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Abstract. Attention loss caused by driver drowsiness is a major risk fac-
tor for car accidents. A large number of studies are conducted to reduce
the risk of car crashes, especially to evaluate the driver behavior associ-
ated to drowsiness state. However, a minimally-invasive and comfortable
system to quickly recognize the physiological state and alert the driver is
still missing. This study describes an approach based on Machine Learn-
ing (ML) to detect driver drowsiness through an Internet of Things (IoT)
enabled wrist-worn device, by analyzing Blood Volume Pulse (BVP) and
Skin Conductance (SC) signals. Different ML algorithms are tested on
signals collected from 9 subjects to classify the drowsiness status, con-
sidering different data segmentation options. Results show that using a
different window length for data segmentation does not influence ML
performance.

Keywords: Internet of Things · Machine Learning · Wearable
devices · Blood volume pulse · Skin conductance · Driver monitoring ·
Drowsiness detection

1 Introduction

Based on the World Health Organization estimates, car accidents are responsible
for nearly 1.35 million deaths each year [1], primarily due to driver drowsiness [2].
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For this reason several research studies are aimed at detecting a driver’s drowsi-
ness, through the use of proper sensors joined with Machine Learning (ML) and
Artificial Intelligence (AI) algorithms. In some cases, safety technologies exploit-
ing on-board sensors are already implemented in cars, to classify the driving
behavior by monitoring lane deviations combined with steering wheel rotation,
and enriched by additional sensors, such as camera-based systems, capturing
the driver’s status. However, these systems aim to detect explicit signs of micro-
sleeps or sleepy behavior (such as changes in visual facial descriptors, like esti-
mated distance between the nose and mouth; blinks and longer closures; eye gaze
location; face orientation), not drowsiness, that occurs with decreasing levels of
arousal which vary by individual [3]. Stress, fatigue, and illness contribute to
drowsiness, that declines the driver’s cognitive capabilities, increasing the risk of
accidents [4]. Moreover, the above-mentioned approaches exhibit some degrees
of reliability but also suffer limitations due to uncontrollable operational condi-
tions: variable lighting scenarios, or glasses and sunglasses worn by the driver
may impact the expected detection capability. Different and innovative solutions
have been consequently investigated, to overcome the mentioned limits.

Drowsiness influences the driver’s behavior and is associated with the Auto-
nomic Nervous System (ANS) activity reflected by changes in physiological sig-
nals [2]. Specifically, the Blood Volume Pulse (BVP) signal refers to the total
amount of blood circulating within the arteries, capillaries, veins, venules, and
chambers of the heart, at any given time [5]. BVP leads to the estimation of
Heart Rate Variability (HRV), a useful indicator for both fatigue and drowsiness
conditions, according to the literature [6,7]. The Skin Conductance (SC) signal
is usually exploited to detect changes in a subject’s arousal: it varies because of
sweat gland secretion, and it can be decomposed in a slowly varying component,
known as Skin Conductance Level (SCL) [8], plus a second component, featuring
rapid changes in signal amplitude, known as Skin Conductance Response (SCR)
[9]. For both the referenced signals, gold-standard measurement methods foresee
the use of electrodes in direct skin contact, and applied on specific positions. In
the case of the SC signal, it should be preferably acquired on fingers, foot or hand
palms, where sweat glands are mostly spread. Unfortunately, the necessary skin
contact of the sensors to acquire SC or Photoplethysmography (PPG) signals
[10] is a major shortcoming of approaches based on physiological measurements
in the automotive environment, where the common driving conditions are not
compatible with the mentioned optimal sensor positioning choices.

For this reason, and pushed by the growing trends of the IoT-enabled wear-
ables market, several studies tested wrist-worn devices (or wrist-worn-like ones,
such as bracelets [11] and double-rings [12]) to collect physiological data that
is then processed by classification algorithms to monitor drivers and detect a
drowsy status [4]. As an example, Lee et al. assessed the driving behavior by
utilizing the built-in motion sensor of a smartwatch; with a Support Vector
Machine (SVM) classifier, an accuracy of 98.15% was achieved [13]. In another
work, the same authors used the accelerometer signal combined with the PPG
signal and they obtained an accuracy of 95.80% [14]. Instead, Leng et al. used a
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wearable device able to measure both PPG and SC signals on the fingers. The
implemented SVM model reaches an accuracy of 98.70% [15]. Similarly, Choi et
al. developed a wrist-worn wearable device with PPG, SC, temperature, acceler-
ation, and gyroscope sensors. The SVM is employed to distinguish the normal,
stressed, and drowsy states with an accuracy of about 85.00%. However, in this
case, an additional PPG signal is acquired on the ear for more robust feature
extraction, thus resulting in an intrusive system, less suitable for real-life driv-
ing applications [16]. In [17], we exploited the SC signal alone to assess driver’s
drowsiness, obtaining an accuracy equal to 84.1%. Later on, Li et al. [18] showed
that a properly designed feature extracted from the SC signal could be used
in driver’s status management, and takeover-safety prediction for autonomous
driving systems.

Wrist-worn devices represent an appealing solution for driver’s monitoring
since they allow physiological signal acquisition in a minimally invasive fashion,
and future car implementations could directly interact with them, for a feasi-
ble and integrated approach to the driver’s drowsiness detection problem. The
device used in this work is the Empatica E4 wristband, which obtained CE med-
ical certification in Europe, for acquired signals of better quality than the ones
obtained from prototype devices, like those designed on purpose and used in
other research works [15].

The analysis of recent literature shows that almost all the published works
exploit ML or Deep Learning (DL) algorithms to process the data acquired
from wearables and automatically classify the driver’s condition. As such, it is
reasonable to investigate if the way the collected data is pre-processed may affect
the attainable classification accuracy. In this respect, the research presented in
this paper exploits a minimally-invasive wrist-worn device to collect both BVP
and SC physiological signals, with the aim to explore the ANS activity related to
changes in the driver’s arousal, which may be associated to a drowsy behavior.
The collected time series of physiological data are pre-processed according to
different sizes of data segmentation, before computing features used to feed three
different ML algorithms to detect and classify driver’s drowsiness. Based on the
attained classification accuracy, the impact of the different data segment sizes
chosen is investigated.

The paper is structured as follows: Sect. 2 describes the experimental setup
and the acquisition protocol. Section 3 presents the performed data processing,
while in Sect. 4 the obtained results are provided. Lastly, Sect. 5 draws the main
conclusions and outlines possible future works.

2 Materials and Methods

2.1 Experimental Setup and Acquisition Device

For the purpose of this study, a driving simulator was placed in a room with
an average ambient temperature of around 23◦C. Temperature was maintained
quite stable to reduce its influence on the user’s skin (e.g., sweat or cold body),
and consequently on physiological signals acquired during the experimental tests.
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The route shown on the driving simulator was an overnight 80 km long driving
path on a three-lane highway. A picture of the whole experimental setup is shown
in Fig. 1.

During the driving simulation, and with the aim to propose an as much
realistic as possible approach, BVP and SC signals were collected by wearing a
single smart-band, the Empatica E4 [19], on the driver’s dominant wrist. The E4
is a multi-sensor wrist-worn device able to detect changes in both user’s cardiac
activity and skin conductance, through two specific embedded sensors: PPG
and SC sensor, respectively. By using a proprietary algorithm, the PPG sensor,
equipped with 2 green LEDs and 2 red LEDs, extracts the BVP signal from the
pulse waves at a fixed sampling rate 64 Hz. Regarding the SC, a small alternating
current (maximum peak-to-peak value of 100µA - at a frequency 8 Hz) moves
through two Ag/AgCl electrodes located on the bottom side of the bracelet, and
the electric skin conductance across the skin is acquired at a sampling frequency
4 Hz, a resolution of 900 pS, and a dynamic range of [0.01, 100] μS. Once an
acquisition session terminates, data collected from all the sensors embedded into
the E4 are stored into the Empatica Cloud, from which they can be downloaded
for further post-processing and analysis.

2.2 Data Acquisition Protocol

Nine healthy subjects, namely five women and four men, were recruited for the
test procedure. Since physiological data vary with age and gender, drivers have
been chosen to cover the [28] years age range, that represents the age range of the
majority of active drivers’ population. Moreover, to avoid bias due to gender, we
selected a male and a female driver in each age cohort of 10 years, from 20 to 60
years of age. After receiving information about the study, the participants signed
the informed consent. Then, they were provided with the Empatica E4 device to
be worn on the dominant wrist during the six simulated driving sessions (around
40 min-long each) to acquire simultaneously the BVP and SC signals. Samples
of the acquired BVP and SC signals over a whole 40 min-long session are given
in Fig. 2.

Every 10 min, the participants reported their own perceived level of drowsi-
ness on a tablet, according to the 9-point Karolinska Sleepiness Scale (KSS) ques-
tionnaire [20]. Similarly to other studies [21], we used the KSS self-assessment
measure to subjectively quantify the level of drowsiness of the participants.

3 Data Processing

The quality of signals acquired from the wrist, and consequently the performance
of the driver’s drowsiness detection, can be highly affected by natural body move-
ments performed while driving. To identify and reduce the motion artifacts in
SC signals [22], the Stationary Wavelet Transform (SWT) denoising with Haar
mother wavelet (7 levels of decomposition) was implemented, according to pre-
vious studies [23]. This approach firstly models the wavelet coefficients by using
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Fig. 1. The experimental setup used for acquisitions, including: the driving simulator,
the tablet showing the KSS to select, and the E4 worn by the subject during tests.

Fig. 2. Sample acquired BVP (left) and SC (right) signals during a whole session
(40 min duration).

zero-mean Laplace distribution, then it defines high and low thresholds to distin-
guish clean SC signal and motion artifacts. When the wavelet coefficients exceed
these thresholds, they are set to zero. Then, the application of SWT results in a
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denoised signal. Regarding the BVP signal, an algorithm embedded in Empatica
E4 firmware (the details of which are not disclosed by the manufacturer) removes
the motion artifacts, by exploiting the signal measured during exposure to the
red LED. Being the HRV a well-known drowsiness indicator [24], it was derived
from the BVP signal, by quantifying the inter-beat intervals (i.e., the distance
between two consecutive signal peaks). The obtained HRV and SC signals (both
SCR and SCL components) were divided into time intervals with a fixed size of
Δt seconds, and an overlapping window of length Δt/2 s. It is explained later
on in the paper that different Δt values have been tested.

According to the 9-point KSS scale scores reported by the participants, each
data window was labeled to detect the associated drowsiness status. Specifically,
the KSS responses were grouped into two classes depending on the selected
drowsiness level: KSS scores lower or equal to 6 (from 1 to 6) in class 1 (labeled
as awake), and scores greater than 6 (from 7 to 9) in class 2 (labeled as drowsy).
Finally, a total of 32 features, chosen in both time and frequency domains as
listed in Table 1, was computed for each window. The features were considered in
some cases since already used in previous studies [25–27], or, in other cases, such
as the SC peaks, since characterized by a significant information content [28,29].

As a first choice, Δt = 30 s and an overlapping of 15 s were considered [25,30].
Such a window size was chosen according to [30], in which authors state that
drowsiness can be detected in short periods. Then to study the effect of the
time window length on the performance of the ML classifiers tested, the analysis
was repeated by considering different sizes of data segmentation. In particular,
segmentation windows with a length of 15 s, 45 s, and 60 s, were considered, and
a 50% overlap, to preserve the condition applied in the first analysis.

Table 1. Features extracted from HRV and SC.

Type of
signal

Domain Features

HRV signal Time HR (bpm), SDNN (ms), RMSSD (a.u.), pNN50 (µS)

Frequency LF (a.u./Hz), HF (a.u./Hz), LFn (a.u./Hz), HFn
(a.u./Hz), LF/HF (a.u.)

SC signal Time Mean (µS), standard deviation (µS), minimum (µS),
maximum (µS), kurtosis (µS), skewness (µS), variance
((µS)2), range (µS), median (µS)

Frequency Mean (µS/Hz), standard deviation (µS/Hz), minimum
(µS/Hz), maximum (µS/Hz), kurtosis (µS/Hz), skewness
(µS/Hz), variance ((µS/Hz)2), range (µS/Hz), median
(µS/Hz)

SC
components

Time SCR number of peaks, SCL mean (µS), SCL standard
deviation (µS), SCL minimum (µS), SCL maximum (µS)
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Following the two steps of data pre-processing and feature extraction, several
ML algorithms were tested in MATLAB by means of the Classification Learner
Toolbox. All the features were considered with a 10-fold cross-validation on input
data. For each window, to perform ML analysis, the dataset was divided ran-
domly into training and testing sets, corresponding, respectively, to 80% and
20% of the entire set. Since at each run of the classifiers the two groups are
different, we tested every algorithm 10 times for all size windows, then we cal-
culated the mean value of the obtained classification accuracy. To improve ML
performance, features were normalized by their maximum value in each window,
resulting in the range [0, 1]. Data analysis and feature extraction were performed
in MATLAB environment. Figure 3 summarizes the different steps of the applied
data processing.

Fig. 3. Graphical summary of the applied processing steps.

Table 2. Accuracy of different classifiers with the tested approaches.

Classifier Accuracy (%) Windows length (s)

Decision Tree 83.5 15

SVM 88.3

Ensemble 93.0

Decision Tree 83.2 30

SVM 89.2

Ensemble 92.2

Decision Tree 83.5 45

SVM 88.8

Ensemble 91.8

Decision Tree 84.7 60

SVM 90.0

Ensemble 91.1
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4 Results

The classification performance was assessed based on the accuracy provided
by each algorithm, and obtained by considering different lengths of the time
windows applied for data segmentation. The accuracy provided by a classification
algorithm is defined as:

Accuracy = (1 − ErrorRate) · 100 (1)

where ErrorRate = —Ncci - Nti—/Nti, being Ncci and Nti the numbers of
correctly classified instances and total instances, respectively.

The length of the time windows used to evaluate and compare the classifi-
cation performance are summarized in Table 2. The tested algorithms with the
highest performance are Decision Tree, SVM, and Ensemble. Considering the
30 s-long window, i.e. the first tested window length, the best result was achieved
by Ensemble with an accuracy of 92.2%, then SVM with 89.3%, and Decision
Tree with 83.2%. However, taking into account all the analyzed window lengths,
the best results were achieved by Ensemble considering a 15 s-long window with
an accuracy of 93.0%. SVM and Decision Tree reached the highest performance
with an accuracy of 90.0% and 84.7% respectively, both considering a window
of 60 s. The results are comparable to the previously discussed works [13–16].

Figure 4 shows the results in terms of accuracy for different lengths of acqui-
sition time windows. It is clear there are no significant differences among all
the considered values, demonstrating that the physiological onset of drowsiness
conditions is a slow phenomenon. Additionally, high accuracy levels and slight
performance variations make the obtained results more robust since they confirm
that it is possible to obtain a high classification accuracy value, even considering
several lengths of the time windows.

The results herein presented, obtained on a dataset including few subjects,
suggest the possibility to detect, by proper classifiers, the drowsiness condition
in drivers. High classification accuracy has been obtained by considering sig-
nals collected from a minimally invasive wrist-worn device, which may represent
an important outcome towards practical solutions to the problem of increasing
drivers’ safety.
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Fig. 4. ML accuracy of the tested algorithms considering different time windows. The
black line refers to the Ensemble classifier, the blue line to SVM, the red line to the
Decision Tree algorithm. (Color figure online)

5 Conclusions and Future Works

This study focused on the detection of driver’s drowsiness based on BVP and SC
physiological variations, recorded through a wrist-worn device during a simulated
overnight driving session. In particular, the authors attempted to classify the
alert status from the drowsy one, by testing three ML algorithms. Since BVP
and SC signals are linked to ANS activity, 32 features were extracted from cited
physiological signals. They were segmented in time windows of 15 s, 30 s, 45 s,
and 60 s with an overlap interval equal to 50% of the considered window length.
Although the dataset is limited, it covers a wide range of ages (28–60 years) and
it is also gender-balanced since drivers are 4 males and 5 females. Table 2 and
Fig. 4 prove that the drowsiness detection capability of the tested classifiers is not
affected by the choice of the window length used for data segmentation. In fact,
using a shorter window length value instead of a longer one does not change
significantly the attainable accuracy. For two classifiers out of three (namely,
Decision Tree and SVM), increasing the window length slightly improves the
classification accuracy: this could support the idea that drowsiness onset is a
slow process, better detected on a longer observation time. In the end, we can
say the obtained results demonstrate the possibility to detect drivers’ drowsiness
reliably.
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In future works, we will perform driving tests on a larger number of drivers
with the purpose to involve drivers in the age range between 18 and 28 years,
as well as in the range of 60–80 years age. This way, we will test a population
including almost all the ages for which a driving license is allowed. We will study
ML performance considering larger windows for data segmentation (i.e. 1 min,
2 min, 5 min) to investigate the rapidity of drowsiness level variation. Also, we
will investigate the effects of features normalization on the classifiers to find
the best data processing approach for drivers’ drowsiness detection. Based on
these studies, we will develop a custom algorithm to further improve detection
accuracy.
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