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Abstract Weobtained the non-local transformations of the Cole—Hopf type, which
translate the Liouville equations with three and four independent variables into the
Bianchi equations. The solutionswith arbitrary functions of these Liouville equations
are constructed.
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1 On the Group Properties of Bianchi Equations

Consider a homogeneous equation with a dominant partial derivative with variable
coefficients (Bianchi equation)

uxyz + auxy + buyz + cuxz + dux + euy + f uz + gu = 0. (1)

In the paper [1] some group properties of this equation have been considered. It is
known that the set of equivalence transformations for (1)

x = α(x), y = β(y), z = γ(z), u = ω(x, y, z)u. (2)

Two equations of the form (1) are called equivalent in function [2, p 117], if they
pass into each other during transformations (2), in which

α(x) = x, β(y) = y, γ(z) = z.
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In the paper [3] it was shown that two equations of the form (1) are equivalent in
function if and only if the Laplace invariants

H1 = ay + ac − d, H2 = ax + ab − e, H3 = cx + bc − f,

H4 = bz + ab − e, H5 = by + bc − f, H6 = cz + ac − d,

H7 = axy + bd + ce + a f − 2abc − g,

H8 = byz + bd + ce + a f − 2abc − g,

H9 = cxz + bd + ce + a f − 2abc − g

(3)

are the same for both equations.
If we look for the operator allowed by the Eq. (1)

α∂x + β∂y + γ∂z + τ∂u,

then it turns out that part of the system of defining equations will be

∂uα = ∂uβ = ∂uγ = 0, ∂2
uτ = 0.

It is known [2, pp. 99–100] that in this case the Lie algebra of the Eq. (1) there is
L = Lr ⊕ L∞, where the algebra Lr of dimension r is formed by operators of the
form

X = ξ1(x, y, z)∂x + ξ2(x, y, z)∂y + ξ3(x, y, z)∂z + σ(x, y, z)u∂u, (4)

and L∞ is an Abelian subalgebra typical of linear equations with the operator
ω(x, y, z)∂u , where ω is the solution of the Eq. (1). It is clear that the operator
u∂u is allowed by any Eq. (1), therefore, this operator can be included in L∞ and
assume that σ(x, y, z) is defined in (4) up to a constant summand.

To construct the defining equations we use the third continuation of the
operator (4)

X3 = ξ1∂x + ξ2∂y + ξ3∂z + σu∂u + τ 1∂u1 + τ 2∂u2 + τ 3∂u3+

+τ 11∂u11 + τ 12∂u12 + τ 13∂u13 + τ 22∂u22 + τ 23∂u23 + τ 33∂u33+

+τ 111∂u111 + τ 112∂u112 + τ 113∂u113 + τ 122∂u122 + τ 123∂u123+

+τ 133∂u133 + τ 222∂u222 + τ 223∂u223 + τ 233∂u233 + τ 333∂u333 .
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The notation used here is u1 = ux , u2 = ux ,…, u12 = uxy ,…, u333 = uzzz . We get

τ 1 = σxu + (σ − ξ1x )u1 − ξ2xu2 − ξ3xu3,
τ 2 = σyu − ξ1yu1 + (σ − ξ2y)u2 − ξ3yu3,
τ 3 = σzu − ξ1z u1 − ξ2z u2 + (σ − ξ3z )u3,

τ 12 = σxyu + (σy − ξ1xy)u1 + (σx − ξ2xy)u2 − ξ3xyu3−
−ξ1yu11 + (σ − ξ1x − ξ2y)u12 − ξ3yu13 − ξ2xu22 − ξ3xu23,
τ 13 = σxzu + (σz − ξ1xz)u1 − ξ2xzu2 + (σx − ξ3xz)u3−
−ξ1z u11 − ξ2z u12 + (σ − ξ1x − ξ3z )u13 − ξ2xu23 − ξ3xu33,
τ 23 = σyzu − ξ1yzu1 + (σz − ξ2yz)u2 + (σy − ξ3yz)u3−
−ξ1z u12 − ξ1yu13 − ξ2z u22 + (σ − ξ1y − ξ3z )u23 − ξ3yu33,

τ 123 = σxyzu + (σyz − ξ1xyz)u1 + (σxz − ξ2xyz)u2 + (σxy − ξ3xyz)u3−
−ξ1yzu11 + (σz − ξ2yz − ξ1xz)u12 + (σy − ξ1xy − ξ3yz)u13−

−ξ2xzu22 + (σx − ξ3xz − ξ2xy)u23 − ξ3xyu33−
−ξ1z u112 − ξ1yu113 − ξ2z u122 + (σ − ξ1x − ξ2y − ξ3z )u123−

−ξ3yu133 − ξ2xu223 − ξ3xu233.

By applying the operator X3 to the Eq. (1), we obtain the defining equations

ξ1y = ξ1z = ξ2x = ξ2z = ξ3x = ξ3y = 0,
σx + (bξ1)x + byξ2 + bzξ3 = 0,
σy + cxξ1 + (cξ2)y + czξ3 = 0,
σz + axξ1 + ayξ2 + (aξ3)z = 0,

σxy + cσx + bσy + ( f ξ1)x + ( f ξ2)y + fzξ3 = 0,
σxz + aσx + bσz + (eξ1)x + eyξ2 + (eξ3)z = 0,
σyz + aσy + cσz + dxξ1 + (dξ2)y + (dξ3)z = 0,
σxyz + aσxy + bσyz + cσxz + dσx + eσy + f σz+

+(gξ1)x + (gξ2)y + (gξ3)z = 0.

(5)

Defining Eq. (5) can be written using Laplace invariants (3) in the form

ξ1y = ξ1z = ξ2x = ξ2z = ξ3x = ξ3y = 0,
(σ + bξ1 + cξ2 + aξ3)x = (H3 − H5)ξ

2 + (H2 − H4)ξ
3,

(σ + bξ1 + cξ2 + aξ3)y = (H5 − H3)ξ
1 + (H1 − H6)ξ

3,

(σ + bξ1 + cξ2 + aξ3)z = (H4 − H2)ξ
1 + (H6 − H1)ξ

2,

H1xξ
1 + (H1ξ

2)y + (H1ξ
3)z = 0,

H6xξ
1 + (H6ξ

2)y + (H6ξ
3)z = 0,

(H2ξ
1)x + H2yξ

2 + (H2ξ
3)z = 0,

(H4ξ
1)x + H4yξ

2 + (H4ξ
3)z = 0,

(H3ξ
1)x + (H3ξ

2)y + H3zξ
3 = 0,

(H5ξ
1)x + (H5ξ

2)y + H5zξ
3 = 0,

(H7ξ
1)x + (H7ξ

2)y + (H7ξ
3)z = 0,

(H8ξ
1)x + (H8ξ

2)y + (H8ξ
3)z = 0,

(H9ξ
1)x + (H9ξ

2)y + (H9ξ
3)z = 0.

(6)



80 A. Mironov and L. Mironova

The first row in (6) shows that

ξi = ξi (xi ), i = 1, 3.

The second, third and fourth rows from (6) are differential equations for determining
the function σ, after ξ1, ξ2, ξ3 have been obtained. The equations starting from the
fifth row are responsible for the results of the group classification.

Some consequences can be deduced directly from the defining equations in the
form (6). If all Hi , i = 1, 9, are identically equal to zero, then the Eq. (1) is equivalent
to the equation uxyz = 0 and admits an infinite-dimensional Lie algebra of operators
of the form

ξ1(x)∂x + ξ2(y)∂y + ξ3(z)∂z

with arbitrary ξ1(x), ξ2(y), ξ3(z).
Let’s introduce the relations into consideration

p12 = H3

H5
, p13 = H2

H4
, p23 = H1

H6
, (7)

q1 = (ln H1)yz
H1

, q2 = (ln H2)xz
H2

, q3 = (ln H3)xy
H3

,

q4 = (ln H4)xz
H4

, q5 = (ln H5)xy
H5

, q6 = (ln H6)yz
H6

,

qi = (ln Hi )xyz
Hi

, i = 7, 8, 9.

(8)

Substitute H1 = p23H6, H6 �= 0, in the fifth row (6)

p23(H6xξ
1 + (H6ξ

2)y + (H6ξ
3)z) + p23x H6ξ

1 + p23y H6ξ
2 + p23z H6ξ

3 = 0.

Since the term in parentheses vanishes, it follows

ξ1 p23x + ξ2 p23y + ξ3 p23z = 0. (9)

The identity (9) means that either p23 = const or p23 is an invariant of the group G
with the operator (4).

If p23 = const , then from the fifth and sixth rows (6) we get

ξ1(ln H6)x + ξ2(ln H6)y + ξ3(ln H6)z + ξ2y + ξ3z = 0. (10)

Differentiating by y, z we get

ξ1
((ln H6)yz)x

(ln H6)yz
+ ξ2

((ln H6)yz)y

(ln H6)yz
+ ξ3

((ln H6)yz)z

(ln H6)yz
+ ξ2y + ξ3z = 0. (11)

Subtracting (10) from (11) and then multiplying by (ln H6)yz/H6, we get
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ξ1q6x + ξ2q6y + ξ3q6z = 0.

Thus, again either q6 = const or q6 is an invariant of the group G with the operator
(4).

Then similar identities can be obtained for p12, p13, qi , i = 1, 5.
Similar identities can be obtained for relations

P1 = H7

H8
, P2 = H7

H9
, P3 = H8

H9
.

For example, considering the relation P1, we come to the identity

ξ1P1x + ξ2P1y + ξ3P1z = 0.

Again, either P1 = const , or P1 is an invariant of the group G with the operator (4).
If P1 = const , then row 12 from (6) gives

ξ1(ln H8)x + ξ2(ln H8)y + ξ3(ln H8)z + ξ1x + ξ2y + ξ3z = 0. (12)

Differentiating by x , y, z we get

ξ1
((ln H8)xyz)x

(ln H8)xyz
+ ξ2

((ln H8)xyz)y

(ln H8)xyz
+ ξ3

((ln H8)xyz)z

(ln H8)xyz
+ ξ1x + ξ2y + ξ3z = 0. (13)

Subtracting (12) from (13) and multiplying by (ln H8)xyz/H8, we get

ξ1q8x + ξ2q8y + ξ3q8z = 0.

Thus, either q8 = const or q8 is an invariant of the group G with the operator (4).
Based on the above statements, classes of equations of the form (1) admitting Lie

algebras of the largest dimensions were listed in the work [1].
In the casewhenqi = const , i = 1, 6, the invariant Hi is a solution of theLiouville

equation (this follows from (8)), the formula of the general solution ofwhich is known
[2, p 123]. Similarly, if any of the constructions qi , i = 7, 9, is constant, then the
corresponding invariant Hi is the solution of the equation

(ln Hi )xyz = qi Hi .

In this regard, the task of constructing is of interest exact solutions of the three-
dimensional analogue of the Liouville equation

uxyz = eu . (14)

We can propose the following method of constructing an exact solution based on
the application of Lie groups of point transformations.
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The usual algorithm for calculating the group of point transformations allowed
by the Eq. (14) leads to the Lie algebra of operators

X = ξ(x)∂x + η(y)∂y + ζ(z)∂z − (ξ′(x) + η′(y) + ζ ′(z))∂u,

where ξ(x), η(y), ζ(z) are arbitrary functions.
To determine the invariants of the group allowed by the Eq. (14), we obtain the

system
dx

ξ(x)
= dy

η(y)
= dz

ζ(z)
= du

−ξ′(x) − η′(y) − ζ ′(z)
. (15)

The first integrals of the system (15) have the form

u + ln |ξ(x)η(y)ζ(z)| = C1,

ϕ(x) − ψ(y) = C2, ϕ(x) − χ(z) = C3,

ϕ′(x) = 1

ξ(x)
, ψ′(y) = 1

η(y)
, χ′(z) = 1

ζ(z)
.

Let’s introduce new variables

v = u + ln |ξ(x)η(y)ζ(z)|, t = ϕ(x) − ψ(y), τ = ϕ(x) − χ(z).

Invariant with respect to the group of point transformations allowed by the Eq. (14)
, the solution has the form v = w(t, τ ). As a result, we come to the equation for
determining the function w

wt tτ + wtττ = ew. (16)

The Eq. (16) has a solution

w = ln
−12

(t + τ )3
.

Then (here ξ(x)η(y)ζ(z) > 0)

u = − ln(ξ(x)η(y)ζ(z)) + ln
−12

(2ϕ(x) − ψ(y) − χ(z))3
=

= ln
−12 1

ξ(x)
1

η(y)
1

ζ(z)

(2ϕ(x) − ψ(y) − χ(z))3
.

Denoting λ(x) = 2ϕ(x), μ(y) = −ψ(y), ν(z) = −χ(z), we obtain an exact solution
of the Eq. (14), depending on three arbitrary functions
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u = ln
−6λ′(x)μ′(y)ν ′(z)

(λ(x) + μ(y) + ν(z))3
.

In [4, 5] some group properties of the fourth-order Bianchi equation were con-
sidered. The homogeneous Bianchi equation of the fourth order is

ux1x2x3x4 + a1ux2x3x4 + a2ux1x3x4 + a3ux1x2x4 + a4ux1x2x3+
+a12ux3x4 + a13ux2x4 + a14ux2x3 + a23ux1x4 + a24ux1x3 + a34ux1x2+

+a123ux4 + a124ux3 + a134ux2 + a234ux1 + a1234u = 0.
(17)

It is implied here that the coefficients are variable.
The Laplace invariants for this equation have the form

hi, j = aix j + aia j − ai j ,
hi, jk = aix j xk + aia jk + a jaik + akai j − 2aia jak − ai jk,
hi, jkl = aix j xk xl + aia jkl + a jaikl + akai jl + alai jk+
+ai j akl + aika jl + aila jk − 2aia jakl − 2aiaka jl−

−2aiala jk − 2a jakail − 2a jalaik − 2akalai j+
+6aia jakal − ai jkl , {i, j, k, l} = {1, 2, 3, 4}, j < k < l.

Here we consider coefficients that differ in the order of the indices to be equal (for
example, a123 = a231). There are a total of 28 Laplace invariants for this equation.
Two equations of the form (17) are equivalent in function if and only if they have all
the corresponding Laplace invariants equal.

Note that if all Laplace invariants are identically zero, then the Eq. (17) is equiv-
alent to the equation ux1x2x3x4 = 0 and admits an infinite-dimensional Lie algebra of
operators of the form

ξ1(x1)∂x1 + ξ2(x2)∂x2 + ξ3(x3)∂x3 + ξ4(x4)∂x4

with arbitrary ξi (xi ).
Similarly to the case of the third-order Bianchi equation, we can introduce into

consideration the constructions

pi j = h j,i

hi, j
, qi j = (ln hi, j )xi x j

hi, j
, i, j = 1, 4;

pli jk = hl,l1l2
hi, jk

, qi jk = (ln hi, jk)xi x j xk

hi, jk
, {l, l1, l2} = {i, j, k};

pni jkl = hn,n1n2n3
hi, jkl

, qi jkl = (ln hi, jkl)x1x2x3x4
hi, jkl

, {n, n1, n2, n3} = {i, j, k, l}.

These constructions are used in [5] to obtain classes of fourth-orderBianchi equations
with certain group properties.
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It is easy to notice that for constants qi j , qi jk , qi jkl the Laplace invariants are again
solutions of the Liouville equation and its three-dimensional and four-dimensional
analogues.

2 Three-Dimensional Analogue of the Liouville Equation

Let us consider an approach to the problem of constructing exact solutions to non-
linear equations based on non-local transformations of variables. Equation

uxyz = λeu (18)

is a three-dimensional analogue of the Liouville equation

uxy = λeu . (19)

Equation (19), in particular, plays a key role in the problem of group classification
of second-order hyperbolic equations [2, pp. 116–125]

vxy + a(x, y)vx + b(x, y)vy + c(x, y)v = 0.

The general solution of the Eq. (19) is well known and can be constructed in various
ways [2, p. 123], [6, pp. 239–240]. As noted earlier, the Eq. (18) is used in the study
of the group properties of the third-order Bianchi Eq. (1).

Here a non-local transformation (such as the Cole—Hopf substitution [7]) is
constructed, translating the Eq. (18) into the simplest Bianchi equation

vxyz = 0, (20)

which has a general solution with three arbitrary functions

v = α(x, y) + β(x, z) + γ(y, z). (21)

In this case, an algorithm based on the use of groupmethods is used [6, pp. 237–241].
Equation (18) admits the Lie algebra of operators

X = ξ(x)∂x + η(y)∂y + ζ(z)∂z − (ξ̇(x) + η̇(y) + ζ̇(z))∂u,

where ξ(x), η(y), ζ(z) are arbitrary functions [1].
On the other hand, the Eq. (20) admits the Lie algebra of operators

X0 = ξ(x)∂x + η(y)∂y + ζ(z)∂z,
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where ξ(x), η(y), ζ(z) are also arbitrary. In addition, like any linear equation, Eq. (20)
admits a stretching operator

Y = v∂v.

In this regard, assume that there is a non-local transformation

u = ϕ(v, vx , vy, vz) (22)

such that the system of Eqs. (18), (20), (22) admits the Lie algebra of operators

X = ξ(x)∂x + η(y)∂y + ζ(z)∂z − (ξ̇(x) + η̇(y) + ζ̇(z))∂u,

Y = v∂v.

We find the first continuations of operators

X1 = ξ(x)∂x + η(y)∂y + ζ(z)∂z − (ξ̇(x) + η̇(y) + ζ̇(z))∂u−
−(ξ̈(x) − ξ̇(x)ux )∂ux − (η̈(y) − η̇(y)uy)∂uy − (ζ̈(z) − ζ̇(z)uz)∂uz+

+ξ̇(x)vx∂vx + η̇(y)vy∂vy + ζ̇(z)vz∂vz ,

Y1 = v∂v + vx∂vx + vy∂vy + vz∂vz .

We get relations

Y1(u − ϕ)|u=ϕ = vϕv + vxϕvx + vyϕvy + vzϕvz = 0, (23)

X1(u − ϕ)|u=ϕ = −(ξ̇ + η̇ + ζ̇) + ξ̇(x)vxϕvx + η̇(y)vyϕvy + ζ̇(z)vzϕvz = 0.
(24)

Since the function v has the form (21), from (23) and (24) we get the system

(α + β + γ)ϕv + (αx + βx )ϕvx + (αy + γy)ϕvy + (βz + γz)ϕvz = 0,
−(ξ̇ + η̇ + ζ̇) + ξ̇(x)(αx + βx )ϕvx + η̇(y)(αy + γy)ϕvy + ζ̇(z)(βz + γz)ϕvz = 0.

(25)
The system (25) is satisfied by the relation

u = ϕ(v, vx , vy, vz) = ln
cvxvyvz

v3
= ln c + ln vx + ln vy + ln vz − 3 ln v. (26)

Substituting (26) into the Eq. (18) taking into account (21) leads to a formula
defining a class of solutions to the Eq. (18) depending on three arbitrary functions

u = ln

(
− 6

λ

f ′
1(x) f

′
2(y) f

′
3(z)

( f1(x) + f2(y) + f3(z))3

)
. (27)

Here f1(x), f2(y), f3(z)—arbitrary continuously differentiable functions.



86 A. Mironov and L. Mironova

3 Fourth-Order Analogue of the Liouville Equation

Now consider the equation
uxyzt = λeu, (28)

related to the fourth-order linear Bianchi equation, whose group properties are con-
sidered in [4, 5].

Similarly to the case of the Eq. (18), we construct a non-local transformation that
translates the Eq. (28) into the equation

vxyzt = 0, (29)

the general solution of which

v = α(x, y, z) + β(x, y, t) + γ(x, z, t) + δ(y, z, t). (30)

Equation (28) admits a Lie algebra of operators

X = ξ(x)∂x + η(y)∂y + ζ(z)∂z + τ (t)∂t − (ξ̇(x) + η̇(y) + ζ̇(z) + τ̇ (t))∂u,

where ξ(x), η(y), ζ(z), τ (t) are arbitrary functions [5].
On the other hand, the Eq. (29) admits the Lie algebra of operators

X0 = ξ(x)∂x + η(y)∂y + ζ(z)∂z + τ (t)∂t ,

as well as the stretching operator
Y = v∂v.

Looking for a non-local transformation

u = ϕ(v, vx , vy, vz, vt ) (31)

such that the system of Eqs. (28), (29), (31) admits the Lie algebra of operators

X = ξ(x)∂x + η(y)∂y + ζ(z)∂z + τ (t)∂t − (ξ̇(x) + η̇(y) + ζ̇(z) + τ̇ (t))∂u,

Y = v∂v.

We calculate the first continuations of operators

X1 = ξ(x)∂x + η(y)∂y + ζ(z)∂z + τ (t)∂t − (ξ̇(x) + η̇(y) + ζ̇(z) + τ̇ (t))∂u−
−(ξ̈(x) − ξ̇(x)ux )∂ux − (η̈(y) − η̇(y)uy)∂uy − (ζ̈(z) − ζ̇(z)uz)∂uz−

−(τ̈ (t) − τ̇ (t)ut )∂ut + ξ̇(x)vx∂vx + η̇(y)vy∂vy + ζ̇(z)vz∂vz + τ̇ (t)vt∂vt ,

Y1 = v∂v + vx∂vx + vy∂vy + vz∂vz + vt∂vt
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and we write down the ratios

Y1(u − ϕ)|u=ϕ = vϕv + vxϕvx + vyϕvy + vzϕvz + vtϕvt = 0, (32)

X1(u − ϕ)|u=ϕ = −(ξ̇ + η̇ + ζ̇ + τ̇ ) + ξ̇vxϕvx + η̇vyϕvy + ζ̇vzϕvz + τ̇vtϕvt = 0.
(33)

The function v has the form (30), therefore from (32)–(33) we get the system

(α + β + γ + δ)ϕv + (αx + βx + γx )ϕvx + (αy + βy + δy)ϕvy+
+(αz + γz + δz)ϕvz + (βt + γt + δt )ϕvt = 0,

−(ξ̇ + η̇ + ζ̇ + δ̇) + ξ̇(αx + βx + γx )ϕvx + η̇(αy + βy + δy)ϕvy+
+ζ̇(αz + γz + δz)ϕvz + δ̇(βt + γt + δt )ϕvt = 0.

(34)

The system (34) is satisfied by the relation

u = ln
cvxvyvzvt

v4
. (35)

Substituting (35) into (28) and taking into account (30), we get the solution of the
Eq. (28)

u = ln

(
24

λ

f ′
1(x) f

′
2(y) f

′
3(z) f

′
4(t)

( f1(x) + f2(y) + f3(z) + f4(t))4

)
,

where f1(x), f2(y), f3(z), f4(t)—arbitrary continuously differentiable functions.
This paper has been supported by the Kazan Federal University Strategic Aca-

demic Leadership Program (Priority—2030).
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