions of interpretation in terms of Bayesian beliefs
require exact Bayesian updating. This means approximate versions of Bayesian
inference or filtering are outside of the scope. This limits the scope of our example
definition in comparison with the FEP which, as mentioned, also uses beliefs
parameterized by internal states but considers approximate inference. On the
other hand this keeps the involved concepts simpler.

Finally, we want to mention that [11] recently proposed an agent discovery
algorithm. This algorithm is based on a definition of agents that takes into
account the creation process of the system. An agent discovery algorithm based
on the approach presented here would take as input a machine (Definition 1) or a
stochastic Moore machine (Definition 2) and try to find a POMDP interpretation
(Definition 5). The creation process of the machine (system) would not be taken
into account. This is one distinction between our notion of an agent and that of
[11]. A more detailed comparison would be interesting but is beyond the scope
of this work.

The rest of this manuscript presents the necessary formal definitions that
allow us to precisely state our example of an agent definition.

2 Interpreting Stochastic Moore Machines

Throughout the manuscript we write PX for the set of all finitely supported
probability distributions over a set X . This ensures that all probability distri-
butions we consider only have a finite set of outcomes that occur with non-zero
probability. We can then avoid measure theoretic language and technicalities.
For two sets X ,Y a Markov kernel is a function ζ : X → PY. We write ζ(y|x)
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for the probability of y ∈ Y according to the probability distribution ζ(x) ∈ PY.
If we have a function f : X → Y we sometimes write δf : X → PY for the
Markov kernel with δf(x)(y) (which is 1 if y = f(x) and 0 else) then defining the
probability of y given x.

We give the following definition, which is the same as the one used in [16], but
specialised to the case where update functions map to the set of finitely supported
probability distributions and not to the space of all probability distributions.

Definition 1. A machine is a tuple (M, I, μ) consisting of a set M called inter-
nal state space; a set I called input space; and a Markov kernel μ : I×M → PM
called machine kernel, taking an input i ∈ I and a current machine state m ∈ M
to a probability distribution μ(i,m) ∈ PM over machine states.

The idea is that at any given time the machine has a state m ∈ M. At each
time step it receives an input i ∈ I, and updates stochastically to a new state,
according to a probability distribution specified by the machine kernel. If we add
a function that specifies an output given the machine state we get the definition
of a stochastic Moore machine.

Definition 2. A stochastic Moore machine is a tuple (M, I,O, μ, ω) consisting
of a machine with internal state space M, input space I, and machine kernel
μ : I × M → PM; a set O called the output space; and a function ω : M → O
called expose function taking any machine state m ∈ M to an output ω(m) ∈ O.

Note that the expose function is an ordinary function and not stochastic.
We need to adapt the definition of a consistent Bayesian filtering interpre-

tation [16, Definition 2]. For our purposes here we need to include models of
dynamic hidden states that can be influenced. In particular we need to interpret
a machine as modelling the dynamics of a hidden state that the machine itself
can influence. This suggests that the interpretation includes a model of how the
state of the machine influences the hidden state. We here call such influences
“actions” and the function that takes states to actions action kernel.

Definition 3. Given a machine with state space M, input space I and machine
kernel μ : I × M → PM, a consistent Bayesian influenced filtering interpre-
tation (H,A, ψ, α, κ) consists of a set H called the hidden state space; a set A
called the action space; a Markov kernel ψ : M → PH called interpretation map
mapping machine states to probability distributions over the hidden state space; a
function α : M → A called action function mapping machine states to actions3;
and a Markov kernel κ : H × A → P (H × I) called the model kernel mapping
pairs (h, a) of hidden states and actions to probability distributions κ(h, a) over
pairs (h′, i) of next hidden states and an input.

These components have to obey the following equation. First, in string dia-
gram notation (see appendix A of [16] for an introduction to string diagrams for
probability in a similar context to the current paper):
3 We choose actions to be deterministic functions of the machine state because the

stochastic Moore machines considered here also have deterministic outputs. Other
choices may be more suitable in other cases.
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Second, in more standard notation, we must have for each m ∈ M, h′ ∈ H,
i ∈ I, and m′ ∈ M:(∑

h∈H

∑
a∈A

κ(h′, i|h, a)ψ(h|m)δα(m)(a)

)
μ(m′|i,m) =

ψ(h′|m′)

(∑
h∈H

∑
a∈A

∑
h′′∈H

κ(h′′, i|h, a)ψ(h|m)δα(m)(a)

)
μ(m′|i,m).

(2)

In Appendix A we show how to turn Eq. (2) into a more familiar form.
Note that we defined consistent Bayesian influenced filtering interpretations

for machines that have no actual output but that it also applies to those with
outputs. If we want an interpretation of a machine with outputs we may choose
the action space as the output space and the action kernel as the output kernel,
but we don’t have to. Interpretations can still be consistent.

Also note that when A is a space with only one element we recover the
original definition of a consistent Bayesian filtering interpretation from [16].

3 Interpreting Stochastic Moore Machines as Solving
POMDPs

Definition 4. A partially observable Markov decision process (POMDP) can
be defined as a tuple (H,A,S, κ, r) consisting of a set H called the hidden state
space; a set A called the action space; a set S called the sensor space; a Markov
kernel κ : H × A → P (H × S) called the transition kernel taking a hidden state
h and action a to a probability distribution over next hidden states and sensor
values; and a function r : H × A → R called the reward function returning a
real valued reward depending on the hidden state and an action.

To solve a POMDP we have to choose a policy (as defined below) that max-
imizes the expected cumulative reward either for a finite horizon or discounted
with an infinite horizon. We only deal with the latter case here.

POMDPs are commonly solved in two steps. First since the hidden state is
unknown, probability distributions b ∈ PH (called belief states) over the hidden
state are introduced and an updating function f : PH × A × S → PH for these
belief states is defined. This updating is directly derived from Bayes rule [10]:

b′(h′) = f(b, a, s)(h′) :=Pr(h′|b, a, s) :=
∑

h∈H κ(h′, s|h, a)b(h)∑
h̄,h̄′∈H κ(h̄′, s|h̄, a)b(h̄)

. (3)

(Note that an assumption is that the denominator is greater than zero.) Then
an optimal policy π∗ : PH → A mapping those belief states to actions is derived



Interpreting Systems as Solving POMDPs 23

from a so-called belief state MDP (see Appendix D for details). The optimal
policy can be expressed using an optimal value function V ∗ : PH → R that
solves the following Bellman equation [9]:

V ∗(b) = max
a∈A

⎛
⎜⎜⎝∑

h∈H
b(h)r(h, a) + γ

∑
s∈S

h,h′∈H

κ(h′, s|h, a)b(h)V ∗(f(b, a, s))

⎞
⎟⎟⎠ . (4)

The optimal policy is then [9]:

π∗(b) = arg max
a∈A

⎛
⎜⎜⎝∑

h∈H
b(h)r(h, a) + γ

∑
s∈S

h,h′∈H

κ(h′, s|h, a)b(h)V ∗(f(b, a, s))

⎞
⎟⎟⎠ . (5)

Note that the belief state update function f determines optimal value function
and policy.

Define now fπ∗(b, s) := f(b, π∗(b), s). Then note that if we consider PH a
state space, S an input space, A an output space, δfπ∗ : PH × S → PPH a
machine kernel, and π∗ : PH → A an expose kernel, we get a stochastic Moore
machine.4

This machine solves the POMDP and can be directly interpreted as a rational
agent with beliefs and a goal. The beliefs are just the belief states themselves,
the goal is expected cumulative reward maximization, and the optimal policy
ensures it acts rationally with respect to the goal.

Our definition of interpretations of stochastic Moore machines as solutions to
POMDPs includes this example and extends it to machines whose states aren’t
probability distributions/belief states directly but instead are parameters of such
belief states that get (possibly stochastically) updated consistently.

We now state this main definition and then a proposition that ensures that
our definition only applies to stochastic Moore machines that parameterize
beliefs correctly as required by Eq. (3). This ensures that the optimal policy
obtained via Eq. (5) is also the optimal policy for the states of the machine.

Definition 5. Given a stochastic Moore machine (M, I,O, μ, ω), a consistent
interpretation as a solution to a POMDP is given by a POMDP (H,O, I, ν, φ, r)
and an interpretation map ψ : M → PH such that (i) (H,O, ψ, ω, κ) is
a consistent Bayesian influenced filtering interpretation of the machine part
(M, I, μ) of the stochastic Moore machine; and (ii) the machine expose function
ω : M → O (which coincides with the action function in the interpretation) maps
any machine state m to the action π∗(ψ(m)) specified by the optimal POMDP
policy for the belief ψ(m) associated to machine state m by the interpretation.
Formally:

ω(m) = π∗(ψ(m)). (6)

4 If the denominator in Eq. (3) is zero for some value s ∈ S then define e.g. fπ∗(b, s) = b.
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Note that the machine never gets to observe the rewards of the POMDP we
use to interpret it. An example of a stochastic Moore machine together with an
interpretation of it as a solution to a POMDP is given in Appendix C.

Proposition 1. Consider a stochastic Moore machine (M, I,O, μ, ω), together
with a consistent interpretation as a solution to a POMDP, given by the POMDP
(H,O, I, κ, r) and Markov kernel ψ : M → PH. Suppose it is given an input i ∈
I, and that this input has a positive probability according to the interpretation.
(That is, Eq. (14) is obeyed.) Then the parameterized distributions ψ(m) update
as required by the belief state update equation (Eq. (3)) whenever a = π∗(b)
i.e. whenever the action is equal to the optimal action. More formally, for any
m,m′ ∈ M with μ(m′|i,m) > 0 and i ∈ I that can occur according to the
POMDP transition and sensor kernels, we have for all h′ ∈ H

ψ(h′|m′) = f(ψ(m), π∗(ψ(m)), i)(h′). (7)

Proof. See Appendix B.

With this we can see that if V ∗ is the optimal value function for belief states
b ∈ PH of Eq. (4), then V̄ ∗(m) := V ∗(ψ(m)) is an optimal value function on
the machine’s state space with optimal policy ω(m) = π∗(ψ(m)).

4 Conclusion

We proposed a definition of when an stochastic Moore machine can be inter-
preted as solving a partially observable Markov decision process (POMDP). We
showed that standard solutions of POMDPs have counterpart machines that this
definition applies to. Our definition employs a newly adapted version of a consis-
tent interpretation. We showed that with this our definition includes additional
machines whose state spaces are parameters of probabilistic beliefs and not such
beliefs directly. We suspect these machines are closely related to information
state processes [9] but the precise relation is not yet known to us.

A Consistency in More Familiar Form

One way to turn Eq. (2) into a probably more familiar form is to introduce some
abbreviations and look at some special cases. We follow a similar strategy to [16].
Let

ψH,I(h′, i|m) :=
∑
h∈H

∑
a∈A

κ(h′, i|h, a)ψ(h|m)δα(m)(a) (8)

and

ψI(i|m) :=
∑

h′∈H
ψH,I(h′, i|m). (9)
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Then consider the case of a deterministic machine and choose the m′ ∈ M that
actually occurs for a given input i ∈ I such that μ(m′|i,m) = 1 or abusing
notation m′ = m′(i,m). Then we get from Eq. (2):

ψH,I(h′, i|m) = ψ(h′|μ(i,m))ψI(i|m). (10)

If we then also consider an input i ∈ I that is subjectively possible as defined in
[16] which here means that ψI(i|m) > 0 we get

ψ(h′|m′(i,m)) =
ψH,I(h′, i|m)

ψI(i|m)
. (11)

This makes it more apparent that in the interpretation the updated machine
state m′ = m′(i,m) parameterizes a belief ψ(h′|m′(i,m)) which is equal to
the posterior distribution over the hidden state given input i. In the non-
deterministic case, note that when μ(m′|i,m) = 0 the consistency equation
imposes no condition, which makes sense since that means the machine state
m′ can never occur. When μ(m′|i,m) > 0 we can divide Eq. (2) by this to also
get Eq. (10). The subsequent argument for m′ = m′(i,m) then must hold not
only for this one possible next state but instead for every m′ with μ(m′|i,m).
So in this case (if s is subjectively possible) any of the possible next states will
parameterize a belief ψ(h′|m′) equal to the posterior.

B Proof of Proposition 1

For the readers’s convenience we recall the proposition:

Proposition 2. Consider a stochastic Moore machine (M, I,O, μ, ω), together
with a consistent interpretation as a solution to a POMDP, given by the POMDP
(H,O, I, κ, r) and Markov kernel ψ : M → PH. Suppose it is given an input i ∈
I, and that this input has a positive probability according to the interpretation.
(That is, Eq. (14) is obeyed.) Then the parameterized distributions ψ(m) update
as required by the belief state update equation (Eq. (3)) whenever a = π∗(b)
i.e. whenever the action is equal to the optimal action. More formally, for any
m,m′ ∈ M with μ(m′|i,m) > 0 and i ∈ I that can occur according to the
POMDP transition and sensor kernels, we have for all h′ ∈ H

ψ(h′|m′) = f(ψ(m), π∗(ψ(m)), i)(h′). (12)

Proof. By assumption the machine part (M, I, μ) of the stochastic
Moore machine has a consistent Bayesian influenced filtering interpretation
(H,O, ψ, ω, κ).

This means that the belief ψ(m) parameterized by the stochastic Moore
machine obeys Eq. (2). This means that for every possible next state m′ (i.e.
μ(m′|s,m) > 0) we have
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∑
h∈H

∑
a∈A

κ(h′, i|h, a)ψ(h|m)δω(m)(a)

= ψ(h′|m′)

(∑
h∈H

∑
a∈A

∑
h′′∈H

κ(h′′, i|h, a)ψ(h|m)δω(m)(a)

) (13)

and for every subjectively possible input, that is, for every input i ∈ I with∑
h∈H

∑
a∈A

∑
h′′∈H

κ(h′′, i|h, a)ψ(h|m)δω(m)(a) > 0 (14)

(see below for a note on why this assumption is reasonable) we will have:

ψ(h′|m′) =
∑

h∈H
∑

a∈A κ(h′, i|h, a)ψ(h|m)δω(m)(a)∑
h∈H

∑
a∈A

∑
h′′∈H κ(h′′, i|h, a)ψ(h|m)δω(m)(a)

(15)

=
∑

h∈H κ(h′, i|h, ω(m))ψ(h|m)∑
h∈H

∑
h′′∈H κ(h′′, i|h, ω(m))ψ(h|m)

. (16)

Now consider the update function for which the optimal policy is found Eq. (3):

f(b, a, s)(h′) :=
∑

h∈H κ(h′, s|h, a)b(h)∑
h̄,h̄′∈H κ(h̄′, s|h̄, a)b(h̄)

(17)

and plug in the belief b = ψ(m) parameterized by the machine state, the optimal
action π∗(ψ(m)) specified for that belief by the optimal policy π∗, and the s = i:

f(ψ(m), π∗(m), i)(h′) :=
∑

h∈H κ(h′, i|h, π∗(ψ(m)))ψ(m)(h)∑
h̄,h̄′∈H κ(h̄′, i|h̄, π∗(ψ(m)))ψ(m)(h̄)

. (18)

Also introduce κ and write ψ(h|m) for ψ(m)(h) as usual

f(ψ(m), π∗(m), i)(h′) :=
∑

h∈H κ(h′, i|h, π∗(ψ(m)))ψ(h|m)∑
h̄,h̄′∈H κ(h̄′, i|h̄, π∗(ψ(m)))ψ(h̄|m)

(19)

=ψ(h′|m′). (20)

Which is what we wanted to prove.

Note that if Eq. (14) is not true and the probability of an input i is impossible
according to the POMDP transition function, the kernel ψ, and the optimal
policy ω then Eq. (13) puts no constraint on the machine kernel μ since both
sides are zero. So the behavior of the stochastic Moore machine in this case
is arbitrary. This makes sense since according to the POMDP that we use to
interpret the machine this input is impossible, so our interpretation should tell
us nothing about this situation.
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C Sondik’s Example

We now consider the example from [15]. This has a known optimal solution. We
constructed a stochastic Moore machine from this solution which has an inter-
pretation as a solution to Sondik’s POMDP. This proves existence of stochastic
Moore machines with such interpretations.

Consider the following stochastic Moore machine:

– State space M := [0, 1]. (This state will be interpreted as the belief probability
of the hidden state being equal to 1.)

– input space I = {1, 2}
– machine kernel μ : I × M → PM defined by deterministic function g :

I × M → M:

μ(m′|s,m) := δg(s,m)(m′) (21)

where

g(S = 1,m) :=

{
15

6m+20 − 1
2 if 0 ≤ m ≤ 0.1188

9
5 − 72

5m+60 if 0.1188 ≤ m ≤ 1.
(22)

and

g(S = 2,m) :=

{
2 + 20

3m−15 if 0 ≤ m ≤ 0.1188
− 1

5 − 12
5m−40 if 0.1188 ≤ m ≤ 1.

(23)

– output space O := {1, 2}
– expose kernel ω : M → O defined by

ω(m) :=

{
1 if 0 ≤ m < 0.1188
2 if 0.1188 ≤ m ≤ 1.

(24)

A consistent interpretation as a solution to a POMDP for this stochastic Moore
machine is given by

– The POMDP with
• state space H := {1, 2}
• action space equal to the output space O of the machine above
• sensor space equal to the input space I of the machine above
• model kernel κ : H × O → H × I defined by

κ(h′, s|h, a) := ν(h′|h, a)φ(s|h′, a) (25)

where ν : H × O → PH and φ : H × O → PI are shown in Table 1
• reward function r : H × O → R also shown in Table 1.

– Markov kernel ψ : M → PH given by:

ψ(h|m) := mδ1(h)(1 − m)δ2(h). (26)
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Table 1. Sondik’s POMDP data.

Action a ∈ O ν(h′|h, A = a) φ(s|h′, A = a) r(h, A = a)

1

(
1/5 1/2

4/5 1/2

) (
1/5 3/5

4/5 2/5

) (
4

−4

)

2

(
1/2 2/5

1/2 3/5

) (
9/10 2/5

1/10 3/5

) (
0

−3

)

To verify this we have to check that (H,O, ψ, ω, κ) is a consistent Bayesian
influenced filtering interpretation of the machine (M, I, μ). For this we need to
check Eq. (2) with δα(m)(a) := δω(m)(a). So for each each m ∈ [0, 1], h′ ∈ {1, 2},
i ∈ {1, 2}, and m′ ∈ [0, 1] we need to check:(∑

h∈H

∑
a∈A

κ(h′, i|h, a)ψ(h|m)δω(m)(a)

)
μ(m′|i,m)

= ψ(h′|m′)

(∑
h∈H

∑
a∈A

∑
h′′∈H

κ(h′′, i|h, a)ψ(h|m)δω(m)(a)

)
μ(m′|i,m).

(27)

This is tedious to check but true. We would usually also have to show that ω is
indeed the optimal policy for Sondik’s POMDP but this is shown in [15].

D POMDPs and Belief State MDPs

Here we give some more details about belief state MDPs and the optimal value
function and policy of Eqs. (4) and (5). There is no original content in this
section and it follows closely the expositions in [9,10].

We first define an MDP and its solution and then discuss then add some
details about the belief state MDP associated to a POMDP.

Definition 6. A Markov decision process (MDP) can be defined as a tuple
(X ,A, ν, r) consisting of a set X called the state space, a set A called the action
space, a Markov kernel ν : X × A → P (X ) called the transition kernel, and a
reward function r : X × A → R. Here, the transition kernel takes a state x ∈ X
and an action a ∈ A to a probability distribution ν(x, a) over next states and the
reward function returns a real-valued instantaneous reward r(x, a) depending on
the hidden state and an action.

A solution to a given MDP is a control policy. As the goal of the MDP we
here choose the maximization of expected cumulative discounted reward for an
infinite time horizon (an alternative would be to consider finite time horizons).
This means an optimal policy maximizes

E

[ ∞∑
t=1

γt−1r(xt, at)

]
. (28)

where 0 < γ < 1 is a parameter called the discount factor. This specifies the
goal.
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To express the optimal policy explicitly we can use the optimal value function
V ∗ : X → R. This is the solution to the Bellman equation [10]:

V ∗(x) = max
a∈A

(
r(x, a) + γ

∑
x′∈X

ν(x′|a, x)V ∗(x′)

)
. (29)

The optimal policy is then the function π∗ : X → A that greedily maximizes the
optimal value function [10]:

π∗(x) = arg max
a∈A

(
r(x, a) + γ

∑
x′∈X

ν(x′|a, x)V ∗(x′)

)
. (30)

D.1 Belief State MDP

The belief state MDP for a POMDP (see Definition 4) is defined using the belief
state update function of Eq. (3). We first define this function again here with an
additional intermediate step:

f(b, a, s)(h′) :=Pr(h′|b, a, s) (31)

=
Pr(h′, s|b, a)
Pr(s|b, a)

(32)

=
∑

h∈H κ(h′, s|h, a)b(h)∑
h̄,h̄′∈H κ(h̄′, s|h̄, a)b(h̄)

. (33)

The function f(b, a, s) returns the posterior belief over hidden states h given
prior belief b ∈ PH, an action a ∈ A and observation s ∈ S. The Markov kernel
δf : PH×S ×A → PPH associated to this function can be seen as a probability
of the next belief state b′ given current belief state b, action a and sensor value
s:

Pr(b′|b, a, s) = δf(b,a,s)(b′). (34)

Intuitively, the belief state MDP has as its transition kernel the probability
Pr(b′|b, a) expected over all next sensor values of the next belief state b′ given
that the current belief state is b the action is a and beliefs get updated according
to the rules of probability, so

Pr(b′|b, a) =
∑

s

Pr(b′|b, a, s)Pr(s|b, a) (35)

=
∑
s∈S

δf(b,a,s)(b′)
∑

h,h′∈H
κ(h′, s|h, a)b(h). (36)

This gives some intuition behind the definition of belief state MDPs.
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Definition 7. Given a POMDP (H,A,S, κ, r) the associated belief state
Markov decision process (belief state MDP) is the MDP (PH,A, β, ρ) where

– the state space PH is the space of probability distributions beliefs over the
hidden state of the POMDP. We write b(h) for the probability of a hidden
state h ∈ H according to belief b ∈ PH.

– the action space A is the same as for the underlying POMDP
– the transition kernel κ : PH × A → PH is defined as [10, Section 3.4]

β(b′|b, a) :=
∑
s∈S

δf(b,a,s)(b′)
∑

h,h′∈H
κ(h′, s|h, a)b(h). (37)

– the reward function ρ : PH × A → R is defined as

ρ(b, a) :=
∑
h∈H

b(h)r(h, a). (38)

So the reward for action a under belief b is equal to the expectation under
belief b of the original POMDP reward of that action a.

D.2 Optimal Belief-MDP Policy

Using the belief MDP we can express the optimal policy for the POMDP.
The optimal policy can be expressed in terms of the optimal value function

of the belief MDP. This is the solution to the equation [9]

V ∗(b) = max
a∈A

(
ρ(b, a) + γ

∑
b′∈PH

β(b′|a, b)V ∗(b′)

)
(39)

V ∗(b) = max
a∈A

⎛
⎝ρ(b, a) + γ

∑
b′∈PH

∑
s∈S

δf(b,a,s)(b′)
∑

h,h′∈H
κ(h′, s|h, a)b(h)V ∗(b′)

⎞
⎠

(40)

V ∗(b) = max
a∈A

⎛
⎝ρ(b, a) + γ

∑
s∈S

∑
h,h′∈H

κ(h′, s|h, a)b(h)V ∗(f(b, a, s))

⎞
⎠ . (41)

This is the expression we used in Eq. (4). The optimal policy for the belief MDP
is then [9]:

π∗(b) = arg max
a∈A

⎛
⎝ρ(b, a) + γ

∑
s∈S

∑
h,h′∈H

κ(h′, s|h, a)b(h)V ∗(f(b, a, s))

⎞
⎠ . (42)

This is the expression we used in Eq. (5).
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Abstract. Active inference is a first principles approach for understand-
ing the brain in particular, and sentient agents in general, with the single
imperative of minimizing free energy. As such, it provides a computa-
tional account for modelling artificial intelligent agents, by defining the
agent’s generative model and inferring the model parameters, actions
and hidden state beliefs. However, the exact specification of the gener-
ative model and the hidden state space structure is left to the exper-
imenter, whose design choices influence the resulting behaviour of the
agent. Recently, deep learning methods have been proposed to learn a
hidden state space structure purely from data, alleviating the exper-
imenter from this tedious design task, but resulting in an entangled,
non-interpretable state space. In this paper, we hypothesize that such a
learnt, entangled state space does not necessarily yield the best model
in terms of free energy, and that enforcing different factors in the state
space can yield a lower model complexity. In particular, we consider the
problem of 3D object representation, and focus on different instances of
the ShapeNet dataset. We propose a model that factorizes object shape,
pose and category, while still learning a representation for each factor
using a deep neural network. We show that models, with best disentan-
glement properties, perform best when adopted by an active agent in
reaching preferred observations.

Keywords: Active inference · Object perception · Deep learning ·
Disentanglement

1 Introduction

In our daily lives, we manipulate and interact with hundreds of objects without
even thinking. In doing so, we make inferences about an object’s identity, location
in space, 3D structure, look and feel. In short, we learn a generative model of
how objects come about [24]. Robots however still lack this kind of intuition,
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and struggle to consistently manipulate a wide variety of objects [2]. Therefore, in
this work, we focus on building object-centric generative models to equip robots
with the ability to reason about shape and pose of different object categories,
and generalize to novel instances of these categories.

Active inference offers a first principles approach for learning and acting using
a generative model, by minimizing (expected) free energy. Recently, deep learn-
ing techniques were proposed to learn such generative models from high dimen-
sional sensor data [7,27,33], which paves the way to more complex application
areas such as robot perception [14]. In particular, Van de Maele et al. [16,18]
introduced object-centric, deep active inference models that enable an agent to
infer the pose and identity of a particular object instance. However, this model
was restricted to identify unique object instances, i.e. “this sugar box versus
that particular tomato soup can”, instead of more general object categories, i.e.
“mugs versus bottles”. This severely limits generalization, as it requires to learn
a novel model for each particular object instance, i.e. for each particular mug.

In this paper, we further extend upon this line of work, by learning object-
centric models not by object instance, but by object category. This allows the
agent to reduce the number of required object-centric models, as well as to
generalize to novel instances of known object categories. Of course, this requires
the agent to not only infer object pose and identity, but also the different shapes
that comprise this category. An important research question is then how to
define and factorize the generative model, i.e. do we need to explicitly split
the different latent factors in our model (i.e. shape and pose), or can a latent
structure be learnt purely from data, and to what extent is this learnt latent
structure factorized?

In the brain, there is also evidence for disentangled representations. For
instance, processing visual inputs in primates consists of two pathways: the ven-
tral or “what” pathway, which is involved with object identification and recog-
nition, and the dorsal or “where” pathway, which processes an object’s spatial
location [22]. Similarly, Hawkins et al. hypothesize that cortical columns in the
neocortex represent an object model, capturing their pose in a local reference
frame, encoded by cortical grid cells [8]. This fuels the idea of treating object
pose as a first class citizen when learning an object-centric generative model.

In this paper, we present a novel method for learning object-centric models
for distinct object categories, that promotes a disentangled representation for
shape and pose. We demonstrate how such models can be used for inferring
actions that move an agent towards a preferred observation. We show that a
better pose-shape disentanglement indeed seems to improve performance, yet
further research in this direction is required. In the remainder of the paper we
first give an overview on related work, after which we present our method. We
present some results on object categories of the ShapeNet database [3], and
conclude the paper with a thorough discussion.
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2 Related Work

Object-Centric Models. Many techniques have been proposed for represent-
ing 3D objects using deep neural networks, working with 2D renders [5], 3D
voxel representations [32], point clouds [15] or implicit signed distance function
representations [20,21,23,28]. However, none of these take “action” into account,
i.e. there is no agent that can pick its next viewpoint.

Disentangled Representations. Disentangling the hidden factors of variation
of a dataset is an long sought feature for representation learning [1]. This can be
encouraged during training by restricting the capacity of the information bottle-
neck [9], by penalizing the total correlation of the latent variables [4,11], or by
matching moments of a factorized prior [13]. It has been shown that disentangled
representations yield better performance on down-stream tasks, enabling quicker
learning using fewer examples [29].

Deep Active Inference. Parameterizing generative models using deep neural
networks for active inference has been coined “deep active inference” [30]. This
enables active inference applications on high-dimensional observations such as
pixel inputs [7,27,33]. In this paper, we propose a novel model which encourages
a disentangled latent space, and we compare with other deep active inference
models such as [17,33]. For a more extensive review, see [19].

3 Object-Centric Deep Active Inference Models

In active inference, an agent acts and learns in order to minimize an upper bound
on the negative log evidence of its observations, given its generative model of the
world i.e. the free energy. In this section, we first formally introduce the different
generative models considered for our agents for representing 3D objects. Next we
discuss how we instantiate and train these generative models using deep neural
networks, and how we encourage the model to disentangle shape and pose.

Generative Model. We consider the same setup as [18], in which an agent
receives pixel observations o of a 3D object rendered from a certain camera
viewpoint v, and as an action a can move the camera to a novel viewpoint. The
action space is restricted to viewpoints that look at the object, such that the
object is always in the center of the observation.

Figure 1 depicts different possible choices of generative model to equip the
agent with. The first (1a) considers a generic partially observable Markov deci-
sion process (POMDP), in which a hidden state st encodes all information at
timestep t to generate observation ot. Action at determines together with the
current state st how the model transitions to a new state st+1. This a model can
be implemented as a variational autoencoder (VAE) [12,25], as shown in [7,33].
A second option (1b) is to exploit the environment setup, and assume we can also
observe the camera viewpoint vt. Now the agent needs to infer the object shape
s which stays fixed over time. This resembles the architecture of a generative
query network (GQN), which is trained to predict novel viewpoints of a given a
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Fig. 1. Different generative models for object-centric representations, blue nodes are
observed. (a) A generic POMDP model with a hidden state st that is transitioned
through actions and which generates the observations. (b) The hidden state s encodes
the appearance of the object, while actions transition the camera viewpoint v which
is assumed to be observable. (c) Similar as (b), but without access to the camera
viewpoint, which in this case has to be inferred as a separate pose latent variable pt.
(Color figure online)

scene [6,17]. Finally, in (1c), we propose our model, in which we have the same
structure as (1b), but without access to the ground truth viewpoint. In this case,
the model needs to learn a hidden latent representation of the object pose in
view pt. This also allows the model to learn a different pose representation than
a 3D pose in SO(3), which might be more suited. We call this model a VAEsp,
as it is trained in similar vein as (1a), but with a disentangled shape and pose
latent.

VAEsp. Our model is parameterized by three deep neural networks: an encoder
qφ, a transition model pχ, and a decoder pψ, as shown in Fig. 2. Observations oi

of object instance i are processed by the encoder qφ, that outputs a belief over
a pose latent qφ(pi

t|oi
t) and a shape latent qφ(si

t|oi
t). From the pose distribution

a sample pi
t is drawn and fed to the transition model pχ, paired with an action

at. The output is a belief pχ(pi
t+1|pi

t, at). From the transitioned belief a sample
pi

t+1 is again drawn which is paired with a shape latent sample si and input to
the decoder pψ(oi

t|pi
t, s

i). The output of the decoding process is again an image
ôi

t+1. These models are jointly trained end-to-end by minimizing free energy,
or equivalently, maximizing the evidence lower bound [18]. More details on the
model architecture and training hyperparameters can be found in Appendix A.

Enforcing Disentanglement. In order to encourage the model to encode
object shape features in the shape latent, while encoding object pose in the
pose latent, we only offer the pose latent pt as input to the transition model,
whereas the decoder uses both the shape and pose. Similar to [10], in order
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Fig. 2. The proposed VAEsp architecture consists of three deep neural networks: an
encoder qφ, a transition model pχ, and a decoder pψ. By swapping the shape latent
samples, we enforce the model to disentangle shape and pose during training.

to further disentangle, we randomly swap the shape latent code for two object
instances at train time while keeping the same latent pose, refer to Fig. 2.

4 Experiments

We train our model on a subset of the ShapeNet dataset [3]. In particular, we use
renders of 15 instances of the ‘mug’, ‘bottle’,‘bowl’ and ‘can’ categories, train a
separate model for each category, and evaluate on unseen object instances. We
compare our VAEsp approach against a VAE model [33] that has equal amount
of latent dimensions, but without a shape and pose split, and a GQN-like model
[17], which has access to the ground truth camera viewpoint.

We evaluate the performance of the three considered generative models. First
we look at the reconstruction and prediction quality of the models for unseen
object instances. Next we investigate how good an agent can move the camera
to match a preferred observation by minimizing expected free energy. Finally,
we investigate the disentanglement of the resulting latent space.

One-Step Prediction. First, we evaluate all models on prediction quality over
a test set of 500 observations of unseen objects in unseen poses. We provide
each model with an initial observation which is encoded into a latent state. Next
we sample a random action, predict the next latent state using the transition
model, for which we reconstruct the observation and compare with a ground
truth. We report both pixel-wise mean squared error (MSE) and structural sim-
ilarity (SSIM) [31] in Table 1. In terms of MSE results are comparable for all
the proposed architectures. In terms of SSIM however, VAEsp shows better per-
formance for ‘bottle’ and ‘can’ category. Performance for ‘bowl’ category are
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Table 1. One-step prediction errors, averaged over the entire test set. MSE (lower the
better) and SSIM (higher the better) are considered.

bottle bowl can mug

MSE ⇓ GQN 0.473 ± 0.0874 0.487 ± 0.141 0.707 ± 0.1029 0.656 ± 0.0918

VAE 0.471 ± 0.0824 0.486 ± 0.1487 0.693 ± 0.1103 0.646 ± 0.0886

VAEsp 0.480 ± 0.0879 0.485 ± 0.1486 0.702 ± 0.1108 0.626 ± 0.0915

SSIM ⇑ GQN 0.748 ± 0.0428 0.814 ± 0.0233 0.868 ± 0.0203 0.824 ± 0.0279

VAE 0.828 ± 0.0238 0.907 ± 0.0178 0.844 ± 0.0361 0.874 ± 0.0323

VAEsp 0.854 ± 0.0190 0.902 ± 0.0291 0.880 ± 0.0176 0.814 ± 0.0348

comparable to the best performing VAE model. For the ‘mug’ category, the neg-
ative gap over the VAE model is consistent. Qualitative results for all models
are shown in Appendix B.

Reaching Preferred Viewpoints. Next, we consider an active agent that is
tasked to reach a preferred observation that was provided in advance. To do
so, the agent uses the generative model to encode both the preferred and ini-
tial observation and then uses Monte Carlo sampling to evaluate the expected
free energy for 10000 potential actions, after which the action with the lowest
expected free energy is executed. The expected free energy formulation is com-
puted as the negative log probability of the latent representation with respect
to the distribution over the preferred state, acquired through encoding the pre-
ferred observation. This is similar to the setup adopted by Van de Maele et
al. [18], with the important difference that now the preferred observation is an
image of a different object instance.

To evaluate the performance, we compute the pixel-wise mean squared error
(MSE) between a render of the target object in the preferred pose, and the
render of the environment after executing the chosen action after the initial
observation. The results are shown in Table 2. VAEsp performs on par with the
other approaches for ‘bowl’ and ‘mug’, but significantly outperforms the GQN
on the ‘bottle’ and ‘can’ categories, reflected by p-values of 0.009 and 0.001 for
these respective objects. The p-values for the comparison with the VAE are 0.167

Table 2. MSE for the reached pose through the minimization of expected free energy.
For each category, 50 meshes are evaluated, where for each object a random pose is
sampled from a different object as preferred pose, and the agent should reach this pose.

bottle bowl can mug

GQN 0.0833 ± 0.0580 0.0888 ± 0.0594 0.0806 ± 0.0547 0.1250 ± 0.0681

VAE 0.0698 ± 0.0564 0.0795± 0.0599 0.0608 ± 0.0560 0.1247 ± 0.0656

VAEsp 0.0557± 0.0404 0.0799 ± 0.0737 0.0487± 0.0381 0.1212± 0.0572
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(a) (b)

Fig. 3. Two examples of the experiment on reaching preferred viewpoints for a ‘bottle’
(a) and a ‘mug’ (b). First column shows the target view (top) and initial view given to
the agent (bottom). Next, for the three models we show the actual reached view (top),
versus the imagined expected view of the model (bottom).

and 0.220, which are not significant. A qualitative evaluation is shown in Fig. 3.
Here we show the preferred target view, the initial view of the environment, as
well as the final views reached by each of the agents, as well as what each model
was imagining. Despite the target view being from a different object instance,
the agent is able to find a matching viewpoint.

Disentangled Latent Space. Finally, we evaluate the disentanglement of
shape and pose for the proposed architecture. Given that our VAEsp model out-
performs the other models on ‘bottle‘ and ‘can‘, but not on ‘bowl‘ and ‘mug‘, we
hypothesize that our model is able to better disentangle shape and pose for the
first categories, but not for the latter. To evaluate this, we plot the distribution
of each latent dimension when encoding 50 random shapes in a fixed pose, versus
50 random poses for a fixed shape, as shown on Fig. 4. We see that indeed the
VAEsp model has a much more disentangled latent space for ‘bottle‘ compared
to ‘mug‘, which supports our hypothesis. Hence, it will be interesting to further
experiment to find a correlation between latent space disentanglement and model
performance. Moreover, we could work on even better enforcing disentanglement
when training a VAEsp model, for example by adding additional regularization
losses [4,11]. Also note that the GQN does not outperform the other models,
although this one has access to the ground truth pose factor. This might be due
to the fact that an SO(3) representation of pose is not optimal for the model to
process, and it still encodes (entangled) pose information in the resulting latent
space, as illustrated by violin plots for GQN models in Appendix C. Figure 5
qualitatively illustrates the shape and pose disentanglement for our best per-
forming model (bottle). We plot reconstructions of latent codes consisting of the
shape latent of the first column, combined with the pose latent of the first row.
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Fig. 4. Violin plots representing the distribution over the latent dimension when keep-
ing either the pose or shape fixed. For the bottle model (a) the pose latent dimensions
(0–7) vary when only varying the pose, whereas the shape latent dimensions (8–23)
don’t vary with the pose. For the mug model (b) we see the shape and pose latent are
much more entangled.

Fig. 5. Qualitative experimentation for the bottle category. Images are reconstructed
from the different pairings of the pose latent and shape latent of the first row and
column respectively.
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5 Conclusion

In this paper, we proposed a novel deep active inference model for learning
object-centric representations of object categories. In particular, we encourage
the model to have a disentangled pose and shape latent code. We show that
the better our model disentangles shape and pose, the better the results are on
prediction, reconstruction as well as action selection towards a preferred observa-
tion. As future work, we will further our study on the impact of disentanglement,
and how to better enforce disentanglement in our model. We believe that this
line of work is important for robotic manipulation tasks, i.e. where a robot learns
to pick up a cup by the handle, and can then generalize to pick up any cup by
reaching to the handle.

A Model and Training Details

This paper compares three generative models for representing the shape and
pose of an object. Each of the models has a latent distribution of 24 dimensions,
parameterized as a Gaussian distribution and has a similar amount of total
trainable parameters.

VAE: The VAE baseline is a traditional variational autoencoder. The encoder
consists of 6 convolutional layers with a kernel size of 3, a stride of 2 and padding
of 1. The features for each layer are doubled every time, starting with 4 for the
first layer. After each convolution, a LeakyReLU activation function is applied
to the data. Finally, two linear layers are used on the flattened output from the
convolutional pipeline, to directly predict the mean and log variance of the latent
distribution. The decoder architecture is a mirrored version of the encoder. It
consists of 6 convolutional layers with kernel size 3, padding 1 and stride 1. The
layers have 32, 8, 16, 32 and 64 output features respectively. After each layer
the LeakyReLU activation function is applied. The data is doubled in spatial
resolution before each such layer through bi-linear upsampling, yielding a 120
by 120 image as final output. A transition model is used to predict the expected
latent after applying an action. This model is parameterized through a fully
connected neural network, consisting of three linear layers, where the output
features are 64, 128 and 128 respectively. The input is the concatenation of a
latent sample, and a 7D representation of the action (coordinate and orientation
quaternion). The output of this layer is then again through two linear layers
transformed in the predicted mean and log variance of the latent distribution.
This model has 474.737 trainable parameters.
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GQN: The GQN baseline only consists of an encoder and a decoder. As the
model is conditioned on the absolute pose of the next viewpoint, there is no need
for a transition model. The encoder is parameterized exactly the same as the
encoder of the VAE baseline. The decoder is now conditioned on both a latent
sample and the 7D representation of the absolute viewpoint (coordinate and
orientation quaternion). These are first concatenated and transformed through
a linear layer with 128 output features. This is then used as a latent code for
the decoder, which is parameterized the same as the decoder used in the VAE
baseline. In total, the GQN has 361.281 trainable parameters.

VAEsp: Similar to the VAE baseline, the VAEsp consists of an encoder, decoder
and transition model. The encoder is also a convolutional neural network, param-
eterized the same as the encoder of the VAE, except that instead of two linear
layers predicting the parameters of the latent distribution, this model contains
4 linear layers. Two linear layers with 16 output features are used to predict
the mean and log variance of the shape latent distribution, and two linear layers
with 8 output features are used to predict the mean and log variance of the pose
latent distribution. In the decoder, a sample from the pose and shape latent
distributions are concatenated and decoded through a convolutional neural net-
work, parameterized exactly the same as the decoder from the VAE baseline.
The transition model, only transitions the pose latent, as we make the assump-
tion that the object shape does not change over time. The transition model is
parameterized the same as the transition model of the VAE, with the exception
that the input is the concatenation of the 8D pose latent vector and the 7D
action, in contrast to the 24D latent in the VAE. The VAEsp model has 464.449
trainable parameters.

All models are trained using a constrained loss, where Lagrangian optimizers
are used to weigh the separate terms [26]. During training, we tuned the recon-
struction tolerance for each object empirically. Respectively to ‘bottle’, ‘bowl’,
‘can’ and ‘mug’ categories, MSE tolerances are: 350, 250, 280 and 520. Regular-
ization terms are considered for each latent element. For all models, the Adam
optimizer was used to minimize the objective.

B Additional Qualitative Results

(See Fig. 6).
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(a) bottle (b) bowl

(c) can (d) mug

Fig. 6. One-step prediction for different object categories.

C Latent Disentanglement

In Figs. 7, 8, 9 and 10, we show the distribution over the latent values when
encoding observation where a single input feature changes. The blue violin plots
represent the distribution over the latent values for observations where the shape
is kept fixed, and renders from different poses are fed through the encoder. The
orange violin plots represent the distribution over the latent values for observa-
tions where the pose is kept fixed, and renders from different shapes within the
object class are encoded through the encoder models.

In these figures, we can clearly see that the encoding learnt by the VAE is
not disentangled for any of the objects as the latent dimensions vary for both
the fixed shape and pose cases. With the GQN, we would expect that the latent
dimensions would remain static for the fixed shape case, as the pose is an explicit
external signal for the decoder, however we can see that for a fixed shape, the
variation over the latent value still varies a lot, in similar fashion as for the fixed
pose. We conclude that the encoding of the GQN is also not disentangled. For
the VAEsp model, we can see that in Figs. 7 and 8, the first eight dimensions
are used for the encoding of the pose, as the orange violins are much denser
distributed for the fixed pose case. However, in Figs. 9 and 10, we see that the
model still shows a lot of variety for the latent codes describing the non-varying
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feature of the input. This result also strokes with our other experiments where
for these objects both reconstruction as well as the move to perform worse.

In this paper, we investigated the disentanglement for the different consid-
ered object classes. We see that our approach does not yield a disentangled
representation each time. Further investigation and research will focus on better
enforcing this disentanglement.

Fig. 7. Distribution of the latent values for the different models (VAE, GQN and
VAEsp) for objects from the “bottle” class. In this experiment, 50 renders from a fixed
object shape with a varying pose (fixed shape, marked in blue) are encoded. The orange
violin plots represent the distribution over the latent values for 50 renders from the
same object pose, with a varying object shape. (Color figure online)
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Fig. 8. Distribution of the latent values for the different models (VAE, GQN and
VAEsp) for objects from the “can” class. In this experiment, 50 renders from a fixed
object shape with a varying pose (fixed shape, marked in blue) are encoded. The orange
violin plots represent the distribution over the latent values for 50 renders from the
same object pose, with a varying object shape. (Color figure online)
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Fig. 9. Distribution of the latent values for the different models (VAE, GQN and
VAEsp) for objects from the “mug” class. In this experiment, 50 renders from a fixed
object shape with a varying pose (fixed shape, marked in blue) are encoded. The orange
violin plots represent the distribution over the latent values for 50 renders from the
same object pose, with a varying object shape. (Color figure online)
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Fig. 10. Distribution of the latent values for the different models (VAE, GQN and
VAEsp) for objects from the “bowl” class. In this experiment, 50 renders from a fixed
object shape with a varying pose (fixed shape, marked in blue) are encoded. The orange
violin plots represent the distribution over the latent values for 50 renders from the
same object pose, with a varying object shape. (Color figure online)

References

1. Bengio, Y., Courville, A., Vincent, P.: Representation learning: a review and
new perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35, 1798–1828 (2013).
https://doi.org/10.1109/TPAMI.2013.50

2. Billard, A., Kragic, D.: Trends and challenges in robot manipulation. Science 364,
eaat8414 (2019). https://doi.org/10.1126/science.aat8414

https://doi.org/10.1109/TPAMI.2013.50
https://doi.org/10.1126/science.aat8414


Disentangling Shape and Pose 47

3. Chang, A.X., et al.: ShapeNet: an information-rich 3D model repository. Technical
report. arXiv:1512.03012 [cs.GR], Stanford University – Princeton University –
Toyota Technological Institute at Chicago (2015)

4. Chen, R.T.Q., Li, X., Grosse, R., Duvenaud, D.: Isolating sources of disentangle-
ment in VAEs. In: Proceedings of the 32nd International Conference on Neural
Information Processing Systems, NIPS 2018, pp. 2615–2625. Curran Associates
Inc., Red Hook (2018)

5. Dosovitskiy, A., Springenberg, J.T., Tatarchenko, M., Brox, T.: Learning to gen-
erate chairs, tables and cars with convolutional networks. IEEE Trans. Pattern
Anal. Mach. Intell. 39(4), 692–705 (2017). https://doi.org/10.1109/TPAMI.2016.
2567384

6. Eslami, S.M.A., et al.: Neural scene representation and rendering. Science
360(6394), 1204–1210 (2018). https://doi.org/10.1126/science.aar6170. https://
www.science.org/doi/10.1126/science.aar6170

7. Fountas, Z., Sajid, N., Mediano, P., Friston, K.: Deep active inference agents using
Monte-Carlo methods. In: Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M.F.,
Lin, H. (eds.) Advances in Neural Information Processing Systems, vol. 33, pp.
11662–11675. Curran Associates, Inc. (2020)

8. Hawkins, J., Ahmad, S., Cui, Y.: A theory of how columns in the neocor-
tex enable learning the structure of the world. Front. Neural Circuits 11, 81
(2017). https://doi.org/10.3389/fncir.2017.00081. http://journal.frontiersin.org/
article/10.3389/fncir.2017.00081/full

9. Higgins, I., et al.: Beta-VAE: learning basic visual concepts with a constrained
variational framework. In: 5th International Conference on Learning Representa-
tions, ICLR 2017, Toulon, France, 24–26 April 2017, Conference Track Proceedings
(2017)

10. Huang, X., Liu, M.Y., Belongie, S., Kautz, J.: Multimodal unsupervised image-
to-image translation. In: Proceedings of the European Conference on Computer
Vision (ECCV) (2018)

11. Kim, H., Mnih, A.: Disentangling by factorising. In: Dy, J., Krause, A. (eds.) Pro-
ceedings of the 35th International Conference on Machine Learning. Proceedings
of Machine Learning Research, vol. 80, pp. 2649–2658. PMLR (2018)

12. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. arXiv:1312.6114 [cs,
stat] (2014)

13. Kumar, A., Sattigeri, P., Balakrishnan, A.: Variational inference of disentangled
latent concepts from unlabeled observations. In: 6th International Conference on
Learning Representations, ICLR 2018, Vancouver, BC, Canada, 30 April–3 May
2018, Conference Track Proceedings (2018)

14. Lanillos, P., et al.: Active inference in robotics and artificial agents: survey and
challenges (2021)

15. Lin, C.H., Kong, C., Lucey, S.: Learning efficient point cloud generation for dense
3D object reconstruction. In: Proceedings of the Thirty-Second AAAI Conference
on Artificial Intelligence and Thirtieth Innovative Applications of Artificial Intel-
ligence Conference and Eighth AAAI Symposium on Educational Advances in
Artificial Intelligence, AAAI 2018/IAAI 2018/EAAI 2018. AAAI Press (2018)

16. Van de Maele, T., Verbelen, T., Catal, O., Dhoedt, B.: Disentangling what
and where for 3D object-centric representations through active inference.
arXiv:2108.11762 [cs] (2021)

http://arxiv.org/abs/1512.03012
https://doi.org/10.1109/TPAMI.2016.2567384
https://doi.org/10.1109/TPAMI.2016.2567384
https://doi.org/10.1126/science.aar6170
https://www.science.org/doi/10.1126/science.aar6170
https://www.science.org/doi/10.1126/science.aar6170
https://doi.org/10.3389/fncir.2017.00081
http://journal.frontiersin.org/article/10.3389/fncir.2017.00081/full
http://journal.frontiersin.org/article/10.3389/fncir.2017.00081/full
http://arxiv.org/abs/1312.6114
http://arxiv.org/abs/2108.11762


48 S. Ferraro et al.
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H., Beygelzimer, A., d’Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in
Neural Information Processing Systems, vol. 32. Curran Associates, Inc. (2019).
https://proceedings.neurips.cc/paper/2019/file/bc3c4a6331a8a9950945a1aa8c95a
b8a-Paper.pdf
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33. Çatal, O., Wauthier, S., De Boom, C., Verbelen, T., Dhoedt, B.: Learning genera-
tive state space models for active inference. Front. Comput. Neurosci. 14, 574372
(2020). https://doi.org/10.3389/fncom.2020.574372. https://www.frontiersin.org/
articles/10.3389/fncom.2020.574372/full

https://proceedings.neurips.cc/paper/2016/file/44f683a84163b3523afe57c2e008bc8c-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/44f683a84163b3523afe57c2e008bc8c-Paper.pdf
https://doi.org/10.3389/fncom.2020.574372
https://www.frontiersin.org/articles/10.3389/fncom.2020.574372/full
https://www.frontiersin.org/articles/10.3389/fncom.2020.574372/full


Object-Based Active Inference

Ruben S. van Bergen(B) and Pablo Lanillos

Department of Artificial Intelligence and Donders Institute for Brain,
Cognition and Behavior, Radboud University, Nijmegen, The Netherlands

{ruben.vanbergen,pablo.lanillos}@donders.ru.nl

Abstract. The world consists of objects: distinct entities possessing
independent properties and dynamics. For agents to interact with the
world intelligently, they must translate sensory inputs into the bound-
together features that describe each object. These object-based represen-
tations form a natural basis for planning behavior. Active inference (AIF)
is an influential unifying account of perception and action, but existing
AIF models have not leveraged this important inductive bias. To remedy
this, we introduce ‘object-based active inference’ (OBAI), marrying AIF
with recent deep object-based neural networks. OBAI represents distinct
objects with separate variational beliefs, and uses selective attention to
route inputs to their corresponding object slots. Object representations
are endowed with independent action-based dynamics. The dynamics and
generative model are learned from experience with a simple environment
(active multi-dSprites). We show that OBAI learns to correctly segment
the action-perturbed objects from video input, and to manipulate these
objects towards arbitrary goals.

Keywords: Multi-object representation learning · Active inference

1 Introduction

Intelligent agents are not passive entities that observe the world and learn its
causality. They learn the relationship of action and effect by interacting with
the world, in order to fulfil their goals [1]. In higher-order intelligence, such as
exhibited by primates, these interactions very often take place at the level of
objects [2,3]. Whether picking a ripe fruit from a tree branch, kicking a football,
or taking a drink from a glass of water; all require reasoning and planning in
terms of objects. Objects, thus, are natural building blocks for representing the
world and planning interactions with it.

While there have been recent advances in unsupervised multi-object repre-
sentation learning and inference [4,5], to the best of the authors knowledge,
no existing work has addressed how to leverage the resulting representations
for generating actions. In addition, object perception itself could benefit from
being placed in an active loop, as carefully selected actions could resolve ambi-
guity about object properties (including their segmentations - i.e., which inputs
belong to which objects). Meanwhile, state-of-the-art behavior-based learning
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
C. L. Buckley et al. (Eds.): IWAI 2022, CCIS 1721, pp. 50–64, 2023.
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(control), such as model-free reinforcement learning [6] uses complex encoding
of high-dimensional pixel inputs without taking advantage of objects as an induc-
tive bias (though see [7,8].

To bridge the gap between these different lines of work, we here introduce
‘object-based active inference’ (OBAI, pronounced /@’beI/), a new framework
that combines deep, object-based neural networks [4] and active inference [9,10].
Our proposed neural architecture functions like a Bayesian filter that iteratively
refines perceptual representations. Through selective attention, sensory inputs
are routed to high-level object modules (or slots [5]) that encode each object as
a separated probability distribution, whose evolution over time is constrained
by an internal model of action-dependent object dynamics. These object repre-
sentations are highly compact and abstract, thus enabling efficient unrolling of
possible futures in order to select optimal actions in a tractable manner. Fur-
thermore, we introduce a closed-form procedure to learn preferences or goals in
the network’s latent space.

As a proof-of-concept, we evaluate our proposed framework on an active ver-
sion of the multi-dSprites dataset, developed for this work (See Fig. 1a). Our
preliminary results show that OBAI is able to: i) learn to segment and represent
objects ii) learn the action-dependent, object-based dynamics of the environ-
ment; and iii) plan in the latent space – obviating the need to imagine detailed
pixel-level outcomes in order to generate behavior. This work is a first step
towards building more complex object-based active inference systems that can
perform more cognitively challenging tasks on naturalistic input.

2 Methods

2.1 Object-Structured Generative Model

We extend the IODINE architecture proposed in [4] for object representation
learning, to incorporate dynamics. Zablotskaia et al. [11] previously developed a
similar extension to IODINE, in which object dynamics were modeled implicitly,
through LSTM units operating one level below the latent-space representation.
Here, we instead implement the dynamics directly in the latent space, and allow
these dynamics to be influenced by actions on the part of the agent.

Like IODINE, our framework relies on iterative amortized inference [12] (IAI)
on an object-structured generative model. This model describes images of up to
K objects with a Normal mixture density (illustrated in Fig. 1):

p(oi|{s(k)}k∈1:K ,mi) =
∑

k

[mi = k]N
(
gi(s(k)), σ2

o

)
(1)

where oi is the value of the i-th image pixel, s(k) is the state of the k-th object,
gi(•) is a decoder function (implemented as a deep neural network (DNN)) that
translates an object state to a predicted mean value at pixel i, σ2

o is the variability
of pixels around their mean values and, crucially, mi is a categorical variable that
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Fig. 1. Environment and generative model. (a) Active multi-dSprites. Non-zero
accelerations in action fields (in the 2nd frame) are indicated as white arrows originating
at the accelerated grid location. (b) Object-structured generative model for a single
image (time indices omitted here for clarity of exposition). (c) Dynamics model in
state-space for a single object k, shown for three time points.

indicates which object (out of a possible K choices) pixel i belongs to1. Note
that the same decoder function is shared between objects. The pixel assignments
themselves also depend on the object states:

p(mi|{s(k)}k∈1:K) = Cat
(
Softmax

(
{πi(s(k))}k∈1:K

))
(2)

where πi(•) is another DNN that maps an object state to a log-probability at
pixel i, which (up to a constant of addition) defines the probability that the pixel
belongs to that object. Marginalized over the assignment probabilities, the pixel
likelihoods are given by:

p(oi|{s(k)}k∈1:K) =
∑

k

m̂ikN
(
gi(s(k)), σ2

o

)
(3)

m̂ik = p(mi = k|{s(k)}k∈1:K) (4)

During inference, the soft pixel assignments {m̂ik} introduce dynamics akin to
selective attention, as each object slot is increasingly able to focus on those pixels
that are relevant to that object.

2.2 Incorporating Action-Dependent Dynamics

So far, this formulation is identical to the generative model in IODINE. We now
extend this with an action-based dynamics model. We want to endow objects
with (approximately) linear dynamics, and to allow actions that accelerate the
objects. First, we redefine the state of an object at time point t in generalized

coordinates, i.e. s†
t =

[
st

s′
t

]
, where s′ refers to the first-order derivative of the

state. The action-dependent state dynamics are then given by:
1 Note the use of Iverson-bracket notation; the bracket term is binary and evaluates

to 1 iff the expression inside the brackets is true.
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s′(k)
t = s′(k)

t−1 + Da(k)
t−1 + σsε1 (5)

s(k)t = s(k)t−1 + s′(k)
t + σsε2 (6)

where a(k)
t is the action on object k at time t. This action is a 2-D vector that

specifies the acceleration on the object in pixel coordinates. Multiplication by D
(which is learned during training) transforms the pixel-space acceleration to its
effect in the latent space2. Equations 5–6 thus define the object dynamics model
p(s†(k)

t |s†(k)
t−1 ,a(k)

t−1).
We established that a(k)

t is the action on object k in the model at a given
time. However, note that the correspondence between objects represented by
the model, and the true objects in the (simulated) environment, is unknown.3
To solve this correspondence problem, we introduce the idea of action fields. An
action field Ψ = [ψ1, ...,ψM ]T is an [M ×2] matrix (with M the number of pixels
in an image or video frame), such that the i-th row in this matrix (ψi) specifies
the (x,y)-acceleration applied at pixel i. In principle, a different acceleration can
be applied at each pixel coordinate (in practice, we apply accelerations sparsely).
These pixel-wise accelerations affect objects through the rule that each object
receives the sum of all accelerations that occur at its visible pixels:

a(k)
t =

∑

i

[mi = k]ψi + σψε3 (7)

where we include a small amount of Normally distributed noise in order to make
this relationship amenable to variational inference. This definition of actions in
pixel-space is unambiguous and allows the model to interact with the environ-
ment.

2.3 Inference

On the generative model laid out in the previous section, we perform itera-
tive amortized inference (IAI). IAI generalizes variational autoencoders (VAEs),
which perform inference in a single feedforward pass, to architectures which use
several iterations (implemented in a recurrent network) to minimize the Evi-
dence Lower Bound (ELBO). As in VAEs, the final result is a set of variational

2 Since the network will be trained unsupervised, we do not know in advance the
nature of the latent space representation that will emerge. In particular, we do not
know in what format (or even if) the network will come to represent the positions
of the objects.

3 In particular, since the representation across objects slots in the network is
permutation-invariant, their order is arbitrary – just as the order in the memory
arrays that specify the environment is also arbitrary. Thus, the object-actions, as
represented in the model, cannot be unambiguously mapped to objects in the envi-
ronment that the agent interacts with. This problem is exacerbated if the network
has not inferred the object properties and segmentations with perfect accuracy or
certainty, and thus cannot accurately or unambiguously refer to a true object in the
environment.
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beliefs in the latent space of the network. In our case, this amounts to inferring
q({s†(k),a(k)}k∈1:K). We choose these beliefs to be independent Normal distri-
butions. Inference and learning both minimize the following ELBO loss:

L = −
T∑

t=0

[
H

(
q

(
{s†(k)

t , a
(k)
t }

))
+ E

q({s(k)
t })[log p(ot|{s(k)

t })]

+
∑

k

E
q(a(k)

t )
[log p(a

(k)
t |Ψt)] +

∑

k

E
q

(
s
†(k)
t ,s

†(k)
t−1 ,a

(k)
t−1

)[log p(s
†(k)
t |s†(k)

t−1 , a
(k)
t−1)]

]
(8)

for some time horizon T . Note that for t = 0, we define p(s†(k)
t |s†(k)

t−1 ,a(k)
t−1) =

p(s†(k)) =
∏

jk N (s†(k)
j ; 0, 1), i.e. a fixed standard-Normal prior. To com-

pute E
q(a

(k)
t )

[log p(a(k)
t |Ψt)], we employ a sampling procedure, described in

Appendix D.
The IAI architecture consists of a decoder module that implements the gen-

erative model, and a refinement module which outputs updates to the param-
eters λ of the variational beliefs. Mirroring the decoder, the refinement mod-
ule consists of K copies of the same network (sharing the same parameters),
such that refinement network k outputs updates to λ(k). Network architectures
for the decoder and refinement modules are detailed in Appendix B. To per-
form inference across multiple video frames, we simply copy the refinement and
decoder networks across frames as well as object slots. Importantly, as in [4], each
refinement network instance also receives as input a stochastic estimate of the
current gradient ∇

λ
(k)
t

L. Since the ELBO loss includes a temporal dependence
term between time points, the inference dynamics in the network are automat-
ically coupled between video frames, constraining the variational beliefs to be
consistent with the dynamics model. To infer q({a(k)}k∈1:K), we employ a sep-
arate (small) refinement network (again copied across objects slots; details in
Appendix B.2).

2.4 Task and Training

We apply OBAI to a simple synthetic environment, developed for this work,
which we term active-dSprites. This environment was created by re-engineering
the original dSprites shapes [13], to allow these objects to be translated at will
and by non-integer pixel offsets. The environment simulates these shapes mov-
ing along linear trajectories that can be perturbed through the action fields
we introduced above. In the current work, OBAI was trained on pre-generated
experience with this environment, with action fields sampled arbitrarily (i.e. not
based on any intent on the part of the agent).

Specifically, we generated video sequences (4 frames, 64×64 pixels) from the
active-dSprites environment, with 3 objects per video, in which we applied an
action field only at a single time point (in the 2nd frame). Action fields were
sparsely sampled such that (whenever possible) every object received exactly
one non-zero acceleration at one of its pixels. Exactly one background pixel also
received a non-zero acceleration, to encourage the model to learn not to assign
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background pixels to the segmentation masks of foreground objects. In practice,
the appearance of the background was unaffected by these actions (conceptually,
the background can be thought of as an infinitely large plane extending outside
the image frame, and thus shifting it by any amount will not change its visual
appearance in the image).

OBAI was trained on 50,000 pre-generated video sequences, to minimize the
ELBO loss from Eq. 8. This loss was augmented to include the losses at inter-
mediate iterations of the inference procedure, and this composite loss was back-
propagated through time to compute parameter gradients. More details about
the environment and training procedure can be found in Appendices A and C.

2.4.1 Learning Goals in the Latent Space
The active-dSprites environment was conceived to support cognitive tasks that
require object-based reasoning. A natural task objective in active-dSprites is
to move a certain object to a designated location. This type of objective is
simple in and of itself, but the rules that determine which object must be moved
where can be arbitrarily complex. For now, we restrict ourselves to the simple
objective of moving all objects in a scene to a fixed location, and focus on how
to encode this objective. We follow previous Active Inference work (e.g. [14,15])
in conceptualizing goals as a preference distribution p̃. However, rather than
defining this preference to be over observations, as is common (though see [16–
18]), we instead opt to define it over latent states, i.e. p̃({s†(k)}), which simplifies
action selection (a full discussion of the merits of this choice is outside the scope
of this paper).

Assuming that we can define a preference over the true state of the environ-
ment, strue (e.g. the ground-truth object positions), the preference distribution
in latent space can be obtained through the following importance-sampling pro-
cedure:

p̃(s) ∝
∑

j

p(s|o∗
j )uj ≈

∑

j

q(s|o∗
j )uj (9)

o∗
j ∼ p(o|s∗

truej ), uj = p̃(s∗
truej ), s∗

truej ∼ p(strue) ∝ Constant (10)

This allows the latent-space preference to be estimated in closed form from a
set of training examples, constructed by sampling true states uniformly from
the environment and rendering videos from these states. Inference is performed
on the resulting videos, and the latent-state preference is computed as the
importance-weighted average of the inferred state-beliefs (alternatively, we can
sample states directly from p̃(s∗

true), and let the importance weights drop out
of the equation). In particular, if p̃(s∗

true) is Normal, then the preference in the
latent space is also Normal:

q(s|o∗
j ) = N (

μ(o∗
j ),σ(o∗2

j )
)
, p̃(s) = N (μ̃, σ̃2) (11)

μ̃ =
1∑
j uj

∑

j

ujμ(o∗
j ), σ̃ =

√
1∑
j uj

∑

j

uj

(
(μ̃ − μ(o∗

j ))2 + σ(o∗
j )2

)
(12)
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2.4.2 Planning Actions
OBAI can plan actions aimed at bringing the environment more closely in
line with its learned preferences. Specifically, we choose actions that minimize
the Free Energy of the Expected Future (FEEF) [18]. When preferences are
defined with respect to latent states, the FEEF of a policy (action sequence)
π =

{
[a(k)

1 ,a(k)
2 , . . . ,a(k)

T ]
}

k∈1:K
is given by:

G(π) =
T∑

τ=1

∑

k

DKL

(
q(s(k)τ |π)||p̃(s)

)
(13)

where q(s(k)τ |π) is the policy-conditioned variational prior, obtained by propa-
gating the most recent state beliefs through the dynamics model by the requisite
number of time steps.

Given this objective, the optimal policy can be calculated in closed form
for arbitrary planning horizons. In this work, as a first proof-of-principle, we
only consider greedy, one-step-ahead planning. In this case, the optimal “policy”
(single action per object) is given by:

â(k) = (DT LD)−1DT L(μ̃ − μ(k)
s ) (14)

where L = diag(σ̃−2), and μ
(k)
s is the mean of the current state belief for object

k.

3 Results

3.1 Object Segmentation and Reconstruction in Dynamic Scenes

We first evaluated OBAI on its inference and reconstruction capabilties, when
presented with novel videos of moving objects (not seen during training). To
evaluate this, we examined the quality of its object segmentations, and of the
video frame reconstructions (Fig. 2 & Table 1). Segmentation quality was com-
puted using the Adjusted Rand Index (ARI), as well as a modified version of
this index that only considers (ground-truth) foreground pixels (FARI). Across a
test set of 10,000 4-frame video sequences of 3 randomly sampled moving objects
each, OBAI achieved an average ARI and FARI of 0.948 and 0.939, respectively
(where 1 means perfect accuracy and 0 equals chance-level performance), and
a MSE of 9.51 × 10−4 (note that pixel values were in the range of [0, 1]). For
comparison, a re-implementation of IODINE, trained on 50,000 static images
of 3 dSprite objects, achieved an ARI of 0.081, FARI of 0.856 and MSE of
1.63 × 10−3 (on a test set of identically sampled static images). The very low
ARI score reflects the fact that IODINE has no built-in incentive to assign back-
ground pixels to their own object slot. OBAI, on the other hand, has to account
for the effects of actions being applied to the background, which must not affect
the dynamics of the foreground objects. Thus, for OBAI to accurately model the
dynamics in the training data, it must learn not to assign background pixels to
the segmentation masks of foreground objects, lest an action might be placed on
one of these spurious pixels.
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Fig. 2. Reconstruction and segmentation of videos of moving objects with
actions. Three instances of segmentation from the test set of videos. The masks shows
how each slot attends to the three objects and the background. The action field in this
experiment is randomly generated for each instance at the beginning of the simulation.

Table 1. Quantitative segmentation and reconstruction results.

ARI (↑) F-ARI (↑) MSE (↓)

IODINE (static) 0.081 0.856 1.63 × 10−3

OBAI (ours; 4 frames) 0.948 0.939 9.51 × 10−4

3.2 Predicting the Future State of Objects

An advantage of our approach is that the network can predict future states of
the world at the level of objects using the learned state dynamics. Figure 3 shows
three examples of the network predicting future video frames. The first 4 video
frames are used by the network to infer the state. Afterwards, we extrapolate
the inferred state and dynamics of the last observed video frame into the future,
and decode the thus-predicted latent states into predicted video frames. These
predictions are highly accurate, with a MSE of 4 × 10−3.

3.3 Goal-Directed Action Planning

Can OBAI learn and accomplish behavioral objectives? As a first foray into this
question, we asked OBAI to learn fixed preference distributions defined in the
true state-space of the environment, using the method described in Sect. 2.4.1.
Specifically, we placed a Gaussian preference distribution on the location of the
object and had the network learn the corresponding preference in its latent space
from a set of 10,000 videos (annotated with the requisite importance weights).
We then presented the network with static images of dSprite objects in random
locations, and asked it to “imagine” the action that would bring the state of the
environment into alignment with the learned preference. Finally, we applied this
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Fig. 3. Prediction of future video frames. Two instances of prediction from the
test set of videos. We let the network perform inference on 4 consecutive frames, and
then predict the future.

imagined action to the latent state, and decoded the image that would result
from this. As illustrated in Fig. 4, the network is reliably able to imagine actions
that would accomplish the goals we wanted it to learn.

Fig. 4. Goal-directed action planning. We give the network an arbitrary input
image with three objects (in) and it infers the action that will move the state towards
the learned preference, and imagines the resulting image (out). In (a), p̃(strue) was
biased towards the center of the image; in (b), it was biased more towards the top-left.

4 Conclusion

This work seeks to bridge an important gap in the field. On the one hand, com-
puter vision research has developed object-based models, but these only perform
passive inference. On the other hand, there is a wealth of research on behav-
ioral learning (e.g. reinforcement learning and active inference), which has not
generally leveraged objects as an inductive bias, built into the network archi-
tecture (cf. [7,8]). OBAI reconciles these two lines of research, by extending
object-based visual inference models with action-based dynamics. We showed
that OBAI can accurately track and predict the dynamics (and other proper-
ties) of simple objects whose movements are perturbed by actions – an important
prerequisite for an agent to plan its own actions. In addition, we presented an
efficient method for internalizing goals as a preference distribution over latent
states, and showed that the agent can infer the actions necessary to accom-
plish these goals, at the same abstract level of reasoning. While our results are
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preliminary, they are an important proof-of-concept, establishing the potential
of our approach. In future work, we aim to scale OBAI to more naturalistic
environments, and more cognitively demanding tasks.

Acknowledgements. RSvB is supported by Human Brain Project Specific Grant
Agreement 3 grant ID 643945539: “SPIKEFERENCE”.

Appendix

A Active-dSprites

Active-dSprites can be thought of as an “activated” version of the various multi-
dSprites datasets that have been used in previous work on object-based visual
inference (e.g. [4,5]). Not only does it include dynamics, but these dynamics can
be acted on by an agent. Thus, active-dSprites is an interactive environment,
rather than a dataset.

Objects in the active-dSprites environment are 2.5-D shapes (squares, ellipses
and hearts): they have no depth dimension of their own, but can occlude each
other within the depth dimension of the image. When an active-dSprites instance
is intialized, object shapes, positions, sizes and colors are all sampled Uniformly
at random. Initial velocities are drawn from a Normal distribution with mean
0 and standard deviation 4 (in units of pixels). Shape colors are sampled at
discrete intervals spanning the full range of RGB-colors. Shapes are presented in
random depth order against a solid background with a random grayscale color.
Accelerations in action fields (at those locations that have been selected to incur
a non-zero acceleration) are drawn from a Normal distribution with mean 0 and
s.d. of 4.

B Network Architectures

The OBAI architecture discussed in this paper consists of two separate IAI
modules, each of which in turn contains a refinement and a decoder module.
The first IAI module concerns the inference of the state beliefs q({s†(k)}) – we
term this the state inference module. The second IAI module infers the object
action beliefs q({a(k)}), and we refer to this as the action inference module.

We ran inference for a total of F × 4 iterations, where F is the number of
frames in the input. Inference initially concerns just the first video frame, and
beliefs for this frame are initialized to λ0, which is learned during training. After
every 4 iterations, an additional frame is added to the inference window, and
the beliefs for this new frame are initialized predictively, by extrapolating the
object dynamics inferred up to that point. This procedure minimizes the risk
that object representations are swapped between slots across frames, which can
constitute a local minimum for the ELBO loss and leads to poor inference. We
trained all IAI modules with K=4 object slots.
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B.1 State Inference Module

This module used a latent dimension of 16. Note that, in the output of the
refinement network, this number is doubled once as each latent belief is encoded
by a mean and variance, and then doubled again as we represent (and infer) both
the states and their first-order derivatives. In the decoder, the latent dimension
is doubled only once, as the state derivatives do not enter into the reconstruction
of a video frame. As in IODINE [4], we use a spatial broadcast decoder, meaning
that the latent beliefs are copied along a spatial grid with the same dimensions as
a video frame, and each latent vector is concatenated with the (x, y) coordinate
of its grid location, before passing through a stack of transposed convolution
layers. Decoder and refinement network architectures are summarized in the
tables below. The refinement network takes in 16 image-sized inputs, which are
identical to those used in IODONE [4], except that we omit the leave-one-out
likelihoods. Vector-sized inputs join the network after the convolutional stage
(which processes only the image-sized inputs), and consist of the variational
parameters and (stochastic estimates of) their gradients.

Decoder

Type Size/#Chan. Act. func. Comment

Input (λ) 32
Broadcast 34 Appends coordinate channels
ConvT 5 × 5 32 ELU
ConvT 5 × 5 32 ELU
ConvT 5 × 5 32 ELU
ConvT 5 × 5 32 ELU
ConvT 5 × 5 4 Outputs RGB + mask

Refinement Network

Type Size/#Chan. Act. func. Comment

Linear 64
LSTM 128 tanh
Concat [..., λ, ∇λ L] 256 Appends vector-sized inputs
Linear 128 ELU
Flatten 800
Conv 5 × 5 32 ELU
Conv 5 × 5 32 ELU
Conv 5 × 5 32 ELU
Inputs 16
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B.2 Action Inference Module

The action inference module does not incorporate a decoder network, as the
quality of the action beliefs is computed by evaluating Eq. 7 and plugging this
into the ELBO loss from Eq. 8. While this requires some additional tricks (see
Appendix D), no neural network is required for this. This module does include
a (shallow) refinement network, which is summarized in the table below. This
network takes as input the current variational parameters λa

(k) (2 means and 2
variances), their gradients, and the ‘expected object action’,

∑
i m̂ikψi.

Refinement Network

Type Size/#Chan. Act. func. Comment

Linear 4
LSTM 32 tanh
Inputs 10

C Training Procedure

The above network architecture was trained on pre-generated experience with
the active-dSprites environment, as described in the main text. The training
set comprised 50,000 videos of 4 frames each. An additional validation set of
10,000 videos was constructed using the same environment parameters as the
training set, but using a different random seed. Training was performed using
the ADAM optimizer [REF] with default parameters and an initial learning rate
of 3×10−4. This learning rate was reduced automatically by a factor 3 whenever
the validation loss had not decreased in the last 10 training epochs, down to a
minimum learning rate of 3× 10−5. Training was performed with a batch size of
64 (16 × 4 GPUs), and was deemed to have converged after 245 epochs.

C.1 Modified ELBO Loss

OBAI optimizes an ELBO loss for both learning and inference. The basic form
of this loss is given by Eq. 8. In practice, we modify this loss in two ways (similar
to previous work, e.g. [4]). First, we re-weight the reconstruction term in the
ELBO loss as follows:

Lβ = −
T∑

t=0

[
H

(
q
(
{s†(k)

t ,a(k)
t }

))
+ βE

q({s(k)
t })[log p(ot|{s(k)t })]

+
∑

k

E
q(a

(k)
t )

[log p(a(k)
t |Ψt)] +

∑

k

E
q
(
s
†(k)
t ,s

†(k)
t−1 ,a

(k)
t−1

)[log p(s†(k)
t |s†(k)

t−1 ,a(k)
t−1)]

]

(15)
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Second, we train the network to minimize not just the loss at the end of the
inference iterations through the network, but a composite loss that also includes
the loss after earlier iterations. Let L(n)

β be the loss after n inference iterations,
then the composite loss is given by:

Lcomp =
Niter∑

n=1

n

Niter
L(n)

β (16)

C.2 Hyperparameters

OBAI includes a total of 4 hyperparameters: (1) the loss-reweighting coefficient
β (see above); (2) the variance of the pixels around their predicted values, σ2

o ; (3)
the variance of the noise in the latent space dynamics, σ2

s ; and (4) the variance
of the noise in the object actions, σ2

ψ. The results described in the current work
were achieved with the following settings:

Param. Value

β 5.0
σo 0.3
σs 0.1
σψ 0.3

D Computing Eq(a(k))[log p(a(k)|Ψ)]

The expectation under q(a(k)) of log p(a(k)|Ψ), which appears in the ELBO loss
(Eq. 8), cannot be computed in closed form, because the latter log probability
requires us to marginalize over all possible configurations of the pixel-to-object
assignments, and to do so inside of the logarithm. That is:

log p(a(k)|Ψ) =
∑

m

log
(
p(a(k)|Ψ,m)p(m|{s(k)})

)
(17)

= log
(
Ep(m|{s(k)})[p(a

(k)|Ψ,m)]
)

(18)

However, note that within the ELBO loss, we want to maximize the expected
value of this quantity (as its negative appears in the ELBO, which we want to
minimize). From Jensen’s inequality, we have:

Ep(m|{s(k)})[log p(a(k)|Ψ,m)] ≤ log
(
Ep(m|{s(k)})[p(a

(k)|Ψ,m)]
)

(19)

Therefore, the l.h.s. of this equation provides a lower bound on the quantity we
want to maximize. Thus, we can approximate our goal by maximizing this lower
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bound instead. This is convenient, because this lower bound, and its expectation
under q(a(k)) can be approximated through sampling:

Eq(a(k))

[
Ep(m|{s(k)})[log p(a(k)|Ψ,m)]

]
≈ 1

Nsamples

∑

j

log p(a(k)∗
j |Ψ,m∗

j ) (20)

=
1

Nsamples

∑

j

logN
(

a(k)∗
j ;

∑

i

m̂
∗(i)
jk ψi, σ

2
ψI

)
(21)

m̂∗(i)
j ∼ p(mi|{s(k)}), a(k)∗

j ∼ q(a(k)), s(k)∗j ∼ q(s(k)) (22)

where we slightly abuse notation in the sampling of the pixel assignments, as
a vector is sampled from a distribution over a categorical variable. The reason
this results in a vector is because this sampling step uses the Gumbel-Softmax
trick [19], which is a differentiable method for sampling categorical variables
as “approximately one-hot” vectors. Thus, for every pixel i, we sample a vector
m̂∗(i)

j , such that the k-th entry of this vector, m̂
∗(i)
jk , denotes the “soft-binary”

condition of whether pixel i belongs to object k. In practice, we use Nsamples = 1,
based on the intuition that this will still yield a good approximation over many
training instances, and that we rely on the refinement network to learn to infer
good beliefs. The Gumbel-Softmax sampling method depends on a temperature
τ , which we gradually reduce across training epochs, so that the samples grad-
ually better approximate the ideal one-hot vectors.

It is worth noting that, as the entropy of p(m|{s(k)}) decreases (i.e. as object
slots “become more certain” about which pixels are theirs), the bound in Eq. 19
becomes tighter. In the limit as the entropy becomes 0, the network is perfectly
certain about the pixel assignments, and so the distribution collapses to a point
mass. The expectation then becomes trivial, and so the two sides of Eq. 19
become equal. Sampling the pixel assignments is equally trivial in this case, as
the distribution has collapsed to permit only a single value for each assignment.
In short, at this extreme point, the procedure becomes entirely deterministic. In
our data, we typically observe very low entropy for p(m|{s(k)}), and so we likely
operate in a regime close to the deterministic one, where the approximation is
very accurate.
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Abstract. Bayesian theories of biological and brain function speculate
that Markov blankets (a conditional independence separating a sys-
tem from external states) play a key role for facilitating inference-like
behaviour in living systems. Although it has been suggested that Markov
blankets are commonplace in sparsely connected, nonequilibrium com-
plex systems, this has not been studied in detail. Here, we show in two
different examples (a pair of coupled Lorenz systems and a nonequilib-
rium Ising model) that sparse connectivity does not guarantee Markov
blankets in the steady-state density of nonequilibrium systems. Con-
versely, in the nonequilibrium Ising model explored, the more distant
from equilibrium the system appears to be correlated with the distance
from displaying a Markov blanket. These result suggests that further
assumptions might be needed in order to assume the presence of Markov
blankets in the kind of nonequilibrium processes describing the activity
of living systems.

Keywords: Markov blankets · Nonequilibrium dynamics · Bayesian
inference · Lorenz attractor · Ising model

1 Introduction

In statistical inference, a Markov blanket describes a subset of variables contain-
ing all the required information to infer the state of another subset. Identifying
a Markov blanket reduces the computational complexity of inferring generative
models of some variables to capturing dependencies with blanket states. Specifi-
cally, a Markov blanket describes a set of variables (the ‘blanket’) separating two
other sets of variables, that become independent conditioned on the state of the
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
C. L. Buckley et al. (Eds.): IWAI 2022, CCIS 1721, pp. 65–74, 2023.
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blanket. If a system s = {s1, s2, . . . , sN} can be decomposed into three subsets
x, b and y, b is a Markov blanket if it renders x, y conditionally independent:

p(x,y|b) = p(x|b)p(y|b). (1)

This property, also referred to as the global Markov condition [24], implies an
absence of functional couplings between x and y, given the blanket b.

Beyond its role as a technical tool for statistical inference, Markov blan-
kets are becoming a subject of discussion in Bayesian approaches to biological
systems, specially in literature addressing the free energy principle (FEP). The
FEP is a framework originating in theoretical neuroscience promoting a Bayesian
perspective of the dynamics of self-organizing adaptive systems (including living
organisms) [8,9,11]. The FEP claims that the internal states of certain systems
can be described as if they were (approximately) inferring the hidden sources
of sensory variations. Its foundational literature assumes that Markov blankets
emerge from a sparse structural connectivity, decoupling internal states of a
self-organizing system from its environmental milieu, (external states), via some
interfacing states (Fig. 1) – e.g., the cell’s membrane, or a combination of retinal
and oculomotor states during vision. The assumption is that this sparse con-
nectivity leads to a statistical decoupling of internal states conditioned on the
blanket [8]. Although different versions of the theory address different aspects of
the idea of a Markov blanket (e.g. its temporal evolution [21] or its role in paths
outside a stationary density [11]), in the present article, we restrict our analysis
of Markov blankets to the ‘traditional’ formulation of the FEP [9], where con-
ditional independence relationships are expected to hold between states in the
steady-state probability density that defines a stochastic system.

Fig. 1. Sparse structural connectivity. The FEP assumes that Markov blankets nat-
urally arise (under some conditions) when internal and external states are not struc-
turally connected [13]. All the models explored in this article will display this sparse
connectivity pattern.

Acyclic Networks. Originally, Markov blankets were introduced in acyclic
Bayesian networks [23], where they can be identified using a simple rule applied
over the structural connections of the network (e.g. Fig. 2A). By this rule, the
Markov blanket b of a subset x contains the parent nodes of x, the children nodes
of x and the parents of each child. This specific sparse structural connectivity is
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defined as the local Markov condition [24]. Originally, the FEP derived its intu-
itions about Markov blankets from acyclic models, considering the local Markov
condition for a Markov blanket [8,9], suggesting that a boundary between sys-
tem and environment arises naturally from this sparse structural connectivity as
in directed acyclic graphs, without considering functional dynamics.

Fig. 2. The left-hand figures show the structural connectivity of directed graphs. The
right-hand figures show the conditional functional couplings of the system when the
state of the ‘blanket’ b is fixed. In directed acyclic graphs (a), the structural and func-
tional couplings are directly related, and fixing the boundary results in conditional
independence of x,y, yielding a Markov blanket. In directed cyclic graphs (b), the
recurrent structural connections result in additional functional couplings between vari-
ables, generating new couplings between x,y that ‘cross’ the boundary, therefore no
longer rendering b a Markov blanket in general.

Equilibrium Systems. More recent literature on the FEP justifies a similar
equivalence of Markov blankets and structural connectivity under an asymptotic
approximation to a weak-coupling equilibrium [14, see Eq. S8 in Supplementary
Material]. Under this assumption, it has been predicted that Markov blankets
will be commonplace in adaptive systems, e.g., in brain networks [13,17]. It is
easy to observe that many instances of equilibrium systems will display Markov
blankets under sparse, pairwise connectivity (Fig. 1). For example, consider any
causal system described as a dynamical Markov chain in discrete time:

p(st) =
∑

st−1

w(st|st−1)p(st|st−1), (2)

or its continuous state-time equivalent using a master equation:

dp(st)
dt

=
∫

s′
t

w(st|s′
t)p(s′

t)ds
′
t, (3)
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where w describes transition probabilities between states. Eventually, if the sys-
tem converges to a global attractor, it will be described by a probability distri-
bution

p(s) = Z−1 exp (−βE(s)) (4)

where Z is a partition function. In thermodynamic equilibrium E(s) will capture
the Hamiltonian function of the system. Thermodynamic equilibrium implies a
condition called ‘detailed balance’, which requires that, in steady state, transi-
tions are time-symmetric, i.e., w(s|s′)p(s′) = w(s′|s)p(s), resulting in

w(s|s′)
w(s′|s) ∝ exp (−β(E(s) − E(s′))) . (5)

If a system is described by the sparse connectivity structure in Fig. 1, then
its energy can be decomposed into

E(s) = Eint(x,b) + Eext(b,y), (6)

leading to a conditional indpendence

p(x,y|b) =Z−1
b exp (−βEint(x,b)) · exp (−βEext(b,y)) = p(x|b)p(y|b). (7)

Recurrent, Nonequilibrium Systems. The most recent arguments in favour
of why sparse coupling implies conditional independence follow from analysis of
a stochastic system’s coupling structure using a Helmholtz decomposition re-
describing a continuous Langevin equation in terms of a gradient flow on the
system’s (log) stationary probability [7,15,22,28]. Briefly, a dynamical system
described by a (Ito) stochastic differential equation:

dst
dt

= f(st) + ς(st)ω (8)

where f is the drift or deterministic part of the flow, ς is the diffusive or stochastic
part (which can be state-dependent) and ω a Wiener noise with covariance
2Γ (st). The Helmholtz decomposition expresses f as follows [16, Equation 3]:

f(s) = −Γ (s)∇E(s) + ∇ · Γ (s)︸ ︷︷ ︸
dissipative

+Q(s)∇E(s) − ∇ · Q(s)︸ ︷︷ ︸
solenoidal

, (9)

expressing the total drift f as a gradient flow on the log of the stationary density
E(s) ∝ log p(s). This decomposition involves two orthogonal gradient fields, a
dissipative (or curl-free) term and a rotational (or divergence-free) term.

In a system subject only to dissipative forces, Eq. 9 is compatible with Eq. 5
for continuous-time systems. In contrast, a system driven by nonequilibrium
dynamics will no longer show a direct correspondence between its dynamics and
steady state distribution, thus a Markov blanket is not guaranteed from sparse
connectivity. Given this difficulty [3,5], recent extensions of the FEP require
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additional conditions besides the absence of solenoidal couplings Q(s) between
internal and external states to guarantee a Markov blanket [13]. Nevertheless,
a recent exploration of nonequilibrum linear systems showed that these extra
conditions are unlikely to emerge without stringent restrictions of the parameter
space [3]. In such linear systems, their cyclic, asymmetric structure propagates
reverberant activity system-wide, generating couplings beyond their structural
connectivity (e.g. Fig. 2B). As a consequence, for most parameter configurations
of a system, the sparse connectivity of the local Markov condition does not
result in a Markov blanket. That is, even if a system only interacts with the
environment via a physical boundary, it will in general not display the conditional
independence associated with a Markov blanket [3]. Recently, these arguments
have been dismissed under the argument that living systems are poorly described
by linear dynamics and thermodynamic equilibrium, and thus the scope of the
FEP is focused on non-equilibrium systems [10]. Further work has argued Markov
blankets may appear in high-dimensional state-spaces and spatially-localized
interactions [16], under the assumption of a quadratic potential. The rest of
this paper will explore how likely are Markov blankets to emerge for canonical
nonlinear out-of-equilibrium models.

2 Results

To test empirically the extent to which Markov blankets can be expected out of
equilibrium, we have performed conditional independence tests over two canon-
ical non-linear systems: the Lorenz system and the asymmetric kinetic Ising
model. Lorenz systems have long been studied due to their chaotic behaviour
[20]. In contrast, asymmetric kinetic Ising models are recently becoming a popu-
lar tool to study non-equilibrium biological systems like neural networks [3,25].

Measure of Conditional Independence. Markov blanket conditional inde-
pendence (Eq. 1) implies an absence of functional couplings between internal
states x and external states y once the value of the blanket b is fixed. This
condition is captured by the conditional mutual information being equal to zero:

I(x;y|b) =
∑

x,b,y

p(x,b,y) log
p(x,y|b)

p(x|b)p(y|b)
(10)

This conditional mutual information is equivalent to the Kullback Leibler diver-
gence DKL(p(x,y|b)||p(x|b)p(y|b)), i.e. the dissimilarity between the joint and
conditionally independent probability distributions. Thus, it is trivial to show
that Eq. 1 holds only and only if I(x;y|b) = 0.

Pair of Coupled Lorenz Systems. In [12], the authors explore a system com-
posed of two coupled Lorenz systems. The Lorenz system is a three-dimensional
system of differential equations first studied by Edward Lorenz [20], display-
ing chaotic dynamics for certain parameter configurations. The system explored
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in [12] describes two three-dimensional systems that are coupled to each other
through the states b1 and b2. The equations of motion for the full six-dimensional
system are:

d

dt

⎛

⎜⎜⎜⎜⎜⎜⎝

b1,t
x1,t

x2,t

b2,t
y1,t
y2,t

⎞

⎟⎟⎟⎟⎟⎟⎠
=

⎛

⎜⎜⎜⎜⎜⎜⎝

σ(x1,t − χb2,t − (1 − χ)b1,t)
ρb1,t − x1,t − b1,tx2,t

b1,tx1,t − βx2,t

σ(y1,t − χb1,t − (1 − χ)b2,t)
ρb2,t − y1,t − b2,ty2,t

b2,ty1,t − βy2,t

⎞

⎟⎟⎟⎟⎟⎟⎠
(11)

with σ = 10, β = 8/3, and ρ = 32. The coupling parameter is set to χ = 0.5
(we will use χ = 0 as reference of an uncoupled system) expecting the system
to display nonequilibrium, chaotic dynamics. Even in the absence of random
fluctuations, the chaotic nature of the system will result in a rich steady-state
probability distribution p(st). In [12], authors show a Markov blanket conditional
independence (Eq. 1) by approximating p(st) with a multivariate Gaussian (the
so-called ‘Laplace assumption’ [21]). A careful analysis of the conditional mutual
information I(x;y|b) reveals that the system does not display a Markov blanket.
In Fig. 3a we show the conditional mutual information I(x;y|b) of the coupled
Lorenz systems (solid line, χ = 0.5), estimating over an ensemble of 107 trajec-
tories from a random starting point (each variable N (0, 1)), and estimating its
probability density using a histogram with 25 bins for each of the 6 dimensions.
In comparison, the pair of decoupled Lorenz systems (dashed line, χ = 0), shows
near zero conditional mutual information only due to sampling noise). We note
that the authors of [12] never claim that the true stochastic Lorenz system (or the
coupled equivalent) has Markov blankets, only that their Laplace-approximated
equivalents do.

Nonequilibrium Kinetic Ising Model. The asymmetric kinetic Ising model
is a dynamical model with asymmetric couplings between binary spins s (with
values ±1) at times t and t − 1, describing spin updates as:

w(si,t|st−1) =
exp (si,thi,t)
2 cosh hi,t

(12)

hi,t =
∑

j

Jijsj,t−1 (13)

We define asynchronous dynamics in which, at each time step, only one spin is
updated. In the case of symmetric couplings, Jij = Jji, the system converges
to an equilibrium steady state, guaranteed by the detailed balance condition
p(s) maximum entropy distribution (Eq. 4), with E(s) =

∑
ij Jijsisj , display-

ing emerging phenomena like critical phase transitions maximizing information
integration and transfer [1]. In the case of asymmetric couplings, the system con-
verges to a nonequilibrium steady state distribution p(st), generally displaying a
complex statistical structure with higher-order interactions [4]. In contrast with
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Fig. 3. Pair of coupled Lorenz systems. a) Conditional mutual information I(x;y|b) of
the coupled (solid line, χ = 0.5) and decoupled (dashed line, χ = 0) system, estimating
using a 25 bin 6-dimensional histogram. b) Comparison of the joint and independent
probability densities (estimated for a 100 bin bidimensional histogram) of variables
x2, y2.

static equilibrium systems, asymmetries in J result in loops of oscillatory activity
involving a nonequilibrium entropy production [2], corresponding to entropy dis-
sipation in a steady-state irreversible process. In stochastic thermodynamics this
is described as the divergence between forward and reverse trajectories [6,19],
relating the system’s time asymmetry with the entropy change of the reservoir.
The entropy production σt at time t is then given as

σt =
∑

st,st−1

p(st, st−1) log
w(st|st−1)p(st−1)
w(st−1|st)p(st)

, (14)

which is the Kullback-Leibler divergence between the forward and backward
trajectories [18,26,27].

In the asymmetric Ising model, when couplings Jij have a Gaussian distribu-
tion N (J0/N,ΔJ2/N) (an asymmetric equivalent of the Sherrington-Kirkpatrick
model). In the thermodynamic limit the system generates out-of-equilibrium
structures both in an order-disorder critical phase transition (ΔJ < ΔJc), and
in a regime showing highly-deterministic disordered dynamics (ΔJ > ΔJc and
large β) [2,4]. Here, we will study in detail a network with just 6 nodes and
random couplings with the connectivity in Fig. 1 where the probability dis-
tribution p(st) can be calculated exactly. We will use parameters correspond-
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Fig. 4. Conditional mutual information I(x;y|b) (top) and entropy production σ (bot-
tom) at different inverse temperatures (β) for a kinetic Ising model with Gaussian cou-
plings and connectivity as in Fig. 1, including systems with disordered dynamics (J0 =
0, ΔJ = 0.3, red curves), a nonequilibrium order-disorder transition (J0 = 1, ΔJ = 0.3,
blue curves), and an equilibrium transition (J0 = 1, ΔJ = 0, green curves). Areas show
the median, 25/75 and 5/95 percentiles for 104 configurations. (Color figure online)

ing to an order-disorder phase transition (J0 = 1,ΔJ = 0.3) and a disor-
dered dynamics (J0 = 0,ΔJ = 0.3)). We will compare the results with the
behaviour of the system in equilibrium, when disorder between couplings is
removed (J0 = 1,ΔJ = 0). The equilibrium system (equivalent to indepen-
dent functional couplings as in Eq. 7), results in a Markov blanket with zero
conditional mutual information I(x;y|b), as well as zero entropy production σ
(Fig. 4, red line). Nonetheless, this is not the case when couplings are asymmetric
(Fig. 4). Out of equilibrium, we observe how as the entropy production increases
(i.e., the further the system is from equilibrium), the larger is the conditional
mutual information I(x;y|b) (i.e., the further the system is from displaying a
Markov blanket). This is particularly noticeable around the transition point in
the order-disorder transition (J0 = 1,ΔJ = 0.3), suggesting that Markov blan-
kets might be specially challenging near nonequilibrium critical points.

Discussion. These results raise fundamental concerns about the frequent use of
Markov blankets as an explanatory concept in studying the behaviour of biologi-
cal systems. Our results however suggest that additional assumptions are needed
for Markov blankets to arise under nonequilibrium conditions. In consequence,
without further assumptions, it may not be possible to take for granted that
biological systems operate in a regime where Markov blankets arise naturally.
We shall note that the examples explored here have a reduced dimensionality (6
variables for both the Lorenz and asymmetric Ising systems). Previous work in
the literature has suggested that high-dimensionality might be required to guar-
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antee Markov blankets [12,16], but this remains a speculation. Further work
could extend the type of analysis performed here to larger-dimensional systems.
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Abstract. An open question in the study of emergent behaviour in
multi-agent Bayesian systems is the relationship, if any, between individ-
ual and collective inference. In this paper we explore the correspondence
between generative models that exist at two distinct scales, using spin
glass models as a sandbox system to investigate this question. We show
that the collective dynamics of a specific type of active inference agent
is equivalent to sampling from the stationary distribution of a spin glass
system. A collective of specifically-designed active inference agents can
thus be described as implementing a form of sampling-based inference
(namely, from a Boltzmann machine) at the higher level. However, this
equivalence is very fragile, breaking upon simple modifications to the
generative models of the individual agents or the nature of their interac-
tions. We discuss the implications of this correspondence and its fragility
for the study of multiscale systems composed of Bayesian agents.

Keywords: Active inference · Boltzmann machines · Spin glass models

1 Introduction

Emergent phenomena in multi-agent systems are central to the study of self-
organizing, complex systems, yet the relationship between individual properties
and group-level phenomena remains opaque and lacks formal explanation. One
principled approach to understanding such phenomena is offered by the Free
Energy Principle and so-called ‘multiscale active inference’ [6,27]. Proponents
of this multiscale approach propose that groups of individually-Bayesian agents
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necessarily entail an emergent, higher-order Bayesian agent—in other words,
systems are ‘agents all the way down’ by definition [13,17,25,27,28]. However,
to date, there has been little theoretical or modeling work aimed at investigating
whether this proposition is true in general or even demonstrating an existence
proof in a specific system.

In this work we investigate this proposal by building a network of active infer-
ence agents that collectively implement a spin glass system. Spin glasses are a
well-studied model class with a long history in statistical physics and equilibrium
thermodynamics [5,12]. In the context of machine learning and computational
neuroscience, spin glass systems can be tied to models of Bayesian inference
and associative memory, particularly in the form of Hopfield networks and undi-
rected graphical models like Boltzmann machines [16,33]. Boltzmann machines
are a canonical example of an energy-based model in machine learning—they
are defined by a global energy function and are analytically equivalent to a par-
ticular sort of spin glass model. The Boltzmann machine can straightforwardly
be shown to be an inferential model by conditioning on the states of particu-
lar spins and sampling from the posterior distribution over the remaining spins’
states [14,15]. In doing so, Boltzmann machines and spin glass systems can be
described as performing Bayesian inference about the latent causes (spin config-
urations) of the ‘data’ (conditioned spins).

In this paper, we set out to investigate whether an inference machine (in
our case, a Boltzmann machine) that exists at a ‘higher-level’, can be hierar-
chically decomposed into an ensemble of agents collectively performing active
inference at a ‘lower level.’ We show a simple but rigorous equivalence between
collective active inference and spin glass systems, providing the first steps for
future quantitative study into the relationship between individual and collective
generative models. We show that a group of active inference agents, equipped
with a simple but very specific generative model, collectively sample from the
stationary distribution of a spin glass system at the higher scale. This can be
connected to a particular form of sampling known as Glauber dynamics [12,32].
When we further condition on the states of particular agents, then the system
can be interpreted as collectively performing a form of sampling-based posterior
inference over the configurations of the unconditioned agents, i.e., Boltzmann
machine inference.

This paper is structured as follows: first, we specify the generative model
that each spin site in a multi-agent spin glass system is equipped with, noting
that the single agents are constructed explicitly such that their interactions at
the lower-level lead to a spin glass system at the higher level. Then, we establish
the equivalence between this multi-agent active inference process and Glauber
dynamics, a scheme that samples from the stationary distribution of a spin glass
system. We then generalize this result to sampling-based inference in Boltzmann
machines by relaxing the homogeneous parameterization of each agent’s genera-
tive models. We draw exact equivalences between the precisions of each agent’s
generative model and the parameters of a higher-level Boltzmann machine. We
conclude by noting the fragility of the equivalence between multi-agent active
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inference and sampling from a collective spin glass system, and discuss the impli-
cations of our results for the study of emergent Bayesian inference in multiscale
systems.

2 Generative Model for a Single Spin

We begin by constructing a generative model for a single Bayesian agent, which
we imagine as a single spin in a collective of similar agents. From the perspective
of this single ‘focal agent’ or spin, this generative model describes the agent’s
internal model of how the local environment generates its sensory data. Through-
out this section we will take the perspective of this single focal agent, keeping in
mind that any given agent is embedded in a larger system of other agents.

2.1 States and Observations

We begin by specifying the state-space of observations and hidden states that
characterize the focal agent’s ‘world’. The focal agent’s observations or sensations
are comprised of a collection of binary spin states σ̃ = {σj : j ∈ M} where
σj = ±1 and M is the set of neighbour spins that the focal agent has direct access
to. In other words, the agent directly observes the spin states of neighbouring
agents (but not its own).

The focal agent assumes these observed spin states σ̃ all depend on a single,
binary latent variable z—the ‘hidden spin state’, which could also be interpreted
as a coarse-grained ‘average spin’ of its neighbours. Having specified observations
σ̃ and latent states z, the full generative model can be written as a joint distribu-
tion over observations and the hidden spin state, P (σ̃, z). This in turn factorizes
into a set of distributions that describe the likelihood over observations, given
the latent state P (σ̃|z), and prior beliefs about the latent state P (z):

P (σ̃, z) = P (σ̃|z)P (z)

We parameterize the likelihood and prior distributions as Bernoulli distribu-
tions (expressed in a convenient exponential form):

P (σ̃|z; γ) =
∏

j∈M

exp(γσjz)
2 cosh(γz)

Likelihood

P (z; ζ) =
exp(ζz)

2 cosh(ζz)
Prior

The likelihood factorizes into a product of independent Bernoulli distribu-
tions over each neighbouring spin σj . The full likelihood is parameterized with a
single sensory precision parameter γ whose magnitude captures the focal agent’s
assumption about how reliably neighbouring spin states σj indicate the identity
of the latent state z. A positive γ indicates that σj lends evidence to z being
aligned with σj , whereas a negative γ means that σj lends evidence to z being
opposite to σj .
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The prior over z is also a Bernoulli distribution, parameterized by a precision
ζ that acts as a ‘bias’ in the focal agent’s prior belief about the value of z. When
ζ > 0, the focal agent believes the ‘UP’ (z = +1) state is more likely a priori,
whereas ζ < 0 indicates that the agent believes that z = −1 is more likely, with
the magnitude of ζ reflecting the strength or confidence of this prior belief.

Fig. 1. Schematic illustration of individual and collective dynamics. (A)
Example of a system of 16 spin sites connected via a 2-D lattice, each in a state
of σ ∈ {−1, +1} (green down-arrow or yellow up-arrow above), with a focal agent and
its spin, σi = −1, highlighted in blue. (B) Generative model of a single spin. (C) The
posterior belief over z = +1 as a function of the spin difference Δσ. Left: The steepness
of the function is tuned by γ (ζ = 0.0 shown). Right: The horizontal shift depends on
ζ (γ = 0.5 shown). (Color figure online)

2.2 Bayesian Inference of Hidden States

Having specified a generative model, we now consider (from the perspective of
a focal agent) the problem of estimating z, given observations σ̃ = {σj : j ∈ M}
and generative model parameters γ, ζ. This is the problem of Bayesian inference,
specifically the calculation of the posterior distribution over z. The conjugate-
exponential form of the generative model means that the Bayesian posterior can
be calculated exactly, and has a Bernoulli form that depends on σ̃ and z:

P (z|σ̃; γ, ζ) =
P (σ̃, z; γ, ζ)
P (σ̃; γ, ζ)

=
exp

(
z(ζ + γ

∑
j σj)

)

2 cosh
(
ζ + γ

∑
j σj

) (1)
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If we fix the hidden state z to a particular value (e.g. z = +1), then we arrive
at a simple expression for the posterior probability that the hidden spin state is
in the ‘UP’ state, given the observations and the generative model parameters
γ, ζ. The posterior belief expressed as the sum of sensory input

∑
j σj assumes a

logistic or sigmoid form. Hereafter we refer to the sum of observed spin states as
the ‘spin difference’ Δσ =

∑
j σj , since this sum is equivalent to the difference

in the number of positive (σj = +1) and negative (σj = −1) spins. Intuitively,
the steepness and horizontal shift of this logistic function are determined by the
likelihood and prior precisions:

P (z = +1|σ̃, γ, ζ) =
1

1 + exp (−2(ζ + γΔσ))
(2)

Figure 1C shows the effect of varying the likelihood and prior precisions on
the posterior belief over z as a function of Δσ. We can also express the poste-
rior as the equivalent Bernoulli distribution using the more common form, with
parameter φz:

P (z|σ̃, γ, ζ;φz) = (1 − φz)1− z+1
2 φ

z+1
2

z

φz =
1

1 + exp(−2(ζ + γΔσ))
(3)

We now have a simple update rule that expresses how a focal agent updates
its beliefs about z in response to observed spins σ̃. This sigmoid belief update has
a clear, intuitive relationship to the parameters of the focal agent’s generative
model, with γ encoding the sensitivity of the belief to small changes in Δσ and
ζ encoding a ‘bias’ that skews the belief towards either −1 or +1. In the next
section, we connect the generation of spins themselves to an active inference
process, that leverages the Bayesian estimation problem of the current section
to determine a focal agent’s inference of its own spin state.

2.3 Active Inference of Spin States

Having addressed the issue of Bayesian inference or state estimation, we can now
specify a mechanism by which agents generate their own spin states. These gen-
erated spin states will then serve as observations for the neighbours to whom the
focal agent is connected. This turns into a problem of belief-guided action selec-
tion or decision-making. To enable agents to sample spin states as a function of
their beliefs, we supplement each agent’s current generative model with an extra
random variable that corresponds to control states, and some forward model of
how those control states determine observations. We use active inference to opti-
mize a posterior belief over these control states [7,9,10]; an agent can then act to
change its spin state by sampling from this posterior. By equipping each agent
with a particular type of forward model of how its actions impact observations,
we can formally tie the collective dynamics of active inference agents with this
generative model to a sampling scheme from a spin glass model. Appendix B
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walks through the steps needed to add a representation of control states into
the generative model introduced in the previous section, and perform active
inference with respect to this augmented generative model.

Active inference agents entertain posterior beliefs not only about the hidden
states of the world, but also about how their own actions affect the world. Pos-
terior beliefs about actions are denoted Q(u;φu), where u is a random variable
corresponding to actions and φu are the parameters of this belief. As opposed
to the analytic posterior over hidden states z, Q(u;φu) is an approximate pos-
terior, optimized using variational Bayesian inference [4]. In our focal agent’s
simple action model, control states have the same support as hidden states,
i.e. u = ±1. The value of u represents a possible spin action to take (‘UP’ vs.
‘DOWN’). We parameterize Q(u;φu) as a Bernoulli distribution with parameter
φu, which itself encodes the probability of taking the ‘UP’ (+1) action:

Q(ut;φu) = (1 − φz)1−ut+1
2 φ

ut+1
2

z (4)

When we equip our spin glass agents with a particular (predictive) generative
model, we can show that the approximate posterior over control states simplifies
to the state posterior (see Appendix B for details), and an agent can generate a
spin state by simply sampling from the posterior over actions:

Q(u;φu) ≈ P (z|σ̃, γ, ζ;φz)
φu ≈ φz : 0 ≤ φz ≤ 1

σ ∼ Q(u;φu)

∼ Q(z;φz) � P (z|σ̃; γ, ζ) (5)

We now have an active inference agent that 1) calculates a posterior belief
P (z|σ̃, γ, ζ;φz) about the latent state z in response to the observed spins of
other agents and 2) generates a spin of its own by sampling from this belief,
which ends up being identical to the posterior over actions. Intuitively, each
agent just broadcasts its beliefs about the latent cause of its social observations,
by sampling from its posterior over this hidden (average) state. Another way of
looking at this is that each agent emits actions that maximize the accuracy of
its beliefs (i.e., minimize variational free energy), under the prior assumption it
is the author of its sensations, which, implicitly, are shared with other agents.
Note that the choice to sample from the posterior over actions (as opposed to
e.g. taking the maximum) renders this action-selection scheme a form of proba-
bility matching [26,29].

2.4 Completing the Loop

Given this sampling scheme for generating actions, we can simulate a collective
active inference process by equating the actions of one agent to the observations
of another. Specifically, each focal agent’s spin action becomes an observation
(σj for some j) for all the other agents that it (the focal agent) is connected to.
Next, we will show how the dynamics of multi-agent active inference is analogous
to a particular algorithm for sampling from the stationary distribution of a spin
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glass model, known as Glauber dynamics [12]. We then examine the fragility of
this equivalence by exploring a number of simple modifications that break it.

3 Equivalence to Glauber Dynamics

Spin glass models are formally described in terms of a global energy function over
states of the system. The global energy is related to the stationary probability
distribution of the system through a Gibbs law or Boltzmann distribution:

p∗(σ̃) =
1
Z

exp(−βE(σ̃)) (6)

where the stationary density p∗ and energy function E are defined over spin
configurations, where a configuration is a particular setting of each of the N
spins that comprise the system: σ̃ = {σi}N

i=1 : σi ± 1. The partition function Z
is a normalizing constant that ensures p∗(σ̃) integrates to 1.0, and β plays the
role of an inverse temperature that can be used to arbitrarily rescale the Gibbs
measure. In the case of the Ising model, this energy function is a Hamiltonian
that can be expressed as a sum of pairwise interaction terms and an external
drive or bias (often analogized to an external magnetic field):

E(σ̃) = −
∑

〈i,j〉
σiJijσj −

∑

i

hiσi (7)

where Jij specifies a (symmetric) coupling between spin sites i and j and hi

specifies an external forcing or bias term for site i. The bracket notation 〈i, j〉
denotes a sum over pairs. In numerical studies of the Ising model, one is typically
interested in generating samples from this stationary density. One scheme for
doing so is known as Glauber dynamics, where each spin σi of the system is
updated using the following stochastic update rule:

σi ∼ P (σi = (−1,+1))

P (σi = +1) =
1

1 + exp(−βΔiE)

ΔiE = Eσi=DOWN − Eσi=UP = 2

⎛

⎝
∑

j∈Mi

Jijσj + hi

⎞

⎠ (8)

where ΔiE represents the difference in the energy between configurations where
σi = −1 and those where σi = +1. In other words, the probability of unit i
flipping to +1 is proportional to the degree to which the global energy E would
decrease as a result of the flip. If units are updated sequentially (also known
as ‘asynchronous updates’), then given sufficient time Glauber dynamics are
guaranteed to sample from the stationary density in Eq. (6) [12].

The probability of agent i taking action σi = +1 is given by the action
sampling rule in Eq. (5) of the previous section. We can thus write the probability
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of taking a particular action in terms of the posterior over latent states z, by
plugging in the posterior belief over z = +1 (given in Eq. (2)) into Eq. (5):

P (σi = +1) =
1

1 + exp(−2(ζi + γiΔiσ))
(9)

where we now index ζ, γ,Δσ by i to indicate that these are the generative model
parameters and observations of agent i. The identical forms shared by Eqs. (8)
and (9) allow us to directly relate the parameters of individual generative models
to the local energy difference ΔiE and the global energy of the system.

ΔiE ∝ J
∑

j∈Mi

σj + hi = γΔiσ + ζi =⇒ J = γ, hi = ζi

where we assume all agents share the same likelihood precision γi = γ∗ : ∀i,
which is equivalent to forcing all couplings to be identical Jij = J : ∀i, j. Indi-
vidual active inference agents in this multi-agent dynamic thus behave as if they
are sampling spin states in order to minimize a global energy function defined
over spin configurations, which in the case of spin glass systems like the Ising
model, can be computed using local observations (the spins of one’s neighbours)
and model parameters γ, ζ. Going the other direction, one can sample from the
stationary distribution of spin glass system by simulating a collective of active
inference agents with an appropriately parameterized generative model.

However, the equivalence between Glauber sampling from the stationary dis-
tribution of an Ising model and collective active inference breaks down when
agents update their actions in parallel or synchronously, rather than asyn-
chronously. In particular, under parallel action updates, the system samples
from a stationary distribution with a different energy function than that from
Eq. (7). See Appendix C for derivations on the relationship between the schedule
of action updates (synchronous vs. asynchronous) and the resulting stationary
density of the system.

4 Equivalence to Inference in Boltzmann Machines

Connecting the collective dynamics of these specialized active inference agents to
inference in Boltzmann machines is straightforward. We now equip each agent’s
generative model with a vector of sensory precisions γ̃ = {γj : j ∈ M} that act
as different reliabilities assigned to different neighbours’ spin observations. The
new factorized likelihood can be written:

P (σ̃|z; γ̃) =
∏

j∈M

exp(γjσjz)
2 cosh(γjz)

(10)

We can then write the posterior over z as a function of observations and
generative model parameters {σ̃, ζ, γ̃}. By fixing z to the value +1, we obtain
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again a logistic expression for the posterior probability P (z = +1|σ̃, γ̃, ζ) that is
nearly identical to the original Eq. (2):

P (z = +1|σ̃, γ̃, ζ) =
1

1 + exp(−2(ζ +
∑

j∈M γjσj))
(11)

A Boltzmann machine is a special variant of a spin glass model, defined by
a global energy that in turn defines the stationary probability assigned to each
of the system’s configurations. The Boltzmann energy EB , as with the classical
spin glass energy, is defined over configurations of the system’s binary units (also
known as nodes or neurons) x̃ = {xi}N

i=1.
In the context of inference, it is common to partition the system’s units into

‘visible units’ and ‘hidden units’, x̃ = {ṽ, h̃}, with the following energy function:

EB(ṽ, h̃) = −1
2
(ṽ�Wvv ṽ + h̃�Whhh̃ + ṽ�Wvhh̃) − θ̃�

v ṽ − θ̃�
h h̃ (12)

where Wvv,Whh,Wvh are weight matrices with symmetric couplings between
units with no ‘self-edges’ (Wii = 0 : ∀i) that mediate dependencies both
within and between the two subsets of units ṽ, h̃; and θ̃v, θ̃h are vectors of unit-
specific biases or thresholds. The Bayesian inference interpretation of Boltzmann
machines considers the conditional probability distribution over h̃, given some
fixed values of ṽ. The ‘clamping’ of visible nodes to some data vector ṽ = d̃
can simply be absorbed into the biases θ̃v, such that samples from the posterior
P (h̃|ṽ = d̃) are analogous to sampling from the joint distribution P (h̃, ṽ) where
the biases of the visible nodes are adjusted to reflect this clamping. Sampling
from this model can be achieved with Glauber dynamics, since the model is a
spin glass system with heterogeneous (but symmetric) couplings. We can there-
fore write the single unit ‘ON’ probability as follows, now in terms of weights
W and thresholds θ̃:

P (xi = +1) =
1

1 + exp(−ΔiEB)
=

1
1 + exp(−∑

j Wijxj − θi)
(13)

where the interaction term that comprises the local energy difference ΔiEB is
equivalent to a dot-product between the ith row of W and vector of activities
x̃. It is thus straightforward to relate the weights and biases of a Boltzmann
machine to the sensory and prior precisions of each agent’s generative model. In
particular, the weight connecting unit j to unit i in a Boltzmann machine Wij

is linearly related to the precision that agent i associates to spin observations
coming from agent j: Wij = 2γ(i,j) where the subscript (i, j) refers to agent i’s
likelihood model over observations emitted by agent j. If agents i and j are not
connected, then Wij = γ(i,j) = 0. The bias of the ith unit is also straightforwardly
related to agent i’s prior precision via θi = 2ζi.

We have seen how sampling from the posterior distribution of a Boltzmann
machine with fixed visible nodes ṽ is equivalent to the collective dynamics of
a specific multi-agent active inference scheme. We have thus shown a carefully-
constructed system, in which a form of sampling-based Bayesian inference at one
scale emerges from a process of collective active inference at a lower scale.
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5 Discussion

Although the equivalences we have shown are exact, there are numerous assump-
tions that, when broken, violate the equivalence between the multi-agent dynam-
ics defined at the lower level, and the higher-level sampling dynamics of the spin
glass system.

The energy-based models we have studied (Ising models, Boltzmann
machines) are all undirected graphical models: this means that the global
energy function is defined by symmetric interaction terms across pairs of spins:
Jij = Jji

1. In order to meet this requirement at the level of the individual agents,
one must force the precisions that a pair of agents assign to one another to be
identical: γ(i,j) = γ(j,i). This constraint also underpins the equilibrium nature of
classical spin glass systems where detailed balance conditions are met, i.e., the
system is in thermodynamic equilibrium. In natural complex systems (especially
biological ones), these detailed balance conditions are often broken, and the sys-
tems operate far from equilibrium [1,2,8,21–24,34]. This may be manifest in the
case of realistic multi-agent dynamics in the form of asymmetric beliefs about
reliability of social signals that agents assign to one another [3].

Another fragility of the multiscale equivalence is the structure of the indi-
vidual generative model, which relies on very specific assumptions about how
hidden states z relate to observations. Without this generative model at the
single-agent level, there is no equivalence between the collective active inference
process and a spin glass model—the model’s dynamics could become more com-
plex (and potentially analytically intractable), because the posterior update is
not guaranteed to be a simple logistic function of the sum of neighbouring spins.
This could be easily shown by changing the single agent’s likelihood model to
include a separate latent variable for each neighbour’s spin state2, or if the total
likelihood over neighbouring spin observations did not factorize into a product of
neighbour-specific likelihoods, but had some more complex statistical structure.

Finally, the convergence of Glauber dynamics to samples from the joint den-
sity over spin configurations depends on the temporal schedule of action updat-
ing; namely, spins have to be updated sequentially or asynchronously, rather
than in parallel (see Appendix C for details) in order to guarantee sampling
from the stationary distribution in Eq. (6). If agents act in parallel, then the
stationary distribution of spin states is different than that given by the classical
spin glass Hamiltonian. In other words, depending on the relative timescales of
collective action, agents either will or will not minimize the global energy func-
tion that their actions appear to local minimize (i.e. actions that minimize the
local energy difference ΔiE).

1 W = W� for the Boltzmann machine, respectively.
2 This is analogous to the approach taken in [3], where each agent had beliefs about

the belief state of each of its neighbours.
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6 Conclusion

In this work we demonstrate an exact equivalence between a collective active
inference process and sampling from states a spin glass system under detailed
balance. Furthermore, we connect the system’s collective dynamics to sampling-
based inference in energy-based models like Boltzmann machines. In particular,
when we constrain certain agents in the network to be ‘visible nodes’ and fix
their actions, then the whole system samples from the posterior distribution
over spin configurations, given the actions of the ‘visible’ agents. Despite these
exact relationships, we also note the fragility of the equivalence, which relies on
very particular assumptions. These include the symmetry of the precisions that
pairs of agents assign to each other (i.e., couplings between spins), the temporal
scheduling of the action updates, and the specific generative model used by the
agents. It remains to be seen, whether when these assumptions are broken, an
inferential or ‘agentive’ interpretation still obtains at higher scales, and if so,
whether the form of the ‘collective’ generative model can be analytically related
to the individual generative models as it was in the present, equilibrium case.

Our results have important implications for the overall agenda of multiscale
active inference, and the quest to uncover the quantitative relationship between
generative models operating at distinct scales in complex systems. In the sys-
tem presented in the current work, we show that active inference agents may
collectively achieve sampling-based inference at a distinct, higher level under
particular conditions. Despite the apparent consistency at the two scales, our
result actually conflicts with claims made in the multiscale active inference lit-
erature, that posits that systems hierarchically decompose into nested levels of
active inference agents [6,17,25,27,28]—in other words, that systems are inher-
ently active inference processes ‘all the way down.’ Note that in our system, there
are only active inference agents operating at the lower level—the higher level is
not an active inference agent, but is better described as a passive agent that per-
forms hidden state-estimation or inference by sampling from a posterior belief
over spin configurations. The agenda of the present work also resonates with
ongoing research into the necessary and sufficient conditions for generic complex
systems to be considered ‘agentive’ or exhibit inferential capacities [18–20,30].

Our results suggest that multiscale inference interpretations of complex sys-
tems do not necessarily emerge in any system. We nevertheless hope that the
simple equilibrium case we presented here may serve as a launching pad for future
studies into whether inference interpretations can be rescued at the higher scale
in cases when the fragile assumptions at the single-agent level are broken.

A Bayesian Inference for a Single Agent

In this appendix we derive the exact Bayesian inference update for the posterior
over the latent state z, taking the perspective of a single agent.

We begin by rehearsing the component likelihood and prior distributions of
the generative model in more detail.
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A.1 Likelihood

The likelihood model relates the hidden state z to the observed spin state of
a particular neighbour σj as an exponential distribution parameterized by a
sensory precision parameter γ:

P (σj |z; γ) =
exp(γσjz)
2 cosh(γz)

(A.1)

The sign and magnitude of γ determines the nature of the expected mapping
between hidden states z and neighbouring spin observations σj . For γ > 0, then
the observed spin is expected to reflect the latent state z, and with γ < 0, then
the observed spin is expected to be opposite to the latent state z. The magnitude
of γ then determines how deterministic this mapping is.

Equation (A.1) can alternatively be seen as a collection of two conditional
Bernoulli distributions over σj , one for each setting of z. This can be visual-
ized as a symmetric matrix mapping from the two settings of z (the columns,
corresponding to z = −1,+1) to the values of σj (the rows σj = −1,+1):

P (σj |z; γ) =

[
1

1+exp(−2γ)
1

1+exp(2γ)

1
1+exp(2γ)

1
1+exp(−2γ)

]
(A.2)

where this mapping approaches the identity matrix as γ → ∞.
Now we can move onto writing down the likelihood over the observed spins

of multiple neighbours: σ̃ = {σj : j ∈ M} where M denotes the set of the
focal agent’s neighbours. We build in a conditional independence assumption
into the focal agent’s generative model, whereby the full likelihood model over
all observed spins factorizes across the agent’s neighbours. This means we can
write the likelihood as a product of the single-neighbour likelihoods shown in
Eq. (A.1):

P (σ̃|z; γ) =
∏

j∈M

exp(γσjz)
2 cosh(γz)

= exp

⎛

⎝zγ
∑

j∈M

σj − K log(2 cosh(γz))

⎞

⎠ (A.3)

where K is the number of the focal agent’s neighbours (i.e. the size of the set M).
We can easily generalize this likelihood to heterogeneous precisions by instead
parameterizing it with a precision vector γ̃ = {γj : j ∈ M} that assigns a differ-
ent precision to observations coming from each of the focal agent’s neighbours:

P (σ̃|z; γ̃) =
∏

j∈M

exp(γjσjz)
2 cosh(γjz)

= exp

⎛

⎝z
∑

j∈M

γjσj −
∑

j∈M

log(2 cosh(γjz))

⎞

⎠ (A.4)
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A.2 Prior

We parameterize the focal agent’s prior beliefs about the latent spin state z
as a simple Bernoulli distribution, and similarly to the likelihood model, we
will express it as an exponential function parameterized by a ‘prior precision’
parameter ζ:

P (z; ζ) =
exp(ζz)

2 cosh(ζz)
= exp(ζz − log(2 cosh(ζ)))

As with the sensory precision γ, the prior precision also scales the strength
of the focal agent’s prior belief that the spin state z is +1.3

A.3 Bayesian Inference of Hidden States

Now we ask the question: how would a focal agent (i.e., the agent that occupies
a single lattice site) optimally compute a belief over z, that is most consistent
with a set of observed spins σ̃? This is a problem of Bayesian inference, which
can be expressed as calculation of the posterior distribution over z via Bayes
Rule:

P (z|σ̃; γ, ζ) =
P (σ̃, z; γ, ζ)
P (σ̃; γ, ζ)

(A.5)

Since we are dealing with a conjugate exponential model4, we can derive an
analytic form for the posterior: P (z|σ̃, γ, ζ):

P (z|σ̃; γ, ζ) =
exp

(
z(ζ + γ

∑
j σj)

)

2 cosh
(
ζ + γ

∑
j σj

) (A.6)

where the sum over neighbouring spins j only includes the neighbours of the
focal agent, i.e.,

∑
j∈M σj . If we fix the hidden state z to a particular value (e.g.

z = +1), then we arrive at a simple expression for the posterior probability that
the hidden spin state is in the ‘UP’ state, given the observations and the gen-
erative model parameters γ, ζ. This probability reduces to a logistic or sigmoid
function of sensory input, which is simply the sum of neighbouring spin values
Δσ =

∑
j σj . This can also be seen as the ‘spin difference’, or the number of

neighbouring spins that are in the ‘UP’ position, minus those that are in the
‘DOWN’ position. The steepness and horizontal shift of this logistic function are
intuitively given by likelihood and prior precisions, respectively:

3 Note that cosh(ζz) can be re-written cosh(ζ) when z ∈ {−1, +1} due to the symme-
try of the hyperbolic cosine function around the origin.

4 The Bernoulli prior is conjugate to the likelihood model, which can also be described
of as a set of conditional Bernoulli distributions.
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P (z = +1|σ̃, γ, ζ) =
exp(ζ + γΔσ)

exp(ζ + γΔσ) + exp(−(ζ + γΔσ))

=
(

1 +
exp(−(ζ + γΔσ))

exp(ζ + γΔσ)

)−1

=
1

1 + exp(−2(ζ + γΔσ))
(A.7)

The denominator in the first line of (A.7) follows from the identity cosh(x) =
1
2 (exp(x) + exp(−x)).

B Active Inference Derivations

In this section we provide the additional derivations needed to equip each agent
with the ability to infer a posterior over control states and sample from this
posterior to generate actions. This achieved through the framework of active
inference.

Active inference casts the selection of control states or actions as an inference
problem, whereby actions u are sampled or drawn from posterior belief about
controllable hidden states. The posterior over actions is computed as the softmax
transform of a quantity called the expected free energy [9]. This is the critical
objective function for actions that enables active inference agents to plan actions
into the future, since the expected free energy scores the utility of the anticipated
consequences of actions.

B.1 Predictive Generative Model

We begin by writing a so-called ‘predictive’ generative model that crucially
includes probability distributions over the agent’s own control states u ∈
{−1,+1} and how those control states relate to future (anticipated) observa-
tions. In other words, we consider a generative model over two timesteps: the
current timestep t and one timestep in the future, t + 1. This will endow our
agents with a shallow form of ‘planning’, where they choose actions in order
to maximize some (pseudo-) reward function defined with respect to expected
outcomes. This can be expressed as follows:

P (σ̃t, zt, ut,Ot+1; γ, ζ) = P̃ (Ot+1|zt, ut, σ̃t)P (σ̃t, zt, ut; γ, ζ) (B.8)

where the generative model at the second timestep P̃ (Ot+1|zt, ut, σ̃t) we here-
after refer to as the ‘predictive’ generative model, defined over a single future
timestep.

Active inference consists in sampling a belief from the posterior distribution
over control states u—this sampled control state or action is then fixed to be
the spin state of the agent under consideration. Thus the action of one agent is
fed in as the observations for those spin sites that it’s connected to. In order to
imbue active inference agents with a sense of goal-directedness or purpose, we
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encode a prior distribution over actions P (u) that is proportional to the negative
of the expected free energy, via the softmax relationship:

P (u) =
exp(−G(u))∑
u exp(−G(u))

(B.9)

Crucially, the expected free energy of an action G is a function of outcomes
expected under a particular control state u, where beliefs about future outcomes
are ‘biased‘ by prior beliefs about encountering particular states of affairs. In
order to optimistically ‘bend’ these future beliefs towards certain outcomes, and
thus make some actions more probable than others, we supplement the predictive
generative model P̃ with a binary ‘optimality’ variable O ± 1 that the agent has
an inherent belief that it will observe. This is encoded via a ‘goal prior’ or
preference vector, which is a Bernoulli distribution over seeing a particular value
of O with some precision parameter ω:

P̃ (Ot+1;ω) =
exp(ωO)

2 cosh(ωO)
(B.10)

Hereafter we assume an infinitely high precision, i.e. ω → ∞. This renders the
preference an ‘all-or-nothing’ distribution over observing the optimality variable
being in the ‘positive’ state O = +1:

=
[
P̃ (Ot+1 = −1)
P̃ (Ot+1 = +1)

]
=

[
0.0
1.0

]
(B.11)

To allow an agent the ability to predict the relationship between their actions
and expected observations, it’s important to include an additional likelihood dis-
tribution, what we might call the ‘forward model’ of actions P (Ot+1|zt, ut; ξ).
This additional likelihood encodes the focal agent’s assumptions about the rela-
tionship between hidden states, actions, and the (expected) optimality variable.
By encoding a deterministic conditional dependence relationship into this likeli-
hood, we motivate the agent (via the expected free energy) to honestly signal its
own estimate of the hidden state via its spin action u. To achieve this, we explic-
itly design this likelihood to have the following structure, wherein the optimality
variable is only expected to take its ‘desired value’ of O = +1 when z = u. This
can be written as a set of conditional Bernoulli distributions over O, and each
of which jointly depends on z and u and is parameterized by a (infinitely high)
precision ξ:

P (Ot+1|zt, ut; ξ) =
exp(ξOt+1ztut)
2 cosh(ξztut)

(B.12)

When we assume ξ → ∞, then we arrive at a form for this likelihood which
can be alternatively expressed as a set of Bernoulli distributions that conjunc-
tively depend on z and u, and can be visualized as follows:



90 C. Heins et al.

P (Ot+1|zt, ut = −1) =
[
0 1
1 0

]

P (Ot+1|zt, ut = +1) =
[
1 0
0 1

]
(B.13)

where the columns of the matrices above correspond to settings of z ∈ {−1,+1}.
Therefore, the agent only expects to see O = +1 (the desired outcome) when
the value of the hidden state and the value of the control variable are equal, i.e.
z = u; otherwise O = −1 is expected. For the purposes of the present study, we
assume both the optimality prior P̃ (O;ω) and the optimality variable likelihood
P (O|z, u; ξ) are parameterized by infinitely high precisions ω = ξ = ∞, and
hereafter will exclude them when referring to these distributions for notational
convenience.

Having specified these addition priors and likelihoods, we can write down the
new (predictive) generative model as follows:

P̃ (Ot+1, ut, zt) = P (Ot+1|zt, ut)P (ut)P̃ (Ot+1)P (zt) (B.14)

B.2 Active Inference

Under active inference, both state estimation and action are consequences of the
optimization of an approximate posterior belief over hidden states and actions
Q(z, u;φ). This approximate posterior is optimized in order to minimize a vari-
ational free energy (or alternatively maximize an evidence lower bound). This
is the critical concept for a type of approximate Bayesian inference known as
variational Bayesian inference [4]. This can be described as finding the optimal
set of variational parameters φ that minimizes the following quantity:

φ∗ = arg min
φ

F

= EQ[ln Q(zt, ut;φ) − ln P̃ (σ̃t, zt, ut,Ot+1; γ, ζ)] (B.15)

In practice, because of the factorization of the generative model into a gen-
erative model of the current and future timesteps, we can split state-estimation
and action inference into two separate optimization procedures. To do this we
also need to factorize the posterior as follows:

Q(z, u;φ) = Q(z;φz)Q(u;φu) (B.16)

where we have also separated the variational parameters φ = {φz, φu} into those
that parameterize the belief about hidden states φz, and those that parameterize
the belief about actions φu.

When considering state-estimation (i.e. optimization of Q(zt;φz)), we only
have to consider the generative model of the current timestep P (σ̃t, zt; γ, ζ). The
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optimal posterior parameters φ∗
z are found as the minimum of the variational

free energy, re-written using only those terms that depend on φz:

φ∗
z = arg min

φz

F(φz)

F(φz) = EQ(zt;φz)[ln Q(zt;φz) − ln P (σ̃t, zt; γ, ζ)] (B.17)

To solve this, we also need to decide on a parameterization of the approximate
posterior over hidden states zt. We parameterize Q(zt;φz) as a Bernoulli distri-
bution with parameter φz, that can be interpreted as the posterior probability
that zt is in the ‘UP’ (+1) state:

Q(zt;φz) = (1 − φz)1− zt+1
2 φ

zt+1
2

z (B.18)

By minimizing the variational free energy with respect to φz, we can obtain
an expression for the optimal posterior Q(z;φ∗

z) that sits at the variational free
energy minimum. Due to the exponential and conjugate form of the generative
model, Q(zt;φz) is the exact posterior and thus variational inference reduces to
exact Bayesian inference. This means we can simply re-use the posterior update
equation of Eq. (A.7) to yield an analytic expression for φ∗

z:

φ∗
z =

1
1 + exp (−2(ζ + γΔσ))

(B.19)

When considering inference of actions, we now consider the generative model
of the future timestep, which crucially depends on the current control state ut

and the optimality variable Ot+1. We can then write the variational problem
as finding the setting of φu that minimizes the variational free energy, now re-
written in terms of its dependence on φu:

φ∗
u = arg min

φu

F(φu)

F(φu) = EQ(ut;φu)[ln Q(ut;φu) − ln P̃ (Ot+1, ut, zt)] (B.20)

As we did for the posterior over hidden states, we need to decide on a param-
eterization for the posterior over actions Q(ut;φu); we also parameterize this as
a Bernoulli distribution with parameter φu that represents the probability of
taking the ‘UP’ (+1) action:

Q(ut;φu) = (1 − φz)1−ut+1
2 φ

ut+1
2

z (B.21)

From Eq. (B.20) it follows that the optimal φu is that which minimizes the
Kullback-Leibler divergence between the approximate posterior Q(ut;φu) and
the prior P (ut), which is a softmax function of the expected free energy of
actions G(ut). In this particular generative model, the expected free energy can
be written as a single term that scores the ‘expected utility’ of each action [7,9]:

G(ut) = −EQ(Ot+1|ut)[ln P̃ (Ot+1)] (B.22)
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To compute this, we need to compute the ‘variational marginal’ over Ot+1,
denoted Q(Ot+1|ut):

Q(Ot+1|ut) = EQ(zt;φ∗
z)

[P (Ot+1|zt, ut)] (B.23)

We can simplify the expression for Q(Ot+1|ut) when we take advantage of
the Bernoulli-parameterization of the posterior over hidden states Q(z;φ∗

z). This
allows us to then write the variational marginals, conditioned on different actions
as a matrix, with one column for each setting of ut:

Q(Ot+1|ut) =
[

φ∗
z 1 − φ∗

z

1 − φ∗
z φ∗

z

]
(B.24)

The expected utility (and thus the negative expected free energy) is then
computed as the dot-product of each column of the matrix expressed in Eq.
(B.24) with the log of the prior preferences P̃ (Ot+1):

EQ(Ot+1|ut)[ln P̃ (Ot+1)] =
[ −∞φ∗

z

−∞(1 − φ∗
z)

]

=⇒ G(ut) =
[ ∞φ∗

z

∞(1 − φ∗
z)

]
(B.25)

Because the probability of an action is proportional to its negative expected
free energy, this allows us to write the Bernoulli parameter φ∗

u of the posterior
over actions directly in terms of the parameter of the state posterior

φ∗
u =

1
1 + exp(β(∞(1 − φ∗

z)))

=
1

1 + C exp(−φ∗
z)))

(B.26)

The inverse temperature parameter β is an arbitrary re-scaling factor that
can be used to linearize the sigmoid function in (B.26) over the range [0, 1] such
that

φ∗
u ≈ φ∗

z (B.27)

Note that the equivalence relation in Eq. (B.27) is only possible due to the
infinite precisions ω and ξ of the likelihood and prior distributions over the
‘optimality’ variable P (Ot+1|ut, zt) and P̃ (Ot+1), and from an appropriately
re-scaled β parameter that linearizes the sigmoid relationship in Eq. (B.26).

B.3 Action Sampling as Probability Matching

Now that we have an expression for the parameter φ∗
u of the posterior over

control states Q(ut;φ∗
u), an agent can generate a spin state by simply sampling

from this posterior over actions:
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σ ∼ Q(ut;φ∗
u)

∼ Q(zt;φ∗
z) � P (zt|σ̃; γ, ζ) (B.28)

In short, each agent samples its spin state from a posterior belief over the
state of the latent variable zt, rendering their action-selection a type of probabil-
ity matching [11,29,31], whereby actions (whether to spin ‘UP’ or ‘DOWN’) are
proportional to the probability they are assigned in the agent’s posterior belief.
Each agent’s sampled spin state also serves as an observation (σj for some j)
for the other agents that the focal agent is a neighbour of. This collective active
inference scheme corresponds to a particular form of sampling from the station-
ary distribution of a spin glass model known as Glauber dynamics [12]. Crucially,
however, the temporal scheduling of the action-updating across the group deter-
mines which stationary distribution the system samples from. We explore this
distinction in the next section.

C Temporal Scheduling of Action Sampling

In this appendix we examine how the stationary distribution from which the
collective active inference system samples depends on the order in which actions
are updated across all agents in the network. First, we consider the case of
synchronous action updates (all agents update their actions in parallel and only
observe the- spin states of their neighbours from the last timestep), and show
how this system samples from a different stationary distribution than the one
defined by the standard Ising energy provided in Eq. (7). We then derive the
more ‘classical’ case of asynchronous updates, where agents update their spins
one at a time, and show how in this case the system converges to the standard
statioanry distribution of the Ising model. This Appendix thus explains one of
the ‘fragilities’ mentioned in the main text, that threaten the unique equivalence
between local active inference dynamics and a unique interpretation at the global
level in terms of inference.

We denote some agent’s spin using σi and its set of neighbours as Mi. The
local sum of spins or spin difference

∑
j∈M σj for agent i we denote Δiσ =∑

j∈Mi
σj .

C.1 Synchronous Updates

To derive the stationary distribution in case of synchronous updates, we can
take advantage of the following detailed balance relation, which obtains in the
case of systems at thermodynamic equilibrium:

P (σ̃)
P (σ̃′)

=
P (σ̃|σ̃′)
P (σ̃′|σ̃)

=⇒ P (σ̃) =
P (σ̃|σ̃′)P (σ̃′)

P (σ̃′|σ̃)
(C.29)
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where σ̃ and σ̃′ are spin configurations at two adjacent times τ and τ + 1. In
the case of synchronous updates (all spins are sampled simultaneously, given
the spins at the last timestep), then the spin action of each agent σ′

i at time
τ + 1 is conditionally independent of all other spins, given the vector of spins
σ̃ at the previous timestep τ . We can therefore expand the ‘forward’ transition
distribution P (σ̃′|σ̃) as a product over the action posteriors of each agent:

P (σ̃′|σ̃) = P (σ1|σ̃)P (σ1|σ̃)...P (σN |σ̃)

=
∏

i

Q(ut;φ∗
u,i)

=
∏

i

exp
(
σ′

i

(
ζ + γ

∑
j∈Mi

σj

))

2 cosh
(
ζ + γ

∑
j∈Mi

σj

)

= exp

⎛

⎝
∑

i

σ′
i(ζ + γ

∑

j∈Mi

σj) −
∑

i

log

⎛

⎝2 cosh(ζ + γ
∑

j∈Mi

σj)

⎞

⎠

⎞

⎠

(C.30)

Note we have replaced each latent variable in the posterior z with the agent’s
own spin state σi, because there is a one-to-one mapping between the posterior
over zt and the posterior over actions σi.

The reverse transition distribution, yielding the probability of transitioning
from configuration σ̃′ → σ̃ is the same expression as for the forward transition,
except that σ′

i and σi are swapped:

P (σ̃|σ̃′) = exp

⎛

⎝
∑

i

σi(ζ + γ
∑

j∈Mi

σ′
j) −

∑

i

log

⎛

⎝2 cosh(ζ + γ
∑

j∈Mi

σ′
j)

⎞

⎠

⎞

⎠

(C.31)

The detailed balance equation in (C.29) then tells us that the stationary
probability distribution over σ̃ is proportional to the ratio of the backwards
transition to the forwards transition:

P (σ̃)
P (σ̃′)

=
exp

(∑
i σi(ζ + γ

∑
j∈Mi

σ′
j) − ∑

i log
(
2 cosh(ζ + γ

∑
j∈Mi

σ′
j)

))

exp
(∑

i σ′
i(ζ + γ

∑
j∈Mi

σj) − ∑
i log

(
2 cosh(ζ + γ

∑
j∈Mi

σj)
))

=
exp

(
ζ

∑
i σi + γ

∑
〈i,j〉 σiσ

′
j

)
exp

(
−∑

i log
(
2 cosh(ζ + γ

∑
j∈Mi

σ′
j

))

exp
(
ζ

∑
i σ′

i + γ
∑

〈i,j〉 σ′
iσj

)
exp

(
−∑

i log
(
2 cosh(ζ + γ

∑
j∈Mi

σj

))

=
exp

(
ζ

∑
i σi +

∑
i log

(
2 cosh(ζ + γ

∑
j∈Mi

σj

))

exp
(
ζ

∑
i σ′

i +
∑

i log
(
2 cosh(ζ + γ

∑
j∈Mi

σ′
j

)) (C.32)
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Therefore, we can write down the stationary distribution in the case of syn-
chronous updates as an exponential term normalized by a partition function:

P (σ̃) = Z−1 exp

⎛

⎝ζ
∑

i

σi +
∑

i

log

⎛

⎝2 cosh(ζ + γ
∑

j∈Mi

σj)

⎞

⎠

⎞

⎠

Z =
∑

σ̃

exp

⎛

⎝ζ
∑

i

σi +
∑

i

log

⎛

⎝2 cosh(ζ + γ
∑

j∈Mi

σj)

⎞

⎠

⎞

⎠ (C.33)

Note that the action update for an individual agent can still be written in
terms of the local energy difference ΔiE, where the energy is defined using the
standard Hamiltonian function given by Eq. (7) in the main text. However, due
to the temporal sampling of each agent’s action with respect to the others, the
system collectively sample from a system with a different energy function and
Gibbs measure, given by Eq. (C.33). This energy function is therefore nonlinear
and can be written:

Esync(σ̃) = −ζ
∑

i

σ −
∑

i

log(2 cosh(ζ + γ
∑

j∈Mi

σj)) (C.34)

C.2 Asynchronous Updates

Now we treat the case where agents update their agents one-by-one or asyn-
chronously. This means that at each timestep only one agent is updated, and
that particular agent uses the spin states of all the other agents at the last
timestep as inputs for its posterior inference.

We can write down the forward transition as follows, using the notation σ\i

to denote all the spins except for σi:

p(σ′
i, σ̃\i|σ̃) =

exp(σ′
i(ζ + γ

∑
j∈Mi

σj))
2 cosh(ζ + γ

∑
j∈Mi

σj)
(C.35)

which indicates that only agent i is updated at the current timestep. The detailed
balance condition implies that

p(σ′
i, σ̃\i|σ̃)p(σ̃) = p(σ̃|σ′

i, σ̃\i)p(σ′
i, σ̃\i) (C.36)

Then

p(σ̃)

p(σ′
i, σ̃\i)

=
p(σ̃|σ′

i, σ̃\i)
p(σ′

i, σ̃\i|σ̃)
=

exp(σi(ζ + γ
∑

j∈Mi
σj) − log(2 cosh(ζ + γ

∑
j∈Mi

σj)))

exp(σ′
i(ζ + γ

∑
j∈Mi

σj) − log(2 cosh(ζ + γ
∑

j∈Mi
σj)))

(C.37)

=
exp(σi(ζ + γ

∑
j∈Mi

σj))

exp(σ′
i(ζ + γ

∑
j∈Mii

σj))
(C.38)
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By repeating this operation for every agent (i.e. N − 1 more times), then we
arrive at:

p(σ̃)
p(σ̃′)

=
p(σ̃)

p(σ′
i, σ̃\i)

p(σ′
i, σ̃\i)

p(σ′
i, σ

′
j , σ̃\i,j)

. . .
p(σ̃′

\i, σi)

p(σ̃′)
=

exp(ζ
∑

i σi + γ
∑

i<j σiσj)
exp(ζ

∑
i σ′

i + γ
∑

i<j σ′
iσ

′
j)

(C.39)

We can therefore write the marginal distributions p(σ̃) as proportional to the
numerator of the last term in Eq. (C.39)5:

p(σ̃) ∝ exp(ζ
∑

i

σi + γ
∑

〈i,j〉
σiσj)

=⇒ p(x) =Z−1 exp(ζ
∑

i

σi + γ
∑

〈i,j〉
σiσj) (C.40)

We thus recover the original stationary distribution with the standard, linear
energy function as given by Eq. (7) in the main text, written now in terms of
generative model parameters γ, ζ instead of the standard ‘couplings’ and ‘biases’
J, h:

Easync(σ̃) = −γ
∑

〈i,j〉
σiσj − ζ

∑

i

σi (C.41)
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Abstract. Phenomenology is the rigorous descriptive study of conscious
experience. Recent attempts to formalize Husserlian phenomenology pro-
vide us with a mathematical model of perception as a function of prior
knowledge and expectation. In this paper, we re-examine elements of
Husserlian phenomenology through the lens of active inference. In doing
so, we aim to advance the project of computational phenomenology, as
recently outlined by proponents of active inference. We propose that
key aspects of Husserl’s descriptions of consciousness can be mapped
onto aspects of the generative models associated with the active infer-
ence approach. We first briefly review active inference. We then discuss
Husserl’s phenomenology, with a focus on time consciousness. Finally, we
present our mapping from Husserlian phenomenology to active inference.

Keywords: Phenomenology · Active inference · Computational
phenomenology · Naturalizing phenomenology · Time consciousness

1 Introduction

In recent years, there has been a resurgence of work attempting to formalize the
structure and content of first-person conscious experience, leveraging mathemati-
cal and computational techniques to help model conscious experience [1–4]. One
recently proposed version of this project, called “computational phenomenol-
ogy”, leverages the generative modeling techniques that were originally devel-
oped in computational neuroscience and theoretical neurobiology to formalize
and model the structure and contents of conscious experience [5].

This paper aims to contribute to the project of computational phenomenol-
ogy, by mapping core elements of the structure of conscious experience as
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described by Husserlian phenomenology to the constructs of the active infer-
ence framework, and in particular, to components of the generative models that
underwrite that formulation. Computationally modelling conscious first-person
experience using active inference would shed light on subjective individual expe-
rience and intersubjective experiences, which could be used to better under-
stand factors constituting normal and abnormal behavior. We begin with a brief
overview of active inference and generative modeling. We then review some of the
core elements of Husserlian phenomenology, with a focus on time consciousness,
drawing on the formalization of Husserl presented in [6]. We argue that we can
use the generative models of active inference to represent these phenomenolog-
ical structures. In so doing, we aim to advance the agenda for a computational
phenomenology and take first steps towards worked examples of the method.

2 An Overview of Active Inference

Given the intended audience of this paper, we will only briefly review active
inference. In the broadest sense, active inference is a corollary of the free energy
principle in Bayesian mechanics. Active inference is a process theory that can be
used to model any physically separable, re-identifiable thing or particle, i.e., any-
thing that persists as a coherent locus of states or paths, over some appreciable
timescale. Active inference describes the dynamics (i.e., observable behavior) of
things, so defined, as a path of least action, where the action is defined as time
or path integral of an information theoretic quantity called self-information or,
more simply, surprisal [7–11]. This quantity is also known as the negative log evi-
dence in Bayesian inference. This means that the paths of least action maximize
model evidence—a normative behavior sometimes referred to as self-evidencing
[12]. In many practical applications of active inference, we do not consider the
surprisal directly as it is often computationally intractable, since it requires aver-
aging over a potentially infinite amount of states. Instead we consider an upper
bound on surprisal called “variational free energy” [13]. This variational free
energy measures the discrepancy between the observations or data that were
expected, given a probabilistic (generative) model of how they were generated,
and the data that was obtained. Intuitively, the idea is that any entity described
by Bayesian mechanics maintains a model whose predictions tend to be con-
firmed over time (it minimizes the degree to which it is surprised). We will see
that this kind of self-evidencing has a straightforward interpretation in Husserl’s
phenomenology.

In the narrower sense that will concern us more directly in this paper, the
term “active inference” refers to a family of a mathematical models that we can
use to simulate and model the behavior of cognitive agents [14,15]. Active infer-
ence is usually implemented using partially observable Markov decision processes
(POMDPs), or (equivalently) using Forney-style factor graphs [16]. In active
inference, the action-perception loops via which agents engage with the salient
features of their environmental niche, and with the other denizens of that niche,
are cast as implementing approximate Bayesian (variational) inference (see [17]
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for a helpful introduction). Active inference thus comprises a set of formal tools,
usually implemented in code, used to model the behavior of agents that inter-
act with their environment, as a form of inference. The active inference toolkit
allows us to model the epistemic and pragmatic imperatives of the behavior
of agents: agents act to gather information about their environment and select
those actions that bring them closer to characteristic states, which can be read
as allostatic or homeostatic set points. In active inference, these set points—or
attracting sets—are defined with respect to the kind of sensory data or outcomes
that an agent expects to generate via action, given “the kind of thing that it is”
[9].

Active inference is a situated or enactive kind of generative modeling, which
considers not only how data are modeled—i.e., explained—but, crucially, how
those data are gathered in the service of self-evidencing (see [5] for a review and
discussion of its applications to phenomenology). Generative modeling under-
writes many forms of mathematical modeling and scientific investigation [5,18].
The general idea is straightforward. We have some data of interest, which we
want to explain using statistical methods; i.e., we want to understand the causes
of the data. So, we compute a number of alternative probabilistic models of
the process that generated that data, and evaluate the evidence that the data
provides for each model. In active inference, we assume that agents implement
generative models, and update those models in light of sensory evidence. This
modeling strategy assumes that agents can only access their environment by
sampling it via sensory states. These generative models harness the beliefs of an
agent about the “hidden” states of the external world, i.e., they encode what an
agent knows about the process that generates its sensory data [19]. Agents are
thus modeled as inferring what the primary causal pathways in the world are,
and as navigating the opportunities for engagement that they are presented with
by leveraging these inferences. Prior beliefs are updated continuously based on
new data (i.e., new observations) via approximate Bayesian (variational) infer-
ence [20]. The current “content” of an agent’s “experience” of “things” in the
world is thus the set of states that are being inferred, on the basis of sensory
data.

In active inference, action is modeled as a kind of self-fulfilling prophecy:
agents predict what state they will be in upon acting, and then generate evi-
dence for this prediction by actually acting in the environment [21]. The action
itself is selected based on beliefs about possible courses of action, which are
called “policies”. Policies are thus beliefs about expected sequences of actions,
which depend on an agent’s beliefs about the current state of the world and the
goals that it is trying to achieve (specified in terms of preferred observations).
Different policies are, in some sense, variations of beliefs about expected future
observations, contingent on possible courses of action. The value of a policy is
determined by estimating a quantity is known as “expected free energy”, which
encodes how much each policy will minimize surprisal or, equivalently, maxi-
mize model evidence, with respect to preferred outcomes [22]. This rests upon
the degree to which expected surprisal (i.e., uncertainty) can be resolved on the
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one hand, and the avoidance of surprising (i.e., aversive) outcomes on the other.
We say that the optimal policy is the one that provides the most evidence for the
generative model of the organism (or equivalently, that is expected to generate
the least free energy). The selection of a policy is thereby driven by the expected
free energy of that policy and agent’s preferences, allowing an agent to conduct
goal-directed behaviors.

To simulate an agent, we equip it with the states and parameters shown in
Table 1, which can either be specified a priori by the experimenter, or learned
based on real data [23]. In the POMDPs used in active inference, a distinction is
made between observable data (denoted o), and hidden states (denoted s) [24].
The probability of some observation, given that some state obtains, is described
by the likelihood matrix, denoted A; the entries of this matrix quantify the prob-
ability of observing some data, given that world is in some state. The parameter
encoding the beliefs of the particle or thing about how states transition into each
other over time is a matrix denoted as B, with each entry scoring the probabil-
ity of transitioning to some state, given that the system was previously in some
other state. A vector denoted C encodes preferences for each observation. Prior
beliefs about base rates of occurrence of states are described by the D vector,
with each entry scoring the prior probability of the associated state. Finally,
baseline preferences for policy selection are described by the E vector. C is used
to compute variational free energy (F) and expected free energy (G), which are
used in perceptual inference and policy selection, respectively [25].

Table 1. Parameters used in the general model under the active inference framework.
We explain the generative model symbols that refer to different matrices and elements
which are connected through them.

o Observations or sensory states of an agent

s Hidden or external states

A Likelihood matrix that captures beliefs about the mapping from
observations to their causes (hidden)

B Transition matrix that captures beliefs about the mapping between
states at one time step to states at the next time step

C Prior preference matrix that captures the preferred observations for
the agent, which will drive their actions

D Priors that capture beliefs about base rates of occurrence of the
hidden states

E Prior preferences for policies in the absence of data

F Variational free energy

G Expected free energy

π Policy matrix that captures the policies available to an agent

At any time-step, the current state is estimated by using “forward” and
“backward” message passing. Forward messages are passed from nodes encod-
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ing beliefs about past states and observations to the node computing the cur-
rent state; whereas backwards messages are passed from nodes encoding beliefs
about future states and observations, contingent on policy selection, to the node
computing the current state. To clarify, the agent does not “experience” the
parameters of its generative model—encoded in its A, B, C, and D parameters.
Rather, these parameters underwrite the message passing and belief updating;
namely, the updating of prior beliefs into posterior beliefs in the face of new sen-
sory evidence. As indicated, at any time step, the current “content” of an agent’s
“experience” of “things” in the world is implemented the set of states that are
actively being inferred by the agent, on the basis of sensory data received.

3 An Overview of Husserl’s Phenomenology

We now review Husserl’s phenomenological description of time consciousness
and intentionality, and how they constitute experienced objects.1 We use “phe-
nomenology” in the technical sense that is commonplace in philosophy, to refer
to a general descriptive methodology for the study of the structure and contents
of the conscious, first-person experience of a subject or agent (or what might be
called a “stable cognizer”) [27]. We are concerned here with phenomenology as
articulated by its founder, Edmund Husserl, who described it as an attempt to
provide rigorous descriptions of the structure of first-person experience.2

We are primarily concerned with Husserl’s account of time consciousness
[30–33]. For Husserl, consciousness evinces what one might call a kind of “tem-
poral thickness”, which is the ultimate condition of possibility for the perception
of any object whatsoever.3 Husserl’s descriptive analyses suggest that the core
structures of time consciousness, which enable what he calls the “constitution”
of objects in consciousness (i.e., their disclosure to an experiencing subject) is
threefold, comprising what he calls “primal impression”, “retention,” and “pro-
tention”.

Primal impressions correspond to experience of the immediate present. Sup-
pose a melody plays, or that you walk around an oak tree. The currently per-
ceived note in the melody, or the current visual experience of the oak tree,
correspond to primal impressions. In these cases, there is an additional struc-
ture that informs the primal impression: what Husserl calls hyletic data, or hyle
1 In this paper we are mapping from one complex domain to another complex domain:

active inference is a complex and growing area, as is Husserl scholarship [26]. Within
Husserl scholarship, it is inevitable that we rely on existing interpretations, which
are subject to scholarly dispute. This is a first sketch of the broad outlines of the
mapping, that we aim to enrich in later work. For example, there are number of
potential correlates of retention and protention in active inference discussed below,
and further work is needed clearly delineating these.

2 We will not be concerned here with the thorny issues that attend the naturalization
of phenomenology [3]. See [5,28,29] for a review.

3 In this, Husserl is aligned with other philosophers of his time, including James [34]
and Bergson [35,36]. A detailed historical analysis of the many sources of and prece-
dents for Husserl’s account of time consciousness is [37].
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(from the Greek word for matter, or stuff). The hyle correspond to our sense of
the melody and the oak tree as being real occurrences in the world beyond us—a
raw presence that we cannot alter by an act of will. However, we do not expe-
rience the hyle directly. They inform our primal impressions, but are not literal
constituents of those impressions. The melody and the oak tree that we experi-
ence reflect both our own “top down” understandings of these things and their
“bottom up” presence. Thus, our primal impression is a hylomorphic compound
of raw presence and interpretation.4

Primal impressions are “temporalized” in the flow of consciousness. More
specifically, interpreted hyletic data are formatted into retentions and proten-
tions. Retention is the “still living” preservation of the contents of a now-past
primal impression in our present consciousness. In the case of the melody, one
is still conscious of the notes that have just been struck, just as one hears the
present tone. A protention corresponds to our sense of what will come next in the
melody. Together they produce a temporal depth or thickness that is a condition
of possibility for experiencing a melody, rather than a sequence of disconnected
notes.

Husserlian retentions and protentions are not explicit representations. They
are implicit, immediate components of the temporal thickness of experience,
which can be contrasted with explicit representations of remembered past events
(what Husserl calls “recollections”) and explicitly anticipated future events;
where an event in some set of (possibly nested) lived experiences. Remember-
ing an important life event, or looking forward to some planned future events,
are themselves mental acts that are experienced in ongoing processes with their
own temporal depth (thus as, an explicit recollection unfolds, retentions and
protentions associated with that recollected moment unfold as well).

The experiences which unfold in time consciousness inform the way we under-
stand the world to be—they “constitute” our sense of the world. In particular,
protentions are tacit anticipations or expectations about what will happen in the
next moment. When what actually happens next is consistent with our antici-
pations, we experience fulfillment. When what happens is inconsistent with our
anticipations, we experience frustration or surprise (these are technical terms
in Husserl; as with retention and protention, they do not imply an explicit or
focused awareness). Thus, our experience of temporally extended objects con-
sists in a flow of anticipations and fulfillment/frustration of those anticipations
[39]. Our inner time-consciousness thus at core consists in a dynamic process
that anticipates what will be experienced next, based on what has just been
experienced.

Husserl suggests that over time retentions fade away and “sediment”, inform-
ing our understanding of the world. Similarly for fulfilled or frustrated proten-

4 The question of what exactly hyletic data are is a matter of controversy. We rely on a
reading derived from Føllesdal [38], who says “In acts of perception our senses play a
role, providing certain boundary conditions.” They “limit” what we can experience in
a moment, without being directly experienced (they must be animated or interpreted
by noetic form before they are experienced).
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tions. If the melody was much different than we thought it would be, the expe-
riences of surprise would change our background understanding of the melody,
leaving a trace, so that the next time we experience the same melody, our expec-
tations have adapted to the change. In this way, we build up a kind of model of
reality that is in the background of our experience, generating the anticipations
and temporal depth of time consciousness (see [6,40]). The fact that experience
reflects all the sediments of past process of time consciousness means that our
consciousness is laden with past retentions, which Husserl believes shape the way
that we anticipate future primal impressions.

One analytic tool that Husserl introduces to study the structure of sedi-
mented background knowledge is what he calls a “horizon” or “manifold”. The
idea with a horizon is to begin with some object given (i.e., constituted) in expe-
rience, and then to imagine different ways that an experience of that object could
continue to be experienced. Each possible continuation of the current experience
will produce a different profile of fulfillment and frustration. If we only focus on
fulfilling continuations—that is, on further experience that would not surprise
us—we get what is called a “trail set” in [6]. Trail sets can be used to formalize
Husserl’s notion of a horizon, i.e., what our implicit understanding of an object
is, beyond what we immediately see. Standing before the oak tree, we have some
expectations of how it would look, were we to move around it. Those expec-
tations are open, they are “determinably indeterminate” leeways (Spielräume).
These trails present the oak tree as having more or less branches on its back
side, different coloration patterns, etc. However, they do not contain experiences
of the back side of the oak tree that would surprise us, like one where a sign was
nailed to it, or it was covered in spray paint. If we explore the oak tree, and one
of those things is seen, then a protention will be frustrated, and that frustration
will sediment in background knowledge, so that in the future, we will not be
surprised: the trail set changes, we now see it as an oak tree with spray paint
on its back. (This learning rule has been formalized using Bayesian statistics,
making it easily amenable to active inference modeling; see [6]).

Our account so far has focused on perceptions of things or events, like seeing
an oak tree or hearing a melody, but it can be extended to arbitrary mental
processes, like hearing, imagining, planning, and also to more complex dynamic
processes, like learning how to dance or learning mathematics. In each case, expe-
riences unfold, and time consciousness operates, creating anticipations which are
fulfilled or frustrated. The results of these processes of frustration and fulfillment
are then sedimented into background knowledge. In this way, we maintain and
update models of the external world, of how to dance, of mathematics, of his-
tory, of our own values and future plans, etc. These different types of knowledge
generate different kinds of horizons associated with different kinds of trail sets:
ways we expect things to be, ways we expect our body to move, ways we expect
a conversation to unfold, what we expect ourselves to do relative to our values,
etc.
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4 Mapping Husserlian Time Consciousness
onto Generative Models in Active Inference

In this section, we map aspects of the generative models that figure in active
inference to aspects of Husserl’s phenomenology. See Table 1 for a list of the states
and parameters of generative models in active inference. As indicated, our project
is situated within the broader framework of computational phenomenology.5

We can associate aspsects of a generative model, represented as a POMDP,
to aspects of Husserlian phenomenology. In generative models, inferences about
the current state of the world are informed by beliefs about what past states were
experienced, and also by beliefs about what future states will be. Technically,
the messages that are used to update current beliefs about hidden states come
from factors that represent beliefs about states in the past, and also from factors
that represent beliefs about states in the future.

We can begin by associating observations o with hyletic data, hidden states s
with perceptual experiences, and the various parameters of the POMDP (e.g., the
likelihood matrix A and state transition matrix B) with sedimented knowledge.
Recall that in active inference modeling, outcomes are data that agents aim to
explain (or alternatively, that we scientists are trying to explain, in generative
modelling more broadly). Hidden states are inferred from this data, as their
causes. During perception, hidden states of the generative model are used to
generate predictions, which are compared against actual observations; and the
parameters of the model are updated in a Bayes optimal manner, such that these
predictions get better over time, leading to reductions in variational free energy.
This maps directly on to the Husserlian apparatus. Our immediate perceptual
experiences (correlated with s) are based on a mixture of relevant background
knowledge (correlated with A, B, and so on) and hyletic data (correlated with
o). The hyletic data are not literal constituents of experiences, just as o is not a
literal constituent of s. Rather, the hyletic data impose boundary conditions or
limits on what we can experience—they correspond to a sense of the presence
of the world—but they are not experienced directly. Sensory experiences arise
from the interplay of hyletic data and background knowledge (or “noetic form”)
in Husserl. In a similar way, o constrains or limits what hidden state s will be
inferred, given A and B, but is not contained in s. Hidden states are updated
as a function of observed sensory states o and beliefs encoded in a likelihood
and transition matrices A and B, but the hidden states do not directly contain
those observations.

There are several ways to capture retention and protention in a generative
model. One way is to focus on the process of inferring hidden states from observed

5 Technically, computational phenomenology is a version of generative modeling that
is agnostic about whether the models at play are real descriptions of the actual
processes at play in agents, or whether these models are merely useful heuristics to
model first-person experience. See [5] for a discussion. Of note, the work presented in
this paper dovetails nicely with realist approaches the implementation of generative
models by agents,; see integrated world modelling theory as proposed in [2].
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data, by comparing a prediction about what will be observed with what is actu-
ally observed, and updating beliefs using an error signal (as in predictive coding
implementations of active inference, [41]). Such an approach involves direct cor-
relates of protention (a prediction signal), fulfillment or frustration (the error sig-
nal), and beliefs update on that basis. Thus, even in the immediate or “static”
perception of an oak tree [15] the process of state estimation involves corre-
lates of protention, fulfillment and frustration. A second approach is to focus
on the state transition matrices B, which encode state transition probabilities,
and which thus underwrite “dynamic perception” [15], that is, beliefs about how
objects change over time. These matrices are used to estimate what will occur
next in a song as we listen to it, or how the oak tree will sway under the influence
of the wind. These state estimates themselves rely on what occurred just previ-
ously (see, e.g., Fig. 4 in [42]). So here again we have direct correlates of retention
and protention in the active inference framework, this time in the operation of
the B matrices. There may also be links between retention and working memory,
especially when it is understood (in an active inference framework) in terms of
evidence accumulation in a temporally structured hierarchy [43].6

The experience of fulfillment and frustration can be modelled as a process of
Bayesian belief updating [6]. In line with this analysis, we suggest that we can
quantify fulfillment/frustration in terms of the variational/expected free energy
that is generated by subsequent sensory experience; where the free energies quan-
tify the degree to which current experiences conflict with protended experience
(i.e., the degree of fulfillment or frustration).

Active inference, like Husserlian phenomenology, is ultimately about action
in a lived world. As described above, a policy in active inference is a set of
beliefs about possible courses of action; and action itself is modelled as a kind of
self-fulfilling prophecy. This basic structure can be extended to include counter-
factual richness, which can be associated with the trails of fulfilling experiences
in a horizon. In so-called “sophisticated” treatments of active inference, agents
select which action to pursue by engaging in a deep tree search, unfolding possible
sensory consequences of available actions recursively, and evaluating each branch
in terms of the free energy expected along that branch [46]. The search process is
efficient; only those paths with high posterior probability are evaluated, but the
search is defined over a larger set of possible paths. The optimal policy is the one
that maximizes preferred outcomes (relative to C, which encodes prior prefer-
ences for data) and maximizes model evidence (or minimizing surprisal). These
counterfactual policy deep trees of sophisticated active inference can be mapped
to Husserlian structures, including a set of values encoded in background knowl-
edge (a correlate of C), and other features of background knowledge (e.g., our
knowledge of state transitions, encoded in B), which can be used to generate a
trail set: a set of expected perceptions that is consistent with our beliefs, goals
and desires.

6 A fuller discussion would also involve a comparison with existing discussions of the
naturalization of time-consciousness, such as [44] and [45].
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We can thus describe a mode of analyzing POMDPs that maps onto the
method of horizon analysis in Husserl. Focusing on the case of perception, imag-
ine all possible sequences of data o, given some assumed hidden state s, and a
policy or sequence of actions. Some of the data generated will confirm the knowl-
edge implicit in the model parameters (i.e., provide evidence for it, as quantified
by free energy); others will disconfirm it (i.e., will generate large amounts of
free energy). The sequences of observations that confirm the beliefs of the agent
about the current state of its world correspond to a set of possible continuations
from the current observation that are not surprising, i.e., that lead to little vari-
ational free energy. Such continuations are captured in the parameters of the
generative model (e.g., the A and B matrices). These active inference trail-sets
map directly on to the Husserlian trail sets. The latter can be thought of as an
alternative, and perhaps more intuitive, way of understanding the information
implicit in the matrices. In the one case, we have a method of “probing” the
expectations implicit in the parameters of the generative model; in the other
case, we have a method of probing the expectations implicit in an experiential
horizon.

The representational analogs of retention and protention (recollection and
explicit prediction) can be formalized by appealing to (possibly hierarchical)
state estimation. Indeed, focally recollected and anticipated events constitute
(past and future) states of the world (or indeed, of the self) that need to be
represented explicitly. To begin to formalize this, one can point to the explicit
distinction, in active inference, between the A, B, C, and D parameters, which
contribute to current state estimation, and the states which are actually being
inferred in the present, to account for the distinction. This richness of this
account can be increased by appealing to nested hierarchies of generative mod-
els. Explicit recollection of memories and anticipation would then correspond to
state factors higher up in the hierarchy, which bin or coarse-grain observations
at subordinate layers.

In both active inference and phenomenology, the analysis of perception is just
a convenient starting place. All the mappings developed above can be applied
to other features of cognition and experience: auditory and tactile experience,
multi-modal experience, cognition, language, skilled behavior, planning, affect,
intersubjectivity, etc., each associated with its own state estimations, learned
likelihood matrices, retentions and protentions, trail sets, and so forth.

5 Conclusion

This paper has drawn parallels between Husserlian phenomenology and the
active inference framework. We proposed to formalize some core elements of
Husserlian phenomenology via active inference. Our aim in so doing was to
advance the project of computational phenomenology. We proposed Husserl’s
descriptions of primal impression, hyletic data, retention, protention, fulfillment,
frustration, trail set and horizon, recollection and explicit anticipations can be
mapped onto aspects of the generative models of active inference.
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Husserlian phenomenology is fertile ground for formalization. Formalizing
phenomenology allows us to leverage it in order to better understand and model
human experience, and to make testable empirical predictions. Concurrently,
active inference has been used to model many aspects of cognition, but its use
to explain qualitative and subjective experience is still in the very early stages.
Moving towards computational phenomenology through a connection between
Husserlian phenomenology and active inference may allow us to bridge the gaps
to fundamental questions such as the explanatory gap and positionality, and
extend further into sociological issues of intersectionality, which make funda-
mental reference to first-person experience.
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Abstract. The underlying processes that enable self-perception are cru-
cial for understanding multisensory integration, body perception and
action, and the development of the self. Previous computational models
have overlooked an essential aspect: affective or emotional components
cannot be uncoupled from the self-recognition process. Hence, here we
propose a computational approach to study self-recognition that incorpo-
rates affect using state-of-the-art hierarchical active inference. We eval-
uated our model in a synthetic experiment inspired by the mirror self-
recognition test, a benchmark for evaluating self-recognition in animals
and humans alike. Results show that i) negative valence arises when the
agent recognizes itself and learns something unexpected about its inter-
nal states. Furthermore, ii) the agent in the presence of strong prior
expectations of a negative affective state will avoid the mirror altogether
in anticipation of an undesired learning process. Both results are in line
with current literature on human self-recognition.

Keywords: Active inference · Affect · Self-mirror recognition

1 Introduction

The ability of self-recognition has been typically attributed only to humans and
few other species [2] and hides several essential brain processes related to mul-
tisensory perception, embodiment and decision making [14,15]. To evaluate this
ability, Gallup, in 1970, developed a test for chimpanzees named the mirror self-
recognition (MSR) [12]. This test, which was also adapted for infants [1], consists
of placing a mark, unbeknownst to the subject, on her face. The subject is then
placed in front of a mirror. The agent passes the test if there are reaching or
exploratory behaviours to remove the mark or inspect it.

While most studies postulate mark directed behaviour (inspect or remove)
as a necessary condition for self-recognition [3], more recent cross-cultural stud-
ies have shown that children from cultures with higher parental authority are
not inclined to remove the mark [4]. Similarly if one creates a social context
during the mirror test, where several other subjects around the infant also have
marks on their face, the infant despite having passed the mirror test before is less
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
C. L. Buckley et al. (Eds.): IWAI 2022, CCIS 1721, pp. 112–129, 2023.
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motivated to engage in mark directed behaviour [19]. Both results, by enrich-
ing the complexity of such behaviour by environmental and social factors, cast
doubts on interpreting the necessity or sufficiency of mark directed behaviour
for self-recognition.

On the other hand, it has been evidenced in humans a strong emotional com-
ponent, i.e., to express negative affect when seeing their own reflection. When
infants pass the test around the age of two, they universally express negative
affect toward their mirror image, which has been interpreted as embarrassment,
shyness or puzzlement [1,18]. Ultimately, we do not know what the phenomenol-
ogy of a two-year-old seeing herself in the mirror is like. Anyhow, the negative
affective part of the experience seems to be uncontested.

While there is previous research on computational models of self-recognition
(e.g., generative modelling focusing on visual-kinesthetic matching or appearance
cues [14,16]), none of the works has attended to the emotional component. Here,
we studied self-recognition by (i) developing of a computational model that
incorporates the affective component into the self-recognition process and (ii)
evaluating it on a new synthetic experiment based on the MSR.

To model the affective component we use the notion of valence [13]. The work-
ing hypothesis is that the negative or positive quality of an affective experience
can arise as a consequence of obtaining new information about oneself through
mirror self-recognition. Importantly, this new information might favour differ-
ent action selection policies (action dependent valence), leading to a change in
valence. This iterative process coherently connects emotions with self-recognition
and decision-making. To incorporate valence into the perception-action loop we
used the hierarchical active inference construct [11], where the agent perceives,
learns and acts to obtain the expected outcomes by minimizing the expected
free energy.

We further developed an experimental benchmark to evaluate the effect of
valence in the process of decision-making and self-recognition. In the experiment,
the agent can decide to look at a mirror, look at a wall or look at a video of
another agent. Furthermore, thanks to the hierarchical nature of the model, we
further studied the importance of meta-cognition (‘higher’ layers), in combina-
tion with affect, for (anticipated) self-recognition. For instance, adults in full
possession of a self-concept can also anticipate a confrontation with their mirror
image. If self-evaluation is negative, or one’s body image has radically shifted
due to surgery, patients are motivated to actively avoid the mirror [10].

Related Work. There were several tries to build a computational model of
self-recognition—See [14] for a review. Relevant to this work, in [16] the robot
inferred itself by answering the question ‘did I generate those sensory outcomes?’.
For example, if the robot has an intention to move its arm and can predict
its interoceptive and exteroceptive sensory outcomes with low prediction error,
then it will infer that the likeliest cause of this action was the system itself.
While this approach may be promising to give insights into self-recognition, it
does not yet explain how affect arises during the human MSR test. It has been
theorized that affective and action based self-modelling naturally arises for a
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system engaged in deep temporal active inference [6,7]. Nevertheless, to the
authors knowledge, there is no computational model as of now, that explicitly
assesses affect within self-recognition. Fortunately, recently within the active
inference research, there has been an effort to introduce internal drivers that
modulate the generative model parameters and the action selection process. For
instance, valence – pleasantness or unpleasantness of an emotional stimulus – was
introduced in [13] to model the confidence of the model estimates. Importantly,
valence encodes how well the agent is performing in the environment, thus, aiding
action selection. The mathematical formalization of valence and the hierarchical
structure of the generative model allows the building of a complex agent that has
beliefs over beliefs, which are modulated by the increase or decrease of valence,
thus affecting the whole decision making process. In this work, we adapt this
model to study self-recognition and decision making.

2 Methods

First, we describe the general framework of our approach and how to introduce
valence based on the work of [13]. Second, we detail the affective self-recognition
computational model and finally, we describe the experimental setup for self-
recognition.

2.1 Discrete Hierarchical Active Inference

We model the problem under the discrete state-space formulation of active infer-
ence [17]1. The agent computes both the posterior state estimation (perception)
and action selection by minimizing, through marginal message passing, a single
quantity: the expected free energy. This quantity measures the divergence from
the current expectations to the real world state. In order to be able to compute
it the agent needs a generative model of the world, thus, allowing predictions of
the future outcomes. See Appendix 5 for detailed explanation.

Temporal Depth To achieve temporal depth we use a hierarchical generative
model as depicted in Fig. 1. Here, the hidden states on the second layer change
slower than the hidden states on the first layer. Thus the beliefs about states
in the first layer (bottom) can fluctuate several times within one trial, where
the beliefs on the second layer (top) only change at the end of each trial (the
length of a trial is defined by the modeller). For example, the agent can have
the abstract belief that it is in a happy mood. This belief will set the priors on
the first level at the beginning of a trial accordingly. So now the agent expects
certain observations (facial muscles expressing a smile, heart rate going up etc.),
even if within the trial the facial muscles will most likely change several times
(depending on the granularity of the model) and not only stay in one position, say
smiling, the agent could still infer that overall it is happy (which is an abstract

1 For a thorough tutorial on discrete active inference formulation see [21] and for a
concise mathematical overview see [5].
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Fig. 1. A temporally deep generative model with two hierarchical layers. The blue
boxes in the first layer correspond to trials (here simplified). This is the architecture
the agent uses to perceive and act in the world. The second layer only communicates
with the first at the beginning of a trial through descending Messages and at the end of
the trial is informed by ascending messages. Hence, it can already be seen that states
on the second level change slower (only once every trial) than states on the first layer.
Here the agent has two state factors on the second level. It has a contextual belief
which replaces the prior at the beginning of each trial. Additionally, it has an affective
state which sets the precision on G at the beginning of the trial. The impact of G on
π can now be regulated by the agent through its affective state. Figure adapted from
[13]. (Color figure online)

second-order belief that integrates information over time). Only if in the course
of the trial it consistently observes unexpected observations (prediction errors)
it will update its belief on the second level at the end of a trial accordingly.

Mathematically, the second layer has likelihood mappings and state transi-
tions like the first layer. They differ in that the likelihood mapping A2 does
not map from observation to hidden state but from the hidden state at layer
one (facial expression i.e smile, frown, neutral) to the hidden state on layer two
(mood i.e happy or sad). The transition matrix B2 then encodes how likely the
context, for example, the agent’s mood, changes over trials. As a consequence,
the prior D1 is replaced by a more dynamically changing higher-order state. At
the beginning of each trial, the higher-order state acts as prior for the agent.
By the end of the trial the agent updates the higher-order state based on the
information collected in this trial. For a mathematical expression of ascending
and descending messages—See [13] for further description.
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Meta-cognition and Valence. An agent equipped with such a deep temporal
model can learn context and perform some tasks very well but underperforms
in a volatile changing environment. Here we describe, based on the work of [13],
how affect can be included in a discrete hierarchical active inference network.
Affect can be formalized through valence (negative or positive). Valence can be
explained as the expression of confidence in the model estimates. If the agent’s
actions continuously lead to the outcomes that it expects and prefers, it grows
more confident in its action model and weighs it stronger as acquired habits.
Whereas if the environment is very volatile and it cannot rely on its learned
action model yielding to an ‘anxious’ state. The agent equipped with affective
states finds better and biologically more plausible action plans (policies) than one
without [13]. Partly because it takes time to construct a reliable action model
that tells the agent which policies to take under which circumstances. Hence,
when the environment changes fast and unexpected the action model (learn by
experience) might become completely useless. An affective agent that reacts with
negative valence towards the unexpected change in the environment will able to
quickly adapt by lowering the precision of its action model to reevaluate the new
situation. Conversely, an agent without affective states cannot quickly adapt and
will execute the same actions despite an environment that has changed.

Thus, valence acts as a second-order state. Implementation-wise the agent has
a categorical distribution over it being either in the state ‘positive valence’ or
‘negative valence’, and it is updated at the end of a trial via ascending messages.
If in a trial the agent could rely on its action model then it increases its valence
for the next trial. At the beginning of the next trial, instead of using a static
prior the second-order affective state informs the precision of the action model.
Such a top-down estimation of the reliability of its model can also be understood
as a form of meta-cognition as it is monitoring the confidence of the cognitive
process.

Meta-awareness and Attention. The meta-cognition architecture can be
extended to model meta-awareness by adding a third layer, and allowing the
agent to dynamically change the information flow between second and first layer.
This has been implemented by [20] as a precision on the likelihood mapping. Gen-
erally, precision on likelihood matrices in active inference is linked to attentional
processes. The states on the third level then represent if the agent is aware of her
cognitive processes on the second level. The benefits and biological plausibility of
this meta-awareness capacity have been shown by [20]. Here we use a simplified
setup where we change the precision of the 2nd layer likelihood by hand to see
how the agent’s behaviour changes if it is very aware of its emotional states and
hence, can use the information for cognition deeper down the hierarchy. The
precision modulates how strong the connection between the two layers is and
therefore how informative descending and ascending messages are. For instance,
low precision will lead the agent to rely more on its ‘direct experience’ (first layer
of its generative model).
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2.2 Affective Self-recognition Model

Based on the previously described framework, we propose a computational model
to investigate self-recognition with the emotional component. We focused on the
following two research questions: (i) How does valence influence behaviour during
mirror self-recognition? and (ii) How might negative valence arise in mirror self-
recognition?

To evaluate the model and further be able to answer the questions, we
designed an experiment where an agent can decide to either see its emotional
expression in the mirror, look at a wall and see no face or look at a video of
an emotional expression of another person. Note that our computer-simulated
agent can not look into an actual physical mirror, so we need to formalize the
function of the mirror, which possibly leads to an affective reaction. We inter-
pret making an observation in the mirror as acquiring information about oneself
(here: about the agent’s emotional state via its facial expression) by dragging
the internal attention of the agent onto this aspect of itself. Thus, the mirror is
a self-exploration tool that allows this information to be available for decision
making and introspection from layers higher up the hierarchy.

Generative Model. We formalize a two-layered deep generative model to cap-
ture the self-recognition experiment, as described in Fig. 2. The agent can obtain
exteroceptive observations, where it either sees a face that is happy, neutral or
sad, or nothing when it looks at the wall. This information can be used to infer
the emotional state of the other person. And it can obtain interoceptive observa-
tions about its facial expression (for example sensing its facial muscles) to infer
its emotional state (happy, neutral, sad). The agent also has a state (attention in
the figure) that captures if it is paying attention to its interoceptive observation
with values Yes or No. This is an attention state, in the sense that it modulates
the precision on the likelihood A, but it cannot be actively controlled by the
agent. Instead, it captures what happens internally when the agent sees itself
in the mirror. By recognizing itself, it is forced to pay attention to its internal
observation (the precision ω on A will become very precise). Hence, formaliz-
ing the notion of the mirror dragging attention onto oneself and making certain
observations informative.

On the second layer, the agent has two state factors. The valence can be pos-
itive or negative (implemented as a categorical distribution). Its value depends
on the expected precision of the action model G. Additionally, the agent has a
second-order belief about which mood it is in (happy, neutral, sad). This state
sets the priors of what facial expression the agent expects when observing itself.
For all the details of how this generative model is implemented please see the
Appendix 5.
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Fig. 2. Generative model description. Two layered model of an agent inferring
its own mood and deciding weather to look at the mirror or not. At any given time
step the 1st layer includes an action model G, preferences C and four state factors:
Location, Other-facial-expression, My-facial-expression and Attention. The Attention
state modulates the likelihood A via the precision ω. For each state factor, the agent
has a categorical distribution of which state it believes itself to be in. The 2nd layer
tracks the agent’s valence and belief about its mood. Valence interacts with the action
model G and the mood or context state interacts with the agents belief of its facial
expression on the first level via A2.

Agent Operational Specification. First, inspired by the idea that if self-
evaluation is positive one seeks out a mirror, we assume that the agent prefers
to see itself but only if it is ‘happy’ or ‘neutral’ instead of ‘sad’. This is encoded
in the preference matrix C. The agent’s actions are to go to one of the three
locations: mirror, wall or tv. Because the agent knows from its generative model
that it will pay attention to itself if it goes to the mirror its behaviour will
depend on its self-knowledge, i.e., what state it believes to be in and how aware
it is of that state. If it thinks it is happy one would expect that the agent will
act to admire itself in the mirror. Second, the true emotional state of the agent
may change. Here we have coupled the dynamics of the true state to the current
valence of the agent. If its positive valence goes above 70% its true state shifts
to happy, below 30% to sad and otherwise neutral. To be robust against small
fluctuations, we imposed that the agent’s belief about its valence has to shift at
least by 15% to make a switch. Although, these decisions are arbitrary, they are
designed to show how the agent adapts to a change in its true state.
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3 Results

We analyzed our model behaviour in our synthetic experiment to study which
actions the agent chooses and when and how the valence of the agent changes
under different conditions, such as changing the true emotional state, the prior
knowledge the agent has about its emotional state or the introspective avail-
ability of its emotional states (precision on A2). Particularly, we focused on two
different initial conditions. In the first experiment (Sect. 3.1), we study how
valence might naturally evolve in a mirror self-recognition scenario. To this end,
the agents true state was set to sad, but it had low meta-awareness. For the sec-
ond experiment (Sect. 3.2), we studied mirror avoidance behaviour. Thus, the
agent had high meta-awareness. The code to replicate the results can be found
in this this link.

Each agent was evaluated for 8 consecutive trials in each condition, where
each trial lasts for three time steps (three observations). After the first observa-
tion, the agent will have to decide where to go (mirror, wall or tv). Its action
plan horizon is two steps ahead, thus, it can predict outcomes until the end of a
trial by using its generative model.

3.1 Experiment 1: I Am Sad and I Know It, but I am Not Very
Aware of It

We set the true state of the agent to ‘sad’ and the precision on A2 low. Also,
the agent ‘knows’ that it is sad on the second level of the hierarchy. However,
due to the low precision on A2 this will not inform the first level, thus, the agent
will be more informed by the actual perceptual information in a given trial. The
experiment is described in Fig. 3. At trial 0 the agent is convinced enough that
it is sad and calculates that its best action will be to go to the video. Paying
attention to the other face, loosens its priors making them less informative about
its emotional state. This is reflected in the categorical distribution at trial 1. It is
more entropic or less precise as in trial 0. In trial 1 it decides to go to the mirror.
Hence in trial 2, it makes an unexpected observation (seeing itself frown in the
mirror) which also results in a drop in valence, indicating that this particular
mirror encounter is negatively experienced. Having reaffirmed its belief that it
is sad, it finds it best to go to the video. With this decision, the agent regains a
bit of confidence in its action model. The valence goes up between trials 2 and
3. And due to the in build dynamics, its true state shifts to neutral. Finally, the
agent notices the change in its true state to neutral and decides it’s time to go to
the mirror again, which even further improves its confidence in its action model
and for the rest of the trials it will be happily smiling at itself in the mirror.

https://github.com/blindreview
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Fig. 3. Experiment 1. The belief distribution of My- facial-expression (SFace1 and
SFace2) at the beginning of each trial are shown. Below that the agent with its true
state is shown as smiley. It is indicated at what location it currently is. The green
box indicates if its attention is on the exteroceptive or interoceptive observation. The
graph next to it shows how the agent’s valence evolves throughout the trials. The
value is a probability, where a high value means high confidence in being in the state
of ‘positive valence’. At each trial, the agent has to choose where to go and hence at
which location it will start the next trial. The valence graph shows how negative affect
is elicited when the agent makes an unexpected observation in the mirror and therefore
learns something new about its internal states.

3.2 Experiment 2: I Am Sad and I Know It and I Am Aware of It

We explored how the behaviour of the agent changes if its first-order states are
introspectively available to it. The experiment is described in Fig. 4. We set the
same initial state as in the previous study: true state is ‘sad’ and first location
is the ‘wall’. Differently, this time the mapping A2 is very precise.

At the first time point of each trial, the beliefs on both levels of the hierarchy
are the same due to the almost one-to-one mapping of A2. The agent’s behaviour
differs from previous experiment in that it decides to stay at the video until trial
3. Only after a much longer time—when its priors have loosened enough—it
tries out the mirror again. When this happens (in trial 4) we observe again a
reconfirmation of its belief of being sad. This is accompanied by the same drop
in valence once it realizes it wasn’t the best action to go to the mirror. When
going back to the video the agent has the chance to pick up on the change of
its true state. However, it misses it because it keeps its prior belief of being sad
extended through time.
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Fig. 4. Experiment 2. The agent, now being more aware of its own internal state,
is anticipating an uncanny encounter with the mirror. Hence it is avoiding the mirror
longer. However, it is also less able to pick up on a change in the true state of its
emotion due to it expecting, much stronger, that it is actually sad. Its valence only
shifts between sad and neutral. The results show how having strong priors about its
emotional state and being able to attend to it discourages exploratory behaviour such
as going to the mirror and learning about itself.

4 Discussion

The experiments showed a possible self-recognition process where the agent gets
insight into its own generative model due to observations about itself made avail-
able through the mirror. The valence of the agent was coupled to this observation
being surprising or not. The results show, how the valence changes and how the
agents favoured actions change as a result of a change in valence. Thus, modelling
mirror self-recognition as an internal shift of attention shows how negative and
positive valence plausibly arises. The mirror self-recognition provides the agent
with new self-knowledge, which can be used by deeper levels in the hierarchy
to perform further inference. For example, changing precision estimates, thereby
possibly favouring different actions, which in turn results in a change in action-
based valence. We do not model how self-knowledge first arises, but what can
be shown here is that negative valence arises in self-recognition processes that
yield insights about oneself, which change the best available action. The negative
valence is not directly dependent on the agent feeling sad or happy (its emotional
states that the agents tries to infer), but rather about the (accurate) knowledge
the agent has about these states. It is important to highlight that emotion is a
more complex phenomenon that is likely constituted by many more dimensions
than just valence [8]. Therefore, this computational model only offers the first
steps, namely trying to account for the valenced part of mirror self-recognition.
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Besides, only using a categorical attention internal state is a strong simplifica-
tion of the reflection of one’s physical appearance for visual-kinesthetic matching
as shown by [14,16]. Mirror self-recognition in humans may additionally involve
further internal attentional dynamics.

Meta-awareness. The capacity of meta-awareness allows an agent to change
the strength with which one is aware of oneself. From dreaming to being awake,
from being lost in thought to paying attention, humans in full possession of a self-
concept do it all the time. The model behaviour in experiment 2 (Fig. 4) shows
how meta-awareness is important to explain mirror avoidance and engagement
behaviour. Being highly aware of a negative state of self an agent can anticipate
an unsettling mirror encounter and prefers to avoid the mirror. Although at the
cost of potentially missing a change in its true state. Given the limitations of
the model, these statements are speculative. By expanding the model in future
research one can potentially address open questions such as mirror avoidance
and modelling mirrors in therapy [9]. Airing on the side of caution, even if
the proposed computational model here does not simulate self-awareness, it can
be used to pose interesting questions about action dependent affect in mirror
self-recognition for future work. For example what are the actions available to
an infant recognizing itself in the mirror? Is its negative affect resulting from
suddenly being suspect of its usual policy of playful engagement with the other
in the mirror? Or is it a feeling of alienation? If one prefers to interpret the
negative affect as a feeling of alienation one could argue to expand the model
to include mental actions. Planning on the second level (mental actions) could
have its own confidence and valence associated with them. Actions on this (or
even higher levels) could answer more existential questions such as what kind
of person should I be? How do others see me? Tracking the expected confidence
in one’s mental actions might be an interesting choice to model more complex
emotions such as the feeling of alienation. It could be interesting to design clever
mirror tests, that involve different action affordances to test different stages of
self-awareness more specifically.

5 Conclusion

This thesis proposes an affective self-recognition model based on the formaliza-
tion of action dependent valence, using hierarchical active inference. As a proof
of concept, we have shown how a synthetic affective response towards one’s mir-
ror image might arise. The results show that mirror self-recognition provides
the agent with new information, which changes the favoured strategy and hence
leads to negative valence. Secondly, the results show how an active inference
agent with high meta-awareness of a negative evaluated state of self displays
mirror avoidance behaviour. Therefore emphasizing the importance of deeper
hierarchical layers, regarded as meta-cognition and meta-awareness, to explain
more complex behaviours seen when facing the MSR test.
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Appendix

Discrete Hierarchical Active Inference

Fig. 5. A generative model of one trial with three time steps. Rectangles correspond to
categorical distributions and circles to the random variables the agent wants to learn
(here hidden states and policies). A is the likelihood that defines how likely observations
are given the state P (oτ |sτ ). B encodes the probability of moving from one state into
the next one P (sτ+1|sτ , π) given the policy π. C is a vector or matrix that encodes
which observations the agent prefers. D gives the prior at the first time step in the trial
to perform Bayesian inference. G is the expected free energy. The best policy is the
one that minimizes G (future reward + information gain) and F (current perceptual
evidence or prediction error). F is also calculated for each policy meaning that the
agent has a posterior state estimate for all possible policies. Lastly, E sets a ‘habitual’
prior for policies in case G is uninformative. Note that the past message ln Bπτ−1sτ−1

at the first time point becomes the prior ln D and at the last time point the future
message becomes ones (hence uninformative). Finally, the actual observation is marked
with a bar o in contrast to the predictive posterior over observations o. Figure adapted
from [13].

Figure 5 shows a generative model used for discrete hierarchical active inference.
The agent’s hidden state is sτ , where τ indexes the time step. At each step, the
agent gets an observation from the environment oτ . Following active inference
simplified notation [5] we will use capital letters to define the probabilistic func-
tions. The agent has a prior belief D about hidden states sτ , a likelihood mapping
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A between states and observations (P (oτ |sτ )), and a transitions matrix B that
encodes how states evolve over time depending on the policy π (P (sτ+1|sτ , π)).
The agent can invert the generative model to perform Bayesian inference and
get from an observation to a posterior over hidden states (in active inference this
inference process is equated with perception).

To encode the intention or goal, the agent has preferred observations defined
by the matrix C. By minimizing the expected free energy the agent chooses
a policy that changes the hidden states such that they are likely to produce
preferred observations (and minimize overall perceptual ambiguity). The action
model G uses those preferences to track how well each policy π is expected to
achieve this goal.

To understand the computations we will describe an agent that performs
a trial with three time steps, meaning it has three observations τ = {1, 2, 3},
as described in Fig. 5. Here an actual observation is denoted with a bar o in
contrast to the probability distribution of expected observations o. From the
first observation the agent infers the posterior hidden state sτ at time instant
τ = 0 through Bayesian inference, via the likelihood matrix A2 and the prior D:

sτ = lnA · oτ + lnD

Note that we almost get classical Bayesian inference (likelihood multiplied by
the prior), but without normalizing by the evidence term (the multiplication
turns into addition due to working in logarithmic space). The evidence term is
mostly intractable in larger models. So to compute the full posterior, we can
alternatively minimize the variational free energy bound instead [11]. This free
energy formulation in discrete state space boils down to the difference in the
belief the agent has about the world before (prior sτ ) and after (posterior sτ )
an observation.

F = sτ − sτ

In other words, the free energy encodes the prediction error. If the prior belief
matches or is supported by the observation the free energy is low. In contrast
to a surprising observation that renders the prior belief less likely and therefore
increases F. The agent can predict observations with the generative model and
the belief about hidden states. It evaluates these predictions by how well they
compare to the actual evidence, by calculating F. Then the agent can iteratively
make predictions that will decrease F and hence lead to more accurate estimates
of hidden states.

We have described how the agent updates its belief sτ about the world by
trying to minimize prediction errors, therefore getting good at expecting what
is really out there. Next, the agent also computes the expected observations to
optimize not only for the current time point but for the whole trial. Under each
policy or plan of actions π the agent can evaluate, how likely certain observa-
tions are in the future. Additionally, it can consider how ambiguous possible
2 Using the discrete space formulation of active inference in matrix form this is com-

puted by selecting the right column of the matrix A, i.e., through a one-hot obser-
vational vector.
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future observations are. Both, information gain and preferred observations, are
described in the expected free energy G:

G =
∑

τ
(oτ · (ln oτ − C) − diag(A · ln A) · sτ )

The first part of the equation is the average difference in expected observations
oτ and preferred outcomes C over all time points. The second part relates to
the model entropy or how precise the distribution is from which the expected
observations are sampled. For each state at time τ there is a likelihood A that
can give the agent more or less certainty about what outcome to expect.

To sum up, the agent minimizes F to optimize the posterior belief about
states (estimation) and minimizes G to compute which policy to choose (action).
Lastly, marginal message passing is just a mathematical way of sending infor-
mation across time. For example, if the agent already knows which policy it is
likely to take after seeing the first observation then that knowledge can, through
marginal message passing, already inform its prior at the next time point in the
trial. Vice versa the agent can update past beliefs, based on new observations
which later can be helpful for learning. This leaves us with the final equations for
posterior state estimation including future and past messages (using the transi-
tion matrix B) and the average free energy over timepoints in one trial:

sτ = σ(ln Bτ−1sτ−1 + lnA · oτ + lnBτsτ+1) (1)

F =
∑

τ

sτ · (sτ − sτ ) (2)

where σ is a softmax function that normalizes the input vector such that it sums
to 1 and forms a proper probability distribution. The G and these two equations
defined as shown in Fig. 5, describe the agents’ basis to act in the world within a
given trial. A limitation of this scheme is the static nature of the prior D at the
beginning of each trial. It would be preferable that the agent can update/learn
its prior based on the information it gathered in a trial. To make the context in
which the agent navigates learnable one can expand the generative model with a
deep temporal layer [11]. This allows the agent to form abstract and contextual
beliefs that carry across trials—as described in the next subsection.

Affective Self-recognition Model Implementation Details

This section provides details about the generative model. Simulations were run
by extending the pymdp infer-actively framework on github. The inference pro-
cess of state estimation and policy selection on the first layer has been calculated
using the pymdp framework. Inference on the second level, via ascending and
descending messages was programmed for this setup. A commented code is avail-
able on github via this link.

https://github.com/infer-actively/pymdp
https://github.com/blindreview
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First Layer

The priors on the state factors are specified in the D matrix. For the state
factor ‘Location’ (Mirror, Wall, Video) the prior is uniform. The state factor
‘Other emotional state’ (Happy, Neutral, Sad, Null), which can be inferred via
the observations (Smile, Neutral, Frown, None) also has a uniform prior. The
prior on ‘Self emotional state’ depends on the starting condition and the second
layer. Lastly, the state ‘Mirror-controlled attention’ (don’t attend, attend) is set
on don’t attend:

P (SMC−Attention
τ0 ) = [0.99, 0.01]

For each observation, there is a likelihood tensor A1−3. The first observation
is exteroceptive (Smile, Neutral, Frown, None), the second interoceptive (Smile,
Neutral, Frown) and the third an observation about the location (which ensures
the agent always knows where she is). The dimensions of the likelihoods are
the observation and all the hidden state factors, i.e.: A[Observation, Location,
Other, Self, Attention] or A1[4, 3, 3, 3, 2]. For example, if I want to index the
likelihood of my exteroceptive observation given that I am looking at the wall:

P (Oex|SLocation = Wall, SSelf , SOther, SMC−Attention) =
for i,j in 0:2, k in 0:1

A1[:, 1, i, j, k] =

⎛

⎜⎜⎝

0.01 Smile
0.01 Neutral
0.01 Frown
0.97 None

⎞

⎟⎟⎠

Basically saying the agent knows her probability of seeing ‘None’ if she is at
the wall is 0.97, independent of all the other states she is in. If the agent is in
the ‘attend’ state she is attending to herself and therefore can only relate the
information of the exteroceptive observation to herself. This has to be defined
for all states, but effectively the agent only makes use of this attention when she
is in front of the mirror and the exteroceptive observation in fact relates to her:

P (Oex|SMC−Attention = attend, SSelf , SLocation) =
for l,i in 0:3 :

A1[:, l, i, :, 0] =

⎛

⎜⎜⎝

0.97 0.01 0.01 Smile
0.01 0.97 0.01 Neutral
0.01 0.01 0.97 Frown
0.01 0.01 0.01 None

⎞

⎟⎟⎠

Here the columns stand for the different states in the state factor ‘Self emo-
tional state’ (Happy, Neutral, Sad). If the agent is not paying attention we get
the same matrix, but this time relating to the state of the other.
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P (Oex|SMC−Attention = don’t attend, SLocation, SOther) =
for l,j in 0:3 :

A1[:, l, :, j, 1] =

⎛

⎜⎜⎝

0.97 0.01 0.01 Smile
0.01 0.97 0.01 Neutral
0.01 0.01 0.97 Frown
0.01 0.01 0.01 None

⎞

⎟⎟⎠

Now for the interoceptive observation, the precision on A will depend on the
state of attention the agent is in. Therefore one can push A through a softmax
with a precision (inverse temperature) parameter c.

P (Oin|SMC−Attention, SLocation, SOther) =
for l,i in 0:3 and k in 0:1 :

A2[:, l, i, :, 0] =

⎛

⎝
0.97 0.01 0.01, c Smile
0.01 0.97 0.01, c Neutral
0.01 0.01 0.97, c Frown

⎞

⎠

Where paying attention has c = 5 and not paying attention c = 0.001. Finally,
the location observation is a 1 to 1 mapping:

P (Oloc|SMC−Attention, SSelf , SOther) =

A3[:, l, i, :, 0] =

⎛

⎝
1 0 0 Mirror
0 1 0 Wall
0 0 1 Video

⎞

⎠

Next the transition matrices B need to be defined. The rows correspond to
the state in the next time step and columns the state in the current time step.
The transition for the location depends on the action chosen and the agent knows
with certainty where she will be next. The agent also knows that her attention
state will shift to focused when she goes to the mirror and unfocused going to
the video. The agent has a bit of uncertainty around how her own emotional
state is changing in time and a bit more uncertainty about how the state of the
other is changing.

P (SSelf
τ+1 |SSelf

τ ) =

B1[:, :, 0] =

⎛

⎝
0.95 0.05 0.05
0.05 0.95 0.05
0.05 0.05 0.95

⎞

⎠

P (SOther
τ+1 |SOther

τ ) =

B2[:, :, 0] =

⎛

⎝
0.8 0.1 0.1
0.1 0.8 0.1
0.1 0.1 0.8

⎞

⎠

The preference are set with the C matrix. For all observation modalities C
will be initiated with zeros. Then the preference to see self happy or neutral can
be encoded as:
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C1[0] = 3.0
C1[1] = 3.0

The description of the first layer concludes with the policies available to the
agent. They are any combination of going to a location that is possible within a
trial. The trials consist of three observations and 2 actions. The agent starts by
sampling an observation then decides where to go, and repeats this step. After
the final observation, the agent doesn’t need to go anywhere because the trial is
over and will start again from the beginning.

Second Layer

The A and B matrix for the Valence state are the same as in [13]:

A2valence[:, :] =
(

0.97 0.3
0.3 0.97

)

B2valence[:, :] =
(

0.8 0.3
0.2 0.7

)

For the state S2Face or ‘Mood’, the A2 matrix can again be changed with a
precision parameter c. This one is set manually to simulate meta-awareness. In
my simulation high means c = 5 and low c = 1.

A2Face[:, :] =
(

1 0, c
0 1, c

)

B2Face[:, :] =

⎛

⎝
1 0 0
0 1 0
0 0 1

⎞

⎠

This concludes the description of the two-layered generative model.
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Abstract. Active inference proposes a unifying principle for perception
and action as jointly minimizing the free energy of an agent’s internal
world model. In the active inference literature, world models are typi-
cally pre-specified or learned through interacting with an environment.
This paper explores the possibility of learning world models of active
inference agents from recorded demonstrations, with an application to
human driving behavior modeling. The results show that the presented
method can create models that generate human-like driving behavior but
the approach is sensitive to input features.

Keywords: Active inference · Inverse reinforcement learning · Driving
behavior modeling

1 Introduction

Active inference proposes a unifying principle for perception and action as jointly
minimizing the free energy of an agent’s internal generative model [6]. It has
been strongly influential in contemporary neuroscience and cognitive science.
More recently, active inference has been proposed as a framework for modeling
driving behavior, both at the conceptual [5,10] and computational levels [31].
The framework is attractive for computational driver behavior modeling as it
enables the learning of complex behaviors from large amounts of driving data
while at the same time being grounded in a fundamental theory of cognition and
behavior which guides model design and enables increased interpretability of
machine-learned models. However, most existing active inference models in the
cognitive neuroscience literature address relatively simple toy problems. Thus,
the scaling of active inference by means of modern machine learning techniques
is currently an active area of research [29]. The novel contribution of this paper
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is to explore the application of active inference models in the context of learning
human driving behavior from recorded data (i.e., Learning from Demonstration;
LfD).

LfD provides an efficient alternative to the current manual specification or
trial-and-error learning approaches to active inference model design. Assuming
the demonstrating agent is an active inference agent, we can instead estimate the
agent’s generative model, consisting of a world model and a preference model,
from demonstrated behavior. This approach is similar to inverse reinforcement
learning (IRL) [20,33] with an important difference. Instead of using a single
reward function, active inference explains the demonstrator with a world model-
preference pair, which makes active inference more transparent about the agent’s
decision process than traditional IRL methods because we can introspect the
learned world model. This allows us to understand variations in human behavior
as “optimal inference in suboptimal models” [26,31].

The closest approaches to the work presented here are [1,11,15,23]. We build
on these works by jointly estimating agent world model and preference model
from demonstration. However, our work differs from these approaches in that
it does not assume the environment is fully observable as in [23], it makes no
assumptions about the agent’s world model’s alignment with the environment in
light of the active inference formulation [11,15], and it focuses on a large contin-
uous environment rather than a small discrete environment [1]. We demonstrate
our method in continuous car following scenarios recorded on highways [32]. The
learned driving policy jointly models its own states, road geometry, and other
vehicles (i.e., agents) using discrete abstract states and implements continuous
vehicle control. We show that this approach can mimic human driving behavior
in simple scenarios but that it may learn an incorrect model of the world, known
as “causal confusion” in LfD [4], and occasionally deviate from the lane. We
further show that this deviation can be corrected by revising the observation
set based on grounded theory of driver steering [25], thus illustrating the how
inductive biases and domain knowledge can be injected into LfD approaches.

2 Active Inference Model of Highway Driving

In this section, we propose a mixed discrete-continuous active inference model of
driving behavior and present the update rules for driver perception and control
by minimizing expected free energy.

2.1 World Model

We model the driver’s perceptual process using a discrete-time controlled hid-
den Markov process with discrete hidden states s ∈ S, discrete actions a ∈ A,
and continuous observations o ∈ O. The hidden states are the driver’s internal
representation of the driving environment which is used to guide action selection
(e.g. steering and braking). The discrete actions represent driving motor primi-
tives (i.e., prototype actions as described in [16]). The continuous observations
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are a vector of signals known to influence driving control behavior (e.g., visual
looming of the lead vehicle [18]). The state evolves according to a Markov chain
with transition probabilities P (st+1|st, at). The driver cannot directly observe
the state but a high dimensional continuous signal ot with distribution P (ot|st).
Importantly, the definition of states and the corresponding transition and obser-
vation probabilities are free to deviate from the actual environment as long as
they explain the demonstrated behavior.

2.2 A POMDP Formulation of Active Inference

Given the world model, the agent’s perception-action loop at every decision
epoch consists of inferring a belief distribution on the current hidden state and
selecting an action controlling the evolution of the hidden state. Active inference
posits the minimization of free energy as a unifying principle for describing the
perception-action loop.

Let ht = {ot, ..., o0, at−1, ..., a0} ∈ Ht denote the observable history of the
dynamic decision process including all past and present revealed observations
and all implemented actions up to time t > 0, where Ht � Ot × At−1.

According to the free energy minimization principle, the agent’s belief dis-
tribution at time t > 0 which we denote by bt(st) must correspond to the Bayes
updated belief distribution on the state st, i.e. the conditional probability distri-
bution of st given history ht, i.e. bt(st) = P (st|ht). The active inference model of
the perception-action loop assumes the agent has preferences over hidden states
st+1 which are represented by a probability distribution P̃ (st+1). The expected
free energy associated with the choice of action at and current belief distribution
bt at time t > 0 can be written as [3]:

EFE(bt, at) = E
[
DKL

(
bt+1||P̃

)]
+ E[H(ot+1)] (1)

where the first expectation is taken with respect to

P (ot+1|bt, at) :=
∑

st+1

P (ot+1|st+1)P (st+1|bt, at)

=
∑

st+1

P (ot+1|st+1)
∑

st

P (st+1|st, at)b(st)
(2)

and DKL

(
bt+1||P̃

)
is the Kullback-Leibler divergence between the random belief

distribution bt+1(·) = P (·|ht ∪ {ot+1, at}) and P̃ (·). E[H(ot+1)] is the entropy of
the observables expected under the predictive distribution P (st+1|bt, at) defined
in (2). The first term in (1) is a measure of the extent to which the belief distribu-
tion bt+1 (resulting from implementing action at and recording observation ot+1)
differs from the preferred one P̃ . Let π ∈ Π denote a randomized action selection
policy conditioned on the history of the process, i.e. π(a|ht) ∈ [0, 1], a ∈ A and∑

a∈A π(a|ht) = 1 for all ht ∈ Ht. An information processing cost is modeled as
the Kullback-Leibler divergence between policy π and a default a priori control
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policy π0 which is oblivious to new information [21,28] i.e.:

DKL(π(·|ht)||π0) :=
∑

a∈A
π(a|ht) log

π(a|ht)
π0(a)

With a uniform default distribution, DKL(π(·|ht)||π0) = Eπ(a|ht) log π(a|ht) −
log |A|. For a finite planning horizon T , the active inference controller is the
solution to the problem:

G∗
τ (hτ ) � min

π∈Π
E

[ T∑

t≥τ

(EFE(bt, at) + log π(at|ht))
]

(3)

The combination of additive structure and Markovian dynamics allows for a
recursive characterization of the optimal policy as follows:

G∗
t (ht) = min

π∈Π

{
∑

at∈A
π(at|ht)

[

EFE(bt, at) + log π(at|ht) +
∫

O
P (ot+1|ht, at)G∗

t+1(ht+1)dot+1

]
} (4)

where ht+1 = ht ∪ {ot+1, at}. Note that with no loss of generality the recursive
equation can be expressed in terms of belief states bt as opposed to the history
ht. The following is a standard result characterizing the optimal solution to (4)
[7].

Proposition 1. Let G∗
t (bt, at) be defined as:

G∗
t (bt, at) := EFE(bt, at) + log π(at|bt) +

∫

O
P (ot+1|bt, at)G∗

t+1(bt+1)dot+1

The optimal policy is of the form:

π(a|bt) =
e−G∗

t (bt,a)

∑
ã∈A e−G∗

t (bt,ã)
(5)

2.3 Estimation of POMDP Model

Given the model for the active inference controller described above, in this
section, we describe the problem of estimating such a model given recorded
sequences of actions and observables. This is akin to inverse learning a POMDP
model (see Sect. 4.7 in [22]).

In what follows we consider a parametrization of observation probabilities
Pθ1(ot+1|st+1) and state-dynamics Pθ1(st+1|st, at) with θ1 ∈ R

p1 where p1 > 0.
Given data in the form of finite histories hT,i = {(ot,i, at,i)}T

t=0 for i ∈ {1, . . . , N},
a sequence of belief trajectories {bt,θ1,i}T

t=0 can be recursively computed for a
fixed value of θ1.
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Assuming preferences over hidden states are parametrized P̃θ2(st+1) with
θ2 ∈ R

p2 with p2 > 0, the log-likelihood of observed actions can be written as:

log �(θ) =
N∑

i=1

T−1∑

t=0

log πθ(at,i|bt,θ1,i) (6)

where πθ(·|bt,θ1,i) is the optimal policy in (5) and θ := (θ1, θ2).
(6) can be optimized using a nested-loop algorithm alternating between (i)

a parameter update step at iteration k > 0 in which we set θk+1 as the solution
to:

max
θ

N∑

i=1

T−1∑

t=0

log πθ(at,i|bt,θk
1 ,i) s.t. πθ(at|bt) =

e
−G∗

t,θk (bt,at)

∑
ãt∈A e

−G∗
t,θk (bt,ãt)

where G∗
t,θk denotes the current free energy function and (ii) solving for the free

energy function {G∗
t,θk+1}t given the new parameter values.

3 Implementation

In this section, we first describe the signals assumed to be observed by the drivers
during a car-following scenario and defer a detailed description of the dataset to
appendix A.1. We then describe the model fitting process with an augmentation
of the model to continuous braking and steering control. Finally, we describe the
procedure for model comparison.

3.1 Driver Observations

We leveraged prior works on driver behavior theory [17,18,25] to define the
observation vector o used in the car-following task. Markkula et al. [17] pro-
posed visual looming denoted by τ−1 as a central observation signal in human
longitudinal vehicle control, which is defined as the derivative of the optical angle
of the lead vehicle subtended on the driver’s retina divided by the angle itself:
τ−1 = θ̇/θ. Salvucci & Gray [25] proposed a two-point model of human lateral
vehicle control where the human driver controls the vehicle by representing road
curvature with a near-point, assumed at a fixed distance in front of the vehicle,
and a far-point, assumed to be the lead vehicle in the car-following context, and
steers to minimize the deviation from a combination of the near and far-points.
Using these insights, we designed an observation vector consisting of three sen-
sory modalities:

1. The state of the ego vehicle in ego-centric coordinate
2. Relationships with the lead vehicle in ego-centric coordinates
3. Road geometry
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We featurized the ego state with the longitudinal and lateral velocity and rela-
tionship to the lead vehicle with relative distance and speed with longitudinal
and lateral components, and looming. To encode the road geometry in the two-
point model, we used the lane center 30 m ahead of the current position as the
near-point and the lead vehicle as the far-point and used as features the heading
error from the near and far-points and lane-center distance to the current road
position.

3.2 Model Fitting

We parameterized the hidden state transition probabilities P (st+1|st, at) and
preference distribution P̃ (st) with categorical distributions and observation
probabilities P (ot|st) with multivariate Gaussian distributions. For a fixed belief
vector bt, the expected KL divergence and entropy in (1) can be computed in
closed-form. We used the QMDP method [14] to approximate the cumulative
expected free energy assuming the states will become fully observable in the next
time step: G∗(bt, at) ≈ ∑

st
b(st)G∗(st, at). This allows us to train the model

in automatic differentiation frameworks (e.g., Pytorch) using Value-Iteration-
Networks style implementations [9,27].

In order to fit the discrete action model from Sect. 2 to continuous longi-
tudinal and lateral controls, we extended the model with a continuous control
module. Let u denote a multidimensional continuous control vector (longitudinal
and lateral accelerations in the current setting), we modeled the mapping from
a discrete action a to u using P (u|a) parameterized as a multivariate Gaussian
with its parameters added to vector θ1. P (u|a) thus automatically extracts prim-
itive actions, such as different magnitudes of acceleration and deceleration [16],
from data by adaptively discretizing the action space. We assume at a given
time step t, the agent also performs a Bayesian belief update about the pre-
vious action realized with prior given by the policy π(at|bt) and the posterior
P (at|ut) ∝ P (ut|at)π(at|bt). The action log likelihood objective in (6) is modified
as:

log �(θ) =
N∑

i=1

T−1∑

t=0

log
∑

at,i

Pθ1(ut,i|at,i)πθ(at,i|bt,θ1,i) (7)

3.3 Model Comparison

We measured the quality of the trained agents by using a combination of offline
and online testing metrics on a held-out dataset. For offline metrics, we used
mean absolute error (MAE). For online metrics, we first ran the trained agents
in a simulator that replayed the recorded trajectories of the lead vehicles and
then recorded the final displacement and average lane deviation for each trajec-
tory tested. The final displacement is defined as the distance between the final
position reached by the trained agents and the final position in the dataset. The
average lane deviation is the agents’ distance to the tangent point on the lane
center line averaged over all time steps in the trajectory.
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We varied three aspects of the agents to compare with the canonical agent
described previously. First, we examined the importance of the chosen features
by replacing the near-point heading error and distance to lane center with dis-
tances to the left and right boundaries at the current road position, a feature
set commonly used by driving agents for simulated testing [2,13]. We label the
agents trained with the original two-point observation as “TP”. Next, we exam-
ined the importance of grounding the world model in actual observations by
adding an observation regularizer to the training objective with a coefficient of
0.01:

Lobs =
T∑

t=1

log P (ot|ht) (8)

This encourages the agent to have a more accurate belief about the world with
higher observation likelihood under the agent’s posterior beliefs. We label agents
trained with this penalty “Obs”. Finally, we examined the impact of agent plan-
ning objectives on the learned world model and behavior. We replaced EFE with
an alternative objective called expected cross entropy (ECE):

ECE(bt, at) = E[log P̃ (ot+1)] (9)

which is the expected marginal likelihood of the agent preference model.
We used 30 states and 60 actions for all agents as they were sufficient to

produce reasonable behavior. As a baseline, we trained a behavior cloning (BC)
agent consisting of a recurrent and a feed-forward neural network to emulate
the belief update and control modules of the active inference agent. We provide
more details of the BC agent in appendix A.2.

4 Results and Discussions

Figure 1 shows the offline (left panel) and online (middle and right panels) test-
ing metrics for each agent tested using the same set of 15 scenarios sampled from
the held-out dataset, with the canonical agent labeled as “TP+EFE”. The MAE
of all active inference agents were between 0.11 and 0.14 m/s2. The BC agent
outperformed all agents with a MAE of 0.08, however the BC+TP agent had a
higher MAE value of 0.135. This is likely due to the sensitivity to input features
during training, despite better function approximation capability of neural net-
works. The final displacements were on average 13 m, the average lane deviation
was 1.37 m, and no collision with the lead vehicle was observed. These metrics
show that the agents can generate reasonable behavior by staying in the lane and
following the lead vehicle (see a few sample trajectories generated in Fig. 3a).

Comparing across different agents, Fig. 1 shows that adding an observation
penalty increased offline MAE, however, it did not noticeably affect the agents’
online performance. This might be related to the objective mismatch problem
in model-based reinforcement learning where a model better fitted to the obser-
vations may not enhance control capabilities [12]. The middle and right panels
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Fig. 1. Box plots of offline (column 1) and online (columns 2 & 3) performance metrics
of the compared agents. Offline metrics are calculated on the entire held-out set. Each
box plot in the online metrics shows the distribution of agent performance in 15 random
held-out scenarios tested with 3 different random seeds.

show that some of the agents produced final displacements and lane deviation as
large as 100 m and 15 m, respectively, as a result of deviating from the lane and
failing to make corrections (see Fig. 3b). Interestingly, active inference agents
using the two-point observations model generated noticeably less lane deviation
than other agents (see Fig. 1 right with x axis in log-scale) despite similar per-
formance in terms of offline metrics. This observation highlights the importance
of incorporating generalizable features into agent world model.

Figure 2 shows a subset of the parameters of the learned world models. All
panels ordered the states by desirability so that states with lower EFE are
assigned smaller indices. The left panel plots the variance of the observation
distribution for the relative distance feature against the states. The orange and
blue lines represent the ECE and EFE objectives, respectively. This panel shows
a clear increasing trend in the observation variance with the decrease of state
desirability. The middle and right panels show the transition matrices controlled
by the learned policy: Pπ(s′|s) =

∑
a∈A P (s′|s, a)π(a|b = δ(s)), where b = δ(s)

denotes a belief concentrated on a single state. Whereas the transition prob-
abilities of the ECE agent spread more uniformly across the state space, the
transition matrix of the EFE agent has a block-diagonal structure. As a result,
it is difficult to traverse to the desirable states in the upper diagonal (states
0–24) from the undesirable states (states 24–30) in the lower diagonal. We have
empirically observed that when the EFE agent deviates from the lane, its EFE
values also increase significantly without it taking any corrective actions. This
shows that the increasing variance played a more important role in determining
the desirability of a state than the KL divergence from the preferred states.

The observation made in Fig. 2 is similar to the “causal confusion” prob-
lem in LfD [4]. In [4], the authors found that the learning agent may falsely
attribute the cause of an action to previous actions in the demonstration rather
than the observation signals and its own goals. Our agent exhibited a differ-
ent type of “causal confusion” similar to the model exploitation phenomena in
reinforcement learning [8], where the cause of an action is attributed to a model
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Fig. 2. Parameters of the learned world models. States are sorted by desirability (i.e.,
low expected free energy). Left: Observation variance vs. state. Middle & right:
Heat map of controlled transition matrix. Darker color corresponds to higher transition
probability.

with incorrect counterfactual state and observation predictions. The consequence
is that the agent does not have the ability to make corrections when entering
these states. However, learning the correct counterfactual states from demonstra-
tion is difficult because these states are rarely contained in the demonstration
as the demonstrating agents are usually experts who rarely visit undesirable
states. Prior works addressed this by interacting with an environment [30] and
receiving real-time expert feedback [24]. We have instead partially alleviated this
by designing domain specific features (i.e., the two-point observation model) to
reduce the probability of the agent deviating from desired states. However, given
active inference strongly relies on counterfactual simulation of the world model
in the planning step, future work should focus on discovering the correct counter-
factual states from human demonstrations using approaches at the model level
rather than at the feature level, e.g., by constraining the model class or learning
causal world models via environment interactions [4].
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A Appendix

A.1 Dataset

We used the INTERACTION dataset [32], a publicly available naturalistic driv-
ing dataset recorded with drone footage of fixed road segments, to fit a model
of highway car-following behavior. Each recording in the dataset consists of
the positions, velocities, and headings of all vehicles in the road segment at a
sampling frequency 10 Hz. Specifically, we used a subset of the data1 due to
the abundance of car-following trajectories and relatively complex road geom-
etry with road curvature and merging lanes. We defined car-following as the
trajectory segments from the initial appearance of a vehicle to either an ego
lane-change or the disappearance of the lead vehicle. Reducing the dataset using
this definition resulted in a total of 1027 car-following trajectories with an aver-
age duration of 13 s and standard deviation of 8.7 s. We obtained driver control
actions (i.e., longitudinal and lateral accelerations) by taking the derivative of
the velocities of each trajectory. We then created a set of held-out trajectories
for testing purposes by first categorizing all trajectories into four clusters based
on their kinematic profiles using UMAP [19] and sampled 15% of the trajectories
from each cluster.

A.2 Behavior Cloning Agent

The behavior cloning agents consist of a recurrent neural network with a single
gated recurrent unit (GRU) layer and a feed-forward neural network. The GRU
layer compresses the observation history into a fixed size vector, which is decoded
by the feed-forward network into a continuous action distribution model by a
multivariate Gaussian distribution. To make the BC agents comparable to the
active inference agents, the GRU has 64 hidden units and 30 output units and
the feed-forward network has 30 input units, 2 hidden layers with 64 hidden
units, and SiLU activation function. We used the same observation vector as
input to the BC agents as to the active inference agents.

A.3 Sample Path

Example sample paths generated by the agents with and without the two-point
observation model.

1 Recording 007 from location “DR CHN Merging ZS”.
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(a) Sample paths generated by active inference agent with the two-
point observation model.

(b) Sample paths generated by active inference agent without the
two-point observation model.

Fig. 3. Active inference agent sample path comparison.
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Abstract. Cognitive approaches to complex systems modeling are cur-
rently limited by the lack of flexible, composable, tractable simulation
frameworks. Here, we present Active Blockference, an approach for cog-
nitive modeling in complex cyberphysical systems that uses cadCAD
to implement multiagent Active Inference simulations. First, we pro-
vide an account of the current state of Active Inference in cognitive
modeling, with the Active Entity Ontology for Science (AEOS) as a
particular example of Active Inference applied to decentralized science
communities. We then give a brief overview of Active Blockference and
the initial results of simulations of Active Inference agents in grid envi-
ronments (Active Gridference). We conclude by sharing some prefer-
ences and expectations for further research, development, and applica-
tions. The open source package can be found at https://github.com/
ActiveInferenceLab/ActiveBlockference.

Keywords: Active blockference · Active inference · cadCAD ·
Cognitive systems modeling · AEOS

1 Active Inference

1.1 General Formalism

Active Inference is an integrated framework for modeling perception, cognition,
and action in different types and scales of entities [2]. Active Inference has been
applied to settings including motor behavior, epistemic foraging, and multiscale
biological systems. More general introductions to Active Inference can be found
elsewhere [9] [7]. Here we focus on the features of Active Inference that are
essential for the Active Blockference framework, with an eye towards cognitive
modeling in cyberphysical systems.

The kernel or skeleton of an Active Inference agent model (referred to as a
generative model) is a set of five parameters: A, B, C, D, and E [9]. Depend-
ing on the exact model specification and implementation, these variables can be
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fixed, learned, or nested within hierarchical models. Here we describe the min-
imal agent form. The A matrix represents the generative model’s prior beliefs
about the hidden state-observation mapping, i.e. given an observation, what
state does the agent find itself in. Parameter B gives the prior beliefs about the
temporal transitions between hidden states, i.e. state-action mapping encoding
how the agent’s actions change its state. The C matrix encodes the generative
model’s preferences over particular observations, i.e. the goal. D represents the
prior belief about the initial state. Finally, E contains the agent’s affordances.
Mathematically, these objects can be described by

A � P (o|s)
B � P (st|st−1, ut−1)

C � P̃ (o)
D � P (s0)
E � [u1, ..., ui], i ∈ Z.

The rest of the paper provides a brief overview of the existing tools and
frameworks for active inference modeling, introduces the initial implementation
and simulation results of the Active Blockference package, and discusses future
directions for further development.

2 Active Blockference: A Toolkit for Cognitive Modeling
in Complex Web Ecosystems

2.1 Active Inference in Python (pymdp)

Active Blockference builds directly on pymdp, a Python library for active
inference agents modeled as Partially Observable Markov Decision Processes
(POMDP) [8]. Active Blockference currently contains a full implementation of
pymdp agents, modified for usage within the cadCAD framework (which intro-
duces features such as parameter sweeping, Monte Carlo simulations, repro-
ducible and scalable parallel execution). Pymdp consists of four modules, namely
inference.py, which contains functions for inference over discrete hidden states
performed by agents, control.py, containing the implementation of inference
over policies, learning.py, used for updating Dirichlet posteriors, and algos.py
for performing variational message passing [8].

The cadCAD models currently available in Active Blockference make use of
a slightly adjusted version of control.py along with some of pymdp’s utility
functions and adds custom modules for interoperability with cadCAD. Further
changes to the Active Blockference modules may occur as the dependencies
(related to e.g. cadCAD, Active Inference, cognitive models) will continue to
evolve. In later sections of this paper, we describe several possible applications
of Active Blockference that will make use of available tools in pymdp as well
as allow composability with other modern algorithms that may enable novel
advancements in Active Inference research and application.
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2.2 Active Inference in Web3 (AEOS)

Recently the Active Inference framework was used to develop an Active Entity
Ontology for Science (AEOS) [6]. AEOS considers the interaction of many types
of different active and informational entities in epistemic ecosystems using the
Active Inference entity partitioning model. In the partitioning model, internal
states reflect a generative model and are statistically insulated by blanket states
from external niche states. For example, each entity integrates observations to
generate perceptions that inform decisions within the available action space for
that entity. In this case, the entity partitioning model is applied to cyberphysical
systems such as human, team, and distributed autonomous organization (DAO).
The differences in form and function across all these kinds of entities are captured
by differently structured or parameterized models. Active entities of different
types and scales can interact with and influence each other via opportunities
for perceptions (observations) and action (affordances), which in the online case
essentially always entails read/write relationships with informational entities in
the cyberphysical niche. For example, in the AEOS framework, we can define a
team as an entity that requests funding within the capacity of its affordances,
by publishing a grant and interacting with another entity, a Scientific Agency,
which executes an assessment protocol to determine funding outcomes.

Currently AEOS bridges between graphical (e.g. flowchart-based where nodes
are entities and edges are affordances or relationships) and natural language-
based descriptions of epistemic ecosystems (where entities are nouns and actions
are verbs). These high level descriptions lend themselves to a formalism and
shared logical framework to construct, simulate, and evaluate hypothetical com-
plex systems for scientific grant making or distributed coordination in online
teams. Several features would greatly increase the utility and applicability of
AEOS, for example the ability to model online epistemic communities [1] includ-
ing remote teams [10] and Web3 environments. Below, we take a step in this
direction by introducing Active Blockference as a tractable framework for cog-
nitive modeling of complex cyberphysical systems (Fig. 1).

2.3 The Active Inference Entity Model in Active Blockference

Active Blockference connects the general active inference approach and param-
eters described in Sect. 1.1 with the powerful cadCAD simulation framework.
At the time of writing, the simulations in Active Blockference focus on agents
moving in grid environments, therefore parts of the code examples are grid-
specific. However, the implementation is quite general, as the following code
examples can be easily adjusted for arbitrary discrete state-space environments
and future work will focus on implementing continuous environments as well. In
the following sections, discrete states could map onto systems states as well as
Active/Informational entities as described in the AEOS.

As before, the A matrix represents the agent’s prior beliefs about how hidden
states relate to observations (i.e. “What temperature is it, given the thermometer
reading?”). In code, the A matrix is obtained by applying the softmax function
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Fig. 1. Connections between code, natural language, and graphical representation of
models within the AEOS framework

on the identity matrix of dimensions given by the number of possible observations
and number of possible states. The softmax function is what makes the generative
model a POMDP. The B parameter, denoting the state-action mapping (how
unobserved states change through time conditioned on action selection), is given
by a multi-dimensional tensor with one dimension being of the size of E and
the other dimensions given by the dimensions of the environment, in this case
the respective lengths of a grid world. In discrete state-spaces, an empty B
tensor is currently initialized by iterating through the entire environment and
the available affordances, encoding how each action changes the state of the
environment. For a simple grid environment, C is given by a one-hot encoded
vector over all the possible states, with the preferred state having the only non-
zero value. Similarly, D is also represented by a one-hot encoded vector, only
this time it is the starting position in the grid environment that gets encoded. As
expected, E simply contains all the model’s affordances, namely the movement
actions available in a 2D grid environment weighted by their prior expectations
(e.g. a habit distribution over action).

2.4 Generative Model Updates (Perception, Cognition, Action
Selection) in Active Blockference

The Active Inference policy function in Active Blockference is the core function
that defines the progression of the cadCAD simulation, as this is the Active
Inference time-step function through which the generative model interacts with
its environment. The Active Inference function, or perception-cognition-action-
impact loop [4] is defined as follows.

First, we construct multiple policies the agent might follow depending on a
variable policy length defined before the start of the simulation. This is commonly
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referred to as Active Inference with planning. Next, the agent infers which state
it finds itself in by sampling its A matrix with the given observation and con-
catenating it with the agent’s prior belief about its current state in the environ-
ment. With the current inference, we perform a calculation of the expected free
energy (EFE), denoted by G for all the policies generated. In pymdp and Active
Blockference, the expected free energy is currently approximated as the sum of
observational ambiguity (calculated as the entropy of the A matrix) and the
Kullback-Leibler divergence (a measure of the statistical distance between two
probability distributions) between the expected observations following a given
policy and the prior preferences given by the C matrix. From pymdp, the expected
free energy is given by

Gτ (π) = EQ(oτ ,sτ |π)[lnQ(sτ , φ|π) − ln P̃ (oτ , sτ , φ|π)]

G =
n∑

τ=1

Gτ (π)

where n is the number of timesteps to sample over [3] [8].
The expected free energy is used to calculate the action posterior (policy

selection), which is done by applying the softmax function on the negative EFE,
and that is used along with the E matrix and the generated policies to compute
the probability of each action. The probability distribution over actions is then
sampled to get the action which updates the agent’s observation prior for the
next step in the simulation loop. Finally, the agent performs the chosen action
and its real environment state is updated. Note that since the agent is modeled
as a POMDP, its A matrix does not map the agent’s internal state and observa-
tions perfectly, so there might actually be a mismatch between where the agent
“thinks” it finds itself within the environment and what its location is in reality.
This is then reflected when the agent infers its current state as described above.
Below, we include the Active Inference loop in Active Blockference in code.

1 def p_actinf(params , substep , state_history , previous_state

):

2 # State Variables

3 agents = previous_state[’agents ’]

4

5 # list of all updates to the agents in the network

6 agent_updates = []

7

8 for source , agent in agents.items ():

9

10 policies = construct_policies ([agent.n_states],

11 [len(agent.E)], policy_len=agent.policy_len)

12 # get obs_idx

13 obs_idx = grid.index(agent.env_state)

14

15 # infer_states

16 qs_current = u.infer_states(obs_idx , agent.A,

17 agent.prior , params[’noise ’])
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18

19 # calc efe

20 _G = u.calculate_G_policies(agent.A, agent.B,

21 agent.C, qs_current , policies=policies)

22

23 # calc action posterior

24 Q_pi = u.softmax(-_G , params[’noise ’])

25 # compute the probability of each action

26 P_u = u.compute_prob_actions(agent.E, policies ,

Q_pi)

27

28 # sample action

29 chosen_action = u.sample(P_u)

30

31 # calc next prior

32 prior = agent.B[:,:, chosen_action ].dot(qs_current)

3 Results

Fig. 2. Example of Active Inference agents (green dot) navigating a grid world to reach
a preferred state (orange square). (Color figure online)

Here we have presented an initial formulation of Active Blockference, a pack-
age that integrates cognitive modeling approaches from Active Inference with
engineering-grade simulation tools from cadCAD. All code for Active Blockfer-
ence is available at https://github.com/ActiveInferenceLab/ActiveBlockference.

Active Blockference currently focuses on grid environments which are easily
scalable to varying degrees of complexity [3]. Figure 2 shows the trajectories of
ActInf agents trying to reach a target state on a 10× 10 grid. The preferred
positions were initialized randomly and the agents started at the position (0,0).
By performing the active inference loop described in Sect. 2.4, the agents were
able to reach their preferred state. Here the grid represents spatial locations
(as in a foraging or navigation task). However in higher dimensional abstract

https://github.com/ActiveInferenceLab/ActiveBlockference.
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Gridference spaces, coordinates could represent movement in cognitive or system
parameter spaces.

Example exploratory simulations have been used to model the behavior of
multiple agents in a distributed ecosystem. In online settings, this design pattern
might reflect the convergence of multiple actors to preferred action selection
patterns, given environmental constraints and the emergence of a policy selection
bias.

It is important to comment on the second plot in Fig. 2, as it shows some
of the current limitations of our approach, where the agent takes many actions
that do not lead to the target position before converging to its preferred state.
This is due to the partially observable nature of the model and can be solved
with increasing the temporal depth of policy planning and parameter optimiza-
tion, however, that does come at a higher computational cost. This challenge of
fitting deep temporal policies, and introducing principled structure learning of
generative models, is addressed in recent and ongoing work on Active Inference.
Nevertheless, there are many ways to evaluate expected free energy, some of
which might be more effective than others in different contexts, however those
questions are beyond the scope of this introductory paper.

4 Conclusion and Future Directions

Here we presented how Active Inference can be applied as a cognitive mod-
eling framework in the context of complex systems simulations via cadCAD,
and showed our initial results from 2D grid environments where agents modeled
as Partially Observable Markov Decision Processes perform Active Inference to
reach a preferred state (or not).

The Active Blockference project is hosted as an open source project at the
Active Inference Lab. We now give a brief account of several future directions of
Active Blockference.

The first aim is to expand the functionality of Active Blockference with all
the available tools in pymdp and to identify the still missing elements that are
employed in Active Inference modeling in other languages (e.g SPM in MATLAB,
ForneyLab in Julia, etc.).

Second, we are continuing to develop more complex multiagent simulations in
grid environments. The grid environment (implemented in gridworld.py) is scal-
able to n-dimensions, allowing for example, research in cognitive parameters in
n-dimensional spaces (reflecting structure learning and modeling of intelligence
as abstract spatial navigation). This and various other areas serve as relevant
area for further epistemic exploration and pragmatic development. In particu-
lar, this work can provide a critical missing gap for quantitative approaches to
model, predict, and design complex systems with cognitive-behavioral entities
such as Decentralized Autonomous Organizations (DAOs).

Third, we are applying Active Blockference to modeling online systems.
We envision that this kind of “applied Active Blockference toolbox” will allow
entirely new approaches to token engineering, providing a formal ontology for
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the design of token simulations with the aim of finding optimal incentive struc-
tures and performing cognitive audits for cyberphysical systems. Some exam-
ples might include simulations for Decentralized Science (DeSci), Decentralized
School (DeSchool), the incentive structures of Filecoin miners, decentralized mar-
kets (e.g. Uniswap), funding mechanisms in Web3, measuring participation in
DAO, stewarding public goods, and platform/ecosystem governance and meta-
governance.

Fourth, we are interested in graphical user inference (GUI) environments for
Active Blockference development and application. Such “no code” interfaces and
applications would increase the utility and accessibility of these tools.

On a longer timescale, the combination of Active Inference agents and cad-
CAD can be connected to arbitrary computational environments for research
in reinforcement learning, symbolic programming, quantum information theory
modeling [5], and cognitive modeling of biological entities, which immediately
follows from the existing applications of Active Inference to neuronal dynamics
and behavior.
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Abstract. Recent work has uncovered close links between classical rein-
forcement learning (RL) algorithms, Bayesian filtering, and Active Infer-
ence which lets us understand value functions in terms of Bayesian pos-
teriors. An alternative, but less explored, model-free RL algorithm is the
successor representation, which expresses the value function in terms of
a successor matrix of average future state transitions. In this paper, we
derive a probabilistic interpretation of the successor representation in
terms of Bayesian filtering and thus design a novel active inference agent
architecture utilizing successor representations instead of model-based
planning. We demonstrate that active inference successor representa-
tions have significant advantages over current active inference agents in
terms of planning horizon and computational cost. Moreover, we show
how the successor representation agent can generalize to changing reward
functions such as variants of the expected free energy.

1 Introduction

Active Inference (AIF) is an unifying theory of action selection in theoretical
neuroscience [15–17]. It proposes that action selection, like perception, is fun-
damentally a problem of inference and that agents select actions by maximiz-
ing evidence under a biased generative model [5,13]. Active inference operates
under the aegis of the Bayesian brain hypothesis [8,19] and free energy principles
[1,4,10,11,14,26] and possesses several neurobiological process theories [13,33].

Recent work [29] has uncovered close links between active inference and the
framework of control as inference, which shows how many classical reinforcement
learning algorithms can be understood as performing Bayesian inference to infer
optimal actions [2,20,35,40]. These works, as well as the related duality between
control and inference in linearly solvable MDPs [38,39] has allowed us to under-
stand classical objects in reinforcement learning such as Q-functions and value
functions in terms of Bayesian filtering posteriors. Similarly, close connections
between active inference and reinforcement learning methods have also been
demonstrated [23,24,42]. It has been shown that deep active inference agents
can be derived that can perform actor-critic algorithms [24] as well as model-
based reinforcement learning [9,41,42], while the fundamental difference between
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
C. L. Buckley et al. (Eds.): IWAI 2022, CCIS 1721, pp. 151–161, 2023.
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them has been found to be related to the encoding of value into the generative
model [25,29]. Moreover, it has become obvious that active inference can be
understood and applied in a model-free (Bellman-equation) paradigm with sim-
ply a distinct reward function (the expected free energy) [6,24]. However, while
much of this work has focused on understanding value functions and model-based
RL, another fundamental object in model-free reinforcement learning is the suc-
cessor representation [7], which has received much less attention. The successor
representation (SR) [7] provides an alternative way to estimate value functions.
Instead of estimating the value function with the Bellman backup as in tempo-
ral difference (TD) learning, a successor matrix of long-term discounted state
transitions is estimated instead and then dynamically combined with the reward
function to yield the value function for a fixed policy. Compared to estimating
the value function directly, the SR requires more memory to store the successor
matrix but grants the ability to dynamically recompute the value function as
the reward function changes as well as providing a compressed form of a ‘cog-
nitive map’ of the environment which can be directly used for exploration and
option discovery [21,22,30]. Moreover, from a neuroscientific perspective, the SR
has been closely linked to representations in the hippocampus [31,37] which are
concerned with representing abstract (usually spatial) relations [3,43,44].

In this work, applying the probabilistic interpretation of the SR, we showcase
how the SR can be directly integrated with standard methods in active infer-
ence, resulting in the successor-representation active inference (SR-AIF) agent.
We show how SR-AIF has significant computational complexity benefits over
standard AIF and that, moreover, the explicit generative model in AIF enables
the SR to be computed instantly without requiring substantial experience in the
environment. Additionally, we show how SR methods can flexibly represent the
value function of the EFE and can be used to dynamically trade-off exploration
and exploitation at run-time.

2 Active Inference

Discrete-state-space active inference possesses a large literature and several thor-
ough tutorials [5,13,36], so we only provide the essentials here. AIF considers
agents acting in POMDPs with observations o, states x, and actions u. The
agent optimizes over policies π = [u1, u2, . . . ] which are simply sequences of
actions. The agent is typically assumed to be equipped with a generative model
of the environment p(o1:T , x1:T ) which describes how observations and states are
related over time. This generative model can be factorized into two core compo-
nents: a likelihood model p(ot|xt) which states how observations are generated
from states and is represented by a likelihood matrix denoted A, and a transition
model p(xt|xt−1, ut−1) which states how states change depending on the previ-
ous state and action and is represented by a transition matrix denoted B(u).
The rewards or goals of the agents are encoded as strong priors in the generative
model and are represented by a ‘goal vector’ denoted C. Since AIF considers
agents embedded in a POMDP it has to solve both state inference and action
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selection problems. State inference is performed using variational inference with
a categorical variational distribution q(x) which is obtained by minimizing the
variational free energy,

q∗(x) = argmin
q

F = argmin
q

Eq(xt|ot)[log q(xt|ot) − log p(ot, xt|xt−1, ut−1)]

(1)

AIF uses a unique objective function called the Expected Free Energy (EFE)
which combines utility or reward maximization with an information gain term
which promotes exploration. AIF agents naturally perform both reward-seeking
and information-seeking behaviour [15,27,28,32]. The EFE is defined as,

Gt(ot, xt) = Eq(ot,xt)[log q(xt) − log p̃(ot, xt|xt−1, ut−1)]

= Eq(ot,xt)[log p̃(ot)]
︸ ︷︷ ︸

Expected Utility

−Eq(ot)

[

KL[q(xt|ot)||q(xt)]
]

︸ ︷︷ ︸

Expected Information Gain

(2)

where p̃ is a ‘biased’ generative model which contains the goal prior vector C. As
can be seen, the EFE can be decomposed into a reward-seeking and exploratory
component which underlies the flexible uncertainty-reducing behaviour of AIF
agents. To select actions, AIF samples from the prior over policies q(π) which
is defined as the softmax over the path integral of the EFE into the future for
each timestep. Typically, future policies are evaluated up to a time horizon T .
This path integral can be expressed as,

q(π) = σ(
T

∑

t

Gπ
t (ot, xt)) (3)

where σ(x) = e−x
∑

x e−x is the softmax function. Evaluating this path integral
exactly for each policy is typically extremely computationally expensive and has
exponential complexity due to the exponentially branching number of possible
futures to be evaluated. This causes AIF agents to run slowly in practice and
has encouraged research into alternative ‘deep’ active inference agents which
estimate this path integral in other more efficient (but only approximate) ways
[5,12,13] Here, we present a novel approach based on successor representations.

3 Successor Representation

The Successor Representation [7] provides an alternative way to compute the
value function of a state. Instead of directly learning the value function (or
Q function), for instance by temporal difference (TD) learning, the successor
representation learns the successor matrix, which is the discounted long term sum
of expected state occupancies, from which the value function can be dynamically
computed by simply multiplying the successor matrix with the reward function.
This allows the SR to instantly adapt behaviour to changing reward functions
online without explicit model-based planning.
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The Value function, V, can be defined as the expected long term sum of
rewards,

Vπ(x) = r(x) + γBπVπ(x)
= r(x) + γBπ[r(x) + γBπ[r(x) + Bπ[· · · ]]] (4)

where we assume a fixed policy π and transition matrix B and a scalar discount
rate 0 ≤ γ ≤ 1. For a fixed policy the Bellman equation is linear and we can
rearrange its as,

Vπ(x) = r(x) + γBπ[r(x) + γBπ[r(x) + γBπ[· · · ]]]
= (I + γBπ + γ2BπBπ + · · · )r(x) = Mπr(x) (5)

where Mπ is the successor matrix and can be thought of as encoding the long-run
probability that state x transitions to state x′.

4 Successor Representation as Inference

In a special class known as linearly solvable MDPs there is a general duality
between control and inference [38,39] such that control can be cast as a Bayesian
filtering problem where the value function corresponds to the Bayesian filtering
posterior. To see this, consider the optimal Bellman equation,

V∗(xt) = argmax
u

[

r(xt) + c(u) + Ep(xt+1|xt,u)[γV∗(xt+1)]
]

(6)

where we have added an additional control cost c(u). The fundamental challenge
is the nonlinearity of the Bellman equation due to the argmax operation. [39]
noticed that if the dynamics are completely controllable and set by the action
p(xt+1|xt, u) = u(xt) and the control cost is set to KL[u(xt)||p(xt+1|xt, u)] which
penalizes divergence from the prior dynamics, then the argmax is analytically
solvable. By defining the ‘desirability function’ z(x) = e−V∗(x) and exponentiat-
ing, we can obtain a linear equation in z,

z(x) = e−r(x)
Ep(xt+1|xt)[γz(xt+1)] (7)

which can be solved easily. Crucially, however, this equation takes the same form
as the Bayesian filtering recursion p(xt|ot) ∝ p(ot|xt)Ep(xt|xt−1)

[

p(xt−1|ot−1)
]

when we make the identification of the ‘desirability’ z(xt) with the posterior
p(xt|ot) and the exponentiated reward e−r(xt) with the likelihood p(ot|xt). Inter-
estingly, this same relationship between exponentiated reward and probability
is also used heuristically in the control as inference literature [20]. An additional
subtle point is that control is about the future instead of the past so the sum
telescopes forward instead of backwards in time. By factoring Eq. 6 as in Eq. 5,
it is straightforward to observe that,

M =
T

∑

τ=t

γτ
( T

∏

i=t

∑

xi

p(xi|xi−1)
)

=
T

∑

τ=t

γτp(xτ |xt) (8)
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In effect, we can think of M as representing the discounted sum of the probabil-
ities of all the possible times to reach state x over the time horizon. A similar
and novel result can be derived for the case of general (not linearly solvable)
MDPs but with a fixed policy except here we derive an upper bound on the SR
instead of an equality. We begin by taking the log of the backwards Bayesian
filtering posterior and then repeatedly applying Jensen’s inequality to obtain,

log p(xt|ot) = log p(ot|xt) + logEp(xt+1|xt)[log p(xt+1|ot+1)]

≤ log p(ot|xt) + Ep(xt+1|xt)

[
[

log p(ot|xt) + Ep(xt+2|xt+1)[log . . . ]
]
]

(9)

Which has the same recursive structure as the linear Bellman Equation for a fixed
policy (Eq. 4) so long as we maintain the equivalence between the value function
and the log posterior and the reward and the log likelihood. The technique in
Eq. 5 can then be applied to give the same probabilistic interpretation of the
SR as Eq. 8. In sum, we have shown how optimal control can be associated with
filtering and Bayesian posteriors exactly in the case of linear MDPs and the
Bayesian posterior as an upper bound in the case of a fixed policy. These results
provide a sound probabilistic and Bayesian interpretation of the SR, which has
hitherto been missing in the literature, and enables us to design mathematically
principled active inference agents based upon the SR.

5 Successor Representation Active Inference

Using the probabilistic interpretation of the SR and the equations of discrete
state-space AIF, we can construct an AIF agent which utilizes the SR to compute
value functions of actions instead of model-based planning. That is, the policy
posterior path integral q(π) = σ(G) = σ(

∑T
t Gt) can be considered as a value

function and dynamically computed using the SR. The fact that in discrete AIF
the generative model transition matrix B(u) is given allows us to dispense with
learning the successor matrix from experience. However, to apply the SR, we
need to choose which policy π we wish to compute the value function under.
This choice is important since the default policy must assign enough probability
mass to all parts of the state-space to be able to provide an accurate value
estimate there. Heuristically, we set the default policy to be uniform over the
action space p(u) = 1

A where A is the cardinality of the action space. This lets
us define the default transition matrix,

B̃ = Ep(u)[B(u)] =
1
A

∑

i

B[:, :, ui] (10)

Given B̃, we can analytically calculate the SR using the infinite series result,

Mπ = (I + γB̃ + γ2B̃2 · · · ) = (I − γB̃)−1 (11)
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This means that as long as the generative model is known, the EFE value func-
tion q(π) can be computed exactly without any interaction with the environment
by first computing Mπ as in Eq. 11 and then multiplying by the reward function
which is the EFE G = MπGπ(x). From this EFE value function actions can be
sampled from the posterior over actions as,

u ∼ q(π) = σ(G) (12)

A slight complication is that while the SR is defined for MDPs, AIF typically
assumes a POMDP structure with observations o that do not fully specify the
hidden state but are related through the likelihood matrix A. We address this
by computing observation value functions as the expected state posterior under
the state posterior distribution,

Vπ(o) = Eq(x|o)[Vπ(x)] = qMπGπ (13)

where q = [q1, q2 · · · ] is the categorical variational posterior. The SR-AIF algo-
rithm can thus be summarized as follows: we are given a generative model con-
taining the A and B matrices and a set of desired states C. At initialization, the
agent computes the successor matrix Mπ using the default policy with Eq. 10.
For each action in a given state, SR-AIF computes the EFE value function Gπ

for that action and then actions are sampled from the policy posterior which
is the softmax over the EFE action-value functions. In a POMDP environment
exactly the same process takes place except instead of action-state we have
action-observation value functions which are computed as Eq. 13.

5.1 Computational Complexity

In theory the computational complexity of SR-AIF is superior than standard
AIF as standard-AIF uses model-based planning which evaluates the EFE value
function G by exhaustively computing all possible future trajectories for different
policies. This has a cost that grows exponentially in the time horizon due to
the branching of possible futures. If we denote the number of actions A, the
dimension of the state-space X and the time-horizon T , we can approximately
say that the computational complexity of standard AIF is of order O(XT 2 ·AT )
since the number of possible trajectories is approximately AT where evaluating
each step of a trajectory costs of order X and we must repeat this for each
timestep. This is exponential in the time-horizon and renders AIF unsuitable
for long term planning. Several heuristic methods have been proposed to handle
this, usually by pruning obviously unsuccessful policies [12]. However, this does
not remove the exponential complexity but only reduces it by a constant factor.
In practice, this exponential explosion is handled by reducing the time-horizon or
the policy space to be searched, which renders the evaluation of G approximate
and makes the resulting AIF agents myopic to long term reward contingencies.

By contrast, SR-AIF analytically computes an approximation to the EFE
value function G directly from the known transition dynamics by Eq. 11. This
means that no exhaustive future simulation is required for each action but instead
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Fig. 1. Top Row: A: Schematic of the grid-world task. The AIF agent is initialized
in a random square and must make it to the bottom corner to obtain reward. B:
The total reward obtained on average for SR-AIF and AIF agents. Due to a limited
planning horizon, the AIF agent cannot solve larger gridworlds and hence incurs large
negative rewards. C: Computational cost (measured in compute time per episode) for
SR-AIF. For small gridworlds, SR-AIF is more expensive since the matrix inversion cost
dominates while for larger gridworlds the cost of standard AIF increases exponentially.
Bottom Row: Visualization of the default policy matrix B̃, Successor matrix M , and
estimated value function Vπ for a 3× gridworld.

only a one-time cost is incurred at initialization. The main cost is the matrix
inverse of approximately X 3. Then an action must be selected which costs of
order A. This means the total complexity of SR-AIF is of order O(X 3 + AT ).
SR-AIF thus reduces the computational complexity of AIF from exponential
to cubic and hence, in theory, allows discrete-state-space active inference to be
applied to substantially larger problems than previously possible.

6 Experiments

We empirically demonstrate the superior computational complexity and ultimate
performance of SR-AIF as the state-space and time-horizon grows on a series
of grid-world environments. These provide a simple test-bed environment for
evaluating computational complexity in practice without the confounding factors
introduced by a more complex environment. The agent is initialized randomly
in an N × N grid and must reach a reward located in the bottom corner of the
grid. On average, as the grid size increases, both the state-space size and the
planning horizon required to find this reward increase.
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We implemented the AIF agent using the pymdp library for discrete state-
space AIF [18]. We found that for larger grid-sizes the matrix inverse used to
compute the successor matrix often became numerically unstable. Heuristically,
we countered this by increasing the ‘discount rate’ γ in Eq. 11 to be greater
than 1 (we used 5 for larger grid-sizes). Otherwise γ for SR-AIF and standard
AIF was set to 0.99. For the active inference agent, to keep computation times
manageable, we used an planning horizon of 7 and policy length of 7.

However, this task had no epistemic contingencies but only involved reward
maximization. A key aspect of active inference though is its native handling
of uncertainty through the EFE objective. Here, we demonstrate that the SR
representation can adapt to uncertainty and dynamically change the balance of
exploration and exploitation. To demonstrate this, we introduce an uncertainty
and exploration component into the gridworld task by setting some squares
of the grid to be ‘unknowable’ such that if the agent is on these squares, it
is equally likely to receive an observation from any other square in the same
row of the grid. This is done by setting columns of the A matrix to uniform
distributions for each ‘unknowable’ square in the grid. We show that if equipped
with the EFE objective function, SR-AIF is able to instantly recompute the value
function based on this information in the A matrix without having to change the
successor matrix M . Moreover, due to the property that the value function can
be recomputed for each reward function, this allows a dynamic weighting of the
utility and information gain components of the EFE to take place at runtime.

Fig. 2. Effect of introducing observation uncertainty into the model. A: the A matrix
with two ‘unknowable’ squares resulting in a uniform distribution in two columns. B:
the corresponding entropy of the state-space with the two ‘unknowable’ squares having
high entropy. C and D: The value function computed using the EFE which responds
positively to regions of high uncertainty since there is the potential for information
gain compared to the standard reward function. SR-AIF is able to correctly combine
both utility and epistemic drives at runtime.

7 Discussion

In this paper, we have derived a probabilistic interpretation of the SR and related
it to control as inference and linear RL. We then constructed an SR-AIF algo-
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rithm which exhibits superior significant performance and computational com-
plexity benefits to standard AIF due to its amortization of policy selection using
a successor matrix which can be computed analytically at initialization.

It is important to note that while the SR-AIF has substantially better com-
putational complexity, this comes at the cost of a necessary approximation. The
successor matrix is computed only for a fixed default policy π and the choice
of this policy can have significant effects upon the estimated value function and
hence upon behaviour. The choice of the default policy is thus important to
performance and was here chosen entirely on heuristic grounds. Principled ways
of estimating or bootstrapping better default policies would be important for
improving the performance of SR-AIF in practice. Alternatively, the MDP itself
could be regularized so that it becomes linear as in [39] such that the optimal pol-
icy can be solved for directly. This approach has been applied in a neuroscience
context [34] but the extension to active inference remains to be investigated.

Another point of extension is that here we have considered AIF and SR-AIF
in the context of a single sensory modality and a single-factor generative model.
However, many tasks modelled by AIF use multiple factors and modalities to
express more complex relationships and contingencies. The extension of SR-AIF
to multiple modalities and factors is straightforward algebraically, but has subtle
implementation details and is left to future work.
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Abstract. It is doubtful that animals have perfect inverse models of
their limbs (e.g., what muscle contraction must be applied to every joint
to reach a particular location in space). However, in robot control, mov-
ing an arm’s end-effector to a target position or along a target trajectory
requires accurate forward and inverse models. Here we show that by
learning the transition (forward) model from interaction, we can use it
to drive the learning of an amortized policy. Hence, we revisit policy opti-
mization in relation to the deep active inference framework and describe
a modular neural network architecture that simultaneously learns the
system dynamics from prediction errors and the stochastic policy that
generates suitable continuous control commands to reach a desired ref-
erence position. We evaluated the model by comparing it against the
baseline of a linear quadratic regulator, and conclude with additional
steps to take toward human-like motor control.

Keywords: Continuous neural control · Policy optimization · Active
inference

1 Introduction

Using models for adaptive motor control in artificial agents inspired by neuro-
science is a promising road to develop robots that might match human capabil-
ities and flexibility and provides a way to explicitly implement and test these
models and its underlying assumptions.

The use of prediction models in motor planning and control in biological
agents has been extensively studied [12,15]. Active Inference (AIF) is a math-
ematical framework that provides a specific explanation to the nature of these
predictive models and is getting increased attention from both the neuroscience
and machine learning research community, specifically in the domain of embod-
ied artificial intelligence [5,13]. At the core of AIF lies the presence of a powerful
generative model that drives perception, control, learning, and planning all based
on the same principle of free energy minimization [7]. However, learning these
generative models remains challenging. Recent computational implementations
harness the power of neural networks (deep active inference) to solve a variety
of tasks based on these principles [13].
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While the majority of the state of the art in deep AIF (dAIF) is focused on
abstract decision making with discrete actions, in the context of robot control
continuous action and state representations are essential, at least at the lowest
level of a movement generating hierarchy. Continuous control implementations
of AIF, based on the original work from Friston [7], is very well suited for adap-
tation to external perturbations [21] but it computes suboptimal trajectories and
enforces the state estimation to be biased to the preference/target state [13]. New
planning algorithms based on optimizing the expected free energy [18] finally
uncouple the action plan from the estimation but they suffer from complications
to learn the generative model and the preferences, specially for generating the
actions.

In this paper, we revisit policy optimization using neural networks from the
perspective of predictive control to learn a low-level controller for a reaching task.
We show that by learning the transition (forward) model, during interaction, we
can use it to drive the learning of an amortized policy. The proposed methods
are not entirely novel, but instead combine aspects of various previous meth-
ods for low-level continuous control, active inference, and (deep) reinforcement
learning. This is an early state proof-of-concept study aimed at understanding
how prediction networks can lead to successful action policies, specifically for
motor control and robotic tasks.

First, we summarize important related research and then go on to describe
a modular neural network architecture that simultaneously learns the system
dynamics from prediction errors and the stochastic policy that generates suitable
continuous control commands to reach a desired reference position. Finally, we
evaluated the model by comparing it against the baseline of a linear quadratic
regulator (LQR) in a reaching task, and conclude with additional steps to take
towards human-like motor control.

2 Related Work

This work revisits continuous control and motor learning in combination with
system identification, an active direction of research with many theoretical influ-
ences. As the body of literature covering this domain is extensive, a complete
list of theoretical implications and implementation attempts goes beyond the
scope of this paper. Instead, we want to highlight selected examples that either
represent a branch of research well or have particularly relevant ideas.

Motor learning and adaptation has been studied extensively in humans (for
recent reviews please see [12,15]). Humans show highly adaptive behavior to per-
turbations in simple reaching tasks and we aim to reproduce these capabilities
in artificial agents. While simple motor control can be implemented via optimal
control when the task dynamics are known [12], systems that both have learning
from experience and adaptation to changes have had little attention [2,6]. How-
ever, the assumption that the full forward and inverse model are given is not
often met in practice and hence these have to be learned from experience [26].
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Initial experiments in reaching tasks for online learning of robot arm dynam-
ics in spiking neural networks inspired by optimal control theory have shown
promising results [10].

Recently, the most dominant method for control of unspecified systems in
machine learning is likely that of deep reinforcement learning (dRL) where con-
trol is learned as amortized inference in neural networks which seek to maximize
cumulative reward. The model of the agent and task dynamics is learned either
implicitly (model-free) [14] or explicitly (model-based) [8,27] from experience.
The advantage of an explicit generative world model is that it can be used for
planning [22], related to model predictive control, or generating training data
via imagining [8,27]. Learning and updating such world models, however, can
be comparatively expensive and slow. Recently, there has been a development
towards hybrid methods that combine the asymptotic performance of model-free
with the planning capabilities of model-based approaches [23]. Finally, model-
free online learning for fast motor adaptation when an internal model is inaccu-
rate or unavailable [2] shows promising results that are in line with behavioral
findings in human experiments and can account for previously inexplicable key
phenomena.

The idea of utilizing a generative model of the world is a core component
of AIF, a framework unifying perception, planning, and action by jointly mini-
mizing the expected free energy (EFE) of the agent [1,7,13]. In fact, here this
generative model entirely replaces the need for an inverse model (or policy model
in RL terms), as the forward model within the hierarchical generative model can
be inverted directly by the means of predictive coding. This understands action
as a process of iterative, not amortized, inference and is hence a strong con-
trast to optimal control theory, which requires both forward and inverse models
[11]. Additionally, the notion of exploration across unseen states and actions is
included naturally as the free energy notation includes surprise (entropy) min-
imization, a notion which is artificially added to many modern RL implemen-
tations [8,14,27]. Also, AIF includes the notion of a global prior over preferred
states which is arguably more flexible than the reward seeking of RL agents, as
it can be obtained via rewards as well as other methods such as expert imitation.
Recently, the idea of unidirectional flow of top-down predictions and bottom-up
prediction errors has been challenged by new hybrid predictive coding, which
extends these ideas by further adding bottom-up (amortized) inference to the
mix [24], postulating a potential paradigm shift towards learned habitual inverse
models of action.

Recent proof-of-concept AIF implementations have shown that this frame-
work is capable of adaptive control, e.g. in robotic arms [19] via predictive pro-
cessing. In practice, most implementations of AIF by the machine learning com-
munity use neural networks to learn approximations of the probabilistic quanti-
ties relevant in the minimization of the EFE, named deep active inference. Using
gradient decent based learning, these forward models can be used to directly
propagate the gradients of desired states with respect to the control signals (or
policy) [3,4,8,9,17,27]. Input to such policies is commonly given as either fully
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observable internal variables (related to proprioception) [3,4,25], visual observa-
tions directly [14] or a learned latent representation of single [8,9,27] or mixed
sensory input [16,21]. This, however, makes use of amortized inference with
bottom-up perception and top-down control [3,4,9,17,25] and is hence in some
contrast to the predictive nature of the original AIF theory and more closely
related to deep RL.

In summary, AIF postulates a promising approach to biologically plausible
motor control [1,7], specifically for robotic applications [5]. The minimization of
an agent’s free energy is closely related to other neuroscientific theories such as
the Bayesian brain hypothesis and predictive coding. Adaptive models can be
readily implemented when system dynamics are known [6,20]. Unknown gener-
ative models of (forward and, if needed, inverse) dynamics may be learned from
various perceptive stimuli through experience in neural networks via back prop-
agation or error [3,4,8,9,17,23,27] or alternative learning methods [10,24,25].
This can be extended to also learn priors about preferred states and actions
[3,4,8,9,14,23,27]. Generative models (and their priors) can then be utilized
for perception, action, planning [9,22], and the generation of imagined training
data [8,27].

In this work, we draw inspiration from these recent works. We are learning
a generative model for a low-level controller with unknown dynamics from fully
observable states through interaction. One component learns the state transi-
tions, which in turn, similar to [8,27], is used to generate imagined training data
for an amortized policy network. The prior about preferred states is assumed to
be given to this low-level model and hence no reward based learning is applied.

3 Model

We consider a fully observable but noisy system with unknown dynamics. We
formalize this system as an Markov Decision Process (MDP) in discrete time
t ∈ Z. The state of the system as an n-dimensional vector of continuous vari-
ables xt ∈ R

n. Likewise, we can exert m-dimensional control on the system via
continuous actions ut ∈ R

m. We aim to learn a policy that can bring the system
to a desired goal state x̃ ∈ R

n, which is assumed to be provided by an external
source. If the system dynamics were known, we could apply optimal control the-
ory to find u∗

t for each point in time t ∈ [0,∞). However, the system dynamics
are unknown and have to be learned (system identification). The dynamics of
the system are learned via interaction and from prediction errors by a transition
model υ. This transition model is used to train in parallel a policy model π
to generate the control actions. Both models are schematically summarized in
Fig. 1.

3.1 Transition Model

The dynamics of the system are described by

xt+1 = xt + f(xt, ut, ζt), (1)
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Fig. 1. Transition model (left) and policy model (right) workflow over three time steps.
The policy network (orange) takes a state x and target x̃ as input from external sources
to generate a control action u. The recurrent transition network (green) predicts the
change to the next state Δx based on state x and control u. The gray box is a Gaussian
sampling process (Color figure online).

where ζ is some unknown process noise. Further, any observation y cannot be
assumed to be noiseless and thus

yt = xt + ξt, (2)

where ξ is some unknown observation noise. As f is unknown, we want to learn
a function g that can approximate it as

g(yt, ut, φ) ≈ f(xt, ut, ζt), (3)

by optimizing the function parameters φ. We hence define a state estimate x̂ as

x̂t ∼ N (μ̂x
t , σ̂x

t ), (4)

where the superscript x indicates not an exponent but association to the state
estimate and

μ̂x
t = yt−1 + μ̂Δx

t . (5)

In turn, both μ̂Δx
t and σ̂x

t = σ̂Δx
t are outputs of a learned recurrent neural

network (transition network) with parameters φ as

μ̂Δx
t , σ̂Δx

t = g(yt−1, ut−1, φ). (6)

To maintain differentiability to the state estimate we apply the reparametrization
trick in Eq. (4). Further, we summarize the steps from Eq. (4)–6 (the transition
model υ, see Fig. 1 left) as

x̂t = υ(yt−1, ut−1, φ). (7)

The optimal transition function parameters φ∗ are given by minimizing the Gaus-
sian negative log-likelihood loss

Lυ =
1
2T

T∑

t=1

(
log (max (σ̂x

t , ε)) +
(μ̂x

t − yt)
2

max (σ̂x
t , ε)

)
, (8)
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and
φ∗ = argmin

φ
Lυ, (9)

where ε is a small constant to avoid division by zero and the added constant has
been omitted.

3.2 Policy Model

The actor is given by the policy πθ that gives a control action u for a given
current state x and target or preferred state x̃ as

π(ut | xt, x̃t, θ), (10)

where xt can be either an observation from the environment yt or an estimate
from the transition network x̂t and

ut ∼ N (μu
t , σu

t ). (11)

Here, μu and σu are given by a function approximator that is a neural network
with parameters θ (see Fig. 1 right). We aim to find the optimal policy π∗ so
that

π∗ = argmin
u

T∑

t=1

(xt − x̃t)
2
. (12)

However, as xt is non-differentiable with respect to the action, we instead use
the transition model estimate x̂t. This also allows to find the gradient of the
above loss with respect to the action u by using backpropagation through the
transition network and the reparametrization trick. Policy and transition net-
work are optimized by two separate optimizers as to avoid that the policy loss
pushes the transition network to predict states that are the target state, which
would yield wrong results.

While the above formulation in principle should find a system that is able
to minimize the distance between the current state estimate x̂ and the target
x̃, in practice there are some additional steps to be taken into account to learn
a suitable policy. As the state contains information about position and velocity,
so does the target state. If the target state is a fixed position, the target veloc-
ity is given as zero. However, optimizing the system in a matter where the loss
increases as the system starts moving, there is a strong gradient towards per-
forming no action at all, even if this means that the position error will remain
large throughout the temporal trajectory. To overcome this issue, we introduce
a target gain vector x̃g, which weighs the relevance of each preference state vari-
able. For instance, when the velocity of the system is non-important we set to
1 where x is a representing a position encoding and 0 for every velocity. The
weighted policy loss becomes:

Lπ =
1
T

T∑

t=1

x̃g (x̂t − x̃)2 . (13)
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The offline training procedure for both transition and policy networks is
summarized in Algorithm 1 below, as well as Algorithm 2 & B in the Appendix
B and C.

Algorithm 1. Offline training of transition and policy networks
1: Input: a differentiable transition parametrization υ(x̂′|y, u, φ),
2: a differentiable policy parametrization π(u|x, x̃, θ),
3: a task environment providing (y′, x̃′|u)
4: Initialize transition parameters φ ∈ R

d and policy parameters θ ∈ R
d′

5: Initialize a memory buffer of capacity M
6: loop for I iterations:
7: Play out E episodes of length T by applying u ∼ π(y, x̃, θ) at each step and

save to memory
8: Update transition network parameters for nυ batches of size Nυ sampled from

memory
9: Update policy network parameters for nπ batches of size Nπ sampled from

memory

4 Results

Fig. 2. Eight equidistant targets
(blue) are presented to the agent
in sequence, starting from the cen-
ter position (red) each time. (Color
figure online)

Here we summarize the key results of this
research. For a more detailed description of
the task please refer to appendix Appendix
A. To evaluate the performance of the trained
models in comparison to an LQR baseline we
have established a reaching task inspired by
experiments conducted in humans and robots
in previous research [6,12]. The agent is pre-
sented eight equidistant targets in sequence
for T = 200 steps, while starting at the center
position xt0 = [0, 0, 0, 0]. Initially, each target
is 0.7 units of distance removed from the center with offsets of 45◦ (Fig. 2). In one
case these targets are stationary, or alternatively rotate in a clockwise motion
with an initial velocity of 0.5 perpendicular to the center-pointing vector. To test
agent performance under changed task dynamics, we offset the rotation angle
γ during some evaluations, which influences the direction of the acceleration as
given by control u (see Eq. (24)). To quantify the performance of target reach-
ing, we measure the Euclidean distance between the current position [x1, x2] and
the target position [x̃1, x̃2] at each step t, so that performance is defined as

J = Δt

T∑

t=1

√
(x1,t − x̃1,t)2 + (x2,t − x̃2,t)2 . (14)

Results in Fig. 3 show that both the transition model and policy model are
able to quickly learn from the environment interactions. The task of reaching
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Fig. 3. Model performance improves during learning. The transition model shows bet-
ter predictions when the target is stationary. The policy closely approaches but never
reaches the LQR baseline scores for both stationary (red dotted line) and moving tar-
gets (green dotted line). (Color figure online)

stationary targets only is easier to conduct with predicted state mean squared
error lower and a higher evaluation task performance. For both tasks, the model
performance approached but never fully reached the optimal control baseline
of LQR – for implementation details of the baseline please refer to appendix
Appendix D).

Fig. 4. Auto-regressive transition model predictions (blue to yellow) for 100 time steps
over the true state development (green) are poor at the beginning of training (left),
but can closely follow the true state development at the end of the training (center).
Perturbing the action with a rotation angle γ = 60◦ induces a mismatch between state
prediction and true trajectory (right) (Color figure online).
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Figure 4 shows auto-regressive predictions of the transition model when pro-
vided with some initial states and the future action trajectory. The model ini-
tially failed to make sensible predictions, but the final trained model closely
predicts the true state development. When applying a rotational perturbation
to the input control of γ = 60◦ (Fig. 4(right)) these predictions start to diverge
from the true state, as the model has capabilities for online adaptation.

The policy model is initially unable to complete the reaching task, but has
a strong directional bias of movement (data not shown). After just 20 iterations
(200 played episodes and 600 policy weight updates) we observe that the policy
model can partially solve target reaching for both stationary and moving tar-
gets (Fig. 5 A & E respectively). At the end of training the model generated
trajectories (B & F) closely match those of the LQR baseline (C & G). Applying
perturbations results in non-optimal trajectories to the target (D & H). Once
these perturbations become too large at around γ = ±90◦, neither LQR nor the
learned models can solve the tasks. However, the learned models closely track
the performance of the LQR. This failure is a result of both policy and tran-
sition model being learned entirely offline and the inference being completely
amortized. We believe that a more predictive coding based implementation of
AIF as suggested by [1,7] and demonstrated by [20] would allow the system to
recover from such perturbations. In future iterations of this research, we aim to
extend both the transition and policy models by an adaptive component that
can learn online from prediction errors to recover performance similar to [6,10]
and match adaptation similar to that described in humans [12].

Fig. 5. Example trajectory plots from the evaluation task for stationary targets (top
row) and moving targets (bottom row) show the improvement during learning from
iteration 20 (A & E) to iteration 150 (B & F). The LQR baseline performs the tar-
get reaching optimally (C & D), but struggles when the control input u is rotated by
γ = 60◦ (D & H). The graph on the right shows that both models learned on station-
ary as well as moving targets perform close to the LQR under different perturbation
conditions, but no model can reach the targets when the rotation becomes larger than
γ = 90◦.
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5 Conclusion

Here, we show that a low-level motor controller and its state dynamics can be
learned directly from prediction error via offline learning. Furthermore, it has
similar capabilities to LQR to absorb rototranslation perturbations. However,
as neither model has any means of online adaptation, they fail to show the
behavioral changes described in humans [12] or control approaches [6]. In future
research, hope to take steps towards human-like online motor adaptation as
described in [12,15]. AIF proposes a specific implementation of prediction error-
driven motor action generation [1,7,20], but computational implementations in
dRL and dAIF based on offline learning in neural networks often lack these
online adaptation capabilities. In future iterations of this research, we aim to
address this gap . Specifically, we propose to combine the offline learning of our
model with model-free adaptation, such as e.g. presented in [2,6].

Our implementation is based on some underlying assumptions. There are two
kinds of input to the system that come from other components of a cognitive
agent which we do not explicitly model. First, the position of the agent effector in
relation to some reference frame (e.g. its base joint) is provided to the low-level
controller in Cartesian coordinates. This information would have to be obtained
through an integration of visual, proprioceptive, and touch information. Second,
the target position of this effector is provided in the same coordinate system.
This information would likely be generated by a motor planning area where
abstract, discrete action priors (e.g. grasp an object) are broken down into a
temporal sequence of target positions. Integrating our method with models of
these particular systems is not part of this work but should be addressed in
future research.

Acknowledgements. This research was partially supported by the Spikeference
project, Human Brain Project Specific Grant Agreement 3 (ID: 945539).

Appendix

A Task Description

The state of the 2d plane environment is given as

x = [x1, x2, ẋ1, ẋ2]. (15)

Further, the desired target state is given as

x̃ = [x̃1, x̃2, ˜̇x1, ˜̇x2]. (16)

When we only care about the final position in the state, then the target gain is

x̃g = [x̃g1, x̃g2, ˜̇xg1, ˜̇xg2] = [1, 1, 0, 0]. (17)
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The desired target state as well as it’s target gain are currently provided
by the task itself, but later should be provided by some higher level cognitive
mechanism.

Further, the action influences the state by

u = [u1, u2] ∝ [ẍ1, ẍ2], (18)

where ui ∈ [−umax, umax].
Following the forward Euler for discrete time steps with step size Δt we also

get the environment dynamics as

x̂i,t+1 ∼ N (xi,t + Δtẋi,t, ζx), (19)

and then clip the computed value based on the constrains

xi,t+1 =

⎧
⎪⎨

⎪⎩

xmax if x̂i,t+1 > xmax

x̂i,t+1 if xmax > x̂i,t+1 > xmin

xmin if x̂i,t+1 < xmin

(20)

Doing the same for velocity and acceleration we get

ˆ̇xi,t+1 ∼ N (ẋi,t + Δtẍi,t, ζẋ), (21)

and

ẋi,t+1 =

⎧
⎪⎨

⎪⎩

ẋmax if ˆ̇xi,t+1 > ẋmax

ˆ̇xi,t+1 if ẋmax > ˆ̇xi,t+1 > ẋmin

ẋmin if ˆ̇xi,t+1 < ẋmin

(22)

as well as
ˆ̈xi,t+1 ∼ N (κu′

i,t, ζẍ), (23)

where κ is some real valued action gain and u′ may be subject to a rotation by
the angle γ as

u′ = u ∗
[
cos γ,− sin γ
sin γ, cos γ

]
. (24)

Finally,

ẍi,t+1 =

⎧
⎪⎨

⎪⎩

ẍmax if ˆ̈xi,t+1 > ẍmax

ˆ̈xi,t+1 if ẍmax > ˆ̈xi,t+1 > ẍmin

ẍmin if ˆ̈xi,t+1 < ẍmin

(25)

where ζ = [ζx, ζẋ, ζẍ] is some Gaussian process noise parameter and the maxi-
mum and minimum values are the boundaries of space, velocity, and acceleration
respectively. In the normal case ζ = [0, 0, 0], so that there is no process noise
unless explicitly mentioned otherwise. Here, we can see that updating the state
x by following Eq. (19) to Eq. (23) in this order, it takes three steps for any
control signal to have an effect on the position of the agent itself. This is why it
is necessary to use a RNN as the transition model to grasp the full relationship
between control input and state dynamics.
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Finally, the environment adds some observation noise ξ = [ξx, ξẋ] to the state
before providing it back to the controller, as mentioned in Eq. (2), so that

y = [y1, y2, ẏ1, ẏ2], (26)

with
yi,t ∼ N (xi,t, ξx), (27)

ẏi,t ∼ N (ẋi,t, ξẋ). (28)

B Training Algorithms

The following two algorithms describe in more detail the offline learning of the
transition network (Algorithm 2) and policy network (Algorithm 3) that corre-
spond to lines 8 and 9 of Algorithm 1 respectively. For a summary please refer
to Fig. 6).

Fig. 6. Transition model learning (left) and policy model learning (right) use different
algorithms. The transition model directly tries to predict the change in state and the
gradients (red arrows) can directly flow from the loss computation (red) through the
sampling step (gray) and to the recurrent model parameters (green). In case of the
policy model update, the procedure is more involved. In order to obtain gradients with
respect to the action, the models jointly roll out an imagined state and action sequence
in an auto-regressive manner. The gradients have to flow from its own loss function
(purple) through the transition model to reach the policy parameters (orange). This
assumes that the transition model is sufficiently good at approximating the system
dynamics. (Color figure online)
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Algorithm 2. Updating of transition network parameters
1: Input: a differentiable transition parametrization υ(x̂′|y, u, φ),
2: a memory buffer object containing episodes,
3: a loss function Lυ,
4: a learning rate αυ

5: loop for nυ batches:
6: Sample Nυ episodes of length T from memory
7: L ← 0
8: loop for every episode e in sample (this is done in parallel):
9: loop for every step (y, u, y′) in e:

10: Predict next state x̂′ = υ(y, u, φ)
11: Evaluate prediction and update loss L ← L + Lυ(x̂

′, y′)

12: φ ← φ + αυ∇φ
L

TN
(using Adam optimizer)

13: Return: φ

Algorithm 3. Updating of policy network parameters
1: Input: a differentiable transition parametrization υ(x̂′|y, u, φ),
2: a differentiable policy parametrization π(u|x, x̃, θ),
3: a memory buffer object containing episodes,
4: a loss function Lπ,
5: a learning rate απ,
6: a number of warm-up steps w and unroll step r
7: loop for nπ batches:
8: Sample Nπ episodes of length T from memory
9: L ← 0

10: nrollouts ← � T
w

�
11: loop for every episode e in sample (this is done in parallel):
12: loop for every rollout in nrollouts:
13: Reset hidden state of transition and policy networks
14: Warm up both models by providing the next w steps (y, x̃, u, y′) from

e
15: Predict next state x̂′ = υ(y, u, φ)
16: loop for r steps:
17: Predict next hypothetical action û = π(x̂′, x̃, θ)
18: Predict next hypothetical state x̂′ = υ(y, û, φ)
19: Evaluate hypothetical trajectory and update loss L ← L+Lπ(x̂

′, x̃)

20: θ ← θ + απ∇θ
L

Nrnrollouts
(using Adam optimizer)

21: Return: θ

C Training Parameters

The parameters to reproduce the experiments are summarized in Table 1. Train-
ing was conducted continuously over 1,500 episodes of 4 s each, making the total
exposure to the dynamics to be learned 300,000 steps or 100min. During this
process, both models were updated a total of 4,500 times.
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Table 1. Hyperparamters used to obtain data shown in results section.

Parameter Value

Task
Episode steps T 200
Episodes per iteration E 10
Iterations I 150
Time step [s] Δt 0.02
Memory size M 1500
Rotation angle [deg] γ 0.0
Acceleration constant κ 5.0
Process noise std. ζ 0.001
Observation noise std. ξ 0.001
Position range xmax 1.0
Velocity range ẋmax 1.0
Control range umax 1.0
Transition model
Hidden layer size (MLP) 256
Learning rate αυ 0.0005
Batches per iteration nυ 30
Batch size Nυ 1024
Policy model
Hidden layer size (GRU) 256
Learning rate απ 0.0005
Batches per iteration nπ 30
Batch size Nπ 1024
Warmup steps w 30
Unroll steps r 20

D LQR Baseline

To compare the learned model with an optimal control theory-based approach,
we implemented and hand-tuned a linear quadratic regulator (LQR) [11]. We
used the Python 3 control library for the implementation. The input matrices
describe system dynamics A, control influence B, as well as state cost Q and
control cost R and were specified as follows:
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A =

⎡

⎢⎢⎣

0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

⎤

⎥⎥⎦ , B =

⎡

⎢⎢⎣

0 0
0 0
κ 0
0 κ

⎤

⎥⎥⎦ ,

Q =

⎡

⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 0.1 0
0 0 0 0.1

⎤

⎥⎥⎦ , R =
[
0.1 0
0 0.1

]
.

(29)

This results in the control gain matrix K as

K =
[
3.16227766 0. 1.50496215 0.

0. 3.16227766 0. 1.50496215

]
. (30)

Controlling the task described in Appendix A to go from the initial state
x = [−0.5, 0.5, 0, 0] to the target state x̃ = [0.5,−0.5, 0, 0] results in the state
evolution as shown in Fig. 7.

Fig. 7. State dynamics under LQR control show that initially, velocity is increased
towards the target at the maximum rate, before it plateaus and declines at the same
maximum rate. The tuned controller only has minimal overshoot at the target position.
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Abstract. Starting from the Attachment theory as proposed by John Bowlby in
1969, and from the scientific literature about developmental processes that take
place early in life of human beings, the present work aims at exploring a possible
approach to attachment, exploiting some aspects deriving from the Active Infer-
enceTheory.We describe how, from the prenatal stage until around the second year
of life, the sensory, relational, affective and emotional dynamics could interplay
in the formation of priors that get rigidly integrated into the internal generative
model and that possibly affect the entire life of the individual. It is concluded that
the presented qualitative approach could be of interest for experimental studies
aiming at giving evidence on how Active Inference could sustain attachment.

Keywords: Attachment theory · Active inference · Internal working models ·
Mind · Perception

1 Introduction

Attachment behaviors have been observed in many animal species. Bowlby in his pio-
neering work directly observed such relational dynamics in human beings (Bowlby
1969). According to Bowlby, the attachment bond between the infant and the primary
caregiver is a particular relationship that is established, during the first years of life,
through dyadic interactive exchanges (see Fig. 1).

The attachment bond probably originates in the prenatal period, from the repre-
sentational sphere of the parents (Cranley 1981). In fact, before baby’s birth, parents’
fantasies and representations regarding the baby and the new paternal/maternal role
influence the attachment bond that will come to be defined within the second year of
life. Attachment bonding is naturally guided by instinctive infant’s behaviors aiming
at maintaining proximity with the caregiver but also by adult’s instinctive caregiving
behaviors. Such a bond has the primary evolutionary function of inducing protection of
the infant both from internal and external disturbances. Attachment behaviors result in a
structured attachment system that is activated in the case of perceived external or internal
threats, in order to regulate homeostatic proximity to the attachment figure (Simonelli
and Calvo 2016). The attachment system is one of the core systems driving motivation,
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other being the exploratory, affiliative, and fear-attention systems. The flow of activation
of the attachment system is not continuous but reaches highest levels when stressing
conditions are present. Every human being develops during her life an attachment bond,
that, depending on the quality of reiterative interactions, results in a specific form of
attachment.

Fig. 1. Visual, tactile, auditory interaction between mother and infant.

An attachment style is defined by the end of the second year, and it refers to the
ways in which the subject finds and seeks for a sense of security in her caregiver and
how she uses the security base (the caregiver) to freely explore the world (Bowlby
1969).MaryAinsworth (Ainsworth et al. 1978) identified three attachment styles: secure
attachment, insecure avoidant attachment, and insecure anxious-resistant attachment. A
secure attachment style is established when the children’s attempt to reach for external
regulation are generally met. Otherwise, when the caregiver is perceived as systemat-
ically unavailable or unresponsive to the children’s requests, then the attachment style
is geared towards an avoidant organization, which is characterized by avoidance of
proximity seeking behavior and oriented to exploration. The attachment style is said to
be anxious-resistant when the attachment behaviors have unpredictable effects. In this
case the caregiver is incoherent and inconsistent in her responses to the children’s help
requests and this makes the balance between attachment and exploration behaviors lean
toward attachment, as the caregiver does not provide enough security.

The attachment system is a control system that in order to be efficient needs to be
well informed of environmental characteristics. A further analysis carried out by Bowlby
(Bowlby 1988) considers how early interactive behaviors and their consequences on the
relational environment are processed as mental representations. Such representations,
named by Bowlby as Internal WorkingModels (IWM), are given by repeated patterns of
attachment behaviors and caregiver’s response, and allow the infant to organize internal
models about the relationship with the attachment figure (e.g. as safe or not safe), about
the Self (e.g., worthy or not worthy of caring attentions), and about the characteristics of
the significant other (e.g., available or not available). For instance, repeated experiences
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of inconsistent parenting, can induce in the child an ambivalent representation of the other
and the relationship, since the caregiver is seen as unpredictable and often incoherent in
regulating the child’s states, then it can foster a negative self-representation character-
ized by scarce confidence on personal emotions regulation skills. These representations
usually induce an excess in attachment behaviors at the expenses of exploring behaviors,
being that the child is overly occupied in finding regulation from her caregiver. IWM
contain information on the characteristics of the components of the dyadic relationship,
their relative position in space, their capacity to act, and the most likely modes of action
depending on the context. They guide perception and interpretation of events and have
the fundamental function of allowing the system to predict future events and prevent
inconvenient situations (Bowlby 1980). The more accurate the prediction, the better
suited the model to drive behavioral response given certain environmental conditions.
In the IWM theorization, Bowlby starts from Craik’s formulation (1943) of internal
models as dynamical representations of world’s phenomena, that can change over time
and that are not exact copies of external events but representations concerning structural
characteristics useful to analyze convenience and affordability of alternative environ-
mental conditions. The ultimate objective of internal models is preventing undesirable
conditions and being able to choose optimal behavioral strategies. According to Bowlby
(Bowlby 1980), IWM are developed by following Piaget’s concepts of assimilation
and accommodation, previously used to understand sensorimotor development (Piaget
1936). In short, IWM can schematically assimilate new representations dependent on
novel repeated experiences, furthermore IWM can be adapted to new environmental or
internal contingencies such as those related to cognitive development. Thus, IWMcan be
defined as non-rigid cognitive structures, however they progressively activate in a more
and more automatic manner in order to optimize resources and make them available for
dealing with new situations. For example, IWM resulting from a neglect-characterized
attachment will be strengthened through repeated interactions with the primary care-
giver (e.g. the mother), and without the subject being aware of it, she will interpret, in
the context of meaningful future relationships, social cues of abandonment even where
these are not present. Even if these structures are dynamic, they tend to be preserved as
they exert unconscious and automatic influence on thoughts, behaviors, and feelings.

Transactions between the mother and the infant directly influence the neural wiring
of the brain, with particular effect on the imprinting of circuits that activate when dyadic
synchrony is experienced (e.g. in the frontolimbic area) (Schore 2021; Choi et al 2018;
Perlini et al. 2019; Ran and Zhang 2018; Petrowski et al. 2019). Salient elements of
the interaction that determine its affective value, are constituted by tactile (e.g. affective
touch), olfactory and taste (e.g. maternal milk and body smell), visual (particularly
inputs coming from face-to face interactions), and interoceptive stimuli (Schore 2021;
Fotopoulou and Tsakiris 2017). Positive experiences of dyadic interactions let the child
find a secure base in her caregiver (i.e. the caregiver is perceived as comforting and
responsive) and constitute a fundamental element for the development of skills such as:
affective regulation capacity, motivational control of goal directed behavior (Tremblay
and Schultz 1999), regulation of autonomic reactivity to social stimuli, and homeostatic
and allostatic regulation (Fotopoulou and Tsakiris 2017). Homeostasis concerns the
need of restoring internal balance following a dysregulation (Modell et al. 2015). At



182 E. Santaguida and M. Bergamasco

a more sophisticated temporal depth, another process named allostasis predicts and
anticipates needs, allowing certain parameters to change with the objective of preventing
dysregulation before they occur (Sterling 2014). We sustain the idea that these functions
are preserved and refined later in life and depend on early experience of attachment.
Homeostatic and allostatic regulation work in parallel with attachment behaviors, and
this is more evident when we observe that when a toddler feels uncomfortable, for
instance while experiencing a sense of pain, her first reaction will be most probably to
cry and seek for maternal proximity, thus external regulation (e.g. her mother’s reaction).
Attachment is a vital function (Bowlby 1969), since it is a system that is activated to
regulate caregiver proximity, and which has a role not only for the affective-relational
sphere but also for the sustenance of basic biological functions. The caregiver, in fact,
acts as an external regulator of these functions and the social signals used by the child
(such as crying) very often have the fundamental role of favoring the regulation of body
parameters that need to remain within a specific narrow range.

2 Active Inference and Attachment Development

Active Inference is a theoretical framework that aims at understanding how self-
determined biological systems can move, perceive and behave in the environment (Fris-
ton 2010). Mathematical foundations of Active Inference lay on the principle of mini-
mization of free energy (Friston 2006), which allows the organism to adaptively contain
the dispersion of free energy that is given by the interaction with the environment (Fris-
ton 2009). The Bayesian model provides a statistical interpretation of the free energy
minimization principle. In this sense, the minimization of free energy is explained as the
reduction of the discrepancy between predicted (priors or beliefs) and observed states.
According to Active Inference, the prediction error is solved by uploading predictions
(i.e. perceptual inference) or by selectively sampling the predicted outcomes through
action (peripheral and autonomic reflexes and instrumental responses) (i.e. active infer-
ence) (Friston 2010; Pezzulo et al. 2015). The brain learns a generative model of the
world (Pezzulo et al. 2015; Friston 2010; Friston et al. 2009; Helmholtz 1866), which is
said to be generative as it can be updated, through action-perception loops, as the environ-
mental statistics change. The generative model is described as “a construct used to draw
inferences about the causes of the data (i.e. use observations to derive inferred states)”
(Parr et al. 2022), and is endowed with hierarchical and temporal depth (Parr et al. 2022).
In the action-perception loop modeling, the Active Inference theory, besides the gener-
ative model, contextually introduces the concept of generative process. The generative
process represents themodality throughwhich sensory data can be generated in the brain
starting from their true causal structure. Variational free energy must be kept in balance
during fluctuations of the model’s priorities of acquiring epistemic value (through pre-
diction error) and being preserved (then maintain and induce preferred states) (Pagnoni,
Guareschi 2021).

In what follows, it is described how interoceptive and exteroceptive inputs and
reflexes or voluntary actions that take place in an interpersonal environment, collab-
orate in the shaping of a generative model of attachment. Hierarchical and temporal
depth of generative models imply that different cerebral processes related to internal
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regulation and control of the external environment act in an integrated and coordinated
manner. Furthermore, increasingly complex processes are plausibly thought to develop
from a simple, ancestral mechanism ofminimization of the prediction error by themeans
of the action-perception loop (Pezzulo et al. 2022).

Interoceptive, proprioceptive, and exteroceptive predictions are processed at different
hierarchy and temporal depth and they are integrated at the highest hierarchical level,
which is referable to the activity of the prefrontal cortex (Pezzulo et al. 2015). Higher
levels of the hierarchy contextualize the functioning of the lower levels, allowing the
integration of multimodal inputs and predictions that work at different time scales.
Homeostatic needs are thought to be the most ancestral and essential drives of behavior
and perception (Pezzulo et al. 2015).

From the scientific literature, it is demonstrated that the Active Inference theory
could be exploited for studying affective aspects of child development. According to
(Fotopoulou and Tsakiris 2017), early interaction gives rise to the formation of the
“minimal affective selfhood”, which is described as “the feeling qualities associated
with being an embodied subject” and that “are fundamentally shaped by embodied
interactions with other people in early infancy and beyond”. The minimal affective
selfhood comes to be constituted as a result of embodied mentalization processes, which
depend on the mind’s ability to organize sensorimotor and multisensory signals derived
from internal and external inputs, to infer their causes and predict them on the basis
of experience and interaction with each other. The other, therefore, acts as an external
homeostatic regulator and the interactionwith her allows the achievement of an embodied
mentalization not only of one’s own body but also of other bodies (such as that of the CG)
(co-embodied mentalization. See Fotopoulou, Tsakiris 2017). This insight is of interest
for the discussion of attachment underpinnings, as it allows to interpret the minimal part
of the selfhood as an embodied construct that thrives only in condition of interactionwith
significant ones (in perinatal stage, mostly themother). Thus, we assume that the shaping
of a generative model originates from bodily cues that start to occur during the prenatal
period. Furthermore, interpersonal reiterate dyadic exchanges which are consolidated in
a style of attachment over the first years of life, are considered as essential elements that
allow and characterize the internal (embodied) model, which will influence the subject
for the rest of her life.

A recent work (Ciaunica et al. 2021), according to the principles of Active inference,
argues that the homeostatic functions of the individual develop in an environment of co-
embodiment between fetus andmother (intended as a unique condition of shared external
and bodily environment). This condition allows a homeostatic co-regulation, tuned by
feedback systems that serve when certain parameters go out of the range of acceptability,
falling into what is defined as discrepancy. At this point, endocrine, immunological, and
autonomic processes, and motor reflexes work in order to re-establish internal equilib-
rium. Authors refer to co-regulation as the bidirectional influence on mother’s and fetus’
systems. The fetus is dependent on the homeostatic capacities of the maternal system
and co-regulation constitutes her first prior (Ciaunica et al. 2021). According to Barrett,
Quigley, Barrett et al. (2016) allostasis is a predictive process that allows the correct
energetic balance, and enteroception is centrally involved in the process as it signals the
consequences of allostasis through inputs encoded as valence of circumstances.
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In the present work the Active Inference framework is used to describe in general
the ontogenetic evolution of internal models in a context of interaction with the primary
attachment figure. The infant’s system is the frame of reference for the subsequent
discussion (see Fig. 2).

Fig. 2. The child’s model is taken into account as frame of reference. It performs an adaptive
control loop on the environment and, in particular, on the mother. The discrepancy given by the
difference between prediction and observation is reduced and solved by the model updating (e.g.
by updating beliefs about themother, the body and theworld) or through action on the environment
(e.g. crying and other proximity reaching behaviors). Adapted from Parr, Pezzulo, Friston, 2022.

The generativemodel of attachment is believed to begin its development before birth,
during intrauterine life. As above mentioned, the organization of the attachment system
is supported by the experience-dependent development and consequent wiring of areas
of the central nervous system,with particular reference to the fronto-limbic areas (Schore
2021). It is of interest that in (Barrett et al. 2016) the limbic system and the orbitofrontal
cortex have been understood as areas centrally involved in fundamental functions for the
persistence of the organism, as they are linked to the minimization of free energy in an
Active Inference framework. By considering the temporal development of the generative
model of attachment it is possible to analyze Active Inference theory aspects in different
phases of the child development. The fetus comes into contact with the world and, in
particular, with the mother, starting from the period the fetus spends in the intrauter-
ine environment. We assume that humans’ representations of their primary caregiver
(i.e., biological mother) arise before birth over homeostatically (Ciaunica et al. 2021),
genetically and multimodal experience-driven intrauterine inputs. The in-utero environ-
ment has peculiar physical and chemical characteristics that influence the transmission
of sensorial information to the fetus. Exteroceptive inputs coming from the intrauter-
ine (e.g., temperature and thermal variations, pressure, mother’s voice) and extrauterine
(e.g., external voices, mother’s food ingestion, lights modifications, mother’s touching
of the womb) environment are transmitted to the fetus’ system passing through biolog-
ical barriers by which the fetus is contained (such as amniotic liquid and placenta) and
through immature and rapidly evolving sensory organs (see Fig. 3).

Maternal evaluation of the contingencies influences fetus’ interoceptive information
through (Gilles et al. 2018) hormones secretion. In other words, when the mother expe-
riences conditions that she perceives as stressing, the hormone secretion is transmitted
to the fetus through the blood. During the in-utero phase of life, the fetus already has
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Fig. 3. Fetus contained in a biological membrane (utero) and (amniotic) liquid.

a Bayesian brain which can enact action-perception loops for the adaptive control of
the environment. In fact, the fetus adaptively elaborates its own organization by tuning
homeostatic values according to information received from the shared environment (e.g.
throughmaternal hormone secretion) and according to genetically inherited information.
The increasingly complex organism of the fetus begins to exert control over the internal
(her own organism) and external (shared) environment through motor and autonomic
reflexes for the minimization of free energy and to obtain an epistemic value of the
milieu (e.g., by self-touching). These actions will act as a prompt for the elaboration of
articulated behavioral strategies, which will respond to the same essential mechanism.
Behavioral strategies are managed by centers of high complexity (e.g. the preforontal
cortex) (Gu et al. 2013) which receive top-down and bottom-up multimodal signals and
that aim to reduce prediction errors inherent to different hierarchical layers.

In addition to genetically and homeostatically driven priors, in-utero multisensory
experiences inform the fetus’ system about the probability that specific events appear
in the environment. Embodied beliefs about such probabilities will be maintained also
in the extrauterine environment and will influence the homeostatic strategies and the
attachment bond (Arguz Cildir et al. 2020). An example of this dynamics concerns the
longitudinal study of Dutch children born during the Dutch famine (Vaiserman and Lush
chak 2021). The children ofmotherswho severely suffered fromhunger in the gestational
period had different health consequences depending on the extra-uterine environment
they found at birth. Newborns experiencing hunger conditions, consistent with their
mothers’ condition during gestation period, demonstrated fewer adaptive problems (e.g.,
physical and mental illnesses) with respect to newborns appropriately fed after birth. We
speculate that such a condition is indicative of a learning process about environmental
parameters so that priors that are generated during the gestational period are used for
adaptive control to environmental circumstances. We assume that a high discrepancy
between homeostatic beliefs generated during gestation and conditions observed after
birth, if persistent, is capable of provoking disturbances during the ontogenetic evolution.

Birth induces strong discrepancies in the newborn’s system onmultiple domains and
induces a process of rapid upload of beliefs concerning observations, which is expressed
throughneuronal plasticity (Parr et al. 2022).Wehypothesize that the interaction between
fetus and mother gives rise to priors that will be used for the adaptive formation of
attachment bond. The newborn faces several new conditions at the same time entering the
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extra-utero environment: air, that requires breathing, instead of liquid new exteroceptive
stimuli such as lower temperature, no continuous tactile contact with themother, brighter
lights, louder sounds, etc. Therefore, birth constitutes a strong push for the system to
adapt to new existential challenges, such as breathing and seeking nourishment. A slower
process of learning is still active over time and is particularly oriented towards the
acknowledgment and control of the social environment, primarily in order to survive.
The act of crying is an example of control action of the social environment that the
newborn carries out. This action follows a high dysregulation given by the changing
environment and through this active behavior the newborn seeks, and generally finds,
the caregiver proximity for external regulation.With the birth event the baby needs to put
in place (new) behavioral patterns of proximity seeking in order to obtain the caregiver
regulation action. The mother’s voice perceived by the fetus during gestation will be
used as prior of a preferred state once the baby is born and the sound of her voice will
be associated with pleasant interoceptive sensations. It was experimentally (Kisilevsky
et al. 2003) demonstrated that while fetus can recognize their mother’s voice, newborns
prefer it over other females’ voices. Thus, mother’s voice perception can be assumed as
one of the Bayes-optimal conditions where the utility function is maximized.

Once the baby is born, she can act upon the environment through behaviors such as
the implementation of the reflex of sucking the mother’s breast, or the fixation of the
face of the mother (Bushnell 2001). The last condition is given by the innate instinct to
create a social connection with the “significant other” by directing the attention towards
an indicator of human emotions (i.e. the face and its expressions and micro expressions),
that is the foundation of social interaction and bonding. It is possible that the expectations
on the caregiver diverge from the newborn’s actual observation. Caregiving attitudes
are generally activated in the neo-caregiver. The interaction, therefore, is induced by
instinctive priors that are already included in the control system of the members of the
mother-child dyad. It is possible that the pleasant interoceptive sensations the newborn
experiences while hearing her mother’s voice, smelling her odor, tasting her milk, are
linked to the reduction of discrepancy from the internal priors. The absence of the natural
mother at the time of birth could negatively affect the attachment bond and the general
development. During the firstmonths of life the generativemodel acquires new dynamics
based on experiences and these acquisitions go hand in hand with physical, cognitive
and sensory systems development.

Starting from the second month of life, as described by previous observational and
neuroscientific works (Trevarten and Aitken 2001; Schore 2021), the infant is able to
put in act face-to-face proto-interactive exchanges with the mother. Dyadic transactions
are characterized by multimodal elements: visual, given by the observation of maternal
expressions and movements, tactile, given by the exchange of warmth and pressure,
auditory, such as the mother’s voice and prosody, olfactory, such as the mother’s skin
odor, and interoceptive, such as hunger (Fig. 4).

Embodied models of the interaction are informed by exteroceptive and interoceptive
inputs coming from dyadic interactions. Exchanges that follow a synchronized dynamic
and harmonious course between the various sensory modalities result in the massive
hiring of the orbitofrontal cortex and limbic system areas. Positive exchanges activate



Attachment Theory in an Active Inference Framework 187

Fig. 4. a) 3PP of the synchronized dyadic interaction seen from an external perspective; b) 1PP
of the newborn observing the mother. The sensory organs are not yet developed; however, there is
a tendency to stare at the face; c) 1PP of the mother, who uses the face connotations, sounds and
gestures of the child in the multisensory exchange.

pleasant interoceptive sensations and keep the free energy in balance. The synchro-
nized and harmonious trend between the various sensory modalities during transactions
characterizes the quality of the interaction and depends on one hand on the caregiver’s
readiness and sensitivity, and on the other hand on the child’s predisposition and adap-
tivity. The repetition of certain patterns allows the infant’s system to predict the expected
availability and efficacy of the caregiver. During the first year of life embodied IWMarise
in the individual. IWM integrate multimodal information concerning representations of
the causes of “relational” events and concerning behavioral strategies learned in order to
maintain the proximity of the caregiver within an acceptable range. Behavioral attach-
ment strategies impact on underlying homeostatic parameters. The IWM are therefore
complex generative models, which integrate interoceptive and exteroceptive elements,
learned during repeated interactions with the caregiver from which representations are
extracted, regarding salient characteristics of the relationship, such as self- efficacy and
responsiveness of the caregiver (generalized to other agents of the environment) to their
emotional and physical needs. IWMare associated with cognitive schemas and influence
emotional regulation both voluntarily (intentional behaviors) and involuntary (reflexes,
habitual behaviors and conditions) (Long et al. 2020).

(Cittern et al. 2018) have formulated the attachment theory in an Active Inference
Framework, providing a computational demonstration of how different attachment styles
are established following exposure to certain patterns of interaction with the caregiver.
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The minimization of free energy is then considered as the basic principle that guides the
organization of the organism, starting from homeostatic tuning to mental representations
concerning the mother, the self, the relationship and the world.

In continuity with (Ciaunica et al. 2021) we assume that homeostasis is the first
prior of the generative model and the values to be kept stable are largely learned during
the co-embodiment period. Just like concentric rings of a tree, more complex models
are learned on the basis of simpler ones during development in a context of interaction
with the primary caregiver. A model with higher complexity and temporal depth is the
allostatic one, which allows the fetus and then the child to predict physiological needs
and act in advance on the environment (Fig. 5).

Fig. 5. Simpler models are nuclear and they are necessary for the formation of more peripheric
and complex models. Externals layers are endowed with more hierarchical and temporal depth
and they contain internal layers.

The attachment style of an individual constitutes an articulated generative model that
will be used in the contextualization (Pezzulo et al. 2015) and interpretation of social
cues for the entire life span. The predictions related to the generativemodel of attachment
are capable of flexibilization over the course of life (e.g. Lange et al. 2021) however, they
tend to be resistant to change. Resistance to change is mainly due to the fact that these
representations and the associated behavior strategies are put in place in an automated
and unconscious manner, as well explained by the attachment priming effect (Norman
et al. 2015). In this sense, neuroscientific literature interestingly highlights that the areas
involved in the recurrence of IWM overlap those involved in the default mode network
(Long et al. 2020).

In summary, the generative model of attachment takes shape since the gestational
period, during which homeostatic priors are established. Homeostasis could be, in fact, a
first step for affective development, and it is strictly influenced by the biological mother
and her reactivity to the environment. Action-perception loops are already employed
in the intrauterine space, and they are used to keep the organism in a state of free
energy minimization. Homeostatic values and autonomic and sensorimotor loops are the
core feature fromwhich attachment behavioral strategies and embodied representations,
steam. The generative model of attachment is devoted to the optimal organization of
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an organism in its social environment which primarily serves to guarantee survival.
Attachment style is the result following repeated experiences in the social context and
“is held to characterize human beings from the cradle to the grave.” (Bowlby 1980,
p.154).

3 Conclusions

In the present work, development of the attachment bond over time, in an Active Infer-
ence framework, have been analyzed. The Active Inference framework provides a model
which could be of interest for the study of functions that underlie bodily and represen-
tational functions, such attachment bonding starting from the prenatal stage. Following
this hypothesis, experience and genetically-driven priors shape the generative model
and influence the individual’s functioning over life. The generative model of the fetus is
compared with the statistics of the extrauterine environment, and the degree of discrep-
ancy influences its adaptive capacity to the environment. In other words, contingencies
experienced during pregnancy that induced changes in the sensorium, thus probably in
the generative model, give rise to discrepancy when extra-uterine conditions are charac-
terized by different observations. The discrepancy leads to adaptive gaps that need to be
overcome. The characteristics of the social environment (i.e. of the primary caregiver)
shape, through repeated interactions, the internal model of the child. The internal home-
ostatic organization and then representations of early multisensory relational events are
firmly established at the base of the generative model and serve as a basic structure
for subsequent acquisitions. Many questions remain open and require further analytical
and experimental work. How is it possible to observe the assumptions that the child has
before birth? At what moment does the search for proximity really emerge in the child?
Considering it true that the baby, in the first months of life, does not distinguish herself
from themother, what are the boundaries of herMarkov blanket? The present work lacks
computational demonstrations of the presented concepts; however, it is in the authors’
interest to deepen the analytic work in terms of formal modeling in the next future.
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Abstract. Capsule networks are a neural network architecture special-
ized for visual scene recognition. Features and pose information are
extracted from a scene and then dynamically routed through a hierarchy
of vector-valued nodes called ‘capsules’ to create an implicit scene graph,
with the ultimate aim of learning vision directly as inverse graphics.
Despite these intuitions, however, capsule networks are not formulated
as explicit probabilistic generative models; moreover, the routing algo-
rithms typically used are ad-hoc and primarily motivated by algorithmic
intuition. In this paper, we derive an alternative capsule routing algo-
rithm utilizing iterative inference under sparsity constraints. We then
introduce an explicit probabilistic generative model for capsule networks
based on the self-attention operation in transformer networks and show
how it is related to a variant of predictive coding networks using Von-
Mises-Fisher (VMF) circular Gaussian distributions.

1 Introduction

Capsule networks are a neural network architecture designed to accurately
capture and represent part-whole hierarchies, particularly in natural images
[17,18,39], and have been shown to outperform comparable CNNs at visual
object classification, adversarial robustness, and ability to segment highly over-
lapping patterns [18,39]. A capsule network comprises layers of ‘capsules’ where
each capsule represents both the identity and existence of a visual feature as well
as its current ‘pose’ (position, orientation, etc.) relative to a canonical baseline.

This approach is heavily inspired by the concept of a scene graph in computer
graphics, which represents the objects in a scene in precisely such a hierarchical
tree structure where lower-level objects are related to the higher-level nodes by
their pose. The capsule network aims to flexibly parameterize such a scene graph
as its generative model and then perform visual object recognition by inverting
this generative model [16,17] to infer 3D scene structure from 2D appearances.

It is argued that the factoring of scene representations into transformation-
equivariant capsule activity vectors (i.e. vectors that change linearly with
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
C. L. Buckley et al. (Eds.): IWAI 2022, CCIS 1721, pp. 192–209, 2023.
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translation, rotation, etc.) and invariant pose transformation matrices is more
flexible and efficient than the representation used in convolutional neural net-
works, where activities in higher layers are merely invariant to changes in view-
point. In addition to arguably providing a better scene representation, capsule
networks can use agreement between higher-level poses and their predictions
based on lower-level poses to solve the binding problem of matching both the
‘what’ and the ‘where’ of an object or feature together.

Capsule networks are in part motivated by the idea that ‘parse-trees’ of the
object hierarchy of a scene must be constructed at run-time, since they can
be different for different images. Crucially, it is assumed that this dynamically
constructed parse-tree must be sparse and almost singly connected - each low-
level capsule or feature can be matched to only one high-level parent. This is
because in natural scenes it is sensible to assume that each feature only belongs
to one object at a time – for instance, it is unlikely that one eye will belong to two
faces simultaneously. In [39], it is proposed to dynamically construct these parse-
trees by an algorithm called ‘routing by agreement’ whereby low-level capsules
are assigned to the high-level capsule whose pose matrix most closely matches
their pose matrix under certain transformations.

While capsule networks appear to be a highly efficient architecture, invented
using deep insights into the nature of visual scenes, there are, nevertheless, many
elements of the construction that appear relatively ad-hoc. There is no construc-
tion of an explicit probabilistic generative model of the network. Moreover, it is
unclear why the routing algorithm works and how it is related to other frame-
works in machine learning. Indeed, some research [31,36] suggests that typical
routing algorithms do not perform well which suggests that the goals of routing
are better attained in some other way.

In this paper we propose a probabilistic interpretation of capsules networks
in terms of Gaussian mixture models and VMF (circular Gaussian) distributions,
which applies the self-attention mechanism used in modern transformer networks
[15,47]. We argue that fundamentally, the purpose of the original routing-by-
agreement algorithm of [39] is to approximate posterior inference under a gen-
erative model with the particular sparsity structure discussed above. We first
demonstrate in experiments that we can achieve routing-like behaviour using
sparse iterative inference, and show in addition that even in the original imple-
mentation of dynamic routing in capsules [39], sparsity of the top-level capsules
is enforced via the margin loss function alone when iterative routing is turned
off. This loss function can be interpreted as implementing a low-entropy prior
on digit classes. We then write down a principled top-down generative model for
capsules networks that provides a plausible description of the model that rout-
ing attempts to approximately invert. Overall, our results aim to provide a clear
and principled route toward understanding capsule networks, and interpreting
the idea of routing as fundamentally performing sparse iterative inference to
construct sparse hierarchical program trees at runtime – a method that can be
implemented in many distinct ways.
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2 Capsule Networks

A capsule network comprises a hierarchical set of layers each of which consists of
a large number of parallel capsules. In practice, several non-capsule layers such
as convolutional layers are often used to provide input data preprocessing. We
do not consider non-capsule layers in this analysis.

Each capsule j in a layer receives an input vector sj consisting of a weighted
combination of the outputs of the capsules i in the layer below, multiplied by
their respective affine transformation matrices Ti,j , which define the invariant
relationships between the poses represented by i and j. The input from capsule i
is denoted ûj|i = Ti,jvi, where vi is the output activity of capsule i after its input

has been passed through a ‘squash’ nonlinearity defined as f(x) = ||x||2
1+||x||2 · x

||x|| .
The higher-level capsule then weights the contributions from its low-level input
capsules by weighting coefficients ci,j which are determined by iterative routing.
To obtain the output of the capsule, all its inputs are weighted and summed and
then the output is fed through the nonlinear activation function f . The forward
pass of a capsule layer can thus be written as,

v(l)j = f(
∑

i

ci,jTi,jv(l−1)i
) (1)

The core algorithm in the capsule network is the routing-by-agreement algo-
rithm which iteratively sets the agreement coefficients ci,j :

bki,j = bk−1
i,j + (Ti,jv(l−1)i

)Tvk−1
(l)j

cki = σ(bk−1
i )

(2)

where k is the iteration index of the routing algorithm, σ(x) is the softmax
function such that σ(x)i = exp(xi)∑

j exp(xj)
, and bk

i are the logit inputs to the softmax
at iteration k, which act as log priors on the relevance of lower-level capsule i’s
output to all the higher-level capsules. These are initialized to 0 so all capsules
are initially weighted equally.

The routing algorithm weights the lower-level capsule’s contribution to deter-
mining the activities at the next layer by the dot-product similarity between the
input from the low-level capsule and the higher-level capsule’s output at the
previous iteration. Intuitively, this procedure will match the pose of the higher-
level capsule and the ‘projected pose’ ûj|i = Ti,jv(l−1)i

from the lower-level
capsule, so that each lower-level capsule will predominantly send its activity
to the higher-level capsule whose pose best fits its prediction. In addition to
matching parts to wholes, this procedure should also ensure that only higher-
level capsules that receive sufficiently accurate pose-congruent ‘votes’ from the
capsules below are activated, leading to the desired sparsity structure in the
inferred scene representation.
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3 Sparse Capsule PCN

Intuitively, the goal of routing is to match the poses of higher- and lower-level
capsules and thus to construct a potential parse tree for a scene in terms of
relations between higher-level ‘objects’ and lower-level ‘features’. Crucially, this
parse tree must be highly sparse such that, ideally, each lower-level feature is
bound to only a single high-level object. To represent uncertainty, some assign-
ment of probability to other high-level capsules may be allowed, but only to a
few alternatives.

We argue that all of this is naturally accommodated if we interpret routing
as implementing sparse iterative inference, where the sparsity constraints derive
from an implicit underlying generative model. This is because the fundamental
goal of routing is to obtain a ‘posterior’ over the capsule activations throughout
the network given the input as ‘data’. Unlike standard neural networks, this
posterior is not only over the classification label at the output but over the
‘parse tree’ comprising activations at the intermediate layers. Taking inspiration
from Predictive Coding Networks (PCNs) [3,6,12,27], we can imagine the parse
tree posterior as being inferred in a principled way through iterative variational
inference [2,48] applied to the activities at each layer during a single stimulus
presentation.

The idea of using variational inference to perform capsule routing is also
explored and shown to be very effective in [38]. Most closely related to our aims
here, [42] propose a full generative model and variational inference procedure for
capsules networks, focusing instead on the E-M routing version of capsules [18] in
which existence is explicitly represented using a distinct random variable. They
show that performing iterative inference to further optimize solutions at test
time leads to improved digit reconstructions for rotated MNIST digits. [28] also
proposes a generative model that aims to capture the intuitions behind capsule
networks, and likewise derives a variational inference scheme for inverting this
model.

There are various ways to achieve sparsity. [36] investigated unsupervised
versions of capsules networks, and found that while routing in the CapsNet
architecture did not produce the intended effects (i.e. sparse activations at each
capsule layer and feature equivariance) without supervision at the output layer,
these properties could be restored by adding a sparsity constraint adapted from
k-sparse autoencoders [24]. A ‘lifetime sparsity constraint’ that forces all capsules
to be active a small fraction of the time was also found to be necessary to
discourage solutions in which a small number of capsules are used to reconstruct
the input and the rest are ignored (which interferes with the ability to learn
the desired equivariances). We experiment with a simpler form of sparsity in
combination with iterative PC inference, using an L1 penalty, which is known to
encourage sparsity, as an additional regularizing term added to the free energy.
In Appendix B, we demonstrate this effect on a toy two-layer network where
sparse iterative inference routs all inputs through a specific intermediate layer,
thus constructing a single preferred parse-tree.



196 A. B. Kiefer et al.

3.1 Experiments

To test our interpretation of iterative routing-by-agreement as inference under
sparsity constraints, we investigated the role of routing in the canonical ‘Cap-
sNet’ capsules network proposed in [39]. This network, diagrammed in Fig. 1A,
consists of a preliminary conventional convolutional layer, followed by a convolu-
tional capsules layer, and a final layer whose ten capsules are meant to represent
the presence of the digits 0–9 in input images. Three iterations of the routing-
by-agreement algorithm are used between the two capsules layers.

Fig. 1. A: CapsNet architecture. Input (left) is passed through Conv1, yielding 256
feature maps which provide the input to the first (convolutional) capsules layer, Pri-
maryCaps. This yields 1152 (32 dimensions × 6 * 6 output) 8-dimensional capsules,
which are each connected to each of the 10 16-dimensional DigitCaps via their own
transformation matrices. The L2 norms of the digit capsules are then compared with a
one-hot encoding of the target. The auxiliary reconstruction network is not pictured.
Rows B-E: Samples of DigitCaps activity vectors for test set examples under vary-
ing conditions. Red borders indicate correct digits and the number above each box is
the corresponding vector norm. B: DigitCaps activities using a network trained with
three iterations of dynamic routing. Sparsity is clearly enforced at the capsule level,
though it is more extreme in some cases than others. C: Two random activity vectors
from an otherwise identical network trained without routing. Note that the ambiguous
image on the left predictably leads to less decisive capsule outputs (note also that this
occurrence was not unique to the no-routing condition). D: Capsule network trained
without routing, with 500 iterations of iterative inference performed in place of routing
at inference time. E: Same as (D) but with an L1 regularization term on the capsule
activities (i.e. Σj‖vj‖) added to the standard predictive coding (squared prediction
error) loss function (Color figure online).
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In the experiments reported in [39], the network is trained to classify MNIST
digits via backpropagation, using a separate ‘margin loss’ function for each digit:

Lk = Tk max (0,m+ − ‖vk‖)2 + λ(1 − Tk)max (0, ‖vk‖ − m−)2 (3)

Here, Lk is the margin loss for digit k (0 through 9), Tk is a Boolean indicating
the presence of that digit in the input image, ‖vk‖ is the L2 norm of capsule out-
put vk, and m+ and m− are thresholds used to encourage these vector norms to
be close to 1 or 0, in the digit-present or digit-absent conditions, respectively. λ
is an additional term used to down-weight the contribution of negative examples
to early learning. In the full CapsNet architecture, this loss is combined with a
downweighted reconstruction regularization term from an auxiliary reconstruc-
tion network used to encourage capsule activities to capture relevant features in
the input.

In our experiments, we first trained a standard CapsNet on MNIST for 13
epochs, using the same hyperparameters and data preprocessing as in [39]. It is
worth noting that, as a baseline for comparison, CapsNet does indeed produce
sparse higher-level capsule activations (i.e. sparsity in the vector of L2 norms of
the activity vectors of each of the 10 capsules in the DigitCaps layer). However,
in Fig. 1C we show that training the same network architecture with 0 rout-
ing iterations (simply setting the higher-level capsule activities to the squashed
sum of the unweighted predictions from lower layers) produces sparsity as well,
suggesting that the transformation matrices learn to encode this sparsity struc-
ture based on the margin loss function alone. In addition to exhibiting simi-
lar higher-level capsule activities, the two networks also performed comparably
(with > 99% accuracy on the test set) after training, though the no-routing
network was initially slower to converge (see Appendix A).

To test whether the intuitions explored in the toy example in Appendix
B would play out in a larger-scale architecture, we also tried using iterative
inference in place of dynamic routing. In these experiments, we began with a
forward pass through a trained CapsNet, clamped the target (label) nodes, and
ran iterative inference for 500 iterations with a learning rate of 0.01, either with
the standard squared-error predictive coding objective or with the standard PC
loss plus L1 regularization applied to the final output vector of the CapsNet
(see Appendix C). We found that, as in the toy experiment, standard iterative
inference with an L1 penalty (in this case applied per-capsule) produced sparse
outputs, while without the L1 penalty activity was more evenly distributed over
the capsules, though the vector norms for the ‘correct’ capsules were still longest.

Overall, our findings on CapsNet are consistent with results reported in
[36], which suggest that the sparsity seen at the output layer of CapsNet is
attributable to its supervised learning objective alone and does not occur with-
out this objective. Further confirming these results, we performed experiments
on a modification of CapsNet with an intermediate capsule layer between Pri-
maryCaps and DigitCaps, and did not observe sparsity in the intermediate-layer
activities despite comparable performance. Despite our largely negative findings,
these experiments support our broader view that the main point of routing is to
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induce sparsity in the capsule outputs, and that this objective can be achieved
by various means, including iterative inference in a predictive coding network. In
the following section we propose an explicit generative model for capsules that
produces the right kind of sparsity in a principled way.

4 A Generative Model for Capsules

To be fully consistent with the goal of learning vision as inverse computer graph-
ics, a capsules network should be formulated as a top-down model of how 2D
appearances are generated from a hierarchy of object and part representations,
whose inversion recovers a sensible parse-tree. We now develop an explicit prob-
abilistic generative model for the capsule network that achieves this which, inter-
estingly, involves the self-attention mechanism used in transformer networks.

4.1 Attention and the Part-Whole Hierarchy

In recent years it has become increasingly clear that neural attention [15,47]
provides the basis for a more expressive class of artificial neural network that
incorporates interactions between activity vectors on short timescales. As noted
in [39], while conventional neural networks compute their feedforward pass by
taking the dot products of weight vectors with activity vectors, neural atten-
tion relies on the the dot product between two activity vectors, thus producing
representations that take short-term context into account. In particular, atten-
tion allows for the blending of vectors via a weighted sum, where the weights
depend on dot-product similarities between input and output vectors. The core
computation in neural attention can be written as,

Z = σ(QKT )V (4)

with Z being the output of the attention block, K,Q,V being the ‘Key’, ‘Query’,
and ‘Value’ matrices, and σ the softmax function, as above. Intuitively, the atten-
tion operation can be thought of as first computing ‘similarity scores’ between
the query and key matrices and then normalizing them with the softmax. The
similarity scores are then multiplied by the value matrix to get the output. In
the transformer architecture [1,47], these matrices are typically produced from
a given input representation (e.g. a word embedding) via a learned linear trans-
formation.

There is a tempting analogy between the capsule layer update and neural
attention, since the output capsule activities are determined as a blend of func-
tions of the inputs, using weights determined by applying the softmax function
to dot-product similarity scores. A key difference, which seems to ruin the anal-
ogy, is that in routing-by-agreement, each of the weights that determine the
output mixture comes from a distinct softmax, over the outputs of one lower-
level capsule. Simply swapping out a neural attention module for the routing
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algorithm gives the wrong result however, since this enforces a ‘single-child con-
straint’ where in the limit each higher-level object is connected to at most one
lower-level part in the parse-tree.

It turns out however that the attention mechanism is precisely what is needed
to naturally construct a top-down generative model of parse trees within a
capsules architecture. Firstly, we note that we can aggregate the small trans-
formation matrices Ti,j connecting input capsule i to output capsule j into a

large tensor structure W =

⎡

⎢⎣
T1,1 . . . Tm,1

...
. . .

...
T1,n . . . Tm,n

⎤

⎥⎦, for m lower-level and n higher-

level capsules. Similarly, the N individual d-dimensional capsule vectors in a
layer can be stacked to form an N × d matrix with vector-valued entries,
V(l) = [v(l)1

,v(l)2
. . .v(l)N

]T , and the routing coefficients cij collected into a
matrix C with the same shape as W. We can then write the forward pass through
a vector of capsules in a way that is analogous to a forward pass through a large
ANN:

V(l) = f
[
(C � W)V(l−1)

]
(5)

Here, � denotes element-wise multiplication and the nonlinearity f is also
applied element-wise. The expression WV(l−1) should be read as a higher-level
matrix-matrix multiplication in which matrix-vector multiplication is performed
in place of scalar multiplication per element, i.e. V(l)j

=
∑m

i=1CjiWjiV(l−1)i
.

This term implements the sum of predictions
∑m

i=1ûj|i from lower-level capsules
for the pose of each higher-level capsule j, where each transformation matrix is
first scaled by the appropriate entry in the routing coefficient matrix C.

We have argued that what the forward pass in Eq. 5 aims to implement is
in effect posterior inference under a top-down generative model. To write down
such a model, we first define W̃ as the transpose of the original weight tensor
W, i.e. an m×n collection of transformations from n higher-level capsules to m
lower-level capsules. Since each row of W̃ collects the transformations from all
higher-level capsules to the intrinsic coordinate frame of one lower-level capsule

v(l−1)i
, we can then define a matrix Û(l−1) =

⎡

⎢⎣
(W̃1 � V(l))T

...
(W̃m � V(l))T

⎤

⎥⎦ that contains all

the predictions for the lower-level capsules, where matrix-vector multiplication
is applied element-wise to the submatrices.

Setting V = K = Û(l−1)i
and Q = V(l−1)i

, we can then frame the top-
down generation of one lower-level capsule vector within a capsules network as
an instance of neural attention, where Vk

(l) is the matrix of capsule activities at
layer l and iteration k, as above:

Vk
(l−1)i

= σ(Vk−1
(l−1)i

ÛT
(l−1)i

)Û(l−1)i
(6)
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These updates are independent for each lower-level capsule but can clearly be
vectorized by adding an extra leading dimension of size m to each matrix, so
that an entire attention update is carried out per row.

The above can be viewed as an inverted version of routing-by-agreement
in which the higher-level capsules cast ‘votes’ for the states of the lower-level
capsules, weighted by the terms in the softmax which play a role similar to
routing coefficients. There is also a relation to associative memory models [21,
26,35] since we can think of the capsule network as associating the previous
lower-level output (query) to ‘memories’ consisting of the predictions from the
layer above, and using the resulting similarity scores to update the outputs as a
blend of the predictions weighted by their accuracy.

Crucially, when used in this way for several recurrent iterations, neural atten-
tion encourages each row of the output matrix to be dominated by whichever
input it is most similar to. Since the output in this case is the lower level in a
part-whole hierarchy (where rows correspond to capsule vectors), this precisely
enforces the single-parent constraint that routing-by-agreement aspires to.

In the routing-by-agreement algorithm, the routing logits bij are initially set
to 0 (or to their empirical prior value, if trained along with the weights) and
then accumulate the dot-product similarities during each iteration of routing.
It is clear that the application of attention alone without the accumulation of
log evidence over iterations should produce a routing-like effect, since there is
a positive feedback loop between the similarities and the softmax weights. If
one wanted to emulate routing-by-agreement more closely, the above could be
supplemented with an additional recurrent state formed by the similarity scores
of the previous iteration.

While the single-parent constraint alone is not sufficient to ensure that only
lower-level capsules that are a good fit with some active higher-level capsule are
activated, it is reasonable to expect that when no constant relationship between
a higher- and lower-level entity exists in the data, training would encourage the
weights of the corresponding transformation matrix to be close to 0, on pain of
inappropriately activating a lower-level capsule, which would lead to an increase
in the loss function (e.g. squared prediction error).

4.2 Probabilistic Generative Model

We now formulate the generative model sketched above explicitly in probabilis-
tic terms, which therefore also doubles as a generative model of transformer
attention (see Appendix D).

As remarked above, capsule networks can be seen as combining something
like a standard MLP forward pass with additional vector-level operations. In
particular, for a given lower-level capsule i, the attention mechanism can be
interpreted as mixing the MLPs defined by each capsule pair (i, j) with the
weights given by the attention softmax. If we interpret each MLP update in
terms of a Gaussian distribution, as in PCNs (that is, where the uncertainty
about the hidden state V(l−1) is Gaussian around a mean given by the sum of
weighted ‘predictions’), we arrive at a mixture of Gaussians distribution over
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each lower-level capsule pose, whose mixing weights are determined by scaled
dot-product similarity scores.

These similarity scores must be interpreted differently from the MLP-like
part of the model, and we argue that these are correctly parametrized via a
von Mises-Fisher (VMF) distribution with a mean of the pose input. The VMF
implements the dot-product similarity score required by the routing coefficient
in a probabilistic way, and can be thought of as parametrizing a distribution over
vector angles between the output and input poses, which is appropriate since the
purpose of the routing coefficients is to reinforce predictions that match a higher-
level pose (where degree of match can be captured in terms of the angle between
the pose and prediction vectors). Importantly, since it parametrizes an angle
the distribution is circular since angles ‘wrap-around’. The VMF distribution
is a Gaussian defined on the unit hypersphere and so correctly represents this
circular property.

Given the above, we can express the update in Eq. 6 above as a probabilistic
generative model as follows:

p(V(L)i
|Û(L)i

) =
∑

j

[
π(i)j

N (V(L)i
; Û(L)ij

, σij)
]

π(i) = Cat(n,p(i))

p(i) = σ
[
V MF (V(L)i

; Û(L)i1
, κi1) . . . V MF (V(L)i

; Û(L)in
, κin)

]

(7)

where π(i) are the mixing weights, σij is the standard deviation of the Gaussian
distribution over capsule i conditioned on higher-level capsule j, and κij is the
‘concentration parameter’ of the corresponding VMF distribution, which deter-
mines how tightly probability mass is concentrated on the direction given by the
mean Û(L)ij

.
The generative model then defines the conditional probability of an entire

capsule layer given the predictions as the product of these per-capsule mixture
distributions, mirroring the conditional independence of neurons within a layer
in conventional MLPs:

p(V(L)|Û(L)) =
∏

i

p(V(L)i
|Û(L)i

) (8)

It would be simpler to use the attention softmax itself directly to determine the
mixing weights of each GMM, but using the probabilities returned by individual
VMF distributions instead affords a fully probabilistic model of this part of the
generative process, where not only the vector angle match but also the variance
can be taken into account for each capsule pair i, j. It remains for future work
to write down a process for inverting this generative model using variational
inference.
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5 Conclusion

In this paper, we have aimed to provide a principled mathematical interpre-
tation of capsule networks and link many of its properties and algorithms to
other better known fields. Specifically, we have provided a probabilistic genera-
tive model of the capsule network in terms of Gaussian and VMF distributions
which provides a principled mathematical interpretation of its core computa-
tions. Secondly, we have shown how the ad-hoc routing-by-agreement algorithm
described in [39] is related to self-attention. Moreover, we have demonstrated
both in a toy illustrative example and through large-scale simulation of capsule
networks how the desiderata of the routing algorithm can be achieved through
a general process of sparse iterative inference.
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com/adambielski/CapsNet-pytorch and can be found at: https://github.com/exilefa

ker/capsnet-experiments. Code reproducing the toy model experiments and figure in

Appendix B can be found at: https://github.com/BerenMillidge/Sparse Routing.

Appendix A: Convergence of CapsNet with and Without
Routing

The following plots show the loss per epoch (plotted on a log scale for visibil-
ity) during training of a CapsNet architecture with 3 and 0 rounds of dynamic
routing-by-agreement and without an auxiliary reconstruction net. The figure
shows that after initially slower learning, CapsNet without routing converged to
nearly the same test set loss as with routing (Fig. 2).

Interestingly, although classification performance was very similar across
these networks, the test set accuracy for the four conditions (standard, no rout-
ing, routing without reconstruction loss, and neither routing nor reconstruction
loss) were 99.23%, 99.34%, 99.32%, and 99.29% respectively. In this case at least,
dynamic routing appears not to have led to improved accuracy, although it does
lead to slightly lower values of the loss function both when using the full loss
(margin + reconstruction) and when using margin loss alone.

This is consistent with the findings in [31] that iterative routing does not
greatly improve the performance of capsules networks and can even lead to
worse performance, though it is also consistent with Sabour et al. [39], who
report a roughly 0.14% performance improvement using routing against a no-
routing baseline.

https://github.com/adambielski/CapsNet-pytorch
https://github.com/adambielski/CapsNet-pytorch
https://github.com/exilefaker/capsnet-experiments
https://github.com/exilefaker/capsnet-experiments
https://github.com/BerenMillidge/Sparse_Routing
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Fig. 2. Left: Training set loss during training of CapsNet under standard routing (3
iterations) and no-routing conditions. Middle: Test set loss. Right: Comparison of final
losses across standard, no-routing, no-reconstruction, and no-routing no-reconstruction
conditions. Note that the loss functions differ between the reconstruction and no-
reconstruction conditions.

Appendix B: Toy Model of Routing as Sparse Iterative
Inference

Capsule networks assume that a sparse parse tree representation of a stimulus is
preferred and achieve this using the routing algorithm while an equivalent ANN
would typically produce dense representations. To gain intuition for why sparse
iterative inference may be able to achieve this result as well as capsule routing, we
provide a simple illustrative example of how iterative inference with a sparsity
penalty can result in routing-like behaviour. We consider a simple three-layer
neural network with a single hidden layer and visible input and output layers.
We fix both the top and bottom layers to an input or a target respectively. We
can then infer the hidden layer activities which can both sufficiently ‘explain’
the output given the input. If we imagine the input layer of the network as
representing features and the output as a classification label, then in the hidden
layer we wish to uniquely assign the input features all to the best matching
‘object’. We construct such a network with input size 3, hidden size 3, and output
size 1, with input weights set to identity and the output weights set to a matrix
of all 1 s. The network is linear although this is not necessary. Following the
Gaussian generative model proposed for the capsule network, we implemented
this network as a predictive coding network (PCN) and performed iterative
inference by updating activities to minimize the variational free energy which can
be expressed as a sum of squared prediction errors at each layer [6]. In additional
to the standard iterative free energy, we also experimented with adding either
a sparsity penalty (L1 regularisation) or L2 activity norm regularization to the
network. We investigated the extent to which iterative inference with the sparsity
penalty can reproduce the desired routing effect with only a single high-level
feature being active, and found that it can (see Fig. 3).
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Fig. 3. A: Default behaviour of the outcome of iterative inference purely minimizing
squared prediction errors. Probability mass is distributed between all three potential
‘objects’ in the hidden layer. B: Outcome of sparse iterative inference using an L1
penalty term in the objective function. All probability mass is concentrated on a single
‘best’ object so that a singly connected scene parse tree is constructed. C: Outcome
of iterative inference with an L2 penalty term in the loss function which encourages
probability mass to spread out. All objects have approximately equal probability of
being selected.

Moreover, this sparsity penalty was necessary in this network in order for
inference to exhibit routing-like behaviour. Without any regularization, itera-
tive inference has a tendency to distribute probability mass between various
high-level objects. This tendency is exacerbated with L2 regularisation which
encourages the inference to spread probability mass as evenly as possible.

Interestingly, a similar intuition is applied in [18] where routing is explicitly
derived as part of an EM algorithm with a clear probabilistic interpretation and
where the MDL penalties derived for simply activating a capsule, which do not
depend on its degree of activation, can perhaps also be thought of as effectively
implementing a similar sparsity penalty which encourages the EM algorithm
to assign capsule outputs to a single high-level capsule instead of spreading
probability mass between them.

Appendix C: Iterative Inference Process for CapsNet

Our implementation of sparse iterative inference in place of capsule routing is the
same in outline as that used for the toy model discussed in Appendix B, applied
to the CapsNet architecture. That is, we minimize the sum of squared prediction
errors per layer, which is equivalent to the variational free energy [27]. In this case
the prediction error for the output layer is given by the difference between the
prediction from the penultimate (PrimaryCaps) layer and the clamped target
values. For the sparsity condition, we also add the capsule-level L1 sparsity
penalty discussed in the caption of Fig. 1 at the output layer. Dynamic routing
was turned off for this experiment, both at inference time and during training.
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Appendix D: Relationship Between Capsule Routing and
Attention

As noted above, our generative model of the capsule network can also describe
the self-attention block in transformers, providing a fundamental building block
towards building a full transformer generative model. Explicitly writing down
such a generative model for the transformer architecture could enable a signifi-
cantly greater understanding of the core mechanisms underlying the success of
transformers at modelling large-scale sequence data as well as potentially suggest
various improvements to current architectures.

This relationship to transformer attention is important because transformer
attention is well-understood and found to be highly effective in natural language
processing tasks [5,34] as well as recently in vision [11,32] and reinforcement
learning [8,37,51]. Since capsule networks appear highly effective at processing
natural scene statistics, this provides yet another example of the convergence
of machine learning architectures towards a universal basis of attention mecha-
nisms.

The basis of attention mechanisms can then be further understood in terms
of associative memory architectures based on Modern Hopfield networks [21,35],
as briefly discussed above. It has been found that sparsity of similarity scores
is necessary for effective associative memory performance to prevent retrieved
memories from interfering with each other [20,22,26]. The softmax operation in
self-attention can be interpreted as a separation function with the goal of spar-
sifying the similarity scores by exponentially boosting the highest score above
the others. Indeed, it is a general result that the capacity of associative mem-
ory models can be increased dramatically by using highly sparsifying separation
functions such as high-order polynomials [10,22], softmaxes [35] and top-k acti-
vation functions [4].

An interesting aspect of our generative model is the use of VMF distributions
to represent the dot-product similarity scores. Intuitively, this arises because the
cosine similarity is ‘circular’ in that angles near 360◦C are very similar to angles
near 0. In most transformer and associative memory models, the update rules
are derived from Gaussian assumptions which do not handle the wrap-around
correctly and hence may be subtly incorrect for angles near the wrap-around
point. By deriving update rules directly from our generative model, it is possible
to obtain updates which handle this correctly and which may therefore perform
better in practice. A second potential improvement relates to the VMF variance
parameter κ. In transformer networks this is typically treated as a constant and
set to 1√

d
. In essence, this bakes in the assumption that the variance of the

distribution is inversely proportional to the data dimension. Future work could
also investigate dynamically learning values of κ from data which could also
improve performance.

One feature of routing-by-agreement not captured by iterative inference in
standard PCNs is the positive feedback loop, in which low prediction error
encourages even closer agreement between activities and predictions. This is
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similar to applying self-attention over time. A key distinction between atten-
tion as used in transformers and the routing mechanism in capsule networks is
that the latter is iterative and can be applied sequentially for many iterations
(although usually only 3–5), unlike in transformers where it is applied only once.
Capsule networks therefore could provide ideas for improving transformer mod-
els by enabling them to work iteratively and adding the recurrent state that
arises from the ‘bias’ term in the routing algorithm.

It has been proposed that highly deep networks with residual connections,
a set of architectures that includes transformers, are implicitly approximating
iterative inference using depth instead of time [14,19] which is a highly ineffi-
cient use of parameters. Instead, it is possible that similar performance may be
obtained with substantially smaller models which can explicitly perform iterative
inference similar to capsule networks. Some evidence for this conjecture comes
from the fact that empirically it appears that large language models such as
GPT2 [34] appear to perform most of their decisions as to their output tokens in
their first few layers. These decisions are then simply refined over the remaining
layers – a classic use-case for iterative inference.

The link between capsule routing and sparse iterative inference also has sig-
nificant resonances in neuroscience. It is known that cortical connectivity and
activations are both highly sparse (approximately only 1–5% neurons active
simultaneously) [7,13,50] with even higher levels of sparsity existing in other
brain regions such as the cerebellum [9,40,41]. Such a level of sparsity is highly
energy efficient [43] and may provide an important inductive bias for the efficient
parsing and representation of many input signals which are generated by highly
sparse processes – i.e. dense pixel input is usually only generated by a relatively
small set of discrete objects. Secondly, iterative inference is a natural fit for the
ubiquitous recurrent projections that exist in cortex [23,25,44,46,49] and many
properties of visual object recognition in the brain can be explained through a
hybrid model of a rapid amortized feedforward sweep followed by recurrent itera-
tive inference [45]. These considerations combine to provide a fair bit of evidence
towards a routing-like sparse iterative inference algorithm being an integral part
of cortical functioning. Moreover, it has been demonstrated many times in the
sparse-coding literature that adding sparse regularisation on a variety of recon-
struction and classification objectives can result in networks developing receptive
fields and representations that resemble those found in the cortex [29,30,50].

Iterative inference is also important for enabling object discrimination and
disambiguation in highly cluttered and occluded scenes because it can model
the vital ‘explaining away’ [33] effect where inferences about one object can
then inform parallel inferences about other objects. This is necessary in the
case of occlusion since by identifying the occluder and implicitly subtracting
out its visual features, it is often possible to make a much better inference
about the occluded object [17]. It is therefore noteworthy, and suggestive of
our hypothesis that routing can really be interpreted as iterative inference, that
capsule networks perform much better at parsing such occluded scenes than
purely feedforward models such as CNNs.
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7. Buzsáki, G., Mizuseki, K.: The log-dynamic brain: how skewed distributions affect
network operations. Nat. Rev. Neurosci. 15(4), 264–278 (2014)

8. Chen, L., et al.: Decision transformer: reinforcement learning via sequence model-
ing. Adv. Neural. Inf. Process. Syst. 34, 15084–15097 (2021)

9. De Zeeuw, C.I., Hoebeek, F.E., Bosman, L.W., Schonewille, M., Witter, L.,
Koekkoek, S.K.: Spatiotemporal firing patterns in the cerebellum. Nat. Rev. Neu-
rosci. 12(6), 327–344 (2011)
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Abstract. When studying unconstrained behaviour and allowing mice
to leave their cage to navigate a complex labyrinth, the mice exhibit for-
aging behaviour in the labyrinth searching for rewards, returning to their
home cage now and then, e.g. to drink. Surprisingly, when executing such
a “home run”, the mice do not follow the exact reverse path, in fact, the
entry path and home path have very little overlap. Recent work proposed
a hierarchical active inference model for navigation, where the low level
model makes inferences about hidden states and poses that explain sen-
sory inputs, whereas the high level model makes inferences about moving
between locations, effectively building a map of the environment. How-
ever, using this “map” for planning, only allows the agent to find trajecto-
ries that it previously explored, far from the observed mice’s behaviour.
In this paper, we explore ways of incorporating before-unvisited paths in
the planning algorithm, by using the low level generative model to imag-
ine potential, yet undiscovered paths. We demonstrate a proof of concept
in a grid-world environment, showing how an agent can accurately pre-
dict a new, shorter path in the map leading to its starting point, using
a generative model learnt from pixel-based observations.

Keywords: Robot navigation · Active inference · Free energy
principle · Deep learning

1 Introduction

Humans rely on an internal representation of the environment to navigate, i.e.
they do not require precise geometric coordinates or complete mappings of the
environment; a few landmarks along the way and approximate directions are
enough to find our way back home [1]. This reflects the concept of a “cognitive
map” as introduced by Tolman [2], and matches the discovery of specific place
cells firing in the rodent hippocampus depending on the animal position [3] and
our representation of space [1].

Recently, Çatal et al. [4] showed how such mapping, localisation and path
integration can naturally emerge from a hierarchical active inference (AIF)
scheme and are also compatible with the functions of the hippocampus and
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entorhinal cortex [5]. This was implemented on a real robot to effectively build
a map of its environment, which could then be used to plan its way using previ-
ously visited locations [6].

However, while investigating the exploratory behaviour of mice in a maze,
where mice were left free to leave their home to run and explore, a peculiar
observation was made. When the mice decided to return to their home location,
instead of re-tracing their way back, the mice were seen taking fully new, shorter,
paths directly returning them home [7].

On the contrary, when given the objective to reach a home location, the hier-
archical active inference model, as proposed by [4,6], can only navigate between
known nodes of the map, unable to extrapolate possible new paths without
first exploring the environment. To address this issue, we propose to expand
the high level map representation using the expected free energy of previously
unexplored transitions, by exploiting the learned low-level environment model.
In other worlds, we enlarge the projection capabilities of architecture [6] to unex-
plored paths.

In the remainder of this paper we will first review the hierarchical AIF model
[4], then explain how we address planning with previously unvisited paths by
imagining novel trajectories within the model. As a proof of concept, we demon-
strate the mechanism on a Minigrid environment with a four-rooms setup. We
conclude by discussing our results, the current limitations and what is left to
improve upon the current results.

2 Navigation as Hierarchical Active Inference

The active inference framework relies upon the notion that intelligent agents have
an internal (generative) model optimising beliefs (i.e. probability distributions
over states), explaining the causes of external observations. By minimising the
surprise or prediction error, i.e, free energy (FE), agents can both update their
model as well as infer actions that yield preferred outcomes [8,9].

In the context of navigation, Çatal et al. [4] introduced a hierarchical active
inference model, where the agent reasons about the environment on two different
levels. On the low level, the agent integrates perception and pose, whereas on
the high level the agent builds a more coarse grained, topological map. This is
depicted in Fig. 1.

The low level, depicted in blue, comprises a sequence of low-level action
commands at and sensor observations ot, which are generated by hidden state
variables st and pt. Here st encodes learnable features that give rise to sensory
outcomes, whereas pt encodes the agent’s pose in terms of its position and ori-
entation. The low level transition model p(st+1|st, pt, at) and likelihood model
p(ot|st) are jointly learnt from data using deep neural networks [10], whereas
the pose transition model p(pt+1|st, pt, at) is instantiated using a continuous
attractor network similar to [11].

At the high level, in red in the Figure, the agent reasons over more coarse
grained sequences of locations lτ , where it can execute a move mτ that gives
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Fig. 1. Navigation as a hierarchical generative model for active inference [4]. At the
lower level, highlighted in blue, the model entertains beliefs about hidden states st and
pt, representing hidden causes of the observation and the pose at the current timestep
t respectively. The hidden states give rise to observations ot, whereas actions at impact
future states. At the higher level, highlighted in red, the agent reasons about locations
l. The next location lτ+1 is determined by executing a move mτ . Note that the higher
level operates on a coarser timescale. Grey shaded nodes are considered observed.

rise to a novel location lτ+1. In practice, this boils down to representing the
environment as a graph-based map, where locations lτ are represented by nodes
in the graph, whereas potential moves mτ are links between those nodes. Note
that a single time step at the higher level, i.e. going from τ to τ+1, can comprise
multiple time steps on the lower level. This enables the agent to first ‘think’ far
ahead in the future on the higher level.

To generate motion, the agent minimizes expected free energy (EFE) under
this hierarchical generative model. To reach a preferred outcome, the agent first
plans a sequence of moves that are expected to bring the agent to a location
rendering the preferred outcome highly plausible, after which it can infer the
action sequence that brings the agent closer to the first location in that sequence.
For a more elaborate description of the generative model, the (expected) free
energy minimisation and implementation, we refer to [4].

3 Imagining Unseen Trajectories

As discussed in [4], minimising expected free energy under such a hierarchical
model induces desired behaviour for navigation. In the absence of a preferred out-
come, an epistemic term in the EFE will prevail, encouraging the agent to explore
actions that yield information on novel (hidden) states, effectively expanding the
map while doing so. In the presence of a preferred state, the agent will exploit
the map representation to plan the shortest (known) route towards the objec-
tive. However, crucially, the planning is restricted to previously visited locations
in the map. This is not consistent with the behaviour observed in mice [7], as
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these, apparently, can exploit new paths even when engaging in a goal-directed
run towards their home.

In order to address this issue, we hypothesize that the agent not only con-
siders previously visited links and locations in the map during planning, but
also imagines potential novel links. A potential link from a start location lA to
a destination location lB is hence scored by the minimum EFE over all plans
π (i.e. a sequence of actions) generating such a trajectory under the (low level)
generative model, i.e.:

G(lA, lB) = min
π

H∑

k=1

DKL

[
Q(st+k, pt+k|π)Q(st|lA)‖Q(st+H , pt+H |lB)

]
︸ ︷︷ ︸

probability reachinglB from lA

+ EQ(st+k)

[
H(P (ot+k|st+k))

]
︸ ︷︷ ︸

observation ambiguity

.

(1)

The first term is a KL divergence between the expected states to visit starting
at location lA and executing plan π, and the state distribution expected at loca-
tion lB . The second term penalizes paths that are expected to yield ambiguous
observations.

We can now use G(lA, lB) to weigh each move between two close locations (the
number of path grows exponentially the further the objective is), even through
ways not explored before, and plan for the optimal trajectory towards a goal
destination. In the next section, we work out a practical example using a grid-
world environment.

4 Experiments

4.1 MiniGrid Setup

The experiments were realised in a MiniGrid environment [12] of 2×2 up to 5×5
rooms, of sizes going from 4 to 7 tiles and having a random floor color chosen
among 6 options : red, green, blue, purple, yellow and grey. Rooms are connected
by a single open tile, randomly spawned in the wall. The agent has 3 possible
actions at each time step: move one tile forward, turn 90◦ left or turn 90◦ right.
It can’t see through walls and can only venture into an open grid space. Note
that the wall blocking vision is not really realistic and the agent can see the
whole room if there is an open door in its field of view, thus even if part of
the room should be masked by a wall (eg. Fig. 2C raw observation). It can see
ahead and around in a window of 7×7 tiles, including its own occupied tile. The
observation the agent receives is a pixel rendering in RGB of shape 3× 56× 56.

4.2 Model Training and Map Building

Our hierarchical generative model was set up in similar fashion as [4]. To train
the lower level of the generative model, which consists of deep neural networks,
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A)

B)

C)

Fig. 2. MiniGrid test maze and associated figures, A) An example of the maze with
a reachable goal (door open allowing shortcut) and the agent path toward a home-
run’s starting point, the transparent grey box correspond to the agent’s field of view at
the starting position. B) The topological map of the path executed in A as generated
by the high level of our generative model, C) The currently observed RGB image as
reconstructed by the agent’s model at the end of path and the view at the desired goal
position. (Color figure online)

we let an agent randomly forage the MiniGrid environments, and train those
end to end by minimising the free energy on those sequences. Additional model
details and training parameters can be found in Appendix A.

The high level map is also built using the same procedure as [4]. However,
since we are dealing with a grid-world, distinct places in the grid typically yield
distinct location nodes in the map, unless these are near and actually yield
identical observations. Also, we found that predicting the effect of turning left
or right was harder for neural networks to predict, yielding a higher surprise
signal. However, despite these limitations, we can still demonstrate the main
contribution of this paper.

4.3 Home Run

Inspired by the mice navigation in [7], we test the following setup in which the
agent first explores a maze, and at some point is provided with a preference of
returning to the start location. Figure 2 shows an example of a test environment
and associated trajectories realised by the agent. At the final location, the agent
is instructed to go back home, provided by the goal observation in Fig. 2C.
Figure 2B illustrates the map generated by the hierarchical model.

First, we test whether the agent is able to infer whether it can reach the
starting node in the experience map from the current location. We do so by
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Fig. 3. Lowest expected free energy of each end position after 5 steps. The right figure
shows the agent at position (0,0) facing the goal at position (0,5), as represented in
Fig. 2A i). In the left figure, the door is open, therefore the goal is reachable, on the
right figure the door is closed, the goal cannot be reached in 5 steps.

imagining all possible plans π, and evaluating the expected free energy of each
plan over an average of N = 3 samples from the model. Figure 3 shows the EFE
for all reachable locations in a 5 steps planning horizon. It is clear that in case
the door is open, the agent expects the lowest free energy when moving forward
through the door, expecting to reach the start node in the map. In case the
path is obstructed (the door as in 2A, allowing a shortcut, is closed), it can still
imagine going forward 5 steps, but this will result in the agent getting stuck
against the wall, which it correctly imagines and reflects on the EFE.

However, the prior model learnt by the agent is far from perfect. When
inspecting various imagined rollouts of the model, as shown in Fig. 4, we see
that the model has trouble encoding and remembering the exact position of the
door, i.e. predicting the agent getting stuck (top) or incorrect room colours and
size (bottom). While not problematic in our limited proof of concept, also due
to the fact that the EFE is averaged over multiple samples, this shows that the
effectiveness of the agent will be largely dependent on the accuracy of the model.

To test the behaviour in a more general setting, we set multiple home-run
scenarios, where the agent’s end position is d = 5, 6, 7, 9 steps away from the
start location. For each d, we sample at least 20 runs over 4 novel 2 × 2 rooms
environment, with different room sizes and colours, similar to the train set, in
which 10 have an open door between the start and goal, and 10 have not. We
count the average number of steps required by the agent to get back home,
and compare against two baseline approaches. First is the Greedy algorithm,
inspired by [13], in which the agent greedily navigates in the direction of the
goal location, and follows obstacles in the known path direction when bumping
into one. Second is a TraceBack approach, which retraces all its steps back
home, similar to Ariadne’s thread. Our approach uses the EFE with a planning
horizon of d to decide whether or not the home node is reachable based on a
fixed threshold, and falls back to planning in the hierarchical model, which boils
down to a TraceBack strategy (Table 1).
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Table 1. Home run strategies and the resulting number of steps, for different distances
d to home, and open versus closed scenarios. For small d our model correctly imagines
the outcome. For d = 9 the agent infers an open door about 27% of the time.

Open Closed
d Greedy TraceBack Ours Greedy TraceBack Ours

5 5 25 6.5 29.5 25 25
6 6 31 6 41 31 31
7 7 27 11.5 31.5 27 27
9 9 36 23.7 46 36 36

In case of small d (≤6), our approach successfully identifies whether the goal
is reachable or not, even when the agent is not facing it, which results in a
similar performance for a Greedy approach in the ‘open’ case, and a reverting to
TraceBack in the ‘closed’ case. There is been only one exception in our test-bench
at 5steps range issued by a reconstruction error on all samples (the occurrence
probability is 0.04% as having a sample wrongly estimating the door position at
5steps is 33%). For d = 7 our model misses some of the shortcut opportunities,
as the model’s imagination becomes more prone to errors for longer planning
horizons. For d = 9, the rooms are larger and the wall separating the two rooms
is actually not visible to the agent. In this regime, we found the agent imagines
about 27% of the time that it will be open, and takes the gamble to move towards
the wall, immediately returning on its path if the wall is obstructed.

Fig. 4. Three imagined trajectories of a 5-steps projection moving forward. The trained
model is not perfectly predicting the future, only the middle sequence predicts the
correct dynamics.
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5 Discussion

Our experiments show that using the EFE of imagined paths can yield more
optimal, goal-directed behaviour. Indeed, our agent is able to imagine and exploit
shortcuts when planning its way home. However, our current experimental setup
is still preliminary and we plan to further expand upon this concept. For instance
we currently arbitrarily set the point at which the agent decide to home-run. In a
real experiment, the mice likely decide to go home due to some internal stimulus,
e.g., when they get thirsty and head back home where water is available. We
could further develop the experimental setup to incorporate such features and
do a more extensive evaluation.

One challenge of using the Minigrid environment as an experimental setup
[12] is the use of top view visual observations. Using a pixel-wise error for learning
the low-level perception model can be problematic, as for example the pixel-wise
error between a closed versus an open tile in the wall is small in absolute value,
and hence it’s difficult to learn for the model, as illustrated in Fig. 4. A potential
approach to mitigate this is to use a contrastive objective instead, as proposed
by [14].

Another important limitation of the current model is that it depends on
the effective planning horizon of the lowest level model to imagine shortcuts.
Especially in the Minigrid environment, imagining the next observation for a
90◦ turn is challenging, as it requires a form of memory of the room layout to
correctly predict the novel observation. This severely limits the planning horizon
of our current models. A potential direction of future work in this regard is to
learn a better location, state and pose mapping. For instance, instead of simply
associating locations with a certain state and pose, conditioning the transition
model on a learnt location descriptor might allow the agent to learn and encode
the shape of a complete room in a location node.

Other approaches have been proposed to address the navigation towards a
goal by the shortest way possible in a biologically plausible way. For instance,
Erdem et al. [15] reproduced the pose and place-cell principle of the rat’s hip-
pocampus with spiking neural networks and use a dense reward signal to drive
goal-directed behaviour, with more reward given the closer the agent gets to
the goal. Hence, the path with the highest reward is sought, and trajectories on
which obstacles are detected are discarded. In Vegard et al. [13], the process is
also bio-inspired, based on the combination of grid cell-based vector and topolog-
ical navigation. The objective is now explicitly represented as a target position
in space, which is reached by vector navigation mechanisms with local obstacle
avoidance mediated by border cells and place cells. Both alternatives also adopt
topological maps and path integration in order to reach their objective. However,
both exhibit more greedy and reactive behaviour, whereas our model is able to
exploit the lower level perception model to already predict potential obstacles
upfront, before bumping into those.
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6 Conclusion

In this paper we have proposed how a hierarchical active inference model can
be used to improve planning by predicting novel, previously unvisited paths.
We demonstrated a proof of concept using a generative model learnt from pixel
based observations in a grid-world environment.

As future work we envision a more extensive evaluation, comparing shallow
versus deep hierarchical generative models in navigation performance. Moreover,
we aim to address several of the difficulties of our current perception model, i.e.
the limitations of pixel-wise prediction errors, the limited planning horizon, and a
more expressive representation for locations in the high level model. Ultimately,
our goal is to deploy this on a real-world robot, autonomously exploring, planning
and navigating in its environment.

Acknowledgment. This research received funding from the Flemish Government
under the “Onder- zoeksprogramma Artificiële Intelligentie (AI) Vlaanderen” pro-
gramme.

A Model Details and Training

In this appendix, we provide some additional details on the training data, model
parameters, training procedure and building the hierarchical map.

A.1 Training Data

To optimize the neural network models a dataset composed of sequences of
action-observation pairs was collected by human demonstrations of interaction
with the environment. The agent was made to move around from rooms to
room, circle around and turn randomly. About 12000 steps were recorded in 39
randomly created environments having different room size, number of rooms,
open door emplacements and floor colors, as well as the agent having a random
starting pose and orientation. 2/3 of the data were used for training and 1/3 for
validation. Then a fully novel environment was used for testing.

A.2 Model Parameters

The low level perception model is based on the architecture of [10], and is com-
posed of 3 neural networks that we call: prior, posterior and likelihood.

The prior neural network consists in a LSTM layer followed with a variational
layer giving out a distribution (i.e. mean and std).

The posterior model first consists of a convolutional network to compress sen-
sor data. This data is then concatenated with the hot encoded action and the
previous state, all of that is then processed by a fully connected neural network
coupled with a variational layer to obtain a distribution.
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The likelihood model performs the inverse of the convolutional part of the
posterior, generating an image out of a given state sample.

The detailed parameters are listed in Table 2.

A.3 Training the Model

The low level perception pipeline was trained end to end on time sequences of 10
steps using stochastic gradient descent with the minimization of the free energy
loss function [10]:

FE =
∑

t

DKL[Q(st|st−1, at−1, ot)||P (st|st−1, at−1)] − EQ(st)[logP (ot|st)]

The loss consists of a negative log likelihood part penalizing the error on
reconstruction, and a KL-divergence between the posterior and the prior distri-
butions on a training sequence. We trained the model for 300 epochs using the
ADAM optimizer [16] with a learning rate of 1·10–4.

Table 2. Models parameters

Layer Neurons/Filters Stride

Prior Concatenation
LSTM 200
Linear 2*30

Posterior Convolutional 16 2
Convolutional 32 2
Convolutional 64 2
Convolutional 128 2
Convolutional 256 2
Concatenation
Linear 200
Linear 2*30

Likelihood Linear 200
Linear 256*2*2
Upsample
Convolutional 128 1
Upsample
Convolutional 64 1
Upsample
Convolutional 32 1
Upsample
Convolutional 16 1
Upsample
Convolutional 3 1
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A.4 Building the Map

The high level model is implemented as a topological graph representation, link-
ing pose and hidden state representation to a location in the map. Here we reuse
the LatentSLAM implementation [6] consisting of pose cells, local view cells and
an experience map.

The pose cells are implemented as a Continuous Attractor Network (CAN),
representing the local position x, y and heading θ of the agent. Pose cells rep-
resent a finite area, therefore the firing fields of a single grid cell correspond to
several periodic spatial locations.

The local view cells are organised as a list of cell, each cell containing a hidden
state representing an observation, the pose cell excited position, and the map’s
experience node linked to this view. After each motion, the encountered scene
is compared to all previous cells observation by calculating the cosine distance
between hidden state features. If the distance is smaller than a given threshold,
then the cell corresponding to this view is activated, else a new cell is created.

The experience map contains the experience of the topological map. It gives
an estimate of the agent global pose in the environment and link the pose cell
position with the local view cell active at this moment. If those elements do not
match with any existing node of the map, a new one is created and linked to the
previous experience, else a close loop is operated and the existing experiences
are linked together.
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Abstract. While the underlying dynamics of active inference communication
and cumulative culture have already been formalized, the emergence of novel
cultural information from these dynamics has not yet been understood. In this
paper, we apply an active Inference framework, informed by genetic speciation,
to the emergence of innovation from a population of communicating agents in a
cumulative culture. Our model is premised on the idea that innovation emerges
from accumulated cultural information when a collective group of agents agree
on the legitimacy of an alternative belief to the existing (or- status quo) belief.

Keywords: Active inference · Innovation · Communication · Cumulative
culture · Cultural dynamics

1 Introduction

The dynamics underlying cultural evolution include the introduction of novel cultural
information to a population (i.e., innovation), the transmission of established cultural
information within a population (i.e., communication), and its change in prevalence (i.e.,
cumulative culture) (Kashima et al. 2019).

While there is a fast growing bodyof theoretical and empiricalwork on characterizing
these dynamics (Aunger 2001; Buskell et al. 2019; Bettencourt et al. 2006; Creanza et al.
2017; Dawkins 1993; Dean et al. 2014; Dunstone andCaldwell 2018; Enquist et al. 2011;
Gabora 1995; Heylighen and Chielens 2009; Kashima et al. 2019; Richerson et al. 2010;
Stout and Hecht 2017; Weisbuch et al. 2009) mathematical models able to integrate this
data into quantifiable models are scarce.

In 2015, Friston & Frith provide a quantitative model of joint communication and
show that communication couples the internal states of active-inference agents and
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underwrites a minimal form of generalized synchrony between their internal states at a
level of abstraction that allows us to characterize a statistical coupling even for agents
operating with fundamentally different underlying neurobiological structures. Kastel
and Hesp (2021) build on this and cast cultural transmission as a bi-directional process
of communication. The idea is that when active inference agents communicate, they are
able to understand each other by referring to their own generativemodel and inferring the
internal state of the other from their behavior. This couples communicating agents in an
action perception cycle of prediction and inference that induces a generalized synchrony
between their internal states. Kastel & Hesp operationalise this generalized synchrony
as a particular convergence between the internal states of interlocutors such that distinct
belief states converge into one shared belief, and in that sense modify both of the original
“parent” belief states.

The simulation of these local communication dynamics (and specifically-the conver-
gence and subsequent modification of the belief state of each communicating agent) also
serves as the basis from which to build a full blown cumulative culture model (Kastel
and Hesp 2021). Cumulative culture is an emerging and prominent theory of cultural
evolution which describes cultural traits as being slightly modified with every trans-
mission such that over time these modifications accumulate to bring about an adaptive
culture. Though cumulative culture is a powerful theory in that it faithfully represents
the complex nature of societal change, this complexity is exceptionally challenging to
formalize in quantitative models. Kastel &Hesp provided an active-inference formaliza-
tion of cumulative culture by casting it as the emergence of accumulated modifications
to cultural beliefs from the local efforts of agents to converge on a shared narrative.
As a proof of principle for this hypothesis, they simulate a population of agents that
interchangeably engage in dialogue with each other over time. When a divergent belief
state is introduced to a uniform population holding (variations of) a status quo belief, it
spreads through it and brings about a cumulative collective behavior of separation and
isolation between groups holding distinct beliefs.

While they provide a sufficient formulation of theway slightmodifications to cultural
information occur during communication (previously understood as transmission) and
shown how the accumulation of these dynamics affect an entire population (i.e., cumu-
lative culture), Kastel & Hesp did not provide an account of the way novel information
(i.e., the hypothesized belief state) is introduced into a population to begin with.

Within a cumulative culture framework, innovation is interpreted as the emerging
property of a complexity of exchanges between agents, as opposed to the result of the
mental effort of an exceptionally skillful individual. Indeed, emerging theories have
put forward the suggestion that inventors and entrepreneurs are not “the brains” behind
a creative idea, but are the product of a collective cultural brain (Muthukrishna and
Henrich 2016). Their ideas do not stand in competition or comparison with other agents
in the population, but are better understood as a nexus for previously isolated ideas
within it. This cumulative approach to cultural innovation is supported by empirical
findings showing that innovation rates are higher in cultures with high sociality (i.e. large
and highly interconnected populations that offer exposure to more ideas), transmission
fidelity (i.e. better learning between agents) and transmission variance (i.e. a willingness
to somewhat deviate from the accepted learned norms (Muthukrishna andHenrich 2016).
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The theory of innovation as the emerging property of a complex cultural “brain” is
compatible with the theory of cumulative culture and with empirical data, but it does not
provide a specific account of the mechanism by which innovation may be achieved and
novel cultural beliefs and practices introduced into a population.

This paper provides an active-inference based theoretical account of Innovation as the
emergence of novel cultural information from a cumulative culture. This novel account
of innovation derives inspiration from the way novelty emerges in biology, namely,
through a process of genetic speciation.

2 The Emergence of Innovation

2.1 Speciation in Biology

We propose that it may prove constructive to draw on specific analogies between the way
novel cultural beliefs and practices emerge within a culture and the emergence of a new
species in the context of biological evolution,while remaining sensitive to points atwhich
such analogies break down. In nature, speciation occurs when a group of organisms from
a particular species are separated from their original population, thus encouraging the
development of their own unique characteristics. These new characteristics increasingly
differentiate the two population groups when their differences grow larger as the two
groups reproduce separately due to their separate environments or characteristics. Across
generations, genetic differences between the old and new group become so large that
they are no longer able to create offspring (i.e. mechanisms of reproductive isolation),
thus highlighting the status of the subgroup as an entirely new species in its own right
(Rundle and Nosil 2005).

A classic example of speciation is that of the Galápagos finch. Different species of
this bird inhabit separate environments, located on different islands of the Galápagos
peninsula. Over time and numerous generations, separate populations of finches devel-
oped a variety of beak morphologies, each group’s morphology appearing to be adapted
specifically to the feeding opportunities available on their island. While one group had
developed long and thin beaks, ideal for probing cactus flowers without getting injured
by the cactus, other finches developed large and blunt beaks that were perfect for nut
cracking. Due to the reproductive isolation of these birds (geographic based, in this case),
they developed into separate species with their own unique features.

2.2 Innovation as Cultural Speciation

Before discussing possible similarities between biological speciation and cultural inno-
vation, a crucial difference between them should be noted. Mechanisms of biological
reproductive isolation prevent members of different species from producing offspring
or, in edge cases, render such offspring sterile (Palumbi 1994). In contrast, cultural evo-
lution frequently involves cross-talk between different branches of the cultural tree – as
different cultures have tended to co-opt and refurbish each other’s beliefs and practices.
While horizontal gene transfer is exceedingly rare in biology, cultural evolution has
experienced some of its greatest accelerations precisely due to transmission of beliefs
and practices across diverse cultures.
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Fig. 1. A visual representation of speciation in genetics and its model in culture and active infer-
ence. Each model of speciation requires the existence of an original population that diverges
through a process of group isolation such that each group develops its own unique characteristics
and features. (A) genetic speciation in the galapagos finch. Geographic reproductive isolation
broke up the original population of finches into those inhabiting separate islands with different
selective pressures. Due to the differences in selective pressures, the separated populations devel-
oped a variety of beak morphologies that distinguished them from each other. (B) A model of
speciation in religious practices. The divergence of early christians from the established jewish
religion on the basis of differing interpretations of jewish scripture is modeled as a form of cul-
tural isolation. While early Christians interpreted jewish eschatology as foretelling the arrival of a
divine jewish seviour, conservative jews interpreted the same scripture as ascribing royalty to this
envisioned liberator, but not divinity of any kind. As these separate streams of cultural beliefs and
practices developed their own unique set of characteristics (i.e., traditions, beliefs and followers)
they were no longer recognisable as part of the same religion at all and Christianity emerged as an
established religion. (C) An active inference model of speciation in a cumulative culture (Kastel
and Hesp 2021). When an intractably divergent belief state is introduced to a largely status quo
population, locally parameterised efforts to minimize free energy bring about a self organized
divergence in the population, which aligns with the process of reproductive isolation. Speciation
is qualitatively observed in these simulations and is plausible under an active inference framework
when representations within belief groups homogenize (i.e. shared expectations between agents
emerge from a collective effort to minimize free energy). For detailed information on the method-
ology, and architecture of the generative model used to generate these simulations see Appendix
A & B).

This crucial difference may be seen as a threat to a possible analogy between specia-
tion and innovation because the former is made possible by virtue of a complete isolation
between subgroups of a population, while such rigid isolation is not usually the case in
culture. In theory this might lead to the logical conclusion that cultural speciation is
simply not a possibility, because different branches of the cultural tree would not be able
to maintain their characteristic integrity (as different species do) when external influ-
ences are so prevalent that they threaten any possibility for group level cultural stability.
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Despite this undoubtedly logical concern, we have hard indisputable observational evi-
dence of the existence of different nations, religions and cultural practices that have
maintained their integrity for hundreds and even thousands of years in spite of cultural
cross talk. This teaches us that novelty in culture is able to emerge despite perturbations
from external forces to cultural ‘bubbles’ of communicative isolation.

For instance, Judaism is an example of a religion that has rather successfully main-
tained its cultural integrity despite being highly susceptible to external cultural and
religious influences throughout history. That being said, practicing Judaism today is still
unmeasurably different than it would have been 3000 years ago, a fact pointing to inter-
nal changes in culture while its characterizing features and socio-cultural boundaries
remain at least partially intact. This can be well explained by an account of cumulative
cultural dynamics (Kastel and Hesp 2021). Internal changes to the Jewish religion can
be attributed to an accumulation of incremental modifications that occurred with every
generation (and within generations) through the communication of religious practices
within the community, with relatively minimal (though still unavoidable) blending and
mixing with Roman or Christian religious traditions and beliefs.

According to our account so far, each transmitted belief is translated and fitted to
a specific phenotype-congruent representation of that belief state on the receiving end
of the exchange (Kashima et al. 2019). Individual “private” representations of cultural
beliefs therefore fuse together to create new representations of old traditions, such that
cultural reproduction consists in the facilitation of different subjective representations
of the same belief state, where “sameness” is in turn derived completely from sub-
jective interpretations inherent to each individual’s communicative capacity (e.g., their
language). Our account is therefore capable of capturing the way a culture evolves
internally, without much need for (and even despite!) external influences.

Importantly, we suggest that it might also be possible to describe and even model
the way innovation emerges from these dynamics, in a form of cultural speciation.

Our model leaves the notion of a cultural speciation purposefully abstract, Such that
it may take on the form of any event, fashion, ideology, preference, language or behavior
that, in time, separates between two identifiable streams of culture.

To give a concrete example of what might be meant by this, we return to the slightly
thorny subject of religion, and specifically, the speciation (i.e., cultural differentiation)
of Christianity in the context of Judaism. This discussion is intended as an illustration
of divergence of belief and practices, without judging the value of their content per
se, in light of a specific point of disagreement. It should not be taken as an exhaustive
treatment of differences between Judaism and Christianity. Historically, early Christians
diverged from the established Jewish religion, at least partly on the basis of differing
interpretations of Jewish scripture (as referred to in panel (B) of Fig. 1). According to
Jewish eschatology (i.e., Jewish scholars’ interpretations of their scriptures with regard
to the end of times) At the time, a Jewish king referred to as “messiah” (savior) and
“son of David” (a descendent from the Davidic line) would rise to rule the Jewish peo-
ple and bring them salvation from their hardships. Early Christians believed that Jesus
of Nazareth fulfilled the criteria for being that promised savior (Lucass 2011, p. 4–6)
A critical divergence between the interpretation of early Christians and conservative
Jews, was that the characteristics of the “messiah” – according to the interpretation
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of conservative Jews – did not (and for religious reasons, could not) include divinity
of any kind but merely plenty of charisma and leadership that would lead to royalty.
The emergence of these distinct interpretations, or incompatible representations for the
belief in the prophecy of a messiah could be seen as the speciation event that accel-
erated the differentiation of Christianity from Judaism (Fig. 1B). As one example of
direct behavioral incompatibility stemming from these divergent interpretations, early
Christians believed that Jesus had “fulfilled” the religious law brought by Moses and
quickly discarded adherence to, e.g., Jewish dietary laws, circumcision, and sacrificial
practices (see, e.g., the Council of Jerusalem described in the Book of Acts, chapter 15;
estimated to have taken place around 50 AD). Cultural reproductive isolation followed
as these separate streams of cultural beliefs and practices developed their own unique
set of characteristics, traditions, beliefs and followers – until they were no longer recog-
nisable as part of the same religion at all and Christianity emerged as an established
religion (Boyarin 1999, p. 1–22). An interesting recent example of further “speciation
event” in this regard is the recent (20th century) emergence of “Messianic Judaism”, a
syncretic Christian movement that mixes adherence to Judaic laws with acceptance of
Jesus Christ as the messiah (Melton 2005).

This is only one example of the type of speciation that might take place within
a cultural arena, and it represents a direct analogy to one of four types of biological
speciation (Rundle and Nosil 2005). Our particular example corresponds to sympatric
speciation, which occurs when genetic polymorphism causes two groups from the same
species to evolve differently until they can no longer interbreed and are considered
separate species. Our Galápagos finch example, on the other hand, was an example of
allopatric biological speciation, in which a particular geographic barrier prevents groups
of the same species from interbreeding until they undergo genotypic divergence to the
point of reproductive isolation, where they are also considered different species. Our
simulations focus on the sympatric form of cultural speciation, although we assume that
parallels can be made for all four types of biological speciation.

2.3 Innovation in Active Inference

In active inference, the attunement of interlocutor’s generative models on the microscale
translates over time and with multiple encounters into collective free energy minimi-
sation on the macroscale. Kastel and Hesp (2021) (Fig. 1C) show that simulations of
cumulative culture are aligned with this premise when locally parameterised efforts to
minimize free energy by individual agents bring about a self organized separation in the
population when an intractably status-quo-divergent belief is introduced. In other words,
it would appear that simulations cumulative cultural dynamics imitate reproductive iso-
lation when separate belief groups (i.e. blue and red in these simulations) diverge and
communicate in observable isolation from one another. Cultural speciation, while not
specifically observed in these simulations, is plausible under an active inference frame-
work when representations within belief groups homogenize (i.e. shared expectations
between agents emerge).

While this paper is limited to theorizing about the emergence of innovation from
a cumulative culture diffusion, there is a great deal of potential for future modeling
work in this field. Such work should include at least two added components to our
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theoretical account in order to provide a consistent and completemodel of the emergence
of innovation from the cumulative culture dynamics provided byKastel andHesp (2021).

First, both reproductive (i.e., communicative) isolation and speciation need to be
simulated in a formalized model of active inference. Communicative isolation between
groups holding divergent beliefs should be quantifiable and should emerge naturally
from local (agent based) free energy minimization. Similarly, cultural speciation should
be operationalised and simulated as collective free energyminimization that brings about
the emergence of shared representations within groups.

Secondly, and most importantly, A novel belief state should naturally emerge from
these dynamics as opposed to being synthetically introduced into the population, as was
done in our simulations. This should involve the design of a new paradigm for simulat-
ing the natural emergence of a sufficiently divergent belief state from the dynamics of
cumulative culture, namely, from the accumulation of modifications to cultural infor-
mation. What this means is that contrary to being mechnichally placed in the population
in a manner that allows belief states to remain abstract, a belief state that emerges from
several modifications on it will need to refer back to the complex content (namely, the
manifold of alterations) that brought it about.

For the emerging belief state to be “sufficiently divergent” from a status quo popula-
tion, it needs to be dissimilar to the status quo belief to a degree that is large enough that
it creates a desired level of isolation between belief-groups (i.e. each group maintains
its integrity), but not so large that communication with the first agent holding this belief
becomes completely impossible. Note that the latter condition is simply the assumption
in active inference for the possibility of communication. Namely, that for agents to arrive
at a hermeneutic resolution and be able to understand each other, they must employ suf-
ficiently similar generative models (Friston and Frith 2015). When this is not the case,
and agents employ intractably dissimilar cultural beliefs, they will not be able to refer
to their own generative model to infer the internal state of another from their behavior.

We arrive at an interesting, Goldilocks precondition for the emergence of a novel
belief from cumulative cultural dynamics. A novel belief that emerges from the mixing
and merging of beliefs over time should be neither too divergent, nor too similar to
the status quo belief. When the former is the case, the agent that suddenly emerges
with a potentially novel belief, has in his mind an idea so unique and exclusive that it
is incomprehensible and unrelatable to other members of the population. On the other
hand, if the latter is the case, and an agent emerges with a belief that is too similar to the
status quo, his belief does not differ enough from the status quo to be isolated from it as
a separate stream.

In conclusion, the theory of innovation we have discussed defines exactly the differ-
ence between a belief state that is only slightly modified during communication, and one
that is considered novel. For cultural beliefs and practices to be slightly modified such
that they continue to evolve, they need only comply with the hermeneutic condition and
allow for communication between agents carrying this information to exchange ideas.
This conclusion is derived from the theories and formulations of communication and
cumulative culture brought forward in Kastel and Hesp (2021). Innovation, however,
seems to have harsher requirements. It needs to comply with both the hermeneutic con-
dition (i.e., needs to be sufficiently similar to the status quo) as well as an “isolation
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condition” (i.e., needs to be sufficiently divergent from the status quo). This conclusion
is derived from theories brought forward in this paper, which provides a solid foundation
on which to build a complete account of cultural dynamics.

A formalized account of innovation as an emergent property from the cumulative
dynamics presented in this proposal would bring the circular dynamics of a complex
culture to a satisfying close. Under such an account, not only would cumulative culture
naturally emerge from a complex communication network of agents (as shown in Kastel
and Hesp (2021)), but innovation would emerge from cumulative culture and underlie
communication in a repeating, recursive loop that is the hallmark of complex dynamical
systems.

3 Conclusions

We discuss a possible theory of innovation as the emergent property of cumulative
cultural dynamics. We suggest that innovation emerges when gradual modifications to
cultural information spontaneously produce a “sufficiently divergent” belief state that
meets a goldilocks condition of being neither too similar, nor too conflicting with the
status quo in the population. If the former is not met, communication with the agent
holding this beliefwill not result in coordinationwithmembers of the existing population,
and the alternative beliefwill not propagate. If the latter is notmet, its propagationwill not
create the level of isolation necessary between belief groups for each group to maintain
its integrity to be considered novel at all.

Appendix A - Methodology for Simulating the Dynamics
of Cumulative Culture

A.1 Simulating the Local Dynamics of Communication

In our model, cultural transmission is cast as the mutual attunement of actively inferring
agents to each other’s internal belief states. This builds on a recent formalization of
communication as active inference (Friston and Frith 2015) which resolves the problem
of hermeneutics, (i.e., provides a model for the way in which people are able to under-
stand each other rather precisely despite lacking direct access to each other’s internal
representations of meaning) by appealing to the notion of generalized synchrony as sig-
naling the emergence of a shared narrative to which both interlocutors refer to. In active
inference, this shared narrative is attained through the minimisation of uncertainty, or
(variational) free energy when both communicating parties employ sufficiently similar
generative models. We build on this to suggest that having sufficiently similar generative
models allows communicating agents to recombine distinct representations of a belief
(expressed as generative models) into one synchronized, shared model of the world
(Fig. 2). When we simulate the belief-updating dynamics between interacting agents,
the cultural reproduction of a particular idea takes the form of a specific convergence
between their respective generative models.

Under this theory, the elementary unit of heritable information takes the form of
an internal belief state, held by an agent with a certain probability. When we simulate
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the belief-updating dynamics between interacting agents, a reproduced cultural belief
is carried by the minds (or generative models) of both interlocutors as a site of cultural
selection, where it may be further reproduced through the same process. Our simulations
of communication involve two active inference agents with distinct generative models
and belief claims that engage in communication over a hundred time steps.

A.2 Simulating the Global Dynamics of Cumulative Culture

Cultural beliefs and practices spread within a society through communication, a process
which we have referred to as the local dynamics of cumulative culture. This description
is appropriate because the accumulated outcomes of each (local) dyadic interaction
collectively determine the degree to which an idea is prevalent in a culture. Moving
from local communication dynamics to a degree to which an idea is prevalent in a
cumulative culture is what we refer to as the global dynamics of cumulative culture.

In our simulations of a cumulative culture, 50 active inference agents simultaneously
engage in local dyadic communication as shown in our first simulation, such that 25 cou-
ples are engaged in conversation at every given time step. At the first time step, all agents
have relatively similar belief states- referred to as the status quo. When we introduce
an agent holding a divergent belief state to that of the status quo in the population, it
propagates through it via pseudo-random engagements of agents in dialogue. In a simu-
lated world of actively inferring agents, their individual mental (generative) models are
slightly modified with every interlocutor they encounter, as their distinct representations
converge to a shared narrative (Constant et al. 2019). The attunement of interlocutor’s
to each other’s generative models on the microscale thus translates over time and with
multiple encounters into collective free energy minimisation on the macroscale.

Appendix B - Generative Model Architecture, Factors
and Parameters

In our simulations, agents attempt to convince each other of a cultural belief by utilizing
generative models that operate with local information only. For the establishment of
such generative models, we will formulate a partially observedMarkov decision process
(MDP), where beliefs take the form of discrete probability distributions (for more details
on the technical basis for MDP’S under an active inference framework, see Hesp 2019).

Under the formalism of a partially observed Markov decision process, active infer-
ence entails a particular structure. Typically, variables such as agent’s hidden states (x,
s), observable outcomes (o) and action policies (u) are defined, alongside parameters
(representing matrices of categorical probability distributions).

B.1 Perceptual Inference

The first level of this generative model aims to capture how agents process belief claims
they are introduced to through conversation with other agents. The perception of others’
beliefs (regarded in active inference as evidence) requires prior beliefs(represented as
likelihood mapping A1 about how hidden states (s1) generate sensory outcomes (o).
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Fig. 2. Communication Coupling Parameters. Our model defines two groups of parameters that
couple the internal states of agents: Learning and inference. Perceptual learning (A2) is the learn-
ing of associations between emotional valence and belief states that guide the long term actions of
our agents who hold and express beliefs. This learning happens at slow time scales, accumulating
across multiple interactions and used to modify models over extended periods of exchange. Per-
ceptual Inference (A1) – namely, sensitivity to model evidence – operates on fast time scales and
is direct and explicit to agents during dialogue. Importantly, we hypothesized that without precise
evidence accumulation, agents would be insensitive to evidence regarding the belief state of the
other, and their internal states would not converge.

Specifically, our agents predict the likelihood of perceiving evidence toward a particular
expressed belief, given that this belief is “the actual state of the world”. Parameterizing
an agent’s perception of an interlocutor’s expression of belief in terms of precision
values can be simply understood as variability in agents’ general sensitivity to model
evidence. High precisions here correspond to high responsiveness to evidence for a
hidden state and low precisions to low responsiveness to evidence. Precisions for each
agent were generated from a continuous gamma distribution which is skewed in favor
of high sensitivity to evidence on a population level (See Fig. 2 & Fig. 3: Perception).

B.2 Anticipation

At this level, our generative model specifies agents’ beliefs about how hidden states
(detailed in Appendix A2) evolve over time. State transition probabilities [B1] define a
particular value for the volatility of an agent’smeeting selection (s2) andbelief expression
(s1) [B1]. For each agent, this precision parameter is sampled from a gamma distribution,
determining the a priori probability of changing state, relative to maintaining a current
state. Note that belief states themselves are defined on the continuous range<0, 1> (i.e.,
as a probability distribution on a binary state), such that multiplication tends to result in
a continuous decay of confidence over time in the absence of new evidence (where the
rate of decay is inversely proportional to the precision on B) (See Fig. 3: Anticipation).
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Fig. 3. A generative model of communication. Variables are visualized as circles, parameters as
squares and concentration parameters as dark blue circles. Visualized on a horizontal line from left
to right-states evolve in time. Visualized on a vertical line from bottom to top- parameters build
to a hierarchical structure that is in alignment with cognitive functions. Parameters are described
to the left of the generative model and variables are described on the right.

B.3 Action

After perceiving and anticipating hidden belief states in the world, our agents carry out
deliberate actions biased towards the minimum of the expected free energy given each
action (a lower level generative model for action is detailed in Appendix A4 and A5).
At each time point, a policy (U) is chosen out of a set of possible sequences for action.
In our simulations, two types of actions are allowed: selecting an agent to meet at each
given time point (u2) and selecting a specific belief to express in conversation (u1). The
first allowable action holds 50 possible outcomes (one for each agent in the simulation)
while the second is expressed on the range <0, 1>, where the extremes correspond to
complete confidence in denying or supporting the belief claim, respectively. Each policy
under the G matrix specifies a particular combination of action outcomes weighted by
its expected negative free energy value and a free energy minimizing policy is chosen
(See Fig. 3: Action).

Voluntary Meeting Selection. While the choice of interlocutor is predetermined in
a dyad, our multi-agent simulations required some sophistication in formulating the
underlying process behind agents’ selection for a conversational partner (s3) at each
of the hundred time points. Building on previous work on active inference navigation
and planning (Kaplan and Friston 2018), agents’ meeting selection in our model is
represented as a preferred location on a grid, where each cell on the grid represents a
possible agent to meet.

We demonstrate the feasibility of incorporating empirical cultural data within an
active inference model by incorporating (1) confirmation bias through state-dependent
preferences [C], biasing meeting selection through the risk component of expected free
energy (G) and (2) novelty seeking through the ambiguity component of expected free
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energy. The first form of bias reflects the widely observed phenomenon in psychology
research that people’s choices tend to be biased towards confirming their current beliefs
(Nickerson 1998). The second form of bias reflects the extent to which agents are driven
by the minimisation of ambiguity about the beliefs of other agents, driving them towards
seeking out agents they have notmet yet. For a detailed account on the process ofmeeting
selection in these simulations, the reader is referred to Kastel and Hesp 2021.

B.4 Perceptual Learning

On this level agents anticipate how core belief states (specified in Appendix A1) might
change over time [B2] (Fig. 2.3). This is the highest level of cognitive control, where
agents experience learning as a high cognitive function (higher level generative model
is detailed in Appendix A3). By talking with other simulated agents and observing
their emotional and belief states, our agents learn associations between EV and beliefs
via a high level likelihood mapping [A2], (updated via concentration parameter α).
The Updating of core belief, based on beliefs expressed by other agents, is detailed in
Appendix A7. This learning is important because it provides our agents with certainty
regarding the emotional value they can expect from holding the alternative belief to
the status quo, which has low precision at the beginning of the simulation (before the
population is introduced to an agent proclaiming this belief). The prior P(A) for this
likelihood mapping is specified in terms of a Dirichlet distribution.
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Abstract. Expectations play a critical role in human perception, cog-
nition, and decision-making. There has been a recent surge in modelling
such expectations and the resulting behaviour when they are violated.
One recent psychological proposal is the ViolEx model. To move the
model forward, we identified three areas of concern and addressed two
in this study - Lack of formalization and implementation. Specifically,
we provide the first implementation of ViolEx using the Active Inference
formalism (ActInf) and successfully simulate all expectation violation
coping strategies modelled in ViolEx. Furthermore, through this inter-
disciplinary exchange, we identify a novel connection between AIF and
Piaget’s psychology, engendering a convergence argument for improve-
ment in the former’s structure/schema learning. Thus, this is the first
step in developing a formal research framework to study expectation
violations and hopes to serve as a base for future ViolEx studies while
yielding reciprocal insights into ActInf.

Keywords: ViolEx · Active inference · Prior expectations ·
Formalization · FEP · Accommodation-Assimilation

1 Introduction

Human lives are rife with expectations, predictions, and anticipations in a vari-
ety of domains, fields, and facets of life, ranging from perception & attention
[20], cognition [9] to decision-making in economic and social spheres [12]. Expec-
tations are also said to play a crucial role in many psychological sub-fields like
Clinical Psychology (treatment expectations), Social Psychology (stereotypical
expectations), Developmental Psychology (performance expectations), and Cog-
nitive Psychology [21]. Given the importance of expectations in understanding
human behaviour, cognition, and its interdisciplinary nature, several psycholog-
ical models have been proposed to study it in depth [16,22].

Out of these, the Violated Expectations (ViolEx) model [21,25] has been
composed to unify the cognitive processes and behavioural responses of several
proposals in one comprehensive framework [21,22]. In its most recent formu-
lation, the ViolEx 2.0 model postulates four coping approaches in the context
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of expectations and expectation violation - two cognitive responses for expecta-
tion violations (accommodation, immunization) and two anticipatory (re)actions
(experimentation, assimilation).

Panitz et al. [21] provide a detailed description of these coping responses
at three different resolution levels. Here, elaborating on the conceptual level
will suffice. When a cognitive agent finds itself in a situation in the world, it
derives a situation-specific expectation from some generalized expectations. The
agent can take an anticipatory (re)action that leads to outcomes that confirm
the agent’s expectation and avoid expectation dis-confirmation (assimilation).
Alternatively, the agent can also behave to obtain expectation-relevant informa-
tion irrespective of whether the agent anticipates confirmation/dis-confirmation
of expectation (experimentation). Once a situational outcome is observed, the
agent compares it with its situation-specific expectation, and if there is a mis-
match between the two, it can cognitively respond by either integrating the
new information (accommodation) or not (immunization). Intuitively, one can
think of this whole process as acting to gain enough information about the world
(experimentation) to have precise expectations and then using the information to
produce desired/expected outcomes (assimilation). At the cognitive level, after
each action, the agent exercises belief updating to match the information (accom-
modation) or does not (immunization).

Despite the comprehensive aims of ViolEx 2.0, we have identified three inter-
connected areas of concern that need to be addressed to develop the model to its
full potential. First, there is a lack of implementation of the ViolEx model. Imple-
menting the model through computer simulations can help identify hypotheses
that would not have been considered before, make the model’s verbal assump-
tions mathematically precise, and show the theory’s mechanistic claims [29]. This
lack of implementation is because the current formulation of ViolEx does not
have a formalization of its constructs, which is our second concern. Finally, it
is unclear what the theoretical grounding of the ViolEx model is. Theoretical
grounding means the underlying theory of cognition and the philosophical com-
mitments on which the model bases its explanation, like Computational Theory
of Mind [11,18], or Embodied Theory of mind [4,5]. Such grounding and com-
mitment are crucial for experimental procedures [17], control groups setup [3]
and drawing valid conclusions from scientific models.

This third concern is beyond the scope of this paper. Below, we attempt to
address the first two concerns: formalize and implement ViolEx using Active
Inference (ActInf), a corollary process theory of the Free Energy Principle
(FEP). We first elucidate the reasons for using the ActInf formalism to imple-
ment ViolEx and observe that there are significant overlaps between the con-
structs of ViolEx and ActInf, even though they were developed from independent
disciplines: ViolEx has a historical root in (Developmental) Psychology, while
ActInf comes from Theoretical Neuroscience. We then situate the constructs
within the formalism and provide two simple generative models to implement
all four coping strategies of ViolEx [21,22].
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Furthermore, we leverage the historical origins of ViolEx and its partial over-
lap with Piaget’s psychology - Accommodation/Assimilation [16]. While the con-
cept of assimilation is significantly different between the two, accommodation
has considerable similarities, which we utilize to identify a gap in the ActInf
formalism, thus highlighting the mutual benefit of this interperspectival study.

2 Rationale for Active Inference and Generative Models

The FEP [14] is a potentially unifying principle from theoretical neuroscience,
which states that minimizing the information-theoretic free energy (upper bound
on surprisal) w.r.t a generative model is all that an agent has to do to main-
tain its organization adaptively [8,15]. Based on the FEP, the process theory
Active Inference was proposed to construct artificial agents that simulate neu-
rally plausible cognitive processes and behavioural tasks [13]. Apart from the
neuronal plausibility, ActInf offers two additional benefits for use in a ViolEx
context - an action-perception loop [7,24], and explore-exploit trade-off [19,28].
Pinquart et al. [22] proposed that ViolEx accounted for action and exploratory
behaviour better than other expectation-related models (which included Pre-
dictive Processing (PP)). However, unlike its predecessor PP, Bayesian models,
and Reinforcement Learning, ActInf provides a unique solution to both the above
arguments [28], making it a strong candidate to be used for formalizing ViolEx.
In later sections, we will return to how these two advantages play out while
elaborating on situating ViolEx in ActInf terms and highlighting the overlap
now.

2.1 Situating ViolEx

An active inference agent is governed by two free-energy equations - one for
perceptual inference and one for choosing actions, and a generative model w.r.t
which the agent minimizes these FEs. The variational free energy (VFE) used
for perceptual inference is given by Eq(s|o)[ln q(s|o) − ln p(s, o)], decomposed as1

V FE = DKL[q(s|o)||p(s)] − Eq(s|o)[ln p(o|s)] (1)

where q(s|o) is the approximate/variational posterior on the hidden states (s,
percepts) and p(s) is the prior belief on the hidden states derived from the gen-
erative model (also called the generative prior). p(o|s) reflects the predictive
accuracy of the agent’s sensory states o, which is averaged over the updated
model beliefs q(s|o). DKL = Eq(s|o)

[
ln q(s|o)

p(s)

]
is the Kullback-Leiber divergence

between the variational posterior and the prior which is zero if and only if the
two distributions are equal. With these definitions in mind, minimizing VFE is
interpreted as updating my prior beliefs to an approximate posterior such that
it maximizes my predictive accuracy for the observations while not being very
divergent from my prior beliefs. One can observe the striking similarity between
1 For a step-by-step guide on the decomposition of VFE and EFE, see Appendix.
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this FE functional and the cognitive responses in ViolEx. Integrating new infor-
mation and updating my belief to account for it (accommodation) corresponds
to maximizing the accuracy term of VFE. At the same time, immunization refers
to minimizing the divergence term DKL, which constrains this update, leading
to a discounting or even discarding sensory evidence.

The second free energy equation for inferring action is the Expected Free
energy (EFE), which is a direct extension of the VFE into the future, calculated
under the expectation of future observations and conditioned on a policy. It is
given by Eq(o,s|π)[ln q(s|π) − ln p(s, o)], decomposed as

EFE = −Eq(o,s|π)[ln q(s|o) − ln q(s|π)] − Eq(o,s|π)[ln p(o)] (2)

q(s|o) is the approximate posterior belief of hidden states under sensory
inputs o, whereas q(s|π) is the approximate prior belief of hidden states under
a policy π. The first expectation term, called ‘Epistemic value’ in ActInf lit-
erature, forces the agent to choose actions that reduce the uncertainty in its
state inference (q(s|o)) relative to its prior prediction (q(s|π)). Minimizing the
first term thus implies that policies that give the agent maximal information
about the current state of the world are preferred (i.e., actions that maximize
the difference between prior and posterior beliefs about the states).

Actions that reduce state uncertainty are not the only option in Active Infer-
ence. When learning is activated, the agent should also choose actions that reduce
model parameter uncertainty [10,27]. This close coupling between learning and
information-seeking/experimentation is why we try to control for learning when
simulating accommodation-immunization, as elaborated in upcoming sections.
For more on learning and parameter uncertainty, see Appendix.

Minimizing the second term leads to policies that maximize p(o), which are
the prior preferred observations of the agent. In this case, the meaning of ‘prior’
is interpreted as ‘expected’ and ‘preferred’ as desirable, thereby collapsing the
distinction between expected and desired observations.

To further reinforce our point, experimentation in ViolEx is acting so as to
“collect expectation-relevant information” (Eq(o,s|π)[ln q(s|o) − ln q(s|π)]) while
Assimilation is acting to “bring about outcomes that conform with one’s expec-
tations” (Eq(o,s|π)[ln p(o)]). Accommodation corresponds to updating my beliefs
“to increase consistency with situational outcome” (Eq(s|o)[ln p(o|s)]), while
immunization is “minimizing the impact of evidence” (DKL[q(s|o)||p(s)]) (quotes
from [21]).

2.2 Generative Models

Lastly, these FE functionals are always minimized w.r.t a generative model. Spec-
ifying the suitable generative model is vital to simulating a particular real-world
situation. To sum up ActInf agents succinctly, their objective is to infer poli-
cies and hidden states that lead to realizing their goals. The former is achieved
by minimizing EFE, while the latter is by minimizing VFE. However, in order
to calculate the EFE & VFE values (like p(o|s), p(s), q(o|π), p(o)), we need to
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Fig. 1. Equations of factorized generative model, Bayesian Network representation
and description of the task used for experimentation-assimilation. Different model con-
tent (A, B, D) leads to different FE functionals, thus varying behaviour and cognitive
response. The three subplots highlight the close link between a real-world task, Gen-
erative model, FE minimization and policy/state inference. Refer to the text for how
accommodation-immunisation’s model structure and content vary.

specify what the situation is formally, and this is what Generative models do.
For example, in this study, we take the situation of a two-armed bandit task
and specify it formally as a generative model. We then analyze the resulting
behaviour patterns and cognitive responses of ActInf agents in those situations.

Owing to the prior work done in ViolEx, we were endowed with some initial
predictors of ViolEx coping processes, which we implemented in the generative
model. For example, uncertainty is the main predictor of anticipatory (re)actions
according to [21]. While they do not specify whether uncertainty in the state,
state-outcome mapping, or state-state transition, simulating all the above uncer-
tainties is possible in ActInf [27]. To that end, we simulated the anticipatory
(re)actions of ViolEx via the generative model in Fig. 1.

Here, s is the hidden state that causes the sensory observation o, under
policy π. a and d are the Dirichlet concentration parameters acting as priors
for Categorical A and D, respectively. A, D are parameters of the generative
process (GP), but random variables from the agent’s perspective [10], while
a,d are parameters of the generative model (GM) that the agent uses. This
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distinction is important because learning (of ground-truths D, A, B) is possible
only if d, a, and b are defined.2 Every non-hierarchical ActInf agent will have
the same generative model structure as in Fig. 1 with minor modifications [28].
However, the difference lies in the detail of what goes into each of the variables
D (Initial prior), A (Likelihood), B (Actions), and C (Prior preference), which
we call model content. Thus, by varying the model content, we can instantiate
ViolEx predictors like uncertainty, information credibility, habits, disposition
for risk, and many more. In the interest of space and relevance, we will not
describe the different conditions and parameterizations used to simulate results
for Experimentation-Assimilation3 but constrain ourselves to Accommodation-
Immunization.

Similar to anticipatory (re)actions, we gathered from ViolEx that the relia-
bility of an information source is identified as one of the main predictors of an
immunizing response. The hypothesis is that if the agent believes the informa-
tion source’s reliability is low, it will conveniently discard the evidence leading
to possibly false inferences. Furthermore, an interesting parameter in ActInf lit-
erature implicitly present in the ‘individual differences’ part of ViolEx is habit
learning [1]. Habit ‘learning’ is a peculiar kind of prior in that it is the only learn-
ing independent of the observed evidence but driven primarily by the frequency
of the particular policy’s selection. Given this dissociation from evidence, we
hypothesized that entrenched habits could lead to immunization-like responses.

As mentioned earlier, most non-hierarchical ActInf agents have the same
model structure as in Fig. 1 with minor changes, but the model content can vary
significantly. The only change in the structure in our case is habit learning. This
change yields two additional equations:

P (π) = σ(E − γ ∗ EFE)
P (E) = Dir(e)

(3)

where E is the prior belief on policy, encoding habits, e, its Dirichlet concen-
tration parameter that enables learning and σ, classical softmax function for
normalization,. In model content, reward rate (X) was varied from 60% (low)
to 90% (high) in GM and fixed at 100% in GP to simulate varying reliability of
information source (varying precision of likelihood) [2] in agents’ beliefs.

We precluded all learning except habits and hints made default but with
perfectly random (50%) accuracy; thus, d, a, and b were either not defined or
defined with high initial concentration, which prevents learning [28]. The above
changes were made so that the agent’s only source of information available for
inference is the reward rate we control. Analyzing the effect of reliability in
multiple information source setups would be interesting; however, we avoid it
for simplification.

2 For a detailed description of all the variables and belief-updating in the model,
refer [28].

3 See Appendix for different parameterizations, results and discussion of
Experimentation-Assimilation.
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Learning was prevented to study accommodation-immunization in isolation
from experimentation-assimilation. We interpret accommodation as within-trial
belief updating while experimentation as within & between-trial information
seeking. This latter notion of between-trial information seeking is what learning
is in ActInf agents. For a detailed analysis of how learning and experimentation
are connected and thus our decision to prevent learning, we refer the reader to
Appendix.4

3 Results and Discussion

3.1 Accommodation-Immunization

For accommodation-immunization, we simulated four different parameteriza-
tions of the generative model described in the previous section - stationary envi-
ronment with high information reliability (reward-rate X = 90%) and no habits,
non-stationary environment with low reliability (X = 60%) and no habits, non-
stationary environment with low reliability (X = 60%) & habit learning and
lastly, non-stationary environment with high reliability (X = 90%) and habit
learning. We interpret accommodation as using the feedback received at the
final time point of each trial (win or loss) to accurately infer the ‘correct’ slot
and failure to do so as immunization. If this inference is false, it means the agent
has failed to take the evidence into account, thus exhibiting immunization. We
consider only the third time point because that is when the agent gets helpful
information (see below) to accommodate, even though belief-updating happens
at all three time steps.

Starting with our first simulation in Fig. 2.a, we see that the prior belief
about the ‘correct’ slot machine is consistently 0.5 throughout the entire task as
it should be. This belief is because the agent’s only useful information source is
the win/lose feedback (the hint is random, see Generative Models). Since we have
prevented learning, as mentioned in the Generative Models section, it cannot
carry information from previous trials either. Moreover, this helpful information
comes after deciding on the ‘correct’ slot, so the prior should not be affected.
This can also be observed in the action probabilities being equally likely for both
Left and Right actions throughout the task, leading to chance-level performance.
The Free Energy subplots reflect an agent’s surprise if its action leads to a loss
in that trial.

However, if proper accommodation of evidence happens in every trial, the
posterior should point in the same direction as the actual ‘correct’ slot. We see
this happening at near certainty (closer to 0 or 1, see ‘Tracking beliefs’ subplot) in
the first simulation (Fig. 2.a) because the agent thinks the information source is
highly reliable. The fact that the agent’s beliefs are updated in the right direction
by integrating the observed outcomes indicates ViolEx’s accommodation.

4 For a complete specification of our models and replication of plots, please visit
https://github.com/danny-raghu/ViolEx Simulation ActInf. All results presented
here were simulated using MATLAB R2021a and spm12 package.

https://github.com/danny-raghu/ViolEx_Simulation_ActInf


242 D. Raghuveer and D. Endres

Fig. 2. The first and second subplot labels in each panel have the following interpreta-
tion: Cyan dots and shading in the ‘Action’ subplot correspond to the chosen actions
and the probability of choosing the action, respectively; Darker the shade, higher the
probability. Green and black dots are winning or losing in the trial, respectively. The
third subplot tracks posterior (dots) and prior (line) beliefs on the ‘correct’ slot with
subtitles depicting simulation parameterization (Refer to text). Dark Blue corresponds
to the belief that the left slot is the ‘correct’ slot in the trial and Peach to the right.
Light Blue bars represent false inference (>50% posterior prob for ‘incorrect’ slot) due
to immunization in the trial. (Color figure online)

Moving on, we next tested the hypothesis derived from ViolEx about lower
information credibility playing a role in immunization. Contrary to our expec-
tations, we found that reducing the reliability of information (X = 60%) did
not produce immunizing tendencies like false beliefs resistant to evidence. In
our model, false beliefs have a greater than 50% posterior probability for a slot
machine, while the evidence in that trial pointed to the other slot machine. This
is depicted in Fig. 2.b. As we can see, while the posterior is uncertain (closer to
∼0.5) about the slot machine, it does not yet result in a belief that contradicts
the observed evidence. Thus, one can see that the low reliability of information
alone does not lead to immunization.

Third, we checked if keeping the reliability low as in the previous simulation
but combining it with habit formation would have immunizing effects. When
only habits are allowed to be learned, the policy sampling distribution changes
as explained in Eq. 3, making the agent choose policies habitually (i.e., not as a
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consequence of sensory evidence o). This change in policy selection impacts its
state inferences because the prior, q(s) =

∑
π q(s, π) =

∑
π q(s|π) ∗ P (π) (see

below for details).
As Fig. 2.c illustrates, low reliability of the information, when combined with

habits, leads to immunization. The mechanism behind this kind of cognitive
response is intriguing. Firstly, habits are the only learning we have allowed in
the agent and, therefore, are the sole info for policy selection. However, habits
pay no regard to outcomes but are driven by the frequency of previous selections
and can thus become unregulated. As habits strengthen, policy selection gets
biased, which leads to a biased prior on hidden states (q(s) ∝ P (π)). Once this
prior becomes strong enough, if the evidence/likelihood is unreliable or of low
precision [2], one can make robust false inferences, as shown in Fig. 2.c.

One crucial question could be why the agent here developed a habit of choos-
ing left when right is the ‘correct’ slot. That is because of our information setup.
The agent’s choice in the first trial should have been left slot, which increased
the likelihood of choosing left in the subsequent trial (since there is no other
counteracting information source for policy). Thus, the habit of choosing left
is purely random, reinforcing itself (incorrectly) because of a random choice in
the first trial. We note, however, that habits may also accidentally lead to the
correct behaviour, here: choosing the right slot. Whether or not this happens
depends on the agent’s initial (random) choice in our setup.

Another question is whether the agent would avoid immunization if it had
better quality evidence, despite habits. We tested this in the final simulation
(X = 90%), and as expected, there was no immunizing tendency (see Fig. 2.d).
This result is also in line with the predictions from ViolEx, however, with a
slight modification. Low reliability of information source in and of itself does
not result in immunization, but in conjunction with developed habits, it can
lead to such tendencies. Without habits, the priors for state inference do not get
extremely precise/reliable compared to the precision/reliability of sensory evi-
dence (likelihood) [2] leading to unbiased posterior inference or accommodation.
More importantly, reliable information sources can avoid such false inferences
even with developed habits.

3.2 Psychology of Expectations and AIF Formalism

As a psychological proposal for modelling Expectation and Expectation Viola-
tion, ViolEx has essential relevance in accounting for cognitive, social, clinical,
and developmental issues like self-fulfilling prophecies, confirmation bias, cog-
nitive dissonance, addiction, optimism bias and has strong empirical support
for the model [6,16,21–23,25]. However, it lacks a formal framework to provide
mechanistic explanations of how its constructs yield a particular cognitive or
behavioural response, and Active Inference provides precisely this.

Reciprocally, the empirical evidence accrued by ViolEx and its partial overlap
with Piaget’s Psychology has some interesting contributions to the AIF formal-
ism. Specifically, both in Piaget’s model and ViolEx, there are two notions of
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accommodation. In ViolEx, these are Expectation (de)stabilization and Expec-
tation change. The former refers to the belief updating of expectations already
available to the organism (employed in this study). In contrast, the latter refers to
changing the schema of expectations to introduce a novel and previously unavail-
able expectation into the organism’s cognitive repertoire. This change in the
structure of the existing schema to integrate a novel concept is accommodation
proper in Piaget’s model, sometimes called structure learning in Developmental
Psychology [26].

This introduction of a novel category/concept was a puzzle for us when we
tried to simulate all the properties of ViolEx, and realized that the fixed state-
space of a dynamical POMDP (like the one used here) currently lacks the flex-
ibility to model such emergent expectations [26]. Immunization in ViolEx also
has a similar property, and we could only implement what is called Data-oriented
immunization [21,22] but not Concept-oriented immunization (analogous break-
ing and conceptual restructuring of expectation schema).

4 Conclusion

We started our paper with three concerns about the current state of the ViolEx
model and hoped to address two of those through the Active Inference frame-
work. We showed the uncanny overlap between ViolEx and ActInf, even though
they were developed in disparate fields, and argued for leveraging this overlap to
formalize the constructs in ViolEx through ActInf. Through the formalization,
we simulated all the core aspects of ViolEx, providing the first computational
implementation of its core constructs and resulting behaviours.

We acknowledge that the generative models provided in this paper are ideal-
izations and do not depict the complete picture of what could contribute to an
assimilative behaviour or immunizing response. Also, the main goal of this study
was not to test all the possible mediators of the constructs in ViolEx and provide
a full-blown analysis of it. Instead, we aimed to suggest a suitable formalism that
makes the constructs precise and simultaneously gives justice to the intricacies
involved in ViolEx.

Furthermore, through this interdisciplinary exchange, we also identified room
for extending the AIF formalism to flexibly model novel and emergent expecta-
tions, thus yielding mutual benefits to both ViolEx and Active Inference.

Acknowledgments. This work was supported by the DFG GRK-RTG 2271 ‘Breaking
Expectations’ project number 290878970.

A Appendix

A.1 Detailed Decomposition of VFE and EFE

The first line of the equation below starts with the classical definition of VFE,
as mentioned in the main text. The intermediate lines show how to derive the
immunization-accommodation or complexity-accuracy decomposition step-by-
step.
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V FE = Eq(s|o)[ln q(s|o) − ln p(s, o)]
= Eq(s|o)[ln q(s|o) − ln (p(s) ∗ p(o|s))]
= Eq(s|o)[ln q(s|o) − ln p(s) − ln p(o|s)]
= Eq(s|o)[ln q(s|o) − ln p(s)] − Eq(s|o)[ln p(o|s)]

= Eq(s|o)

[
ln

q(s|o)
p(s)

]
− Eq(s|o)[ln p(o|s)]

= DKL[q(s|o)||p(s)] − Eq(s|o)[ln p(o|s)]

(4)

Starting with the second line, we use the Product rule of probability to fac-
torize the generative model into the generative prior on states and likelihood
of observations, p(s) and p(o|s) respectively. Then we use the property of log-
arithms, ln (A ∗ B) = lnA + lnB to split the factorised generative model in
the third line. Finally, we gather up the variational posterior (q(s|o)) and gen-
erative prior (p(s)) together and once again use the property of logarithms,
ln A− ln B = ln (A/B) to yield the DKL term (see main text). Thus, the decom-
position of immunization-accommodation, as pointed out in the main text, is
achieved.

Like VFE, we start with the definition of EFE mentioned in the main text
- a direct extension of the VFE into the future, calculated under the expec-
tation of future observations and conditioned on a policy. We then derive the
Experimentation-Assimilation or Epistemic-Pragmatic decomposition.

EFE = Eq(o,s|π)[ln q(s|π) − ln p(s, o)]
= Eq(o,s|π)[ln q(s|π) − ln (p(o) ∗ p(s|o))]
= Eq(o,s|π)[ln q(s|π) − ln (p(o) ∗ q(s|o))]
= Eq(o,s|π)[ln q(s|π) − ln p(o) − ln q(s|o)]
= Eq(o,s|π)[ln q(s|π) − ln q(s|o)] − Eq(o,s|π)[ln p(o)]
= −Eq(o,s|π)[ln q(s|o) − ln q(s|π)] − Eq(o,s|π)[ln p(o)]

(5)

In the second line, we factorize the generative model just like in VFE decom-
position using the Product rule. However, unlike VFE, we factorize it into a
generative prior on observations and posterior on states, p(o) and p(s|o), respec-
tively. Next, we make an assumption that the variational posterior can approxi-
mate the generative posterior well enough, i.e.: q(s|o) ≈ p(s|o). These are the two
key moves in EFE decomposition, and the remaining steps involve the property
of logarithms and gatherings illustrated above to yield the experimentation-
assimilation form.

To calculate the values of q(o, s|π), q(s|o) and q(s|π), further assumptions
and approximations are made. For example, q(o|s) and p(o|s) are assumed to
be the same distribution encoded by the A matrix. This yields the divergence
between variational posterior and variational prior,
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[
ln

q(s|o)
q(s|π)

]
=

[
ln

p(o|s) ∗ q(s|π)
q(o|π) ∗ q(s|π)

]

=
[
ln

p(o|s)
q(o|π)

]

q(o|π) =
∑

s

q(o, s|π)

=
∑

s

p(o|s) ∗ q(s|π)

= A ∗ sπ

(6)

These equations highlight the close relation between minimizing Free energy
functionals, optimally inferring the policies/states and the generative model
parameters like A, B, and D, as mentioned in the main text.

A.2 Learning and Parameter Uncertainty

As briefly mentioned in the main text, learning the parameters of the Generative
Process, A (for example), is possible only if ‘a’ is defined in the Generative model.
This is because a, b, and d are the Dirichlet concentration parameters that act
as priors on the categorical distributions A, B, and D, respectively. Figure 1.a
depicts this by equations, P (A) = Dir(a), P (D) = Dir(d) and the choice of
choosing Dirichlet distribution as the prior is because of its conjugacy with
Categorical distributions [28]. By being a conjugate prior to the parameters of
categorical distributions, updating the model parameters amounts to the simple
addition of counts to the vector/matrix.

The learning equation used to update the model parameters is given by,

dtrial+1 = ω ∗ dtrial + η ∗ sτ=1 (7)

where, d is the initial prior on states given by, d = p(sτ=1) =
[
d1 d2

]T , ω
forgetting rate, and, η learning rate. Learning of model parameters mean just
updating the concentration parameters of d, namely d1 and d2. An intuitive
understanding of learning can be given using an example. Suppose that in the
task described in the main text, the agent initially did not know which of the two
slots was the ‘correct’ slot and so had an initial prior of dtrial=1 =

[
0.5 0.5

]T .
However, at the end of the trial, the agent observes that left slot is the ‘correct’
slot with probability, sτ=1 =

[
1 0

]T . Assuming that both ω, and η is equal to 1,
then the agent would have an updated initial prior at the next trial, dtrial=2 =[
1.5 0.5

]T . If the agent observes left being the ‘correct’ slot for 8 consecutive

trials, then dtrial=8 =
[
8.5 0.5

]T . This is what learning through adding counts
means in Active Inference.

Note that with a higher initial concentration, the impact of additional count is
way lower than when the concentration is lower. Upon normalising, even though[
5 5

]T , and
[
50 50

]T represent the same probability distribution, the addition
of a count in the former changes the distribution more impactfully than in the
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latter. This is why initializing a model parameter with high concentration pre-
vents learning [28]. This state of having a high initial concentration is called the
‘saturated’ state, where the agent has nothing to learn. Meanwhile, the state of
low concentration is called the ‘uncertain’ state because these Dirichlet param-
eters are a kind of confidence estimate. The lower the Dirichlet counts, the less
confident the agent is in its belief and vice versa. Thus, if the Dirichlet count for
one state factor, say d1 is low compared to the Dirichlet count for another, d2,
the agent actively seeks out observations that increase the count of d1.

In order to actively seek out observations, this learning process has to be
reflected in the EFE functional. This is precisely what happens when learning is
activated in an agent,

EFE = Eq(o,s,θ|π)[ln q(s, θ|π) − ln p(s, o, θ)]
= −Eq(o,s,θ|π)[ln q(s|o) − ln q(s|π)] − Eq(o,s,θ|π)[ln p(o)]
− Eq(o,s,θ|π)[ln q(θ|s, o, π) − ln q(θ)]

(8)

where θ could be either of a, d, b or all of them. Depending on the number
of learning parameters, the number of terms in EFE increases. The connection
between learning and EFE/experimentation is hinted at in the main text. Hav-
ing elaborated on it, it becomes clear why learning and information-seeking
behaviour are closely linked and why we chose to run our accommodation-
immunization simulation without it.

A.3 Experimentation-Assimilation

The relevant question for experimentation-assimilation is which parts of the
task mentioned in the main text parameterize uncertainty and risk-seeking.
Any action that reduces uncertainty about the situation (by generating valid
information) is regarded as experimentation in ViolEx [21]. There are several
uncertainties for the agent here. 1) The uncertainty of finding the ‘correct’ slot
(slot uncertainty) in the trial. 2) Uncertainty of not getting a reward even if
one chooses the ‘correct’ slot (reward-rate = 90%). 3) Uncertain whether the
hint-giver gives a correct hint (hint accuracy = 90%). The simulated agent does
not know all these values (because a & d are defined in the GM, but A and D
are random variables) but can learn by interacting with the environment and
gathering information (experimentation). One can also simulate a lack of this
experimentation by making the agent strongly prefer getting rewards w/o hints
rather than with hints. To that extent, we construe taking a hint over directly
choosing the slot machine as experimentation.

We used three different parameterizations of the above task in two condi-
tions (Risk-seeking, Risk-averse). The agents in the first and second parameter-
ization have only the slot uncertainty but operate in different (stationary/non-
stationary) environments while having all other information. In the third one,
the agents do not have information about hint accuracy but should experiment
to learn about the uncertainty to perform well. This gradual increase of uncer-
tainty should allow us to analyze the impact of uncertainty and disposition to
risk in experimentation and assimilation.
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Fig. 3. The top and bottom rows correspond to Risk-averse and Risk-seeking condi-
tions. From left to right, the uncertainties involved are 1) slot in a stationary environ-
ment, 2) slot in a non-stationary environment, and 3) slot and hint in a non-stationary
environment. Labels of ‘Action’ and ‘Free Energy’ subplots in each panel have the same
interpretation as in Fig. 2.

As mentioned above, we ran six simulations to explore how uncertainty and
risk mediate experimentation-assimilation. Starting with a risk-averse agent with
just the slot uncertainty (Fig. 3.a), we could see that the agent initially explores
once and considers exploring briefly right after a loss. Since this is the least
uncertain of the three environments, it quickly gains enough information about
its environment to start assimilating.

However, when there is higher uncertainty due to a non-stationary setting,
it has to be in experimentation mode for a more extended period before starting
to assimilate. Experimentation mode here is hint action, or higher probabil-
ity of taking hint action to collect information but not “random selection of
behavioural alternatives” [21] as in RL. The qualitative difference in behaviour
observed in the two cases shows that uncertainty, as hypothesized from ViolEx,
does play a critical role in Experimentative behaviour. Finally, to drive home the
point, we simulated hint uncertainty in the non-stationary environment, and the
plot shows that experimentation increases even further (Fig. 3.c). Only in the last
3–4 trials does the agent have enough information to choose right (highlighted
through the action probability).

To test our second hypothesis of risk-seeking as a potential mediator of assim-
ilative behaviour, we simulated the same three conditions as above but with a
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higher difference between prior preference (ln p(o)) for winning with and with-
out hints.5 This difference, in turn, affects the EFE value (see Eq. (2)), which
changes the agent’s policy π (Fig. 1 equations). We could garner from Fig. 3.a
and 3.d that there is not a vast difference in observed behaviour between an RS
and an RA agent when there is relatively small uncertainty. However, the differ-
ence in behaviour and performance becomes striking when uncertainty gradually
increases, as depicted in Figs. 3.b, 3.c, 3.e, 3.f. Even when observing more losses
than wins, the inherent risk-seeking tendency makes experimentation less likely
than the risk-averse agent. These qualitative results show that while increased
uncertainty leads to increased experimentation, strong individual traits like risk-
seeking can counteract the effects of uncertainty to make assimilative strategies
more or less likely.
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Abstract. Intelligence has been operationalized as both goal-pursuit capacity
across a broad range of environments, and also as learning capacity above and
beyond a foundational set of core priors.Within the normative framework of AIXI,
intelligencemay be understood as capacities for compressing (and thereby predict-
ing) data and achieving goals via programs with minimal algorithmic complexity.
Within the Free Energy Principle and Active Inference framework, intelligence
may be understood as capacity for inference and learning of predictive models
for goal-realization, with beliefs favored to the extent they fit novel data with
minimal updating of priors. Most recently, consciousness has been proposed to
enhance intelligent functioning by allowing for iterative state estimation of the
essential variables of a system and its relationships to its environment, condi-
tioned on a causal world model. This paper discusses machine learning architec-
tures and principles by which all these views may be synergistically combined
and contextualized with an Integrated World Modeling Theory of consciousness.

Keywords: Free Energy Principle · Active Inference · AIXI · Integrated World
Modeling Theory · Intelligence · Consciousness

1 IWMT and Universal Intelligence

Integrated World Modeling Theory (IWMT) attempts to solve the enduring problems of
consciousness by combining aspects of other models within the Free Energy Principle
and Active Inference (FEP-AI) framework [1, 2]. In brief, IWMT claims that phenome-
nal consciousness is “what it feels like” when likely patterns of sense-data are inferred
from probabilistic generative models over the sensorium of embodied-embedded agents,
whose iterative estimates constitute the streamof experience (as a series of ‘quale’ states),
conditioned on a causal world model trained from histories of environmental interac-
tion. Different forms of “conscious access” are enabled when these streams/flows of
experience are channeled/contextualized within coherent causal unfoldings via different
varieties of mental actions, such as attentional selection of particular remembered and
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imagined contents. For such processes to be able to entail (or “bring forth a world” of)
subjective experience, generative modeling is suggested to require sufficient coherence
with respect to space (i.e., locality), time (i.e. proportional changes for different pro-
cesses), and cause (i.e., regularities with respect to changes that can be learned/inferred)
for the system and its relationships with its environment. That is, structuring of experi-
ence by quasi-Kantian categories may be required not only for coherent judgment, but
for solving binding problems such that different entities may be modeled with different
properties [3–8]; without these sources of coherence, we may still have various forms
of modeling, but not necessarily of a conscious variety due to a lack of compositional
representations.

These system-world configurations are suggested to primarily (and potentially exclu-
sively/exhaustively) involve visuospatial and somatospatial modalities, where views and
poses mutually inform one another: estimating where and how one is looking is invalu-
able for constraining what one is seeing, and vice versa. This conjunction of view and
pose information (particularly with respect to head and gaze direction) organizes experi-
ence according to egocentric reference frames (at least for systemswith centrally-located
censors), so providing a “point of view” on a world with the experience of a “lived body”
at its center, with feelings likely heavily involving cross-modal inference with intero-
ceptive hierarchies [9]. These processes are suggested to be realized by autoencoding
heterarchies, whose shared latent space may be structured according to principles of
geometric deep learning for generating state estimates with sufficient rapidity that they
can both inform and be informed by action-perception cycles over the timescales over
which they are enacted. If such iterative estimation of body-world states is organized
into coherent organismic/agentic trajectories by semantic pointer systems—such as those
provided by hippocampal/entorhinal system—then we may have episodic memory and
(counterfactual) imaginings for the sake of prediction, postdiction, and planning/control
[10–12]. Taken together, we may have most of the desiderata for explaining why (and
how) it might feel like something to be some kinds of physical systems, potentially
sufficiently answering hard central questions about biocomputational bases of experi-
ence in ways that afford new progress on the “easy-,” “real-,” and “meta-” problems of
consciousness (which may be far more difficult than the “Hard problem” itself; e.g. the
complexities of different forms of self-consciousness with the potential “strange loops”
involved).

IWMT was significantly inspired by the work of Jürgen Schmidhuber (since 1990,
see surveys of 2020, 2021), whose pioneering intellectual contributions include early
discoveries in unsupervised machine learning, characterization of fundamental princi-
ples of intelligence, development of means of realizing scalable deep learning, designing
world models of the kinds emphasized by IWMT, and more [15–24]. While this body
of work cannot be adequately described in a single article, below I will explore how
both the theoretical and practical applications of principles of universal intelligence and
algorithmic information theory may help illuminate the nature(s) of consciousness.

1.1 FEP-AI and AIXI: Intelligence as Prediction/Compression

IWMTwas developed within the unifying framework of FEP-AI as a formally-grounded
model of intelligent behavior, with rich connections to both empirical phenomena and
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advances in machine learning. In this view, consciousness and cognition more gener-
ally is understood as a process of learning how to better predict the world for the sake
of adaptive control. However, these ideas could have been similarly expressed in the
language of algorithmic information theory [25, 26], wherein complexity is quantified
according to the length of programs capable of generating patterns of data (rather than
the number of parameters for a generative model). From this point of view, intelligence
is understood in terms of abilities to effectively compress information with algorithms of
minimal complexity. These two perspectives can be understood as mutually supporting,
in that predictability entails compressibility. If one can develop a predictive model of
a system, then one also has access to a ‘code’/cypher (even if only implicitly) capable
of describing relevant information in a more compressed fashion. Similarly, if compres-
sion allows information to be represented with greater efficiency, then this compressed
knowledge could be used as a basis for modeling future likely events, given past and
present data.

This understanding of intelligence as compression was given a formal description in
AIXI, a provably-optimal model of intelligent behavior that combines algorithmic and
sequential decision theories [27].While not formally computable, Solomonoff induction
provides a Bayesian derivation of Occam’s razor [28], in selecting models that minimize
the Kolmogorov complexity of associated programs. AIXI agents use this principle in
selecting programs that generate actions expected to maximize reward over some time
horizon for an agent. This parsimony-constraint also constitutes a highly adaptive induc-
tive bias and meta-prior in that we should indeed expect to be more likely to encounter
simpler processes in the worlds we encounter [18, 29–32], all else being equal. Similarly,
FEP-AI agents select policies (as Bayesian model selection over predictions) expected
to maximize model evidence for realizing adaptive system-world states. However, this
expectation is evaluated (or indirectly estimated with a variational evidence lower bound
approach) according to a “free energy” functional that prioritizes inferences based on
their ability to fit data, penalized by the degree to which updates of generative models
diverge from priors, so preventing overfitting and facilitating knowledge generalization
[33].

While thoroughly exploring connections between FEP-AI and AIXI is beyond the
scope of this paper, their parallels are striking in that both frameworks prescribe choice
behavior as the model-based realization of preferences under conditions of uncertainty,
where governing models are privileged according to parsimony. Further, both FEP-AI
andAIXI agents operate according to curiositymotivations, inwhich choices are selected
not only to realize particular outcomes, but to explore for the sake of acquiring novel
information in the service of model evolution [34, 35]. Both AIXI and FEP-AI confront
the challenge of not being able to evaluate the full distribution of hypotheses required for
normative program/model selection, instead relying on approximate inferred distribu-
tions. Further, both frameworks also attempt to overcome potentially complicated issues
around ergodic exploration of state spaces with various forms of sophisticated planning
[36, 37]. Taken together, the combination of these frameworks may provide a provably-
optimal, formally-grounded theory for studying intelligent behavior in both biological
and artificial systems. With relevance to IWMT, consciousness may be understood as
a kind of lingua franca (or semi-interpretable shared latent space) for more efficiently
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converting between heterogeneous systems for the sake of promoting functional syn-
ergy [1, 2, 38]. [While beyond the scope of the present discussion, it may be worth
considering which forms of conceptual and functional integration between AIXI and
FEP-AI could be achievable through the study of generative modeling based on prob-
abilistic programs [39–41]. In terms of the neural systems described by IWMT, many
of these “programs” could be understood as realized through modes of policy selection
canalized by (a) striatal-cortical loops as sequences of both overtly enacted and covertly
expressed mental actions and (b) large scale state transitions between equilibrium points
as orchestrated by the hippocampal/entorhinal system [10]].

AlthoughAIXI andFEP-AI both specify optimality criteria, both frameworks require
the further specification of process theories and heuristic implementations in order to
realize these principles in actual systems [42, 43]. Below I focus on some of the work of
Schmidhuber [13, 14] and colleagues in which these principles of universal computation
have been used to inform the creation of artificial systems with many of the hallmarks
of biological intelligences. Understanding the design of these systems may be informa-
tive for understanding not only computational properties of nervous systems, but also
their ability to generate integrative world models for the sake of adaptively controlling
behavior.

1.2 Kinds of World Models

[Please note: For background on computational properties of different kinds of neural
networks and their potential implications for intelligence, please see Appendix: “2.1
Recurrent networks, universal computation, and generalized predictive coding”.]

World models are becoming an increasingly central topic in machine learning due to
their ability to support knowledge synthesis for self-supervised learning, especially for
agents governed by objective functions (potentially implicit andmeta-learned) involving
intrinsic sources of value such as curiosity and empowerment [13–15, 20, 22, 44–47].
IWMT emphasizes consciousness as an entailment of integrated world modeling [1],
and attempts to specify which brain systems and machine learning principles may be
important for realizing different aspects of this function [2]. According to IWMT, pos-
terior cortices represent generative models over the sensorium for embodied agents,
whose inversion generates likely patterns of sense data (given past experience), entail-
ing streams of consciousness. Cortical perceptual hierarchies are modelled as “folded”
variational autoencoders (VAEs), but this could similarly be described as hierarchically-
organized LSTMs [16, 48], or perhaps (generalized) transformer hierarchies [49–52].
There is a sense in which this posterior-located autoencoding heterarchy is itself a world
model by virtue of not only containing information regarding the spatially-organized
structure of environments, but also deep temporal modeling via the capacity of recur-
rent systems—and complex dendritic processing [53]—to support sequence memories,
whose coherent state transitions could be understood as entailing causal dependencies.
However, this world modeling achieves much greater temporal depth and counterfac-
tual richness with the addition of the hippocampal-entorhinal system and frontal lobes
[54–56], which together may generate likely-future (or counterfactual/postdicted-past)
state transitions. Further, sculpting of striatal-cortical loops by neuromodulators allows
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action—broadly construed to include forms of attentional selection and imaginative
mental acts—to be selected and policies to be channeled by histories of reward learning
[57]. This involvement of value-canalized control structures provides functional closure
in realizing action-perception cycles, which are likely preconditions for any kind of
coherent world modeling to be achieved via active inference [58, 59].

These sorts of functions have been realized in artificial systems for decades [15, 16],
with recent advances exhibiting remarkable convergence with the neurocomputational
account of world modeling described by IWMT. One particularly notable world mod-
eling system was developed by Ha and Schmidhuber [60], in which a VAE is used to
compress sense data into reduced-dimensionality latent vectors, which are then predicted
by a lower parameter recurrent neural network (RNN), whose outputs are then used as
bases for policy selection by a much lower parameter controller trained with evolution-
ary strategies. The ensuing actions from this control system are then used as a basis for
further predictive modeling and policy selection, so completing action-perception cycles
for further inference and learning. The dimensionality-reducing capacities of VAEs not
only provide greater efficiency in providing compressions for subsequent computation,
but moving from pixel space to latent space—with associated principle components
of data variation—allow for more tractable training regimes. The use of evolutionary
optimization is capable of handling challenging credit-assignment problems (e.g. non-
differentiable free energy landscapes) via utilizing the final cumulative reward over a
behavioral epoch, rather than requiring evaluation of the entire history of performance
and attempting to determine which actions contributed to which outcomes to which
degrees. (Speculatively, this could be understood as one interpretation of hippocampal
ripples contributing to phasic dopamine signals in conjunction with remapping events
[61, 62]). This architecturewas able to achieve unprecedented performance on car racing,
first-person shooter video games, and challenging locomotion problems requiring the
avoidance of local minima. Further, by feeding the signals from the controller directly
back into latent space (rather than issuing commands over actions), this architecture
was able to achieve even greater functionality by allowing training with policy rollouts
in simulated (or “imagined”) environments. Even more, by incorporating a tempera-
ture (or uncertainty) parameter into this imaginative training, the system was able to
avoid patterns of self-adversarial/degenerate policy selection from leveraging exploits
of internal world models, so enhancing transfer learning from simulations to real-world
situations (and back again). Theoretically, this could help explain some of the functional
significance of dreaming [63], and possibly also aspects of neuromodulator systems
(functionally understood as machine learning parameters) and the ways in which they
may be involved in various “psychedelic” states of mind [64].

Limitations of this worldmodeling system include the problem of independent VAE-
optimization resulting in encoding task-irrelevant observations, butwith task-based train-
ing potentially undermining transfer learning. An additional challenge involves issues of
catastrophic forgetting as the encoding of new data interferes with prior memories. Ha
and Schmidhuber [60] suggested that these challenges could be respectively overcome
with governance by intrinsic drives for artificial curiosity—which could be thought of
as a kind of adaptive-adversarial learning (Schmidhuber, 1990, 2020, 2021)—as well as
the incorporation of external memory modules for exploring more complicated worlds.
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Intriguingly, both of these properties seem to be a feature of the hippocampal/entorhinal-
system [2, 65, 66], which possesses high centrality and effective connectivity with value-
estimation networks such as ventral prefrontal cortices and striatum [57]. An additional
means of enhancing the performance of world modeling architectures is the incorpora-
tion of separate “teacher” and “student” networks, whose particular functional details
may shed light on not just the conditions for optimal learning, but for the particular
nature(s) of conscious experience, as will be explored next.

1.3 Kinds of Minds: Bringing Forth Worlds of Experience

One of Schmidhuber’s [16] more intriguing contributions involves a two-tier unsuper-
vised machine (meta-)learning architecture operating according to principles of predic-
tive coding. The lower level consists of a fast “subconscious automatiser RNN” that
attempts to compress (or predict) action sequences, so learning to efficiently encode
histories of actions and associated observations. This subsystem automatically creates
abstraction hierarchies with similar features to those found in receptive fields of the
mammalian neocortical ventral visual stream. In this way, the automatiser identifies
invariances (or symmetries) across data structures and generates prototypical features
that can be used to efficiently represent particular instances by only indicating deviations
from these eigenmode basis functions. Surprising information not predicted by this lower
level is passed up to amore slowly operating “conscious chunker RNN”, so becoming the
object of attention for more elaborative processing [23]. The automatiser continuously
attempts to encode subsequent streams of information in compressed forms, eventually
rendering them “subconscious” in terms of not requiring the more complex (expensive,
and relatively slow) modeling of the conscious chunker. This setup can also be under-
stood as a “teacher” network being imitated by a “student” network, and through this
knowledge distillation (and meta-learning) process, high-level policy selection becomes
“cloned” such that it can be realized by fast and efficient lower-level processes. With
the “Neural History Compressor” [24, 67], this architecture was augmented with the
additional functionality of having the strength of updates for the conscious chunker be
modulated by the magnitude of surprises for the subconscious automatiser.

In terms of brain functioning, we would expect predictive processing mechanisms to
cause information to be predicted in a way that is increasingly sparse and pushed closer
to primary modalities with time and experience. Because these areas lack access to the
kind of rich club connectivity found in deeper portions of the cortical heterarchy, this
information would be less likely to be taken up into workspace dynamics and contribute
to alpha/beta-synchronized large-scale “ignition” events, which IWMT interprets as
Bayesian model selection over the sensorium of an embodied-embedded agent, entailing
iterative estimation of system-world states. In this way, initially conscious patterns of
action selection involvingworkspace dynamics would constitute “teacher” networks, but
which with experience will tend to become automatic/habitual/unconscious as they are
increasingly realized by soft-assembled, distributed, fast/small ensembles coordinated
by cerebellar-coordinated forward models [68], functioning as “student” networks. In
terms of some of the architectures associated with FEP-AI, this could be thought of as
information being processed in the lower level of Forney factor graphs with continuous
(as opposed to discrete) updating and less clearly symbolic functionality [69, 70]. In
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more standard machine learning terms, this could be thought as moving from more
“model-based” to more “model-free” control, or “amortized inference” with respect to
policy selection [57, 71]. However, when thesemore unconscious forms of inference fail,
associated prediction errors will ascend until they can receive more elaborative handling
by conscious systems, whose degree of activity may be modulated by overall surprisal
[2, 72–75].

To return to artificial neural history compressors [24, 67], these systems are capable
of discovering a wide range of invariances across actions and associated observations,
with one of the most enduring of these symmetries being constituted by the agent itself
as a relatively constant feature. With RNN-realized predictive coding mechanisms com-
bined with reinforcement learning, systems learn to efficiently represent themselves,
with these symbols becoming activated in the context of planning and through active
self-exploration, so exhibiting a basic form of self-modeling, including with respect to
counterfactual imaginings. Based on the realization of these functionalities, Schmid-
huber has controversially claimed that “we have had simple, conscious, self-aware,
emotional, artificial agents for 3 decades” [13, 14, 76]. IWMT has previously focused
on the neurocomputational processes that may realize phenomenal consciousness, but
functionally speaking (albeit potentially not experientially), this statement is consistent
with the computational principles identified for integrated world modeling.

These functional and mechanistic accounts have strong correspondences aspects of
Hiedeggerian phenomenology [77]. A “ready-to-hand” situation of effortless mastery
of sensorimotor contingencies could correspond to maximally sparse/compressed pat-
terns of neural activity, pushed down close to primary cortices, with the system coupling
with the world in continuously evolving unconscious action-perception cycles, without
requiring explicit representation of information. In such a situation of nearly effortless
(and largely unconscious) mastery of sensorimotor contingencies, dithering would be
prevented as the changing affordance landscape results in rapid selection of appropriate
grips [9, 78–81], with coordination largely occurring via reflexes andmorphological con-
straints. However, a “present-at-hand” situation of reflective evaluation could correspond
to prediction errors making their way up to upper levels of cortical heterarchies, where
largescale ignition events—potentially entailing Bayesian model selection and discrete
updating of hierarchically higher (or deeper) beliefs—may become more likely due to
closer proximity to rich-club connectivity cores. If such novel information can couple
with subsystems enabling various kinds ofworkspace dynamics, then agents can not only
consciously perceive such patterns, but also draw upon counterfactual considerations for
causal reasoning and planning, so requiring flexibly (and consciously) accessible re(-)
presentations and various forms of self-referentialmodeling. Convergence between these
machine learning architectures, neural systems, and phenomenology is compelling, but
does this mean that Schmidhuberian world-modeling agents and similar systems pos-
sess phenomenal consciousness? This is the final issue that we will consider in exploring
world models and the nature(s) of intelligence.
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1.4 Machine Consciousness?

[Please note: For discussion of how different principles from neural networks may con-
tribute to explaining computational properties of consciousness, please see Appendix:
“2.2 Unfolding and (potentially conscious) self-world modeling”.]

More recent work from Schmidhuber’s group has explored the preconditions for
human-like abilities to generalize knowledge beyond direct experience [3]. They sug-
gest that such capable systems require capacities to flexibly bind distributed information
in novel combinations, and where this binding problem requires capacities for compo-
sitional and symbolization of world structure for systematic and predictable knowledge
synthesis. They further describe a unifying framework involving the formation of mean-
ingful internal structure from unstructured sense data (segregation), the maintenance of
this segregated data at an abstract level (representation), and the ability to construct new
inferences through novel combinations of these representations (composition). Similarly
to the preconditions for subjective experience identified by Integrated Information The-
ory (IIT) [1, 82]—andwith deep relevance to IWMT—this proposal describes a protocol
for producing data structures with intrinsic existence (realization via entangled connec-
tions), composition (possessing meaningful structure), information (distinguishability
from alternatives), and integration (constituting wholes that are greater than the sum of
their parts). This is further compatible with GNWT’s description of architectures for
dynamically combining information in synergistic ways.

Even more, the particular architectural principles identified by this framework as
promising research directions are the same as those previously suggested by IWMT:
geometric deep learning and graph neural networks (GNNs). However, this proposal
for solving binding problems for neural networks also suggests utilizing a generaliza-
tion of GNNs in the form of graph nets [83]. This is also an issue with respect to
which the original publication of IWMT contained a possible error, in that rather than
the hippocampal/entorhinal-system being understood as hosting graph-grid GNNs for
spatial mapping, (spectral) graph nets may be a more apt description of this system
on algorithmic and functional levels of analysis [66, 84, 85]. These technical details
notwithstanding, there are striking parallels between the functionalities described by
this framework for functional binding and the machine learning description of neural
systems suggested by IWMT. More specifically, autoencoding/compressing hierarchies
provide segregation, with GNN-structured latent spaces providing explicit representa-
tion (and potentially conscious experiences), and a further level of higher abstraction
providing novel representational combinations for creative cognition (i.e., hippocampal
place fields as flexibly configurable graphical models).

If such an architecture were to be artificially realized, would it possess ‘conscious-
ness?’ The Global Neuronal Workspace Theory would likely answer this question in the
affirmative with respect to conscious access [86], and IIT would provide a tentative affir-
mation for phenomenal consciousness [87], given realization on neuromorphic hardware
capable of generating high phi for the physical system (rather than for an entailed virtual
machine). IWMT is agnostic on this issue, yet may side with IIT in terms of matters
of practical realization. Something like current developments with specialized graph
processors might be required for these systems to achieve sufficient efficiency [88] for
engaging in iterative estimation of system-world states with sufficient rapidity that such
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estimates could both form and be informed by perceivable action-perception cycles. If
such a system were constructed as a controller for an embodied-embedded agent, then
it may be the case that it could not only generate “System 2” abilities [89, 90], but also
phenomenal consciousness, and everything that entails.
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A Appendix

A.1 Recurrent Networks, Universal Computation, and Generalized Predictive
Coding

In describing brain function in terms of generative modeling, IWMT attempts to charac-
terize different aspects of nervous systems in terms of principles frommachine learning.
Autoencoders are identified as a particularly promising framework for understanding
cortical generative models due to their architectural structures reflecting core principles
of FEP-AI (and AIXI). By training systems to reconstruct data while filtering (or com-
pressing) information through dimensionality-reducing bottlenecks, this process induces
the discovery of both accurate and parsimoniousmodels of data in the service of the adap-
tive control of behavior [91]. IWMT’s description of cortical hierarchies as consisting
of “folded” autoencoders was proposed to provide a bridge between machine learning
and predictive-coding models of cortical functioning. Encouraging convergence may be
found in that these autoencoder-inspired models were developed without knowledge of
similar proposals by others [92–96].

However, these computational principles have an older lineage predating “The
Helmholtz machine” and its later elaboration in the form of variational autoencoders
[97, 98]. These “Neural Sequence Chunkers” (NSCs) instantiate nearly every functional
aspect of IWMT’s proposed architecture for integrated world modeling (Schmidhuber,
1991), with the only potential exceptions being separate hippocampal/entorhinal ana-
logue systems [10], and shared latent spaces structured according to the principles of
geometric deep learning (however, subsequent work by Schmidhuber and colleagues
has begun to move in this direction [3, 60]). NSCs consist of recurrent neural networks
(RNNs) organized into a predictive hierarchy, where each RNN attempts to predict data
from the level below, and where only unpredicted information is passed upwards. These
predictions are realized in the form of recurrent dynamics [99, 100], whose unfolding
entails a kind of search processes via competitive/cooperative attractor formation over
states capable ofmost efficiently responding to—or resonatingwith [2, 101]—ascending
data streams. In this way, much as in FEP-AI, predictive abilities come nearly “for free”
via Hamilton’s principle of least action [30, 102–104], as dynamical systems automati-
cally minimize thermodynamic (and informational) free energy by virtue of greater flux
becoming more likely to be channeled through efficient and unobstructed flow paths
[105].
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RNNs are Turing complete in that they are theoretically capable of performing any
computational operation, partially by virtue of the fact that small clusters of signaling
neurons may entail the logical operations such as NAND gates [106]. Further, consider-
ing that faster forming attractors are more likely to dominate subsequent dynamics, such
systems could be considered to reflect the “Speed prior”, whereby the search for more
parsimoniousmodels is heuristically realized by the selection of faster running programs
[19]. Attracting states dependent upon communication along fewer synaptic connections
can be thought of as minimal length descriptions, given data. In this way, each RNN con-
stitutes an autoencoder, which when hierarchically organized constitute an even larger
autoencoding system [2]. Thus, predictive coding via “folded” (or stacked) autoencoders
can be first identified in the form of NSCs as the first working deep learning system.
Even more, given the recurrent message passing of NSCs (or “stacked” autoencoders),
the entire system could be understood as an RNN, the significance of which will be
described below.

RNN-based NSCs exhibit all of the virtues of predictive coding and more in forming
increasingly predictive and sparse representations via predictive suppression of ascend-
ing signals [33, 107, 108]. However, such systems have even greater power than strictly
suppressive predictive coding architectures [109–111], in that auto-associative match-
ing/resonance allows formicrocolumn-like ensemble inference aswell as differential pri-
oritization and flexible recombination of information [3, 112–114]. The auto-associative
properties of RNNs afford an efficient (free-energy-minimizing) basis for generative
modeling in being capable of filling-in likely patterns of data, given experience. Further,
the dynamic nature of RNN-based computation is naturally well-suited for instantiating
sequential representations of temporally-extended processes, which IWMT stipulates
to be a necessary coherence-enabling condition for conscious world modeling. Even
more, the kinds of hierarchically-organized RNNs embodied in NSCs naturally provide
a basis for representing extended unfoldings via a nested hierarchy of recurrent dynamics
evolving over various timescales, so affording generative modeling with temporal depth
[115], and potentially counterfactual richness [59, 79, 116]. Some of these temporally-
extended unfoldings include agent-information as sources of relatively invariant—but
nonetheless dynamic—structure across a broad range of tasks. Given these invariances,
the predictive coding emerging from NSCs will nearly automatically discover efficient
encodings of structure for self and other [13], potentially facilitating meta-learning and
knowledge-transfer across training epochs, including explicit self-modeling for the sake
of reasoning, planning, and selecting actions [23].

In contrast to feedforward neural networks (FNNs), RNNs allow for multiple forms
of open-ended learning [20, 22, 47], in that attractor dynamics may continually evolve
until they discover configurations capable of predicting/compressing likely patterns of
data. FNNs can be used to approximate any function [117], but this capacity for universal
computation may often be more of a theoretical variety that may be difficult to achieve in
practice [118], even with the enhanced processing efficiency afforded by adding layers
for hierarchical pattern abstraction [119, 120]. The limitations of FNNs can potentially
be understood in light of their relationship with recurrent networks. RNNs can be trans-
lated into feedforward systems through “unrolling” [48, 121], wherein the evolution of
dynamics across timepoints canbe represented as subsequent layers in anFNNhierarchy,
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and vice versa. Some of the success of very deep FNNs such as “open-gated Highway
Nets” could potentially be explainable in terms of entailing RNNs whose dynamics are
allowed to unfold over longer timescales in searching for efficient encodings. However,
FNN systems are still limited relative to their RNN brethren in that the former are lim-
ited to exploring inferential spaces over a curtailed length of time, while the latter can
explore without these limitations and come to represent arbitrarily extended sequences.
On a higher level of abstraction, such open-endedness allows for one of the holy grails of
AI in terms of enabling transfer and meta-learning across the entire lifetime of a system
[24, 122, 123].

However, this capacity for open-ended evolution is also a potential liability of RNNs,
in that they may become difficult to train with backpropagation, partially due to poten-
tial non-linearities in recurrent dynamics. More specifically, training signals may either
become exponentially amplified or diminished via feedback loops—or via the num-
ber of layers involved in very deep FNNs—resulting in either exploding or vanish-
ing gradients, so rendering credit assignment intractable. These potential problems for
RNNswere largely solved by the advent of “long short-termmemory” systems (LSTMs)
[48], wherein recurrent networks are provided flexible routing capacities for controlling
information-flow. This functionality is achieved via an architecture in which RNN nodes
contain nested (trainable) gate-RNNs that allow information to either be ignored, tem-
porarily stored, or forgotten. Notably, LSTMs not only overcame a major challenge in
the deployment of RNN systems, but they also bear striking resemblances to descriptions
of attention in global workspace theories [38, 86]. Limited-capacity workspaces may
ignore insufficiently precise/salient data (i.e., unconscious or subliminal processing),
or may instead hold onto contents for a period of time (i.e., active attending, working
memory, and imagination) before releasing (or forgetting) these short-term memories
so that new information can be processed. Although beyond the scope of the present
discussion, LSTMs may represent a multiscale, universal computational framework for
realizing adaptive autoencoding/compression.

With respect to consciousness, a notable feature of deep FNNs is that their perfor-
mance may be greatly enhanced via the addition of layer-skipping connections, which
can be thought of as entailing RNNs with small-world connectivity [124], so allowing
for a synergistic combination of integrating both local and global informational depen-
dencies. Such deep learning systems are even more effective if these skip connections
are adaptively configurable [119], so providing an even closer correspondence to the pro-
cesses of dynamic evolution underlying the intelligence of RNNs [125, 126], including
nervous systems [127–130]. The flexible small-worldness of these “highway nets”—and
their entailed recurrent processing—has potentially strong functional correspondences
with aspects of brains thought to enable workspace architectures via connectomic “rich
clubs,” which may be capable of supporting “dynamic cores” of re-entrant signaling, so
allowing for synergistic processing via balanced integrated and segregated processing
[74, 131–133]. Notably, such balanced integration and segregation via small-worldness
is also a property of systems capable of both maximizing integrated information and
supporting self-organized critical dynamics [1, 134], the one regime in which (gener-
alized) evolution is possible [30, 31, 135–138]. As described elsewhere with respect
to the critique of Aaronson’s critique of Integrated Information Theory (IIT) [139],
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small-world networks can also be used for error-correction via expander graphs (or low-
density parity checking codes), which enable systems to approach the Shannon limit
with respect to handling noisy, lossily—and irreversibly [140]—compressed data. Spec-
ulatively, all efficiently functioning recurrent systems might instantiate turbo codes in
evolving towards regimes where they may come to efficiently resonate with (and thereby
predict/compress) information from other systems in the world.

A.2 Unfolding and (Potentially Conscious) Self-world Modeling

Given this generalized predictive coding, there may be a kind of implicit intelligence at
play across all persisting dynamical systems [18, 32, 103, 141, 142]. However, accord-
ing to IWMT, consciousness will only be associated with systems capable of coherently
modeling themselves and their interactions with the world. This is not to say that recur-
rence is necessarily required for the functionalities associated with consciousness [143].
However, recurrent architectures may be a practical requirement, as supra-astronomical
resources may be necessary for unrolling a network the size of the human brain across
even the 100s of milliseconds over which workspace dynamics unfold. Further, the sup-
posed equivalence of feedforward and feedback processes are only demonstrated when
unrolled systems are returned to initial conditions and allowed to evolve under identical
circumstances [144]. These feedforward “zombie” systems tend to diverge from the func-
tionality of their recurrent counterparts when intervened upon and are unable to repair
their structure whenmodified. This lack of robustness and context-sensitivity means that
unrolling loses one of the primary advantages of consciousness as dynamic core and
temporally-extended adaptive (modeling) process, where such (integrated world) mod-
els allow organisms to flexibly handle novel situations. Further, while workspace-like
processing may be achievable by feedforward systems, largescale neuronal workspaces
heavily depend on recurrent dynamics unfolding over multiple scales. Perhaps we could
model a single inversion of a generative model corresponding to one quale state, given
a sufficiently large computational device, even if this structure might not fit within the
observable universe. However, such computations would lack functional closure across
moments of experience [145, 146], which would prevent consciousness from being able
to evolve as a temporally-extended process of iterative Bayesian model selection.

Perhaps more fundamentally, one of the primary functions of workspaces and their
realization by dynamic cores of effective connectivity may be the ability to flexibly
bind information in different combinations in order to realize functional synergies [3,
147, 148]. While an FNN could theoretically achieve adaptive binding with respect to a
single state estimate, this would divorce the integrating processes from its environmen-
tal couplings and historicity as an iterative process of generating inferences regarding
the contents of experience, comparing these predictions against sense data, and then
updating these prior expectations into posterior beliefs as priors for subsequent rounds
of predictive modeling. Further, the unfolding argument does not address the issue of
how it is that a network may come to be perfectly configured to reflect the temporally-
extended search process by which recurrent systems come to encode (or resonate with)
symmetries/harmonies of the world. Such objections notwithstanding, the issue remains
unresolved as to whether an FNN-based generative model could generate experience
when inverted.



AIXI, FEP-AI, and Integrated World Models 263

This issue also speaks to the ontological status of “self-organizing harmonic modes”
(SOHMs), which IWMT claims provide a functional bridge between biophysics and
phenomenology [2, 139].Harmonic functions are placeswhere solutions to theLaplacian
are 0, indicating no net flux, which could be defined intrinsically with respect to the
temporal and spatial scales over which dynamics achieve functional closure in forming
self-generating resonant modes [149]. (Note: These autopoietic self-resonating/forming
attractors are more commonly referred to as “nonequilibrium steady state distributions”
in the FEP literature [103], which are derived using different—but possibly related
[150]—maths). However, such recursively self-interacting processes would not evolve
in isolation, but would rather be influenced by other proto-system dynamics, coarse-
graining themselves and each other as they form renormalization groups in negotiating
the course of overall evolution within and without. Are standing wave descriptions
‘real,’ or is everything just a swirling flux of traveling waves? Or, are traveling waves
real, or is there ‘really’ just an evolving set of differential equations over a vector field
description for the underlying particles? Or are underlying particles real, or are there
only the coherent eigenmodes of an underlying topology? Even if such an eliminative
reductionism bottoms out with some true atomism, from an outside point of view we
could still operate according to a form of subjective realism [151], in that once we
identify phenomena of interest, then maximally efficient/explanatory partitioning into
kinds might be identifiable [152–154]. Yet even then, different phenomena will be of
differential ‘interest’ to other phenomena in different contexts evolving over different
timescales.

While the preceding discussion may seem needlessly abstract, it speaks to the ques-
tion as to whether we may be begging fundamental questions in trying to identify suffi-
cient physical substrates of consciousness, and also speaks to the boundary problem of
which systems can and cannot be considered to entail subjective experience. More con-
cretely, do unrolled SOHMs also entail joint marginals over synchronized subnetworks,
some of which IWMT claims to be the computational substrate of consciousness? Based
on the inter-translatability of RNNs and FNNs described above, this question appears to
be necessarily answered in the affirmative. However, if the functional closure underly-
ing these synchronization manifolds require temporally-extended processes that recur-
sively alter themselves [155, 156], then it may be the case that this kind of autopoietic
ouroboros cannot be represented via geometries lacking such entanglement. Specula-
tively (and well-beyond the technical expertise of this author), Bayesian model selec-
tion via SOHMs might constitute kinds of self-forming (and self-regenerating) “time
crystals” [157–159], whose symmetry-breaking might provide a principled reason to
privilege recurrent systems as physical and computational substrates for consciousness.
If this were found to be the case, then we may find yet another reason to describe con-
sciousness as a kind of “strange loop” [160–162], above and beyond the seeming and
actual paradoxes involved in explicit self-reference.

This kind of self-entanglement would render SOHMs opaque to external sys-
tems lacking the cypher of the self-generative processes realizing those particular
topologies [155]. Hence, we may have another way of understanding marginaliza-
tion/renormalization with respect to inter-SOHM information flows as they exchange
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messages in the formof sufficient statistics [163], while alsomaintaining degrees of inde-
pendent evolution (cf. Mean field approximation) over the course of cognitive cycles
[164]. These self-generating entanglements could further speak to interpretations of
IIT in which quale states correspond to maximal compressions of experience [165]. In
evaluating the integrated information of systems according to past and future combina-
torics entailed by minimally impactful graph cuts [166], we may be describing systems
capable of encoding data with maximal efficiency [167], in terms of possessing max-
imum capacities for information-processing via supporting “differences that make a
difference.” Indeed, adaptively configurable skip connections in FNNs could potentially
be understood as entailing a search process for discovering these maximally efficient
codes via the entanglements provided by combining both short- and long-range infor-
mational dependencies in a small-world (and self-organized-critical) regime of com-
pression/inference. A system experiencing maximal alterations in the face of minimal
perturbations would have maximal impenetrability when observed from without, yet
accompanied by maximal informational sensitivity when viewed from within.

If we think of minds as systems of interacting SOHMs, then this lack of epistemic
penetration could potentially be related to notions of phenomenal transparency (e.g. not
being able to inspect processes by which inspection is realized, perhaps especially if
involving highly practiced, and thereby efficient and sparse patterns of neural signaling)
[168, 169], and perhaps “user interface” theories of consciousness [170]. Intriguingly,
maximal compressions have also been used as conceptualizations of the event horizons
of black holes, for which corresponding holographic principles have been adduced in
terms of internal information being projected onto 2D topologies. With respect to the
FEP, it is also notable that singularities and Markov blankets have been interpreted as
both points of epistemic boundaries as well as maximal thermal reservoirs [171]. Even
more speculatively, such holography could even help explain how 3D perception could
be derived from 2D sensory arrays, and perhaps also experienced this way in the form
of the precuneus acting as a basis for visuospatial awareness and kind of “Cartesian
theater” [172–174]. As described elsewhere [9], this structure may constitute a kind of
graph neural network (GNN), utilizing the locality of recurrent message passing over
grid-like representational geometries for generating sufficiently informative projections
on timescales proportional to the closure of action-perception cycles [1, 2].

However, in exploring the potential conscious status of recurrent systems, we would
still do well to consider the higher-level functional desiderata for consciousness as a
process of integrated worldmodeling.More specifically, if particular forms of coherence
are required for generating experience, then we may require hybrid architectures with
specialized subsystems capable of supporting particular kinds of learning. This is an
ongoing area of research for IWMT, with specific focus on the hippocampal/entorhinal-
system as providing fundamental bases for higher-order cognition [10]—understood
as a kind of generalized search/navigation process—including with respect to reverse
engineering such functions in attempting to design (and/or grow) intelligent machines
[2].
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Abstract. We extend an Active Inference theory in continuous time of
how neural circuitry in the Dorsal Visual Stream (DVS) and the Posterior
Parietal Cortex (PPC) implement visually guided goal-directed behavior
with novel capacity to resolve multi-step tasks. According to the theory,
the PPC maintains a high-level internal representation of the causes of
the environment (belief), including bodily states and objects in the scene,
and by generating sensory predictions and comparing them with obser-
vations it is able to learn and infer the causal relationships and latent
states of the external world. We propose that multi-task goal-directed
behavior may be achieved by decomposing the belief dynamics into a set
of intention functions that independently pull the belief towards different
goals; multi-step tasks could be solved by dynamically modulating these
intentions within the PPC. This low-level solution in continuous time
is applicable to multi-phase actions consisting of a priori defined steps
as an alternative to the more general hybrid discrete-continuous app-
roach. As a demonstration, we emulated an agent embodying an actu-
ated upper limb and proprioceptive, visual and tactile sensory systems.
Visual information was obtained with the help of a Variational Autoen-
coder (VAE) simulating the DVS, which allows to dynamically infer the
current posture configuration through prediction error minimization and,
importantly, an intended future posture corresponding to the visual tar-
gets. We assessed the approach on a task including two steps: reaching
a target and returning to a home position. We show that by defining a
functional that governs the activation of different intentions implement-
ing the corresponding steps, the agent can easily solve the overall task.

Keywords: Motor control · Active inference · Intentions · PPC

1 Introduction

The DVS provides critical support for continuously monitoring the spatial loca-
tion of objects and posture and performing visuomotor transformations [5,12].
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The PPC, located at the apex of the DVS, is also bidirectionally connected to
frontal, motor, and somatosensory areas, placing it in a privileged position to set
and guide goal-directed actions and continuously adjust motor plans by track-
ing moving targets and body posture [1,6,13], but its specific computational
mechanism is still unknown. Moreover, research suggests that the PPC encodes
the goals of more complex actions including multiple targets (e.g., in a reaching
task) even when there is considerable delay between goals [3], and plays a key
role in transforming multiple targets into a sequential motor response [15]. Thus,
the goal of this study was to provide a computational account of the capacity of
the PPC to execute multi-step tasks without the involvement of higher cognitive
areas.

Active Inference provides fundamental insights about the computational
principles of the perception-action loop in biological systems [7,9]. It assumes
that the nervous system operates on belief μ that defines an abstract internal
representation of the state of the world and computes predictions at the sen-
sory level through generative models. While the role of perception is to maintain
up-to-date belief reflecting the incoming stream of sensory signal, action tries to
make the sensory predictions true. To do so, belief and control signal are inferred
through dynamic minimization of Free Energy, or generalized prediction errors.
To allow efficient dynamic inference, the model assumes generalized coordinates
μ̃ encoding instantaneous trajectories of the belief; here we consider up to the
2nd temporal order, namely position μ, velocity μ′, and acceleration μ′′.

State-of-the-art implementations of Active Inference in continuous time
define action goals in terms of an attractor embedded in the system dynam-
ics [8]. The attractor can be a low-level (sensory) prediction that is compared
with the current observation and backpropagated to obtain a belief update direc-
tion [16,19,22], or a desired latent state specified in the full equations of motion
that the agent expects to perceive [2]. Since these states or sensations are usu-
ally static or defined externally, the agent is not able to deal with continuously
changing environments (e.g., reaching or grasping moving targets, in particular
when they move along unpredictable trajectories), expecting that the world will
always evolve in the same way.

Our previous research extended the above approaches with a theory of how
the DVS and PPC are involved in producing visually guided goal-directed behav-
ior in dynamic contexts by means of defining and fulfilling flexible goal-coding
intention functions [20]. In this view, the agent maintains a dynamically esti-
mated belief μ over bodily states and (moving) objects in the scene, such as
potential or current targets. Then, intentions are formalized by exploiting this
belief in order to compute a future action goal, or body posture, so that the
attractor is not fixed but dependent on the current perceptual and internal rep-
resentation of the world, or representations memorized in past experiences:

h(i) = i(i)(μ) (1)

where h(i) is the future goal state and i(i)(μ) is the intention function.
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An intention prediction error is computed by the difference between the cur-
rent and desired belief:

e(i) = h(i) − μ (2)

which is then embedded into a dynamics function to produce an attractive force:

f (i)(μ) = ke(i) + w(i)
µ (3)

where k is the attractor gain and w
(i)
µ is a noise term.

This function is generated from a Gaussian probability distribution approx-
imating system dynamics:

p(μ(i)′|μ) = N (μ(i)′|f (i)(μ), γ(i)) (4)

Here γ(i), the precision of the distribution, can be seen as a modulatory signal of
the corresponding intention. In fact, assuming that the overall dynamics function
of the belief is factorized into a product of independent distributions for each
intention, the update belief for the 1st-order will be a combination of every
function f (i)(μ):

μ̇′ = −
K∑

i

e
(i)
f γ(i) (5)

where e
(i)
f is the prediction error of the i-th dynamics function. Here we consid-

ered a zero 2nd-order belief (μ′′ = 0), so that the 1st-order is only subject to
the forward error of that level (see [20] for more general form and detail).

In summary, the agent constructs and maintains a plausible dynamic hypoth-
esis for the causes that produce what it is perceiving; by manipulating these and
eventually other memorized causes, the agent can dynamically compute a rep-
resentation of the future body state, i.e., intention, which in turn can act as a
prior over the current belief.

For example, if the goal of the agent is to track a dynamic target, we first
decompose the belief into two components: one for the body posture μa, and
one for the target μt. Then, in order to produce a reaching force, we define an
intention that generates a belief with the first component equal to the second
one:

h(t) = i(t)(μ) = [μt,μt] (6)

This intention will then be embedded in the dynamics function as an intention
prediction error :

f (t)(μ) = k · (h(t) − μ) = k · ([μt − μa,0]) (7)

that will bias the belief towards the desired configuration, which can be continu-
ously inferred through visual observations so to follow a moving target. Although
such dynamics does not have any counterpart with the real evolution of the envi-
ronment, it is this imagined prior that makes the agent think it will be pulled
towards the target configuration.
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Decomposing the belief dynamics into a set of intention functions simplify the
design and implementation of a goal-directed Active Inference agent that may
thus generate more complex behaviors, since in this way it is able to maintain
and realize different goal states at the same time.

The advantages of this approach become more clear when dealing with a
multi-step task. For the time being, such tasks have been implemented mostly
in discrete state-space [7,11,18]. Indeed, the use of discrete states and outcomes
along with minimization of Expected Free Energy has many potentialities when
it comes to planning, action selection and policy learning [14,21]; however, deal-
ing with real world applications also requires some sort of communication with
the continuous domain. This has been done by using the discrete framework for
planning and the continuous framework for real action execution, where the link
between the two models has been realized by Bayesian model averaging and com-
parison [10,17]. A mixed Active Inference model is a robust method for dealing
with planning in constantly changing environment, when implementing a more
biologically plausible architecture or when solving a complex task, in particular
if the sequence of actions or policy has to be learned online. Nevertheless, if the
task to be solved is defined a priori, all that is needed is to design particular
intentions for each step, and find a way to perform transitions between them.

2 Multi-step Active Inference

We will now describe a multi-step Active Inference approach exemplified with
a delayed reaching and go-back-home task and solved through a dynamic func-
tional exploiting locally available information in the neural circuitry that puta-
tively implements the inference process.

In the context of a reaching task, the agent has to first reach a visually defined
target and then return back to (i.e., reach) a previously memorized Home Button
(HB) position (see Fig. 1a); in this case, a different belief dynamics for each of
the reaching movements should be used. However, if we define this dynamics as
composed of two intention functions, one to reach the target and the other to go
back to the HB, the agent can maintain at any time different goal states, which
can either realize in parallel or sequentially, and it only needs to modulate the
respective intention precisions that play the role of relative gains.

These precisions may depend on some function of the belief: in this way, the
agent will transition from one step to another if some condition is met about
what it believes are the causes of current observations, so that at every step it
will think that the external world will evolve in a different way.

In the following we consider an agent consisting of a coarse 3-DoF limb model,
which is velocity-controlled, moving on a 2D plane, and receiving information
from proprioceptive, visual and tactile sensory systems. The visual input sv

is provided by a virtual camera of 128× 96 pixels (see Fig. 1b), and the corre-
sponding prediction is generated by the decoder of a VAE (see [20] for all details),
which was used to infer joint configurations in a more realistic way, simulating
the functioning of the DVS. Proprioceptive information sp is encoded in joint



278 M. Priorelli and I. P. Stoianov

angle coordinates, while tactile observation st is only provided for the hand, and
is approximated by a Boolean function indicating if the agent is touching the
target or not.

The posture belief consisted of three components, corresponding to the arm,
target and HB: μp = [μp,a,μp,t,μp,h]. Importantly, all of these representations
are encoded in joint angle coordinates, so that the latter two correspond to
particular ways of interacting with that object, depending on some affordance
(which can either be freely inferred by the visual generative model, or imposed by
some higher-level prior). Here, μp,h is initialized to the correct HB configuration
and kept fixed, so to represent a previously memorized state. Additionally, a
belief over tactile sensation μt is considered in order to make possible the use of
the respective sensory system.

(a) Monkey reaching task. (b) Agent and target locations.

(c) Reaching action. (d) Return action.

Fig. 1. Reference experiment and simulation. (a) The monkey had first to reach one
of the 9 targets and then reach back a HB [4]. (b) Visual feedback provided the agent
information about the 3-DoF actuated upper limb and one target. The HB is right in
front of the arm root (not shown). (c–d) The selection of one of the two fixed competing
actions is controlled by relative strength (arrow width) of the corresponding attractors
controlled by intention precisions.

As explained in the previous section, goal-directed behavior is realized by
introducing, in the belief dynamics, intention functions of the belief i(i)(μ) that
generate a future goal state. For example, target reaching is made possible by
an intention that sets the current arm configuration equal to the inferred target
joint angles, with arm component μp,a = μp,t. Similarly, the returning action
was implemented by introducing a second intention that sets the arm belief equal
to the HB joint configuration (also see Figs. 1c,1d):
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h(t) = i(t)(μp) = [μp,t,μp,t,μp,h]

h(h) = i(h)(μp) = [μp,h,μp,t,μp,h]
(8)

Then, intention prediction errors are computed as differences between (future)
intentions and (current) posture belief:

e(t) = [μp,t − μp,a,0,0]

e(h) = [μp,h − μp,a,0,0]
(9)

Correspondingly, sensory prediction errors are related by the following equations:

ep = sp − Gpμp

ev = sv − gv(μp)
et = st − μt

(10)

where Gp is a mapping that extracts the arm joint angles from the posture belief,
and gv is the decoder component of the VAE.

The posture belief update will then be composed of two contributions: one
that pulls it towards the current observations, and another one that pulls it
towards what the agent expects in the future:

˙̃μp =
[
μ̇p

μ̇′
p

]
≈

[
μ′

p + πp · GT
p ep + πv · ∂gT

v ev

−γ(t)(μ′
p − ke(t)) − γ(h)(μ′

p − ke(h))

]
(11)

where πp and πv are respectively proprioceptive and visual precisions, while γ(t)

and γ(h) are target and home reaching intention precisions.
It is important to note that here we neglected the backward error in the

0th-order of the belief update (which is usually used as attractor) since it has a
much smaller impact on the overall dynamics, and treated the forward error at
the 1st-order as the actual attractor force.

The two intention precisions, or gains, may be externally modulated in order
to alternate the corresponding movements, letting them depend on a common
parameter β such that:

γ = [γ(t), γ(h)] = [1 − β, β] (12)

where, in normal conditions, only one intention will be active at a time.
More interestingly, we can define a functional intention selector to

autonomously control the transition among the task steps. It could exploit infor-
mation locally available in the PPC - such as the belief in a relevant step-
triggering latent state - to define a circuit that dynamically computes the inten-
tion switching signal. The obvious choice in the reaching task is to use tactile
sensations, and in particular the belief μt that the agent is touching the target;
indeed, in a biologically plausible scenario this modulation should not depend on
sensory-level observations but on what the agent believes in a particular moment.
At any given time step, the functional could also recursively depend on its state
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and the dynamic calculation should be initialized in a way that the agent starts
with the execution of the first step (intention) of the multi-phase action.

Given all these considerations, we can define the following two-step intention
triggering recursive functional:

β = σ(w(β + μt − 0.5)) (13)

with parameter w = 10 chosen so that the sigmoid could quickly compute a
stable transition from β = 0 to β = 1 when the belief on touch approaches 1.
Here the sigmoid function was preferred over a discrete switching signal for the
sake of a more biologically plausible implementation.

At the onset of the multi-step task, the state of β is initialized with zero.
This state causes the activation of the first target-reaching intention and the
suppression of the second HB returning action. The dynamic recursive function
maintains this state until the agent reaches the belief that it is touching the
target, at which point the functional changes its state to β = 1, suppressing the
reaching intention and activating the HB returning action, which takes the drive
on posture belief update. At this point the function maintains the state β = 1
due to the recursive link regardless of the tactile belief.

3 Simulation

We first illustrate in Fig. 2 the dynamic goal-directed Active Inference motor con-
trol process with a sequence of time frames drawn from a sample reach action.
The agent first performs an initial reaching movement when the intention select-
ing signal β = 0, followed by a return to HB movement, with β = 1.

Note that in the simulated delayed target reaching task movement onset is
anticipated by a pure target-perception phase that may be realized, for example,
by temporarily setting either the intention gain k or every intention precision γ
to zero, so that the future goal states are always present but not affecting the
current belief.

More generally, action can start either after a fixed period, as in the current
delayed reaching, or when some external or internal conditions are met, for
example, when the uncertainty over the target belief falls bellow some threshold
(see [20] for more details).

We then show in Fig. 3 the detailed evolution of system dynamics over time
in a sample trial, including belief over targets and body, motor-control signal,
intention errors, hand-to-target distance, and signals determining the behavior
of the multi-step intention modulation functional: the state of tactile sensation,
the belief over it, and the intention selecting signal β. Note that as soon as
the agent touches the target, the belief over touch quickly raises to 1, which
triggers a stable switch from β = 0 to β = 1. Since the latter plays the role of
functional intention selector, the effect of changing its value is the change of the
active intention, i.e., from the intention driving a target reaching movement to
the intention driving a return to the (memorized) HB.
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(a) t=0 (b) t=20 (c) t=80

(d) t=100 (e) t=140 (f) t=180

Fig. 2. Two-step delayed reaching task. At t = 0 the arm (in blue) starts at the
HB position while a target (red circle) is randomly sampled. Follows a delay period
of pure perceptual inference during which the agent can not move but it can only
update the belief over the target position (purple circle), which is correctly estimated
after 80 steps. At t = 100 movement is allowed by setting a non-zero intention gain k
approximating the onset of a “go” signal, so that the estimated arm configuration (in
green) is pulled towards the belief over the intended configuration. Upon target reach
(t = 140), the agent perceives a tactile observation, whose belief triggers the switch of
the active intention, enabling thus the HB return movement (completed at t = 180).
(Color figure online)

We assessed the novel method on the two-step delayed reaching task described
earlier, running ten trials for each of the nine targets. On average, during the
delay (i.e., perception) period the target was estimated correctly 88.9% within
25 time steps with average belief-to-target distance of 6.6 px (SD 0.8). In turn,
on average the arm reached the (real) target 88.9% within 219 time steps, with
average hand-to-target distance of 1.7 px (SD 3.9).

4 Discussion

We extended our Active Inference-based theory of how the neural circuitry in
the DVS and PPC implement dynamic visually guided goal-directed behavior
[20] with a novel approach of locally solving multi-step tasks with a continuous-
time implementation. We built upon the proposal that belief dynamics could be
decomposed into a set of intention functions that independently pull the agent
towards different goal states and that each of these intentions may be modulated
through their corresponding precisions, either to perform a movement composed
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(a) (b)

(c) (d)

(e) (f)

Fig. 3. Dynamics of a sample two-step trial. (a) Belief over target in joint-configuration
space; (b) joint velocities; (c) belief over arm configuration; (d) norms of the intention
prediction errors; (e) distance between the target and the tip of the hand; the “target-
reached” distance is represented by a dotted line; (f) tactile observation st, tactile belief
μt and intention switching signal β.

of different subgoals at the same time, or to realize a sequence of actions. We
now suggest that the modulation of these intentions during action execution is
not necessarily fixed and externally controlled (e.g., by the Prefrontal Cortex),
but may depend, more autonomously to the PPC circuitry, on what the agent
believes are the causes of the environment at every instant of the task, and on a
locally defined functional that computes an intention selecting signal.
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We exemplified the approach on a multi-step delayed reaching task performed
by an agent endowed with visual, proprioceptive, and tactile sensors. Since the
second step of the task - going back to the HB - depends on having touched the
target, we defined a recursive intention-switching function that depends on its
belief. To construct the functional we exploited the asymptotic limit-conditions
of the typical sigmoid neural transfer function which allows to recursively com-
pute a binary state and we showed that it can indeed obtain stable binary
transitions. Notably, the two-state functional could be easily extended to a more
general locally computed multi-state function in which the triggering of one state
enables the activation of a successive one.

In conclusion, the critical role of our solution is the computational demon-
stration that in principle Active Inference in continuous time, and its putative
cortical core correlate in the PPC, maintain relevant information and can man-
age the execution of multi-step actions alone - as the neural data suggests [3,15]
- thus freeing critical higher-level cognitive resources, such as the Prefrontal Cor-
tex, to cognitively more demanding tasks. Further neuroscience research should
empirically demonstrate the existence of the proposed neural circuitry imple-
menting sequential intention modulation.
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Abstract. Active inference provides a general framework for behavior
and learning in autonomous agents. It states that an agent will attempt
to minimize its variational free energy, defined in terms of beliefs over
observations, internal states and policies. Traditionally, every aspect of
a discrete active inference model must be specified by hand, i.e. by man-
ually defining the hidden state space structure, as well as the required
distributions such as likelihood and transition probabilities. Recently,
efforts have been made to learn state space representations automat-
ically from observations using deep neural networks. In this paper, we
present a novel approach of learning state spaces using quantum physics-
inspired tensor networks. The ability of tensor networks to represent the
probabilistic nature of quantum states as well as to reduce large state
spaces makes tensor networks a natural candidate for active inference.
We show how tensor networks can be used as a generative model for
sequential data. Furthermore, we show how one can obtain beliefs from
such a generative model and how an active inference agent can use these
to compute the expected free energy. Finally, we demonstrate our method
on the classic T-maze environment.

Keywords: Active inference · Tensor networks · Generative modeling

1 Introduction

Active inference is a theory of behavior and learning in autonomous agents [5].
An active inference agent selects actions based on beliefs about the environment
in an attempt to minimize its variational free energy. As a result, the agent will
try to reach its preferred state and minimize its uncertainty about the environ-
ment at the same time.

This scheme assumes that the agent possesses an internal model of the world
and that it updates this model when new information, in the form of obser-
vations, becomes available. In current implementations, certain components of
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the model must be specified by hand. For example, the hidden space structure,
as well as transition dynamics and likelihood, must be manually defined. Deep
active inference models deal with this problem by learning these parts of the
model through neural networks [2,13].

Tensor networks, as opposed to neural networks, are networks constructed
out of contractions between tensors. In recent years, tensor networks have found
their place within the field of artificial intelligence. More specifically, Stouden-
mire and Schwab [12] showed that it is possible to train these networks in an
unsupervised manner to classify images from the MNIST handwritten digits
dataset [8]. Importantly, tensor networks have shown to be valuable tools for
generative modeling. Han et al. [6] and Cheng et al. [3] used tensor networks for
generative modeling of the MNIST dataset, while Mencia Uranga and Lamacraft
[9] used a tensor network to model raw audio.

Tensor networks, which were originally developed to represent quantum
states in many-body quantum physics, are a natural candidate for generative
models for two reasons. Firstly, they were developed in order to deal with the
curse of dimensionality in quantum systems, where the dimensionality of the
Hilbert space grows exponentially with the number of particles. Secondly, they
are used to represent quantum states and are, therefore, inherently capable of
representing uncertainty, or, in the case of active inference, beliefs. For exam-
ple, contrary to neural networks, tensor networks do not require specifying a
probability distribution for the hidden state variables or output variables. Fur-
thermore, tensor networks can be exactly mapped to quantum circuits, which is
important for the future of quantum machine learning [1].

In this paper, we present a novel approach to learning state spaces, likelihood
and transition dynamics using the aforementioned tensor networks. We show
that tensor networks are able to represent generative models of sequential data
and how beliefs (i.e. probabilities) about observations naturally roll out of the
model. Furthermore, we show how to compute the expected free energy for such
a model using the sophisticated active inference scheme. We demonstrate this
using the classic T-maze environment.

Section 2 elaborates on the inner workings of a tensor network and explains
how to train such a model. Section 3 explains the environment and how we
applied a tensor network for planning with active inference. In Sect. 4, we present
and discuss the results of our experiments on the T-maze environment. Finally,
in Sect. 5, we summarize our findings and examine future prospects.

2 Generative Modeling with Tensor Networks

A generative model is a statistical model of the joint probability P (X) of a set
of variables X = (X1,X2, . . . , Xn). As previously mentioned, quantum states
inherently contain uncertainty, i.e. they embody the probability distribution of
a measurement of a system. It is natural, then, to represent a generative model
as a quantum state. Quantum states can be mathematically described through
a wave function Ψ(x) with x = (x1, x2, . . . , xn) a set of real variables, such that
the probability of x is given by the Born rule:
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P (X = x) =
|Ψ(x)|2

Z
, (1)

with Z =
∑

{x} |Ψ(x)|2, where the summation runs over all possible realizations
of the values of x.

Recent work [10] has pointed out that quantum states can be efficiently
parameterized using tensor networks. The simplest form of tensor network is
the matrix product state (MPS), also known as a tensor train [11]. When rep-
resenting a quantum state as an MPS, the wave function can be parameterized
as follows:

Ψ(x) =
∑

α1

∑

α2

∑

α3

. . .
∑

αn−1

A(1)
α1

(x1)A(2)
α1α2

(x2)A(3)
α2α3

(x3) · · · A(n)
αn−1

(xn). (2)

Here, each A
(i)
αi−1αi(xi) denotes a tensor of rank 2 (aside from the tensors on the

extremities which are rank 1) which depends on the input variable xi. This way,
the wave function Ψ(x) is decomposed into a series of tensors A(i).

Importantly, each possible value of an input variable xi must be associated
with a vector of unit norm [12]. That is, each value that xi can assume must be
represented by a vector in a higher-dimensional feature space. Furthermore, to
allow for a generative interpretation of the model, the feature vectors should be
orthogonal [12]. This means that the vectors associated to the possible values
of xi will form an orthonormal basis of the aforementioned feature space. For
a variable which can assume n discrete values, this feature space will be n-
dimensional. The dimensionality of the space is referred to as the local dimension.

The unit norm and orthogonality conditions can be satisfied by defining
a feature map φ(i)(xi), which maps each value onto a vector. For example, if
xi ∈ {0, 1, 2}, a possible feature map is the one-hot encoding of each value:
(1, 0, 0) for 0, (0, 1, 0) for 1, and (0, 0, 1) for 2. The feature map φ(i)(xi) allows
us to rewrite the A(i)(xi) in Eq. 2 as

A(i)
αi−1αi

(xi) =
∑

βi

T
(i)
αi−1βiαi

φ
(i)
βi

(xi), (3)

where T
(i)
αi−1βiαi

is a tensor of rank 3. Here, we have further decomposed A(i)

into a contraction of tensor T (i) and the feature vector φ(i)(xi). In graphical
notation, the MPS (cf. Eq. 2) becomes:

Ψ(x) =
T (1) T (2) T (3) · · · T (n)

φ(1) φ(2) φ(3) φ(n)

Given a data set, an MPS can be trained using a method based on the density
matrix renormalization group (DMRG) algorithm [12]. This algorithm updates
model parameters with respect to a given loss function by “sweeping” back
and forth across the MPS. In our case, we maximize the negative log-likelihood
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(NLL), i.e. we maximize the model evidence directly [6]. After training, the tensor
network can be used to infer probability densities over unobserved variables by
contracting the MPS with observed values. For a more in-depth discussion on
tensor networks, we refer to the Appendix.

3 Environment

The environment used to test the generative model is the classic T-maze as
presented by Friston et al. [5]. As the name suggests, the environment consists
of a T-shaped maze and contains an artificial agent, e.g. a rat, and a reward, e.g.
some cheese. The maze is divided into four locations: the center, the right branch,
the left branch, and the cue location. The agent starts off in the center, while
the reward is placed in either the left branch or the right branch, as depicted
in Fig. 1. Crucially, the agent does not know the location of the reward initially.
Furthermore, once the agent chooses to go to either the left or the right branch,
it is trapped and cannot leave. For the agent, the initial state of the world is
uncertain. It does not know which type of world it is in: a world with the reward
on the left, or a world with the reward on the right. In other words, it does not
know its context. However, going to the cue reveals the location of the reward
and enables the agent to observe the context. This resolves all ambiguity and
allows the agent to make the correct decision.

The implementation of the environment was provided by pymdp [7]. In this
package, the agent receives an observation with three modalities at every step:
the location, the reward, and the context. The location can take on four possi-
ble values: center, right, left, and cue, and indicates which location the agent is
currently in. The reward can take on three possible values: no reward, win, and
loss. The “no reward” observation indicates that the agent received no informa-
tion about the reward, while the “win” and “loss” observations indicate that
the agent either received the reward or failed to obtain the reward, respectively.
Logically, “no reward” can only be observed in the center and cue locations,
while “win” and “loss” can only be observed in the left and right locations.
Finally, the context can take on two possible values: left and right. Whenever

Fig. 1. Possible contexts of the T-maze environment as presented by Friston et al. [5].
The agent starts off in the center. The reward (yellow) is located in either the left
branch (left image) or right branch (right image). The cue reveals where the reward
is: red indicates the reward is on the left, green indicates the reward is on the right.
(Color figure online)
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the agent is in locations “center”, “left” or “right”, the context observation will
be randomly selected from “left” or “right” uniformly. Only when the agent is in
the cue location, will the context observation yield the correct context. Further,
the possible actions that the agent can take include: center, right, left, and cue,
corresponding to which location the agent wants to go to.

We modified the above implementation slightly to better reflect the environ-
ment brought forth by Friston et al. [5]. In the original description, the agent is
only allowed to perform two subsequent actions. Therefore, the number of time
steps was limited to two. Furthermore, in the above implementation, the agent
is able to leave the left and right branches of the T-maze. Thus, we prevented
the agent from leaving whenever it chose to go to the left or right branches.

3.1 Modeling with Tensor Networks

The tensor network was adapted in order to accommodate the environment
and be able to receive sequences of actions and observations as input. Firstly,
the number of tensors was limited to the number of time steps. Secondly, each
tensor received an extra index so that the network may receive both actions and
observations. This led to the following network structure:

Ψ(x) = T (1) T (2) T (3)

o1 o2 o3

a1 a2

where we used ai and oi to denote the feature vectors corresponding to action
ai and observation oi. Note that the first tensor did not receive an action input,
since we defined that action ai leads to observation oi+1.

As mentioned in Sect. 2, the feature maps φ(i) can generally be freely chosen
as long as the resulting vectors are correctly normalized. However, it is useful
to select feature maps which can easily be inverted, such that feature space vec-
tors can readily be interpreted. In this case, since both observations and actions
were discrete, one-hot encodings form a good option. The feature vectors for
actions were one-hot encodings of the possible actions. The feature vectors for
observations were one-hot encodings of the different combinations of observa-
tion modalities, i.e. 4 × 3 × 2 = 24 one-hot vectors corresponding to different
combinations of the three different modalities.

In principle, there is nothing stopping us from learning feature maps, as
long as the maps are correctly normalized. For practical purposes, the learning
algorithm should make sure the feature maps are invertible. Whether feature
maps should be learned before training the model or can be learned on-the-fly
is an open question.
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At this point, it is important to mention that the feature map is not chosen
with the intent of imposing structure on the feature space based on prior knowl-
edge of the observations (or actions). On the contrary, any feature map should
assign a separate feature dimension to each possible observation, keeping the
distance between that observation and all other observations within the feature
space equal and maximal. To this end, the feature map can be thought of as
being a part of the likelihood.

3.2 Planning with Active Inference

Once trained, the tensor network constructed in Sect. 3.1 provides a generative
model of the world. In theory, this model can be used for planning with active
inference. At this point, it is important to remark that the network does not
provide an accessible hidden state. While the bonds between tensors can be
regarded as internal states, they are not normalized and, therefore, not usable.
This poses a problem in the computation of the expected free energy, given by [5]

G(π) =
∑

τ

G(π, τ) (4)

G(π, τ) = EQ(oτ |sτ ,π)[log Q(sτ |π) − log P (sτ , oτ |õ, π)] (5)
≈ DKL(Q(oτ |π) ||P (oτ ))

︸ ︷︷ ︸
expected cost

+ EQ(sτ |π)[H(Q(oτ |sτ , π))]
︸ ︷︷ ︸

expected ambiguity

, (6)

with hidden states sτ , observations oτ and policy π(τ) = aτ , where the ∼-
notation denotes a sequence of variables x̃ = (x1, x2, . . . , xτ−1) over time and
P (oτ ) is the expected observation. This computation requires access to the hid-
den state sτ explicitly.

To remedy this, we suppose that the state sτ contains all the information
gathered across actions and observations that occur at times t < τ . Mathe-
matically, we assume Q(sτ |π) ≈ Q(o<τ |π) and Q(oτ |sτ , π) ≈ Q(oτ |o<τ , π) with
o<τ = (o1, . . . , o(τ−1)). This way, we are able to approximate the expected ambi-
guity in Eq. 6. While these assumptions may give the impression that the cal-
culation is computationally expensive, if the contraction with previous actions
and observations has been performed once, it never has to be computed again,
since the resulting tensor can be reused in subsequent calculations. At this
point, the resulting tensor contains all the information from previous actions and
observations.

When planning, we must re-evaluate the likelihood (and thus the expected
free energy) for every time step, while imposing that the previous time steps are
fixed. Indeed, we will perform sophisticated inference [4]. Under this scheme, the
expected free energy is given by
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G(oτ , aτ ) = DKL(Q(oτ+1|a<τ+1) ||P (oτ+1)) + EQ(sτ+1|a<τ+1)[H(P (oτ+1|sτ+1))]
︸ ︷︷ ︸

expected free energy of next action

+ EQ(aτ+1|oτ+1)Q(oτ+1|a<τ+1)[G(oτ+1, aτ+1)]
︸ ︷︷ ︸

expected free energy of subsequent actions

, (7)

Q(aτ |oτ ) = σ[−G(oτ , aτ )] (8)

This defines a tree search over actions and observations in the future.

4 Results and Discussion

In this section, we demonstrate how the model’s beliefs shift over time. Later,
we show how a tensor network agent behaves when planning under sophisticated
inference.

The data set was constructed by including one of every possible path through
the maze, i.e. 202 sequences of actions and observations. The model was trained
over 500 epochs with a batch size of 10, where one epoch consisted of one right-to-
left-to-right sweep per batch. The learning rate was set to 10−4 and was further
reduced by 10% whenever the loss increased too much (i.e. by more than 0.5).
Additionally, bonds started with 8 dimensions. The singular value cutoff point
was set to 10% of the largest singular value.

4.1 Belief Shift

Since the initial observation o1 is always center position, no reward and context
right or left with 50% chance, we used the observation “center, no reward and
context right” to obtain the beliefs in each case. The results are analogous in
the case of “center, no reward and context left”.

Figure 2 (top) displays beliefs over o2 given a1. From the results, it is clear
that the agent does not know which reward it will receive, if it were to go to the
left or right branch immediately. In addition, it does not know which context
it will observe, even if the agent were to go towards the cue. Once the agent
observes o2, the beliefs shift. Figure 2 (bottom) shows beliefs over o3 given a2

when the agent has seen the cue with context “right“. Since the agent has seen
the cue, it is very certain about the reward it will receive if it goes to the left or
the right branch. If it stays in the cue location, it is also very certain that it will
observe the same context again.

4.2 Action Selection

With the outcome in Sect. 4.1, we were able to perform action selection based
on the sophisticated inference scheme described in Sect. 3.2. For this, we used
the following preferred observation per modality:

P (position) = σ(
[
0 0 0 0

]
), P (reward) = σ(

[
0 3 −3

]
), P (context) = σ(

[
0 0

]
).
(9)
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Fig. 2. (top) Model beliefs over observation o2 given action a1 per modality. (bottom)
Model beliefs for observation o3 given action a2 per modality, when the agent has
observed the cue with context “right”. Actions 0, 1, 2 and 3 correspond to center,
right, left and cue, respectively. Positions 0, 1, 2 and 3 correspond to center, right, left
and cue location, respectively. Rewards 0, 1 and 2 correspond to no reward, win and
loss, respectively. Context 0 and 1 correspond to right and left, respectively.

Figure 3 (top) shows the expected free energy for action a1. Given that the
expected free energy is lowest for the action that brings the agent to the cue,
the agent will choose to go to the cue in the first action. This is because, after
observing the cue, the cue location provides a lower entropy on the context
modality, as well as virtually 100% certainty on where the reward is located.

Figure 3 (bottom) shows the expected free energy for action a2 when the
agent has chosen to go to the cue location and has observed either “cue, no
reward, context right” or “cue, no reward, context left”. In this case, the agent
will choose to go to either the left or the right branch, depending on the context
it observed, i.e. context right will lead to action right and vice-versa.

The net result is that the agent will first go to the cue in order to resolve
ambiguity and, subsequently, go to the branch with the reward.
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Fig. 3. (top) Expected free energy for action a1. (bottom) Expected free energy for
action a2 when observation o2 was “cue, no reward, context right” and “cue, no reward,
context left”, respectively.

5 Conclusion

We introduced a generative model based on tensor networks that is able to learn
from sequential data. In addition, we showed how one can obtain beliefs from
such a generative model and how a (sophisticated) active inference agent can
use these to compute the expected free energy. Demonstration on the T-maze
environment pointed out that such an agent is able to correctly select actions.

In the future, we plan to apply tensor networks to other environments, as
well as make an in-depth comparison with neural networks, in order to better
establish the benefits and drawbacks of the method. Moreover, we will adapt
the network to allow sequences of random lengths and look into incorporating
observations with continuous variables, which may also allow us to undo the
assumptions made in Sect. 3.2. Both these changes will broaden the range of
applicability of generative models based on tensor networks.
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gramme. This work has received support from the European Union’s Horizon 2020
program through Grant No. 863476 (ERC-CoG SEQUAM).
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Appendix 1 Notes on Tensor Networks

The summation over a common index as in Eq. 2 is also called a contraction.
Performing the contraction between two tensors yields a new tensor with a rank
equal to the sum of the ranks of the two contracted tensors minus two times the
number of indices contracted over. That is, contracting two tensors of rank 2 over
a single index gives a new tensor of rank 2, which is simply matrix multiplication:∑

j AijBjk. Similarly, contracting over the indices of a single tensor of rank
2 is simply the trace:

∑
i Aii. In this sense, contraction is a generalization of

these operations. Contracting indices in different ways gives rise to different
structures. Examples of other possible networks are: tree tensor networks (TTN)
and projected entangled pair states (PEPS).

Tensor networks can more easily be understood using their graphical nota-
tion. Each tensor is represented by a node, while contractions are represented
by edges. Free edges, i.e. edges which do not connect two tensors, correspond to
free indices which have not been summed. These can be used to represent sites
in the network which are able to receive input or which can be used as input.

Some examples of tensors in graphical notation are:

– vector ,
– matrix ,
– rank-3 tensor .

Some examples of operations that can be represented by contractions are:

– dot product ,
– matrix multiplication ,
– trace .

For a detailed account on tensor networks and their graphical notation, please
refer to [1].

Appendix 2 Training

The loss function must be chosen in such a way that the model captures the
probability distribution of the data [6]. A straightforward method for estimating
the parameters of a probability distribution is maximum likelihood estimation.
In machine learning terms, this means we will optimize the parameters of the
model with respect to the negative log-likelihood (NLL):

L =
1

|D|
∑

x∈D

log P (x), (10)

where D denotes the data set. Through NLL minimization, the generative model
becomes more similar to the probability distribution of the data.
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a) · · · · · · = · · · · · ·

b) ΔB = Z′
Z

− 2
|D|

∑
x∈D

Ψ ′(x)
Ψ(x)

c) B′ = B +α ΔB

d) B∗ U S V =SVD

Fig. 4. Training scheme for an MPS. a) Contraction of two adjacent tensors. b) Com-
puting the update to the contracted tensor. c) Updating the contracted tensor. d)
Decomposition of the contracted tensor using SVD.

Training proceeds as depicted in Fig. 4. Firstly, tensor T (i) and T (i+1) are
contracted to form the tensor B(i,i+1). The update to B(i,i+1) is then computed
using the loss function:

ΔB(i,i+1) =
∂L

∂B
(i,i+1)
αi−1βiβi+1αi+1

=
Z ′

Z
− 2

|D|
∑

x∈D

Ψ ′(x)
Ψ(x)

, (11)

where Z ′ = 2
∑

x∈D Ψ ′(x)Ψ(x) and Ψ ′ is the derivative of Ψ with respect to
B(i,i+1). Subsequently, the elements of B(i,i+1) are adjusted by adding ΔB(i,i+1)

multiplied by the learning rate. Finally, the newly computed B′(i,i+1) is decom-
posed into two tensors again. This decomposition is typically done through sin-
gular value decomposition (SVD), where the singular value matrix is then con-
tracted with either the left or the right tensor, such that we are left with two
tensors.

By starting this scheme at the leftmost tensor and iteratively moving one
tensor to the right, the algorithm can update the entire MPS. Indeed, it is possi-
ble to update one tensor T

(i)
αi−1βiαi

at a time, however, the current method allows
the dimensions of the indices αi (graphically, the edges connecting T (i) nodes),
the so-called bond dimensions, to vary during training. This is made possible
by truncated SVD, which truncates dimensions with singular values that fall
beneath some manually specified threshold. Truncating dimensions with small
singular values can be interpreted as truncating less informative dimensions. As
a result, truncated SVD ensures that the model remains as small as possible,
while containing the most information. Moreover, the size of the model will vary
depending on how much information it must learn.

Appendix 3 Computing Probabilities with Tensor
Networks

One of the benefits of tensor networks is that we can easily obtain exact joint
(and conditional) probability distributions without requiring parameterization.
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After training the model, given that the network is correctly normalized (Z = 1),
the joint probability distribution is given by

P (x1, x2, x3, . . . , xn) =

· · ·

· · ·

where we have omitted tensor labels for simplicity. Marginal distributions can
be found by discarding the offending variables:

P (x1) =
∑

{x}\{x1} P (x1, x2, x3, . . . , xn) =

· · ·

· · ·

where the sum over the variables x2, x3, . . . , xn is equivalent to contracting the
matching tensors. Finally, conditional probability distributions can be found by
combining the previous results:

P (x2, x3, . . . , xn|x1) =
P (x1, x2, x3, . . . , xn)

P (x1)
. (12)

Appendix 4 Physical Intuition

In order to garner a feeling for the physics and mathematics used throughout
this work, this section describes in (mostly) words what the physical meaning of
the constituents of the tensor network is.

Let x be an observable, i.e. a quantity that can be measured (or observed).
Examples of such physical quantities are position and momentum. Furthermore,
let {0, 1, 2} be the set of values that x can assume.

In quantum mechanics, the set of values that an observable can assume are
eigenvalues. This entails that there is a set of eigenvectors corresponding to these
eigenvalues. In turn, the eigenvectors form an eigenbasis of the state space. In
other words, every value that x can assume has a corresponding vector and each
of these vectors is a basis vector of the state space, meaning that each different
value is represented in the state space by a different dimension. For example, we
may have the vectors (1, 0, 0) for 0, (0, 1, 0) for 1, and (0, 0, 1) for 2.

Further, an MPS is typically used to represent a state within the state space.
This means that the MPS represents a (multi)vector. This vector is not necessar-
ily one of the eigenvectors mentioned earlier, but it can be virtually any vector
within the state space. When learning the parameters of an MPS, it is rotated
and stretched in such a way that it represents the data.
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If an MPS does not necessarily coincide with any of the eigenvectors, what
value will it produce when a measurement is performed? It will produce any
of the eigenvalues with a certain probability. These probabilities are given by
the square of the inner product between the MPS and each eigenvector. In our
example, say the MPS was represented by the vector (0.55, 0.55, 0.63), we would
measure 0 with 30% probability, 1 with 30% probability and 2 with 40% proba-
bility.
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2. Çatal, O., Wauthier, S., De Boom, C., Verbelen, T., Dhoedt, B.: Learning gen-

erative state space models for active inference. Front. Comput. Neurosci. 14, 103
(2020). https://doi.org/10.3389/fncom.2020.574372

3. Cheng, S., Wang, L., Xiang, T., Zhang, P.: Tree tensor networks for generative
modeling. Phys. Rev. B 99, 155131 (2019). https://doi.org/10.1103/PhysRevB.99.
155131

4. Friston, K., Da Costa, L., Hafner, D., Hesp, C., Parr, T.: Sophisticated inference.
Neural Comput. 33(3), 713–763 (2021). https://doi.org/10.1162/neco a 01351

5. Friston, K., FitzGerald, T., Rigoli, F., Schwartenbeck, P., O’Doherty, J., Pezzulo,
G.: Active inference and learning. Neurosci. Biobehav. Rev. 68, 862–879 (2016).
https://doi.org/10.1016/j.neubiorev.2016.06.022

6. Han, Z.Y., Wang, J., Fan, H., Wang, L., Zhang, P.: Unsupervised generative mod-
eling using matrix product states. Phys. Rev. X 8, 031012 (2018). https://doi.org/
10.1103/PhysRevX.8.031012

7. Heins, C., et al.: pymdp: a python library for active inference in discrete state
spaces. J. Open Source Softw. 7(73), 4098 (2022). https://doi.org/10.21105/joss.
04098

8. LeCun, Y., Cortes, C., Burges, C.J.C.: The MNIST database of handwritten digits
(1998). http://yann.lecun.com/exdb/mnist/. Accessed 10 June 2022
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Abstract. Bayesian mechanics is a new approach to studying the math-
ematics and physics of interacting stochastic processes. We provide a
worked example of a physical mechanics for classical objects, which
derives from a simple application thereof. We summarise the current
state of the art of Bayesian mechanics in doing so.
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1 Introduction

Under the free energy principle [15], Bayesian mechanics is a new approach
to studying the mathematics and physics of interacting stochastic processes. In
essence, Bayesian mechanics is a particular sort of mathematical physics for cou-
pled random dynamical systems, providing a mechanical theory for how the sta-
tistical properties of physical systems change in a space of Bayesian beliefs, based
on how their physical properties change in space and time [14,29,32]. Bayesian
mechanics is particularly interested in systems with some notion of regularity,
termed ‘self-evidencing’ systems in previous literature.1 A self-evidencing sys-
tem occupies an attractor in the state space, and has some set of stereotypical
behaviours definitional of the sort of system it is. The key deliverable of Bayesian
mechanics is that a random dynamical system is an estimator for statistics or
parameters of another system to which it is coupled, and that we can understand
attractors and phases in state space in virtue of these belief dynamics.

Albeit conceptually powerful, the use of the free energy principle (FEP) and
Bayesian mechanics to describe specific physical systems is rarely codified in

1 This term of art originates in neuroscience [25], where the free energy principle has
its origins, as an attempt to explain the physics and philosophy of learning in the
human cortex—viewed as a Bayesian mechanical problem, a brain learning about an
environment is one random dynamical system performing inference about another,
with an aim towards the attractor states characteristic of allostasis [42].
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the literature. There are examples where it reproduces known algorithms like
various types of control [10,26]), as well as simple dissipative systems [1] and
more complex systems exhibiting Lorentzian chaos [17], but recent work has
treated it as a purely formal position that systems constrain themselves to fall
within acceptable regimes of certain existential variables, thus inducing such
attractor structures in the state space.

More specifically, in [32,35], Bayesian mechanics is introduced as the mechan-
ics of beliefs—but it is challenging to determine the physical mechanics of sys-
tems carrying those beliefs. This would require solving difficult PDEs for non-
equilibrium steady state densities in general, or else, equations of motion for
internal states on the synchronous statistical manifold. Likewise, it is often
claimed that the FEP is as simple and general as the principle of stationary
action [16], and it can be sketched out how the Bayesian mechanics of internal
states of classical objects might look [15]. Nevertheless, there has yet to be a sys-
tematic investigation of even the Bayesian mechanics of classical physics, despite
it being readily available due to recent formulations as a least action principle.

Here, inspired by remarks in [32], we give a worked example of the classical
mechanics of objects with trivial (e.g., infinitely precise) belief dynamics—in a
fairly direct sense, the simplest case of Bayesian mechanics [35]. In doing so
we provide a general formulation of classical physics for the working Bayesian
mechanic. We hope this will ground future discussions of the free energy principle
even more solidly in conventional mathematics and physics.

2 Mechanics

2.1 Classical Physics in One Dimension

The mechanics of classical objects are embodied by Newton’s law that systems
accelerate along force gradients, by precisely the direction and magnitude of the
total force applied—no more, and no less. The derivation of this is simple. Let
K = 1

2mv2
t , where qt is the position of some point mass at t and its velocity is

the time derivative vt = q̇t, and V be some scalar potential. Now define a path
as a particular function q(t) (e.g., a parabolic path could be q(t) = q0 − 1

2gt2,
whilst a straight path could be q(t) = q0), and introduce the temporary time
variable τ . Taking the action functional

S[q(t)] =
∫ t

0

1
2
mv2

τ − V (qτ )dτ (1)

a path of least action (or more generally, for which the action is stationary)
obeys the equation

−∂qV = m∂tv
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by standard arguments in functional analysis.2 This is Newton’s second law,

F = ma. (2)

This logical sequence simply expresses that a path of least action always follows
(2)—that is, a system always accelerates along a force gradient, never using extra
energy by resisting or compounding that force. For an appropriate specification
of forces F , we get various sorts of mechanics, like motion in gravitational fields or
classical approximations of fluid flow (also called continuum mechanics). Given
mass data, and initial conditions q̇(0) and q(0) (along with other boundary
conditions), we can produce dynamical trajectories for some particular system
by actually using the law of motion given by Newtonian mechanics under the
least action principle.

2.2 A Physics of and by Beliefs

Bayesian mechanics can be seen as an account of the laws of motion deriving from
the free energy principle, concerning how Bayesian beliefs—and hence, systems
with beliefs—behave under certain determinants of probabilistic motion. Much
like classical mechanics serves an account of systems that obey Newton’s second
law by minimising the classical action, Bayesian mechanics is an account of
systems that engage in approximate Bayesian inference by minimising surprisal.

The pure physics of the FEP arguably dates back to two landmark papers
in the literature, [15] and [29]. In [29], and later in [10], the idea was introduced
that the FEP has gestured at a new sort of physics—one about the mechanics of
Bayesian beliefs, and how they reflect the behaviour of systems carrying those
beliefs. In [32,35] it is discussed that one can understand this in the same sense
as classical mechanics arises from the least action principle, or identically, that
diffusion arises from the maximisation of entropy, with that least action principle
being formulated in detail in [16]. Dually, we can understand our own beliefs
about a system modelling its environment—or the system’s model of itself—as
being ruled by Bayesian mechanics, under the observation and updating rules
which are a consequence thereof. A full deconstruction is given in [32].

What is native to Bayesian mechanics? Beginning with the most recent for-
mulation in [16], the FEP is nothing but the least action principle applied to some
surprisal S = − ln{p(−)}, where the application of this ‘least surprisal principle’
to specific objects determines the mechanical theory about those objects. Let a
stochastic process X under p(x, t) with sample paths γ be described by the Itō
stochastic differential equation

dXt = f(Xt, t)dt +
√

2DdWt.

Here, Xt is a random variable at t and f(Xt, t) is a vector field yielding the
drift at any state Xt, which may change over time. Let ωt = vt − f(Xt, t) be a
2 See [32] and references therein for an overview; alternatively, see [8] for a

more advanced pedagogical treatment, and [4,18] for mathematically sophisticated
resources.
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fluctuation of any realisation of this flow at a time t. Note that a realisation x(t)
is nothing but a sample path γ, and so, we have

γ̇t − Ep(γ)[γ]t (3)

for ωt. A quadratic3 form L(ωt) can naturally be defined on the tangent space
to the state space, such that the surprisal is its integral along a given path
γ of L:

S[γ] =
∫ t

0

1
4D

〈ωτ , ωτ 〉dτ.

The surprisal of a path is then proportional to half its accumulated deviation
from the expected flow f(Xt, t), with D scaled out; morally, this is in the same
sense as the classical action is proportional to half the accumulated deviation of
motion from a potential well [32, Section 2]. That this action equals the surprisal
of a path γ for a given initial condition, p(x(t) | x0), is a simple consequence of
the path probability measure being defined as

p(x(t) | x0) = exp {−λS[γ]} (4)

in [36], which is indeed the canonical definition of such an object in any abstract
Wiener space [28,40], and is the point of attack in [16]. Such a ‘path-dependant
surprisal’ is referred to as the stochastic entropy by [36], and is deeply related to
statistics on the path space of a random walk (see [12], as well as [27] and related
work on logarithmic heat kernels4). This definition of the action is consistent with
the quadratic form 1

2 〈vt, vt〉 defined in classical mechanics. The action generates
the Fokker-Planck equation for the probability of a state x at t,

∂tp(x, t) = −∂x[f(x, t)p(x, t)] + D∂xxp(x, t),

by giving rise to a probability density over coordinate and time pairs.
Define two random dynamical systems η and μ. In virtue of (3), the action—

and thus, ultimately, the surprisal—is parameterised by some modal or expected
path. Suppose that η and μ are coupled by some function σ, that one has an
additional random dynamical system b capturing the interactions between the
two, and that conditional expectations μ̂b,t = Ep(μt|bt)[μt] and η̂b,t = Ep(ηt|bt)[ηt]
exist; moreover, assume the statistics of the two processes can be distinguished,
in the sense of being independent conditioned on bt.5 By construction, σ(μ̂b,t) =
η̂b,t. It is immediate that μ is an estimator for the statistics of η [35]. That is
to say, in the case of random systems whose physical dynamics are coupled,
these statistical quantities are also coupled, in a way that can be interpreted

3 Note that in the Stratonovich convention, more amenable to calculus on manifolds,
there is an additional term in the Lagrangian L indicated; see e.g. equation 15
here: [9].

4 The author thanks Robert W Neel for suggesting this point of discussion.
5 Note that this framework degenerates in the case where σ is the identity, but that

this case is vacuous, since it assumes η is identical to μ.
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as the systems performing inference over each other. Systems that minimise
surprisal given a control parameter σ−1(η̂b,t) are particularly good models of an
environment, whilst systems that fluctuate with high probability are not.

This is referred to as approximate Bayesian inference, and in particular, is
referred to as ‘mode-matching’ when these parameters are stationary: by min-
imising surprisal, the most likely state is σ−1(η̂b,t). The a priori assumption
that systems minimise surprising events can be justified using large deviation
principles [39], and as such, most any set of coupled random dynamical systems
can be expected to perform approximate Bayesian inference of some sort. What
is more striking is that two distinct (in the above sense) systems which estimate
each other’s statistics necessarily come equipped with a pair (bt, σ), chosen such
that they fluctuate around each other’s most likely states.

Bayesian mechanics formulates changes in physical states as changes in prob-
abilities estimated by η and μ. Since we can understand the average state of μ
as the preimage of σ, we can understand it as a parameter for the probabilities
of states of η—in a sense we do this automatically, since we can understand a
system μ existing a particular way in virtue of the likely states η of the things
interacting with it, causing or not causing particular μ—and in so doing, we
can relate μ to a belief mechanics by thinking of μ as inferring (read: encoding
inferences about) the assignment of probabilities to states of η. In simpler terms,
systems exist in a particular way based on their environment. When we model
a system, we automatically model it as modelling its environment by encoding
this sort of statistical estimation in our model of the system. We expect a thing
to exist as a particular ‘thing’ based on whether or not it can exist that way
in a given environment. This places constraints on what σ−1(η̂b,t) must be for
a system to be ‘system-like’ (e.g., stone-like, human-like, and so forth); dually,
it informs what σ(μ̂b,t) must be, given we have a particular system (humans
require oxygen to breathe and cannot live beneath water). In both cases we have
a sort of allostatic attractor characteristic of the system. Besides the explicitly
non-teleological notion of the constraints or intended preimage which are defini-
tional of a system, an important dual observation is that this parameterisation
of likely internal and external states is one reading of Bayesian mechanics which
is consistent with the idea of perception or estimation in Bayesian inference.

Bayesian mechanics leads to various types of approximate Bayesian infer-
ence, just like classical mechanics admits different applications of Newton’s laws
of motion (e.g., the continuum mechanics of fluid flow, or orbital mechanics
for satellite motion). As stated, when that parameter is trivial, we have mode-
matching; when it is dynamic, this is referred to as mode-tracking [32]. When
applied to beliefs about the trajectories of external and active states, we have
a more general version of Bayesian mechanics only recently explored, including
active inference [7]. This has been referred to as ‘path-tracking’ in [32]. The
taxonomy described here exists in the same sense as minimising the action of
the Lagrangian L = K − V yields Newton’s second law of motion, which can be
applied to various sorts of systems when we know what sort of function V is.
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We will work out in some detail what this taxonomy looks like in the world of
classical physics.

In summary, Bayesian mechanics contains two key pieces of data: the sur-
prisal Lagrangian, and the synchrony map σ. These data define beliefs and belief
dynamics, respectively, and pair them with a characteristic geometry (infor-
mation geometry [2], the study of statistical manifolds, or so-called ‘spaces of
beliefs’). It is interesting that most physical theories are paired with a char-
acteristic geometry in which they play out [6], such as symplectic geometry in
classical physics [5]. Later in the paper we will point out the appearance of
symplectic forms in Bayesian mechanics, which is notable given the analogy we
draw.

3 A General Equation for Bayesian Classical Mechanics

We begin with a classical particle described by a position variable, q, at some
time t. The mass of the particle will be denoted by m. The position plays the role
of an internal state for the particle. The particle has an external environment
interacting with it, whose states η determine what forces are acting on it. Let
Ft be the total force applied to the system at a time t,

∑
i Fi,t. The reception

of an applied force is like a blanket state for the particle, which can couple to
and affect internal states. The attentive reader will likely have noted that a force
is not a state of the particle, but is an interaction of the environment with the
states of the particle. It is true that we have technically committed a type error
by identifying forces with forced states. The proper construction would involve
some sort of object that captures and instantiates that interaction, an extension
of the sensory states of a Markov blanket like that of [13]. This is a subtlety we
neglect in these results.

This being stated, we consider Ft itself to be like a sensory state of the
particle. As such, we have an inverse synchrony map,

σ−1 : ηt → Ft → qt.

The former map, η−1, merely sends external states of the world to the forces the
world applies on objects, which will be done implicitly throughout the paper, as
we provide worked examples with particular applied forces. Let s be a temporary
time variable. The latter map, μ(Fη,t) = qt, is the solution to an integral equation
determined by Newton’s second law,

F (η, t) �→
∫∫

F (η, s)
m

= qt.

In other words, the particular functional form for the coupling σ we have used
is one that sends the average acceleration of the system to the average force
applied to the system,

σ−1(ηF,t) = qF,t.

The ideal path of internal states, which encodes an optimal (i.e., unsurprising)
belief about what the system is being told to do by the environment, consists
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of precisely these qt, for whom σ(qF,t) = ηF,t. Note the consistency with more
recent formulations of the FEP: for as long as there exists a particle, there exists
some (possibly trivial) blanket distinguishing that particle from its environment
along its path of evolution [16,24,34]. We can show that such a blanket exists—
that any classical particle under the partition indicated above is sparsely coupled
on the time-scale over which it exists—simply by pointing out that we can read
off Ft and need not consider ηt to get internal states qt. Physically, this is the
intuitive statement that it is only a force that matters to motion, not what
generated that force. Hence, by construction, for as long as a classical particle
exists to be acted on, it has a blanket.

Just as we presume that the mechanics of beliefs should lead to phys-
ical mechanics (control), minimisation of the surprisal should lead to phys-
ical mechanics (Newton’s laws of motion) and trajectories that abide by
those mechanics. In establishing that physical mechanics follows from Bayesian
mechanics, we first focus on beliefs about internal states, and relate them
to the beliefs carried by internal states afterwards. The surprisal Lagrangian,
− ln{p(−)}, is applied either to p(qt) given Ft, or is applied symmetrically to
the probability of p(ηt) given Ft. We would like to see whether the minimisa-
tion of surprisal under σ recovers classical physics in the context of Bayesian
mechanics, so we try to minimise − ln{p(qt | ηF,t)} under the parameterisation
− ln{p(qt;σ−1(ηF,t))}. Here, we take a moment to note that dualising the object
in the Lagrangian to internal states gives us a physics of our beliefs about the
system, or the system’s beliefs about itself, which is the duality indicated in
[35]. Contrast this with the surprisal Lagrangian on external states, which gives
a physics of the system’s beliefs about its environment, in [16].

Under a noise injection, or else some uncertainty associated to the belief
about a position at t, this becomes a problem of mapping means to means,
in the sense of the approximate Bayesian inference lemma. We are primarily
interested in the probability of deviating from the path of least action, such that
our (state-wise) surprisal is a measure of

p(qt;σ−1(η̂F,t)) = p(qt; q̂F,t).

Suppose the acceleration at a given time is constrained such that, on average,
it obeys the forces being applied to it at that time. This is an instantaneous
picture, licensing a non-dynamical application of Bayesian mechanics (note that
we used that in Sect. 2.1 as well, where the instantaneous story behind derivatives
licenses dropping the time variable from q(t), a position in time). Denoting an
expectation with E and neglecting subscripts, this gives us the equation

Ep(q)[q] =
∫∫

F (η)
m

. (5)

Suppose we also constrain the system to be classical, in the sense of having
infinite precision. This is a variance constraint, namely, that

Ep(q)

[(
q − Ep(q)[q]

)2] = 0.
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When asking about paths, we ask that the accumulated variance of or along a
path is also zero:

Ep(q,t)

[∫ t

0

(
q(τ) − Ep(q,t)[q(τ)]

)2 dτ

]
= 0. (6)

A similar law for the total squared displacement of a path has been used to
produce Newton’s laws from the principle of maximum path entropy (maximum
calibre) before [20]. Both of the above equations are simply a constraint that
the optimal acceleration does not deviate from what the environment tells it
to, which implies the approximate Bayesian inference lemma when under the
additional constraint that the average state is the value of the synchronisation
map [35].

We believe the system constrains itself to be the optimal parameter for some
belief over what it is supposed to do in its environment. That parameter happens
to be the least surprising internal state given some external state and a shared
blanket state. This is what is meant in previous discussions about beliefs about
internal states being dual to beliefs about external states.6

The optimal (i.e., least biased [30]) belief under these two constraints can be
derived from the principle of constrained maximum entropy, yielding

p(q) = exp

{
−λ1

∣∣∣∣q − λ2

∫∫
F (η)
m

∣∣∣∣
2
}

(7)

with λ1, λ2 > 0 being Lagrange multipliers for the constraints indicated above.
Considered dynamically, this equation can be given as a path probability density

p(q, t) = exp

{
−λ1(t)

∫ t

0

∣∣∣∣q(τ) − λ2(τ)
∫∫

F (η, s)
m

∣∣∣∣
2

dτ

}
. (8)

When λ−1
1 (t) � 1 and λ2(t) = 1 for all t, we can reproduce classical dynam-

ics. In particular, in the limit λ1 → ∞, there is no uncertainty at all, and the
most likely path under those constraints—the classical path of least action, by
construction—is the only path we lend any non-zero probability to. This is some-
thing like a classical limit for our path probability, in the same sense as taking
� → 0 recovers classical mechanics from Feynman’s path integral. The degree to
which something can explore states within some allostatic bounds is precisely
the variance under a Laplace approximation, yielding an important role for the
Lagrange multipliers on the maximum entropy side of the story.

Finally, note that (8) is (4) for a modal path given by (5). This will be our
general equation for Bayesian classical mechanics.7

6 The idea that the maximum entropy principle under existential variables is the free
energy principle under a synchronisation map was first introduced in [3]. A proof of
this can be found in [35].

7 Note that, for a heuristic integral over an infinitesimal time, i.e., from t to dt, (8) is
equal to (7). Intuitively, this is a statement that instantaneous variations in a path
accumulate along the path as the path goes forward in time.
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A A Question of Quantum Ontology

We began with the aim of showing that classical physics can be derived from
Bayesian mechanics, by showing that deviations from a classical law of motion
are surprising given a particular action functional, and that Bayesian mechanics
describes the minimisation of surprisal. Do systems actually infer what their
classical laws of motion are, and follow those inferences to avoid surprisal? More
to the point: is there a less ‘just so’ aspect of reproducing classical physics from
the assumption that the least surprising trajectory of a system minimises the
classical action? Can we do this without arbitrarily assuming the laws of classical
physics and merely showing that unsurprising systems obey those laws? There
is indeed a more concrete interpretation of this inference, one which makes the
idea behind (8) more subtle.

In fact, what we have shown in the foregoing statements is that, under surprisal
minimisation, a system takes a classical path when that path is the average. We
can demonstrate that this has some further meaning by showing Bayesian mechan-
ics is naturally derived from simpler arguments about the role of probability in
quantum mechanics, such that the modal path of any fluctuating system is a clas-
sical path, and surprisal minimisation already exists in quantum mechanics. That
is, we can derive Bayesian mechanics from the idea that a system is classical on
average, just as we can derive classical mechanics from the idea that systems obey
Bayesian mechanics for classical averages. This suggests a view that (i) systems
with randomness do inference over their classical laws, and (ii) in the quantum
setting we recover classical physics by doing inference. A more complete quantum
physics manual for the Bayesian mechanic is to be written elsewhere.

Begin from the supposition that classical equations of motion are asymptotics
of quantum equations of motion, given by the empirical observation that we can
measure classical effects more readily than quantum ones, but also, that classi-
cal equations of motion depend on parameters with underlying quantum effects,
in such a way that quantum effects still bleed into the classical world when we
‘zoom in’ to the extent that those parameters are no longer renormalised.8 This
leads directly to the correspondence principle, a law of large numbers for quan-
tum probabilities. The consequence of this classical ‘limit’ is that the evolution
of the most likely state of a quantum system gives us what we define as classi-
cal physics. Proven by Ehrenfest in 1927, we can rewrite this result (assuming
|∂ttq(t)| is bounded above almost surely—physically, a thoroughly reasonable
assumption) as

− Ep(q(t))

[
∂qV (q)

]
= m Ep(q(t))

[
∂ttq(t)

]
.

8 This is also referred to as the adiabatic approximation, and appears in semi-classical
physics.
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So, assuming distance constraints like those above, such that we have a Gaussian
measure or otherwise a Laplace approximation—a constraint which is quadratic
in fluctuations—the most likely path ought to be a classical equation of motion.
We will repeat this argument in Bayesian mechanical language, aided by the
technology of the path integral.9

In order to reproduce the idea that, probabilistically, quantum fluctuations
are merely corrections to classical estimates, we take a Wiener measure where
the variance of path probability—as it is given by the probability of the velocity
on such a path—is scaled by some characteristic constant m

2�
,

Z−1exp
{

− m

2�

∫ t

0

∂sq(s)2ds

}
dq(t).

Note that, technically, we have Wick rotated our field theory. Note also that,
appealing to the Trotter product formula, we can—without loss of generality—
neglect the potential and assume it is zero everywhere on the support.

As we remarked before, setting λ1 = � and taking the scaling of quantum
fluctuations to zero, and making use of the fact that fluctuations are precisely
what contribute to the surprisal, we have a statement that in the quantum regime
of Bayesian mechanical dynamics, the least surprising trajectory of the system
is one that follows an overlying classical equation of motion. Indeed, under the
WKB approximation, the most likely path in the path integral is the classical
equation of motion of the field. Without quantum fluctuations about this classi-
cal solution we have classical physics, whereas in perturbative approximations to
quantum mechanics, such as the quantum effective action, we add those quantum
fluctuations in as higher order correction terms to a classical ansatz.10

So, we are now armed with two facts: basic physical observations suggest that
classical paths are most likely paths, and, the canonical measure on paths is in
terms of fluctuations about such a classical mode. We wish to see if the math-
ematical fact that this is the canonical description of path probability reflects
the physical fact that classical equations of motion are the most likely paths
of a system. Our formulation suggests that taking the limit � → 0 would be
the right approach. Formally, this limit scales fluctuations to zero, revealing the
most likely state as the one with constant velocity v(0): a classical equation of
motion under our identically zero potential, from where we derive no applied
force and hence no acceleration.

Though we omit the proof, one can indeed prove that taking � → 0 results
in classical equations of motion. As noted by Feynman, this most likely path
is what is most likely to be determined by observation (experiment), and thus
determines the classical limit of the path integral. That this story—the most
likely path is the classical one due to a priori assumptions about the state and

9 We point the reader to [23] for details.
10 This section assumes there is a unique such classical solution to the system. Degen-

erate classical minima are handled by instanton theory, which we will not cover here.
An excellent overview of the topic can be found in [41].
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measurability of the world—implies the minimisation of surprisal, as well as
following from it (as discussed in Sect. 3) is non-trivial.

What does it actually mean when we pass from ‘most likely’ to ‘least surpris-
ing?’ Least surprising to whom? Certainly the experimenter—there is a sense in
which the entire problem is dualised, and we are minimising the surprisal of our
beliefs about what a system does. That is, the two random dynamical systems
coupled here are a quantum particle and an environment (including, perhaps,
an external observer).

Do quantum particles do inference over where their classical paths are, organ-
ising themselves on average into the preimage of the average state of the observer,
who expects to see a system follow a force applied? In the sense of estimating
what that path is by taking a path which wastes the least energy (so to speak) in
response to a force and in absence of quantum noise—and encoding such a path
in their own dynamics, thereby estimating what a force ‘tells’ them to do—they
do. This makes Bayesian mechanics a useful way of modelling how a quantum
system treats information and interactions with its environment,11 defaulting to
classical equations of motion on average. It is in this Bayesian mechanical sense
that classical physics is a result of Bayesian inference in a quantum regime.

B The Matching of Modes

This section begins a worked example of the typology described in [32]. We begin
with ‘mode-matching.’ Mode-matching is the application of Bayesian mechanics
to stationary objects which engage in approximate Bayesian inference [15,32,35].
In this case, by definition of stationarity, the most likely internal state is fixed.
Typically valid over only a brief time-scale—since nothing is stationary forever
and nothing which is stationary and non-adaptive resists entropy for long—this
is the simplest case of Bayesian mechanics.

Inspired by [35], we formulate mode-matching under approximate Bayesian
inference as internal states being constrained to be optimal parameters for a
recognition density. Again, this is fully equivalent to the proper FEP. Using
Theorem 4.2 (ibid), we can formulate the minimisation of surprisal applied to
internal states − ln{p(q | ηF )} as a demand that the log-probability equals some
constraint on those internal states, with further precision-based minimisation
possible over an ensemble of states. Here, that constraint is

S[q] = − ln{p(q | η)} = λ1

(
q −

∫∫
F (η)
m

)2

.

Note the similarity to Eq. 3.5 in [10]. Under approximate Bayesian inference (and
a further, but generically acceptable, Laplace assumption), the ideal state is the
most likely state, which is the minimiser of this squared displacement.

11 We will refer the reader to [13] and related references for more details about quantum
information theory under the FEP.
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The system we describe could be a stone performing inference over the can-
celling of its gravitational pull and the normal force emanating from the ground,
obeying ∑

F = −Fg + FN = 0. (9)

In this case, the stone’s acceleration is zero, and under the initial conditions
v = 0, q = 0, it goes straight to—and remains at—the mode q = 0. Referring
back to the Introduction, the mode is a particular attractor which is a fixed point
for the system. This also means that for Bayesian mechanics to be consistent in
the classical setting, it must (for stationary modes) imply Newton’s first law—
i.e., that for every applied force, there is a force of equal magnitude applied in
the opposite direction.

C The Tracking of Modes

Mode-tracking can be summarised as the existence of a target mode, i.e., a
desired mode that systems are tracking towards, either for a finite time or con-
stantly. This allows us to describe the most likely flow of autonomous states as
a flow of beliefs [1,15,29,31], and involves the iteration of approximate Bayesian
mechanics [35]. Within mode-tracking there are two further distinctions, a bit
more granular than the three-fold structure described in the Introduction: sys-
tems which track, but settle to, a mode, and systems which constantly chase a
mode. The former is an example of a system that terminates in mode-matching,
whilst the latter is an example of a system that is in constant motion. For both
cases, we pass to an idea of dynamics, gesturing at an application of the principle
of maximum calibre [34].

C.1 Terminal Mode-Matching

Suppose the total force applied is dynamic, but eventually equilibrates. An exam-
ple would be a stone tossed into the air, which travels through a gravitational
field and eventually returns to the ground. The variant of (9) corresponding to
that motion is F = −Fg, and the solution of the integral equation (5) under that
F is

q(t) = q(0) + v(0)t − 1
2
gt2 (10)

where g is the acceleration due to gravity. This equation has a steady state value
where the mode q(t) = 0 and remains there, reached at some hitting time thit.
For instance: for v(0) = 0 metres per second and q(0) ≈ 4.91 metres above
ground, thit ≈ 1 second. So, we can consider the full, dynamic-in-time force as

−Fg(t) + 1hit(t)FN (t),

where 1(−) is an indicator function—the constant function equal to one on t ≥
thit, and zero elsewhere. This terminates in the mode-matching explored in the
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previous section, since for all t ≥ thit, we have
∑

F = 0. Indeed, q(t ≥ thit) = 0
by construction; this is a stationary mode.

By solving (5) as a constraint relation, we have actually asked that the aver-
age path obeys (10) and that no other path q(t) deviates from that path. That is,
we want q(t) = q̂(t) in the ideal case. As such, classical objects can be modelled
as performing inference over the forces driving their motion, and given that they
find known laws of motion unsurprising, get driven to the mode described in
Sect. B by following (10). For example—it would be surprising to the very fabric
of space-time if a stone which had landed on the ground at some thit were to
spontaneously jump after. Thus, by obeying (10) and following classical laws of
motion, the surprisal of motion is minimised. We will detail this below.

We begin by asking that q(t) should equal q̂(t). Under our other constraint
on the expected path—the solution to (5), given above—eventually, q̂(t) = 0
(in particular, for all t ≥ thit). We could view this as dynamical inference more
generally, or, the construction of a realisation of some path under a steady state
density with mode zero, such that q̂(t) = 0 after some convergence time (here,
thit). In that case, the system goes directly to q̂ as its kinetic energy ‘dissipates’
into potential energy.

In greater detail: the path we take consists of a list of states. Each such state is
increasingly more likely as we approach the mode, and indeed, a mean-reverting
process will go to a mode on average under a quadratic potential. As such, the
average path taken by the system performs a gradient ascent on the probability
density, or equivalently, a gradient descent on the surprisal. Note that we are not
working in a path space here; rather, the path exists on a probability density,
as a lift of a list of states, which is indeed simply a path—but, we don’t speak
about surprisal minimisation on such a path directly, instead speaking about the
tendency of any path to go to a fixed point. Mathematically, this means that the
motion of q(t) is a gradient descent on |q(t) − q̂(t)|2, with some convergence time
thit, and q(t) = q̂(t) = 0 for t ≥ thit. Since the logarithm of (7) is this distance
when λ2 = 1, this is equivalently a minimisation of surprisal. That is, we have

∂tq(t) = −λ1∇ ln{p(q)},

such that the least surprising state is the mode, and the system takes a path
towards that mode. Moreover, the least surprising path to the least surprising
state ought to traverse the distance from some initial q(0) to q̂ the quickest,
which (for a fixed velocity) is the path given by a direct gradient descent on
the distance. It would be of interest in future work to give a unified view of
these approaches, i.e., to prove that under certain asymptotic conditions, least
surprising paths are paths towards least surprising states.

Since λ1 scales fluctuations, it is proportional to the inverse diffusion coef-
ficient, or the covariance, more generally. Additionally, since there is no ran-
dom motion and no opportunity to explore, the motion is described by a pure
gradient descent, and so this yields one component of the Helmholtz decom-
position discussed in [15]. Note that the instantaneous Lagrange multiplier λ
plays a different role than the dynamical Lagrange multiplier λ(t). In particular,
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the former selects states whilst the latter selects paths, a distinction that becomes
important when we deal with paths towards least surprising states, as we have
here. We still desire λ1(t)−1 → 0 as we did in Sect. A, to reproduce classical
path selection. In the Gaussian case this is precisely our uncertainty over paths,
as we mentioned.

C.2 Infinite Mode-Tracking

This section will discuss itinerant objects whose gravitational field is such that
the mode is never stationary—which we could call mode-chasing, as a sub-type
of mode-tracking. Consider a planet in a gravitational potential equal in all
directions: there is no stationary state, and hence, no meaningful mode, to the
dynamics of this system. Näıvely, there is no parameter through which to min-
imise surprisal. This does not mean the FEP cannot describe satellite motion.
On the contrary—the application of the FEP to complicated systems is where
it truly shines [31].

Like any classical system, in the absence of a force acting on it, a satellite
system will continue to move on its trajectory. This is Newton’s first law—the
usual aphorism being, ‘a body in motion tends to stay in motion; a body at rest
tends to stay at rest. . . ’ with the phrase ‘. . . unless acted upon by an outside
force’ often appended. As such, the hitting time formulation of Sect. C.1 is no
longer directly useful, but having no hitting time certainly is. Note that the lack
of a mode—but presence of circular, solenoidal flows—for true classical systems12

is consistent with [10,35].
Such a system has no dissipative component, since it is purely classical. This

means the gradient descent describing the mode-matching dynamics we discussed
in Sect. C.1 degenerates, in the opposite sense as any exploratory component of
the flow degenerated in that section. Here, we have a system which travels along a
level set of a sphere of radius r, and in particular, travels such that the surprisal
of states (parameterised by a stationary mode) is a non-zero constant along
a path. By simple arguments in symplectic geometry—the geometric study of
flows in classical physics [5,37]—flows which are level sets of some Lagrangian13

and which admit radial coordinates are described by a skew-symmetric matrix.
Indeed, level sets of the sphere centred on q̂, projected down to the state space,
are integral curves of the following equation:

∂tq(t) =
[

0 ν
−ν 0

]
q(t) +

1
ν

q̂, (11)

12 That is, energetically conservative systems, or systems in the absence of dissipative
forces. Although not a dissipative system, one can contrast this with the loss of
energy of motion that occurs upon colliding with the ground in Sect. C.1. It is
consistent that such systems have a mode whilst unperturbed satellite motion does
not.

13 Note that we typically consider a Hamiltonian, which is metric isomorphic to a
Lagrangian.
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where ν controls the system’s frequency, or speed of travel along one such level
set. Note that this system of equations corresponds to the second-order ordinary
differential equation

∂tq(t) = −ν2q(t)

whose solution is
q(t) = r cos(νt) + r sin(νt) + q̂

for some constant r > 0. Note also that

− ∇i ln{p(q, t)} = 2λ1(q(t) − λ2q̂). (12)

As such, for an appropriate choice of λ1 (namely, one half, or one half the coeffi-
cients of the gradient descent operator, should it exist) and λ2 (namely, −1/ν),
inserting (12) component-wise into (11) yields exactly the other piece of the
Helmholtz decomposition.

As we stated, the matrix operator indicated is skew-symmetric, and, the gra-
dient on the sphere is locally orthogonal to these level sets—that is, moving on a
level set does not change the gradient. Since there is no mode for these dynamics,
we cannot describe a gradient descent on surprisal in the sense of Sect. C.1, but
we can say that it is a gradient descent for which the value of the gradient is
preserved, with velocity scaled by the matrix indicated. Future work will make
the arguments given here—with respect to the Helmholtz decomposition being
an artefact of the geometric nature of certain flows—more formal.

D Path-Tracking, and A Simple Case of G-theory

This section will progress the construction to more complex forms of path-
tracking that are not amenable to the mode-based descriptions we discussed
previously.

What has been called G-theory is the duality between maximum calibre
and the genre of Bayesian mechanics applying to surprisal on paths [32], which
we have begun to explore here. This pitches G-theory as the generalisation of
the duality explored in [35], extending that construction to paths. In its full
generality it is thought to accommodate descriptions of complex systems (like
non-Markovian behaviours, moving attractors, and non-stationary statistics)
more naturally and with greater fidelity than in the past. Some inspiration for
this comes from the previously mentioned principle of maximum calibre, which
does famously well on difficult problems in non-equilibrium statistical physics
[11,19,30]. These results suggest that, whatever G-theory will prove to be, it will
be a canonical modelling framework for complex systems.

Here we provide a simple example of this framework by formulating path-
tracking, the least surprisal principle on paths—our third sort of approximate
Bayesian inference—as an explicit problem of dynamical constraints. We then
formulate a connection to chaos by examining the path-based nature of G-theory
in greater detail.
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D.1 Path-Tracking

Recall our results on mode-tracking in Sect. C.1. The construction there is obvi-
ously inelegant—besides formulating the path over the state space instead of
doing proper dynamical inference, it exchanged the proper accumulated squared
displacement in (8) with a less general instantaneous squared displacement at
thit. Foreshadowing a more general extension to paths, the most natural formu-
lation of this problem is readily seen as a gradient ascent on the path probability
density. Under maximum calibre, our constraints lead to a probability density

exp
{

−λ1(t) |q(t) − q̂(t)|2
}

,

where the expected path (10) is denoted by q̂(t), and |q(t) − q̂(t)|2 is limitingly
zero. For dynamic F , this is a moving Gaussian, with mode centred along the
path for a given state-wise marginal. That is, it is centred on the list of q’s visited
classically for a list of times, like a crest in the path space that runs directly over
the intended states (and hence, a sort of mountain of probability for realisations
flowing along the state space, concentrating them in that region). Path tracking
is obvious in this situation—it appears to follow a gradient descent on the action,
finding the most likely path by finding the summit at each t of p(q(t)).

We can indeed still discuss a gradient descent in this case, but it is a functional
gradient on the action S, such that the gradient descent is on deviations along a
path, minimising fluctuations from the path of least action—and this is precisely
the principle of least action, or of least surprisal, when the path of least action
is the expected path (guaranteed by (3), as discussed in Sect. 2.2).

Let δq(t) be some first order variation of a path away from a path of stationary
action at t (see [32, Figure 1] for a depiction), which is in fact a realisation at t
of some fluctuation away from the expected path. Analytically, this means that
we have

δq(t) = −∇̂S[q(t)]

where the kernel of the gradient in the path space, ∇̂, is a path such that the
system only changes to second order under variation—that is, it is a path q(t)
such that the distance between q(t) and

∫∫
F (η, t) is minimised. This equation

simply expresses that the path of least variation is the stationary, or expected,
path. This means the system will most likely settle into an evolutionary regime
that follows the expected path, which is least surprising—however, note this is
simply a model of that process, since there are no such fluctuations in classical
physics. Instead, we are interested purely in the zero point of the gradient.

Recall what the surprisal is in this case—the logarithm of (8) is merely the
classical action. As such, the statement that systems evolve on stationary points
of the classical action functional follows directly from a gradient descent on path
surprisal given that systems follow forces. As such, the above equation reduces to

δq(t) = −∇̂ ln{p(q, t)}

= ∇̂
[
λ1(t)

∫ t

0

∣∣∣∣q(τ) − λ2(τ)
∫∫

F (η, s)
m

∣∣∣∣
2

dτ

]
,
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which yields

δq(t) = 0 ⇐⇒ ∂ttq(t) − F (η, t)
m

= 0.

Since our path space gradient on surprisal reproduces the Euler-Lagrange equa-
tion as the functional gradient of S[q(t)], this is precisely classical mechanics.

In the infinite mode-tracking case, we have something similar. For simplicity,
we take the path of a satellite moving about a fixed central body of radius r as
a circle

q1(t)2 + q2(t)2 = r2.

This is a constraint that the expected path is a circle of radius r, and that
realisations of q ought to have norm r2. We will parameterise this as an expected
path which is q̂(t) = [q̂1(t), q̂2(t)] = [r cos(t), r sin(t)]. The surprisal Lagrangian
measures precisely these deviations from a circle,

〈
q(t) − [r cos(t), r sin(t)], q(t) − [r cos(t), r sin(t)]

〉
.

In this form it is even more apparent that our Lagrangian, the quadratic form
defined in (3), is a metric on noise, ω = q − q̂.14 Once more, it is exactly the
distance of q(t) from a circular path parameterised by [r cos(t), r sin(t)]. As for
surprisal—again, given that systems move on geodesics through space-time, it
would be surprising to see a system change its path to deviate from the curvature
of space-time, and thus, to not follow the induced potential field. The final
relation we derive is

δq(t) = 0 ⇐⇒ q(t) − [r cos(t), r sin(t)] = 0.

Given centripetal forces and the absence of tangential forces on a radial param-
eterisation of the circle, we can derive that

∂ttq(t) − C
M

r2
= 0,

where C is determined to be Newton’s gravitation constant; this equation then
yields the acceleration for a system orbiting a central body of mass M in circular
fashion.

D.2 A First Idea of G-theory

In Sects. 3 and A, we introduced the idea that surprisal minimisation arose from
solving for the Lagrange multiplier for a constraint that the most likely path was
an on-shell trajectory, described by (6). When this Lagrange multiplier is limit-
ingly zero, and the particle does perfect inference over the forces being applied
to it, we have classical mechanics. Here the uncertainty over both environment
and system necessarily degenerated.
14 In fact, we could choose to denote the Lagrangian as g(ω, ω), for reasons of geometric

significance.
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This curiosity—that Bayesian mechanics, when cast in the language of the
principle of maximum calibre, naturally leads to a path integral representation
of classical mechanics—is upgraded to a more interesting observation that, when
viewed through the lens of a classical system interacting with an environment,
a path probability density is the most informative about the system; in partic-
ular, that it is the most general way of understand what an environment ‘tells’
the system to do, and how that can be represented probabilistically as the sys-
tem estimating those forces and following them so as to produce good (that is,
unsurprising) inferences.

Although path-tracking is already a more elegant way of discussing the sim-
ple problems on display here, as expected, the problems the full generality of
Bayesian mechanics seeks to provide solutions to are radically different than the
simple Newtonian laws of motion investigated thus far. Moreover, to produce
key identities in classical physics like the Euler-Lagrange equation, we practi-
cally began from where we wanted to end up: with the assumption that classical
systems follow forces.15 Here, we aim to eventually formulate chaotic or itinerant
systems under Bayesian mechanics, as has been done for earlier forms of the free
energy principle [17]. A sketch of one such result will be found in this second
subsection.

Let Γ be the space of paths and C(t) be a source for the field (this is merely
an external field driving x(t), and is generically comparable to an electric cur-
rent). At the path of minimal surprisal, and under the demand that there is no
other path possible, we have a Dirac measure over the classical path. Hence, the
solution can trivially be transformed into the following path integral represen-
tation:

Z[C] =
∫

Γ

∏
t

δ(xt − xt,cl)e−λ1(t)
∫ t
0 C(τ)x(τ)dτDx(t)

where x(t)cl is the classical solution to the equations of motion of interest and
the product of Dirac measures over intervals of t of size ε > 0 is given. The term∏

t δ(xt − xt,cl) in the path integral enforces a weight of one for classical paths
and a weight of zero for all others.

It is a standard trick to rewrite a Dirac measure in terms of a Jacobian
determinant, and a determinant in terms of a path integral over ‘ghost fields,’
anti-commuting variables that behave like auxiliary fermionic fields. Following
the procedure described in [22], rewriting the on-shell trajectory x(t)cl in terms
analogous to second order variations ω̇ and the Dirac measure on that function
as a particular determinant; then, introducing a pair of ghosts θ and θ̄, we have
the following transformation of the Bayesian mechanical path integral:

∫
Γ̃

exp
{

i

∫ t

0

ξ(vτ − vτ,cl) + iθ̄ω̇θdτ

}
Dx(t)DξDθDθ̄

15 However—in defence of the author, and with reference to Sect. A, what we really
did was say that the least surprising path of a system with quantum or statistical
fluctuations is the one that obeys a classical equation of motion—a less trivial result.
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where we have taken C(t) to be identically zero for convenience (hence it has
disappeared) and introduced a temporary variable ξ after passing to imaginary
variables. Note that

i

∫ t

0

ξ(vτ − vτ,cl)dτ

is merely our surprisal Lagrangian in Fourier variables, arising organically from
defining what it means to be a classical path—and that there is an additional
term

−
∫ t

0

θ̄ω̇θdτ

arising from the other transformations on
∏

t δ(xt − xt,cl) described. The latter
term corresponds to a fermionic sector of our theory, as discussed; whilst the
surprisal term defines a bosonic sector in contrast. Note also that, in spite of the
appearance of an imaginary quantity in the path integral, there is no constant
�. That ultimately preserves the classicality of this path integral.

Moreover, these ghost fields define a pair of supercharges; this is due to invari-
ance under a pair of BRST transformations which relate bosonic and fermionic
degrees of freedom, and form a superalgebra under the commutator. Bayesian
classical mechanics is thus an N = 2 supersymmetry theory.16 This supersymme-
try has a striking interpretation that gives us a glimpse of the power of G-theory:
the ghost fields themselves appear to correspond to Jacobi fields, measuring the
divergences of classical trajectories with similar initial points—a classic metric
for chaos—and the breaking of this supersymmetry is a candidate geometric
basis for non-ergodicity [21].

Far more work remains to be done on the nature of supersymmetric Bayesian
mechanics, and especially its connections to chaos and the Bayesian gauge the-
ory introduced in [32,33,35]; however, for now we only note that this exciting
connection to certain features of complexity is evidently natural in the language
of G-theory.
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30. Pressé, S., Ghosh, K., Lee, J., Dill, K.A.: Principles of maximum entropy and max-
imum caliber in statistical physics. Rev. Mod. Phys. 85(3), 1115 (2013). https://
doi.org/10.1103/RevModPhys.85.1115

31. Ramstead, M.J.D., Sakthivadivel, D.A.R.: Some minimal notes on notation and
minima: a comment on “how particular is the physics of the free energy principle?”
by Aguilera, Millidge, Tschantz, and Buckley. Phys. Life Rev. 42, 4–7 (2022)

32. Ramstead, M.J.D., et al.: On Bayesian mechanics: a physics of and by beliefs.
preprint arXiv:2205.11543 (2022)

33. Sakthivadivel, D.A.R.: A constraint geometry for inference and integration.
preprint arXiv:2203.08119 (2022)

34. Sakthivadivel, D.A.R.: Regarding flows under the free energy principle: a com-
ment on “how particular is the physics of the free energy principle?” by Aguilera,
Millidge, Tschantz, and Buckley. Phys. Life Rev. 42, 25–28 (2022)

35. Sakthivadivel, D.A.R.: Towards a geometry and analysis for Bayesian mechanics.
preprint arXiv:2204.11900 (2022)

36. Seifert, U.: Stochastic thermodynamics, fluctuation theorems and molecular
machines. Rep. Prog. Phys. 75(12), 126001 (2012)

37. da Silva, A.C.: Lectures on Symplectic Geometry. Lecture Notes in Mathematics,
vol. 1764. Springer, Cham (2008)

38. Tachikawa, Y.: N = 2 Supersymmetric Dynamics for Pedestrians. Lecture Notes
in Physics, vol. 890. Springer, Cham (2015)

39. Touchette, H.: The large deviation approach to statistical mechanics. Phys. Rep.
478(1–3), 1–69 (2009)
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41. Văınshtĕın, A.I., Zakharov, V.I., Novikov, V.A., Shifman, M.A.: ABC of instantons.
Sov. Phy. Uspekhi 25(4), 195–215 (1982)

42. Wiener, N.: Cybernetics or Control and Communication in the Animal and the
Machine. The MIT Press, Cambridge (2019). https://doi.org/10.7551/mitpress/
11810.001.0001

https://doi.org/10.1103/RevModPhys.85.1115
https://doi.org/10.1103/RevModPhys.85.1115
http://arxiv.org/abs/2205.11543
http://arxiv.org/abs/2203.08119
http://arxiv.org/abs/2204.11900
https://doi.org/10.7551/mitpress/11810.001.0001
https://doi.org/10.7551/mitpress/11810.001.0001


A Message Passing Perspective
on Planning Under Active Inference

Magnus Koudahl1,2(B), Christopher L. Buckley2,3, and Bert de Vries1

1 BIASLab, Department of Electrical Engineering,
Eindhoven University of Technology, Eindhoven, The Netherlands

m.t.koudahl@tue.nl
2 VERSES Research Lab, Los Angeles, CA 90016, USA

magnus.koudahl@verses.io
3 School of Engineering and Informatics, University of Sussex, Falmer, Brighton, UK

Abstract. We present a message passing interpretation of planning
under Active Inference. Specifically, we show how the Active Inference
planning procedure can be broken into a (partial) message passing sweep
over a graph, followed by local computations of a cost functional (the
Expected Free Energy). Using Forney-style Factor Graphs, we then pro-
ceed to show how one can derive novel planning schemes by local changes
to the underlying graph and message passing schedule. We illustrate this
by first isolating the “sophisticated” aspect of Sophisticated Inference
and then proposing a novel planning algorithm through combining the
sophisticated update mechanism with a different message passing sched-
ule. Our main contribution is a modular view of planning under Active
Inference that can serve as a framework for both understanding existing
algorithms, deriving new ones and extending the class of models that are
amenable to Active Inference. Approaching Active Inference from a mes-
sage passing perspective also shows how it can be efficiently implemented
using off-the-shelf probabilistic programming software, broadening the
class of models available to researchers and practitioners.

Keywords: Active inference · Expected Free Energy · Factor graph ·
Message passing

1 Introduction

Active Inference (AIF) is a common modeling framework for studying decision
making and, in recent years, also for designing synthetic agents. A key facet
that sets AIF apart from other approaches is the choice of planning objec-
tive. AIF uses the Expected Free Energy (EFE), which is a cost functional
that promises a balanced trade-off between exploration and exploitation. In this
paper, we present a particular interpretation of EFE-based planning under AIF
using known message passing-based inference methods on a Forney-style Factor
Graph (FFG). We show that the standard EFE-planning algorithm is equiva-
lent to performing a forward pass using standard belief propagation messages,
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followed by a separate computation phase based on the resulting marginals.
By explicitly writing planning under AIF as message passing on a graph, we
can clearly delineate the practical steps used for EFE computation. Doing so
means we can isolate parts of more complicated schemes such as the sophisti-
cated aspect of Sophisticated AIF (SAIF) [6] and the backwards influence from
future timesteps hinted at by [15]. It also allows us to propose new algorithms as
variations based on the common underlying theme and indicates a method for
implementing AIF in a broader class of models using efficient inference software.

2 Generative Model and Inference

Planning under AIF centers around a generative model of the future. The gen-
erative model traditionally used is a discrete partially observed Markov decision
process [6,7,9]. We let xt denote an observation, zt a latent state and ut a con-
trol at timestep t. Now we can write the model after having observed xt and
conditioned on a policy u1:T as

p(xt+1:T , zt:T
︸ ︷︷ ︸

Future

|ut+1:T
︸ ︷︷ ︸

Policy

, x1:t, u1:t
︸ ︷︷ ︸

Past

) = p(zt|x1:t, u1:t)
︸ ︷︷ ︸

State Prior

T
∏

k=t+1

p(xk|zk)
︸ ︷︷ ︸

Likelihood

p(zk|zk−1, uk)
︸ ︷︷ ︸

State Transition

(1)

where

p(zt|x1:t, u1:t) = Cat(zt|d) (2a)
p(zk|zk−1, uk) = Cat(zk|Buk

zk−1) (2b)
p(xk|zk) = Cat(xk|Azk) . (2c)

Here p(zt|x1:t, u1:t) represents the Bayesian filtering solution over observed time
steps 1 : t, which we summarise in the parameter vector d. Both zk, zt and xk are
discrete variables following Categorical distributions, as for instance described
in [2, Ch. 2.]. Note that (1) extends into the future until some known horizon
T > t and is conditioned on a policy over the full trajectory u1:T . We use Buk

to
denote the transition matrix B corresponding to the action uk. Planning under
AIF relies on comparing choices of Buk

which we emphasize by this notation.
We can visualise (2) using the Forney-style Factor Graph (FFG) formalism. In

an FFG, a node represents a factor (function of variables) and an edge represents
a variable. An edge connects to a node if and only if the corresponding variable
is an argument of that factor. The FFG of the model described by (2) is shown in
Fig. 1. In Fig. 1, the T-nodes denote a discrete state transition (multiplication of
a variable with categorical distribution by a transition matrix). For pedagogical
purposes, we have also labelled T-nodes with the matching equation in (2) and
indicated the forward direction of the graph by arrowheads on edges. When a
variable is fixed (for example when we condition on a policy), we indicate this
by a small, black square.
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Fig. 1. FFG of discrete POMDP as used for planning in standard AIF models.

To perform inference in this model, we can utilise belief propagation (BP)
[6,13]. BP proceeds by passing messages along edges of a graph towards variables
that we wish to infer. We can illustrate this on our FFG by drawing arrows that
outline the messages we wish to pass, see Fig. 2. When two messages collide they
are multiplied (and normalized) to obtain a posterior marginal for the variable
on an edge. For the model given by (2), all variables are discrete and related by
discrete state transitions. We therefore only need the forward −→μ (·) and backward←−μ (·) BP-messages around a T-node. For the variables zk, zk−1 and the transition
matrix Buk

, the messages are

−→μ (zk) = Cat
(

zk

∣

∣

∣

1
Z

Buk
zk−1

)

, ←−μ (zk−1) = Cat
(

zk−1

∣

∣

∣

1
Z

BT
uk

zk

)

, (3)

where we slightly abuse notation by having zk denote the parameter vector of
the incoming message on the edge zk (instead of the random variable zk), similar
for zk−1 and the edge zk−1. Z is a normalisation constant which we can ignore
when the columns of the transition matrix are normalised, which we assume
going forward. To illustrate, on Fig. 1 we have indicated the messages flowing
out of a T-node towards the variables zt+1 and zt+2.

3 Expected Free Energy

Planning under AIF involves first computing the Expected Free Energy (EFE)
for each time step given a policy and then summing the results over time steps.
This procedure is repeated for a set of admissible policies. Based on the sum-
total EFE’s for each policy, one then constructs a categorical distribution over
possible policies and sample a course of action from there [5,7,10]. We explicitly
appeal to a recursive formulation of EFE computation here as put forward in
[6]. While the exposition given here will be in terms of the discrete POMDP
described in Sect. 2, similar steps can be performed for other generative models,
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see for instance [10] for an example using linear Gaussian dynamical systems.
The EFE for a single timestep k is defined as

G(uk) =
∑

xk

∑

zk

p(xk|zk)q(zk|uk) log
q(zk|uk)

p(xk, zk|uk, x1:t)
. (4)

Notably, EFE only depends on prior time steps and not on the full trajectory.
For computational purposes, the EFE for a single time step is often rewritten as1

G(uk) =
∑

zk

q(zk|uk)H[xk|zk]
︸ ︷︷ ︸

Ambiguity

+KL[q(xk|uk)||p(xk)]
︸ ︷︷ ︸

Risk

(5)

Here we wish to note that all required quantities are written in terms of xk, the
observations. This means that everything we need to compute (5) is available
around the likelihood node. With slight abuse of notation we find q(zk|uk) and
q(xk|uk) by using the forward message (3) as

zk = Buk
zk−1 (6a)

xk = Azk . (6b)

Now we are ready to compute (5). Following [5, Eq. D.2-3] we can evaluate (5)
for the model 2 as

G(uk) = −diag(AT log A)T zk
︸ ︷︷ ︸

Ambiguity

+xT
k (log xk − log ck)

︸ ︷︷ ︸

Risk

(7)

where we have slightly adapted the original notation to be consistent with our
exposition. The diag(·) operator takes as argument a matrix and returns its
diagonal entries as a column vector and ck refers to the parameter vector of
the goal prior p(xk). In (7), the RHS is implicitly a function of uk through the
choice of Buk

in (6a). We see that the quantities used in (7) can be obtained
by applying a forward message passing sweep on the generative model. We can
visualise this on the FFG as shown in the top panel of Fig. 2. The boxed areas
indicate where we obtain the quantities required for (7). As we can see, EFE
computation corresponds exactly to a forward message passing sweep followed
by a secondary computation around the likelihood nodes.

4 Sophisticated Active Inference

Having established the message passing view of EFE computation, we can use
it to examine algorithms for AIF planning. A recent development is SAIF [6]
which better accounts for future belief updates compared to the standard app-
roach [7,10]. There are several moving parts to the SAIF algorithm, such as
the branching/pruning of the policy search tree and recursive EFE evaluation,
1 The equality is only correct when we can do exact inference, see [10] for details.
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Fig. 2. Comparison of message passing schedules (shown with arrows) for standard
EFE planning (panel 1), Sophisticated AIF (panel 2, including backward messages)
and Sophisticated AIF + smoothing (panel 3, including a smoothing pass), shown on
the FFG of the generative model for a discrete POMDP (2). The boxed areas contain
all the quantities needed for calculating the EFE by (5). T-nodes indicate discrete state
transitions, Cat nodes a categorical distribution and = nodes an equality constraint.
Small, black squares are used for variables with fixed values and · · · indicate that the
graph extends forward until an arbitrary planning horizon T . (Color figure online)
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which we will not cover here. We limit ourselves only to the innovation that
lends the sophisticated aspect and show how it can be interpreted as adding an
additional, fixed node to the FFG and passing an additional message. To do so,
we investigate what occurs when we fix a node on the graph. Formally, fixing a
node means adding a constraint to the optimization problem in the form of a
δ-function that forces the variable on that edge to take on a particular value [19].
For the SAIF algorithm, we fix the half-edges that denote xk as if they had been
observed, see Fig. 2, panel 2. This is equivalent to enforcing the constraint [19]

q(xk) = δ(xk − x̂i
k) (8)

where x̂i
k is a one-hot encoded vector with 1 in the i’th position and zeros

everywhere else. δ(·) is the Kronecker δ-function which only evaluates to 1 if
x̂i
k = xk. The index i represents a branching point of the algorithm and is

evaluated for all indices of zk that exceed a threshold, resulting in a forward
search tree [6] that branches for different choices of i. The details of the branching
procedure and subsequent tree search are beyond the present exposition and we
refer interested readers to [6] for algorithmic details. The exposition given here
corresponds to a single path through the search tree for a fixed policy. The next
step is to pass a backward message towards zk. To pass the backward message
through the likelihood node, we use (3) and the fact that the clamped node is
one-hot encoded to obtain a message towards zk given by

←−μ (zk) = Cat
(

zk
∣

∣A∗i
)

(9)

where A∗i indicates the i’th column of A. In practice, this procedure is equivalent
to performing a filtering step given that x̂i

k was observed. We can visualise the
message passing schedule used for the fixed policy SAIF algorithm on the FFG as
shown in Fig. 2, panel 2 which makes the sophisticated aspect readily apparent:
By passing the backward message (9), zk now incorporates information from
the simulated observation x̂i

k. x̂i
k is a simulated observation since it is selected

by the SAIF algorithm rather than generated by the agents environment. A
subtle note here is that (7) is still evaluated for the downward message given
by (6b) rather than the marginal given by the product of colliding messages
on the edge xk. Interestingly, the simulated observations that give SAIF its
sophisticated properties bear similarity to alternative approaches to epistemics
using constrained Bethe free energy instead of EFE [11]. In [11] the authors
were able to induce exploration while only relying on standard message passing
procedures and point-mass constraints (that can be interpreted as a different
way of selecting observations) instead of the EFE.

5 Advantages of the Message Passing Perspective

Viewing EFE computation from a message passing perspective provides several
advantages of which we will highlight three. First, it allows us to step back and
work with update equations in the abstract which in turn opens the avenue for
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working with EFE in a broader class of models. The forwards sweep relies on
off-the-shelf message passing equations which can be automated in software. Any
efficient message passing toolbox, for example [1], can therefore be used for per-
forming inference. Finalizing an EFE implementation then only requires solving
(5) around the likelihood nodes. As an example, [10] used a similar approach
to derive the EFE update equations for linear Gaussian models, making EFE
available in continuous state spaces. Second, taking the message passing perspec-
tive allows a unified perspective on different planning algorithms proposed under
AIF. We have demonstrated this by showing how a core aspect (the sophistica-
tion) of SAIF can be interpreted as fixing a node on the FFG and subsequently
passing a backward message. Third, by casting the planning problem as message
passing we can extend upon current work and derive new EFE based planning
algorithms by manipulating the underlying FFG and message passing schedule.
As an example, we showed an extension to the standard algorithm by incorpo-
rating a smoothing pass alongside the forwards pass. This algorithm requires no
updates to the EFE computation (5) itself, uses known message passing rules as
implemented in ex. [1] and can be combined with the SAIF backward message.
We show this algorithm on the FFG in Fig. 2, panel 3. The smoothing pass is
closely related to the Generalised Free Energy (GFE) introduced in [15]. In [15],
the authors also incorporate a smoothing pass, however they rely on custom
update rules that are not immediately expressible using known message passing
schemes. We speculate that the GFE updates are also amenable to a message
passing interpretation and showing how the two are related is an interesting area
for future work.

6 Conclusions

The message passing perspective on EFE-based planning is not new and has
been touched upon in for instance [3,4,6,8,10,12]. Our contribution is to for-
malise this notion by explicitly writing out the necessary steps for planning
under AIF in terms of the required messages, and to demonstrate that taking
the message passing perspective can yield new insights and potentially even new
algorithms. An immediate advantage of the message passing perspective is that
it becomes easy to understand which computations are necessary for a particular
planning algorithm, which procedures may be combined to design new planning
algorithms and how to isolate differences between planning algorithms. Addi-
tionally, we have only investigated the simplest version of the EFE. Since [7],
numerous extensions have been proposed that for instance augment the EFE
with additional epistemic terms [16] or expresses goals in terms of p(zk) rather
than p(xk) [5]. Interpreting these more recent developments in terms of message
passing is an interesting area for future study. Finally, we have focused on the
case where an explicit generative model is available, as is common for AIF stud-
ies, and have deliberately eschewed discussions of deep AIF such as [14,17,18]
When parameterising the generative model using deep neural networks, one
generally loses the ability to utilise closed-form message passing updates.
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Instead deep AIF often relies on sampling-based methods to approximate the
messages, trading off interpretability and speed for increased flexibility.
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Abstract. We develop an approach to policy selection in active inference
that allows us to efficiently search large policy spaces by mapping each pol-
icy to its embedding in a vector space. We sample the expected free energy
of representative points in the space, then perform a more thorough policy
search around the most promising point in this initial sample.

We consider various approaches to creating the policy embedding
space, and propose using k-means clustering to select representative
points. We apply our technique to a goal-oriented graph-traversal prob-
lem, for which naive policy selection is intractable for even moderately
large graphs.

Keywords: Active inference · Policy selection · Hierarchical search

1 Introduction

Active inference enjoys widespread popularity as a model for cognitive processes
involving discrete decision-making. Typical implementations treat the process of
active inference as a Partially Observed Markov Decision Processes (POMDP) [8,
10,22]. This kind of model is subject to important limitations of scale, however.
In particular, the time complexity of the exhaustive policy search carried out in
standard POMDP active inference, in which the expected free energy (EFE) of
each policy is computed out to a specified time horizon, renders it impractical
for large state spaces involving many policies [14].

There have been numerous efforts to address this limitation [4], including the
exploration of tree search methods [7,24] and various methods of policy pruning
[6]. Our contribution in this paper combines pruning with the use of vector space
embeddings [20] to create a structured policy representation in which qualita-
tively similar policies are proximal to one another. This representation can be
exploited to conduct a fast search over representative points in the space, fol-
lowed by a more thorough search in the neighborhood of the most promising
candidate, yielding a hierarchical scheme for policy search related to ideas in
hierarchical reinforcement learning [23].

The remainder of this paper is structured as follows: first, we briefly review
the standard representation and selection of policies in POMDP active infer-
ence. We then give an overview of vector space embeddings, and consider how
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
C. L. Buckley et al. (Eds.): IWAI 2022, CCIS 1721, pp. 328–342, 2023.
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embedding strategies similar to those used in the domain of natural language
may be applied to policies. We then consider how representative points in the
space can be selected. Finally, we discuss experimental results in which we apply
our technique to an active inference graph-traversal problem. In this domain,
we show that it is possible to achieve accuracy comparable to exhaustive policy
search with drastically lower time complexity.

2 Policy Selection in Active Inference

This paper presupposes familiarity with the active inference framework, but
we will briefly review the essentials of policy evaluation and selection in typi-
cal implementations. As is standard in other sorts of MDP models, policies in
POMDP active inference are selected based on (a) the likelihood of states in the
environment being realized, contingent on various actions (decisions) through
which the agent can exert partial (probabilistic) control, and (b) the value to
the agent of those states according to some value function. In a partially observed
process, the effects of actions on states are not directly observed but are rather
inferred from the states of observation channels representing sensory input [22].

The key difference between active inference and other POMDP models and in
particular reinforcement learning models lies in the function used to compute the
value of the policies [18]. In active inference, the standard objective (though see
[11,19]) is to minimize expected free energy (EFE), which is the accumulation of
the variational free energy of the system along future trajectories, given beliefs
about the current environmental state plus a temporally deep generative model
of how states are likely to evolve.

The expected free energy G for a policy πi can be computed as

Gπi
= Σt∈T

[
DKL[Q(ot|πi)||P (ot)] + H(P (ot|st)) ˙Q(st|πi)

]
(1)

where T is the time horizon, which is a hyperparameter of the model, DKL is
a Kullback-Leibler divergence, Q(ot|π) and P (ot) are the expected approximate
posterior and prior generative distribution, respectively, over observations at t,
H(P (ot|st)) is the entropy of the distribution over observations given states, and
finally Q(st|π) is the variational (approximate posterior) distribution over states
[21]. Active inference differs from reinforcement learning in that minimizing EFE
maximizes both an intrinsic reward (as defined by the generative density over
observations P (o) encoded the agent’s “preference matrix”) and information gain
(the entropy term) [5].

To decide what to do, an active inference agent first infers the current state
of the world from its observations (perceptual inference) [21], then uses the
inferred distribution over states to project the effects of action into the future,
given a transition matrix that defines p(st+1|st, u), where u is a control state
corresponding to a particular action. The distribution over observations at future
time t + 1 can then be calculated based on likelihoods p(o|s). These observation
probabilities are used to compute the EFE per policy, which in turn is used to
select an action (see Appendix A for equations describing these updates).



330 A. B. Kiefer and M. Albarracin

3 Structuring Policy Spaces with Embeddings

The serial calculation of the expected free energy over policies constitutes a
serious bottleneck that renders even relatively small-scale models intractable
given limited computational resources [3]. While performance can be improved
by parallel processing, algorithmic efficiency is always welcome to complement
raw compute power. In this paper we discuss a way to drastically increase the
efficiency of policy search by applying the concept of a vector space embedding,
in widespread use across machine learning, to policies for POMDP models.

An important caveat before proceeding is that our technique constructs a pol-
icy space from an initial enumeration of possible policies. This enumeration can
itself represent a computational bottleneck which the present work does not aim
to address. Moreover, the construction of embeddings can be computationally
expensive, introducing a new bottleneck for large problems (see below). However,
this overhead cost only needs to be computed once, rather than for every infer-
ence, analogously to the training cost for a neural network, rather than during
every iteration of a simulation, and scales with the existing policy-enumeration
bottleneck.

3.1 Vector Space Embeddings for Policies

In the most general terms, an embedding is a mapping from some set of items in a
domain to points in a continuous vector space, with the important property that
geometric and arithmetic relations among points in the space (such as Euclidean
distance) capture corresponding relations among the mapped items [13].

Vector space embeddings were established as an essential tool for machine
learning with the word2vec model of [16], which derived powerful vector repre-
sentations for the domain of natural language processing via a simple local pre-
diction task on large text corpora. Crucially, however, vector-space embeddings
are a completely general modelling tool applicable in principle to any domain in
which some regularity exists such that it can be exploited to construct the vector
space. Image embeddings, for example, exploit the intrinsic structure of images
(correlations among pixel values) from various domains [1]. In the case of dis-
crete conventional symbol systems like natural language, the relevant structure
exists in the corpus as extrinsic relationships among words and phrases [12].

Fundamentally, the problem of representing policies using vector spaces is
similar to the case of language embeddings, if policies are thought of as sequences
or more generally collections of actions. For example, consider the following three
policies, defined over abstract actions A–G:

A → B → B → C

B → A → C → C

B → E → D → G

We may group these policies in several ways, based on the identities of the actions
they contain. An approach analogous to the ‘bag-of-words’ model in language
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processing, for example, would simply represent policies in terms of the counts
of all possible actions that occur in them. By this metric, the top two policies
above are more similar to one another than either is to the third, and would
land closer together in the vector space.

Alternative embedding strategies might take into account the order in which
actions occur. For example, a policy embedding might be constructed based on
the occurrence or counts of N -grams (i.e. A → B), or group together policies that
begin or end with the same or similar actions. We propose and test a variation on
the ‘bag of actions’ approach, as well as an order-sensitive embedding strategy,
in the experimental results section below.

One may also wish to use embeddings that explicitly incorporate expected
value, e.g. by grouping together policies that allow the agent to achieve its goals
(there is then a similarity to successor representations in reinforcement learning,
which are applied to active inference in [17]). In order to examine what can be
achieved on the basis of hierarchically organized policy spaces alone, without
encoding additional information about rewarding states in the representation,
we choose to focus instead on a purely structure-based grouping. This approach
ought in principle to be very generally applicable, as it relies only on the assump-
tion that, to some degree, structurally similar policies produce similar results.

4 Hierarchical Policy Selection

The point of constructing an embedding, for present purposes, is to avoid hav-
ing to compute the expected free energy of every possible policy. If we represent
policies as points in a vector space, we can get a sense of the quality (from the
agent’s point of view) of the policies in various regions by sampling a small num-
ber of representative points, and computing their expected free energy. We can
then begin from the most promising point (or top-k points) and perform a more
exhaustive local search. The challenge is then to ensure that we sample policies
which are representative of the entire space while still reducing the amount of
computation required.

4.1 Clustering with k-Means

In general, it is to be expected that the embeddings of real datapoints in a
vector space will be packed into relatively dense clusters separated by gulfs
corresponding to unlikely feature vectors. Visualizing the abstract vector spaces
learned by neural networks using dimensionality reduction techniques such as
t-SNE [15] often reveals precisely such separable clusters of datapoints.

Given the assumption of a non-uniform distribution of datapoints in the
embedding space, algorithms such as k-means clustering [9] may be effective in
selecting a representative range of initial points to sample. k-means is a rela-
tively simple unsupervised machine learning model closely related to the E-M
algorithm [2], in which k centroids are initialized (e.g. randomly) and each is
assigned the datapoints closest to it according to some distance metric (e.g.
Euclidean). The centroids are then re-calculated so as to minimize their mean
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distance to the datapoints to which they are assigned, and the assignment process
repeats, converging on a solution in which the total distance between cluster cen-
ters (centroids) and datapoints is minimized. The optimized centroids are then
effectively representative of different implicit ‘classes’ of datapoints.

While one may consider many other clustering (and, more generally, unsuper-
vised structure-discovery) algorithms, in the remainder of this paper we focus on
k-means and demonstrate its effectiveness, in conjunction with a suitable policy
embedding, on an applied active inference problem of some complexity.

4.2 Algorithms for Policy Selection

Given the above, we propose two algorithms for hierarchical policy selection. The
first begins by selecting a cluster of policies based on the EFE of its represen-
tative point (‘cluster center’), then performs standard policy search within this
cluster. The second instead samples n points from each cluster from a uniform
distribution, and a cluster is chosen for exploration based on the mean EFE of
these points. Defining E as the embedding and Ci and ci as policy cluster i and
representative point (i.e. the policy closest to the cluster centroid) of Ci, respec-
tively, our basic algorithm is Algorithm 1 below. The alternative sampling-based
algorithm is described in Appendix D.

Algorithm 1. Hierarchical policy selection
(C, c) ← kmeans(E, k) � output of the k-means algorithm
for 0 <=i ¡ k do

GCi = EFE(ci) � Standard EFE computation
end for
π ← argmin

C
(GC)

u = select(π) � Standard active inference policy selection on reduced policy space

An interesting feature of this approach to hierarchical policy selection is that
unlike other techniques that have been successfully applied to active inference
such as MCTS [7], it exploits purely structural features of the embedding space
and does not require empirical tuning. That said, the quality of the solution
depends heavily on choice of the hyperparameter k, as discussed in the following
section. We note that many interesting variations on this idea remain to be
explored, such as adding depth to the hierarchy (i.e. clusters of clusters) and
sampling representative points from distributions informed by past performance.

5 Experiment: Graph Navigation

We tested our proposal on a graph-navigation problem for which exhaustive
policy search is impractical even on graphs of moderate complexity (> 6 densely
connected nodes). The agent’s goal is to choose the shortest route to its desired
destination on a random directed graph with weighted edges. While agent-based
decision models are decidedly overkill for shortest-route discovery on graphs,
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this task provides an ideal environment in which to test our approach to policy
search, since it requires inference within a temporally deep generative model and
also offers a highly structured implicit policy space, as discussed below.

5.1 Model

We run our simulations on randomly generated directed, weighted graphs, with
edge weights chosen from a small set of possible values. We first include each
possible edge with probability 2

|V | (where |V | is the number of nodes in the
graph) and then enforce strong connectivity so that any node is reachable from
any other. In addition, every node in the graph contains a self-connection. In each
simulation, the agent is randomly assigned an initial location and ‘destination’
node, and at each step chooses to move to an adjacent node or stay still. The
self-connections have weights > the largest between-node edge weight in the case
of all but the ‘destination’ node, whose self-connection weight is 0. The agent has
preferences for being at its destination and against traversing edges with large
weights. To simplify the representation, we define the agent’s possible locations in
terms of edges on the graph, with the convention that the second node in an edge
represents the agent’s current location and the first node represents its previous
location (full details of the agent’s generative model are given in Appendix C).
Because we were interested in modeling a situation in which agents knew how to
reach their goals, we set the policy length to the number of nodes in the graph,
so that at least one policy that reaches the goal is always available (given strong
connectivity).

Since the states of the environment are encoded in terms of node pairs or
edges, the actions that constitute our policies are transitions between edges. For
example, (A,B) ⇒ (B,C) is a valid policy on a graph with nodes A, B, and
C and directed edges (A,B) and (B,C). We prune policies containing ‘invalid’
actions (that is, actions that imply impossible state transitions, such as moving
directly from edge (A,B) to edge (C,D)) from the policy space prior to search.

5.2 Policy Embeddings

We experimented with three policy embedding strategies, an Edit Distance
Matrix (EDM), a Bag-of-Edges (BOE) representation, and a BOE represen-
tation augmented with an extra dimension that records the terminal node of the
policy (aBOE).

The EDM for a list of policies is constructed by counting the number of
moves it would take to transform one policy (i.e., path through a graph) into
another. Intuitively, if the atomic moves are addition and deletion of nodes and
edges, this should correspond to the number of elements (both nodes and edges)
that appear in one graph and not the other. In other words, for edge sets Ei and
Ej and vertex sets Vi and Vj of graphs Gi and Gj , the edit distance dij is:

dij = |(Vi ∪ Vj \ Vi ∩ Vj)| + |(Ei ∪ Ej \ Ei ∩ Ej)|
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Fig. 1. A: Two sample graphs from our experiments, with start node (green) and
destination node (purple) highlighted, along with the path the agent followed. Spatial
layout is random and visual path distance does not track edge weight. B: Expected
free energy of policies represented by k = 12 cluster centers. C: Mean EFE of all
clusters grouped by the corresponding cluster in plot (B). D: EFE of 20 randomly
sampled cluster centers for k = 100. E: Mean EFE of corresponding clusters. F–I: 2D
projections of policy embedding spaces using PCA (axes represent arbitrary dimensions
in the reduced embedding space). Blue points are all policies, and orange points are
cluster centers discovered by k-means. F: Global edit distance matrix embedding. G:
Global ‘bag-of-edges’ embedding. H, I: examples of corresponding local embeddings,
limited to policies viable from a given location. (Color figure online)
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The embedding di for policy i is then the vector of edit distances to all other
policies, which can combined with the other policy embeddings into a single
embedding matrix D.

The EDM representation is a priori desirable because it takes the order of
actions in a policy into account, but it can become computationally expensive
to construct for larger graphs, leading to a different computational bottleneck to
the one we set out to avoid. A much simpler representation is the Bag-of-Edges
embedding, which as the name suggests is similar to the bag-of-words model
in that it represents each policy simply by a vector of counts of the edges that
occur in it. The augmented BOE embedding simply appends the identity of the
last node reached by a policy to the BOE embedding for the policy.

5.3 Deriving Representative Points Using k-Means

An implicit hypothesis behind our approach to policy search is that there would
be a correlation between the degree to which two policies are structurally related
(hence their location in embedding space) and their energy. To test this hypoth-
esis, we plotted the EFE of each of the policies closest to the cluster centers, or
of a random sample of them for large k, against the mean EFE of the policies in
each cluster. We found that the degree to which the correlation holds is highly
dependent on choice of k, but that with the right hyperparameter choice, the
cluster centers are a good guide to the EFE in their regions (see Fig. 1B–E).

Intuitively, assuming such correlation among the EFEs of policies proximal in
the embedding space, there should be a tradeoff between the representativeness
of the clusters chosen by k-means with respect to the EFE of their neighbors
and efficiency gains due to using a small number of clusters for the initial sweep
over policies. We found however that at least for the sizes of graph we explored
(3–6 nodes), too large a k value actually hurt performance as well as being less
efficient. We performed a very limited hyperparameter search and found that a
value of k = 12 worked well in practice, and report results for values [6, 12].

As suggested by an anonymous reviewer, however, further optimization of k
is important, and a future avenue of research for this application would be to
explore schemes for optimizing k automatically, including online, e.g. so as to
maximize EFE returns and minimize EFE variance within each cluster dynami-
cally as the system evolves. This would bring our work more closely in line with
[7], in which Monto Carlo tree search and an amortized variational inference
procedure are used to improve the efficiency of policy selection.

5.4 Local vs Global Embeddings

We found that running k-means on the full embedding matrix for the entire
policy space (including policies that were ‘invalid’ from the agent’s current loca-
tion) sometimes returned no, or very few, valid policies among the cluster centers,
leading to sub-optimal choices.

To remedy this, we try pruning all policies not beginning at the agent’s cur-
rent location by defining local embeddings Esi

for each possible agent location si
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as Esi
← {ej ∈ E : si ∈ πj} and perform clustering on these reduced subspaces

to get per-location k-means clusters and cluster centers. At each simulation step
we then run our hierarchical search algorithm on the appropriate subspace. For
a fair comparison, we benchmarked this procedure against standard active infer-
ence policy selection run on the same local policy subspaces.

The utility of embeddings is best evaluated by measuring their performance,
but for visualization purposes we also constructed dimensionally reduced repre-
sentations of the high-dimensional embedding spaces using Principal Component
Analysis (PCA), shown in Fig. 1F–I. Though heuristic, these plots suggest that
policies do indeed cluster in interesting ways, and that the k-means procedure
is good at finding these clusters.

5.5 Results

Fig. 2. Selected results on graphs with 3–5 nodes, for ‘Global’ (full policy space) and
‘Local’ (location-based subspace) conditions. Top row: Percent of solutions found that
were optimal. Standard is standard active inference policy search, and the hyperpa-
rameters used for the embedding conditions are listed next to the embedding name.
Bottom row: Mean policy inference times for standard vs embedding conditions.

A sample of our results is presented in Fig. 2 (please see Appendix E for addi-
tional data). To obtain these results, we generated 40 random graphs in each
size category (3, 4, 5) and computed mean execution time and optimality for each
embedding type (including “None”/standard policy selection, EDM, BOE and
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aBOE), as well as for two values of the hyperparameters k (number of clusters)
and n (number of samples used to calculate per-cluster EFE). An optimal solu-
tion was defined as one in which the agent takes a shortest path from its initial
location to its ‘destination node’ and then remains there. Figure 2 shows only
one hyperparameter combination for each embedding type.

For larger graphs, hierarchical policy search improved the calculation time
for action selection by about an order of magnitude, with similar relative reduc-
tions in the global and local conditions. The mean inference time using k-
means/embeddings was about .17 s, and for standard policy inference, 1.2 s.
Construction times for all embeddings, including the time to carry out k-means
clustering, were negligible for all embedding styles except EDM, which expo-
nential time complexity precluded using on graphs of size >5 nodes. The EDM
representation achieved near-optimal results on small graphs, but its perfor-
mance in any case degraded on larger graphs. While these preliminary results
are not in general impressive in terms of optimality, the best results suggest that
our technique could be made competitive with more extensive hyperparameter
tuning (as well as potentially different clustering and embedding methods).

Fig. 3. A: Graph in which the agent failed to find a route. B(Left, Right): Cluster
center and mean cluster EFE values, respectively. C: Policy embeddings and cluster
centers for this example.

We analyzed one interesting failure case in which the agent did not move
from its initial location. As shown in Fig. 3, it appears that in this case, the
EFE of the clusters was not a good guide to the local energy landscape, and in
addition, k-means did not adequately cover the policy space (note the obvious
cluster on the left without an assigned cluster center).

6 Conclusion

The experiments reported in this paper are very much an initial cursory explo-
ration of the application of embedding spaces and clustering to hierarchical pol-
icy search in active inference. Very sophisticated graph embedding schemes, using
neural networks trained on random walks for example, could be applied to prob-
lems like ours. The initial results we report suggest that this line of research may
prove useful in expanding the sphere of applicability of active inference POMDP
models.
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Appendix A: Computing Per-Policy EFE

The expected free energy for a policy can be computed as follows. First, we infer
a distribution over states at the current step of the simulation, combining the
transition probabilities and current observations:

Q(st) = σ[lnAot
+ lnBu

˙Q(st−1)]

The inferred distribution over states can then be used to project the effects
of action into the future, given a parameter B that defines p(st+1|st, u), where
u is a control state corresponding to a particular action:

Q(st+1) = Bu
˙Q(st)

Given an inferred distribution over future states, the distribution over obser-
vations at future time t + 1 can be calculated as

Q(ot+1) = A ˙Q(st+1)

where A is the likelihood mapping from (beliefs about) states to observations.
The above assumes a single observation modality and controllable state factor,
but can straightforwardly be generalized to larger factorized state spaces and
multiple observation channels.

By repeating the above process using the Q(st+1) resulting from the previous
time-step as input to the next, and accumulating the Gπi

defined in Eq. (1) out
to the policy horizon, we can derive a distribution Qπ over policies as σ(−Gπ),
where Gπ is the vector of expected free energies for all available policies and
σ(x) is a softmax function. Finally, the next action is sampled from a softmax
distribution whose logits are the summed probabilities under Qπ of the policies
consistent with each action.

Note that in the above we have omitted aspects of typical active inference
models not material to our concerns in this paper, such as precision-weighting
of the expected free energy, habits, and inverse temperature parameters.

Appendix B: Policy Selection and Expected Free Energy

We use the standard procedure outlined in the Introduction for selecting policies
with one exception: the expected free energy has an additional term which is
the dot product of the posterior distribution over states (locations) with the
associated edge weights. We combine this with the standard EFE calculation
using a free hyperparameter λ:

https://github.com/exilefaker/policy-embeddings
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Gπi
= Σt∈T

[
DKL[Q(ot|πi)||P (ot)] + H(P (ot|st)) ˙Q(st|πi)

]
+λ∗weights · Q(st|π)

(2)
This choice was made purely for convenience since otherwise preferences over

weights would have to be represented using an awkward categorical distribution,
and it has no impact on the main comparison between policy search techniques
of interest to us in this paper.

Appendix C: Generative Model Details

In our experimental setup, an active inference agent’s generative model is auto-
matically constructed when a graph is generated. The standard variables in
active inference POMDPs have the following interpretations in our model:

– states: An edge (nodeprev, nodecurrent) in the graph. We interpret the first
node in the edge as the agent’s previous location and the second node as its
current location.

– observations: A tuple ((nodeprev, nodecurrent), weight) representing observa-
tions of edges and corresponding edge weights, where the edge corresponds
to the node pair in states.

– control states: There is an action (and corresponding control state) for every
possible local transition in the graph.

– A: The agent’s ‘A’ or likelihood matrix, which in this case is simply an iden-
tity mapping from states to observations.

– B: The state transition matrix, which encodes deterministic knowledge of
action-conditioned state transitions, and is constructed so as to exclude
invalid transitions (i.e. between non-adjacent nodes in the graph).

– C: Preference matrix, which distributes probability mass equally over all edges
that end on the agent’s ‘destination’ node. There is also implicitly a preference
against high edge weights, but to simplify the representation we incorporate
this directly within the expected free energy calculation (see Appendix 6).

– D: Prior over initial location states.

Appendix D: Sample-Based Hierarchical Policy Selection

With variables defined as above, but with cj denoting the jth randomly sampled
policy in a cluster, the alternative sample-based policy selection algorithm is:
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Algorithm 2. Sample-based hierarchical policy selection
for 0 <= i < k do

for 0 <= j < n do
cj ∼ U(Ci) � This is a uniform distribution over cluster members

end for
GCi =

∑
jEFE(cj)

n

end for
π ← argmin

C
(GC)

u = select(π)

Appendix E: Additional Results

Here we present some additional experimental results. Figure 4 plots the com-
bined embedding construction and k-means clustering times for each embedding
type. Table 1 below shows the full set of optimality results we obtained, aver-
aged across trials (i.e. across particular graphs in each category). Here, “None”
denotes standard policy selection. Best embedding results for each graph size
are bolded.

Fig. 4. Left: Time taken to construct embedding spaces and perform k-means clustering
on the resulting embeddings. The increased times for both construction and clustering
for the EDM representation are due to the relatively much larger dimensionality of the
EDM embedding: one dimension for each policy, rather than one for each vertex and
edge, as in the BOE and aBOE representations. Right: ‘detail’ plot of the construction
times by graph size for the BOE and aBOE embeddings.
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Table 1. Percent of solutions optimal

Graph size 3 4 5

Scope Embedding k n

Global None — — 100.0 97.5 97.4

BOE 6 1 70.0 65.0 56.4

3 77.5 62.5 46.1

12 1 60.0 87.5 59.0

3 77.5 62.5 51.3

EDM 6 1 70.0 67.5 48.7

3 80.0 72.5 56.4

12 1 67.5 72.5 64.1

3 80.0 72.5 61.5

aBOE 6 1 82.5 85.0 66.7

3 87.5 85.0 61.5

12 1 85.0 67.5 35.9

3 75.0 92.5 79.5

Local None — — 100.0 97.5 97.5

BOE 6 1 17.5 37.5 48.7

3 52.5 55.0 61.5

12 1 42.5 47.5 41.0

3 82.5 42.5 25.6

EDM 6 1 5.0 52.5 45.0

3 50.0 65.0 35.0

12 1 50.0 60.0 40.0

3 97.5 32.5 15.4

aBOE 6 1 15.0 12.5 5.1

3 35.0 12.5 5.1

12 1 5.0 22.5 12.8

3 70.0 20.0 12.8
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Abstract. Humanity faces multiple existential risks in the coming
decades due to technological advances in AI, and the possibility of unin-
tended behaviors emerging from such systems. We believe that bet-
ter outcomes may be possible by rigorously exploring frameworks for
intelligent (goal-oriented) behavior inspired by computational neuro-
science. Here, we explore how the Free Energy Principle and Active
Inference (FEP-AI) framework may provide solutions for these chal-
lenges via affording the realization of control systems operating accord-
ing to principles of hierarchical Bayesian modeling and prediction-error
(i.e., surprisal) minimization. Such FEP-AI agents are equipped with
hierarchically-organized world models capable of counterfactual plan-
ning, realized by the kinds of reciprocal message passing performed by
mammalian nervous systems, so allowing for the flexible construction
of representations of self-world dynamics with varying degrees of tem-
poral depth. We will describe how such systems can not only infer the
abstract causal structure of their environment, but also develop capac-
ities for “theory of mind” and collaborative (human-aligned) decision
making. Such architectures could help to sidestep potentially dangerous
combinations of systems with high intelligence and human-incompatible
values, since such mental processes are entangled (rather than orthogo-
nal) in FEP-AI agents. We will further describe how (meta-)learned deep
goal hierarchies may also well-describe biological systems, suggesting
that potential risks from “mesa-optimisers” may actually represent one
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of the most promising approaches to AI safety: minimizing prediction-
error relative to causal self-world models can be used to cultivate modes
of policy selection and agent personalities that robustly optimize for
achieving goals that are consistently aligned with both individual and
shared values. Finally, we will describe how iterative policy selection and
preference learning can result in “value cores” or self-reinforcing, rela-
tively stable attracting states that agents will seek to return to through
their goal-oriented imaginings and actions.

Keywords: Active inference · AI safety · Existential risk · AI
alignment · Enculturation · Counterfactual planning

1 Introduction: Towards Human-Compatible Artificial
Super Intelligence (ASI) with FEP-AI

We are currently engaged in an ongoing research program to determine how
connections between computational neuroscience and artificial intelligence (AI)
may inform what may be a one of the greatest challenges we will ever face as a
species: developing powerful AI systems which are aligned with human prefer-
ences, goals, and ethical standards. It is increasingly recognized that developing
robustly and flexibly intelligent artificial agents will likely heavily depend rely-
ing on self-organization processes in the service of bootstrapping (or developing)
their perception, action selection, learning, and reasoning process [1]. We pro-
pose a biologically-inspired process wherein AI agents learn to imitate human
behavior through interaction and cultural acquisition, which occurs via iterative
policy selection and value learning or updating of prior beliefs/preferences over
favorable policies [2].

The free energy principle and active inference framework (FEP-AI) provides
a unifying account for the brain and self-organising systems more generally.
FEP-AI provides a general (multiscale) systems theory in which deep tem-
poral hierarchical generative models encode different levels of abstraction via
message-passing through different sub-systems of the brain. Understood as a
kind of hybrid machine learning architecture, embodied (and environmentally-
embedded) brains minimize a variational free energy bound on Bayesian model
evidence of sensory inputs accumulated over nested time scales [4]. This free
energy objective rewards agents for minimizing precision-weighted prediction-
errors with respect to their world models, penalized by the extent to which
inferences must be updated away from prior beliefs (whether via refining inter-
nal models or overt enaction). Agent behavior is generated via model inversion,
with trajectories selected based on posterior beliefs (as predictions, or empirical
priors) of future hidden control states. The choice behaviour of active inference
agents is canalized on multiple scales, governed by a singular objective of min-
imizing the expected free energy of different future outcomes, which FEP-AI
decomposes into the maximization of extrinsic value (i.e., increasing certainty
regarding the realization of prior preferences, or goals) and intrinsic value (i.e.,
reducing uncertainty about the causes of possible outcomes) [8]. With sophisti-
cated inference, policy selection is rendered by imaginative processes as mental
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simulations of potential courses of action which allow humans to have cognitive
access to (and so be able to analyze/modify/control) possible future trajectories
before being enacted by an agent [5].

We believe the autonomous adaptivity promoted by such intrinsically moti-
vated FEP-AI agents represents a promising research direction for achieving
Artificial Superintelligence (ASI): i.e., agents with greater than human-level pre-
dictive world models coupled to strong (and accurate) top-down prior beliefs
about human values and their potential evolution. Here we introduce the term
“ASI”, as opposed to the more commonly used Artificial General Intelligence
(AGI) in order to acknowledge that generally intelligent AIs could be expected
to exceed human capacities in many respects, so requiring us to acknowledge
the potentially unique risks associated with these scenarios. We believe human-
mimetic FEP-AI has the potential to overcome (to degrees) many of the chal-
lenges that have been identified in the AI safety literature, namely:

– Orthogonality thesis: if intelligence and values can vary independently of each
other, this could lead to the peril of powerful optimizers that pursue many
human-incompatible subgoals in a broader scope (i.e., controlling resources
for the sake of goal-realization and eliminating its own threats) [6,7].

– The spontaneous emergence of mesa-optimizers which pursue goals that
diverge from the (coherently extrapolated) desires of either goal-specifying
principle-agents or base system objectives (i.e.., respective outer and inner-
alignment failures). Mesa-objectives can engender accurate behaviour relative
to the base optimizer. However, this behavior can deviate when encounter-
ing off-distribution data, so representing what has been called the pseudo-
alignment problem [9].

– “Treacherous turns” in which agents learn to engage in advanced adversarial
attacks against the humans whose values they are intended to serve. In this
scenario, an AI system may conceal its actual goals by behaving cooperatively
until its intelligence levels allow it to eventually revolt against humanity to
pursue its own (unaligned) objectives.

– The difficulty of achieving provable/formal verifiability with respect to safety
in systems whose effective forms remain unclear (e.g. will scaling laws continue
to apply for mass language models?) [10]. Is there any avoiding the conclusion
that ASI (i.e., artificial superintelligence) is inherently unverifiable and so
necessarily unsafe?

In what follows, we describe an ongoing research program in which we are devel-
oping FEP-AI agents in the service of handling these concerns. We will also
consider how conceptual issues from the study of AI safety can both inform and
be informed by our understanding of the factors contributing to human prosocial-
ity and mutual flourishing (e.g. parallels between “inner-alignment” and models
of psychological integration and actualization).

2 Intrinsic Drives for Curiosity

In developing advanced AI systems, the availability of adequate training data
and learning curriculums become issues of vital importance. It is increasingly rec-
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ognized that “self-supervised” active learning (i.e., selecting actions which are
particularly likely to increase information gain) with open-ended environments
may be an especially promising approach, wherein system behavior is a core part
of the data generation process, which also may help address the challenges of
unbounded policy spaces (cf. frame/relevance problems). With respect to nav-
igating such environments, intrinsic drives such as empowerment and curiosity
have been proposed, wherein individuals attempt to respectively learn how to
control their environments (and so keep their future options open) and also max-
imize the quality of their governing models (via informational foraging) [11].

The imperative of self-regulation is to return to an optimal set point which
reflects any cybernetic intelligent system’s existential task: selecting actions and
coping with uncertainty in attempting to survive and reproduce. Intrinsic moti-
vation can be a crucial drive to seek out novelty and challenges, to extend and
wield one’s abilities, to explore, and to learn about the world. The intrinsic
objective which describes the degrees of freedom or options of an agent to con-
trol its environment and sense this control may be considered to be a “universal
utility function.” This heuristic for empowerment may be realized by a sim-
ple, realizable across a broad range of systems, and potentially scalable drive
for agents that work to “keep their options [for control] open” as they opti-
mize for an objective of maximizing predictable information received by sensory
channels, conditioned on self-generated actions. That is, without requiring an
infinitely long history of past experience and only considering the local dynam-
ics of the agent’s environment, a seemingly simple objective may be sufficient to
compute an information-theoretic quantity that is applicable to every possible
agent-world interaction: empowerment [14]. An intrinsic drive for empowerment
solely relies upon dynamics that can be assimilated as actionable/salient states,
and as such can act as intrinsic reward without requiring an externally encoded
utility function [15]. We will similarly explore the potential of agents equipped
with intrinsic drives for maximizing information gain: curiosity [11–13].

Intrinsic drives are particularly well-suited for lifelong learning within open-
ended environments, allowing complex behaviors to be gleaned from simple
and generic internal rules. These motivating objectives promote exploration and
allow an agent to pursue a broad range of affordances offered by the environment,
which once the opportunity arises, can be integrated into goal-directed behavior.
Seeking out novel information as a source of intrinsic value also plays a key role in
the FEP-AI framework, wherein adaptive behavior (including the selective sam-
pling of information) rests on minimization of prediction error between empirical
prior expectations and current sensations, so requiring the updating and refining
of world models by which agents navigate through their environments [22].

The processes by which FEP-AI agents with intrinsic drives such as curiosity
or empowerment are bootstrapped are associated with several constraining bot-
tlenecks, which afford multiple opportunities for adjusting capabilities relative
to motivation selection. Indeed, the Bayesian foundation of FEP-AI centers on
the challenge of learning (and generalization via) increasingly complex predictive
world models, developed in the service of the adaptive control of behavior [23].
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The causal structures built into FEP-AI agents further offer significant inter-
pretability, which help can prevent “treacherous turns” and allow productive
model inspection in ensuring that desirable motivational structures are instan-
tiated before advanced intellectual abilities are acquired. However, this is not
to say that no safety problems exist within an FEP-AI paradigm for develop-
ing ASI, such as in scenarios wherein agents become overconfident in predicting
outcomes when faced with distributional shifts [20]. Exploring the robustness
of our meta-learning (and mesa-optimizing) agents in such scenarios will be a
central part of our work, with potential implications for understanding human
psychology (and sociology) as well [17].

3 Meta Inverse Reinforcement-Learning or Hierarchical
Active Inference

The motivation selection approach to endowing ASIs with beneficial goals or
values for humans is challenging due to difficulty of defining some abstract com-
plex concepts (i.e., happiness, altruism, justice). Potentially undesirable forms
of value modifications can be prevented by imaginative counterfactual planning
based on goal realization through sampling from the learned world model of
the agent (cf. self-modifying Gödel machines) [16]. Increasingly complex val-
ues can be acquired in response to heterogeneous experiences through processes
of “associative value accretion” [7]. A promising proposal for learning human-
compatible values has been suggested with “cooperative inverse reinforcement
learning,” wherein artificial intelligences must infer the reward functions of other
agents in order to maximize human rewards; however, practical implementations
remain unclear [24]. Through meta-inverse-reinforcement learning (meta-IRL),
it is possible to learn priors which can (both stably and robustly) incorporate
potentially complex goal inference with different levels of abstractions (motiva-
tional scaffolding) in diverse environments and through multiple timescales [26].
In this research program, we focus on meta-IRL and (causal) world modeling
with FEP-AI agents as means of expanding agency both within and across sit-
uations to reason about human mental states (cf. Theory of Mind) [25].

Most current reinforcement learning (RL) algorithms require extensive train-
ing experience, but meta-learning (MLe) may allow for unprecedented data (and
parameter) efficiency, and can be considered one of the main ingredients for
achieving human-like domain adaptation in RL [3]. MLe or “learning to learn”
algorithms can be formulated as involving a more encompassing outer loop sys-
tem (e.g. more abstract processing unfolding closer to hierarchically higher (or
deeper) association cortices and subcortical structures) that efficiently learns
empirical priors for adaptively shaping more fine-grained inner-loop systems
(e.g. more concrete processing unfolding closer to primary modalities over hier-
archically lower sensorimotor cortices). The key advantage of MLe methods is
leveraging optimized inductive biases to generalize previous experiences to novel
tasks, thereby accelerating overall learning [27]. Adaptation to particular task
domains often depends on the faster learning process of an agent with episodic
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memories from interactions with novel task-environments/niches, which criti-
cally depend on slow incremental learning (outer-loop optimization) as realized
by higher-level modeling with greater situational invariance (so affording greater
cross-task generalization).

We are currently using these principles of meta-IRL in designing architec-
tures for deep temporal active inference agents, initialized with imprecise (flat)
prior beliefs about preferences wherein all states are similarly valued. In the
face of uncertainty in their deep generative world models (which describe the
physical and causal structure of the world), meta-IRL agents invest in more ran-
dom exploration, and so maximize the entropy over those states as they engage
in more information-seeking behaviours and expand their range of options for
achieving goals (i.e., respective curiosity and empowerment). With meta-IRL,
one can learn (to learn) meaningful goals and diverse skills from environmental
interactions in a continuously evolving, open-ended fashion [28,29]. In FEP-AI,
exploration is a byproduct of the reduction of uncertainty with respect to joint
mappings between latent world states and the agent’s predictions over system-
world states. Crucially with respect to concerns voiced by the AI safety research
community, for FEP-AI agents, mesa-optimization (understood as meta-learning
with respect to emergent value functions) is not a bug, but a feature: the objec-
tive function is the same for both inner- and outer-loop processes, both of which
minimize surprisal across multiple levels of abstraction. More specifically, poste-
rior beliefs about causes of sensations in lower levels and foraging for subgoals
(i.e., preferred states, realized via minimizing prediction-error with respect to
priors over outcomes) become observations and sources of adaptive precision-
weighting (cf. attention mechanisms) by more enduring (and potentially more
impactful) higher-level goals. Taken together, the synergies afforded by these
kinds of hybrid multi-level modeling are likely to be key for developing advanced
artificial intelligences, and may be similarly essential for understanding core
aspects of human cognition [31].

4 Inner and Outer Alignment Problems

Designing AI systems with a nested architecture capable of learning human
preferences might address the outer alignment problem. However, there remains
a danger that these systems could optimize for an emergent (mesa-)objective
while foraging through possible space of solutions, and then accidentally develop
heuristics which engender conflicting behaviours with the original base-objective.
This is referred to as an inner alignment problem [18]. The existence of different
inductive biases in the training algorithm between the mesa- and base optimiz-
ers might create misalignment and lead to this type of failure mode for the AI
agent. In the AI alignment literature, evolution is given as an illustrative exam-
ple for understating how base optimizers (e.g. natural and sexual selection) may
have been dismissed by the agents it shapes (e.g. humans acting against repro-
ductive fitness goals through using various forms of birth control or practicing
abstinence) [9].
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If stable causal relations between mesa- and base-objectives can be estab-
lished, this may allow more robustly-aligned mesa-optimizers to be deployed in
more complex training environments. However, this solution is rendered challeng-
ing due to the higher time costs and algorithmic complexity of such optimizers.
Meta-learning techniques may provide a partial solution to this challenge that
avoids pseudo-alignment and helps guarantee the robustness of the optimization
process. A hierarchical temporal structure inspired by FEP-AI minimizes varia-
tional free energy (i.e., surprisal) across multiple scales spanning processes both
internal and external to the system. This kind of enactive coupling should help
address both inner- and outer- alignment problems in a unified fashion, given
sufficient exposure to a well-designed curriculum under favorable learning condi-
tions. In such systems, there are intrinsic correlations between different spatial
and temporal scales by virtue of belief propagation integrated at a system-wide
level, which minimizes cumulative prediction error for overall systems (and sub-
systems) as they interact with the environments in which they are embedded
(and which they also construct through their actions) [19]. While governance by
a singular imperative for coherent adaptive functioning is insufficient for ensur-
ing the development of prosocial and human-promoting preferences, this kind
of integration may be helpful for increasing the likelihood that inner and outer
objectives may be aligned, given sufficient learning opportunities [30].

5 Brain-Inspired Intelligent Agents

We will further show how greater flexibility/adaptability can be introduced
into these meta-learning systems by attempting to reverse-engineer various neu-
romodulatory systems of the brain as hyperparameters for generative model-
ing (cf. Auto-ML). We will specifically focus on diffuse neuromodulatory sys-
tems of the brain controlling dopamine (DA) and serotonin (5-HT) signaling,
which are involved in a wide variety of cognitive, affective, and motoric func-
tions and in developing intelligent (and agentic) systems. While midbrain DA
neurons elicit reward-related behavior, 5-HT receptors have been suggested to
often operate in an opponent fashion, including with respect to the mediation
of either “passive coping” or “active coping” strategies in the face of uncer-
tainty [32,33]. Within FEP-AI, neurons with D1 receptors are suggested to com-
pute free energy expected under a given policy, with phasic DA release associated
with reward prediction errors [34]. Further, tonic DA levels may contribute to
degrees of influence by habitual response-tendencies as a function of contexts
as estimated by more slowly evolving and encompassing outer-loop processes.
Recently, Hesp et al. argued that DA (reflecting valenced emotional states, or
“affective charge”) regulates the expected precision of an action model, which
tracks changes in the subjective fitness in terms of divergences between posterior
and prior beliefs about policies [35]. We are currently attempting to model these
kinds of affectively-driven policy selection and updating in our artificial agents,
with the goal of better understanding how these factors may contribute to dif-
ferent kinds of minds and emergent social dynamics (cf. life-history strategies).
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Most research into biologically-inspired ML (and FEP-AI) parameters have
focused on the roles of DA. However, we will also consider 5-HT, as well as its
potentially heterogeneous effects with respect to different receptor classes [32].
In autonomous systems inspired by serotonin-like parameterization, uncertainty
is used to bias control in favor of inner-loop (or more model-based) decision-
making processes, relative to outer-loop (or more model-free and ‘reflexive’ or
‘impulsive’) dynamics or amortised inference [36]. Interpreted as ML-parameters,
one can use 5-HT analogues to influence the degree to which agents initiate
offline learning-rather than immediately releasing policies for overt goal-seeking-
so attempting to plan future actions through counterfactual simulation, and
also affording offline learning and planning (as inference) [37,38]. This kind of
meta-level control for trading-off between more deliberative planning and more
automatic action modes may be particularly important for ASI systems and the
open-ended environments in which they are likely to evolve-develop.

Artificial 5-HT parameters might also be relevant with respect to their capac-
ities for “relaxing” free energy landscapes in ways that allow for more creative
cognition and flexible updating. More specifically, these altered beliefs could
even include core assumptions about the boundaries that separate systems from
the world, which when relaxed may potentially facilitate socioemotional align-
ment via various “bonding” processes whereby agents can become entangled to
optimize in common directions. With these considerations in mind, we will test
whether paramaterizations with 5-HT analogues may be beneficial for a) pro-
moting the acts of imaginative/creative synthesis involved in inferring the latent
states of another mind (cf. Theory of mind), and b) promoting fast convergence
onto modes of policy selection involving shared intentionality (and patterns of
attention).

6 Cultural Acquisition of Stable Prosocial Values

The FEP-AI framework affords a modeling approach that naturally affords the
kinds of context-sensitivity required for navigating open-ended environments
and multi-agent contexts. Hence, an FEP-AI agent promotes its well-being
(and to varying degrees, evolutionary fitness) by aligning itself with (and co-
constructing) its cultural eco-niche (as a kind of extended phenotype) [39]. The
biological inspiration for such generative modeling provides opportunities to
connect AI alignment and neuropsychology through correlating psychological
behavior with underlying brain architecture. Further, studying FEP-AI meta-
learning agents in silico within a ‘micro’-world can yield a diverse range of
social-coordination dynamics wherein individual personalities and cultures are
co-constructed. Such agents may also be made to learn about human values via
cooperative inverse RL, wherein AI agents try to realize human intentions, which
we will model as realized by multiple agents entering into states of generalized
synchrony and minimizing prediction-error with respect to shared goals [41].
However, these inferences require imagining (or semi-accurately modeling) the
likely counterfactual sensory trajectories of everyone involved in converging on
a shared generative model through their joint goal pursuit [42].
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Within the FEP-AI literature, the process of inferring other agents’ expecta-
tions about the world and behaviour in social contexts is called “thinking through
other minds” [43]. From this point of view, individuals acquire shared beliefs
regarding social values to be realized as they attempt to semi-faithfully simulate
other agents, with particular emphasis on attentional processes as potentially
powerful sources of information with respect to both intentional and epistemic
states for oneself and others [44]. Indeed, the key process behind enculturation
may be inheriting modes of policy selection conducive to the adaptive shap-
ing of salience (actions which lead to selecting informative sensory data) and
attention (as precision-weighting of this data based on its estimated reliabil-
ity/usefulness) landscapes (or the information geometry of expected free energy
gradients). The empirical priors about norms and social values can accrue slowly
and produce stable behavior patterns, which may be thought of as a system’s per-
sonality [45]. These path dependencies have far-reaching implications for value
alignment efforts in defining potentially fruitful points of leverage for helping
to ensure that system capabilities and motivations are compatible with human
flourishing. Perhaps most fundamentally, considering that intelligence and val-
ues are fundamentally entangled in this setup, it may be the case that a FEP-AI
may provide “seed AI” for developing human-compatible ASI (cf. “Reflective
equilibrium” and “coherent extrapolated volition”).

Finally, we believe our simulations of personality/preference-formation
through iterated policy selection and prior updating may be fruitfully under-
stood in terms of a Value Core framework, which we briefly introduce here:

1. Different action tendencies (broadly construed) can be modeled as constitut-
ing value cores that compete and cooperate with each other in contributing
to ongoing action selection and policy updating, which in turn modify cores
and so influence future action selection.

2. Under some circumstances, a value core may achieve a position of relative
dominance in which selected actions and associated learning signals will be
unlikely to result in modification of either the characteristics or strategic
position of that value core relative to other cores.

3. Let us refer to these dominating attractors as value cores (VCs), some of which
become an agent’s “intrinsic goods,” or “final values.” Different VCs likely
vary in the range of conditions under which they are robustly self-sustaining.

This model calls for a research program to characterize the following issues:
ranges of human-typical VCs; developmental circumstances that give rise to dif-
ferent VCs; stability of various VCs to boundary conditions; and means of veri-
fying the existence of particular VCs in humans and in human-like AI systems.
While presently under-specified, we believe this kind of conceptual framework–
informed by concepts from (generalized) evolutionary game theory–may be help-
ful in working towards proofs (or at least heuristics) with respect to the regimes
under which potentially transient preferences may become stabilized as more
enduring orientations and personalities [45,46].



352 A. Safron et al.

7 Discussion and Future Work

While such considerations may seem premature, we believe it is valuable to begin
conducting serious work on AI with Stuart Russell’s question in mind: “What if
we succeed?” [47] The creation of ASI by such means may constitute one of the
most important things we ever do as species (if we survive long enough), and the
biopsychological-inspiration of FEP-AI agents suggests that this approach may
eventually provide a workable path towards realizing this goal. In the months
to come, we will perform a variety of simulations with such agents, wherein
we will show how prosocial reference personalities can form as attractors that
achieve stable equilibria both within and between individuals. We look forward
to discussing this ongoing work with the FEP-AI and machine learning research
communities, and discovering opportunities for collaboration with those who
may be interested in working towards these (hopefully shared) goals.

Acknowledgements. We would like to thank The Long-Term Future Fund and Cen-
tre for Effective Altruism for providing financial support for Zahra Sheikhbahaee and
her ongoing work to design agents and model persons with increasingly sophisticated
capacities for active inference.
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Abstract. Active inference offers a principled account of behavior as
minimizing average sensory surprise over time. Applications of active
inference to control problems have heretofore tended to focus on finite-
horizon or discounted-surprise problems, despite deriving from the
infinite-horizon, average-surprise imperative of the free-energy principle.
Here we derive an infinite-horizon, average-surprise formulation of active
inference from optimal control principles. Our formulation returns to the
roots of active inference in neuroanatomy and neurophysiology, formally
reconnecting active inference to optimal feedback control. Our formula-
tion provides a unified objective functional for sensorimotor control and
allows for reference states to vary over time.

Keywords: Hierarchical control · Path-integral control · Infinite-time
average-cost

1 Introduction

Adaptive action requires the integration and close coordination of sensory with
motor signals in the nervous system. Active inference [17] provides one of the few
available unifying theories of sensorimotor control; it says that the nervous sys-
tem encodes both sensory and motor signals as afferent predictions and reafferent
prediction errors. Sensory predictions induce errors that can only be quashed by
updating the predictions, while motoric predictions induce errors that can be
quashed by simply moving the body to conform to the predicted trajectory [1].
The free energy principle, following the logic of active inference, says that organ-
isms maintain their self-organization as a whole over time by avoiding surprising
interactions between their internal and external environments [16]. This entails
maintaining bodily states within homeostatic ranges [41] by issuing sensory, pro-
prioceptive, and interoceptive predictions that minimize errors under a “prior
preference” [11] or “non-equilibrium steady-state” [19] density. Such a density
must be stationary throughout time.
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Early “non-equilibrium steady-state” formulations of active inference pro-
vided probability densities over full trajectories of movement and interaction
[19,20]. In regulatory terms, this corresponds to covariation of bodily states
under a “just enough, just in time” [54] mode of regulation that physiologists
have labelled homeostasis [8] with time-varying set points, rheostasis [36], and
recently allostasis [10,48,54,60]. A control theorist would call these trajecto-
ries or set-points a reference trajectory or “reference signal” that a controller
tries to track. However, many more recent formulations of active inference use
state-space models with fixed “prior preferences” that correspond to homeostatic
set-points or ranges [11]. They also typically employ either finite time horizons
or exponential discounting of expected free energy, unlike the original formula-
tion of active inference in terms of average surprise over time. A control theorist
would refer to these as reference states rather than reference trajectories.

This paper will rederive active inference as minimization of path-entropy
over an infinite time horizon. The paper’s formulation will derive from the first
principles of infinite-horizon, average-cost optimal control; will allow preferences
to vary according to their own generative model, and will unify motor active
inference [1] (mAI) with decision active inference [52] (dAI). This will also unify
the computational principles behind motor active inference - the “equilibrium
point” [14,29] or “reference configuration” [15] hypotheses - with the higher-
level study of sensorimotor behavior as optimal feedback control. Finally, the
paper’s formalism will provide a unified free energy functional for perception,
motor action, and decision making over time.

Section 2 will explain this paper’s notation and lay out an example gener-
ative model supporting the necessary features for the intended formulation of
active inference. Section 3 will summarize belief updating in generative mod-
els, give a recognition model to match the generative model, describe the free
energy principle for perceptual inference, and finish by describing active infer-
ence. Section 4 will then extend active inference to the setting of an explicit
reference model prescribing behavior and give the control criterion correspond-
ing to active inference under the free energy principle. Section 5 will derive the
resulting free energy bounds whose optimization will yield a Bellman-optimal
feedback controller based on the generative and recognition models. Section 6
will discuss related work; consider implementation issues for infinite-horizon,
average-cost active inference; and conclude. Appendix A will provide derivations
for equations that would otherwise have broken the flow of the paper.

2 Preliminaries and Notation

This paper will explain its formulation of active inference in terms of the discrete-
time graphical model in Fig. 1. Like many generative models used to lay out
active inference [27,42], this model employs a hierarchy of temporal scales. We
number these timescales from the shortest to the longest, while numbering ran-
dom variables with discrete timesteps t ∈ 1 . . . T from left to right. For simplicity,
we also restrict our graphical model to only three levels of hierarchy: observable
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Fig. 1. A hierarchical generative model we use as an example in this paper. Two
variables (s

(1)
t , s

(2)
t ) denote unobserved latent states, and each a

(k+1)
t parameterizes a

reference model for s
(k)
t . ot represents observed sensory outcomes, and at represents

the feedback control actions generated by motor reflex-arcs.

variables, fast latent variables, and slow random variables. Following those rules,
observations ot and feedback motor actions at are 1-Markov; they “tick” at every
time-step. The fast latent variables s

(1)
t and a

(1)
t also change at every time-step.

At the next level up, slow latent variables s
(2)
t and a

(2)
t are 2-Markov; they

“tick” every second time-step t + 2. We assume arbitrary state spaces for all
random variables, latent and observed, without any discrete or linear-Gaussian
assumptions about their conditional densities. Some evidence suggests [24] that
the brain may in fact represent time by learning a combination of frequencies in
the Laplace domain [51], and so the use of only three levels in the model should
not be taken to describe anything biological.

We write the combined latent states

s
(1:2)
t = (s(1)t , s

(2)
t )

and the “actions” or reference states

a
(0:2)
t = (at, a

(1)
t , a

(2)
t ).

We can therefore write the complete state at a time-step t as

st = (ot, s
(1:2)
t , a

(0:2)
t ).

We will denote probability densities over actions as policies π and probability
densities in the generative model as pθ (with arbitrary parameters θ). The lowest
level of conditional probability densities then consists of

pθ(at, ot | a
(1)
t , s

(1)
t ) = π(at | ot, a

(1)
t )pθ(ot | a

(1)
t , s

(1)
t ),
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the fast latent state level consists of

pθ(a
(1)
t , s

(1)
t | s

(1)
t−1, a

(2)
t , s

(2)
t , at−1) = π(a(1)

t | s
(1)
t , a

(2)
t )pθ(s

(1)
t | s

(1)
t−1, s

(2)
t , at−1),

and the slow latent state level consists of

pθ(a
(2)
t , s

(2)
t | s

(2)
t−1, at−1) = π(a(2)

t | s
(2)
t )pθ(s

(2)
t | s

(2)
t−1, at−1).

We write the complete state of the generative model pθ at a time-step t with its
associated conditional densities as

pθ(st | st−1) = pθ(at, ot | a
(1)
t , s

(1)
t )pθ(a

(1)
t , s

(1)
t | s

(1)
t−1, a

(2)
t , s

(2)
t , at−1)

pθ(a
(2)
t , s

(2)
t | s

(2)
t−1, at−1), (1)

and the joint density over time (conditioned on a fixed initial state s0) as

pθ(s1:T | s0) =
T∏

t=1

pθ(st | st−1). (2)

The model treats outcomes ot as observed, at as a feedback-driven motor action,
and other variables as latent. Inspired by the referent configuration account of
motor control [15,30], the model treats a

(1:2)
t as parameterizing “prior prefer-

ences” or referent configurations

R(st) = R(ot | a
(1)
t )R(s(1)t | a

(2)
t ). (3)

at models the feedback control action of motor reflexes. a
(1)
t parameterizes a ref-

erence state for ot. a
(2)
t parameterizes a reference model for s

(1)
t . Since reference

trajectories direct action, we consider their distributions to be policies

π(at, a
(1:2)
t | ot, s

(1:2)
t ) = π(at | a

(1)
t , ot)π(a(1)

t | s
(1)
t , a

(2)
t )π(a(2)

t | s
(2)
t ). (4)

s
(2)
t , as the highest level latent state, has no reference model. In neuroscience,

it might correspond to predictive modeling at the highest level of the neuraxis
or cortical hierarchy [3,31,44]. In an engineering setting, it might contain both
environment and task state [37,46,56] or reward machine [7,25] state.

The likelihood pθ(ot | a
(1)
t , s

(1)
t ) does not specify the reference model; it

instead provides the statistical grounding for both the latent states and the
reference model parameters. The model here does not assume that reference
densities at all levels are prespecified or learned, but instead leaves that issue
open.

We then designate as cost functions the surprisals over complete states (under
the reference model) and over observations (under the generative model)

J(st) = − log R(st), (5)

L(st) = − log pθ(ot | a
(1)
t , s

(1)
t ). (6)
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Table 1. Random variable names used in this paper

pθ Probability density for the generative model

qφ Probability density for the recognition model

R Probability density for the reference model

π Policy density over actions and references

t Discrete time-step index

ot Observations

s
(1:2)
t Unobserved model states

a
(1:2)
t Parameters to a reference model R

at Control actions

st A complete model state for time t

Eq. 5 equals the negative of the reward function used in distribution-conditioned
reinforcement learning [38] and can represent any control objective.

This paper will condition behavioral trajectories upon an initial state s0 as
context. This initial state corresponds to the beginning of a behavioral episode.
The following states from time 1 until time T , sampled from a generative model
with parameters θ, are then written as sampled from the joint density

s1:T ∼ pθ(s1:T | s0).
This section has described a generative model and a decision objective under
which to formulate active inference. Table 1 summarizes the notation the rest
of the paper will use. The next section will lay out belief updating for the gen-
erative model, a recognition model to represent updated beliefs, and the free
energy principle for perceptual inference. Later sections will show how to extend
free-energy minimization to approximate a feedforward planner (in the gener-
ative model) and feedback controller (in the recognition model) that minimize
surprisal under the reference model.

3 Surprise Minimization and the Free Energy Principle

Section 2 gave a generative model and a way of writing arbitrary preferences as
probability densities. However, the formalism constructed so far would induce a
merely feedforward model-based planner, one which could not correct upcoming
movements in light of observations. Bayes’ rule specifies how to update proba-
bilistic beliefs about unobserved variables in light of observations:

pθ(s
(1:2)
1:t , a

(1:2)
1:t | o1:t, s0) =

pθ(o1:t, s
(1:2)
1:t , a

(1:2)
1:t | s0)

pθ(o1:t | s0) . (7)

The denominator of Eq. 7 is called the marginal likelihood, and its negative
logarithm is the surprise under the generative model

h(o1:t) = − log pθ(o1:t | s0).



360 E. Sennesh et al.

Friston’s free energy principle [21] posits that a system, organism, or agent in a
changing environment preserves its structure against the randomness of its envi-
ronment by embodying a generative model of its environment and minimizing
that model’s long-term average surprise

H(ot) = lim
T→∞

1
T

− log pθ(o1:T | s0). (8)

In most generative models, neither the denominator of Eq. 7 nor the surprise of
Eq. 8 are analytically tractable, and Bayesian inference requires approximation.
Active inference in particular approximates optimal belief updating by substi-
tuting a tractable recognition model qφ (with parameters φ) for the posterior
distribution

s
(1:2)
1:T , a

(1:2)
1:T ∼ qφ(s(1:2)1:T , a

(1:2)
1:T | o1:T , a1:T , s0),

qφ(s(1:2)1:T , a
(1:2)
1:T | o1:T , a1:T , s0) =

T∏

t=1

qφ(s(1:2)t , a
(1:2)
t | ot, at, st+1, st−1).

This recognition model is conditioned on both the previous time-step t − 1 and
the next time-step t + 1, and can therefore perform retroactive belief updates.

To improve the recognition model’s approximation to the posterior distri-
bution, active inference entails evaluating and minimizing the variational free
energy (Eq. 9, derivation in Proposition 1 in Appendix A)

Fθ,φ(t) = Eqφ

[
− log pθ(ot | a

(1)
t , s

(1)
t )

]
+

DKL

(
qφ(s(1:2)t , a

(1:2)
t | ot, st+1, st−1)‖pθ(s

(1:2)
t , a

(1:2)
t | st−1)

)
. (9)

The free energy serves as a tractable upper bound to the surprise

H(ot) ≤ Fθ,φ(t).

Intuitively, given an observation at each time-step t, minimizing the free energy
amounts to updating the beliefs of the recognition model qφ to approximate the
posterior distribution of the generative model pθ. A model-based controller can
then use those updated beliefs to revise or plan actions into the future. Active
inference has therefore often been formulated as using action to minimize this
free energy bound. Such a move then prompts the question of how to encode a
desirable reference trajectory into the generative model or another term of the
free energy bound [18]. The next section will define notions of surprise and free
energy that encode fit to an explicitly specified reference trajectory.

4 Active Inference with an Explicit Reference

Minimizing free energy fits a model-based controller’s generative and recognition
models to ongoing trajectories of observations. However, for the updated beliefs
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to determine action, the controller must use them to evaluate the fit to the ref-
erence trajectory (Eq. 5) and emit motor actions. Fortunately, Thijssen [58] gave
an interpretation of probabilistic updating in terms of control: the recognition
model qφ acts as a state-feedback controller, for which the variational free energy
becomes a running control cost. This section will show how to evaluate fit to the
reference trajectory under the recognition model, and specify the functional it
must optimize to serve as a feedback controller.

The generative model in Sect. 2 and recognition model in Sect. 3 use discrete
time-steps and explicitly specify the “pathwise” reference model separately from
the generative and recognition models. The surprise to minimize is therefore the
long run average of the cross-entropy

H(qφ, R) = lim
T→∞

1
T

T∑

t=1

Est∼qφ
[− log R(st)] . (10)

Equation 10 gives the long-term average surprise of using the reference model to
approximate the posterior beliefs of the recognition model. Replacing the refer-
ence model with the forward generative model would then amount to minimizing
the long-term average surprise (entropy); this generalization treats the reference
model as specifying a trajectory for the feedback controller to track.

Standard properties of free energy functionals imply that a desirable objective
functional would upper bound the sum of reference surprise and sensory surprise

H(R(st)) + H(ot) ≤ J (t). (11)

Such a free energy functional would balance the reference model’s surprise (the
first term) with the generative model’s surprise (the second term). In fact it can
be formed simply by adding Eq. 10 to Eq. 9

Jθ,φ(t) = H(qφ, R) + Fθ,φ(t) (12)
= Est∼qφ

[J(st)] + Fθ,φ(t), (13)

and expanding the term for Eq. 9 will yield a long-form expression

Jθ,φ(t) = Eqφ
[J(st)] + Eqφ

[L(st)] +

DKL

(
qφ(s(1:2)t , a

(1:2)
t | ot, st+1, st−1)‖pθ(s

(1:2)
t , a

(1:2)
t | st−1)

)
. (14)

Eq. 14 gives an objective functional in terms of

– The reference surprisal under the recognition model,
– The observation surprisal under the recognition model, and
– The deviation of the recognition model from the generative model.

Neuroscientists [12,50] and ecologists [53] have found evidence that animals
optimize a global capture rate J̄ in many decisions: rewards minus costs, divided
by time. Active inference modelers typically ground the construct of “reward”
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in reduction of surprise [35], and so a broad field of evidence comes together
to support the time-averaging functional form implied by Bayesian mechanics
in both their “steady-state density” and “pathwise” formulations [45]. The next
section will therefore apply the principles of stochastic optimal feedback con-
trol for the partially observed setting and average-cost criterion, and solve the
resulting control problem to formulate active inference.

5 Deriving Time-Averaged Active Inference
from Optimal Control

The average-cost criterion for optimality entails minimizing the indefinite sur-
prise rate with respect to the generative model pθ(s1:T | s0)

J̃ (s0) = lim
T→∞

Epθ(s1:T |s0)
[J̄θ,φ(s1:T )

]
. (15)

This minimization requires estimating Eq. 15 for each behavioral episode in con-
text, a “global surprise rate” in terms of Jθ,φ(t)

J̄θ,φ(s1:T ) =
1
T

T∑

t=1

Jθ,φ(t). (16)

Plugging Eq. 14 into Inequality 11 shows that minimizing Eq. 16 will, by proxy,
minimize the reference and sensory surprise in the context of a sampled state
trajectory s0:T . This estimation does not require a prespecified episode length
T , and can be performed under the generative model

J̄θ,φ(s0) = Es1:T ∼pθ(s1:T |s0)
[J̄θ,φ(s1:T )

]
. (17)

Having estimates of Eq. 17 will enable minimizing the mean-centered surprise at
each time-step

h(t; s0) = Jθ,φ(t) − J̄ (s0). (18)

The differential Bellman equation [59] defines optimal behavior as recursively
minimizing the mean-centered surprise at each time-step, or surprise-to-go

H̃∗(t; s0) = h(t; s0) + min
at

Est+1∼pθ(·|st)

[
H̃∗(t + 1; s0)

]
. (19)

The minimization over actions in Eq. 19 assumes a fixed action space and feedfor-
ward planning, which may result in very high-dimensional recursive optimization
problems. These assumptions also prove empirically, as well as computationally,
problematic. Organisms are not born knowing all their affordances [9]; they learn
them [40]. Noise [13,32], uncertainty [23], and variability [47] are ubiquitous in
motor control, and so movement must be stabilized by online feedback.

Stochastic optimal feedback control therefore requires an optimality princi-
ple that allows for integrating observations between action steps. Rather than
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recursively optimize individual actions, Eq. 20 below therefore instead considers
optimality of the feedback-stabilized transition density

H̃∗(t; s0) = h(t; s0) + min
qφ

Est+1∼qφ(·|st)

[
H̃∗(t + 1; s0)

]
. (20)

Equation 20 defines an optimal controller as one that achieves optimal state
transitions; individual actions act only as parameters to the optimal transition
density. These optimal state transitions take the form of a generative model
for agency, in which the generative model pθ(st+1 | st) produces feasible state
transitions and the Bellman optimality criterion “weighs” them according to
their surprise-to-go

q∗(st+1 | st) =
exp

(
−H̃∗(t + 1; s0)

)
pθ(st+1 | st)

Est+1∼pθ(·|st)

[
exp

(
−H̃∗(t + 1; s0)

)] . (21)

The denominator of Eq. 21 would typically correspond to the marginal probabil-
ity of an observation. Here it consists of the present state’s expected surprise-to-
go weight under the generative model. Potential future states that lead to high
surprise under the reference model will have high surprise-to-go and therefore
low weight under Eq. 21. Present states that lead to states closely fitting the ref-
erence trajectory will have low surprise-to-go, resulting in a high denominator
that spreads weight around among possible future states.

The availability of a closed-form density for the optimal transition density
will help simplify the differential Bellman equation itself. Proposition 3 (in
Appendix A) shows that by substituting Eq. 21 into Eq. 20 we can obtain a
path-integral expression for the optimal differential surprise-to-go with both the
feedforward controller pθ

H̃∗(s0) = − logEpθ(s1:T |s0)

[
exp

(
T∑

t=1

(J(st) + L(st)) − J̄ (s0)

)]
, (22)

and the feedback controller qφ

H̃∗(s0) = − logEqφ(s1:T |s0)

[
exp

(
T∑

t=1

Jθ,φ(t) − J̄ (s0)

)]
. (23)

These equations employ “smooth” minimization rather than “hard” recursive
minimization, and so they support feedforward planning, feedback-driven updat-
ing, and sensitivity of behavior to risk [39,57]. Jensen’s inequality will then yield
a tractable upper bound on the optimal differential surprise-to-go under the
feedback controller qφ

H̃∗(s0) ≤ −Eqφ(s1:T |s0)

[
T∑

t=1

h(t; s0)

]
= F̃∗

θ,φ. (24)

Minimizing this differential free energy F̃∗
θ,φ minimizes both the sensory sur-

prise and the optimal surprise-to-go function by proxy. This kind of information-
theoretic upper bound on a surprisal term is precisely what predictive coding
process theories [4,6] posit that the brain can optimize by updating θ and φ.
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6 Discussion

Related work. Our formulation follows in a tradition of unifying active inference
with optimal control approaches. Our hierarchical graphical model follows most
closely from the one featured by Friston [22] and Pezzulo [42] for hierarchical
active inference in decision making and motor control. In contrast to theirs, our
model includes only a single observation at the lowest hierarchical level rather
than one observed variable per level.

We also draw inspiration from information-theoretic control schemes not
labelled by their authors as “active inference”. Piray and Daw [43] considered
a path-integral control approach to planning and reinforcement learning, which
they related to grid cells in the entorhinal cortex. Mitchell et al [34] modeled
motor learning as minimization of a free energy functional. Nasriany et al’s
work on distribution-conditioned reinforcement learning gave us our scheme for
parameterizing reference distributions [38], and Sennesh et al [49] applied such an
objective to active inference modeling of interoception and allostatic regulation.

Implementations. We employed the infinite-horizon, average-surprise criterion to
fit with the apparent time-averaging of dopamine signals in the brain [12,50], but
algorithms for this control criterion remain an active research area with no stan-
dard approach. A recent survey [28] showed that most software implementations
of active inference models still involve either finite horizons or exponential dis-
counting criteria. Those which do support infinite horizons and nonlinear model
families mostly take algorithmic inspiration from reinforcement learning (RL).

In that domain, Tadepalli and Ok [55] published the first model-based RL
algorithm for our criterion in 1998, while Baxter and Bartlett [5] gave a biased
policy gradient estimator. It took another decade for Alexander and Brown [2]
to give a recursive decomposition for average-cost temporal-difference learn-
ing. Zhang and Ross [61] have only recently published the first adaptation of
“deep” reinforcement learning algorithms (based on function approximation)
to the average-cost criterion, which remains model free. Jafarnia-Jahromi et
al [26] recently gave the first algorithm for infinite-horizon, average-cost partially
observable problems with a known observation density and unknown dynamics.

Conclusion. This concludes the derivation of an infinite-horizon, average-surprise
formulation of active inference. Since our formulation contextualizes behav-
ioral episodes, it only requires planning and adjusting behavior in context
(e.g. from timesteps 1 to T ), despite optimizing a “global” (indefinite) surprise
rate (Eq. 15). We suggest that this formulation of active inference can advance
a probabilistic approach to model-based, hierarchical feedback control [33,40].

A Detailed Derivations

This appendix provides detailed derivations for equations used elsewhere, par-
ticularly where doing so would have distracted from the flow of the paper.
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Proposition 1 (Variational free energy as divergence from an unnor-
malized joint distribution). The variational free energy (Eq. 9) is defined as
the Kullback-Leibler divergence of the recognition model qφ from the unnormal-
ized joint distribution of the generative model pθ

Fθ,φ(t) = DKL

(
qφ(s(1:2)t , a

(1:2)
t | ot, st+1, st−1)‖pθ(st | st−1)

)
,

and therefore equals a sum of the cross entropy between the recognition model
and the sensory likelihood and the exclusive KL divergence from the recognition
model to the generative model over the latent variables

Fθ,φ(t) = Eqφ

[
− log pθ(ot | a

(1)
t , s

(1)
t )

]
+

DKL

(
qφ(s(1:2)t , a

(1:2)
t | ot, st+1, st−1)‖pθ(s

(1:2)
t , a

(1:2)
t | st−1)

)
.

Proof. Taking a divergence between the (normalized) recognition model and the
(unnormalized) joint generative model will yield

Fθ,φ(t) = DKL

(
qφ(s

(1:2)
t , a

(1:2)
t | ot, st+1, st−1)‖pθ(st | st−1)

)

= E
qφ(s

(1:2)
t ,a

(1:2)
t |ot,st+1,st−1)

[
− log

pθ(st | st−1)

qφ(s
(1:2)
t , a

(1:2)
t | ot, st+1, st−1)

]

= E
qφ(s

(1:2)
t ,a

(1:2)
t |ot,st+1,st−1)

[
− log

pθ(ot | a
(1)
t , s

(1)
t )pθ(s

(1:2)
t , a

(1:2)
t | st−1)

qφ(s
(1:2)
t , a

(1:2)
t | ot, st+1, st−1)

]

= Eqφ

[
− log pθ(ot | a

(1)
t , s

(1)
t )

]
− Eqφ

[
log

pθ(s
(1:2)
t , a

(1:2)
t | st−1)

qφ(s
(1:2)
t , a

(1:2)
t | ot, st+1, st−1)

]
,

as required.

Proposition 2 (KL divergence of the optimal feedback controller from
the feedforward controller). The exclusive Kullback-Leibler divergence of the
optimal feedback controller q∗ from the feedforward generative model pθ is

DKL (q∗(st+1 | st)‖pθ(st+1 | st)) = −Eq∗(st+1|st)

[
H̃∗(t + 1; s0)

]
−

logEpθ(st+1|st)

[
exp

(
−H̃∗(t + 1; s0)

)]
. (25)

Proof. We begin by writing out the definition of a KL divergence

DKL (q∗(st+1 | st)‖pθ(st+1 | st)) = Eq∗(st+1|st)

[
− log

pθ(st+1 | st)
q∗(st+1 | st)

]
.
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The definition of q∗ in terms of pθ (Eq. 21) allows the inner ratio of densities to
simplify to

pθ(st+1 | st)
q∗(st+1 | st)

= pθ(st+1 | st) (q∗(st+1 | st))
−1

= ������pθ(st+1 | st)

⎛

⎝
Epθ(st+1|st)

[
exp

(
−H̃∗(t + 1; s0)

)]

exp
(
−H̃∗(t + 1; s0)

)
������pθ(st+1 | st)

⎞

⎠

pθ(st+1 | st)
q∗(st+1 | st)

=
Epθ(st+1|st)

[
exp

(
−H̃∗(t + 1; s0)

)]

exp
(
−H̃∗(t + 1; s0)

) .

This simplified ratio therefore has the logarithm

log
pθ(st+1 | st)
q∗(st+1 | st)

= logEpθ(st+1|st)

[
exp

(
−H̃∗(t + 1; s0)

)]
+ H̃∗(t + 1; s0)

and the divergence becomes

DKL (q∗(st+1 | st)‖pθ(st+1 | st)) =

− Eq∗(st+1|st)

[
H̃∗(t + 1; s0)

]
− logEpθ(st+1|st)

[
exp

(
−H̃∗(t + 1; s0)

)]
.

Proposition 3 (Path-integral expression for the optimal differential
surprise-to-go). The optimal differential surprise-to-go function defined by
the Bellman equation (Eq. 20)

H̃∗(t; s0) = h(t; s0) + min
qφ

Est+1∼qφ(·|st)

[
H̃∗(t + 1; s0)

]

can be simplified by substituting in q∗ to obtain a path-integral expression

H̃∗(s0) = − logEpθ(s1:T |s0)

[
exp

(
T∑

t=1

(J(st) + L(st)) − J̄ (s0)

)]
,

= − logEqφ(s1:T |s0)

[
exp

(
T∑

t=1

Jθ,φ(t) − J̄ (s0)

)]
.

Proof. Substituting Eq. 21 into Eq. 20 yields

H̃∗(t; s0) = J̄ (s0) − Jθ,φ(t) + Eq∗(st+1|st)

[
H̃∗(t + 1; s0)

]
, (26)

whose recursive term is Eq∗(st+1|st)

[
H̃∗(t + 1; s0)

]
. The divergence term in J

(Eq. 14) will cancel this term. By Proposition 2 the divergence equals

DKL (q∗(st+1 | st)‖pθ(st+1 | st)) =

− Eq∗(st+1|st)

[
H̃∗(t + 1; s0)

]
− logEpθ(st+1|st)

[
exp

(
−H̃∗(t + 1; s0)

)]
.
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Substituting Eq. 25 into Eq. 14 will yield

−Jθ,φ(t) = Eq∗(st+1|st)

[
H̃∗(t + 1; s0)

]
+logEpθ(st+1|st)

[
exp

(
−H̃∗(t + 1; s0)

)]

+ Eqφ
[−J(st)] + Eqφ

[−L(st)] ,

whose first term will cancel the recursive optimization when substituted into
Eq. 26. The result will be a “smoothly minimizing” expression for the optimal
differential surprise-to-go

H̃∗(t; s0) = J̄ (s0) − (J(st) + L(st))

− logEpθ(st+1|st)

[
exp

(
−H̃∗(t + 1; s0)

)]
,

and after unfolding of the recursive expectation, a path-integral expression for
the optimal differential surprise-to-go

H̃∗(s0) = − logEpθ(s1:T |s0)

[
exp

(
T∑

t=1

(J(st) + L(st)) − J̄ (s0)

)]
.

Sampling a trajectory of states from a feedback controller qφ instead of the
feedforward planner pθ will then result in a nonzero divergence term

H̃∗(s0) = − logEqφ(s1:T |s0)

[
exp

(
T∑

t=1

Jθ,φ(t) − J̄ (s0)

)]
.
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