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Preface

We are delighted to introduce the proceedings of the ninth edition of the 2022 European
Alliance for Innovation (EAI) International Conference on IoT Technologies for Health-
Care (HealthyIoT). Traditionally, this conference covers multiple aspects of using IoT
in healthcare and brings together technology experts, researchers, industry experts and
international authorities contributing towards the design, development, and deployment
of healthcare solutions based on IoT technologies, standards, and procedures. This year
the emphasis was on using IoT in healthcare for societal benefit – towards improved
health and wellbeing for everyone.

The technical program of HealthyIoT 2022 consisted of 11 full papers, in oral pre-
sentation sessions at the conference, and 2 invited papers. The oral sessions included
high-quality technical presentations of the papers submitted to the HealthyIoT 2022
tracks, i.e. a Main Track, and an Invited Track. Accepted papers were presented in two
sessions, namely “Analysis of Measurement Data in IoT Technologies for Health”, and
“IoT Applications in Research and Clinical Practice”.

Coordination with the steering chairs, Imrich Chlamtac, Ivan Miguel Serrano Pires
andAleksandar Jevremovic, was essential for the success of the conference.We sincerely
appreciate their constant support and guidance. It was also a great pleasure to work
with such an excellent organizing committee team for their hard work in organizing
and supporting the conference. In particular, the Technical Program Committee, led
by our TPC Co-Chairs, Grazia Iadarola, Alessia Paglialonga and Federico Tramarin,
who coordinated and contributed to the peer-review process of technical papers, and
made a high-quality technical program.We are also grateful to the ConferenceManager,
Kristina Havlickova, for her support, and to all the authors who submitted their papers
to the HealthyIoT 2022 conference, sharing their knowledge, experience, and genuine
enthusiasm.

We strongly believe that the HealthyIoT conference provides a good forum for all
researcher, developers, and practitioners to discuss scientific and technical aspects that
are relevant to IoT technologies for healthcare. We also expect that future HealthyIoT
conferences will be as successful and stimulating, as indicated by the contributions
presented in this volume.

Susanna Spinsante
Grazia Iadarola

Alessia Paglialonga
Federico Tramarin
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Automatic Wardrobe for Blind People

Luís Silva1, Daniel Rocha2,3, Vítor Carvalho2,3(B), João Sena Esteves2,
and Filomena Soares2

1 School of Engineering, University of Minho, Campus of Azurém, Guimarães, Portugal
a84100@alunos.uminho.pt

2 Centro Algoritmi, University of Minho, Campus of Azurém, Guimarães, Portugal
id8057@alunos.uminho.pt, vcarvalho@ipca.pt, {sena,

fsoares}@dei.uminho.pt
3 2Ai, School of Technology, Campus of IPCA, Barcelos, Portugal

Abstract. In the last years, the integration of handicapped individuals in soci-
ety has gained significant attention and is being strongly stimulated by several
activities. In this context, technology has major importance. Several technolog-
ical solutions that help handicapped people in their daily routine, allowing their
integration into society, have emerged. However, besides all efforts that have been
made, still exist some challenges related to specific basic tasks in blind people’s
daily routines. Namely, the management and identification of personal garments
could become a complex and time-consuming task. For this specific task, these
people depend on their relatives for choosing the exact clothes desired. In this
way, and based on the problems presented, this paper proposes the development
of an automatic wardrobe capable to assist blind people. This proposal is inte-
grated in a work under development of a prototype of a mechatronic system for
the choice and management of garments. The proposed solution seeks to provide
an improvement in the quality of life of blind people.

Keywords: Blind People · Automatic Wardrobe · Garments

1 Introduction

Over the last years, there has been an effort to develop technologies that provide handi-
capped people access to information and knowledge. In the specific case of blind people,
there are plenty of technological solutions that help in activities of daily routine. How-
ever, there are several challenges related to daily basic tasks, especially in the choice of
personal garments. These individuals cannot choose autonomously the desired clothing
and, consequently, the identification of features on clothing becomes a slow and diffi-
cult task. This paper presents an automatic wardrobe that allows an improvement in the
quality of life and well-being of blind people. The main goal of the work under devel-
opment is the design, development, and validation in ACAPO (Portuguese Association
of Blind and Amblyope People) of a prototype of a mechatronic system for the choice
and management of garments that includes the automatic wardrobe. In the future, this

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2023
Published by Springer Nature Switzerland AG 2023. All Rights Reserved
S. Spinsante et al. (Eds.): HealthyIoT 2022, LNICST 456, pp. 3–13, 2023.
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4 L. Silva et al.

physical system will be integrated with a mobile application for iOS that is part of the
system MyEyes [1–3] and will allow a virtual wardrobe replication in the smartphone,
making management easier and intuitive.

This paper has seven sections.After the introduction given inSect. 1, Sect. 2 describes
the state of the art; Sect. 3 presents the systemoverview; the hardware architecture and the
software architecture are presented in Sect. 4 and Sect. 5, respectively; the preliminary
results are presented in Sect. 6; Sect. 7 presents the conclusions and some ideas regarding
future work.

2 Previous Work

The literature review shows that there are several solutions to help people in the choice of
personal garments. These solutions are based on virtual wardrobes, a conceptwith a great
increase in the last years. It is important to know the consumer’s attitudes about this new
approach. In [4], Perry et al. present a study that focuses on consumers’ acceptance of
smart virtual wardrobes. The results show that there is a great acceptance of the concept
of smart wardrobes. The utility and ease of use are key factors for the choice.

A survey carried out encompassing all the delegations of ACAPO (Portuguese Asso-
ciation of Blind and Amblyope People) allowed the identification of several problems
regarding garments identification by blind people [5]. The main goal of the survey was
to recognize both the importance of garment identification and several technological
solutions existing for this specific community. It was possible to identify that there are
several solutions, but they do not focus on the aesthetic aspect of managing garments.
MyEyes, presented in [1–3] was developed to overcome this gap. The solution is based
on a system that integrates a mobile application with an Arduino board allowing users
to have a virtual wardrobe with their garments. Near Field Communication (NFC) tags
attached to the garments allow the addition of clothing items to the virtual wardrobe. A
general overview of a possible prototype implementation for this solution was presented
in [6].

In [7] is presented a solution to help blind people match garments. The system
integrates NFC technology with a smartphone, allowing visually impaired people to
choose the desired clothes. The solution presented in [8] explores NFC technology
combined with Quick Response (QR) technology with the main goal of developing a
clothing matching system with audio description.

Solutions whose main target is people without any or partial visual disability are in
a crescent rising with more implementations emerging. Goh et al. [9] propose a system
that integrates tags with Radio Frequency Identification (RFID) technology, allowing
unique identification of clothing items. The system is based on RFID tag reading and
the user obtains the features data that were saved on each tag. This system is controlled
by an application that allows garment management and suggests clothing items based
on several criteria, such as style, color, material, and user’s mood. Due to the increasing
demand for implementations that aid in garments management, some fashion brands
present different solutions developed to help people plan what to wear. In 2017, Amazon
presented the Echo Look [10] based on a kit with a camera that allows garments photo
capture and cataloguing of outfits. This method also suggests combinations based on
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meteorology and users’ preferences. The mobile application Fashion API [11] is a closet
that planswhat to purchase and adds garments basedonQRcode reading.Anothermobile
application is the Smart Closet [12], which plans combinations to wear and allows the
addition of clothing items based on photo capture. TailorTags [13] is a system that uses
smart tags to detect garments automatically. Also suggests combinations based on users’
preferences or meteorology. Table 1 summarizes the advantages and limitations of the
systems previously described.

Table 1. Advantages and limitations of several smart wardrobe solutions.

Solutions Advantages Limitations

MyEyes [1–3] Manage garments based on
RFID tags reading

Does not implement artificial
intelligence algorithms

“An IoT smart clothing system
for the visually impaired using
NFC technology” [7]

Manage garments based on
NFC technology

Does not integrate a physical
prototype

“My best shirt with the right
pants: improving the outfits of
visually impaired people with
QR codes and NFC tags” [8]

Manage garments based on
the combination of NFC and
QR technology

Does not implement artificial
intelligence algorithms

“Developing a smart wardrobe
system” [9]

Adds clothing items to the
wardrobe based on RFID
tags reading

Does not implement artificial
intelligence algorithms

Echo Look [10] Suggests advice based on
weather and personal trend

Photo capture at an ideal
distance could be a problem

Fashion API [11] Adds clothing items to the
virtual wardrobe based on
QR code reading

Only integrates a mobile
application

Smart Closet [12] Adds clothing items to the
virtual wardrobe based on
photo capture

Does not implement artificial
intelligence algorithms

TailorTags [13] Adds clothing items to the
virtual wardrobe based on
wireless tags detection

Only integrates a mobile
application

Besides all efforts to develop systems to help blind people, except for solutions
presented in [1–3, 7], and [8], the systems in Table 1 focus on solutions that help blind
people. So, based on the gaps and limitations of the solutions presented in Table 1, an
automatic wardrobe capable of improving the quality of life of blind people is presented
in this paper.
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3 System Overview

The developed system has two main parts: the physical prototype and the system soft-
ware. The system integrates an NFC reader whose responsibility is to read the tags
attached to each garment. The circular movement of garments is the responsibility of
a stepper motor screwed to the wardrobe’s roof. In each hanger is included a servo
motor that allows a 180 degrees rotation when the photo capture takes place. This rota-
tion allows the capture of a front and a back photo. On photo capture, on each capture
moment, two photos are taken (a top and a bottom) and submitted to a stitching algo-
rithm. This system is based on a Raspberry Pi 4, which is responsible for data processing
and sending the data to the user when requested. Regarding to lightning, the wardrobe
contains an inside illumination to evidence garments features and eliminate any kind of
reflection with the main goal of providing a controlled system for garment photo capture
allowing the avoidance of dark fields and shadows (Fig. 1).

Fig. 1. System overview

4 Hardware Architecture

The system encompasses four phases: NFC reading, photo capturing, hanger rotating,
and circular movement. The NFCmodule reads the tags attached to each garment allow-
ing the obtainment of the UID code associated with each tag. The photo capture is the
responsibility of a vision system with one camera. Due to the impossibility of capturing
the full of view of a garment with only one shoot, a small servo motor is connected to the
camera to rotate 180 degrees allowing two positions on photo capture.With this solution,
a top photo and a bottom photo are taken and submitted to a stitching algorithm that
joins the photos, originating a complete garment photo. In each hanger, there is attached
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a servo motor providing a 180 degrees rotation which allows the capture of a front and a
back photo. Regarding the circular movement inside the wardrobe, a stepper motor was
screwed to the roof whose shaft had connected to a circular platform where the servo
motors attached to the hangers were connected.

4.1 Illumination

Illumination is a key factor in photo capture.Thegarments shouldbe illuminated avoiding
any dark fields so, the colour should be white and diffused. The type of illumination
chosenwas aLEDstrip that allowsgreat flexibility for a lowprice. This strip is constituted
by hundreds of LEDs that emit light with a temperature of about 6000K being located
on the wall where the cameras are allowing a higher focus on each garment.

4.2 Prototype Design

The goal of the project presented in this paper is to develop an automatic wardrobe able
to improve the quality of life and well-being of blind people. For this proof of concept,
it was considered a small wardrobe from IKEA [14] with the following dimensions:
50x30x80 cm.

As mentioned before, on the wardrobe roof, there is a stepper motor responsible for
the circular movement. A circular platform is coupled to the motor shaft that supports
the weight of all servo motors attached to each hanger. The servo motors responsible
for a 180 degrees rotation of each garment are attached to the circular platform inferior
surface. The NFC reader is screwed to a side wall to allow the collision and detection of
User Identification (UID) associated with each tag. The camera is connected to a small
servo responsible for a 180 degrees rotation allowing the capture of two photos (Fig. 2).

The microcontroller used as a base for the system implementation was the Raspberry
Pi 3B + board, which is used in complex projects, offering great versatility for a low
price. The 40 pins on board can be used for several functions, such as Inter-Integrated
Circuit (I2C), Serial Peripheral Interface (SPI), and Universal Asynchronous Receiver-
Transmitter (UART) communication. This minicomputer has 1GB of RAM and has
inserted a Secure Digital (SD) Card with 16GB of storage that allows the installation
of the Raspbian Operative System. For the tags reading was used a PN532 module that
communicates via NFC. This module allows I2C, SPI, and UART connection to the
Raspberry Pi board and can detect tags up to 4 cm of distance.

Two types of actuators were used: servo motors and a stepper motor. Each servo
motor was connected to the hangers to warrant a 180 degrees rotation of each garment
when the photo capture takes place. A small servo was connected to the camera to allow
two positions on photo capture. The stepper motor was screwed to the roof allowing
garments movement inside the wardrobe. This stepper is connected to ULN2003 driver
that controls the motor rotation.

For the photo capture, it was used one OV5647 camera. This module integrates the
camera with a small board responsible for the connection to the BCM2835 processor
via Channel State Information (CSI) communication. The camera has 5MP and delivers
images with a resolution up to 2592 x 1944. This module is connected to the Raspberry
Pi over the Channel State Information (CSI) bus.
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Fig. 2. Hardware overview

5 Software Architecture

A control software was developed in order to test and validate the wardrobe automatism.
The state machine presented in Fig. 3 describes the functioning of the system, which
has six states: READY, STEPPER, DETECTION, CAPTURE, SERVO, and STITCH.
When the user requests a garment, the initial state READY is changed to STEPPER. In
this state, the stepper motor that controls the garments movement inside the wardrobe is
triggered and moves until the tag with the requested UID is detected and stops. The state
changes toDETECTION and theUID tag is displayed. Then, the system changes its state
to CAPTURE, and a top and bottom front photos of the garment are taken. The system
state changes to SERVO and the servo motor is triggered, performing a 180 degrees
rotation. After this rotation, the system returns to CAPTURE state, and a top and bottom
back photos are taken. The system then changes to the STITCH state, where a stitching
algorithm combines the photos. The stitching algorithm allows solving a problem related
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to the impossibility of capturing the total full of view of each garment with only one
camera shoot. So, this algorithm, which is part of the OpenCV library, combines images
based on keypoint detection and overlaps common points on each picture.

Fig. 3. System State machine

6 Preliminary Results

Some preliminary results allow the validation of the different modules previously pre-
sented. The automatisms responsible for themovement are already developed and imple-
mented. The steppermotor has a circular platform connected to the shaft and is connected
to ULN2003 which is a driver that controls the motor rotation. This is a module that
integrates the motor and the driver on the same board. The circular platform is where
the servo motors, responsible for each hanger, are connected. Each motor has a hanger
connected to the shaft to warrant the rotation on the photo capture. The control software
developed allows the test and validation of the wardrobe automatism, i.e., the integration
between the hardware and the software. The flowchart presented in Fig. 4 describes the
flow of the automatism implemented.

The system flow starts with the stepper motor being triggered until the tag detection.
When the requested tag is detected, a top and a bottom front photos are taken, and the
servo motor rotates 180 degrees in order to a top and bottom back photos be captured.
Next, the photos are submitted to a stitching algorithmoriginating two photos (a front and
a back). This stitching algorithm was implemented to solve a gap related to the garment
photo full of view. As can be seen in Fig. 5, this method was capable of effectively
detecting several common points in each photo and matching them in the final photo.

The developed automatic wardrobe has the main capability of guaranteeing a con-
trolled system on photo capture avoiding dark fields and shadows. A garment was tested
on the automatic wardrobe to show the accuracy of the controlled system on photo
capture. Figures 6a) and 6b) show that in capture outside the controlled system is not
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Fig. 4. System Flowchart
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(a) (b)

(c)
Fig. 5. a) Garment Top photo Algorithm Test. b) – Garment Bottom photo Algorithm Test. c) –
Garment Complete Photo

guaranteed a photo without shadows or dark fields. On the contrary, inside the automatic
wardrobe, the photo is taken, and the illumination evidences the garment features and
eliminates any kind of reflection (Fig. 6c).

Comparing the proposed system with the solutions described in Sect. 2, only in [9]
is presented a physical system. However, that system has only the capability of storing
the garments, contrasting with the system proposed in this paper, that is capable of
not only storing the garments but also capturing garments photos inside the physical
system, as well as integrating an automatism that guarantees the pieces movement when
requested by the user. The other solutions mainly focus on management apps with
wireless technology. This feature is also present in the system proposed in this paper,
which uses NFC communication by attaching a tag to each garment in order to ease the
addition and removal of pieces.
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(a) (b) (c)
Fig. 6. a) Garment photo taken outside the con-trolled system (Day). b) Garment photo taken
outside the con-trolled system (Night). c) Garment photo taken inside auto-matic wardrobe

7 Conclusions and Future Work

In this paper the general overview of an automatic wardrobe for aiding blind people was
presented. The hardware that controls the system was already implemented and tested.
The next step is the connection with a mobile application with an implementation of a
server in Raspberry Pi to manage the requests from the users. With this integration, a
background removal and a color detection algorithm will be implemented. These meth-
ods will be part of the image processing techniques that will be applied to the garments
photos captured by the physical prototype camera or by the smartphone camera. These
algorithms will help classifying the type of garments and identifying the predominant
colours of each piece. These approaches will be implemented on the mobile application,
limiting the Raspberry Pi to the implementation of the stitching algorithm.

As this project is a proof of concept, the system presents some limitations, such as
the wardrobe small size. This hindrance allows only the use of small garments and a
reduced number of clothing items inside at the same time. After testing the system with
the small wardrobe, the goal is to validate the complete system with a higher wardrobe
capable of allocating larger garments.

Based on the automatic wardrobe developed and the integration with the mobile
application MyEyes, the final mechatronic system will propose a concept of wardrobe
which allows an improvement of blind people’s daily routine, specifically in garments
identification and management.
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Abstract. In this paper, an overview of the smartphonemeasurement methods for
Heart Rate (HR) and Heart Rate Variability (HRV) is presented. HR and HRV are
important vital signs to be evaluated and monitored especially in a sudden heart
crisis and in the case of COVID-19. Unlike other specific medical devices, the
smartphone can always be present with a person, and it is equipped with sensors
that can be used to estimate or acquire such vital signs. Furthermore, their com-
putation and connection capabilities make them suitable for Internet of Things
applications. Although in the literature many interesting solutions for evaluating
HR and HRV are proposed, often a lack in the analysis of the measurement uncer-
tainty, the description of the measurement procedure for their validation, and the
use of a common gold standard for testing all of them is highlighted. The lack
of standardization in experimental protocol, processing methodology, and valida-
tion procedures, impacts the comparability of results and their general validity.
To stimulate the research activities to fill this gap, the paper gives an analysis of
the most recent literature together with a logical classification of the measurement
methods by highlighting their main advantages and disadvantages from a metro-
logical point of view together with the description of the measurement methods
and instruments proposed by authors for their validation.

Keywords: Heart Rate · Heart Rate Variability ·Measurements · Smartphone ·
Evaluation · Internet of Things (IoT) · Internet of Medical Things (IoMT)

1 Introduction

Heart rate (HR) and heart rate variability (HRV) are important factors for indicating
overall health and fitness. In fact, it depends on several physiological and psychological
conditions and varies with the variation of this condition. Moreover, they are one of the
main parameters to be monitored in the case of COVID-19 [1]. These parameters are
usually measured by medically trained staff, but in some specific situations such as for
people suffering from tachycardia or bradycardia, continuous monitoring is important.
In fact, by defining “tachycardia” as the consistently high resting HR over 100 bpm,
this disease is correlated with increased risk for cardiovascular diseases, and it can
even be a sign of an underlying heart condition as explained by Dr. Bindu Chebrolu,
a cardiologist at Houston Methodist [2]. Increased HR at rest may result in increased
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work by the heart, as well as indicating an issue with other physiological pathways. If
the HR is closer to 150 bpm or higher, this may be indicative of a condition such as
Supraventricular Tachycardia (SVT) requiring medical attention.

A resting heart rate below 60 bpm is considered “bradycardia”, but maybe common,
particularly in individuals with good cardiovascular fitness or individuals taking certain
medications. But sometimes bradycardia can be caused by damage to heart tissues from
heart disease or heart attack or inflammatory diseases, such as rheumatic fever or lupus,
and can be dangerous [3].

Several portable commercial devices are available in the market for continuous mon-
itoring of HR, such as an oximeter, smartwatch, and smart bracelet. These devices
are nowadays smart objects often included on the Internet of Medical Things (IoMT)-
based biomedicalmeasurement systems for healthcaremonitoring [4]. However, they are
adjunctive hardware tomanage and carry on. Instead, a device that anyone has always had
on himself/herself is the smartphone, and in [5] the authors have proposed an overview
of possible applications of smartphones to measure health parameters including blood
oxygenation [6] or blood pressure [7].

With the aim to stimulate scientific research, in this paper, we present an overview of
themost recent work presented in the literature proposingmethods to use the smartphone
for measuring HR. Indeed, 83.40% of the world’s population owns a smartphone [8].

The main HRmeasurement can be classified into two categories as shown in (Fig. 1),
which are contact and contactless measurements.

Fig. 1. A classification of measurement methods for heart rate evaluation by smartphone.

Contact measurements are mainly based on the acquisition of the photoplethysmog-
raphy signal (PPG) or acceleration signal. Contactless measurements are based on the
acquisition of a remote PPG signal. In particular, the PPG signal is analysed by time or
frequency domain methods, and an automatic classifier. Each method offers advantages
and disadvantages, especially concerning measurement accuracy. The critical overview
of this method is presented by highlighting the main causes of accuracy degradation and
the magnitude of factors influencing the HR measurement.

The paper is organized as follows. In Sect. 2 the measurement method based on con-
tact measurements is presented. In Sect. 3 the measurement method based on contactless
measurements is analysed. Finally, some conclusions.
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2 Contact-Based Measurement Methods

In contact methods acceleration signals and PPG signals are used to evaluate the HR.
Concerning the first kind of signal, Khairuddin et al. propose a methodology to

measure HR and HRV by smartphone depending on the acceleration sensor embedded
in a smartphone [9]. The smartphone is placed on the user’s chest near the heart and
acquires the z-axis signal of the accelerometer. The user must wear light clothing and
must be in a supine body position as shown in (Fig. 2).

Fig. 2. Measurement condition for the accelerometric method proposed in [9]

After the acquisition, the signal needs to be filtered to remove the noise and make
easier the identification of the peak (Fig. 3).

Although we preferred to use the same terminology as that in the seminal work [9],
it is worth noting that in other literature works such as in [10] thesis signals are named
seismocardiograms and ballistocardiograms.

The Authors use the moving mean differences method to find the peak value in the
signal [11, 12]. From the signal the HR is evaluated by using Eq. (1) and the HRV by
monitoring the heartbeat interval RR evaluated by Eq. (2).

HR = number of heartbeat × 60

time taken[s] (1)

RRn = tHBn − tHBn−1 (2)

where the tHBn is the time of the nth times of the peak of the heartbeat (R-wave).
The HRV is calculated by computing the standard deviation of RR by using Eq. (3).

HRV =
√
√
√
√

1

N

N−1
∑

n=0

(RRn − RRn)
2

(3)

The method is experimentally tested by the Authors in 3 experiments on 3 young
healthy male students. The age of the students is in the range of 22–25 years old.
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Fig. 3. Acceleration signal with peak value (R-wave)

They compared the results from their proposed method with the result taken by
electrocardiogram (ECG).

The experimental results show a maximum difference between the smartphone
results and the one achieved with the ECG device equal to 1 bpm. The maximum
difference between the HRV evaluated with their proposal and the ECG device is 4 ms.

Dspite these results, the number of experiments is not sufficient to provide a valid
statistic. Moreover, the young age of the participants does not allow to test the proposal
in the case of heart diseases, tachycardia, bradycardia, or stiffness of the cardiovascular
system (typical for elderly people).

As a concern, the measurement method itself, tight or thick clothes can attenuate the
accelerometric signal decreasing the (Signal to Noise Ratio) SNR and the measurement
accuracy. The method can be ameliorated by a pre-analysis of the acquired signal for
evaluating the SNR and checking whether it is suitable for successive steps. Further
causes that can misstate the measurement and increase the uncertainty are related to
signal artifacts due to movements. Techniques based on automatic classification can be
applied to recognize this case and give an alarm about the reliability of themeasurements.

Sukaphat et al. [13] propose amethodology tomeasureHR from the PPG acquired by
using the smartphone camera to catch the light emitted by the (Light-emitting diode)LED
flash and reflected by the blood in the fingertip. The method was previously proposed
by Lamonaca and all in [14].

The fingertip is preliminarily positioned on the smartphone camera to capture the
frame’s image. Successively, the colour in the captured frame is converted from YUV
to RGB format and the PPG value is achieved as the mean value of the red channel.
It should be noted that the proposed method considered the correct placement of the
finger by using the measurement method proposed by Lamonaca et al. [15]. The HR is
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evaluated by analysing the PPG signal in the frequency domain, i.e., by detecting the
frequency with maximum amplitude. The block scheme of the algorithm proposed in
[12] is shown in (Fig. 4).

Fig. 4. Flowchart of the algorithm proposed in [12].

The proposed method was tested by 10 people both male and female aged between
20 to 22 years old and with weights between (42 to 88) kg. The results of the proposed
method and the results taken from the digital blood pressure were different on average by
0.57%. Furthermore, the p-value for students t-test value is 0.237 that which is greater
than the chosen alpha value equal to 0.05. So, the null hypothesis that the heart rate
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measured by the method proposed by the Authors has the same meaning as the ones
achieved by using the gold standard with a trust of 95% can be accepted.

Despite this result, it must be highlighted that the number and the typology of people
used in the experiments are not sufficient to evaluate a valid statistic. They did not include
old people and people with heart problems or bradycardia and tachycardia, as clearly
shown in the experimental results (always in the range (60; 100) bpm, except for one case
with the subject with an HR equal to 56 bpm that can be normal for a sportive healthy
young subject). Moreover, they should declare how they acquire the data since the cuff
for the blood pressure monitor can alter the PPG signal [14]. Finally, the synchronization
of the PPG acquisition with the blood pressure monitor is not considered.

Also, Devaki et al. [16] suggested a system to measure the heart rate by using PPG
using the mobile phone as a data acquisition device by using the camera and LED flash.

The methodology preliminarily records the video for the fingertip by the camera for
30 s then sends the data to MATLAB to process it. The main steps of the recorded video
are:

(i) finding the mean values of the red channel of each frame,
(ii) collect all the values achieving the PPG signal,
(iii) filtering the obtained signal by using bandpass 8th order Butterworth filter in the

frequencies (0.8, 7.0) Hz,
(iv) evaluating the Power Spectral Density (PSD),
(v) find the frequency with the maximum amplitude as HR.

The Authors compared their results with the results measured by using a pulse
oximeter. The p-value for students t-test value is 0.6 which shows that the readings from
the pulse oximeter and smartphone are similar to those values measured for normal and
hypertensive patients. Despite this result, the Authors did not give enough information
about their experiments, for example, age, sex, and amore comprehensive analysis of the
error they achieve, when and why they achieve the maximum error should be interesting.
For example, in the case of a normal subject, an error of 8 bpm occurs for an HR equal
to 60, which should represent a good case. An error equal to 23 bpm is shown for HR
equal to 105, in the case of the Hypertensive subject. Finally, also in this case 10 healthy
patients and 10 hypertensive patients seem to be a small sample.

Sabatini et al. also propose a methodology to measure HR and HRV by smartphone
depending on the PPG [17].With respect to the previousmethod, they use a second-order
Butterworth high-pass filter with a cut-off frequency of 0.5 Hz. A further difference is
a method for detecting the peak value of the PPG in the time domain based on the Pan-
Tompkins algorithm. TheHR is the average value of the peak-to-peak distances recorded
in 30 s divided by 60.

To evaluate this method the Authors compared it with the results achieved by the
Apple watch and used r2 statistics to achieve information about the goodness of the
linear interpolation of the points having as x value the apple watch measurement and y
value their method measurement results. It is interesting to note that the Authors present
a study showing the influence of the colour channel on the PPG signal, and also in this
case red and green channel seems more suitable with respect to the blue one concerning
the SNR. Moreover, the Authors highlighted the problem introduced by movement and
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bad positioning of the finger on the camera. However, in this case, only 8 subjects were
used with no information about their health conditions.

Ayesha et al. suggested a system to measure the HR by using PPG acquired by
a smartphone camera and elaborate on this signal by using a Convolutional Neural
Network (CNN) [18]. In this case, after acquiring the video of the fingertip with the
smartphone camera, the average value of each frame channel is detected, and three
signals are achieved. Then, the signals are filtered to increase their SNR and a detrending
filter is applied to remove the stationary components. Then the signals are normalized
by dividing them by their maximum absolute values. The next step is the enhancement
by applying a (3x3) kernel moving average filter. Principal Component Analysis was
applied tomap the source signal into eigenvectors. The first eigenvector is the component
with the highest variance, and therefore it was chosen as the PPG signal and a bandpass
filter was used to attenuate frequencies outside the range of (0.4, 4.0) Hz that corresponds
to (20, 240) bpm. This latter signal is used as input to the CNN. The network consists of
4 convolution layers with ReLU as an activation function and batch normalization and
a final fully connected regression layer. The output is the HR given in bpm as shown in
(Fig. 5).

Fig. 5. Neural Network Architecture proposed in [18].

The network was pre-trained using a publicly available PPG-BP dataset [19], con-
taining 657 PPG signal samples collected from 219 subjects by using a finger PPG
sensor, together with HR, systolic BP and diastolic BP recorded simultaneously. Using
the signal skewness metric, the poor signal samples were discarded [20]. Each sample
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contains 2100 data points. The sample was clipped to 1800 datapoints and segmented
into 3 subparts. Each subpart became an input to the network.

The network was trained for 15 epochs with an SGD optimizer and a learning rate
of 0.00001.

Theywere fine-tuned on a dataset consisting of 51 sampleswhere videos of fingertips
were recorded with the Redmi Note 8 smartphone camera. Data were collected from 24
participants, both male and female in the age group of 5 to 77 years. The Authors did
not declare, in this case, how they measure the reference values.

The evaluation of the model by using the test data (i.e., the dataset available in [19])
gives a Mean Absolute Error (MAE) of 7.01 bpm and an error percentage of 8.3%. This
value is comparable with the error achieved by other methods that do not use artificial
intelligence and so can be implemented in the smartphone probably more easily.

The dataset used in this paper is more significant with respect to the ones used
in the previously discussed paper both as concerning cardinality and heterogeneity.
Unfortunately, a deepdiscussion about the reason for some significant differencebetween
the estimated HR and the true value (more than 10 bpm in 4 cases, and the maximum
difference is 21 bpm) is not given. Further data that should be reported is the clinical
history of the people used to build the dataset.

3 Contactless Measurement Methods

Qiao et al. suggested a system to measure the (HR) and (HRV) by using PPG signal
extracted from the video of the person’s face. This technique is contactless, and it uses
the smartphone camera [21, 22].

The main idea is that part of the light is absorbed by the skin, and the rest is reflected.
The intensity of the reflected signal is proportional to the blood volume flowing through
the tissues. The evaluation of the blood volume over in time is the PPG. The workflow
for this method is shown in (Fig. 6) it consists of five stages. The first stage is to detect the
Region of Interest (ROI). It is in the face near the nose because it is full of blood vessels,
and it is not affected by nose shape and eye movement. The next stage is to acquire the
PPG signal correlated with each color for each frame and calculated the average, from
(Fig. 6) the green color has the highest value, so the proposed method deals just with
the green color. The third stage is signal processing, to remove noise due to movement
and handshaking artifacts. In the fourth stage, the peak detection algorithm is applied to
calculate the HRV as the temporal difference between two peak occurrences.

In the last stage, the Power Spectral Density (PSD) is applied to the signal to estimate
the HR.

To calculate the HR, a band pass filter with cutting frequency of (2.0, 5.0) Hz is
applied to the PPG then the PSD is evaluated by usingWelch’s method [23], and the HR
is computed by using the Eq. (4). It is evaluated in pulse per minute (ppm)

HR = 60× fHR (4)
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Fig. 6. Overall workflow. (a) Detect face and extract RoI. (b) Calculate the mean of separate
channels in every frame and extract the raw BVP signal (g(n)). (c) Process the raw BVP signal
withmultiple filters to get thefinalBVP. (d)Detect the peaks of theBVPsignal forHRVcalculation.
(e) Calculate the PSD of BVP in frequency domain for HR calculation [21]. In the pictures, the
amplitude values come from pixel intensity. The frequency is in Hz.

The HRV is calculated by finding the interval heartbeats IBIn = tn − tn−1 where
tn is the time of the nth detected peak. So HRV is calculated by finding the Root Mean
Square of Successive IBI Differences [24] as shown in Eq. (5).

HRV =
√
√
√
√

1

N − 1

N−1
∑

i=1

(IBI i − IBI i+1)
2 (5)

where N is the number of frames.
To evaluate the method, the Authors used a publicly available dataset named “Toky-

oTech Remote PPG Dataset” [25] consisting of 9 people (8 male and 1 female) for each
one of them 3 videos were acquired for testing three situations: relax, exercise, and relax.
The video length is 1 min. The proposed method is characterized by MAE equal to 1.49
± 2.20 bpm for HR and 24.33 ± 28.66 ms for HRV.

Although the cardinality of the testbed seems not too big, and a lack of information
about the health status of people is evident, the method shows potentiality for a reliable
HRevaluation, and this is important especially in pandemic times. Indeed, the contactless
method reduces the risk of contact between the operator and the subject and reduces the
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time and costs to sanitize the smartphone at each measurement. Experimental results
suggest also that possible research should be devoted to ameliorating theHRV evaluation
since the variability of the error is comparable with the error itself, which is more than
20% of the measurement.

4 Conclusions

Smartphone are a pervasive tool, i.e., typically anyone has at least one of them always
with him/her, also during the night. Thanks to embedded sensors, to their computational
capability, and connectivity, the smartphone can be considered a powerful device able
to acquire biological signals, evaluate vital signs, and transmit them in the cloud for the
online monitoring of patients by clinicians or for self-monitoring.

Heart Rate (HR) and Hearth Rate Variability (HRV) are important vital signs to be
monitored in sudden heart crises, stress, and in the case of COVID-19.

Since, unlike other specific medical devices, the smartphone can always be present
with a person, this paper the potentiality of the smartphone as a measurement instrument
to evaluate HR and HRV without using other adjunctive hardware is investigated.

The overview has highlighted both contact and contactless method to evaluate the
HR and HRV. The acquired signals are the PPG acquired by using the camera and the
acceleration signal acquired using the accelerometer. The processing methods is based
on elaboration in the time domain and frequency domain or by using a Neural Network.

Despite all these research efforts holding a high potential, from this investigation, it
was highlighted that a lack of standardization in the experimental protocol, such as how
to choose the best location of the smartphone on the body, how to filter and analyze the
signal, and how to report the comparison of the results with an accepted gold standard
technique, could limit clinical acceptability and prevent recommending this approach
as a self-tracking tool, as patient-obtained data quality could be prejudiced. A further
main weakness of the research is represented by the fact that reported results are often
derived from the observations of few subjects with normal HR and HRV, thus limiting
their validity. Also, a lack of knowledge of the technical characteristics of the embedded
sensors or of the smartphone itself could impact the evaluation of the HR and HRV
measurement uncertainty.

These limitations could be a starting point for future research lines focused to define
common test methodologies, gold standards, nomenclature, in order to give a common
metrological basis for the comparison of the results achieved with the many meth-
ods nowadays available and transforming the common smartphone into a device able
to acquire in a simple and non-invasive way, without using any additional hardware,
physiological signals and reliable and validated clinical parameters.
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Abstract. This paper presents the current state of anongoingproject for the imple-
mentation of a low-cost bionic hand controller. Research had been conducted to
evaluate the possibility of usingMechanoMyoGraphic signals (MMG) as an alter-
native to ElectroMyoGraphic signals (EMG) that are usually acquired. Moreover
the application of two novel and low-cost electrodes, one built from a conductive
leather material, and another based on desktop 3D printing using conductive PLA
(PolyLactic Acid), as an alternative to traditional pre-gelled Ag/AgCl electrodes
was also evaluated. In addition to the search for the optimization of the quality
of acquired signals, a solution for the control of the bionic hand had also been
implemented using a very low-cost microcontroller (Arduino UNO). Results will
be briefly presented from these works already carried out. A particular emphasis
should be given to the success rate attained of 100% on detecting three out of
four gestures selected, when using this very low-cost hardware platform. How-
ever false activations were a weakness of this solution. In order to optimize bionic
hand control, the simultaneous application of three types of sensors (EMG, force
and accelerometer) is ongoing. A description of this implementation as well as a
presentation of its preliminary results will also be made.

Keywords: Electromyography (EMG) ·Mechanomyography (MMG) · Bionic
hand · Biomedical sensors · Feature extraction

1 Introduction

The field of hand prostheses is under continuous evolution because of huge research
constantly being developed in order to improve the quality in the way they reproduce the
functionalities of the human hand, but also in the search for more economical solutions.
It is a typical area of biomedical engineering since, in addition to the knowledge of the
anatomy of the forearm and hand muscles as well as of the electromyographic signals
involved, it also encompasses the knowledge of physics, mathematics and engineering
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areas, which are demanded for the acquisition of signals and their processing. The
advancement of 3D printing technologies this will also be an important area for the
production of the low-cost prostheses itself.

Unlike myoelectric prostheses in which the opening and closing of the hand is made
without individualized control of each finger, the bionic hands have a controller that, by
collecting the myoelectric signal in one or more muscles, discriminates gestures through
feature extraction and with the help of machine learning techniques.

This work aims to address only one of the strands that contributes to the success of
bionic hands and that is the improvement of the quality of the acquired signal, with a
view to the implementation of a low-cost bionic hand.

In spite of the typical approach of using EMG signals, there are some drawbacks that
have led to the attempts of extracting other type of information, namely to predict muscle
forces from EMG signals using the wavelet transform [1]. One of these drawbacks is
the fact that EMG signals are often degraded due to electromagnetic interference and
implies a large amount of processing time for features extraction [2].

In contrast, the mechanical change of the muscles can be measured by a method with
sensitivity to the position /motion of a small area in surface of themuscle, and is typically
known as MMG (MechanoMyography). Different type of sensors had been used in sev-
eral studies reported in literature, since the application ofmicrophones and/or accelerom-
eters [3–6] through force sensors [2] or even light detectors, namely IR (InfraRed) sensors
[7, 8], in an individual manner or some of them together even with also EMG sensors
[9–12].

In this work, preliminary results of the application of MMG sensors, such as FSR
(Force Sensitive Resistor) and IR sensors with the BITalino (Plux Biosignals) platform
have already been obtained [13]. It has also been studied the possibility of applying
of its EMG sensor module with two novel and low-cost electrodes: one built from a
conductive leather material, and another based on desktop 3D printing using conductive
PLA (PolyLactic Acid), by comparison with pre-gelled Ag/AgCl electrodes, considered
as the reference electrode [14].

This paper will summarize these studies and their preliminary results. Firstly it is
presented the evaluation of the application ofMMGsensors as an alternative to traditional
EMG and then the evaluation of the application of new electrodes more economical and
reusable as an alternative to traditional pre-gelled Ag/AgCl. It will also feature the low-
cost platform based on Arduino Uno which was developed for bionic hand control,
using only EMG signals. For this implementation, an onset/offset design algorithm was
developed to meet the requirements of real-time control and the limitations of memory
space and processing speed of this low-cost microcontroller [15]. Finally, the platform
that is currently being implemented will be described. It is based on the integration of
MMG (FSR and accelerometer) and EMG sensors with the aim of optimizing the quality
of the acquired signal and thus the success rate of the bionic hand controller.

2 Study of Mechanomyographic Alternatives to EMG Sensors

A comparative study was made of the application of a FSR and a IR sensor with the
reference signal in the scope of this work, the EMG signal [13]. A summary of the main
specifications of these three sensors can be found in Table 1.
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Table 1. Main specifications of each sensor.

EMGModule specifications

Gain 1000

Range ± 1.65 mV

Bandwidth 10-400 Hz

FSR 400 Specifications

Force Sensitivity Range 0.110.0 N

Force Repeatability ± 2%

Number of actuations (life time) 10 million

QTR-1A Reflectance Sensor Specifications

Optimal Sensing Distance 3 mm

Maximum Sensing Distance 6 mm

The acquisition of the signals from each sensor is performed through the hardware
platform BITalino Plugged; its OpenSignals software enables real-time data acquisition
and recording in a CSV (Comma-Separated Values) format. These data is subsequently
used in MATLAB (MathWorks ®) for data processing and analysis.

Besides the BITalino EMG sensor it was then used a force sensor in order to react
to changes in the muscle volumes, for which an FSR 400 sensor (Interlink Electronics,
USA) was selected. A third sensor was used in this study to extract features related with
the variations in light reflected at the skin surface, as a result of the changes in muscle
volume due to the contraction. For the acquisition of this data, a QTR-1A reflectance
sensor (Pololu Corporation, USA) was used. It includes an IR LED (Light Emitting
Diode) and a phototransistor, and the output varies proportionally to the amount of light
reflected on a surface.

An extremely important issue for the acquisition of signals from any of these three
sensors,with a fair signal-to-noise ratio and appropriate sensitivity, is a correct placement
of the sensors. Photos of the placement of each of the three sensors are shown in Fig. 1.

For FSR and IR sensors, raw-data was used in spite of a variable baseline that
eventually could be corrected through the use of the derivative of these signals. The
EMG sensor is used in a bipolar differential front-end for a higher signal- to-noise ratio.
Firstly a bandpass filter was applied to raw-data with a frequency range of 20 to 500 Hz
[16]. It is important to cancel the powerline noise, so a bandreject filter is used for the
50–60 Hz range. Figure 2 shows an example of raw-data for each sensor.

For a more objective comparison between those signals, signal-to noise ratio (SNR)
which is a quite well established parameter, it was calculated through the ratio of peak-
to-peak values of signals from muscle activation periods and of noise from rest period.

Table 2 shows a summary of these SNR results as well as those achieved for
onset/offset detection rates and in Table 3 is presented the success rate in gesture
identification.
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Fig. 1. Photos of the sensors placement. Three EMG pre-gelled electrodes (a), FSR sensor with
velcro strap for fixation (b), and IR sensor mounted inside a 3D printed fixation support and velcro
strap for fixation (c).

Fig. 2. Example of raw data of each sensor in case of a gesture of close. EMG (a), FSR (b) and
IR sensor (c).

Table 2. Summary of SNR analysis and Onset/Offset recognition rates for each of three sensors.

Sensor Gesture SNR (dB) Onset/Offset Detection

Detected/Total (%)

EMG Open 4.5 54/54 100/

Close 2.1 70/72 97%

Point 2.2 23/39 59%

FSR Open 10.0 39/42 93%

Close 9.6 87/96 91%

IR Open 9.1 46/48 96%

Close 14.0 59/60 98%

For this study each sensor was placed individually and acquisitions were carried
out using similar timing parameters. The sampling data was collected from four healthy
subjects (2 men, 2 women). In each acquisition, the same gesture was made three times.
Each gesture lasts for approximately three seconds with similar rest time between them.
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Table 3. Percentage of success in gesture identification for each of three sensors.

Sensor Gesture Gesture Identification

False/True (%)

EMG Open 6/48 89%

Close 22/48 69%

Point 2/21 91%

FSR Open 0/39 100%

Close 13/74 85%

IR Open 0/46 100%

Close 0/59 100%

3 Electromyography with Novel Electrodes

A study was also made regarding the applicability of novel electrodes with the purpose
of reducing its cost [14]. So a conductive leather material was used to build a low-cost
electrode as well as conductive PolyLactic Acid (PLA) taking advantage of 3D printing.
These two electrodes are shown in Fig. 3.

The conductivity of a leather material may be in a range that is demanded for the
operation of touch-sensitive electronic devices without depending on a conductive path
to the human body. To change its conductivity electrically conductive metallic particles
can be incorporated which could allow its application for EMG electrodes.

PLA can be considered cost efficient to produce and it is biodegradable. Amongst
a wide set of PLA applications it is already well established its use for biodegradable
medical devices. PLA has also the property of melting easily so it is an obvious choice
for some interesting applications in 3D printing. In this case it is intended to replace
traditional EMG electrodes through its function with conductive properties.

Fig. 3. Two novel electrodes. Conductive leather (left) and PLA (right).

The acquisitions from15healthyyoung subjectswere carried out using similar timing
parameters. The sampling data is summarized in Table 4. Each acquisition contains in
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average a set of four same gestures executed for around three seconds each and separated
by a resting time of similar magnitude. For this study the first choice was to use six
different gestures (Open, Close, Point, Pinch, Flexion, Extension).

MATLAB tools were used to perform feature extraction. Amongst others that were
initially also considered, a set of six features were selected in order to be evaluated in
each muscle activation [17]: Maximum, Minimum, RMS, Mean; Standard deviation,
and Peak-to-Peak value. For gesture recognition it was necessary to find an appropriate
data science and machine learning platform that should use a dataset that comprises
the extracted features i.e. the values of those six features, calculated for each correctly
detected muscle activation. These whole data was evaluated in RapidMiner.

Table 4. Description of thewhole data acquired:Number of acquisitionfiles (AcqF) and ofmuscle
activations (MAct).

Sensor Gesture open close flexion1 extension1 pinch point

Electrodes AcqF MAct AcqF MAct AcqF MAct AcqF MAct AcqF MAct AcqF MAct

EMG Ag/AgCl 9 37 5 19 6 21 5 18 7 29 9 37

Leather 12 47 12 59 11 46 8 30 8 32 12 47

PLA 11 46 8 33 8 34 6 24 8 33 11 46

1Entire hand flexion/extension

In order to optimize the success of RapidMiner on gesture recognition it was impor-
tant to define the ratio of data used for training and data used for evaluating gesture
recognition. After some tests the dataset was splitted so that 70% of the whole data was
for that training with the purpose of learning how to use the combination of six extracted
features to achieve an higher success on the recognition of the six gestures. Consequently
the remaining 30% of the data was effectively applied on the prediction of the different
gestures. Also the different processing tools provided by RapidMiner were tested from
which two (Decision Tree and Neural Network) were used.

As mentioned the initial goal was to perform the gesture recognition for all the six
gestures. Unfortunately it was concluded that this amount of data collected from just one
sensor and always in the same muscle for all acquisitions was insufficient to succeed.
A less ambitious goal was then established that consisted on evaluating the accuracy on
the recognition of sets of two, three and four gestures.

Amongst several parameters that RapidMiner computes, accuracy was chosen for
this analysis. In fact accuracy is defined as the fraction of whole gestures that are cor-
rectly classified (TP + TN). In this manner it describes the overall effectiveness of the
classification process. In a more complete way it is given by the ratio of those whole
gestures that are correctly classified to the whole data (TP + FP + TN + FN). Figure 4
summarizes graphically those values of accuracy computed in RapidMiner, in order to
compare the overall accuracy computed for each sensor/electrode type as well as to
compare that accuracy for some gesture combinations.
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Fig. 4. Bar graphs showing a comparison of the accuracy in gesture recognition between electrode
types, for the whole results available (a) and for each gesture combination (b-d).

4 Bionic Hand Controller

The success on the control of a bionic hand depends heavily on success on the identifi-
cation of gestures. It is then essential to optimize onset/offset detection so that feature
extraction is also improved. On the other hand this control requires that, in real time,
onset/offset detection is made, as well as feature extraction and consequent identification
of gestures. To implement all these features in a microcontroller ATmega328 micropro-
cessor with 16 MHz clock speed and 32 kBytes of memory, an onset/offset detection
algorithm was adapted [15]. This controller uses only the EMG signal acquired with
pre-gelled Ag/AgCl electrodes. The BITalino EMG sensor was used to acquire these
signals. This BITalino platform was used for the simultaneous acquisition and visual-
ization of data in OpenSignals with the purpose of providing a mean for support on the
debug of the algorithm running in the Arduino UNO.

The evaluation of the success was carried out using a servo-driven bionic-hand con-
troller prototype, as shown in Fig. 5. Four different gestures were executed: Open, Close,
Point and Pinch. Each finger is controlled by a dedicatedMicro Servo SG90 (TowerPro).
Each gesture is accomplished by an adequate combination of finger activation.

Additional factorswere identified thatmay reduce detection success such as the noise
in the EMG signals coming from electromagnetic interference, namely that the different
rotation of the servomotors to carry out each finger generates different noise. Noise was
also noted as a result of forearm movement artifacts. Due care was taken with regard
to noise reduction by reducing the length of cables and winding them up. Even with
the conditions presented, the results obtained for different gestures were satisfactory, as
shown in Table 5.
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Fig. 5. Scheme of the prototype of the bionic-hand controller.

Table 5. Results of success on detection of muscle activation for the execution of different
gestures.

Gesture close open point pinch

# performed 20 20 20 10

# detected 20 14 20 10

# not detected 0 6 0 0

# false activations 1 4 2 0

Success rate 100% 70% 100% 100%

Error rate 5% 50% 10% 0%

5 Platform with Integration of EMG and MMG Signals

In order to optimize hand control it is essential to improve the quality of the information
acquired, as this will enhance the identification of the different gestures. As already
mentioned there are numerous studies described in the literature, which have in common
the search for sensors that can be used alternatively or in addition to the EMG signal
[2–12]. Although the preliminary results presented here show that the IR sensor has a
good SNR ratio, similar to or even higher than that of the FSR, it was verified that it
has a more limited applicability with regard to the diversity of gestures detected. On the
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other hand, it is possible to improve the quality of the signal acquired with the FSR,
provided that the most appropriate and properly sized front-end circuit is used, as well
as with greater care in fixing and ensuring the application of force in the sensitive area
of the sensor. Another type of sensor with positive results described in the literature
in this type of application is the accelerometer [5, 6]. The decision was then to add
the accelerometer ADXL335 (Analog Devices). Which is a 3-axis accelerometer, that
allows to measure accelerations up to 3g. For this purpose we will apply a module that
allows direct integration with Arduino /BITalino as well as a easier placement in muscle.
This module also has the possibility of configuring a bandwidth up to 200 Hz, which
will allow to cover the frequencies present in muscle activity.

Alsowith the purpose of improving the quality of the acquired signal, there is a plenty
of works described in literature that use only the EMG signal but with multiple channels.
This approach allows to collect information separately from the variousmuscles activated
in the different gestures [2].

Analyzing the different options both in terms of type of sensors or use of multi-
ple acquisition channels, seeking to maintain their low cost, we opted for the integra-
tion of seven signals/acquisition channels from three types of sensors: EMG, FSR and
accelerometer. Two of them (EMG and FSR) are duplicated, placed in the flexor and
extensor muscles, while the accelerometer, which uses three acquisition channels, one
for each axis, is placed only in the flexor. Figure 6 illustrates the placement of these
sensors/electrodes.

Seven BITalino acquisition channels will then be used, and the data is acquired from
a group of volunteers and according to a previously defined protocol. Data processing
and feature extraction will be performed onMATLAB. The identification of the different
gestureswill then be attained from the introduction of the datasetswith the characteristics
of the seven acquired signals, using one selected data science and machine learning tool.

Fig. 6. Scheme of the integration of three type of sensors (EMG, FSR and accelerometer) show-
ing the placement of Ag/AgCl electrodes and FSR in both flexion and extension muscles and
accelerometer only in the flexion muscle.

5.1 Preliminary Tests

Afirst approach to the implementation of these different types of sensors wasmade using
the two force sensors and two EMG sensors, in a total of four acquisition channels. Data
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were acquired from one ordinary healthy subject that performed five different gestures
(Open, Close, Pinch, Point and Thumb-up). In each acquisition it was always executed
the same gesture for ten times with a duration and interval approximately constants.

The data was acquired through four BITalino channels with a 10-bit ADC each. This
datawas viewed in real-time inOpensignals and later stored in afile for further processing
in MATLAB ®. In these preliminary tests, no processing was carried out to the EMG
signal and the onset/offset detection of each muscle activation was accomplished from
the acquired FSR signal. This was performed separately for the FSR and EMG signals
acquired from the flexor muscles and extensor muscles.

This first approach to the integration of these sensors had asmain objective to evaluate
their advantages over the platform initially used with only one channel of acquisition
of an EMG signal. This analysis should be made according to three complementary
perspectives:

1. Four signals are acquired through four channels, simultaneously;
2. The signals are of two different types: EMG and MMG;
3. Sensors are placed in two different locations: flexor and extensor muscles.

Using a simple criterion for the validation of onset/offset detection that has had a
minimum duration of 0.5 s, the success rate was high, as shown in Table 6.

Table 6. Results of success on detection of muscle activation for the execution of different
gestures. Flex and Ext mean Flexor and Extensor muscles, respectively.

Gesture close open point pinch thumb-up

Flex Ext Flex Ext Flex Ext Flex Ext Flex Ext

# performed 10 10 10 10 10 10 10 10 10 10

# detected 10 10 8 10 10 6 10 7 10 10

# not detected 0 0 2 0 0 4 0 3 0 0

# false
activations

0 0 0 0 0 0 0 0 0 0

Success rate 100% 100% 80% 100% 100% 60% 100% 70% 100% 100%

Error rate 0% 0% 20% 0% 0% 40% 0% 30% 0% 0%

Figures 7, 8, 9 show a samplewith a period of 20 s relative to the four signals acquired
for each of three different gestures chosen amongst the five executed. Figure 7 shows
that for theOpen while the EMG signals acquired in the flexor and extensor muscles are
very similar the FSR signal obtained from the extensor muscles has an amplitude that
stands out from that relative to flexors.

In opposition to the previous case, Fig. 8 shows that for Pinch the amplitude of
the acquired FSR signal for the flexor and extensor muscles are very similar. But the
complementarity between FSR and EMG signals, associated with different behaviors
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Fig. 7. Four signals acquired from flexor muscles (top) and extensor muscles (bottom) for Open.
(Left) FSR and (Right) EMG signals.

for different gestures, is a result that meets our expectations and is very useful for the
success in gesture recognition.

Finally, and unlike the two previous gestures, in Thumb-up the success rate in detect-
ing their activations was 100%. In Fig. 9 it can be observed that the amplitude of the
two FSR signals is superior to that of the other two gestures, with a greater amplitude in
the case of flexor muscles, in which it is also shown to have a less fluctuating amplitude
during activation.

Fig. 8. Four signals acquired from flexor muscles (top) and extensor muscles (bottom) for Pinch.
(Left) FSR and (Right) EMG signals.
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Fig. 9. Four signals acquired fromflexormuscles (top) and extensormuscles (bottom) for Thumb-
up. (Left) FSR and (Right) EMG signals

The mere observation of the signals acquired by these four channels confirms that
the amount of information that is available with the consequent characteristics that can
be extracted will be an added value for success in gesture recognition. Moreover, with
the FSR signals the onset/offset detection becomes easier. In the case of EMG signals,
one should look for the characteristics that will contribute the most to this success and
which at the same time imply a shorter processing time with a view to its application in
a low-cost bionic-hand controller.

6 Discussion and Conclusions

Results of the application of twoMMG sensors, a FSR and an IR reflectance sensor, and
their comparison with EMG signals have shown successful results in gesture recognition
and a high SNR (Signal-to-Noise Ratio). It was also shown a slightly better ability of
EMG sensor to detect different gestures, but simultaneously it had a lower success in
gesture identification. IR sensors have shown similar results comparatively to FSR in
the ability to detect different gestures but an even better success in gesture identification.
Also IR and FSR signals had shown higher SNR than traditional EMG signals, for the
two gestures that those two sensors were able to detect.

On the other hand the comparison between electrodes types had shown a slightly
lower accuracy of the conductive leather and PLA in relation to the common elec-
trodes. Nevertheless the conductive leather material electrodes have shown an improved
accuracy in two of the total of six gesture combinations considered.

In spite of their lower overall accuracy in gestures recognition, in comparison to
pre-gelled Ag/AgCl electrodes, the results obtained for the novel electrodes are very
similar to those traditional EMG electrodes in, at least, half of the six gestures. The
exceptions are the point and pinch gestures for conductive leather material, and those
plus extension gesture for conductive PLA electrodes. Electrodes with a larger area
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and/or more appropriate shape, as well as a more efficient process for their fixation,
should improve the signal-to-noise ratio.

The application of a low-cost bionic hand controller based on Arduino UNO with
the proper requirements of real-time control has forced the development and testing
of algorithms appropriate to the requirements imposed by a limitation in terms of the
amount of available memory and processing speed. The test setup with the simultaneous
acquisition and visualization of the EMG signals used for hand control, by Arduino and
BITalino, allowed the implementation of an algorithm with a sampling rate of 1 kHz.

Although no type of processing of the acquired EMG signals was performed, it
was possible to obtain very promising results regarding the success rate on performing
the four different gestures considered. There have been some false activations that, in
addition to using the raw EMG signal, will also be associated with some noise resulting
from themicro servo SG90 option,whichwasmotivated by its low cost, for the individual
activation of thefingers of the hand. In fact, itwas possible to identify that they constituted
an additional source of noise, which affected the breadth of the fluctuations in the base
level of the signal, with the muscle relaxed, depending on the gesture associated with
the previous muscle activation.

Based on these preliminary results and those of other studies described in the liter-
ature, we opted for the implementation of a platform that complements EMG signals
with two other MMG signals collected by a force sensor and an accelerometer. A next
phase of this work is then underway in which these three types of sensors (EMG, FSR
and accelerometer) will be integrated, and signals from the flexor and extensor muscles
will be collected at the same time, in a total of seven acquisition channels. With this
approach it will be possible to minimize the limitations resulting from the interferences
to which the EMG signal is subject, maintaining the future possibility of implement-
ing a low-cost controller, even with greater requirements in terms of memory space
and processing capacity than the Arduino UNO, used in the preliminary version of the
controller. It will be necessary to develop the more demanding algorithm in terms of
the acquisition of the different acquisition channels, as well as in their processing, with
possible implementation also of EMG signal filtering.
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Abstract. Medical teams can use an electrocardiogram (ECG) as a quick test to
examine the electrical activity and rhythm of the heart to look for irregularities
that may be indicative of diseases. This work aims to summarize the outcomes of
several artificial intelligence techniques developed to identify ECG data by gen-
der automatically. The analysis and processing of ECG data were collected from
219 individuals (112 males, 106 females, and one other) aged between 12 and
92 years in different geographical regions, located mainly in the municipalities
of the center of Portugal. These data allowed to discretize gender by the analysis
of ECG data during the experiment performed and were acquired with the BITal-
ino (r)evolution device, connected to a personal computer, using the OpenSignals
(r)evolution software. The dataset describes the acquisition conditions, the indi-
vidual’s characteristics, and the sensors used as the data acquired from the ECG
sensor.

Keywords: ECG · Gender identification · Artificial intelligence · Sensors

1 Introduction

The early detection of cardiovascular issues is essential for reducing the fatality rate
associated with cardiovascular diseases [3, 18], which are among the major causes of
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death worldwide [6, 27]. For this reason, we believe that experts should adopt automatic
electrocardiogram (ECG) analysis to aid in diagnosing cardiovascular diseases [11, 19,
20].

The researchon thegender identification is a newsubject that is currently startingwith
more research studies, but the number of studies available in the literature is very small
[2, 24]. However, if the studies were performed, we can classify the results according
with the gender.

We investigated the most recent machine learning techniques for categorizing and
analysis of ECG signals and found that few studies have been unsuccessful in achieving
high precision rates [2, 24]. Due to this, we decided to do our research using a dataset
we had built and some of the methods we had discovered during our search.

We implemented eight different methods to analyze the results: Nearest Neighbors,
Linear SVM, RBF SVM, Decision Tree, Random Forest, Neural Networks, AdaBoost,
and Naive Bayes. Based on the machine learning methods, the data was classified by
Gender.

2 Methods

2.1 Study Design and Participants

Using a BITalino (r)evolution device [10], and the OpenSignals (r)evolution software,
[7], 219 individuals from Portugal’s continental region provided the ECG recordings
used in this study. All volunteers in this study disclosed at least one previously diag-
nosed health condition, such as allergies, hypertension, cholesterol, diabetes, arrhyth-
mia, asthma, unspecified heart problems, and unspecified brain problems; the most fre-
quently disclosed conditions are hypertension and diabetes. The patient spends 30 s
sitting down and 30 s standing during the ECG recordings, which at least takes about 60
s. This procedure tries to emphasize the differences between individuals (gender) and
allow a minimum effort to avoid a significant change in the overall ECG result. Ethics
Committee from Universidade da Beira Interior approved the study with the number
CE-UBI-Pj-2021-41.

2.2 Feature Extraction

The NeuroKit Python module [29] was used to automatically extract important features
from the ECG recordings for this study (Fig. 1), including P, Q, R, S, and T peaks, as
well as the onsets and offsets of P, T, and R waves. Based on the features that were auto-
matically retrieved and used in this investigation, the following features were manually
calculated:

• RR interval → PeakRN − PeakRN−1
• PP interval → PeakPN − PeakPN−1
• P duration → OffsetP − OnsetP
• PR interval → OnsetR − OnsetP
• PR segment → OnsetR − OffsetP
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• QRS duration → OffsetR − OnsetR
• ST segment → OnsetT − OffsetR
• ST-T segment → OffsetT − OffsetR
• QT duration → OffsetT − OnsetR
• TP interval → OnsetP − OffsetT
• R amplitude → PeakRN − PeakSN

• T amplitude → PeakT N − PeakSN

• P amplitude → PeakPN − PeakQN

Fig. 1. Features from the ECG recordings

2.3 Description of the Method

We have implemented eight machine learning methods to analyze the results in the
dataset that can predict some results.
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Nearest Neighbors. K-Nearest Neighbors (K-NN) is a non-parametric technique that
uses data from many classes to predict how the new sample point will be classified [26].
This algorithm does not use the training data points to draw any conclusions.

Linear SVM. TheSupportVectorMachine attempts to generate the best line or decision
boundary to divide n-dimensional space into classes, so new data points are assigned to
the correct category when added [5]. Support vectors are the extreme points/vectors that
help this algorithm generate the best decision boundary and give the method its name
[5]. The term linear SVM refers to linearly separable data, which can be divided into
two classes using a single straight line [25].

RBF SVM. The Radial Basis Function (RBF) is the default kernel function in many
kernelized learning algorithms [21]. It’s very similar to the K-Nearest Neighborhood
Algorithm, but instead of storing the entire dataset during training, the RBF SVM only
needs to store the support vectors [12]. Linear SVM differs from RBF SVM in that the
latter is not a parametric model like linear SVM, is more complex depending on the size
of the database, and is more expensive to train [16].

Decision Tree. It is a rule-based supervised machine learning classifier that generates
questions based on dataset properties and may categorize new entries depending on the
answers [4]. It is a tree-based method because every question it creates has a binary
response, which divides the database into halves [9]. A tree-like graph may be seen as
the result of these divisions [9].

Random Forest. It is a machine learning algorithm widely applied to classification and
regression issues [1]. It works by building decision trees on various samples throughout
the training phase [1]. The outcome is determined based on the class with the most tree
selections.

Neural Networks. It is commonly a multilayer perceptron with three layers: an input,
a hidden layer, and an output layer [13, 15]. The last two layers are made up of nodes
that function as neurons and make use of a nonlinear activation function. A multilayer
perceptron can categorize data that is not linearly separable and uses backpropagation
for training [22].

AdaBoost. It is an ensemble learning method that combines the results of various clas-
sifier algorithms to increase their effectiveness and predictive ability [14]. The output of
the AdaBoost meta-algorithm is the outcome of this weighted sum.

Naive Bayes. Based on theBayes theorem, it is a probabilisticmachine learningmethod
classifier [23, 28]. Its simplicity and lack of a complex iterative parameter calcula-
tion make it suitable for diagnosing cardiac patients in medical science [8]. This algo-
rithm performs well and is popular because it frequently outperforms the most advanced
classification techniques.
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3 Results

3.1 Data Acquisition

For this study, we collected data from 219 volunteers (112 men, 106 women, and one
other) aged between 12 and 92 years old. All participants provided informed consent
to the experiments, allowing us to share the results anonymously. The agreement also
provided informed consent to the participants regarding the risks and purpose of the
study. Ethics Committee from Universidade da Beira Interior approved the study with
the number CE-UBI-Pj-2021-041. The dataset used in this research is publicly available
at [17].

Data were acquired with the BITalino (r)evolution device with a 1 kHz sample
frequency, connected to a personal computer, using OpenSignals (r)evolution software.
Each volunteer’s data was stored in two files: one JSONfile referring to the characteristic
data of the volunteer plus their lifestyle and a text file with the test data recorded over
time. These files were stored in an individual folder per volunteer.

The volunteer needed to stand for 30 s and then sit in a chair for 30 s while the data
was collected.

The dataset is available in a Mendeley Data repository, which contains two files for
each individual, with 219 folders. Each folder has a JSON file containing a description
of the data acquisition conditions, the individual’s characteristics, and the sensors used,
and a TXT text file including the data acquired from the ECG sensor.

The Fig. 2 flowchart illustrates the data processing till the classification results.

Fig. 2. Data processing flowchart
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3.2 Results by Gender

We started with the extraction of the different analyzed variables related to the ECG data,
such as RR interval, PP interval, P duration, PR interval, PR segment, QRS duration,
ST segment, ST-T segment, QT duration, TP interval, R amplitude, T amplitude, and P
amplitude. Table 1 presents the average of the features extracted. Before the analysis by
gender, we found that the data of the individuals with the IDs 20, 25, 31, 33, 35, 38, 39,
54, 153, 195, and 202 were invalid, so it was necessary to exclude these 11 individuals
from the analysis.

Table 1. Average of features extracted.

Features Average

RR interval (ms) 856.76

PP interval (ms) 856.78

P duration (ms) 40.29

PR interval (ms) 123.98

PR segment interval (ms) 114.76

QRS duration (ms) 113.79

ST segment interval 157.25

ST-T segment interval (ms) 220.70

QT duration (ms) 334.49

TP interval (ms) 497.07

R amplitude (mV) 340.89

T amplitude (mV) 106.52

P amplitude (mV) 80.34

In Table 2, we compare the results of each classifier utilized during this study.
The Decision Tree algorithm achieved the highest accuracy at 62.90%. Linear SVM,
Adaboost, and Naive Bayes are right next, with an accuracy of 61.29%

Nearest Neighbors method correctly identified 32 male and female out of 62 volun-
teers in this study. It achieved an accuracy of 51.61%, a precision of 51.51%, a recall of
54.84%, and an F1-score of 53.14%. More details of this method are in the confusion
matrix presented in Table 3.

As seen in Table 3, the Linear SVM classifier correctly identified 38 males and
females out of 62, making it one of the methods that identified the highest numbers. This
algorithm reached an accuracy of 61.29%, a precision of 51.72%, a recall of 78.13%,
and an F1-score of 62.24%.
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Table 2. Performance comparison of the various methods

Features Accuracy (%) Precision (%) Recall (%) F1-Score (%)

K-NN 51.61 51.51 54.84 53.14

Linear SVM 61.29 51.72 78.13 62.24

RBF SVM 48.38 38.46 16.67 23.26

Decision Tree 62.90 61.29 63.33 62.29

Random Forest 56.45 57.69 48.39 52.63

Neural Net 51.61 45.16 51.85 48.27

AdaBoost 61.29 46.67 63.63 53.85

Naive Bayes 61.29 46.67 63.63 53.85

From the ECG recordings in our dataset, the RBF SVM method was capable, as
seen in Table 3, of accurately predicting 28 males and females. It achieved the lowest
accuracy out of any method at 48.38%, a precision of 38.46%, a recall of 16.67%, and
an F1-score of 23.26%.

The Decision Tree algorithm could identify the correct gender in 4 instances. As
seen in Table 3, it correctly classified 19 of the recordings as belonging to males and 20
of them as belonging to a female. Overall, this method was the one that could have the
highest percentages. It achieved an accuracy of 62.90%, a precision of 61.29%, a recall
of 63.33%, and an F1-score of 62.29%.

The Random Forest classifier correctly predicted 35 results. As seen in Table 3, it
identified 15 males and 20 females. This method reached an accuracy of 56.45%, a
precision of 57.69%, a recall of 48.39%, and an F1-score of 52.63%.

As seen in Table 3, the Neural Network classifier utilized in this study correctly
identified 14 males and 18 females, counting 32. This method reached an accuracy of
51.61%, a precision of 45.16%, a recall of 51.85%, and an F1-score of 48.27%.

As seen in Table 3, the AdaBoost algorithm correctly classified 38 of the 62 volun-
teers. It achieved an accuracy of 61.29%, a precision of 46.67%, a recall of 63.63%, and
an F1-score of 53.85%.

TheDecision Tree algorithm presented in Table 3 could identify the gender achieving
38 males and females out of 62 volunteers. Overall, it achieved an accuracy of 61.29%,
a precision of 46.67%, a recall of 63.63%, and an F1-score of 53.85%.
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Table 3. Confusion matrix for the results by gender

Gender TP TN FP FN

K-NN Male 17 15 16 14

Female 15 17 14 16

Linear SVM Male 25 13 17 7

Female 13 25 7 17

RBF SVM Male 5 23 8 25

Female 23 5 25 8

Decision Tree Male 19 20 12 11

Female 20 19 11 12

Random Forest Male 15 20 11 16

Female 20 15 16 11

Neural Net Male 14 18 17 13

Female 18 14 13 17

AdaBoost Male 14 24 16 8

Female 24 14 8 16

Naive Bayes Male 14 24 16 8

Female 24 14 8 16

4 Discussions and Conclusions

We tested 8 methods on a dataset of ECG recordings to see how well they could cate-
gorize the data. We could use the confusion matrix produced by the application to our
dataset to calculate each of these eight methods’ accuracy, precision, recall, and F1-
score. The Decision tree attained the best accuracy at 62.90%, followed by the Linear
SVM, AdaBoost, and Naive Bayes approach at 61.29% of accuracy.

With these outcomes, we concluded that Decision Trees was the technique that
performed the best overall, which accurately identified 39 of the 62 results. Our initial
expectations met the outcomes of this investigation, as the best-performing approach
could accurately classify more than 50% of males and females in these ECG recordings.

This study used a small database, which could influence the results presented in these
studies. We expect to get more data to consolidate the results in the future.
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Abstract. Attention loss caused by driver drowsiness is a major risk fac-
tor for car accidents. A large number of studies are conducted to reduce
the risk of car crashes, especially to evaluate the driver behavior associ-
ated to drowsiness state. However, a minimally-invasive and comfortable
system to quickly recognize the physiological state and alert the driver is
still missing. This study describes an approach based on Machine Learn-
ing (ML) to detect driver drowsiness through an Internet of Things (IoT)
enabled wrist-worn device, by analyzing Blood Volume Pulse (BVP) and
Skin Conductance (SC) signals. Different ML algorithms are tested on
signals collected from 9 subjects to classify the drowsiness status, con-
sidering different data segmentation options. Results show that using a
different window length for data segmentation does not influence ML
performance.

Keywords: Internet of Things · Machine Learning · Wearable
devices · Blood volume pulse · Skin conductance · Driver monitoring ·
Drowsiness detection

1 Introduction

Based on the World Health Organization estimates, car accidents are responsible
for nearly 1.35 million deaths each year [1], primarily due to driver drowsiness [2].
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For this reason several research studies are aimed at detecting a driver’s drowsi-
ness, through the use of proper sensors joined with Machine Learning (ML) and
Artificial Intelligence (AI) algorithms. In some cases, safety technologies exploit-
ing on-board sensors are already implemented in cars, to classify the driving
behavior by monitoring lane deviations combined with steering wheel rotation,
and enriched by additional sensors, such as camera-based systems, capturing
the driver’s status. However, these systems aim to detect explicit signs of micro-
sleeps or sleepy behavior (such as changes in visual facial descriptors, like esti-
mated distance between the nose and mouth; blinks and longer closures; eye gaze
location; face orientation), not drowsiness, that occurs with decreasing levels of
arousal which vary by individual [3]. Stress, fatigue, and illness contribute to
drowsiness, that declines the driver’s cognitive capabilities, increasing the risk of
accidents [4]. Moreover, the above-mentioned approaches exhibit some degrees
of reliability but also suffer limitations due to uncontrollable operational condi-
tions: variable lighting scenarios, or glasses and sunglasses worn by the driver
may impact the expected detection capability. Different and innovative solutions
have been consequently investigated, to overcome the mentioned limits.

Drowsiness influences the driver’s behavior and is associated with the Auto-
nomic Nervous System (ANS) activity reflected by changes in physiological sig-
nals [2]. Specifically, the Blood Volume Pulse (BVP) signal refers to the total
amount of blood circulating within the arteries, capillaries, veins, venules, and
chambers of the heart, at any given time [5]. BVP leads to the estimation of
Heart Rate Variability (HRV), a useful indicator for both fatigue and drowsiness
conditions, according to the literature [6,7]. The Skin Conductance (SC) signal
is usually exploited to detect changes in a subject’s arousal: it varies because of
sweat gland secretion, and it can be decomposed in a slowly varying component,
known as Skin Conductance Level (SCL) [8], plus a second component, featuring
rapid changes in signal amplitude, known as Skin Conductance Response (SCR)
[9]. For both the referenced signals, gold-standard measurement methods foresee
the use of electrodes in direct skin contact, and applied on specific positions. In
the case of the SC signal, it should be preferably acquired on fingers, foot or hand
palms, where sweat glands are mostly spread. Unfortunately, the necessary skin
contact of the sensors to acquire SC or Photoplethysmography (PPG) signals
[10] is a major shortcoming of approaches based on physiological measurements
in the automotive environment, where the common driving conditions are not
compatible with the mentioned optimal sensor positioning choices.

For this reason, and pushed by the growing trends of the IoT-enabled wear-
ables market, several studies tested wrist-worn devices (or wrist-worn-like ones,
such as bracelets [11] and double-rings [12]) to collect physiological data that
is then processed by classification algorithms to monitor drivers and detect a
drowsy status [4]. As an example, Lee et al. assessed the driving behavior by
utilizing the built-in motion sensor of a smartwatch; with a Support Vector
Machine (SVM) classifier, an accuracy of 98.15% was achieved [13]. In another
work, the same authors used the accelerometer signal combined with the PPG
signal and they obtained an accuracy of 95.80% [14]. Instead, Leng et al. used a
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wearable device able to measure both PPG and SC signals on the fingers. The
implemented SVM model reaches an accuracy of 98.70% [15]. Similarly, Choi et
al. developed a wrist-worn wearable device with PPG, SC, temperature, acceler-
ation, and gyroscope sensors. The SVM is employed to distinguish the normal,
stressed, and drowsy states with an accuracy of about 85.00%. However, in this
case, an additional PPG signal is acquired on the ear for more robust feature
extraction, thus resulting in an intrusive system, less suitable for real-life driv-
ing applications [16]. In [17], we exploited the SC signal alone to assess driver’s
drowsiness, obtaining an accuracy equal to 84.1%. Later on, Li et al. [18] showed
that a properly designed feature extracted from the SC signal could be used
in driver’s status management, and takeover-safety prediction for autonomous
driving systems.

Wrist-worn devices represent an appealing solution for driver’s monitoring
since they allow physiological signal acquisition in a minimally invasive fashion,
and future car implementations could directly interact with them, for a feasi-
ble and integrated approach to the driver’s drowsiness detection problem. The
device used in this work is the Empatica E4 wristband, which obtained CE med-
ical certification in Europe, for acquired signals of better quality than the ones
obtained from prototype devices, like those designed on purpose and used in
other research works [15].

The analysis of recent literature shows that almost all the published works
exploit ML or Deep Learning (DL) algorithms to process the data acquired
from wearables and automatically classify the driver’s condition. As such, it is
reasonable to investigate if the way the collected data is pre-processed may affect
the attainable classification accuracy. In this respect, the research presented in
this paper exploits a minimally-invasive wrist-worn device to collect both BVP
and SC physiological signals, with the aim to explore the ANS activity related to
changes in the driver’s arousal, which may be associated to a drowsy behavior.
The collected time series of physiological data are pre-processed according to
different sizes of data segmentation, before computing features used to feed three
different ML algorithms to detect and classify driver’s drowsiness. Based on the
attained classification accuracy, the impact of the different data segment sizes
chosen is investigated.

The paper is structured as follows: Sect. 2 describes the experimental setup
and the acquisition protocol. Section 3 presents the performed data processing,
while in Sect. 4 the obtained results are provided. Lastly, Sect. 5 draws the main
conclusions and outlines possible future works.

2 Materials and Methods

2.1 Experimental Setup and Acquisition Device

For the purpose of this study, a driving simulator was placed in a room with
an average ambient temperature of around 23◦C. Temperature was maintained
quite stable to reduce its influence on the user’s skin (e.g., sweat or cold body),
and consequently on physiological signals acquired during the experimental tests.
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The route shown on the driving simulator was an overnight 80 km long driving
path on a three-lane highway. A picture of the whole experimental setup is shown
in Fig. 1.

During the driving simulation, and with the aim to propose an as much
realistic as possible approach, BVP and SC signals were collected by wearing a
single smart-band, the Empatica E4 [19], on the driver’s dominant wrist. The E4
is a multi-sensor wrist-worn device able to detect changes in both user’s cardiac
activity and skin conductance, through two specific embedded sensors: PPG
and SC sensor, respectively. By using a proprietary algorithm, the PPG sensor,
equipped with 2 green LEDs and 2 red LEDs, extracts the BVP signal from the
pulse waves at a fixed sampling rate 64 Hz. Regarding the SC, a small alternating
current (maximum peak-to-peak value of 100µA - at a frequency 8 Hz) moves
through two Ag/AgCl electrodes located on the bottom side of the bracelet, and
the electric skin conductance across the skin is acquired at a sampling frequency
4 Hz, a resolution of 900 pS, and a dynamic range of [0.01, 100] μS. Once an
acquisition session terminates, data collected from all the sensors embedded into
the E4 are stored into the Empatica Cloud, from which they can be downloaded
for further post-processing and analysis.

2.2 Data Acquisition Protocol

Nine healthy subjects, namely five women and four men, were recruited for the
test procedure. Since physiological data vary with age and gender, drivers have
been chosen to cover the [28] years age range, that represents the age range of the
majority of active drivers’ population. Moreover, to avoid bias due to gender, we
selected a male and a female driver in each age cohort of 10 years, from 20 to 60
years of age. After receiving information about the study, the participants signed
the informed consent. Then, they were provided with the Empatica E4 device to
be worn on the dominant wrist during the six simulated driving sessions (around
40 min-long each) to acquire simultaneously the BVP and SC signals. Samples
of the acquired BVP and SC signals over a whole 40 min-long session are given
in Fig. 2.

Every 10 min, the participants reported their own perceived level of drowsi-
ness on a tablet, according to the 9-point Karolinska Sleepiness Scale (KSS) ques-
tionnaire [20]. Similarly to other studies [21], we used the KSS self-assessment
measure to subjectively quantify the level of drowsiness of the participants.

3 Data Processing

The quality of signals acquired from the wrist, and consequently the performance
of the driver’s drowsiness detection, can be highly affected by natural body move-
ments performed while driving. To identify and reduce the motion artifacts in
SC signals [22], the Stationary Wavelet Transform (SWT) denoising with Haar
mother wavelet (7 levels of decomposition) was implemented, according to pre-
vious studies [23]. This approach firstly models the wavelet coefficients by using
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Fig. 1. The experimental setup used for acquisitions, including: the driving simulator,
the tablet showing the KSS to select, and the E4 worn by the subject during tests.

Fig. 2. Sample acquired BVP (left) and SC (right) signals during a whole session
(40 min duration).

zero-mean Laplace distribution, then it defines high and low thresholds to distin-
guish clean SC signal and motion artifacts. When the wavelet coefficients exceed
these thresholds, they are set to zero. Then, the application of SWT results in a
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denoised signal. Regarding the BVP signal, an algorithm embedded in Empatica
E4 firmware (the details of which are not disclosed by the manufacturer) removes
the motion artifacts, by exploiting the signal measured during exposure to the
red LED. Being the HRV a well-known drowsiness indicator [24], it was derived
from the BVP signal, by quantifying the inter-beat intervals (i.e., the distance
between two consecutive signal peaks). The obtained HRV and SC signals (both
SCR and SCL components) were divided into time intervals with a fixed size of
Δt seconds, and an overlapping window of length Δt/2 s. It is explained later
on in the paper that different Δt values have been tested.

According to the 9-point KSS scale scores reported by the participants, each
data window was labeled to detect the associated drowsiness status. Specifically,
the KSS responses were grouped into two classes depending on the selected
drowsiness level: KSS scores lower or equal to 6 (from 1 to 6) in class 1 (labeled
as awake), and scores greater than 6 (from 7 to 9) in class 2 (labeled as drowsy).
Finally, a total of 32 features, chosen in both time and frequency domains as
listed in Table 1, was computed for each window. The features were considered in
some cases since already used in previous studies [25–27], or, in other cases, such
as the SC peaks, since characterized by a significant information content [28,29].

As a first choice, Δt = 30 s and an overlapping of 15 s were considered [25,30].
Such a window size was chosen according to [30], in which authors state that
drowsiness can be detected in short periods. Then to study the effect of the
time window length on the performance of the ML classifiers tested, the analysis
was repeated by considering different sizes of data segmentation. In particular,
segmentation windows with a length of 15 s, 45 s, and 60 s, were considered, and
a 50% overlap, to preserve the condition applied in the first analysis.

Table 1. Features extracted from HRV and SC.

Type of
signal

Domain Features

HRV signal Time HR (bpm), SDNN (ms), RMSSD (a.u.), pNN50 (µS)

Frequency LF (a.u./Hz), HF (a.u./Hz), LFn (a.u./Hz), HFn
(a.u./Hz), LF/HF (a.u.)

SC signal Time Mean (µS), standard deviation (µS), minimum (µS),
maximum (µS), kurtosis (µS), skewness (µS), variance
((µS)2), range (µS), median (µS)

Frequency Mean (µS/Hz), standard deviation (µS/Hz), minimum
(µS/Hz), maximum (µS/Hz), kurtosis (µS/Hz), skewness
(µS/Hz), variance ((µS/Hz)2), range (µS/Hz), median
(µS/Hz)

SC
components

Time SCR number of peaks, SCL mean (µS), SCL standard
deviation (µS), SCL minimum (µS), SCL maximum (µS)
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Following the two steps of data pre-processing and feature extraction, several
ML algorithms were tested in MATLAB by means of the Classification Learner
Toolbox. All the features were considered with a 10-fold cross-validation on input
data. For each window, to perform ML analysis, the dataset was divided ran-
domly into training and testing sets, corresponding, respectively, to 80% and
20% of the entire set. Since at each run of the classifiers the two groups are
different, we tested every algorithm 10 times for all size windows, then we cal-
culated the mean value of the obtained classification accuracy. To improve ML
performance, features were normalized by their maximum value in each window,
resulting in the range [0, 1]. Data analysis and feature extraction were performed
in MATLAB environment. Figure 3 summarizes the different steps of the applied
data processing.

Fig. 3. Graphical summary of the applied processing steps.

Table 2. Accuracy of different classifiers with the tested approaches.

Classifier Accuracy (%) Windows length (s)

Decision Tree 83.5 15

SVM 88.3

Ensemble 93.0

Decision Tree 83.2 30

SVM 89.2

Ensemble 92.2

Decision Tree 83.5 45

SVM 88.8

Ensemble 91.8

Decision Tree 84.7 60

SVM 90.0

Ensemble 91.1



Exploiting BVP and SC for Driver Drowsiness Detection 57

4 Results

The classification performance was assessed based on the accuracy provided
by each algorithm, and obtained by considering different lengths of the time
windows applied for data segmentation. The accuracy provided by a classification
algorithm is defined as:

Accuracy = (1 − ErrorRate) · 100 (1)

where ErrorRate = —Ncci - Nti—/Nti, being Ncci and Nti the numbers of
correctly classified instances and total instances, respectively.

The length of the time windows used to evaluate and compare the classifi-
cation performance are summarized in Table 2. The tested algorithms with the
highest performance are Decision Tree, SVM, and Ensemble. Considering the
30 s-long window, i.e. the first tested window length, the best result was achieved
by Ensemble with an accuracy of 92.2%, then SVM with 89.3%, and Decision
Tree with 83.2%. However, taking into account all the analyzed window lengths,
the best results were achieved by Ensemble considering a 15 s-long window with
an accuracy of 93.0%. SVM and Decision Tree reached the highest performance
with an accuracy of 90.0% and 84.7% respectively, both considering a window
of 60 s. The results are comparable to the previously discussed works [13–16].

Figure 4 shows the results in terms of accuracy for different lengths of acqui-
sition time windows. It is clear there are no significant differences among all
the considered values, demonstrating that the physiological onset of drowsiness
conditions is a slow phenomenon. Additionally, high accuracy levels and slight
performance variations make the obtained results more robust since they confirm
that it is possible to obtain a high classification accuracy value, even considering
several lengths of the time windows.

The results herein presented, obtained on a dataset including few subjects,
suggest the possibility to detect, by proper classifiers, the drowsiness condition
in drivers. High classification accuracy has been obtained by considering sig-
nals collected from a minimally invasive wrist-worn device, which may represent
an important outcome towards practical solutions to the problem of increasing
drivers’ safety.
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Fig. 4. ML accuracy of the tested algorithms considering different time windows. The
black line refers to the Ensemble classifier, the blue line to SVM, the red line to the
Decision Tree algorithm. (Color figure online)

5 Conclusions and Future Works

This study focused on the detection of driver’s drowsiness based on BVP and SC
physiological variations, recorded through a wrist-worn device during a simulated
overnight driving session. In particular, the authors attempted to classify the
alert status from the drowsy one, by testing three ML algorithms. Since BVP
and SC signals are linked to ANS activity, 32 features were extracted from cited
physiological signals. They were segmented in time windows of 15 s, 30 s, 45 s,
and 60 s with an overlap interval equal to 50% of the considered window length.
Although the dataset is limited, it covers a wide range of ages (28–60 years) and
it is also gender-balanced since drivers are 4 males and 5 females. Table 2 and
Fig. 4 prove that the drowsiness detection capability of the tested classifiers is not
affected by the choice of the window length used for data segmentation. In fact,
using a shorter window length value instead of a longer one does not change
significantly the attainable accuracy. For two classifiers out of three (namely,
Decision Tree and SVM), increasing the window length slightly improves the
classification accuracy: this could support the idea that drowsiness onset is a
slow process, better detected on a longer observation time. In the end, we can
say the obtained results demonstrate the possibility to detect drivers’ drowsiness
reliably.
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In future works, we will perform driving tests on a larger number of drivers
with the purpose to involve drivers in the age range between 18 and 28 years,
as well as in the range of 60–80 years age. This way, we will test a population
including almost all the ages for which a driving license is allowed. We will study
ML performance considering larger windows for data segmentation (i.e. 1 min,
2 min, 5 min) to investigate the rapidity of drowsiness level variation. Also, we
will investigate the effects of features normalization on the classifiers to find
the best data processing approach for drivers’ drowsiness detection. Based on
these studies, we will develop a custom algorithm to further improve detection
accuracy.
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Abstract. Skin Conductance (SC) variations, or, alternatively, changes
of the human skin resistance known as Galvanic Skin Response (GSR),
allow to detect the physiological reactions of a subject to different stim-
uli, either physical, or emotional and cognitive. This paper presents the
analysis of SC variations under acoustic stimulation, performed by using
a low-cost portable device designed for experimental use, able to acquire
the human skin resistance values, which can be easily converted into SC
ones. Preliminary findings, despite not generalizable because of the small
set of participants involved in experiments, suggest that the reaction to
sounds perceived as not pleasant is quite clear to identify, while further
investigations are needed for acoustic stimuli classified as pleasant.

Keywords: Skin conductance · Acoustic stimulation · Portable
device · Emotional state recognition

1 Introduction

In recent years, several hardware technologies and signal processing techniques
have been developed to integrate different physiological measures into single
portable or wearable devices, often enabled with wireless connectivity (according
to the Internet of Things paradigm), with the aim of acquiring a broad range
of parameters to evaluate different dimensions of an individual’s status, from
the physical and health-related ones [11,32], to the cognitive and emotional ones
[7,9,24].

Among the signals of interest to collect, the Skin Conductance (SC), also
known as Galvanic Skin Response (GSR) or Electrodermal Activity (EDA), plays
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an important role, especially to investigate the relationship between physiologi-
cal status and external stimuli, such as sensory, emotional, cognitive or physical
ones [1,21,34]. The electrodermal activity reflects the changes in electrical con-
ductance of the skin, which is modulated by sweat glands activity. An increase
in sweating, mostly composed by water, increases the capability of the skin to
conduct an electrical current. As all the eccrine sweat glands spread over the
body skin are involved by emotion-evoked sweating, it is recognised that SC
may provide a quantitative functional measure of the human symphatetic func-
tions, such as cognitive or emotional arousal [17]. When a subject is exposed to
some physical, emotional or cognitive events, the activity of the Autonomic Ner-
vous System (ANS) affects the secretion of sweat glands, resulting in a variation
of the EDA values [4].

Actually, the EDA signal consists of two main components, namely tonic and
phasic levels. The tonic level, known as Skin Conductance Level (SCL), reflects
slow changes in skin conductance, depending on skin dryness, hydration and
automatic regulation. Instead, the phasic level or Skin Conductance Response
(SCR) represents the dynamic changes associated to stimuli [4]. Hence, the SCRs
induced by skin sweating are indicators of both psychological [5] and emotional
status [38] of the considered individual.

Regarding the emotional status, acoustic stimulation is possible to induce
emotional reaction and to affect physiological responses on humans. Three dif-
ferent types of audio stimuli are reported in the literature: (i) speech, (ii) music
and (iii) general sounds, i.e., non-verbal and non-musical sounds [37]. In par-
ticular, music has the ability to regulate humans’ emotions [25]; conversely,
an individual’s mood may affect preferences in music listening [12]. A possible
mechanism behind the aforementioned regulation may be that music initiates
brainstem responses, which successively modulate SC, as well heart rate, blood
pressure, body temperature and muscle tension [6]. In addition to the brainstem
responses, five more mechanisms, namely evaluative conditioning, emotional con-
tagion, visual imaginary, episodic memory and musical expectancy are hypoth-
esized to be involved in the musical induction of emotions [26]. The analysis of
the above mechanisms is out of the scope of this work. As regards the humans’
sense of hearing, the auditory nervous system is responsible for the conversion
of the soundwave delivered at the entrance of the outer ear into information
to the human brain. Sound reaches as soundwave (i.e., increase and increase of
air molecules’ pressure) at the entrance of the outer ear and, after passing the
ear canal, it vibrates the tympanic membrane (i.e., transformed to mechanical
energy). Following, within the cochlea, vibration is converted to electrical signal
by the auditory hair cells, which in turn is delivered through the auditory nerve
to the brainstem. [2,19].

As acoustic stimuli may elicit individuals’ arousal, the acquisition of the cor-
responding EDA signals may support a quantitative evaluation of the generated
effects. EDA signals may be collected in a so-called endosomatic fashion, mean-
ing that no external source of electricity is used, or by an exosomatic approach,
in which electrodes in direct contact with the skin allow to apply a constant
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current or voltage source. The second approach is far more common in wearable
devices, as it does not require to collect the voltage between an active site and a
relatively inactive one of the skin, despite the design of the corresponding acquisi-
tion device would be simpler in the former case. Using the exosomatic approach,
the Ohm’s law is exploited to compute the skin conductance (or conversely, its
resistance) by measuring how the applied current or voltage is modulated by the
electrodermal activity of the subject.

In this context, the aim of this work is to acquire SC signals through a
portable low-cost device, and to analyse their variations under acoustic stimu-
lation. The advantage of using a simple and low-cost portable device to collect
SC signals relies in the possibility to run different types of experiments with-
out the use of bulky equipment, and to have full control of the system settings
[13]. Raw signal samples can be collected and processed by means of algorithms
selected or designed on purpose, depending on the specific study targets [22]. In
this work, the portable device was used to collect SC signals from six subjects,
starting from their baseline EDA, then moving to the acquisition of their gal-
vanic skin response as a result of different types of auditory stimulation, namely
audio tracks of different genres. Acquisitions were performed out of laboratory
settings, thus allowing a more realistic footprint of the subjects’ reactions.

The paper is organized as follows. Section 2 describes the background studies
on the effects of audio stimulation and on measurement devices for SC. Section 3
introduces the prototype components used for the experiments and explains the
data collection procedure. Section 4 discusses the experimental results. Finally,
Sect. 5 reports the conclusions.

2 Background

Many studies on the effects of the audio stimulation on human beings can be
found in the literature. In particular, knowing how a particular audio stimu-
lus can affect the listener is an important task for all the applications where a
personalized listening experience is required. In [31], a genre-free model of five
factors is introduced to classify the music preference of a subject in terms of
emotional/affective responses. In [12,35], the audio equalization preference was
investigated through subjective tests, that have proved the tendency of choos-
ing a personalized equalization. In the last years, studies have aimed at finding
a more objective evaluation of the perceived sound, comparing to the subjec-
tive self-reporting procedures. Furthermore, listening experience should be eval-
uated under real life, out-of-lab conditions and not through time-consuming,
self-reporting, in-lab procedures. Thus, an alternative is the evaluation through
physiological parameters measurements [29] collected by means of portable and
easy-to-use devices.

In this context, the GSR signal has raised attention as a possible way to
attain a more objective evaluation of the audio stimuli from the listeners’ point
of view, contrary to the mostly subjective self-reporting procedures. Additionally,
a listener’s GSR may be acquired during the process of auditory stimulation in
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a minimally invasive fashion, without interfering or interrupting the listening
experience. This section reviews the works found in literature and related to
GSR measurements under audio stimulation.

Several works aim at investigating the relationship between the GSR and
the emotion induced on a listener by an audio stimuli. In recent works, the
relationship between GSR and the pleasure induced on the listener [16,20,28],
as well the arousal induced on the listener [16], considering the ground truth
pleasure and arousal values taken by the IADS database [39], was investigated. In
[36], the GSR measurement under music stimulation indicated that subjects not
involved in music or not enjoying music gave little response of GSR. Moreover,
GSR was used in [3] to measure the relaxation induced to individuals under
the effect of binaural phenomena, in [30] to evaluate the effect of 3D sound on
relaxation, and in [38] to test peoples’ emotional responses to horror music. In [8],
the effect of environmental noise on GSR was investigated. In [40], Zhang et al.
presented the PMEmo dataset, which contains the perceived valence and arousal
annotations of 794 songs along with the simultaneous GSR signals acquisitions.
Except from the emotion, sound quality is another very important attribute to
investigate. In fact, in [29], the correlation between the subjective assessment of
perceived sound quality and the GSR was analyzed, however the meaningfulness
of the specific physiological parameter for the sound quality evaluation was not
able to be proven. Despite there is not, to the authors’ best knowledge, a formal
protocol for GSR acquisition under audio stimulation, it was observed that the
aforementioned experimenters followed, some to a greater and others to a lesser
extent, the following principles:

– The GSR of every participant is recorded during both, the presence and the
absence (i.e.,“baseline” period) of audio stimulation. Different factors (e.g.,
skin dryness, nervousness, temperature) result to different “baseline” GSR
among participants [3]. Thus, the knowledge of GSR under no audio stimuli
is necessary for calibrating the acquisitions of each participant under audio
stimuli.

– Any external stimulation, besides the audio under examination, should be
avoided during the GSR acquisition. Thus, GSR acquisition has been mostly
conducted under in-lab conditions, to avoid any other undesirable cognitive
process that could affect the GSR, and eyes are required to be closed to avoid
any visual interference.

– The audio stimuli duration is not too long, to avoid the habituation phe-
nomenon (i.e., the familiarization of the participant with the stimuli).

– The audio stimuli order presentation should be randomized to avoid the order-
ing effect.

2.1 Commercial Portable Devices for SC Acquisition

Looking at the commercial portable devices for SC-based monitoring found in the
market, it is relevant to notice how there is not a huge variety of choices available,
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and most of them are quite expensive. The different options are presented in the
following paragraphs.

The Empatica E4 is a clinically validated device (Class IIa Medical Device
according to 93/42/EEC Directive), equipped with four monitoring sensors,
namely a 3-axes accelerometer, a photoplethysmography (PPG) sensor, an opti-
cal thermometer and an SC sensor. In particular, the SC sensor detects the elec-
trical conductance across the skin by passing a very small alternating current
(8 Hz frequency, 100 µA peak-to-peak amplitude) between two dry electrodes
located on the bracelet, in contact with the bottom wrist. SC signals are col-
lected at a sampling frequency 4 Hz, with a dynamic range of 0.01–100 µS and a
resolution of 900 pS. The device may operate either in streaming and recording
mode, and comes with a desktop application (E4 Manager) to transfer data to a
cloud repository; a web application (E4 Connect) to visualize and manage data;
a mobile application (E4 RealTime) to stream (via Bluetooth Low Energy) and
visualize data in real-time, on mobile devices. Since a few months, the device has
been discontinued by the manufacturer, so in the future it will be not available
anymore for research studies. The device has been used in research studies, to
measure the impact of auditory emotional stimuli [28], or to recognize the user
emotions while watching short videos [41].

The Empatica Embrace is equipped with four sensors, namely a 3-axial
accelerometer, a thermometer, a 3-axial gyroscope and an SC sensor. The last
one detects the SC with a dynamic range of 0–80 µS and a resolution of 900 fS, at
a sampling frequency 4 Hz. Specifically, three electrodes located on the bracelet
and in contact with either the ventral (inner) and dorsal (outer) wrist are passed
by an alternating current 4 Hz maximum frequency. Data are continuously sent
via Bluetooth, and analysed in real-time to identify unusual patterns in move-
ment and skin conductance. In fact, the smartband has been mainly involved in
studies for seizure tracking and epilepsy management.

The Gobe2 smart band is equipped with four embedded sensors, namely a
bioimpedance sensor, an accelerometer, a piezo sensor and an SC sensor. For
what concerns the individual’s emotion, the Gobe2 detects a so-called emotional
tension, strictly associated with feelings and mood, by analysing the changes
in cutaneous sweating. After evaluating these changes, the smart band notifies
the users about their emotional status, with a vibration and a message on the
display. The manufacturer declares that GoBe can detect the human stress, by
using derived measurements, namely heart rate, previous night’s sleep quality
and personal details (i.e., weight, height, sex and age). A fully charged GoBe2
can transfer data, through BLE, to a dedicated app and work for up to 48 h.
No further details about the SC sensor are available, to the best of authors’
knowledge.

The Moodmetric is a ring device specialised for measuring the SC: it collects
SC levels and converts them into a scale ranging from 1 to 100, where higher
values indicate higher arousal that can have either positive (e.g., excitement) or
negative valence (e.g., stress). Approximately, the scores in the range 1–20 reflect
a state of deep relaxation (e.g., meditational state); from 21 to 40, a regular
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Fig. 1. SC-enabled portable devices available in the market: a) Empatica E4, b) Empat-
ica Embrace, c) Gobe2, d) Moodmetric rings, e) Shimmer GSR+.

relaxation (e.g., walking); range 41–60 denotes mild activities (e.g., talking); 61–
80, arousal during elevated activity (e.g., working under mild pressure); and 81–
100, high arousal such as strong emotions. No details are available about the way
these ranges are estimated from the raw data collected from the device, which
is transferred by Bluetooth connection to a computer, for long term storage.

Finally, the Shimmer3 GSR+ unit provides connections and pre-amplification
for one channel of GSR data acquisition, and it is suitable for measuring the
electrical characteristics or conductance of the skin, as well as jointly capturing
an Optical Pulse/PPG signal to estimate heart rate, using the Shimmer ear clip
or optical pulse probe. The collected samples are processed by a companion PC
software, to compute different data features. The above mentioned devices are
shown in Fig. 1.

As described above, specific algorithms for each device are able to process the
collected raw data and provide the user with an output figure or index related to
stress, or other conditions. Such processing typically takes place at the firmware
level, or at the application level of a companion software, and related details
are not available to users. This prevents the possibility to access the true signal
samples, and to design or test different approaches to filtering or processing,
e.g., for research purposes, as well as to evaluate precision and accuracy of the
measured values. For this reason, it may be useful to setup a portable and low-
cost device for SC that allows to collect unprocessed raw signal samples, for
experimental usage.
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Fig. 2. The GSR-Grove sensor (left) and the Arduino UNO board (right).

3 Materials and Methods

3.1 Prototype Components

The prototype designed for the acquisition of the SC signal in this study is
based on the Arduino UNO embedded platform, equipped with an ATmega328P
microcontroller, and a GSR-Grove Sensor v1.2 [33], as shown in Fig. 2. The
prototype collects samples of the skin resistance, thanks to two embedded Nickel
electrodes worn in direct contact to the finger skin, applied through two small
velcro bands. The GSR sensor operates at 3.3 V or 5 V, and its sensitivity may
be adjusted via a potentiometer. A 4-wire cable is used to connect the GSR
sensor to the Arduino UNO board. The signal acquired by the sensor is the skin
resistance, encoded into an analogue voltage reading. To remove glitches, the
code embedded into the firmware computes the average resistance value over 20
samples, in a 100 ms time interval. This way, resistance samples are acquired
at a frequency 10 Hz. The analog skin resistance values are converted into 10-
bit digital ones. It follows that the digital resistance values will range from a
minimum of 0 to a maximum of 1023. By acting on the sensor potentiometer,
the open circuit output (i.e., when the electrodes are not applied on fingers) may
be set to 512, i.e., at the center of the output values range, to take advantage of
the whole sensor dynamics. When using the device, power is preferably provided
by an external supply, for better signal stability, and a USB cable connected to
a PC allows to save data values into a file, for further processing.

3.2 Data Collection Protocol

In a first data collection session aimed at acquiring signals of relaxation state at
rest condition, 2 young subjects (both 23 years old) were involved. Since fingers
are among the most sensitive SC measurement sites and strongly respond to
stimulation [27] (together with hand palms and foot soles) the sensor electrodes
were placed on both index and middle fingers of the non-dominant hand with
velcro stripes, as shown in Fig. 3. Following the open-circuit calibration of the
device, the electrodes were suitably worn for ensuring the best adherence on the
skin, and guaranteeing an accurate acquisition. As suggested in [23], prior to
collecting data, the two individuals were instructed to breathe normally, keep
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limb movements to a minimum, try not to talk, and seat comfortably in a natural
position. This procedure aimed to collect the subject’s basal state and also to
minimize artefacts.

Fig. 3. Position of the wearable Arduino-based Grove GSR sensor.

GSR values were collected for 7 days, 3 times per day (i.e. after breakfast,
after lunch, and after dinner) with a duration of 5 min per each acquisition.
A total of 105 min of data, for each individual, was recorded in a week. Such
data, acquired with the sampling frequency set 20 Hz, was transferred by directly
connecting Arduino platform to a PC, saved in .txt files by using Coolterm
software tool, and then analysed in Matlab environment.

Then, a data collection protocol was defined for experiments with acoustic
stimulation. Six subjects, 5 females and 1 male, in the age range 20–51 years,
were asked to lay supine on a bed, with arms at their sides, and to settle in a
comfortable position. A bedroom was chosen as a recording environment, paying
attention to have controlled ambient conditions to put the subjects at ease, and
avoid light stimuli. Before connecting the equipment, some precautions were sug-
gested to make the acquisitions more precise: it was asked to breathe normally,
to relax and to avoid movements as much as possible, so as to minimize artifacts
on the acquired data. The Arduino GSR sensor was applied with its power and
ground electrodes respectively connected to the index and middle fingers of each
subject’s left hand, at approximately the height of the last phalanx, as shown in
Fig. 3. As a last indication, subjects were asked to place the palm of their hand
on the surface of the bed, to improve the coupling and reduce artifacts due to
involuntary movements.

Performed acquisitions consisted of two phases: the former, lasting between
10 and 15 min, took place in the absence of audio stimuli to derive the subject’s
baseline GSR. In the latter phase, each subject listened to 5 audio tracks of
different types and duration, played in a randomized order, then expressed how
pleasant each listening was, with values from 0 (i.e. no liking at all) to 100 (i.e.
extreme satisfaction). The audio tracks used as stimuli belong to the following
genres: Track 1 - classical music, Track 2 - jazz music, Track 3 - white noise, Track
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4 - rock music, and Track 5 - snoring noise. During both the sessions, subjects
were provided with active noise canceling headphones, strongly recommended to
improve listening quality and isolate from disturbances.

3.3 Data Processing

According to the Grove-GSR Sensor datasheet [33], the raw GSR data consist
of time instants and the corresponding sensor values. Such data were firstly
converted into human resistance (i.e. GSR) values, expressed in Ω, according to
Eq. (1):

GSR[Ω] = ((1024 + 2 × SPR) × 100000)/(512 − SPR), (1)

where SPR stands for Serial Port Reading, i.e., the value displayed on the
Serial Port (between 0 and 1023). From the skin resistance values output by
the sensor, a conversion to skin conductance (given in µS) may be performed
according to Eq. (2):

SC[µS] = 106 ∗ (1/GSR[Ω]) (2)

Since the GSR signal (and the SC one as well) is an aggregate of two different
components, the signals acquired were decomposed into tonic and phasic com-
ponents. Inspired by the approach described in [23], the tonic component was
obtained by applying the basic median filter to the entire signal. In particular,
considering sample by sample, the median GSR was computed for each sample
and the surrounding samples in the 4 s time interval centred on the current sam-
ple (i.e., 80 samples before and after the current one). The phasic component
is obtained by subtracting the tonic one from the original GSR signal. Among
the most common methods to analyse the phasic component, a classic one is the
through-to-peak detection [10,15], which is achieved by finding the onset and

Fig. 4. A sample SC signal generated by processing the Arduino GSR sensor data, and
its tonic and phasic components.
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offset of signal’s peaks. According to the physiological definition of the param-
eters of phasic electrodermal activity curve [4,23], the onset is generally set to
the time point where the curve exceeds a minimum amplitude criterion. Hence,
setting two thresholds (peak onset and offset, THON and THOFF ) an onset is
identified when the signal goes over THON and an offset when the signal gets
below THOFF . Then, back to the unfiltered GSR data, the maximum GSR value
within each pair of onset and offset is computed and labelled as a GSR peak.
From these values, the GSR amplitude is obtained as the difference in signal
magnitude at the onset and the peak value.

An example of an SC signal (derived from the GSR one, based on Eq. (2)),
from which the phasic and tonic components have been extracted, is shown in
Fig. 4.

To analyse the collected data under acoustic stimulation, following the con-
version of the values displayed on the Serial Port by the Arduino GSR sensor
into GSR (i.e., human resistance), according to Eq. (1), then the initial and the
final 10 samples of each acquired signal were removed, to eliminate the transient
error and select the GSR data of interest.

4 Results and Discussion

Since everyone has a specific physiological responsiveness at rest, the measured
GSR is subjective, depending on the individual. Generally, an initial baseline
measurement is carried out for a few minutes, followed by the GSR activity’s
recording. This procedure allows to identify the so-called baseline, that includes
individual GSR features and the differences among physiological condition at
rest. Moreover, it allows to avoid some issues related to dry skin or undesired
environmental stimuli [18]. An example of different neutral baseline signals from
two subjects is reported in Fig. 5.

Fig. 5. Baseline of GSR data recorded for a) subject 1, and b) subject 2, during
session 4.
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Table 1. Number of peaks related to the GSR signals of subject 1.

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7

Session 1 248 334 156 1538 396 429 389

Session 2 259 283 449 432 402 464 381

Session 3 128 251 401 320 356 438 396

Table 2. Number of peaks related to the GSR signals of subject 2.

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7

Session 1 219 130 173 185 245 263 139

Session 2 326 443 266 237 358 361 322

Session 3 480 231 428 390 394 315 389

Tables 1 and 2 detail the results obtained in the first analysis of this exper-
iment, respectively for the subject 1 and 2. More specifically, in this phase, the
number of GSR peaks was counted for each recorded session (i.e., three times
per day), and the highest number of peaks achieved in a day was highlighted.

The second analysis was focused on the computation of two statistical figures,
namely the average peaks amplitude [µp, in Ω] and the corresponding standard
deviation [sp, in Ω]. The weekly results related to the three sessions performed
by the two subjects are summarized in Table 3.

In this study, we used the number of peaks on the phasic component as
representing the signal physiological content, whereas the mean amplitude of
peaks and the corresponding standard deviation metrics were considered for a
quantitative analysis of the GSR signal variations.

As underlined in Tables 1 and 2, while the highest number of peaks for the
second subject was mainly achieved in the evening sessions (i.e., Session 2),
for the first subject it was achieved in the afternoon sessions (i.e., Session 3).
Moreover, it is interesting to notice how the signals acquired by the first subject
had a number of peaks several times exceeding those acquired by the second
individual. The second part of experiment was focused on the evaluation and
discussion of the highest average amplitude and standard deviation of peaks. As
shown in Table 3, the highest values of average amplitude were reached in both
Session 2 and 3, respectively for the subject 1 and for the subject 2. Moreover,
almost in the overall sessions, it can be noticed the inverse proportion between
the number of peaks and the average amplitude. This relation trend is much
more evident in the second subject than in the first one. Indeed, considering
the subject 1, the highest number of peaks may be associated to the shortest
average amplitude in three out of seven days, while considering the subject
2, in six out of seven days the number of peaks increases where the average
amplitude decreases. The values of standard deviation also confirm the high
daily variability of the signal. However, a common trend may be observed in
the majority of days. In fact, almost in the overall session, both the subjects
showed the highest standard deviation in the morning acquisition. Contrarily,
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Table 3. Average Amplitude (µp, in Ω) and Standard Deviation (sp, in Ω) of GSR
peak values, related to both subject 1 (on the left) and subject 2 (on the right).

Day Session μp [Ω] sp [Ω]

Day 1

Session 1 85.7 296.3

Session 2 40.4 441.5

Session 3 174.2 330.7

Day 2

Session 1 71.8 366.9

Session 2 17.2 79.8

Session 3 31.9 116.4

Day 3

Session 1 483.2 1.1× 103

Session 2 22.3 168.2

Session 3 18.7 163.4

Day 4

Session 1 64.1 493.9

Session 2 7.0 144.8

Session 3 27.9 198.5

Day 5

Session 1 14.6 234.1

Session 2 30.5 205.8

Session 3 212.4 2.9× 103

Day 6

Session 1 34.3 318.8

Session 2 42.5 417.2

Session 3 0 0

Day 7

Session 1 23.3 460.3

Session 2 22.1 162.6

Session 3 19.4 157.6

Day Session μp [Ω] sp [Ω]

Day 1

Session 1 87.4 260.4

Session 2 11.1 98.3

Session 3 4.8 41.4

Day 2

Session 1 184.5 376.7

Session 2 8.1 130.3

Session 3 17.7 63.8

Day 3

Session 1 139.8 293.3

Session 2 19.2 83.3

Session 3 4.3 53.3

Day 4

Session 1 56.7 152.7

Session 2 141.6 370.8

Session 3 1.6 22.2

Day 5

Session 1 46.5 134.4

Session 2 19.4 114.4

Session 3 3.6 37.3

Day 6

Session 1 100.6 354.2

Session 2 11.7 65.5

Session 3 19.5 77.9

Day 7

Session 1 104.3 214.3

Session 2 13.6 89.8

Session 3 28.7 321.3

Table 4. Mean value (µ) and standard deviation (s) of the GSR, and percent pleasure
value (Ple.), for each track and subject.

Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 Subject 6

GSR µ GSR s Ple. GSR µ GSR s Ple. GSR µ GSR s Ple. GSR µ GSR s Ple. GSR µ GSR s Ple. GSR µ GSR s Ple

[Ω] [Ω] [%] [Ω] [Ω] [%] [Ω] [Ω] [%] [Ω] [Ω] [%] [Ω] [Ω] [%] [Ω] [Ω] [%]

Baseline 493 8 −− 437 15 – 336 16 – 140 36 – 426 4 – 445 3 –

Track 1 474 13 85 385 41 55 342 22 10 249 48 55 438 3 100 428 1 100

Track 2 466 14 100 429 24 30 350 17 80 235 51 65 424 15 100 391 11 90

Track 3 466 10 40 318 29 10 313 13 0 225 18 4 330 20 5 365 20 10

Track 4 471 10 60 407 20 70 315 13 80 198 68 60 380 28 70 415 14 80

Track 5 461 8 30 334 29 0 294 15 0 172 17 0 338 18 0 364 26 0

analysing the remaining standard deviation values, the subject 1 achieved the
lowest values mainly in the session 2 while the subject 2 in the session 3. The
outcomes confirm as the GSR is a daily changing signal, reflecting the variability
in electrical resistance of the skin related to sweating.

For the analysis of the skin resistance variations due to acoustic stimulation,
the mean and standard deviation values of the GSR were computed, for each
acquired GSR data series corresponding to each subject, both in the baseline con-
dition and during each audio track listening. Additionally, for each subject, the
difference in absolute value between the mean GSR measured in the baseline, and
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Table 5. Difference between the mean GSR value corresponding to the track listening
(µt) and the mean GSR value of the baseline (µb), and percent pleasure value (Ple.)
for the track, for all the subjects. The bold numbers correspond to the two highest
mean GSR difference values, for each subject.

Track Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 Subject 6

µt − µb Ple. µt − µb Ple. µt − µb Ple. µt − µb Ple. µt − µb Ple. µt − µb Ple.

[Ω] [%] [Ω] [%] [Ω] [%] [Ω] [%] [Ω] [%] [Ω] [%]

Track 1 19 85 52 55 5 10 109 55 13 100 17 100

Track 2 27 100 7 30 14 80 95 65 2 100 54 90

Track 3 27 40 119 10 23 0 85 4 96 5 79 10

Track 4 22 60 29 70 21 80 58 60 46 70 30 80

Track 5 32 30 103 0 43 0 32 0 87 0 81 0

Fig. 6. Mean values of GSR, and percent pleasure during Track 5 reproduction, for the
6 subjects.

the mean GSR measured during acoustic stimulation, was computed, with the aim
of evaluating the variations of the signal with respect to the reference condition.

Table 4 shows the experimental results in terms of mean value (µ) and stan-
dard deviation (s) of the GSR for every track and every subject, compared to
the values measured for each subject in the baseline. Table 5 shows the differ-
ence between the mean GSR during each track stimulation, and the mean GSR
measured for the baseline. In both the tables, also the pleasure felt during the
listening experience, and expressed in percent values, is provided, for each sub-
ject and audio track. As it can be seen in the tables, Track 3 and Track 5, that
are white noise and snoring noise respectively, present the lowest scores pleasure.
This result is reflected also in the difference values of Table 5. In fact, for Track
3 and Track 5 the difference is higher for every subject, except for subject 4.
Moreover, Fig. 6 shows the mean values of the GSR and the pleasure scores for
every subject reported in Table 4, but only for Track 5 (i.e., snoring noise), that
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is the track with the lowest pleasure scores, and for which a highest difference
between mean GSR values is found in 5 subjects out of 6.

These results, despite not being generalizable because of the limited number
of tests participants, show that the impact of the audio stimuli on a subject
is more evident when unpleasant sounds (white noise and snoring noise, in the
cases under study) are involved. On the contrary, there is no evident correlation
between GSR values and pleasant tracks (with pleasure > 80). In fact, for some
subjects a pleasure of 100% corresponds to a high difference on mean GSR (e.g.,
subject 1), while for other subjects it is related to a low difference on mean GSR
(e.g., subject 5 and subject 6).

5 Conclusion

In order to investigate the individual GSR features, it is crucial to compare the
individual baseline of GSR activity and the stimuli-evoked reactions. However,
many studies omit the research of GSR in physical and mental rest conditions.
For this reason, this work proposes an experimental approach that allows to
explore the GSR data recorded at rest condition, by means of a portable low-
cost and easy-to-use device.

Firstly, the analysis went through a qualitative approach, finding the rela-
tionship between the number of peaks and the trends of GSR signal recorded
by two different subjects at rest. Since the GSR is a subjective signal and mea-
surement, it is very difficult to perform a comparison between different subjects,
especially due to their own skin resistance with individual basis threshold and
peaks [14]. The findings of this study, despite not being generalizable because of
the limited number of test participants, suggest that the impact of the acoustic
stimuli on a subject is more evident when unpleasant sounds are involved. Addi-
tional research should be performed to clarify the effects associated to sounds
perceived as pleasant.

The outcomes of our exploration can be considered promising for future anal-
ysis. Some developments might regard the extraction of GSR features to classify
emotional response in reaction to external audio stimuli and compared to a self-
assessment questionnaire. Moreover, future works should focus on expanding the
validation and the reliability of the investigated experimental approach, involv-
ing a larger population.
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Abstract. In the area of smartphone-based hearing screening, the number of
speech-in-noise tests available is growing rapidly. However, the available tests
are typically based on a univariate classification approach, for example using the
speech recognition threshold (SRT) or the number of correct responses. There is
still lack of multivariate approaches to screen for hearing loss (HL). Moreover, all
the screening methods developed so far do not assess the degree of HL, despite the
potential importance of this information in terms of patient education and clinical
follow-up. The aim of this study was to characterize multivariate approaches to
identify mild and moderate HL using a recently developed, validated speech-in-
noise test for hearing screening at a distance, namely the WHISPER (Widespread
Hearing Impairment Screening and PrEvention of Risk) test. The WHISPER test
is automated, minimally dependent on the listeners’ native language, it is based
on an optimized, efficient adaptive procedure, and it uses a multivariate approach.
The results showed that age and SRT were the features with highest performance
in identifying mild and moderate HL, respectively. Multivariate classifiers using
all theWHISPER features achieved better performance than univariate classifiers,
reaching an accuracy equal to 0.82 and 0.87 for mild and moderate HL, respec-
tively. Overall, this study suggested that mild and moderate HL may be discrimi-
nated with high accuracy using a set of features extracted from theWHISPER test,
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tests able to provide specific recommendations based on the degree of HL.

Keywords: Hearing loss · Hearing screening · Machine learning ·
Smartphone-based screening · Multivariate classifiers

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2023
Published by Springer Nature Switzerland AG 2023. All Rights Reserved
S. Spinsante et al. (Eds.): HealthyIoT 2022, LNICST 456, pp. 81–92, 2023.
https://doi.org/10.1007/978-3-031-28663-6_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-28663-6_7&domain=pdf
http://orcid.org/0000-0003-0432-1314
http://orcid.org/0000-0002-2248-8145
http://orcid.org/0000-0001-9381-3833
http://orcid.org/0000-0002-1341-2560
https://doi.org/10.1007/978-3-031-28663-6_7


82 E. M. Polo et al.

1 Introduction

In the growing field of mobile health (mHealth), a number of smartphone hearing health
apps have been developed for a variety of purposes, e.g., hearing screening, hearing aid
management, patient education, and hearing rehabilitation [1–5]. Hearing screening is
becoming increasingly popular as a means to increase awareness and identify the earlier
signs of age-related hearing loss (HL), which would be typically left unnoticed other-
wise [6, 7]. Among the validated apps introduced for adult hearing screening, some use
pure-tone audiometry whereas others use speech-in-noise testing. The interest around
speech-in-noise screening tests is growing as they can help detect real-life communica-
tion problems, for example difficulties in having conversations in noisy environments.
Moreover, differently than pure tone audiometry, speech-in-noise tests are less sensi-
tive to calibration procedures and can be performed in uncontrolled noise environments
[8–11].

Recently, we have developed and validated a novel, automated speech-in-noise
screening test viable for testing at a distance, e.g., through a web- or mobile-app, namely
theWHISPER test (Widespread Hearing Impairment Screening and PrEvention of Risk)
[12–16]. Differently than the majority of currently available speech-in-noise tests, the
WHISPER test is minimally dependent on the listeners’ native language, it is based on
an optimized, efficient adaptive procedure, and it extracts a list of variables in addition
to the speech recognition threshold (SRT), that is the most common variable used for
speech-based screening [12–15, 17]. Multivariate approaches to HL identification such
as the one used in the WHISPER test may help overcome the limitations of univariate
approaches based on SRT only. In fact, individuals with normal hearing may have poor
SRTs, whereas individuals with HLmay be able to reach satisfactory speech recognition
performance [18, 19]. Moreover, research has shown that features such as the subject’s
age or the average reaction time can help identify HL [13, 17, 18, 20, 21]. Nevertheless,
multivariate approaches to HL identification and classification are not widely adopted
yet.

In our previous studies, we have assessed the ability of multivariate approaches to
identify HL of mild degree or higher, using both the former and the newer World Health
Organization (WHO) definitions of HL (i.e., average value of pure-tone thresholds at 0.5,
1, 2, and 4 kHz (PTA) higher than 25 dB HL and higher than 20 dB HL, respectively [22,
23]). Specifically, in a preliminary sample of 148 participants (age = 52.1 ± 20.4 years;
age range: 20–89 years; 46 males, 102 female), we showed that multivariate classifiers
based on, for example, logistic regression (LR), support vector machines, k-nearest
neighbors, or random forest were more accurate than univariate classifiers to identify
HL of mild degree or higher, using the former WHO definition of HL [13, 15]. In the
same sample of participants, we showed that LR was also able to accurately predict the
self-perceived hearing handicap, as measured using the Hearing Handicap Inventory for
the Elderly–Screening Version (HHIE-S) [17]. In a larger sample of 207 participants
(age = 52 ± 20 years; age range: 20–89 years; 66 males, 141 female), we confirmed
that multivariate classifiers could achieve high accuracy (up to 0.85 with RF) and we
showed, using post-hoc explainability techniques, that he most important features for
the identification of mild HL, using the newer WHO definition, were age, SRT, average
reaction time, and percentage of correct responses [17].
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In all the above studies, multivariate algorithms were characterized considering
binary classification of two output classes, i.e., normal hearing vs HL (mild or higher).
Whereas binary classification can be appropriate for general HL detection, nevertheless
knowledge of the degree of HL (e.g., mild-to-moderate vs moderate) would be impor-
tant, particularly for hearing screening delivered at a distance using unsupervised tests
via web or smartphone. In fact, individuals with different degrees of HL should undergo
different intervention strategies and should be provided with different follow-up infor-
mation and educational content [24]. The aim of this study was to characterize, for the
first time, multivariate approaches to identify mild and moderate HL (mild HL: 20 dB
HL < PTA ≤ 40 dB HL; moderate HL: PTA > 40 dB HL) using the WHISPER test.

The article is organized as follows. Section 2 outlines the study participants and pro-
tocol and the data analysis approach used. Section 3 presents the results obtained in terms
of univariate and multivariate feature characterization and classification performances
for binary and multi-class classification (NH vs mild-to-moderate HL vs moderate HL).
Section 4 discusses the obtained results in the context of the available literature. Finally,
the conclusions of the study and the possible future developments are outlined in Sect. 5.

2 Methods

2.1 Participants and Procedure

The study sample included 350 participants (117 men, 223 women; age: mean 49 years,
range: 18–89 years) tested during HL awareness events. The study dataset includes 442
records (92 participants tested in both ears, 258 in one ear).

Pure-tone audiometry was performed at 0.5, 1, 2, and 4 kHz (Amplaid 177+ by
Amplifon, TDH49 headphones) and speech-in-noise testing using the WHISPER test.
Testing was performed in a quiet room at hearing screening and awareness initiatives.
The protocol was approved by the Politecnico di Milano Research Ethical Committee
(Opinion No. 2/2019, Feb 19, 2019; renewed by Opinion No. 13/2022, Apr 13, 2022).

The WHISPER test is delivered on a touch-screen interface and is based on an
adaptive procedure. Specifically, a sequence of meaningless vowel–consonant–vowel
(VCV) syllables (e.g., ata and asa) are presented at varying signal-to-noise ratio (SNR)
in a three-alternativemultiple-choice paradigm. Further details on theWHISPER test are
reported in [12, 15, 21]. The following features were extracted from the WHISPER test:
SRT, number of correct responses (#correct), percentage of correct responses (%correct),
average reaction time, and test duration.

2.2 Data Analysis

The ears tested were classified in three classes, following the WHO definitions of mild
and moderate HL [22, 23]. Specifically, the following three classes were defined: (i)
normal hearing (NH): PTA ≤ 20 dB HL; 299 ears (~68%); (ii) mild HL: 20 dB HL
< PTA ≤ 40 dB HL; 97 ears (~22%); and (iii) moderate HL: PTA > 40 dB HL; 46
ears (~10%). Six input features were considered for classification, i.e., the five features
extracted from the WHISPER test and the subject’s age.
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Univariate and Multivariate Characterization of Features. TheReceiver Operating
Characteristics (ROC) for binary classification (i.e., mild HL vs NH; and moderate HL
vs NH) were computed for each of the six input features and for LR on two combinations
of features, i.e.: (i) the full set of six features and (ii) a subset of features with AUC ≥
0.80 for both mild HL vs NH and moderate HL vs NH classification. The LR algorithm
was used following results from [15, 17].

The Shapiro-Wilk test was performed to check for normality of the distributions of
the six input features in the three output classes. As the distributions were not normal,
possible differences in median values between the three classes were assessed using
the Kruskal-Wallis test with Bonferroni correction. A significance level α = 0.05 was
considered.

Binary and Multiclass Classification Performance. Classification performance was
assessed by training a LR algorithm for binary classification (mild HL vs NL, moderate
HL vs NH) and multi-class classification (NH vs mild HL vs moderate HL). The data set
was randomly split into a training set including 80% of the sample (353 records) and a
test set including the remaining 20% (89 records). Stratification was applied to maintain
the same percentage of records in the two classes of the original data set in the training
and test partitions. Class weights were applied to the data to compute LR coefficients
to limit the effect of class imbalance, particularly for the moderate HL class. Data were
standardized to zero mean and unit variance. Due to the relatively small size of the data
set, 5-fold cross-validation was introduced on the training set to partially reduce the
influence of the selected partition on the trained model.

3 Results

Figure 1 shows the distributions of the six input features in the three output classes (NH,
mild HL, and moderate HL). Age, SRT, and average reaction time tended to increase
with increasing degree of HL. All the observed differences in median values of age, SRT,
and average reaction time were statistically significant, except for the age difference
between mild and moderate HL. The features #correct and %correct tended to decrease
with increasing degree of HL. All the observed differences in median values of #correct
and %correct were statistically significant. The test duration tended to increase fromNH
to mild HL, but not from NH or mild HL to moderate HL.

Figure 2 shows the ROC estimated using, for each HL class, the feature with highest
performance (age and SRT for mild and moderate HL, respectively) and using LR on (i)
the full set of six features and (ii) a subset of features with AUC ≥ 0.80, i.e. age, SRT,
and average reaction time. The univariate and multivariate performance of each feature
and feature combinations for mild HL vs NH classification and for moderate HL vs NH
classification is shown in Table 1 and Table 2, respectively.
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Fig. 1. Distribution of features in the three output classes: normal hearing, mild HL, andmoderate
HL. Statistically significant differences in median values between the classes are marked with *
(p < 0.05) and ** (p < 0.01).

The featurewith the highest performance formildHL identificationwas age,whereas
the one with highest performance for moderate HL identification was SRT (accuracy =
0.86 at the optimal cut-off value). For moderate HL identification, the performance of
age was lower than that of SRT but still relatively high (accuracy = 0.82). The optimal
cut-off values for age, SRT, average reaction time, and test duration increased frommild
to moderate HL, whereas those for %correct and #correct decreased with increasing
degree of HL, in line with the trends shown in Fig. 1. Using LR on combinations of three
or six features did not lead to improved performance formildHL identification, as shown
in Table 1. For moderate HL identification, LR on three and on six features achieved
improved performance (accuracy up to 0.90). In general, the highest performance for
both mild HL and moderate HL identification was observed using LR on the full set of
six features.

Table 3 shows the observed performance of LR for binary and multiclass classifi-
cation performance, as measured in the training set (average ± s.d. from 5-fold cross
validation) and in the test set. The observed accuracies were higher than 0.81 for binary
classification and equal to 0.72 for multiclass classification, with no remarkable dif-
ferences in performance between the average performance on the training set and the
estimated performance on the test set, suggesting no overfitting effects. For binary clas-
sification, both sensitivity and specificity were high, indicating very good performance.



86 E. M. Polo et al.

Fig. 2. ROC for binary classification (left-hand panel: mild HL vs NH; right-hand panel: mod-
erate HL vs NH). The three ROC shown represent: (i) the feature with the highest classification
performance, i.e. age for mild HL (dark blue) and SRT for moderate HL (red); (ii) LR of age, SRT,
and average reaction time (light blue); and (iii) LR of all the input features (black).

Table 1. Univariate and multivariate performance for mild HL at the optimal cut-off value.

Feature Sensitivity Specificity F1-score Cut-off AUC

Age 0.89 0.83 0.78 59 years 0.92

SRT 0.78 0.76 0.68 −12.14 dB SNR 0.85

Avg reaction time 0.74 0.75 0.64 1.9 s 0.80

Duration 0.57 0.61 0.48 252 s 0.58

%Correct 0.64 0.70 0.43 0.90 0.75

#Correct 0.67 0.66 0.44 66 0.74

LR (3 features) 0.86 0.86 0.79 – 0.92

LR (6 features) 0.87 0.86 0.80 – 0.93

The sensitivity in multiclass classification was lower compared to binary classification,
in line with the higher number of classes. Nevertheless, multiclass classification perfor-
mance was still good as sensitivity was around 0.70 and specificity was around 0.85. The
lower values of sensitivity, specificity, and accuracy measured in the test set shown in
Table 3 compared to those measured at the optimal cut-off value using the ROC (Table 1,
Table 2) are related to the use of machine learning, as opposed to simple ROC analysis,
and to the relatively small size of the dataset that leads to the observed variability in
performance due to the underlying uncertainty in data. This variability is demonstrated
by the observed standard deviation of the accuracy on the training set across 5-fold cross
validation (s.d. up to ± 0.05). The higher values of F1-score observed for moderate
HL vs NH classification compared to those shown in Table 2 may be related to the use
of class weights that may have partially compensated the effect of class imbalance on
F1-score estimates.
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Table 2. Univariate and multivariate performance for moderate HL at the optimal cut-off value.

Feature Sensitivity Specificity F1-score Cut-off AUC

Age 0.83 0.81 0.48 67 years 0.89

SRT 0.89 0.82 0.52 −7.48 dB SNR 0.89

Avg reaction time 0.83 0.72 0.38 2.20 s 0.83

Duration 0.41 0.70 0.19 274 s 0.49

%Correct 0.80 0.74 0.23 0.89 0.80

#Correct 0.82 0.78 0.24 60 0.88

LR (3 features) 0.93 0.82 0.52 – 0.92

LR (6 features) 0.93 0.86 0.57 – 0.93

Table 3. Binary and multiclass classification performance using LR.

Accuracy
(training)

Accuracy
(test)

F1-score
(training)

F1-score
(test)

Sens (test) Spec (test)

Mild
HL/NH

0.84 ± 0.05 0.81 0.83 ± 0.06 0.79 0.83 0.80

Moderate
HL/NH

0.85 ± 0.02 0.84 0.72 ± 0.03 0.72 0.89 0.84

Moderate
HL/mild
HL/NH

0.74 ± 0.04 0.72 0.63 ± 0.05 0.64 0.69 0.85

4 Discussion

The availability of methods for accurate identification of the degree of HL (i.e., mild vs
moderate) following hearing screening via unsupervised tests delivered through web-
or mobile- platforms would be important for tailoring clinical assessment and patient
education. Nevertheless, current univariate approaches typically target mild HL. Also,
there is still lack of multivariate approaches able to discriminate the degree of HL using
a speech-in-noise screening test. In this study, we characterized the univariate and multi-
variate performance of a set of six features extracted from theWHISPER speech-in-noise
screening test for the sake of identifying mild and moderate HL in unscreened adults.

Results in Fig. 1, Table 1, and Table 2 indicated that the univariate classification
performance of the six features extracted from the WHISPER platform varied with
varying degree of hearing loss. Specifically, the features with higher performance (i.e.,
AUC ≥ 0.80) for mild HL identification were age, SRT, and average reaction time.
The features with higher performance for moderate HL identification were age, SRT,
#Correct, average reaction time, and%correct. The highest accuracy at the optimal ROC
point was observed using age and a cut-off value equal to 59 years for mild HL and
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using SRT and a cut-off value equal to −7.48 dB SNR for moderate HL. Age and SRT
were the features with higher performance for both mild and moderate HL (AUC ≥
0.85), followed by average reaction time (AUC ≥ 0.80). The cut-off value for age, SRT,
and average reaction time increased with increasing degree of HL. The feature with the
lowest classification performance was test duration (AUC = 0.58 and 0.49 for mild and
moderate HL, respectively).

The relationship between SRT, pure-tone thresholds, and age is well known. Age-
related deficits in auditory and cognitive processing may play a role when speech is
presented in background noise such as in the proposed screening test [18, 25, 26]. As
shown in our earlier study, the interaction between age and PTA can accurately predict
SRT [12], in line with the fact that the ability to properly recognize speech is the result
of complex relationships between age, degree of HL, and cognitive abilities [27, 28].
The relevance of the average reaction time was also highlighted in previous studies in
relation tomildHL detection [13, 17] and it is confirmed here for bothmild andmoderate
HL classification. Regarding test duration, the univariate classification abilities were, in
general, poor, with negligible differences in the distributions of test duration across the
three classes. This may be interpreted in light of a compensation effect related to the
adaptive nature of the WHISPER procedure. In fact, individuals with increasing degree
of HL have in general poorer speech recognition abilities and worse cognitive abilities
and, as such, they tend to exhibit longer reaction times when responding to a given
stimulus in the trial. However, individuals with poorer speech recognition performance
tend to go through a lower number of trials in the adaptive procedure as the staircase
reaches convergence earlier if there is a high number of incorrect responses [12, 15, 17].

Multivariate characterization of features indicated that the classification performance
obtained using LR on age, SRT, and average reaction time (i.e., the three features with
AUC ≥ 0.80 for both mild and moderate HL) and the one obtained using LR on the full
set of six features led to increased performance compared to the best univariate feature.
LR on the six features yielded the highest performance for both mild and moderate HL
classification. These results suggest that a multivariate approach may be more accu-
rate than the best-performing univariate ones in discriminating different degrees of HL
from the speech-in-noise test here used. The accuracy obtained by training a ML clas-
sifier using the six features was 0.82 and 0.87 for mild and moderate HL, respectively,
suggesting high classification performance (Table 3).

The observed multivariate classification performance was equal to or higher than
that observed in previous studies or with other speech-in-noise tests. For example, iden-
tification of mild HL using the SRT estimated from English digits-in-noise test yielded
an accuracy equal to 0.82 [29]. In our previous study, using data from a smaller sample
of 207 participants, we observed an accuracy equal to 0.86 for mild HL using the full set
of six features [17]. The slightly lower accuracy observed in the current study may be
related to differences in the underlying data and classification approach. Specifically, in
[17] records with mild andmoderate HLwere aggregated in a single HL class, the output
classes NH and HL were balanced (54% vs 46%), and age was more strongly correlated
with HL. In a recent study, multiclass classification performance of the digits-in-noise
test was assessed using a univariate approach based on the estimated SRT in a large
sample of 3422 participants from the Rotterdam study. The observed accuracy at the
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optimal ROC point was 0.72 for mild HL (42% of the sample) and 0.95 for moderate HL
(12% of the sample) [30]. Another study assessed self-conducted SRT measured using
the German matrix sentence test in home settings against two criteria for HL, i.e. (i) the
earlierWHO criterion for mild HL (i.e., PTA> 25 dBHL), and (ii) the German criterion
for hearing aid indication (i.e., pure-tone threshold > 30 dB in one or more frequencies
between 500 Hz and 4 kHz), that is similar to a moderate HL criterion [31]. The study
showed that the accuracy for criterion (i) was 0.74 whereas that of criterion (ii) was 0.76,
i.e., lower than the performance here observed with our multivariate approach.

The study here shown has some limitations. First, the distribution of age and degree
of HL in our sample may not reflect that of the general population. For example, in our
sample we observed a prevalence of HL equal to 32% that is higher than the reported
prevalence of hearing loss in adults, i.e., about 20% [32]. This sampling bias may be
related to the experiment settings whereby data were collected primarily within the
context of hearing screening and awareness initiatives for the general public. For similar
reasons, the sample may have been biased towards higher age than that of the general
population. It will be important in future studies to limit the sampling bias and assess
the univariate and multivariate classification performance in a larger sample including
a higher proportion of individuals with NH and a higher proportion of middle aged
and young adults. In addition, our multivariate approach was based on a set of only six
features extracted from the WHISPER test. It will be interesting to investigate further
features, for example those related to psychometric functions estimated from the adaptive
procedure, or individual performance in subsets of stimuli (e.g., high-frequency vs low-
frequency stimuli), or more complex measures of reaction time. Inclusion of a cognitive
testing module into the WHISPER platform could also help address in more detail the
relationships between hearing sensitivity, speech recognition, reaction time, and aging.
Last, but not least, in this studywe focused on theWHISPER test only. Itwill be important
to investigate univariate and multivariate classification performance towards mild and
moderate HL using different automated speech-in-noise tests that may be delivered via
web or smartphone.

5 Conclusions

In this study we assessed, for the first time, the ability of univariate and multivariate
classifiers to identify mild and moderate HL in unscreened adults using a recently vali-
dated speech-in-noise test, the WHISPER test. The results showed that the features with
highest performance in identifying HL were different between mild and moderate HL.
Moreover, results showed that the performance of multivariate classifiers using the full
set of available features was better than that of the best-performing univariate classifiers,
reaching an accuracy equal to 0.82 and 0.87 for mild and moderate HL, respectively.
The results of this study are encouraging and suggest that mild and moderate HL may
be discriminated using a small set of features extracted from an automated speech-in-
noise screening test, laying the ground for the development of future self-administered
speech-in-noise tests viable for screening hearing and cognitive function at a distance
and potentially able to provide specific recommendations based on the degree of HL.
Access to amobile application that in a fewminutes can give a stratified indication on the
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degree of HL, considering not only the SRT but a broader picture of the subject, could
lead indeed to important benefits to individuals at risk of HL, who can quickly assess
their hearing, with improved accuracy as multivariate approaches can help overcome
limitations due to well-known mismatch between PTA and SRT in adults.
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Abstract. According to the World Health Organization (WHO), about
17.9 millions people per year die from cardiovascular diseases (CVDs),
representing more than 32% of all deaths recorded worldwide. Moreover,
focusing on the European Society of Cardiology (ESC) member countries,
CVDs remain the most common cause of death. Additionally, the world-
wide pandemic situation has further underlined the necessity of remote
health monitoring systems, aiming at remotely supervising patients by
clinicians, able to analyse and record a selected set of parameters with
high accuracy levels and promptly identify significant events. In this
scenario, this work aims to propose a reconfigurable preliminary proto-
type of Smart Healthcare Modular System (SHeMS), which combines
modularity and real-time signal analysis, leveraging on sensor fusion and
Internet of Things technologies. The architecture of the system, as well as
the selected main components will be presented, together with the ratio-
nale for the development of the whole system. The current evolution
of the project has focused particularly on the accurate measurement of
the electrocardiographic (ECG) signal, considered the most critical vital
parameter for remote monitoring. Besides, the presented ongoing activ-
ity is devoted to the implementation of other significant modules, like
SpO2, blood pressure, temperature, vocal messages, to enhance moni-
toring capabilities and increase the detection accuracy of critical events.

Keywords: Remote Health Monitoring · Modular System ·
Cardiovascular Diseases

1 Introduction

According to the World Health Organization (WHO), about 17.9 million peo-
ple die per year from to cardiovascular diseases (CVDs). This is more than
32% of all the deaths recorded worldwide, with more than 85% of these deaths
caused by heart attacks and strokes, sub-categories of CVDs [1]. Furthermore,
the European Society of Cardiology (ESC) reports frightening data related to
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CVDs-caused worldwide deaths. As [14] states, CVDs remain the most com-
mon cause of death within the ESC member countries, exceeding the number of
cancer deaths for both sexes. These data underline the importance of patients’
continuous health monitoring, especially for the case of heart failures (HF).

In addition, the worldwide pandemic of Covid-19 has shed light on the criti-
cal importance that a new generation of remote health monitoring systems are
available. These systems should enable physicians and clinicians to effectively
supervise patients remotely, with patients being in their home premises. This is
already partially possible, but most of the available systems are non-real-time,
providing data in batches once or twice a day, and require both a mobile private
and carrier-operated connection, and an access to a private cloud operated by
the system manufacturer. These last are high-cost facilities for the healthcare
system, and does not allow a full control of the monitoring parameters and peri-
ods. Remote monitoring systems should instead support for a continuous and
real-time feed of data, measured with the help of potentially wearable devices,
able both to analyze and record a selected set of vital parameters, with clinical
accuracy levels, and to promptly identify significant events, possibly by means
of Artificial Intelligence (AI) algorithms. In this way, the need for hospitaliza-
tions would significantly decrease, consequently increasing resource availability
for major emergencies as well as reducing the patients’ waiting time.

In light of the previous considerations, a novel concept of remote health-
care device can be devised, which may leverages on a sensor fusion approach
to enhance analysis capabilities and accuracy, and which is able to provide a
continuous and real-time signal analysis. In this paper, the preliminary design
of a Smart Healthcare Modular System (SHeMS) is hence proposed, based on a
modular paradigm and Internet of Thing (IoT) technologies to enhance both cus-
tomization and availability of services almost everywhere, and free from carrier-
operated services. Modularity is a characterizing feature, allowing the system
to be composed around of and adapting to the specific disease and needs of
each patient, realizing an interesting reality merging home treatment and care.
SHeMS has been devised to provide a seamless, real-time and bi-directional rela-
tionship between patients and clinicians, also allowing remote diagnosis, recon-
figurability and sensors calibration.

To this goal, the description of this remote monitoring system (SHeMS) pro-
totype is provided where a central unit, hosting the main computing and IoT
capabilities, is a gateway for secondary specialized sensing elements. Some of
the considered sensing units could be possibly worn by patients, thus directly
acquiring and sending to the main computing unit the signals representing rel-
evant vital parameters. The considered vital signs can be related to heart rate
(HR), arterial oxygen saturation (SpO2), blood pressure, body temperature and
dehydration. Thanks to the modularity of the SHeMS system, additional sensing
units could possibly be inserted, e.g. glycemic sensors for diabetic patients and
posture sensors. Auxiliary units can be also employed, in order to both test the
patient’s cognitive competence, through vocal messages, or to simply assist the
patient himself/herself and check for some eventual feedback.
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This article is organized as follows. First, an introduction and explanation of
the vital parameters to investigate will be presented in Sect. 2. Then, in Sect. 3,
the needed general specifications will be provided, together with the discussion
about the actually employed components. The employed communication proto-
col is briefly explained in Sect. 3.4, whereas the currently developed software is
discussed in Sect. 3.5. Furthermore, a discussion about employed algorithm for
the ECG signal manipulation and peaks detection is carried out in Sect. 4, with
an emphasis on the future works the authors are committed to. Finally, the most
relevant conclusions will be provided in Sect. 5.

2 Vital Parameters of Interest

In order to realize the modular system introduced in Sect. 1, it is necessary to
investigate the main vital parameters that should be common for each patient,
independently of the clinical history of each subject. The electrocardiographic
signal analysis, namely ECG, through the electrocardiogram is the most common
test to diagnose CVDs in hospitals [4], thus it is the most important parameter to
be investigated. Indeed, through some signal processing algorithms, it also allows
to compute the heart rate, another important indicator for CVDs diagnosis. The
ECG signal, whose trace is represented in Fig. 1 is constituted by three main
components, or complexes:

– P waves;
– QRS-complex;
– T waves.

Fig. 1. ECG signal trace
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P-waves, in physiological conditions, alternate periodically. More in detail,
they represents the atrium depolarization, thus occurring for first and has a
general duration of about 110ms [8]. After P wave, the QRS-complex is regis-
tered. It is constituted by three different peaks (namely, Q, R, S) and represents
the depolarization of the ventricle, defining the onset of the ventricular contrac-
tion. Its normal duration ranges about 60ms−100ms [13] and it is the easiest
complex to identify, due to its amplitude with respect to the other waves. The
last complex that is worth mentioning is the T wave, thus the representation of
the ventricle repolarization [7]. Its duration in physiological conditions is about
100ms−250ms [9]. After describing the ECG signal components it is possible
to conclude that the spectral content of the ECG signal belongs to the low fre-
quencies range (approximately 0.5Hz−150Hz). Foreseeing the useful signal con-
tributes, the highest frequency contribute is contained into the QRS-complex.
The lowest frequency contribute is instead contained into the P and T waves,
even though they are important indicators of many CVDs. From the analysis
of the ECG peaks and characteristics it is possible to detect heart anomalies,
together with the heart rate. From the heart rate, another parameter of inter-
est, it is possible to extract the heart rate variability (HRV), that records the
beat-to-beat variations of HR, and the intervals between R-R peaks intervals
(QRS-complexes) [10]. Another important parameter strictly related to CVDs
and other relevant diseases is the blood pressure, namely BP (both systolic and
diastolic). As [16] states, there is a strong and significant association between
BP and risk of CVDs and this relation is independent of other risk factors for
CVDs (e.g. age, gender, body weight). For example, hypertension is considered
the leading preventable risk factor for both CVDs and all-cause mortality in
developing countries. Blood oxygen saturation (SpO2) and temperature are two
additional parameters to be taken into account since they allow the clinician
and the patient her/himself to check the general state of health, that in many
conditions is an important indicator for patients affected by CVDs.

3 General System Description

The architecture of the proposed SHeMS system is represented in Fig. 2, and is
constituted by three main blocks:

– Data acquisition block;
– Data collection station block, simply constituted by a Raspberry Pi3;
– Backend PC block, currently under development.

In summary, the mainly employed components are resumed in Table 1.

3.1 Data Acquisition Block

An important requirement for this block is to be lightweight and sufficiently
small, since it has to be worn by the subject. Its simplified schematic is rep-
resented in Fig. 3, where a microcontroller based on the ESP32 architecture is
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Data Acquisition

Sensors

Local MCUs
ESP32

Data Collection Station
Raspberry Pi3Backend PC

Patient

Clinician

Fig. 2. SHeMS general architecture

Table 1. Employed components

Component Type Component Name Role Communication Way

Microcontroller ESP32 - WROOM32 Data acquisition Serial with sensor,
MQTT with data
collection station

Processing unit Raspberry Pi 3 Data collection
station

MQTT with data
acquisition block

Sensor AD8232 Sensing unit as a
part of data
acquisition block

Serial with
microcontroller
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Fig. 3. Data acquisition block preliminary schematic

shown on the left, whereas the rightmost module is the measuring sensor, which
receives input data directly from the patient. The sensing unit represented in
Figs. 2 and 3 is only one of the possible employable devices.

In particular, the current choice has been on a ECG-trace recording based on
the AD8232 chip, represented in Fig. 4a [2]. This is a small and cheap integrated
signal conditioning block for ECG signals, which specifically allows to manip-
ulate single-lead acquired ECG signals, thus allowing a two or three electrodes
configuration. Thanks to its specific internal design, it amplifies and filters the
small biopotential signals received by the electrodes, also in noisy conditions. As
reported in its datasheet [2], the AD82838 allows for an ultralow power analog-
to- digital converter (ADC) or an embedded microcontroller to easily acquire the
output signal. For this work, all three electrodes have been employed. Two of
them were placed in the wrists, to acquire the biopotential that has to be effec-
tively examined. The third has been placed in the right lower pelvis, in order to
reduce the common-mode interference [15].

Together with the AD8232, the data acquisition block is constituted by a
microcontroller directly connected to the sensing unit. In this case, an ESP32-
WROOM-32 [6] has been employed, which is represented in Fig. 4b. This module
presents some significant advantages, the main being:

– Cheapness;
– Compact size and low weight;
– Built-in IoT/network support;
– Printed on board antenna;
– Dual-core possible operation.

One of the most attracting feature of the chosen computing module is its intrin-
sic support for data transmission over a Wi-Fi network. This is an ideal feature
for this project, since the data acquired from connected sensors can be previously
stored in a convenient format, and then sent to a data collection unit, or central
gateway, the second block of SHeMS, which resides in the surroundings of the
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(a) AD8232 single-lead heart rate monitor (b) ESP WROOM 32 board

Fig. 4. Components currently employed in the data acquisition block

patient, typically within the same building. This will allows module-to-module
communications without the need for further network support, and also might pos-
sibly exploit already existent Wi-Fi networks. Furthermore, an extremely interest-
ing feature is the presence of two cores, since due to the high amount of data to be
acquire and then transmitted, it is hence possible to split the workload in paral-
lel over the two cores, with one continuously managing the sensing units for data
acquisition, and the other one instead devoted only to the management of the net-
work interface.

It is worth mentioning that although this work will only briefly discuss the
simulation viewpoint in Sect. 4, between the AD8232 and the ESP32 control unit
a filtering stage for noise suppression has been designed. In particular, the main
noise sources are [5]:

– Baseline wander, caused by different factors, such as respiration, body move-
ments, poor skin-electrode contact;

– Powerline interference;
– Muscle artifacts.

3.2 Data Collection Block

This block is mainly constituted by a Raspberry Pi3 located in the same build-
ing of the data acquisition block, as previously mentioned in Sect. 3.1. Basically,
it should continuously acquire data, received from the data acquisition station,
for a quite long amount of time (e.g. a couple of hours), to let the clinician
check the patient health status. After the data collection, it simply elaborates
it, following the logic briefly presented in Sect. 4. So far, the latter has been sim-
ulated on Matlab, thus not guaranteeing sequentiality between data acquisition
and elaboration. The authors are committed to reproduce the same algorithm in
another programming language, in order to let Raspberry Pi3 do the final data
elaboration.
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3.3 Backend PC Block

This block is currently under development but it has been thought as very simple.
In particular, it should only display the elaborated data and the relative results,
thus merely being a User Interface for the clinician to finally check the patient’s
health status and not having any computational power. Needing to be used
by a clinician, it will not be located in the surroundings of the patient but,
hypothetically, in the clinician’s office. To this aim, the authors will use Wi-
Fi technology for the data transmission between the backend PC and the data
collection block.

3.4 Employed Communication Protocol

After introducing the general system architecture, it is worth spending some
words about the communication protocol stack chosen for data exchange over
Wi-Fi, namely MQTT (Message Queue Telemetry Transport).

This is a widespread, simple and lightweight publish/subscribe communica-
tion protocol, very interesting for IoT applications (employed for instance in
healthcare, energy and utilities, social networking [12]), especially for the case of
limited-capabilities smart devices [11], as those employed in this work. It relies
on the TCP/IP classic protocol stack, and in particular it typically exploits TCP
at the transport layer to ensure the needed reliability. At the same time MQTT
is lightweight in that it defines control messages with a very low overhead: these
require just a 2 Bytes fixed header, which can be possibly expanded, followed
directly by the user payload.

At the base of the MQTT protocol there is a Publish/Subscribe model [12].
Here, the Publisher publishes messages to the Broker, while the Subscriber sub-
scribes to the so-called topics, that can be basically considered message subjects.
When subscribing to particular topics, the Subscriber is able to receive every mes-
sage published to the latter ones. The architecture of an MQTT network involves
the entities Client and Broker. More in detail, as it is possible to see in Fig. 5,
the Client can be both a Publisher or Subscriber and is in charge of establish-
ing the network connection to the Broker. A client, once connected, can publish
messages relevant to a specific subject, subscribe to other subjects for receiving
messages, unsubscribe to subscribed subjects, and detach from the Broker [12].
The Broker in turn receives all the messages from the Client, thus being able
to decide whether to accept or not Client requests. Furthermore, it can receive
published messages by the users, process different requests like Subscribe and
Unsubscribe from the users and send the latter to the users.

MQTT supports three levels of Quality of Service (QoS):

– QoS0: the message is sent at most once, thus not necessarily guaranteeing the
message delivery;

– QoS1: the message is sent at least once;
– QoS2: through 4-ways handshaking, the message is sent once.
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Fig. 5. MQTT protocol architecture

The selection of the QoS level depends on the specific application. In this case,
QoS0 has been preliminarily employed, since it represents the option with the
lower cost in terms of data transfer volume. Additionally, the connection between
the Publisher (in this case, the ESP32 module) and the Broker (with reference
to Fig. 2, the Raspberry Pi3 board) was considered reliable, also thanks to the
operation environment, considered pretty close to the real future application of
the system (at the patient’s home). Clearly, the intended application aims at
highly reliable acquisition of vital parameters, therefore the QoS level choice
will be further investigated in next project steps.

3.5 Developed Software

In this Section, the developed software for the correct operation of each block
will be presented. In particular, the following algorithms will be briefly discussed:

– MQTT Publisher -Broker data exchange and connection (Publisher side);
– Acquired ECG signal manipulation for peaks detection.

The code relative to the MQTT Publisher -Broker connection, at Broker side
is not discussed due to its simplicity. Indeed, it simply initially checks whether
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Fig. 6. Flowchart for the MQTT Publisher -Broker data exchange and connection (Pub-
lisher side)

the Broker, that is the Raspberry Pi3, is connected to the Publisher, that is the
ESP32. Then, it continuously acquires the data received by the Publisher and
saves the latter into a text file. The data acquisition and the connection can be
stopped in any moment.



Smart Healthcare Modular System - A Preliminary Prototype 103

3.6 MQTT Publisher-Broker Data Exchange and Connection
(Publisher Side)

In order to better understand the working principle under this algorithm, a
flowchart is represented in Fig. 6. After establishing the Wi-Fi connection, the
connection to the Mosquitto Broker is performed, through the employment of
a readily available library, namely the PubSubClient library. Nevertheless, its
usage will be reviewed in future implementation, since it currently presents some
limitations in terms of choice of the QoS level, although at the moment the chosen
QoS0 level is supported without issues.

Then, two parallel tasks (threads) are executed over the two cores of the
ESP32 microcontroller. In particular, the first task is performed by Core0, and
is relevant to the acquisition of the ECG signal measurements. The sampling rate
of the acquisition process has been set to fs = 720 Hz, where each sample is rep-
resented by a 4 Bytes floating point data. These measurements are immediately
stored within a suitably defined FIFO queue whose size is 3KB, thus allowing
for a maximum storage of 750 samples. In parallel, the second task is run over
Core1, and its main duties are the extraction of new samples from the queue,
the encapsulation within an MQTT control message and the subsequent trans-
mission over Wi-Fi. Specifically, samples extraction is performed over a period
of 1 s (i.e. 720 samples are collected) with the consequent creation of a payload
of 2880 Bytes for the MQTT message. Once the message is ready, Core1 initiates
an immediate transmission over the Wi-Fi link, to publish the new information
message to the Broker. The chosen parameters, i.e. the queue size and the trans-
mission period, have been defined to ensure, on the one hand to decrease the
Wi-Fi link usage as much as possible, to improve energy efficiency, trading off
with the payload length to avoid data loss over the Wi-Fi link. On the other
hand, such parameters ensure a continuous acquisition from the measurement
ADC.

4 Algorithm for ECG Signal Manipulation and Peaks
Detection: Preliminary Results

In this section, the first preliminary results obtained for the ECG signal acqui-
sition are presented. In particular, at first the signal conditioning technique is
described. Then, this is applied to the signals acquired by means of the afore-
mentioned sensor (i.e. the AD8232), which is connected to the ESP32 module,
which in turn encapsulates them into MQTT control messages sent over wireless
to the Raspberry Pi3 Broker.

As it is possible to see in Fig. 7, after acquiring the data from the Broker
and saving it to a text file, a preprocessing has been carried out. As stated in
Sect. 3.1, this filtering stage is a simulation of the analog filtering stages that
will be introduced in the data acquisition block, in order to manage the noise
and interference issues. As previously introduced in Sect. 2, the ECG signal fre-
quencies of interest range from 0.5Hz to approximately 150Hz.
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Digital Signal Filtering
HPF LPF BSF

R - Peaks
Detection

Fig. 7. Signal processing block diagram

Therefore, at first a high pass filter (HPF) with a cut-off frequency of
f1 = 0.5Hz has been implemented, followed by a low pass filter (LPF) whose
cut-off frequency is set at f2 = 150Hz. Then, a band-stop filter (BSF) with
f3 = 50Hz center frequency has been applied, in order to address the powerline
interference issue. Besides the filtering stage, other secondary signal processing
operations have been programmatically performed, like signals resampling at
fs = 720Hz and successive normalization to maximum. Subsequently, a pair of
derivative filters and max filtering were employed for peaks detection, following
the approach suggested in [3]. The derivative and max filters were applied on
windows of W = 4000 samples with a sliding window of size S = 3200 samples,
thus with an overlap between windows of 1

5 W .
The result can be appreciated in Figs. 8 and 9, for signals acquired with a

duration of 60 s. As stated in Sect. 3.1, the electrodes in charge of the ECG-
acquisition were positioned in correspondence of the wrists and the third elec-
trode was positioned in the right lower pelvis. Foreseeing the ECG signal repre-
sented in Fig. 8, the patient did not carry out very fast movements but simply
stood up and down, moved the arms and hands and slowly walked. The R-peaks
are all successfully detected, albeit also two P-wave peaks have been also marked.
In order to overcome this issue, a comparison algorithm is being developed.

The compared signals are the one resulting from the application of the algo-
rithm of [3] and a signal resulting from a band-pass filter, to which an envelope
signal has been applied. In this way the missing R-peaks can be inserted and
the erroneously detected P-wave peaks can be removed. The signal presented
in Fig. 9 is instead characterized by only noise, thus the patient moved very
fast the wrists, thus worsening the skin-electrodes contact surface, stood up and
down very rapidly and without caring about the presence of the right lower
pelvis-positioned electrode, so as to dirty the acquired signal trace as much as
possible.
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Fig. 8. R-peak detection algorithm for a signal characterized by a low-noise level. The
patient stood up and down quite slowly and did some steps calmly
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Fig. 9. R-peak detection algorithm for a signal characterized by only noise. As it is
possible to notice, no R-peaks have been detected by the algorithm. The patient carried
out very fast movements, trying to be as much agitated as possible
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5 Conclusions

This paper addressed a very hot research topic, further underlining the impor-
tance and the possibility of patients’ remote health monitoring. Indeed, the
introduction of a modular system that is easily reconfigurable depending on
the clinical history of the patient could help the clinicians to more precisely
provide more accurate diagnosis to the patients. The employment of a very com-
pact, lightweight, cheap and, at the same time, powerful MCU board, such as
ESP32, together with the exploitation of its two cores that guarantee a continu-
ous data acquisition and transmission to the data collection station, represents
an important point for this research. While the Core 0 of the MCU is acquiring
data, basing on the Tasks priority, the Core 1 is simply passing them to the
Raspberry Pi3 via MQTT, that is an easy-to-use communication protocol. The
code Tasks division is very helpful for the data transmission integrity and clarity.
Indeed, by giving a different priority to each Task for the ECG signals, oxygen
saturation and body temperature, it will be possible to let the data collection
station choose how to elaborate data. Moreover, modularity and reconfigurability
characterize the system so that it could be employed in a wider range of appli-
cations, not only for CVDs-affected subjects. In the perspective of a complete
development of the described system, namely SHeMS, the authors presented
some preliminary results that appear to be promising for the ongoing work.
While this article reported about an ongoing project, several considerations can
be already drawn about future activities and enhancements. As a matter of fact,
the forthcoming embedding of all the previously mentioned modules, such as
temperature, oxygen saturation, blood pressure and vocal messages will clearly
help to additionally provide a more personalized medical care. Besides, insert-
ing these modules means to deeply analyze computational capabilities of the
chosen ESP32 microcontrollers, and of the MQTT protocol settings. Moreover,
even though the multicore microcontroller architecture is beneficial for this type
of application, a more sophisticated sychronization algorithm between the Pub-
lisher and the Broker is under development. Another important advancement is
relevant to the peak detection algorithm, based on the comparison of the pro-
cessed signal and bandpass filtered signals in the frequencies of interest (relative
to R-peaks, P and T waves frequencies), that will help to consolidate the peaks
detection, trying to face the problem of patients’ sudden movements, that could
imply missed peaks’ classification or, additionally, peaks misclassification.
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Abstract. This paper presents a comparison of nine models for gender
identification using nonstandard ECG signal. Methods: QRS features,
QT interval, RR interval, HRV features and HR were extracted from
three minutes of 40 ECG’s (from 24 female and 16 males) available at
ALLab dataset and 108 ECG’s (from 52 female and 56 males) available at
CYBHi dataset. Models were developed using Decision tree, SVM, kNN,
Boosted tree, Bagged tree, Subspace kNN, Subspace Discriminant, two
majority vote and verified by external validation. Results: The study
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identification or authentication system. The feature extraction process results in
five major deflection points (labeled P, Q, R, S and T) that combined show the
ECG waveform. Besides these features, other ECG features are also used such
as time domain features and frequency domain features, e.g., wavelet transform
and power spectral density.

There are different types of ECG, depending upon the number of electrodes,
such as 1-lead, 2-Lead, 6-Lead, and 12-Lead. The 12-lead ECG has many benefits
over other kinds, including a) properly recreating the QRS, ST, and T waveforms,
b) giving evidence of P wave and QRS complex morphology that cannot be
detected with a single-lead ECG, and c) observing the changes in the ST segment
the best. Thus, the 12-lead ECG became the standard electrocardiography [6,25].
Despite these advantages, nonstandard ECG can be suitable as a screening device
for pathological rhythms or as ECG-based biometric system.

Prevention, management and treatment of many diseases do not reflect one
of the most important risk factor for the patients, the gender [27]. There are
important physiological differences between the two genders which deserve the
attention of the scientific community, as to allow more relevance to “gender
medicine” based on risk profiles, and to support the development of new predic-
tive algorithms. Some cardiovascular diseases (CVD) have more prevalence in
women than men, e.g. angina pectoris and stroke, and inversely coronary heart
disease and heart failure have more prevalence in men than women. Gender is an
essential, although sometimes overlooked, factor in determining human health.
Clinical results, as well as the efficacy and safety of regularly used medications,
may be significantly impacted by both sex and gender-related characteristics [15].
Recently, the incorporation of sex and gender views in clinical research and other
sectors of adult health has enhanced the understanding of several diseases and
produced convincing evidence for a more customized healthcare strategy [19,28].
Increased awareness of gender-specific differences-in basic and applied research,
clinical portrayal, design of treatment regimens and procedures, guidelines, pre-
ventive strategies, and public health policies-may improve individualized care,
appropriately address the unique needs of genders and sub-populations, and
thereby reduce inequities, as well as present and future disease burden at the
individual, community, national, and global scales [19,20]. Despite this, the sex-
and gender-informed approach to medicine is a relatively new field based on
current research, and it should be incorporated into both preclinical and clinical
investigations to comprehend both male and female variations and obtain a fully
individualized therapy [20,26].

Gender classification is a task relatively easy for humans, usually done
through visual contact while assessing body shape and size, hair patterns, pos-
ture, facial features, clothing, or voice, not in this particular order and subject
to cultural and environmental setting. Yet, for an identification system, this
task can be a major challenge. In [16] the human gender classification is catego-
rized into appearance and non-appearance approaches. Among the appearance
approaches, we found still features, dynamic body features and apparel features,
while the non-appearance approaches include biometrics features, bio-signals
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features and social information. In the last decade, the development of small
acquisition devices that allow the collection of bio-signals in different scenarios
has gained the attention of the scientific community. Of particular interest to this
research, some bio-signals are used for gender classification, such as encephalog-
raphy (EEG), ECG and deoxyribonucleic acid (DNA) [16].

Gender classification has applications in different fields which stand out:
mobile applications and video games, demographic research, commercial develop-
ment, surveillance systems, Human-Computer Interaction, and healthcare [33].

Relatively to gender differences in ECG signal Kumar et al. [14] concluded
that male athletes had significantly greater QRS duration, Q-wave duration, and
T wave amplitude and female athletes had a significantly greater QT interval.
Xue & Farrell [34] also concluded that QRS duration is higher in men and QT
interval is higher in female.

Research works on gender classification systems using ECG is still scarce,
and we will briefly detail some of them (Table 1).

Different methods have been proposed previously for gender classification
using ECG signals [1,4,7,9,10,12,13,17]. Some works used datasets with 12-
lead ECG signals [4,9], but most of works used other configuration more suit-
able for a context of identification [1,7,10,12]. From ECG feature extraction,
time domain (TD), frequency domain (FD), QRS features, heart rate variability
(HRV), wavelets transform (WT), power spectral density (PSD) are commonly
used, but some works proposed features based on Poincare section [10] or fea-
tures based on Attractor Reconstruction (AR) [17]. Among the machine learning
techniques highlights SVM, decision tree, kNN and CNN.

This paper is focused on the performance comparison of the nine models,
three based on individual classifiers, four are ensembles and two models based
on consensus decision using majority vote method, for gender identification using
an ECG signal.

In the present study, 108 ECG signals (from 52 female and 56 male) are used
to train the different models and 40 ECG’s have been recorded (from 24 female
and 16 male) to validate the models. For feature extraction the QRS features, QT
interval, RR interval, heart rate (HR) and other HRV features were considered,
and the following seven different classifiers have been trained and tested for gen-
der classification: Decision tree (DT), Support vector machine (SVM), k-nearest
neighbors (kNN), Boosted Tree, Bagged Tree, Subspace Bagged Discriminant,
Subspace Bagged kNN. Also, we proposed two decision consensus using major-
ity vote to balance out the individual models weaknesses. The remainder of this
paper is organized as follows: this paragraph concludes section I, where the goal
of the research was announced, and a brief but concise report of the most signif-
icant previous research was presented. Section II is limited to the presentation
of the datasets used in this work. Section III describes the methodology and
section IV presents the results. Discussion of the results follows in section V and
section VI concludes this paper.
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Table 1. Previous studies

Study(year) Dataset Features Techniques Results (Acc)

Tripathy et al.
(2012) [13]

37 sets of
input-output
patterns

HRV LS-SVM (RBF
Kernel Function), 12
sets validation

92%

Ergin et al.
(2014) [9]

MIT-BIH normal
sinus rhythm (5M
/13F)

QRS, TD,
WT and PSD

C4.5 decision tree f-score: 98.6%

Lyle et al.
(2017) [17]

ecgrdvq database
(11F/11 M)

AR and TD SVM (Leave
one-patients
data-out validation)

93.1 (AR), 74%
(TD)

Cabra et al.
(2018) [7]

ECG-ID 308
templates (50%F)

TD kNN (5-fold
validation)

88.0%

Cabra et al.
(2018) [7]

CYBHi. 1750F F
469M Synthetic:
1281 M templates

TD kNN (30% holdout
validation)

95.1%

Attia et al.
(2019) [4]

Train 499727
patients, 52%M Test
275056 patients

n/a CNN (399750
training and 99977
in the internal
validation)

90,4%

Goshvarpour
&
Goshvarpour
(2019) [10]

ECG-ID 37 M 42 F Poincare
section-based

SVM (5-fold
validation)

93.66%

Khan et al.
(2020) [12]

ECG-ID 90 patients
(153M and 159F
templates)

TD, FD Fine decision tree
(10-fold validation)

95.2%

Al Alkeem et
al. (2021) [1]

ECG-ID: 44M 46F
and PTB ECG: 209
M 81F, 58 virtual
patients

QRS CNN (validation on
virtual data)

90.04% (NA)
83.33% (MD)
82.18% (MD and
NA) 100% (DA)

M- male; F- female;

2 Data

2.1 ALLAB Dataset

The experimental installation consists of a wireless physiological data acquisi-
tion system bioPlux [24] (1000 Hz sampling rate, 12 bits sample size), which is
connected to an ECG sensor (Gain: 1000, band-pass: 0.05 Hz–30 Hz, common-
mode rejection ratio: 110 dB). According to the ECG lead placement protocol,
the three ECG leads were placed in the horizontal plane precordial position (V3,
V4, V5). In this study we collected 40 ECGs at rest during 3–5 minutes from
16 male and 24 female, with ages between 18 and 72 years old, with a mean
age of 33.09± 18.7 years. The collected data is transmitted from the device to
a computer using a Bluetooth connection and an application that was provided
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by the manufacturer [24] recorded the data in a text file organized in a column-
formatted manner. The 4th column corresponds to ECG signal (except for three
files that the 2nd column corresponds to ECG). This data was collected as part
of the research work for the BSc project in Bioengineering, subject “Caracter-
ização de género através de um sinal ECG” (in English “Gender Classification
through an ECG signal”). The data used in this research is publicly available at
the ALLab MediaWiki [2].

The volunteers were informed of the nature and purpose of this research, an
Ethics Committee approved the experimental protocol and the subjects signed
an informed consent form. The volunteers declared to be healthy and to suffer
from no cardiac disease.

2.2 CYBHi Dataset

The Check Your Biosignals Here initiative (CYBHi) dataset [32] is composed of
short-term and long-term signals, the data acquisition was made using a bioplux
device with a sampling rate of 1000 Hz Hz. The short-term signals were collected
for an overall total of 65 participants, where 49 males and 16 females and the
average age of 31.1 ± 9.46 years. ECG signals at the hand palms and fingers
were recorded.

A set of 63 subjects, 14 males and 49 females, with an average age of 20.68 ±
2.83 years, were available for data acquisition of long-term signals. ECG signals
at the fingers were recorded. In both cases, none of the participants reported
any health problems.

3 Methodology

The proposed method is composed of a sequence of processing steps: data prepa-
ration, feature extraction and classification.

3.1 Data Preparation and Feature Extraction

The ECG signals extracted from the individual data file of each participant are
carried out in MATLAB software. The 148 ECGs are analyzed and we opted
to use only the first three minutes of each signal (180000 samples). As pre-
processing the base line drift and drive direct current (DC) are removed and
a Savitzky-Golay filter [30] is used to smooth out some of the noise from the
ECGs, due to its ability to smooth ECG without much destroying its original
properties [5,11].

The features used in this work can be listed as time domain (TD) features
(RR interval, QT interval, QRS complex amplitude and duration), HRV features
(SDNN, RMS, NN50 and PNN50) and heart rate.

From the TD feature extraction process results the detection of five deflection
points, labeled P, Q, R, S and T waves. The P wave is an upward deflection and
appears before the Q wave, depicting a downward deflection. The R wave follows
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as an upward deflection and the S wave is downward deflected following the R
wave. The Q, R and S are successive waves and together create the QRS complex,
with a duration 0,08–0,12 s [31], and a quite variable amplitude from lead to lead
and from person to person. The T wave is an upward deflection and follows the
S wave.

The RR interval (0,6–1 s [8]) is the duration between successive heart beats
and the QT interval is the duration between the beginning of the Q wave and the
end of the T wave (0,35–0,43 s [31]). The QT interval calculation is dependent
of correct detection of the beginning of the Q wave and the end of the T wave.
Statistical features have been extracted from the QT intervals, RR intervals,
QRS amplitude and duration, and HR. Figure 1 shows an ECG waveform with
the associated features labeled.

Fig. 1. ECG waveform with the associated features labeled.

Also, we extracted heart rate (HR), the standard deviation of the RR inter-
vals (SDNN), the root mean square of successive differences between RR inter-
vals (rMSSD), the number of times successive heartbeat intervals exceed 50ms
(NN50) and the proportion of consecutive RR intervals that differ by more than
50ms (PNN50). Table 2 shows the 24 feature extracted from each subject ECG.

Table 2. Features Extraction.

Features

QT interval (ms) Mean, standard deviation, variance, maximum and minimum

RR interval (ms) Mean, variance, maximum and minimum

Amplitude QRS (mV) Mean, standard deviation, variance, maximum and minimum

Duration QRS (ms) Mean, standard deviation, variance, maximum and minimum

HRV SDNN, rMSSD, NN50, PNN50

HR Mean
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3.2 Classifiers

As the literature on gender classification with ECG is scarce, we have chosen
to use several types of classifiers in order to verify which one presents better
performances. The choices were made based on their features:

• Decision tree: provides an output easily interpreted by humans, it is fast, but
the algorithm is greedy (there is a trade-off here); provides fast prediction
but it depends always on the dataset [29].

• SVM: Provides fast predictions for binary classifications, the risk of over fit-
ting is reduced, deliver a unique solution (no local minima), provides the
maximum separating margin for a linearly separable dataset (approximation
to bound on the test error rate), Kernel trick allows non-linearly separable
dataset to may be linearly separable in a higher dimensional space [35].

• kNN: It is robust to noisy data and effective if the training data is large.
• Bagged tree and Boosted tree: more robust than a single decision tree [23].
• Subspace discriminant and Suspace kNN: good for binary classification, it

can be used with many predictors [3].
• Majority vote: can be suitable for a set of well performing model in order to

balance out their individual weaknesses [21].

Table 3 shows the chosen classifiers with the parameters used in this study.
The classifiers are carried out using a machine learning module for Python,
sklearn [22].

3.3 Train and Leave-One-Dataset-Out Validation

The dataset used to train the models contains 108 samples, from both short-term
and long-term of CYBHi dataset, in which 52 samples are ECGs from females
and 56 are ECGs from males. Thus, a 2-class dataset was obtained where each
class had ECG features from male (class 1) and female (class 0) subjects. The
validation method used is the leave-one-dataset-out using the ALLab dataset
that contains 40 samples, in which 24 samples are ECGs from females and 16
are ECGs from males.
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Table 3. Classifiers parametrization.

Classifiers Classifier Type Classifier Parameters

Decision tree sklearn.tree.DecisionTreeClassifier Maximum leaf nodes: 10

Split criterion: entropy

Maximum features: auto

SVM sklearn.svm.SVC Kernel: rbf

Regularization parameter: C=10

kNN sklearn.neighbors.KNeighborsClassifier Number of neighbours: 2

Boosted Tree sklearn.ensemble.AdaBoostClassifier number of estimators: 400

Learning rate: 0.5

Algorithm: SAMME

Bagged Tree sklearn.ensemble.AdaBoostClassifier number of estimators: 30

Maximum features:4

Random state: 4

Subspace
Bagged kNN

sklearn.ensemble.BaggingClassifier Base estimator:
KNeighborsClassifier(2)

number of estimators: 30

bootstrap=False

Maximum features:4

Subspace
Bagged
Discriminant

sklearn.ensemble.BaggingClassifier Base estimator: LinearDiscriminan-
tAnalysis(solver=’eigen’,
shrinkage=’auto’)

number of estimators: 10

bootstrap=False

Maximum features:4

Majority vote
1

sklearn.ensemble.VotingClassifier Estimators: Boosted tree, Subspace
kNN

Voting: hard

Majority vote
2

sklearn.ensemble.VotingClassifier Estimators: Boosted tree, Subspace
kNN, Bagged tree

Voting: hard

4 Results

Analysing the results presented in Table 4, it can be seen that different classifiers
have different behaviours. In this study, overall, nine classifiers were applied
(seven different and two majority votes based on the sevens) in order to detect
person gender through ECG signal.

The accuracy and recall are calculated (see Eqs. 1 and 2) with the values
extracted from the confusion matrix: True Positive (TP), True Negative (TN),
False Positive (FP) and False Negative (FN).

Accuracy =
TP + TN

TP + TN + FP + FN
(1)
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Recall =
TP

TP + FN
(2)

Table 4 summarises the results obtained when using the nine models.

Table 4. Classifiers Performances.

Classifiers Best performance

%Accuracy (avg.) %Accuracy %Recall (class 0) %Recall (class 1)

Decision tree 61.3 78.0 83.0 69.0

SVM 65.0 65.0 92.0 25.0

kNN 68.0 68.0 92.0 31.0

Boosted Tree 78.0 78.0 75.0 81.0

Bagged Tree 70.0 70.0 71.0 69.0

Subspace kNN 69.9 80.0 83.0 75.0

Subspace Discriminant 66.0 78.0 88.0 62.0

Majority vote 1 71.9 82.0 83.0 81.0

Majority vote 2 76.9 85.0 88.0 81.0

5 Discussion

The difference between the two genders is an important factor in determining
human health. The medical knowledge about gender differences in anatomy,
physiology, genetics support prognostic and diagnostic of diseases, e.g., cardio-
vascular diseases present different risk factors for men and women.

The gender identification using ECG signals can be useful in home-care sys-
tems, remote screening device for pathological rhythms or as ECG-based bio-
metric system.

The 12-lead ECG configuration presents several advantages in terms of signal
quality and interpretability, but nonstandard ECGs configurations allow data
collection outside of a clinical context.

In this study, gender classification was conducted using nonstandard ECGs,
resorting to CYBHi and ALLab datasets. CYBHi dataset comprises short-term
and long-term signals, we used both signals to train our models. Allab dataset
comprises short-term signals, and it was used for evaluating the models. The
experimental settings of these two datasets were different, but the signals were
collected with the same sampling rate (1000 Hz). The differences in experimental
settings can compromise the good classification of genders, but nowadays it is
possible to collect ECG using wearable devices in chest, wrist, or hands. We are
aware that the orientation of the leads affects the morphology and amplitude of
the measured ECG but in other side increase usability and allow more versatile
solutions.
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Another concern we had was to present a real and balanced training dataset
without resorting to synthetic data.

Different classifiers are implemented, the results presented in Table 4 show
that the better models are Boosted tree, Bagged tree and Subspace kNN with
average accuracy from 78.0%; 70.0% and 69.9%. How we can verify the difference
in the results is related to the behavior of each classifier, so, we also proposed
resort to the majority vote to obtain two consensus decisions: 1. Boosted tree
and Subspace kNN and 2. Boosted tree, Bagged tree and Subspace kNN. Both
achieved a better recall balance.

The heart changes as we get older, and this is reflected in the features visible
on the ECG. As a result, we may conclude that the difference in class results is
directly influenced by this component [18].

These consensus decision results suggest the importance of feature selection.
Table 5 shows the more important features for the method based on the major-
ity vote using Boosted Tree, Bagged tree and Susbspace kNN. Generally, RR
interval (mean and variability), duration of QRS (mean, variability, maximum),
amplitude of QRS (mean, variability, maximum and minimum), QT interval
(variability, maximum and minimum) and mean HR are the most important
features.

Table 5. Feature importance.

Features Models

Boosted Tree Bagged tree Subspace k-NN

mean RR X

Mean duration QRS X

Mean amplitude QRS X X

QT variability X

RR variability X

QRS duration variability X

QRS amplitude variability X

Maximum QT X

Minimum QT X

Maximum QRS duration X

Maximum QRS amplitude X

Minimum QRS amplitude X

Mean HR X X

Automatic gender identificationwas tried byTripathy et al. [13], Ergin et al. [9],
Lyle et al. [17], Cabra et al. [7], Attia et al. [4], Goshvarpour & Goshvarpour [10],
Khan et al. [12], and Al Alkeem et al. [1] with results above 90%. However, we
tried and only got 85.0. We think that the previous papers may have had better
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results because length of the test dataset [9,13], unbalanced datasets [9], additional
features [10,17], synthetic data [1,7] or data augmentation [1], noise addition [1]
and internal validation [4,10,12].

In our view, what is needed is the proposal of a versatile framework for
gender identification that allows realistic classifications. Our current approach
uses real ECG signals to train the models and external validation. Besides, the
ECG signals are collected using nonstandard configuration and settings, allow-
ing usability in different context. So, in future work, we intend to propose a
framework that can be incorporated as a gender identification module.

6 Conclusion

Many cardiovascular diseases (CVD) have more prevalence in women than men
(angina pectoris, stroke) and inversely (coronary heart disease “CHD”, heart
failure), so the automatic detection of gender by ECG could be very important
and improve the development of predictive systems for CVD and also in mobile
or remote healthcare.

Considering the type of used ECG signals which can be collected from IoT
devices, the proposed method can have several applications such as: reducing
the data in face recognition research; improving CVD and other diseases with
computer-aied diagnosis. in telemonitoring of where patient information is lim-
ited or in a monitoring center with cross information.

The main findings of this work are summarised as follows:

• Our method offers a realistic gender classification based on a simple feature
extraction using nonstandard ECG signal;

• Bossted tree model provides good balance between each gender classification
using a balanced dataset to train;

• The results from Bossted tree, Bagged tree and Subspace kNN suggest that
feature selection improve the classification;

• A consensus decision can be used to improve and balance the classifications.

This work presents some limitations as a small dataset to train the models
and the non-distinction between patients age, which can vary HRV features and
QRS amplitude. So, in future work we are considering use ECG-ID dataset to
apply our framework and added a new module for analysis of age similarities.
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Abstract. A fall in third age triggers a domino effect of consequences that are
recognized by specialists as leading causes of further falls. After the first event,
the post-fall syndrome onsets: a pathological fear of falling that affects quality
of life. It leads to loss of self-efficacy, sedentarism, musculoskeletal weakening,
reducedmobility, postural insufficiency, gait disorders, isolation and depression—
all acknowledged as fall risk factors. Specialists agreed that the most effective
approach to prevent new episodes is to restore confident postures and good align-
ments. This paper presents the first design stages of a soft-actuated re-educational
garment for remote post-fall rehabilitation in female users. The objective is to
i) restore postural control by providing a gentle pressure stimulus, suggesting
corrections when poor body alignments are detected; ii) restore the perceived
self-efficacy; iii) promote physical activity by motion monitoring and providing
daily reports through a patient-therapist smartphone app. To date, we have tested
a soft body-postures detection system by cross-checking data from a network of
e-textile stretch sensors, along with a pneumatic actuator system around the user’s
torso providing a targeted pressure stimulus to correct bad habits. Tests have been
run on a limited number of users due to the Covid-19 emergency. Data are not yet
statistically conclusive but suggest the way to a new dimensional approach, both
for rehabilitation and prevention.

Keywords: Smart clothing · Remote rehabilitation · Post-fall syndrome

1 Introduction

One of the main causes of falling among seniors is having already fallen [1]. A fall in
third age triggers physical, psychological, and social decline, which is most of the time
irreversible [2].After the first event, a disabling syndromeonsets. They call it the post-fall
syndrome [3]. The elderly develop a pathological fear of falling again whose primary
symptom is a progressive postural insufficiency [4, 5]. It, in turn, triggers a domino
effect of consequences: loss of self-efficacy, sedentarism, weakening of musculoskeletal
system, reducedmobility, isolation, anddepression—all consistent risk factors for further
falls [3]. This is why researchers and specialists agree that, when dealing with fear,
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cognitive-behavioral interventions are highly advisable [6]. To date, the design science
does not seem to have devoted much interest toward this disabling syndrome. Therefore,
the question arises: is there a technology, or a combination of them, that might mitigate,
and perhaps reverse, this functional decline? Systems for fall detection and prevention
have been under examination for decades [7, 8]. Scientific research engines, such as
Google Scholar or PubMed, provide a considerable amount of studies. However, by
limiting the search to wearables, we can notice that little attention has been paid on smart
garments as possible resources to develop and invest in. This study tries to somewhat
remedy this shortcoming.

Designing a smart garment that ‘senses’ and anticipates the precise moment when
the risk of falling may cause an injury is a challenge. Instead, to clothe seniors with
something that might re-educate them and raise their awareness to the risk, stimulating
their intrinsic abilities and perceived self-efficacy [9] is a goal that specialists recognize
as worthy and valuable for practical verification. They agree that the most effective
approach to prevent new episodes is to reinstate safe and confident posture and proper
body alignment: regaining postural control is the essential condition for physical and
psychological recovery. The end point of the patient’s journey, regardless of the outcome
of the first fall episode, is always a postural and gait retraining that prevents recurrences
[10]. This research aims to design a soft-actuated re-educational garment for post-fall
rehabilitation in female users—in every cultural and geographic context, women are the
most affected individuals [11]: they outnumber men by 40–60% in terms of injury rate,
and by 81% in terms of hospitalization rate [12]. This wearable system has the objective
to i) restore postural control, muscular strength and balance, by providing a gentle
pressure stimulus, suggesting corrections when poor body alignments are detected; ii)
restore the perceived self-efficacy relying on the ‘enclothed cognition’ factor, according
to which the design and functions of the garment influence the wearers’ psychological
and decision-making processes [13]; iii) promote physical activity bymotionmonitoring
and providing daily reports through a patient-therapist smartphone application.

To date, we have tested a soft body-postures detection system by cross-checking
data from a network of e-textile stretch sensors, along with a pneumatic actuator system
around the user’s torso (qualitative test) conceived to provide targeted pressure stimuli.
The first version of the garment is a full-body suit (shirt, waistband, and pant-legs)
designed to smoothly integrate these technologies into three fabric layers: second skin,
e-textile, and outer layer. The soft actuation and posture detection would be driven by
the fourth (intelligent) layer: a soft lumbar device that, besides housing electronics and
mechanics, serves as a cushion to maintain correct posture while sitting (see Fig. 1).
This device will collect and process data and will be connected to a patient-therapist
smartphone application—not detailed in this paper.

2 Method

2.1 Soft Posture Detection

To detect body posture and alignment, we selected the technology that best fits fab-
rics without stiffness and bulges and with the least impact on manufacturing processes
[14]: the Machine-stitched E-textile Stretch Sensor a conductive thread weaved onto
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stretchable fabric using the bottom cover-stitch technique. This is a loop pattern whose
elongation leads to a drop in the electrical resistance measured at the sensor ends (see
Fig. 2 and its caption).

Fig. 1. Full-body smart suit scheme.

As previously investigated by Gioberto, Compton and Dunne [14], by attaching it
to body areas in flexion and extension, body motion and position can be recognized
and quantified. The Micro Controller Unit (MCU) provided for the operation of the
system will read the data and activate the soft actuation. In such a simple way, the
system can detectwalking (alternating knee data detections) and sitting/standing position
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(simultaneous knee data detections). In addition, by placing a pair of sensors in the hip
area, the system can recognize prolonged knee flexions and wrong weight unloading
while standing: electrical resistance on knees’ sensors would decrease while resistance
at hipswould remain steady. In this case, to alert thewearer and suggest the correction, the
MCUwill engage the vibrational motors placed on the knee area (Lilypad Vibe Boards),
sewn between the fabric layers of the suit’s lower part. Thus, the system (consisting
of the upper and lower garments performing in a coordinated manner) would detect:
misalignment during sitting and standing; relaxation of the abdomen; and the amount of
body movement. Therefore, we chose to place the Stretch Sensor—Statex 235/36 2-ply
HC+B conductive thread on Lycra stretch fabric—along the spine’s thoracic section, on
the abdomen, and, in pairs, on the knees and hips (see Fig. 2).

Fig. 2. Machine-stitched E-textile Stretch Sensor and body positioning. The pattern elongation
causes a progression of contacts which gradually shorten the circuit, i.e. the electrical resistance
measured at its ends. The longer the string (and the loop pattern recurrence), themore short-circuits
induced by its elongation—and more effective the detection. For accurate details please refer to
Gioberto, Compton and Dunne’s study [14].
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2.2 Soft Actuation

As abovementioned, when the MCU detects improper bending and trunk anteflexion a
pneumatic soft actuator will be activated providing the corrective stimuli to the wearer,
thatmust be perceptible for a certain amount of time. In order to preventmonotony,which
is the enemy of receptivity, they should vary in intensity. We assigned this function
to shape-transition pneumatic actuators (to be sewed inside the shirt), so that the air
injection compresses the targeted body area and induces variable tones of stimulation.
The alerting/stimulating engagement would vary as needed: gentle, at first, as a soft
warning; deeper, as further warning; intense, when the wearer persists in improper
posture.

Fig. 3. Soft actuators prototypes.
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Along with specialists of San Marco Rehabilitation Centre of Vicenza (Italy), we
decided to place a pair of Y-shaped actuators on the abdomen area, between the chest and
the lower abdomen. As tested, the stimulus would generate a more instinctive (hence,
natural) corrective reaction—in addition, haptic perception and proprioceptive effect
would be more intense. The structure and material of these actuators are crucial. The
model we refer to is the aeroMorph [16], an advance study on origami patterns design
for shape transition materials through air injection. As tested, by heat-printing strings
of pre-tested geometric shapes onto one side of the actuator, it is possible to control
bending during air injection.

Test-actuators have been prototyped in two versions (see Fig. 3): a lighter one, made
of two layers of white TPU; and a stronger one, made of black TPU and a Cordura-
coated side—to verify if a thicker layer could deflect the expansion inward, and make
the stimulus more perceptible on the targeted body area. For each version, two models
have been developed: a six heat-printed diamonds model, from which a segmented but
yet fluid bending was expected; and a sixteen heat-printed diamonds one, to result in a
spiral bending. The goal is to deliver a stimulating and yet not uncomfortable kinetic
response, so it is crucial to avoid pumping air at pressures that require high-powered,
bulky pumps.

The six and sixteen diamonds samples reacted to the air injection in a more suitable
manner for the desired function, and with deformations compatible with the fabric and
cut of the garment to be fixed into. We tested them along with the stretchable fabric and
the human body (the shapes of which, especially if in the presence of adipose tissue,
could mitigate, if not neutralize, the stimulus to be induced).

2.3 Garment Design

In order to find the proper balance between fabrics and components (acceptable to the
wearer) we opted for the layering system, as recommended by Timmins and McCann
[17]. The tailoring of both the upper and lower part of the system requires the assembling
of three textile layers. A fourth ‘layer’ (not strictly textile) will be connected to the whole
system through the upper part. Therefore, we designed:

• the intimate layer (‘second skin’)made of bi-elastic cotton (90%cotton, 10% elastane)
which is soft, warm and gentle to the skin;

• the middle layer (‘e-textile’) made of Lycra where the sensor circuits are sewed
(function accuracy takes priority over softness);

• the outer layer (‘actuator-aesthetic’) made of colored Lycra, where actuators adhere
to its inner side—pneumatic ones in the upper garment and vibe boards in in the lower
one (the outer side, essentially aesthetic, is provided with a soft socket in the lumbar
area of the shirt to allow connection to the fourth ‘layer’, and side-pant pockets for
optional hip protectors housing);

• the intelligent layer (not strictly a textile layer), a plug-and-play lumbar device to be
attached to the soft socket of the upper garment (see Fig. 4). It hosts mechanics and
electronics and is protected by an ergonomic soft shell designed to support proper
sitting. Internally, there will be eight primary components at work: i) a MCU: for the
first version of the system,we opted for SparkFunESP32Thing boardwhich integrates
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ii) a Bluetooth module; iii) an air micro-pump (diameter: 27 mm; length: 60 mm;
weight: 60 g, noise: <55 db; voltage: 6.0 V; emission: 2 l/min); iv) a 3.7 V (7.4 W,
2000 mAh) battery pair in series; v) a solenoid valve; vi) a pressure sensor and vii)
additional Printed Circuit Boards (PCB) for transistors and microresistors placement
(required for sensor signals readability); and viii) a USB input for recharging.

The suit’s full-version is designed as a modular combination: wrap shirt, lumbar
device, waistband, and pant-legs—whose design is not detailed in this paper. Cuts and
shapes are the result of multiple wearability tests on elder female users in attempt
to find the best mediation between wearability, usability, acceptability and garment
performance.

Fig. 4. The ‘intelligent layer’(socket and lumbar device).

3 Results

3.1 Experimental Analysis

To run the experimental analysis, we used a standard stretchable suit functional for
keeping sensors exposed and easily reachable by digital multimeter probes. The tested
volunteer was 75 year old woman with thoracic hyperkyphosis, asymmetrical shoulders,
and protracted abdomen. As agreed with physiatrists, we tested:

• One thoracic vertebral sensor: 15 cm, vertical, along the thoracic section of the spine—
from T1 to T8 vertebrae—to detect back slouching;

• One sacral sensor: 10 cm, vertical, along the sacral section—from L4 to Sacrum—to
support /confirm data from the thoracic vertebral sensor;

• One abdomen sensor: 15 cm, below the navel, horizontal, to detect abdominal
relaxation;
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• Two hip sensors: 15 cm, vertical, between the gluteus maximus muscle and the biceps
femoris longus muscle, to detect sitting, standing, and motion along with the knee
sensors.

• Two knee sensors: 5 cm, vertical, between the quadriceps femoris tendon and the
patella, to detect sitting, standing, motion, and incorrect weight unloading along with
the hip sensors.

The technical protocol combines the employment of the digital multimeter with
postures and steps analysis processed by aVicon optoelectrical motion capture system—
to verify the effective extent of movement that produced the Electrical Resistance (ER)
variation. Data obtained from two sets of static poses and one moderate pace walk have
been cross-referenced. Tables 1, 2 and 3 show the ER of each stretch sensor in transition
from the first static (upright/straight) pose to the second (natural/relaxed) one, and the
value of variation (see Fig. 5). As expected, drops in ER in the thoracic v. (−1.8 �),
sacrum (−0.6 �), and abdominal sensors (−1.2 �) were recorded when the volunteer
indulged in incorrect posture. The volunteer’s motion was slight, so as were the recorded
variations.

The next static detections relate to: standing straight toward standing relaxed (we
asked the volunteer to go back to her natural pose while slightly flexing her knees). We
recorded decrements in ER in all sensors. The most indicative decrement (higher than
1 �) was observed at the thoracic v., abdomen, and knee. Even if numbers cannot be
intended as conclusive, expectations about the stretch sensor’s mechanical response and
its reliability in most body segments were met [18].

As a completion of the static poses analysis, we crossed standing upright and sitting
straight. As expected, most values decreased (the small rise in thoracic v. resistance
indicates that, while sitting, the volunteer improved spinal alignment slightly). The data
that met expectations were detected at the knee (−2.6/−2.4 � for 90° flexion) and hip
(−4.2/−4.3 �) sensors. The sacrum was practically irrelevant.

Table 1. Static posture detection: sitting.

Sensor Sitting upright Sitting relaxed ER variation

Thoracic V 56,2 � 54,4 � −1,8 �

Sacrum 27,5 � 26,9 � −0,6 �

Abdomen 28,3 � 27,1 � −1,2 �

L HIP 46,1 � 46,1 � –

R Hip 45,6 � 45,6 � –

L Knee 17,6 � 18,1 � +0,5 �

R Knee 17,2 � 17,8 � +0,6 �

The legs’ sensor-equipment also serves as a soft motion recording instrument, allow-
ing tomonitor the degree of activity or sedentarism of thewearer without overloading the
MCUwith additional data from InertialMeasurement Unit (IMU) sensors. Thus, we also
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Table 2. Static posture detection: standing.

Sensor Standing straight Standing naturally
(flexed knees)

ER Variation

Thoracic V 55,8 � 54,4 � −1,4 �

Sacrum 28,0 � 27,9 � −0,1 �

Abdomen 28,9 � 27,2 � −1,7 �

L Hip 50,3 � 50,2 � −0,1 �

R Hip 49,9 � 49,7 � −0,2 �

L Knee 20,2 � 18,8 � −1,4 �

R Knee 19,6 � 18,5 � −1,1 �

Table 3. Static posture detection: standing vs sitting.

Sensor Standing straight Sitting upright ER variation

Thoracic V 55,8 � 56,2 � +0,4 �

Sacrum 28,0 � 27,5 � −0,5 �

Abdomen 28,9 � 28,3 � −0,6 �

L Hip 50,3 � 46,1 � −4,2 �

R Hip 49,9 � 45,6 � −4,3 �

L Knee 20,2 � 17,6 � −2,6 �

R Knee 19,6 � 17,2 � −2,4 �

tested the sensor’s accuracy for this function (Table 4, see Fig. 6). First, we examined the
hip sensor. While static, the measured ER was 36 �. While walking, it went from 34.2
� (min) to 38.6 � (max). Peaks relate to maximum flexor traction (initial swing phase),
and relaxation (terminal swing phase). The ER variation (4.4 �) met expectations [18].
The recurrence of such a value variation will enable the MCU to detect and quantify the
motion while wearing the system. Similarly, the knee sensor was tested. While walking,
the resistance oscillated from 18.3 to 20.4 �. (19.2 at rest). This variation (2.1 �) was
sufficient for the purpose.

At the conclusion of the session, it can be assumed that, by cross-referencing the data
detected by the e-textile stretch sensors, the intelligent layer will be able to distinguish
right from wrong postures, and walking from sitting [18].
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Fig. 5. a) sitting upright and relaxed compared; b) standing straight and naturally (with flexed
knees) compared; c) standing straight and sitting upright compared.

Table 4. Walking detection.

Sensor Static Swing (max flexion) Stance (max extension) ER Variation

R Hip 36,0 � 34,2 � 38,6 � 4,4 �

R Knee 19,2 � 18,3 � 20,4 � 2,1 �

Fig. 6. Walking detection.



Designing a Soft-Actuated Smart Garment for Postural Control and Fall Prevention 131

3.2 The Pneumatic Actuators: Qualitative Experimental Analysis
of the Tactile-Compressive Function

Qualitative experimental analysis was based on subjective reports. While we were able
to assess the proper actuators’ kinetic response to the transit of air, we could not rely on
objective protocols tomeasure a patient’s sensation [18]. Ourm. o. had to be sympathetic,
i.e. the attentive listen to the volunteers and their physical and mental involvement
through the experimentation. Tests were carried out in two phases: the first one with
three volunteers—we tested different combination of actuators to verify which version
and pattern is more perceptible—and the second one, with two patients in postural
rehabilitation (social restriction imposed by the 2020/21 pandemic emergency has made
contact with vulnerable people limited) by integrating the chosen actuators into the
mock-up shirt as described in Sect. 2.3 Garment design.

The first volunteer (v.1), aged 75 years, suffered from previous fall episodes, she has
gynoid body conformation and adipose tissue in the contact areas of the actuators (see
Fig. 7).

Test 1: during both standing and sitting, v.1 put on the six diamond samples in pairs
between twoLycra shirts—first the light version, then the reinforced one (see Fig. 7). She
was asked to indicate the points where the given stimulus was most pronounced when
we injected air and to refer her sensation. She reported that with both versions there is a
clear sensation of pressure is perceptible, and spread around the belly. Nonetheless, the
white one [light] displayed a more peculiar touch.

Test 2: v.1 was asked to try both versions with sixteen diamonds, and again indi-
cate which spots were most stimulated. She reported she felt an air flow very similar
to the previous test, but this time there was a kind of slightly stronger manipulation,
especially with the black version [Cordura-coated], under the chest and the navel [i.e.,
at the extremities of the actuator, where the shrinkage is most detectable—especially in
the reinforced samples]. While in doubt about which density was preferable (light or
strong), v.1 preferred the sixteen-diamond model for each version. V.1 reported three
substantial factors: i) a preferable fit to the bodywas perceived (whereas the six-diamond
samples provided the sensation of detaching from the torso as the volume increased); ii)
a vigorous manipulation was perceived in the central abdominal area; iii) on a merely
aesthetic perspective, the pattern emerging from the fabric looked more graceful than
the sausage pattern generated by the six-diamond sample—the defect was visible in
both versions, implying that the Cordura coating did not drive the deformation inward
as effectively as expected.

The session was repeated three days later to let receptors’ memories vanish. This
time we tested the light and Cordura-coated versions of each sample in combination.
We repeated test 1 and 2 twice. The second time we gave v.1 the handpump so that she
could take control of the air injection and ponder the sensory involvement by herself
in proportion to the pressure and volume of the pumped fluid. At the conclusion of the
new session, uncertainty about materials persisted (after each new test, v.1 reported she
felt better the lighter version). On the other side, impressions regarding the number of
diamonds were strongly confirmed: lastly, v.1 reported that the folds of the sixteen-
diamonds were more stimulating.
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Fig. 7. First phase tests; untied samples test with volunteers.

We turned to volunteer 2 (v.2), aged 81 years old, who suffered from several previous
fall episodes. She has android body conformation, taut belly without adipose mass. We
proposed her the same sequence of tests. Her impressions were almost identical.

V.2 reported she felt more affected by the sample with sixteen diamonds and between
black and white [light and reinforced] she didn’t feel much difference. She felt the same
pressure in the same spots. Eventually, she chose the white option because it made her
feel less bulky, it is less rigid underneath the fabric, and it seemed to be less awkward.

The final volunteer (v.3), younger, aged 71, with one fall episode without injuries,
android conformation, soft bellied but still toned, confirmed the same impressions.

Although leaving us hesitant about the usefulness of Cordura coating, tests on free
samples (not yet sewn into themock-up shirt) provided us unanimous confirmation: size,
shape, and pattern withstand tests on different body conformations: the targeted body
area—whether taut, soft with adipose mass, or relaxed—received the fluid stimulation
with an intensity that met expectations.
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Fig. 8. Second phase tests; test of the mock-up with patients.

We then proceed with testing on patients at the rehabilitation centre (see Fig. 8).
Thus, we basted the mock-up shirt, integrating the sixteen-diamond samples: the light
version on the left side, and the reinforced one [Cordura-coated] on the right.
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Patients undergoing postural rehabilitation therapy were 71 (p.1) and 64-year-old
(p.2). The physiatrist started the sequence of tests by personally adjusting the air pressure,
and asked p.1 and p.2 to report impressions.

As per P.1’s report: the pressure was felt more strongly on the left [where there the
lighter sample was]; the actuation, although audible, did not suggest how to correctly
posture, even if, admittedly, a sort of urge to react was felt; on the end, the tightness of
the garment was quite invigorating.

As per P.2’s report: a more distinctive manipulation was detected on the left and
middle side of the abdomen; the actuation was indeed pretty loud but did not keep the
torso upright as it should [being accustomed to rigid orthopaedic corsets, P.2 envisioned
a ‘passive’ administration, i.e. a shirt to keep her torso in an upright position without her
intervention or effort]; once the shirt was taken off, it felt like there was still a trace of
the actuation around the torso, like a tactile memory in that specific area.

Reports were consistent with expectations. The physiatrist explained that both
patients were neither prepared nor, more importantly, instructed on how to react physi-
cally to the induced stimuli. Theywere brought into contact with the product deliberately
without any previous mediation. This gave rise to their doubts about the ‘active’ re-
educational function. If this smart garment is ever adopted as a therapeutic device, it will
be up to the physician to prescribe and explain the proper physical response following
the stimulus, which differs from case to case [18].

4 Conclusion

Tests have been run on a limited user sample due to the Covid-19 emergency. Albeit
not statistically conclusive, they suggest the way to a new dimensional approach, both
for rehabilitation and prevention. According to physiatrists, this assistive principle may
indeedmake sense: the neuromotor stimulus provided by the fluid injectionwould define,
in the mid-term, an intimate user-device language that trains postural education—in a
conscious way at the beginning until becoming almost irreflective, natural with practice
[18]. Thus, the corrective reaction induced by the air flow would gradually reinforce
muscles, consolidating better posture over time and, as a result, limiting the risk and the
fear of falling.

In conclusion, the project’s aims are several. First, it seeks to provide a compre-
hensive geriatric tool to physically and psychologically rehabilitate patients and prevent
further falls. Second, to probe the effectiveness of a therapeutic pneumatic actuation
as a tool for postural re-education. Third, to explore the effectiveness and durability of
a new user-device dialogue through targeted stimulation on sensitive areas. Fourth, to
extend physical therapy to patients’ homes and remotely monitor their progress through
a patient-therapist smartphone application—which has not been detailed in this paper.
Fifth, to shorten recovery and reduce the risk of new falls—meaning, in turn, reducing
direct and indirect costs, both for the individual and health systems.

Moreover, if ever needed, this paper also seeks to emphasize how a multidisci-
plinary approach, involving specialists, therapists, and end-users, is the key to design
remote healthcare devices that are truly centred on user needs—and somewhat innovative
compared to current tools and practices.
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Abstract. The essential criterion for developing an intelligent age-
friendly environment is evaluating and monitoring the provision of ser-
vices. Our research aims to allow the deployment of a broad range of
digital healthcare solutions interconnected in an IoT network ecosystem.
Through their interoperability, we will be able to cultivate age-friendly
smart homes for older adults. Thus, we will enable interpreted living
and wellbeing. The intelligent integrations of digital solutions will allow
the acquisition and evaluation of health-related data. Standardization,
interoperability and scalability of the integration will increase efficiency
in healthcare, improving older adults’ Quality of Life (QoL). Also, inter-
preting their needs will allow key stakeholders to optimize the Qual-
ity of Service (QoS). The proposed Internet of Health (IoH) framework
will encapsulate sustainable and affordable innovative solutions and their
benefits for a comfortable, meaningful, and independent life in an intel-
ligent environment. Therefore, the frame mediated by edge computing,
in-home and community settings will be able to interact with healthcare
networks contributing to hospitalizations and institutional care.
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1 Introduction

We propose developing a framework that will enable the development of a wide
range of digital solutions and services to support and extend healthy and inde-
pendent living for older adults. The framework will be made possible by integrat-
ing interoperable IoT platforms, which combine intelligent devices to acquire and
evaluate data. The information will be about the vital signs, living environment
and lifestyle of the elderly. Also, the information collected will determine their
needs for independent living. Of utmost importance is ensuring data protection
and trust, ensuring anonymity through personalized solutions. In addition, we
focus on the interoperability and scalability of IoT networks to maintain remote
efficiency in healthcare delivery, bringing well-being to seniors, supporting their
families, empowering caregivers, and fostering innovation from care providers.
The proposed framework will promote age-friendliness in home and community
environments. Home accessibility will be assessed based on the WHO guidelines
for housing and health for the elderly. They will also be able to evaluate the pro-
vision of services and identify possible psychosocial and physical modifications to
enhance their independent living. We will also address age-friendliness in terms
of attitudes and cultural values. Age-friendliness requires fostering attitudes and
behaviours that promote older people’s dignity and worth, a sense of safety, and
being active members of society. The aim is to identify the views of older peo-
ple on how to foster age-friendly behaviours, how the proposed framework can
facilitate this and how people can be encouraged to use IoT solutions to pro-
mote recommendations for creating age-friendly. The main aim is to consider
how older people and their carers should be engaged and empowered to play a
more active role in healthcare decision-making to improve the overall quality of
care, efficiency, and results. Ambitious but realistic goal setting can add a sense
of purpose, drive, and achievement. In addition, they will be able to examine

Fig. 1. Architecture of an IoH platform
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how the psychology of decision-making and goal setting can be applied to facil-
itate older people’s planning and guide development about the type and extent
of information that is optimal to help older people to make decisions.

Healthcare platforms will intelligently enable semantic interoperability of the
Internet of Health (IoH). The interconnection of digital healthcare solutions in
an Internet of Things (IoT) network combined with services like Smart Home
and Smart Mobility will enhance sustainability in Smart Cities and cultivate
age-friendliness. Health-related data could be acquired remotely for evaluation.
Thus, the users will have the opportunity of remote vital signs monitoring. How-
ever, to incentivize data sharing, we need to ensure that the exchange will be
secure between trusted parties. Therefore, a middleware platform could support
the secure exchange of data and services. Simple in terms of time complexity and
robust in terms o secureness, novel cryptography methods could be deployed to
assure data sovereignty [33,34]. As presented in Fig. 1 the IoH network ecosystem
could perform in four domains. Within the application domain, the middleware
platform will allow the integration of digital devices, healthcare services, and
intelligent digital solutions [35]. The data will be accessible through the decryp-
tion key for interpretation through the cloud domain. Hence, it will provide
consistent and valid access to virtualized IoH digital solutions. The intelligent
space domain will deliver services for engaging innovative IoH devices in intelli-
gent environments, allowing dynamic configuration of digital solutions. Finally,
the device domain regards the devices that will consist of the IoH platform.
The intelligent interaction with the innovative ecosystem of the smart urban
environment will leverage their roaming capabilities [36].

First, we set out to conduct a systematic review of the literature on older
adults experiencing permanently or temporarily reduced functionality and capa-
bilities. Then, based on their disability, we provide the corresponding suggestions
to promote digital solutions adapted to their needs. The areas we investigated
were the following age-related impairments: Changes in visual function, Hear-
ing loss, Sense of touch, temperature perception, levels of mobility limitation,
balance and age-related cognitive ageing and memory changes. We then develop
guidelines for presenting digital solutions. Finally, we implemented a survey using
a focus group of 30 older people to assess their satisfaction with providing ser-
vices in their community.

2 Literature Review

We conducted a literature review based on age-related impairments and we elab-
orate the guidelines which derives.

2.1 Changes in Visual Function

Initially the changes in visual function deteriorate gradually during the aging
process. The most common visual impairments are: Presbyopia [1,2]; Ametropia
[3,4]; Glare sensitivity; Cataract [5]; Dark adaptation [6–8]; A complex process
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mediates colour perception between neurons [9] and Tunnel vision [10–12]. The
guidelines for visual presentation which derives from these changes are as follow:
Raise illumination on reading surfaces; Use the matte screen surfaces; The need
for stimuli should be large, simple, unobstructed, and in the central field of vision;
Make things distinctive by increasing size (minimum font 12 points), using warm
colors (avoid Violet, Blue, and Green) and by increasing contrast (50:1 contrast,
e.g., LCD Screen) such as white text on black background [13]; Use fonts such
as Arial, Helvetica, Times, Bookman, and Book Antigua without a script and
decorative fonts distinctly; The uppercase letters attract attention but are not
easy to read in long sections of text.

2.2 Decline in Hearing

The decline in hearing during aging cause the following auditory impairments:
Presbycusis which is a common type of sensorineural decline of hearing through
natural aging (i.e., Sound perception diminishes by 2.5 dB per decade up to age
55 and then accelerates to 8.5 dB per decade) [14]; Frequency discrimination
performances deteriorate in an approximately linear manner with age (e.g., per-
ception of high frequencies diminishes with age, especially in men) [15]; Different
stimuli can cause sound localization disorientation in each ear due to age-related
hearing loss and auditory selective attention affects performance in a multitask-
ing environment and is the reason why it is difficult for seniors to process distinct
sounds at a fast pace [16]. Based on barriers that we have already elaborated we
conclude to the following guidelines for auditory presentation: An average conver-
sational speech is about 50 dB due to that sound signals should be at least 60 db;
The volume must be easy to adjust with simple gestures; Sound alerts should
be within the frequency range of 500 to 2000 Hz, which is the standard speech
range; It would be beneficial to avoid using synthesized or robotic speech pat-
terns; It is necessary to signal an alert sound at a frequency higher than 2000 Hz
we must use a longer duration (i.e., >0.5 s); To avoid high-frequency sounds,
we can use cross-sensory channels such as vibration and flashing light [17]; Pro-
curement of headphones will be an excellent solution to eliminate background
sounds and disorientation and we need to maintain a high “signal-to-noise” ratio
to eliminate reverberation.

2.3 Sense of Touch, the Perception of Temperature, Mobility
Limitation Levels, and Balance

Aging has an impact on the sense of touch, the perception of temperature, mobil-
ity limitation levels, and balance. Therefore, we studied the most significant
limitations which occur through aging process. Pressure sensitivity diminishes
through aging, so it is harder to sense when the finger has made full contact
with a surface or when a small feeling has been depressed [18]; Reduced ther-
mal sensitivity because of limited nerve ending function and heat retention [19];
Reduced mobility capacity caused by loss of muscle strength, tone, and flexibil-
ity [20]; Balance impairment due to arthritics and tremor that occurs with aging
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cause diminished static postural control and diminished dynamic balance [21,22].
We design guidelines for diminished temperature, touch sensation, movement
restriction, and balance instability as follow: Avoid 3D touch screens; Use less
complicated virtual devices [23]; Use supplemental sensory cues to warn of high
temperatures; Prefer textured surfaces instead of smooth surfaces to comple-
ment the touch feel; A sound alert that a button on the screen or computer key
has been depressed; Provide time for discrete movement tasks; Avoid multiple
rapid steps (e.g., adjust double-click speed of computer mouse, tracking rate on
scroll ball); Simple task movements for senior with tremor; Prefer levers than
knobs; Large buttons rather than small ones; Use solid color carpets in case
of sensor mat; Avoid unsecured objects (e.g., unsecured end-of-aisle displays
present obstacles to motorized or static ambulatory aids.) in the case of robot
assistant [24].

2.4 Cognitive Aging and Age-Related Changes in Memory

Short-term memory can be set to cache and manipulate stimuli no longer avail-
able to the senses. With aging, fewer discrete information bits processed at a
given time, and information overload may occur [25]; Prospective memory refers
to remembering to take a planned action in the future. Aging men can not jeop-
ardize spontaneous recovery processes, but the ability to deactivate completed
intentions is impaired [26]; Semantic memory refers to a long-term memory por-
tion that processes ideas and general facts that do not come from personal expe-
rience. Semantic memory performance in the elderly reduces in processing speed
and executive function [27]; Procedural memory defines as a type of long-term
memory and unconscious memory of skills and how to act. Procedural memory
usually does not decrease with age, but it takes longer for older people to learn
new skills [28]; Age reduces attention, but the reduction does not include all
components of attentive functioning equally [29]; Spatial cognition is a complex,
multifaceted set of processes engaged in a large variety of tasks [30]. Spatial nav-
igation is impairing after the age of 60, with acceleration in decline after 70 [31];
Language comprehension difficulties are interpreted as limitations on processing
ability so that the requirements for simultaneous recording of superficial meaning
and concurrent execution of integrative and constructive processes reduced with
age [20]. The guidelines to accommodate age-related cognitive changes are as
follow: Provide simple instructions into discrete short messages; Provide event
reminders but without too many unnecessary gadgets; Procedures should be
simple, intuitive steps with a slow pace and opportunities for practice; Avoid
visual clutter or ambient noise and use simple screens with small dis-tinct sig-
nals; Avoid redundant information and use a predictable linguistic structure
with clear messages reasonable pace; Use Natural Language Processing (NLP)
toolkit [32]. Based on the literature review, we developed Table 1 which refers to
the instructions for digital solution educators in older adults.
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Table 1. Guidelines for Tutors of Digital Solution

Functional limitation Guidelines for tutors of Digital Solution

Decline in hearing Get the listener’s attention before you speak

Look at the listener as you speak

Speak naturally

Use simple words and sentence structure

Avoid ambient noise

Use visual signs and gestures

Cognitive impairment Provide slow and clean lines of communication

Use a calm and focused communication

Be aware the listener may lack confidence

Evaluate whether the listener understands

Find another way to express the information

if the listener does not seem to understand

Mobility limitations Take a seat at the same level and apply eye contact with

the listener/speaker

Treat the potential wheelchair as part of the

listener’s/speaker’s personal space

Use natural lip movements, voice tone, and volume

Use condescending language

Use non-patronizing language and actions

Visual function impairments Consult with the person as to the type of communication needed

(e.g., large font, disk, Braille, text-to-speech)

Use natural volume and tone

Ask for feedback to evaluate if the listener understands

Check related software and hardware for visually impaired people

3 Age-friendly, Integrated, Intergenerational
Neighborhoods

The internet of things (IoT) has become inextricably linked with creating smart
cities. As the name implies, smart cities are structured atop more intelligent
data. It is a significant challenge because data is frequently an afterthought when
it comes to creating new processes and opportunities. Using the right building
blocks from the outset is vital, aligned with clear and compelling guidelines about
best practices. To achieve scale, we need standards to qualify how we view and
measure the world around us and how this data informs our decision-making
processes. Figure 2 is designed to align participants around a clear shared goal
and guide them to a common destination. Accelerate the construction of a new
breed of age-friendly housing in ‘smart’ socially supportive multi-generational
neighbourhoods, development of innovative technologies and service models to
improve health and well-being to reduce the financial burden on citizens and the
State based on the following aspects:
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– Work: Opportunities to work; Provision of training; Work-life balance; Labour
market participation;

– Access to healthcare: Distance; Waiting times; Affordability;
– Mental health: Sense of self-worth; Loneliness, isolation; Depression, anxiety;

A sense of purpose; Sense of connectedness, belonging;
– Adult education: Information provision; IT literacy;
– Housing: Safe, secure; Connected; Age-friendly; Healthy;
– Services: Healthcare; Transport;
– Neighbourhood problems: Infrastructural issues; Sense of safety; Perception

pf vulnerability; Anti-social behaviour;
– Social Support: Family and friends; Neighbours; Community organizations;
– Public Spaces: Pleasant, interesting; Safe; Accessible, close by; Enable self-

determination; Foster activity.

Fig. 2. Dependencies

4 Evaluation Results

We have implemented a survey among 30 older adults living in different districts
of an urban environment through the Place Standard tool. We evaluated the
provision of services by the community Fig. 3 and Fig. 4 show the responses
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obtained and plot them in two diagrams. The mean and median conclude with
a look at the services performing well and where there is room for improvement.
From the results, we conclude that all sections of service provision to the elderly
need improvement.

Fig. 3. Mean Results
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Fig. 4. Median Results

5 Conclusion and Future Work

Assessing age-friendliness in the city is a fundamental step in encouraging older
adults’ quality of life. We envisage that this research work will align with devel-
oping new standards for intelligent multi-generational neighbourhoods. Acces-
sibility at home will be informed by the WHO Housing and Health guidelines,
enabling older individuals to rate their private living space accessibility and
identify possible psychosocial and physical modifications that will help sustain
independent living. Therefore, age-friendliness necessitates cultivating attitudes
and behaviours that promote the dignity and worth of older people, their sense
of security and belonging, and being wanted and valued members of society.
Ageing in place means more than continuing to live among the comforts and
memories of home. Given the likelihood that we will live with the threat of pan-
demics for the foreseeable future, how might we pool resources to design age-
friendly urban environments where public space doesn’t become a no-go zone
but remains a safe and habitable communal meeting point? Challenges lie at the
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heart of ongoing discussions with architects, designers, planners, social housing
organizations, developers, health and social care service providers, technologists,
local governments, researchers, and other AAA stakeholders. They are working
cooperatively to inform the intelligent development of smart multi-generational
neighbourhoods. For future research, we evaluate the age-friendliness of smart
multi-relationship cities using further principles. The growing growth of smart-
phones with GPS and online social networks provides useful citizen involvement
tools in resolving urban issues. Future research may provide more effective and
user-friendly tools for assessing the age-friendly friendliness of the smart city.
Thus, smartphones equipped with GPS enable citizens to enter geographical
data related to the city environment into the system using any network, any-
where, and at any time. This marvel empowers the procedure of evaluating and
monitoring the age-friendliness of a smart city.
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Abstract. A fall of an elderly person often leads to serious injuries, even death.
Many falls occur in the home environment, and hence, a reliable fall detection
system that can raise alarms immediately is a necessity.Wrist-worn accelerometer-
based fall detection systems have been developed, and there are various data sets
available, but the accuracy and precision have not been standardized or compared;
even where comparison does exist, it has been run on GPUs. No analysis of the
workability of themodels and the data sets on SoCs has been previously attempted.
Though over the last few years, ML and DL algorithms have been increasingly
used in fall detection, and there have also been some suggestions for the use
of compressed modelling, there are no concrete statistics available to form this
conclusion. In this paper, we attempt to understand why ML algorithms cannot
run as-is on existing SoCs; We are using Snapdragon 410c to do our analytics as it
is primarily used in Biomedical and IoT applications, has low power consumption
and small form factor making it ideal for wearables. In this paper, we have used
KNN to prove that ML cannot be used directly on SoCs. We are using KNN as it
does not have any pre-training period, and it is a very simple algorithm that gives
good accuracy. In this paper, we establish the need formodel and data compression
for fall detection if we must use ML or DL algorithms on SOCs. We have done
this with statistical analysis across different data sets.

Keywords: SoC · Wearable · IoT · KNN

1 Introduction

Medical and healthcare advancements have increased the average human lifespan to
over 80 years. Geriatric healthcare hence has become vital, and regular monitoring of
parameters is required. Currently, visiting or in-house nursing staff do the monitoring
of various parameters. This arrangement is expensive for a significant part of society;
the past decade has witnessed substantial technological advances in IoT based wearable
devices, machine and deep learning; these technologies are now increasingly used in the
healthcare domain. IoT-based healthcare includes tracking patients, inventory manage-
ment of drugs, collection of patient samples, authentication of the patients and staff, and
automated data collection and storage. IoT in the healthcare domain enables all these
applications due to the availability of various wearable and non-wearable devices. These
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devices are used for remote diagnosis, prognosis, and treatment. Hence advances in IoT,
embedded systems and ML are the catalysts in the development of geriatric healthcare
systems. Such systems are available at a reduced cost for detecting anomalies and raising
timely alerts, assistance and care when required. Such a system is essential in a country
like India, with a rising population of seniors residing in isolation. Some of the com-
mon concerns of the geriatric population include falls, sleep apnea, hiatus hernia, and
other respiratory disorders that do not have a surgical solution, and the primary cause
is frailty. Medical literature [1] also indicates that these disorders generally compound
into life-threatening disorders.

Falls - According to a WHO report, there is an exponential increase in the frequency
of fallswith frailty and age. The elderly population in nursing homes aremore susceptible
to falls than those in the community. Falls usually result in recurrent falls. WHO data
validates these statistics; It indicates that 40% of the falls among the elderly are recurrent
falls.

Sleep Apnea - Sleep apnea is prevalent in adults and a small percentage of juve-
niles. Subjects suffering from sleep apnea experience periods of shallow breathing while
asleep. Periods of shallow breathing or air flow reduction are called a hypopnea. This
condition ultimately leads to apnea which causes breathing to stop temporarily. Both
these conditions can cause clinical co-morbidity.

Hiatal Hernia -Hiatal hernia is when the stomach bulges up into the chest via an
opening in the diaphragm. The muscles that separate the diaphragm from the stomach
are called the hiatus. There are mainly two types of hiatus hernia (i) sliding (ii) para-
esophageal.

Most elderlies suffer from the former type of hernia, which is inoperable. Hiatus
hernia causes a person to exasperate their food which causes a drop in the O2 level;
SpO2 sensors can detect the drop in O2 level, which prevents the need for complex and
costly diagnostic processes like polysomnography.

Sensors can be used to monitor the above three health conditions, and they can
relay data to a smart ML-based system that can detect and predict the condition. In this
paper we concentrate on fall-detections, the causes of falls are primarily categorized
into internal and external. External causes of falls are due to environmental factors like
slippery surfaces. Internal causes include cramps, weakness in the muscular-skeletal
structure, vision impairments, chronic disorders, etc. The duration of the fall is also
important. According to [2], about 40% of the individuals who fall cannot get up on
their own, and about 50%who experience a long fall are likely to die within the next few
months. A long-duration fall can also result in localized muscle injury, tissue damage,
nerve issues, dehydration, hypothermia, pneumonia and a fear of further falls. These
conditions affect the overall health of the elderly. Although numerous studies [3] related
to fall detection have been out recently, several challenges still exists. These include:

(a) The lack of a comprehensive analysis of ML techniques deployed to detect falls
(b) A high number of false positives (c) The low accuracy of systems that are expected
to detect and correct such false positives (d) The inability of the system to detect the
duration of the fall.

With technological advances in SoCs and IoT systems, wearable devices have
emerged as a leading area of research in geriatric health care; the amount of data collected
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at homes/hospitals for the elderly is large and complex and making accurate decisions
based on multiple parameters is the primary requirement for such safety-critical sys-
tems. SoCs are resource-constrained devices, whether in terms of memory, processing
power or energy constraints. Hence, they cannot implement ML algorithms or Deep
Neural Networks. Hence a possible solution for this is the use of model compression.
This paper picks up one of the simplest ML algorithms and runs them on varying data
sets of different sizes to prove that it is impossible to run even a simple ML algorithm
such as KNN when the data set size is considerable. Not only is the latency high, but
as the size of the data set increases, the SoC fails, indicating the non-availability of the
required resources. This paper proves that ML algorithms give inaccurate, non-reliable
and high latency results when run on a raw data set. Hence this paper builds a case for
using model compression algorithms while using SoCs.

The paper is organized as follows: Sect. 2 talks about various IoT architectures that
can be used for fall detection, Sect. 3 gives a brief overview of ML algorithms used for
fall detection, Sect. 4 provides the operational details of KNN, while Sect. 5 gives the
details of the dataset used for analysis, we present our results in Sect. 6, while Sect. 7
summaries and concludes this paper.

2 Architectural Models for IoT Based Fall Detection Systems
with Wearable End Devices

With the growth of SoCs and its integration into IoT systems,wearable healthcare devices
are now a focused area of research. This section presents four possible IoT architectural
models that can be used for health care. The models vary in terms of how the data is
gathered, processed and where the conversion of data to knowledge occurs.

Model A- In this architectural model, the data is collected at regular sampling inter-
vals from the sensors that are interfaced with the wearable devices. The wearable device
then transmits the raw data to the coordinator; the co-ordinator then collects the data from
multiple wearables, aggregates the data and forwards the data to the cloud. The actual
analysis and processing of data take place on the cloud. The sensor fusion algorithms
that require combining data from multiple sensors also run on the cloud. The essential
features are then extracted from the fused data and converted to health parameters using
ML or DL algorithms. In this architectural model, data storage, as well as the processing
of data, is done on the cloud. The data processing may be for emergency or long-term
monitoring. The end devices are minimalistic and constrained in terms of processing
and memory capabilities. The coordinator only acts as an aggregator of data. The focus
of this architecture is on developing networking protocols that can deliver the data to
the cloud with minimum latency and control overhead.

Model B –Similar to the case of model A, the wearable end device collects the
raw data and transmits it to the coordinator. The coordinator aggregates the data and
performs multi-sensor fusion on the raw data. The fused data is then sent to the cloud
by the coordinator, the cloud performs feature extraction and converts the data to health
parameters using ML/DL algorithms. In this model, while network protocols are also
important, the architecture of the coordinator also needs to be carefully considered.
Since sensor fusion is performed at the coordinator, the coordinator must be a powerful
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SoC. The advantage of this model would be that the amount of communication between
the coordinator and the cloud is reduced. This reduces the communication bandwidth
requirement, but the actual conversion of data to knowledge still happens on the cloud.
Model A and Bmay not be suitable for emergency response due to the latencies involved
in communication. If the coordinator cannot connect to the cloud, any falls detected
cannot immediately trigger an alarm (Figs. 1, 2, 3 and 4).

Fig. 1. Model A Fig. 2. Model B

Fig. 3. Model C Fig. 4. Model D

Model C- In the case of architectural model C, the wearable end device is more
powerful as it not only collects data from multiple sensors but also runs sensor fusion
algorithms. The wearable device then transmits these fused data to the coordinator.
In many cases, the sensor fusion algorithm that runs on the wearable device is more
statistical in nature. The end device in model C must be a powerful microcontroller that
can run complex mathematical and thresholding algorithms. Using ML algorithms, the
coordinator then converts the fused data to short-term health parameters. In case of any
falls or lie-ins detected, the coordinator raises the alarm. The cloud then runs only theML
and DL algorithms that are required for long-term health monitoring and rehabilitation.
In the case of model C, the end device needs to have more processing power and at
the same time also be able to handle complex network algorithms to transmit the fused
data to the coordinator. The latencies in communication between the end device and
the coordinator still exist even though the latency in raising the alarm is considerably
reduced. Here data processing is done by all elements of the IoT model. While the
end device performs sensor fusion, ML/DL algorithms to extract information from the
fused data is run at the coordinator while the cloud converts data into long-term health
parameters.

Model D – In the case of architectural model D, the wearable device is built using
a powerful SoC as it is responsible for collecting data from multiple sensors, fusing it,
and running ML and DL algorithms to detect/predict falls. This requires considerable
processing power; The wearable device is required to collect and clean the data, perform
sensor fusion, extract the required features and then convert the data into information
using a complexML/DL algorithm. Though SoCs have considerably advanced to handle
complex biomedical applications, they are still constrained in terms of the amount of
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memory available, energy consumed and form factor. As the device is wearable, the form
factor must be very less. At the same time, power consumption must also be limited.
Heat dissipation is another issue that is common in wearable devices. Running complex
processing algorithmswill cause the processor to expendmore heat. Hence, runningML,
DL, or deep neural networks widely used in IoT-based health services is very difficult.
Over the last couple of years, research in model compression of ML and DL algorithms
has gained traction. Thegoal ofmodel compression is to achieve amodel that is simplified
as compared to the original but provides the same level of accuracy as the original
algorithms. The advantage of running a reduced model means that fewer or smaller
parameters need to be stored in the memory, as not only is the data resident in memory,
but the operating system, as well as the code, is also resident in the memory. It is also
expected that the processing latencywould be reduced, allowing themodel to predict in a
shorter duration. InmodelD, the coordinator again acts as a forwarder of information, and
the cloud runs long-term health monitoring and rehabilitation algorithms. The advantage
of having the SoCs run the compressed algorithms is that alarms can be raised in case of
falls even when no network connection is available. This reduces the lie-in period after
the fall, reducing complex health situations that might arise due to long lie-in periods.

Model D and Available Wearable Devices in the Market
IoT applications are classified into different levels based on the complexity of the appli-
cation and the complexity of the elements used to build them. In the case of model A,B
and C described in this section, data storage and analytics is not done on the wearable
device. Health monitoring systems usually collect a large amount of data from multiple
sensors. The size of the data is large and also requires complex data analytics. Hence
using the usual classification of IoT systems, the data storage and analytics must be
primarily performed on the cloud. While this model works well for long-term health
monitoring and rehabilitation, it will not be suitable for emergency services. In our sug-
gested model D, we store some of the data and run the complex data analytics on them
to handle an emergency such as falls; hence each end device has a very powerful SoC
at its core. We plan to use SoCs such as Qualcomm Snapdragon 410c/820c/wear 4100
series that are built explicitly for biomedical applications. Running ML/DL applications
especially requires high processing power. Hence if the analytics for emergency care
must be performed on wearable devices, we need to use compressed ML algorithms.

We have reviewed multiple fall detection-based systems [4] available commercially
and under theoretical research. In the following subsection, we give a brief overview of
such fall detection systems.

Commercially Available Systems and Their Applications
Applewatch SE or series 4 [5] and above can detect hard falls. These services are enabled
by default if you are above 55 years of age and are available as an optional application for
those between 18 to 55. The “apple watch fall detection app” can help connect users to
emergency services while sending messages to their emergency contacts. Apple Watch
can detect only hard falls. It uses accelerometer and gyroscope data to detect a fall. It
uses the impact acceleration and the resultant wrist trajectory for fall detection. In order
to detect falls, it uses thresholding technology on the data, and no ML/DL algorithms
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are run on the wearable system. Apple Watch also detects if a person is immobile for 60
s, it then begins a 30 s counter that starts an audio alert. The audio alert keeps getting
louder until emergency services press “cancel”. Despite the availability of such features,
experimental data show the accuracy is only 4.7%, it has a false-negative rate of 95.3%
and an interesting point is also that Apple watches are better at detecting forward falls
than sideways falls because the wrist movement in sideways fall is equivalent to lying
down in bed.

Another smart wearable device available is the “Unali Kanega” watch [6], another
wrist-based device available for fall detection. It also makes use of accelerometer data to
detect falls. The Unali watch is unique because the user can change the battery while still
wearing the watch. This is a useful feature since falls may occur when the user removes
his watch to charging.

There is also the Phoenix watch available which has an app called WellB Medical
Alert plus that sends out the GPS location of the fallen person as long as he presses the
button.

Other than the wearable systems available commercially, there are also applications
which can run on the mobile. The summary of the applications and their capability is
listed in the table given below. All the applications require that a user either presses a
button or uses some form of an audio alert. The application will only provide the GPS
location of the person. (Wherever GPS+ is mentioned in the table, it also uses Wi-Fi
information to detect the person’s position).

Other than these, there are also the popular “fall call lite application” [7] which
usually runs on theWatch Operating Systems. Here the user must press a button and call
for help when he falls. These applications are not very popular as they require that the
person is still conscious and able to raise an alert.

The Wearable Devices Under Research
[8] talks about a smart vest that can monitor respiratory and physical activities. The M-
health platform [9] described as part of the “Frail” project has a smart vest, fall sensors,
and a smartwatch. The sensing platform aims to address the continuous monitoring of
vital signs relevant to frail users and detecting and alerting falls. The smart watch worn
by the user acts as the gateway to the platform, gathering data from sensors and receiving
events and remainders introduced by caregivers.

Since the smartwatch is responsible for communication with the frail servers, the
end devices, the sensing platforms, need only to send the sensor data. Hence this falls
under model C of the IoT architecture described in Sect. 2. For fall detection, mainly
accelerometer-based devices are used. Also, after the accelerometer detects the fall,
the smartwatch expects the wearer to confirm he/she has fallen. If the user confirms
the fall, the smartwatch sends the event to the frail servers back and then triggers a
preconfigured procedure. The sensor module used is a tri-axial accelerometer, and the
processing module is a PIC18 F2431Microcontroller which uses a thresholding method
to detect falls. The sensors are placed as an adhesive patch on the skin of the lower back.
Again, this system does not use multiple sensor data or any machine learning algorithm
to detect falls.



154 P. Nandi et al.

Table 1. The summary of commercially available wearables

Product Automaticfall
detection

Location capability Battery
life

GreatCall Lively Mobile
Plus

Yes GPS 1–3 days

Philips Lifeline GoSafe 2 Yes GPS+ 2–3 days

Medical Guardian Active
Guardian
(rebranded version of the
Freeus Belle+)

Yes GPS+ up to 5 days

LifeFone At home,
On-the-Go GPS, Voice in
Pendant
(rebranded version of
the Freeus Belle+)

Yes GPS+ up to 5 days
(30 days if no fall
detection capability)

LifeFone At home,
On-the-Go GPS
(rebranded version of the
MobileHelp Duo)

Yes GPS 1 day (mobile base
station)
pendant: long

MobileHelp Duo Yes GPS 1 day (mobile base
station) pendant:
18 months

Medical Guardian Mini
Guardian

Yes GPS+ up to 5 days

Further research analysis shows that most fall detection systems use Model A, while
the rest may use Model B, where sensor fusion is done on the coordinating device. This
will be the first attempt to build a wearable SoC device that runs compressed ML\DL
algorithms that provide auto alerts for emergency help.

3 Machine Learning

ML [10] is a technique that applies mathematical models to data sets to analyze, classify
and convert data into knowledge. There are three types of ML algorithms.

1. Supervised – In supervised learning, the input data is classified apriori using a training
data set; any new data is automatically classified into one of the input types, some
of the algorithms include KNN [11], Naïve Bayes [12], Decision trees [13], Linear
Regression [14], SVM [15].

2. Unsupervised – In unsupervised learning, the ML algorithm recognizes a pattern on
its own from a given data set, some of the common algorithms includeK-Means clus-
tering [16], Classification rules [17], Hidden Markov model [18], Neural Networks
[19].
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3. Reinforced -This algorithm allows the system to adapt its behavior based on feedback
from the environment.

In the case of fall detection, binary classification is used to convert an activity into a
fall or ADL. The diagram given below shows how the ML model is built.

In each category of ML, there are several algorithms, as shown in Fig. 5.

Fig. 5. Schematic of ML Model

For fall detection, several ML algorithms are currently being used. Commonly used
algorithms areLogicalRegression,NaïveBayes, SVM,KNearestNeighbor andRandom
Forest. Among these algorithms, this paper concentrates on the KNN algorithm.We had
earlier run multiple ML algorithms for fall detection. The AUC/ROC curve for them is
shown in the figure below.

The algorithms were run on the data set that we had collected. The dataset had over
70k points, of which 70% was used for training; and 30% was used as test data. KNN
has a good AUC score of 0.971, performing as well as SVM. We have used KNN to
analyze the latencies involved in the ML algorithm as the accuracies of KNN are good,
and KNN does not require any pre-training until a query is raised. Hence KNN is the
best model to understand the effect of implementing ML on SoCs as there will be no
heavy pre-training required, unlike the other algorithms. Though Naïve-Bayes is easier
to implement. Its AUC score is only 0.825, which is very low when compared to KNN
(Fig. 6).

Fig. 6. AUC/ROC curve of ML algorithms for fall detection
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4 K Nearest Neighbor Classification Algorithm (KNN)

The KNN algorithm [20] is a general classification algorithm that uses Nearest Neighbor
rules to classify data. It compares the input data withK samples with the same class label,
finds the nearest one, and classifies the input data accordingly. It differs from the Nearest
Neighbor algorithm in that, instead of a single neighbor, it takes K nearest neighbor in
the decision-making process. This allows theKNN algorithm to utilizemore information
for data classification. It also eliminates the process of learning when compared to other
classification algorithms. The KNN schematic diagram for classification is shown in the
figure below. The decision-making process is straightforward in KNN. The input data
is compared to the sample class close to it (Fig. 7).

Fig. 7. Classification Schematic for k = 3

The classification is done based on the distance metric, as shown in the figure above.
There are multiple methods available to calculate the distance in KNN. The most com-
monly used methods are (a) Euclidean, (b) Manhattan, (c) Hamming (d) Minkowski
[21].

The Euclidean distance is calculated using the formula given below.
Euclidian distance

d =
√
(x2 − x1)2 − (y2 − y1)2 (1)

The Manhattan distance is the distance between two points measured along the axis
at right angles and uses the following formulae for calculating the distance.

Manhattan distance

d = |x2 − x1| + |y2 − y1| (2)

The Hamming distance uses the number of BITS dataset which differ between the
two-binary data, the distance between the data is given by

Hamming distance

d =
∑

|Ai − Bi| (3)

The Minkowski distance comes somewhere between Euclidean and Hamming. The
Minkowski distance is given by

Minkowski distance

d =
∑n

i=1
(xi − yi)

1
p (4)
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5 Dataset and Data Preparation

The size of the data set, the data collection methodology used, the nature of the sensors,
and the sampling rate affect the model’s output. Research in fall detection has advanced
over the last few years due to the increase in the elderly population who live alone.
Multiple fall data sets are available, and various data sets [22] have been analyzed in
detail. When coming to falls, the sensors used for fall detection can be (a) Biological,
(b) IMU, (c) Image (d) Ambient sensors. While the first two fall under the wearable
sensor category, the latter are non-wearable. Biological sensors might be heartrate sen-
sors, GSR sensors, SpO2 sensors or sensors based on the previous health history of
the person. IMU sensors include a 3D accelerometer and gyroscope. Image sensors are
monochrome/RGB/Thermal cameras/IR cameras, which detect falls. Ambient sensors
are usually placed around the entire room occupied by the elderly. This includes radar
and acoustic sensors, which are used for detecting falls.

Wearable sensors are preferred because they can follow the elderly through their
entire daily routine. Multiple wearable sensors are available, primarily IMU-based sen-
sors, most of which use 3D accelerometers. 80% of the data set available currently have
waist-worn accelerometer sensors. Some supplement the waist-worn sensors by placing
the sensors on the thigh or leg of the sensor. Few data sets place sensors all over the torso.
Wearing sensors on the waist and the torso can be highly uncomfortable for the elderly
as these sensors have to be worn for the entire day. In this paper, we focus on wrist-worn
sensors as we strongly believe a wrist sensor is more convenient for an elderly user, and
the sensor data can constantly be augmented appropriately using mathematical models.

Furthermore, there are multiple fitness bands available in the market that provide
IMU and heart rate, blood pressure, and oxygen levels, and these devices can very
quickly be adapted for fall detection. Fitness bands come with their own SoCs, so we
believe we can adapt ML algorithms to be run locally on the device and the data to be
stored locally for short-term health emergencies such as falls. We examined multiple
datasets which used 3D accelerometers and looked mainly at data sets where the sensors
were worn on the wrist. Among these, Smartwatch, SmartFall and Notch datasets are
available publicly, so we used them.We also collected data using ten volunteers wearing
a TIC watch (BITS dataset).

Data Collection Methodology for BITS Dataset
We gathered our data using ten volunteers wearing a TIC watch which included a 3-axis
accelerometer, 3-axis magnetometer, 3-axis gyroscope and optical heart rate sensor.

Experiments were performed in a controlled environment in 20 different ADL/fall
activity simulations, such as walking, running, climbing stairs, abrupt movements, and
various types of falls. Using a TIC Watch, data were collected at four samples/second,
the maximum possible frequency.

The volunteers were aged between the ages of 20–22 years. Their height ranged from
5′1” to 5′8”, and weight from 40 kg to 75 kg.

Experiments were performed across 20 different ADL/fall activity simulations, such
as walking, running, climbing stairs, and abrupt movements. The volunteers simulated
the following activities: (a)Walking slowly (b)Walking quickly (c) Jogging (d)Climbing
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up and down a flight of stairs (e) Slowly sitting on a chair, waiting a moment, and
standing up slowly (f) Quickly sitting on a chair, waiting a moment, and standing up
quickly (g) Trying to transition from sitting to standing position but collapsing midway
(h)Transitioning from sitting to lying and back, slowly (i) Transitioning from sitting to
lying and back, quickly (j) Transitioning from sideways position to one’s back while
lying down (k) Standing, about to sit down, and getting up (l) Stumbling while walking
(m) Slowly jumping without falling (n) Swinging hand (o) Falls – forward, backward,
left lateral, right lateral (p) Grabbing while falling (q) Spinning fall.

To collect the data, the TIC watch was programmed to collect the data and send it via
the user interface to the system. The data was automatically moved into a.csv file. The
user interface of the software had buttons for every type of activity that was performed,
so the corresponding button was selected before performing a particular activity. This
enabled automatic labelling of the dataset as it got stored.

Samples on IMU and heart rate were collected during 14 ADLs and 6 falls, with
each activity/fall, repeated twice. All activities were conducted at the BITS Pilani, K K
Birla Goa campus. The falls were simulated in a controlled environment. The anechoic
chamber at BITS Pilani, K K Birla Goa campus was used for this purpose. The chamber,
4.5 m × 2.2 m × 2.5 m, is padded with NRL USA standard 8093 complying material
on all four walls, the floor, and the ceiling. This padding provided the necessary shock
absorption capabilities to protect volunteers from harm during the experimentation.

The volunteer’s rebound and residual movements after a fall activity were also con-
sidered to ensure that the data set also contains post-fall values of the IMU and heart
rate parameters. Hence for falls, the data collection was stopped not immediately but a
few seconds after the actual event occurred, during which time the volunteers performed
post-fall movements such as rolling over and attempting to get up. The data set generated
had, in total, over 110,000 lines about the ADLs as mentioned above and falls.

In case of the BITS data set though we collected data using a 3 axes accelerometer,
magnetometer and gyroscope as well as an optical heart rate sensor, we used only the
data from 3 axes accelerometer to study the accuracies over the other data sets. This
changed the number of data points from 110,000 to 47,656.

Data preparation for SmartFall, Smartwatch and Notch

Smartwatch Dataset [23]- Smartwatch had 7 subjects with the age range of 21 to 55
who perform 971 different activities. Each data was collected at a sample rate of 31 Hz.
In order to match it with our data set we downscale it to 20 kHz using the python scipy
1.2.3 package overall there were 34,019 data points.

Notch Dataset [24]- Notch data set have only 7 subjects in the ages ranging from 20–
35. Overall notch had 10,645 data points; the data set was also collected at 31 Hz which
was eventually downscaled to 20 Hz to match our data set.

SmartFall Dataset [25] - Smartfall had more subjects (14) covering a wider age range
of 21 to 60, covering 1027 activities and 92,780 data points. Again, as in case of
Smartwatch and Notch, we down sample the smartwatch data to 20 Hz.
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Fused Dataset - We also fused the data set of SmartFall, Smartwatch and Notch as
all 3 of them use the same accelerometer and a sampling rate of 31.25 Hz. This gave
us overall 2496 activities extended over 28 subjects in the age range of 20–60. We
combined the data set as we wanted to understand the effect of the size of the data set on
the performance of the ML algorithm, especially in terms of latency, as we implemented
it on the Qualcomm Snapdragon 410c SoC.

A summary of all data sets is shown in the Table 2.
We did not combine the BITS data set in the fused data set as a completely different

accelerometer was used to collect data. The data ranges were completely different, and
the ML algorithms would have given entirely incorrect results. We did not upscale or
downscale the data because no mathematical relationship could be derived from the data
sets due to the use of entirely different sensors. Anymin-max scale or thresholdingwould
have required that we examine over 100,000 data points to look for similarities between
various falls and non-falls events. This would have required a considerable performance
and computational complexity tradeoff (Table 1).

Table 2. Summary of datasets used in this paper

Dataset Activities Data points Test subjects Age

BITS 3000 47,656 10 20–22

Notch 698 10,645 7 20–35

SmartWatch 771 34,019 7 21–55

SmartFall 1027 92,780 14 21–60

Fused 2496 137,444 28 20–60

6 Results and Discussions

To understand the working of ML on an SoC, we choose to experiment with KNN as
the ML model. As mentioned in Sect. 4, the primary advantage of KNN is that no pre-
training is required until a query is raised. As described in Sect. 5, we worked with
multiple data sets such as a Smartwatch, Smartfall and Notch. This was to understand
the effect of data collection and results of the data set on the accuracy of the ML model.
Furthermore, to understand the limitations of the data set size, that the SoC could work
whilewe used the clean data set from the Smartwatch and Smartfall andNotch all of them
down sample to 20 Hz; we also used the data collected by us in both the raw and clean
format. Data cleaning or statistical analysis of data is generally performed on the cloud.
If we collect data and send it to the cloud for cleaning, the network latency remains;
hence, running the ML algorithms on the SoC has no benefit. Hence the cleaning of the
data should also happen on the SoC itself. When we use raw data, the SoC is unable to
proceed further. More details are given below in this section.While analyzing the various
datasets and the effect of running the algorithm on an SoC, we varied the values of k
from 1-to 200. In some cases, we have looked at a narrower data window with k values
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varying between 17–69 because that is where the maximum variation was observed.
We also ran the accuracy for three different distance equations, Euclidian, Minkowski
and Manhattan. When we attempted to run the algorithm with Hamming distance, the
accuracies were considerably lower. As most of our data is 64-bit floating-point format
and there are minimal variations in mantissa values, Hamming does not work well with
the kind of data set we are using. We also analyzed the latencies of the various datasets.
We ran the algorithms for varying values of k on Apple M1 systems and Qualcomm
Snapdragon 410c. We ran the algorithm on the M1 system as a single thread since the
SoC also runs the algorithm as a single thread. The apple M1 pro was running at 3.22
Ghz, and the 410C SoC was running at 2.40 GHz.

The plots of our various results are given below:
Figures 8 and 9 give the accuracy and latencies of Smartwatch on M1 pro.
Figures 10 and 11 give the accuracy and latency of Smartwatch on Qualcomm 410c.

Fig. 8. Accuracy of Smartwatch dataset on Apple M1 pro

Fig. 9. Latency on Smartwatch dataset on Apple M1 pro

Fig. 10. Accuracy of Smartwatch dataset on Qualcomm 410c

Analysis of Smartwatch Dataset Results
In the case of Smartwatch, there are 771 data taken from 7 subjects over ages 21 to 55.
The details are given in Sect. 6. The best results were obtained at a k value of 29 for
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Fig. 11. Latency on Smartwatch dataset on Qualcomm 410c

both Euclidean and Minkowski, while Manhattan gave its best result at a slightly lower
value of k= 23. This is a trend that can be observed over various datasets that Manhattan
gives higher accuracies at a lower value of k; this is because of the way the distance is
calculated in the case of Manhattan, which is the sum of the absolute difference of the
cartesian co-ordinates of the data. It can be seen from the latency plots that the SoCs
take about 10.5 s in case of the highest accuracy for both Euclidean and Minkowski are
about 11.75 s for Manhattan.

The accuracy ofMinkowski (93.7519%) and Euclidian (93.7519%) is slightly higher
than that ofManhattan (93.7213%).Where as in the case ofM1Pro, the time taken is 0.45
s for all the algorithms. The data sampling rate in case of all our data is 20 Hz, meaning
we collect a sample every 0.25 s and if the time taken to run the algorithm is between
10 to 12 s, even at a frequency of 2.4 GHz, and with a simplistic ML algorithm such
as KNN, it is not possible to run an ML algorithm realtime on the SoC. The number of
data points on Smartwatch is 34,019. Though it covers only 771 activities. The latencies
required on the SoC are extremely high.

Analysis of Smartfall Dataset Results
In the case of Smartfall size of the data set is 92,780 data points covering 1027 activities.
The best performance for Euclidian and Minkowski is obtained at a k value of 25 and
in the case of Manhattan at a k value of 21. As in the previous 2 cases, the best per-
formance of Manhattan (93.5186%) is slightly lower than that of Euclidian (93.5312%)
and Minkowski (93.5312%). The latencies, as expected, are higher as the data set size is
more extensive. Euclidian and Minkowski’s peak performance, the latency incurred by
M1 pro is 0.65, and in the case of Manhattan, it is 0.7. The latencies in the case of 410c
for Euclidean and Minkowski is 21 s and 23 s for Manhattan.

Figures 12 and 13 give the accuracy and latency of Smartfall on M1 pro.



162 P. Nandi et al.

Fig. 12. Accuracy of Smartfall dataset on Apple M1 pro

Fig. 13. Latency on Smartfall dataset on Apple M1 pro

Figures 14 and 15 give the accuracy and latency of Smartfall on Qualcomm 410c.

Analysis of Notch Dataset Results
The Notch data set has 10,645 data points covering overall 698 activities. This is by far
the smallest data set that we have used. The accuracy of the Notch data set is at k = 35
for both Euclidean and Minkowski; in the case of Manhattan, the maximum accuracy
is observed at k = 31. The latencies of the Notch dataset, in the case of both Apple M1
processor and 410c, are slightly lesser as the dataset size is also lesser. In the case of
Euclidean and Minkowski at the peak performance, the latency on the M1 processor for
the Notch data set is at 0.4 s, and for Manhattan, it is at 0.45 s.

Fig. 14. Accuracy of Smartfall dataset on Qualcomm 410c

While in the case of 410c at the peak performance, the latencies are 10 s for
Minkowski and Euclidian and 12 s for Manhattan. In the case of the Notch data set
as well, the accuracy of Manhattan (91.8365%) is slightly lesser than that of Euclidean
(91.8485%) and Minkowski (91.8485%).
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Fig. 15. Latency on Smartfall dataset on Qualcomm 410c

Figures 16 and 17 give the accuracy and latency of Notch on Apple M1 pro.

Fig. 16. Accuracy of Notch dataset on Apple M1 pro

Fig. 17. Latency on Notch dataset on Apple M1 pro

Figures 18 and 19 give the accuracy and latency of Notch on Qualcomm 410c.

Fig. 18. Accuracy of Notch dataset on Qualcomm 410c
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Analysis of Fused Dataset
As described in Sect. 5, we fused the data of Smartfall, Smartwatch andNotch generating
137,444 for 2,496 activities. The fused data set gave the best accuracy for Minkowski
and Euclidean at a very high value of k = 49, where as the best results for Manhattan
was at a k value of 25, it can be seen from this result that the number of data points
have a bigger effect while using Minkowski and Euclidean methods when compared to
Manhattan.

Fig. 19. Latency on Notch dataset on Qualcomm 410c

The accuracy again for the combined data set was slightly higher for Minkowski
(92.9587%) and Euclidean(92.9587%)as compare to Manhattan(92.9526%). The laten-
cies are extremely high as expected when compared to previous non fused data sets.
For M1 pro, for the peak value of accuracy is at 0.75s and in case of Minkowski and
Euclidean and for Manhattan the peak accuracy is observed at 0.8 s.

In case of 410c the latency is approximately 23 s in case ofMinkowski and Euclidean
and 24 s in case of Manhattan.

Figures 20 and 21 give the accuracy and latency of fused data-set on Apple M1 pro.

Fig. 20. Accuracy of combined dataset on Apple M1 Pro

Fig. 21. Latency on combined dataset on Apple M1 Pro

Figures 22 and 23 give the accuracy and latency of combined dataset on Qualcomm
410c.
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Fig. 22. Accuracy of combined dataset on Qualcomm 410c

Fig. 23. Latency of combined dataset on Qualcomm 410c

BITS Data Set
In theBITSdata set, we have 47,656 data points covering 20 activities. The peak accuracy
of the BITS data set is obtained at 27 for all 3. The difference here is in the case of
Manhattan,weget a better performance of 85.4701%compared toMinkowski (82.906%)
and Euclidian (82.906%). The latencies obtained in the case of the BITS data set are
slightly lesser, with the latency being 0.002 s at k = 27 for Manhattan and Minkowski,
whereas it is at 0.003s for Euclidean. On Apple M1 processor. In the case of Euclidian
and Minkowski, the peak latency is 0.044 s at peak performance for Euclidian and
Minkowski and 0.048 for Manhattan. It can also be seen that the latency values do not
increase with an increase in k. One of the reasons we could get from the data set was that
the age of the subjects was almost the same, varying between 20–22 years, with none
having any history of illness or falls. Hence the accuracies are lower, and latencies are
lesser. As described in Sect. 5, the BITS data set, other than the accelerometer data, also
has gyroscope data, heart rate, and a few other parameters. When KNN was used with
all these sensors, we obtained a peak accuracy of approx. 91%, which is comparable
with other data sets. The accuracy of results also depends upon the accuracy of the
accelerometer used, details of which are provided in Sect. 5. Also, as all the subjects
were in the same age range, therefore there is very little difference in acceleration values
in terms of fall and non-fall values.

Figure 24 and 25 give the accuracy and latency of BITS dataset on Apple M1 pro
Figures 26 and 27 give the accuracy and latency of BITS dataset on Qualcomm 410c.
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Fig. 24. Accuracy of BITS dataset on Apple M1pro

Fig. 25. Latency on BITS dataset on Apple M1 pro

Looking at the varying data sets, we can draw the following conclusions: (i) The
accuracy increases with the size of training data (ii) The latencies are very high as the
amount of data collected is more (iii) Statistical analysis must be performed before
running the ML algorithm on the dataset. (iv) It is impossible to run ML algorithms on
the SoC.

Fig. 26. Accuracy of BITS dataset on Qualcomm 410c

KNN, also considered an algorithm that does not require much pre-training, is one
of the simplest algorithms to give accuracies above 90%, even with 10,000 data points
requiring latencies more significant than 8 s. Hence there is a need to run compressed
ML algorithms on a compressed data set. (v) When we try running the algorithm on raw
data set without statistical analysis, 410c repeatedly kills the process as it cannot handle
large data.
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Fig. 27. Latency on BITS dataset on Qualcomm 410c

7 Summary and Conclusions

Deep learning is currently being used for fall detection. DL techniques applied on the
Smartwatch, Smartfall and Notch data set gave accuracies in the range of 98.2%, 99.6%
and 99%, respectively, while using CNN [26]. Some papers [27] claim RNN can be
implemented on STM 32, which is built using ARM cortex M4 and the deep learning
algorithms take approximately 1 s for execution. However, the pre-trained and the data
set size used was only 22,321 data points. Some data were alert or pre-fall data, and
the rest were fall data. The model was pre-trained to detect between pre-falls and falls,
giving an accuracy of about 75%. The paper concentrates on reducing energy and power
consumption rather than improving accuracy. When we ran the ML algorithm on STM
32 with the BITS data set, which has around 3000 activities and 47,656 data points, we
got an accuracy of 77%. This shows that ML or DL algorithms do not converge well on
microcontrollers. That is why we have moved on to SoCs.

Even in the case of SoCs though the accuracy is better, it is not possible to run
uncleaned test data on the model, as we had seen with our raw test data, where the
process was repeatedly killed before we applied statistical methods to derive the mean,
median, max and min values after which the IMU data gave us an accuracy of around
85% while using KNN. When heart rate and gyroscope data were added to the dataset,
KNN gave us an approximate accuracy of 91%. This was all achieved using Python
Scikit tools. Our results show that the accuracy increases as the size of the data set
increases, even with an algorithm such as KNN. If we use Model D as suggested in
Sect. 2, where the ML algorithms for Fall detection are going to run on the SoC itself,
it also becomes necessary to clean data, and perform sensor fusion on the SoC itself.
This will take high latency on the SoC and also consume an equal amount of power.
Hence, data and model compression techniques are needed if we use an extensive data
set while using ensemble ML or RNN techniques. We prefer RNN as a DL technique
because RNN works well with time-series data. In this paper, we have demonstrated
that using SoCs to run ML algorithms is not possible. Even when running KNN, we had
observed latencies in terms of seconds; hence, we need to use compressed models, and
hence we have firmly established in this paper, that there is a need to use compressed
models for wrist-based model D smart bands/watches. In this paper, we chose to use
accelerometer data as most of the available smartwatches and smartphones are already
equipped with 3-axes accelerometers. In our future work, we propose to augment this
data set with biological parameters such as heart rate, SpO2 and Galvanic skin response
sensors employing RNN-based model compression algorithms.
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Abstract. Human activity classification is assuming great relevance in
many fields, including the well-being of the elderly. Many methodologies
to improve the prediction of human activities, such as falls or unex-
pected behaviors, have been proposed over the years, exploiting different
technologies, but the complexity of the algorithms requires the use of
processors with high computational capabilities. In this paper different
deep learning techniques are compared in order to evaluate the best com-
promise between recognition performance and computational effort with
the aim to define a solution that can be executed by an IoT device, with a
limited computational load. The comparison has been developed consid-
ering a dataset containing different types of activities related to human
walking obtained from an automotive Radar. The procedure requires
a pre-processing of the raw data and then the feature extraction from
range-Doppler maps. To obtain reliable results different deep learning
architectures and different optimizers are compared, showing that an
accuracy of more than 97% is achieved with an appropriate selection of
the network parameters.

Keywords: Automotive radar · Deep learning · Human activities · IoT

1 Introduction

Automatic human activity classification is an active research field with appli-
cations in various contexts, such as smart monitoring, video retrieval, ambient
assisted living, surveillance, etc. Mainstream techniques rely on multiple sensors
placed in different parts of the human body [23], on sensors of smartphones and
wearable devices (such as wristbands and watches) [25], while contactless technolo-
gies are assuming a growing relevance, thanks to their ability to provide constant
monitoring without the need of placing sensors in precise positions. Among these
methodologies, Radar technology has been recently applied to identify people on
the basis of their gait characteristics [16,21] and gestures recognition [15,22].

Activity classification is usually performed by applying machine learning and
deep learning techniques. The rise of convolutional neural networks (CNN) has
resulted in the development of categorization networks such as AlexNet [12] and
VGG [18]. AlexNet that is the first DNN (deep neural network) published in
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2012 significantly improved identification accuracy (10% higher) in comparison to
traditional approaches on ImageNet’s 1000 class. Since then, literature has focused
on both, creating networks accurate and designing efficient in terms of computa-
tional cost. However, there is a lot of literature that discuss new architectures in
terms of layer composition performance. There are few papers [1] which evaluate
factors related to computational cost like execution time, memory usage, etc., and
more relevantly, how computational efficiency impacts precision.

In this paper, we conduct different experiments to assess the benefits and
drawbacks of the application of several existing deep neural networks (DNNs) on
human activity classification. In particular, we consider the selection of 6 DNNs
originally developed for image recognition and we evaluate their performance on
images derived from the raw signal of an automotive FMCW Radar and then
processed to obtain range-Doppler images as final output. Classification results
are obtained considering the dataset in [5], made up of 171 images associated to
three different activities, i.e., fast walk, slow walk and slow walk with hands in
pockets. Two of these activities are very similar, so they are sometimes merged
in order to achieve better results in terms of accuracy and loss functions. The
dataset has been created with participants with different characteristics, such
as age, sex, height and weight. Subjects walked back and forth the Radar used
in the experiments within a distance of 12 m. Similar comparative studies have
been developed in [2,13] on a very large dataset of plant diseases, while we test
DNNs for human activity classification, which involves the resolution of different
issues, starting from the small dimension of our dataset.

The rest of the paper is organized as follows. In Sect. 2 hardware and software
used in our experiments are detailed. In Sect. 3 are introduced the DNN archi-
tectures. The performance metrics and the described results are finally presented
in Sect. 4. Final considerations and remarks are provided in Sect. 5.

2 Materials and Methods

2.1 FMCW Radar

Frequency Modulated Continuous Wave (FMCW) Radar technology has recently
improved its presence on the market due to its growing application in the auto-
motive field. Devices that apply this technology are able to detect targets and
to measure their velocity and angle of arrival. A simplified block scheme of this
type of sensors is depicted in Fig. 1.

Angular information can be obtained with a Multiple-In-Multiple-Out
(MIMO) sensor. In communications MIMO is generally used to improve the
data throughput, while in Radar systems this technology is used to obtain the
angle information exploiting the different phases of the echoed signals [6,11,19].
Thanks to the characteristics of radar sensors working with carrier frequencies
between 77 to 81 [GHz] and given the wavelength involved, it is possible to
obtain very interesting and precise information about the targets. In particular,
the micro-Doppler extracted from the processing of these types of Radar signals
can be exploited for classification purposes [14,16].
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Fig. 1. FMCW Radar block scheme.

The dataset considered in the present work consists of range-Doppler maps,
each of these images containing the micro-Doppler information related to differ-
ent activities. The data processing necessary to obtain the maps from raw data
is as follows. The considered sensor is the AWR1642, which is connected to the
DCA1000 FPGA. A second board is used to configure the Radar sensor, collect
the data, and stream the raw samples on the computer [8,9]. AWR1642 uses two-
transmitter and four-receiver MIMO antennas. This means that the analog-to-
digital converters sample four beat signals, which are then summed together. The
summation improves the signal-to-noise ratio of the maps. At this point, only one
signal is obtained and it is then reorganized into a Fast-Time/Slow-Time matrix.
The Fast-Time represents the sample collection time (i.e., the sampling time of the
analog-to-digital converters), while the Slow-Time represents the pulse repetition
interval. An example of this map is reported in Fig. 2.
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Fig. 2. Example of Fast-Time/Slow-Time matrix.
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From these data matrices, it is possible to obtain the range-Doppler maps by
performing a Fast Fourier Transform (FFT) along the Fast-Time axis and along
the Slow-Time axis. The range-Doppler maps can be therefore used to train
and test the classification algorithms. An example of the result of the whole
pre-processing operation is shown in Fig. 3.

Fig. 3. Example of Range-Doppler map. Fast-Time has been converted into range
distance and Slow-Time into Doppler.

2.2 Overview of CNNs

In this section, we provide a brief description of the CNNs architectures con-
sidered for our experiments. Because of the small dimension of the dataset in
[5], transfer learning is applied [17]. TensorFlow package 2.3.0 is used to process
neural networks with CUDA-V11.0 and cuDNN-v7.1 as the back-end.

A CNN architecture is made up of different layers, namely, the convolu-
tional layer, pooling layer, reLU layer, fully connected layer, and loss layer. The
convolutional layer is the main component of a CNN, comprising of filters (or
kernels) that identify and forward various sorts of characteristics from the input.
A pooling layer is included between consecutive convolutional layers to minimize
the parameters in the network. The ReLu layer is a function that converts the
negative numbers to zero.

We choose several types of networks, some of which are meant to be even
more effective in terms of performance related to our small dataset. In certain
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situations, the number that appears with the name of architecture represents
the number of layers containing parameters to be learned (e.g., convolutional,
or fully connected layers). The considered architectures are the following:

1. ResNet50
2. Inception ResNetV2
3. InceptionV3
4. VGG16
5. VGG19
6. Xception

A general overview of the different architectures is provided in the following,
along with a brief description of the optimizers considered in our simulations.

The same sampling policies are applied to all the selected networks in order
to have a direct fair and precise comparison. InceptionResNet-v2, Inception-v3,
and Xception models require normalized images with 229 pixels, while for all the
other models 224 pixels are used. Our study is focused on accuracy rate, model
complexity, and inference time.

2.3 VGG

VGG16 [18] is composed by 16 levels divided into convolutional layers, max-
pooling layers, and fully linked layers. It has 5 blocks and a maximum pooling
layer in each block. Similarly, VGG19 contains 19 layers, with three additional
convolution layers in the last three blocks. Both VGG16 and VGG19 excel in
image recognition thanks to their deep layers.

2.4 InceptionV3

Deep convolutional architecture Inception V3 is frequently used for classification
problems. Szegedy et al. [20] first suggested the model notion in the Google Net
architecture where this model is proposed by upgrading the inception module.
Each block of the Inception V3 network contains many branches of convolu-
tions, average pooling, max pooling, concatenated, dropouts, and fully connected
layers, with each block having several symmetric and symmetric construction
blocks. The network contains 42 layers and 29.3 million parameters; thus, its
computing cost is only around 2.5 times that of GoogleNet. The combination of
a reduced parameter count and additional regularization with batch-normalized
auxiliary classifiers and label-smoothing allows for training higher quality net-
works on small training sets.

2.5 Residual Network (ResNet)

He et al. [7] developed the ResNet models, which are based on deep architectures
that have demonstrated strong convergence tendencies and convincing correct-
ness. ResNet was created using many stacked residual units and a variety of lay-
ers. However, depending on the design, the number of operations can be changed.



Assessment of Human Activity Classification Algorithms for IoT Devices 175

Convolutional, pooling, and layers make up the residual units for all the above.
ResNet is comparable to VGG net but it is eight times deeper. The ResNet 50
network has 49 convolutional layers and a fully linked layer at the end.

2.6 Xception

Xception [3] is based on depthwise separable convolutional layers. This neural
network architecture has 36 convolutional layers. In this way, the feature extrac-
tion base of the network is formed. Except for the first and the last modules, all
thirty six layers are divided into 14 modules, all of which contain linear residual
connections surrounding them. In summary, the Xception design is a depth-
wise separable convolution layer stack with residual connections. This lets the
architecture be easily modifiable and defined simply using high-level libraries.

2.7 Optimizers

Gradient descent is the most used method to improve the learning of deep neu-
ral networks. It basically updates each model parameter, verifying how it affects
the objective function, and iterates until this function converges to the mini-
mum. Stochastic Gradient Descent (SGD) is a well known variation of gradient
descent. The Adaptive Gradient Algorithm (Adagrad) optimizer [4] is designed
to deal with sparse data. It adapts the learning rate to the parameters, per-
forming smaller updates (i.e. low learning rates) for parameters associated with
frequently occurring features, and larger updates (i.e. high learning rates) for
parameters associated with infrequent features. Adadelta is instead an extension
of Adagrad developed in [24], simultaneously to Root Mean Square Propagation
(RMSprop), with the aim of solving Adagrad’s diminishing learning rates. Adap-
tive Moment Estimation (Adam) [10] is another method that computes adaptive
learning rates for each parameter.

3 Proposed Methodology

As already mentioned in the previous sections, the dataset in [5] is considered.
Dataset was built at Marche Polytechnic University. Different subjects of age,
sex, height, and weight participate in the tests, repeating each activity (slow
walk, fast walk and walk with the hands in pockets) three times. A total of 171
images of 224× 224 pixels are built. The raw data obtained from the Radar are
processed to obtain range-Doppler maps as described in Sect. 2.1 and feature
detection is applied to smooth the signals.

The proposed methodology is conceptualized in Fig. 4. All the images are col-
ored (RGB). Classification is performed by exploiting the range-Doppler maps.
Data Augmentation is used to pre-process the range-Doppler images to remove
noise or redundancy. Also, it increases accuracy and rushes the execution. For
this purpose, Keras deep learning library in Python is used. When a large amount
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Fig. 4. Conceptual model of the proposed methodology.

of data is available, a model is built from scratch to solve a specific problem. Dif-
ferently, when the dataset dimension is small, transfer learning is usually applied,
and a model built by training on a larger dataset can be used as a starting point
to train the network on our specific data.

Numerous pre-trained models are available under certain conditions. For our
implementation, we used six pre-trained models, namely, VGG16, VGG19, Incep-
tionResNetV2, InceptionV3, ResNet50, Xception. We fine-tuned all the models
on the last layer. All 171 images are randomly generated using ImageDataGener-
ator. Training and testing image datasets used the same data generators. These
ImageDataGenerators apply pre-processing while generating the images. We also
use label encoding to get the categorical output. When the validation accuracy
stops improving, early stopping is used to terminate the training process. The
underlying model is then combined by a GlobalAveragePooling layer, which is
used to reduce the data and prepare the model for the final classification. After
that, a BatchNormalization layer is introduced for model stability and to have
a faster execution, resulting in fewer training epochs. The last layer exploits a
dense layer and a SoftMax activation function for extracting and categorizing
the output. The weights are updated using different optimizers with an activa-
tion function of softmax in the final layer for classifying output. Optimizers are
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used to update the weights. The performance of the network is measured using
a categorical loss function. A dropout is added to avoid overfitting.

After verifying that a number greater than 100 epochs leads to overfitting,
the models are trained using a size batch of 50 and 100 epochs on the training
set and then tested on the test set. At the end we evaluate the performance of
the chosen models as a function of different parameters.

4 Experiments and Results

We here present a comparison of the results obtained by applying different neural
networks and different optimizers to the dataset in [5]. For the sake of repro-
ducibility, we select a random seed equal to 1337. This choice does not influence
the results, since they are averaged over multiple random selections. The dataset
then is randomly split into 80% for training, 10% for validation, and 10% for
testing. This is done to prevent results from repeating each time the algorithm
is rerun. The considered output classes are:

– Fast walk;
– Slow walk;
– Slow walk with hands into pockets.

We first define the metrics which will be used to evaluate the performance of
the proposed methodologies. They are based on the so-called confusion matrix,
whose columns represent the predicted values for each class, while the rows
represent the real values. The most common metric is the accuracy, which is
defined as

Acc =
TP + TN

TP + TN + FP + FN
, (1)

where TP and TN stand for true positives and true negatives, while FP and
FN are the false positives and the false negatives.

A loss function measures the probabilities or uncertainty of a prediction based
on how much the prediction varies from the true value. Differently from accuracy,
the loss is computed as a summation of the errors made for each sample in
training or validation sets, and is not evaluated as a percentage. Loss is often
used in the training process to find the ”best” parameter values for the model
(e.g. weights in neural network). During the training process, the goal is to
minimize this value. In the following, we consider the categorical cross-entropy
loss.

Another useful metric is the precision (also called positive predictive value),
which corresponds to the ratio of correctly predicted positive observations to the
total predicted positive observations or

P = TP/(TP + FP ). (2)

Recall (also known as sensitivity) is the ratio of correctly predicted positive
observations to all observations in actual class

R = TP/(TP + FN). (3)
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Table 1. Accuracy and loss for two activities. Accuracy values are reported as per-
centages.

Model VGG16 ResNet50 Inception ResNetV2 InceptionV3 Xception VGG19

Optimizer ACC LOSS ACC LOSS ACC LOSS ACC LOSS ACC LOSS ACC LOSS

Adam 93.75 0.17 85.71 0.32 95.92 0.63 97.96 0.11 93.97 0.13 93.75 0.29

RMSprop 93.75 0.17 81.63 0.36 97.96 0.06 97.96 0.05 97.96 0.07 93.75 0.25

SGD 87.50 0.27 67.35 0.54 89.80 0.22 95.92 0.16 91.84 0.20 81.25 0.37

Adadelta 81.25 0.48 67.35 0.51 89.80 0.27 87.76 0.25 89.80 0.25 81.25 0.50

Adagrad 93.75 0.19 89.80 0.34 97.96 0.04 95.92 0.06 97.96 0.06 93.75 0.27

Adamax 93.75 0.17 89.80 0.40 97.96 0.07 97.96 0.05 95.92 0.14 93.75 0.29

Table 2. Accuracy and loss for three activities. Accuracy values are reported as per-
centages.

Model VGG16 ResNet50 Inception ResNetV2 InceptionV3 Xception VGG19

Optimizer ACC LOSS ACC LOSS ACC LOSS ACC LOSS ACC LOSS ACC LOSS

Adam 60 0.66 53.3 0.74 66.7 2.2 66.7 0.51 66.67 3.44 66.67 0.75

RMSprop 66.7 0.74 53.3 0.91 80 1.1 86.7 1.49 80 1.70 73.3 0.68

SGD 60 0.94 33.3 1.08 73.3 0.66 86.7 0.56 60 0.85 53.3 0.89

Adadelta 60 1.01 53.3 0.99 53.3 0.77 60 0.65 60 0.77 60 0.97

Adagrad 53.3 0.68 60 0.82 80 0.77 66.7 0.66 73.3 0.87 53.3 0.74

Adamax 80 0.67 46.6 0.82 80 0.90 86.7 2.50 66.7 1.30 60 0.77

The F1 score is the harmonic mean of the precision and recall, where an F1 score
reaches its best value at 1 (perfect precision and recall). Therefore, this score
takes both false positives and false negatives into account as follows

F1 = 2RP/(R + P ). (4)

The accuracy and loss for two and three activities are shown in Tables 1 and
2, respectively. Different optimizers are selected for each type of CNN. In the
two-activities test, we have an imbalance between the folders because the slow
walk and slow walk with hands in pockets classes are merged. This gives us some
fluctuation in the results of the training and validation loss. It is possible to rve
that the Inception family of algorithms leads to the best results for the two
activities case, especially when the RMSprop optimizer is selected. The small
dimension of the dataset deeply affects the results when three different activities
are considered, as evident from the high values of the loss function. This reflects
the fact that there are not enough images to perform a correct classification,
and the model easily tends to overfit. An accuracy of more than 86% is however
achieved by InceptionV3 network is SGD optimizer, with an overall contained
loss with respect to the other cases.

In Table 3 we report the precision and recall values and the F1 score for three
CNNs, i.e., VGG16, ResNet50 and Inception ResNetV2. We select the optimizers
which give the best results and corresponds to Adagrad, RMSprop and Adam,
respectively. In general, there is no CNN or optimizers which results the best in
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all cases, so a suitable configuration must be selected depending on the scenario
and the parameters that we want to maximize.

Table 3. Precision, recall and F1 score for the FastWalk and SlowWalk activities.

Model VGG16 ResNet50 Inception ResNetV2

P R F1 P R F1 P R F1

FastWalk 1 0.43 0.6 1 0.57 0.73 0.6 0.43 0.5

SlowWalk 0.75 1 0.86 0.8 1 0.89 0.71 0.83 0.77

Table 4. Execution times required by different algorithms for the three activities case.
All times are reported in seconds.

Model VGG16 ResNet50 Inception ResNetV2 InceptionV3 Xception VGG19

Adam 30 100 38 55 107 21.04

RMSprop 52 195 75 93 150 42.4

SGD 19 68 24 30 47 17

Finally, in Tables 4 and 5 we compare the execution times required by each
algorithm. Indeed, complexity and duration of running algorithms is an impor-
tant parameter to take into account when dealing with IoT devices, which have
limited storage and computational capacity. Algorithms have been tested using
a Windows 10 Pro 64-bit (10.0, Build19042.789), Version 20H2, Intel Core I7-
5500U, CPU @ 2.40 Ghz RAM 16 GB, Display NVIDIA GeForce 920M 4 GB.
In this case there are no evident differences between the cases with two or three
activities. In both scenarios SGD takes less time than other optimizers, while
VGG19 results the fastest network. SGD in fact is a variation of the classical
gradient descent, but it only computes a tiny subset or random selection of data
instances, rather than the entire dataset, which is redundant and wasteful. In
this way SGD needs less iterations until the objective function converges to the
minimum, thus resulting faster than other optimizers, and when the learning
rate is modest, it is able to achieve the same results than traditional gradient
descent. Adam is instead a gradient-based optimization technique for stochas-
tic objective functions. It computes specific adaptive learning rates for distinct
parameters by combining the benefits of two SGD extensions, RMSProp and
AdaGrad. Although it has a great popularity, Adam has recently been shown
to fail to converge to an optimal solution in some situations, thus requiring in
some cases larger execution times.
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Table 5. Execution times required by different algorithms for the two activities case.
All times are reported in seconds.

Model VGG16 ResNet50 Inception ResNetV2 InceptionV3 Xception VGG19

Adam 31.2 196 45.7 57.2 114 24

RMSprop 56.1 104 89 117 215 60

SGD 19 86 39 42.1 73 24

5 Conclusions

Deep learning is a branch of artificial intelligence that is widely applied in differ-
ent fields. We have considered human activity classification performed by exploit-
ing images derived from an automotive Radar, which represents an emerging con-
tactless technology. We have shown how different pre-trained models built using
transfer learning can achieve good results to discriminate different gait veloc-
ities. In order to define a solution which is more easily implementable on IoT
devices with limited capacity, we have provided a comparison between different
neural networks, in terms of accuracy, loss, classification parameters and execu-
tion times. The quality of health monitoring and the detection of smaller move-
ments, including the position of hands during walking, can be further improved
by expanding the dataset dimension and including the tracking of the subjects
and trajectory.
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