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Abstract. In recent years, with the great success of deep learning,
deep networks-based hashing has become a leading approach for image
retrieval. Most existing deep hashing methods extract the semantic rep-
resentations only from the last layer, resulting in structure information
being ignored which contains additional semantic details that are useful
for hash learning. To enhance the image retrieval accuracy by exploring
the semantic information and the structure information (local informa-
tion), We propose a new method of deep hashing called Deep Multi-Scale
Hashing (DMSH). This is achieved, firstly, by extracting multiscale fea-
tures from multiple convolutional layers. Secondly, the features extracted
from the convolutional layers are fused to generate more robust repre-
sentations for efficient image retrieval. The experiments on the CIFAR10
and NUS-WIDE datasets show the superiority of our method.

Keywords: Deep learning · Deep supervised hashing · Image
retrieval · Feature pyramid · Multi-scale feature

1 Introduction

The rapid advances in the internet and communication have resulted in images’
massive overloading to the internet [22,40,41], making it extremely difficult
to retrieve large-scale data accurately and effectively, representing a practical
research problem. The hash-based image retrieval technique [36] has attracted
increasing attention to guarantee retrieval quality and computation efficiency.
The hashing methods perform to map images into compact binary codes to take
advantage of binary codes’ superior computational and storage capabilities.

Existing hashing techniques can be divided into groups that are data-
dependent and Data-independent. Data-independent approaches, representing
locally-sensitive hashing (LSH) [11], are used in random projections as the hash
functions to learn binary codes. However, these methods do have some limita-
tions. The data-independent methods do not use auxiliary information, which
makes them suffer in terms of poor image retrieval accuracy. Furthermore, They
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require long codes that cost plenty of storage [1,11,15]. To address this prob-
lem, data-driven methods exploit training information to create hash functions,
obtaining shorter binary codes with better performance. Moreover, they can
be categorized-into unsupervised hashing methods [12,13,25,29] and supervised
hashing methods [7,9,20,23,24,33,34].

On the other hand, deep hashing techniques [4,10,21,42] have been pro-
posed after the great success of deep neural networks on many computer vision
tasks. Compared with traditional hashing approaches, deep hashing techniques
exhibit advan- tages in extracting high-level semantic features and producing
binary codes into an end-to-end framework. However, many recent works on
deep hashing methods [14,17,31] used the penultimate layer features in fully
connected layers as the global image descriptor. However, they are undesirable
image features because the high-level features exhibit global details but lack
local characteristics.

To address the above problems, in this paper, we propose a new deep hash-
ing method called Deep Multi-Scale Hashing (DMSH), which use FPN in deep
hashing—using FPN. Extracting the multi-level semantic and visual information
from the input image is facilitated. To be more specific, An FPN builds a path-
way of bottom-up and the top-down features with links between the features the
network produces at different scales. The hash codes are then learned from these
feature scales and fuse to obtain the final ones. Moreover, the network employs
various hashing results depending on different scale features. Consequently, the
network would improve retrieval recall while preventing precision degradation.
The main contributions of the work, in brief, are as follows:

1. A Deep Multi-Scale Hashing (DMSH) learns hash codes from various feature
scales and fuses them to generate the final binary codes. As a result, the
network will be able to retrieve better.

2. A new deep hashing method is proposed that conducts joint optimization of
feature representation learning and binary codes learning in a deep, unified
framework.

3. Experimentation based on two large-scale data-sets show that DMSH provides
state-of-the-art performance in real applications.

2 Proposed Method

2.1 Problem Definition

Let X = {xi}Ni=1 ∈ R
d×N denote the training dataset with N image samples,

where Y = {yi}Ni=1 ∈ R
K×N represents the ground truth labels of the xi, K

is the number of classes. Let’s say that the pairwise labels for training images
are represented by the matrix S = {sij}, where sij = 0 represents no semantic
similarity between samples xi and xj and sij = 1 represents semantic similarity.
The objective of deep hashing methods with pairwise labels is to Learning a
nonlinear hash function f : x �→ B ∈ {−1, 1}L, which can the ability to convert
each input data xi into binary codes bi ∈ {−1, 1}L, L is the Hash code length.
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2.2 Model Architecture

Lin [26] suggested that a feature pyramid network was applied to improve object
detection in RetinaNet [27]. FPN aids the network in learning more effectively
and detecting objects at various scales present in the image. Some previous
methods worked by providing input to the network, such as an image pyramid.
While doing this does enhance the feature extraction procedure, it also lengthens
processing time and is less effective.

FPN solved this issue by creating the bottom-up and top-down connection
of entities and merging them with network entities created at different levels via
a lateral connection.

Figure 1 displays the architecture of our proposed method (DMSH). We used
VGG-19 as the backbone network. The FPN we used is similar to the original
FPN [26], with the difference that, in light of the authors’ expertise, we employed
concatenation layers rather than adding layers within the feature pyramid. FPN
extracts four final features, each presenting the input image’s features at various
scales. The features obtained are fused using a convolutional (Conv1× 1) layer
to get a merged feature and then apply dropout layers, followed by the first hash
layers.

At the end of the design, we assembled the five hash layers. We then connected
the latter to the final hash layer, and finally, we connected the final hash layer to
the classification layer (the number of neurons in the classification layer is equal
to the number of categories of the dataset). With this procedure, the network
uses various hash results based on different features scale. The network will be
able to retrieve images more effectively.

Fig. 1. The architecture of our proposed method: Deep Multi-Scale Hashing (DMSH).
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Table 1. Details of the feature extraction network. Note that we use the features of the
layers marked by “#”. For simplicity, we omit ReLU and batch normalization layers.

Conv block Layers Kernel size Feature size

1 Conv2D
Conv2D#
MaxPooling

64 × 3 × 3
64 × 3 × 3
2 × 2

224 × 224

2 Conv2D
Conv2D#
MaxPooling

128 × 3 × 3
128 × 3 × 3
2 × 2

112 × 112

3 Conv2D
Conv2D
Conv2D
Conv2D#
MaxPooling

256 × 3 × 3
256 × 3 × 3
256 × 3 × 3
256 × 3 × 3
2 × 2

56 × 56

4 Conv2D
Conv2D
Conv2D
Conv2D#
MaxPooling

256 × 3 × 3
256 × 3 × 3
256 × 3 × 3
256 × 3 × 3
2 × 2

28 × 28

5 Conv2D
Conv2D
Conv2D
Conv2D#
MaxPooling

256 × 3 × 3
256 × 3 × 3
256 × 3 × 3
256 × 3 × 3
2 × 2

14 × 14

2.3 Objective Function

Pairwise Similarity Loss. We carry out our deep hashing method by maintain-
ing the greatest similarity between each pair of images in the Hamming space.
The inner product is used to calculate the pairwise similarity. For two binary
codes, bi and bj , the inner product is written as follows: distH (bi, bj) = 1

2bTi bj

Given that all binary codes of points are B = {bi}Ni=1, we can write the
likelihood of pairwise labels S = {sij} as follows:

p (sij |B) =

⎧
⎪⎨

⎪⎩

σ(wij) sij = 1

1 − σ(wij) sij = 0
(1)

where σ(wij) = 1
1+e−wij

, and wij = 1
2bTi bj

According to the equation above, we may deduce that the greater the inner
product 〈bi, bj〉 corresponds to a smaller equivalent distH (bi, bj) and a larger
p (1|bi, bj).

This indicates that when sij = 1, the hash codes bi and bj are regarded as
similar, and vice versa.
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We may get the following optimization problem by considering the negative
log-likelihood of the pairwise labels in S:

J1 = − log p (S|B) = −
∑

sij∈S

(sijwij − log(1 + ewij )) (2)

The above optimization problem makes the distance between two similar
points as small as possible, precisely what pairwise similarity-based hashing
approaches aim to achieve.

Pairwise Quantization Loss. In real-world applications, discrete hash codes
(binary codes) measure similarity. Optimizing discrete hash coding (binary) in
CNN is difficult, however. Therefore, gradient disappearance through the back-
propagation stage is avoided using the continuous hash coding version.

Discrete hash codes are utilized in real-world applications to determine sim-
ilarity. However, discrete hash coding in CNN is challenging to optimize. There-
fore, continuous hash coding prevents gradient disappearance during the back-
propagation phase. Where the hash layer output is ui and bi = sgn (ui). Hence,
quantization loss has been introduced to reduce the gap between discrete and
continuous hash codes. An objective function is defined as

J2 =
Q∑

i=1

‖ bi − ui ‖22 (3)

Q is the mini-batches.

Classification Loss. We apply the classification loss (the cross-entropy loss) to
identify the classes to obtain robust multiscale features. The classification loss
function can be expressed as follows:

J3 = −
Q∑

i=1

K∑

k=1

yi,k log(pi,k), (4)

where yi,k is the label, pi,k is the output of the i − th training sample, which
corresponds to the k − th class.

In conclusion, quantization loss, pairwise similarity loss, and classification
loss can be combined to produce the overall loss function:

J = J1 + βJ2 + γJ3 (5)

3 Experiments

3.1 Datasets

The CIFAR-10 [19] contains 60,000 images of 10 different categories, and each
image is 32×32 in size. Following [2], we sampled 100 images per category as a
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query set (a total of 1000) and the remaining images as a database. Additionally,
500 images per category are selected (a total of 5000) from the retrieval database
as a training set.

NUS-WIDE. [8] is a multi-label data set containing approximately 270,000
images collected from Flickr consisting of 81 ground-truth concepts. We ran-
domly sampled 2100 images from the 21 most frequent classes as the query
set, while the rest as a database, and selected 10,000 images from the retrieval
database as a training set.

3.2 Experimental Settings

Our DMSH implementation utilizes PyTorch. We use a convolutional network
called VGG-19, pre-trained on ImageNet [30]. In all training, we use the Adam
[18] algorithm. For the hyperparameters of the objective function, the beta to
0.1 and the alpha is set to 0.01.

3.3 Evaluation Metrics

We use four evaluation metrics to measure the retrieval performance of differ-
ent hashing methods: Mean Average Precision (MAP), Precision-Recall curves,
precision curves w.r.t, and Precision curve within Hamming radius 2. Five unsu-
pervised approaches are included in our comparison of the proposed DMSH,
i.e., SGH [16], LSH [11], SH [38], ITQ [13], PCAH [37], and two supervised
approaches, i.e., KSH [28], SDH [32], and eight deep hashing approaches, i.e.,
DPH [3], CNNH [39], DNNH [21], DCH [5], DHN [42], HashNet [6], LRH [2],
DHDW [35].

3.4 Results

Tables 2 and 3 displays the MAP results for all methods on the CIFAR-10 and
NUS-WIDE data sets with different code lengths. The results in the table demon-
strate how well the proposed DMSH method performs compared to all other tech-
niques. In particular, on the datasets CIFAR-10 and NUS-WIDE, DMSH delivers
absolute gains in average mAP of 49.4% and 24.44%, respectively, above SDH,
the top shallow hashing technique. However, we can observe that deep hash-
ing performs better than classical hashing techniques, mainly because it can
produce more reliable representations of features. For deep hashing methods,
On CIFAR-10 and NUS-WIDE, respectively, the average mAP of our suggested
DMSH approach increased by 11.5% and 8.3% per cent compared to the second-
best hashing method LRH.
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Table 2. Mean Average Precision (MAP) of hamming ranking for different number of
bits on CIFAR-10.

CIFAR-10 (MAP)

Method 12 bits 24 bits 32 bits 48 bits

SH [38] 0.127 0.128 0.126 0.129

ITQ [13] 0.162 0.169 0.172 0.175

KSH [28] 0.303 0.337 0.346 0.356

SDH [32] 0.285 0.329 0.341 0.356

CNNH [39] 0.439 0.511 0.509 0.522

DNNH [21] 0.552 0.566 0.558 0.581

DHN [42] 0.555 0.594 0.603 0.621

HashNet [6] 0.609 0.644 0.632 0.646

DPH [3] 0.698 0.729 0.749 0.755

LRH [2] 0.684 0.700 0.727 0.730

DMSH 0.800 0.823 0.838 0.840

Table 3. Mean Average Precision (MAP) of hamming ranking for different number of
bits on NUS-WIDE, The MAP values are calculated on the top 5,000 retrieval images.

NUS-WIDE (MAP)

Method 12 bits 24 bits 32 bits 48 bits

SH [38] 0.454 0.406 0.405 0.400

ITQ [13] 0.452 0.468 0.472 0.477

KSH [28] 0.556 0.572 0.581 0.588

SDH [32] 0.568 0.600 0.608 0.637

CNNH [39] 0.611 0.618 0.625 0.608

DNNH [21] 0.674 0.697 0.713 0.715

DHN [42] 0.708 0.735 0.748 0.758

HashNet [6] 0.643 0.694 0.737 0.750

DPH [3] 0.770 0.784 0.790 0.786

LRH [2] 0.726 0.775 0.774 0.780

DMSH 0.826 0.850 0.853 0.859

Precision curves represent the retrieval performance in Figs. 2a and 3a
(P@H = 2). The proposed DMSH performs noticeably better than alternative
approaches. According to the precision curves, the proposed DMSH approach
still has the highest precision rate when the code length rises.
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(a) Precision within hamming radius 2 (b) Precision Recall Curve on 48 bits

(c) Precision curve w.r.t top-N @48 bits

Fig. 2. The comparison results on the CIFAR-10 dataset under three evaluation
metrics.

We further highlight the effectiveness of our method in Figs. 2b, 3b, 2c and
3c, where we compare our method’s precision concerning top returned samples
and Precision-Recall with other techniques. Figures 2c and 3c show that, for
return sample counts between 100 and 1000, the suggested DMSH approach
provides the highest precision with 48 bits. Based on Figs. 2a and 3b, it can be
shown that our DMSH delivers significantly high precision at a low recall level,
which is necessary for precision-first retrieval and is frequently utilized in real-
world systems. In summary, our technique, DMSH, outperforms the compared
techniques.
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(a) Precision within hamming radius 2 (b) Precision Recall Curve on 48 bits

(c) Precision curve w.r.t top-N @48 bits

Fig. 3. The comparison results on the NUS-WIDE dataset under three evaluation
metrics.

Fig. 4. Top 20 retrieved results from CIFAR-10 dataset by DMSH with 48-bit hash
codes. The first column shows the query images, the retrieval results of DMSH are
shown at other columns.
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4 Conclusions

In this paper, we developed an end-to-end Deep Multi-Scale Hashing (DMSH)
for large-scale image retrieval, Which generates robust hash codes by optimizing
the semantic loss, similarity loss, and quantization loss. In addition, the net-
work employs different hashing results depending on various scale features. As
a result, the network would improve retrieval recall while preventing precision
degradation. The experimental results on two image retrieval data sets demon-
strated that our method outperforms other state-of-the-art hashing methods.
The suggested model can provide robust representative features due to its scal-
able structure, which allows for use in many additional computer vision tasks.
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