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Abstract Tensor invariants (differential forms) for homogeneous dynamical sys-
tems on tangent bundles to smooth two-dimensional manifolds are presented in this
paper. The connection between the presence of these invariants and the full set of
the first integrals necessary for the integration of geodesic, potential and dissipative
systems is shown. At the same time, the introduced force fields make the considered
systems dissipative with dissipation of different signs and generalize the previously
considered ones. We also represent the typical examples from rigid body dynamics.
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1 Introduction

It is well known [1–3] that a system of differential equations can be completely
integrated when it has a sufficient number of not only first integrals (scalar invariants)
but also tensor invariants. For example, the order of the considered system can be
reduced if there is an invariant form of the phase volume. For conservative systems,
this fact is natural. However, for systems having attracting or repelling limit sets, not
only some of the first integrals, but also the coefficients of the invariant differential
forms involved have to consist of, generally speaking, transcendental (in the sense
of complex analysis) functions [4–6].

For example, the problem of a spatial pendulum on a spherical hinge placed in
material flow leads to a system on the tangent bundle of the two-dimensional sphere
with a special metric on it induced by an additional symmetry group [7]. Dynamical
systems describing the motion of such a pendulum have signchanging dissipation,
and the complete list of first integrals consists of transcendental functions expressed
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in terms of a finite combination of elementary functions. There are also problems
concerning the motion of a point over two-dimensional surfaces of revolution, the
Lobachevsky plane, etc. The results obtained are especially important in the context
of a nonconservative force field present in the system [5, 6].

Below, we present tensor invariants (differential forms) for homogeneous dynam-
ical systems on tangent bundles of smooth two-dimensional manifolds. The relation
between the existence of these invariants and the existence of a complete set of first
integrals necessary for the integration of geodesic, potential, and dissipative systems
is shown. The force fields introduced into the considered systems make them dissi-
pative with dissipation of different signs and generalize previously considered force
fields.

2 Example: Plane Pendulum in a Jet Flow

We describe in brief some problem on a physical pendulum on a cylindrical hinge
in the flow of the incoming medium. The space of positions of such a pendulum
is one-dimensional circle S1{θ mod 2π}, and the phase space is the tangent bundle
TS1{θ̇; θ mod 2π}, i.e. two-dimensional cylinder.

Under the considered model assumptions, the equation of motion of such a pen-
dulum is written out. statement [8] is proved that the dynamical system describing
the behavior of such a pendulum is trajectorically topologically equivalent to the fol-
lowing differential equation on a two-dimensional cylinder (an angle θ is measured
‘by the flow’):

θ̈ + hθ̇ cos θ + sin θ cos θ = 0, h > 0. (1)

Equation (1) can be rewritten as a system on a phase cylinderR1{ω} × {αmod 2π}
(α = θ + π):

α̇ = −ω + h sinα, ω̇ = sinα cosα, (2)

the phase portrait of which is shown in [7].
For h = 0, the conservative system (2) has a smooth first integral of energy:

ω2

2
+ sin2 α

2
= C0 = const, (3)

at the same time, its phase flow preserves the area on the plane R2{α,ω}, i.e. the
differential 2-form is preserved

dα ∧ dω. (4)

When integrating the system, either the first integral of energy (3) or the fact of phase
area conservation (4) can be used.
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In the case of h �= 0 is more complicated. Since the system (2) has attractive or
repulsive (asymptotic) limit sets, the first integral of the system is a transcendental
(in the sense of complex analysis) function, which has the form

Φ0(α,ω) = sinα expΨ0(t) = C1 = const, Ψ0(t) =
∫

(t − h)dt

t2 − ht + 1
, t = ω

sinα
,

(5)
in this case, the asymptotic limit sets are found from the systemof algebraic equalities
sinα = 0, ω = 0 (see also [9]).

Since the system (2) has asymptotic limit sets there is not even an absolutely
continuous function that is the density of the measure of the phase plane (cf. with
[3, 7, 8]). But it is possible (along with the first integral) to present an invariant
differential 2-form with coefficients that are transcendental functions, which has the
form

T1(α,ω) = exp {−hΨ1(t)} dα ∧ dω, Ψ1(t) =
∫

dt

t2 − ht + 1
, t = ω

sinα
. (6)

3 Example of More General System with One Degree
of Freedom

We consider the smooth dynamical system on the plane R2{α,ω} with one degree
of freedom α of the following form:

α̇ = −ω + bδ(α), ω̇ = F(α); (7)

we can rewrite this system in the form of the equation

α̈ − bδ̃(α)α̇ + F(α) = 0, δ̃(α) = dδ(α)

dα
. (8)

A pair of smooth functions (F(α), δ(α)) defines the force field in the system: the
function F(α) describes the conservative component of the field, and the function
δ(α) describes possible scattering or pumping of energy in the system. For b = 0,
the conservative system (7) has a smooth integral of energy:

ω2

2
+ 2

α∫

α0

F(ξ)dξ = C0 = const, (9)

at the same time, its phase flow preserves the area on the plane R2{α,ω}, i.e. the
differential 2-form is preserved

dα ∧ dω. (10)
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When integrating the system, either the first integral of energy (9) or the fact of phase
area conservation (10) can be used.

The situation is different in the case of b �= 0. Since the system (7) has, generally
speaking, attractive or repulsive (asymptotic) limit sets, the first integral of the system
is a transcendental (in the sense of complex analysis) [10] function. Let ’s give it for
the next important case:

F(α) = λδ(α)δ̃(α), λ ∈ R. (11)

Indeed, the first integral has the form

Φ(α,ω) = δ(α) expΨ (t) = C1 = const, Ψ (t) =
∫

(t − b)dt

t2 − bt + λ
, t = ω

δ(α)
,

(12)
in this case, the asymptotic limit sets are found from the systemof algebraic equalities
δ(α) = 0, ω = 0 (see also [9]).

Since asymptotic limit sets appear, there is not even an absolutely continuous
function that is the density of the measure of the phase plane (cf. with [7, 8]). But
it is possible (along with the first integral) to present an invariant differential 2-form
with coefficients that are transcendental functions.

Indeed, the desired 2-form has the form

T (α,ω) = exp {−bΘ(t)} dα ∧ dω, Θ(t) =
∫

dt

t2 − bt + λ
, t = ω

δ(α)
. (13)

4 Invariants of Systems of Geodesic Equations

Consider a smooth two-dimensional Riemannian manifold M2{α,β} with affine
connectivity Γ i

jk(α,β) and study the structure of the equations of geodesic lines on

the tangent bundle T M2{α̇, β̇;α,β} (cf. with [11, 12]). To do this , we will further
study a fairly general case of setting kinematic relations in the following form:

α̇ = z2 f2(α), β̇ = z1 f1(α), (14)

where f1(α) and f2(α) are sufficiently smooth functions that are not identically zero.
Such coordinates z1, z2 in tangent space are introduced when geodesic equations are
considered, for example, with three nonzero connectivity coefficients (in particular,
on surfaces of rotation, Lobachevsky plane, etc.):

α̈ + Γ α
αα(α,β)α̇2 + Γ α

ββ(α,β)β̇2 = 0, β̈ + 2Γ β
αβ(α,β)α̇β̇ = 0, (15)

that is, the equalities are met
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Γ α
αβ(α,β) ≡ Γ β

αα(α,β) ≡ Γ
β
ββ(α,β) ≡ 0. (16)

In the case of (14) the relations on the tangent bundle T M2{z2, z1;α,β} will take
the form

ż1 = − f 22 (α)

f1(α)
Γ β

αα(α,β)z22 − f2(α)
[
2Γ β

αβ(α,β) + d ln | f1(α)|
dα

]
z1z2−

− f1(α)Γ
β
ββ(α,β)z21,

ż2 = − f2(α)
[
Γ α

αα(α,β) + d ln | f2(α)|
dα

]
z22 − f1(α) · 2Γ α

αβ(α,β)z1z2−
− f 21 (α)

f2(α)
Γ α

ββ(α,β)z21,

(17)

and under the conditions (16) will simplify:

ż1 = − f2(α)
[
2Γ β

αβ(α,β) + d ln | f1(α)|
dα

]
z1z2,

ż2 = − f2(α)
[
Γ α

αα(α,β) + d ln | f2(α)|
dα

]
z22 − f 21 (α)

f2(α)
Γ α

ββ(α,β)z21,
(18)

and the Eq. (15) geodesics are almost everywhere equivalent to a composite system
(14), (18) on the manifold T M2{z2, z1;α,β} with new coordinates z1, z2 on the
tangent space.

To fully integrate the system (14), (18) it is necessary to know, generally speaking,
three independent tensor invariants: either the first three integrals, or three indepen-
dent differential forms, or some combination of integrals and forms.At the same time,
of course, the first integrals (in particular, for geodesic equations) can be searched
for in a more general form than discussed below.

In [6, 8] examples of geodesic systems on a two-dimensional sphere with various
metrics are considered, and in [12] examples of geodesic systems on two-dimensional
surfaces of rotation and on the Lobachevsky plane are considered too.

Theorem 1 If the following conditions are satisfied

f 21 (α)Γ α
ββ(α,β) + f 22 (α)

[
2Γ β

αβ(α,β) + d ln | f1(α)|
dα

]
≡ 0,

Γ α
αα(α,β) + d ln | f2(α)|

dα
≡ 0,

(19)

Γ
β
αβ(α,β) = Γ

β
αβ(α), (20)

then the system (14), (18) has a complete set consisting of the first three integrals of
the form

Φ1(z2, z1) = z21 + z22 = C2
1 = const, (21)

Φ2(z1;α) = z1Φ0(α) = C2 = const, Φ0(α) = f1(α) exp

⎧⎨
⎩2

α∫

α0

Γ
β
αβ(b)db

⎫⎬
⎭ ,

(22)
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Φ3(α,β) = β ∓
α∫

α0

C2 f1(b)

f2(b)
√
C2
1Φ

2
0 (b) − C2

2

db = C3 = const. (23)

Moreover, after some reduction of that system, replacing the independent variable

d

dt
= f2(α)

d

dτ
, (24)

and phase one
z∗
1 = ln |z1|, (25)

the phase flow of the system (14), (18) preserves the volume on the tangent bundle
T M2{z2, z∗

1;α,β}, i.e. the corresponding differential form is preserved:

dz2 ∧ dz∗
1 ∧ dα ∧ dβ. (26)

The system (19) can be interpreted as the possibility of converting the quadratic
form of the metric to a canonical form with the law of conservation of energy (21)
(or see below (30)) depending on the problem under consideration. The history and
current state of consideration of this more general problem are quite extensive (we
note only the works of [12, 13]). Well, the search for both the integral (21) and (22)
relies on the presence of additional symmetry groups in the system [5, 6].

5 Invariants of Potential Systems

Wemodify the system somewhat (14), (18), introducing into it a conservative smooth
force field in projections on the axis ż1, ż2, respectively:

F̃(z2, z1;α) =
(
F1(β) f1(α)

F2(α) f2(α)

)
. (27)

The system under consideration on the tangent bundle T M2{z2, z1;α,β}will take
the form

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α̇ = z2 f2(α),

ż2 = F2(α) f2(α) − f2(α)
[
Γ α

αα(α,β) + d ln | f2(α)|
dα

]
z22−

− f 21 (α)

f2(α)
Γ α

ββ(α,β)z21,

ż1 = F1(β) f1(α) − f2(α)
[
2Γ β

αβ(α,β) + d ln | f1(α)|
dα

]
z1z2,

β̇ = z1 f1(α),

(28)
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and it is almost everywhere equivalent to the following system:

α̈ − F2(α) f2(α) + Γ α
αα(α,β)α̇2 + Γ α

ββ(α,β)β̇2 = 0,

β̈ − F1(β) f1(α) + 2Γ β
αβ(α,β)α̇β̇ = 0,

(29)

on the tangent bundle T M2{α̇, β̇;α,β}.
Theorem 2 If the conditions (19), (20) are satisfied, then the system (28) has a
complete set consisting of the first three integrals of the form

Φ1(z2, z1) = z21 + z22 + V (α,β) = C1 = const, (30)

V (α,β) = V2(α) + V1(β) = −2

α∫

α0

F2(a)da − 2

β∫

β0

F1(b)db, (31)

and also with F1(β) ≡ 0—by the first integral (22) and

Φ3(α,β) = β ∓
α∫

α0

C2 f1(b)

f2(b)
√

Φ2
0 (b)[C1 − V (b,β0)] − C2

2

db = C3 = const. (32)

Moreover, after some reduction of that system, i.e. replacing the independent
variable

d

dt
= f2(α)

d

dτ
, (33)

and phase one
z∗
1 = ln |z1|, (34)

the phase flow of the system (28) preserves the volume on the tangent bundle
T M2{z2, z∗

1;α,β}, i.e. the corresponding differential form is preserved:

dz2 ∧ dz∗
1 ∧ dα ∧ dβ. (35)

6 Invariants of Systems with Alternating Dissipation

Next, we modify the system somewhat (28) by introducing a smooth force field with
dissipation into it. Its presence (generally speaking, alternating signs) characterizes
not only the coefficient bδ(α), b > 0, in the first equation of the system (37) (unlike
the system (28)), but also the following dependence of the (external) force field in
projections on the axis ż1, ż2, respectively:
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F̃(z2, z1;α,β) =
(
F1(β) f1(α)

F2(α) f2(α)

)
+

(
z1F1

1 (α)

z2F1
2 (α)

)
. (36)

The system under consideration on the tangent bundle T M2{z2, z1;α,β}will take
the form

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α̇ = z2 f2(α) + bδ(α),

ż2 = F2(α) f2(α) − f2(α)
[
Γ α

αα(α,β) + d ln | f2(α)|
dα

]
z22−

− f 21 (α)

f2(α)
Γ α

ββ(α,β)z21 + z2F1
2 (α),

ż1 = F1(β) f1(α) − f2(α)
[
2Γ β

αβ(α,β) + d ln | f1(α)|
dα

]
z1z2 + z1F1

1 (α),

β̇ = z1 f1(α),

(37)

and it is almost everywhere equivalent to the following system:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α̈ −
{
bδ̃(α) + F1

2 (α) + bδ(α)
[
2Γ α

αα(α,β) + d ln | f2(α)|
dα

]}
α̇−

−F2(α) f 22 (α) + bδ(α)F1
2 (α) + b2δ2(α)

[
Γ α

αα(α,β) + d ln | f2(α)|
dα

]
+

+Γ α
αα(α,β)α̇2 + Γ α

ββ(α,β)β̇2 = 0,

β̈ −
{
F1
1 (α) + bδ(α)

[
2Γ β

αβ(α,β) + d ln | f1(α)|
dα

]}
β̇−

−F1(β) f 21 (α) + 2Γ β
αβ(α,β)α̇β̇ = 0,

(38)

on the tangent bundle T M2{α̇, β̇;α,β}. Here, as above,

δ̃(α) = dδ(α)

dα
. (39)

We will integrate the fourth-order system (37) when performing the properties
(19), (20), as well as when F1(β) ≡ 0. At the same time, an independent subsystem
of the third order is separated:

⎧⎪⎪⎨
⎪⎪⎩

α̇ = z2 f2(α) + bδ(α),

ż2 = F2(α) f2(α) − f 21 (α)

f2(α)
Γ α

ββ(α)z21 + z2F1
2 (α),

ż1 = f 21 (α)

f2(α)
Γ α

ββ(α)z1z2 + z1F1
1 (α),

(40)

if there is also a fourth equation

β̇ = z1 f (α). (41)
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We will also assume that for some κ ∈ R the equality is satisfied

Γ α
ββ(α)

f 21 (α)

f 22 (α)
= κ

d

dα
ln |Δ(α)| = κ

Δ̃(α)

Δ(α)
, Δ̃(α) = dΔ(α)

dα
, Δ(α) = δ(α)

f2(α)
,

(42)
and for some λ0

2,λ
1
k ∈ R, k = 1, 2, the equalities must be met

F2(α) = λ0
2

d
dα

Δ2(α)

2 = λ0
2Δ̃(α)Δ(α);

F1
k (α) = f2(α) d

dα
Δ(α) = λ1

kΔ̃(α) f2(α), k = 1, 2.
(43)

Condition (42) let’s call it ‘geometric’, and the conditions from the group (43)—
‘energetic’.

Condition (42) it is called geometric, among other things, because it imposes
a condition on the key coefficient of connectivity Γ α

ββ , bringing the corresponding
coefficients of the system to a homogeneous form with respect to the function Δ(α).
The conditions of the group (43) are called energetic, among other things, because
the forces become, in a sense, ‘potential’ with respect to the functions of Δ2(α)/2
and Δ(α), bringing the corresponding coefficients of the system to a homogeneous
form also with respect to the function Δ(α) (see also [9]).

Theorem 3 Let the conditions (42) and (43) be satisfied. Then the system (40), (41)
has three independent, generally speaking, transcendental [4, 10] first integrals.

In general, the first integrals are written out cumbersomely (since it is necessary
to integrate the Abel equation [14]). In particular, if κ = −1, λ1

1 = λ1
2, the explicit

form of the key first integral is:

Θ1(z2, z1;α) = G1

(
z2

Δ(α)
, z1

Δ(α)

)
=

= f 22 (α)(z22+z21)+(b−λ1
1)z2δ(α) f2(α)−λ0

2δ
2(α)

z1δ(α) f2(α)
= C1 = const.

(44)

In this case , the additional first integrals have the following structures:

Θ2(z2, z1;α) = G2

(
Δ(α),

z2
Δ(α)

,
z1

Δ(α)

)
= C2 = const, (45)

Θ3(z2, z1;α,β) = G3

(
Δ(α),β,

z2
Δ(α)

,
z1

Δ(α)

)
= C3 = const. (46)

The expression of functions (44)–(46) through a finite combination of elementary
functions also depends on the explicit form of the function Δ(α). So, for example,
with κ = −1, λ1

1 = λ1
2 the additional first integral of the system (40) is found from

the differential relation
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d ln |Δ(α)| = (b+u2)du2
U2(C1,u2)

, u2 = z2
Δ(α)

, u1 = z1
Δ(α)

,

U1(u2) = u22 + (b − λ1
1)u2 − λ0

2,

U2(C1, u2) = 2U1(u2) − C1
2

{
C1 ±

√
C2
1 − 4U1(u2)

}
, C1 �= 0.

(47)

The right part of this relation is expressed in terms of a finite combination of ele-
mentary functions, and the left—depending on the function Δ(α).

Theorem 4 If for systems of the form (40), (41) there are the first integrals of the form
(44) to (46), then it also has the following three functionally independent invariant
differential forms with transcendental coefficients:

ρ1(z2, z1;α)dz2 ∧ dz1 ∧ dα,

ρ1(z2, z1;α) = exp
{
(b + λ1

1)
∫ du2

U2(C1,u2)

}
· u22+u21−(b−λ1

1)u2−λ0
2

u1
,

ρ2(z2, z1;α)dz2 ∧ dz1 ∧ dα,

ρ2(z2, z1;α) = Δ(α) exp
{
(b + λ1

1)
∫ du2

U2(C1,u2)

}
· exp

{
− ∫

(b+u2)du2
U2(C1,u2)

}
,

ρ3(z2, z1;α,β)dz2 ∧ dz1 ∧ dα ∧ dβ,

ρ3(z2, z1;α,β) = exp
{
(b + λ1

1)
∫ du2

U2(C1,u2)

}
· G3

(
Δ(α),β, z2

Δ(α)
, z1

Δ(α)

)
,

(48)

but dependent with the first integrals (44)–(46).

For the complete integrability of the system (40), (41), you can use either the first
three integrals, or three independent differential forms, or some combination (only
independent elements) of integrals and forms (cf. with [2, 3, 15]).

On the structure of the first integrals for the systems under consideration with
dissipation, see also [5, 6, 8]. Note only that for systems with dissipation, the tran-
scendence of functions (in the sense of having essentially singular points) as the first
integrals, it is inherited from the presence of attracting or repelling limit sets in the
system.

In conclusion, we can refer to numerous applications concerning the integration
of systems with dissipation, on the tangent bundle to a two-dimensional sphere, as
well as more general systems on the bundle of two-dimensional surfaces of rotation
and the Lobachevsky plane [15, 16].

7 Spatial Pendulum in the Flow of the Incoming Medium

Let us briefly describe the problem of a physical pendulum on a spherical hinge in the
flow of an incomingmedium, started in [8]. The position space of such a pendulum is
a two-dimensional sphere S2{0 ≤ ξ ≤ π, η mod 2π}, phase space—tangent bundle
TS2{ξ̇, η̇; 0 ≤ ξ ≤ π, η mod 2π} to it.
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Under the considered model assumptions, the equations of motion of such a
pendulum are written out. Further, the statement is proved that the dynamical system
describing the behavior of such a pendulum is trajectorically topologically equivalent
to the following dynamical system on the tangent bundle of a two-dimensional sphere
(the angle ξ is measured “along the flow”):

⎧⎨
⎩

ξ̈ + bξ̇ cos ξ + sin ξ cos ξ − η̇2 sin ξ
cos ξ

= 0,

η̈ + bη̇ cos ξ + ξ̇η̇ 1+cos2 ξ
cos ξ sin ξ

= 0, b > 0.
(49)

The system (49) is almost everywhere equivalent to the system

⎧⎪⎪⎨
⎪⎪⎩

ξ̇ = −w2 − b sin ξ,

ẇ2 = sin ξ cos ξ − w2
1
cos ξ
sin ξ

,

ẇ1 = w1w2
cos ξ
sin ξ

,

(50)

η̇ = w1
cos ξ

sin ξ
, (51)

on the tangent bundle T∗S2{(w2, w1; ξ, η1) ∈ R4 : 0 ≤ ξ ≤ π, η1 mod 2π} of two-
dimensional sphere S2{(ξ, η1) ∈ R2 : 0 ≤ ξ ≤ π, η1 mod 2π}.

It can be seen that in the fourth-order system (50), (51), due to the cyclicity of
the variable η, an independent third-order subsystem (50) is allocated, which can be
independently considered on its three-dimensional manifold.

The key first integral of the system (50), (51) has the following form:

Θ1(w2, w1; ξ) = w2
2 + w2

1 + bw2 sin ξ + sin2 ξ

w1 sin ξ
= C1 = const. (52)

Remark 1 Consider a system (50) with variable dissipation with zero mean [5, 6,
8] becoming conservative at b = 0:

ξ̇ = −w2,

ẇ2 = sin ξ cos ξ − w2
1
cosα
sinα

,

ẇ1 = w1w2
cos ξ
sin ξ

.

(53)

It has two analytic first integrals of the form

w2
2 + w2

1 + sin2 ξ = C∗
1 = const, (54)

w1 sin ξ = C∗
2 = const. (55)
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Obviously, the ratio of two integrals (54), (55) it is also the first integral of the system
(53). But with b �= 0 each of the functions

w2
2 + w2

1 + bw2 sin ξ + sin2 ξ (56)

and (55) separately is not the first integral of the system (50). However, the ratio of
functions (56), (55) is the first integral of the system (50) for any b.

The additional first integral of the system (50) is expressed in terms of a finite
combinationof elementary functions andhas the following form (due to the bulkiness,
we will write out the structural form):

Θ2(w2, w1; ξ) = G

(
sin ξ,

w2

sin ξ
,

w1

sin ξ

)
= C2 = const. (57)

Another (additional) first integral that ‘binds’ the Eq. (51) can be represented as

Θ3(w2, w1; ξ, η) = −η ± 1

2
arctg

w2
1 − w2

2 − bw2 sin ξ − sin2 ξ

w1(2w2 + b sin ξ)
= C3 = const.

(58)
In the case under consideration, the system of dynamic equations (50), (51) has

the first three integrals expressed by the relations (52), (57), (58), which are transcen-
dental functions of phase variables (in the sense of complex analysis) and expressed
in terms of a finite combination of elementary functions.

It is also possible to present invariant differential forms for the system of dynamic
equations under consideration:

ρ1(w2, w1; ξ)dw2 ∧ dw1 ∧ dξ,

ρ1(w2, w1; ξ) = exp
{
b

∫ du2
U2(C1,u2)

}
· u22+u21+bu2+1

u1
,

ρ2(w2, w1; ξ)dw2 ∧ dw1 ∧ dξ,

ρ2(w2, w1; ξ) = sin ξ exp
{
b

∫ du2
U2(C1,u2)

}
· exp

{
− ∫

(b+u2)du2
U2(C1,u2)

}
,

ρ3(w2, w1; ξ, η)dw2 ∧ dw1 ∧ dξ ∧ dη,

ρ3(w2, w1; ξ, η) = exp
{
b

∫ du2
U2(C1,u2)

}
· Θ3(w2, w1; ξ, η),

u2 = w2
sin ξ

, u1 = w1
sin ξ

,

U1(u2) = u22 + bu2 + 1,

U2(C1, u2) = 2U1(u2) − C1
2

{
C1 ±

√
C2
1 − 4U1(u2)

}
, C1 �= 0.

(59)
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