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Abstract In this paper we consider a periodic boundary value problem for the
generalized Ginzburg-Landau. The generalized version of the weakly dissipative
Ginzburg-Landau equation differs from the traditional version by replacing the cubic
nonlinearity with nonlinearity of arbitrary odd degree.Wewill show that the periodic
boundary value problem has a countable set of solutions that are single-mode and
periodic in the evolutionary variable. We will examine the stability question as well
as local bifurcations of such solutions when they change stability. In this case, the
two-dimensional attracting invariant tori bifurcate emergeswhen stability is lost from
single-mode solutions. These are non-resonant tori that have appeared in the generic
situation. The main results are obtained on the basis and development of methods
of the theory of dynamical systems with an infinite-dimensional phase space. These
include the method of invariant manifolds and normal forms, as well as the principle
of self-similarity. This principle allows us to reduce the problem of bifurcations of a
countable set of single-mode solutions to the analysis of the corresponding problem.

Keywords Ginzburg-Landau equation · Periodic boundary conditions · Stability ·
Bifurcations · Normal forms · Invariant tori

1 Introduction

One of the most famous nonlinear evolutionary equations of mathematical physics
can be considered as the corresponding partial differential equation

ut = gu − (d + ic)u|u|2 + (a + ib)uxx , (1)
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where u = u(t, x) = u1(t, x) + iu2(t, x), a, b, c, d, g ∈ R, d > 0, a ≥ 0, g > 0.
Note that Eq. (1) is the referred to as the Ginzburg-Landau evolutional complex
equation. It appears in several branches of physics as well as chemical kinetics
as a mathematical model [1–3]. It is studied together with the periodic boundary
conditions [1]

u(t, x + 2l) = u(t, x).

For chemical kinetics problems, the corresponding boundary conditions of “impen-
etrability” (homogeneous Neumann boundary conditions) are used

ux (t, 0) = ux (t, l) = 0.

We normalize the variables t, x and the functions u(t, x) as follows:

t → γ1t, x → γ2x, u → γ3u

and assume that l = π, d = 1, g = 1, if these constants are positive. We will study
special cases, generalizations and modifications of Eq. (1) and its variations. For
instance, if c = b = 0, then Eq. (1) is called the variational Ginzburg-Landau equa-
tion [1, 4–6]. A variational version of the Ginzburg-Landau equation is found in a
section of modern physics as the theory of condensed matter and requires special
investigation. Note that if a = 0 then we obtain the “weakly dissipative Ginzburg-
Landau equation” [7–12]. For this version of the Ginzburg-Landau equation, we
also apply the generalized cubic Schrodinger equation [11]. Next observe that if
g = d = a = 0, then the original version of the Ginzburg-Landau equation is trans-
formed into one of the variations of the nonlinear Schrodinger equation. Analogous
to the nonlinear Schrodinger equation, the Ginzburg-Landau equation also occurs in
nonlinear optics [8], as well as in some sections of hydrodynamics [2]. In monograph
[13] the hypothesis is given that when replacing Eq. (1) with the following

ut = gu − (d + ic)u|u|4 + (a + ib)uxx ,

according to its authors, a significant change in the dynamics of solutions is possible.
In particular, the hard oscillations are possible. In other words the subcritical bifurca-
tions are realized. In this paper, we will consider the generalized weakly dissipative
Ginzburg-Landau equation, which includes both variants of the Ginzburg-Landau
equation from the introduction.



Local Bifurcations of Periodic Traveling Waves … 37

2 Formulation of the Problem

Our aim is to examine the following boundary value problem

ut = u − (1 + ic)u|u|2p − ibuxx , (2)

u(t, x + 2π) = u(t, x), (3)

where u = u(t, x) = u1(t, x) + iu2(t, x), c ∈ R, b > 0, p ∈ N . Note that if p = 2
we obtain one of the versions of the equation in monograph [13]. If p = 1, we then
obtain the initial version of the weakly dissipative Ginzburg-Landau equation.

Next, if we consider the following initial condition for the boundary value problem
(2), (3)

u(0, x) = f (x), (4)

where f (x) ∈ H2, then via the results from [14, 15] that the initial-boundary value
problem (2), (3), (4) is locally well-solvable. Also recall that the inclusion f (x) ∈ H2

resembles the following characteristics:
(1) f (x) has period 2π;
(2) f (x) has generalized derivatives up to the inclusive second order derivatives

f (x), f ′(x), f ′′(x) ∈ L2(−π,π).

This space H2 is the phase space of solutions to the initial-boundary value problem
(2), (3), (4). The nonlinear boundary value problem (2), (3) has a countably family
single-mode solutions in the space variable x and periodic in t

u = un(t, x) = ηn exp(inx + iσnt), (5)

where n ∈ Z (Z is the set of integer), |ηn| = 1,σn = bn2 − c. Indeed, substitution
of the right side of equality (5) into Eq. (2) after elementary simplifications leads to
a complex equation for determining ηn,σn

iσn = 1 − (1 + ic)|ηn|2p + ibn2.

Next notice that along with solution (5), the boundary value problem (2), (3) also
has solutions in the corresponding form

un(t, x, h) = exp(ih) exp(inx + iσnt), h ∈ R.

The solutions un(t, x, h) form a one-dimensional invariant subspace in the phase
space of solutions to the boundary value problem (2), (3). Since h is arbitrary, in
further constructions we can assume that ηn = 1. Replacing an unknown function

u(t, x) = exp(iωnt + inx)v(t, y), (6)
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where ωn = bn2, y = x + 2bnt, n = 0,±1,±2, . . . leads us to the following equa-
tion for v(t, y)

vt = v − (1 + ic)v|v|2p − ibvyy,

which should be considered with the corresponding periodic boundary conditions

v(t, y + 2π) = v(t, y).

Notice that substitution (6) transforms the solutions of boundary value problem (2),
(3) into solutions of the same boundary value problem. Therefore, the study of the
neighborhood of each of the family of solutions (5) can be substituted by a simi-
lar problem for one of them: u0(t, x) = exp(iσ0t), where σ0 = −c. In physics, the
solution u0(t, x) = u0(t) is often called a spatially homogeneous cycle (or “thermo-
dynamic” branch, Andronov-Hopf cycle). The remaining solutions of family (5) for
n �= 0 are periodic traveling waves and periodically depend on t and x .

3 Stability Analysis of Periodic Traveling Waves

As previously noted, the stability analysis of solutions of un(t, x) (stability of one-
dimensional manifolds V1(u)) can be reduced by virtue of the principle of self-
similarity [9] to the analysis of similar questions for a spatially homogeneous periodic
solution of u0(t) = exp(iσ0t), where σ0 = −c. In turn, to analyze the stability of
the solution u0(t) by setting

u(t, x) = u0(t)(1 + w(t, x)). (7)

For the deviation w(t, x) we obtain the following nonlinear boundary value problem

wt = A(p)w − (1 + ic)F(w, p), (8)

w(t, x + 2π) = w(t, x), (9)

where F(w, p) = F2(w, p) + F3(w, p) + F0(w, p) is a two-variable polynomial of
degree 2p + 1. For further constructions, we consider the following terms

F2(w, p) = 1

2
p
(
(p + 1)w2 + 2(p + 1)ww + (p − 1)w2

)
,

F3(w, p) = 1

6
p
(
(p2 − 1)w3 + 3(p2 + p)w2w + 3(p2 − 1)ww2 + (p2 − 3p + 2)w3

)
.

F0(w, p) denotes the terms at zero that have an order of smallness in the variables
w,w higher than the third. This leads us to A(p)w = −p(1 + ic)(w + w) − ibwxx .
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Next, we will reformulate the linear differential operator A in real form. Instead
of the complex-valued function w = w1 + iw2, we form the vector function v =
colon(w1, w2). In this case, we rewrite the linear differential operator A as follows

Av =
( −2p b∂2

−2cp − b∂2 0

)(
w1

w2

)
.

where we apply the short notation ∂2 f = ∂2 f

∂x2
. This leads us to the functions in the

corresponding form

vk(x) = exp(ikx)
( h1k
h2k

)
,

where h1,k, h2,k are real or complex constants, k = 0,±1,±2, . . . In this case, the
problem of determining the eigenvalues and eigenelements of the linear differential
operator A reduces to analyzing the spectrum of the following countable family of
matrices

Ak =
( −2p −bk2

bk2 − 2cp 0

)

and to determining of the roots of the family of characteristic equations

λ2 + 2pλ + qk = 0,

where k = 0,±1,±2, . . . , qk = bk2(bk2 − 2cp), p ∈ Z . For k = 0 we obtain
λ1,0 = 0,λ2,0 = −2p < 0, i.e. for all values of the parameters p and b the lin-
ear differential operator A has a zero eigenvalue corresponding to the eigenfunction
v0(x) = colon(0, 1) or H0(x) = i in the complex record form.

Let now k �= 0. Note that lim|k|→∞ qk = ∞. Consequently, the inequalities qk > 0

for all k �= 0 lead to the following inequality

Reλk, j ≤ −γ0 < 0 (10)

for all values of k and j = 1, 2. Thus we obtain, qk > 0 for all k ∈ Z\{0}, if b > 2pc
(b > 0 by condition). Otherwise, when b < 2cp, the linear differential operator A
has at least one of its eigenvalues in the right half-plane of the complex plane (one of
the numbers λk,1 or λk,2 are positive). Finally, for b = 2pc the linear operator A has
a triple zero eigenvalue, which in the complex notation corresponds to the following
eigenfunctions

H0(x) = i, H1(x) = (−c + i) cos x, H2(x) = (−c + i) sin x .
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The linear differential operator A corresponding to this choice of parameters will
be denoted by A0 : A0w = −p(1 + ic)(w + w) − 2icpwxx . Thus, in addition to
the zero-equilibrium state, the nonlinear boundary value problem (8), (9) has the
following one-parameter family of equilibrium states

w∗(t, x) = w∗(h) = exp(ih) − 1,

which is easy to verify indirectly. Next by substituting w∗(h) into formula (7) leads
to the following equality

u∗(t, x, h) = exp(iσ0t) exp(ih),

which is a spatially homogeneous solution of the boundary value problem (2), (3)
for all h ∈ R.

Notice that the solutions w∗(h) (family) of equilibrium states form a one-
dimensional invariant manifold M1(h), which exists for all values of the parameters
of the boundary value problem (8), (9) and for h = 0 we havew = 0. Therefore, this
one-dimensional invariant manifold is a center manifold in a neighborhood of the
zero equilibrium state [16, 17], at least for small |h|. This remark and theorems on
behavior solutions outside the center manifolds are the base to the assertion.

Theorem 1 (1) Suppose that b > 2cp, then M1(h) be a local attractor for solutions
to the boundary value problem (8), (9). In particular, all equilibria for small |h|,
including the zero-equilibrium state, are stable but not asymptotically stable. (2)
Suppose that b < 2cp. Then all the equilibrium states forming M1(h), including the
zero-equilibrium state are unstable (saddle points).

Remark 1 If b = 2cp, then the invariant manifold M1(h) exists and is formed by
a one-parameter family (w∗(h) = exp(ih) − 1) of equilibrium states. In particular,
the equilibrium state w = 0 for which the critical case of a threefold zero eigenvalue
emerges, belongs toM1(h).Hence, in this case, an additional analysis of the question
of stability of zero state of equilibrium is required. This is due to the fact that the
stability theorem with respect to linear approximation cannot be used even in the
case of ordinary differential equations.

Corollary 1 From the previous constructions, when transitioning from the boundary
value problem (2), (3) to the auxiliary boundary value problem (8), (9), substitution
(7) and from the self-similarity principle, we obtain the following features:

(1) for b > 2pc all traveling waves un(t, x, h) = exp(i(nx + σnt + h)),

where n = ±1,±2, . . . , h ∈ R and spatially homogeneous solutions u0(t, h) =
exp(i(σ0(t + h))) are stable;

(2) for b < 2cp they are all unstable;
(3) for b = 2pc (c = b/(2p)) the critical case stability problem of solutions

un(t, x, h) are realized.

Further in the next section, the boundary value problems (2), (3) and (8), (9)
will be considered in cases where the threefold zero eigenvalue of the operator A is
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close to critical. This means that the boundary value problems studied below will be
considered if

b = 2pc(1 + γε), (11)

where ε ∈ (0, ε0), γ = ±1 and 0. Appropriate values of γ will be chosen at the final
stage of the analysis of the studied boundary value problems.

Before proceeding to the direct analysis of the bifurcation problem, we introduce
some notation and also recall one fairly well-known statement from the theory of lin-
ear boundary value problems for ordinary differential equations, which we formulate
in a form adapted to our case. Consider the differential operator

A(ε)y = A0y + γεA1y, A0y = −p(1 + ic)(y + y) − 2pciy′′,
A1y = −2pciy′′, y(x) = y1(x) + iy2(x).

In this case y(x) is a sufficiently smooth 2π periodic function.

Remark 2 We will consider the following linear nonhomogeneous boundary value
problem

A0y = f (x), y(x + 2π) = y(x), (12)

where the complex-valued function f (x) ∈ L2(−π,π) and has period 2π. The
boundary value problem (12) has a solution if f (x) satisfies the following two con-
ditions:

(a) Re(a0(c + i)) = 0, where a0 = 1

π

π∫

−π

f (x)dx;

(b) Ima1 = Imb1 = 0, where a1 = 1

π

π∫

−π

f (x) cos xdx, b1 = 1

π

π∫

−π

f (x) sin xdx .

The solution of the boundary value problem (12) is unique, for which the following
equalities hold:

(a) Re(y0(c + i)) = 0, where y0 = 1

π

π∫

−π

y(x)dx;

(b) Imy1 = Imz1 = 0, where y1 = 1

π

π∫

−π

y(x) cos xdx, z1 = 1

π

π∫

−π

y(x) sin xdx

The conditions for solvability when using the complex notation are given. They
have a more familiar form. Next, we will consider the corresponding nonhomoge-
neous boundary value problem
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A0y(x) = f (x), y(x + 2π) = y(x),

where y(x) = colon(y1(x), y2(x)), f (x) = colon( f1(x), f2(x)). Now A0 in real
form is expressed as

A0 =
( −2p 2pc∂2

−2pc − 2pc∂2 0

)
.

It has a triple zero eigenvalue, which corresponds to three eigenfunctions

H0(x) =
(0
1

)
, H1(x) =

(−c
1

)
cos x, H2(x) =

(−c
1

)
sin x .

Conjugate operator

A∗
0 =

( −2p −2pc − 2pc∂2

2pc∂2 0

)

is defined on sufficiently smooth 2π periodic vector functions z(x) =
colon(z1(x), z2(x)). Naturally, it has a triple zero eigenvalue corresponding to the
eigenfunctions

E0(x) =
(−c

1

)
, E1(x) =

( 0
1

)
cos x, E2(x) =

(0
1

)
sin x,

The solvability conditions arise in the following form

< f, E j >= 0, j = 0, 1, 2,

where < f (x), q(x) > denotes the scalar product in the corresponding function
space

< f (x), q(x) >=
π∫

−π

( f (x), q(x))dx,

where q(x) = colon(q1(x), q2(x)), and the brackets (∗, ∗∗) inside the integral
denote the inner product in R2 [18, 19].

The statements from Remark 2 are known as solvability conditions.



Local Bifurcations of Periodic Traveling Waves … 43

4 Turing—Prigogine Bifurcation

We will focus on the analysis of the nonlinear boundary value problem (2), (3) for
the determined values by equality (11). Next, we will transition to a modified version
of the boundary value problem (8), (9) with the following substitution

u(t, x) = u0(t) exp(iϕ)(1 + w(t, x)), (13)

where, as in substitution (7) u0(t) = exp(iσ0t).As a result, now forw(t, x)weobtain
a boundary value problem similar to boundary value problem (8), (9)

wt + iϕt (1 + w) = A(ε)w − (1 + ic)(F2(w) + F3(w) + F0(w)), (14)

w(t, x + 2π) = w(t, x). (15)

In this case, ϕ = ϕ(t, ε) and ϕt (t, 0) = 0, i.e. ϕ(t, 0) = h is an arbitrary real con-
stant.

We indicate an essential feature of the boundary value problem (14), (15). We
denote H2,even as the subspace of the function space H2, containing only even func-
tions f (x). In this case, the specificity of the right side of Eq. (14) is such that
this subspace is invariant for solutions of the boundary value problem (14), (15). If
w(0, x) ∈ H2,even, then its solution is w(t, x) for all t, when it exists, belongs to
H2,even . In this case, the periodic boundary conditions (15) can be replaced by the
homogeneous Neumann boundary conditions

wx (t, 0) = wx (t,π) = 0, (16)

assuming that x ∈ [0,π]. First we restrict ourselves to the analysis of the auxiliary
boundary value problem (14), (16). With this choice of boundary conditions, the
linear differential operator A0 has a double zero eigenvalue, whose corresponding
eigenfunctions are

H0(x) = i, H1(x) = (−c + i) cos x .

Let us recall somewell-knownassertions.Denote by�(r) the ball of radius r centered
at the zero of the phase space H2,even . As is well known (see, for example, [17]),
boundary value problem (14), (16) in a neighborhood of the equilibriumw = 0 has a
smooth two-dimensional invariant manifold M2(ε) ∈ �(r), where r is a sufficiently
small positive constant. All solutions of the auxiliary boundary value problem (14),
(16) from this neighborhood �(r) approach M2(ε) with the exponential rate over
time. In this case, solutions to the boundary value problem (14), (16) that belong to
M2(ε), can be sought in the following form [9, 10, 12]

w(t, x, ε) = ε1/2Q1(x, z) + εQ2(x, z) + ε3/2Q3(x, z) + εQ4(x, z, ε). (17)
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The functions Q j (x, z), j = 1, 2, 3, Q4(x, z, ε) reveal the following properties:
(1) they depend on their variables rather smoothly if |z| < z0, ε ∈ (0, ε0) and, in

addition, Q4(x, z, 0) = 0 (z0, ε0 – some positive constants);
(2) as a function of x they belong to W 2

2 [0,π] (the corresponding Sobolev space
is denoted by W 2

2 [0,π]) and satisfy the boundary conditions (16).
Further, we assume that the functions ϕ = ϕ(s, ε), z = z(s) depend on the slow

time s = εt.They satisfy the corresponding system of two ordinary differential equa-
tions

ϕs = �0(z, ε), zs = �1(z, ε), (18)

where the right-hand sides smoothly depend on z, ε, if |z| < z0 and ε ∈ (0, ε0). The
system of differential equations (18) is called the normal form. It can be replaced
with a shortened version [20]

ϕs = �0(z), zs = �1(z), (19)

where �0(z) = �0(z, 0),�1(z) = �1(z, 0). Such a variant of system (18), i.e. sys-
tem (19) is called “truncated normal form”. It is this kind of normal form that plays
the main role in the analysis of local bifurcations. We substitute the sum (17) into
the auxiliary boundary value problem (14), (16) and note that zt = zsε,ϕt = ϕsε.

As a result of such a substitution, we obtain a sequence of linear boundary value
problems of the terms at equal powers ε1/2. So for ε1/2 we obtain a homogeneous
boundary value problem for Q1 = Q1(x, z) of the following form

A0Q1 = 0, Q1x (0, z) = Q1x (π, z) = 0,

as solutions of which the function can be chosen

Q1(x, z) = zH1(x) = z(−c + i) cos x .

Collecting the terms at ε, ε3/2, we obtain two nonhomogeneous boundary value
problems. Thus, to determine the function Q2 = Q2(x, z), we obtain the following
boundary value problem

A0Q2 = (1 + ic)�2(x)z
2 + i�0(z), (20)

Q2x (0, z) = Q2x (π, z) = 0, (21)

where �2(x)z2 = F2(H1(x, z)) and we procure

�2(x)z
2 = p

2
z2

[
(p + 1)(c − i)2 + 2(p + 1)(c2 + 1) + (p − 1)(c + i)2

]
cos2 x .
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These computations assumed that ϕt = εϕs and therefore ϕt = ε�0(z) + o(ε). The
boundary value problem (20), (21) has a solution from the specified class of functions
if �0(z) = pc(c2 + 1)z2. In this case, the corresponding solution (see solvability
conditions)

Q2(x, z) = v(x)z2 = (v0 + v2 cos 2x)z2,

v0 = −1

4
(1 + ic)((2p + 3)c2 + 1), v2 = (2p + 1)c2 − 1

12
− i

(4p + 5)c2 + 1

24c
.

We obtain the corresponding linear nonhomogeneous boundary value problem by
collecting the terms at ε3/2, at the third step of the implementation of the algorithm:

A0Q3 = �1(z)H1(x) − zγA1H1(x) + i�0(z)zH1(x)+
+(1 + ic)(F3(Q1) + �3(Q1, Q2))z3,

(22)

Q3x (0, z) = Q3x (π, z) = 0. (23)

In the boundary value problem (22), (23) Q3 = Q3(x, z),

F3(Q1) = F3(H1(x)) = p

6
(1 + ic)

(
(p2 − 1)(−c + i)3 + 3p(p + 1)(−c + i)2(−c − i)+

+3(p2 − 1)(−c + i)(c + i)2 + (p − 1)(p − 2)(−c − i)3
)
cos3 x,

�3(Q1, Q2) = p
(
(p + 1)H1(x)v(x)+

+(p + 1)
(
H1(x)v(x) + H1(x)v(x)

)
+ (p − 1)H1(x)v(x)

)
.

It follows from the solvability conditions for the nonhomogeneous boundary value
problem (22), (23) that in this case one should choose

�1(z) = νpz − l pz
3,

where νp = −2γc2 p, l p = p

6
((4p2 + 22p + 4)c4 + (2p − 11)c2 + 1).

Thus, the analysis of the boundary value problem (14), (16) has been reduced to the
study of a system of ordinary differential equations (the “shortened” or “truncated”
normal form). In our case, it is presented in the following form

ϕs = pc(c2 + 1)z2, (24)

zs = νpz − l pz
3. (25)

Lemma 1 Differential equation (25), in addition to the zero equilibrium state
S0(z = 0), has nonzero equilibrium states
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S+ : z+ =
√

νp

l p
, S− : z− = −

√
νp

l p
,

if νp/ l p > 0.
For lp > 0 (νp > 0), the equilibrium states S+, S− are asymptotically stable and

they are unstable if l p < 0 (νp < 0). In turn, S0 is an asymptotically stable equilib-
rium state if νp < 0 or νp = 0, l p > 0.

The proof of Lemma 1 is fairly straight forward. In fact, even in the situationwhere
νp �= 0, one should use the stability theorem in the first (linear) approximation. For
νp = 0 we get the equation zs = −l pz3 and its solution z(s) → 0 for s → ∞, if
l p > 0 and z(s) leaves the neighborhood of zero if l p < 0. In our case l p > 0 for any
positive integer p and all c ∈ R, due to the discriminant of the square trinomial

l p(ξ) = (4p2 + 22p + 4)ξ2 − (2p − 11)ξ + 1

is negative.
We choose γ such that νp > 0 (for example, γ = −1). The equilibrium states

S+, S− of the differential equation (25) correspond to the solutions

ϕ+(s) = (pc(c2 + 1)z2+)s + h+, ϕ−(s) = (pc(c2 + 1)z2−)s + h−

of differential equation (24). Here h+, h− ∈ R and are arbitrary. Transitioning to a
more complete system (18) in this case gives us

ϕ±(s) = (pc(c2 + 1)z2± + O(ε))s.

It follows from the results of [21, 22] and previous constructions that the assertion
is true.

Lemma 2 There exists a constant εp > 0, such that for all ε ∈ (0, εp) there are two
sets of functions

{ϕ+(t, ε), w+(x, ε); ϕ−(t, ε), w−(x, ε)},

satisfying the nonhomogeneous boundary value problem (14), (16). For such func-
tions, the following asymptotic formulas are valid

w±(x, ε) = ε1/2z±(−c + i) cos x + εz2±(v0 + v2 cos 2x) + o(ε),
ϕ±(t, ε) = (pc(c2 + 1)z2± + O(ε))εt.

Also observe that these functions satisfy the boundary value problem (14), (15).
Moreover, due to the translational invariance for the solutions of the boundary value
problem (14), (15), it also has the following pairs of solutions

(w+(x + h+, ε),ϕ+(t, ε)), (w−(x + h−, ε),ϕ−(t, ε)).
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Next note that the boundary value problem (14), (16) is invariant under the change

x → π − x, z+ → z−,

then for the boundary value problem (14), (15) there remains only one set

(w+(x + h+, ε),ϕ+(t, ε)),

which includes all the corresponding solutions by choosing an appropriate shift h+.

All these constructions and remarks allow us to formulate the main result, which
refers to the boundary value problem (2), (3).

Theorem 2 There exists εp > 0, such that for all ε ∈ (0, εp) the nonlinear boundary
value problem (2), (3) for bp = 2cp(1 − ε) (γ = −1) has a two-parameter family
of the periodic in t solutions V0(h0, h)

u0(t, x, ε) = exp(iσ0t + iϕ+(t, ε) + ih0)(1 + w+(x + h, ε)),

where ϕ+(t, ε) =
(
pc(c2 + 1)z2+ + O(ε)

)
εt, z+ = √

νp/ l p,

w+(x + h, ε) = ε1/2z+(−c + i) cos(x + h) + εz2+(v0 + v2 cos 2(x + h)) + o(ε),

where h0, h ∈ R and are arbitrary, the constants v0, v2 were specified earlier. The
two-dimensional invariant manifold V0(h0, h) is a local attractor.

The validity of the assertion follows from the principle of self-similarity from Eq.
(6). The following assertion is corollary from Theorem 2.

Corollary 2 Boundary value problem (2), (3) has a countable set of two-dimensional
attracting invariant manifolds Vn(h0, h), generated by the following solutions

un(t, x, ε) = exp(iσnt + inx + iϕ+(t, ε) + ih0)×
×

(
1 + w+(x + 4npc(1 − ε)t + h, ε)

)
,

(26)

where n = ±1,±2, . . . ,σn = −c + 2pc(1 − ε)n2, and the functions ϕ+(t, ε) and
w+(x, ε) were found earlier in the process of implementing the modified Krylov-
Bogolyubov algorithm (see formula (17) and boundary value problems (20), (21)
and (22), (23)) and using the principle of self-similarity.

From the asymptotic formulas and the method of constructing solutions
u0(t, x, ε), un(t, x, ε), it follows that Vn(h0, h) for all n ∈ Z are two-dimensional
invariant tori. Moreover, the torus V0(h0, h) is filled with solutions that are periodic
in t , and the solutions that form Vn(h0, h) as n �= 0 are almost periodic functions of
the variable t with a non-resonant set of eigenfrequencies. We emphasize that the
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solutions that form these two-dimensional tori are stable but cannot be asymptoti-
cally stable as in the neighborhood of each of these solutions there is always one
more representative of the corresponding family.

5 Conclusions

The aim of this work was to generalize the results of works [9, 10], where particular
cases of the boundary value problem (2), (3) for p = 1, 2 were considered. In this
work we were able to show the following characteristics. Qualitatively, the results
for all p are fairly close. In all boundary value problems with different values of p
there exists a countable set of traveling waves that are periodic in t . When they lose
stability, two-dimensional invariant tori, which are attracting invariant manifolds,
bifurcate from each of them. For n = 0 the torus V0(h0, h) is filled with periodic
solutions, and the tori Vn(h0, h) are non-resonant in the generic situation. Thus,
the hypothesis that the replacement of the cubic nonlinearity by the fifth-degree
nonlinearity leads to subcritical bifurcations in the vicinity of traveling waves turned
out to be not completely consistent. In any case, it is of paramount interest to consider
the weakly dissipative versions of Ginzburg-Landau equation.

However, for the basic and generalized versions of the weakly dissipative version
of the Ginzburg-Landau equation, the dynamics can be quite complex. The periodic
boundary value problem (2), (3), with an appropriate choice of the coefficients of
the equation, can have a countable set of local attractors, each of which is a two-
dimensional invariant torus. The torus with number n (n = 0,±1, . . .) is formed by
solutions (26) whose norm in the phase space (that is, in H2) tends to infinity if
|n| → ∞. At the same time, the norm of all these solutions in the space L2(−π,π)

is close to
√
2π.
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