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Preface

This volume contains some of the reports which were presented at the Conference
“Differential Equations, Mathematical Modeling and Computational Algorithms”.
This conference was held in Belgorod, Russia, October 25–29, 2021, at Belgorod
StateNational ResearchUniversity. A lot of people fromdifferent cities and countries
participated in the conference. Unfortunately, not all could submit the paper for the
Proceeding, and we have collected some of them only.

Therewere certain plenary talkswhichwere presented by leadingmathematicians,
for example

• Michael Ruzhansky (Belgium) “Nonharmonic Pseudo-Differential Analysis”
• Josef Diblik (Czech Republic) “Global Solutions to Functional Differential

Equations of Mixed Type”
• Sandra Pinelas (Portugal) “Difference and Differential Equations: Oscillatory

Behavior”
• Vladimir Rabinovich (Mexico) “Dirac Operators onRn with Singular Potentials”
• Eugene Tyrtyshnikov (Russia) “On Correct Statements of Ill-Posed Problems”
• Alexander Soldatov (Russia) “Generalized Cauchy—Riemann Equations with

Power-Law Singularities in Coefficients of Lower Order”
• Tynysbek Kalmenov (Kazakhstan) “Minimality Criteria for the Laplacian”
• Armen Sergeev (Russia) “On Ginzburg–Landau Equation”
• Victor Nistor (France) “On Some Results of Kondratiev and Extensions and

Applications to Singular Spaces and Numerical Methods”
• Dumitru Baleanu (Turkey) “New Trends in Fractional Differential Equations”

and others. The papers of these authors were published in separate issues of
mathematical journals.

Conference topics have included the following sections:

1. Linear and nonlinear operators in function spaces
2. Differential, integral and operator equations
3. Initial and boundary value problems for differential equations
4. Numerical methods in theory of differential equations and their applications

v



vi Preface

5. Mathematical and computer modeling
6. Mathematical physics and modeling in physics
7. Questions of differential equations and mathematical modeling in pedagogical

research.

All topics (excluding the 7th) are reflected in the Proceedings.
A reader can look at Table of Contents to be sure that it is true.
I would not like to describe briefly the annotations of papers; you can find them in
the text.

Finally, I can say that the Conference was a success, and this my opinion is shared
by many participants.

Belgorod, Russia
November 2022

Vladimir Vasilyev



Contents

Some Classes of Quasilinear Equations with Gerasimov—Caputo
Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Vladimir E. Fedorov and Kseniya V. Boyko

On the Solvability of Initial Problems for Abstract Singular
Equations Containing Fractional Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . 17
Alexander Glushak

Local Bifurcations of Periodic Traveling Waves in the Generalized
Weakly Dissipative Ginzburg-Landau Equation . . . . . . . . . . . . . . . . . . . . . . 35
Anatoly Kulikov and Dmitry Kulikov

Towards Discrete Octonionic Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Rolf Sören Kraußhar , Anastasiia Legatiuk, and Dmitrii Legatiuk

Axiomatic Method for Constructing a Generalized Solution
of a Mixed Problem for a Telegraph Equation . . . . . . . . . . . . . . . . . . . . . . . . 65
Igor S. Lomov

Non-local Substitutions for Liouville Equations with Three
and Four Independent Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Aleksey Mironov and Lyubov Mironova

Convergence Rates of a Finite Difference Method for the Fractional
Subdiffusion Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Li Liu, Zhenbin Fan, Gang Li, and Sergey Piskarev

Degenerate Quasilinear Equations with Dzhrbashyan—Nersesian
Derivatives and Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
Marina Plekhanova and Elizaveta Izhberdeeva

On a K-Homogeneous Metric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
Marina V. Polovinkina and Igor P. Polovinkin

vii



viii Contents

Biooscillators in Models of Genetic Networks . . . . . . . . . . . . . . . . . . . . . . . . 141
Felix Sadyrbaev, Inna Samuilik, and Valentin Sengileyev

Numerical Method for Problem of Scattering by a Small Thickness
Dielectric Layer on a Perfectly Conductive Substrate . . . . . . . . . . . . . . . . . 153
Alexey Setukha and Stanislav Stavtsev

Invariants of Dynamical Systems with Dissipation on Tangent
Bundles of Low-Dimensional Manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
Maxim V. Shamolin

B-subharmonic Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
Elina Shishkina

Some Multi–dimensional Modified G- and H-Integral Transforms
on Lν, r -Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
S. M. Sitnik, O. V. Skoromnik, and M. V. Papkopvich

On Sufficient Conditions of the Faddeev–Marchenko Theorem . . . . . . . . 215
B. D. Koshanov and A. P. Soldatov

Variational Approach to Construction of Piecewise-Constant
Approximations of the Solution of Dynamic Reconstruction
Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
Nina Subbotina and Evgenii Krupennikov

Discrete Operators and Equations: Analysis and Comparison . . . . . . . . . 243
Alexander Vasilyev, Vladimir Vasilyev, and Asad Esmatullah

Pseudo-Differential Equations in Spaces of Different Smoothness
Exponents on Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253
Vladimir Vasilyev, Victor Polunin, and Igor Shmal

Thermodynamic Limit in Vector Lattice Models . . . . . . . . . . . . . . . . . . . . . . 269
Yuri P. Virchenko

Family of Smooth Solutions of Hyperbolic Differential-Difference
Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289
Natalya V. Zaitseva



Some Classes of Quasilinear Equations
with Gerasimov—Caputo Derivatives

Vladimir E. Fedorov and Kseniya V. Boyko

Abstract The Cauchy problem for resolved with respect to the oldest derivative
quasilinear multi-term equations in Banach spaces with the fractional Gerasimov—
Caputo derivatives, with bounded linear operators at them and with locally Lips-
chitzian nonlinear operator is studied. Theorem on the local existence and uniqueness
of a solution to the Cauchy problem is proved. This result applied to study of the
so-called degenerate (i.e. with a degenerate linear operator at the oldest derivative)
equations of the similar form. Using the reduction of a special initial value problem
for a degenerate equation to the Cauchy problem for two non-degenerate equations
on two subspaces under four types of additional conditions on nonlinear locally Lip-
schitzian operator four theorems on local unique solvability are proved. Abstract
results are illustrated by initial-boundary value problems for partial differential sys-
tems of equations with Gerasimov—Caputo derivatives in time.

Keywords Multi-term fractional differential equation · Quasilinear equation ·
Gerasimov—Caputo fractional derivative · Fixed point theorem · Initial boundary
value problem

1 Introduction

Over the past fewdecades, there has been a sharp increase in the interest of researchers
in fractional differential equations, primarily due to their increasing importance in
modeling various phenomena that arise in physics, chemistry, mathematical biology,
engineering [1, 2]. For more details on fractional differential equations and closely
related Volterra integro-differential equations see the monographs [3–9]. The unique
solvability issues for initial value problems to some types of equations in Banach
spaces with Gerasimov—Caputo fractional derivatives were researched in works
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[10–13], equations with fractional Riemann—Liouville derivatives were also stud-
ied in [14–16]. Analogous investigations for linear multi-term equations in Banach
spaces were carried out in [17] for Gerasimov—Caputo derivatives and in [18–20]
for Riemann—Liouville derivatives.

Here we consider a multi-term equation with a nonlinearity, which depends on
fractional derivatives of lower orders

DαLz(t) =
n∑

k=1

Dαk Mkz(t) + N (t, Dγ1 z(t), Dγ2 z(t), . . . , Dγr z(t)), (1)

where Dγ is theGerasimov—Caputo derivative, if γ > 0, or theRiemann—Liouville
integral in the case γ < 0, m − 1 < α ≤ m ∈ N, α1 < α2 < · · · < αn < α, γ1 <

γ2 < · · · < γr < α,X andY areBanach spaces, L , Mk : X → Y , k = 1, 2, . . . , n −
1, are linear and continuous operators, a linear closed densely defined in X operator
Mn : X → Y is (L , 0)-bounded, a nonlinear map N is continuous, locally Lips-
chitzian with respect to phase variables and satisfies some additional conditions of
four types. Equation (1) under condition ker L �= {0} will be called degenerate.

In the second section, preliminary results are given that will be used below. In
the third one, we obtain a theorem on the local unique solvability of the Cauchy
problem for a non-degenerate Eq. (1), i.e. for Eq. (1) with X = Y , L = I . For this
aim we use the fixed point theorem in a specially constructed metric space. The
fourth section begins with known results on the pairs of the invariant subspaces
under condition of (L , 0)-boundedness of the operator Mn , after which theorems on
the local unique solvability of the special initial value problem for degenerate Eq. (1)
was proved for every of four types of additional conditions on the operator N . In
the fifth section, examples of initial boundary value problems for systems of partial
differential equations illustrate the abstract results.

2 Non-degenerate Linear Equation

Let Z be a Banach space, h : (t0, T ) → Z , for β > 0, t > t0,

J βh(t) :=
t∫

t0

(t − s)β−1

Γ (β)
h(s)ds

be the Riemann—Liouville integral of the order β > 0, J 0 be the identity operator
by definition. Let m − 1 < α ≤ m ∈ N, Dm be the derivative of the order m ∈ N,
Dα be the Gerasimov—Caputo derivative [6, 21, 22], i.e.
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Dαh(t) := Dm Jm−α

(
h(t) −

m−1∑

k=0

h(k)(t0)
(t − t0)k

k!

)
, t > t0.

For β ≤ 0 denote Dβh(t) := J−βh(t).
Denote the Laplace transform of a function h : R+ → Z by ĥ. For the fractional

integral and the fractional derivative of Gerasimov—Caputo we have the equalities
[5, 6].

̂Jαh(λ) = λ−αĥ(λ), ̂Dαh(λ) = λαĥ(λ) −
m−1∑

k=0

h(k)(0)λα−1−k .

Let m − 1 < α ≤ m ∈ N, n ∈ N, α1 < α2 < · · · < αn < α, mk − 1 < αk ≤ mk

∈ Z, k = 1, 2, . . . , n, A1, A2, . . . , An ∈ L(Z), where L(Z) is the Banach space of
bounded linear operators on Z . Denote nl := min{k ∈ {1, 2, . . . , n} : l ≤ mk − 1}
for l = 0, 1, . . . ,m − 1. If set {k ∈ {1, 2, . . . , n} : l ≤ mk − 1} is empty for some
l ∈ {0, 1, . . . ,m − 1} (this is done exactly when αn ≤ m − 1), then nl := n + 1.

Lemma 1 ([23]) Let l − 1 < β ≤ l ∈ N. Then

∃C > 0 ∀h ∈ Cl([t0, t1];Z) ‖Dβh‖C([t0,t1];Z) ≤ C‖h‖Cl ([t0,t1];Z).

In this paper, we consider the Cauchy problem

z(l)(t0) = zl, l = 0, 1, . . . ,m − 1, (2)

to the inhomogeneous linear multi-term fractional differential equation

Dαz(t) =
n∑

k=1

Dαk Akz(t) + f (t), t ∈ [t0, T ], (3)

where f ∈ C([t0, T ];Z). A function z ∈ Cm−1([t0, t1];Z) is called a solution of
Cauchy problem (2), (3), if Dαz, Dαk z ∈ C([t0, t1];Z), k = 1, 2, . . . , n, equality
(3) is valid for all t ∈ [t0, T ] and conditions (2) are satisfied.

Denote Γ := {Reiϕ : ϕ ∈ (−π,π)} ∪ {ρeiπ : ρ ∈ [R,∞)} ∪ {ρe−iπ : ρ ∈
[R,∞)} with large enough R > 0,

Rλ :=
(
I −

n∑

k=1

λαk−αAk

)−1

: Z → Z,

for l = 0, 1, . . . ,m − 1
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Zl(t) = 1

2πi

∫

Γ

Rλ

⎛

⎝λ−l−1 I −
n∑

k=nl

λαk−α−l−1Ak

⎞

⎠ eλt dλ, t > t0,

Z(t) := 1

2πi

∫

Γ

λ−αRλe
λt dλ, t > t0.

Theorem 1 ([17, Theorem 2]) Let m − 1 < α ≤ m ∈ N, α1 < α2 < · · · < αn <

α, A1, A2, . . . , An ∈ L(Z), zl ∈ Z , l = 0, 1, . . . ,m − 1, f ∈ C([t0, T ];Z). Then
there exists an unique solution to (2), (3). It has the form

z(t) =
m−1∑

l=0

Zl(t − t0)zl +
t∫

t0

Z(t − s) f (s)ds.

3 Quasilinear Equation

Let r ∈ N, γ1 < γ2 < · · · < γr < α, ni − 1 < γi ≤ ni ∈ Z, i = 1, 2, . . . , r . Let U
be an open set in R × Zr , B : U → Z , zl ∈ Z , l = 0, 1, . . . ,m − 1, t0 ∈ R.

A function z ∈ Cm−1([t0, t1];Z) is called a solution of Cauchy problem (2) to
quasilinear fractional differential equation

Dαz(t) =
n∑

k=1

Dαk Akz(t) + B(t, Dγ1 z(t), Dγ2 z(t), . . . , Dγr z(t)) (4)

on [t0, t1], if Dαz, Dαk z, Dγi z ∈ C([t0, t1];Z), k = 1, 2, . . . , n, i = 1, 2, . . . , r , the
inclusion (t, Dγ1 z(t), . . . , Dγr z(t)) ∈ U and equality (4) are valid for all t ∈ [t0, t1]
and conditions (2) are fulfilled.

Denote x̄ := (x1, x2, . . . , xr ) ∈ Zr , Sδ(x̄) := {ȳ ∈ Zr : ‖yi − xi‖Z ≤ δ, i = 1,
2, . . . , r}. A mapping B : U → Z is called locally Lipschitzian in x̄ , if for every
(t, x̄) ∈ U there exist δ > 0, q > 0, such that [t − δ, t + δ] × Sδ(x̄) ⊂ U, and for
all (s, ȳ), (s, v̄) ∈ [t − δ, t + δ] × Sδ(x̄) the inequality

‖B(s, ȳ) − B(s, v̄)‖Z ≤ q
r∑

i=1

‖yi − vi‖Z

is satisfied.
Using initial data z0, z1, . . . , zm−1, define a polynomial

z̃(t) := z0 + (t − t0)z1 + (t − t0)2

2! z2 + · · · + (t − t0)m−1

(m − 1)! zm−1
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and vectors z̃i := Dγi |t=t0 z̃(t), i = 1, 2, . . . , r . Note that z̃i = 0, if we have γi /∈
{0, 1, . . . ,m − 1}. In cases γi ∈ {0, 1, . . . ,m − 1} z̃i = zγi . So the starting point of
the solution trajectory will be considered as (t0, z̃1, z̃2, . . . , z̃r ).

Lemma 2 Let A1, A2, . . . , An ∈ L(Z), U be an open set inR × Zr , B ∈ C(U,Z),
(t0, z̃1, z̃2, . . . , z̃r ) ∈ U. Then a function z ∈ C([t0, t1];Z) is a solution to prob-
lem (2), (4) on [t0, t1], if and only if Dγi z ∈ C([t0, t1];Z), i = 1, 2, . . . , r , for all
t ∈ [t0, t1] it satisfies the inclusion (t, Dγ1 z(t), Dγ2 z(t), . . . , Dγr z(t)) ∈ U and the
equality

z(t) =
m−1∑

l=0

Zl(t − t0)zl +
t∫

t0

Z(t − s)B(s, Dγ1 z(s), Dγ2 z(s), . . . , Dγr z(s))ds.

(5)

Proof If z is a solution to problem (2), (4) on [t0, t1], then for all t ∈ [t0, t1]
(t, Dγ1 z(t), Dγ2 z(t), . . . , Dγr z(t)) ∈ U and the mapping

t → B(t, Dγ1 z(t), Dγ2 z(t), . . . , Dγr z(t)) (6)

acts continuously from [t0, t1] into Z . As in the proof of Theorem 1 it can be shown
that a solution satisfies Eq. (5).

Let Dγi z ∈ Cm−1([t0, t1];Z), i = 1, 2, . . . , r , for all t ∈ [t0, t1] the inclusion
(t, Dγ1 z(t), Dγ2 z(t), . . . , Dγr z(t)) ∈ U holds and equality (5) is valid. Then (6)
belongs to the class C([t0, t1];Z). By repeating word to word the proof of The-
orem 1 and Lemma 2 in [17] we will obtain the required statement.

Theorem 2 Let m − 1 < α ≤ m ∈ N, n, r ∈ N, α1 < α2 < · · · < αn < α, γ1
< γ2 < · · · < γr < α, A1, A2, . . . , An ∈ L(Z), U be an open set in R × Zr , an
operator B ∈ C(U,Z) be locally Lipschitzian in x̄ , (t0, z̃1, z̃2, . . . , z̃r ) ∈ U. Then
for some t1 > t0 problem (2), (4) has a unique solution on [t0, t1].
Proof Denote k∗ := min{k ∈ {1, 2, . . . , n} : αk > m − 1}, if the set {k ∈ {1, 2,
. . . , n} : αk > m − 1} is not empty, and k∗ := n + 1 otherwise, i∗ := min{i ∈ {1, 2,
. . . , r} : γi > m − 1}, if the set {i ∈ {1, 2, . . . , r} : γi > m − 1} is not empty, and
i∗ := r + 1 otherwise. Take for some t1 > t0 Cm−1,{αk },{γi }([t0, t1];Z) := {z ∈ Cm−1

([t0, t1];Z) : Dαk z, Dγi z ∈ C([t0, t1];Z), k = k∗, . . . , n, i = i∗, . . . , r} and endow
this space by the norm

‖z‖Cm−1,{αk },{γi }([t0,t1];Z) = ‖z‖Cm−1([t0,t1];Z)+

+
n∑

k=k∗

‖Dαk z‖C([t0,t1];Z) +
r∑

i=i∗

‖Dγi z‖C([t0,t1];Z).

Let {zl} be a fundamental sequence in Cm−1,{αk },{γi }([t0, t1];Z), then there exist
a limit z ∈ Cm−1([t0, t1];Z) of {zl} in Cm−1([t0, t1];Z), limits xk of {Dαk zl} in
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C([t0, t1];Z), k = k∗, k∗ + 1, . . . , n, yi of {Dγi zl} in C([t0, t1];Z), i = i∗, i∗ +
1, . . . , r . Hence,

Jαk xk(t) = lim
l→∞ Jαk Dαk zl(t) = lim

l→∞

⎛

⎝zl(t) −
m−1∑

j=0

z( j)
l (t0)

(t − t0) j

j !

⎞

⎠ =

= z(t) −
m−1∑

j=0

z( j)(t0)
(t − t0) j

j ! , xk = Dαk z ∈ C([t0, t1];Z);

J γi yi (t) = lim
l→∞ J γi Dγi zl(t) = lim

l→∞

⎛

⎝zl(t) −
m−1∑

j=0

z( j)
l (t0)

(t − t0) j

j !

⎞

⎠ =

= z(t) −
m−1∑

j=0

z( j)(t0)
(t − t0) j

j ! , yi = Dγi z ∈ C([t0, t1];Z).

Thus, Cm−1,{αk },{γi }([t0, t1];Z) is a Banach space.
Take τ > 0 and δ > 0, such that [t0, t0 + τ ] × Sδ(z̃) ⊂ U , where z̃ = (̃z1, z̃2, . . . ,

z̃n). Denote by S the set of z ∈ Cm−1,{αk },{γi }([t0, t0 + τ ];Z), such that ‖Dγi z(t) −
z̃i‖Z ≤ δ for t0 ≤ t ≤ t0 + τ . Note here that due to Lemma 1 for a function
z ∈ Cm−1,{αk },{γi }([t0, t0 + τ ];Z) we have Dαk z, Dγi z ∈ C([t0, t1];Z) for all k =
1, 2, . . . , n, i = 1, 2, . . . , r . Define on the set S a metrics d(x, y) := ‖x −
y‖Cm−1,{αk },{γi }([t0,t0+τ ];Z), then S is a complete metric space. Note that z̃ ∈ S for small
τ > 0.

For z ∈ S define a mapping

G(z)(t) :=
m−1∑

l=0

Zl(t − t0)zl +
t∫

t0

Z(t − s)B(s, Dγ1 z(s), Dγ2 z(s), . . . , Dγr z(s))ds,

t ∈ [t0, t0 + τ ]. Reasoning as in the proof of Theorem 1 and Lemma 2 in [17],
we obtain that G(z) ∈ Cm−1([t0, t0 + τ ];Z), Dαk G(z) ∈ C([t0, t0 + τ ];Z), k =
1, 2, . . . , n, [G(z)](k)(t0) = zk for k = 0, 1, . . . ,m − 1.

Further we have for γi < l

Dγi Zl(0) := lim
t→0+

1

2πi

∫

Γ

λ−l−1+γi Rλ

⎛

⎝I −
n∑

k=nl

λαk−αAk

⎞

⎠ eλt dλ = 0,

since

−l − 1 + γi < −1,

∥∥∥∥∥∥
Rλ

⎛

⎝I −
n∑

k=nl

λαk−αAk

⎞

⎠

∥∥∥∥∥∥
L(Z)

≤ C.
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For γi > l

̂Dγi Z l(λ) = λ−l−1+γi Rλ

⎛

⎝I −
n∑

k=nl

λαk−αAk

⎞

⎠ − λγi−1−l =

= λ−l−1+γi Rλ

nl−1∑

k=1

λαk−αAk,

Dγi Zl(0) = lim
t→0+

1

2πi

∫

Γ

λ−l−1+γi Rλ

nl−1∑

k=1

λαk−αAke
λt dλ = 0,

since for k ≤ nl − 1 we have l > mk − 1, hence, l ≥ αk , −l − 1 + γi + αk − α <

−1.
For γi > 0 we have

J ni−γi Z(t) = 1

2πi

∫

Γ

λ−α+γi−ni Rλe
λt dλ,

for l = 0, 1, . . . , ni − 1

Dl Jni−γi Z(0) = lim
t→0+

1

2πi

∫

Γ

λ−α+γi−ni+l Rλe
λt dλ = 0, (7)

due to −α + γi − ni + l ≤ −α + γi − 1 < −1. From here it follows also that
‖Dni J ni−γi Z(t)‖L(Z) ≤ Ctα−γi−1 for someC > 0 and every t > 0.Denote Bz(s) :=
B(s, Dγ1 z(s), Dγ2 z(s), . . . , Dγr z(s)), then due to (7) and equalities

Dl |t=t0

t∫

t0

Z(t − s)Bz(s)ds = 0, l = 0, 1, . . . ,m − 1,

which are proved in Lemma 2 [17], we have

Dγi

t∫

t0

Z(t − s)Bz(s)ds = Dni J ni−γi

t∫

t0

Z(t − s)Bz(s)ds =

= Dni

t∫

t0

J ni−γi Z(t − s)Bz(s)ds =
t∫

t0

Dni J ni−γi Z(t − s)Bz(s)ds,
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∥∥∥∥∥∥
lim

t→t0+
Dγi

t∫

t0

Z(t − s)Bz(s)ds

∥∥∥∥∥∥
Z

≤ lim
t→t0+

C1(t − t0)
α−γi max

s∈[t0,t0+τ ] ‖B
z(s)‖Z = 0.

Thus,G(z) ∈ Cm−1,{αk },{γi }([t0, t1];Z) andDγi G(z)(t0) = z̃i , i = 0, 1, . . . , r . There-
fore, G(z) ∈ S for a small enough τ > 0.

For x, y ∈ S, l = 0, 1, . . . ,m − 1

Dl Z(t) = 1

2πi

∫

Γ

λ−α+l Rλe
λt dλ,

hence, Dl Z(0) = 0 for l = 0, 1, . . . ,m − 2, ‖Dl Z(t)‖L(Z) ≤ Ctα−l−1. Then for a
small enough τ > 0

‖[G(x)](l)(t) − [G(y)](l)(t)‖Z =
∥∥∥∥∥∥

t∫

t0

Dl Z(t − s)[Bx (s) − By(s)]ds
∥∥∥∥∥∥
Z

≤

≤ Cl(t − t0)
α−l

r∑

i=1

sup
t∈[t0,t0+τ ]

‖Dγi (x(t) − y(t))‖Z ≤ d(x, y)

2(n − k∗ + r − i∗ + 2 + m)
,

‖Dγi G(x)(t) − Dγi G(y)(t)‖Z =
∥∥∥∥∥∥

t∫

t0

Dγi Z(t − s)[Bx (s) − By(s)]ds
∥∥∥∥∥∥
Z

≤

≤ Cγi (t − t0)
α−γi

r∑

j=1

sup
t∈[t0,t0+τ ]

‖Dγ j (x(t) − y(t))‖Z ≤ d(x, y)

2(n − k∗ + r − i∗ + 2 + m)
,

where n − k∗ + r − i∗ + 2 is the quantity of αk and γi , which are greater than
m − 1. Here we used Lemma 1. Thus, d(G(y),G(v)) ≤ d(y, v)/2 and the
mapping G has a unique fixed point z in the metric space S. It is a unique solu-
tion of (5) in Cm−1,{αk },{γi }([t0, t0 + τ ];Z), therefore, due to Lemma 2 it is a unique
solution of problem (2), (4) on the chosen segment [t0, t0 + τ ].

4 Degenerate Quasilinear Equation

LetX ,Y be a Banach space,L(X ;Y) be the space of bounded linear operators from
X into Y , and let Cl(X; Y ) be the set of all linear closed operators densely defined in
the space X , acting into Y . Let n ∈ N, L , M1, . . . , Mn−1 ∈ L(X ;Y), ker L �= {0},
Mn ∈ Cl(X ;Y), DMn be the domain of the operator Mn , on which the norm of the
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graph ‖·‖DMn
:= ‖·‖X + ‖Mn·‖Y be set. Denote

ρL(Mn) := {
μ ∈ C : (μL − Mn)

−1 ∈ L(Y;X )
}
, σL(Mn) := C \ ρL(Mn),

RL
μ (Mn) := (μL − Mn)

−1L , LL
μ(Mn) := L(μL − Mn)

−1.

An operator Mn is called (L ,σ)-bounded if σL(Mn) ⊂ {μ ∈ C : |μ| ≤ a} for
some a > 0. Under the condition of (L ,σ)-boundedness of the operator Mn there
exist projections

P = 1

2πi

∫

γ

RL
μ (Mn)dμ ∈ L(X ), Q = 1

2πi

∫

γ

LL
μ(Mn)dμ ∈ L(Y), (8)

where γ := {μ ∈ C : |μ| = r > a} [24]. Let X 0 = ker P , X 1 = Im P , Y0 = ker Q,
Y1 = Im Q. Denote for short P0 := I − P, Q0 := I − Q and Lk (Ml,k) restric-
tion of the operator L (Ml) on X k (DMn,k := DMn ∩ X k for l = n), k = 0, 1, l =
1, 2, . . . , n. It is known (see [24]) that LP = QL , MnPx = QMnx for x ∈ DMn ,
therefore,Mn,1 ∈ L(X 1;Y1),Mn,0 ∈ Cl(X 0;Y0), Lk ∈ L(X k;Yk), k = 0, 1.More-
over, in this case there are operators M−1

n,0 ∈ L(Y0;X 0), L−1
1 ∈ L(Y1;X 1). An oper-

ator Mn will be called (L , 0)-bounded if L0 is zero operator.
Consider the initial problem

x (l)(t0) = xl , l = 0, 1, . . . ,mn − 1, (Px)(l)(t0) = xl , l = mn,mn + 1, . . . ,m − 1,
(9)

for a quasilinear fractional order equation

DαLx(t) =
n∑

k=1

Dαk Mkx(t) + N (t, Dγ1x(t), Dγ2x(t), . . . , Dγr x(t)), (10)

which is called degenerate in the case ker L �= {0}. It is assumed that, as before,
n, r ∈ N, m − 1 < α ≤ m ∈ N, α1 < α2 < · · · < αn < α, ml − 1 < αl ≤ ml ∈ Z,
l = 1, 2, . . . , n, γ1 < γ2 < · · · < γr < α, U be an open set in R × X r ,
N ∈ C(U,Z).

A solution toproblem (9), (10) on a segment [t0, t1] is a function x ∈ Cmn−1([t0, t1];
X ) ∩ C([t0, t1]; DMn ), such that DαLx, Dαk Mkx ∈ C([t0, t1];Y), k = 1, 2, . . . , n,
Dγi x ∈ C([t0, t1];X ), i = 1, 2, . . . , r , the inclusion

(t, Dγ1x(t), Dγ2x(t), . . . , Dγr x(t)) ∈ U

and equality (10) are valid for all t ∈ [t0, t1] and conditions (9) are satisfied.
In the definition of a solutionwe used the fact that for (L , 0)-bounded operatorMn

the smoothness of Px is the same as for Lx , since Px = L−1
1 Lx , Lx = LPx . And

the condition DαLx ∈ C([t0, t1];Y) due to the definition of the Gerasimov—Caputo



10 V. E. Fedorov and K. V. Boyko

derivative means, in partial, that Lx ∈ Cm−1([t0, t1];Y), hence, Px ∈ Cm−1([t0,
t1];X ).

Denote V = U ∩ (R × (X 1)r ), ṽi := Dγi |t=t0 ṽ(t), i = 1, 2, . . . , r , where

ṽ(t) := Px0 + (t − t0)Px1 + (t − t0)2

2! Px2 + · · · + (t − t0)m−1

(m − 1)! Pxm−1.

Theorem 3 Let L , Mk ∈ L(X ;Y), k = 1, 2, . . . , n − 1, Mn ∈ Cl(X ;Y) be (L , 0)-
bounded, Mk P = QMk, k = 1, 2, . . . , n − 1, N : U → Y , for every (t, z1, z2, . . . ,
zr ) ∈ U, such that (t, Pz1, Pz2, . . . , Pzr ) ∈ U, N (t, z1, z2, . . . , zr ) = N1(t, Pz1,
Pz2, . . . , Pzr ) for some operator N1 ∈ C(V ;Y), which be locally Lipschitzian
in v1, v2, . . . , vr , (t0, ṽ1, ṽ2, . . . , ṽr ) ∈ V , xl ∈ X 1 for l = mn,mn + 1, . . . ,m − 1.
Then there exists a unique solution of problem (9), (10).

Proof Conditions Ml P = QMl for l = 1, 2, . . . , n − 1 immediately imply that
Ml,k ∈ L(X k;Yk

)
, k = 0, 1, l = 1, 2, . . . , n − 1. Act on Eq. (10) by L−1

1 Q ∈ L(Y1;
X 1) and obtain the equation

Dαv(t) =
n∑

k=1

Dαk L−1
1 Mkv(t) + L−1

1 QN1(t, D
γ1v(t), . . . , Dγr v(t)), (11)

where v(t) = Px(t). After acting by M−1
n,0Q0 ∈ L(Y0;X 0) we obtain

Dαnw(t) = −
n−1∑

k=1

Dαk M−1
n,0Mkw(t) − M−1

n,0Q0N1(t, D
γ1v(t), . . . , Dγr v(t)) (12)

with w(t) = P0x(t). Here we used the equalities Mk P0 = Mk − QMk = Q0Mk ,
k = 1, 2, . . . , n − 1.

Due to (9) Eqs. (11) and (12) are endowed by the initial conditions

v(l)(t0) = Pxl , l = 0, 1, . . . ,m − 1, (13)

w(l)(t0) = P0xl , l = 0, 1, . . . ,mn − 1, (14)

respectively. By Theorem 2 Cauchy problem (11), (13) has a unique solution on
a segment [t0, t1]. Then Eq. (12) is inhomogeneous linear, and due to Theorem 1
Cauchy problem (14) for it has a unique solution also.

Denote W = U ∩ (R × (X 0)r ), w̃i := Dγi |t=t0w̃(t), i = 1, 2, . . . , r , where

w̃(t) := P0x0 + (t − t0)P0x1 + (t − t0)2

2! P0x2 + · · · + (t − t0)mn−1

(mn − 1)! P0xmn−1.

Theorem 4 Let γr < αn, L , Mk ∈ L(X ;Y), k = 1, 2, . . . , n − 1, Mn ∈ Cl(X ;Y)

be (L , 0)-bounded, Mk P = QMk, k = 1, 2, . . . , n − 1, N : U → Y , for every
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(t, z1, z2, . . . , zr ) ∈ U, such that (t, P0z1, P0z2, . . . , P0zr ) ∈ U, N (t, z1, z2, . . . , zr )
= N0(t, P0z1, P0z2, . . . , P0zr ) for some operator N0 ∈ C(W ;Y), which be locally
Lipschitzian inw1, w2, . . . , wr , (t0, w̃1, w̃2, . . . , w̃r ) ∈ W, xl ∈ X 1 for l = mn,mn +
1, . . . ,m − 1. Then there exists a unique solution of problem (9), (10).

Proof As in the proof of the previous theorem reduce problem (9), (10) to problem
(13), (14) for the system of equations

Dαv(t) =
n∑

k=1

Dαk L−1
1 Mkv(t) + L−1

1 QN0(t, D
γ1w(t), . . . , Dγr w(t)), (15)

Dαnw(t) = −
n−1∑

k=1

Dαk M−1
n,0Mkw(t) − M−1

n,0Q0N0(t, D
γ1w(t), . . . , Dγr w(t)) (16)

with v(t) = Px(t), w(t) = P0x(t). By Theorem 2 Cauchy problem (14), (16) has a
unique solution on a segment [t0, t1], by Theorem 1 there exists a unique solution of
problem (13) for linear equation (15) on [t0, t1].

Denote x̃i := Dγi |t=t0 x̃(t), i = 1, 2, . . . , r , where

x̃(t) := x0 + (t − t0)x1 + (t − t0)2

2! x2 + · · · + (t − t0)mn−1

(mn − 1)! xmn−1.

Theorem 5 Let L , Mk ∈ L(X ;Y), k = 1, 2, . . . , n − 1, Mn ∈ Cl(X ;Y) be (L , 0)-
bounded, Mk P = QMk, k = 1, 2, . . . , n − 1, N ∈ C(U ;Y1) be locally Lipschitzian
in x1, x2, . . . , xr , (t0, x̃1, x̃2, . . . , x̃r ) ∈ U, xl ∈ X 1 for l = mn,mn + 1, . . . ,m − 1.
Then there exists a unique solution of problem (9), (10).

Proof Anologously to the proof of the previous two theorems we get

Dαv(t) =
n∑

k=1

Dαk L−1
1 Mkv(t) + L−1

1 QN (t, Dγ1 (v(t) + w(t)), . . . , Dγr (v(t) + w(t))),

(17)

Dαnw(t) = −
n−1∑

k=1

Dαk M−1
n,0Mkw(t). (18)

Then due to Theorem 1 there exists a unique solution of (14), (18) on [t0,∞), and
by Theorem 2 problem (13), (17) has a unique solution on some segment [t0, t1]. We
used that the nonlinear mapping

(v1, v2, . . . , vr ) → L−1
1 QN (t, v1 + w1, v2 + w2, . . . , vr + wr )

with given w1, w2, . . . , wr satisfies the conditions of Theorem 2.
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Theorem 6 Let γr < αn, L , Mk ∈ L(X ;Y), k = 1, 2, . . . , n − 1, Mn ∈ Cl(X ;Y)

be (L , 0)-bounded, Mk P = QMk, k = 1, 2, . . . , n − 1, N ∈ C(U ;Y0) be locally
Lipschitzian in x1, x2, . . . , xr , (t0, x̃1, x̃2, . . . , x̃r ) ∈ U, xl ∈ X 1 for l = mn,mn +
1, . . . ,m − 1. Then there exists a unique solution of problem (9), (10).

Proof Here we have a system of equations

Dαv(t) =
n∑

k=1

Dαk L−1
1 Mkv(t), (19)

Dαnw(t) = −
n−1∑

k=1

Dαk M−1
n,0Mkw(t)+

+ M−1
0 Q0N (t, Dγ1(v(t) + w(t)), . . . , Dγr (v(t) + w(t))). (20)

Theorem 1 implies the unique solvability of problem (13), (19) and due to Theorem 2
there exists a unique solution of (14), (20).

Remark 1 From the proof of theorems it follows that the Cauchy problem

x (l)(0) = xl , l = 0, 1, . . . ,m − 1,

for (10) is solvable only if the conditions

P0xmn+l = w(mn+l)(0), l = 0, 1, . . . ,m − mn − 1,

is fulfilled.

Remark 2 It is easy to show that, if Mn is (L , 0)-bounded, then the condi-
tions (Px)(l)(0) = xl ∈ X 1 for l = 1, 2, . . . ,m − 1 are equivalent to the conditions
(Lx)(l)(0) = yl := Lxl ∈ Y1.

5 Examples

Here we consider simple examples of degenerate systems of partial differential equa-
tions, which illustrate four considered in the previous section cases.

LetΩ ⊂ Rd is a bounded region with a smooth boundary ∂Ω . Consider the initial
boundary value problem

∂k x1
∂t k

(ξ, t0) = x1k(ξ), k = 0, 1, . . . ,m − 1, ξ ∈ Ω, (21)
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∂k x2
∂t k

(ξ, t0) = x2k(ξ), k = 0, 1, . . . ,mn − 1, ξ ∈ Ω, (22)

xi (ξ, t) = 0, (ξ, t) ∈ ∂Ω × [t0, t1], i = 1, 2, (23)

Dα
t �x1 =

n∑
k=1

akD
αk
t x1 + h1

(
ξ, t, Dγ1

t x1, D
γ1
t x2, . . . , D

γr
t x1, D

γr
t x2

)
,

0 =
n∑

k=1
bkD

αk
t x2 + h2

(
ξ, t, Dγ1

t x1, D
γ1
t x2, . . . , D

γr
t x2

)
, (ξ, t) ∈ Ω × [t0, t1],

(24)
where n, r ∈ N, m − 1 < α ≤ m ∈ N, α1 < α2 < · · · < αn < α, mn − 1 < αn ≤
mn , γ1 < γ2 < · · · < γr , D

β
t is the Gerasimov—Caputo derivative with respect to t .

Let A :=
d∑
j=1

∂2

∂ξ2j
be the Laplace operator with a domain H 2

0 (Ω) = {z ∈ H 2(Ω) :
z(s) = 0, s ∈ ∂Ω} ⊂ L2(Ω), {ϕk} be an orthonormal in L2(Ω) system of its eigen-
functions, corresponding to eigenvalues {λk} of A, numbered in descending order,
taking into account their multiplicities.

Reduce problem (21)–(24) to (9), (10), taking the spaces

X = H 2
0 (Ω) × L2(Ω), Y = (L2(Ω))2, (25)

and the operators

L =
(� 0
0 0

)
∈ L(X ;Y), Mk =

(
ak I 0
0 bk I

)
∈ L(X ;Y), k = 1, 2, . . . , n.

(26)

Lemma 3 Let spaces (25) and operators (26) are given, bn �= 0. Then the operator
Mn is (L , 0)-bounded and projections has the form

P =
(
1 0
0 0

)
, Q =

(
1 0
0 0

)
. (27)

Proof If μ �= anλ
−1
k for all k ∈ N, then

(μL − Mn)
−1 =

∞∑

k=1

〈·,ϕk〉ϕk

(
(μλk − an)−1 0

0 −b−1
n

)
,

hence, for |μ| > |an||λ1|−1 the operator (μL − Mn)
−1 : Y → X is bounded,

RL
μ (Mn) =

∞∑

k=1

〈·,ϕk〉ϕk

(
λk(μλk − an)−1 0

0 0

)
,
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LL
μ(Mn) =

∞∑

k=1

〈·,ϕk〉ϕk

(
λk(μλk − an)−1 0

0 0

)
.

These equalities due to formulas (8) and the residue theorem imply form (27) of
projections, since for large enough |μ|

λk(μλk − an)
−1 = μ−1(1 − anμ

−1λ−1
k )−1 =

∞∑

j=0

a j
nμ

− j−1λ
− j
k .

Therefore, X 1 = H 2
0 (Ω) × {0}, X 0 = {0} × L2(Ω), Y1 = L2(Ω) × {0}, Y0 = {0}

× L2(Ω), L0 = 0 and the operator Mn is (L , 0)-bounded.

The first formula in (27) implies that initial conditions (21), (22) has form (9).
The system of equation

Dα
t �x1 =

n∑
k=1

akD
αk
t x1 + h1

(
ξ, t, Dγ1

t x1, D
γ2
t x1, . . . , D

γr
t x1

)
,

0 =
n∑

k=1
bkD

αk
t x2 + h2

(
ξ, t, Dγ1

t x1, D
γ2
t x1, . . . , D

γr
t x1

)

satisfies the conditions of Theorem 3; the system

Dα
t �x1 =

n∑
k=1

akD
αk
t x1 + h1

(
ξ, t, Dγ1

t x2, D
γ2
t x2, . . . , D

γr
t x2

)
,

0 =
n∑

k=1
bkD

αk
t x2 + h2

(
ξ, t, Dγ1

t x2, D
γ2
t x2, . . . , D

γr
t x2

)
, γr < αn,

corresponds to Theorem 4; conditions of Theorem 5 are valid for the system

Dα
t �x1 =

n∑
k=1

akD
αk
t x1 + h1

(
ξ, t, Dγ1

t x1, D
γ1
t x2, D

γ2
t x1, D

γ2
t x2, . . . , D

γr
t x2

)
,

0 =
n∑

k=1
bkD

αk
t x2;

and Theorem 6 can be applied to the system of equations

Dα
t �x1 =

n∑
k=1

akD
αk
t x1,

0 =
n∑

k=1
bkD

αk
t x2 + h2

(
ξ, t, Dγ1

t x1, D
γ1
t x2, . . . , D

γr
t x1, D

γr
t x2

)
, γr < αn.

Notes and Comments. The work is funded by the Russian Science Foundation and
Chelyabinsk Region, project no. 22-21-20095.
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On the Solvability of Initial Problems
for Abstract Singular Equations
Containing Fractional Derivatives

Alexander Glushak

Abstract With the help of integral representations of the Poisson type, it is estab-
lished that the Cauchy problem for a number of abstract singular equations with
fractional derivatives reduces to a simpler problem for a non-singular equation.

Keywords Abstract singular equations · Fractional derivatives · Transformation
operator · Cauchy problem

1 Introduction

One of the methods for studying differential equations is the method of transforma-
tion operators. Using conversion operators, many important results are established
for various classes differential equations, including those for singular differential
equations containing the Bessel differential expression

d2

dt2
+ k

t

d

dt
, k ∈ R.

So in the monograph [1] the singular equation of Euler–Poisson–Darboux in
partial derivatives

∂2u(t, x)

∂t2
+ k

t

∂u(t, x)

∂t
= Δu(t, x), k > 0, x ∈ Rn,

whereΔ is the Laplace operator in space variables, investigated by reduction with the
help of a suitable transformation operator to a simpler wave equation when k = 0.
In this case, the formulas for the solution are written using spherical averages over
spatial variables.
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The review paper [2] presents the results of studies in which transformation opera-
tors are used inmore general situation, when in the Euler–Poisson–Darboux equation
the Laplace operator in space variables is replaced by some abstract operator A act-
ing in a Banach space, as well as for some other singular equations of integer order.
In these studies, a class of operators A is described for which the corresponding
initial value problem is well-posed and an explicit representation is established for
the enabling operator.

In this paper, the method of transformation operators is applied to abstract
singular differential equations, containing fractional derivatives (see [3, Sect. 5],
[4, Chap. 2]).

2 Generalized Euler–Poisson–Darboux Differential
Equation

Let A be a closed operator in a Banach space E with dense in E domain D(A). For
k ≥ 0, 0 < α < 1, consider abstract singular equation with fractional derivatives

Bk,αu(t) ≡ d

dt
∂α
0,t u(t) + k

t
∂α
0,t u(t) = Au(t), t > 0, (1)

where ∂α
0,t u(t) is the fractional Caputo derivative defined by the equality

∂α
0,t u(t) = Dα

0,t (u(t) − u(0)) , ∂α
0,t u(0) = lim

t→0
∂α
0,t u(t),

wherein

Dα
0,t (u(t) − u(0)) = d

dt
I 1−α
0,t (u(t) − u(0)) , I 1−α

0,t u(t) = 1

Γ (1 − α)

t∫

0

u(τ )

(t − τ )α
dτ

respectively, the left-hand fractional derivative and the fractional Riemann–Liouville
integral, Γ (·) is the gamma function.

If α = 1, then the Eq. (1) becomes the Euler–Poisson–Darboux equation

u′′(t) + k

t
u′(t) = Au(t), t > 0, (2)

for which the abstract Cauchy problem with conditions

u(0) = u0, u′(0) = 0 (3)

previously explored in detail in [5–7] (see also [2]). In these papers there is a review
of the studies of the Euler–Poisson–Darboux equation, the class Gk of operators A is
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described, with which the problem (2), (3) is uniformly well-posed, the construction
of the resolving operator of the problem (2), (3), which is called the operator Bessel
function and which we denote by Yk,1(t).

In this paper, we present the setting of initial conditions for an equation with
fractional derivatives (1), let us describe the class of operators A with which the
corresponding initial problems are solvable and establish a number of properties of
the solutions.

We will look for a solution to the Eq. (1) that satisfies the initial conditions

u(0) = u0, ∂α
0,t u(0) = 0. (4)

Definition 1 A solution of the problem (1), (4) is a function continuous for t > 0
u(t) such that for t > 0 the functions I 1−αu(t) are twice continuously differentiable,
the function u(t) takes values from the domain D (A) of the operator A and satisfies
the equalities (1), (4).

We begin the study of the solvability of the problem (1), (4) from the case when
the parameter k = 0 in the Eq. (1) and describe the class considered operators A.

Condition 1 If Re λ > ω ≥ 0 and 0 < α ≤ 1, then λα+1 belongs to the resolvent set
ρ(A) of the operator A and for all integers n ≥ 0 the resolution R(λ) = (λI − A)−1

satisfies the inequalities

∥∥∥∥ dn

dλn

(
λαR

(
λα+1

))∥∥∥∥ ≤ Mn!
(Re λ − ω)n+1

. (5)

Theorem 1 Let k = 0, 0 < α ≤ 1, u0 ∈ D(A) and the operator A satisfies Condi-
tion 1. Then the problem (1), (4) uniquely resolvable.

Proof After applying to the Eq. (1) the integration operator I 10,t and fractional dif-
ferentiation D1−α

0,t the problem (1), (4) reduces to the next initial problem

u′(t) = 1

Γ (α)

t∫

0

(t − s)α−1Au(s) ds, t ≥ 0, (6)

u(0) = u0. (7)

Problem (6), (7) is a special case of the problem studied in [8]. In Theorem 3
of [8], it is established that Condition 1 is necessary and sufficient condition on
the operator A, which, under the assumptions made in the theorem being proved,
ensures the unique solvability problem (6), (7), and thus the equivalent problem
(1), (4). The resolving operator of the problem (6), (7) will be denoted by Y0,α(t),
while u(t) = Y0,α(t)u0. For Y0,α(t) in [8] the representation and estimate are set
respectively



20 A. Glushak

Y0,α(t)u0 = 1

2πi

σ+i∞∫

σ−i∞
eλt λαR

(
λα+1) u0 dλ, u0 ∈ D

(
A2) , (8)

∥∥Y0,α(t)
∥∥ ≤ M eσt , σ > ω.

�

Let us proceed to consider the case k > 0 and introduce the Poisson-type trans-
formation operator

Pk,αu(t) = ck,α

1∫

0

(
1 − sα+1

)k/(α+1)−1
u(ts) ds, (9)

where B(·, ·) is the beta function,

ck,α = α + 1

B(k/(α + 1), 1/(α + 1))
.

The Poisson-type transformation operator is expressed in terms of the Erdelyi–
Kober fractional integral I γ

0+,σ,η (see [3, Sect. 18]) as follows

Pk,αu(t) = Γ ((k + 1)/(α + 1))

Γ (1/(α + 1))
I k/(α+1)
0+,α+1,−α/(α+1)u(t),

and the constant ck,α is chosen so that

lim
t→0

Pk,αu(t) = u(0).

Theorem 2 Let k > 0, 0 < α ≤ 1 and the function u(t) be that there is a fractional
derivative of the form

(
∂α
0,t u(t)

)′
. Then the equality

Bk,α Pk,αu(t) = Pk,α
(
∂α
0,t u(t)

)′ + ck,α
t

∂α
0,t u(0). (10)

Proof Applying the operator Bk,α to (9), after integrating by parts we get

Bk,α Pk,αu(t) = ck,α

1∫

0

(
1 − sα+1

)k/(α+1)−1
sα+1 d

d(ts)
∂α
0,tsu(t) ds+

+ k ck,α
t

1∫

0

(
1 − sα+1

)k/(α+1)−1
sα ∂α

0,tsu(t) ds =
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= ck,α

1∫

0

(
1 − sα+1

)k/(α+1)−1
sα+1 d

d(ts)
∂α
0,tsu(t) ds+

+ck,α
t

∂α
0,t u(0) + ck,α

1∫

0

(
1 − sα+1)k/(α+1) d

d(ts)
∂α
0,tsu(t) ds =

= ck,α

1∫

0

(
1 − sα+1)k/(α+1)−1 (

sα+1 + 1 − sα+1) d

d(ts)
∂α
0,tsu(t) ds+

+ck,α
t

∂α
0,t u(0) = Pk,α

(
∂α
0,t u(t)

)′ + ck,α
t

∂α
0,t u(0).

�

An immediate consequence of Theorem 2 is a theorem that establishes the solv-
ability of the problem (1), (4) for k > 0.

Theorem 3 Let k > 0, 0 < α ≤ 1, u0 ∈ D(A) and operator A satisfy Condition 1.
Then the function

u(t) = Pk,αY0,α(t)u0 = ck,α

1∫

0

(
1 − sα+1

)k/(α+1)−1
Y0,α(ts)u0 ds (11)

is a solution to the problem (1), (4).

In what follows, for k > 0, 0 < α ≤ 1 we will use the notation

Yk,α(t) = Pk,αY0,α(t).

Example 1 If the operator A is bounded and 0 < α ≤ 1, then it is easy to verify
directly that the function

Y0,α(t)u0 = Eα+1,1(t
α+1A)u0 =

∞∑
j=0

t (α+1) j A ju0
Γ ((α + 1) j + 1)

,

where Eα,β(·) is the Mittag–Leffler function, is the solution to the problem

d

dt
∂αu(t) = Au(t), u(0) = u0 ∈ E, ∂αu(0) = 0.

By virtue of Theorem 3, the function
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u(t) = Yk,α(t)u0 = Pk,αY0,α(t)u0 =

= Γ ((k + 1)/(α + 1))

Γ (1/(α + 1))

∞∑
j=0

Γ ( j + 1/(α + 1)) t (α+1) j A jw0

Γ ((α + 1) j + 1) Γ ( j + (k + 1)/(α + 1))
=

= Γ ((k + 1)/(α + 1))

Γ (1/(α + 1))
2�2

[
(1/(α + 1), 1) , (1, 1)

(1,α + 1) , ((k + 1)/(α + 1), 1)

∣∣∣∣ tαA
]

w0, (12)

where p�q(·) is the Fox–Wright function (see [9, 10]) is the solution to the problem
(1), (4).

Note that for α = 1 the series in the formula (12) turns into the operator Bessel
function (see [2, 5–7])

Yk,1(t) = Γ (k/2 + 1/2)
∞∑
j=0

(
t
√
A/2

)2 j

j ! Γ ( j + k/2 + 1/2)
=

= Γ (k/2 + 1/2)
(
t
√
A/2

)1/2−k/2
Ik/2−1/2

(
t
√
A
)

,

where Iν(·) is the modified Bessel function.

Example 2 The operator function Y0,α(t) satisfies the principle of subordination,
which for the Eq. (1) with k = 0 was actually established in Chap.3 of [11]. Let
0 ≤ β < α ≤ 1, then the following shift formulawith respect to the second parameter
is valid

Y0,β(t) = 1

t (1+β)/(1+α)

∞∫

0

φ

(
−1 + β

1 + α
,
α − β

1 + α
;− τ

t (1+β)/(1+α)

)
Y0,α(τ ) dτ ,

in which the Wright function is used

φ(μ, ν; z) =
∞∑
n=0

zn

n! Γ (μn + ν)
.

In particular, if the operator A is the generator of the operator cosine function
C(t; A), then for α = 1 we obtain

Y0,β(t) = 1

t (1+β)/2

∞∫

0

φ

(
−1 + β

2
,
1 − β

2
;− τ

t (1+β)/2

)
C(τ ; A) dτ , (13)

Yk,β(t) = Pk,βY0,β(t).



On the Solvability of Initial Problems for Abstract … 23

In the limiting case, when β = 0, α = 1, the equality (13) becomes the well-
known semigroup connection formula T (t; A) and cosine of the operator-function
C(t; A) generated by the operator A, which has the form

T (t; A) = 1√
πt

∞∫

0

exp

(
−τ 2

4t

)
C(τ ; A) dτ . (14)

The operator function Yk,α(t) also satisfies the shift formula with respect to the
first parameter.

Theorem 4 Let m > k ≥ 0, 0 < α ≤ 1 and operator A satisfy Condition 1. Then
there is an equality

Ym,α(t) = α + 1

B((m − k)/(α + 1), (k + 1)/(α + 1))
×

×
1∫

0

sk (1 − sα+1)(m−k)/(α+1)−1 Yk,α(ts) ds. (15)

Proof After a series of obvious transformations, using the integral 2.2.5.1 [12], we
obtain

1∫

0

sk (1 − sα+1)(m−k)/(α+1)−1 Yk,α(ts) ds =

=
t∫

0

τ k (tα+1 − τα+1)(m−k)/(α+1)−1 Yk,α(τ ) dτ =

= ck,α

t∫

0

τα (tα+1 − τα+1)(m−k)/(α+1)−1×

×
τ∫

0

(
τα+1 − ξα+1

)k/(α+1)−1
Y0,α(ξ) dξdτ = ck,α×

×
t∫

0

Y0,α(ξ)

t∫

ξ

τα (tα+1 − τα+1)(m−k)/(α+1)−1
(
τα+1 − ξα+1

)k/(α+1)−1
dτdξ =
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= ck,α
α + 1

t∫

0

Y0,α(ξ)

tα+1∫

ξα+1

(tα+1 − η)(m−k)/(α+1)−1
(
η − ξα+1

)k/(α+1)−1
dηdξ =

= ck,α B((m − k)/(α + 1), k/(α + 1))

α + 1

t∫

0

(tα+1 − ξ)m/(α+1)−1Y0,α(ξ) dξ =

= Γ ((m − k)/(α + 1)) Γ ((k + 1)/(α + 1))

(α + 1) Γ ((m + 1)/(α + 1))
tm−αYm,α(t).

Consequently,

Ym,α(t) = (α + 1)Γ ((m + 1)/(α + 1)) tα−m

Γ ((k + 1)/(α + 1)) Γ ((m − k)/(α + 1))
×

×
t∫

0

τ k (tα+1 − τα+1)(m−k)/(α+1)−1 Yk,α(τ ) dτ =

= α + 1

B((m − k)/(α + 1), (k + 1)/(α + 1))

1∫

0

sk (1 − sα+1)(m−k)/(α+1)−1 Yk,α(ts)ds,

and the required equality (15) is established. �

3 Generalized Functional-Differential Bessel–Struve
Equation

Let us proceed to the study of the case of a nonzero second initial condition∂α
0,t u(0) 
=

0 and we will study the following initial problem for the functional differential
equation

d

dt
∂α
0,t u(t) + k

t

(
∂α
0,t u(t) − ∂α

0,t u(0)
) = Au(t), t > 0, (16)

u(0) = 0, ∂α
0,t u(0) = u1. (17)

For α = 1 the problem (16), (17) becomes the initial problem for the Bessel–
Struve equation, which was previously investigated by the author in [13].
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Let us first consider the case when the parameter k = 0 in the Eq. (16).

Theorem 5 Let k = 0, 0 < α ≤ 1, u1 ∈ D(A) and the operator A satisfies Condi-
tion 1. Then the problem (16), (17) is uniquely solvable.

Proof After applying to the Eq. (1) the integration operator I 10,t and fractional dif-
ferentiation D1−α

0,t problem (16), (17) reduces to the following initial problem for the
inhomogeneous equation

u′(t) = 1

Γ (α)

t∫

0

(t − s)α−1Au(s) ds + tα−1

Γ (α)
u1, t ≥ 0, (18)

u(0) = 0. (19)

Just like task (6), (7), task (18), (19) is is a special case of the problem investigated
in [8] and is uniquely solvable. The resolving operator of the problem (18), (19)
will be denoted by L0,α(t), and u(t) = L0,α(t)u1, and L0,α(t) in [8] is set to the
representation

L0,α(t) = Iα
0,t Y0,α(t) = 1

Γ (α)

t∫

0

(t − s)α−1Y0,α(s) ds. (20)

�

An immediate consequence of Theorems 5 and 2 is the solvability of the problem
(16), (17) for k > 0. For 0 < α ≤ 1 we introduce the following notation:

dk,α = k

α + 1
B

(
k

α + 1
,

1

α + 1

)
, Lk,α(t) = dk,αPk,αL0,α(t).

Theorem 6 Let k > 0, 0 < α ≤ 1, u1 ∈ D(A) and operator A satisfy Condition 1.
Then the function

u(t) = Lk,α(t)u1 = dk,αPk,αL0,α(t)u1 (21)

is a solution to the problem (16), (17).

Example 3 If 0 < α ≤ 1 and A is a bounded operator, then

Lk,α(t) = Γ (k/(α + 1) + 1)
∞∑
j=0

Γ ( j + 1) t (α+1) j+αA j

Γ ((α + 1) j + α + 1) Γ ( j + k/(α + 1) + 1)
.

(22)
Forα = 1, the series on the right-hand side (22) is expressed in terms of the Struve

function
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Lk(t) =
√

π

2
Γ (k/2 + 1)

∞∑
j=0

(
t
√
A/2

)2 j

Γ ( j + 3/2) Γ ( j + k/2 + 1)
=

= 2k/2−1/2√π Γ (k/2 + 1)

Ak/4+1/4 t k/2−1/2
Lk/2−1/2

(
t
√
A
)

,

where Lν(·) is the modified Struve function ([14], p. 655).

Example 4 If 0 < β < 1 and the operator A is the generator of the operator cosine
function C(t; A), then

Lk,β(t) = dk,βPk,β I
β
0,t Y0,β(t),

where the operator function Y0,β(t) is defined by the equality (13).
The operator function Lk,α(t) satisfies the shift formula with respect to the first

parameter, whose proof is carried out in the same way as in Theorem 4.

Theorem 7 Let m > k ≥ 0, 0 < α ≤ 1 and operator A satisfy Condition 1. Then

Lm,α(t) = α + 1

B((m − k)/(α + 1), k/(α + 1) + 1)
×

×
1∫

0

sk (1 − sα+1)(mk)/(α+1)−1 Lk,α(ts) ds.

The constructed operator functions Yk,α(t), Lk,α(t), as well as Theorems 3 and
6 allow us to establish the following statement about the solvability of the general
initial problem for the Eq. (16).

Theorem 8 Let k ≥ 0, 0 < α ≤ 1, u0, u1 ∈ D(A) and the operator A satisfies Con-
dition 1. Then the function u(t) = Yk,α(t)u0 + Lk,α(t)u1 is a solution to the Eq. (16)
satisfying the conditions

u(0) = u0, ∂α
0,t u(0) = u1. (23)

Theorems 3, 6, 8 do not contain a statement about the uniqueness of the solution.
To prove the uniqueness of the solution of these problems, we make an additional
assumption. We assume that A ∈ Gk , i.e., with the operator A, the Cauchy problem
(2), (3) is uniformly well-posed for the Euler–Poisson–Darboux equation, and the
resolving operator of this problem, as indicated earlier, is denoted by Yk,1(t).

Theorem 9 Let k ≥ 0, 0 < α ≤ 1 and operator A ∈ Gk. Then the solutions of prob-
lems (1), (4) and (16), (23) are unique.

Proof Proof of the uniqueness of the solution to the problem (16), (23) we will lead
from the contrary. If u1(t) and u2(t) are two solutions to the problem (16), (23),
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then consider a function of two variablesw(t, s) = f (Yk(s) (u1(t) − u2(t))), where
f ∈ E∗ (E∗ is the dual space), t, s ≥ 0. She, obviously satisfies the equation

Bk,αw(t, s) = ∂2w(t, s)

∂s2
+ k

s

∂w(t, s)

∂s
, t, s > 0 (24)

and conditions

lim
t→0

w(t, s) = lim
t→0

∂α
0,tw(t, s) = lim

s→0

∂w(t, s)

∂s
= 0. (25)

As was done in [15], we interpret w(t, s) as a generalized function of moderate
growth and on the variable s we apply the Fourier–Bessel transformation

ŵ(t,λ) =
∞∫

0

s2p+1 jp(λs) w(t, s) ds, w(t, s) = γp

∞∫

0

λ2p+1 jp(λs) ŵ(t,λ) dλ,

p = 1 − k

2
, γp = 1

22p Γ 2(p + 1)
, jp(s) = 2p Γ (p + 1)

s p
Jp(s),

where Jp(·) is the Bessel function.
From (24), (25) for the image ŵ(t,λ) we get the following problem

Bk,αŵ(t,λ) = −λ2 ŵ(t,λ), t > 0, (26)

lim
t→0

ŵ(t,λ) = lim
t→0

∂α
0,t ŵ(t,λ) = 0. (27)

By virtue of Examples 1 and 3, the general solution of the Eq. (26) has the form

ŵ(t,λ) = d1(λ)Γ ((k + 1)/(α + 1))

Γ (1/(α + 1))

∞∑
j=0

Γ ( j + 1/(α + 1)) t(α+1) j (−λ2) j

Γ ((α + 1) j + 1) Γ ( j + (k + 1)/(α + 1))
+

+d2(λ) Γ (k/(α + 1) + 1)
∞∑
j=0

Γ ( j + 1) t (α+1) j+α(−λ2) j

Γ ((α + 1) j + α + 1) Γ ( j + k/(α + 1) + 1)
,

and the initial conditions (27) imply the equalities d1(λ) = d2(λ) = 0. Hence
ŵ(t,λ) = w(t, s) = 0 for any s ≥ 0. Since the functional f ∈ E∗ is arbitrary, for
s = 0 we obtain the equality u1(t) ≡ u2(t), and the uniqueness of the solution of the
considered problems is established. �

As an application of Theorem 8 consider the problem (16), (23) with the operator
which is a fractional power of the operator A. Let A be the generator of a uniformly
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bounded cosine-operator function. Then one can define a positive fractional power
of the operator −A (see, for example, [16, p. 358])

− (−A)γ x = sin γπ

π

∞∫

0

λγ−1 (λI − A)−1 Ax dλ, (28)

where γ ∈ (0, 1) , x ∈ D(A).
Moreover, if y ∈ E, μ > 0, then the resolvent of the operator Aγ = −(−A)γ

satisfies the representation

(
μI − Aγ

)−1
y = sin γπ

π

∞∫

0

λγ (λI − A)−1 y dλ

μ2 − 2μλγ cos γπ + λ2γ
. (29)

Next, we establish the solvability of the initial problem (16), (23) with the operator
Aγ , where the exponent is γ = (α + 1)/2.

Theorem 10 Let γ = (α + 1)/2, 0 < α < 1, u0, u1 ∈ D(A), the operator A —
generator of uniformly bounded cosine-operator function C(t; A) and operator Aγ

defined by (28). Then the solution of the initial problem

d

dt
∂α
0,t u(t) + k

t

(
∂α
0,t u(t) − ∂α

0,t u(0)
) = Aγu(t), t > 0, (30)

u(0) = u0, ∂α
0,t u(0) = u1. (31)

is the function u(t) = Yk,α(t; Aγ)u0 + Lk,α(t; Aγ)u1, where

Y0,α(t; Aγ) = sin γπ

γπ

∞∫

0

C
(
ts−1/(2γ); A)

ds

s2 − 2s cos γπ + 1
, (32)

while the operator functions Yk,α(t; Aγ), L0,α(t; Aγ), Lk,α(t; Aγ) are defined
respectively by the formulas (11), (20), (21).

Proof The operator A is the generator of a uniformly bounded cosine operator func-
tion, and in order to to use Theorem 8, one should check the fulfillment of Condition
1 for the operator Aγ . In the In our case, this condition is that for Re μ > 0 the

resolvent
(
μα+1 I − Aγ

)−1
satisfied the inequality

∥∥∥∥∥∥
dn

(
μα

(
μα+1 I − Aγ

)−1
)

dμn

∥∥∥∥∥∥ ≤ Mn!
(Re μ)n+1

. (33)

Given the representation (29), after the change of variables, we get
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μα
(
μα+1 I − Aγ

)−1
y = μ sin γπ

γπ

∞∫

0

s1/γ
(
μ2s1/γ I − A

)−1
y ds

s2 − 2s cos γπ + 1
=

= sin γπ

γπ

∞∫

0

s1/(2γ)ξ
(
ξ2 I − A

)−1
y ds

s2 − 2s cos γπ + 1
,

where ξ = μs1/(2γ) and hence

dn
(
μα

(
μα+1 I − Aγ

)−1
y
)

dμn
=

= sin γπ

γπ

∞∫

0

s(1+n)/(2γ)

s2 − 2s cos γπ + 1

dn

dξn

(
ξ
(
ξ2 I − A

)−1
y
)
ds. (34)

Since for the resolvent of the generator of a uniformly bounded cosine-operator
function for Re ξ > 0 there is an estimate

∥∥∥∥ dn

dξn

(
ξ
(
ξ2 I − A

)−1
y
)∥∥∥∥ ≤ M1 n!

(Re ξ)n+1
, (35)

then (34), (35) implies the validity of the inequality

∥∥∥∥ dn

dμn

(
μα

(
μα+1 I − Aγ

)−1
)∥∥∥∥ ≤ M1 n!

(Re μ)n+1

∞∫

0

ds

s2 − 2s cos γπ + 1
≤ Mn!

(Re μ)n+1 ,

and thus the inequality (33) is proved, and with it the solvability of the problem (30),
(31).

It remains for us to obtain the representation (32) for the operator function
Y0,α(t; Aγ). Using (8), (29), for u0 ∈ D(A2) we get

Y0,α(t; Aγ)u0 = 1

2πi

σ+i∞∫

σ−i∞
eλt λα

(
λα+1 I − Aγ

)−1
u0 dλ =

= sin γπ

γπ

∞∫

0

s1/γ

s2 − 2s cos γπ + 1

1

2πi

σ+i∞∫

σ−i∞
λeλt

(
λ2s1/γ I − A

)−1
u0 dλds =

= sin γπ

γπ

∞∫

0

C
(
ts−1/(2γ); A)

u0 ds

s2 − 2s cos γπ + 1
.
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The representation established on the dense set D(A2) ⊂ E (32) for the operator
function Y0,α(t; Aγ) extends by continuity to all E .

Operator functions Yk,α(t; Aγ), L0,α(t; Aγ), Lk,α(t; Aγ) are defined respectively
by the formulas (11), (20), (21). In particular,

L0,α(t; Aγ) = Iα
0,t Y0,α(t; Aγ) = 1

Γ (α)

t∫

0

(t − s)α−1Y0,α(s; Aγ) ds =

= sin γπ

γπΓ (α)

t∫

0

(t − s)α−1

∞∫

0

C
(
sη−1/(2γ); A)

dη

η2 − 2η cos γπ + 1
ds =

= 2γ sin γπ

γπΓ (α)

t∫

0

(t − s)α−1

∞∫

0

s2γξ2γ−1C(ξ; A) dξ

s4γ − 2(sξ)2γ cos γπ + ξ4γ
ds =

= 2γ sin γπ

γπΓ (α)

∞∫

0

ξ2γ−1C(ξ; A)

t∫

0

s2γ(t − s)α−1 ds

s4γ − 2(sξ)2γ cos γπ + ξ4γ
dξ.

�

4 Appendix

If A is the generator of an exponentially bounded β times integrated cosine operator
of the function Cβ(t; A), then for

0 < α < 1, β ≤ 1 − α

1 + α
, γ = (β − 1)(1 + α)

2
+ α ≤ 0

performance for Y0,α(t; A) in Theorem 1 can be written as

Y0,α(t; A) = 1

2πi

σ+i∞∫

σ−i∞
eλt λα

(
λα+1 I − A

)−1
dλ =

= 1

2πi

σ+i∞∫

σ−i∞
eλtλγ

∞∫

0

e−τλ(α+1)/2
Cβ(τ ; A)dτdλ =
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=
∞∫

0

Cβ(τ ; A)
1

2πi

σ+i∞∫

σ−i∞
λγeλt−τλ(α+1)/2

dλdτ =
∞∫

0

Cβ(τ ; A)I−γ
0,t fτ ,(α+1)/2(t) dτ ,

(36)
in doing so, we used the introduced in [16, p. 357] function

fτ ,γ(t) =
⎧⎨
⎩

1
2πi

σ+i∞∫
σ−i∞

exp (t z − τ zγ) dz, t ≥ 0,

0, t < 0,

where σ > 0, τ > 0, 0 < γ < 1.
The function fτ ,γ(t) for t > 0 is expressed in terms of a Wright-type function

([17, Chap. 1]) fτ ,γ(t) = t−1e1,01,γ

(−τ t−γ
)
, where is the function

eμ,δ
α,β(z) =

∞∑
k=0

zk

Γ (αk + μ) Γ (δ − βk)
, α > max{0;β}, μ, z ∈ C

satisfies the assessment

e1,δ1,β(−τ ) ≤ Mn(τ ) exp
(−(1 − β)ββ/(1−β)τ 1/(1−β)

)
, (37)

Mn(τ ) =
n∑

m=0

(βτ )m

Γ (δ + m(1 − β))
,

and the number n is chosen from the condition δ + n(1 − β) ≥ 1.
In the equality (36), the fractional integral I−γ

0,t fτ ,(α+1)/2(t) is calculated (see
formula (1.2.12) in [17]) and we arrive at the equality

Y0,α(t; A) = 1

tγ+1

∞∫

0

Cβ(τ ; A)e1,−γ
1,(α+1)/2

(−τ t−(α+1)/2
)
dτ . (38)

Note that the convergence of the integral in the representation (38) is ensured by
the estimate (37).

In the limiting case, when α = 0, β = 0, γ = −1/2, the formula (36) becomes
(14). Indeed, in this particular case we have (see [16, p. 369, formula (32)])

fτ ,1/2(t) = τ

2t
√

πt
exp

(
−τ 2

4t

)

and, taking into account the integral 2.3.4.1 [12]), we obtain
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Y0,0(t; A) =
∞∫

0

C(τ ; A)I 1/20,t fτ ,(1/2(t)dτ =

=
∞∫

0

C(τ ; A)I 1/20,t

(
τ

2t
√

πt
exp

(
−τ 2

4t

))
dτ =

= 1

2π

∞∫

0

τC(τ ; A)

t∫

0

1

s
√
s(t − s)

exp

(
−τ 2

4s

)
dsdτ =

= 1

2π
√
t

∞∫

0

τC(τ ; A)

∞∫

1/t

(
ξ − 1

t

)−1/2

exp

(
−ξτ 2

4

)
dξdτ =

= 1√
πt

∞∫

0

exp

(
−τ 2

4t

)
C(τ ; A)dτ ,

which coincides with the representation (14), while, naturally, one should assume
that Y0,0(t; A) = T (t; A), Y0,1(t; A) = C0(t; A) = C(t; A).
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Local Bifurcations of Periodic Traveling
Waves in the Generalized Weakly
Dissipative Ginzburg-Landau Equation

Anatoly Kulikov and Dmitry Kulikov

Abstract In this paper we consider a periodic boundary value problem for the
generalized Ginzburg-Landau. The generalized version of the weakly dissipative
Ginzburg-Landau equation differs from the traditional version by replacing the cubic
nonlinearity with nonlinearity of arbitrary odd degree.Wewill show that the periodic
boundary value problem has a countable set of solutions that are single-mode and
periodic in the evolutionary variable. We will examine the stability question as well
as local bifurcations of such solutions when they change stability. In this case, the
two-dimensional attracting invariant tori bifurcate emergeswhen stability is lost from
single-mode solutions. These are non-resonant tori that have appeared in the generic
situation. The main results are obtained on the basis and development of methods
of the theory of dynamical systems with an infinite-dimensional phase space. These
include the method of invariant manifolds and normal forms, as well as the principle
of self-similarity. This principle allows us to reduce the problem of bifurcations of a
countable set of single-mode solutions to the analysis of the corresponding problem.

Keywords Ginzburg-Landau equation · Periodic boundary conditions · Stability ·
Bifurcations · Normal forms · Invariant tori

1 Introduction

One of the most famous nonlinear evolutionary equations of mathematical physics
can be considered as the corresponding partial differential equation

ut = gu − (d + ic)u|u|2 + (a + ib)uxx , (1)
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where u = u(t, x) = u1(t, x) + iu2(t, x), a, b, c, d, g ∈ R, d > 0, a ≥ 0, g > 0.
Note that Eq. (1) is the referred to as the Ginzburg-Landau evolutional complex
equation. It appears in several branches of physics as well as chemical kinetics
as a mathematical model [1–3]. It is studied together with the periodic boundary
conditions [1]

u(t, x + 2l) = u(t, x).

For chemical kinetics problems, the corresponding boundary conditions of “impen-
etrability” (homogeneous Neumann boundary conditions) are used

ux (t, 0) = ux (t, l) = 0.

We normalize the variables t, x and the functions u(t, x) as follows:

t → γ1t, x → γ2x, u → γ3u

and assume that l = π, d = 1, g = 1, if these constants are positive. We will study
special cases, generalizations and modifications of Eq. (1) and its variations. For
instance, if c = b = 0, then Eq. (1) is called the variational Ginzburg-Landau equa-
tion [1, 4–6]. A variational version of the Ginzburg-Landau equation is found in a
section of modern physics as the theory of condensed matter and requires special
investigation. Note that if a = 0 then we obtain the “weakly dissipative Ginzburg-
Landau equation” [7–12]. For this version of the Ginzburg-Landau equation, we
also apply the generalized cubic Schrodinger equation [11]. Next observe that if
g = d = a = 0, then the original version of the Ginzburg-Landau equation is trans-
formed into one of the variations of the nonlinear Schrodinger equation. Analogous
to the nonlinear Schrodinger equation, the Ginzburg-Landau equation also occurs in
nonlinear optics [8], as well as in some sections of hydrodynamics [2]. In monograph
[13] the hypothesis is given that when replacing Eq. (1) with the following

ut = gu − (d + ic)u|u|4 + (a + ib)uxx ,

according to its authors, a significant change in the dynamics of solutions is possible.
In particular, the hard oscillations are possible. In other words the subcritical bifurca-
tions are realized. In this paper, we will consider the generalized weakly dissipative
Ginzburg-Landau equation, which includes both variants of the Ginzburg-Landau
equation from the introduction.
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2 Formulation of the Problem

Our aim is to examine the following boundary value problem

ut = u − (1 + ic)u|u|2p − ibuxx , (2)

u(t, x + 2π) = u(t, x), (3)

where u = u(t, x) = u1(t, x) + iu2(t, x), c ∈ R, b > 0, p ∈ N . Note that if p = 2
we obtain one of the versions of the equation in monograph [13]. If p = 1, we then
obtain the initial version of the weakly dissipative Ginzburg-Landau equation.

Next, if we consider the following initial condition for the boundary value problem
(2), (3)

u(0, x) = f (x), (4)

where f (x) ∈ H2, then via the results from [14, 15] that the initial-boundary value
problem (2), (3), (4) is locally well-solvable. Also recall that the inclusion f (x) ∈ H2

resembles the following characteristics:
(1) f (x) has period 2π;
(2) f (x) has generalized derivatives up to the inclusive second order derivatives

f (x), f ′(x), f ′′(x) ∈ L2(−π,π).

This space H2 is the phase space of solutions to the initial-boundary value problem
(2), (3), (4). The nonlinear boundary value problem (2), (3) has a countably family
single-mode solutions in the space variable x and periodic in t

u = un(t, x) = ηn exp(inx + iσnt), (5)

where n ∈ Z (Z is the set of integer), |ηn| = 1,σn = bn2 − c. Indeed, substitution
of the right side of equality (5) into Eq. (2) after elementary simplifications leads to
a complex equation for determining ηn,σn

iσn = 1 − (1 + ic)|ηn|2p + ibn2.

Next notice that along with solution (5), the boundary value problem (2), (3) also
has solutions in the corresponding form

un(t, x, h) = exp(ih) exp(inx + iσnt), h ∈ R.

The solutions un(t, x, h) form a one-dimensional invariant subspace in the phase
space of solutions to the boundary value problem (2), (3). Since h is arbitrary, in
further constructions we can assume that ηn = 1. Replacing an unknown function

u(t, x) = exp(iωnt + inx)v(t, y), (6)
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where ωn = bn2, y = x + 2bnt, n = 0,±1,±2, . . . leads us to the following equa-
tion for v(t, y)

vt = v − (1 + ic)v|v|2p − ibvyy,

which should be considered with the corresponding periodic boundary conditions

v(t, y + 2π) = v(t, y).

Notice that substitution (6) transforms the solutions of boundary value problem (2),
(3) into solutions of the same boundary value problem. Therefore, the study of the
neighborhood of each of the family of solutions (5) can be substituted by a simi-
lar problem for one of them: u0(t, x) = exp(iσ0t), where σ0 = −c. In physics, the
solution u0(t, x) = u0(t) is often called a spatially homogeneous cycle (or “thermo-
dynamic” branch, Andronov-Hopf cycle). The remaining solutions of family (5) for
n �= 0 are periodic traveling waves and periodically depend on t and x .

3 Stability Analysis of Periodic Traveling Waves

As previously noted, the stability analysis of solutions of un(t, x) (stability of one-
dimensional manifolds V1(u)) can be reduced by virtue of the principle of self-
similarity [9] to the analysis of similar questions for a spatially homogeneous periodic
solution of u0(t) = exp(iσ0t), where σ0 = −c. In turn, to analyze the stability of
the solution u0(t) by setting

u(t, x) = u0(t)(1 + w(t, x)). (7)

For the deviation w(t, x) we obtain the following nonlinear boundary value problem

wt = A(p)w − (1 + ic)F(w, p), (8)

w(t, x + 2π) = w(t, x), (9)

where F(w, p) = F2(w, p) + F3(w, p) + F0(w, p) is a two-variable polynomial of
degree 2p + 1. For further constructions, we consider the following terms

F2(w, p) = 1

2
p
(
(p + 1)w2 + 2(p + 1)ww + (p − 1)w2

)
,

F3(w, p) = 1

6
p
(
(p2 − 1)w3 + 3(p2 + p)w2w + 3(p2 − 1)ww2 + (p2 − 3p + 2)w3

)
.

F0(w, p) denotes the terms at zero that have an order of smallness in the variables
w,w higher than the third. This leads us to A(p)w = −p(1 + ic)(w + w) − ibwxx .
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Next, we will reformulate the linear differential operator A in real form. Instead
of the complex-valued function w = w1 + iw2, we form the vector function v =
colon(w1, w2). In this case, we rewrite the linear differential operator A as follows

Av =
( −2p b∂2

−2cp − b∂2 0

)(
w1

w2

)
.

where we apply the short notation ∂2 f = ∂2 f

∂x2
. This leads us to the functions in the

corresponding form

vk(x) = exp(ikx)
( h1k
h2k

)
,

where h1,k, h2,k are real or complex constants, k = 0,±1,±2, . . . In this case, the
problem of determining the eigenvalues and eigenelements of the linear differential
operator A reduces to analyzing the spectrum of the following countable family of
matrices

Ak =
( −2p −bk2

bk2 − 2cp 0

)

and to determining of the roots of the family of characteristic equations

λ2 + 2pλ + qk = 0,

where k = 0,±1,±2, . . . , qk = bk2(bk2 − 2cp), p ∈ Z . For k = 0 we obtain
λ1,0 = 0,λ2,0 = −2p < 0, i.e. for all values of the parameters p and b the lin-
ear differential operator A has a zero eigenvalue corresponding to the eigenfunction
v0(x) = colon(0, 1) or H0(x) = i in the complex record form.

Let now k �= 0. Note that lim|k|→∞ qk = ∞. Consequently, the inequalities qk > 0

for all k �= 0 lead to the following inequality

Reλk, j ≤ −γ0 < 0 (10)

for all values of k and j = 1, 2. Thus we obtain, qk > 0 for all k ∈ Z\{0}, if b > 2pc
(b > 0 by condition). Otherwise, when b < 2cp, the linear differential operator A
has at least one of its eigenvalues in the right half-plane of the complex plane (one of
the numbers λk,1 or λk,2 are positive). Finally, for b = 2pc the linear operator A has
a triple zero eigenvalue, which in the complex notation corresponds to the following
eigenfunctions

H0(x) = i, H1(x) = (−c + i) cos x, H2(x) = (−c + i) sin x .
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The linear differential operator A corresponding to this choice of parameters will
be denoted by A0 : A0w = −p(1 + ic)(w + w) − 2icpwxx . Thus, in addition to
the zero-equilibrium state, the nonlinear boundary value problem (8), (9) has the
following one-parameter family of equilibrium states

w∗(t, x) = w∗(h) = exp(ih) − 1,

which is easy to verify indirectly. Next by substituting w∗(h) into formula (7) leads
to the following equality

u∗(t, x, h) = exp(iσ0t) exp(ih),

which is a spatially homogeneous solution of the boundary value problem (2), (3)
for all h ∈ R.

Notice that the solutions w∗(h) (family) of equilibrium states form a one-
dimensional invariant manifold M1(h), which exists for all values of the parameters
of the boundary value problem (8), (9) and for h = 0 we havew = 0. Therefore, this
one-dimensional invariant manifold is a center manifold in a neighborhood of the
zero equilibrium state [16, 17], at least for small |h|. This remark and theorems on
behavior solutions outside the center manifolds are the base to the assertion.

Theorem 1 (1) Suppose that b > 2cp, then M1(h) be a local attractor for solutions
to the boundary value problem (8), (9). In particular, all equilibria for small |h|,
including the zero-equilibrium state, are stable but not asymptotically stable. (2)
Suppose that b < 2cp. Then all the equilibrium states forming M1(h), including the
zero-equilibrium state are unstable (saddle points).

Remark 1 If b = 2cp, then the invariant manifold M1(h) exists and is formed by
a one-parameter family (w∗(h) = exp(ih) − 1) of equilibrium states. In particular,
the equilibrium state w = 0 for which the critical case of a threefold zero eigenvalue
emerges, belongs toM1(h).Hence, in this case, an additional analysis of the question
of stability of zero state of equilibrium is required. This is due to the fact that the
stability theorem with respect to linear approximation cannot be used even in the
case of ordinary differential equations.

Corollary 1 From the previous constructions, when transitioning from the boundary
value problem (2), (3) to the auxiliary boundary value problem (8), (9), substitution
(7) and from the self-similarity principle, we obtain the following features:

(1) for b > 2pc all traveling waves un(t, x, h) = exp(i(nx + σnt + h)),

where n = ±1,±2, . . . , h ∈ R and spatially homogeneous solutions u0(t, h) =
exp(i(σ0(t + h))) are stable;

(2) for b < 2cp they are all unstable;
(3) for b = 2pc (c = b/(2p)) the critical case stability problem of solutions

un(t, x, h) are realized.

Further in the next section, the boundary value problems (2), (3) and (8), (9)
will be considered in cases where the threefold zero eigenvalue of the operator A is
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close to critical. This means that the boundary value problems studied below will be
considered if

b = 2pc(1 + γε), (11)

where ε ∈ (0, ε0), γ = ±1 and 0. Appropriate values of γ will be chosen at the final
stage of the analysis of the studied boundary value problems.

Before proceeding to the direct analysis of the bifurcation problem, we introduce
some notation and also recall one fairly well-known statement from the theory of lin-
ear boundary value problems for ordinary differential equations, which we formulate
in a form adapted to our case. Consider the differential operator

A(ε)y = A0y + γεA1y, A0y = −p(1 + ic)(y + y) − 2pciy′′,
A1y = −2pciy′′, y(x) = y1(x) + iy2(x).

In this case y(x) is a sufficiently smooth 2π periodic function.

Remark 2 We will consider the following linear nonhomogeneous boundary value
problem

A0y = f (x), y(x + 2π) = y(x), (12)

where the complex-valued function f (x) ∈ L2(−π,π) and has period 2π. The
boundary value problem (12) has a solution if f (x) satisfies the following two con-
ditions:

(a) Re(a0(c + i)) = 0, where a0 = 1

π

π∫

−π

f (x)dx;

(b) Ima1 = Imb1 = 0, where a1 = 1

π

π∫

−π

f (x) cos xdx, b1 = 1

π

π∫

−π

f (x) sin xdx .

The solution of the boundary value problem (12) is unique, for which the following
equalities hold:

(a) Re(y0(c + i)) = 0, where y0 = 1

π

π∫

−π

y(x)dx;

(b) Imy1 = Imz1 = 0, where y1 = 1

π

π∫

−π

y(x) cos xdx, z1 = 1

π

π∫

−π

y(x) sin xdx

The conditions for solvability when using the complex notation are given. They
have a more familiar form. Next, we will consider the corresponding nonhomoge-
neous boundary value problem
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A0y(x) = f (x), y(x + 2π) = y(x),

where y(x) = colon(y1(x), y2(x)), f (x) = colon( f1(x), f2(x)). Now A0 in real
form is expressed as

A0 =
( −2p 2pc∂2

−2pc − 2pc∂2 0

)
.

It has a triple zero eigenvalue, which corresponds to three eigenfunctions

H0(x) =
(0
1

)
, H1(x) =

(−c
1

)
cos x, H2(x) =

(−c
1

)
sin x .

Conjugate operator

A∗
0 =

( −2p −2pc − 2pc∂2

2pc∂2 0

)

is defined on sufficiently smooth 2π periodic vector functions z(x) =
colon(z1(x), z2(x)). Naturally, it has a triple zero eigenvalue corresponding to the
eigenfunctions

E0(x) =
(−c

1

)
, E1(x) =

( 0
1

)
cos x, E2(x) =

(0
1

)
sin x,

The solvability conditions arise in the following form

< f, E j >= 0, j = 0, 1, 2,

where < f (x), q(x) > denotes the scalar product in the corresponding function
space

< f (x), q(x) >=
π∫

−π

( f (x), q(x))dx,

where q(x) = colon(q1(x), q2(x)), and the brackets (∗, ∗∗) inside the integral
denote the inner product in R2 [18, 19].

The statements from Remark 2 are known as solvability conditions.
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4 Turing—Prigogine Bifurcation

We will focus on the analysis of the nonlinear boundary value problem (2), (3) for
the determined values by equality (11). Next, we will transition to a modified version
of the boundary value problem (8), (9) with the following substitution

u(t, x) = u0(t) exp(iϕ)(1 + w(t, x)), (13)

where, as in substitution (7) u0(t) = exp(iσ0t).As a result, now forw(t, x)weobtain
a boundary value problem similar to boundary value problem (8), (9)

wt + iϕt (1 + w) = A(ε)w − (1 + ic)(F2(w) + F3(w) + F0(w)), (14)

w(t, x + 2π) = w(t, x). (15)

In this case, ϕ = ϕ(t, ε) and ϕt (t, 0) = 0, i.e. ϕ(t, 0) = h is an arbitrary real con-
stant.

We indicate an essential feature of the boundary value problem (14), (15). We
denote H2,even as the subspace of the function space H2, containing only even func-
tions f (x). In this case, the specificity of the right side of Eq. (14) is such that
this subspace is invariant for solutions of the boundary value problem (14), (15). If
w(0, x) ∈ H2,even, then its solution is w(t, x) for all t, when it exists, belongs to
H2,even . In this case, the periodic boundary conditions (15) can be replaced by the
homogeneous Neumann boundary conditions

wx (t, 0) = wx (t,π) = 0, (16)

assuming that x ∈ [0,π]. First we restrict ourselves to the analysis of the auxiliary
boundary value problem (14), (16). With this choice of boundary conditions, the
linear differential operator A0 has a double zero eigenvalue, whose corresponding
eigenfunctions are

H0(x) = i, H1(x) = (−c + i) cos x .

Let us recall somewell-knownassertions.Denote by�(r) the ball of radius r centered
at the zero of the phase space H2,even . As is well known (see, for example, [17]),
boundary value problem (14), (16) in a neighborhood of the equilibriumw = 0 has a
smooth two-dimensional invariant manifold M2(ε) ∈ �(r), where r is a sufficiently
small positive constant. All solutions of the auxiliary boundary value problem (14),
(16) from this neighborhood �(r) approach M2(ε) with the exponential rate over
time. In this case, solutions to the boundary value problem (14), (16) that belong to
M2(ε), can be sought in the following form [9, 10, 12]

w(t, x, ε) = ε1/2Q1(x, z) + εQ2(x, z) + ε3/2Q3(x, z) + εQ4(x, z, ε). (17)
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The functions Q j (x, z), j = 1, 2, 3, Q4(x, z, ε) reveal the following properties:
(1) they depend on their variables rather smoothly if |z| < z0, ε ∈ (0, ε0) and, in

addition, Q4(x, z, 0) = 0 (z0, ε0 – some positive constants);
(2) as a function of x they belong to W 2

2 [0,π] (the corresponding Sobolev space
is denoted by W 2

2 [0,π]) and satisfy the boundary conditions (16).
Further, we assume that the functions ϕ = ϕ(s, ε), z = z(s) depend on the slow

time s = εt.They satisfy the corresponding system of two ordinary differential equa-
tions

ϕs = �0(z, ε), zs = �1(z, ε), (18)

where the right-hand sides smoothly depend on z, ε, if |z| < z0 and ε ∈ (0, ε0). The
system of differential equations (18) is called the normal form. It can be replaced
with a shortened version [20]

ϕs = �0(z), zs = �1(z), (19)

where �0(z) = �0(z, 0),�1(z) = �1(z, 0). Such a variant of system (18), i.e. sys-
tem (19) is called “truncated normal form”. It is this kind of normal form that plays
the main role in the analysis of local bifurcations. We substitute the sum (17) into
the auxiliary boundary value problem (14), (16) and note that zt = zsε,ϕt = ϕsε.

As a result of such a substitution, we obtain a sequence of linear boundary value
problems of the terms at equal powers ε1/2. So for ε1/2 we obtain a homogeneous
boundary value problem for Q1 = Q1(x, z) of the following form

A0Q1 = 0, Q1x (0, z) = Q1x (π, z) = 0,

as solutions of which the function can be chosen

Q1(x, z) = zH1(x) = z(−c + i) cos x .

Collecting the terms at ε, ε3/2, we obtain two nonhomogeneous boundary value
problems. Thus, to determine the function Q2 = Q2(x, z), we obtain the following
boundary value problem

A0Q2 = (1 + ic)�2(x)z
2 + i�0(z), (20)

Q2x (0, z) = Q2x (π, z) = 0, (21)

where �2(x)z2 = F2(H1(x, z)) and we procure

�2(x)z
2 = p

2
z2

[
(p + 1)(c − i)2 + 2(p + 1)(c2 + 1) + (p − 1)(c + i)2

]
cos2 x .
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These computations assumed that ϕt = εϕs and therefore ϕt = ε�0(z) + o(ε). The
boundary value problem (20), (21) has a solution from the specified class of functions
if �0(z) = pc(c2 + 1)z2. In this case, the corresponding solution (see solvability
conditions)

Q2(x, z) = v(x)z2 = (v0 + v2 cos 2x)z2,

v0 = −1

4
(1 + ic)((2p + 3)c2 + 1), v2 = (2p + 1)c2 − 1

12
− i

(4p + 5)c2 + 1

24c
.

We obtain the corresponding linear nonhomogeneous boundary value problem by
collecting the terms at ε3/2, at the third step of the implementation of the algorithm:

A0Q3 = �1(z)H1(x) − zγA1H1(x) + i�0(z)zH1(x)+
+(1 + ic)(F3(Q1) + �3(Q1, Q2))z3,

(22)

Q3x (0, z) = Q3x (π, z) = 0. (23)

In the boundary value problem (22), (23) Q3 = Q3(x, z),

F3(Q1) = F3(H1(x)) = p

6
(1 + ic)

(
(p2 − 1)(−c + i)3 + 3p(p + 1)(−c + i)2(−c − i)+

+3(p2 − 1)(−c + i)(c + i)2 + (p − 1)(p − 2)(−c − i)3
)
cos3 x,

�3(Q1, Q2) = p
(
(p + 1)H1(x)v(x)+

+(p + 1)
(
H1(x)v(x) + H1(x)v(x)

)
+ (p − 1)H1(x)v(x)

)
.

It follows from the solvability conditions for the nonhomogeneous boundary value
problem (22), (23) that in this case one should choose

�1(z) = νpz − l pz
3,

where νp = −2γc2 p, l p = p

6
((4p2 + 22p + 4)c4 + (2p − 11)c2 + 1).

Thus, the analysis of the boundary value problem (14), (16) has been reduced to the
study of a system of ordinary differential equations (the “shortened” or “truncated”
normal form). In our case, it is presented in the following form

ϕs = pc(c2 + 1)z2, (24)

zs = νpz − l pz
3. (25)

Lemma 1 Differential equation (25), in addition to the zero equilibrium state
S0(z = 0), has nonzero equilibrium states
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S+ : z+ =
√

νp

l p
, S− : z− = −

√
νp

l p
,

if νp/ l p > 0.
For lp > 0 (νp > 0), the equilibrium states S+, S− are asymptotically stable and

they are unstable if l p < 0 (νp < 0). In turn, S0 is an asymptotically stable equilib-
rium state if νp < 0 or νp = 0, l p > 0.

The proof of Lemma 1 is fairly straight forward. In fact, even in the situationwhere
νp �= 0, one should use the stability theorem in the first (linear) approximation. For
νp = 0 we get the equation zs = −l pz3 and its solution z(s) → 0 for s → ∞, if
l p > 0 and z(s) leaves the neighborhood of zero if l p < 0. In our case l p > 0 for any
positive integer p and all c ∈ R, due to the discriminant of the square trinomial

l p(ξ) = (4p2 + 22p + 4)ξ2 − (2p − 11)ξ + 1

is negative.
We choose γ such that νp > 0 (for example, γ = −1). The equilibrium states

S+, S− of the differential equation (25) correspond to the solutions

ϕ+(s) = (pc(c2 + 1)z2+)s + h+, ϕ−(s) = (pc(c2 + 1)z2−)s + h−

of differential equation (24). Here h+, h− ∈ R and are arbitrary. Transitioning to a
more complete system (18) in this case gives us

ϕ±(s) = (pc(c2 + 1)z2± + O(ε))s.

It follows from the results of [21, 22] and previous constructions that the assertion
is true.

Lemma 2 There exists a constant εp > 0, such that for all ε ∈ (0, εp) there are two
sets of functions

{ϕ+(t, ε), w+(x, ε); ϕ−(t, ε), w−(x, ε)},

satisfying the nonhomogeneous boundary value problem (14), (16). For such func-
tions, the following asymptotic formulas are valid

w±(x, ε) = ε1/2z±(−c + i) cos x + εz2±(v0 + v2 cos 2x) + o(ε),
ϕ±(t, ε) = (pc(c2 + 1)z2± + O(ε))εt.

Also observe that these functions satisfy the boundary value problem (14), (15).
Moreover, due to the translational invariance for the solutions of the boundary value
problem (14), (15), it also has the following pairs of solutions

(w+(x + h+, ε),ϕ+(t, ε)), (w−(x + h−, ε),ϕ−(t, ε)).



Local Bifurcations of Periodic Traveling Waves … 47

Next note that the boundary value problem (14), (16) is invariant under the change

x → π − x, z+ → z−,

then for the boundary value problem (14), (15) there remains only one set

(w+(x + h+, ε),ϕ+(t, ε)),

which includes all the corresponding solutions by choosing an appropriate shift h+.

All these constructions and remarks allow us to formulate the main result, which
refers to the boundary value problem (2), (3).

Theorem 2 There exists εp > 0, such that for all ε ∈ (0, εp) the nonlinear boundary
value problem (2), (3) for bp = 2cp(1 − ε) (γ = −1) has a two-parameter family
of the periodic in t solutions V0(h0, h)

u0(t, x, ε) = exp(iσ0t + iϕ+(t, ε) + ih0)(1 + w+(x + h, ε)),

where ϕ+(t, ε) =
(
pc(c2 + 1)z2+ + O(ε)

)
εt, z+ = √

νp/ l p,

w+(x + h, ε) = ε1/2z+(−c + i) cos(x + h) + εz2+(v0 + v2 cos 2(x + h)) + o(ε),

where h0, h ∈ R and are arbitrary, the constants v0, v2 were specified earlier. The
two-dimensional invariant manifold V0(h0, h) is a local attractor.

The validity of the assertion follows from the principle of self-similarity from Eq.
(6). The following assertion is corollary from Theorem 2.

Corollary 2 Boundary value problem (2), (3) has a countable set of two-dimensional
attracting invariant manifolds Vn(h0, h), generated by the following solutions

un(t, x, ε) = exp(iσnt + inx + iϕ+(t, ε) + ih0)×
×

(
1 + w+(x + 4npc(1 − ε)t + h, ε)

)
,

(26)

where n = ±1,±2, . . . ,σn = −c + 2pc(1 − ε)n2, and the functions ϕ+(t, ε) and
w+(x, ε) were found earlier in the process of implementing the modified Krylov-
Bogolyubov algorithm (see formula (17) and boundary value problems (20), (21)
and (22), (23)) and using the principle of self-similarity.

From the asymptotic formulas and the method of constructing solutions
u0(t, x, ε), un(t, x, ε), it follows that Vn(h0, h) for all n ∈ Z are two-dimensional
invariant tori. Moreover, the torus V0(h0, h) is filled with solutions that are periodic
in t , and the solutions that form Vn(h0, h) as n �= 0 are almost periodic functions of
the variable t with a non-resonant set of eigenfrequencies. We emphasize that the



48 A. Kulikov and D. Kulikov

solutions that form these two-dimensional tori are stable but cannot be asymptoti-
cally stable as in the neighborhood of each of these solutions there is always one
more representative of the corresponding family.

5 Conclusions

The aim of this work was to generalize the results of works [9, 10], where particular
cases of the boundary value problem (2), (3) for p = 1, 2 were considered. In this
work we were able to show the following characteristics. Qualitatively, the results
for all p are fairly close. In all boundary value problems with different values of p
there exists a countable set of traveling waves that are periodic in t . When they lose
stability, two-dimensional invariant tori, which are attracting invariant manifolds,
bifurcate from each of them. For n = 0 the torus V0(h0, h) is filled with periodic
solutions, and the tori Vn(h0, h) are non-resonant in the generic situation. Thus,
the hypothesis that the replacement of the cubic nonlinearity by the fifth-degree
nonlinearity leads to subcritical bifurcations in the vicinity of traveling waves turned
out to be not completely consistent. In any case, it is of paramount interest to consider
the weakly dissipative versions of Ginzburg-Landau equation.

However, for the basic and generalized versions of the weakly dissipative version
of the Ginzburg-Landau equation, the dynamics can be quite complex. The periodic
boundary value problem (2), (3), with an appropriate choice of the coefficients of
the equation, can have a countable set of local attractors, each of which is a two-
dimensional invariant torus. The torus with number n (n = 0,±1, . . .) is formed by
solutions (26) whose norm in the phase space (that is, in H2) tends to infinity if
|n| → ∞. At the same time, the norm of all these solutions in the space L2(−π,π)

is close to
√
2π.
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University with financial support from theMinistry of Science and Higher Education
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Towards Discrete Octonionic Analysis

Rolf Sören Kraußhar, Anastasiia Legatiuk, and Dmitrii Legatiuk

Abstract In recent years, there is a growing interest in the studying octonions, which
are 8-dimensional hypercomplex numbers forming the biggest normed division alge-
bras over the real numbers. In particular, various tools of the classical complex func-
tion theory have been extended to the octonionic setting in recent years. However
not so many results related to a discrete octonionic analysis, which is relevant for
various applications in quantummechanics, have been presented so far. Therefore, in
this paper, we present first ideas towards discrete octonionic analysis. In particular,
we discuss several approaches to a discretisation of octonionic analysis and present
several discrete octonionic Stokes’ formulae.

Keywords Octonions · Discrete Clifford analysis · Discrete operators · Stokes’
formula · Discrete octonions

1 Introduction

As very well-known, complex analysis provides a very powerful toolkit to study
numerous boundary value problems arising in classical harmonic analysis in the
two-dimensional case. Motivated by modern problems of engineering and physics,
there has been a rapidly growing interest in developing higher-dimensional versions
of complex function theory to extend the classical toolkit for a successful treat-
ment of higher-dimensional problems. While engineering mainly focusses on three-
dimensional settings,modern physics, for example particle physics, also require tools
in the context of dimensions n > 3. Einstein’s relativity theory already requires four
dimensions, including time. Also the standard model of particle physics of electro-
weak action requires four dimensions. An enormous challenge in modern physics
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however, is to understand how gravity can be incorporated on the level of particle
physics. Studying of this problems leads to the consideration of even higher dimen-
sional settings, such as string and super-string theory, where the latter requires 12
dimensions. More recent models of a generalised standard model give stronger indi-
cations to use an eight dimensional model, see for example works [4, 15, 22] which
shall provide one motivation for this paper from the physical point of view.

From the mathematical point of view, there are several possibilities to extend
complex numbers and complex analysis to higher dimensions. One approach is to
work with associative Clifford algebras leading to several function theories that
consider functions defined on open subsets of an arbitrary dimensional vector space
IRn+1 that take values in a 2n-dimensional Clifford algebra IRn . On this way, a higher-

dimensional version of the Cauchy-Riemann operator D :=
n∑

i=0
∂xi ei factorising the

n + 1-dimensional Laplacian in the form of an elliptic first order differential operator
is considered. Its function theory iswidely knownasClifford analysis, see for instance
[2], and offers many powerful generalisations of complex function theory, such as
a Cauchy integral formula, Taylor and Laurent series expansions, a residue theory
and a toolkit to study operators of Calderon-Zygmund type on strongly Lipschitz
surfaces. A series of textbooks, see for example [17], presents a toolkit of related
integral operators that can be used to tackle associated boundary value problems.
Recently a lot of progress has been made in also elaborating discrete versions of
Clifford analysis which also opened the door to apply these function theoretic tool
numerically in bounded and unbounded domains, see [3, 5–8, 11–13, 16] among
others.

However, besides the use of associative Clifford algebras, there are also other
possibilities of generalising complex function theory to higher dimensions. If the
Cayley-Dickson duplication process to the complex numbers is applied, then we
first arrive at the four-dimensional Hamiltonian quaternions, which, however, still is
a Clifford algebra; and after applying it once more, we obtain a new algebra, namely
the octonions, see [1]. Octonions are not any more associative – so, they are neither a
Clifford algebra nor representable with matrices. However, they still form a normed
non-associative division algebra having no zero-divisors. From the recent viewpoint
of generalised particle physics, see again for example [4, 15, 22], octonions seem to
offer a more adequate model for a unified description of particle physics including
gravity, see also [18]. However, there is still a lack of results on the level of octonionic
function theory.

According to our knowledge, the first contribution to introduce an octonionic gen-
eralisation of complex function theorywas provided byP.Dentoni andM. Sce in 1973
in [10], where a Cauchy integral formula for null-solutions to the octonionic Cauchy-
Riemann operator has been presented. Later, a lot of fundamental contributions were
provided byK. Nono [23] in 1988, and the school of Xingmin-Li, Li-Zhong Peng and
their co-authors starting with 2000 up to now, see [25–27, 29]. In these papers, for
instance, generalisations of a Cauchy integral formula together with Plemelj projec-
tion formulas and with some basic applications to Calderon-Zygmund type operators
[30] including a generalisation of the three-line theorem from J. Peetre [28], as well
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as Taylor and Laurent series expansions have intensively been studied [26]. More
recently, J. Kauhanen andH.Orelma started to lookmore intensively at some elemen-
tary octonionic boundary value problems and analysed more precisely the algebraic
structure of the set of octonionic null-solutions of Cauchy-Riemann operators, see
for example [19–21]. As also mentioned by J. Kauhanen and H. Orelma, in contrast
to Clifford analysis, octonionic monogenic functions do not form IO-modules but
only IR-modules. This fact has a strong influence on the study of generalised Hilbert
spaces in the octonionic setting, which is a topic of very recent research, see for
example [9, 14, 24]. For solving related boundary values in practice, it is necessary
to apply discretised versions of the related octonionic operators.

Although a discretisation of octonionic analysis is important for practical use of
function theoretic tools, to the best of our knowledge, no results related to a discrete
octonionic analysis havebeenpresented so far. Therefore, the aimof this short paper is
presenting some first results in this direction. In particular, we introduce discretised
versions of the octonionic Cauchy-Riemann operators and establish a generalised
version of the Stokes’ formula. As it will be clearly seen, already at this level, we
encounter substantial differences to the classical discrete Clifford analysis: because
of the non-associativity of octonionic multiplication, discretisation of octonionic
analysis needs to be discussed more carefully. Additionally, we will also indicate
the difference to the continuous case, which appear due to working with forward
and backward Cauchy-Riemann operators. Thus, this paper serves as a first step for
developing discrete octonionic analysis, and results presented here will be further
extended in future work.

2 Preliminaries and Notations

2.1 Continuous Octonionic Analysis

Before introducing discrete constructions, let us briefly recall some basic information
about octonions IOand continuous octonionic analysis. Let us consider 8-dimensional
Euclidean space IR8 with the basis unit vectors ek , k = 0, 1, . . . , 7 and points x =
(x0, x1, . . . , x7). Then in real coordinates, octonions are expressed in the form

x = x0e0 + x1e1 + x2e2 + x3e3 + x4e4 + x5e5 + x6e6 + x7e7,

where e4 = e1e2, e5 = e1e3, e6 = e2e3 and e7 = e4e3 = (e1e2)e3. Additionally we
have e2i = −1 and e0ei = ei e0 for all i = 1, . . . , 7, and ei e j = −e j ei for all mutual
distinct i, j ∈ {1, . . . , 7}. Table 1 shows multiplication rules for real octonions. As
it can be clearly seen from this table, multiplication of octonions is not associative,
precisely we have (ei e j )ek = −ei (e j ek).

There are several possibilities to extend the classical function theory to octonions.
One way consists of the Riemann-approach, following the line of investigation of P.
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Table 1 Multiplication table for real octonions IO

e0 e1 e2 e3 e4 e5 e6 e7

e0 1 e1 e2 e3 e4 e5 e6 e7
e1 e1 −1 e4 e5 −e2 −e3 −e7 e6
e2 e2 −e4 −1 e6 e1 e7 −e3 −e5
e3 e3 −e5 −e6 −1 −e7 e1 e2 e4
e4 e4 e2 −e1 e7 −1 −e6 e5 −e3
e5 e5 e3 −e7 −e1 e6 −1 −e4 e2
e6 e6 e7 e3 −e2 −e5 e4 −1 −e1
e7 e7 −e6 e5 −e4 e3 −e2 e1 −1

Dentoni and M. Sce [10], K. Nono [23], the school of Xingmin-Li and Zhong Peng,
see for instance [25, 26] and others. In their spirit one may introduce.

Definition 1 (Octonionic monogenicity) Let U ⊆ IO be open. A function f : U →
IO is called left (right) octonionic monogenic ifD f = 0 (esp. fD = 0). Here,D :=
∂

∂x0
+

7∑

i=1
ei

∂
∂xi

is the octonionic first order Cauchy-Riemann operator. If f satisfies

D f = 0 (resp. fD = 0), then we call f left (right) octonionic anti-monogenic.

In contrast to Clifford analysis, where one considers null-solutions to the Cauchy-
Riemann operator defined on the paravector space IR ⊕ IR7 with values in the Clif-
ford algebra C�7, which is a real vector spaces isomorphic to IR128, the octonionic
approach really considers maps from IR8 into IR8. Another essential difference is the
fact that left (right) octonionic monogenic functions do neither form a right nor a
left IO-module. Following for instance J. Kauhanen and H. Orelma in [21], one can
take as a very simple counterexample: the function f (x) := x1 − x2e4. Then we
have D[ f (x)] = e1 − e2e4 = e1 − e1 = 0. However, g(x) := ( f (x)) · e3 = (x1 −
x2e4)e3 = x1e3 − x2e7 satisfies D[g(x)] = e1e3 − e2e7 = e5 − (−e5) = 2e5 �= 0.

As alreadymentioned in the classical paper [25], the lack of associativity prevents
us from getting a direct analogue of Stokes’ formula in the octonionic setting. Even
if both D f = 0 and gD = 0, we do not have in general

∫

∂G

g(x) (dσ(x) f (x)) = 0 nor
∫

∂G

(g(x)dσ(x)) f (x) = 0.

Instead, quoting from [30], we obtain the following relation

∫

∂G

g(x) (dσ(x) f (x)) =
∫

G

(

g(x)(D f (x)) + (g(x)D) f (x) −
7∑

j=0

[e j ,Dg j (x), f (x)]
)

dV,

(1)
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where [a, b, c] := (ab)c − a(bc) is the so-called associator (which would vanish in
the cases of associativity). Although the associator appears in most of octonionic
constructions, it is nonetheless possible to introduce specific structures, where the
associatorwould vanish. For example, it has been pointed out in [25], that considering
the two functions being octonionicmonogenic and Stein-Weiss conjugate harmonics,
i.e. ∂g j

∂xi
= ∂gi

∂x j
for all 0 ≤ i < j ≤ 7, the associator will vanish.

Moreover, it is still possible to obtain a generalisation of the Cauchy’s integral
formula to octonionic setting [23, 27]:

Proposition 1 (Cauchy’s integral formula) LetU ⊆ IO be open and G ⊆ U be an 8-
D compact oriented manifold with a strongly Lipschitz boundary ∂G. If f : U → IO
is left octonionic monogenic, then for all x ∈ G

f (x) = 3

π4

∫

∂G

q0(y − x)
(
dσ(y) f (y)

)
.

However, we have to emphasise carefully on the fact that putting the parenthesis
differently, leads to the different formula

3

π4

∫

∂G

(
q0(y − x)dσ(y)

)
f (y) = f (x) +

∫

G

7∑

i=0

[
q0(y − x),D fi (y), ei

]
dy0 · · · dy7,

involving the associator again.

2.2 Discretisation of Octonionic Analysis

Let us now introduce a discrete setting for octonions. Consider the unbounded uni-
form lattice hZZ8 with the lattice constant h > 0, which is defined in the classical
way as follows

hZZ8 := {
x ∈ IR8 | x = (m1h,m2h, . . . ,m8h),m j ∈ ZZ, j = 1, 2, . . . , 8

}
.

Next, we define the classical forward and backward differences ∂
± j
h as

∂
+ j
h f (mh) := h−1( f (mh + e j h) − f (mh)),

∂
− j
h f (mh) := h−1( f (mh) − f (mh − e j h)),

(2)

for discrete functions f (mh) with mh ∈ hZZn . In the sequel, we consider functions
defined on �h ⊂ hZZ8 and taking values in octonions IO. As usual, all important
properties such as, l p-summability (1 ≤ p < ∞), are defined component-wisely.

Next step is to introduce discretisation of the Cauchy-Riemann operators in octo-
nions. Several approaches to the discretisation of the Cauchy-Riemann (and Dirac)
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operators have been presented in recent years. In particular, the discrete Clifford anal-
ysis is generally based on the idea of splitting each basis element ek, k = 0, 1, . . . , 7,
into two basis elements e+

k and e−
k , k = 0, 1, . . . , 7, i.e., ek = e+

k + e−
k , correspond-

ing to the forward and backward directions, respectively, see [3, 13] for the details.
A typical choice for such a basis is one satisfying the relations:

⎧
⎨

⎩

e−
j e

−
k + e−

k e
−
j = 0,

e+
j e

+
k + e+

k e
+
j = 0,

e+
j e

−
k + e−

k e
+
j = −δ jk,

where δ jk is the Kronecker delta. This approach has several advantages and, in partic-
ular, it leads to a canonical factorisation of a star-Laplacian Δh by a pair of discrete
Dirac operators. Unfortunately, this approach is not so well suited for working in
the octonionic setting, because it is not so easy to respect the non-associativity of
octonionic multiplication.

Another way of working with discrete Cauchy-Riemann and Dirac operators is to
represent these operators by help of matrices containing finite difference approxima-
tions of partial derivatives, see for example [5, 11, 16] and references therein. Similar
to the first approach, using matrix-based discretisation for discretising the octonionic
analysis will be difficult because of non-associativity, which is not respected by the
classical matrix multiplication.

For proposing a discretisation of octonionic analysis respecting the
non-associativity of octonionic multiplication, we will work with the approach pre-
sented in [12] and consisting in a direct discretisation of the continuous Dirac opera-
tors by forward and backward finite difference operators. Thus, by help of the finite
difference operators (2), we introduce discrete forward Cauchy-Riemann operator
D+ : l p(�h, IO) → l p(�h, IO) and discrete backward Cauchy-Riemann operators
D− : l p(�h, IO) → l p(�h, IO) as follows

D+
h :=

7∑

j=0

e j∂
+ j
h , D−

h :=
7∑

j=0

e j∂
− j
h . (3)

A small disadvantage of this approach is related to the factorisation of the star-
Laplacian, which is not just a composition of the Cauchy-Riemann operator and its
conjugated operator, but requires a more complicated combination. It is easy to show
by direct computations, that the star-Laplacian Δh can be represented as follows:

Δh = 1

2

(
D+

h D
−
h + D−

h D
+
h

)
with Δh :=

7∑

j=0

∂
+ j
h ∂

− j
h ,
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where D−
h and D+

h represent conjugated operators:

D−
h = ∂−0

h −
7∑

j=1

e j∂
− j
h , D+

h = ∂+0
h −

7∑

j=1

e j∂
+ j
h .

In the rest of the paper, we will work with the discrete Cauchy-Riemann opera-
tors (3), because this discretisation clearly respects the non-associativity of octonionic
multiplication.

3 The Discrete Stokes’ Formula in Octonions

In this section, we introduce the discrete Stokes’ formula in octonionic setting. Addi-
tionally, we will underline the difference between octonionic constructions and the
classical discrete Clifford analysis. Moreover, for keeping notations shorter, we will
omit the lattice constant h in the argument of discrete functions for the proof of
discrete Stokes’ formula, i.e. notations f (m) or f (m1,m2,m3) will be used instead
of f (mh) or f (m1h,m2h,m3h), respectively.

The following theorem presents the discrete octonionic Stokes’ formula for the
whole space:

Theorem 1 The discrete Stokes’ formula for the whole space with the lattice hZZ8

is given by

∑

m∈ZZ8

{[
g(mh)D+

h

]
f (mh) − g(mh)

[
D−

h f (mh)
]}

h8 = 0 (4)

for all discrete functions f and g such that the series converge.

Proof To underline clearly the effect of non-associativity of the octonionic multipli-
cation, the proof will be presented with all explicit calculations. We start the proof
by working with the first term on the left-hand side in (4):

∑

m∈ZZ8

[
g(m)D+

h

]
f (m)h8 =

∑

m∈ZZ8

7∑

j=0

[
∂+ jg(m)e j

]
f (m)h8

=
∑

m∈ZZ8

7∑

j=0

7∑

i=0

7∑

k=0

[
∂+ jgi (m)ei e j

]
fk(m)ekh

8.

Next, using the relation (ei e j )ek = −ei (e j ek) and the definition of D+
h leads to the

following expression
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∑

m∈ZZ8

7∑

j=0

7∑

i=0

7∑

k=0

[−∂+ jgi fk(m)ei (e j ek)
]
h8

=
∑

m∈ZZ8

7∑

j=0

7∑

i=0

7∑

k=0

[− (
gi (m + e j ) − gi (m)

)
fk(m)ei (e j ek)

]
h8

=
∑

m∈ZZ8

7∑

j=0

7∑

i=0

7∑

k=0

[−gi (m + e j )ei fk(m) + gi (m)ei fk(m)
]
(e j ek)h

8.

Performing change of variables in the last expression, we get

∑

m∈ZZ8

7∑

j=0

7∑

i=0

7∑

k=0

[−gi (m)ei fk(m − e j ) + gi (m)ei fk(m)
]
(e j ek)h

8

= ∑

m∈ZZ8

7∑

j=0

7∑

i=0

7∑

k=0

[
gi (m)ei

(
fk(m − e j ) + fk(m)

)]
(e j ek)h8

= ∑

m∈ZZ8

7∑

j=0

7∑

i=0

7∑

k=0
gi (m)ei∂− j fk(e j ek)h8

= ∑

m∈ZZ8

7∑

j=0

7∑

i=0

7∑

k=0
gi (m)ei

(
∂− j e j fkek

)
h8 = ∑

m∈ZZ8

g(m)
[
D−

h f (m)
]
h8.

Thus, the statement of the theorem is proved.

As we see from this theorem, the discrete Stokes’ formula does not contain the
associator in contrast to the continuous case (1). This is an interesting result, and
a possible reason for vanishing of the associator could be the fact, that the discrete
octonionic Stokes’ formula contains two different differential operators: forward and
backward Cauchy-Riemann operators, while in the continuous case both operators
are the same. Additionally, it is worth to underline that the non-associativity affect
the sign of the second summand in (4), which is not the case in the discrete Clifford
analysis [6, 8].

Next, we consider the case of the upper half-lattice, defined as follows

hZZ8
+ := {

(hm, hm7) : m ∈ ZZ7,m7 ∈ ZZ+
}
.

The discrete octonionic Stokes’ formula for the upper half-lattice is provided by the
following theorem:
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Theorem 2 The discrete Stokes’ formula for the upper half-lattice hZZ8+ is given by

∑

m∈ZZ8+

{[
g(mh)D+

h

]
f (mh) − g(mh)

[
D−

h f (mh)
]}

h8

=
∑

m∈ZZ7
e7

(
g(m, 1) fk(m, 0)

)
h8

(5)

for all discrete functions f and g such that the series converge.

Proof The proof of this theorem is similar to the proof of the discrete Stokes’ formula
for the whole space. Nonetheless, it is necessary to address the fact, that the discrete
Cauchy-Riemann operators can be applied only for points with m7 ≥ 1. We start the
proof by working with the first term on the left-hand side in (5):

∑

m∈ZZ8+

[
g(m)D+

h

]
f (m)h8 =

∑

m∈ZZ8+

6∑

j=0

[
∂+ jg(m)e j

]
f (m)h8

+
∑

m∈ZZ8+

[
∂+7g(m)e7

]
f (m)h8 =

∑

m∈ZZ8+

6∑

j=0

7∑

i=0

7∑

k=0

[
∂+ jgi (m)ei e j

]
fk(m)ekh

8

+
∑

m∈ZZ7

{
∑

m7≥1

7∑

i=0

7∑

k=0

[(gi (m + e7) fk(m) − gi (m) fk(m)) e7ei ] ekh
8

}

.

Next, we will work with the second sum. By using the relation (ei e j )ek = −ei (e j ek)
and performing change of variables, we get the following expression

∑

m∈ZZ7

{
∑

m7≥1

7∑

i=0

7∑

k=0

[(−gi (m + e7) fk(m) + gi (m) fk(m)) e7] ei ekh
8

}

=
∑

m∈ZZ7

{
∑

m7≥1

7∑

i=0

7∑

k=0

[(gi (m) fk(m) − gi (m) fk(m − e7)) e7] ei ekh
8

}

=
∑

m∈ZZ7

{
∑

m7≥1

7∑

i=0

7∑

k=0

gi (m) fk(m)e7 (ei ek) h
8

−
∑

m7≥2

7∑

i=0

7∑

k=0

gi (m) fk(m − e7)e7 (ei ek) h
8

}
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=
∑

m∈ZZ7

{
∑

m7≥1

7∑

i=0

7∑

k=0

gi (m) fk(m)e7 (ei ek) h
8

−
∑

m7≥1

7∑

i=0

7∑

k=0

gi (m) fk(m − e7)e7 (ei ek) h
8

+
7∑

i=0

7∑

k=0

gi (m, 1) fk(m, 0)e7 (ei ek) h
8

}

.

Combining this result with the first sum of the original expression, we finally get the
following equality

∑

m∈ZZ8+

[
g(m)D+

h

]
f (m)h8 =

∑

m∈ZZ8+

g(m)
[
D−

h f (m)
]
h8

+
∑

m∈ZZ7

e7
(
g(m, 1) fk(m, 0)

)
h8,

which proofs the assertion of the theorem.

Similarly, a discrete Stokes’ formula can be established for the lower half-lattice,
defined as follows

hZZ8
− := {

(hm, hm7) : m ∈ ZZ7,m7 ∈ ZZ−
}
.

We have then the following theorem:

Theorem 3 The discrete Stokes’ formula for the lower half-lattice hZZ8− is given by

∑

m∈ZZ8−

{[
g(mh)D+

h

]
f (mh) − g(mh)

[
D−

h f (mh)
]}

h8

= −
∑

m∈ZZ7
e7

(
g(m, 0) fk(m,−1)

)
h8

(6)

for all discrete functions f and g such that the series converge.

Proof The proof of this theorem is analogue to the previous proof, and, therefore,
we will present a shorter version of the proof. Hence, we have:
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∑

m∈ZZ8−

[
g(m)D+

h

]
f (m)h8 =

∑

m∈ZZ8−

6∑

j=0

7∑

i=0

7∑

k=0

[
∂+ jgi (m)ei e j

]
fk(m)ekh

8

+
∑

m∈ZZ7

{
∑

m7≤−1

7∑

i=0

7∑

k=0

[(gi (m + e7) fk(m) − gi (m) fk(m)) e7ei ] ekh
8

}

.

Working with the second sum, we get

∑

m∈ZZ7

{
∑

m7≤−1

7∑

i=0

7∑

k=0

[(gi (m + e7) fk(m) − gi (m) fk(m)) e7ei ] ekh
8

}

=
∑

m∈ZZ7

{
∑

m7≤−1

7∑

i=0

7∑

k=0

gi (m) fk(m)e7 (ei ek) h
8

−
∑

m7≤0

7∑

i=0

7∑

k=0

gi (m) fk(m − e7)e7 (ei ek) h
8

}

=
∑

m∈ZZ7

{
∑

m7≤−1

7∑

i=0

7∑

k=0

gi (m) fk(m)e7 (ei ek) h
8

−
∑

m7≤−1

7∑

i=0

7∑

k=0

gi (m) fk(m − e7)e7 (ei ek) h
8

−
7∑

i=0

7∑

k=0

gi (m, 0) fk(m,−1)e7 (ei ek) h
8

}

.

Combining this result with the first sum of the original expression, we obtain the
assertion of the theorem.

4 Summary

While a lot of results in the continuous octonionic analysis have been presented in
recent years, construction of a discrete counterpart of the continuous theory is still
missing. Therefore, in this short paper, we discussed first ideas towards developing
a discrete octonionic analysis. In particular, we discuss several approaches to a dis-
cretisation of octonionic analysis, and underlined, that because of non-associativity
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of octonions not all approaches common in the discrete Clifford analysis are appli-
cable in the octonionic setting. After that, we presented several discrete octonionic
Stokes’ formulae: for the whole spaces, upper-half lattice, and lower-half lattice. The
results presented in this paper will be further extended in future work.
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Axiomatic Method for Constructing
a Generalized Solution of a Mixed
Problem for a Telegraph Equation

Igor S. Lomov

Abstract The paper presents an algorithm for constructing a rapidly converging
series representing a generalized solution of a mixed problem for a telegraphic equa-
tion considered in a half-band. Reviewed the case of an essentially non-self-adjoint
operator in a spatial variable. The system of root functions of a differential operator,
in addition to its eigenfunctions, contains an infinite number of associated functions.
The constructed series can be considered as a generalized d’Alembert formula. A new
axiomatic A.P. Khromov’s method is applied to construct the solution. The proposed
approach superseds the traditional method of separating variables for solving mixed
problems, which usually results in to slowly converging series. For the problem under
consideration, in general, the method of separating variables is not applicable, since
the coefficient of the equation depends both on the spatial variable and on time.

Keywords Telegraph equation · Mixed problem · Generalized d’Alembert
formula · Fourier method · Non-self-adjoint operator · Divergent series

1 Introduction

A number of mathematical models used in problems of sound theory (elasticity),
light, electricity and magnetism, contain the so-called telegraph equation utt (x, t) =
uxx (x, t) − qu(x, t). Amixed problem is posed. Consider the casewhen the potential
q can also depend on time, q = q(x, t). To construct a solution to a generalized
mixed problem, we use the recently developed axiomatic method of A.P. Khromov
[1]. Previously, he developed a sequential method for constructing a generalized
solution to the problem under consideration [2, 3]. The advantage of these methods
over the methods used earlier consist in the fact that minimum requirements are
imposed on the initial data of the problem, the justification of the result attracts a
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minimum number of additional statements, and the solution is given in the form of
a rapidly converging functional series.

Let’s consider four problems sequentially, for which we will find generalized
solutions.

2 A Mixed Problem for a Homogeneous Wave Equation
with a Nonzero Initial Deviation

Consider the following problem

utt (x, t) = uxx (x, t), (x, t) ∈ (0, 1) × (0,+∞), (1)

u(0, t) = 0, ux (0, t) = ux (1, t), t ≥ 0, (2)

u(x, 0) = ϕ(x), ut (x, 0) = 0, x ∈ [0, 1], (3)

ϕ(x)—complex-valued, integrable on (0, 1) functions, ϕ(x) ∈ L(0, 1). We use the
notation derivatives ux = ∂u

∂x , etc.
The peculiarity of the problem (1)–(3) is due to the fact that the corresponding

Sturm–Liouville operator L0 : ly = −y′′(x), x ∈ (0, 1), y(0) = 0, y′(0) = y′(1),
is essentially non-self-adjoint (according to Ilyin)—the system of root functions
of this operator, in addition to its eigenfunctions, contains an infinite number of
associated functions (the Samarsky-Ionkin problem). Let’s write out this system.

Denote by �k the square roots of the eigenvalues operator, {uk(x)}—system
of eigen and associated operator functions, moreover, u2k−1(x)—eigenfunctions,
u2k(x)—associated functions, k ≥ 1, {vk(x)}—biorthogonally conjugate system of

functions, (uk, vn) = δkn =
{
1, k = n,
0, k �= n

, where (uk, vn) = ∫ 1
0 uk(x)vn(x)dx .

Then �0 = 0, �2k−1 = �2k = 2πk, k ≥ 1, u0(x) = x, v0(x) = 2, u2k−1(x) =
sin 2πkx, v2k−1(x) = 4(1 − x) sin 2πkx , u2k(x) = − x

4πk cos 2πkx, v2k(x) =
−16πk cos 2πkx . So the chosen system {uk(x)} of root functions of the operator
forms unconditional basis in the spaceL2(0, 1). System {vk(x)} also forms an uncon-
ditional basis in this space.

The formal solution of the problem (1)–(3) by the Fourier method is

u(x, t) = 1
2

{
2(x + t)(1,ϕ)+

+4
∞∑

n=1

[
(ϕ(τ ), (1 − τ ) sin 2πnτ ) sin 2πn(x + t)+

+(ϕ(τ ), cos 2πnτ )(x + t) cos 2πn(x + t)
]+

+2(x − t)(1,ϕ) + 4
∞∑

n=1

[
(ϕ(τ ), (1 − τ ) sin 2πnτ ) sin 2πn(x − t)+

+(ϕ(τ ), cos 2πnτ )(x − t) cos 2πn(x − t)
]}
.

(4)
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Definition 1 By the classical solution (almost everywhere solution) of the problem
(1)–(3) wemean the function u(x, t) continuous and continuously differentiable with
respect to x and t in half-strip [0, 1] × [0,∞), and the functions ux (x, t), ut (x, t)
are absolutely continuous in x ∈ [0, 1] and t ∈ [0,∞), respectively, satisfying the
conditions (2), (3) and almost everywhere in x and t the Eq. (1).

Let us present a uniqueness theorem for the classical solution of the problem
(1)–(3). Fix an arbitrary number T > 0, let QT—rectangle, QT = [0, 1] × [0, T ],
denoted by Q is the class of functions integrable on QT , f ∈ Q ⇔ f (x, t) ∈ L(QT ).

Theorem 1 If u(x, t) is a classical solution to the problem (1)–(3) with condition
utt (x, t) ∈ Q (∀T > 0), then it is unique and can be found by the formula (4), in
which the series on the right for any fixed t > 0 converge absolutely and uniformly
in x ∈ [0, 1].
The proof of the theorem follows the scheme described in [4] and does not depends
on specific boundary conditions.

Note that the series (4) makes sense for any function ϕ(x) ∈ L(0, 1), although
now it can also be divergent. Nevertheless, we will assume that it is a formal solution
of the problem (1)–(3), but now understood purely formally. This problem (1)–(3)
will be called the generalized mixed problem. Finding a solution to a generalized
mixed problem means finding the “sum” of, generally speaking, a divergent series.
“Sum” in quotes means that this is the sum of a divergent (generally) series (see [5,
p. 101], [6, p. 6, 19]).

Finding a solution to the generalized mixed problem (1)–(3) means finding the
“sum” of the divergent series (4).

In addition to the three axioms about divergent series [6, p. 19], following
A.P. Khromov, we will also use the following integration rule for a divergent series:

∫ ∑
=

∑ ∫
, (5)

where
∫
is a definite integral.

Let’s go back to the row (4). Before transforming it, let us write the formal
expansion of the function ϕ(x) into a series in terms of the root system functions of
the operator L0:

ϕ(x) ∼ 2x(1,ϕ) + 4
∞∑

n=1
[(ϕ(τ ), (1 − τ ) sin 2πnτ ) sin 2πnx+

+(ϕ(τ ), cos 2πnτ )x cos 2πnx].
(6)

The series (4) can be represented as

u(x, t) =
∑

+ +
∑

−, (7)
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where
∑

± =
∞∑

n=1
. . . (x ± t). Comparing (6), (7), we conclude that to find the “sum”

of the series (4), we need to find the “sum” of the series (6) .
Let the “sum” of the series (6) for x ∈ [0, 1] be some function g(x) ∈ L(0, 1).

Then, in accordance with rule (5), we have

x∫
0

g(η)dη = 2(1,ϕ)
x∫
0

ηdη+

+4
∞∑

n=1

[
(ϕ(τ ), (1 − τ ) sin 2πnτ )

x∫
0
sin 2πnηdη+

+(ϕ(τ ), cos 2πnτ )
x∫
0

η cos 2πnηdη
]
, x ∈ [0, 1].

(8)

The following generalization to the considered system {uk(x)} of Lebesgue’s
theorem on term-by-term integration of the trigonometric Fourier series takes place.

Theorem 2 Let a function ϕ(x) ∈ L(0, 1) be given that has the series (6) as its
biorthogonal expansion in the system {uk(x)}. If the segment is [A, B] ⊆ [0, 1], then

B∫
A

ϕ(x)dx =
B∫
A
2x(1,ϕ)dx +

∞∑
n=1

B∫
A
[4(ϕ(τ ), (1 − τ ) sin 2πnτ ) sin 2πnx+

+4(ϕ(τ ), cos 2πnτ )x cos 2πnx]dx .

Those, the biorthogonal series (6) can be integrated term-by-term, the resulting

series converges and its sum is equal to
B∫
A

ϕ(x)dx . In this case, the series (6) itself

may not converge.
The proof of Theorem 2 is carried out in Sect. 5.
According to Theorem 2, the sum of the series (8), the usual sum, is the function

x∫
0

ϕ(η)dη. But then,
x∫
0

g(η)dη =
x∫
0

ϕ(η)dη, i.e. g(x) = ϕ(x) is true almost every-

where on the interval [0, 1], we have found the “sum” of the series (6), which can
also be divergent.

The formal series (6) is defined for all values of x ∈ R. Denote by ϕ̃(x) the “sum”
of the series (6) for all values of x ∈ R. By virtue of (6) and (7) we conclude that the
“sum” u(x, t) of the series (4) is a function

u(x, t) = 1

2
[ϕ̃(x + t) + ϕ̃(x − t)]. (9)

Proven

Theorem 3 The solution of the generalized mixed problem (1)–(3) is the function
u(x, t) from the class Q defined by the formula (9).
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Let us find an algorithm for extending the function ϕ̃(x) from the segment [0, 1],
where ϕ̃(x) = ϕ(x), to the whole number line. Assuming that ϕ̃(x) is a smooth
function, we substitute the relation (9) into the boundary conditions (2). We obtain
two equalities: ϕ̃(x) = −ϕ̃(−x), x ∈ R, i.e., the function ϕ̃(x)—odd, and

ϕ̃′(1 + x) = 2ϕ̃′(x) − ϕ̃′(1 − x), x ∈ R, (10)

where it is taken into account that ϕ̃′(x)—is an even function. We integrate the
equality (10) over the interval [0, x], and we get

ϕ̃(1 + x) = 2ϕ̃(x) + ϕ̃(1 − x), x > 0. (11)

The relation (11) allows us to extend the function ϕ̃(x) = ϕ(x), x ∈ [0, 1], from the
segment [0, 1] to the semiaxis x > 0, then we continue the function to the semiaxis
x < 0 as an odd function.

3 Mixed Problem for an Inhomogeneous Wave Equation
with Zero Initial Deviation

Consider the following generalized mixed problem

utt (x, t) = uxx (x, t) + f (x, t), (x, t) ∈ (0, 1) × (0,+∞), (12)

u(0, t) = 0, ux (0, t) = ux (1, t), t ≥ 0, (13)

u(x, 0) = ut (x, 0) = 0, x ∈ [0, 1], (14)

where f (x, t) is a function of class Q.
The formal solution of the problem (12)–(14) by the Fourier method is

u(x, t) = 1
2

t∫
0

dτ
t−τ∫
0

{
2(x + η)(1, f (ξ, τ ))+

+4
∞∑

n=1

[
( f (ξ, τ ), (1 − ξ) sin 2πnξ) sin 2πn(x + η)+

+( f (ξ, τ ), cos 2πnξ)(x + η) cos 2πn(x + η)
]+

+2(x − η)(1, f (ξ, τ )) + 4
∞∑

n=1

[
( f (ξ, τ ), (1 − ξ) sin 2πnξ) sin 2πn(x − η)+

+( f (ξ, τ ), cos 2πnξ)(x − η) cos 2πn(x − η)
]}

dη,

we used the rule (5) and took the integrals out of the signs of the sums. Let’s combine
terms with arguments (x + η) and (x − η), we get
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u(x, t) = 1
2

t∫
0

dτ
x+t−τ∫

x−t+τ

{
2η(1, f (ξ, τ ))+

+4
∞∑

n=1

[
( f (ξ, τ ), (1 − ξ) sin 2πnξ) sin 2πnη+

+( f (ξ, τ ), cos 2πnξ)η cos 2πnη
]}

dη = 1
2

t∫
0

dτ
x+t−τ∫

x−t+τ

f̃ (η, τ )dη,

(15)

the last equality is explained by the fact that the bracketed expression {·} in (15), as it
follows from the formula (6), has the “sum” f̃ (η, τ ), where f̃ (η, τ ) is the extension
of the function f (η, τ ) along τ to the entire real axis using the same formulas, which
is for the function ϕ(x).

Thus, fair

Theorem 4 The solution u(x, t) of the generalized mixed problem (12)–(14) is a
function of class Q defined by the formula

u(x, t) = 1

2

t∫
0

dτ

x+t−τ∫
x−t+τ

f̃ (η, τ )dη. (16)

From the formula (16), using the continuation formulas, we obtain the estimate

‖u(x, t)‖L(QT ) ≤ cT ‖ f (x, t)‖L(QT ), ∀T > 0, cT = const > 0,

this confirms that u(x, t) is a function of class Q.

4 A Mixed Problem for an Inhomogeneous Wave Equation
with a Nonzero Initial Deviation

Consider a generalized mixed problem

utt (x, t) = uxx (x, t) + f (x, t), (x, t) ∈ (0, 1) × (0,+∞), (17)

u(0, t) = 0, ux (0, t) = ux (1, t), t ≥ 0, (18)

u(x, 0) = ϕ(x), ut (x, 0) = 0, x ∈ [0, 1], (19)

where f (x, t) is a function of class Q, ϕ(x) ∈ L(0, 1).
The formal solution of the problem (17)–(19) by the Fourier method is u(x, t) =

u0(x, t) + u1(x, t), where u0(x, t) is the series (4) and u1(x, t) is the series (15).
Therefore, based on Sects. 2 and 3, we get



Axiomatic Method for Constructing a Generalized Solution … 71

Theorem 5 Generalized mixed problem (17)–(19) has a solution u(x, t) of class Q
defined by the formula

u(x, t) = 1

2
[ϕ̃(x + t) + ϕ̃(x − t)] + 1

2

t∫
0

dτ

x+t−τ∫
x−t+τ

f̃ (η, τ )dη. (20)

5 Mixed Problem for the Telegraph Equation

We use the results of Sects. 2, 3 and 4 to solve the following problem:

utt (x, t) = uxx (x, t) − q(x, t)u(x, t), (x, t) ∈ (0, 1) × (0,+∞), (21)

u(0, t) = 0, ux (0, t) = ux (1, t), t ≥ 0, (22)

u(x, 0) = ϕ(x), ut (x, 0) = 0, x ∈ [0, 1], (23)

where ϕ(x) ∈ L(0, 1), the function q(x, t) is such that there is a function q0(x) ∈
L(0, 1), such that |q(x, t)| ≤ q0(x), the function q(x, t)u(x, t) is a function of
class Q.

From Theorem 5 we obtain that finding a solution to the problem (21)–(23) in the
class Q reduces to finding in this class the solution of the integral equation

u(x, t) = 1

2
[ϕ̃(x + t) + ϕ̃(x − t)] − 1

2

t∫
0

dτ

x+t−τ∫
x−t+τ

˜q(η, τ )u(η, τ )dη, (24)

where ˜q(η, τ )u(η, τ ) is the extension along η to the entire real axis from the interval
[0, 1] for each τ of the function q(η, τ )u(η, τ ) by the same formulas as the function
ϕ(x).

The integral equation has a unique solution in the class Q obtained by the method
of successive substitutions. This solution is given by the formula

u(x, t) = A(x, t) =
∞∑

n=0

an(x, t), (25)

where
a0(x, t) = 1

2 [ϕ̃(x + t) + ϕ̃(x − t)],
an(x, t) = 1

2

t∫
0

dτ
x+t−τ∫

x−t+τ

f̃n−1(η, τ )dη, n = 1, 2, . . . ,
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where f̃n(η, τ ) = fn(η, τ ) = −q(η, τ )an(η, τ ) for η ∈ [0, 1], n = 0, 1, . . .,
fn(η, τ ) extends over the variable η from [0, 1] to the whole line in the same way as

the function ϕ(x), f̃n(η, τ ) = − ˜q(η, τ )an(η, τ ).
The formula (25) can be called the generalized d’Alembert formula.

Theorem 6 If ϕ(x) ∈ L(0, 1) then the A(x, t) (25) converges absolutely and uni-
formly (with exponential speed) in the rectangle QT for any T > 0.

The proof of the theorem follows directly from the following estimate for the
common term of the series (25).

Lemma 1 Let ϕ(x) ∈ L(0, 1), T —arbitrary positive number. Then the estimates
hold

‖an(x, t)‖C(QT ) ≤ cn+1
T ‖q0‖n

1‖ϕ‖1 T n−1

(n − 1)! , n ∈ N, cT = const > 0.

The proof of the lemma is carried out using themethod ofmathematical induction.

6 The Term-by-Term Integration Theorem

Herewe justifyTheorem2on the term-by-term integration of the biorthogonal expan-
sion with respect to the system {uk(x)} integrable on the interval [0, 1] functions. We
adhere to the well-known scheme of proving the Lebesgue theorem, with the correc-
tion that now the expansion in a series is not carried out according to orthonormal
system, but biorthogonal system. Let us rename ϕ(x) in Theorem 2 by f (x).

So, let a function f (x) ∈ L(0, 1)be given,which has as its biorthogonal expansion
in the {uk(x), vk(x)} system

2x(1, f ) + 4
∞∑

n=1
[( f (τ ), (1 − τ ) sin 2πnτ ) sin 2πnx+

+( f (τ ), cos 2πnτ )x cos 2πnx].
(26)

Let [A, B] ⊆ [0, 1], then it is required to prove that

B∫
A

f (x)dx = 2
B∫
A

x(1, f )dx + 4
∞∑

n=1

B∫
A

[
( f (τ ), (1 − τ ) sin 2πnτ ) sin 2πnx+

+( f (τ ), cos 2πnτ )x cos 2πnx
]
dx,

those, the series (26) can be integrated term by term, the resulting series converges
and its sum is equal to

∫ B
A f (x)dx . In this case, the series itself (26) may diverge.
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Consider the function

ϕ(x) =
{
1, x ∈ [A, B],
0, x ∈ [0, 1] \ [A, B].

Each of the systems {uk(x)}, {vk(x)}, forms an unconditional basis in the space
L2(0, 1). Let us expand the function ϕ(x) into a series in the system {vk(x), uk(x)},
and call it the conjugate series:

ϕ(x) ∼ 2α0 + 4
∞∑

k=1
[αk(1 − x) sin 2πkx + βk cos 2πkx] =

= 2(ϕ(τ ), τ ) + 4
∞∑

k=1
[(ϕ(τ ), sin 2πkτ )(1 − x) sin2πkx+

+(ϕ(τ ), τ cos 2πkτ ) cos 2πkx].

(27)

Let us calculate the coefficients α0,αk,βk, k ≥ 1, of the series (27). We have

α0 = (ϕ(τ ), τ ) =
B∫
A

τdτ = 1
2 (B2 − A2),

αk = (ϕ(τ ), sin 2πkτ ) =
B∫
A
sin 2πkτdτ = 1

2πk (cos 2πk A − cos 2πk B),

βk = (ϕ(τ ), τ cos 2πkτ ) =
B∫
A

τ cos 2πkτdτ = 1
2πk [B sin 2πk B − A sin 2πk A+

+ 1
2πk (cos 2πk A − cos 2πk B)].

Let us substitute the obtained relations for the coefficients into the partial sum Sn(x)
of the series (27):

Sn(x) = B2 − A2 + 4
n∑

k=1

[
1

2πk (cos 2πk A − cos 2πk B)(1 − x) sin 2πkx+
+ 1

2πk (B sin 2πk B − A sin 2πk A) cos 2πkx + 1
4π2k2 (cos 2πk A−

− cos 2πk B) cos 2πkx
]
.

Let us prove that (1) the sequence {Sn(x)} converges ∀x ∈ [0, 1], (2) the sequence
{Sn(x)} is uniformly bounded in n and x to [0, 1].

(1). To prove the convergence of the series (27), we apply the Dirichlet-Abel
test and the comparison test for numerical series. We transform the products of
trigonometric functions into sums and group terms. We will receive
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Sn(x) = B2 − A2 + 1−x−A
π

n∑
k=1

sin 2πk(A+x)
k − 1−x+A

π

n∑
k=1

sin 2πk(A−x)
k +

+ x−1+B
π

n∑
k=1

sin 2πk(B+x)
k + 1−x+B

π

n∑
k=1

sin 2πk(B−x)
k +

+ 1
π2

n∑
k=1

1
k2 (cos 2πk B − cos 2πk A) cos 2πkx .

(28)

According to the usual scheme, we obtain the estimates

∣∣ n∑
k=1

sin 2πk(A ± x)
∣∣ ≤ 1

| sin π(A ± x)| , ∀n, ∀x ∈ [0, 1],

A ± x �= 0, A + x �= 1. If A ± x = 0 or A + x = 1, then the corresponding sums
are equal to zero;

∣∣ n∑
k=1

sin 2πk(B ± x)
∣∣ ≤ 1

| sin π(B ± x)| , ∀n, ∀x ∈ [0, 1],

B − x �= 0, B ± x �= 1, 2. If B ± x = 1, 2 or B − x = 0, then the corresponding
sums are equal to zero.

Thus, the sums of sines in the first four partial sums in (28) are bounded in absolute
value for all values of n and x ∈ [0, 1]. Consequently, the series corresponding to
these sums converge in every point x ∈ [0, 1]. The series corresponding to the last
sum in (28) converges absolutely and uniformly on the set [0, 1].

Thus, the sequence {Sn(x)} converges at every point x ∈ [0, 1], i.e. the series (27)
converges on [0, 1].

(2). Let us prove that there is a constant c > 0 such that |Sn(x)| ≤ c,∀n, ∀x ∈
[0, 1]. To do this, we prove that each of the sums on the right-hand side (28) is
uniformly bounded.

Let us use the well-known estimate ([7, p. 318])

∣∣ n∑
k=1

sin kt

k

∣∣ ≤ 2
√

π, ∀n, ∀t ∈ R.

Putting in the first sum in (28) t = 2π(A + x), we obtain

∣∣ n∑
k=1

sin 2πk(A + x)

k

∣∣ = ∣∣ n∑
k=1

sin kt

k

∣∣ ≤ 2
√

π, ∀n, ∀x ∈ [0, 1].

Similarly, we evaluate the next three sums in (28). For the last sum in (28),
we obtain an upper bound in terms of the constant c = 4, ∀n, ∀x ∈ [0, 1], since
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n∑
k=1

1
k2 < 2, ∀n. For the sum Sn(x), we obtain an estimate uniform in n and x ∈ [0, 1]

in terms of the constant c1 = 1 + 24√
π

+ 4
pi2 :

|Sn(x)| ≤ c1, ∀n ≥ 1, ∀x ∈ [0, 1]. (29)

The results obtained in (1), (2) make it possible to apply the Lebesgue theorem
on passing to the limit ([7, p. 139]):

1∫
0

f (x)ϕ(x)dx = lim
n→∞

1∫
0

f (x)Sn(x)dx,

or, use the relation (27),

B∫
A

f (x)dx = 2α0

1∫
0

f (x)dx + 4
∞∑

k=1

[
αk

1∫
0

f (x)(1 − x) sin 2πkxdx+

+βk

1∫
0

f (x) cos 2πkxdx
] = 2(1, f )

B∫
A

xdx+

+4
∞∑

k=1

[
( f (τ ), (1 − τ ) sin 2πkτ )

B∫
A
sin 2πkxdx+

+( f (τ ), cos 2πkτ )
B∫
A

x cos 2πkxdx
]
,

those, we get the required formula. Theorem 2 is proved.
The author is grateful to A.P. Khromov for helpful discussions of the results of

this work.
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Non-local Substitutions for Liouville
Equations with Three and Four
Independent Variables
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Abstract Weobtained the non-local transformations of the Cole—Hopf type, which
translate the Liouville equations with three and four independent variables into the
Bianchi equations. The solutionswith arbitrary functions of these Liouville equations
are constructed.

Keywords Liouville equation · Bianchi equation · Non-local transformation

1 On the Group Properties of Bianchi Equations

Consider a homogeneous equation with a dominant partial derivative with variable
coefficients (Bianchi equation)

uxyz + auxy + buyz + cuxz + dux + euy + f uz + gu = 0. (1)

In the paper [1] some group properties of this equation have been considered. It is
known that the set of equivalence transformations for (1)

x = α(x), y = β(y), z = γ(z), u = ω(x, y, z)u. (2)

Two equations of the form (1) are called equivalent in function [2, p 117], if they
pass into each other during transformations (2), in which

α(x) = x, β(y) = y, γ(z) = z.
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In the paper [3] it was shown that two equations of the form (1) are equivalent in
function if and only if the Laplace invariants

H1 = ay + ac − d, H2 = ax + ab − e, H3 = cx + bc − f,

H4 = bz + ab − e, H5 = by + bc − f, H6 = cz + ac − d,

H7 = axy + bd + ce + a f − 2abc − g,

H8 = byz + bd + ce + a f − 2abc − g,

H9 = cxz + bd + ce + a f − 2abc − g

(3)

are the same for both equations.
If we look for the operator allowed by the Eq. (1)

α∂x + β∂y + γ∂z + τ∂u,

then it turns out that part of the system of defining equations will be

∂uα = ∂uβ = ∂uγ = 0, ∂2
uτ = 0.

It is known [2, pp. 99–100] that in this case the Lie algebra of the Eq. (1) there is
L = Lr ⊕ L∞, where the algebra Lr of dimension r is formed by operators of the
form

X = ξ1(x, y, z)∂x + ξ2(x, y, z)∂y + ξ3(x, y, z)∂z + σ(x, y, z)u∂u, (4)

and L∞ is an Abelian subalgebra typical of linear equations with the operator
ω(x, y, z)∂u , where ω is the solution of the Eq. (1). It is clear that the operator
u∂u is allowed by any Eq. (1), therefore, this operator can be included in L∞ and
assume that σ(x, y, z) is defined in (4) up to a constant summand.

To construct the defining equations we use the third continuation of the
operator (4)

X3 = ξ1∂x + ξ2∂y + ξ3∂z + σu∂u + τ 1∂u1 + τ 2∂u2 + τ 3∂u3+

+τ 11∂u11 + τ 12∂u12 + τ 13∂u13 + τ 22∂u22 + τ 23∂u23 + τ 33∂u33+

+τ 111∂u111 + τ 112∂u112 + τ 113∂u113 + τ 122∂u122 + τ 123∂u123+

+τ 133∂u133 + τ 222∂u222 + τ 223∂u223 + τ 233∂u233 + τ 333∂u333 .
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The notation used here is u1 = ux , u2 = ux ,…, u12 = uxy ,…, u333 = uzzz . We get

τ 1 = σxu + (σ − ξ1x )u1 − ξ2xu2 − ξ3xu3,
τ 2 = σyu − ξ1yu1 + (σ − ξ2y)u2 − ξ3yu3,
τ 3 = σzu − ξ1z u1 − ξ2z u2 + (σ − ξ3z )u3,

τ 12 = σxyu + (σy − ξ1xy)u1 + (σx − ξ2xy)u2 − ξ3xyu3−
−ξ1yu11 + (σ − ξ1x − ξ2y)u12 − ξ3yu13 − ξ2xu22 − ξ3xu23,
τ 13 = σxzu + (σz − ξ1xz)u1 − ξ2xzu2 + (σx − ξ3xz)u3−
−ξ1z u11 − ξ2z u12 + (σ − ξ1x − ξ3z )u13 − ξ2xu23 − ξ3xu33,
τ 23 = σyzu − ξ1yzu1 + (σz − ξ2yz)u2 + (σy − ξ3yz)u3−
−ξ1z u12 − ξ1yu13 − ξ2z u22 + (σ − ξ1y − ξ3z )u23 − ξ3yu33,

τ 123 = σxyzu + (σyz − ξ1xyz)u1 + (σxz − ξ2xyz)u2 + (σxy − ξ3xyz)u3−
−ξ1yzu11 + (σz − ξ2yz − ξ1xz)u12 + (σy − ξ1xy − ξ3yz)u13−

−ξ2xzu22 + (σx − ξ3xz − ξ2xy)u23 − ξ3xyu33−
−ξ1z u112 − ξ1yu113 − ξ2z u122 + (σ − ξ1x − ξ2y − ξ3z )u123−

−ξ3yu133 − ξ2xu223 − ξ3xu233.

By applying the operator X3 to the Eq. (1), we obtain the defining equations

ξ1y = ξ1z = ξ2x = ξ2z = ξ3x = ξ3y = 0,
σx + (bξ1)x + byξ2 + bzξ3 = 0,
σy + cxξ1 + (cξ2)y + czξ3 = 0,
σz + axξ1 + ayξ2 + (aξ3)z = 0,

σxy + cσx + bσy + ( f ξ1)x + ( f ξ2)y + fzξ3 = 0,
σxz + aσx + bσz + (eξ1)x + eyξ2 + (eξ3)z = 0,
σyz + aσy + cσz + dxξ1 + (dξ2)y + (dξ3)z = 0,
σxyz + aσxy + bσyz + cσxz + dσx + eσy + f σz+

+(gξ1)x + (gξ2)y + (gξ3)z = 0.

(5)

Defining Eq. (5) can be written using Laplace invariants (3) in the form

ξ1y = ξ1z = ξ2x = ξ2z = ξ3x = ξ3y = 0,
(σ + bξ1 + cξ2 + aξ3)x = (H3 − H5)ξ

2 + (H2 − H4)ξ
3,

(σ + bξ1 + cξ2 + aξ3)y = (H5 − H3)ξ
1 + (H1 − H6)ξ

3,

(σ + bξ1 + cξ2 + aξ3)z = (H4 − H2)ξ
1 + (H6 − H1)ξ

2,

H1xξ
1 + (H1ξ

2)y + (H1ξ
3)z = 0,

H6xξ
1 + (H6ξ

2)y + (H6ξ
3)z = 0,

(H2ξ
1)x + H2yξ

2 + (H2ξ
3)z = 0,

(H4ξ
1)x + H4yξ

2 + (H4ξ
3)z = 0,

(H3ξ
1)x + (H3ξ

2)y + H3zξ
3 = 0,

(H5ξ
1)x + (H5ξ

2)y + H5zξ
3 = 0,

(H7ξ
1)x + (H7ξ

2)y + (H7ξ
3)z = 0,

(H8ξ
1)x + (H8ξ

2)y + (H8ξ
3)z = 0,

(H9ξ
1)x + (H9ξ

2)y + (H9ξ
3)z = 0.

(6)
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The first row in (6) shows that

ξi = ξi (xi ), i = 1, 3.

The second, third and fourth rows from (6) are differential equations for determining
the function σ, after ξ1, ξ2, ξ3 have been obtained. The equations starting from the
fifth row are responsible for the results of the group classification.

Some consequences can be deduced directly from the defining equations in the
form (6). If all Hi , i = 1, 9, are identically equal to zero, then the Eq. (1) is equivalent
to the equation uxyz = 0 and admits an infinite-dimensional Lie algebra of operators
of the form

ξ1(x)∂x + ξ2(y)∂y + ξ3(z)∂z

with arbitrary ξ1(x), ξ2(y), ξ3(z).
Let’s introduce the relations into consideration

p12 = H3

H5
, p13 = H2

H4
, p23 = H1

H6
, (7)

q1 = (ln H1)yz
H1

, q2 = (ln H2)xz
H2

, q3 = (ln H3)xy
H3

,

q4 = (ln H4)xz
H4

, q5 = (ln H5)xy
H5

, q6 = (ln H6)yz
H6

,

qi = (ln Hi )xyz
Hi

, i = 7, 8, 9.

(8)

Substitute H1 = p23H6, H6 �= 0, in the fifth row (6)

p23(H6xξ
1 + (H6ξ

2)y + (H6ξ
3)z) + p23x H6ξ

1 + p23y H6ξ
2 + p23z H6ξ

3 = 0.

Since the term in parentheses vanishes, it follows

ξ1 p23x + ξ2 p23y + ξ3 p23z = 0. (9)

The identity (9) means that either p23 = const or p23 is an invariant of the group G
with the operator (4).

If p23 = const , then from the fifth and sixth rows (6) we get

ξ1(ln H6)x + ξ2(ln H6)y + ξ3(ln H6)z + ξ2y + ξ3z = 0. (10)

Differentiating by y, z we get

ξ1
((ln H6)yz)x

(ln H6)yz
+ ξ2

((ln H6)yz)y

(ln H6)yz
+ ξ3

((ln H6)yz)z

(ln H6)yz
+ ξ2y + ξ3z = 0. (11)

Subtracting (10) from (11) and then multiplying by (ln H6)yz/H6, we get
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ξ1q6x + ξ2q6y + ξ3q6z = 0.

Thus, again either q6 = const or q6 is an invariant of the group G with the operator
(4).

Then similar identities can be obtained for p12, p13, qi , i = 1, 5.
Similar identities can be obtained for relations

P1 = H7

H8
, P2 = H7

H9
, P3 = H8

H9
.

For example, considering the relation P1, we come to the identity

ξ1P1x + ξ2P1y + ξ3P1z = 0.

Again, either P1 = const , or P1 is an invariant of the group G with the operator (4).
If P1 = const , then row 12 from (6) gives

ξ1(ln H8)x + ξ2(ln H8)y + ξ3(ln H8)z + ξ1x + ξ2y + ξ3z = 0. (12)

Differentiating by x , y, z we get

ξ1
((ln H8)xyz)x

(ln H8)xyz
+ ξ2

((ln H8)xyz)y

(ln H8)xyz
+ ξ3

((ln H8)xyz)z

(ln H8)xyz
+ ξ1x + ξ2y + ξ3z = 0. (13)

Subtracting (12) from (13) and multiplying by (ln H8)xyz/H8, we get

ξ1q8x + ξ2q8y + ξ3q8z = 0.

Thus, either q8 = const or q8 is an invariant of the group G with the operator (4).
Based on the above statements, classes of equations of the form (1) admitting Lie

algebras of the largest dimensions were listed in the work [1].
In the casewhenqi = const , i = 1, 6, the invariant Hi is a solution of theLiouville

equation (this follows from (8)), the formula of the general solution ofwhich is known
[2, p 123]. Similarly, if any of the constructions qi , i = 7, 9, is constant, then the
corresponding invariant Hi is the solution of the equation

(ln Hi )xyz = qi Hi .

In this regard, the task of constructing is of interest exact solutions of the three-
dimensional analogue of the Liouville equation

uxyz = eu . (14)

We can propose the following method of constructing an exact solution based on
the application of Lie groups of point transformations.
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The usual algorithm for calculating the group of point transformations allowed
by the Eq. (14) leads to the Lie algebra of operators

X = ξ(x)∂x + η(y)∂y + ζ(z)∂z − (ξ′(x) + η′(y) + ζ ′(z))∂u,

where ξ(x), η(y), ζ(z) are arbitrary functions.
To determine the invariants of the group allowed by the Eq. (14), we obtain the

system
dx

ξ(x)
= dy

η(y)
= dz

ζ(z)
= du

−ξ′(x) − η′(y) − ζ ′(z)
. (15)

The first integrals of the system (15) have the form

u + ln |ξ(x)η(y)ζ(z)| = C1,

ϕ(x) − ψ(y) = C2, ϕ(x) − χ(z) = C3,

ϕ′(x) = 1

ξ(x)
, ψ′(y) = 1

η(y)
, χ′(z) = 1

ζ(z)
.

Let’s introduce new variables

v = u + ln |ξ(x)η(y)ζ(z)|, t = ϕ(x) − ψ(y), τ = ϕ(x) − χ(z).

Invariant with respect to the group of point transformations allowed by the Eq. (14)
, the solution has the form v = w(t, τ ). As a result, we come to the equation for
determining the function w

wt tτ + wtττ = ew. (16)

The Eq. (16) has a solution

w = ln
−12

(t + τ )3
.

Then (here ξ(x)η(y)ζ(z) > 0)

u = − ln(ξ(x)η(y)ζ(z)) + ln
−12

(2ϕ(x) − ψ(y) − χ(z))3
=

= ln
−12 1

ξ(x)
1

η(y)
1

ζ(z)

(2ϕ(x) − ψ(y) − χ(z))3
.

Denoting λ(x) = 2ϕ(x), μ(y) = −ψ(y), ν(z) = −χ(z), we obtain an exact solution
of the Eq. (14), depending on three arbitrary functions
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u = ln
−6λ′(x)μ′(y)ν ′(z)

(λ(x) + μ(y) + ν(z))3
.

In [4, 5] some group properties of the fourth-order Bianchi equation were con-
sidered. The homogeneous Bianchi equation of the fourth order is

ux1x2x3x4 + a1ux2x3x4 + a2ux1x3x4 + a3ux1x2x4 + a4ux1x2x3+
+a12ux3x4 + a13ux2x4 + a14ux2x3 + a23ux1x4 + a24ux1x3 + a34ux1x2+

+a123ux4 + a124ux3 + a134ux2 + a234ux1 + a1234u = 0.
(17)

It is implied here that the coefficients are variable.
The Laplace invariants for this equation have the form

hi, j = aix j + aia j − ai j ,
hi, jk = aix j xk + aia jk + a jaik + akai j − 2aia jak − ai jk,
hi, jkl = aix j xk xl + aia jkl + a jaikl + akai jl + alai jk+
+ai j akl + aika jl + aila jk − 2aia jakl − 2aiaka jl−

−2aiala jk − 2a jakail − 2a jalaik − 2akalai j+
+6aia jakal − ai jkl , {i, j, k, l} = {1, 2, 3, 4}, j < k < l.

Here we consider coefficients that differ in the order of the indices to be equal (for
example, a123 = a231). There are a total of 28 Laplace invariants for this equation.
Two equations of the form (17) are equivalent in function if and only if they have all
the corresponding Laplace invariants equal.

Note that if all Laplace invariants are identically zero, then the Eq. (17) is equiv-
alent to the equation ux1x2x3x4 = 0 and admits an infinite-dimensional Lie algebra of
operators of the form

ξ1(x1)∂x1 + ξ2(x2)∂x2 + ξ3(x3)∂x3 + ξ4(x4)∂x4

with arbitrary ξi (xi ).
Similarly to the case of the third-order Bianchi equation, we can introduce into

consideration the constructions

pi j = h j,i

hi, j
, qi j = (ln hi, j )xi x j

hi, j
, i, j = 1, 4;

pli jk = hl,l1l2
hi, jk

, qi jk = (ln hi, jk)xi x j xk

hi, jk
, {l, l1, l2} = {i, j, k};

pni jkl = hn,n1n2n3
hi, jkl

, qi jkl = (ln hi, jkl)x1x2x3x4
hi, jkl

, {n, n1, n2, n3} = {i, j, k, l}.

These constructions are used in [5] to obtain classes of fourth-orderBianchi equations
with certain group properties.
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It is easy to notice that for constants qi j , qi jk , qi jkl the Laplace invariants are again
solutions of the Liouville equation and its three-dimensional and four-dimensional
analogues.

2 Three-Dimensional Analogue of the Liouville Equation

Let us consider an approach to the problem of constructing exact solutions to non-
linear equations based on non-local transformations of variables. Equation

uxyz = λeu (18)

is a three-dimensional analogue of the Liouville equation

uxy = λeu . (19)

Equation (19), in particular, plays a key role in the problem of group classification
of second-order hyperbolic equations [2, pp. 116–125]

vxy + a(x, y)vx + b(x, y)vy + c(x, y)v = 0.

The general solution of the Eq. (19) is well known and can be constructed in various
ways [2, p. 123], [6, pp. 239–240]. As noted earlier, the Eq. (18) is used in the study
of the group properties of the third-order Bianchi Eq. (1).

Here a non-local transformation (such as the Cole—Hopf substitution [7]) is
constructed, translating the Eq. (18) into the simplest Bianchi equation

vxyz = 0, (20)

which has a general solution with three arbitrary functions

v = α(x, y) + β(x, z) + γ(y, z). (21)

In this case, an algorithm based on the use of groupmethods is used [6, pp. 237–241].
Equation (18) admits the Lie algebra of operators

X = ξ(x)∂x + η(y)∂y + ζ(z)∂z − (ξ̇(x) + η̇(y) + ζ̇(z))∂u,

where ξ(x), η(y), ζ(z) are arbitrary functions [1].
On the other hand, the Eq. (20) admits the Lie algebra of operators

X0 = ξ(x)∂x + η(y)∂y + ζ(z)∂z,
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where ξ(x), η(y), ζ(z) are also arbitrary. In addition, like any linear equation, Eq. (20)
admits a stretching operator

Y = v∂v.

In this regard, assume that there is a non-local transformation

u = ϕ(v, vx , vy, vz) (22)

such that the system of Eqs. (18), (20), (22) admits the Lie algebra of operators

X = ξ(x)∂x + η(y)∂y + ζ(z)∂z − (ξ̇(x) + η̇(y) + ζ̇(z))∂u,

Y = v∂v.

We find the first continuations of operators

X1 = ξ(x)∂x + η(y)∂y + ζ(z)∂z − (ξ̇(x) + η̇(y) + ζ̇(z))∂u−
−(ξ̈(x) − ξ̇(x)ux )∂ux − (η̈(y) − η̇(y)uy)∂uy − (ζ̈(z) − ζ̇(z)uz)∂uz+

+ξ̇(x)vx∂vx + η̇(y)vy∂vy + ζ̇(z)vz∂vz ,

Y1 = v∂v + vx∂vx + vy∂vy + vz∂vz .

We get relations

Y1(u − ϕ)|u=ϕ = vϕv + vxϕvx + vyϕvy + vzϕvz = 0, (23)

X1(u − ϕ)|u=ϕ = −(ξ̇ + η̇ + ζ̇) + ξ̇(x)vxϕvx + η̇(y)vyϕvy + ζ̇(z)vzϕvz = 0.
(24)

Since the function v has the form (21), from (23) and (24) we get the system

(α + β + γ)ϕv + (αx + βx )ϕvx + (αy + γy)ϕvy + (βz + γz)ϕvz = 0,
−(ξ̇ + η̇ + ζ̇) + ξ̇(x)(αx + βx )ϕvx + η̇(y)(αy + γy)ϕvy + ζ̇(z)(βz + γz)ϕvz = 0.

(25)
The system (25) is satisfied by the relation

u = ϕ(v, vx , vy, vz) = ln
cvxvyvz

v3
= ln c + ln vx + ln vy + ln vz − 3 ln v. (26)

Substituting (26) into the Eq. (18) taking into account (21) leads to a formula
defining a class of solutions to the Eq. (18) depending on three arbitrary functions

u = ln

(
− 6

λ

f ′
1(x) f

′
2(y) f

′
3(z)

( f1(x) + f2(y) + f3(z))3

)
. (27)

Here f1(x), f2(y), f3(z)—arbitrary continuously differentiable functions.
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3 Fourth-Order Analogue of the Liouville Equation

Now consider the equation
uxyzt = λeu, (28)

related to the fourth-order linear Bianchi equation, whose group properties are con-
sidered in [4, 5].

Similarly to the case of the Eq. (18), we construct a non-local transformation that
translates the Eq. (28) into the equation

vxyzt = 0, (29)

the general solution of which

v = α(x, y, z) + β(x, y, t) + γ(x, z, t) + δ(y, z, t). (30)

Equation (28) admits a Lie algebra of operators

X = ξ(x)∂x + η(y)∂y + ζ(z)∂z + τ (t)∂t − (ξ̇(x) + η̇(y) + ζ̇(z) + τ̇ (t))∂u,

where ξ(x), η(y), ζ(z), τ (t) are arbitrary functions [5].
On the other hand, the Eq. (29) admits the Lie algebra of operators

X0 = ξ(x)∂x + η(y)∂y + ζ(z)∂z + τ (t)∂t ,

as well as the stretching operator
Y = v∂v.

Looking for a non-local transformation

u = ϕ(v, vx , vy, vz, vt ) (31)

such that the system of Eqs. (28), (29), (31) admits the Lie algebra of operators

X = ξ(x)∂x + η(y)∂y + ζ(z)∂z + τ (t)∂t − (ξ̇(x) + η̇(y) + ζ̇(z) + τ̇ (t))∂u,

Y = v∂v.

We calculate the first continuations of operators

X1 = ξ(x)∂x + η(y)∂y + ζ(z)∂z + τ (t)∂t − (ξ̇(x) + η̇(y) + ζ̇(z) + τ̇ (t))∂u−
−(ξ̈(x) − ξ̇(x)ux )∂ux − (η̈(y) − η̇(y)uy)∂uy − (ζ̈(z) − ζ̇(z)uz)∂uz−

−(τ̈ (t) − τ̇ (t)ut )∂ut + ξ̇(x)vx∂vx + η̇(y)vy∂vy + ζ̇(z)vz∂vz + τ̇ (t)vt∂vt ,

Y1 = v∂v + vx∂vx + vy∂vy + vz∂vz + vt∂vt
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and we write down the ratios

Y1(u − ϕ)|u=ϕ = vϕv + vxϕvx + vyϕvy + vzϕvz + vtϕvt = 0, (32)

X1(u − ϕ)|u=ϕ = −(ξ̇ + η̇ + ζ̇ + τ̇ ) + ξ̇vxϕvx + η̇vyϕvy + ζ̇vzϕvz + τ̇vtϕvt = 0.
(33)

The function v has the form (30), therefore from (32)–(33) we get the system

(α + β + γ + δ)ϕv + (αx + βx + γx )ϕvx + (αy + βy + δy)ϕvy+
+(αz + γz + δz)ϕvz + (βt + γt + δt )ϕvt = 0,

−(ξ̇ + η̇ + ζ̇ + δ̇) + ξ̇(αx + βx + γx )ϕvx + η̇(αy + βy + δy)ϕvy+
+ζ̇(αz + γz + δz)ϕvz + δ̇(βt + γt + δt )ϕvt = 0.

(34)

The system (34) is satisfied by the relation

u = ln
cvxvyvzvt

v4
. (35)

Substituting (35) into (28) and taking into account (30), we get the solution of the
Eq. (28)

u = ln

(
24

λ

f ′
1(x) f

′
2(y) f

′
3(z) f

′
4(t)

( f1(x) + f2(y) + f3(z) + f4(t))4

)
,

where f1(x), f2(y), f3(z), f4(t)—arbitrary continuously differentiable functions.
This paper has been supported by the Kazan Federal University Strategic Aca-

demic Leadership Program (Priority—2030).
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Convergence Rates of a Finite Difference
Method for the Fractional Subdiffusion
Equations

Li Liu, Zhenbin Fan, Gang Li, and Sergey Piskarev

Abstract We consider the convergence of an effective numerical method of the
subdiffusion equationwith the Caputo fractional derivative in time.We investigate an
implicit difference scheme and an explicit difference scheme by using the projection
method in space and a finite difference method which was proposed by Ashyralyev
in time. Combining the method of functional analysis and the technique of numerical
analysis, we utilize the idea of layering in temporal direction to obtain that the local
truncation error is O(n−α). Then we prove that the implicit and explicit numerical
methods converge at a rate of O(τα) in time. Finally, a numerical experiment is given
to confirm the α-th order accuracy.

Keywords Fractional subdiffusion equations · Weak regularity · Resolvent
family · Discretization methods · Error estimate

1 Introduction

In recent years, many scholars devoted to study the linear partial differential equation

c∂α
t u(x, t) = (Bu)(x, t) + f (x, t), (x, t) ∈ E × (0, T ], (1)

where c∂α
t u(x, t) denotes the Caputo time fractional derivative of u with order α,

0 < α < 1, B is a symmetric uniformly elliptic operator which generates an analytic
α-resolvent family, f is a given source term in E × (0, T ], E ⊂ R

n (n ∈ N
+) is a
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bounded convex polygonal domain with sufficiently smooth boundary ∂E . This kind
of equation has recently attracted increasing interest in the physical, chemical and
engineering fields due to its excellent modeling capability. It is known that nature
often does not follow the Gaussian predictions and violates the Gaussian universality
mirrored in experimental results. In contrast to Gaussian diffusion, thermal diffusion
and anomalous diffusion both are involved fields with intriguing subtleties. Frac-
tional diffusion equations can account for the typical anomalous characters which
are observed in many phenomena. For example, system (1) can be used to accurately
describe the physical phenomena of the thermal diffusion inmediawith fractal geom-
etry and the anomalous diffusion in highly heterogeneous aquifers. Because of higher
degrees of freedom, the models involving fractional derivatives are more success-
ful in applications in situations where non-Gaussian and non-Markovian processes
occur. For the more physical interpretations of problem (1), one can see [1, 14, 17,
23, 36, 37, 39] and the references therein. Numerical method is one of the impor-
tant tools to deal with fractional differential equations. Many numerical schemes for
the discretization of Caputo fractional subdiffusion problem (1) have been devised
(see, e.g., [2, 3, 5, 6, 16, 24, 33, 38]). Meanwhile, the convergence rates of exist-
ing schemes for fractional subdiffusion equations also have been the subjects of
numerous studies. However, the discussion on convergence rates of the effective and
robust discretization techniques for systems involving Caputo fractional derivative
is relatively scarce.

In this paper, we investigate the convergence rates of two novel numerical schemes
by virtue of the idea of layering in temporal direction. Under the consideration of
weakly regular solution, we find that the order of convergence of fractional difference
algorithm can reach O(n−α), which means the local truncation error converges at
αth order accuracy far away from initial time. Furthermore, we establish the error
equations and obtain that the error is of order O(τα). Throughout this paper, the
fractional subdiffusion equation (1) is subjected to the initial and boundary conditions

u(x, 0) = φ(x), x ∈ E, (2)

u(x, t) = 0, x ∈ ∂E, t ∈ (0, T ]. (3)

Next, let us review some existing results on numerical analysis of fractional dif-
ferential equations in the following paragraphs. In general, there are three kinds of
representative methods to deal with the approximation of spatial direction, which
are the spectral method, the finite element method and the finite difference method.
The finite difference method, among others, is the most conventional method in the
early stage. Stynes et al. [42] discreted the second-order spatial derivative by using
the standard center finite difference algorithm, which converges at a rate O(h2). Jin
et al. [21] employed the standard Galerkin finite element method and obtained the
second-order accuracy of the space semidiscrete scheme in the L2 norm. Lin and Xu
[33] established a numerical scheme of order O(h2) based on the Legendre spec-
tral methods in L2 space for sufficiently smooth solutions. In Eq. (1), the operator
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B could be the Laplacian in the domain E , i.e., Bu = Δxu, or be a second-order
strongly elliptic partial differential operator in some spatial variables,

Bu =
n∑

i, j=1

ai j uxi x j +
n∑

j=1

b jux j + cu.

In [44], Vainikko gave a functional-analytical treatment of discretization methods,
which is often referred to as the projectionmethod. As a general approach to establish
the semidiscrete approximation in space direction, it covers the quadrature formula
method and the difference method. Actually, some authors have used the projection
methods in various articles and they applied it to obtain many excellent results in
different senses (see, e.g., [4, 7, 10, 26, 27, 29–31, 40, 41]). In subsequent study,
we use the projection methods to approximate the operator B in the system (1).

To date, there are many difference schemes used for discretization fractional
derivative in time. The numerical methods include the L1, L2, L2C methods (see,
e.g., [16, 21, 33]), the convolution quadrature method (see, e.g., [11, 46]), the frac-
tional rectangular formula, fractional trapezoidal formula and fractional Newton-
Cotes formula derived from the polynomial interpolation technique, and some higher
order methods which are based on the explicit expression of the Jacobi polynomials
(see, e.g., [9, 15, 35]). Under the assumption of sufficiently smooth solutions, some
authors have shown that the high order convergence in temporal direction for various
discretization methods to approximate the fractional differential equation; e.g., the
schemes in [16, 30, 33, 45] have been proved to converge at a rate of order O(τ ),
O(τ 2−α), or even O(τ 3−α), respectively. In many papers, the high order convergence
of some methods resulting from Taylor expansion requires excessive smoothness on
the solution. Hence, these results are not robust with respect to the regularity of solu-
tions. In fact, it is impossible for the solutions of the fractional subdiffusion systems
to be too smooth no matter how smooth the source terms take. For example, in [31],
for initial data φs ∈ D(B�+1

s ) with the smallest integer � such that (� + 1)α ≥ 2,
fs ≡ 0, the solutions of the spatially discrete scheme of homogeneous differential
equation (7) could be represented as

us(t) = Sα(t, Bs)φs

= φs + tαBsφs

Γ (α + 1)
+ · · · + t�αB�

s φs

Γ (�α + 1)
+ (g(�+1)α−1 ∗ Sα)(t, Bs)B

�+1
s φs,

(4)

where Sα(·, Bs) is an α-resolvent family generated by the operator Bs , Γ (·) is the
Gamma function, gα(t) = tα−1/Γ (α). It follows that, for any t ∈ (0, T ],

‖∂t us(t)‖ ≤ C(α)(1 + tα−1)m�(φs), ‖∂2
t us(t)‖ ≤ C(α)(1 + tα−2)m�(φs), (5)
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wherem�(φs) = max0≤k≤�+2 ‖Bk
s φs‖. So, the solutions are only weakly regular near

t = 0. For another instance, Sakamoto and Yamamoto [43] obtain an estimate when
f = 0 and φ ∈ L2(E):

‖u(·, t)‖H 2(E) + ‖c∂α
t u(·, t)‖L2(E) ≤ Ct−α‖φ‖L2(E) t ∈ (0, T ].

We can infer that the αth-order derivative of u is at least unbounded near t = 0.
Hence, it is necessary to reconsider numerical methods for approximation of Caputo
fractional derivative concerning the limited regularity of solution. Needless to say,
the addition of singular behavior will generally deteriorate the convergence.

Recently, the fact that the derivative of solution exhibits the weak singularity at
t = 0 has been recognized in error analysis of the fractional difference schemes: L1
scheme [21, 31, 42], convolution quadrature [20–22]; see also [11, 12, 18, 43]. The
existing ways to reach desired higher-order convergence rate include: employing the
graded part of the fitted mesh to handle the inherent weak regularity of the solution
at t = 0 [13, 42]; designing a starting term by virtue of starting weights to capture all
leading singularities [20, 24]; making a proper correction at the first step in temporal
direction with the help of approximation strategies [22]. Jin et al. [22] focus on
seeking the approximation method with higher accuracy from the perspectives of
whether the initial data is smooth and what compatibility conditions the source term
satisfies. Stynes et al. [42] improve the accuracy and weaken the influence of the
singularity at initial time by substituting the fitted mesh for the uniform mesh. All
these excellent results are obtained by means of the regularity estimates such as the
analogues of inequality (5) to some extent.

In the present paper, we concentrate on the convergence rates in temporal direction
for the schemes, which are constructed by projection method in space and discretiza-
tion in time proposed by Ashyralyev [3], which was theoretically obtained by virtue
of the connection of fractional derivativewith fractional powers of positive operators.
In [3] neither stability nor convergence rate were obtained for this scheme. First, we
prove the stability of such schemes. Unlike the common techniques on error esti-
mates in time, we utilize the idea of layering in temporal direction to obtain the local
truncation error. In addition, we use an analogues of formula (5) that derived from
the resolvent theory to describe and deal with the weak regularity near the initial time
t = 0 in subsequent estimates. Then we obtain the error equations and error bounds
by using the expressions of solutions of the fully discrete difference schemes. Finally,
we obtain that the temporal global errors converge at a rate O(τα).

The rest of the paper is organized as follows. In the next section, we give some
basic definitions, the spatial semidiscrete difference scheme, two fully discrete dif-
ference schemes and some known results that we need in subsequent derivation. The
convergence rate of the truncation error is given in Sect. 3. In Sect. 4, we present a
rigorous analysis of the orders of convergence for both implicit difference scheme
and explicit difference scheme. Finally, we confirm our estimates by some numerical
experiments in Sect. 5.
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2 Discretization Methods

In this section, we present two fully discrete difference schemes of problem (1).
We start from the semidiscrete difference scheme in space, which is obtained by
projection method. Then we discrete the time fractional derivative and get two fully
discrete difference schemes. Throughout, let C denote a generic constant which is
always independent of the step sizes s, τ , and it may change at each occurrence.
First, we recall the definition of the Caputo derivative in Eq. (1).

Definition 1 Let α ∈ (0, 1). Then, we define the operator c∂α
0,t for functions by

c∂α
0,tψ(t) := J 1−α

0,t ψ′(t) =
∫ t

0

(t − s)−α

Γ (1 − α)
ψ′(s)ds. (6)

The operator c∂α
0,t is called the Caputo differential operator of order α.

In what follows, we abbreviate the notation c∂α
0,t as

c∂α
t .

2.1 Spatial Semidiscrete Schemes

Here, we employ a functional-analytical treatment of discretization in spatial direc-
tion and present a general semidiscrete approximation scheme; that is, we use the
projection method to characterize the spatial semidiscrete difference schemes. We
now introduce the framework of the approximation scheme obtained by projection
method (see also [44] formore details). LetΩ andΩs with s ∈ N

+ be Banach spaces.
Let B(Ω,Ωs) denote the space of all continuous linear mappings from Ω to Ωs and
let B(Ω) denote B(Ω,Ω). Take B ∈ B(Ω), Bs ∈ B(Ωs) and ps ∈ B(Ω,Ωs) such
that ‖psx‖Ωs → ‖x‖Ω when s tends to infinity, for each x ∈ Ω .

Definition 2 The sequence {xs} ⊂ Ωs is P-converging to x belonging to Ω if

lim
s→∞ ‖xs − psx‖Ωs

= 0.

It is also written by xs
P−→ x .

Definition 3 The operator family {Bs} ⊂ B(Ωs) is PP-converging to B belonging

to B(Ω) if for arbitrary sequence {xs} ⊂ Ωs , xs
P−→ x ∈ Ω implies Bsxs

P−→ Bx . It

is also denoted by Bs
PP−−→ B.

IfΩs = Ω and ps is the identity operator onΩ for each s ∈ N
+, then Definition 3

leads to the traditional pointwise convergence of bounded linear operators. In partial
differential equations, the infinitesimal generators of analytic α-resolvent families
are unbounded operators in general. So, beforewe present the semidiscrete difference
schemes, we have to introduce the notion of compatibility property of operators.
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Definition 4 The sequence of closed linear operators {Bs}, s ∈ N
+, is said to be

compatible with a closed linear operator B, if for arbitrary x ∈ D(B) there exists

a sequence {xs}, xs ∈ D(Bs) ⊆ Ωs , such that xs
P−→ x and Bsxs

P−→ Bx . We write
(Bs, B) are compatible.

One version of the Trotter-Kato theorem in [29], which is essential in the inves-
tigation of the approximation theory to differential equations, is shown as follows.

Theorem 1 (TheoremABC [29]) Suppose that 0 < α ≤ 2 and B, Bs generate expo-
nentially bounded analyticα-times resolution families Sα(·, B), Sα (·, Bs) in Banach
spaces Ω , Ωs , respectively. The following conditions (A) and (B) are equivalent to
condition (C).

(A) Consistency. There exists λ ∈ ρ(B)
⋂ ∩sρ(Bs) such that the resolvents con-

verge, i.e.,

(λIs − Bs)
−1 PP−→ (λI − B)−1.

(B) Stability. There are some constants M ≥ 1, θ ∈ (0,π/2) and ω which are inde-
pendent of s, such that the sector ω + Σθ+π/2 is included in ρ(Bs) and

sup
λ∈ω+Σβ+π/2

∥∥λα−1(λα Is − Bs)
−1

∥∥
B(Ωs )

≤ M

|λ − ω|

for any s ∈ N and for any 0 < β < θ.
(C) Convergence. For some finite ω1 > 0 and θ ∈ (0,π/2), one has

sup
z∈Σβ

e−ω1 Re z ‖Sα (z, Bs) xs − ps Sα(z, B)x‖Ωs
→ 0 as s → ∞

whenever xs
P−→ x for any xs ∈ Ωs, x ∈ Ω and for any 0 < β < θ.

We assume that the infinitesimal generator of analytic α-resolvent family satisfies
conditions (A) and (B) in Theorem 1. According to the above convergence definition
of the projection method, we can obtain the spatial semidiscrete difference schemes
of (1) as follows:

{
c∂α

t us(t) = Bsus(t) + fs(t), t ∈ (0, T ],
us(0) = φs,

(7)

where the operators Bs generate analytic C0-semigroups, Bs and B are compatible,

φs
P−→ φ, and fs(·) P−→ f (·) in appropriate sense. For the abstract semidiscrete dif-

ference schemes, Piskarev and Siegmund [41] have proved the convergence of the
solutions due to the Trotter-Kato’s theorem and theory of resolvent family. Next, we
are going to describe the discretization techniques of the semidiscrete problem (7)
in temporal direction.
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2.2 Fully Discrete Schemes

In order to obtain the fully discrete schemes, we now consider the temporal dis-
cretization of Eq. (7). We divide the interval [0, T ] into a uniform grid Qτ = {tn =
nτ , n = 0, 1, . . . , N }, where τ = T/N is the time step size. Suppose us(·) is a grid
function on Qτ , where uns = us(tn). We prove the convergence of the schemes under
the maximal norm,

‖uns ‖Ωs×Qτ
= sup

1≤ j≤n
‖us( jτ )‖Ωs .

In terms of the relationship between the Riemann-Liouville derivative and Caputo
derivative, we discretize the Caputo time fractional derivative using the fractional
difference algorithm proposed in [3],

Dα
tn us(·) =

n−1∑

j=0

b(n)
j+1

us(t j+1) − us(t j )

τα
, (8)

where b(n)
j+1 = Γ (n − j − α)/

(
Γ (1 − α)Γ (n − j)

)
, j = 0, 1, . . . , n − 1.

Using (8) to approximate the fractional time derivative c∂α
t us(t), we obtain two

fully discrete difference schemes, which are an implicit finite difference scheme and
an explicit finite difference scheme. The problem (7) could be approximated by the
following implicit difference scheme (see also [26])

{
Dα

tn ũs(·) = Bsũns + f ns ,

ũs(0) = φs .
(9)

It is worth mentioning that in different spaces, the approximative ways of the func-
tions may be various. For instance, f ns = fs(tn) in C(Ωs), f ns = 1

τ

∫ tk
tk−1

fs(θ)dθ in

L1(Ωs). In the present paper, we use the first way to define f ns . In [26], we have
proved that the above implicit difference scheme is uniquely solvable, uncondition-
ally stable and well posed in infinite norm. We also obtained the expressions of the
solutions of the implicit difference scheme (9).

Theorem 2 ([26]) For the fully discrete implicit difference scheme (9), we obtain
the following expressions of the solutions,

ũns =
n∑

m=1

c(n)
m Rm

s φs + τα
n∑

j=1

n− j+1∑

m=1

d(n)
m, j R

m
s f j

s ,

where Rs = (Is − ταBs)
−1; c(n)

1 = b(n)
1 ,
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c(n)
m =

n∑

j=m

(
b(n)
j − b(n)

j−1

)
c( j−1)
m−1 , m ∈ {2, 3, . . . , n};

and d(n)
1, j = 0, d(n)

1,n = 1 and for j ∈ {1, . . . , n − 1}, m ∈ {2, . . . , n − j + 1},

d(n)
m, j =

n∑

k=m+ j−1

(
b(n)
k − b(n)

k−1

)
d(k−1)
m−1, j , n ≥ 1.

Remark 1 ([27]) For coefficients and the resolvent in Theorem 2, we have

c(n)
m > 0, ‖Rm

s ‖Ωs→Ωs = ‖(Is − ταBs)
−m‖Ωs→Ωs ≤ M, m ∈ {1, 2, . . . , n},

and d(n)
m, j ≥ 0, m ∈ {1, 2, . . . , n − j + 1}, j ∈ {1, 2, . . . , n}, n ≥ 1. Furthermore,

n∑

j=1

n− j+1∑

m=1

d(n)
m, j = (1 + α)(2 + α) · · · (n − 1 + α)

(n − 1)! , n ≥ 2.

Lemma 1 ([27]) Let Sn = ∑n
j=1

∑n− j+1
m=1 d(n)

m, j . Then, for each n ≥ 2, the inequality
Sn ≤ exp(α)(n − 1)α holds.

Moreover, we can approximate the semidiscrete fractional difference scheme (7)
by the following explicit difference scheme,

{
Dα

tn ûs(·) = Bsûn−1
s + f n−1

s ,

ûs(0) = φs,
(10)

where Dα
tn , f

n−1
s and φs are defined as above. The expression of the solution for this

explicit difference scheme has been obtained in [27].

Theorem 3 ([27]) For the fully discrete explicit difference scheme (10), the solution
is given by

ûns =
n∑

j=0

γ(n)
j R̂ j

s φs + τα
n−1∑

j=0

n− j−1∑

m=0

δ(n)
m, j R̂

m
s f j

s , (11)

where γ(1)
0 = b(1)

0 , γ(1)
1 = 1 − b(1)

0 , γ(n)
0 = b(N )

1 + ∑n−2
m=1(b

(n)
m+1 − b(n)

m )γ(m)
0 ,

γ(n)
j = (1 − b(n)

n−1)γ
(n−1)
j−1 +

n−2∑

m= j

(b(n)
m+1 − b(n)

m )γ(m)
j , j ∈ {1, . . . , n}, n ≥ 2,

and R̂s = Is + α−1ταBs; δ(n)
0,n−1 = 1, n ≥ 1, δ(n)

0,n−2 = 0, δ(n)
1,n−2 = 1 − b(n)

n−1, n ≥ 2,
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δ(n)
m, j = (1 − b(n)

n−1)δ
(n−1)
m−1, j +

n−2∑

l=m+ j+1

(b(n)
l+1 − b(n)

l )δ(l)
m, j ,

for j ∈ {0, . . . , n − 3}, m ∈ {0, . . . , n − j − 1}, n ≥ 3. In addition, for any n ∈ N
+,

one has

n∑

j=0

γ(n)
j = 1,

n−1∑

j=0

n− j−1∑

m=0

δ(n)
m, j b

(n−m)
n−m− j = 1. (12)

Meanwhile, the following relationship between the coefficients δ(n)
m, j in the above

formula and the coefficients d(n)
m, j which are in the expression of the solution of the

implicit difference scheme (9) is as follows.

Lemma 2 ([27]) For any n ≥ 1, the coefficients d(n)
m, j and δ(n)

m, j satisfy the following
equality,

n− j∑

m=1

d(n)
m, j+1 =

n− j−1∑

m=0

δ(n)
m, j , j ∈ {0, 1, . . . , n − 1}.

Lemma 3 ([27]) Let condition (B) with ω = 0 be satisfied. Assume that there exists
a number M1 ≥ 1 satisfying ‖ταBs‖Ωs→Ωs < α/(M1 + 2). Then, ‖R̂ j

s ‖Ωs→Ωs ≤ M,
j ∈ {0, 1, . . . , N }, where M is a constant which is independent of the step size τ .

2.3 Regularity of the Solutions

Now, our interest returns to the problem of whether there is the weak regularity of the
solution of (7) near the initial time. We want to know whether there is a natural way
to estimate the norm of the first-order derivative of the solution.We take the easy way
out here. We here present the estimate, inductively, by using the representation of
solution and some properties with respect to the solution operator. To begin, choose
some auxiliary lemmas and conclusions given in [28, 32] that involved the resolvent
operator and the expression of the solution for problem (7).

Definition 5 ([28]) {Sα(t, Bs)}t≥0 ⊂ B(Ωs) is said to be an α-resolvent family gen-
erated by the operator Bs if the following assertions are fulfilled:

(i) Sα(t, Bs)φs ∈ C([0,+∞);Ωs) and Sα(0, Bs) = Is , for every φs ∈ Ωs ;
(ii) Sα(t, Bs)D(Bs) ⊂ D(Bs) and Bs Sα(t, Bs)φs = Sα(t, Bs)Bsφs for any φs ∈

D(Bs), t ≥ 0;
(iii) Sα(t, Bs)φs = φs + (gα ∗ Sα)(t, Bs)Bsφs for all φs ∈ D(Bs), where gα(t) =

tα−1

Γ (α)
for t > 0.



98 L. Liu et al.

Lemma 4 ([28]) Let Bs generates an α-resolvent family {Sα(t, Bs)}t≥0 ⊂ B(Ωs)

and fs(·) ∈ C([0, T ];Ωs). If us is a mild solution of (7), then it has the following
form

us(t) = Sα(t, Bs)φs + (Pα ∗ fs)(t), t ∈ [0, T ],

where Sα(t, Bs) = (g1−α ∗ Pα)(t), Pα(t) = d
dt (gα ∗ Sα)(t).

Then, choose the following important property of analytic solution operator,which
is obtained by repeated application of (iii) in above Definition 5.

Lemma 5 ([25]) If Bs generates an α-resolvent family {Sα(t, Bs)}t≥0, then for φs ∈
D(B�

s ) with �α ≥ 1, Sα(t, Bs)φs is differentiable and

d

dt

(
Sα(t, Bs)φs

) =
�−1∑

k=1

gkα(t)Bk
s φs + (

g�α−1 ∗ Sα

)
(t, Bs)B

�
s φs, 0 < t ≤ T .

This lemma leads to an estimate (5). Let us split us(·) into two parts. That is,
us(·) = ws(·) + vs(·), where ws(t) = Sα(t, Bs)φs and vs(t) = (Pα ∗ fs)(t) for 0 ≤
t ≤ T . According to Lemma 5, it suffices to consider ‖v′

s(t)‖Ωs . Since the source
term is smooth, i.e., fs(·) ∈ C1([0, T ];Ωs), for 0 < t ≤ T we have

‖v′
s(t)‖Ωs = ‖ d

dt
(Pα ∗ fs)(t)‖Ωs

≤ ‖
∫ t

0
Pα(θ) f ′

s (t − θ)dθ‖Ωs + ‖Pα(t)‖Ωs→Ωs‖ fs‖C(Ωs )

≤
∫ t

0
‖Pα(θ)‖Ωs→Ωs dθ‖ f ′

s‖C(Ωs ) + ‖Pα(t)‖Ωs→Ωs‖ fs‖C(Ωs ). (13)

Furthermore, with regard to the bound of the operator Pα, one has the following
result.

Lemma 6 ([8, 28]) Assume that 0 < α < 1 and the hypotheses of Lemma 5 are
true. Then there exists a constant C satisfying ‖Pα(t)‖Ωs→Ωs ≤ Ceωt (1 + tα−1) for
0 < t ≤ T .

And then, from (13), we can deduce an estimate about the solution of the nonho-
mogeneous semidiscrete difference scheme (7).

Theorem 4 Let the condition (B) hold with ω = 0 and 0 < α < 1. Assume the
operators Bs generate analytic C0-semigroups, φs ∈ D(B�

s )with �α ≥ 1 and fs(·) ∈
C1([0, T ];Ωs). Then, the solution of Eq. (7) satisfies

‖u′
s(t)‖Ωs ≤ C(1 + tα−1), for all t ∈ (0, T ].
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Proof According to inequality (13) and Lemma 4, we can obtain

‖v′
s(t)‖Ωs ≤

∫ t

0
‖Pα(θ)‖Ωs→Ωs dθ‖ f ′

s‖C(Ωs ) + ‖Pα(t)‖Ωs→Ωs‖ fs‖C(Ωs )

≤ C
∫ t

0
(1 + θα−1)dθ‖ f ′

s‖C(Ωs ) + C(1 + tα−1)‖ fs‖C(Ωs )

≤ Ctα + Ct + C + Ctα−1

≤ CT α + CT + C + Ctα−1

≤ C(1 + tα−1), t ∈ (0, T ]. (14)

Hence, we have ‖u′
s(t)‖Ωs ≤ ‖w′

s(t)‖Ωs + ‖v′
s(t)‖Ωs ≤ C(1 + tα−1) for all

0 < t ≤ T .

Actually, no matter how smooth the initial data takes, the solutions of the problem
(7) will exhibit weak singularity at the initial time t = 0.

3 Truncation Errors

In this section, we show that the approximation approach (8) can achieve αth-order
accuracy of convergence in time. To achieve this, we first need to bound the truncation
error (c∂α

t us)(tn) − Dα
tn us(·). According to the representations of Caputo fractional

derivative and its discretization scheme, we have

(c∂α
t us)(tn) − Dα

tn us(·) =
∫ tn

0

(tn − z)−α

Γ (1 − α)
u′
s(z)dz −

n−1∑

j=0

b(n)
j+1

u j+1
s − u j

s

τα

=
n−1∑

j=0

∫ t j+1

t j

(
(tn − z)−α

Γ (1 − α)
− b(n)

j+1τ
−α

)
u′
s(z)dz

=
n−1∑

j=0

[ ∫ ( j+1)τ

jτ

(nτ − z)−α

Γ (1 − α)
u′
s(z)dz

−
∫ ( j+1)τ

jτ

Γ (n − j − α)

Γ (1 − α)Γ (n − j)
τ−αu′

s(z)dz

]
:=

n−1∑

j=0

Kn, j .

(15)

In many works (see, e.g., [14, 39]), the results of Caputo derivatives of certain
important functions have been provided. With the help of these conclusions, we
present a characterization of the smoothness properties of a function in the following
lemma.
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Lemma 7 Let V (t) = (t + ξ − 1)α, ξ ≥ 2 is an arbitrary integer and α ∈ (0, 1).
Then the Caputo fractional derivative of function V (·) at t = 1 satisfies

(
c∂α

t V
)
(1) = O

(
(ξ − 1)α−2

)
.

Proof For function V (t) = (t + ξ − 1)α, it follows from [14] that

(
c∂α

t V
)
(t) = Γ (α + 1)

Γ (α)

(ξ − 1)α−2t1−α

Γ (2 − α)
2F1

(
1, 1 − α; 2 − α;− t

ξ − 1

)
,

where 2F1(a, b; c; d) denotes the Gauss’ hypergeometric function, which is defined
by

2F1(a, b; c; z) = Γ (c)

Γ (a)Γ (b)

∞∑

k=0

Γ (a + k)Γ (b + k)

Γ (c + k)k! zk, (a, b ∈ R,−c /∈ N) .

Then, let t = 1, we have

(c∂α
t V )(1) = Γ (α + 1)

Γ (α)

(ξ − 1)α−211−α

Γ (2 − α)
2F1

(
1, 1 − α; 2 − α;− 1

ξ − 1

)

= α

Γ (2 − α)

∞∑

k=0

(1 − α)Γ (1 + k)

(k + 1 − α)k! (−1)k(ξ − 1)α−2−k

= α

Γ (1 − α)

∞∑

k=0

(−1)k

(k + 1 − α)
(ξ − 1)α−2−k

= O
(
(ξ − 1)α−2

)
.

The proof is completed.

Theorem 5 Assume the hypothesis of Theorem 4 holds. Let us(·) be the solution
of the general semidiscrete difference scheme (7). Then we have the following local
truncation error estimate

‖(c∂α
t us)(tn) − Dα

tn us(·)‖Ωs ≤ Cn−α. (16)

That is, the algorithm (8)of approximation forCaputo fractional derivative converges
at a rate O(ταt−α

n ), n = 1, 2, . . . , N.

Proof In terms of the weak regularity near the initial time t = 0, we split the sum-
mation (15) as follows and deal with it separately.

n−1∑

j=0

Kn, j =
⎧
⎨

⎩

K1,0, n = 1,

Kn,0 + Kn,n−1 +
n−2∑
j=1

Kn, j , n ≥ 2.
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Note that when n = 2, the third term on the right-hand side vanishes. Next, we
estimate each of the three parts separately. For Kn,0, when n = 1, we have

‖K1,0‖Ωs = ‖(c∂α
t us)(t1) − Dα

t1us(·)‖Ωs

=
∥∥∥∥
∫ τ

0

(τ − z)−α

Γ (1 − α)
u′
s(z)dz − b(1)

1 τ−α
(
us(t1) − us(t0)

)∥∥∥∥
Ωs

≤ 1

Γ (1 − α)

∫ τ

0
(τ − z)−αCzα−1dz +

∫ τ

0
τ−α‖u′

s(z)‖Ωs dz

≤ C

Γ (1 − α)
B(1 − α,α) + Cτ−ατα ≤ C,

where we have used Theorem 4 at above two inequalities. In addition, B(1 − α,α)

is a Beta function. For fixed n ≥ 2, one has

‖Kn,0‖Ωs =
∥∥∥∥

1

Γ (1 − α)

∫ τ

0
(nτ − z)−αu′

s(z)dz −
∫ τ

0
b(n)
1 τ−αu′

s(z)dz

∥∥∥∥
Ωs

≤ C

Γ (1 − α)
(nτ − τ )−α

∫ τ

0
zα−1dz + CΓ (n − α)

Γ (1 − α)Γ (n)

∫ τ

0
τ−αzα−1dz

≤ C

Γ (1 − α)

(
nτ − n

2
τ
)−α

τα + C

Γ (1 − α)
n−α

(
1 + O(n−1)

)
τ−α τα

α

≤ Cn−α + C

Γ (1 − α)
(n−α + Cn−α−1)τ−α τα

α

≤ Cn−α + Cn−α−1 ≤ Cn−α.

Therefore, we have

‖Kn,0‖Ωs ≤ Cn−α, n ≥ 1.

Let us consider the terms
∑n−2

j=1 Kn, j , n ≥ 3. Let z = ξτ , we have

n−2∑

j=1

Kn, j =
n−2∑

j=1

[ ∫ ( j+1)τ

jτ

(nτ − z)−α

Γ (1 − α)
u′
s(z) − Γ (n − j − α)

Γ (1 − α)Γ (n − j)
τ−αu′

s(z)dz

]

= 1

Γ (1 − α)

n−2∑

j=1

[ ∫ j+1

j

τ1−α

(n − ξ)α
u′
s(ξτ ) − Γ (n − j − α)

Γ (n − j)
τ1−αu′

s(ξτ )dξ

]

= 1

Γ (1 − α)

n−2∑

j=1

∫ j+1

j
τ1−α

(
(n − ξ)−α − Γ (n − j − α)

Γ (n − j)

)
u′
s(ξτ )dξ.

In terms of a well-known asymptotic formula in [34]

zb−a Γ (z + a)

Γ (z + b)
= 1 + O(z−1), z → ∞, (17)



102 L. Liu et al.

we have

n−2∑

j=1

Kn, j = τ 1−α

Γ (1 − α)

n−2∑

j=1

∫ j+1

j

(
(n − ξ)−α − Γ (n − ξ + ξ − j − α)

Γ (n − ξ + ξ − j)

)
u′
s(ξτ )dξ

= τ 1−α

Γ (1 − α)

n−2∑

j=1

∫ j+1

j

(
(n − ξ)−α −

(
1 + O

(
(n − ξ)−1

))

(n − ξ)α

)
u′
s(ξτ )dξ

= τ 1−α

Γ (1 − α)

n−2∑

j=1

∫ j+1

j
−(n − ξ)−αO

(
(n − ξ)−1

)
u′
s(ξτ )dξ.

Then, there exists a constant C such that

∥∥∥∥∥∥

n−2∑

j=1

Kn, j

∥∥∥∥∥∥
Ωs

≤ Cτ1−α
n−2∑

j=1

∫ j+1

j
(n − ξ)−α−1‖u′

s(ξτ )‖Ωs dξ

≤ Cτ1−α
n−2∑

j=1

∫ j+1

j
(n − ξ)−α−1(ξτ )α−1dξ ≤ C

n−2∑

j=1

(n − j − 1)−α−1 jα−1

= C

⎛

⎝
� n
2 �−1∑

j=1

(n − j − 1)−α−1 jα−1 +
n−2∑

j=� n
2 �

(n − j − 1)−α−1 jα−1

⎞

⎠

≤ C

⎛

⎝
� n
2 �−1∑

j=1

(n − �n
2

�)−α−1 jα−1 + (
n

2
)−2

n−2∑

j=� n
2 �

(n − j − 1)−α−1 jα+1

⎞

⎠

≤ C

⎛

⎝n−α−1
� n
2 �−1∑

j=1

jα−1 + n−2
∫ n−1

0
(n − z − 1)−α−1zα+1dz

⎞

⎠

≤ C(n−α + n−1) ≤ Cn−α.

It remains to estimate Kn,n−1, n ≥ 2.

‖Kn,n−1‖Ωs =
∥∥∥∥
∫ nτ

(n−1)τ

(nτ − z)−α

Γ (1 − α)
u′
s(z)dz − b(n)

n τ−α(us(tn) − us(tn−1))

∥∥∥∥
Ωs

≤
∥∥∥∥
∫ nτ

(n−1)τ

(nτ − z)−α

Γ (1 − α)
u′
s(z)dz‖Ωs + ‖

∫ nτ

(n−1)τ
τ−αu′

s(z)dz

∥∥∥∥
Ωs

≤ (1 + Γ (1 − α))

∥∥∥∥
∫ nτ

(n−1)τ

(nτ − z)−α

Γ (1 − α)
u′
s(z)dz

∥∥∥∥
Ωs

≤ C(1 + Γ (1 − α))

∫ nτ

(n−1)τ

(nτ − z)−α

Γ (1 − α)
zα−1dz.
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Let z = (
ν + (n − 1)

)
τ . Then it follows from Lemma 7 that

‖Kn,n−1‖Ωs ≤ C(1 + Γ (1 − α))

∫ 1

0

(1 − ν)−α

Γ (1 − α)
(ν + n − 1)α−1dν

= C
(1 + Γ (1 − α))

α

(
c∂α

t (t + n − 1)α
)
(1)

= C
(1 + Γ (1 − α))

α
O(n − 1)−(2−α)

≤ Cn−(2−α).

Taken together, these observations deduce that the local truncation error satisfying

‖(c∂α
t us)(tn) − Dα

tn us(·)‖Ωs ≤ C(n−α + n−(2−α)) ≤ Cn−α.

This proof is completed.

Remark 2 By virtue of the results in Theorem 4 deduced by resolvent family the-
ory, we can clearly see the influence of weak regularity at the initial time on the
convergence rates of the truncation errors. The most previous convergence analysis
of the existing schemes requires that the problem (1) has a unique and sufficiently
smooth solution. In principle, it is impossible to obtain higher global convergence
rates for the discretization methods under the consideration of weak regularity near
the initial time t = 0. We adopt the idea of layering in temporal direction to establish
the truncation error estimates of the fully discrete difference schemes. Due to the
limited regularity of the solution, we could interpret the result O(ταt−α

n ) to read:
under the uniform grid, the convergence rates of the local truncation errors could
reach O(τα) at a fixed distance from the initial time t = 0.

4 Global Error Analysis

We consider the global convergence rates of the implicit difference scheme (9) and
the explicit difference scheme (10) in this section. We begin our analysis of the fully
discrete difference schemes (9) and (10) with a pair of stability theorems.

Theorem 6 Suppose condition (B) holds with ω = 0. Then the implicit difference
scheme (9) is stable, i.e.,

‖ũns ‖Ωs×Qτ
≤ M‖φs‖Ωs + M exp(α)(nτ )α‖ f ns ‖Ωs×Qτ

,

where nτ ∈ [0, T ], M is a constant which is independent of s and τ .
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Proof In terms of the expression of the solution of the implicit difference scheme in
Theorem 2, Remark 1 and Lemma 1, we have

‖ũns ‖Ωs×Qτ
= sup

1≤ j≤n
‖ũs( jτ )‖Ωs

≤ sup
1≤ j≤n

‖
j∑

m=1

c( j)
m Rm

s φs‖Ωs + sup
1≤ j≤n

‖τα

j∑

k=1

j−k+1∑

m=1

d( j)
m,k R

m
s fs(kτ )‖Ωs

≤ M‖φs‖Ωs

n∑

m=1

c(n)
m + Mτα

n∑

k=1

n−k+1∑

m=1

d(n)
m,k sup

1≤ j≤n
‖ fs( jτ )‖Ωs

= M‖φs‖Ωs + MταSn sup
1≤ j≤n

‖ fs( jτ )‖Ωs

≤ M‖φs‖Ωs + M exp(α)(nτ )α‖ f ns ‖Ωs×Qτ
.

The proof is completed.

Then, we discuss the stability of the explicit difference schemes (10). Analyzing
the stability of the explicit difference scheme in a similar way as the we analyzed the
implicit difference scheme, we conclude the scheme (10) is stable in the maximum
norm.

Theorem 7 Suppose condition (B) holds with ω = 0. Assume that there exists a
number M1 ≥ 1 satisfying ‖ταBs‖Ωs→Ωs < α/(M1 + 2). Then the explicit difference
scheme (10) is stable, i.e.,

‖ûns ‖Ωs×Qτ
≤ M‖φs‖Ωs + M exp(α)(nτ )α‖ f ns ‖Ωs×Qτ

,

where nτ ∈ [0, T ], M is a constant which is independent of s and τ .

Proof By means of the expression of the solution of the explicit difference scheme
in Theorem 3, it follows from Lemmas 2 and 3 that

‖ûns ‖Ωs×Qτ
= sup

1≤ j≤n
‖ûs( jτ )‖Ωs

≤ sup
1≤ j≤n

∥∥∥∥∥

j∑

k=0

γ
( j)
k R̂k

sφs‖Ωs + sup
1≤ j≤n

‖τα

j−1∑

k=0

j−k−1∑

m=0

δ
( j)
m,k R̂

m
s fs(kτ )

∥∥∥∥∥
Ωs

≤ M‖φs‖Ωs sup
1≤ j≤n

j∑

k=0

γ
( j)
k + Mτα sup

1≤ j≤n
‖ fs( jτ )‖Ωs

n−1∑

k=0

n−k−1∑

m=0

δ(n)
m,k

= M‖φs‖Ωs + Mτα‖ f ns ‖Ωs×Qτ

n−1∑

k=0

n−k∑

m=1

d(n)
m,k+1.
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Change the bounds of the index of summation in the last equality, i.e., let j = k + 1.
By using Lemma 1, one has

‖ûns ‖Ωs×Qτ
≤ M‖φs‖Ωs + Mτα‖ f ns ‖Ωs×Qτ

n∑

j=1

n− j+1∑

m=1

d(n)
m, j

= M‖φs‖Ωs + Mτα‖ f ns ‖Ωs×Qτ
Sn

≤ M‖φs‖Ωs + M exp(α)(nτ )α‖ f ns ‖Ωs×Qτ
.

The proof is completed.

Next, we will make a more detailed study of error analysis for the difference
schemes (9) and (10). Initially, we present a result with respect to the coefficients
which might be helpful to estimate the errors.

Lemma 8 For any n ∈ N
+, we have

n∑

j=1

n− j+1∑

m=1

d(n)
m, j j

−α ≤ Γ (1 − α).

Proof By Lemma 2 and equality (12), we can obtain

n∑

j=1

n− j+1∑

m=1

d(n)
m, j b

(n−m)
n−m− j+1 =

n−1∑

j=0

n− j∑

m=1

d(n)
m, j+1b

(n−m)
n−m− j =

n−1∑

j=0

n− j−1∑

m=0

δ(n)
m, j b

(n−m)
n−m− j = 1.

In terms of a completed version of the asymptotic formula (17) (also see [34]),

Γ (z + a)/Γ (z + β) = zα−β
[
1 + 1/2z−1(a − β)(a + β − 1) + O

(
z−2

)]
,

one has

b(n−m)
n−m− j+1 = 1

Γ (1 − α)

Γ ( j − α)

Γ ( j)
= j−α

Γ (1 − α)

[
1 + α(α + 1)

2
j−1 + O

(
j−2

)]
,

where 0 < α < 1, j = 1, 2, . . . Then, we have j−α ≤ Γ (1 − α)b(n−m)
n−m− j+1. Since

d(n)
m, j ≥ 0, we have

n∑

j=1

n− j+1∑

m=1

d(n)
m, j j

−α ≤ Γ (1 − α)

n∑

j=1

n− j+1∑

m=1

d(n)
m, j b

(n−m)
n−m− j+1 ≤ Γ (1 − α).

The proof is completed.
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Now, we give temporal error estimates for the implicit difference scheme (9).

Theorem 8 Let us(·) be the solution of problem (7) and ũns be the solution of implicit
difference scheme (9). Assume that φs ∈ D(B�

s )with �α > 1, fs(·) ∈ C1([0, T ];Ωs)

hold. Then, there exists a positive constant C such that

‖ũns − us(tn)‖Ωs ≤ Cτα,

where C is a constant independent of s, tn ∈ [0, T ].
Proof Let δs(tn) = us(tn) − ũns , where us(tn) represents the value of the solution of
the semidiscrete scheme (7) at mesh point t = tn . Obviously, we have δs(0) = 0 and

Dα
tnδs(·) − Bsδs(tn) = Dα

tn

(
us(·) − ũns

) − B
(
us(tn) − ũns

)

= Dα
tn us(·) − Bsus(tn) − f ns

= Dα
tn us(·) − c∂α

t us(tn) := r̃s(tn).

According to Theorem 2, we have

δs(tn) = τα
n∑

j=1

n− j+1∑

m=1

d(n)
m, j R

m
s r̃s(t j ).

Then, according to Remark 1, Theorem 5 and Lemma 8, we have

‖δs(tn)‖Ωs =
∥∥∥∥∥∥
τα

n∑

j=1

n− j+1∑

m=1

d(n)
m, j R

m
s r̃s(t j )

∥∥∥∥∥∥
Ωs

≤ τα
n∑

j=1

n− j+1∑

m=1

d(n)
m, j‖Rm

s ‖Ωs→Ωs ‖̃rs(t j )‖Ωs

≤ Cτα
n∑

j=1

n− j+1∑

m=1

d(n)
m, j j

−α ≤ Cτα.

Therefore, the proof is completed.

By Theorem 5 and equality (11), we obtain the following convergence theorem
for the fully discrete explicit difference scheme (10).

Theorem 9 Let us(·) be the solution of problem (7) and ûns be the solution of explicit
difference scheme (10). Assume that ‖ταBs‖Ωs→Ωs < α/(M1 + 2) with some M1 ≥
1 and φs ∈ D(B�

s ) with �α > 1, fs(·) ∈ C1([0, T ];Ωs) hold. Then, there exists a
positive constant C such that
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‖us(tn) − ûns ‖Ωs ≤ Cτα,

where C is independent of s and τ .

Proof To prove the required convergence rate, we proceed in a way similar to the
proof of Theorem 8. Let ζs(tn) = us(tn) − ûns , where us(tn) represents the value of
the solution of problem (7) at mesh point t = tn . Then, we have

Dα
tn (us − ζs)(·) = Bs(us(tn−1) − ζs(tn−1)) + f n−1

s ,

and ζs(0) = 0. Thereupon, one yields

Dα
tnζs(·) = Bsζs(tn−1) + Dα

tn us(·) − Bsus(tn−1) − f n−1
s

= Bsζs(tn−1) + Dα
tn us(·) − c∂α

t us(tn−1)

= Bsζs(tn−1) + Dα
tn us(·) − c∂α

t us(tn) + c∂α
t us(tn) − c∂α

t us(tn−1)

= Bsζs(tn−1) + r̃s(tn) + Bs
(
us(tn) − us(tn−1)

) + fs(tn) − fs(tn−1)

= Bsζs(tn−1) + r̂s(tn−1),

where r̂s(tn−1) = r̃s(tn) + Bs
(
us(tn) − us(tn−1)

) + fs(tn) − fs(tn−1). It follows from
formula (11) that for all n ≥ 1,

ζs(tn) = τα
n−1∑

j=0

n− j−1∑

m=0

δ(n)
m, j R̂

m
s r̂s(t j ).

When n = 1, in terms of the condition ‖ταBs‖Ωs→Ωs < α/(M1 + 2), there exists
ξ ∈ (0, τ ) such that

‖r̂s(t0)‖Ωs = ‖̃rs(t1) + Bs
(
us(t1) − us(t0)

) + fs(t1) − fs(t0)‖Ωs

≤ Cτατ−α + ‖Bs‖Ωs→Ωs

∫ τ

0
‖u′

s(z)‖Ωs dz + ‖ f ′
s (ξ)‖Ωs (t1 − t0)

≤ C + ‖Bs‖Ωs→Ωs

∫ τ

0
zα−1dz + Cτ ≤ C + ‖ταBs‖Ωs→Ωs + Cτ ≤ C,

where we employ the mean value theorem and the result in Theorem 4. When n ≥ 2,
by virtue of Lemma 7, there exist η, ξ2 ∈ (tn−1, tn) such that



108 L. Liu et al.

‖r̂s(tn−1)‖Ωs ≤ ‖̃rs(tn)‖Ωs + ‖ταBs‖Ωs→Ωs

‖us(tn) − us(tn−1)‖Ωs

τα

+ ‖ f ′
s (ξ2)‖Ωs (tn − tn−1)

< Cn−α + α

M1 + 2

∥∥∥∥
∫ nτ

(n−1)τ
τ−αu′

s(z)dz‖Ωs + τ‖ f ′
s (ξ2)

∥∥∥∥
Ωs

≤ Cn−α + CαΓ (1 − α)

M1 + 2

∫ nτ

(n−1)τ

(nτ − z)−α

Γ (1 − α)
zα−1dz + Cτ

≤ Cn−α + CαΓ (1 − α)

M1 + 2

∫ 1

0

(1 − ν)−α

Γ (1 − α)
(ν + n − 1)α−1dν + Cn−1

≤ Cn−α + CαΓ (1 − α)

α(M1 + 2)

(
c∂α

t (t + n − 1)α
)
(1) + Cn−1

= Cn−α + CΓ (1 − α)

(M1 + 2)
O(n − 1)−(2−α) + Cn−1

≤ Cn−α + Cn−(2−α) + Cn−1 ≤ Cn−α. (18)

Hence, we have ‖r̂s(tn−1)‖Ωs ≤ Cn−α, for all n ≥ 1. Then according to Lemmas 3
and 8, we obtain

‖ζs(tn)‖Ωs ≤ τα
n−1∑

j=0

n− j−1∑

m=0

δ(n)
m, j‖R̂m

s ‖Ωs→Ωs ‖r̂s(t j )‖Ωs ≤ Cτα
n−1∑

j=0

n− j−1∑

m=0

δ(n)
m, j ( j + 1)−α

≤ Cτα
n−1∑

j=0

n− j∑

m=1

d(n)
m, j+1( j + 1)−α ≤ Cτα

n∑

j=1

n− j+1∑

m=1

d(n)
m, j j

−α ≤ Cτα. (19)

Therefore, the proof is completed.

Summarizing, Theorem 8 shows that the implicit difference scheme based on
Ashyralyev’s fractional difference derivative has a convergence rate O(τα). On the
other hand, Theorem 9 shows that the convergence rate of the explicit difference
scheme can also reach α-th accuracy under some additional conditions.

5 Numerical Results

In order to demonstrate the effectiveness of our theoretical analysis, some experi-
ments are now presented. We consider the case d = 1, i.e., Ω = (0,π) ⊂ R

1. Con-
sider the following time fractional subdiffusion equation

c∂α
t u(x, t) − ∂2u(x, t)

∂x2
= ψ(x, t), 0 < x < π, 0 < t ≤ 2, (20)

with the following initial and boundary value conditions:
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u(x, 0) = 2 sin(2x), 0 < x < π,

u(0, t) = u(π, t) = 0, 0 ≤ t ≤ 2,

where ψ(x, t) = (
2t2−α/Γ (3 − α) + Γ (1 + α)

)
sin(2x) + 4(tα + t2 + 2) sin(2x).

The analytical solution of the above problem is u(x, t) = (tα + t2 + 2) sin(2x).
Obviously, the solution has limited smoothness since u ∈ C1 can not hold.

In this numerical result, we focus on the temporal convergence rates. The second-
order spatial derivatives are discretised by means of standard approximations [19]
with a convergence rate O(h2),

∂2u(xs, tn)

∂x2
≈ Δ2

xu(xs, tn) := uns+1 − 2uns + uns−1

h2
.

Then, we have a fully discrete difference scheme,

{
Dα

tn us(·) = Δ2
xu

n
s + ψn

s ,

us(0) = 2 sin(2xs),
(21)

which works in the uniform mesh Qhτ = Qh × Qτ = {xs = sh, s = 0, 1, . . . , S} ×
Qτ , h = π/S is the space step size, τ = 2/N is the time step size. Next, we check the
convergence of the implicit difference method (9). The maximum L2 error, defined
by

�S,N = max
1≤n≤N

∥∥us(tn) − uns
∥∥

Ωs
= max

1≤n≤N

√√√√h
S−1∑

s=1

(
uns − u(xs, tn)

)2
,

is adopted in this example. The solution curves of Eq. (20) and the scheme (21)
with different α, α = 0.1, α = 0.4, α = 0.9, are shown in Fig. 1 to confirm the
convergence of the numerical results.We list themaximum L2 errors and the observed
experimental orders of convergence for scheme (21) when α = 0.4, α = 0.7 and
α = 0.9 in Table1, respectively.

Fig. 1 The solutions curves at T = 2 with N = 170, S = 100 for different α
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Table 1 Errors and numerical convergence orders for different α, S=1000

τ α = 0.4 α = 0.7 α = 0.9

Error Order Error Order Error Order

1/100 1.367e-2 3.854e-3 6.063e-4

1/200 1.145e-2 0.255 2.534e-3 0.605 3.657e-4 0.729

1/400 9.424e-3 0.281 1.623e-3 0.643 2.070e-4 0.821

1/800 7.637e-3 0.303 1.023e-3 0.665 1.139e-4 0.862

1/1600 6.108e-3 0.322 6.394e-4 0.679 6.182e-5 0.882

1/3200 4.831e-3 0.338 3.971e-4 0.687 3.334e-5 0.891

For completeness sake, the implementation methods are briefly described here. In
the numerical examples,�S,N denotes the observed orders of convergence for t com-
ponent, which is computed using the standard formula �S,N = log2

(
�S,N/�S,2 N

)
.

According to the experiment data in Table1,we canfind that the lower-order accuracy
can be encountered if α is close to zero.

6 Conclusion

In this work, projection methods are applied to obtain the semidiscrete difference
schemes. A finite difference algorithm is used to approximate the time Caputo frac-
tional derivative. Based on the theory of resolvent family and the boundness of the
derivative of the solution, we prove the convergence of the proposed implicit and
explicit difference schemes for the fractional subdiffusion equation by virtue of the
idea of layering in temporal direction. Under the consideration about the weak singu-
larity of solutions, we show that the orders of the global convergence of two schemes
in temporal direction could reach O(τα). A numerical simulation is given. The theo-
retical and experimental results show that the convergence rates could reach the α-th
order accuracy.
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Degenerate Quasilinear Equations
with Dzhrbashyan—Nersesian
Derivatives and Applications

Marina Plekhanova and Elizaveta Izhberdeeva

Abstract Quasilinear equations with Dzhrbashyan—Nersesyan derivatives in
Banach spaces are studied. The existence of a unique classical solution for a Showal-
ter type initial value problem is proved for equation, which contains a degenerate
linear operator at the oldest derivative. This result and results for the corresponding
degenerate linear equation, which were obtained by authors earlier, are applied to the
consideration of initial boundary value problems for linearized and nonlinear systems
of partial differential equations with the Dzhrbashyan—Nersesyan time derivative,
which describes the dynamics of viscoelastic fluids.

Keywords Dzhrbashyan—Nersesyan derivative · Degenerate evolution equation ·
Quasilinear equation · Viscoelastic fluid

1 Introduction

One of the rapidly developing areas of the modern mathematics is the theory of
differential equations of fractional order and its applications [1–4]. Among the many
different definitions of a fractional derivative, the Riemann—Liouville [5] and the
Gerasimov—Caputo [5–7] derivatives are the most commonly used. In this paper,
we consider equations with the Dzhrbashyan—Nersesyan fractional derivative [8],
generalizes the Riemann—Liouville and Gerasimov—Caputo derivatives.

Evolution equations and systems of equations, not solvedwith respect to the oldest
time derivative, or simply degenerate evolution equations studied in this work are
often encountered among nonclassical equations of mathematical physics. In this
paper, within the framework of the proposed abstract problems we study initial-
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boundary value problems for such systems of equations, describing a motion of
viscoelastic fluids, with a Dzhrbashyan—Nersesyan time fractional derivative.

Let T > 0, z : (0, T ] → Z for some Banach space Z . The Riemann—Liouville
fractional integral of an order α > 0 of the function z has the form

Jα
t z(t) :=

t∫

t0

(t − s)α−1

Γ (α)
z(s)ds, t > 0.

The Riemann—Liouville fractional derivative of an order α > 0 for the function z is
defined as RDα

t z(t) := Dm
t Jm−α

t z(t),wherem − 1 < α ≤ m ∈ N, Dm
t := dm

dtm is the
derivative of the integer orderm ∈ N. Further, we will use the notations RDα

t := Dα
t ,

D−α
t := Jα

t for α > 0. The Gerasimov—Caputo fractional derivative of an order
α > 0 is defined as

CDα
t z(t) := RDα

t

(
z(t) −

m−1∑
k=0

z(k)(t0)
(t − t0)k

k!

)
.

Now let us define the Dzhrbashyan—Nersesyan fractional derivative [8]. For a
sequence {αk}n0 = {α0,α1, . . . ,αn} ⊂ R, such that 0 < αk ≤ 1, k = 0, 1, . . . , n ∈
N, denote

σk :=
k∑
j=0

α j − 1, k = 0, 1, . . . , n,

so −1 < σk ≤ k − 1. Further, the condition σn > 0 is assumed to be satisfied. We
define the following differential operations

Dσ0 z(t) := Dα0−1
t z(t), (1)

Dσk z(t) := Dαk−1
t Dαk−1

t Dαk−2
t . . . Dα0

t z(t), k = 1, 2, . . . , n. (2)

The Dzhrbashyan—Nersesyan fractional differentiation of an order σn , associ-
ated with the sequence {αk}n0, is defined by relations (1), (2), it includes the
Riemann—Liouville fractional derivative (α0 ∈ (0, 1),αk = 1, k = 1, 2, . . . , n) and
the Gerasimov—Caputo fractional derivative (αk = 1, k = 0, 1, . . . , n − 1, αn ∈
(0, 1)) as partial cases.

Various differential equations with Dzhrbashyan—Nersesyan derivatives were
considered in the works of A.V. Pskhu. For example, in [9] a fundamental solution of
the diffusion-wave equation with a time Dzhrbashyan—Nersesyan fractional deriva-
tive is obtained; in [10] issues of the solvability are studied for the case of a discrete
time Dzhrbashyan—Nersesyan fractional derivative.

Here in the second section the unique solvability theorem is proved, while actively
using the results obtained in the earlier paper [11] for linear equations, for a Cauchy
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type problem to a quasilinear equation in a Banach space with Dzhrbashyan—
Nersesyan fractional derivatives, which is resolved with respect to the oldest deriva-
tive. In the third section this result is used for the study of a unique solution existence
issues for a quasilinear equation in a Banach space with Dzhrbashyan—Nersesyan
fractional derivatives and with a degenerate linear operator at the oldest of them. The
fourth section contains the application of obtained abstract results for the quasilinear
degenerate equations in Banach spaces to the study of a initial-boundary value prob-
lems for a linearized and a nonlinear models of dynamics of viscoelastic Kelvin—
Voigt fluid.

2 Quasilinear Nondegenerate Equation

Let Z is a Banach space, A ∈ L(Z), i. e A is linear bounded operator from Z to
Z , denote by Z an open set in R × Zn , operator B : Z → Z is nonlinear, generally
speaking, t0 ∈ R, T > t0. Consider the initial value problem for a nonlinear equation

Dσn z(t) = Az(t) + B(t, Dσ0 z(t), Dσ1 z(t), . . . , Dσn−1 z(t)), (3)

Dσk z(t0) = zk, k = 0, 1, . . . , n − 1. (4)

The function z ∈ C((t0, T ];Z) is called a solution of problem (3), (4) on (t0, T ], if
Dσk

t z ∈ C([t0, T ];Z), k = 0, 1, . . . , n − 1, Dσn
t z ∈ C((t0, T ];Z), for all t ∈ (t0, T ]

elements (t, Dσ0 z(t), Dσ1 z(t), . . . , Dσn−1 z(t)) belong to the set Z , equality (3) and
conditions (4) are satisfied.

Firstly recall the result on the corresponding linear equation.

Theorem 1 ([11]) Let A ∈ L(Z), 0 < αk ≤ 1, k = 0, 1, . . . , n, σn > 0, α0 + αn >

1, g ∈ C([t0, T ];Z), zk ∈ Z , k = 0, 1, . . . , n − 1. Then there exists a unique solu-
tion of problem (4) for a linear equation Dσn z(t) = Az(t) + g(t) and it has the
form

z(t) =
n−1∑
k=0

(t − t0)
σk Eσn ,σk+1((t − t0)

σn A)zk+

+
t∫

t0

(t − s)σn−1Eσn ,σn ((t − s)σn A)g(s)ds.

Lemma 1 Let A ∈ L(Z), 0 < αk ≤ 1, k = 0, 1, . . . , n, σn > 0, α0 + αn > 1, B ∈
C(Z;Z), (t0, z0, . . . , zn−1) ∈ Z.Thena function z ∈ C((t0, t1];Z), such that Dσk z ∈
C([t0, t1];Z), k = 0, 1, . . . , n − 1, is a solution of problem (3), (4) on (t0, t1], if and
only if for t ∈ (t0, t1]
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z(t) =
n−1∑
k=0

(t − t0)
σk Eσn ,σk+1((t − t0)

σn A)zk+

+
t∫

t0

(t − s)σn−1Eσn ,σn ((t − s)σn A)B(s, Dσ0 z(s), Dσ1 z(s), . . . , Dσn−1 z(s))ds. (5)

Proof If a function z is a solution of problem (3), (4), then the map from [t0, t1] to
Z of the form t → B(t, Dσ0 z(t), Dσ1 z(t), . . . , Dσn−1 z(t)) is continuous. Therefore,
as it is proved in Theorem 1, equality (5) holds.

Let z ∈ C((t0, t1];Z), such that Dσk z ∈ C([t0, t1];Z), k = 0, 1, . . . , n − 1, sat-
isfies (5), then the mapping t → B(t, Dσ0 z(t), Dσ1 z(t), . . . , Dσn−1 z(t)) acts from
[t0, t1] to Z continuously and as in the proof of Theorem 1 one can directly check
that z is a solution of the problem (3), (4).

Denote x̄ := (x1, x2, . . . , xn), Sδ(x̄) = {ȳ ∈ Zn : ‖yk − xk‖Z ≤ δ, k =
1, 2, . . . , n}.
Theorem 2 Let A ∈ L(Z), 0 < αk ≤ 1, k = 0, 1 . . . , n, σn > 0, α0 + αn > 1, Z
be an open set in R × Zn, B ∈ C2(Z;Z). Then for each (t0, z0, z1, . . . , zn−1) ∈ Z
there exists a unique solution of problem (3), (4) on (t0, t1] for some t1 > t0.

Proof According to Lemma 1, it suffices to prove that for some t1 > t0 Eq.
(5) has a unique solution z ∈ C((t0, t1];Z), such that Dσk z ∈ C([t0, t1];Z), k =
0, 1, . . . , n − 1.

Let y(t) := Dσ0 z(t) = Dα0−1
t z(t), then Dσk z(t) = Dαk−1

t Dαk−1
t . . . D1

t y(t). For
the set {α0,α1, . . . ,αn} define a new set {β0 = 1,β1 = α1, . . . ,βn = αn}, num-

bers ρ0 := 0, ρk :=
k∑

l=0
βl − 1 =

k∑
l=1

βl > 0 and the corresponding Dzhrbashyan—

Nersesyan fractional derivatives Dρ0 y(t) = y(t) = Dσ0 z(t), Dρk y(t) = Dβk−1
t Dβk−1

t

Dβk−2
t . . . Dβ0 y(t) = Dσk z(t) for k = 1, 2, . . . , n. It follows from (4) that y(t0) = z0,

Dρk y(t0) = zk, k = 1, 2, . . . , n − 1.
Denote By(s) := B(s, y(s), Dρ1 y(s), . . . , Dρn−1 y(s)).Choose τ > 0, δ > 0, such

that V = [t0, t0 + τ ] × Sδ(z) ⊂ Z , where z = (z0, z1, . . . , zn−1) is the vector of ini-
tial data from (4). Consider the Banach space C {βk }n−1

0 ([t0, t0 + τ ];Z) with the norm

‖v‖
C {βk }n−1

0 ([t0,t0+τ ];Z)
:= ‖v‖C([t0,t0+τ ];Z) + max

t∈[t0,t0+τ ] ‖(t − t0)
1−β1v′(t)‖Z+

+
n−1∑
k=1

(
‖Dρkv‖C([t0,t0+τ ];Z) + max

t∈[t0,t0+τ ] ‖(t − t0)
1−βk+1Dρk+1v(t)‖Z

)
.

Denote by Sτ the set of functions y from C {βk }n−1
0 ([t0, t0 + τ ];Z), such that
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‖Dρk y(t) − zk‖Z ≤ δ, ‖(t − t0)
1−βn D1

t D
ρn−1 y(t)‖Z ≤ ‖B(t0, z0, . . . , zn−1)‖Z + δ,

∥∥∥∥(t − t0)
1−βk+1D1

t D
ρk y(t) − zk+1

Γ (ρk+1 − ρk)

∥∥∥∥Z ≤ δ, k = 0, 1, . . . , n − 2,

for t0 ≤ t ≤ t0 + τ , k = 0, 1, . . . , n − 1. In Sτ we define the metric d(y, v) = ‖y −
v‖

C {βk }n−1
0 ([t0,t0+τ ];Z)

. Note that for

ỹ := z0 +
n−1∑
k=1

(t − t0)ρk zk
Γ (ρk + 1)

Dρk |t=t0 ỹ(t) = zk, k = 0, 1, . . . , n − 1,

(t − t0)
1−βk+1D1

t D
ρk ỹ(t) = zk+1

Γ (ρk+1 − ρk)
, k = 0, 1, . . . , n − 2,

(t − t0)1−βn D1
t D

ρn ỹ(t) = 0, therefore, ỹ ∈ Sτ . Define

G(y)(t) :=
n−1∑
k=0

(t − t0)
ρk Eρn ,ρk+1((t − t0)

ρn A)zk+

+
t∫

t0

(t − s)ρn−1Eρn ,ρn ((t − s)ρn A)By(s)ds

and note that (5) has the form y(t) = G(y)(t). Denote for k = 0, 1, . . . , n − 1

By
t (s) := ∂B

∂t
(t, y0, y1, . . . , yn−1), By

k (s) := ∂B

∂yk
(t, y0, y1, . . . , yn−1).

For y ∈ C {βk }n−1
0 ([t0, t0 + τ ];Z) by virtue of Theorem 2 [11] Dρk G(y) ∈

C([t0, t0 + τ ];Z), k = 0, 1, . . . , n − 1. Moreover,

(t − t0)
1−βk+1D1

t D
ρk G(y)(t) =

n−1∑
l=k+1

(t − t0)
ρl−ρk−βk+1Eρn ,ρl−ρk ((t − t0)

ρn A)zl+

+(t − t0)
ρn−ρk−βk+1Eρn ,ρn−ρk ((t − t0)

ρn A)By(t0)+

+(t − t0)
1−βk+1

t∫

t0

(t − s)ρn−ρk−1Eρn ,ρn−ρk ((t − s)ρn A)D1
s B

y(s)ds,
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∥∥∥∥∥∥(t − t0)
1−βk+1

t∫

t0

(t − s)ρn−ρk−1Eρn ,ρn−ρk ((t − s)ρn A)D1
s B

y(s)ds

∥∥∥∥∥∥
Z

≤

≤ (t − t0)
ρn−ρk−βk+1+1Eρn ,ρn−ρk ((t − t0)

ρn‖A‖L(Z))‖By(t0)‖Z+

+(ρn − ρk − βk+1)

∥∥∥∥∥∥
t∫

t0

(t − s)ρn−ρk−βk+1−1Eρn ,ρn−ρk ((t − s)ρn A)By(s)ds

∥∥∥∥∥∥
Z

+

+(t − t0)
ρn−ρk−βk+1+1Eρn ,ρn−ρk ((t − t0)

ρn‖A‖L(Z)) max
t∈[t0,t0+τ ] ‖B

y
t (t)‖Z+

+(t − t0)
ρn−ρk Eρn ,ρn−ρk ((t − t0)

ρn‖A‖L(Z))×

×
(

n−1∑
k=0

max
t∈[t0,t0+τ ] ‖B

y
k (t)‖L(Z) max

t∈[t0,t0+τ ][(t − t0)
1−βk+1‖D1

t D
ρk y(t)‖Z ]

)
ds → 0

for t → t0+, because ρl − ρk − βk+1 = ρl − ρk+1 > 0 for l = k + 2, k + 3, . . . , n.
Herewe also use the inequality (t − t0)β ≤ 2β−1[(t − s)β + (s − t0)β] for s ∈ [t0, t].
Therefore, for k = 0, 1, . . . , n − 2

lim
t→t0+

(t − t0)
1−βk+1D1

t D
ρk G(y)(t) = zk+1

Γ (ρk+1 − ρk)
,

lim
t→t0+

(t − t0)
1−βn D1

t D
ρn−1G(y)(t) = By(t0) = B(t0, z0, z1, . . . , zn−1),

G(y) ∈ C {βk }n−1
0 ([t0, t0 + τ ];Z), and for small enough τ > 0 we have G(y) ∈ Sτ .

If ‖Dρk y(t) − zk‖Z ≤ δ for t0 ≤ t ≤ t0 + τ , k = 0, 1, . . . , n − 1, then, decreas-
ing τ > 0, if necessary, we obtain

‖Dρk G(y)(t) − zk‖Z ≤ δ

2
+ τρn−ρk Eρn ,ρn−ρk (τ

ρn‖A‖L(Z))(2cδn + K ) ≤ δ

for t0 ≤ t ≤ t0 + τ , k = 0, 1, . . . , n − 1, where K = max
s∈[t0,t0+τ ] ‖B

ỹ(s)‖Z . Here we

use for h ∈ C([t0, t0 + τ ];Z) the equalities

Dρk

t∫

t0

(t − s)ρn−1Eρn ,ρn ((t − s)ρn A)h(s)ds =
t∫

t0

∞∑
j=0

(t − s)ρn j+ρn−ρk−1A j

Γ (ρn j + ρn − ρk)
h(s)ds

=
t∫

t0

(t − s)ρn−ρk−1Eρn ,ρn−ρk ((t − s)ρn A)h(s)ds.
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Further,

∥∥∥∥∥∥(t − t0)
1−βk+1D1

t

t∫

t0

(t − s)ρn−ρk−1Eρn ,ρn−ρk ((t − s)ρn A)(By(s) − Bv(s))ds

∥∥∥∥∥∥
Z

≤ [
2τρn−ρk+1+1 + (ρn − ρk+1)τ

ρn−ρk+1 + (
τ 1−βk+1 + ‖By(t0)‖Z + δ

)
τρn−ρk

]×

× Eρn ,ρn−ρk (τ
ρn‖A‖L(Z))c‖y − v‖

C {βk }n−1
0 ([t0,t0+τ ];Z)

. (6)

For each t ∈ [t0, t0 + τ ], r = 0, 1, . . . ,m − 1, y, v ∈ Sτ , due to (6) we get

‖G(y)(t) − G(v)(t)‖
C {βk }n−1

0 ([t0,t0+τ ];Z)
≤

≤ c2τ
αn‖y − v‖

C {βk }n−1
0 ([t0,t0+τ ];Z)

≤ d(y, v)

2

for sufficiently small τ > 0. Therefore, the operator G has a unique fixed point y in
Sτ . Hence,

z(t) = D1
t

t∫

t0

(t − s)α0−1

Γ (α0)
y(s)ds = (t − t0)α0−1

Γ (α0)
z0 −

t∫

t0

(t − s)α0−1

Γ (α0)
y′(s)ds.

Since y ∈ C {βk }n−1
0 ([t0, t0 + τ ];Z), we have

∥∥∥∥∥∥
t∫

t0

(t − s)α0−1

Γ (α0)
y′(s)ds

∥∥∥∥∥∥
Z

≤ Γ (α1)(t − t0)α0+α1−1

Γ (α0 + α1)
‖y‖

C {βk }n−1
0 ([t0,t0+τ ];Z)

.

Therefore, z = D1−α0
t y ∈ C((t0, T ];Z), Dσk z = Dρk

t y ∈ C([t0, T ];Z), k =
0, 1, . . . , n − 1, z is a solution of the problem (3), (4) on (t0, t0 + τ ]. The uniqueness
of a solution follows from the uniqueness of a fixed point of G.

3 Quasilinear Degenerate Equation

When solving a degenerate evolution equation, some theory of such equations will be
required. Let L ∈ L(X ;Y), i. e L is linear bounded operator from X to Y , ker L 	=
{0}, M ∈ Cl(X ;Y), i. e it is linear closed operator from X to Y with a dense domain
DM in X . Define L-resolvent set of an operator M as ρL(M) := {μ ∈ C : (μL −
M)−1 ∈ L(Y;X )} anddenote RL

μ (M) := (μL − M)−1L , LL
μ(M) := L(μL − M)−1.
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An operator M is called (L ,σ)-bounded, if

∃a > 0 ∀μ ∈ C (|μ| > a) ⇒ (μ ∈ ρL(M)) .

Lemma 2 ([12, pp. 89, 90]) Let an operator M be (L ,σ)-bounded, γ = {μ ∈ C :
|μ| = r > a}. Then the operators

P = 1

2πi

∫

γ

RL
μ (M) dμ ∈ L(X ), Q = 1

2πi

∫

γ

LL
μ(M) dμ ∈ L(Y)

are projectors.

Put X 0 := ker P , X 1 := imP , Y0 := ker Q, Y1 := imQ. Denote by Lk (Mk) the
restriction of the operator L (M) on X k (DMk = DM ∩ X k), k = 0, 1.

Theorem 3 ([12, p. 90, 91]) Let an operator M be (L ,σ)-bounded. Then
(i) M1 ∈ L(X 1;Y1

)
, M0 ∈ Cl(X 0;Y0

)
, Lk ∈ L(X k;Yk

)
, k = 0, 1;

(ii) there exist operators M−1
0 ∈ L(Y0;X 0

)
, L−1

1 ∈ L(Y1;X 1
)
.

Denote G := M−1
0 L0. For p ∈ N0 := N ∪ {0} an operator M is called (L , p)-

bounded, if it is (L ,σ)-bounded, Gp 	= 0, Gp+1 = 0. Thus, for (L , 0)-bounded
operator M we have L0 = 0.

Consider the Showalter type [12] initial value problem

Dσk Px(t0) = xk, k = 0, 1, . . . , n − 1, (7)

for a linear inhomogeneous fractional order equation

Dσn Lx(t) = Mx(t) + g(t), (8)

where Dσn is the Dzhrbashyan—Nersesyan fractional derivative, which corre-
sponds to the set of numbers {α0,α1, . . . ,αn}, 0 < αk ≤ 1, k = 0, 1, . . . , n, g ∈
C([0, T ];Y).

A function x : (t0, T ] → DM is called a solution of problem (7), (8), if
Mx ∈ C((t0, T ];Y), Dσk Px ∈ C([t0, T ];X ), k = 0, 1, . . . , n − 1, Dσn Lx ∈
C((t0, T ];Y), equality (8) holds for all t ∈ (t0, T ] and conditions (7) hold.

Theorem 4 ([11, p. 10]) Let an operator M be (L , p)-bounded, 0 < αk ≤ 1,
k = 0, 1 . . . , n, σn > 0, α0 + αn > 1, g ∈ C([t0, T ];Y), (DσnG)l M−1

0 (I − Q)g ∈
C((t0, T ];X ), l = 0, 1, . . . , p, xk ∈ X 1, k = 0, 1, . . . , n − 1. Then there exists a
unique solution of problem (7), (8) and it has the form
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x(t) =
n−1∑
k=0

(t − t0)
σk Eσn ,σk+1((t − t0)

σn L−1
1 M)xk+

+
t∫

t0

(t − s)σn−1Eσn ,σn ((t − s)σn L−1
1 M)L−1

1 Qg(s)ds −
p∑

l=0

(Dσn G)l M−1
0 (I − Q)g(t).

Let X be an open set in R × X n , an operator N : X → Y is nonlinear. Consider
the Showalter type initial value problem for the nonlinear equation

Dσn Lx(t) = Mx(t) + N (t, Dσ0x(t), Dσ1x(t), . . . , Dσn−1x(t)), (9)

Dσk Px(t0) = xk, k = 0, 1, . . . , n − 1. (10)

Denote V := X ∩ (R × (X 1)n). In the following theorem we will use the
assumption that for all (t0, z0, . . . , zn−1) ∈ X equality N (t0, z0, . . . , zn−1) = N1(t0,
Pz0, . . . , Pzn−1) is satisfiedwith some N1 : V → Y . A function x ∈ C((t0, t1]; DM)

is called a solution of problem (9), (10) on (t0, t1], if for all k = 0, 1, . . . , n − 1
Dσk Px ∈ C([t0, t1];X ), Dσn Lx ∈ C((t0, t1];X ), for all t ∈ (t0, t1] (t, Dσ0 Px(t),
Dσ1 Px(t), . . . , Dσn−1 Px(t)) ∈ V , equality (9) is satisfied and conditions (10) are
valid.

Theorem 5 Let 0 < αk ≤ 1, k = 0, 1 . . . , n, σn > 0, α0 + αn > 1, an operator
M be (L , 0)-bounded, X be an open set in the space R × X n, N : X → Y , for
all (t0, z0, . . . , zn−1) ∈ X equality N (t0, z0, . . . , zn−1) = N1(t0, Pz0, . . . , Pzn−1) is
true with some N1 ∈ C2(V ;Y). Then for arbitrary (t0, x0, x1, . . . , xn−1) ∈ V there
exists t1 > t0, such that problem (9), (10) has a unique solution on (t0, t1].
Proof Let us introduce the notations v(t) := Px(t), w(t) := (I − P)x(t), S1 :=
L−1
1 M1. We act on Eq. (9) by the operator M−1

0 (I − Q), by the operator L−1
1 Q and

obtain a problem for the system of equations on mutually complementary subspaces
X 1 and X 0

Dσnv(t) = S1v(t) + L−1
1 QN1(t, D

σ0v(t), Dσ1v(t), . . . , Dσn−1v(t)), (11)

Dσkv(t0) = xk, k = 0, 1, . . . , n − 1, (12)

0 = w(t) + M−1
0 (I − Q)N1(t, D

σ0v(t), Dσ1v(t), . . . , Dσn−1v(t)).

Here we use the equality L0 = 0, which is valid due to (L , 0)-boundedness of the
operator M . Since V is an open set in the space R × (X 1)n , L−1

1 QN1 ∈ C2(V ;X ),
then problem (11), (12) has a unique solution v on (t0, t1] with some t1 > t0 by
Theorem 2. Hence,w(t) = −M−1

0 (I − Q)N1(t, Dσ0v(t), Dσ1v(t), . . . , Dσn−1v(t)),
where v is a solution of problem (11), (12). Thus, there is a unique solution x(t) =
v(t) + w(t) to problem (9), (10).
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4 Fractional Models of Viscoelastic Fluid Dynamics

Consider an initial-boundary value problem for a system of equations

(1 − χΔ)Dσn ,tv = νΔv − ∇ p + f, (x, t) ∈ Ω × (t0, T ), (13)

∇ · v = 0, (x, t) ∈ Ω × (t0, T ), (14)

v = 0, (x, t) ∈ ∂Ω × (t0, T ), (15)

Dσk ,tv(x, t0) = wk(x), x ∈ Ω, k = 0, 1, . . . , n − 1. (16)

Here d ∈ N, Ω ⊂ Rd is a bounded domain with a smooth boundary ∂Ω , χ, ν ∈ R.
The vector function of velocity v = (v1, v2, . . . , vd) and pressure gradient∇ p = r =
(r1, r2, . . . , rd) are unknown, function f : Ω × [t0, T ) → Rd is given, 0 < αk ≤ 1,
Dσk ,t is the Dzhrbashyan—Nersesyan fractional derivative with respect to time t ,
k = 0, 1 . . . , n. System (13), (14) presents the linearized at zero solution Kelvin—
Voigt model of viscoelastic fluid dynamics [13].

In order to reduce the initial boundary value problem (13)–(16) to abstract problem
(7), (8), we introduce the Lebesgue spaceL2 := (L2(Ω))d and Sobolev spacesH1 :=
(W 1

2 (Ω))d , H2 := (W 2
2 (Ω))d . The closure of the subspace L := {v ∈ (C∞

0 (Ω))d :
∇ · v = 0} in L2 is denoted by Hσ; H1

σ is the closure of L in H1. We will use also
the notationH2

σ := H1
σ ∩ H2. The orthogonal complement ofHσ in L2 is denoted by

Hπ , the corresponding orthoprojections are Σ : L2 → Hσ , Π = I − Σ .
Consider an operator A = ΣΔ in L. This operator, extended to a closed operator

in Hσ with domain H2
σ , has a real negative discrete spectrum of finite multiplicity

condensing only to −∞ [14]. The eigenvalues of {λk} are numbered in nonincreas-
ing order, taking into account their multiplicity. An orthonormal system {ϕk} of
corresponding eigenfunctions forms a basis in Hσ .

We define spaces and operators as follows:

X = H2
σ × Hπ, Y = L2 = Hσ × Hπ, (17)

L =
(
I − χA O
−χΠΔ O

)
∈ L(X ;Y), M =

(
νA O

νΠΔ −I

)
∈ L(X ;Y). (18)

Lemma 3 Let the spaces X and Y be defined in (17) and the operators L and M
be defined in (18), χ, ν ∈ R, χ 	= 0, χ−1 /∈ σ(A). Then the operator M is (L , 0)-
bounded,

P =
(

I O
ν(I − χA)−1ΠΔ O

)
, Q =

(
I O

−χΠΔ(I − χA)−1 O

)
. (19)
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Proof In [15, Theorem 7] it was shown that the operator M is (L , 0)-bounded and

(μL − M)−1 =
(

(μI − (μχ + ν)A)−1 O
(μχ + ν)ΠΔ(μI − (μχ + ν)A)−1 I

)
.

This implies the equalities

RL
μ (M) =

(
(μI − (μχ + ν)A)−1(I − χA) O

(μχ + ν)ΠΔ(μI − (μχ + ν)A)−1(I − χA) − χΠΔ O

)
=

=
(

(μI − ν(I − χA)−1A)−1 O
(χν(I − χA)−1A + ν I )ΠΔ(μI − ν(I − χA)−1A)−1 O

)
=

=
(

(μI − ν(I − χA)−1A)−1 O
ν(I − χA)−1ΠΔ(μI − ν(I − χA)−1A)−1 O

)
,

LL
μ(M) =

(
(I − χA)(μI − (μχ + ν)A)−1 O
−χΠΔ(μI − (μχ + ν)A)−1 O

)
=

=
(

(μI − νA(I − χA)−1)−1 O
−χΠΔ(I − χA)−1(μI − νA(I − χA)−1)−1 O

)
.

Using the expansion into the Neumann series, e.g.,

(μI − νA(I − χA)−1)−1 =
∞∑
n=0

μ−n−1[A(I − χA)−1]n,

the form of projections P , Q and the residue theorem, we obtain equalities (19).

Theorem 6 Let χ, ν ∈ R, χ 	= 0, χ−1 /∈ σ(A), 0 < αk ≤ 1, k = 0, 1, . . . , n, σn >

0, α0 + αn > 1, f ∈ C([t0, T ];L2), wk ∈ H2
σ , k = 0, 1, . . . n − 1. Then there exists

a unique solution of problem (13)–(16).

Proof If we use spaces (17), then due to Lemma 3 operators (18) and the function
g(t) = f (·, t) satisfies the conditions of Theorem 4. Note also that due to form (19)
of the projection P setting conditions (16) withwk ∈ H2

σ is equivalent to problem (7)
with xk ∈ X 1, k = 0, 1, . . . , n − 1.

For n = 1 consider the nonlinear Kelvin—Voigt model of viscoelastic dynamics
[13]

(1 − χΔ)Dσ1,tv = νΔv − (v · ∇)v − ∇ p + f, (x, t) ∈ Ω × (t0, t1). (20)

∇ · v = 0, (x, t) ∈ Ω × (t0, t1), (21)
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v = 0, (x, t) ∈ ∂Ω × (t0, t1), (22)

v(x, t0) = w0(x), x ∈ Ω. (23)

Let α0 = 1, α1 ∈ (0, 1], then Dσ0,tv = v, for α1 ∈ (0, 1) Dσ1,tv = J 1−α1
t D1

t v =
C Dα1

t v is the Gerasimov—Caputo derivative. For α1 = 1 Dσ1,tv = vt is usual partial
derivative with respect to time t .

Theorem 7 Let χ, ν ∈ R, χ 	= 0, χ−1 /∈ σ(A), α0 = 1, 0 < α1 ≤ 1, f ∈
C2([t0, T ];L2), w0 ∈ H2

σ . Then for some t1 ∈ (t0, T ] there exists a unique solution
of the problem (20)–(23) on Ω × (t0, t1).

Proof Under the conditions of this theorem σ1 = α1 > 0, α0 + αn = α0 + α1 =
1 + α1 > 1.

It follows from the form of P that condition (23) with w0 ∈ H2
σ is equivalent

to (7) with n = 1, x0 ∈ X 1, and the nonlinear operator N (v, r) = −(v · ∇)v + f
depends only on the projection of the vector (v, r) ∈ X on the subspace X 1 =
H2

σ × ν(I − χA)−1ΠΔ[H2
σ]. Indeed, N (v, r) = N (P1P(v, r), r), where due to (19)

P(v, r) = (v, ν(I − χA)−1ΠΔv), P1P(v, r) = P1(v, ν(I − χA)−1ΠΔv) = v is
the projection on the first component. So,

N1(P(v, r)) := N (P1P(v, r), r) = −(P1P(v, r) · ∇)P1P(v, r) + f = −(v · ∇)v + f.

By the Sobolev theorem embedding H 2(Ω) ⊂ Lq ′(Ω) is valid for d ≤ 4 or at
q ′ ≤ 2d/(d − 4) for d > 4, H 2(Ω) ⊂ H 1

q (Ω) is true for d ≤ 2 or at q ≤ 2d/(d − 2)
for d > 2. Take any q > 1 for d ≤ 2, or q = 2d/(d − 2) and q ′ = q/(q − 1) =
2d/(d + 2) > 1 for d > 2, then ‖N (v, r)‖2L2

≤ 2‖v‖1/q ′
Lq′ ‖v‖1/qH1

q
+ 2‖ f ‖2L2

and N :
X → Y .

The first and second order Frechet derivatives have the form for h ∈ X

N ′
1(v, r)h = −(P1Ph · ∇)v − (v · ∇)P1Ph, 〈N ′′

1 (v, r)h, h〉 = −2(P1Ph · ∇)P1Ph.

Therefore, the second order Frechet derivative of the operator N is constant with
respect to v and N1 ∈ C2(X ;Y). Therefore, all the conditions on N1 of Theorem 5
for X = R × X are fulfilled.

The work is funded by the grant of the Russian Scientific Foundation, project
22-21-20095.
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On a K-Homogeneous Metric

Marina V. Polovinkina and Igor P. Polovinkin

Abstract We consider a Riemannian metric which generates the Beltrami-Laplace
operator coinciding with the B-elliptic operator up to a factor.

Keywords B-elliptic operator · Riemannian metric · Laplace Beltrami operator ·
Isometry group · Killing conditions · Lobachevsky geometry

1 K-Homogeneous Metric

Let γ = (γ1, . . . , γn) be a vector with fixed numbers γi , i = 1 . . . , n, which are not
equal to zero at the same time. We denote by Rn+ the set of points x = (x1, . . . , xn) ∈
Rn such that xi ∈ R, when γi = 0, xi ∈ (0,+∞), when γi �= 0.

If γi �= 0, the variable xi is called singular. As usual, we will use the notation

(x)γ =
n∏

i=1

xγi
i , x = (x1, . . . , xn) ∈ Rn

+.

Let the function u(x) be twice continuously differentiable in Rn+.
We define the operator ΔBγ

by the formula

ΔBγ
u =

n∑

i=1

∂2u

∂x2i
+

n∑

i=1

γi

xi

∂u

∂xi
. (1)
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Operators of the form (1) have been studied by I. A. Kipriyanov and his disciples
(see [1–5]).

The aim of this section is to find a positively defined in Rn+ symmetric quadratic
form (metric)

ds2 =
n∑

i=1

n∑

j=1

gi j dxi dx j ,

such that the Beltrami–Laplace operator (see [6])

Δω = 1√|g|
n∑

i=1

∂

∂xi

n∑

k=1

gik
√|g| ∂

∂xk
(2)

would coincidewith the operatorΔBγ
up to amultiplier.Here the functions gi j , i, j =

1, . . . , n, are the entries of the matrix ‖gi j‖, which is the inverse of the matrix ‖gi j‖
(covariant metric tensor),

g = det ‖gi j‖.

The study of the properties of elliptic differential operators usingRiemannianmetrics
has a long history (see, for example, [7, 8]).

Theorem 1 If n ≥ 3, the entries of the matrix ‖gi j‖ are defined by formulas

gi j = δi j

n∏

i=1

xKi
i = δi j x

K , i, j = 1, . . . , n, K = (K1, . . . , Kn), (3)

where
Ki = 2γi/(n − 2), (4)

δi j is the Kronecker symbol.

Proof Indeed, since gi j = 0 for i �= j , substituting (3) into (2), we get:

Δωu = 1√|g|
n∑

k=1

∂

∂xk

(
gkk

√|g| ∂u

∂xk

)
, (5)

where

|g| = g = xnK =
n∏

i=1

N∏

i=1

n xKi
i =

n∏

i=1

x2nγi /(n−2)
i , (6)

gkk = x−K =
n∏

i=1

x−2γi /(n−2)
i . (7)
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Taking into account (6) and (7), it is possible to rewrite (5) in the following form:

Δωu = 1

xnK/2

n∑

j=1

∂

∂x j

(
x−K xKn/2 ∂u

∂x j

)
=

= x−K
n∑

j=1

∂2u

∂x2j
+ x−Kn/2

n∑

j=1

∂u

∂x j

(
n∏

l=1

xKl (n−2)/2
l

)
∂u

∂x j
=

= x−K
n∑

j=1

∂2u

∂x2j
+ x−Kn/2

n∑

j=1

n∏

l=1

xKl (n−2)/2
l

K j (n − 2)

2
x−1
j

∂u

∂x j
=

= x−K
n∑

j=1

∂2u

∂x2j
+ x−K

n∑

j=1

K j (n − 2)

2x j

∂u

∂x j
= x−KΔBγ

u,

so
Δωu = x−KΔBγ

u, (8)

which was required to be proved.

We will consider the set Rn+ equipped with a Riemannian metric

ds2 = xK
n∑

i=1

dx2i , K ∈ R, (9)

as a Riemannian space; we will denote it by K In , and we will call metric (9) the
K-homogeneous Kipriyanov metric.

Theorem 2 If n = 2, the problem of finding a metric satisfying equality (8) has no
solution.

Proof Let
g11 = E, g12 = g21 = F, g22 = G.

Then
g = det ‖gi j‖ = EG − F2, gi j = (−1)i+ j gi j

EG − F2
.

Hence

Δωu = G/|g| ∂2u

∂x21
+ E/|g| ∂2u

∂x22
−

− 2F/ |g| ∂2u

∂x1∂x2
+ Φ

(
∂u

∂x1
,

∂u

∂x2

)
, (10)
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where Φ denotes a summand that depends only on the first-order derivatives of the
function u. In order for expression (10) to coincide up to a multiplier with (1), it is
necessary that F ≡ 0. This will entail equalities

g = EG, g11 = 1/E, g22 = 1/G, g12 = g21 = g12 = g21 = 0.

Therefore,

Δωu = 1√|EG|

(
∂

∂x1

(√∣∣∣∣
G

E

∣∣∣∣
∂u

∂x1

)
+ ∂

∂x2

(√∣∣∣∣
E

G

∣∣∣∣
∂u

∂x2

))
=

= 1

E

∂2u

∂x21
+ 1

G

∂2u

∂x22
+ ∂

∂x1

√∣∣∣∣
G

E

∣∣∣∣
∂u

∂x1
+ ∂

∂x2

√∣∣∣∣
E

G

∣∣∣∣
∂u

∂x2
.

The first two terms must have the same coefficients, from where E = G. Then the
last two terms are equal to zero, which means that it is impossible to find a metric
satisfying equality (8) for n = 2.

2 Investigation of Isometric Transformations for the
K-Homogeneous Kipriyanov Metric

The fulfillment of the Killing requirements

n∑

s=1

(
ξs

∂gi j

∂xs
+ gis

∂ξs

∂x j
+ g js

∂ξs

∂xi

)
= 0, i, j = 1, . . . , n.

is a necessary and sufficient condition for a one-parameter group G with an infinites-
imal operator

X =
n∑

i=1

ξi (x)
∂

∂xi

to be an isometry group.
Obviously,

∂gi j

∂xs
= δi j

Ksx K

xs
.

Therefore, the Killing equations will take the form

n∑

s=1

(
δi jξs Ksx

K−1 + xK

(
∂ξi

∂x j
+ ∂ξ j

∂xi

))
= 0, i, j = 1, . . . , n.
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By summing and reducing by xK , we get

δi j

N∑

s=1

ξs Ks

xs
+ ∂ξi

∂x j
+ ∂ξ j

∂xi
= 0, i, j = 1, . . . , n. (11)

For i �= j , Eq. (11) can be written as

∂ξi

∂x j
+ ∂ξ j

∂xi
= 0, i, j = 1, . . . , n, i �= j. (12)

For i = j , Eq. (11) can be written in the form

2
∂ξ j

∂x j
+

n∑

s=1

Ksξs

xs
= 0, i = 1, . . . , n. (13)

The vector
ξ = (ξ1, . . . , ξn), ξ j = C x px j , (14)

where

p = (p1, . . . , pn), p1 = p2 = · · · = pn = β = −
n∑

l=1

Kl/2 − 1, (15)

is a solution to system (13), which can be checked by direct verification. Substituting
(14) into (12), taking into account (15), we obtain

0 ≡ ∂ξi

∂x j
+ ∂ξ j

∂xi
= βx p

(
xi
x j

+ x j

xi

)
, i, j = 1, . . . , n, i �= j.

Hence we get

p1 = p2 = · · · = pn = β = −
n∑

l=1

Kl/2 − 1 = 0, (16)

or, what is the same,
n∑

l=1

Kl = −2, (17)

and considering (4),
n∑

i=1

γi = 2 − N . (18)



134 M. V. Polovinkina and I. P. Polovinkin

3 Characteristics of the K-Homogeneous Kipriyanov
Metric in the Case of a Single Singular Variable

There is a well-known case of fulfillment of condition (16), or, what is the same,
(18). When γ1 = γ2 = · · · = γn−1 = 0, γn = 2 − n, K = −2, the space K In is the
Poincaremodel of then−dimensional Lobachevsky geometry.Next,wewill consider
the case of γ1 = γ2 = · · · = γn−1 = 0, γn = 0. Metric (3) will now take the form

gi j = δi j x
K
n , i, j = 1, . . . , n, (19)

where
K = 2γ/(n − 2), (20)

δi j is the Kronecker symbol.
The following facts are established by direct calculation.

Theorem 3 The Christoffel symbols of the first kind, corresponding to metric (19),
have the form

Γi j,k = KxK−1
n

2
(δikδ jn + δ jkδin − δi jδkn).

Proof From the definition of the Christoffel symbols of the first kind, taking into
account (19)–(20), we obtain:

Γi j,k = 1

2

(
∂gik

∂x j
+ ∂g jk

∂xi
− ∂gi j

∂xk

)
=

= 1

2
(δikδ jn K xK−1

n + δ jkδin K xK−1
n − δi jδknK xK−1

n ),

which was required to be proved.

Theorem 4 The Christoffel symbols of the second kind, corresponding to metric (9),
have the form

Γ k
i j = K

2xn
(δikδ jn + δ jkδin − δi jδkn).

Proof From the definition of the Christoffel symbols of the second kind and the
previous theorem, we obtain:

Γ k
i j =

n∑

h=1

gkhΓi j,h = K

2

n∑

h=1

δkh x
−K
n xK−1

n (δihδ jn + δ jhδin − δi j δhn) =

K

2xn
(δkiδ jn + δk j δin − δi j δkn).

The theorem is proved.



On a K-Homogeneous Metric 135

Theorem 5 The components of the Riemann tensor, corresponding to metric (9),
have the form

Rl
i jk = ( K 2

4x2n
− K

2x2n
)(δliδinδkn + δikδ jnδl n − δi j δknδl n − δlkδinδ jn)+

+ K 2

4x2n
(δi j δlk − δikδl j ).

Proof In accordance to definition, the components of the Riemann tensor are calcu-
lated by the formulas

Rl
i jk = ∂Γ l

ik

∂x j
− ∂Γ l

i j

∂xk
+

n∑

m=1

(Γ m
ik Γ l

m j − Γ m
i j Γ

l
mk).

We will calculate the partial derivatives included in these formulas. We have

∂Γ k
i j

∂xs
= − K

2x2n
δsn(δkiδ jn + δk jδin − δi jδkn),

from where, we obtain

∂Γ l
ik

∂x j
= − K

2x2n
δ jn(δliδkn + δlkδin − δikδln),

∂Γ l
i j

∂xk
= − K

2x2n
δkn(δliδ jn + δl jδin − δi jδln).

Therefore,

∂Γ l
i

∂x j
− ∂Γ l

i j

∂xs
= − K

2x2n
(δ jnδlkδin − δ jnδikδln − δknδl jδin + δknδi jδln).

Nowwe will calculate the last term in the definition. Taking into account Theorem 4,
we find:

n∑

m=1

(Γ m
ik Γ l

m j − Γ m
i j Γ

l
mk) =

= K 2

4x2n

n∑

m=1

(δmiδknδlmδ jn + δmiδknδl jδmn−

−δmiδknδmjδln + δmkδinδlmδ jn+

+δmkδinδl jδmn − δmkδinδmjδln − δikδmnδlmδ jn − δikδmnδl jδmn+

δikδmnδmjδln − δmiδ jnδlmδkn − δmiδ jnδlkδmn + δmiδ jnδmkδln−
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−δmjδinδlmδkn − δmjδinδlkδmn + δmjδinδmkδln + δi jδmnδlmδkn+

+δi jδmnδlkδmn − δi jδmnδmkδln).

Hence, taking into account the properties of the Kronecker symbol, in particular, the
formulas

δil = δli ,

n∑

m=1

δmiδlm = δil,

after identical transformations, we obtain a statement of the theorem.

Theorem 6 The components of the Ricci tensor, corresponding to metric (9), have
the form

Ri j = K

4x2n

(
(K − 2)(2 − n)δinδ jn + (K (n − 2) + 2)δi j

)
.

Proof Directly from the definition of the components of the Ricci tensor

Ri j =
n∑

k=1

Rk
i jk,

after identical transformations, we come to the validity of the theorem.

Theorem 7 The curvature of the space K In is calculated by the formula

R = Kn(n − 2)

xK+2
n

= 2γn

x (2γ+2n−4)/(n−2)
n

.

Proof From the definition of curvature

R =
n∑

i=1

n∑

j=1

gi j Ri j ,

we come to the statement of the theorem by performing summation and identical
transformations.
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4 Investigation of Geodesic Lines for a K-Homogeneous
Kipriyanov Metric

Theorem 8 The system of equations for geodesic lines in the space K In can be
reduced to a system of the first order

dxk
ds

= Ck

xK
n

, k = 1, . . . , n − 1, (21)

(
dxn
ds

)2

= Cn

xK
n

− B2

x2Kn
, (22)

where

B =
√√√√

n−1∑

k=1

C2
k . (23)

Proof The system of equations for geodesic lines in a given metric ‖gi j‖ has the
form

d2xk
ds2

+
n∑

i=1

n∑

j=1

Γ k
i j

dxi
ds

dx j

ds
= 0, k = 1, 2, . . . , n,

where s is the natural parameter (arc length). In our case, using the calculated
Christoffel symbols, we can write this system as

d2xk
ds2

+ K

xn

dxn
ds

dxk
ds

= 0, k = 1, . . . , n − 1, (24)

d2xn
ds2

− K

2xn

n∑

i=1

(
dxi
ds

)2

+ K

2xn

(
dxn
ds

)2

= 0. (25)

Equation (24) can be written as

x−K
n

d

ds

(
xK
n

dxk
ds

)
= 0, k = 1, . . . , n − 1. (26)

Multiplying (26) by xK
n , integrating and dividing by xK

n , we get

dxk
ds

= Ck

xK
n

, k = 1, . . . , n − 1. (27)

Substituting (27) into (25), we get



138 M. V. Polovinkina and I. P. Polovinkin

d2xn
ds2

− K B2

2x2K+1
n

+ K

2xn

(
dxn
ds

)2

= 0. (28)

Equation (28) admits a reduction of the order in a standard way. Suppose

p = p(xn) = dxn
ds

, v = p2.

Then
d2xn
ds2

= p′ p = 1

2
v′.

After that, Eq. (28) will be reduced to the form

v′ + K

xn
v = B2K

x2K+1
n

,

which is equivalent to the equation

d

dxn
(xK

n v) = B2K

xK+1
n

.

Integrating and dividing by xK
n , we get

v = p2 =
(
dxn
ds

)2

= Cn

xK
n

− B2

x2Kn
.

It is known [9], that geodesic lines have the property

n∑

i=1

n∑

j=1

gi j
dxi
ds

dx j

ds
= const.

In the case under consideration, this will lead to equality

n∑

i=1

xK
n

(
dxi
ds

)2

= const. (29)

From (21), it is easily deduced that the constant in equality (29) coincides with Cn .
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Biooscillators in Models of Genetic
Networks

Felix Sadyrbaev, Inna Samuilik, and Valentin Sengileyev

Abstract We study periodic attractors in a system of ordinary differential equations,
which is used to model genetic regulatory networks. The systems of order two and
four are considered, which posess the periodic attractors. The systems of order three
and six are considered also.

Keywords Dynamical systems · Mathematical models · Genetic networks ·
Periodic attractors

1 Introduction

Genetic regulatory networks exist in any cell of any living organism. They are respon-
sible for many important functions, including the morphogenesis, reactions to non-
favorable influences and more. The understanding of principles of their functioning
is necessary for the purposes of managing and control of them. The experimental
data, collecting by the experts in the field and their teams, usually are of huge volume
and require simplifications and systematizations. As in other natural sciences, the
mathematical models can be of great help.

There are different kinds of mathematical models for genetic regulatory networks
(GRN in short). These models use Boolean algebras, the Graph theory and more.
The interested reader can gain the necessary information from the sources [1–5]. One
of the more effective tools for the purposes of modelling the behavior of GRN and
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tracking the evolution of GRN in time is the theory of differential equations. This
model consists of a vectorial system [8]

X ′ = F(WX − Θ) − X, (1)

where X is the n-dimensional vector of the current state of a network, W stands for
the so called regulatory matrix, and Θ is the parameter vector, which defines the
individual properties of any gene. Any element of a network can be imagined as a
separate element (more precisely, any xi is the rate of expression of proteins, sending
to other elements of a network to form a collective response to current threats), called
a gene. The interaction of genes for short (relatively) periods of time is described
by the regulatory matrix W. For instance, for a two-element network with the state
vector X (t)(x1(t), x2(t)), the regulatory matrix in a general form is

W =
(

w11 w12

w21 w22

)
. (2)

The element wi j means the influence of x j on xi . The positive value corresponds to
the activation, the negative to the inhibition (repression), the zero entry means no
interactions. It is to be mentioned here that the regulatory matrices, obtained for the
real networks, mostly are sparse, with great zero fields [6, 7]. Consider three types
of interactions, namely,

Wa =
(
1 1
1 1

)
, Wi =

(
0 −2

−2 0

)
, Wm =

(
2 1

−1 2

)
. (3)

The first one corresponds to the activation, the second one can be classified as the
inhibition, and the last matrix corresponds to the mixed activation-inhibition case.
The respective system of differential equations is of the form

{
x ′
1 = 1

1+e−μ1(w11x1+w12x2−θ1) − x1,
x ′
2 = 1

1+e−μ2(w21x1+w22x2−θ2) − x2,
(4)

Notice, that in the absence of interrelation between genes, the system turns to the
linear one {

x ′
1 = −x1,
x ′
2 = x2,

(5)

representing the natural exponential decay. In all three cases there are attracting sets
in a (x1, x2)-phase plane. Let us look at the pictures. In these pictures, μ1 = μ2 =
4, θ1 = (w11 + w12)/2, θ2 = (w21 + w22)/2. The curves in blue and red are two
nullclines (Figs. 1, 2 and 3).

The role of attractors in systems of the form (5) cannot be overestimated. Future
states X (t) depend on the attractors, their locations, and their properties.
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Fig. 1 The vector field and
the nullclines for the system
(2) with the matrix Wa

Fig. 2 The vector field and
the nullclines for the system
(2) with the matrix Wi

Fig. 3 The vector field and
the nullclines for the system
(2) with the matrix Wm

2 General Models

The general system, modelling the n-dimensional GRN network, is

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

dx1
dt

= 1

1 + e−μ1(w11x1+w12x2+···+w1n xn−θ1)
− x1,

dx2
dt

= 1

1 + e−μ2(w21x1+w22x2+···+w2n xn−θ2)
− x2,

· · ·
dxn
dt

= 1

1 + e−μn(wn1x1+wn2x2+···+wnn xn−θn)
− xn.

(6)

It involves the regulatory matrix
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W =

⎛
⎜⎜⎝

w11 w12 . . . w1n

w21 w22 . . . w2n

. . .

wn1 wn2 . . . wnn

⎞
⎟⎟⎠ . (7)

where the interrelation of elements of a network is encrypted.
The right hand side of the system (6) consists of a linear and nonlinear part. The

nonlinearity is represented by a sigmoidal function. Sigmoidal functions are those,
which are continuous and smooth, and monotonically increase from zero to unity.
They have exactly one inflection point. In the system (6) the sigmoidal function
f (z) = 1

1+e−μz is used, as in many other sources.
The nullclines of the system (6) are given by the equations in the system

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

x1 = 1

1 + e−μ1(w11x1+w12x2+···+w1n xn−θ1)
,

x2 = 1

1 + e−μ2(w21x1+w22x2+···+w2n xn−θ2)
,

· · ·
xn = 1

1 + e−μn(wn1x1+wn2x2+···+wnn xn−θn)
.

(8)

The critical points of the system (6), also called the equilibria, are solutions x∗
1 to

x∗
n of the system (8).
The standard local analysis of the critical points can be made by considering the

linearized at a critical point system.

Proposition 1 The unit cube in a phase space is invariant.

Proof Consider the faces x1 = 0 and x1 = 1. The first component of the vector field,
defined by the system (6), is

1

1 + e−μ1(w11x1+w12x2+···+w1n xn−θ1)
− x1.

This values at x1 = 0 are strictly positive, since the sigmoidal function is positive. At
x1 = 1 the vector field is strictly negative, since the values of the sigmoidal function
satisfy the inequality 1

1+e−μ1(w11x1+w12x2+···+w1n xn−θ1) < 1 for any choice of the variables
and parameters.

Proposition 2 All critical points of the system (6) locate in the unit cube of the
previous proposition.

Proof Consider the system (8), which defines the nullclines of (6). As was men-
tioned, all critical points are solutions of (8). Consider the first equation in (8). The
values of the variable x1 are in the open interval (0, 1). This is true because the right
side contains the sigmoidal function 1

1+e−μ1(w11x1+w12x2+···+w1n xn−θ1) which takes values in
the same interval (0, 1). Hence the x1 coordinate of any critical point must be in
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(0, 1). Considering the remaining equations in the system (8), the conclusion can be
made that for any critical point (x∗

1 , . . . , x
∗
n ) the coordinates satisfy 0 < x∗

i < 1 for
any i = 1, . . . , n.

Remark 1 More information on mathematical modelling of GRN by systems of
ordinary differential equations can be found in [6, 7, 9, 11–15].

3 Four-Dimensional Systems

Suppose the model of four-element GRN is studied. The respective dynamical
system is ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx1
dt

= 1

1 + e−μ1(w11x1+w12x2+w13x3+w14x4−θ1)
− x1,

dx2
dt

= 1

1 + e−μ2(w21x1+w22x2+w23x3+w24x4−θ2)
− x2,

dx3
dt

= 1

1 + e−μ2(w31x1+w32x3+w33x3+w34x4−θ3)
− x3,

dx4
dt

= 1

1 + e−μn(w41x1+w42x2+w43x3+w44x4−θ4)
− x4.

(9)

with the regulatory matrix

W =

⎛
⎜⎜⎝

w11 w12 w13 w14

w21 w22 w23 w24

w31 w32 w33 w34

w41 w42 w43 w44

⎞
⎟⎟⎠ . (10)

Theorem 1 Attractors of various kinds are possible in system (9).

These attractors were constructed and studied in [15–17].

Theorem 2 Periodic attractors are possible in system (9).

These attractors were constructed in [12, 15–17].

Example 1 Consider system of the form (9) with the regulatory matrix

W =

⎛
⎜⎜⎝
2 −1 0 0
1 2 0 0
0 0 2 −1
0 0 1 2

⎞
⎟⎟⎠ . (11)

This system possesses the four-dimensional attractor which is composed of two
identical periodic solutions of the two-dimensional system, considered in the intro-
duction (for thematrixWm). This periodic attractor cannot be seen, but the projections
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Fig. 4 Projections on
(x1, x2, x3)

Fig. 5 Projections on
(x1, x2, x4)

onto two-dimensional and three-dimensional subspaces are possible to visualize. In
Figs. 4 and 5 projections of the periodic attractor and several trajectories, which start
at x1(0) = 0.1 + 0.2i, i = 0, 1, 2, 4. The periodic attractor is in black.

Suppose that the regulatory matrix W for the system (9) is the block matrix with
two dimensional blocks on the main diagonal. For the convenient reference call these
blocks B1 and B2. Other spaces are left filled with zeros. Let the two dimensional
systems, corresponding to these blocks, be

{
x ′
1 = 1

1+e−μ1(w11x1+w12x2−θ1) − x1,
x ′
2 = 1

1+e−μ2(w21x1+w22x2−θ2) − x2,
(12)

and {
x ′
3 = 1

1+e−μ3(w33x3+w34x4−θ3) − x3,
x ′
4 = 1

1+e−μ4(w43x3+w44x4−θ4) − x4.
(13)

Let both systems have the stable limit cycles with the periods T1 and T2.
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Theorem 3 Suppose that the four-dimensional attractor is obtained from the two
two-dimensional limit cycles. If their periods relate as mT2 = nT1, where m and n
are positive integers, then this attractor is a four-dimensional closed curve.

Proof Let L1 = {(x1(t), x2(t)) : t ∈ T1} and L2 = {(x3(t), x4(t)) : t ∈ T2} be the
above mentioned limit cycles.Without loss of generality, one may say, that both limit
cycles start at t = 0. This is possible due to the autonomy of both two-dimensional
systems. At the time t1 = nT1 both solutions (x1, x2) and (x3, x4) are the same as at
the point t = 0. This follows from the condition mT2 = nT1.

The proof immediately follows.

Example 2 Consider system of the form (9) with the regulatory matrix

W =

⎛
⎜⎜⎝
1.1 −1 0 0
1 1.3 0 0
0 0 2 −1
0 0 1 2

⎞
⎟⎟⎠ . (14)

This system possesses the four-dimensional attractor which is composed of two
identical periodic solutions of the two-dimensional system, considered in the intro-
duction (for thematrixWm). This periodic attractor cannot be seen, but the projections
onto two-dimensional and three-dimensional subspaces are possible to visualize. In
Figs. 6 and 7 projections of the attractor and several trajectories are depicted. The
periods of both two-dimensional limit cycle relate as T2 : T1 = 2 : 1. Therefore the
periodic attractor is the four-dimensional closed curve.

Remark 2 More examples of this kind can be found in [16].

Fig. 6 Projections on
(x1, x2, x3)
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Fig. 7 Projections on
(x1, x2, x4)

4 Three-Dimensional Systems and Six-Dimensional
Systems

We pass to the three-dimensional systems (3D for brevity) in this section. It is an
easy matter to construct a 3D system with the stable periodic solution, if examples
of 2D systems are known. Consider the regulatory matrix

W3 =
⎛
⎝ 2 1 0

−1 2 0
0 0 w33

⎞
⎠ ,

where the third x3 nullcline is a single plane or a union of three planes depending on
the number of roots of the equation (with respect to x3)

x3 = 1

1 + e−μ3(w33x3−θ3)
.

Then the 2D limit cycle (recall Fig. 3), corresponding to the 2 × 2 block in the left
upper corner, appears as the 3D limit cycle in the 3D systemwith the above regulatory
matrix. That case was studied in details in the conference paper [10].

Example 3 We will consider less trivial example of a 3D limit cycle, obtained
numerically. Consider 3D system of the form (6) with the regulatory matrix

W =
⎛
⎝ k 0 −1

−1 k 0
0 −1 k

⎞
⎠ . (15)

Other parameters are chosen asμi = 5, θi = (k − 1)/2, i = 1, 2, 3.This systemwas
shown [17] to have a limit cycle for k ∈ [0.36, 2.34]. The visualization of this limit
cycle will appear in the current text later, as a 3D projection of some 6D-attractor.
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Set k = 0.36. The respective periodic solution (the limit cycle) has the period
T1 = 6.23. This is, of course, the approximate value. We wish to find the value of k,
for which the periodic solution (also the limit cycle), has the period T2 = 2T1 (also
approximately). Such a value was found, it is k = 1.165.

Our intent is to construct the 6D-system of the form (6), which is composed of
two 3D-systems, corresponding to k1 = 0.36 and k2 = 1.165.

Consider the regulatory matrix

⎛
⎜⎜⎜⎜⎜⎜⎝

k1 0 −1 0 0 0
−1 k1 0 0 0 0
0 −1 k1 0 0 0
0 0 0 k2 0 −1
0 0 0 −1 k2 0
0 0 0 0 −1 k2

⎞
⎟⎟⎟⎟⎟⎟⎠

, (16)

and the corresponding system of the form (6). Other parameters are μi = 5, θi =
(k − 1)/2, i = 1, . . . , 6, where k = k1 for i = 1, 2, 3 and k = k2 for i = 4, 5, 6.

This system possesses the 6D attractor which is composed of two 3D periodic
solutions (limit cycles). The three dimensional projections can be visualized.

In Figs. 8 and 9 the projections of the periodic attractor for the 6D system with the
matrix (16) are shown. In fact, they are images of the limit cycles in two 3D systems,
corresponding to 3 × 3 blocks of the matrix (16). As was said above their periods
are in the relation T1 : T2 = 1 : 2.

In Figs. 10 and 11 twomore projections of the periodic attractor for the 6D system
are depicted.

The theorem, similar to Theorem1, is valid for the 6D systems of the form (6).

Theorem 4 Suppose that the six-dimensional attractor is obtained from the two
three-dimensional limit cycles. If their periods relate as mT2 = nT1, where m and n
are positive integers, then this attractor is a six-dimensional closed curve.

Fig. 8 Projections on
(x1, x2, x3)
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Fig. 9 Projections on
(x4, x5, x6)

Fig. 10 Projections on
(x1, x3, x5)

Fig. 11 Projections on
(x2, x4, x6)
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5 Notes and Comments

Generally the following result is valid. Imagine the n dimensional GRN-type system
(6) with the regulatory n × n matrix W. Let W be block matrix with the square
matrices of orders ni , placed on the main diagonal of W,

∑k
i=1 ni = n. In terms of

the systems of the form (6), it consists of k independent GRN-type systems of order
ni . We denote each system Si .

Theorem 5 Suppose each system Si has an ni -dimensional limit cycle Li with the
period Ti . Let there exist positive integers mi such that

m1T1 = m2T2 = . . . = mkTk .

Then there exists an attractor in the n-dimensional phase space, which is the n-
dimensional closed curve.

Description of biological processes, described by such attractors, is a challenge
for collaborating biologists and mathematicians.
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Numerical Method for Problem
of Scattering by a Small Thickness
Dielectric Layer on a Perfectly
Conductive Substrate

Alexey Setukha and Stanislav Stavtsev

Abstract In this work we consider the problems of scattering of a monochromatic
wave by a dielectric body in the form of a thin layer placed on a perfectly conducting
base. For this casewe formulate the boundary value problem forMaxwell’s equations
with an impedance boundary condition and reduce it to a system of two boundary
integral equations withweakly and strongly singular integrals on a perfectly conduct-
ing surface. Finally, we construct a numerical method for the considered problem
which based on solution of these integral equations.

Keywords Computational electrodynamics · Integral equations · Maxwell’s
equations · Impedance boundary conditions

Introduction

The method of integral equations is an efficient method for solving problems of
electromagnetic scattering in the monochromatic case. The problem of scattering by
an ideally conducting body or screen can be reduced to solving a boundary integral
equation for a tangential vector field (surface current) placed on the radiated surface.
In this case, the dimension of the problem is actually reduced – instead of the original
three-dimensional boundary value problem, the two-dimensional integral equation
has to be solved [1, 2].

The problems of scattering of a monochromatic wave by a dielectric body can
be reduced to a volume integral equation written in the domain occupied by the
dielectric [1, 3, 4]. In this case, the problem becomes three-dimensional, but the
advantage of this approach is that the grid is constructed only for a dielectric body.

An important class of problems corresponds to the case when a dielectric body
is considered in the form of a thin layer placed on a perfectly conducting base. In
this case, it is possible to write the system from the volume integral equation in
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this layer and the equation on a perfectly conducting surface. If the dielectric is
homogeneous, it is possible to formulate a system of boundary integral equations on
a perfectly conducting surface and on the boundary of the dielectric [5–7]. Both of
these approaches are general and do not exploit the small thickness of the dielectric
layer.

However, an approach based on the approximate allowance for the dielectric layer
by the boundary condition of the impedance type is much more economical from
the computational point of view. In this work, we develop a numerical method for
solving the target problem basing on such an approach.

In this paper, we formulate, the boundary value problem for Maxwell’s equations
with an impedance boundary condition. We reduce the considered problem to a sys-
tem of two boundary integral equations with weakly and strongly singular integrals
on a perfectly conducting surface. Next, we construct a numerical scheme for these
equations basing on the methods of piecewise constant approximations and collo-
cations. We use quadrature formulas, developed in [8, 9] for approximation of the
integral operators.

1 Problem Statement

Let us consider the problem of electromagnetic field scattering by a thin dielectric
layer placed on a perfectly conducting base. An ideally conducting base can be a
system of ideally conducting bodies, each of which is limited by a closed surface,
or a screens. The dielectric layer is located above the entire surface of a perfectly
conducting body, or above a part of this surface, and above the entire surface of a
perfectly conducting screen or above a part of the surface of this screen, on one side
(see Fig. 1). One has to find the strengths of the electric and magnetic fields of the
form

E(x)e−iωt , H(x)e−iωt .

Fig. 1 Coating coverage
scheme



Numerical Method for Problem of Scattering … 155

Fig. 2 Wave refraction in a
dielectric layer

The spatial components of these fields must satisfy Maxwell’s equations [10]:

rot E = iωμμ0H, (1)

rot H = −iωεε0E, (2)

where μ0 = 4π × 10−7 H/m – vacuum permeability, ε0 = 1/(μ0c20) – vacuum per-
mittivity, c0 = 299792458 m/s – speed of light in vacuum, ε′ – relative permittivity
andμ′ – relative permeability of themedium.Weassume that in the outer environment
we have ε′ = μ′ = 1.

Inside of the dielectric layer,Maxwell’s equations (1)–(2) also operate, butwith the
values ε′ and μ′ corresponding to the characteristics of the dielectric. The thickness
of the coating h can be variable. The values ε′ and μ′ are assumed to be constant
along the normal vector to the surface, but may change if one moves along the
surface. We assume that the quantities ε′ and μ′ are complex in general. Note that
from a physical point of view, the representation of the permittivity in the form
ε′ = ε′

1 + iε′
2 corresponds to a medium with conductivity, where there ε2 = ε′

2ε0 –
a conductivity of the medium.

The main idea of the utilized model is following: if the thickness of the layer is
small, then the layer can have a significant influence on the scattering of the incident
wave only under the condition

∣
∣ε′μ′∣∣ >> 1. Let us assume that the product of the real

parts of the quantities ε′ and μ′ is much greater than 1. Let an external field E1,H1

fall on some section of a perfectly conducting surface covered with a dielectric layer.
In the local consideration, we consider this field as a plane wave (Fig. 2). Under

the chosen assumptions, this field is refracted inside of the dielectric layer, and this
field falls on the surface of an ideal conductor in a direction close to the direction
of the normal vector. Due to interaction with the surface of an ideal conductor, a
reflected wave E2,H2 arises. This reflected wave also moves inside of the dielectric
in a direction close to the direction of the normal vector.

On the boundary between the dielectric and the external media, the boundary
conditions for the total field Etot , Htot must be satisfied

Etot = E1 + E2, Htot = H1 + H2 (3)

n × E+
tot = n × E−

tot , n × H+
tot = n × H−

tot (4)

Thus, it is possible to obtain a relation for the tangential components of the electric
and magnetic fields on the boundary between the dielectric and the external medium
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Fig. 3 Obtaining an
impedance condition

by considering the reflection problem of a plane wave incident along the normal
vector on a perfectly conducting plane, above which is located a dielectric with
parameters ε′ and μ′.

Let us consider a perfectly conducting plane. Let us introduce such Cartesian
coordinates Oxyz that the considered ideally conducting plane is determined by the
equation z = 0 and assume that the half-space z > 0 is filled with a dielectric with
parameters ε′ and μ′ (see Fig. 3).

Suppose that a plane wave falls on a plane, inside which the electric field is
represented as:

E1 = E0
1e

−ik ′z,

where E0
1 is some constant vector parallel to a perfectly conducting plane, k ′ =

ω
√

εμ, ε = ε′ε0, μ = μ′μ0.

The total field is sought in the form (3), where E2 – is a plane wave of the form

E2 = E0
2e

ik ′z

moving from the plane. On a perfectly conducting plane, the next boundary condition
must be satisfied

n × Etot = 0.

From the last condition we conclude that the total field has the form:

Etot = E0
1

(

e−ik ′z − eik
′z
)

.

Then

Htot = − i

ωμ
rot

[

E0
1

(

eik
′z − e−ik ′z

)]

= − k ′

ωμ

[

n × E0
1

] (

eik
′z + e−ik ′z

)

.

From the last relations, we can write for z = h :

n × [n × Etot ] = n × [

n × E0
1

] (

e−ik ′h − eik
′h
)

,
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n × Htot = − k ′

ωμ
n × [

n × E0
1

] (

eik
′h + e−ik ′h

)

.

Hence, we have:

n × [n × Etot ] = Z [n × Htot ] , Z = ωμ

k ′
eik

′h − e−ik ′h

eik ′h + e−ik ′h =
√

μ

ε

eik
′h − e−ik ′h

eik ′h + e−ik ′h . (5)

In a view of the relations (4), the following condition must be satisfied on the
outer side of the dielectric layer:

n × [

n × E+
tot

] = Z
[

n × H+
tot

]

. (6)

Now, let us return to the original complete problem. We neglect the thickness of
the coatings. We assume that the entire domain Ω outside the surfaces of ideally
conducting objects is occupied by the external environment and in this domain the
electric and magnetic fields satisfy Maxwell’s equations (1)–(2). The total electric
and magnetic fields are sought in the form

Etot = Einc + E, Htot = Hinc + H, (7)

where Einc, Hinc is a given incident field, E = E(x), H = H(x) is an unknown
secondary (reflected) field. The reflected field must satisfy the radiation conditions
at infinity. On closed ideally conducting surfaces and on thin screens, we set the
boundary condition (6) (in areas where there is no coating, we suppose z = 0). In
addition, on thin screens, we set the boundary condition

n × E−
tot = 0 (8)

Thus, the boundary value problem is solved for Eqs. (1)–(2)with boundary conditions
(6), (8) and radiation conditions at infinity.

The primary field can be, for example, the field induced by a plane wave:

Einc(x) = E0e
i k r, (9)

where k is an arbitrary vector that satisfies the condition |k| = k, r is a radius vector
of point x, E0 is an arbitrary vector satisfying the condition E0 k = 0, k is a wave
number, determined by the relation

k = ω

c0
, c0 = 1√

ε0μ0
. (10)

c0 is the speed of light in vacuum, as before.
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2 Reduction of the Problem to Integral Equations

We seek to find the electric field in the form [1, 2]:

E = i

ωε
K [Σ, jE ] − R

[

Σ, jM
]

, (11)

where K and R are operators defined by formulas:

K[�, j](x) =
∫

�

{gradxdivx [j(y)�(x − y)] + k2j(y)�(x − y)}dσy (12)

R[�, j](x) = rot
∫

�

j(y)�(x − y)dσy =
∫

�

gradx�(x − y) × j(y)dσy (13)

j(x)n(x) = 0, x ∈ Σ, �(x − y) = 1

4π

eikr

r
, r = |x − y| ,

jE and jM are unknown tangent vector fields on the surfaceΣ – electric andmagnetic
currents, respectively. Taking into account Eq. (1), the magnetic field has the form:

H = R [Σ, jE ] + i

ωμ
K

[

Σ, jM
]

. (14)

Consider the properties of the boundary values of the vector fields generated by
the operators K and R.

If Σ is a smooth surface of class C3, and j is a tangent vector field of class C2,

then, as shown in [8], the field E = K[Σ, j], which defined outside the surface Σ,

has boundary values in each point x ∈ S, which is not an edge point, for which the
following relation is true:

n × E+ = n × E+ = n × E, (15)

where E(x) = K[Σ, j](x) is the direct value of the integral operator defined by the
formula (12) for x ∈ Σ, if the integral is understood in the sense of the Hadamard
finite part.

If j is a tangent vector field of classC1[S] on surface S of classC3 andE = R[S, j],
then at each point x ∈ S, which is not an edge point, there are boundary values of
the field E for which the following formula is true [11]:

n(x) × E±(x) = n(x) × E(x) ± 1

2
j(x), x ∈ S, (16)
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in this formula E(x) = R[S, j](x) is a direct value of the operator R obtained from
the formula (13) for considered x and the integral in this expression exists in the
sense of the main value.

Note that expressions (11) and (14) define vector fields E and H not only in
the outer domain of ideally conducting bodies and screens, but also inside ideally
conducting bodies. We require that the total electromagnetic field vanishes in the
domains inside ideally conducting bodies. So, we seek a solution – electric and
magnetic fields Etot and Htot of the form (7) with E and H in the form (14), defined
everywhere outside the surface and satisfying the boundary conditions (6) and (8)
on the entire surface.

Then, using relations (15) and (16) for the boundary values of the operators K
and R, we obtain the following equations:

i

ωε
n × [n × K [Σ, jE ]] − n × [

n × R
[

Σ, jM
]] − 1

2
n × jM + n × [n × E0] =

= Z n × R
[

Σ, jE
] + i Z

ωμ
n × K [Σ, jM ] + 1

2
z jE + Z n × H0,

i

ωε
n × K [Σ, jE ] − n × R

[

Σ, jM
] + 1

2
jM + n × E0 = 0.

We can rewrite these equations as:

i

ωε
K [Σ, jE ]τ − R

[

Σ, jM
]

τ
− 1

2
n × jM = −E0τ ,

jM + i z

ωμ
K [Σ, jM ]τ − 1

2
z n × jE + ZR

[

Σ, jE
]

τ
= −zH0τ , (17)

the index τ means the tangent component of the vector.
Thus, the problem has been reduced to a system of integral equations (17) for

unknown currents jE and jM on the surface Σ.

3 Numerical Scheme

A numerical scheme for solving the problem arises when Eq. (17) are discretized.
We apply the method of piecewise constant approximations and collocations.

The surface Σ is approximated by a system of tetragonal cells σi , i = 1, . . . , n.

On each cell we choose a collocation point xi and let ni = n(xi ) be the unit normal
vector to the cell σi in point xi . Triangular cells can also occur, whereby a triangular
cell is considered as a tetragonal cell with two identical vertices. We assume that the
vertices of the cell define a contour of four segments - the edge of the cell. The point
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Fig. 4 Surface
approximation

xi is constructed as the intersection point of the segments connecting themidpoints of
the opposite sides of the cell, and the normal vector as the normal to these segments.

Next, we build on each cell σi the local orthonormal basis e1i , e
2
i = ni × e1i in a

plane orthogonal to the vector ni (the choice of a vector e1i is arbitrary provided that
it is normalized and orthogonal to the vector ni ). In this case, the vectors e1i , e

2
i , ni

form a right basis (see Fig. 4).
We approximate the vector fields jE (x) and jM(x) by sets of values jE i ≈ jE (xi ),

jM i ≈ jM(xi ) and assume that the following relationholds (jE i ,ni ) = (jM i ,ni ) = 0,
, i = 1, . . . , n. Therefore, we seek to obtain the vectors jE i jM i in the form:

jE i = j1E i e
1
i + j2E i e

2
i , jM i = j1M i e

1
i + j2M i e

2
i . (18)

We approximate the operators K[Σ0, j] and K[Σ0, j] by the following expres-
sions:

K[Σ0, j] ≈
N

∑

k=1

K̃[Σk, jk], R[Σ0, j] ≈
n

∑

k=1

R̃[σk, jk], (19)

where K̃[σk, jk] and R̃[σk, jk] – approximations of the respective integrals for the
area of surface Σ0, approximated by cell σk .

The value K̃[σk, jk] is calculated according to the formulas, based on the extraction
of the leading parts of the kernel of the integral operators, that were proposed by
Ryzhakov in article [8]. Function K(j, x, y), that is integrand in expression (12), is
presented in the following form:

K(j, x, y) = K0(j, x, y) + K1(j, x, y), (20)

K0(j, x, y) = −j + 3r(r, j)
4πR3

,

K1(j, x, y) = (j − 3r(r, j))
1 − eikR + ikR eikR

4πR3
+ (j − r(r, j))

k2eikR

4πR
,
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R = |x − y| , r = (x − y)/R. At that

∣
∣K0(j, x, y)

∣
∣ ≤ O(|x − y|−3),

∣
∣K1(j, x, y)

∣
∣ ≤ O(|x − y|−1).

The approximation of K̃[σi , jk] is constructed according to formula:

K̃[σk, jk] = K̃0[σk, jk] + K̃1[σk, jk], (21)

where

K̃0[σk, j](x) =
∫

σk

K0(j∗k(y), x, y)dσy,

j∗k(y) – tangent field on cell σk , obtained at projecting vector jk according to formula
j∗k(y) = (nk × jk) × n(y). Integral in expression for K̃0[σk, j](x) is reduced to the
integral along the cells boundary [8]:

K̃0[σk, j](x) = grad
∮

∂σk

(j∗k(y) × n(y), τ (y))

4π |x − y| dsy, (22)

where n(y) is the vector of normal to the surface of cell σk , τ (y) - tangent vector on
the contour ∂σk at point y ∈ ∂σk . At that, if the boundary of cell σk is a polygonal
line, the following equation is true on each segment L that is the element of this line

grad
∫

L

(j∗k(y) × n(y), τ (y))

|x − y| dsy = (jk × ni , τ )grad
∫

L

1

|x − y|dsy,

here τ = (b − a)/|b − a|, a, b – beginning and end of segment L . The latter integral
is calculated analytically

grad
∫

L

1

|x − y|dsy =
(

a − x

|a − x | + b − x

|b − x |
) |b − a|

(b − x)(a − x) + |b − x | |a − x | .

The piecewise-constant approximation of current with the value of jk on thewhole
cell σk is used for the approximation of integrals K̃1[σk, jk] and R̃[σk, jk] over this
cell:

K̃1[σk, j](x) ≈
∫

σk

K1(jk, x, y)dσy, R̃[σk, j](x) ≈
∫

σk

R(jk, x, y)dσy .

These integrals over the cells are calculated using the rectangle formula with the
additional partition of cells σk into smaller cells of the second level and smoothing
of singularity in the integrands according to the scheme described in article [9]. Let’s
additionally partition up each cell σk into the cells of second level σ

p
k , p = 1, . . . , Pk ,

and choose the collocation point y p
k ∈ σ

p
k on each of such cell. Let h′ — be the

maximum diameter of cells σ
p
k , p = 1, . . . , Pk , k = 1, . . . , N . Let:
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K̃1[σk, jk] =
Pk∑

p=1

K1(jk, x, y
p
k ) θ

(∣
∣x − y p

k

∣
∣

ε

)

s pk ,

R̃[σi , jk] =
Pk∑

p=1

R(jk, x, y
p
k ) θ

(∣
∣x − y p

k

∣
∣

ε

)

s pk , (23)

where s pk — area of cell σ
p
k , θ (r) — smoothing function chosen so that θ (r) ∈

C1[0,∞), θ (r) = 1 at r ≥ 1, 0 ≤ θ (r) ≤ 1 at 0 ≤ r ≤ 1, θ (r) = o(r) as r → 0,
ε — small parameter. In the calculations, given further, we assumed that θ (r) =
3r2 − 2r3, ε = 2h′.

Then system (17) reduces to a system of linear algebraic equations:

∑

j=1,...,N
l=1,2

am l
k j j

l
E j +

∑

j=1,...,N
l=1,2

bm l
k j j

l
M j = f mk ,

∑

j=1,...,N
l=1,2

cm l
k j j

l
E j +

∑

j=1,...,N
l=1,2

dm l
k j j

l
M j = gmk , (24)

k = 1, . . . , N , m = 1, 2,

am l
k j = i

ωε
(K̃[σ j , elj ](xk), emk ),

bm l
k j = −(ni × R̃[σ j , elj ](xk), emk ) + 1

2
δ
j
k (ni × elk, e

m
k ),

cm l
k j = i

ωε
(K̃[σ j , elj ](xk), emk ) + z(n × R̃[σ j , elj ](xk), emk ) + 1

2
zδ j

k δ
l
m,

dm l
k j = −(R̃[σ j , elj ](xk), emk ) + i z

ωμ
(n × K̃[σ j , elj ](xk), emk ) + 1

2
zδ j

k (n × elj , e
m
k ),

f mk = −(Einc(x
k), emk ),

gmk = −(Einc(xk), emk ) − z(ni × Hinc(xk), emk ),

k, j = 1, . . . , N , m, l = 1, 2,

δki – kronecker symbol.
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After solving the system of linear equations (24), the currents jE i and jM i are
determined from relations (18).After that, the electric andmagnetic fields are approx-
imated by the formulas

E(x) = i

ωε

N
∑

i=1

K̃[σi , jE i ] −
N

∑

i=1

R̃[σi , jM i ],

H(x) =
N

∑

i=1

R̃[σi , jE i ] + i

ωμ

N
∑

i=1

K̃[σi , jM i ],

operators K̃ and R̃ calculated by formulas (21)–(23).
The main characteristic of the scattered electromagnetic field in the far zone is

the effective scattering surface in the direction of the unit vector τ :

σ = lim
R→∞ 4πR2 |E(Rτ )|2

|Einc|2
. (25)

For evaluation of the effective scattering surface we use the following formula

σ(τ ) = 4π

|Einc|2

∣
∣
∣
∣
∣
∣

∫

Σ

e−ik(τ ,y)

[
i

ωε
k2 (jE − τ (jE , τ )) − ik

[

τ × jM(y)
]
]

dσy

∣
∣
∣
∣
∣
∣

2

.

In the numerical solution, we use the approximate formula:

σ(τ ) = 4π

|Einc|2

∣
∣
∣
∣
∣
∣

N
∑

j=1

e−ik(τ ,x j )

[
i

ωε
k2

(

jE, j − τ
(

jE, j , τ
)) − ik

[

τ × jM, j

]
]

σ j

∣
∣
∣
∣
∣
∣

2

.

(26)

4 Calculation Examples and Discussion

In order to validate the obtained results of simulations we have constructed scattering
diagrams for some ideally conducting surfaces with dielectric coating.

In Fig. 5 we present scattering diagrams for ideally conducting sphere whose
radius equals a with a coating having thickness 0.02a and without coating when one
provides its radiation by plane wave (9) with a wave number k = 10/a. The coating
corresponds a dielectric with parameters ε′ = 50, μ′ = 1. In a diagram we show the
dependence of value

σ̃(α) = 10log
σ(τ (α))

πa2
,
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Fig. 5 Scattering diagram for sphere with coating and without coating

where α is an angle between vectors τ and −k, E0 is a polarization vector which
lies within a plane basing on vectors τ and k.

The Curve 1 corresponds to theoretical solution for a sphere without coating
and Curve 2 represents the numerical solution for sphere with coating which is
constructed with use of the proposed method with impedance boundary condition.
Curve 3 shows the theoretical solution for the sphere with the coating. Theoretical
solutions have been constructed using a series basing on special functions [12]. These
curves allow us to demonstrate an influence of the coating on the final scattering
diagram as well as to show a good agreement of numerical results with analytical.

In Fig. 6 we show the reflection diagrams of the plane wave by rectangular plate
of the size 1 m. We considered a plate without coating and also with coating having
a thickness 0.005 m with ε′ = 50 + 50i , μ′ = 1. The reflection is characterized as
σ(τ (α)), where α is the angle between the wave vector −k and a normal vector
for a plate n, and τ is a vector, directed according to the law of optical reflection
of the vector k(see Fig. 6, from above). In this case we considered situations when
polarization vector E0 (see Eq. (1.13)) lies in a plane of vectors k and n (horizontal
polarization) and also orthogonal to them (vertical polarization).

Here the curves 1 correspond to calculation for a plate without coating, Curves 2
correspond to calculations with elaborated model with impedance boundary condi-
tion for a plate with coating. For comparison we demonstrate the same dependencies
(Curves 3) for a plate with coating which we obtain numerically with use of the
solution scattering problem in an exact statement by the method of the boundary
integral equations from [6]. In the last case for the problem of scattering on a par-
tially screened dielectric body, boundary integral equations were solved, written on
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Fig. 6 Scattering diagram for plate with coating and without coating

the exact boundary of the dielectric. Curves 2 and 3 in the figure are indistinguish-
able and indicate the closeness of the numerical results obtained by the two indicated
models. It can also be seen that when irradiated from the side of the coating, its influ-
ence is significant. When irradiated from the opposite side, the coating practically
does not affect the result.

The given examples of test calculations indicate good agreement between the char-
acteristics of the electromagnetic field in the far zone, obtained from the constructed
modelwith the impedance boundary condition, theoretical data, and numerical results
obtained by another method for the problem in the exact formulation. This indicates
the performance of the model.

The research was supported by RSF, grant 19-11-00338, https://rscf.ru/project/
19-11-00338/ and by the National Center for Physics and Mathematics, project No.
2 “Mathematical modeling on super-computers with exa- and zetta performance”.

References

1. Volakis JL, Sertel, K (2012) Integral equation methods for electromagnetics. SciTech Publish-
ing

2. GibsonW (2008) The method of moments in electromagnetics. Chapman and Hall/CRC, Boca
Raton

https://rscf.ru/project/19-11-00338/
https://rscf.ru/project/19-11-00338/


166 A. Setukha and S. Stavtsev

3. Samokhin AB, Samokhina AS, Shestopalov YV (2017) Analysis and solution method for
problems of electromagnetic wave scattering on dielectric and perfectly conducting structures.
Diff Equat 53:1165–1173. https://doi.org/10.1134/S0012266117090075

4. Smirnov YG, Tsupak AA (2015) Method of integral equations in a scalar diffraction problem
on a partially screened inhomogeneous body. Diff Equat 51:1225–1235. https://doi.org/10.
1134/S0012266115090128

5. Davydov AG, Zakharov EV, Pimenov YV (2006) Hypersingular integral equations for the
diffraction of electromagnetic waves on homogeneous magneto-dielectric bodies. Comput
Math Model 17:97–104. https://doi.org/10.1007/s10598-006-0001-9

6. Setukha AV, Bezobrazova EN (2017) The method of hypersingular integral equations in the
problem of electromagnetic wave diffraction by a dielectric body with a partial perfectly con-
ducting coating. Russ J Numer Anal Math Model 32:371–380. https://doi.org/10.1515/rnam-
2017-0035

7. Zakharov EV, Setukha AV (2020) Method of boundary integral equations in the problem of
diffraction of a monochromatic electromagnetic wave by a system of perfectly conducting and
piecewise homogeneous dielectric objects. Diff Equat 56:1153–1166. https://doi.org/10.1134/
S0012266120090062

8. Zakharov EV, Ryzhakov GV, Setukha AV (2014) Numerical solution of 3D problems
of electromagnetic wave diffraction on a system of ideally conducting surfaces by the
method of hypersingular integral equations. Diff Equat 50:1240–1251. https://doi.org/10.1134/
S0012266114090110

9. SetukhaA, Fetisov S (2018) Themethod of relocation of boundary condition for the problem of
electromagnetic wave scattering by perfectly conducting thin objects. J Comput Phys 373:631–
647. https://doi.org/10.1016/j.jcp.2018.07.013

10. Hoenl H, Maue AW, Westpfahl K (1961) Theorie der Beugung. Springer, Berlin, Heidelberg
11. Colton D, Kress R (2013) Integral equation methods in scattering theory. SIAM
12. Bohren CF, Huffman DR (1998) Absorption and scattering of light by small particles. WILEY

-VCH

https://doi.org/10.1134/S0012266117090075
https://doi.org/10.1134/S0012266115090128
https://doi.org/10.1134/S0012266115090128
https://doi.org/10.1007/s10598-006-0001-9
https://doi.org/10.1515/rnam-2017-0035
https://doi.org/10.1515/rnam-2017-0035
https://doi.org/10.1134/S0012266120090062
https://doi.org/10.1134/S0012266120090062
https://doi.org/10.1134/S0012266114090110
https://doi.org/10.1134/S0012266114090110
https://doi.org/10.1016/j.jcp.2018.07.013


Invariants of Dynamical Systems
with Dissipation on Tangent Bundles
of Low-Dimensional Manifolds

Maxim V. Shamolin

Abstract Tensor invariants (differential forms) for homogeneous dynamical sys-
tems on tangent bundles to smooth two-dimensional manifolds are presented in this
paper. The connection between the presence of these invariants and the full set of
the first integrals necessary for the integration of geodesic, potential and dissipative
systems is shown. At the same time, the introduced force fields make the considered
systems dissipative with dissipation of different signs and generalize the previously
considered ones. We also represent the typical examples from rigid body dynamics.

Keywords Dynamic equations · Nonconservative force field · Integrability ·
Transcendental tensor invariant

1 Introduction

It is well known [1–3] that a system of differential equations can be completely
integrated when it has a sufficient number of not only first integrals (scalar invariants)
but also tensor invariants. For example, the order of the considered system can be
reduced if there is an invariant form of the phase volume. For conservative systems,
this fact is natural. However, for systems having attracting or repelling limit sets, not
only some of the first integrals, but also the coefficients of the invariant differential
forms involved have to consist of, generally speaking, transcendental (in the sense
of complex analysis) functions [4–6].

For example, the problem of a spatial pendulum on a spherical hinge placed in
material flow leads to a system on the tangent bundle of the two-dimensional sphere
with a special metric on it induced by an additional symmetry group [7]. Dynamical
systems describing the motion of such a pendulum have signchanging dissipation,
and the complete list of first integrals consists of transcendental functions expressed
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in terms of a finite combination of elementary functions. There are also problems
concerning the motion of a point over two-dimensional surfaces of revolution, the
Lobachevsky plane, etc. The results obtained are especially important in the context
of a nonconservative force field present in the system [5, 6].

Below, we present tensor invariants (differential forms) for homogeneous dynam-
ical systems on tangent bundles of smooth two-dimensional manifolds. The relation
between the existence of these invariants and the existence of a complete set of first
integrals necessary for the integration of geodesic, potential, and dissipative systems
is shown. The force fields introduced into the considered systems make them dissi-
pative with dissipation of different signs and generalize previously considered force
fields.

2 Example: Plane Pendulum in a Jet Flow

We describe in brief some problem on a physical pendulum on a cylindrical hinge
in the flow of the incoming medium. The space of positions of such a pendulum
is one-dimensional circle S1{θ mod 2π}, and the phase space is the tangent bundle
TS1{θ̇; θ mod 2π}, i.e. two-dimensional cylinder.

Under the considered model assumptions, the equation of motion of such a pen-
dulum is written out. statement [8] is proved that the dynamical system describing
the behavior of such a pendulum is trajectorically topologically equivalent to the fol-
lowing differential equation on a two-dimensional cylinder (an angle θ is measured
‘by the flow’):

θ̈ + hθ̇ cos θ + sin θ cos θ = 0, h > 0. (1)

Equation (1) can be rewritten as a system on a phase cylinderR1{ω} × {αmod 2π}
(α = θ + π):

α̇ = −ω + h sinα, ω̇ = sinα cosα, (2)

the phase portrait of which is shown in [7].
For h = 0, the conservative system (2) has a smooth first integral of energy:

ω2

2
+ sin2 α

2
= C0 = const, (3)

at the same time, its phase flow preserves the area on the plane R2{α,ω}, i.e. the
differential 2-form is preserved

dα ∧ dω. (4)

When integrating the system, either the first integral of energy (3) or the fact of phase
area conservation (4) can be used.
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In the case of h �= 0 is more complicated. Since the system (2) has attractive or
repulsive (asymptotic) limit sets, the first integral of the system is a transcendental
(in the sense of complex analysis) function, which has the form

Φ0(α,ω) = sinα expΨ0(t) = C1 = const, Ψ0(t) =
∫

(t − h)dt

t2 − ht + 1
, t = ω

sinα
,

(5)
in this case, the asymptotic limit sets are found from the systemof algebraic equalities
sinα = 0, ω = 0 (see also [9]).

Since the system (2) has asymptotic limit sets there is not even an absolutely
continuous function that is the density of the measure of the phase plane (cf. with
[3, 7, 8]). But it is possible (along with the first integral) to present an invariant
differential 2-form with coefficients that are transcendental functions, which has the
form

T1(α,ω) = exp {−hΨ1(t)} dα ∧ dω, Ψ1(t) =
∫

dt

t2 − ht + 1
, t = ω

sinα
. (6)

3 Example of More General System with One Degree
of Freedom

We consider the smooth dynamical system on the plane R2{α,ω} with one degree
of freedom α of the following form:

α̇ = −ω + bδ(α), ω̇ = F(α); (7)

we can rewrite this system in the form of the equation

α̈ − bδ̃(α)α̇ + F(α) = 0, δ̃(α) = dδ(α)

dα
. (8)

A pair of smooth functions (F(α), δ(α)) defines the force field in the system: the
function F(α) describes the conservative component of the field, and the function
δ(α) describes possible scattering or pumping of energy in the system. For b = 0,
the conservative system (7) has a smooth integral of energy:

ω2

2
+ 2

α∫

α0

F(ξ)dξ = C0 = const, (9)

at the same time, its phase flow preserves the area on the plane R2{α,ω}, i.e. the
differential 2-form is preserved

dα ∧ dω. (10)
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When integrating the system, either the first integral of energy (9) or the fact of phase
area conservation (10) can be used.

The situation is different in the case of b �= 0. Since the system (7) has, generally
speaking, attractive or repulsive (asymptotic) limit sets, the first integral of the system
is a transcendental (in the sense of complex analysis) [10] function. Let ’s give it for
the next important case:

F(α) = λδ(α)δ̃(α), λ ∈ R. (11)

Indeed, the first integral has the form

Φ(α,ω) = δ(α) expΨ (t) = C1 = const, Ψ (t) =
∫

(t − b)dt

t2 − bt + λ
, t = ω

δ(α)
,

(12)
in this case, the asymptotic limit sets are found from the systemof algebraic equalities
δ(α) = 0, ω = 0 (see also [9]).

Since asymptotic limit sets appear, there is not even an absolutely continuous
function that is the density of the measure of the phase plane (cf. with [7, 8]). But
it is possible (along with the first integral) to present an invariant differential 2-form
with coefficients that are transcendental functions.

Indeed, the desired 2-form has the form

T (α,ω) = exp {−bΘ(t)} dα ∧ dω, Θ(t) =
∫

dt

t2 − bt + λ
, t = ω

δ(α)
. (13)

4 Invariants of Systems of Geodesic Equations

Consider a smooth two-dimensional Riemannian manifold M2{α,β} with affine
connectivity Γ i

jk(α,β) and study the structure of the equations of geodesic lines on

the tangent bundle T M2{α̇, β̇;α,β} (cf. with [11, 12]). To do this , we will further
study a fairly general case of setting kinematic relations in the following form:

α̇ = z2 f2(α), β̇ = z1 f1(α), (14)

where f1(α) and f2(α) are sufficiently smooth functions that are not identically zero.
Such coordinates z1, z2 in tangent space are introduced when geodesic equations are
considered, for example, with three nonzero connectivity coefficients (in particular,
on surfaces of rotation, Lobachevsky plane, etc.):

α̈ + Γ α
αα(α,β)α̇2 + Γ α

ββ(α,β)β̇2 = 0, β̈ + 2Γ β
αβ(α,β)α̇β̇ = 0, (15)

that is, the equalities are met
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Γ α
αβ(α,β) ≡ Γ β

αα(α,β) ≡ Γ
β
ββ(α,β) ≡ 0. (16)

In the case of (14) the relations on the tangent bundle T M2{z2, z1;α,β} will take
the form

ż1 = − f 22 (α)

f1(α)
Γ β

αα(α,β)z22 − f2(α)
[
2Γ β

αβ(α,β) + d ln | f1(α)|
dα

]
z1z2−

− f1(α)Γ
β
ββ(α,β)z21,

ż2 = − f2(α)
[
Γ α

αα(α,β) + d ln | f2(α)|
dα

]
z22 − f1(α) · 2Γ α

αβ(α,β)z1z2−
− f 21 (α)

f2(α)
Γ α

ββ(α,β)z21,

(17)

and under the conditions (16) will simplify:

ż1 = − f2(α)
[
2Γ β

αβ(α,β) + d ln | f1(α)|
dα

]
z1z2,

ż2 = − f2(α)
[
Γ α

αα(α,β) + d ln | f2(α)|
dα

]
z22 − f 21 (α)

f2(α)
Γ α

ββ(α,β)z21,
(18)

and the Eq. (15) geodesics are almost everywhere equivalent to a composite system
(14), (18) on the manifold T M2{z2, z1;α,β} with new coordinates z1, z2 on the
tangent space.

To fully integrate the system (14), (18) it is necessary to know, generally speaking,
three independent tensor invariants: either the first three integrals, or three indepen-
dent differential forms, or some combination of integrals and forms.At the same time,
of course, the first integrals (in particular, for geodesic equations) can be searched
for in a more general form than discussed below.

In [6, 8] examples of geodesic systems on a two-dimensional sphere with various
metrics are considered, and in [12] examples of geodesic systems on two-dimensional
surfaces of rotation and on the Lobachevsky plane are considered too.

Theorem 1 If the following conditions are satisfied

f 21 (α)Γ α
ββ(α,β) + f 22 (α)

[
2Γ β

αβ(α,β) + d ln | f1(α)|
dα

]
≡ 0,

Γ α
αα(α,β) + d ln | f2(α)|

dα
≡ 0,

(19)

Γ
β
αβ(α,β) = Γ

β
αβ(α), (20)

then the system (14), (18) has a complete set consisting of the first three integrals of
the form

Φ1(z2, z1) = z21 + z22 = C2
1 = const, (21)

Φ2(z1;α) = z1Φ0(α) = C2 = const, Φ0(α) = f1(α) exp

⎧⎨
⎩2

α∫

α0

Γ
β
αβ(b)db

⎫⎬
⎭ ,

(22)
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Φ3(α,β) = β ∓
α∫

α0

C2 f1(b)

f2(b)
√
C2
1Φ

2
0 (b) − C2

2

db = C3 = const. (23)

Moreover, after some reduction of that system, replacing the independent variable

d

dt
= f2(α)

d

dτ
, (24)

and phase one
z∗
1 = ln |z1|, (25)

the phase flow of the system (14), (18) preserves the volume on the tangent bundle
T M2{z2, z∗

1;α,β}, i.e. the corresponding differential form is preserved:

dz2 ∧ dz∗
1 ∧ dα ∧ dβ. (26)

The system (19) can be interpreted as the possibility of converting the quadratic
form of the metric to a canonical form with the law of conservation of energy (21)
(or see below (30)) depending on the problem under consideration. The history and
current state of consideration of this more general problem are quite extensive (we
note only the works of [12, 13]). Well, the search for both the integral (21) and (22)
relies on the presence of additional symmetry groups in the system [5, 6].

5 Invariants of Potential Systems

Wemodify the system somewhat (14), (18), introducing into it a conservative smooth
force field in projections on the axis ż1, ż2, respectively:

F̃(z2, z1;α) =
(
F1(β) f1(α)

F2(α) f2(α)

)
. (27)

The system under consideration on the tangent bundle T M2{z2, z1;α,β}will take
the form

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α̇ = z2 f2(α),

ż2 = F2(α) f2(α) − f2(α)
[
Γ α

αα(α,β) + d ln | f2(α)|
dα

]
z22−

− f 21 (α)

f2(α)
Γ α

ββ(α,β)z21,

ż1 = F1(β) f1(α) − f2(α)
[
2Γ β

αβ(α,β) + d ln | f1(α)|
dα

]
z1z2,

β̇ = z1 f1(α),

(28)
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and it is almost everywhere equivalent to the following system:

α̈ − F2(α) f2(α) + Γ α
αα(α,β)α̇2 + Γ α

ββ(α,β)β̇2 = 0,

β̈ − F1(β) f1(α) + 2Γ β
αβ(α,β)α̇β̇ = 0,

(29)

on the tangent bundle T M2{α̇, β̇;α,β}.
Theorem 2 If the conditions (19), (20) are satisfied, then the system (28) has a
complete set consisting of the first three integrals of the form

Φ1(z2, z1) = z21 + z22 + V (α,β) = C1 = const, (30)

V (α,β) = V2(α) + V1(β) = −2

α∫

α0

F2(a)da − 2

β∫

β0

F1(b)db, (31)

and also with F1(β) ≡ 0—by the first integral (22) and

Φ3(α,β) = β ∓
α∫

α0

C2 f1(b)

f2(b)
√

Φ2
0 (b)[C1 − V (b,β0)] − C2

2

db = C3 = const. (32)

Moreover, after some reduction of that system, i.e. replacing the independent
variable

d

dt
= f2(α)

d

dτ
, (33)

and phase one
z∗
1 = ln |z1|, (34)

the phase flow of the system (28) preserves the volume on the tangent bundle
T M2{z2, z∗

1;α,β}, i.e. the corresponding differential form is preserved:

dz2 ∧ dz∗
1 ∧ dα ∧ dβ. (35)

6 Invariants of Systems with Alternating Dissipation

Next, we modify the system somewhat (28) by introducing a smooth force field with
dissipation into it. Its presence (generally speaking, alternating signs) characterizes
not only the coefficient bδ(α), b > 0, in the first equation of the system (37) (unlike
the system (28)), but also the following dependence of the (external) force field in
projections on the axis ż1, ż2, respectively:
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F̃(z2, z1;α,β) =
(
F1(β) f1(α)

F2(α) f2(α)

)
+

(
z1F1

1 (α)

z2F1
2 (α)

)
. (36)

The system under consideration on the tangent bundle T M2{z2, z1;α,β}will take
the form

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α̇ = z2 f2(α) + bδ(α),

ż2 = F2(α) f2(α) − f2(α)
[
Γ α

αα(α,β) + d ln | f2(α)|
dα

]
z22−

− f 21 (α)

f2(α)
Γ α

ββ(α,β)z21 + z2F1
2 (α),

ż1 = F1(β) f1(α) − f2(α)
[
2Γ β

αβ(α,β) + d ln | f1(α)|
dα

]
z1z2 + z1F1

1 (α),

β̇ = z1 f1(α),

(37)

and it is almost everywhere equivalent to the following system:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α̈ −
{
bδ̃(α) + F1

2 (α) + bδ(α)
[
2Γ α

αα(α,β) + d ln | f2(α)|
dα

]}
α̇−

−F2(α) f 22 (α) + bδ(α)F1
2 (α) + b2δ2(α)

[
Γ α

αα(α,β) + d ln | f2(α)|
dα

]
+

+Γ α
αα(α,β)α̇2 + Γ α

ββ(α,β)β̇2 = 0,

β̈ −
{
F1
1 (α) + bδ(α)

[
2Γ β

αβ(α,β) + d ln | f1(α)|
dα

]}
β̇−

−F1(β) f 21 (α) + 2Γ β
αβ(α,β)α̇β̇ = 0,

(38)

on the tangent bundle T M2{α̇, β̇;α,β}. Here, as above,

δ̃(α) = dδ(α)

dα
. (39)

We will integrate the fourth-order system (37) when performing the properties
(19), (20), as well as when F1(β) ≡ 0. At the same time, an independent subsystem
of the third order is separated:

⎧⎪⎪⎨
⎪⎪⎩

α̇ = z2 f2(α) + bδ(α),

ż2 = F2(α) f2(α) − f 21 (α)

f2(α)
Γ α

ββ(α)z21 + z2F1
2 (α),

ż1 = f 21 (α)

f2(α)
Γ α

ββ(α)z1z2 + z1F1
1 (α),

(40)

if there is also a fourth equation

β̇ = z1 f (α). (41)
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We will also assume that for some κ ∈ R the equality is satisfied

Γ α
ββ(α)

f 21 (α)

f 22 (α)
= κ

d

dα
ln |Δ(α)| = κ

Δ̃(α)

Δ(α)
, Δ̃(α) = dΔ(α)

dα
, Δ(α) = δ(α)

f2(α)
,

(42)
and for some λ0

2,λ
1
k ∈ R, k = 1, 2, the equalities must be met

F2(α) = λ0
2

d
dα

Δ2(α)

2 = λ0
2Δ̃(α)Δ(α);

F1
k (α) = f2(α) d

dα
Δ(α) = λ1

kΔ̃(α) f2(α), k = 1, 2.
(43)

Condition (42) let’s call it ‘geometric’, and the conditions from the group (43)—
‘energetic’.

Condition (42) it is called geometric, among other things, because it imposes
a condition on the key coefficient of connectivity Γ α

ββ , bringing the corresponding
coefficients of the system to a homogeneous form with respect to the function Δ(α).
The conditions of the group (43) are called energetic, among other things, because
the forces become, in a sense, ‘potential’ with respect to the functions of Δ2(α)/2
and Δ(α), bringing the corresponding coefficients of the system to a homogeneous
form also with respect to the function Δ(α) (see also [9]).

Theorem 3 Let the conditions (42) and (43) be satisfied. Then the system (40), (41)
has three independent, generally speaking, transcendental [4, 10] first integrals.

In general, the first integrals are written out cumbersomely (since it is necessary
to integrate the Abel equation [14]). In particular, if κ = −1, λ1

1 = λ1
2, the explicit

form of the key first integral is:

Θ1(z2, z1;α) = G1

(
z2

Δ(α)
, z1

Δ(α)

)
=

= f 22 (α)(z22+z21)+(b−λ1
1)z2δ(α) f2(α)−λ0

2δ
2(α)

z1δ(α) f2(α)
= C1 = const.

(44)

In this case , the additional first integrals have the following structures:

Θ2(z2, z1;α) = G2

(
Δ(α),

z2
Δ(α)

,
z1

Δ(α)

)
= C2 = const, (45)

Θ3(z2, z1;α,β) = G3

(
Δ(α),β,

z2
Δ(α)

,
z1

Δ(α)

)
= C3 = const. (46)

The expression of functions (44)–(46) through a finite combination of elementary
functions also depends on the explicit form of the function Δ(α). So, for example,
with κ = −1, λ1

1 = λ1
2 the additional first integral of the system (40) is found from

the differential relation
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d ln |Δ(α)| = (b+u2)du2
U2(C1,u2)

, u2 = z2
Δ(α)

, u1 = z1
Δ(α)

,

U1(u2) = u22 + (b − λ1
1)u2 − λ0

2,

U2(C1, u2) = 2U1(u2) − C1
2

{
C1 ±

√
C2
1 − 4U1(u2)

}
, C1 �= 0.

(47)

The right part of this relation is expressed in terms of a finite combination of ele-
mentary functions, and the left—depending on the function Δ(α).

Theorem 4 If for systems of the form (40), (41) there are the first integrals of the form
(44) to (46), then it also has the following three functionally independent invariant
differential forms with transcendental coefficients:

ρ1(z2, z1;α)dz2 ∧ dz1 ∧ dα,

ρ1(z2, z1;α) = exp
{
(b + λ1

1)
∫ du2

U2(C1,u2)

}
· u22+u21−(b−λ1

1)u2−λ0
2

u1
,

ρ2(z2, z1;α)dz2 ∧ dz1 ∧ dα,

ρ2(z2, z1;α) = Δ(α) exp
{
(b + λ1

1)
∫ du2

U2(C1,u2)

}
· exp

{
− ∫

(b+u2)du2
U2(C1,u2)

}
,

ρ3(z2, z1;α,β)dz2 ∧ dz1 ∧ dα ∧ dβ,

ρ3(z2, z1;α,β) = exp
{
(b + λ1

1)
∫ du2

U2(C1,u2)

}
· G3

(
Δ(α),β, z2

Δ(α)
, z1

Δ(α)

)
,

(48)

but dependent with the first integrals (44)–(46).

For the complete integrability of the system (40), (41), you can use either the first
three integrals, or three independent differential forms, or some combination (only
independent elements) of integrals and forms (cf. with [2, 3, 15]).

On the structure of the first integrals for the systems under consideration with
dissipation, see also [5, 6, 8]. Note only that for systems with dissipation, the tran-
scendence of functions (in the sense of having essentially singular points) as the first
integrals, it is inherited from the presence of attracting or repelling limit sets in the
system.

In conclusion, we can refer to numerous applications concerning the integration
of systems with dissipation, on the tangent bundle to a two-dimensional sphere, as
well as more general systems on the bundle of two-dimensional surfaces of rotation
and the Lobachevsky plane [15, 16].

7 Spatial Pendulum in the Flow of the Incoming Medium

Let us briefly describe the problem of a physical pendulum on a spherical hinge in the
flow of an incomingmedium, started in [8]. The position space of such a pendulum is
a two-dimensional sphere S2{0 ≤ ξ ≤ π, η mod 2π}, phase space—tangent bundle
TS2{ξ̇, η̇; 0 ≤ ξ ≤ π, η mod 2π} to it.



Invariants of Dynamical Systems with Dissipation … 177

Under the considered model assumptions, the equations of motion of such a
pendulum are written out. Further, the statement is proved that the dynamical system
describing the behavior of such a pendulum is trajectorically topologically equivalent
to the following dynamical system on the tangent bundle of a two-dimensional sphere
(the angle ξ is measured “along the flow”):

⎧⎨
⎩

ξ̈ + bξ̇ cos ξ + sin ξ cos ξ − η̇2 sin ξ
cos ξ

= 0,

η̈ + bη̇ cos ξ + ξ̇η̇ 1+cos2 ξ
cos ξ sin ξ

= 0, b > 0.
(49)

The system (49) is almost everywhere equivalent to the system

⎧⎪⎪⎨
⎪⎪⎩

ξ̇ = −w2 − b sin ξ,

ẇ2 = sin ξ cos ξ − w2
1
cos ξ
sin ξ

,

ẇ1 = w1w2
cos ξ
sin ξ

,

(50)

η̇ = w1
cos ξ

sin ξ
, (51)

on the tangent bundle T∗S2{(w2, w1; ξ, η1) ∈ R4 : 0 ≤ ξ ≤ π, η1 mod 2π} of two-
dimensional sphere S2{(ξ, η1) ∈ R2 : 0 ≤ ξ ≤ π, η1 mod 2π}.

It can be seen that in the fourth-order system (50), (51), due to the cyclicity of
the variable η, an independent third-order subsystem (50) is allocated, which can be
independently considered on its three-dimensional manifold.

The key first integral of the system (50), (51) has the following form:

Θ1(w2, w1; ξ) = w2
2 + w2

1 + bw2 sin ξ + sin2 ξ

w1 sin ξ
= C1 = const. (52)

Remark 1 Consider a system (50) with variable dissipation with zero mean [5, 6,
8] becoming conservative at b = 0:

ξ̇ = −w2,

ẇ2 = sin ξ cos ξ − w2
1
cosα
sinα

,

ẇ1 = w1w2
cos ξ
sin ξ

.

(53)

It has two analytic first integrals of the form

w2
2 + w2

1 + sin2 ξ = C∗
1 = const, (54)

w1 sin ξ = C∗
2 = const. (55)
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Obviously, the ratio of two integrals (54), (55) it is also the first integral of the system
(53). But with b �= 0 each of the functions

w2
2 + w2

1 + bw2 sin ξ + sin2 ξ (56)

and (55) separately is not the first integral of the system (50). However, the ratio of
functions (56), (55) is the first integral of the system (50) for any b.

The additional first integral of the system (50) is expressed in terms of a finite
combinationof elementary functions andhas the following form (due to the bulkiness,
we will write out the structural form):

Θ2(w2, w1; ξ) = G

(
sin ξ,

w2

sin ξ
,

w1

sin ξ

)
= C2 = const. (57)

Another (additional) first integral that ‘binds’ the Eq. (51) can be represented as

Θ3(w2, w1; ξ, η) = −η ± 1

2
arctg

w2
1 − w2

2 − bw2 sin ξ − sin2 ξ

w1(2w2 + b sin ξ)
= C3 = const.

(58)
In the case under consideration, the system of dynamic equations (50), (51) has

the first three integrals expressed by the relations (52), (57), (58), which are transcen-
dental functions of phase variables (in the sense of complex analysis) and expressed
in terms of a finite combination of elementary functions.

It is also possible to present invariant differential forms for the system of dynamic
equations under consideration:

ρ1(w2, w1; ξ)dw2 ∧ dw1 ∧ dξ,

ρ1(w2, w1; ξ) = exp
{
b

∫ du2
U2(C1,u2)

}
· u22+u21+bu2+1

u1
,

ρ2(w2, w1; ξ)dw2 ∧ dw1 ∧ dξ,

ρ2(w2, w1; ξ) = sin ξ exp
{
b

∫ du2
U2(C1,u2)

}
· exp

{
− ∫

(b+u2)du2
U2(C1,u2)

}
,

ρ3(w2, w1; ξ, η)dw2 ∧ dw1 ∧ dξ ∧ dη,

ρ3(w2, w1; ξ, η) = exp
{
b

∫ du2
U2(C1,u2)

}
· Θ3(w2, w1; ξ, η),

u2 = w2
sin ξ

, u1 = w1
sin ξ

,

U1(u2) = u22 + bu2 + 1,

U2(C1, u2) = 2U1(u2) − C1
2

{
C1 ±

√
C2
1 − 4U1(u2)

}
, C1 �= 0.

(59)
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B-subharmonic Functions

Elina Shishkina

Abstract Considering different problemswith Bessel operator we inevitably should
obtain the main theorems of harmonic analysis for Laplace–Bessel operator. In this
article we obtain condition of B-subharmonicity using the second Green’s formula
for the Laplace–Bessel operator.

Keywords B-subharmonic functions · Weighted spherical mean · B-harmonic
functions · Laplace–Bessel operator

1 Introduction

Subharmonic functions have been introduced in the analysis Hartogs [1]. The sys-
tematic study of subharmonic functions began with the work of Riesz [2, 3], Privalov
[4] andRadó [5]. It is widely known that subharmonic functions are used in the theory
of surfaces of nonpositive Gaussian curvature [6], in solving boundary value prob-
lems [7], in the theory of random processes [8] and in studying analytic functions
of a complex variable [4]. Now the theory of subharmonic functions is an actively
developing area of modern mathematics.

In this articlewe introduce and proof B-subharmonicity condition. This is a part of
B-harmonic analysis which provides a mathematical theory to deal with the singular
Bessel differential operator of the form

Bγ j = 1

x
γ j

j

∂

∂x j
x

γ j

j

∂

∂x j
= ∂2

∂x2j
+ γ j

x j

∂

∂x j
, j = 1, . . . , n.
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We will use notation �γ = (�γ)x =
n∑

k=1
(Bγk )xk . For �γ the term Laplace–Bessel

operator is used. A function u = u(x) = u(x1, . . . , xn) defined in a domainΩ ⊂ Rn

is said to be B–harmonic ifu ∈ C2(Ω), ∂u
∂x j

|x j=0 = 0 for all j = 1, . . . , n and satisfies
the Laplace–Bessel equation �γu = 0 at every point of the domain Ω .

One can say that a function defined and continuous in some domain is B-
subhartnonic if the value of this function at each point of the domain under con-
sideration is less than or equal to its weighted spherical mean. It will be shown that
B-subharmonicity of function in some domain follows from inequality �γu(x) ≥ 0
which is satisfied at all points of the considered domain.

In classical theory, the definition of subharmonic functions is often given in terms
of the positivity of the Laplace operator, and then a generalized mean value theorem
is derived with inequality instead of equality. For our case with the Laplace-Bessel
operator, we rearrange this order and define subharmonic functions through the gen-
eralized mean value theorem with inequalities, and then derive for them a theorem
about the non-negativity of the Laplace-Bessel operator.

2 Definitions

Suppose that Rn is the n-dimensional Euclidean space,

Rn
+ = {x = (x1, . . . , xn) ∈ Rn, x1>0, . . . , xn>0},

R n
+ = {x = (x1, . . . , xn) ∈ Rn, x1≥0, . . . , xn≥0},

γ = (γ1, . . . , γn) is a multi-index consisting of positive fixed real numbers γi , i =
1, . . . , n, and |γ| = γ1 + . . . + γn .

LetΩ befinite or infinite open set in Rn symmetricwith respect to each hyperplane
xi=0, i=1, ..., n, Ω+=Ω ∩ Rn+ and Ω+ = Ω ∩ Rn+.

We deal with the class Cm(Ω+) consisting of m times differentiable on Ω+ func-
tions and denote by Cm(Ω+) the subset of functions from Cm(Ω+) such that all
derivatives of these functions with respect to xi for any i = 1, . . . , n are continu-
ous up to xi=0. Class Cm

ev(Ω+) consists of all functions from Cm(Ω+) such that
∂2k+1 f
∂x2k+1

i
|xi=0 = 0 for all non-negative integer k ≤ m−1

2 (see [9], p. 21).

In the following, we will denote Cm
ev(R

n+) by Cm
ev . We set

C∞
ev (Ω+) =

∞⋂

m=0

Cm
ev(Ω+)

with intersection taken for all finite m and C∞
ev (R+) = C∞

ev .
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The classCev(Ω+) is the restriction of the class of even continuous onΩ functions
to Ω+.

We will use notation
◦
C∞

ev(Ω+) for the space of all functions f ∈C∞
ev (Ω+) with a

compact support. We will use notations
◦
C∞

ev(Ω+)=D+(Ω+) and
◦
C∞

ev(R+) = ◦
C∞

ev .
The multidimensional generalized translation is defined by the equality

(γTy
x f )(x) = γTy

x f (x) = ( γ1T y1
x1 ... γn T yn

xn f )(x), (1)

where each of one-dimensional generalized translation γi T yi
xi acts for i=1, ..., n

according to (see [10])

( γi T yi
xi f )(x) =

Γ
(

γi+1
2

)

√
πΓ

( γi
2

)

×
π∫

0

f (x1, . . . , xi−1,

√
x2i + τ 2

i − 2xi yi cosϕi , xi+1, . . . , xn) sinγi−1 ϕi dϕi .

Next we will use notation

C(γ) = π− n
2

n∏

i=1

Γ
(

γi+1
2

)

Γ
( γi
2

) .

Part of the sphere of radius r with center at the origin belonging to Rn+ we will
denote S+

r (n):

S+
r (n) = {x ∈ R n

+ : |x | = r} ∪ {x ∈ R n
+ : xi = 0, |x |≤r, i = 1, . . . , n}.

For the weighed integral by the S+
1 (n) we have formula [11], formula 107, p. 49

|S+
1 (n)|γ =

∫

S+
1 (n)

xγdS =

n∏

i=1
Γ
(

γi+1
2

)

2n−1Γ
(
n+|γ|
2

) . (2)

3 B-harmonic Functions

In this section we will consider B-harmonic functions i.e. functions annihilated by
the Laplace–Bessel operator in domain Ω+ = Ω ∩ Rn+.

A function u = u(x) = u(x1, . . . , xn) defined in a domain Ω+ is said to be B–
harmonic if u ∈ C2

ev(Ω+) and satisfies the Laplace–Bessel equation �γu = 0 at
every point of the domain Ω+.
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Theorem 1 Let x ∈ Rn+, n > 1 and

E(x) =
⎧
⎨

⎩

1
|S+

1 (n)|γ ln |x |, n+|γ| = 2;
|x |2−n−|γ|

(2−n−|γ|)|S+
1 (n)|γ , n+|γ| > 2,

where |S+
1 (n)|γ is (2). Then for |x | > ε ∀ε > 0 we obtain that E(x) is B-harmonic:

�γE(x) = 0.

Proof Let consider first the case n + |γ| > 2. We can write

�γE(x) =
n∑

j=1

Bγ j E(x) =
n∑

j=1

1

x
γ j

j

∂

∂x j
x

γ j

j

∂

∂x j
E(x) =

= 1

(2 − n − |γ|)|S+
n |γ

n∑

j=1

1

x
γ j

j

∂

∂x j
x

γ j

j

∂

∂x j
|x |2−n−|γ| =

= 1

(2 − n − |γ|)|S+
n |γ

n∑

j=1

1

x
γ j

j

∂

∂x j
x

γ j

j

(2 − n − |γ|)
2

|x |−n−|γ| 2x j =

= 1

|S+
n |γ

n∑

j=1

1

x
γ j

j

∂

∂x j
|x |−n−|γ|x1+γ j

j =

= 1

|S+
n |γ

n∑

j=1

1

x
γ j

j

[
(−n − |γ|)

2
|x |−n−|γ|−2 2x

2+γ j

j + (1 + γ j )|x |−n−|γ|xγ j

j

]

=

= 1

|S+
n |γ

n∑

j=1

[(−n − |γ|)|x |−n−|γ|−2 x2j + (1 + γ j )|x |−n−|γ|] =

= 1

|S+
n |γ [(−n − |γ|)|x |−n−|γ| + (n + |γ|)|x |−n−|γ|] = 0.

Now consider the case n + |γ| = 2:

�γE(x) =
n∑

j=1

Bγ j E(x) =
n∑

j=1

1

x
γ j

j

∂

∂x j
x

γ j

j

∂

∂x j
E(x) =
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= 1

|S+
n |γ

n∑

j=1

1

x
γ j

j

∂

∂x j
x

γ j

j

∂

∂x j
ln |x | = 1

|S+
n |γ

n∑

j=1

1

x
γ j

j

∂

∂x j
|x |−2 x

1+γ j

j =

= 1

|S+
n |γ

n∑

j=1

1

x
γ j

j

[−2|x |−4 x
2+γ j

j + (1 + γ j )|x |−2 x
γ j

j ] =

= 1

|S+
n |γ

n∑

j=1

[−2|x |−4 x2j + (1 + γ j )|x |−2] =

= 1

|S+
n |γ [−2|x |−2 + (n + |γ|)|x |−2] = 0,

because n + |γ| = 2.

4 Weighted Spherical Mean

In B-harmonic analysis when constructing a weighted spherical mean, instead of the
usual shift, a multidimensional generalized translation (1) is used.

Weighted spherical mean (see [11–13]) of function u(x), x ∈ R n+ for n ≥ 2 is

(Mγ
r u)(x) = (Mγ

r )x [u(x)] = 1

|S+
1 (n)|γ

∫

S+
1 (n)

γTrθ
x u(x)θγdS, (3)

where θγ=
n∏

i=1
θ

γi
i .

Weighted spherical mean has properties

(Mγ
r u)(x)|r=0 = u(x),

∂

∂r
(Mγ

r u)(x)

∣
∣
∣
∣
r=0

= 0. (4)

In the classical case, the transition from integration over a unit sphere centered
at the origin to a sphere centered at a point x0 of radius r is carried out by a simple
linear change of coordinates. In our case, the presence of a generalized translation
significantly complicates such a transition. Let’s consider this point in more detail.

We will transform (Mγ
t u)(x) so that the center of the part of the sphere over

which the integration takes place moves. In this case, the dimension of the space will
double. We have

(Mγ
r u)(x) = C(γ)

|S+
1 (n)|γ ×
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×
∫

S+
1 (n)

π∫

0

...

π∫

0

u(

√
x21 − 2r x1θ1 cosβ1 + r2θ21, ...,

√
x2n − 2r xnθn cosβ1 + r2θ2n)×

×
n∏

i=1

sinγi−1 βi dβθγdS.

One can convert this integral into integral by the part of sphere in R2n by using
formulas

θ̃1 = rθ1 cosβ1, θ̃2 = rθ1 sin β1,

θ̃3 = rθ2 cosβ2, θ̃4 = rθ2 sin β2, . . . , (5)

θ̃2n−1 = rθn cosβn, θ̃2n = rθn sin βn.

We obtain

(Mγ
r u)(x) = C(γ)

|S+
1 (n)|γrn+|γ|−1

×

×
∫

S̃+
r (2n)

u(

√

(x1 − θ̃1)2 + θ̃22, ...,

√

(xn − θ̃2n−1)2 + θ̃22n)

n∏

i=1

θ̃
γi−1
2i d S̃ =

= C(γ)

|S+
1 (n)|γrn+|γ|−1

∫

S̃+
r,x (2n)

u(

√

z21 + θ̃22, ...,
√
z22n−1 + θ̃22n)

n∏

i=1

θ̃
γi−1
2i d S̃′,

where we put {θ̃2i−1 − xi = z2i−1, i = 1, ..., n}. Here θ̃2i > 0, i = 1, ..., n,

S̃+
r (2n) = {θ̃ ∈ R2n : |θ̃| = r}

and
S̃+
r,x (2n) =

= {(z1, θ̃2, ..., z2n−1, θ̃2n) ∈ R2n : (z1 − x1)
2 + θ̃22 + · · · + (z2n−1 − xn)

2 + θ̃22n = r2},

differentials d S̃ and d S̃′ mean that we are integrating over a surfaces S̃+
r (2n) and

S̃+
r,x (2n) respectively.
Let now z2i−1 = θi cosβi θ̃2i = θi sin βi , i = 1, ..., n. We can write

(Mγ
r u)(x) = C(γ)

|S+
1 (n)|γrn+|γ|−1

π∫

0

...

π∫

0

⎛

⎜
⎜
⎝

∫

˜̃
S+
r,x (n)

u(θ)θγdS

⎞

⎟
⎟
⎠

n∏

i=1

sinγi−1 βi dβ, (6)
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where
˜̃
S+
r,x (n) is a sphere (or a part of sphere) (θ1 cosβ1 − x1)2 + θ21 sin

2 β1 + · · · +
(θn cosβn − xn)2 + θ2n sin

2 βn = r2. To simplify the right part of (6) we introduce
the next notation

∫

γTx
θ S

+
r (n)

u(θ)θγdS = C(γ)

π∫

0

...

π∫

0

⎛

⎜
⎜
⎝

∫

˜̃
S+
r,x (n)

u(θ)θγdS

⎞

⎟
⎟
⎠

n∏

i=1

sinγi−1 βi dβ

so we can write

(Mγ
r u)(x) = 1

|S+
1 (n)|γrn+|γ|−1

∫

γTx
θ S

+
r,x (n)

u(θ)θγdS. (7)

5 B-subharmonic Functions

In this section we define the B-subharmonic function and prove that if Laplace-
Bessel operator of a sufficiently smooth function is non-negative in domain then this
function is B-subharmonic.

Let u ∈ Cev(Ω+). We say that a function u is B-subharmonic if

u(x0) ≤ (Mγ
r u)(x0) = 1

|S+
1 (n)|γ

∫

S+
1 (n)

γTrθ
x0u(x0)θγdS

whenever the part of the sphere {x ∈ Rn+ : |x − x0| ≤ r} is contained in Ω+.

Theorem 2 Suppose u ∈ C2
ev(Ω+) and �γu(x) ≥ 0 for all x ∈ Ω+, then u(x) B-

subhartnonic at all points of Ω+.

Proof Let x0 is any point of Ω+,

v(x) =
{− ln |x − x0| + ln r, n+|γ| = 2s;

|x − x0|2−n−|γ| − r2−n−|γ|, n+|γ| > 2,

is B-harmonic function by Theorem 1 in Ω+: �γv = 0, v(x) ≥ 0.
We consider θ ∈ Rn+,

I (x) = C(γ)

π∫

0

...

π∫

0

⎛

⎜
⎝

∫

G̃+

(u(θ)�γv(θ) − v(θ)�γu(θ)) θγdθ

⎞

⎟
⎠

n∏

i=1

sinγi−1 βi dβ,

where G̃+ the shell domain between
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(θ1 cosβ1 − x01 )
2 + θ21 sin

2 β1 + · · · + (θn cosβn − x0n )
2 + θ2n sin

2 βn = ε2

and

(θ1 cosβ1 − x01 )
2 + θ21 sin

2 β1 + · · · + (θn cosβn − x0n )
2 + θ2n sin

2 βn = r2.

Numbers ε and r satisfy inequalities 0 < ε < r chosen so that set G̃+ lies entirely
in Ω+. The boundary of G̃+ can include parts of the coordinate plains.

Since �γv = 0, v(x) ≥ 0 and �γu(x) ≥ 0 for all x ∈ Ω+ and G̃+ ⊆ Ω+ we get

0 ≥ I (x) = C(γ)

π∫

0

...

π∫

0

⎛

⎜
⎝

∫

G̃+
(u(θ)�γv(θ) − v(θ)�γu(θ)) θγdθ

⎞

⎟
⎠

n∏

i=1

sinγi−1 βi dβ,

The second Green’s formula for the Laplace–Bessel operator (see [14]) is

0 ≥ I = C(γ)

π∫

0

...

π∫

0

⎛

⎜
⎝

∫

∂G̃+

(

u
∂v

∂ν
− v

∂u

∂ν

)

θγ dS

⎞

⎟
⎠

n∏

i=1

sinγi−1 βi dβ,

where ∂G̃+ the boundary of G̃+, ν is a normal vector of the surface ∂G̃+.
In new coordinates

z1 = θ1 cosβ1, z2 = θ1 sin β1,

z3 = θ2 cosβ2, z4 = θ2 sin β2, . . . ,

z2n−1 = θn cosβn, z2n = θn sin βn,

such that z2i > 0, i = 1, ..., n, we can write

0 ≥ I = C(γ)

∫

∂W̃+

(

ũ
∂ṽ

∂ν̃
− ṽ

∂ũ

∂ν̃

) n∏

i=1

zγi−1
2i d S̃,

where ũ = u

(√
z21 + z22, ...,

√
z22n−1 + z22n

)

, ṽ = v

(√
z21 + z22, ...,

√
z22n−1 + z22n

)

,

∂W̃+ is a surface consisted of two spheres (or a parts of spheres in R2n) with center
at ξ ∈ R2n , ξ = (x1, 0, x2, 0, ..., x2n−1, 0) of radii ε and r such that 0 < ε < r :

S̃+
ε,ξ(2n) =

= {z ∈ R2n : (z1 − x1)
2 + z2 + · · · + (z2n−1 − xn)

2 + z22n = ε2},
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S̃+
r,ξ(2n) =

= {z ∈ R2n : (z1 − x1)
2 + z2 + · · · + (z2n−1 − xn)

2 + z22n = r2}

and possibly parts of coordinate plains, ν̃ is is a normal vector of the surface ∂W̃+,
d S̃ is the element of the surface ∂W̃+. Therefore,

0 ≥ I = C(γ)

⎡

⎢
⎣

⎛

⎜
⎝

∫

S̃+
ε,ξ(2n)

+
∫

S̃+
r,ξ(2n)

⎞

⎟
⎠ ũ

∂ṽ

∂ν̃

n∏

i=1

zγi−1
2i d S̃−

−
⎛

⎜
⎝

∫

S̃+
ε,ξ(2n)

+
∫

S̃+
r,ξ(2n)

⎞

⎟
⎠ ṽ

∂ũ

∂ν̃

n∏

i=1

zγi−1
2i d S̃

⎤

⎥
⎦ .

On S̃+
r,ξ(2n) we have ṽ = 0. Also, since �γu ≥ 0 and ν̃ is directed toward the

center of the S̃+
ε,ξ we get that

∫

S̃+
ε,ξ

ṽ ∂ũ
∂ν̃

n∏

i=1
zγi−1
2i d S̃ ≤ 0.

That means that

0 ≥ C(γ)

⎛

⎜
⎝

∫

S̃+
ε,ξ(2n)

+
∫

S̃+
r,ξ(2n)

⎞

⎟
⎠ ũ

∂ṽ

∂ν̃

n∏

i=1

zγi−1
2i d S̃.

For n + |γ| = 2 we get

0 ≥ C(γ)

⎛

⎜
⎝

∫

S̃+
ε,ξ(2n)

−
∫

S̃+
r,ξ(2n)

⎞

⎟
⎠

ũ(z)

|z − ξ|
n∏

i=1

zγi−1
2i d S̃

and for n + |γ| > 2 we get

0 ≥ C(γ)(n + |γ| − 2)

⎛

⎜
⎝

∫

S̃+
ε,ξ(2n)

−
∫

S̃+
r,ξ(2n)

⎞

⎟
⎠

ũ(z)

|z − ξ|n+|γ|−1

n∏

i=1

zγi−1
2i d S̃,

where ξ ∈ R2n , ξ = (x1, 0, x2, 0, ..., x2n−1, 0). In either case,

C(γ)

∫

S̃+
ε,ξ(2n)

ũ(z)

|z − ξ|n+|γ|−1

n∏

i=1

zγi−1
2i d S̃ ≤ C(γ)

∫

S̃+
r,ξ(2n)

ũ(z)

|z − ξ|n+|γ|−1

n∏

i=1

zγi−1
2i d S̃
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or
C(γ)

εn+|γ|−1

∫

S̃+
ε,ξ(2n)

ũ(z)
n∏

i=1

zγi−1
2i d S̃ ≤ C(γ)

rn+|γ|−1

∫

S̃+
r,ξ(2n)

ũ(z)
n∏

i=1

zγi−1
2i d S̃.

Returning to coordinates θ1, ..., θn by formulas z2i−1 = θi cosβi θ̃2i = θi sin βi , i =
1, ..., n we obtain

1

|S+
1 (n)|γεn+|γ|−1

∫

γTx
θ S

+
ε,x0

(n)

u(θ)θγdS ≤ 1

|S+
1 (n)|γrn+|γ|−1

∫

γTx
θ S

+
r,x0

(n)

u(θ)θγdS

or, using (7),

(Mγ
ε u)(x0) = 1

|S+
1 (n)|γ

∫

S+
1 (n)

γTεθ
x0u(x0)θγdS ≤

≤ 1

|S+
1 (n)|γ

∫

S+
1 (n)

γTrθ
x0u(x0)θγdS = (Mγ

r u)(x0).

Letting ε tend to 0 the left side tends to u(x0) by (4) and we obtain inequality

u(x0) ≤ (Mγ
r u)(x0).

Notes and Comments. There are a lot of properties of B-subharmonic functions need
to prove. For example, it is interesting to consider themaximumprinciple, criterion of
B-harmonicity in terms of B-subharmonic functions, the Perron method for solving
the Dirichlet problem for Laplace-Bessel operator, the connection to the B-potential
theory (for the B-potential theory see [15, 16]), Harnack inequality for singular
equations and other.
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Some Multi–dimensional Modified
G- and H-Integral Transforms on
Lν, r-Spaces

S. M. Sitnik, O. V. Skoromnik, and M. V. Papkopvich

Abstract This paper is devoted to the study of three classes of multidimensional
integral transformationswith Fox’ H -function and theMeijer’sG-function in kernels
in weighted spaces integrable functions in the domain Rn+ = R1+ × R1+ × · · · × R1+.
Mapping properties such as the boundedness, the rang, the representation and the
inversion of the considered transforms are established.

Keywords Multidimensional integral transformations with Meijer’s G-function
and Fox’ H -function in the kernels · Multidimensional Mellin transform ·
Weighted space of summable functions · Fractional integrals and derivatives

MSC Primary 44A30 · Secondary 33C60 · 35A22

1 Introduction

Multidimensional integral transformations are considered (see [1], formula (40); [2],
formulas (1.1)–(1.2):

(
H1

σ,κ f
)
(x) = xσ

x∫

0

Hm, n
p, q

[x
t

∣∣∣
(ai ,αi )1,p

(b j ,β j )1,q

]
tκ f (t)

dt
t

(x > 0); (1)

(
G1

σ,κ f
)
(x) = xσ

x∫

0

Gm, n
p, q

[
x
t

∣∣
∣∣

(ai )1,p
(b j )1,q

]
tκ f (t)

dt
t

(x > 0); (2)
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(
G1

σ,κ; δ f
)
(x) = xσ

x∫

0

Gm, n
p, q

[
xδ

tδ

∣∣∣∣
(ai )1,p
(b j )1,q

]
tκ f (t)

dt
t

(x > 0); (3)

here (see, for example, [1, 2]; [3, Sect. 28.4]; [4, 5]) x = (x1, x2, ..., xn) ∈ Rn ;

t = (t1, t2, ..., tn) ∈ Rn , Rn be the n-dimensional Euclidean space; x · t =
n∑

n=1
xntn

denotes their scalar product; in particular, x · 1 =
n∑

n=1
xn for 1= (1,1,...,1). The

expression x > t means that x1 > t1, x2 > t2, ..., xn > tn, similarly for signs ≥,

<, ≤;
x∫

0
=

x1∫

0

x2∫

0
· · ·

xn∫

0
;

∞∫

0
=

∞∫

0

∞∫

0
· · ·

∞∫

0
; by N = {1, 2, ...} we denote the set of posi-

tive integers, N0 = N
⋃ {0}, Nn

0 = N0 × N0 × ... × N0; k = (k1, k2, ..., kn) ∈ Nn
0 =

N0 × ... × N0 (ki ∈ N0, i = 1, 2, ..., n) is a multi-index with k! = k1! · · · kn! and
|k| = k1 + k2 + ... + kn; Rn+ = {x ∈ Rn, x > 0}; for l = (l1, l2, ..., ln) ∈ Rn+ Dl =

∂|l|
(∂x1)l1 ···(∂xn)ln ; dt = dt1 · dt2 · · · dtn; tl = t l1 t l2 · · · t ln ; f (t) = f (t1, t2, ..., tn). Let
Cn (n ∈ N) be the n-dimensional space of n complex numbers z = (z1, z2, · · · , zn)
(z j ∈ C, j = 1, 2, · · · , n);

m = (m1,m2, ...,mn) ∈ Nn
0 andm1 = m2 = ... = mn; n = (n1, n2, ..., nn) ∈ Nn

0
and n1 = n2 = ... = nn; p = (p1, p2, ..., pn) ∈ N0 and p1 = p2 = ... = pn; q =
(q1, q2, ..., qn) ∈ N0 and q1 = q2 = ... = qn) (0 ≤ m ≤ q, 0 ≤ n ≤ p);

σ = (σ1,σ2, ...,σn) ∈ Cn; κ = (κ1,κ2, ...,κn) ∈ Cn; δ = (δ1, δ2, ..., δn) ∈ Rn+;
ai = (ai1 , ai2 , ..., ain ), 1 ≤ i ≤ p, ai1 , ai2 , ..., ain ∈ C (1 ≤ i1 ≤ p1, ..., 1 ≤ in ≤

pn);
b j = (b j1 , b j2 , ..., b jn ), 1 ≤ j ≤ q, b j1 , b j2 , ..., b jn ∈ C (1 ≤ j1 ≤ q1, ..., 1 ≤ jn

≤ qn);
αi = (αi1 ,αi2 , ...,αin ), 1 ≤ i ≤ p, αi1 ,αi2 , ...,αin ∈ R+

1 (1 ≤ i1 ≤ p1, ..., 1 ≤
in
≤ pn);

β j = (β j1 ,β j2 , ...,β jn ), 1 ≤ j ≤ q, β j1 ,β j2 , ...,β jn ∈ R+
1 (1 ≤ j1 ≤ q1, ..., 1 ≤

jn ≤ qn).
We introduce the function

Hm, n
p, q

[
x
t

∣∣∣∣
(ai ,αi )1,p

(b j ,β j )1,q

]
=

n∏

k=1

Hmk , nk
pk , qk

[
xk
tk

∣∣∣∣
(aik ,αik )1,pk

(b jk ,β jk )1,qk

]
, (4)

which is the product of H -functions Hm, n
p, q [z]:

Hm,n
p, q [z] ≡ Hm,n

p,q

[
z

∣∣
∣∣

(ai ,αi )1,p

(b j ,β j )1,q

]
= 1

2πi

∫

L

Hm,n
p,q (s)z−sds, z �= 0, (5)
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where

Hm,n
p, q(s) ≡ Hm,n

p, q

[
(ai ,αi )1,p

(b j ,β j )1,q

∣∣∣∣s
]

=

m∏

j=1
�(b j + β j s)

n∏

i=1
�(1 − ai − αi s)

p∏

i=n+1
�(ai + αi s)

q∏

j=m+1
�(1 − b j − β j s)

;

(6)

and the function Gm, n
p, q

[
z

∣∣∣∣
(ai )1,p
(b j )1,q

]
=

n∏

k=1
Gmk , nk

pk , qk

[
zk

∣∣∣∣
(aik )1,pk
(b jk )1,qk

]
, which is a product of

G- functions Gm, n
p, q [z]:

Gm,n
p, q [z] ≡ Gm,n

p,q

[
z

∣∣
∣∣
(ai )1,p
(b j )1,q

]
= 1

2πi

∫

L

Gm,n
p,q (s)z−sds, z �= 0, (7)

where

Gm,n
p, q (s) ≡ Gm,n

p, q

[
(ai )1,p
(b j )1,q

∣∣∣∣s
]

=

m∏

j=1
�(b j + s)

n∏

i=1
�(1 − ai − s)

p∏

i=n+1
�(ai + s)

q∏

j=m+1
�(1 − b j − s)

. (8)

In (5) and (7) L is a specially chosen infinite contour and empty product, if it occurs,
being taken to be one. H -function is the most general of known special functions and
includes as private cases elementary functions, Meijer special functions hypergeo-
metric and Bessel types, as well as the G- function (7) obtained from H -function (5)
with α1 = α2 = ... = αp = β1 = β2 = ... = βq = 1 ([6, Sect. 2.9]). Modern theory
of H - and G- functions (5), (7) is presented in Chaps. 1–2 of the monograph [6].
With elements of theory H -function and its special cases can also be found in books
[7–10].

The theory of integral transformations has been intensively developing recently.
This is due to the fact that integral transformations often arise both in problems
of mathematics and in applied problems of physics, mechanics and other natural
sciences. The use of integral transformations in the theory of differential and integral
equations, operational calculus, and the theory of boundary value problems makes it
possible to find their solutions in a closed form and study their structural properties.

The classical Fourier, Mellin and Hankel transformations are the most studied
[11–14]. Such transformations are widely used in various problems of mathematical
physics and applied mathematics [15–18]. They also find application in solving
various model problems for partial differential equations.

Since the 70s of the twentieth century, the solution of various applied non-specific
problems has led to the presentation of their solutions in the form of integral trans-
formations with special functions in kernels. The interest in such transformations is
also caused by the study of the corresponding integral equations of the first kind and
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the so-called pair and triple integral equations, which are often found in applications.
The results in this direction are presented in books ([3, Chap. 7]; [19–22]).

Integral transformations with various special functions in kernels have been stud-
ied by many authors. They were mainly studied in the spaces L1 and L2 [11–13, 23,
24] and in some spaces of generalized functions [25, 26]. These monographs are
devoted to one-dimensional integral transformations. Note also that separate results
for multidimensional classical integral transformations and some transformations
with special functions in kernels are presented in the monograph [27].

Most integral transformations with special functions in the kernels contain hyper-
geometric and Bessel type functions. In particular, the solution of the problems of
axisymmetric potential theory is presented in the form of integral transformations
with special Bessel functions of the second kind Yη(z) and Struve Hη(z) in the ker-
nels. For the first time, such constructions were considered by E. Titchmarsh [11]
as a pair of mutually inverse transformations within the L2- spaces. The questions
of the action of these transformations in the spaces of r - summable functions Lν,r ,
1 ≤ r < ∞, on the real semi-axis with power weight were studied by P. Rooney
[28–30], Heywood and Rooney [31, 32] based on the theory of Mellin transforma-
tions. At the same time, they obtained analogues of the Parseval equality and gave a
description of the spaces of functions represented by such integral operators. Similar
questions for integral transformations with the Meijer G-function were studied by P.
Rooney [33].

In 1993–1998 Kilbas and Saigo developed a theory integral H–transformations
with special functions of general type in kernels, namely H–functions, in spaces
Lν, r of summable functions. Applying the technique of Mellin transformation and
taking into account the asymptotic properties of the H - function, was constructed
a theory of integral H- transformations with such functions in kernels in the spaces
Lν, r of summable functions with weight. Results presented in [6].

This paper presents properties of multidimensional transformations (1)–(3) in
weighted spaces Lν, r of integrable functions f (x)= f (x1, x2, ..., xn) on Rn+, for
which

‖ f ‖ν,r =
{∫

R1+
xνn ·rn−1
n

{
· · ·

{∫

R1+
xν2·r2−1
2

×
[∫

R1+
xν1·r1−1
1 | f (x1, ..., xn)|r1dx1

]r2/r1

dx2

}r3/r2

· · ·
}rn/rn−1

dxn

}1/rn

< ∞

(r = (r1, r2, ..., rn) ∈ Rn ,1 < r < ∞, r1 = r2 = ... = rn; ν = (ν1, ν2, ..., νn) ∈ Rn ,
ν1 = ν2 = ... = νn).

In particular, for ν = (ν1, ν2, ..., νn) ∈ Rn , ν1 = ν2 = ... = νn , and 2 =
(2, 2, ..., 2) by Lν, 2 denote the weighted space of integrable functions f (x)=
f (x1, x2, ..., xn) on Rn+ (see [1, 2]):

‖ f ‖ν,2 =
{∫

R1+
xνn ·2−1
n

{
· · ·
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{ ∫

R1+
xν2·2−1
2

[∫

R1+
xν1·2−1
1 | f (x1, ..., xn)|2dx1

]

dx2

}
· · ·

}
dxn

}1/2

< ∞.

For the transformations under consideration, various integral representations and
inversion formulas are derived.

Research results for transformations (1), (2) generalize those obtained earlier for
the corresponding one-dimensional cases ([6, Chaps. 5 and 6]).

2 Preliminaries

Denote by [X,Y ] a set of bounded linear operators acting from a Banach space X
into a Banach space Y .

Multidimensional Mellin integral transform (M f )(x) of function f (x) =
f (x1, x2, ..., xn), x = (x1, x2, ..., xn) ∈ Rn+, is determined by the formula

(M f )(s) =
∞∫

0

f (t)ts−1dt, Re(s) = ν, (9)

s = (s1, s2, ..., sn) ∈ Cn; the inverse Mellin transform is given for x ∈ Rn+ by the
formula

(M−1g)(x) = M−1[g(p)](x) = 1

(2πi)n

∫ γ1+i∞

γ1−i∞
· · ·

∫ γn+i∞

γn−i∞
x−sg(s)ds, (10)

γ j = Re(s j ) ( j = 1, · · · , n). The theory of multidimensional integral transforma-
tions (9), (10) can be recognized, for example, in books ([27]; [5, Chap. 1]). Let N�

be elementary operator (see [5, Chap. 1]):

(N� f )(x) = f (x�) (x ∈ Rn, � = (�1, �2, ..., �n) ∈ Rn, � �= 0). (11)

This operator has the properties [[1]; [2], Lemma 2.1].

Lemma 2.1 Let ν = (ν1, ν2, ..., νn) ∈ Rn (ν1 = ν2 = ... = νn) and 1 ≤ r < ∞.N�

is a bounded isomorphism Lν,r on L� ν,r ; if f ∈ Lν,r (1 ≤ r ≤ 2), then

(MN� f )(s) = 1

|�| (M f )(
s
�
) (Re(s) = �ν).

Let Iα0+; σ,η and Iα−;σ,η be the multidimensional Erdelyi-Kober operators of frac-
tional integration, defined for α = (α1,α2, ...,αn) ∈ Cn (Re(α) > 0), σ > 0, η ∈
Cn by (see [1]; [2]):
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(
Iα0+; σ, η f

)
(x) = σx−σ(α+η)

�(α)

x∫

0

(
xσ − tσ

)α−1
tση+σ−1 f (t)dt (x > 0); (12)

(
Iα−; σ, η f

)
(x) = σxση

�(α)

∞∫

x

(
tσ − xσ

)α−1
tσ(1−α−η)−1 f (t)dt (x > 0). (13)

3 Lν,r-Theory And the Inversion Formulas
for the Modified H1

σ,κ-Transform

To formulate the results presented Lν,2-, Lν,r -theories and the inversion formulas of
the H1

σ,κ-transform (1) we need the following constants ([1], (57)–(60)), analogical
for one-dimensional case defined via the parameters of the H - function (5) ([6],
(3.4.1), (3.4.2), (1.1.7), (1.1.8), (1.1.10)):

α = (α1,α2, ...,αn) and β = (β1,β2, ...,βn), where

α1 =
{− min

1≤ j1≤m1

[
Re(b j1 )

β j1

]
, m1 > 0,

−∞, m1 = 0,
β1 =

{ min
1≤i1≤n1

[
1−Re(ai1 )

αi1

]
, n1 > 0,

∞, n1 = 0,

α2 =
{− min

1≤ j2≤m2

[
Re(b j2 )

β j2

]
, m2 > 0,

−∞, m2 = 0,
β2 =

{ min
1≤i2≤n2

[
1−Re(ai2 )

αi2

]
, n2 > 0,

∞, n2 = 0,

and so on

αn =
{− min

1≤ jn≤mn

[
Re(b jn )

β jn

]
, mn > 0,

−∞, m2 = 0,
βn =

{ min
1≤in≤nn

[
1−Re(ain )

αin

]
, nn > 0,

∞, nn = 0;
(14)

a∗
1 =

n1∑

i=1

αi1 −
p1∑

i=n1+1

αi1 +
m1∑

j=1

β j1 −
q1∑

j=m1+1

β j1 , �1 =
q1∑

j=1

β j1 −
p1∑

i=1

αi1 ,

a∗
2 =

n2∑

i=1

αi2 −
p2∑

i=n2+1

αi2 +
m2∑

j=1

β j2 −
q2∑

j=m1+1

β j2 , �2 =
q2∑

j=1

β j2 −
p2∑

i=1

αi2 ,

and so on
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a∗
n =

nn∑

i=1

αin −
pn∑

i=nn+1

αin +
mn∑

j=1

β jn −
qn∑

j=mn+1

β jn , �n =
qn∑

j=1

β jn −
pn∑

i=1

αin ; (15)

μ = (μ1,μ2, ...,μn),

where

μ1 =
q1∑

j=1

b j1 −
p1∑

i=1

ai1 + p1 − q1
2

,μ2 =
q2∑

j=1

b j2 −
p2∑

i=1

ai2 + p2 − q2
2

, ...,

μn =
qn∑

j=1

b jn −
pn∑

i=1

ain + pn − qn
2

; (16)

α1
0 =

{1 + max
m1+1≤ j1≤q1

[
Re(b j1 )−1

β j1

]
, q1 > m1,

−∞, q1 = m1,

β1
0 =

{1 + min
n1+1≤i1≤p1

[
Re(ai1 )

αi1

]
, p1 > n1,

∞, p1 = n1,

α2
0 =

{1 + max
m2+1≤ j2≤q2

[
Re(b j2 )−1

β j2

]
, q2 > m2,

−∞, q2 = m2,

β2
0 =

{1 + min
n2+1≤i2≤p2

[
Re(ai2 )

αi2

]
, p2 > n2,

∞, p2 = n2,

and so on

αn
0 =

{1 + max
mn+1≤ jn≤qn

[
Re(b jn )−1

β jn

]
, qn > mn,

−∞, qn = mn,

βn
0 =

{1 + min
nn+1≤in≤p2

[
Re(ain )

αin

]
, pn > nn,

∞, pn = nn.
(17)

The exceptional set EH of a function Hm,n
p,q (s):

Hm,n
p, q (s) ≡ Hm,n

p, q

[
(ai ,αi )1,p

(b j ,β j )1,q

∣∣∣∣s
]

=
n∏

k=1

Hmk ,nk
pk , qk

[
(aik ,αik )1,pk

(b jk ,β jk )1,qk

∣∣∣∣s
]
, (18)
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is called a set of vectors ν = (ν1, ν2, ..., νn) ∈ Rn (ν1 = ν2 = ... = νn), such
that α1 < 1 − ν1 < β1, α2 < 1 − ν2 < β2, ..., αn < 1 − νn < βn, and functions
Hm1,n1

p1, q1 (s1),Hm2,n2
p2, q2 (s2),...,Hmn ,nn

pn , qn (sn) have zeros on lines Re(s1) < 1 − ν1, Re(s2) <

1 − ν2, ..., Re(sn) < 1 − νn , respectively (see [1, (61)]).
Applying multidimensional Mellin transform (9) to (1), taking into account the

results for the one-dimensional case ([6, Formulae (5.1.14)]), in the work [1] we
obtained:

(MH1
σ,κ f )(s) = Hm,n

p,q

[
(ai ,αi )1,p

(b j ,β j )1,q

∣∣∣∣s + σ

]
(M f )(s + σ + κ). (19)

The following assertion presents the Lν,2-theory of the modified H-transform (1).
One dimensional case see in ([6, Theorem 5.37]).

Theorem 3.1 ([1, Theorem 9]) Let
α1 < ν1 − Re(κ1) < β1,α2 < ν2 − Re(κ2) < β2, ... ,αn < νn − Re(κ1) < βn,

ν1 = ν2 = ... = νn;

a∗
1 = 0, a∗

2 = 0, ..., a∗
n = 0;�1[ν1 − Re(κ1)] + Re(μ1) ≤ 0,

�2[ν2 − Re(κ2)] + Re(μ2) ≤ 0, ...,�n[νn − Re(κn)] + Re(μn) ≤ 0. (20)

There hold the following assertions:
(a) There exists a one-to-one map H1

σ,κ ∈ [Lν,2, Lν−Re(κ+σ),2] such the relation
(19) holds for f ∈ Lν,2 and Re(s) = ν − Re(κ + σ).

If a∗
1 = 0, a∗

2 = 0, ..., a∗
n = 0;�1[ν1 − Re(κ1)] + Re(μ1) = 0,�2[ν2 − Re(κ2)] +

Re(μ2) = 0, ...,�n[νn − Re(κn)] + Re(μn) = 0 and 1 − ν + Re(κ) /∈ EH, then
H1

σ,κ maps Lν,2 onto Lν−Re(κ+σ),2.
(b) The transform H1

σ,κ does not depend on ν in the sense if ν and ν̃ satisfy Eq.
(20) and if the transforms H1

σ,κ and H̃1
σ,κ are defined in respective spaces Lν,2 and

Lν̃,2 by Eq. (19), then H1
σ,κ = H̃1

σ,κ for f ∈ Lν̃,2

⋂
Lν,2.

(c) If a∗
1 = 0, a∗

2 = 0, ..., a∗
n = 0; �1[ν1 − Re(κ1)] + Re(μ1) < 0,�2[ν2 −

Re(κ2)] + Re(μ2) < 0, ...,�n[νn − Re(κn)] + Re(μn) < 0; then for f ∈ Lν,2 the
transform H1

σ,κ f is given by Eq. (1).

(d) Let λ = (λ1, ...,λn) ∈ Cn , h = (h1, ..., hn) > 0, and f ∈ Lν,2. If Re(λ) >

(ν − Re(κ))h − 1, then H1
σ,κ f is represented in the form

(
H1

σ,κ f
)
(x) = hxσ+1−(λ+1)/h d

dx
x(λ+1)/h×

×
∞∫

0

Hm,n+1
p+1,q+1

[
x
t

∣∣
∣∣

(−λ, h), (ai ,αi )1,p

(b j ,β j )1,q, (−λ − 1, h)

]
tκ−1 f (t)dt, (21)
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while for Re(λ) < (ν − Re(k))h − 1 is given by

(
H1

σ,κ f
)
(x) = −hxσ+1−(λ+1)/h d

dx
x(λ+1)/h×

×
∞∫

0

Hm+1,n
p+1,q+1

[
x
t

∣∣∣∣
(ai ,αi )1,p, (−λ, h)

(−λ − 1, h), (b j ,β j )1,q

]
tκ−1 f (t)dt. (22)

(e) If f ∈ Lν,2 and g ∈ L1−ν+Re(κ+σ),2, then there holds the relation :

∞∫

0

f (x)
(
H1

σ,κg
)
(x)dx =

∞∫

0

(
H2

σ,κ f
)
(x)g(x)dx, (23)

where
(
H2

σ,κ f
)
(x) = xσ

∞∫

0

Hm,n
p,q

[
t
x

∣
∣∣∣

(ai ,αi )1,p

(b j ,β j )1,q

]
tκ f (t)

dt
x

. (24)

Taking into account the results for themultidimensional case in [4], Theorems4.1–
4.2 and Theorems 5.38–5.39 in [6], Lemma2.1, Theorem3.1, we present Lν,r -
theory of the modified H1

σ,κ-transform for two cases, when a∗
1 = a∗

2 = ... = a∗
n = 0,

�1 = �2 = ... = �n = 0, Re(μ1) = Re(μ2) = ... = Re(μn) = 0 and a∗
1 = a∗

2 =
... = a∗

n = 0, �1 = �2 = ... = �n = 0, Re(μ1) < 0,Re(μ2) < 0, ...,Re(μn) < 0.

Theorem 3.2 Let

a∗
1 = 0, a∗

2 = 0, ..., a∗
n = 0;�1 = �2 = ... = �n = 0;

Re(μ1) = Re(μ2) = ... = Re(μn) = 0;

α1 < ν1 − Re(κ1) < β1,α2 < ν1 − Re(κ2) < β2, ... ,αn < νn − Re(κn) < βn,

ν1 = ν2 = ... = νn; 1 < r < ∞, r1 = r2 = ... = rn.

There the following assertions are true:
(a) The transform H1

σ,κ defined on Lν,2 can be extended to Lν,r as an element of
H1

σ,κ ∈[Lν,r ,Lν−Re(κ+σ),r ]. If 1 < r ≤ 2, then the transform H1
σ,κ is one-to-one and

there holds the equality (19) for f ∈ Lν,r and Re(s) = ν − Re(κ + σ).
(b) If f ∈ Lν,r , λ = (λ1, ...,λn) ∈ Cn and h = (h1, ..., hn) > 0, then H1

σ,κ f is

represented in the form (21) for Re(λ) > (ν − Re(κ))h − 1 and in the form (22) for
Re(λ) < (ν − Re(k))h − 1.

(c) If f ∈ Lν,r and g ∈ L1−ν+Re(κ+σ),r ′ with r ′ = r/(r − 1), then the relation (23)
holds.
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(d) If 1 − ν + Re(κ) /∈ EH, then the transform H1
σ,κ is one-to-one on Lν,r and its

image is given by

H1
σ,κ(Lν,r ) = Lν−Re(κ+σ),r . (25)

Theorem 3.3 Let

a∗
1 = 0, a∗

2 = 0, ..., a∗
n = 0;�1 = �2 = ... = �n = 0;

Re(μ1) < 0,Re(μ2) < 0, ...,Re(μn) < 0;

α1 < ν1 − Re(κ1) < β1,α2 < ν1 − Re(κ2) < β2, ... ,αn < νn − Re(κn) < βn,

ν1 = ν2 = ... = νn; 1 < r < ∞, r1 = r2 = ... = rn; and let m > 0 or n > 0. There
the following assertions are true:

(a) The transform H1
σ,κ defined on Lν,2 can be extended to Lν,r as an element of

H1
σ,κ ∈[Lν,r ,Lν−Re(κ+σ),s] for any s = (s1, s2, ..., sn), s ≥ r , such that 1/s j = 1/r j +

Re(μ j ), j = 1, 2, ..., n. If 1 < r ≤ 2, then the transformH1
σ,κ is one-to-one and there

holds the relation (19) for f ∈ Lν,r and Re(s) = ν − Re(κ + σ).
(b) If f ∈ Lν,r and g ∈ L1−ν+Re(κ+σ),s with 1 < s < ∞ and 1 ≤ 1/r + 1/s <

1 − Re(μ), then the relation (23) holds.
(c) Let k = (k1, k2, ..., kn) > 0. If 1 − ν + Re(κ) /∈ EH, then the transform H1

σ,κ

is one-to-one on Lν,r and there hold

H1
σ,κ(Lν,r ) = I−μ

−;k,(σ−α)/k
(Lν−Re(κ+σ),r ) (26)

for m > 0, and

H1
σ,κ(Lν,r ) = I−μ

0+;k,(β−σ)/k−1
(Lν−Re(κ+σ),r ) (27)

for n > 0. When 1 − ν + Re(κ) ∈ EH, H1
σ,κ(Lν,r ) is a subset of right hand sides of

(26) and (27) in respective cases.
(d) If f ∈ Lν,r , λ = (λ1, ...,λn) ∈ Cn and h = (h1, ..., hn) > 0, then H1

σ,κ f

is given in (21) for Re(λ) > (ν − Re(κ))h − 1, while in (22) for Re(λ) < (ν −
Re(k))h − 1. Furthermore H1

σ,κ f is given in (1).
In ([1], formulas (68), (69)) were obtained inversion formulas for transforma-

tion H1
σ,κ f (1), which generalize the corresponding one-dimensional case (see [6],

(5.5.23) and (5.5.24)):

f (x) = −hx(λ+1)/h−κ d
dx

x−(λ+1)/h×
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∞∫

0

Hq−m,p−n+1
p+1,q+1

[
t
x

∣∣
∣∣

(−λ, h), (1 − ai − αi ,αi )n+1,p, (1 − ai − αi ,αi )1,n

(1 − b j − β j ,β j )m+1,q, (1 − b j − β j ,β j )1,m (−λ − 1, h)

]
×

t−σ(H1
σ,κ f )(t)dt (28)

or

f (x) = hx(λ+1)/h−1 d
dx

x−(λ+1)/h×

∞∫

0

Hq−m+1,p−n
p+1,q+1

[
t
x

∣
∣∣∣

(1 − ai − αi ,αi )n+1,p, (1 − ai − αi ,αi )1,n, (−λ, h)

(−λ − 1, h), (1 − b j − β j ,β j )m+1,q, (1 − b j − β j ,β j )1,m

]
×

t−σ(H1
σ,κ f )(t)dt. (29)

Condition for the validity of these formulas are given by the following assertion
(one-dimensional case see in ([6], Theorem 5.47)).

Theorem 3.4 Let a∗
1 = 0, a∗

2 = 0, ..., a∗
n = 0; α1 < ν1 − Re(κ1) < β1, α2 <

ν2 − Re(κ2) < β2, ..., αn < νn − Re(κn) < βn; α1
0 < 1 − ν1 + Re(κ1) < β1

0 ,
α2
0 < 1 − ν2 + Re(κ2) < β2

0 ,..., αn
0 < 1 − νn + Re(κn) < βn

0 ; and let λ ∈ Cn,

h > 0.
(a) If �1[ν1 − Re(κ1)] + Re(μ1) = 0, �2[ν2 − Re(κ2)] + Re(μ2) = 0,...,

�n[νn − Re(κn)] + Re(μn) = 0 and f ∈ Lν,2 (ν1 = ... = νn), then the inversion

formulas (28) and (29) are valid for Re(λ) > (1 − ν + Re(κ))h − 1 and for
Re(λ) < (1 − ν + Re(κ))h − 1, respectively.

(b) If �1 = �2 = ... = �n = 0; Re(μ1) = Re(μ2) = ... = Re(μn) = 0 and f ∈
Lν,r (ν1 = ν2 = ... = νn), 1 < r < ∞, r1 = r2 = ... = rn, then the inversion for-
mulas (28) and (29) are valid for Re(λ) > (1 − ν + Re(κ))h − 1 and for Re(λ) <

(1 − ν + Re(κ))h − 1, respectively.

4 Lν,r-Theory and the Inversion Formulas of the Modified
G1

σ,κ- transform

Modified G1
σ,κ-transform (2) is a special case of the modified H1

σ,κ-transformation
(1) when parameters in (5), (6) are equal: α1 = α2 = ... = αp = β1 = β2 = ... =
βq = 1. Therefore Lν,2-theory of the G1

σ,κ-transformation (2) follows from the cor-
responding results for the modified H1

σ,κ-transformation (1) and it was presented in
the work [2].

To formulate statements representing Lν,2- and Lν,r -theories and inversion for-
mulas for the G1

σ,κ-transform (2), we need the following multidimensional constants
([2], (3.1)–(3.5)):
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α = (α1,α2, ...,αn) and β = (β1,β2, ...,βn), where

α1 =
{− min

1≤ j1≤m1

[
Re(b j1)

]
, m1 > 0,

−∞, m1 = 0,
β1 =

{ min
1≤i1≤n1

[
1 − Re(ai1)

]
, n1 > 0,

∞, n1 = 0,

α2 =
{− min

1≤ j2≤m2

[
Re(b j2)

]
, m2 > 0,

−∞, m2 = 0,
β2 =

{ min
1≤i2≤n2

[
1 − Re(ai2)

]
, n2 > 0,

∞, n2 = 0,

and so on

αn =
{− min

1≤ jn≤mn

[
Re(b jn )

]
, mn > 0,

−∞, m2 = 0,
βn =

{ min
1≤in≤nn

[
1 − Re(ain )

]
, nn > 0,

∞, nn = 0;
(30)

a∗
1 = 2(m1 + n1) − p1 − q1, a

∗
2 = 2(m2 + n2) − p2 − q2, ..., a

∗
n = 2(mn + nn) − pn − qn;

(31)

�1 = q1 − p1, �2 = q2 − p2, ...,�n = qn − pn; (32)

μ1 =
q1∑

j=1

b j1 −
p1∑

i=1

ai1 + p1 − q1
2

,μ2 =
q2∑

j=1

b j2 −
p2∑

i=1

ai2 + p2 − q2
2

, ...,

μn =
qn∑

j=1

b jn −
pn∑

i=1

ain + pn − qn
2

; (33)

α1
0 =

{1 + max
m1+1≤ j1≤q1

[
Re(b j1) − 1

]
, q1 > m1,

−∞, q1 = m1,

β1
0 =

{1 + min
n1+1≤i1≤p1

[
Re(ai1)

]
, p1 > n1,

∞, p1 = n1,

α2
0 =

{1 + max
m2+1≤ j2≤q2

[
Re(b j2) − 1

]
, q2 > m2,

−∞, q2 = m2,

β2
0 =

{1 + min
n2+1≤i2≤p2

[
Re(ai2)

]
, p2 > n2,

∞, p2 = n2,
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and so on

αn
0 =

{1 + max
mn+1≤ jn≤qn

[
Re(b jn ) − 1

]
, qn > mn,

−∞, qn = mn,

βn
0 =

{1 + min
nn+1≤in≤p2

[
Re(ain )

]
, pn > nn,

∞, pn = nn.
(34)

The exceptional set EG of a function Gm,n
p,q (s):

Gm,n
p, q (s) ≡ Gm,n

p, q

[
(ai )1,p
(b j )1,q

∣∣∣∣s
]

=
n∏

k=1

Gmk ,nk
pk , qk

[
(aik )1,pk
(b jk )1,qk

∣∣∣∣sk

]
, (35)

is called a set of vectors ν = (ν1, ν2, ..., νn) ∈ Rn (ν1 = ν2 = ... = νn), such
that α1 < 1 − ν1 < β1, α2 < 1 − ν2 < β2, ..., αn < 1 − νn < βn, and functions
Gm1,n1
p1, q1 (s1), Gm2,n2

p2, q2 (s2),...,Gmn ,nn
pn , qn (sn) have zeros on lines Re(s1) < 1 − ν1, Re(s2) <

1 − ν2, ..., Re(sn) < 1 − νn , respectively (see [2], (3.6)).
Apply the multidimensional Mellin transform (9) to transformation G1

σ,κ f (2)
and, taking into account (19), we obtain:

(MG1
σ,κ f )(s) = Gm,n

p,q

[
(ai )1,p
(b j )1,q

∣∣∣∣s + σ

]
(M f )(s + σ + κ), (36)

where Gm,n
p,q (s) is given by (35).

Theorem 4.1 ([2], Theorem 3.1) Let

α1 < (ν1 − Re(κ1)) < β1,α2 < (ν2 − Re(κ2)) < β2,

... ,αn < (νn − Re(κ1)) < βn, ν1 = ν2 = ... = νn; (37)

a∗
1 = 0, a∗

2 = 0, ..., a∗
n = 0;�1[ν1 − Re(κ1)] + Re(μ1) ≤ 0,

�2[ν2 − Re(κ2)] + Re(μ2) ≤ 0, ...,�n[νn − Re(κn)] + Re(μn) ≤ 0. (38)

There hold the following assertions:
(a) There exists a one-to-one map G1

σ,κ ∈ [Lν,2, Lν−Re(κ+σ),2] such the relation
(36) holds for f ∈ Lν,2 and Re(s) = ν − Re(κ + σ).

If a∗
1 = 0, a∗

2 = 0, ..., a∗
n = 0;�1[ν1 − Re(κ1)] + Re(μ1) = 0,�2[ν2 − Re(κ2)] +

Re(μ2) = 0, ...,�n[νn − Re(κn)] + Re(μn) = 0and1 − ν + Re(κ)) /∈ EG , then the
transform G1

σ,κ maps Lν,2 onto Lν−Re(κ+σ),2.
(b) The transform G1

σ,κ does not depend on ν in the sense if ν and ν̃ satisfy Eqs.
(37), (38) and if the transforms G1

σ,κ and G̃1
σ,κ are defined in respective spaces Lν,2

and Lν̃,2 by Eq. (36), then G1
σ,κ = G̃1

σ,κ for f ∈ Lν̃,2

⋂
Lν,2.
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(c) If a∗
1 = 0, a∗

2 = 0, ..., a∗
n = 0; �1[ν1 − Re(κ1)] + Re(μ1) < 0,�2[ν2 −

Re(κ2)] + Re(μ2) < 0, ...,�n[νn − Re(κn)] + Re(μn) < 0; then for f ∈ Lν,2 the
transform G1

σ,κ f is given by Eq. (2).

(d) Let λ = (λ1, ...,λn) ∈ Cn and f ∈ Lν,2. If Re(λ) > ν − Re(κ) − 1, then the
transform G1

σ,κ f is represented in the form

(
G1

σ,κ f )(x) = xσ−λ d
dx

x(λ+1)

x∫

0

Gm,n+1
p+1,q+1

[
x
t

∣∣
∣∣

−λ, (ai )1,p
(b j )1,q, −λ − 1

]
tκ−1 f (t)dt, (39)

while for Re(λ) < ν − Re(κ) − 1 the transform G1
σ,κ f is given by

(
G1

σ,κ f
)
(x) = −xσ−λ d

dx
x(λ+1)

x∫

0

Gm+1,n
p+1,q+1

[
x
t

∣∣∣∣
(ai )1,p,−λ

−λ − 1, (b j )1,q

]
tκ−1 f (t)dt.

(40)
(e) If f ∈ Lν,2 and g ∈ L1−ν+Re(κ+σ),2, then there holds the relation :

x∫

0

f (x)
(
G1

σ,κg
)
(x)dx =

x∫

0

(
G2

σ,κ f
)
(x)g(x)dx, (41)

where
(
G2

σ,κ f
)
(x) = xσ

x∫

0

Gm,n
p,q

[
t
x

∣∣∣∣
(ai )1,p
(b j )1,q

]
tκ f (t)

dt
x

.

Now present Lν,r -theory of the G1
σ,κ-transform, which follows from Theorems 3.2

and 3.3 for H1
σ,κ- transform when α1 = α2 = ... = αp = β1 = β2 = ... = βq = 1.

Theorem 4.2 Let

a∗
1 = 0, a∗

2 = 0, ..., a∗
n = 0;�1 = �2 = ... = �n = 0;

Re(μ1) = Re(μ2) = ... = Re(μn) = 0;

α1 < ν1 − Re(κ1) < β1,α2 < ν1 − Re(κ2) < β2, ... ,αn < νn − Re(κn) < βn,

ν1 = ν2 = ... = νn; 1 < r < ∞, r1 = r2 = ... = rn.

There the following assertions are true:
(a) The transform G1

σ,κ defined on Lν,2 can be extended to Lν,r as an element of
G1

σ,κ ∈[Lν,r ,Lν−Re(κ+σ),r ]. If 1 < r ≤ 2, then the transform G1
σ,κ is one-to-one on

Lν,r and there holds the equality (36) for f ∈ Lν,r and Re(s) = ν − Re(κ + σ).
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(b) If f ∈ Lν,r andλ = (λ1, ...,λn) ∈ Cn, thenG1
σ,κ f is given in (39) forRe(λ) >

ν − Re(κ) − 1, while in (40) for Re(λ) < ν − Re(k) − 1.
(c) If f ∈ Lν,r and g ∈ L1−ν+Re(κ+σ),r ′ with r ′ = r/(r − 1), then the relation (41)

holds.
(d) If 1 − ν + Re(κ) /∈ EG , then the transform G1

σ,κ is one-to-one on Lν,r and its
image is given by

G1
σ,κ(Lν,r ) = Lν−Re(κ+σ),r . (42)

Theorem 4.3 Let

a∗
1 = 0, a∗

2 = 0, ..., a∗
n = 0;�1 = �2 = ... = �n = 0;

Re(μ1) < 0,Re(μ2) < 0, ...,Re(μn) < 0;

α1 < ν1 − Re(κ1) < β1,α2 < ν1 − Re(κ2) < β2, ... ,αn < νn − Re(κn) < βn,

ν1 = ν2 = ... = νn; 1 < r < ∞, r1 = r2 = ... = rn; and let m > 0 or n > 0. There
the following assertions are true:

(a) The transform G1
σ,κ defined on Lν,2 can be extended to Lν,r as an element

of [Lν,r ,Lν−Re(κ+σ),s] for any s = (s1, s2, ..., sn), s ≥ r , such that 1/s j = 1/r j +
Re(μ j ), j = 1, 2, ..., n. If 1 < r ≤ 2, then the transform G1

σ,κ is one-to-one on Lν,r

and there holds the equality (36) for f ∈ Lν,r and Re(s) = ν − Re(κ + σ).
(b) If f ∈ Lν,r and g ∈ L1−ν+Re(κ+σ),s with 1 < s < ∞ and 1 ≤ 1/r + 1/s <

1 − Re(μ), then the relation (41) holds.
(c) Let k = (k1, k2, ..., kn) > 0. If 1 − ν + Re(κ) /∈ EG , then the transform G1

σ,κ

is one-to-one on Lν,r and there hold

G1
σ,κ(Lν,r ) = I−μ

−;k,(σ−α)/k
(Lν−Re(κ+σ),r ) (43)

for m > 0, and

G1
σ,κ(Lν,r ) = I−μ

0+;k,(β−σ)/k−1
(Lν−Re(κ+σ),r ) (44)

for n > 0. When 1 − ν + Re(κ) ∈ EG , G1
σ,κ(Lν,r ) is a subset of right hand sides of

(43) and (44) in respective cases.
(d) If f ∈ Lν,r , λ = (λ1, ...,λn) ∈ Cn, then G1

σ,κ f is given in (39) for Re(λ) >

ν − Re(κ) − 1, while in (40) for Re(λ) < ν − Re(k) − 1. Furthermore G1
σ,κ f is

given in (2).
In ([2], formulas (3.14), (3.15)) were obtained inversion formulas for transfor-

mation G1
σ,κ f (2), which generalize the corresponding one-dimensional case (see

[6], (6.6.23) and (6.6.24)):
f (x) = −xλ+1−κ d

dx x−λ−1×
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∞∫

0

Gq−m,p−n+1
p+1,q+1

[
t
x

∣∣
∣∣

−λ,−an+1, ...,−ap,−a1, ...,−an

−bm+1, ...,−bq, −b1, ...,−bm, −λ − 1

]
t−σ(G1

σ,κ f )(t)dt

(45)
or

f (x) = xλ+1−κ d
dx x−λ−1×

∞∫

0

Gq−m+1,p−n
p+1,q+1

[
t
x

∣∣∣∣
−an+1, ...,−ap,−a1, ...,−an, −λ,

−λ − 1, −bm+1, ...,−bq, −b1, ...,−bm,

]
t−σ(G1

σ,κ f )(t)dt.

(46)
The conditions for the validity of these formulas are given by the following statement,
which follows from ([1], Theorem 10) and Theorem 3.4.

Theorem 4.4 Let a∗
1 = 0, a∗

2 = 0, ..., a∗
n = 0; α1 < ν1 − Re(κ1) < β1, α2 <

ν2 − Re(κ2) < β2, ..., αn < νn − Re(κn) < βn; α1
0 < 1 − ν1 + Re(κ1) < β1

0 ,
α2
0 < 1 − ν2 + Re(κ2) < β2

0 ,..., α
n
0 < 1 − νn + Re(κn) < βn

0 ; and let λ ∈ Cn.
(a) If �1[ν1 − Re(κ1)] + Re(μ1) = 0, �2[ν2 − Re(κ2)] + Re(μ2) = 0,...,

�n[νn − Re(κn)] + Re(μn) = 0 (ν1 = ν2 = ... = νn) and f ∈ Lν,2 , then the

inversion formulas (45) and (46) are valid for Re(λ) > −ν + Re(κ) and
Re(λ) < −ν + Re(κ), respectively.

(b) If �1 = �2 = ... = �n = 0; Re(μ1) = Re(μ2) = ... = Re(μn) = 0 and f ∈
Lν,r (ν1 = ν2 = ... = νn), 1 < r < ∞, r1 = r2 = ... = rn, then the inversion formu-
las (45) and (46) are valid for Re(λ) > −ν + Re(κ) and for Re(λ) < −ν + Re(κ),
respectively.

5 Lν,r-Theory and the Inversion Formulas of the Modified
G1

σ,κ; δ-Transform

G1
σ,κ;δ-transformation (3) represent as a composition G1

σ/δ,κ/δ-transformation (2) and
elementary operators of the form (11) N� . Indeed, replacing in (2) xδ into x1/δ and
changing variables tδ = ø, we have:

(
G1

σ,κ;δ f
)
(x1/δ) = xσ/δ

x∫

0
Gm,n

p,q

[
x
tδ

∣∣∣∣
(ai )1,p
(b j )1,q

]
tκ f (t) dt

t =

= 1

δ
xσ/δ

x∫

0

Gm,n
p,q

[
x
ø

∣∣∣∣
(ai )1,p
(b j )1,q

]
øκ/δ f (ø1/δ)

dø
ø

dt = 1

δ

(
G1

σ,κN1/δ f
)
(x1/δ). (47)

Applying the operator Nδ to the last equality, in [2] we obtained next view of
transform G1

σ,κ; δ f (3):
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(G1
σ,κ; δ f )(x) = 1

δ
(NδG

1
σ/δ, κ/δN1/δ f )(x). (48)

Then applying the Mellin transform (9) to (48), taking into account (47) and
assertion of Lemma 2.1, we get :

(MG1
σ,κ;δ f )(s) =

(
M

(
1

δ
NδG

1
σ/δ, κ/δN1/δ f

))
(s) =

1

δ2

(
M

(
G1

σ/δ, κ/δN1/δ f

))(
s
δ

)
=

1

δ2
Gm,n

p,q

[
(ai )1,p
(b j )1,q

∣∣∣
∣
s + σ

δ

]
(MN1/δ f )(

s + σ + κ

δ
) =

1

δ
Gm,n

p,q

[
(ai )1,p
(b j )1,q

∣
∣∣∣
s + σ

δ

]
(M f )(s + σ + κ).

Thus, (see [2], formula 4.3)

(MG1
σ,κ;δ f )(s) = 1

δ
Gm,n

p,q

[
(ai )1,p
(b j )1,q

∣∣∣∣
s + σ

δ

]
(M f )(s + σ + κ). (49)

The next theorem gives Lν,2-theory of transformation (3), which follows from the
corresponding assertions of Theorem 4.1, Lemma 2.1 and representations (47)–(48).

Theorem 5.1 ([2], Theorem 4.1) Let

α1 < (ν1 − Re(κ1))/δ1 < β1,α2 < (ν2 − Re(κ2))/δ2 < β2,

... ,αn < (νn − Re(κ1))/δn < βn, (50)

ν1 = ... = νn; a∗
1 = 0, a∗

2 = 0, ..., a∗
n = 0;�1[ν1 − Re(κ1)]/δ1 + Re(μ1) ≤ 0,

�2[ν2 − Re(κ2)]/δ2 + Re(μ2) ≤ 0, ...,�n[νn − Re(κn)]/δ2 + Re(μn) ≤ 0. (51)

There hold the following assertions:
(a) There exists a one-to-one map G1

σ,κ;δ ∈ [Lν,2, Lν−Re(κ+σ),2] such the relation
(49) holds for f ∈ Lν,2 and Re(s) = ν − Re(κ + σ).

If a∗
1 = 0, a∗

2 = 0, ..., a∗
n = 0; �1[ν1 − Re(κ1)]/δ1 + Re(μ1) = 0,�2[ν2 −

Re(κ2)]/δ2 + Re(μ2) = 0, ...,�n[νn − Re(κn)]/δn + Re(μn) = 0 and 1 − (ν −
Re(κ))/δ /∈ EG , then the transform G1

σ,κ;δ maps Lν,2 onto Lν−Re(κ+σ),2.
(b) The transform G1

σ,κ;δ f does not depend on ν in the sense if ν and ν̃ satisfy
Eq. (50) – (51) and if the transforms G1

σ,κ;δ f and G̃1
σ,κ;δ f are defined in respective

spaces Lν,2 and Lν̃,2 by Eq. (49), then G1
σ,κ;δ f = G̃1

σ,κ;δ f for f ∈ Lν̃,2

⋂
Lν,2.
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(c) If a∗
1 = 0, a∗

2 = 0, ..., a∗
n = 0; �1[ν1 − Re(κ1)]/δ1 + Re(μ1) < 0,�2[ν2 −

Re(κ2)]/δ2 + Re(μ2) < 0, ...,�n[νn − Re(κn)]/δn + Re(μn) < 0; then for f ∈
Lν,2 the transform G1

σ,κ;δ f is given by Eq. (3).

(d) Let λ = (λ1, ...,λn) ∈ Cn and f ∈ Lν,2. If Re(λ) > (ν − Re(κ))/δ − 1, then
the transform G1

σ,κ;δ f is represented in the form(
G1

σ,κ;δ f )(x) =

1

δ
xσ+1−δ(λ+1) d

dx
xδ(λ+1)

∞∫

0

Gm,n+1
p+1,q+1

[
xδ

tδ

∣∣
∣∣

−λ, (ai )1,p
(b j )1,q, −λ − 1

]
tκ−1 f (t)dt, (52)

while for Re(λ) < (ν − Re(κ))/δ − 1 the transform G1
σ,κ;δ f is given by(

G1
σ,κ;δ f

)
(x) =

− 1

δ
xσ+1−δ(λ+1) d

dx
xδ(λ+1)

∞∫

0

Gm+1,n
p+1,q+1

[
xδ

tδ

∣∣∣∣
(ai )1,p,−λ

−λ − 1, (b j )1,q

]
tκ−1 f (t)dt. (53)

(e) If f ∈ Lν,2 and g ∈ L1−ν+Re(κ+σ),2, then there holds the relation:

∞∫

0

f (x)
(
G1

σ,κ;δg
)
(x)dx =

∞∫

0

(
G2

κ,σ;δ f
)
(x)g(x)dx, (54)

where
(
G2

κ,σ;δ f
)
(x) = xκ

∞∫

0

Gm,n
p,q

[
tδ

xδ

∣∣∣∣
(ai )1,p
(b j )1,q

]
tσ f (t)

dt
x

.

Now present Lν,r -theory of the G1
σ,κ;δ- transform, which follows from Theorems 4.2

and 4.3 for G1
σ,κ- transform and Lemma 2.1.

Theorem 5.2 Let

a∗
1 = 0, a∗

2 = 0, ..., a∗
n = 0;�1 = �2 = ... = �n = 0;

Re(μ1) = Re(μ2) = ... = Re(μn) = 0;

α1 < (ν1 − Re(κ1))/δ1 < β1,α2 < (ν2 − Re(κ2))/δ2 < β2, ... ,

αn < (νn − Re(κ1))/δn < βn, ν1 = ν2 = ... = νn; 1 < r < ∞, r1 = r2 = ... = rn.

There the following assertions are true:
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(a) The transform G1
σ,κ;δ defined on Lν,2 can be extended to Lν,r as an element

of [Lν,r ,Lν−Re(κ+σ),r ]. If 1 < r ≤ 2, then the transform G1
σ,κ;δ is one-to-one on Lν,r

and there holds the equality (49) for f ∈ Lν,r and Re(s) = ν − Re(κ + σ).
(b) If f ∈ Lν,r and λ = (λ1, ...,λn) ∈ Cn, then G1

σ,κ;δ f is represented in the

form (52) for Re(λ) > (ν − Re(κ))/δ − 1 and in the form (53) for Re(λ) < (ν −
Re(k))/δ − 1.

(c) If f ∈ Lν,r and g ∈ L1−ν+Re(κ+σ),r ′ with r ′ = r/(r − 1), then the relation (54)
holds.

(d) If 1 − ν + Re(κ) /∈ EG , then the transform G1
σ,κ;δ is one-to-one on Lν,r and

its image is given by

G1
σ,κ;δ(Lν,r ) = Lν−Re(κ+σ),r . (55)

Theorem 5.3 Let

a∗
1 = 0, a∗

2 = 0, ..., a∗
n = 0;�1 = �2 = ... = �n = 0;

Re(μ1) < 0,Re(μ2) < 0, ...,Re(μn) < 0;

α1 < (ν1 − Re(κ1))/δ1 < β1,α2 < (ν2 − Re(κ2))/δ2 < β2, ... ,

αn < (νn − Re(κ1))/δn < βn, ν1 = ν2 = ... = νn; 1 < r < ∞, r1 = r2 = ... = rn;
and let m > 0 or n > 0.

The following assertions are true:
(a) The transform G1

σ,κ;δ defined on Lν,2 can be extended to Lν,r as an element
of [Lν,r ,Lν−Re(κ+σ),s] for any s = (s1, s2, ..., sn), s ≥ r , such that 1/s j = 1/r j +
Re(μ j ), j = 1, 2, ..., n. If 1 < r ≤ 2, then the transformG1

σ,κ;δ is one-to-one on Lν,r

and there holds the equality (49) for f ∈ Lν,r and Re(s) = ν − Re(κ + σ).
(b) If f ∈ Lν,r and g ∈ L1−ν+Re(κ+σ),s with 1 < s < ∞ and 1 ≤ 1/r + 1/s <

1 − Re(μ), then the relation (54) holds.
(c) Let k = (k1, k2, ..., kn) > 0. If 1 − (ν − Re(κ))/δ /∈ EG , then the transform

G1
σ,κ;δ is one-to-one on Lν,r and there hold

G1
σ,κ;δ(Lν,r ) = I−μ

−;δk,(σ/δ−α)/k
(Lν−Re(κ+σ),r ) (56)

for m > 0, and

G1
σ,κ;δ(Lν,r ) = I−μ

0+;δk,(β−σ/δ)/k−1
(Lν−Re(κ+σ),r ) (57)

forn > 0.When 1 − (ν − Re(κ))/δ ∈ EG ,G1
σ,κ;δ(Lν,r ) is a subset of right hand sides

of (56) and (57) in respective cases.
(d) If f ∈ Lν,r , λ = (λ1, ...,λn) ∈ Cn, then G1

σ,κ;δ f is given in (52) for Re(λ) >

(ν − Re(κ))/δ − 1, while in (53) for Re(λ) < (ν − Re(k))/δ − 1. Furthermore
G1

σ,κ;δ f is given in (3).
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In ([2], formulas (4.10), (4.11)) inversion formulas were obtained for transfor-
mation G1

σ,κ;δ f :

f (x) = −δxδ−(κ−1)+δ(λ+1) d
dx

x−δ(λ+1)×

∞∫

0

Gq−m,p−n+1
p+1,q+1

[
tδ

xδ

∣∣∣∣
−λ,−an+1, ...,−ap,−a1, ...,−an

−bm+1, ...,−bq, −b1, ...,−bm, −λ − 1

]
×

tδ−σ−1(G1
σ,κ;δ f )(t)dt (58)

or

f (x) = δxδ−(κ−1)+δ(λ+1) d
dx

x−δ(λ+1)×

∞∫

0

Gq−m+1,p−n
p+1,q+1

[
tδ

xδ

∣∣
∣∣

−an+1, ...,−ap,−a1, ...,−an, −λ,

−λ − 1, −bm+1, ...,−bq, −b1, ...,−bm,

]
×

tδ−σ−1(G1
σ,κ;δ f )(t)dt. (59)

The conditions for the validity of these formulas are given by the statement that
follows from Theorem 4.4, Lemma 2.1, and ([1], Theorem 10).

Theorem 5.4 Let a∗
1 = 0, a∗

2 = 0, ..., a∗
n = 0; α1 < (ν1 − Re(κ1))/δ1 < β1,

α2 < (ν2 − Re(κ2))/δ2 < β2, ..., αn < (νn − Re(κn))/δn < βn; α1
0 < 1 −

(ν1 − Re(κ1))/δ1 < β1
0 , α2

0 < 1 − (ν2 − Re(κ2))/δ2 < β2
0 ,..., αn

0 < 1 − (νn −
Re(κn))/δn < βn

0 ; and let λ ∈ Cn.
(a) If �1[ν1 − Re(κ1)]/δ1 + Re(μ1) = 0, �2[ν2 − Re(κ2)]/δ2 + Re(μ2) = 0,...,

�n[νn − Re(κn)]/δn + Re(μn) = 0 (ν1 = ν2 = ... = νn) and f ∈ Lν,2 , then the

inversion formulas (58) and (59) are valid for Re(λ) > (−ν + Re(κ))/δ and
Re(λ) < (−ν + Re(κ))/δ, respectively.

(b) If �1 = �2 = ... = �n = 0; Re(μ1) = Re(μ2) = ... = Re(μn) = 0 and f ∈
Lν,r (ν1 = ν2 = ... = νn), 1 < r < ∞, r1 = r2 = ... = rn, then the inversion for-
mulas (58) and (59) are valid for Re(λ) > (−ν + Re(κ))/δ and Re(λ) < (−ν +
Re(κ))/δ, respectively.
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On Sufficient Conditions
of the Faddeev–Marchenko Theorem

B. D. Koshanov and A. P. Soldatov

Abstract We study sufficient conditions, ensuring validity of the
Faddeev–Marchenko fundamental theorem on restoration of the potential of the
Sturm–Liouville equation on the entire axis along the given linear ratios between
the Jost functions. These conditions are formulated in terms of so-called reflection
coefficient within the framework of the corresponding weighted Holder spaces on
the real line with power behavior at infinity.

Keywords Jost functions · Reflection coefficient · Markushevich’s problem ·
Weighted Gelder spaces · Fredholm property · Index formula of the problem

We consider the following spectral Sturm–Liouville problem

− y′′ + q(x)y = k2y, x ∈ IR, (1)

on the entire axis in the classical setting, when the real coefficient q satisfies the
condition

∫
IR
(1 + |x |)|q(x)|dx < ∞.
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It is well-known [1], that in the class of functions, vanishing at infinity, this problem
has a discrete spectrum at a finite number of points λ = −æ2

j , 1 ≤ j ≤ n, of the
negative part of the real axis λ = k2, and continuous spectrum fills the real half. In
this case, all eigenvalues −æ2

j are simple.
We introduce the so-called Ghost functions f j (x, k), j = 1, 2, as solutions of

the Eq. (1) with given asymptotics at infinity:

f1(x, k) − eikx → 0 as x → +∞; f2(x, k) − e−ikx → 0 as x → −∞.

They are defined unambiguously and represented by the following formulas

f1(x, k) = eikx +
∫ ∞

x
A1(x, t)e

ikt dt, f2(x, k) = e−ikx +
∫ ∞

x
A2(x, t)e

−ikt dt,

with certain real kernels A j (x, t), moreover, the integrals converge absolutely. There-
fore,

f1(x, k) = eikx [1 + g1(x, k)], g1(x, k) = ∫ ∞
0 A1(x, s + x)eiksds,

f2(x, k) = e−ikx [1 + g2(x, k)], g2(x, k) = ∫ ∞
0 A2(x, x − s)eiksds,

(2)

where at every fixed x functions B1(s) = A1(x, s + x) and B2(s) = A2(x, x − s) are
summable on the half axis (0,∞). In particular, f j (x, k) are continuously extended to
the functions f j (x, ζ), analytic in upper half plane D+ = {Im ζ > 0} and vanishing
at infinity.With respect to the variable x , the corresponding functions f j (x, ζ) satisfy
analogous to (1) equation − f ′′

j + f j = ζ2 f j .

At a fixed real k �= 0 pairs of functions { f j (x, k), f j (x, k)} form two fundamental
systems of solutions, and consequently, connected by the relation:

f1(x, k) = b(k) f2(x, k) + a(k) f2(x, k)

with some coefficients a(k), b(k). Properties of these coefficients a, b are clarified
in detail (see, e.g., [1])

a(−k) = a(k), b(−k) = b(k), |a(k)|2 = 1 + |b(k)|2,
a(k) = 1 + O(k−1), b(k) = O(k−1) as k → ∞, (3)

k[a(k) + b(k)] → 0 as k → 0.

Moreover, the function a(k) continues analytically in the upper half-plane D+, has
simple zeros at points ζ = iæ j , 1 ≤ j ≤ n, and excluding them, everywhere is dif-
ferent from zero, moreover,

ã(ζ) = ζa(ζ) ∈ C(B1), B1 = {|ζ| ≤ 1, Im ζ ≥ 0}, (4)

and a(ζ) → 1 as ζ → ∞.
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In explicit form 2ika(k) = ( f ′
1 f2 − f ′

2 f1)(x, k), where due to (1), theWronskian
in the right-hand side of this equality does not depend on x . Hence, a similar expres-
sion is also valid for analytic extension

2iζa(ζ) = f ′
1(x, ζ) f2(x, ζ) − f ′

2(x, ζ) f1(x, ζ)

of this function.
Obviously, the function a(ζ) can be represented in the form

a(ζ) = a1(ζ)

(
ζ − iæ1

ζ + iæ1

)
· · ·

(
ζ − iæn

ζ + iæn

)
, (5)

where the function a1(ζ) is everywhere different from zero. Consequently, in the
upper half plane, the analytic function ln a1(ζ) is defined, which vanishes at infinity
and continuous in its closure (except the point ζ = 0).

The inverse problem of scattering theory is in restoring the coefficient q of the
Sturm–Liouville equation for the given set æ1, . . . ,æn of positive numbers and pairs
of the functions a, b with the properties (3)–(5). Let’s describe the central result of
this theory developed by Faddeev [2] and Marchenko [3].

Main theorem of Faddeev–Marchenko Suppose that set of positive num-
bers æ1, . . . ,æn , continuous at k �= 0 pairs of functions a, b with the properties
(3)–(5) and sets of numbers m1,l , . . . ,mn,l , l = 1, 2, with properties m j,1m j,2 =
−[a′(iæ j )]2, 1 ≤ j ≤ n are given. Let the functions

F1(x) =
n∑
j=1

1

m j,1
e−æ j x − 1

2π

∫
IR

b(−k)

a(k)
eikxdk,

F2(x) =
n∑
j=1

1

m j,2
eæ j x + 1

2π

∫
IR

b(k)

a(k)
e−ikxdk,

(6)

be continuous, differentiable and for any x0 ∈ IR, satisfy the condition

F1(x), F ′
1(x), xF

′
1(x) ∈ L1(x0,+∞); F2(x), F ′

2(x), xF
′
2(x) ∈ L1(−∞, x0). (7)

Then in the integral representation (2), kernels A j are uniquely defined as a
solution to the Gelfand–Levitan integral equations

A1(x, y) + F1(x + y) +
∫ ∞

x
A1(x, t)F1(t + y)dt = 0, y ≥ x,

A2(x, y) + F2(x + y) +
∫ x

−∞
A2(x, t)F2(t + y)dt = 0, x ≥ y,

and the functions f j (x, k) satisfy the Sturm–Liouville equation with the coefficient

q(x) = −2[A1(x, x)]′ = 2[A2(x, x)]′.
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Often, instead of the coefficient b, the ratio r = b/a is used, which is called the
reflection coefficient. From (3) it can be seen that it should satisfy the conditions

r(−k) = r(k), |r(k)| < 1, k �= 0; r(k) = O(k−1) as k → ∞, (8)

|a(k)|−2 = 1 − |r(k)|2. (9)

Moreover, in designation (4)we canwrite k[a(k) + b(k)] = ã(k)[1 + r(k)], sowhen
ã(0) = 0 condition (3c) holds automatically. On the other hand, this condition leads
to the limit

lim
k→0

r(k) = −1 for ã(0) �= 0.

We note that at ã(0) = 0 behavior of r(k) as k → 0 is not fully clarified.
Obviously, in the equality (9) we can replace a to the function a1, figured in

(5). In particular, for the boundary value ln a+
1 (t), t ∈ R, of the analytic function

ln a1(ζ) we have the relation −2 ln a+
1 = ln(1 − |r |2). Therefore, this function with

an accuracy up to an imaginary constant can be restored by using the Schwartz
formula [4]:

− 2 ln a1(ζ) = 1

πi

∫
I
R
ln[1 − |r(t)|2]dt

t − ζ
, z ∈ D+. (10)

The following question arises: for which reflection coefficients r(k) and coef-
ficients a, b built from them, the functions (6) satisfy conditions (7) of the main
theorem. This issue was discussed in detail by Levitan [5]. His results have been
completed in [6], based on the classical properties of the Cauchy-type integral:

(Iϕ)(ζ) = 1

2πi

∫
IR

ϕ(t)dt

t − ζ
, ζ ∈ D±, (11)

defining an analytic function in the half plane D± = {±Im ζ > 0}, and the singular
Cauchy integral

(Sϕ)(t0) = 1

πi

∫
I
R

ϕ(t)dt

t − t0
, t0 ∈ IR. (12)

Relationship between the last integral and boundary values (Iϕ)± of the function Iϕ
is caried out by the Sokhotski–Plemelj formulas

2(Iϕ)± = ±ϕ + Sϕ. (13)

In this paper,within theweightedHolder spaces,we describe the class of reflection
coefficients r(k), which ensures validity of the main theorem.
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Assume thatCμ(G), 0 < μ < 1,means theHolder class on the closed setG ⊆ C.
We recall that it consists of all functions ϕ(z), z ∈ G, for which the norm

|ϕ| = |ϕ|0 + [ϕ]μ, (14)

is finite, where

|ϕ|0 = sup
z∈G

|ϕ(z)|, [ϕ]μ = sup
z1,z2∈G

|ϕ(z1) − ϕ(z2)|
|z1 − z2|μ .

For 0 < μ < ν, embedding of Banach spaces Cν(G) ⊆ Cμ(G) holds. If the set
G is bounded, then, according to the Ascoli’s theorem, this embedding is compact.

For unbounded sets G, they also introduce [7] the space of functions ϕ(z), that
satisfy Holder conditions with some exponent μ in relation to the metric of the
Riemann sphere C ∪ {∞}. This condition can be expressed in the form

|ϕ(z1) − ϕ(z2)| ≤ C |z1 − z2|μ
(1 + |z1|)μ(1 + |z2|)μ , z1, z2 ∈ G, (15)

with some constantC > 0, it is equivalent to the fact thatϕ(z) as well as the function
ϕ(1/z) satisfies the Gelder conditions on any compact subsets, consequently, G and
G̃ = {z, 1/z ∈ G}. This class we denote by H(G), and its elements ϕ, obviously,
allow the limit ϕ(∞) = limϕ(z) as z → ∞. Condition ϕ(∞) = 0 distinguishes in

it a class, which we denote as
◦
H (D+).

Let the weight function ρλ(z) = (1 + |z|2)λ/2 be with real exponent λ. We denote
by Cμ

λ (G,∞) a weighted space of functions ϕ(z), for which the following norm is
finite:

|ϕ| = |ρ−λϕ|0 + [ρμ−λϕ]μ. (16)

In the case when G is a closed domain, the space Cn,μ(G) of differentiable func-
tions, all derivatives of which up to the nth order, belong to Cμ(G), can be induc-
tively defined by the conditions ϕ, ϕ′ ∈ Cn−1,μ(G). By analogy with it the space
Cn,μ

λ (G,∞) is inductively introduced by the conditions

ϕ ∈ Cn−1,μ
λ , ϕ′ ∈ Cn−1,μ

λ−1 , (17)

where ϕ′ is understood as a pair of private derivatives.
All these spaces are particular case of analogous spaces with more general weight

functions, introduced and studied in [8]. In particular, multiplication as a bilinear
mapping is bounded Cn,μ

λ′ × Cn,μ
λ′′ → Cn,μ

λ′+λ′′ , the space C
n,μ
0 is a Banach algebra by

multiplication, and the operator ϕ → ρδϕ performs isomorphism of Banach spaces
Cn,μ

λ → Cn,μ
λ+δ . Moreover, family of Banach spaces (Cn,μ

λ ) decreases monotonically
(in the sense of embedding between Banach spaces) with respect to the parameter
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μ and monotonically increases with respect to λ. At the same time, for a function
ϕ, given in the set G and vanishing at infinity, condition (15) is equivalent to the
fact that ϕ belongs to the space Cμ

−μ(G,∞). In particular, we get the embedding
Cμ

λ ⊆ Cε−ε for 0 < ε ≤ min(μ,−λ) and the equality

◦
H (G) = ∪0<ε<1C

ε
−ε(G,∞).

We also note the embedding of Banach spaces

Cμ(G) ⊆ Cμ
μ(G,∞),

which directly follows from definition (16), since

Cμ(G) ⊆ Cμ
μ(G,∞) = {ϕ, | [ϕ]μ < ∞}.

Furthermore, as a setG wewill consider mainly the line IR and the half-plane D±.
In the first case, ϕ′ in (17) is understood as ordinary derivative, and in the second
case, Cn,μ

λ is understood as a space of analytical in D± functions. We special study
the space Cn,μ

0 (IR,∞).

Lemma 1 Let ϕ ∈ Cn,μ
0 (IR,∞) and a function f be analytic in a neighbourhood of

some compact K , containing a set of values ϕ.
Then the superposition f ◦ ϕ ∈ Cn,μ

0 (IR,∞).

Proof First, consider the case n = 0. On the compact K function f satisfies the
Lipschitz conditions

| f (z1) − f (z2)| ≤ L|z1 − z2|

with some constant L > 0. Therefore, as applied to the above-introduced semi-norm
{ϕ}μ we have obvious estimate { f ◦ ϕ}μ ≤ L{ϕ}μ, hence, f ◦ ϕ ∈ Cμ

0 .
In general case use induction by n. Then, due to (17), functions f ◦ ϕ and ρ1 f ′ ◦ ϕ

belong to Cn−1,μ
0 . Therefore, in the right side of the equality

ρ1( f ◦ ϕ)′ = ( f ′ ◦ ϕ)(ρ1ϕ
′)

both cofactors belong to Cn−1,μ
0 , thus, by definition f ◦ ϕ ∈ Cn,μ

0 .
Based on the negative non-integer weight order λ, we introduce the space

C̃μ
λ (D±,∞) as a finite-dimensional expansion Cμ

λ (D±,∞) by polynomials of the
variable u = (ζ ± i)−1. Obviously, for −1 < λ < 0 it coincides with Cμ

λ (D±,∞),
for −2 < λ < −1 its elements uniquely represented in the form

φ(ζ) = α(ζ ± i)−1 + φ0(ζ), φ0 ∈ Cn,μ
λ (D±,∞),
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with someα ∈ C. Similarly, when−3 < λ < −2 elements of this space are uniquely
represented as

φ(ζ) = α(ζ ± i)−1 + β(ζ ± i)−2 + φ0(ζ), φ0 ∈ Cμ
λ (D±,∞),

with some α, β ∈ C and etc.
In general case, the space C̃μ

λ (D±,∞) for −s − 1 < λ < −s is an extension of
Cμ

λ (D±,∞) on s measurements.
Similar extension C̃μ

λ (IR,∞) we can introduce in relation to polynomials of the
variable v = t/(t2 + 1), t ∈ IR, or, equivalently, in relation to polynomials of the
variable u = (t ± i)−1.

At last, corresponding spaces C̃n,μ
λ of differentiable functions are determined

inductively by conditions analogous to (17)

ϕ ∈ C̃n−1,μ
λ , ϕ′ ∈ C̃n−1,μ

λ−1 .

From the definitions, it is clear that the operation φ → φ± acts C̃n,μ
λ (D±,∞) →

C̃n,μ
λ (IR,∞).
Let’s turn to the Cauchy-type integral (11) and the associated singular integral

(12).

Theorem 1 For any non-integer negative λ operator I is bounded and invertible
C̃n,μ

λ (IR,∞) → C̃n,μ
λ (D±,∞), moreover, for a piecewise analytic function φ from

C̃n,μ
λ (D±,∞) in the half-plane D±, equality φ+ − φ− = ϕ is equivalent to φ = Iϕ.
Singular operator S is bounded in C̃n,μ

λ (IR,∞) and coincides with its inverse, i.e.
S2 = 1, where 1 means the unit operator.

Proof Let us first make sure that the operator I is bounded Cn,μ
λ (IR,∞) → C̃n,μ

λ

(D±,∞). For definiteness, we consider only the case of upper half plane, and first
consider the case −1 < λ < 0, when the wave in space notation can be omitted.
For n = 0 this statement is established in [8], moreover, it is easy to see that for
φ ∈ Cμ

λ (D+,∞) the Cauchy formula is valid:

φ(ζ) = (Iφ+)(ζ), ζ ∈ D+. (18)

Let ϕ ∈ Cn,μ
λ , n ≥ 1, then by using the method of integration by parts, we obtain

the equality:

(Iϕ)′(ζ) = (Iϕ′)(ζ), ζ ∈ D+. (19)

Since

1

t − ζ
+ 1

ζ + i
= t + i

ζ + i

1

t − ζ
, ζ ∈ D+, (20)

and integral from ϕ′ over IR is equal to zero, it follows that
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(ζ + i)(Iϕ)′(ζ) = 1

2πi

∫
I
R
(t + i)ϕ′(t)dt

t − ζ
.

On the basis of the Sokhotski–Plemelj formula, taking into account the relation
[(Iϕ)+]′ = [(Iϕ)′]+, following from (19), we obtain the corresponding equality for
the singular integral:

(t0 + i)(Sϕ)′(t0) = 1

πi

∫
I
R
(t + i)ϕ′(t)dt

t − t0
.

Therefore, in relation to the operation (Dφ)(ζ) = (ζ + i)φ′(ζ) and a similar oper-
ation on the linewe get equalityDI = ID, DS = SD. Since (17) can be rewritten in
the formφ,Dφ ∈ Cn−1,μ

λ (D+,∞) and similarly for spaces on the line, From here, by
induction,we establish rightness of the theoremand for the spaceCn,μ

λ , −1 < λ < 0.
For −2 < λ < −1 equality (20) shows that

(ζ + i)(Iϕ)(ζ) = 1

2πi

∫
I
Rϕ(t)dt + (Iϕ0)(ζ)

with the function ϕ0(t) = (t + i)ϕ(t) ∈ Cn,μ
λ+1(IR,∞). It remains to note that, as

proved above, the operator I is bounded Cn,μ
λ+1(IR,∞) → Cn,μ

λ+1(D+,∞).
Further, let −3 < λ < −2. Then, due to (20), we can write

t + i

ζ + i

1

t − ζ
+ t + i

(ζ + i)2
=

(
t + i

ζ + i

)2 1

t − ζ
,

thus

1

t − ζ
+ 1

ζ + i
+ t + i

(ζ + i)2
=

(
t + i

ζ + i

)2 1

t − ζ
.

Similarly to the previous case, from here we get boundedness of the operator I for
the considered case of weight orders λ.

Continuing this process, we establish validity of the considered statement for all
non-integer negative λ. On the other hand, the Cauchy formula (18) can be applied
to polynomial of variable u = (ζ + i)−1, which, according to the definition, leads to
boundedness of the operator I : C̃n,μ

λ (IR,∞) → C̃n,μ
λ (D+,∞).

Let, further, φ ∈ C̃n,μ
λ (D̂,∞). Applying the Sokhotski–Plemelj formulas (13) to

the function φ0 = φ − I (φ+ − φ−) , we come to equality φ+
0 = φ−

0 . Therefore, the
function φ0 is analytic over the entire plane and vanishes at infinity, what is possible
only for φ0 = 0.

Thus, the first part of Theorem is established. Statement about boundedness of
the operator S in the space C̃n,μ

λ (IR,∞) follows from the first part of Theorem and
formulas (13). Equality S2 = 1 is proved by usual way [7], by writing the Cauchy
formula (18) for φ = Iϕ and again using (13).
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We return to description of the reflection coefficients r(k), ensuring validity of
the main theorem.

Theorem 2 Let a function r(t) with properties (8) belong to the class C2,ν
δ−ν(IR,∞),

0 < ν < 1, −3 < δ < −2, and be subordinated to one of the following two assump-
tions:

(i) |r(0)| < 1;
(i i) r(0) = −1, (|r |2)′′(0) �= 0, moreover, the function r0(t) = t−2[1 − |r(t)|2]

belongs to the class C2,ν in the neighbourhood t = 0.
Then functions a, defined by formulas (5), (10), and b = ra satisfy all conditions

(3)–(4), moreover,

a−1 − 1 ∈ C̃ν
δ (D+,∞), (21)

and functions F1, F2, defined by formulas (6), satisfy conditions (7) of the main
theorem.

Proof Each of two suggestions (i), (i i) we will consider separately.
(i) In this case, the function ln(1 − |r |2) can be represented as |r |2h(|r |2), where

h(s) = s−1 ln(1 − s), |s| < 1. Since |r(t)|2 = r(t)r(t) ∈ C2,ν
2δ−2ν ⊆ C2,ν

0 , according
to Lemma1, we conclude that h(|r |2) ∈ C2,ν

0 (IR,∞) and, consequently,

ln(1 − |r |2) ∈ C2,ν
2δ−2ν(IR,∞) ⊆ C2,ν

δ (IR,∞). (22)

Therefore, due to (10) and Theorem1, the function ln a1 ∈ C̃2,ν
δ (D+,∞). According

to Lemma1, as above, we conclude that

e± ln a1 − 1 ∈ C̃2,ν
δ (D+,∞)

and, consequently,

a − 1 ∈ C̃2,ν
δ (IR,∞), a−1 − 1 ∈ C̃2,ν

δ (D+,∞).

Let us turn to verification of condition (7) of the main theorem. For the first terms
in the right side of (8), this condition is obviously done. Therefore, it is enough to
check it for the Fourier transform of the function

r(t) = b(t)/a(t), r̃(t) = b(−t)/a(t),

figured in (6).
We denote by M(IR) image of L1(IR) in the Fourier transform. Then taking into

account well-known properties, it is enough to prove that all functions r(t), r ′(t),
tr(t) and r̃(t), r̃ ′(t), tr̃(t) belong toM(IR). We use the fact that class of differentiable
functions, which, together with their derivatives, belong to L2(IR), contain in M(IR).
Hence, the case is reduced to proof that
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ϕ(t),ϕ′(t),ϕ′′(t), tϕ(t), tϕ′(t) ∈ M(IR). (23)

for each of functions ϕ = r, r̃ .
For ϕ = r ∈ C2,ν

δ−ν(IR,∞), taking into account the inequality δ < −3/2, these
conditions obviously hold. For function ϕ = r̃ , due to (3) and (5), (10) we can write
r̃(t) = c0(t)r(t) with coefficient

c0(t) = a(t)

a(t)
=

n∏
j=1

(
t + iæ j

t − iæ j

)2

e−2i arg a1(t).

From (10) and the Sokhotski–Plemelj formulas it follows that 2 arg a1 = i S[ln(1 −
|r |2)]. Therefore, due to (22) and Theorem1, we get

arg a1(t) ∈ C̃2,ν
δ (IR,∞) ⊆ C2,ν

0 (IR,∞).

According to Lemma1, it yields that c0 ∈ C2,ν
0 (IR,∞) and, thus r̃ = c0r ∈ C2,ν

δ

(IR,∞). Therefore, (23) hold and for ϕ = r̃ .
(i i) In this case, for sufficiently small ε > 0, we introduce the function

g(t) = ln[1 − |r(t)|2] − 2 ln |t | ∈ C2,ν[−2ε, 2ε]. (24)

Inside the semicircle Bε = {|z| ≤ ε, Re ζ ≥ 0}, we consider analytic functions

ψ(ζ) = ln ζ − 1

πi

∫ 2ε

−2ε

ln |t |dt
t − ζ

.

Due to the Sokhotski–Plemelj formulas, for its boundary value, we have the expres-
sion

ψ+(t0) = i arg t0 − 1

πi

∫ 2ε

−2ε

ln |t |dt
t − t0

.

Thus, Reψ+ = 0 and, consequently, the function ψ analytically continues inside
the circle {|ζ| < ε}. Together with (10), (24) it follows that

−2 ln a1(ζ) = 1

πi

∫
|t |≥2ε

ln[1 − |r(t)|2]dt
t − ζ

+ 1

πi

∫ 2ε

−2ε

g(t)dt

t − ζ
+ 2 ln z − 2ψ(ζ),

so that, taking into account Theorem1, we have

ln a1(ζ) + ln ζ ∈ C2,ν(Bε). (25)

In particular, it implies (4) with ã(0) �= 0.
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We write density ln(1 − |r |2) as sum ϕ0 + ϕ1, where ϕ0(t) = 0 for |t | ≥ ε/2 and
ϕ1 ∈ Cν

δ (IR,∞). Then, on the basis of Theorem1, in addition to (25), we obtain that

ln a1(ζ) ∈ C̃ν
δ (B

′
ε,∞) (26)

outside of semi-circle B ′
ε = {|ζ| ≥ ε, Im ζ ≥ 0}. As a result, we establish validity

of all statements of the first part of Theorem, including (26).
Conditions (7) are checked exactly by the same way as the case (i).
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jectories for deterministic control-affine systems is considered. The reconstruction is
performed in real timeusing knowndiscrete inaccuratemeasurements of the observed
trajectory of the system. This trajectory is generated by an unknownmeasurable con-
trol that satisfies known geometric constraints. A well-posed statement of the prob-
lem is given. A solution is proposed using the variational approach developed by the
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algorithm reduces the reconstruction problem to integration of Hamiltonian sys-
tems of ordinary differential equations. This paper offers a method for construction
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1 Introduction

The theory of dynamic controlled processes has a lot of applications: in engineering,
traffic control, economics, medicine, etc. The studying of such processes leads to the
need to research and solve not only direct problems, aimed at constructing controls
that optimize some quality criteria, but also to solve inverse problems of the control
reconstruction based on data on the observed motion.

In this paper, control-affine deterministic systems are under consideration. The
admissible controls are measurable functions with values in a known compact con-
vex set. Discrete inaccurate measurements of the observed motion are known. The
dynamic reconstruction problem is to find the whole trajectory and the unknown
control that generated this motion. The reconstruction must be performed in real
time synchronized with arrival of new measurements.

There are many different approaches to solving inverse problems (see, for exam-
ple, [1–5]). Surveys of some of the approaches can be found in [6, 7].

The authors of this paper have suggested an original variational approach [8,
9]. It provides a method for construction of approximations of the desired controls
with the use of constructions from auxiliary variational problems. The key feature
of the method is that integrants of the functionals in the auxiliary problems are d.c.
functions [10]. The method uses stationary points of the functionals.

This paper offers development of this method. In [8, 9], the authors developed
an algorithm for construction of approximations of the desired control in the form
of oscillatory high-frequency functions. These approximations are bounded, but not
necessary satisfy the admissible controls’ restrictions. In this paper, a modification
of the previously developed method is suggested and justified. The newmodification
of the method allows to construct piecewise-constant approximations of the control,
which satisfy the geometrical restrictions on the admissible controls. It is proved
that they converge almost everywhere to the desired control, while the previously
suggested approximations converge weakly*. The conditions on the approximation
parameters are obtained that provide the convergence of the approximations.

The suggested algorithm reduces the dynamic reconstruction problem to solving
systems of linear ordinary differential equations and numerical integration.

Results of numerical simulation are exposed on the example of a dynamical model
from the area of medicine.

2 Previously Obtained Results

In [8, 9], a dynamic control reconstruction problem was stated. A new method for
solving this problem, based on auxiliary constructions from variational problems,
was suggested and justified. This section offers a brief review of these results.
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2.1 Dynamics

Dynamic controlled systems of the following form are considered:

dx(t)

dt
= G(t, x(t))u(t) + f (t, x(t)),

x ∈ R
n, u ∈ R

m, G(·) : [0, T ] × R
n → R

n×m, f (·) : [0, T ] × R
n → R

n,

m ≥ n, t ∈ [0, T ], T < ∞,

(1)

where x(·) is the state variables vector and u(·) is the vector of the control parameters.
The admissible controls are measurable functions satisfying the restrictions

u(t) ∈ U ⊂ R
m a. e. on [0, T ], (2)

where U is a convex compact set.

2.2 Input Data

Some trajectory of system (1), generated by an unknown admissible control, is being
observed. It is called the basic trajectory x∗(·) : [0, T ] → R

n . Discrete inaccurate
measurements of the basic trajectory arrive in real time. The measurements have
error δ > 0 and arrive with regular time step hδ > 0:

{yδ
k : ‖yδ

k − x∗(tk)‖ ≤ δ, tk = khδ, k = 0, . . . , N , N = 
T/hδ�}. (3)

The notation ‖ · ‖ means the Euclidean norm.
The problem is to reconstruct the unknown control, generating x∗(·), by known

data (3).

2.3 Assumptions

We assume that the input data (1)–(3) satisfy the following assumptions.
A.1 There exist constants d0 > 0, δ0 > 0, h0 > 0 and a compact � ⊂ R

n such
that for any accuracy δ ∈ (0, δ0] and any measurement step hδ ∈ (0, h0]

⋃

k=0,...,N

Bd0 [yδ
k ] ⊂ �,

where Br [x] is the closed ball of the radius r with the center in x .
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A.2 The matrix function G(·) and the vector function f (·) from dynamics (1) are

Lipschitz continuous on D0
�= [0, T ] × � with the Lipschitz constant LD0 > 0:

∀(t1, x1), (t2, x2) ∈ D0 ‖G(t2, x2) − G(t1, x1)‖2 ≤ LD0‖(t2, x2) − (t1, x1)‖,
‖ f (t2, x2) − f (t1, x1)‖ ≤ LD0‖(t2, x2) − (t1, x1)‖.

The notation ‖ · ‖2 means the spectral Matrix norm induced by the Euclidean norm.
A.3 Rang of G(t, x) equals n for (t, x) ∈ D0.

2.4 Dynamic Reconstruction Problem

It was shown in [9] that the problem of reconstruction of the unknown control,
generating the basic trajectory, is ill-posed since such control may be not unique. To
regularize this problem, a notation of the normal control was introduced.

Definition 1 Normal control u∗(·) : [0, T ] → R
m is the measurable control, gener-

ating the basic trajectory x∗(·), that has the minimal norm in L2([0, T ],Rm) space.

It was proved [9] that for a basic trajectory x∗(·), satisfying assumptionsA.1–A.3,
there exists a unique normal control.

An additional assumption was introduced:
A.4 The normal control u∗(·) satisfies restrictions (2). Thus, it is an admissible

control.
The following dynamic reconstruction problem (the DRP) was stated:
For any δ ∈ (0, δ0], hδ ∈ (0, h0] and the corresponding set of measurements

{yδ
k } (3) at time instant tk (t = 1, . . . , N ) to construct a measurable control uδ(·) :

[0, tk] → R
m such that at the terminal instant tN = T the following conditions are

fulfilled:
B.1 The functions uδ(·) : [0, T ] → R

m are bounded substantially and uniformly
with respect to the parameter δ.

B.2 Each control uδ(·) generates a trajectory xδ(·) : [0, T ] → R
n of system (1)

with the boundary conditions xδ(0) = yδ
0 such that

lim
δ→0

‖xδ(·) − x∗(·)‖C([0,T ],Rn) = 0.

B.3 The functions uδ(·) weakly* converge to the normal control:

uδ(·) w∗−−→
δ→0

u∗(·).

Here
‖ f (·)‖C([0,T ],Rn) = max

t∈[0,T ] ‖ f (t)‖
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is the norm in theC([0, T ],Rn) space. The notation
w∗→ stands forweak* convergence

in the L1([0, T ],Rm) space:

uδ(·) w∗−−→
δ→0

u∗(·) ⇔
T∫

0

〈g(τ ), uδ(τ ) − u∗(τ )〉dτ
δ→0−→ 0 ∀g(·) ∈ C([0, T ],Rm).

(4)
The notation 〈·, ·〉 means the scalar product.

2.5 Algorithm

Astep-by-step algorithm for solving theDRPwas described and justified in papers [8,
9].

On each step of this algorithm (that is, for t ∈ [tk−1, tk], k = 1, . . . , N ) three
procedures are performed.

First, a third-order spline interpolation yδ(·) : [0, tk] → R
n of the discrete mea-

surements (3) is constructed. The interpolation is constructed on each step on the
corresponding interval [tk−1, tk] and the function yδ(·) is continuously differentiable
on [0, tk].

Then, the function yδ(·) is used to state an auxiliary variational problem. It consists
of find a pair of functions xk(·) : [tk−1, tk] → R

n, uk(·) : [tk−1, tk] → R
m such that:

D.1They are continuously differentiable functions that satisfy the dynamics equa-
tion (1) and there exist such function sk(·) ∈ C

1([tk−1, tk],Rn) that uk(·) has the
structure

uk(t) = − 1

α2
G�(tk−1, y

δ
k−1)sk(t), t ∈ [tk−1, tk].

D.2 They satisfy the boundary conditions

k = 1 : x1(0) = yδ
0, s1(0) = 0,

k = 2, . . . , N : xk(tk−1) = yδ
k−1, sk(tk−1) = sk−1(tk−1).

D.3 They provide a stationary point of the functional

I (x(·), u(·)) =
tk∫

tk−1

−‖x(t) − yδ
k (t)‖2

2
+ α2‖u(t)‖2

2
dt,

where α > 0 is a small regularizing [11] parameter.

Remark 1 In the suggestedmethod just stationary points of this functional are used.
So, there is no need to find the extremum of the functional. It is an original feature
of the method.
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The conditions for the stationary point can be written in the form of a Hamiltonian
system of non-linear ODEs. This system is linearized and after linearization has the
form

dxk(t)

dt
= − 1

α2
Qksk(t) + fk,

dsk(t)

dt
= xk(t) − yδ(t),

t ∈ [tk−1, tk],
k = 1 : x1(0) = yδ

0, s(0) = 0,

k = 2, . . . , N : xk(tk−1) = yδ
k−1, sk(tk−1) = sk−1(tk−1),

(5)

where
Qk

�= GkG
�
k , Gk

�= G(tk−1, y
δ
k−1), fk

�= f (tk−1, y
δ
k−1).

In system (5), sk(·) are adjoint variables. Finally, the solution sα,δ
k (·) : [tk−1, tk] →

R
n of system (5) is used to construct the DRP solution as the piecewise-defined

functions

uδ(t) = {uα,δ
k (t), t ∈ [tk−1, tk]}, uα,δ

k (t) = − 1

α2
Gks

α,δ
k (t). (6)

The algorithm is described in details in [9].

2.6 The Main Result

The following theorem is the main result of [8, 9].

Theorem 1 If assumptions A.1–A.4 hold for the input data (1)–(3), then the con-
structed functions uδ(·) (6) satisfy conditions B.1–B.3 if the following agreement of
the approximation parameters holds:

hδ = hδ(δ), α = α(δ),

lim
δ→0

hδ = 0, lim
δ→0

α = 0, lim
δ→0

δ

hδ
= 0, lim

δ→0

α

(hδ)2
= K0 > 0.

(7)
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3 The New Results

3.1 New DRP Statement

Let us now reformulate the DRP in another way (the differences are marked wits
bold font):

For any δ ∈ (0, δ0], hδ ∈ (0, h0] and the corresponding set of measurements
{yδ

k } (3) at time instant tk (t = 1, . . . , N ) to construct a piecewise-constant control
uδ(·) : [0, tk] → R

m such that at the terminal instant tN = T the following conditions
are fulfilled:

B.1 The functions uδ(·) : [0, T ] → R
m satisfy the restriction (2). In other words,

they are admissible controls.
B.2 Each control uδ(·) generates a trajectory xδ(·) : [0, T ] → R

n of system (1)
with the boundary conditions xδ(0) = yδ

0 such that

lim
δ→0

‖xδ(·) − x∗(·)‖C(Rn;[0,T ]) = 0.

B.3 The functions uδ(·) converge almost everywhere to the normal control:

uδ(t)
δ→0−→ u∗(t) for a. e. t ∈ [0, T ].

3.2 Algorithm for Solving the New DRP

In this paper a modification of the algorithm, described in Sect. 2.5, is suggested that
allows to construct the solution of the DRP B.1–B.3.

The new algorithm is the same with the exception of adding two additional pro-
cedures on each step.

First, the constructed function uα,δ
k (·) (6) is “averaged” by the formula

ūα,δ
k

�= 1

hδ

tk∫

tk−1

uα,δ
k (τ )dτ .

Then, the following piecewise-constant “cut-off” functions are constructed:

ûδ(t)
�=

{
ūα,δ
k , ūα,δ

k ∈ U
û ∈ U : ‖û − ūα,δ

k ‖ = min
u∈U

‖u − ūα,δ
k ‖, ūα,δ

k /∈ U ,

t ∈ [tk−1, tk], k = 1, . . . , N .

(8)

We consider the functions ûδ(·) as the DRP B.1–B.3 solution.
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3.3 The Main Result

The following theorem is true.

Theorem 2 If assumptions A.1–A.4 hold for the input data (1)–(3), then the con-
structed functions ûδ(·) (8) satisfy conditionsB.1–B.3 if the agreement of the approx-
imation parameters (7) holds.

Proof Condition B.1 is fulfilled by the construction (8).

First, we prove that condition B.3 holds. Consider the first equation of (5). The
matrix Qk = GkG�

k is positively semi-definite since the rows of Gk are linearly
independent [13, Chap. 1, p. 6]. So, we can substitute the solution xα,δ

k (t), sα,δ(t)
of (5) into this equation and multiply it by the inverse matrix Q−1

k :

Q−1
k

(
dxα,δ

k (t)

dt
− fk

)
= − 1

α2
sα,δ

k(t)

⇒

G�
k Q

−1
k

(
dxα,δ

k (t)

dt
− fk

)
= − 1

α2
G�

k s
α,δ

k(t)
de f= uα,δ

k (t).

Apply the “averaging” procedure (8) to the latter expression:

ūα,δ
k

de f= 1

hδ

t k∫

tk−1

uα,δ
k (t)dt = 1

hδ

t k∫

tk−1

G�
k Q

−1
k

(
dxα,δ

k (t)

dt
− fk

)
dt

⇒

ūα,δ
k = G�

k Q
−1
k

(
xα,δ
k (tk) − xα,δ

k (tk−1)

hδ
− fk

)
, k = 1, . . . , N .

(9)

Now, we will compare for each segment [tk−1, tk] the “averaged” values ūα,δ
k with

the values of the “averaged” normal control

ū∗(t) �= {ū∗
k , t ∈ [tk−1, tk]}, ū∗

k
�= 1

hδ

tk∫

tk−1

u∗(t)dt. (10)

It was proved in [9, Sect. 2.4] that

u∗(t) = G�(t, x∗(t))Q−1(t, x∗(t))
(
dx∗(t)
dt

− f (t, x∗(t))
)

a. e. on [0, T ],

Q(t, x∗(t)) �= G(t, x∗(t))G�(t, x∗(t)).
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Substitute this expression into (10):

ū∗
k = 1

hδ

tk∫

tk−1

G�(t, x∗(t))Q−1(t, x∗(t))
(
dx∗(t)
dt

− f (t, x∗(t))
)
dt

= 1

hδ

tk∫

tk−1

(
G�(t, x∗(t))Q−1(t, x∗(t)) ± G�

k Q
−1
k

) (
dx∗(t)
dt

− f (t, x∗(t)) ± fk

)
dt

= 1

hδ

tk∫

tk−1

(
G�(t, x∗(t))Q−1(t, x∗(t)) − G�

k Q
−1
k

) (
dx∗(t)
dt

− fk

)

+G�
k Q

−1
k ( fk − f (t, x∗(t)))dt + 1

hδ

tk∫

tk−1

G�
k Q

−1
k (

dx∗(t)
dt

− fk)dt

= rk(δ, h
δ) + G�

k Q
−1
k

(
x∗(tk) − x∗(tk−1)

hδ
− fk

)
,

(11)
where

rk(δ, h
δ) = 1

hδ

tk∫

tk−1

(
G�(t, x∗(t))Q−1(t, x∗(t)) − G�

k Q
−1
k

) (
dx∗(t)
dt

− fk

)

+G�
k Q

−1
k ( fk − f (t, x∗(t)))dt.

(12)

Estimate the norms of the following expressions from (12):

‖G�
k Q

−1
k − G�(t, x∗(t))Q−1(t, x∗(t))‖2

de f= ‖G�(tk−1, y
δ
k−1)Q

−1(tk−1, y
δ
k−1) − G�(t, x∗(t))Q−1(t, x∗(t))

±G�(tk−1, x
∗(tk−1))Q

−1(tk−1, x
∗(tk−1))‖2

≤ LG�Q−1(δ + hδ(K + 1)),

(13)

where
K = max

u∈U,(t,x)∈D0

‖G(t, x)u + f (t, x)‖,

and LG�Q−1 is the Lipschitz constant of the matrix function G�(·)Q−1(·) : [0, T ] →
R

n×n . This matrix function is Lipschitz continuous since assumption A.2. Indeed,
consider arbitrary (t1, x1) and (t2, x2) from D0.
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Gi
�= G(ti , xi ), Qi

�= Q(ti , xi ), i = 1, 2,

‖G2Q
−1
2 − G1Q

−1
1 ± G2Q

−1
1 ‖2 = ‖G2(Q

−1
2 − Q−1

1 ) + (G2 − G1)Q
−1
1 ‖2

= ‖G2Q
−1
2 (Q1 − Q2)Q

−1
1 + (G2 − G1)Q

−1
1 ‖2

≤ LD0 RQ−1(RG RQ−1 + 1)‖(t2, x2) − (t1, x1)‖,

where
RG = max

(t,x)∈D0

‖G(t, x)‖2, RQ−1 max
(t,x)∈D0

‖Q−1(t, x)‖2.

Note that RQ−1 < ∞ since Q−1(·) is continuous [13, Chap. 8, p. 4].
Then,

‖ f (t, x∗(t)) − fk‖ de f= ‖ f (t, x∗(t)) − f (tk−1, y
δ
k−1) ± f (tk−1, x

∗(tk−1))‖
≤ LD0(δ + hδ(K + 1))

(14)

And finally,

‖ f (t, x∗(t))‖ ≤ R f = max
(t,x)∈D0

‖ f (t, x)‖,
‖G�(t, x∗(t))Q−1(t, x∗(t))‖2 ≤ RG�Q−1 = max

(t,x)∈D0

‖G�(t, x)Q−1(t, x)‖2.
(15)

Applying (13)–(15) to (12), we get

‖rk(δ, hδ)‖ ≤ (δ + hδ(K + 1))
(
LG�Q−1(K + R f ) + RG�Q−1LD0

)
. (16)

Now, we compare the expressions for ūα,δ
k (9) and ū∗

k (11):

‖ū∗
k − ūα,δ

k ‖

≤ ‖rk(δ, hδ)‖ +
∥∥∥∥∥G

�
k Q

−1
k

(
x∗(tk) − xα,δ

k (tk)
) − (

x∗(tk−1) − xα,δ
k (tk−1)

)

hδ

∥∥∥∥∥ .
(17)

It was proved in [9, p. 3.4] that

‖xα,δ
k (t) − yδ(t)‖ ≤ T

hδ
α(λ∗)0.5rs(δ, hδ,α) + rz(δ, h

δ,α)
�= rx (δ, h

δ,α),

t ∈ [tk−1, tk], k = 1, . . . , N ,

(18)

were
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rs(δ, h
δ, α) = n

(
LD0

λ1,i
(2δ + hδ(K + 1)) + 12

α

λ1.5∗
(2δ + hδK )

(hδ)2
+ 48

α3

λ2∗
(2δ + hδK )

(hδ)3

)
,

rz(δ, h
δ, α) = n

(
48

α2

λ∗
(2δ + hδK )

(hδ)2
+ 24

α3

λ1.5∗
(2δ + hδK )

(hδ)3

)
.

The parameters λ∗ and λ∗ are respectively the minimum and the maximum val-
ues of the eigenvalues of the symmetric [13, Chap. 1, p. 6] matrix function
Q(t, x) = G(t, x)G�(t, x), (t, x) ∈ D0. Note that the matrix function Q(·) is con-
tinuous on D0 (see Assumption A.2). Therefore, its eigenvalues {λ1(·), . . . ,λn(·)}
are also continuous on D0 [13, Chap. 8, p. 8]. Therefore, λ∗ and λ∗ exist.

So, we use (18) to get that

‖xα,δ
k (tk) − x∗(tk)‖ ≤ ‖xα,δ

k (t) − yδ
k‖ + ‖yδ

k − x∗(tk)‖ ≤ rx (δ, h
δ,α) + δ. (19)

Also, note the boundary conditions from (12):

xα,δ
k (tk−1) = yδ

k−1. (20)

Applying (19) and substituting (20) into (17), we get that

‖ū∗
k − ūα,δ

k ‖ ≤ rk(δ, h
δ) + RG�Q−1

rx(δ, hδ,α) + 2δ

hδ

�= rû(δ, h
δ,α),

k = 1, . . . , N .

(21)

It follows from the definitions (16), (18) that

rû(δ, h
δ,α)

δ→0−→ 0, (22)

if the agreement conditions (7) hold.
We will now show that the piecewise-constant functions ûδ(·) converge pointwise

almost everywhere on [0, T ] to u∗(·). First, consider the function

U (t) =
t∫

0

u∗(τ )dτ , t ∈ [0, T ].

Since u∗(·) is measurable, U (·) : [0, T ] → R
m is differentiable almost everywhere

on [0, T ] [12]. Fix such an arbitrary t ∈ [0, T ], where U̇ (t) = u∗(t) exists. For any
hδ > 0 there exists a unique number kt,δ ∈ {1, . . . , N } such that t ∈ [tkt,δ−1, tkt,δ ).

Consider the following discrepancy for t ∈ [tkt,δ−1, tkt,δ ):

‖ûδ(t) − u∗(t)‖ ≤ ‖ûδ(t) − ūα,δ
kt,δ

‖ + ‖ūα,δ
kt,δ

− ū∗
kt,δ‖ + ‖ū∗

kt,δ − u∗(t)‖. (23)
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Since U̇ (t) exists, we use the fundamental increment lemma on the following expres-
sions:

ū∗
kt,δ

de f= 1

hδ

⎛

⎜⎝
t∫

tkt,δ−1

u∗(τ )dτ +
tkt,δ∫

t

u∗(τ )dτ

⎞

⎟⎠

= 1

hδ

(
(U (tkt,δ ) −U (t)) + (U (t) −U (tkt,δ−1))

)

= 1

hδ

(
u∗(t)(tkt,δ − t) + o(tkt,δ − t) + u∗(t)(t − tkt,δ−1) + o(t − tkt,δ−1)

)

= u∗(t) + o(tkt,δ − t) + o(t − tkt,δ−1)

hδ

⇒
‖ū∗

kt,δ − u∗(t)‖ = o(tkt,δ − t) + o(t − tkt,δ−1)

hδ

hδ→0−→ 0

(24)

Applying (21), (8) and (24) to (23), we obtain that the functions ûδ(·) converge
pointwise almost everywhere on [0, T ] to u∗(·) as δ → 0 provided the agreement
conditions (7) hold. So, condition B.3 is fulfilled.

Let us now check that condition B.2 holds. In other words, that the trajectories
x̂δ(·) : [0, T ] → R

n of system (1), generated by the controls ûδ(·), uniformly con-
verge to x∗(·).

By definition,

‖x̂δ(t) − x∗(t)‖

=
∥∥∥yδ

0 − x∗(0) +
t∫

0

G(τ , x̂δ(τ ))ûδ(τ ) + f (τ , x̂δ(τ ))dτ

−
t∫

0

G(τ , x∗(τ ))u∗(τ ) − f (τ , x∗(τ ))dτ

+
t∫

0

±G(τ , x∗(τ ))ûδ(τ ) ± Gk(û
δ(τ ) − u∗(τ ))dτ

∥∥∥

≤ δ + RG

∥∥∥∥∥∥

t∫

0

ûδ(τ ) − u∗(τ )dτ

∥∥∥∥∥∥
+

t∫

0

∥∥G(τ , x∗(τ )) − Gk

∥∥
2 ‖ûδ(τ ) − u∗(τ )‖dτ

+
t∫

0

∥∥ f (τ , x̂δ(τ )) − f (τ , x∗(τ ))
∥∥ + Ru

∥∥G(τ , x̂δ(τ )) − G(τ , x∗(τ ))
∥∥
2 dτ ,

(25)
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where
RG = max

(t,x)∈D0

‖G(t, x)‖2, Ru = max
u∈U

‖u‖.

In (25), considering (8) and (21),

∥∥∥∥∥∥

t∫

0

ûδ(τ ) − u∗(τ )dτ

∥∥∥∥∥∥

=

∥∥∥∥∥∥∥

kt,δ−1∑

j=1

⎡

⎢⎣

t j∫

t j−1

ûδ(τ )dτ −
t j∫

t j−1

u∗(τ )dτ

⎤

⎥⎦ +
t∫

kt,δ−1

ûδ(τ ) − u∗(τ )dτ

∥∥∥∥∥∥∥

≤

∥∥∥∥∥∥∥

kt,δ−1∑

j=1

⎡

⎢⎣

t j∫

t j−1

ûδ(τ ) − ūα,δ
k dτ + hδ(ūα,δ

k − ū∗
k)

⎤

⎥⎦

∥∥∥∥∥∥∥
+ hδ2Ru .

(26)

Note that since u∗(t) ∈ U a. e. on [0, T ] (see Assumption A.4), it is true that ū∗
k ∈

U, k = 1, . . . , N . Therefore, it follows form (21), (22), (8) that

ûδ(t) ∈ U, t ∈ [0, T ],
‖ûδ(t) − ūα,δ(t)‖ ≤ rû(δ, h

δ,α), t ∈ [0, T ]. (27)

Applying (21), (27) to (26), we get

∥∥∥∥∥∥

t∫

0

ûδ(τ ) − u∗(τ )dτ

∥∥∥∥∥∥
≤ hδ t − t0

hδ
2rû(δ, h

δ,α) + 2 hδRu . (28)

Applying estimates (13), (14) and (28) to (25), we get

‖x̂δ(t) − x∗(t)‖ ≤ δ + 2 hδRG Ru + 2 T LD0 Ru(δ + hδ(K + 1))

+(t − t0)2RGrû(δ, h
δ,α) + LD0(Ru + 1)

t∫

0

‖x̂δ(τ ) − x∗(τ )‖dτ .

Since the function ‖x̂δ(·) − x∗(·)‖ is continuous, we can apply the generalized Grön-
wall’s inequality [14, Chap.1, p. 1]:

‖x̂δ(t) − x∗(t)‖ ≤ (
δ + 2 hδRG Ru + 2 T LD0 Ru(δ + hδ(K + 1))

)
eLD0 (Ru+1)T

+2
RGrû(δ, hδ,α)

LD0(Ru + 1)
(eLD0 (Ru+1)T − 1)

δ→0−→ 0, t ∈ [0, T ].

Thus, condition B.2 holds and the theorem is proved. �
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4 Example

Consider as an example adynamicalmodel from the area ofmedicine. It is a simplified
model of the process of penicillin fermentation [15]. The dynamics are

(
Ẋ(t)
Ṡ(t)

)
=

⎛

⎜⎝
X (t) − X (t)

SFV

− X (t)

YX/S

SF − S(t)

SF

⎞

⎟⎠
(

μ(t)
U (t)

)
+

(
0

−ρ X (t)
YP/S

− S(t)X (t)
Km+S(t)

)
,

U (t) ∈ [0, 30], μ(t) ∈ [0, 0.3], t ∈ [0, 10],
X (0) = 1.5, S(0) = 0.01,

YX/S = 0.47, YP/S = 1.2, SF = 500, Km = 0.0001, ρ = 0.0055.

Here the state variables X (·) and S(·) are the concentrations of biomass and substrate
in the organism. The control U (·) is the substrate feeding profile, and the unknown
parameter μ(·), which is the specific biomass growth rate, is considered as the second
control.

To simulate the process of measuring the basic trajectory X∗(·), S∗(·), it was
numerically constructed for the controls

μ∗(t) ≡ 0.11 sin(t) + 0.03 sin t, U ∗(t) =
{
15 + t/T, t ∈ [0, 0.5T ],
0, t ∈ (0.5T, T ] .

Then, the constructed basic trajectory was randomly perturbed to simulate arrival of
the measurements (3). Upon this data, both the old algorithm (Sect. 2.5) and the new
algorithm (Sect. 3.2) were applied to obtain approximations of the normal control
that generates the basic trajectory.

The results of numerical simulations are the graphs of the controls U δ(·), μδ(·),
constructed by the formula (6) (the old algorithm) with the trajectory X δ(·), Sδ(·),
generated by these controls, and graphs of the controls Û δ(·), μ̂δ(·), constructed by
the formula (8) (the new algorithm) with the trajectory X̂ δ(·), Ŝδ(·), generated by
these controls. The approximation parameters are

δ = 10−4, α = 5 · 10−4, N = 50, hδ = 0.2.

The results are presented on the Fig. 1—U δ(·),μδ(·), Fig. 2—Û δ(·), μ̂δ(·) and
Fig. 3—X̂ δ(·), Ŝδ(·).
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Fig. 1 Reconstructed controls (by the old algorithm). Legend: A is U δ(t), B is μδ(t)

Fig. 2 Reconstructed controls (by the new algorithm). Legend: A is Û δ(t), B is μ̂δ(t)

Fig. 3 Trajectories, generated by Û δ(·), μ̂δ(·). Legend: A is X̂ δ(t), B is X∗(t), C is Ŝδ(t), D is
S∗(t)
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5 Conclusion

An original method for solving the dynamic reconstruction problem is being devel-
oped. Namely, it’s modification is justified, which allows to construct piecewise-
constant approximations of the desired control which satisfy the given geometrical
restrictions on the admissible controls. These approximations converge almost every-
where to the desired control.
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Discrete Operators and Equations:
Analysis and Comparison

Alexander Vasilyev, Vladimir Vasilyev, and Asad Esmatullah

Abstract We develop a discrete variant of a theory of pseudo-differential equa-
tions and boundary value problems in canonical domains which are model situations
for manifolds with non-smooth boundaries. Using digitization process for ordinary
functional spaces we construct certain discrete functional spaces or spaces of func-
tions of a discrete variable and define discrete pseudo-differential operators acting
in such spaces. A main problem in which we are interested is to establish a cor-
respondence between continual and discrete solutions of considered continual and
discrete equations and in future boundary value problems. We have illustrated our
considerations by certain examples of Calderon–Zygmund operators for which we
have some interesting conclusions.

Keywords Discrete operator · Solvability

1 Introduction

We deal with some special operators namely pseudo-differential operators. Our
global main goal is to construct a theory of discrete pseudo-differential operators
and corresponding boundary value problems on smooth manifolds with a boundary
which may be non-smooth.

A basic equation in an operator form is the following

(Au)(x) = v(x), x ∈ D, (1)

where D ⊂ Rm is a some domain, A is a pseudo-differential operatorwhich is defined
by the formula
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(Au)(x) = (2π)−m
∫

D

∫

Rm

ei(y−x)·ξ Ã(x, ξ)ũ(ξ)dydξ, x ∈ D, (2)

and a sign ∼ over the function u denotes its Fourier transform

ũ(ξ) =
∫

Rm

e−i x ·ξu(x)dx .

Definition 1 The function Ã(x, ξ) is called a symbol of a pseudo-differential opera-
tor A. A symbol Ã(x, ξ) is called an elliptic symbol if ess inf

(x,ξ)∈Rm×Rm
| Ã(x, ξ)| > 0.

As far as I know it is impossible to find an exact solution of the equation (1) for an
arbitrary domain D. Therefore all researches are interested in describing Fredholm
properties of the equation at least. But for simplest cases it can very easy by the
Fourier transform.

Example 1 Let K(x) be a Calderon–Zygmund kernel and the operator A is defined
by the formula [4]

(Ku)(x) = v.p.
∫

Rm

K (x − y)u(y)dy, (3)

so that it can represented in the form (6)

(Ku)(x) = (2π)−m
∫

Rm

∫

Rm

ei(y−x)·ξ σ (ξ)ũ(ξ)dydξ,

and the function σ(ξ) is called a symbol of the operator A. It is well known that
for the operator A to be invertible in the space L2(Rm) necessary and sufficient its
symbol σ(ξ) should be an elliptic [4].

Let Dd = D ∩ hZm, h > 0. We are interested in studying some discrete equations
which we call discrete pseudo-differential equations and which are related to the
Eq. (1). Let us define a discrete pseudo-differential operator by the formula

(Adud)(x̃) =
∑
ỹ∈Dd

∫

�Tm

ei(ỹ−x̃)·ξ Ad(x̃, ξ)ũd(ξ)dξ, x̃ ∈ Dd ,

where ud(x̃) is a function of a discrete variable x̃ ∈ hZm , ũd(ξ) denotes its discrete
Fourier transform

ũd(ξ) ≡ (Fdud)(ξ) =
∑
ỹ∈hZm

ei ỹ·ξ ũd(y), ξ ∈ �Tm, (4)
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Zm is an integer lattice in Rm , Tm is m-dimensional cube [−π, π ]m, � = h−1

2π , and
given function Ad(x̃, ξ), x̃ ∈ hZm, ξ ∈ �Tm, is called a symbol of the discrete
pseudo-differential operator Ad .

We would like to study the equation

(Adud)(x̃) = vd(x̃), x̃ ∈ Dd , (5)

in some discrete functional spaces. Since it is difficult to study such general operators
(as it was said above) for discrete cases also we’ll consider certain model situations.

2 The Concept of the Research

We’ll present here main ideas for studying this large problem. In contrast of algebraic
approaches [2, 3, 5] we use analytical methods based on properties of the Fourier
transform and considered operators. A plan of the studying is the following:

– infinite discrete and finite discrete Fourier transform
– discrete functional spaces
– solvability of infinite discrete equation
– solvability of finite discrete equation
– comparison of continual and infinite discrete solution
– comparison of infinite and finite discrete solution.

2.1 Local Discrete Operators

We’ll illustrated the above scheme with very simple model pseudo-differential oper-
ator namely operator A from example 1 because many our results are related to this
operator. In addition we assume that kernel K (x) of the operator A is differentiable
on Rm \ {0}.

2.2 Discrete and Continual

Discrete Fourier Transform To obtain a good approximation for the integral equa-
tion (1) we will use the following reduction. First instead of the integral in (1) we
introduce the series ∑

ỹ∈hZm

K (x̃ − ỹ)ud(ỹ)h
m, (6)
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which generates a discrete operator

(Kdud)(x̃) =
∑
ỹ∈hZm

K (x̃ − ỹ)ud(ỹ)h
m, x̃ ∈ hZm, (7)

defined on functions ud of discrete variable x̃ ∈ hZm . Since the Calderon–Zygmund
kernel has a strong singularity at the origin we mean K (0) = 0. Convergence for the
series (6) means that the following limit

lim
N→+∞

∑
ỹ∈hZm∩QN

K (x̃ − ỹ)ud(ỹ)h
m

exists, where QN = {x ∈ Rm : max
1≤k≤m

|xk | < N }. It was shown earlier that a norm of

the operator Kd : L2(hZm) → L2(hZm) does not depend on h [11]. But although
the operator is a discrete object it is an infinite one.

Let us define the infinite discrete Fourier transform for functions ud of a discrete
variable x̃ ∈ hZm

(Fdud)(ξ) =
∑
x̃∈hZm

ud(x̃)e
i x̃ ·ξhm, ξ ∈ �Tm .

Such discrete Fourier transform preserves all basic properties of the classical
Fourier transform, particularly for a discrete convolution of two discrete functions
ud , vd

(ud ∗ vd)(x̃) ≡
∑
ỹ∈hZm

ud(x̃ − ỹ)vd(ỹ)h
m

we have the well known multiplication property

(Fd(ud ∗ vd))(ξ) = (Fdud)(ξ) · (Fdvd)(ξ).

If we apply this property to the operator Kd we obtain

(Fd(Kdud))(ξ) = (FdKd)(ξ) · (Fdud)(ξ).

Let us denote (FdKd)(ξ) ≡ σd(ξ) and give the following

Definition 2 The function σd(ξ), ξ ∈ �Tm, is called a symbol of the discrete oper-
ator Kd .

We will assume below that the symbol σd(ξ) ∈ C(�Tm) therefore we have imme-
diately the following

Property 1 The operator Kd is invertible in the space L2(hZm) iff σd(ξ) �= 0,∀ξ ∈
�Tm .
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We say that a continuous symbol is called an elliptic symbol if σd(ξ) �= 0,∀ξ ∈
�Tm .

So we see that an arbitrary elliptic symbol σd(ξ) corresponds to an invertible
operator Kd in the space L2(hZm).

A very interesting fact was proved in [8, 9].

Theorem 1 Operators (3) and (7) are invertible or non-invertible in spaces L2(Rm)

and L2(hZm) simultaneously ∀h > 0.

If we consider the equation

(Kdud)(x̃) = vd(x̃), x̃ ∈ hZm,

in the space L2(hZm) then we solve the equation by the discrete Fourier transform
Fd . Indeed after applying the Fourier transform we have the trivial equation

σd(ξ)ũd(ξ) = ṽd(ξ), ξ ∈ �Tm,

in the dual space L2(�Tm).
We have first difficulties when consider this equation in the space L2(hZm

+), where
Zm+ = {x̃ ∈ Zm : x̃ = (x̃1, . . . , x̃m), x̃m > 0}.We can not apply the Fourier transform
directly as above because the functions under consideration are defined not on awhole
space. Thus we need to describe images of such function after the discrete Fourier
transform, ant it leads us to the next extensions.

AHalf-SpaceCase Ifwe consider Eqs. (3) and (7) in spaces L2(Rm+) and L2(hZm+)

or in other words operators K : L2(Rm+) → L2(Rm+) and Kd : L2(hZm+) → L2(hZm+)

then for studying invertibility of the operator Kd one has constructed a special peri-
odic Riemann boundary value problem [10]. A solvability of mentioned Riemann
problem depends on a certain topological invariant æ related to a symbol of an ellip-
tic operator. This number æ is called an index of periodic Riemann boundary value
problem. It was shown these topological numbers for elliptic operators K and Kd

are the same and it implies the following [8, 9]

Theorem 2 Operators (3) and (7) are invertible or non-invertible in spaces L2(Rm+)

and L2(hZm+) simultaneously ∀h > 0.

Studying more complicated situations related to cones [6] was started in [14], first
steps were done.

Discrete Boundary Value Problems These arise first in the case hZm+ then we
have a boundary, and it is possible the mentioned index æ is not a zero. To exclude a
non-uniqueness of solution one needs some boundary conditions [1, 6]. Some similar
situations were considered for difference equations in papers [12, 13, 15].
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2.3 Infinite and Finite

Finite Discrete Fourier Transform Here we will introduce a special discrete peri-
odic kernel Kd,N (x̃) which is defined in the following way. We take a restriction of
the discrete kernel Kd(x̃) on the set QN ∩ hZm ≡ Qd

N and periodically continue it
to a whole hZm . Further we consider discrete periodic functions ud,N with discrete
cube of periods Qd

N . We can define a cyclic convolution for a pair of such functions
ud,N , vd,N by the formula

(ud,N ∗ vd,N )(x̃) =
∑
ỹ∈Qd

N

ud,N (x̃ − ỹ)vd,N (ỹ)hm . (8)

Further we introduce finite discrete Fourier transform by the formula

(Fd,Nud,N )(ξ̃ ) =
∑
x̃∈Qd

N

ud,N (x̃)ei x̃ ·ξ̃hm, ξ̃ ∈ Rd
N ,

where Rd
N = �Tm ∩ �Zm . Let us note that here ξ̃ is a discrete variable.

Finite Discrete Operator According to the formula (8) one can introduce the
operator

Kd,Nud,N (x̃) =
∑
ỹ∈Qd

N

Kd,N (x̃ − ỹ)ud,N (ỹ)hm

on periodic discrete functions ud,N and a finite discrete Fourier transform for its
kernel

σd,N (ξ̃ ) =
∑
x̃∈Qd

N

Kd,N (x̃)ei x̃ ·ξ̃hm, ξ̃ ∈ Rd
N .

Definition 3 A function σd,N (ξ̃ ), ξ̃ ∈ Rd
N , is called s symbol of the operator Kd,N .

This symbol is called an elliptic symbol if σd,N (ξ̃ ) �= 0,∀ξ̃ ∈ Rd
N .

Theorem 3 Let σd(ξ) be an elliptic symbol. Then for enough large N the symbol
σd,N (ξ̃ ) is elliptic symbol also.

A proof of the theorem follows immediately.
As before an elliptic symbol σd,N (ξ̃ ) corresponds to the invertible operator Kd,N

in the space L2(Qd
N ).

3 Discrete Functional Spaces

Since we’ll use projectors on points of lattice we need subspaces of continuous
functions instead of Lebesgue spaces. We introduce the space Ch which is the space
of functions ud of discrete variable x̃ ∈ hZm with the norm
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||ud ||Ch = max
x̃∈hZm

|ud(x̃)|.

In other words, the space Ch is the space of functions u ∈ C(Rm) restricted on
lattice points Zm

h . Here we remind, that the operator K isn’t bounded in the space
C(Rm), but it is bounded in the space L2(Rm), and it is well-known, that if the right
hand side of the equation

(Ku)(x) = v(x)

has some smoothness properties (for example, it satisfies the Hölder condition), then
the solution of this (if it exists in the space L2(Rm)) has the same smoothness property
[4].

Further we define the discrete space Ch(α, β) as a functional space of discrete
variable x̃ ∈ hZm with finite norm

||ud ||Ch(α,β) = ||ud ||Ch + sup
x̃,ỹ∈hZm

|ud(x̃) − ud(ỹ)|,

and additional assumptions

|ud(x̃) − ud(ỹ)| ≤ c
|x̃ − ỹ|α

(max{1 + |x̃ |, 1 + |ỹ|})β ,

|ud(x̃)| ≤ c

(1 + |x̃ |)β−α
, ∀x̃, ỹ ∈ hZm, α, β > 0, 0 < α < 1.

4 Approximate Solutions

4.1 Infinite Discrete Solutions

Let’s denote Ph the restriction operator on the lattice hZm, i.e. the operator, which
an arbitrary function, defined on Rm, maps to the set of its discrete values in lattice
points hZm .

Definition 4 The approximation rate for the operators K and Kd in vector normed
space X of functions defined on Rm, is called the operator norm

||PhK − Kd Ph ||X→Xd ,

where Xd is the normed space of functions defined on the lattice hZm with norm,
which is induced by the norm of the space X.

For the space Ch(α, β) we have
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Theorem 4 If m < β < α + m, then the estimate

||Kdud ||Ch(α,β) ≤ c||ud ||Ch(α,β),

is valid, and c doesn’t depend on h.

The continual analogue of such spaces is the space Hα
β (Rm) of functions, which

are continuous in Rm and satisfy the Hölder condition of order 0 < α < 1 and with
weight (1 + |x |)β . It is well known from results of S.K. Abdullaev (Sov. Math.,
Dokl. 40, No.2, 417-421,1990) that the operator K is a linear bounded operator
K : Hα

β (Rm) → Hα
β (Rm) under the condition m < β < α + m.

We will give the approximation rate for the operators K and Kd in the space
Ch(α, β). It will permit to obtain the error estimate for approximate solution, if we
will change the continual operator K by its discrete analogue Kd .

Theorem 5 The approximate rate for the operators K and Kd is the following

||PhK − Kd Ph ||Ch(α,β) ≤ chα̃,

where c doesn’t depend on h, α̃ < α, β̃ > β.

Some of these results were obtained in [7].

4.2 Finite Discrete Solutions

Let us denote PN the projector L2(hZm) → L2(Qd
N ).

Theorem 6 For operators Kd and Kd,N we have the following estimate

||(PN Kd − Kd,N PN )ud ||L2(Qd
N ) ≤ CNm+2(α−β)

for arbitrary ud ∈ Ch(α, β), β > α + m/2.

Now we consider the equation

Kd,Nud,N = PNvd (9)

instead of the equation
Kdud = vd (10)

and give a comparison for these two solutions assuming that operator Kd is invertible
in L2(hZm).

Theorem 7 If vd ∈ Ch(α, β), β > α + m/2, ud is a solution of the Eq. (10), ud,N is
a solution of (9) then the estimate
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||ud − ud,N ||L2(hZm ) ≤ CNm+2(α−β)

is valid, and C is a constant non-depending on N.

Conclusion

These considerations are first steps to realize the declared programm. We hope that
obtained results will help us to study more general discrete operators and equations
and to describe a correspondence between discrete and continual objects, and also
between finite and infinite discrete objects.
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Abstract We study a model elliptic pseudo-differential equation and simplest
boundary value problems for a half-space and a special cone in Sobolev–Slobodetskii
spaces which have different smoothness with respect to separate variables. Sufficient
conditions for a unique solvability for such boundary value problems are described
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1 Introduction

The theory of pseudo-differential operators was appeared near a half-century ago,
and it has taken attention of mathematicians for a long time [1–3]. More general
Fourier integral operators and new functional spaces were studied in this context.
As a rule the theory means constructing a symbolic calculus and an index formula.
Such a theory is very convenient for generalization on smooth compact manifolds
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approaches were needed. More complicated situations mean presence of a smooth
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2 Elliptic Pseudo-differential Operators

2.1 Sobolev–Slobodetskii Spaces of Different Smoothness

Following to [15] (see also [16]) we introduce useful notations. A multidimensional
Euclidean spaceRM is represented as an orthogonal sum of subspaces in which only
some of coordinates x1, x2, . . . , xM are nor vanishing. Namely, if K ⊂ 1, ..., M is
not empty set we put

RK = {x ∈ RM : x = (x1, . . . , xM), x j = 0,∀ j /∈ K } ⊂ RM .

Let K1, K2, . . . , Kn ⊂ {1, 2, . . . , M} be a nonempty set so that

n⋃

j=1

K j = {1, 2, . . . , M}, Ki ∩ K j = ∅, i �= j, card K j = k j .

Thus, we obtain the representation

RM = RK1 ⊕ RK2 ⊕ · · · ⊕ RKn ,

where xK j is an element of the space RK j . For functions defined in RM we use the
standard Fourier transform

ũ(ξ) =
∫

RM

eix ·ξu(x)dx, ξ = (ξ1, . . . , ξM).

Let S = (s1, . . . , sn). Nowwe introduce the Sobolev–Slobodetskii space HS(RM)

as a Hilbert space with the inner product

( f, g) =
∫

RM

f (x)g(x)dx

and the norm

|| f ||S =
⎛

⎝
∫

RM

(1 + |ξK1 |)2s1(1 + |ξK2 |)2s2 · · · (1 + |ξKn |)2sn | f̃ (ξ)|2dξ

⎞

⎠
1/2

.

Such HS-spaces have the same properties similar to usual Sobolev–Slobodetskii
spaces [16]. Particularly, the usual space Hs(RM) is obtained under the following
choice of subsets K j and parameters s j :

K1 = K2 = · · · = Kn−1 = ∅, Kn = {1, 2, . . . , M}, S = (0, 0, . . . , 0, s).
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2.2 Model Operators and Equations

According to the local principle we will concentrate on studying a model pseudo-
differential equationwith operatorwith a symbol non-depending on a spatial variable.

Model pseudo-differential operators Let Ã(ξ), ξ ∈ RM be a measurable function.
A model pseudo-differential operator A is defined as follows

(Au)(x0 = 1

(2π)M

∫

RM

∫

RM

ei(x−y)·ξ Ã(ξ)u(y)dydξ,

and the function Ã(ξ) is called a symbol of the pseudo-differential operator A.
We consider here the following class of symbols A(ξ) satisfying the condition

c1
n∏
j=1

(1 + |ξK j |)α j ≤ |A(ξ)| ≤ c2
n∏
j=1

(1 + |ξK j |)α j ,

α j ∈ R, j = 1, 2, . . . , n,

(∗)

with positive constants c1, c2.
Let α = (α1, . . . ,αn)

Lemma 1 Let A be a pseudo-differential operator with the symbol Ã(ξ) satisfying
the condition (∗). Then A : HS(RM) → HS−α(RM) is a linear bounded operator.

Proof Indeed, we have

||Au||2S−α =
∫

RM

n∏

j=1

(1 + |ξK j |)2(s j−α j ) Ãu(ξ)|2dξ =

=
∫

RM

(1 + |ξK1 |)2(s1−α1)(1 + |ξK2 |)2(s2−α2) · · · (1 + |ξKn |)2(sn−αn)| Ã(ξ)ũ(ξ)|2dξ ≤

≤ c2

∫

RM

(1 + |ξK1 |)2s1(1 + |ξK2 |)2s2 · · · (1 + |ξKn |)2sn |ũ(ξ)|2dξ = c2||u||2S,

and the proof is completed. �

Thus, we can start studying a solvability for the equation

(Au)(x) = v(x), x ∈ RM , (1)

where A is a pseudo-differential operator with the symbol Ã(ξ) satisfying the con-
dition (∗), and the right hand side v ∈ HS−α(RM).
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Corollary 1 If A is a pseudo-differential operator with the symbol Ã(ξ) satisfying
the condition (∗) then the Eq. (1) with an arbitrary right hand side v ∈ HS−α(RM)

has unique solution u ∈ HS(RM). The a priori estimate

||u||S ≤ C ||v||S−α

holds.

Proof The operator A−1 with the symbol Ã−1(ξ) is a pseudo-differential operator.
Its symbol satisfies the condition (∗) with order −α instead of α. Then we have

ũ = Ã−1ṽ,

and therefore
||u||2S = ||A−1v||2S =

∫

RM

(1 + |ξK1 |)2s1(1 + |ξK2 |)2s2 · · · (1 + |ξKn |)2sn | Ã−1(ξ)ṽ(ξ)|2dξ ≤ c−2
1 ||v||2S−α,

and the sentence is proved. �

Unfortunately, such a simple conclusion is possible for the space RM . If we will
take a domain D ⊂ RM and will try to study a solvability for similar equation then
we will obtain a lot of difficulties related to invertibility of operators.

We extract special canonical domains D in Euclidean space RM . Such domains
are conical domains andwewill start from a standard convex cone in Euclidean space
non-including a whole straight line. Let CK j ⊂ RK j and we would like to consider
the equation

(Au)(x) = v(x), x ∈ CK j . (2)

Direct applying the Fourier transform does not give the required answer since we
have no the convolution theorem. The Eq. (2) can be rewritten in the form

(PK j Au)(x) = v(x), x ∈ CK j ,

where PK j is the restriction on CK j ,

(PK j u)(x) =
{
u(x), x ∈ CK j ;

0, x /∈ CK j .

and to use the Fourier transform we need to know what is the Fourier image of the
operator PK j .
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Structure of projectors For a general convex cone Cm ⊂ Rm one can define the
Bochner kernel [7–9]

Bm(z) =
∫

C

eix ·zdx, z = (z1, . . . , zm),

and the following representation in Fourier imaged

(FP+u)(ξ) = lim
τ→0+

∫

Rm

Bm(ξ′ − η′, ξm − ηm + iτ )ũ(η′, ηm)dη,

here P+ is the projector on the cone Cm [14, 17]. There are certain concrete realiza-
tions in the latter formula.

Example 1 Weconsider here one-dimensional case inwhichwe have only one cone,
and this cone is R+ [4]. For this case it was proved for a function u(x), x ∈ R, that

(FP+u)(ξ) = 1

2
ũ(ξ) + i

2π
p.v.

+∞∫

−∞

ũ(η)dη

ξ − η
.

As a consequence we have for a function u(x), x ∈ Rm and the cone Rm+ = {x ∈
Rm : x = (x ′, xm), xm > 0} the following result

(FP+u)(ξ) = 1

2
ũ(ξ) + i

2π
p.v.

+∞∫

−∞

ũ(ξ′, ηm)dηm

ξm − ηm
, ξ = (ξ′, ξm).

Example 2 Let m = 2, and

Ca
+ = {x ∈ R2 : x = (x1, x2), x2 > a|x1|, a > 0}.

Then we have [21]

(FPCa+u)(ξ) = ũ(ξ1 + aξ2, ξ2) + ũ(ξ1 − aξ2, ξ2)

2
+

+v.p.
i

2π

+∞∫

−∞

ũ(η, ξ2)dη

ξ1 + aξ2 − η
− v.p.

i

2π

+∞∫

−∞

ũ(η, ξ2)dη

ξ1 − aξ2 − η
.

Example 3 Let m = 3, and Ca1a2+ = {x ∈ R3 : x2 > a1|x1| + a2|x2|}. Then
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(FPCa1a2+ u)(ξ1, ξ2, ξ3) =

= ũ(ξ1 − a1ξ3, ξ2 − a2ξ3, ξ3) + ũ(ξ1 + a1ξ3, ξ2 − a2ξ3, ξ3)

4
+

+1

2
(S1ũ)(ξ1 + a1ξ3, ξ2 − a2ξ3, ξ3) − 1

2
(S1ũ)(ξ1 − a1ξ3, ξ2 − a2ξ3, ξ3)+

+ ũ(ξ1 − a1ξ3, ξ2 + a2ξ3, ξ3) + ũ(ξ1 + a1ξ3, ξ2 + a2ξ3, ξ3)

4
+

+1

2
(S1ũ)(ξ1 + a1ξ3, ξ2 + a2ξ3, ξ3) − 1

2
(S1ũ)(ξ1 − a1ξ3, ξ2 + a2ξ3, ξ3)+

+ (S2ũ)(ξ1 − a1ξ3, ξ2 + a2ξ3, ξ3) + (S2ũ)(ξ1 + a1ξ3, ξ2 + a2ξ3, ξ3)

2
+

+(S1S2ũ)(ξ1 + a1ξ3, ξ2 + a2ξ3, ξ3) − (S1S2ũ)(ξ1 − a1ξ3, ξ2 + a2ξ3, ξ3)−

− (S2ũ)(ξ1 − a1ξ3, ξ2 − a2ξ3, ξ3) − (S2ũ)(ξ1 + a1ξ3, ξ2 − a2ξ3, ξ3)

2
−

−(S1S2ũ)(ξ1 + a1ξ3, ξ2 − a2ξ3, ξ3) + (S1S2ũ)(ξ1 − a1ξ3, ξ2 − a2ξ3, ξ3).

where

(S1u)(ξ1, ξ2, ξ3) = v.p
i

2π

+∞∫

−∞

u(τ , ξ2, ξ3)dτ

ξ1 − τ
,

(S2u)(ξ1, ξ2, ξ3) = v.p
i

2π

+∞∫

−∞

u(ξ1, η, ξ3)dη

ξ2 − η
.

This case was studied in [22]

Elliptic equations and complex variables This approach is related to the function
theory of many complex variables, namely to functions which are holomorphic in
radial tube domains [7–9].

Let CK j ⊂ RK j , j = 1, . . . , n, be convex cones non-including a whole straight
line in RK j . Let us compose the set C = CK1 × . . .CKn .

Lemma 2 The set C is a cone in RM non-including a whole straight line in RM.

Proof Indeed,C is a cone since eachC j is a cone. If wewill assume thatC includes a
certain line inRM then we will conclude that each coneC j includes a certain straight
line. �
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Now we will start studying a solvability of the equation

(Au)(x) = v(x), x ∈ C, (3)

and the solution is sought in the space HS(C).

Definition 1 The space HS(C) consists of functions (distributions) from HS(RM)

with supports in C .

The right-hand side v is chosen from the space HS−α
0 (C); by definition the space

HS
0 (C) is a space of distributions on C , admitting a continuation on HS(RM). The

norm in the space HS
0 (C) is defined as

||v||+S = inf ||� f ||S,

where the infimum is taken over all continuations �l f on the whole RM .
Fourier image of the space HS(C) will be denoted by H̃ S(C)

Definition 2 A radial tube domain over the cone C is called a domain in M-
dimensional complex space CM of the following type

T (C) ≡ {z ∈ CM : z = x + iy, x ∈ RM , y ∈ C}.

A conjugate cone
∗
C is called such a cone in which for all points the condition

x · y > 0, ∀y ∈ C,

holds; x · y means inner product for x and y.

Definition 3 The wave factorization of an elliptic symbol A(ξ) with respect to the
cone C is called its representation in the form

A(ξ) = A �=(ξ)A=(ξ),

where factors A �=(ξ), A=(ξ) must satisfy the following conditions:

(1) A �=(ξ), A=(ξ) are defined for all ξ ∈ RM may be except the points ξ ∈ ∂
∗
C ;

(2) A �=(ξ), A=(ξ) admit an analytic continuation into radial tube domains T (
∗
C),

T (− ∗
C) respectively with estimates

|A±1
�= (ξ + iτ )| ≤ c1

n∏

j=1

(1 + |ξK j | + |τK j |)±æ j ,

|A±1
= (ξ − iτ )| ≤ c2

n∏

j=1

(1 + |ξK j | + |τK j |)±(α j−æ j ), ∀τ ∈ ∗
C, æ j ∈ R.
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The vector æ = (æ1, . . . ,æn) is called an index of the wave factorization.

To apply the Fourier transform to the Eq. (3) we need to know what is FPC ;
here F denotes the Fourier transform in M-dimensional space. Let us introduce the
following notations. For every CK j we consider corresponding radial tube domain

T (
∗
CK j ) over the conjugate cone and an element of T (

∗
CK j ) will be denoted by

ξK j + iτK j . Moreover, for ξK j we will use the notation ξK j = (ξ′
K j

, ξk j ), where ξk j is
the k j th coordinate, and ξ′

K j
denotes left other coordinates. The same notations will

be used for x ∈ RK j , xK j = (x ′
K j

, xk j ).
As before we denote by PC the restriction operator on C . Obviously,

PC =
n∏

j=1

PK j .

and then

BM(z) =
n∏

j=1

Bk j (zK j ), z = (zK1 , . . . , zKn ).

The last our observation is the following:

T (
∗
C) =

n∏

j=1

T (
∗
CK j ),

and the Bochner kernel BM(z) will be a holomorphic function in T (
∗
C).

Theorem 1 If the symbol A(ξ) admits the wave factorization with respect to the
cone C with the index æ such that |æ j − s j | < 1/2, j = 1, . . . , n, then the Eq. (3)
has unique solution in the space H S(C) for arbitrary right hand side v ∈ HS−α

0 (C).
The a priori estimate

||u||S ≤ const ||v||+S−α

holds.

Proof We use the Wiener–Hopf method [4, 14]. Let �v be an arbitrary continuation
of v onto RM then we put

u−(x) = (�v)(x) − (Au)(x),

so that v−(x) = 0 for x ∈ C . Further,

(Au)(x) + u−(x) = (�v)(x),

and after applying the Fourier transform and the wave factorization we obtain
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A �=(ξ)ũ(ξ) + A−1
= (ξ)ũ−(ξ) = A−1

= (ξ)˜(�v)(ξ) (4)

Now we can use the following result (see [14]).

Property 1 If ũ− ∈ H̃ S(RM \ C), A−1= is a factor of the wave factorization then
A−1= ũ− ∈ H̃ S+α−æ(RM \ C).

Obviously, the summand A �=(ξ)ũ(ξ) belongs to H̃ S−æ(C) according to Lemma1
and holomorphic properties, and A−1= (ξ)ũ−(ξ) belongs to H̃ S−æ(RM \ C) according
to Property1.

The right hand side A−1= (ξ)˜(�v)(ξ) belongs to the space H̃ S−æ(RM) (Lemma1),
and since |æ j − s j | < 1/2, j = 1, . . . , n, it can be uniquely represented as

A−1
= (ξ)˜(�v)(ξ) = ṽ+(ξ) + ṽ−(ξ), (5)

where

ṽ+(ξ) = BM

(
A−1

= (ξ)˜(�v)(ξ)
)

, ṽ−(ξ) = (I − BM)
(
A−1

= (ξ)˜(�v)(ξ)
)

.

The representation (5) is true since the operator BM : H̃ δ(RM) → H̃ δ(RM) for
|δJ | < 1/2, j = 1, . . . , n, and we remind that |æ j − s j | < 1/2, j = 1, . . . , n,.

Further, we rewrite the equality (4) in the form

A �=(ξ)ũ(ξ) − ṽ+(ξ) = ṽ−(ξ) − A−1
= (ξ)ũ−(ξ),

and we obtain that a distribution from H δ(C) equals to a distribution from H δ(RM \
C). But for such small δ this common distribution should be zero only [14]. Thus,

A �=(ξ)ũ(ξ) − ṽ+(ξ) = 0,

or in other words
ũ(ξ) = A−1

�= (ξ)BM

(
A−1

= (ξ)˜(�v)(ξ)
)

.

A priori estimate is based on Lemma1 and boundedness property of the operator
BM : H̃ δ(RM) → H̃ δ(RM). Indeed,

||u||S = ||ũ||S = ||A−1
�= (ξ)BM

(
A−1

= (ξ)˜(�v)(ξ)
)

||S ≤

≤ const ||BM

(
A−1

= (ξ)˜(�v)(ξ)
)

||S−æ ≤ const ||A−1
= (ξ)˜(�v)(ξ)||S−æ ≤

≤ const ||˜(�v)(ξ)||S−α = const ||�v||S−α ≤ const ||v||+S−α,

and Theorem1 is proved. �
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Multiply solutions For the cone CK j , j = 1, . . . , n, we suppose that a surface of
this cone is given by the equation xk j = ϕ j (x ′

K j
), whereϕ j : Rk j−1 → R is a smooth

function in Rk j−1 \ {0}, and ϕ j (0) = 0.
Let us introduce the following change of variables

{
t ′K j

= x ′
K j

tk j = xk j − ϕ j (x ′
K j

)

and we denote this operator by Tϕ j : RK j → RK j . Since the cone is in one part of a
half-space then points of the second part of a half-space will be fixed. Such change
of variables can be defined for distributions also [22].

Below we will use notation Fm for the Fourier transform inm-dimensional space,
so that the notation FK j will be the Fourier transform in RK j .

Following to [22] we conclude

FK j Tϕ j = Vϕ j FK j .

Further, we introduce Tϕ : RM → RM by the formula

Tϕ =
n∏

j=1

Tϕ j

and construct the operator

Vϕ =
n∏

j=1

Vϕ j ,

for which we have
FMTϕ = VϕFM .

Let us introduce vectors N = (n1, . . . , nn), L = (l1, . . . , ln), δ=(δ1, . . . , δn), n j ,

l j ∈ N, |δ j | < 1/2, j = 1, . . . , n, and a polynomial QN (ξ), ξ ∈ RM satisfying the
condition

|QN (ξ)| ∼
n∏

j=1

(1 + |ξK j |)n j , (6)

Theorem 2 If the symbol A(ξ) admits the wave factorization with the index æ,æ −
S = N + δ, then a general solution of the Eq. (3) in Fourier images is given by the
formula

ũ(ξ) = A−1
�= (ξ)QN (ξ)BMQ−1

N (ξ)A−1
= (ξ)˜(�v)(ξ)+

+A−1
�= (ξ)V−1

ϕ

⎛

⎝
n1∑

l1=1

n2∑

l2=1

. . .

nn∑

ln=1

c̃L(ξ
′
K )ξl1−1

k1
ξl2−1
k2

· · · ξln−1
kn

⎞

⎠ ,
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where cL(x ′
K ) ∈ HSL (RM−n) are arbitrary functions, SL=(s1 − æ1 + l1 − 1/2, . . . ,

sn − æn + ln − 1/2), l j = 1, 2, . . . , n j ), j = 1, 2, ..., n, �v is an arbitrary contin-
uation of v onto H S−α(RM).

The a priori estimate

||u||S ≤ const

⎛

⎝||v||+S−α +
n1∑

l1=1

n2∑

l2=1

. . .

nn∑

ln=1

||cL ||SL
⎞

⎠

holds.

Proof Similar to the proof of Theorem1 we obtain the equality (4). Further, let
us note that the function A−1= (ξ)˜(�v)(ξ) belongs to the space H̃ S−æ(RM). So, if
take an arbitrary polynomial QN (ξ) satisfying the condition (6) then the function
Q−1

N (ξ)A−1= (ξ)˜(�v)(ξ) will belong to the space H̃−δ(RM).
Further, according to the theory of multidimensional Riemann problem [14] we

can represent the latter function as a sum of two summands, this is so called a jump
problem which can be solved by the operator BM :

Q−1
N A−1

= ˜(�v) = f+ + f−,

where f+ ∈ H̃−δ(C), f− ∈ H̃−δ(RM \ C),

f+ = BM(A−1
= ˜(�v)), f− = (I − BM)(A−1

= ˜(�v)).

Multiplying the equality (4) by Q−1
N (ξ) we rewrite it in the form

Q−1
N A �=ũ + Q−1

N A−1
= ũ− = f+ + f−,

or
Q−1

N A �=ũ − f+ = f− − Q−1
N A−1

= ũ−

In other words
A �=ũ − QN f+ = QN f− − A−1

= ũ−. (7)

The left hand side of the equality (7) belongs to the space H̃−N−δ(C), bur the
right hand side belongs to the space H̃−N−δ(RM \ C). Therefore, we have

F−1
M (A �=ũ − QN f+) = F−1

M (QN f− − A−1
= ũ−),

where the left hand side belongs to the space H−N−δ(C), but right hand side belongs
to the space H−N−δ(RM \ C), from which we conclude immediately that this is a
distribution supported on the surface ∂C .

The form for such a distribution is given in [22] for the cone CK j with help of the
operator Vϕ j . Thus, we apply the operator Tϕ to the latter equality and obtain
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TϕF
−1
M (A �=ũ − QN f+) = TϕF

−1
M (QN f− − A−1

= ũ−),

so that both left hand side and right hand side is a distribution supported on the
hyper-plane xk1 = 0, xk2 = 0, . . . , xkn = 0. Then

TϕF
−1
M (A �=ũ − QN f+) =

=
n1∑

l1=1

n2∑

l2=1

. . .

nn∑

ln=1

cL(x
′
K )δ(l1−1)(xk1)δ

(l2−1)(xk2) · · · δ(ln−1)(xkn ),

where L = l1, . . . , ln), x ′
K = (x ′

K1
, . . . , x ′

Kn
) ∈ RM−n, δ is the Dirac mass-function.

Applying the Fourier transform we obtain

FMTϕF
−1
M (A �=ũ − QN f+) =

=
n1∑

l1=1

n2∑

l2=1

. . .

nn∑

ln=1

c̃L(ξ
′
K )ξl1−1

k1
ξl2−1
k2

· · · ξln−1
kn

, (8)

Taking into account that FMTϕF
−1
M we can write

A �=ũ − QN f+ = V−1
ϕ

⎛

⎝
n1∑

l1=1

n2∑

l2=1

. . .

nn∑

ln=1

c̃L(ξ
′
K )ξl1−1

k1
ξl2−1
k2

· · · ξln−1
kn

⎞

⎠ ,

or finally

ũ(ξ) = A−1
�= (ξ)QN (ξ)BMQ−1

N (ξ)A−1= (ξ)˜(�v)(ξ)+
+A−1

�= (ξ)V−1
ϕ

(
n1∑

l1=1

n2∑
l2=1

. . .
nn∑

ln=1
c̃L(ξ′

K )ξl1−1
k1

ξl2−1
k2

· · · ξln−1
kn

)
.

(9)

To obtain a priori estimates let us note that all summands in the formula (8)
should belong to the space H̃ S−æ(RM). We take one of summands and estimate
corresponding integral.

||c̃L(ξ′
K )ξl1−1

k1
ξl2−1
k2

· · · ξln−1
kn

||2S−æ ≤

≤
∫

RM

|c̃L(ξ′
K )|2

n∏

j=1

(1 + |ξK j )
2(s j−æ j )

n∏

j=1

|ξk j |2(l j−1)dξ′
K

n∏

j=1

dξk j ≤

≤
∫

RM

|c̃L(ξ′
K )|2

n∏

j=1

(1 + |ξK j |2(s j−æ j+l j−1)dξ′
K

n∏

j=1

dξk j ,
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and for existence of each integral of the type

+∞∫

−∞
(1 + |ξ′

K j
| + |ξk j |)2(s j−æ j+l j−1)dξk j

the condition
2(s j − æ j + l j − 1) < −1 (10)

is necessary. It is equivalent to the following condition

s j − æ j + l j < 1.

Since we have s j − æ j + l j = −n j − δ j + l j then we see that the condition (10) is
satisfied for all

l j = 1, 2, . . . , n j ,

but it is not satisfied for l j = n j + 1. After integration on all ξk j we will find that
c̃L(ξ′

K ) ∈ H̃ SL (RM−n), where SL = (s1 − æ1 + l1 − 1/2, . . . , sn − æn + ln − 1/2),
and l j = 1, 2, . . . , n j , j = 1, 2. . . . , n.

For a priori estimates we have

||A−1
�= (ξ)QN (ξ)BMQ−1

N (ξ)A−1
= (ξ)˜(�v)(ξ)||S ≤

≤ const ||BMQ−1
N (ξ)A−1

= (ξ)˜(�v)(ξ)||S−æ+N ≤

≤ const ||Q−1
N (ξ)A−1

= (ξ)˜(�v)(ξ)||S−æ+N ≤

≤ const ||˜(�v)(ξ)||S−æ+N−N+æ−α = const ||˜(�v)(ξ)||S−α ≤ const ||v||+S−α

according to Lemma 1 and the fact that S − æ + N = δ.|δ j | < 1/2, j = 1, . . . , n.
To estimate other summands in the formula (9) we use above considerations.

Really, if c̃L(ξ′
K ) ∈ H̃ SL (RM−n) then each summand c̃L(ξ′

K )ξl1−1
k1

ξl2−1
k2

· · · ξln−1
kn

in
the formula (9) belongs to the space H̃ S−æ(RM). Thus, we have

||A−1
�= (ξ)V−1

ϕ c̃L(ξ
′
K )ξl1−1

k1
ξl2−1
k2

· · · ξln−1
kn

||S ≤

≤ const ||V−1
ϕ c̃L(ξ

′
K )ξl1−1

k1
ξl2−1
k2

· · · ξln−1
kn

||S−æ ≤

≤ const ||c̃L(ξ′
K )ξl1−1

k1
ξl2−1
k2

· · · ξln−1
kn

||S−æ ≤ const ||c̃L ||SL .

The latter estimate was obtained above. The Theorem2 is proved. �
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Remark 1 This formula includes the operator Vϕ. Examples2 and 3 give exact
representation for this operator for certain concrete cones.

Conclusion

These studies led to different boundary value problems for such elliptic pseudo-
differential equations in cones similar to [14, 17, 18]. Particularly, for the case of
Theorem 2 a general solution of the Eq. (3) includes a lot of arbitrary functions from
corresponding Sobolev–Slobodetskii spaces. To determine these functions uniquely
one needs some additional conditions (not necessary boundary conditions). We will
try to describe certain statements of boundary value problems in forthcoming papers.
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Thermodynamic Limit in Vector Lattice
Models

Yuri P. Virchenko

Abstract Classes of Gibbs random fields u(x), x ∈ Zd on finite sets Λ ⊂ Zd , d ∈
N with values in the spaceRn , n ∈ N are studied. Each class is connected with the
sequence 〈Λ; Λ ⊂ Zd〉 unboundedly expanding according to the definite rule when
Λ → Zd . Each random field is generated by the Hamiltonian HΛ[u(z)]. Classes of
all functionals HΛ[u(z)] corresponding to sequence 〈Λ; Λ ⊂ Zd〉 form the Banach
space Hν . It is proved the existence of the limit statistical characteristic ln ZΛ/|Λ|
in each class when Λ → Zd which is the continuous functional in Hν .

Keywords Vector models · Hamiltonian · Gibbs’ random field · Free energy ·
Phase space · Thermo-dynamic limit

1 Introduction

The object of study in this paper is Gibbs random fields on the integer lattice Zd ,
d ∈ N . The importance of studying such mathematical objects is due to the fact that
models of statistical mathematical physics are constructed on their basis (about the
subject of the study and the terminology used, see, for example, [1–6]). We will
call such models as vector lattice systems. From the point of view of theoretical
physics, these models describe, within the microscopic approach and with appro-
priate interpretation of the parameters defining theirs, the thermodynamic behavior
of single-crystal solid-state structures in a wide temperature range. Despite the fact
that a considerable amount of literature is devoted to the mathematical analysis of
such theoretical models, in most mathematical works related to their study within the
framework of the formalism of statistical mechanics of classical (non-quantum) sys-
tems, the greatest attention is paid to such of them which are called lattice gases. For
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such mathematical objects, the terminology has been developed that unites them. In
terms of this terminology their properties are established at the level of those require-
ments that are imposed on mathematical texts. The purpose of this work is to extend
these basic concepts to a much wider class of models of statistical mechanics of clas-
sical systems which we call, as mentioned above, the vector lattice models. For such
systems, we will prove, within the framework of accepted general restrictions, the
validity of one of the basic provisions of statistical mechanics, namely, we establish
the presence of extensive asymptotic FΛ ∼ | Λ | of the free energy FΛ if the sets Λ

tends to Zd according to a certain principle dictated by physical considerations.

2 The Gibbs Random Fields

Consider a random field ũ(Λ) = {ũ(x) ; x ∈ Λ} on an arbitrary finite subset Λ of
the integer lattice Zd , d ∈ N , with elements x = 〈l1, ..., ld〉, l j ∈ Z , j = 1 ÷ d. We
will call the lattice elements as vertexes.1 This means that corresponding probability
space PΛ = 〈ΩΛ,BΛ,PΛ〉 consists of ΩΛ elementary random events (random con-
figurations), σ -algebra BΛ of measurable subsets of ΩΛ, each element of which is
considered as the random event, and the probability distribution PΛ on BΛ.

For the Gibbs random fields of vector lattice models considered in this paper, the
listed components of the probability space PΛ are defined as follows. Denote the
set Ω ≡ Rn , which we will call the phase space of each vertex in Zd . The number
n ∈ N is the dimension of the vector field fixed during the work.

For any subset of Λ ⊂ Zd , we define the space ΩΛ = ΩΛ. This means that each
vertex x = 〈l1, ..., ld〉 ∈ Λ is mapped to a point of theΩ space which is assigned the
label x and, as a result of such an operation, the phase space Ωx is obtained. Then,
for any Λ ⊂ Zd , the space of elementary events, which we will call the space of
states (configurations), is represented by the formula

ΩΛ =
⊗

x∈Λ

Ωx . (1)

On the space Ω , there is a natural measurability structure defined by the σ -
algebra B of Borel sets inRn . Then, similarly to the formula (1), by assigning labels,
σ -algebras Bx , x ∈ Z are introduced on each of the spaces Ωx and, on the bases of
them, the σ -algebra BΛ is constructed on ΩΛ

BΛ =
⊗

x∈Λ

Bx . (2)

In accordance with this structure of measurability, we will also assume that the
measureM is defined on the σ -algebra B. For simplicity of further constructions, we

1 Here and further throughout the text, random variables are marked with the “tilde” sign.
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will assumewith respect to thismeasure that it does not contain a singular component,
that is, it has a derivative dM/du = D(u) ≥ 0 of the Lebesgue measure inRn with
the differential du = du1...dun . This derivative is expressed as a generalized function
with respect to the countably normalized space of locally continuous functions onRn .
In particular, in the case of n = 1, this means that in the Lebesgue decomposition of
the measureM onR, there are only absolutely continuous and discrete components.

On the basis of themeasureM, by assigning labels x ∈ Zd , we introducemeasures
Mx on σ -algebras Bx and, as a result, the measure BΛ is defined as a product of
measures

MΛ =
∏

x∈Λ

Mx , dMΛ =
∏

x∈Λ

D(u(x))du(x) . (3)

Each Gibbs random field is ũ(Λ) is constructed by the definition of the proba-
bility distribution PΛ on a measurable space 〈ΩΛ,BΛ,MΛ〉. Its random realizations
ũ(Λ) ∈ ΩΛ are represented by mappings ũ(Λ) : Λ 
→ Rn . Due to the finiteness of
the set Λ, each such mapping can be considered as a collection of {ũ(x) ; x ∈ Λ} of
| Λ | (number of vertexes in Λ) random variables taking the value in Rn . The fact
that we consider further this set of random variables as a Gibbs random field means
that the probability distribution PΛ has a non-negative density on the measure MΛ

defined by the formula

dPΛ = 1

ZΛ

exp
( − HΛ[u(z)])dMΛ , (4)

where each of the functionals HΛ[u(z)], Λ ⊂ Zd is called the Hamiltonian of the
Gibbs random field.

Statistical characteristic ZΛ of the probability distribution (4) called the partition
function, is determined on the basis of the normalization condition PΛ(ΩΛ) = 1 of
the distribution PΛ

ZΛ =
∫

ΩΛ

exp
( − HΛ[u(z)])dMΛ . (5)

Thus, for a fixedmeasureM, we assume the choice only of such functionalsHΛ[u(z)]
for which this integral is finite.

In order to connect probability spaces {PΛ ;Λ ⊂ Zd} defined at various Λ ⊂ Zd

by thefixedphase the spaceΩ and thefixedmeasureMon itwith statisticalmechanics
models, it is necessary to distribute these spaces by equivalence classes such that one
may take into account the property of physical uniformity.

This is done, firstly, taking into account the fact that the translation of the set Λ

should not change the physical predictions, that is, it should not change values of
statistical averages obtained as a result of calculations on the basis of a mathematical
model.
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Secondly, it should be taken into account that the sets Λ for statistical mechanics
systems consist of an indefinitely large number of vertexes so that each intensive
thermodynamic characteristic, related to one vertex of the lattice, is practically inde-
pendent on | Λ |.

The first of these requirements can be satisfied by assuming that the collection of
all Hamiltonians HΛ[·], Λ ⊂ Zd describing the same physical system, subject to a
condition that reflects independence of all statistical averages on the location of the
set Λ in Zd . This is expressed by the property of the translational invariance. Let
us formulate the simplest version of such a condition. Let z be an arbitrary vertex of
Zd . Then the space ΩΛ and the measure MΛ on it have the property

ΩΛ+z = ΩΛ|u(x)→u(x+z), MΛ+z = MΛ|u(x)→u(x+z) . (6)

HamiltonianHΛ[u(x)] is called the translationally invariant one if it has the following
property

HΛ+z[u(x)] = HΛ[u(x + z)] . (7)

Each Hamiltonian HΛ[u(x)] is defined as a function on vector variables {x ∈ Λ}
for each setΛ.We denote this function as u(Λ) = {u(x) ; x ∈ Λ}. Then, the property
(7) means that all these functions are the same for all sets Λ + z, z ∈ Zd .

Theorem 1 If HamiltonianH[u(z)] is translationally invariant, then the probability
distributions PΛ and PΛ+z are equivalent in the sense that

dPΛ+z[u(y)] = dPΛ[u(y + z)] . (8)

Proof Statement directly follows from (5)–(7).

Let us nowproceed to the discussion of the second requirement for aGibbs random
field with Hamiltonians HΛ[u(z)] which allows distribute them into equivalence
classes. Let us fix some lattice vertex Zd which we will call the zero one. We will
consider only Gibbs fields on sets Λ that contain this vertex. Due to the necessity
to use a large number of vertexes | Λ | (even for the smallest experimentally studied
nanoparticles of a solid state substance | Λ | ≈ 106 and more), it does not make
sense to accurately calculate the expectations of EΛ(·) on the basis of the probability
measure PΛ.

On the contrary, in the practice of using of probability theory methods in the-
oretical statistical physics, it is necessary only to have confidence the fact that the
calculated thermodynamic characteristics have a quite definite asymptotic behavior
at unlimited increase of the set Λ occupied by the thermodynamically homogeneous
medium under study. In this case, only the main asymptotic terms of expectations
EΛ(·) on the probability measure PΛ are of interest when Λ is expanded to Zd

according to a definite rule. Transition to the limit at Λ → Zd according to corre-
sponding expanding sequences of statistical characteristics of Gibbs random fields
is called the transition to thermodynamic limit in statistical mechanics.
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In this paper we study so-called the extensive systems which are traditional to
statistical mechanics when the function FΛ = ln ZΛ, which is named theirs free
energy, has the asymptotic

FΛ[HΛ] = |Λ |( f (M,HΛ) + o(1)
)
, (9)

that is, this thermodynamic characteristic has the certain density f (M,HΛ) which is
the functional on the measure M and on the Hamiltonian HΛ[u(z)].

The concept of the thermodynamic limit transition needs the serious clarification,
since there are some different ways to construct expanding sequences 〈Λ;Λ ⊂ Zd〉
which are associated with fundamentally different physical situations, and which,
generally speaking, should not lead to the same result.

The simplest type of sequences 〈Λ;Λ ⊂ Zd〉 used in statistical mechanics,
whose components serve as geometric models of crystals and which we will
consider further is represented by the sets Λ = {0, 1, ..., L}d where L ∈ N is
the size of the "crystal". The number of vertexes in each of such sets is equal
| Λ | = (L + 1)d < ∞.

Let us consider the equality

HΛ[u(z)] =
∑

�⊂Λ : |�|>1

V�

(
u(�)

)
(10)

where each function V�

(
u(�)

)
at fixed set � ⊂ Λ of vertexes depends on corre-

sponding collection u(�) = {u(x) ; x ∈ �}. One may consider this equality as the
functional equation defining functions V�(·). These functions, which we further call
potentials, are defined by recursively as the solution of this equation, using the induc-
tion on the number | Λ | and putting V�

(
u(�)

) = 0 with |�| = 1. By induction, it
is also established that the potentials V�(·) have a property similar to (7). Namely,
since

∑

�⊂Λ

V�(u(� + z)) = HΛ[u(x + z)] ,
∑

�⊂Λ+z

V�

(
u(�)) = HΛ+z[u(x)] ,

then the potentials V�(u(�)) for all sets, which are differed from each other only by
shifts with arbitrary vector z ∈ Zd , coincides, V�(u(�)) = V�+z(u(�)).

We do not include terms � = {x} with |�| = 1 in HΛ[u(x)] and refer them to the
definition of Mx , x ∈ Λ. At the same time, as already mentioned above, we restrict
ourselves to the case when all measuresMx are isomorphic between themselves, that
is, they are instances of the same measure M.

Definition 1 The class of Gibbs random fields whose probability spaces 〈PΛ,
Λ ⊂ Zd〉 are constructed on the basis of the samemeasurable phase space 〈Ω,B,M〉,
whose Hamiltonians are determined by the same set of potentials V�(u(�)) ; |�| ∈
N \ {1}〉 so that corresponding partition functions are finite when the sequence
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〈Λ Λ ⊂ Zd〉 of sets coincides with 〈Λ(L) = {0, 1, ..., L}d ; L ∈ N 〉with their suit-
able translation, we will call the limit Gibbs random field on Zd .

Thus, the limit Gibbs random field is determined by the sequence of Hamiltonians
〈HΛ(L)[·] ;Λ(L) ⊂ Zd〉 which is constructed on the basis of potentials by decompo-
sition (10) where the sets Λ(L) are defined by L ∈ N .

Note that, accepting this definition, we adhere to a more traditional view about the
thermodynamic limit for statistical characteristics of Gibbs random fields within the
framework of statistical mechanics, in contrast to the approach known in statistical
mathematical physics. It consists of determination of the Gibbs random field on the
entire lattice Zd by means of a set of conditional probabilities allowed by the fixed
set of relative Hamiltonians (see, [7]).

3 The Hamiltonians Space Hν of Limit Gibbs Fields

Note that the study of limit Gibbs random fields is sufficient to carry out fixing only
their generating family of sets {Λ(L) ; L ∈ N } without the account of translations,
on which the further presentation in this paper is based. Moreover, we will study
a family of Gibbs random fields with the fixed measure M. With the account of
these remarks, every limit Gibbs random field uniquely characterized by the class of
HamiltoniansH = {HΛ(L)[·] ; L ∈ N } which is defined by the fixed set of potentials
{V�(u(�)) ; |�| ∈ N \ {1}}. It is obvious that all such classes form a linear manifold
with natural linear operations.

Let us further assume, throughout the work, that there is a monotone function
ν(s) > 0, s ∈ (0,∞) such that the integral

∫
Rn exp

(
aν(|u|))dM(u) < ∞ defined

by the density D(u) of the measure M, converges for any a > 0. In particular, this
takes place if the support of the measure M is compact, that is, it is concentrated on
the interval [0, s∗], s∗ < ∞ and its density D(u) is zero at |u| > s∗. It takes place in
the case for the standard vector model (see, for example, [8]). In this case one may
consider ν = 1.

We connect the study of Gibbs random fields when their measures M have non-
compact supports in order to apply our results for such objects of statisticalmathemat-
ical physics as, for example, the Berlin-Katz spherical model [9, 10], the Gaussian
model and the ϕ4 model which play an important role in the fluctuation theory of
phase transitions (see, [11]). One may note that the above described Gibbs random
field on Zd include, in particular, all classical lattice models at n = 1 specified in
[2]. To see this fact it is sufficient to introduce the measure M with the density
D(u) = ∑N

l=1 δ(u − l)eμ(u) on the space Ω = R.
Further, we fix the function ν(·) connected with the measureM. Let the potentials

V�(u(�)) depend continuously on the values of the field u(x), x ∈ Λ. Then, there
exists the function
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G(�) ≡ sup
u(�)

∣∣V�(u(�))
∣∣

∑

x ∈ �

ν(|u(x)|)
< ∞ (11)

for each set � ⊂ Zd . Let us additionally assume that the Hamiltonians HΛ(L)[u(x)]
included in each fixed classH have such a property that for any vertex z ∈ Λ it takes
place

N
[
HΛ(L)

] ≡
∑

�⊂Zd : z∈ �, |�|>1

G(�) < ∞ . (12)

Due to the translational invariance of potentials, the values of the functional N[·]
on classesH of Hamiltonians {HΛ(L) ; L ∈ N } does not depend on the choice of the
vertex z ∈ Zd . Then, on the linear manifold of all such classes of Hamiltonians, it
is possible to introduce the norm N[·] that turns this manifold into the Banach space
Hν . In order to simplify the presentation, we omit the proof of the completeness of
this space. It is very important that this norm allows also the following definition

‖HΛ(L)‖ ≡ sup
L∈N

sup
u(Λ(L))

WΛ(L)

[
HΛ(L)

]
∑

x∈ Λ(L)

ν(|u(x)|)
,

WΛ(L)

[
HΛ(L)

] =
∑

�⊂Λ(L) : |�|>1

|V�(u(�))| . (13)

It is valid the following statement.

Theorem 2 It takes place the equality

‖HΛ(L)‖ = N
[
HΛ(L)

]
. (14)

Proof Let us consider the inequalities

|V�(u(�))| ≤ G(�)
∑

x∈�

ν(|u(x)|) , � ⊂ Λ(L) .

Summing them on all � ⊂ Λ(L) at |�| > 1, we obtain

WΛ(L)

[
HΛ(L)

] =
∑

�⊂Λ(L) : |�|>1

|V�(u(�))| ≤
∑

�⊂Λ(L) : |�|>1

G(�)
∑

x∈Λ(L)

ν(|u(x)|) ≤

≤
∑

x∈Λ(L)

ν(|u(x)|)
∑

x∈�⊂Λ(L)

G(�) ≤ N
[
HΛ(L)

] ·
∑

x∈Λ(L)

ν(|u(x)|)
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and, therefore,

‖HΛ(L)‖ = sup
Λ(L)⊂Zd

WΛ(L)

[
HΛ(L)

]
∑

x∈Λ(L)

ν(|u(x)|)
≤ N

[
HΛ(L)

]
. (15)

Let us establish the inverse inequality. Choose a value ε > 0. Then, there will be
such L ∈ N and the field u(x), x ∈ Λ(L) for which the following inequality

WΛ(L)

[
HΛ(L)

] ≥ (‖HΛ(L)‖ − ε
) ∑

x∈ Λ(L)

ν(|u(x)|)

takes place. On the other hand, we have

WΛ(L)

[
HΛ(L)

] =
∑

�⊂Λ(L) : |�|>1

D(�)
∑

x∈�

ν(|u(x)|) ≤ N
[
HΛ(L)

] ∑

x∈Λ(L)

ν(|u(x)|)

and, therefore, ‖HΛ(L)‖ − ε ≤ N
[
HΛ(L)

]
. Due to the arbitrariness of the value ε > 0,

there is an inequality ‖HΛ(L)‖ ≤ N
[
HΛ(L)

]
. The validity of (14) follows from it and

from the inequality (15).

We show that if the limit randomfield defined by the class ofHamiltonians {HΛ(L);
L ∈ N }whichbelongs to the spaceHν with a functionν(·), then it is correctly defined.
Namely, it is valid

Theorem 3 If the integral
∫
Rn exp

(
aν(|u|))dM(u) < ∞ converges for a monotone

function ν(s) > 0, s ∈ (0,∞) and for any a > 0 and if the classH of Hamiltonians
defined by the set of potentials {V�(u(�)) ; |�| ∈ N \ {1}} belongs to Hν , then the
partition function ZΛ, defined by (5), is finite and, therefore, the correspondingGibbs
random the field is defined for all Λ ⊂ Zd .

Proof Let Hamiltonians HΛ(L) be satisfied the condition (12). Then, on the basis of
definition (5) and according to (14), the following estimates are valid

ZΛ ≤
∫

ΩΛ

exp
(∣∣HΛ[u(z)]∣∣)dMΛ ≤

∫

ΩΛ

exp
(
‖HΛ(L)[u(z)]‖ ·

∑

x∈Λ

ν(|u(x)|)
)
dMΛ ≤

≤
∏

x∈Λ

∫

Ωx

exp
(
‖HΛ(L)‖ · ν(|u(x)|)

)
dMx (u(x)) =

=
[ ∫

Ω

exp
(
‖HΛ(L)‖ · ν(|u|)

)
dM(u)

]|Λ|
. (16)
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We give the following

Definition 2 Let the class {HΛ(L) : Λ(L) = {0, 1, ..., L}d; L ∈ N } ofHamiltonians
determines the limit Gibbs random field with fixed measureM on the phase spaceΩ .
The set of limit Gibbs random fields defined by the set βH = {βHΛ(L)[·] : L ∈ N }
of classes of Hamiltonians contained inHν where each set is parameterized by β > 0,
is called the lattice classical model of statistical mechanics corresponding to βH.

Introduction of the set of classes of Hamiltonians which is represented as a rec-
tilinear ray in the space Hν , is connected with the fact that the model of equilibrium
statistical mechanics is defined by the thermodynamic interpretation of measurable
parameters of corresponding limit Gibbs field. First of all, it refers to the main ther-
modynamic parameter, that is the temperature. According to the canons of statistical
mechanics, it is proportional to β−1.

4 The Extensive Asymptotics of Free Energy

Our aim is the proof the asymptotic formula (9) at Λ(L) → Zd for each lattice
system of statistical mechanics.

Definition 3 The Hamiltonian (10) has the finite range of action if there exists such
a finite set Δ ⊂ Zd , 0 ∈ Δ of vertexes for which V�(u(�)) �= 0 only in the case
when there is such a vertex z ∈ � that � − z ⊂ Δ.

If the Hamiltonian HΛ(L) has a finite range of action, the pointed out set Δ is
named its support. It is obvious that all such Hamiltonians form the linear manifold
H(0) in the Banach space Hν . We begin the proof of the extensiveness of the free
energy from the proof of the following statement.

Theorem 4 For the fixed measureM and any finite set Λ ⊂ Zd , the corresponding
manifold H(0) of Hamiltonians HΛ is dense in the space Hν .

Proof Let us fix the value ε > 0. Since the sum in (12) is finite for the fixed Hamil-
tonian HΛ[·], one may choose the finite family � of finite subsets � ⊂ Zd such that
each of them contains the vertex 0 and it takes place the inequality

∑

�⊂Zd : 0∈ �, �/∈�

G(�) < ε . (17)

Let us introduce the set

Δ =
⋃

�∈�

� .

We add the family� such that it should contain all sets� ⊂ Δ. The inequality (17) is
strengthened only at such an expansion. After that, we define V̂�(u(�)) = V�(u(�)),
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if onemay find such a vertex z ∈ Zd for which the inclusion (� + z) ∈ � takes place.
In opposite case, we define V̂�(u(�)) = 0. The latter means that V̂�′(u(�′)) = 0
every time when the set �′ ⊂ Zd is such that �′ + z �⊂ Δ takes place for any vertex
z ∈ Zd .

Further, we define the Hamiltonian

ĤΛ[u(z)] =
∑

�⊂Λ : |�|>1

V̂�

(
u(�)

)
. (18)

It belongs to the linear manifold H(0). Then, using the determination of potentials
V̂�

(
u(�)

)
, due to the Theorem 1 the following equality

‖HΛ − ĤΛ‖ = N
[
HΛ − ĤΛ

] =
∑

�⊂Zd : 0∈ �, �/∈�

G(�) < ε

takes place that is any Hamiltonian HΛ may be approximate arbitrarily accurate in
the space Hν by the Hamiltonian ĤΛ with finite range of action.

To solve the problem which is set at the beginning of the section, some fol-
lowing supplementary properties of density D(·) should be used. According to
the basic supposition, the measure M has the density D(·) which is a general-
ized function relative to the space of continuous functions. It consists of two
summands D(·) = Dc(·) + Dd(·) where Dc(·) is measurable bounded nonnegative
function on Rn and Dd(u) = ∑

k μkδ(u − vk); μk > 0, vk ∈ Rn . Denote Dα(u) =
Dα

c (u) + ∑
k μα

k δ(u − vk) at 0 < α < 1. We will say that such a density D(·) is
bounded by the value K if max Dc(u) ≤ K and μl ≤ K , l ∈ N .

In addition to the existence of positive monotone function ν(s) on (0,∞) such
that the density D(u) possesses the property

∫
Ω
exp(aν(|u|))D(u)du < ∞ at any

a > 0, we will suppose also the availability of some supplementary more strong
restrictions for the density when the basic result of the paper will be obtained in this
section.

Lemma 1 Let the Hamiltonians class {HΛ(L) ; L ∈ N } belongs to the spaceHν . Let
also the density D(·) of measure M defines the limit Gibbs random field together
with this class. If D(·) is bounded by the value K and there exists such a nonnegative
function ν(s), the value α ∈ (0, 1) for which the integral

∫
Ω
Dα(u)eaν(u)du < ∞ is

finite and also the function ν(u)D1−α(u) is bounded by the value Kν > 0, then the
following inequality is valid for expectation EΛ(L)ν(|ũ(x)|) < KνK 1−α and for any
vertex x ∈ Zd .

Proof Since the function ν(u)D1−α(u) is bounded by the value Kν , then, for the
following integral with any nonnegative weight function W (·) on Rn , the estimate

∫

Rn

ν(u)D(u)W (u)du < Kν

∫

Rn

Dα(u)W (u)du (19)
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takes place. By the same way, since the density D(u) is bounded by the value K , the
inequality ∫

Rn

D(u)W (u)du < K 1−α

∫

Rn

Dα(u)W (u)du (20)

is valid.
Now, we note that, due to the lemma conditions relative the integral with the

density D(·), the following partition function is finite (see the proof of Theorem 2),

ZΛ(L),α =
∫

Ωx

Dα(u(|x |))du(x)
∫

ΩΛ(L)\x
exp(−HΛ(L)[u(z)])dMΛ(L)\x <

<

∫

Ω

exp
(
‖HΛ(L)‖ · ν(|u|)

)
Dα(u)du ·

[ ∫

Ω

exp
(
‖HΛ(L)‖ · ν(|u|)

)
dM(u)

]|Λ|−1
,

since |HΛ(L)| ≤ W
[
HΛ(L)

] ≤ ‖HΛ(L)‖∑
x∈Λ(L) ν(|u|).

Then, on the basis of the identity 1 = ZΛ(L)/ZΛ(L), using the inequality (20) for
the denominator, we find that

ZΛ(L), α ≥ K α−1ZΛ(L) . (21)

By the same way, due to the condition for the integral pointed out and due to the
inequality (19), we find the estimate

∫

Ωx

[
ν(|u(x)|)D1−α(u(x))

]
Dα(u(x))du(x)

∫

ΩΛ(L)\x
exp(−HΛ(L)[u(z)])dMΛ(L)\x

< KνZΛ(L), α . (22)

The expression for the expectation EΛ(L)

[
ν(|u(x)|)] is written in the following

form

EΛ(L)

[
ν(|u(x)|)] =

∫

Ωx

ν(|u(x)|)dMx

∫

ΩΛ(L)\x
exp(−HΛ(L)[u(z)])dMΛ(L)\x

∫

Ωx

dMx

∫

ΩΛ(L)\x
exp(−HΛ(L)[u(z)])dMΛ(L)\x

.

We apply the estimate (22) for the nominator and the estimate (21) for the denomi-
nator. Then

EΛ(L)

[
ν(|u(x)|)] ≤ KνK

1−α .

Further, we suppose that always the measureM satisfies conditions of Lemma 1.
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Let Λ′ ⊂ Λ and u(Λ′) is the restriction of the field u(Λ) on the set Λ′. If the
Hamiltonian HΛ[u(z)] has the property HΛ[u(Λ)] = HΛ[u(Λ′)], then we will say
that HΛ[u(Λ′)] is the natural restriction of the Hamiltonian HΛ[u(z)] on the linear
manifoldΩΛ′ of vector fields u(Λ′). We will denote this natural restriction by means
of HΛ′ [u(z)].
Lemma 2 Let Λ ⊂ Zd . Then, for the partition functions

ZΛ[H(m)
Λ ] =

∫

ΩΛ

exp
( − H(m)

Λ [u(z)])dMΛ

which are defined by Hamiltonians H(m)
Λ , m ∈ {1, 2} of the space Hν such that the

differenceH(1)
Λ′ − H(2)

Λ′ atΛ′ ⊂ Λ is the natural restriction of the HamiltonianH(1)
Λ −

H(2)
Λ on ΩΛ′ , the following inequality is valid

∣∣ ln ZΛ[H(1)
Λ ] − ln ZΛ[H(2)

Λ ]∣∣ ≤
(
EΛν(|ũ|)

)
· |Λ′| · ‖H(1)

Λ′ − H(2)
Λ′ ‖ . (23)

Proof The Hamiltonian H(1)
Λ′ − H(2)

Λ′ possesses the finite norm ‖ · ‖. We introduce

the family of Hamiltonians H[u(z); t] = H(2)
Λ′ [u(z)] + t

(
H(1)

Λ′ [u(z)] − H(2)
Λ′ [u(z)]),

t ∈ [0, 1] so that all belong to Hν , and also we consider the family of corresponding
partition functions

ZΛ(t) =
∫

ΩΛ

exp
( − H[u(z); t])dMΛ .

These functions are finite due to Theorem 2.
Now, we note that the following estimates are valid

∣∣∣∣
d

dt
ln ZΛ(t)

∣∣∣∣ ≤ Z−1
Λ (t)

∫

ΩΛ

∣∣∣
d

dt
H[u(z); t]

∣∣∣ exp
( − H[u(z); t])dMΛ ≤

∥∥∥
d

dt
H[u(z); t]

∥∥∥ · Z−1(t)
∫

ΩΛ

∑

x∈Λ

ν(|u(x)|) exp ( − H[u(z); t])dMΛ =

=
(
EΛν(|ũ|)

)
|Λ′| · ‖H(1)

Λ′ − H(2)
Λ′ ‖ ,

if we take into account the definition (13) of the norm and also that the difference
H(1)

Λ′ − H(2)
Λ′ is the natural restriction on ΩΛ′ . Here, the expectation Eν(|ũ|) is finite.

Due to Lemma 1, it does not exceed KνK 1−α . Integrating the obtained inequality
from 0 up to 1 and taking into account that ZΛ(0) = ZΛ[H(2)

Λ ], ZΛ(1) = ZΛ[H(1)
Λ ],

the inequality (23) follows.
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Lemma 3 Let the HamiltonianHΛ ∈ H(0) has the finite range of action andΔ is the
finite subset in Zd which is its support. Let also Δ1 and Δ2 be any nonintersecting
finite subsets in Zd , Δ1 ∩ Δ2 = ∅ and �∗(Δ1,Δ2;Δ) be the set of such vertexes
z ∈ Zd for which (Δ + z) ∩ Δ1 �= ∅, (Δ + z) ∩ Δ2 �= ∅ are fulfilled simultaneously.

Let theHamiltoniansHΔ1∪Δ2 ,HΔ1 ,HΔ2 are natural restrictions of theHamiltonian
HΛ on ΩΔ1∪Δ2 , ΩΔ1 , ΩΔ2 , correspondingly. Then, the difference (HΔ1∪Δ2 −HΔ1 −
HΔ2) has the natural restriction on Ω�∗(Δ1,Δ2;Δ) and the following estimate

|HΔ1∪Δ2 [u(z)] − HΔ1[u(z)] − HΔ2 [u(z)]| ≤ ‖HΔ1∪ Δ2‖
∑

x∈�∗(Δ1,Δ2;Δ)

ν(|x |) (24)

is valid for it.

Proof Let us estimate the left-hand side of the inequality (24)

∣∣HΔ1∪Δ2 [u(z)] − HΔ1 [u(z)] − HΔ2 [u(z)]∣∣ ≤

≤
( ∑

�⊂Δ1∪Δ2 :
|�|>1

−
∑

�⊂Δ1 :
|�|>1

−
∑

�⊂Δ2 :
|�|>1

)∣∣V�(u(�))
∣∣ =

∑

�⊂Δ1∪Δ2 : |�|>1
� ∩Δ1 �=∅ , � ∩Δ2 �=∅

∣∣V�(u(�))
∣∣ ≤

≤
∑

x∈Δ1∪Δ2

∑

�⊂Δ1∪Δ2 : x∈�,�−x⊂Δ,

�∩ Δ1 �=∅ , �∩ Δ2 �=∅, |�|>1

∣∣V�(u(�))
∣∣ ≤

≤
∑

�⊂Zd : 0∈�, |�|>1

G(�)
∑

x∈�(Δ1,Δ2;Δ)

ν(|x |) .

Here,we take into account thatV�(u(�)) �= 0only in the casewhen there exists such a
vertex x ∈ � for which the relation � − x ⊂ Δ is valid and, therefore, we introduce
the set �(Δ1,Δ2;Δ) of vertexes x ∈ Δ1 ∪ Δ2. For each vertex in this set there
exists a subset � with the following properties � ⊂ Δ1 ∪ Δ2, x ∈ �, � − x ⊂ Δ,
� ∩ Δ1 �= ∅, � ∩ Δ2 �= ∅.

Now, we show that the inclusion �(Δ1,Δ2;Δ) ⊂ �∗(Δ1,Δ2;Δ) takes place.
Indeed, from two last inclusions we conclude (� − x) ∩ (Δ1 − x) �= ∅ and (� −
x) ∩ (Δ2 − x) �= ∅. Then, combining these inclusions with the following � − x ⊂
Δ, we may assert that relationships Δ ∩ (Δ1 − x) �= ∅ and Δ ∩ (Δ2 − x) �= ∅
are realized. Thus, (Δ + x) ∩ Δ1 �= ∅, (Δ + x) ∩ Δ2 �= ∅ and, therefore, the last
inequality leads to the inequality (24) if we take into account the statement of The-
orem 2.

The following lemma is the consequence of Lemmas 2 and 3.

Lemma 4 Let Hamiltonian HΛ ∈ H(0) has the finite range of action and Δ is the
finite subset inZd which is its support. IfΔ1 areΔ2 are nonintersecting finite subsets
in Zd , Δ1 ∩ Δ2 = ∅, then the following estimate takes place
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∣∣ ln ZΔ1∪ Δ2 − ln ZΔ1 − ln ZΔ2

∣∣ ≤
(
EΛν(|ũ|)

)
· ‖HΛ‖ · |�∗(Δ1, Δ2;Δ)| . (25)

Proof Wedefine the followingHamiltoniansH(1)
Λ = HΔ1∪Δ2 andH

(2)
Λ = HΔ1 + HΔ2 .

Then, using this definition, we have ZΔ1∪Δ2 = ZΛ[HΔ1∪Δ2 ], ZΔ1 = ZΛ[HΔ1], ZΔ2 =
ZΛ[HΔ2 ]. Due to Δ1 ∩ Δ2 = ∅, the Hamiltonians HΔ1 , HΔ2 act in linear manifolds
which have the empty intersection. Consequently,

∣∣ ln ZΔ1∪ Δ2 − ln ZΔ1 − ln ZΔ2

∣∣ = ∣∣ ln ZΛ[H(1)
Λ ] − ln ZΛ[H(2)

Λ ]∣∣ .

Further, we apply the inequality (24) to partition functions ZΛ[H(m)
Λ ], m = 1, 2,

∣∣ ln ZΛ[H(1)
Λ ] − ln ZΛ[H(2)

Λ ]∣∣ ≤
(
EΛν(|ũ|)

)
· |�∗(Δ1, Δ2;Δ)| · ‖H(1)

Λ − H(2)
Λ ‖ ,

where we take into account that the difference H(1)
Λ − H(2)

Λ has the natural restric-
tion on �∗(Δ1, Δ2; Δ). Since H(1)

Λ − H(2)
Λ = H�∗(Δ1,Δ2; Δ), then ‖H(1)

Λ − H(2)
Λ ‖ =

‖H�∗(Δ1, Δ2; Δ)‖ ≤ ‖HΛ‖ because of the nondecreasing of the Hamiltonian norm
when the set Λ is expanded. From here, it follows the inequality (25).

Corollary 1 Let HamiltonianHΛ ∈ H(0) has the finite rang of action and Δ is finite
subset inZd which is its support. If Δ j , j = 1 ÷ m are finite subsets inZd such that
Δ j ∩ Δk = ∅ at j �= k, then the following estimate

∣∣ ln Zϒm −
m∑

j=1

ln ZΔ j

∣∣ <
(
Eϒmν(|ũ|)

)
· ‖Hϒm‖ ·

m∑

j=2

|�∗(ϒ j−1,Δ j ;Δ)| (26)

takes place where ϒl = ⋃l
j=1 Δ j and �∗(ϒ j−1,Δ j ;Δ) is the set of such vertexes

z ∈ Zd for which the relationships (Δ + z) ∩ ϒl �= ∅, (Δ + z) ∩ Δl �= ∅ follow
simultaneously for each l = 2 ÷ m.

Proof The proof is carried out by induction according to m ∈ N with the use of the
inequality (25), starting out m = 2.

Let us proceed to the proof of themain result of thiswork. It is carried out according
to the same scheme that is proposed in [2], and it is based on the representation of a
lattice model as the sum of a large number of isomorphic disjoint identical “weakly
interacting” lattice models.

Theorem 5 If HΛ ∈ H(0), then there exists the finite limit

f (M,HΛ) = lim
L→∞

ln ZΛ

|Λ(L)| . (27)

Proof On the basis of the set Λ(a − 1), a ∈ N , a ≥ 2 and vertexes y ∈ Zd , we
define the sets Λy = Λ(a − 1) + ay. Let L = aN − 1. Consider the set Λ(aN − 1)
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which contains ad Nd vertexes. We represent it in the form

Λ(aN − 1) =
⋃

y∈ Λ(N−1)

Λy

where Λy1 ∩ Λy2 = ∅ for any pair of vertexes {y1, y2} ⊂ Λ(N − 1).
Let us introduce lexicographical order of the set Λ(N − 1) containing Nd ver-

texes, we demote the fact that the vertex y2 follows the vertex y1 by y1 < y2. It
means that for each pair of such vertexes y1 = 〈y(1)

1 , ..., y(1)
d 〉, y2 = 〈y(2)

1 , ..., y(2)
d 〉;

y(m)
j = 0 ÷ N − 1; j = 1 ÷ d, m ∈ {1, 2} there exists such a number k = 1 ÷ d for

which y(1)
j = y(2)

j , j = 1 ÷ k − 1, y(1)
k < y(2)

k .
The values of functionals ln ZΛy j

do not depend on j = 1 ÷ Nd due to transla-
tional invariance. Then

∣∣∣ ln ZΛ(L) − Nd ln ZΛ(a−1)

∣∣∣ =
∣∣∣ ln ZΛ(L) −

Nd∑

j=1

ln ZΛy j

∣∣∣ . (28)

To estimate the right-hand side of this equality we apply the inequality (26) con-
nected with setsΔ j = Λy j , j = 1 ÷ Nd ,ϒN 2 = Λ(L) in the sense of the introduced
order,

∣∣∣ ln ZΛ(L) −
Nd∑

j=1

ln ZΛy j

∣∣∣ <
(
EΛ(L) ν(|ũ|)

)
· ‖HΛ(L)‖ ·

Nd∑

j=2

∣∣�∗(ϒ j−1,Λy j ;Δ)
∣∣

(29)
whereϒl = ⋃l

j=1 Λy j ,ϒy1 = Λ(a − 1). We choose the number a ∈ N so large that
the inclusion Λ(a − 1) ⊃ (Δ + z) is fulfilled for a vertex z.

Suppose there are two setsΛy j andΛyk such that there exists such a vertex x ∈ Zd

for them when the relationships (Δ + x) ∩ Λy j �= ∅ and (Δ + x) ∩ Λyk �= ∅ are
valid. Then from the inclusionΛ(a − 1) ⊃ (Δ + z) it follows that (Λ(a − 1) + x −
z) ∩ Λy j �= ∅ and (Λ(a − 1) + x − z) ∩ Λyk �= ∅. Such a situation is possible only in
the casewhenΛy j andΛyk are “neighboring” sets, namely, y j = 〈y( j)

1 , ..., y( j)
d 〉, yk =

〈y( j)
1 + α1, ..., y

( j)
d + αd〉, αi ∈ {−1, 0, 1}, i = 1 ÷ d. For each set Λy j there exists

nomore that 3d − 1 neighboring sets among allΛyk , k �= j , k = 1 ÷ Nd . In this case,
if the vertex x is contained in anything set Λy j , then there are 3d − 1 sets Λyk such
that (Δ + x) ∩ Λyk �= ∅. Consequently, the number of vertexes

∣∣�∗(ϒ j−1,Λy j ;Δ)
∣∣

does not exceed (3d − 1)max
k∈� j

∣∣�∗(Λyk ,Λy j ;Δ)
∣∣ for any j = 1 ÷ Nd where � j is

the set which consists of those 3d − 1 numbers k ∈ {1, ..., Nd} for which Λyk is a
neighbor with Λy j .

Let us estimate the number
∣∣�∗(Λyk ,Λy j ;Δ)

∣∣ for two neighboring sets Λy j and
Λyk . It is obvious that it is maximal in the case when there is the face of Λy j with the
dimension d − 1 which divides them. It contains ad−1 vertexes. Let x0 is the fixed
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vertex in this face. Then, we find the number of vertexes x for which simultaneous
feasibility of relationships (Δ + x) ∩ Λy j �= ∅ and (Δ + x) ∩ Λyk �= ∅ is possible.
In this case x0 ∈ Δ + x does not exceed |Δ|. Then, it is valid ∣∣�∗(Λyk ,Λy j ;Δ)

∣∣ ≤
ad−1|Δ|. On the basis of this estimate, we obtain the following inequality

∣∣�∗(ϒ j−1,Λy j ;Δ)
∣∣ < (3d − 1)ad−1|Δ| .

Using it and also (28) and (29), we conclude that the inequality

∣∣∣
ln ZΛ(aN−1)

| Λ(aN − 1)| − ln ZΛ(a−1)

| Λ(a − 1)|
∣∣∣ < (3d − 1)

(
EΛ(L) ν(|ũ|)

)
· ‖HΛ(L)‖ · | Δ|

a
. (30)

takes place at | Λ(aN − 1)| = (aN )d , | Λ(a − 1)| = ad . Since the right-hand side
of the inequality (30) tends to zero at a → ∞, then, to complete the proof of the
theorem, we show that the sequence 〈| Λ(L)|−1 ln ZΛ(L); L ∈ N 〉 is the fundamental
one. For this, we will prove that, for each ε > 0, there is such a sufficiently large
number L , for which there are values a and N when for any L ′ > L we may find
a′ > a, N ′ > N when the following inequality

∣∣∣
ln ZΛ(L ′)

|Λ(L ′)| − ln ZΛ(a′−1)

|Λ(a′ − 1)|
∣∣∣ < ε

takes place. It is obvious that the sequence under consideration is fundamental in
this case since ∣∣∣

ln ZΛ(L)

|Λ(L)| − ln ZΛ(L ′)

|Λ(L ′)|
∣∣∣ < 2ε , L ′ > L . (31)

We introduce the sets Λ(aN − 1) and ∂Λ(aN − 1) = Λ(L) \ Λ(aN − 1). Let
us estimate the expression in left-hand side of (31) at L ′ = L , a′ = a on the basis of

∣∣∣
ln ZΛ(L)

|Λ(L)| − ln ZΛ(a−1)

|Λ(a − 1)|
∣∣∣ ≤ 1

| Λ(L)|
∣∣∣ ln ZΛ(L) − ln ZΛ(aN−1) − ln Z∂Λ(aN−1)

∣∣∣

+ ln Z∂Λ(aN−1)

ln ZΛ(L)

+
∣∣∣
ln ZΛ(aN−1)

|Λ(aN − 1)| − ln ZΛ(a−1)

|Λ(a − 1)|
∣∣∣ . (32)

To estimate first summand, we apply (25) with Δ1 = Λ(aN − 1) and Δ2 =
∂Λ(aN − 1), taking into account that Λ(L) = Λ(aN − 1) ∪ ∂Λ(aN − 1),

∣∣ ln ZΛ(L) − ln ZΛ(aN−1) − ln Z∂Λ(aN−1)

∣∣ ≤

≤
(
EΛν(|ũ|)

)
· ‖HΛ‖ · |�∗(Λ(aN − 1), ∂Λ(aN − 1);Δ)| .
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Here, �∗(Λ(aN − 1), ∂Λ(aN − 1);Δ) is the set of such vertexes x for which the
set Δ + x contains the vertex in ∂Λ(aN − 1). Then, it follows that

∣∣�∗(Λ(aN −
1), ∂Λ(aN − 1);Δ)

∣∣ ≤ |∂Λ(aN − 1)| · |Δ|. Consequently, the inequality
1

| Λ(L)|
∣∣ ln ZΛ(L) − ln ZΛ(aN−1) − ln Z∂Λ(aN−1)

∣∣ ≤ δ (33)

takes place at sufficiently large number N .
The estimate of second summand is given by the inequality

ln Z∂Λ(aN−1)

|Λ(L)| ≤ |∂Λ(aN − 1)|
|Λ(L)|

∫

Ω

exp
(
‖HΛ(L)‖ · ν(|u|)

)
dM(u) < δ , (34)

which should be valid at sufficiently large L at fixed number N .
Finally, last summand at right-hand side of (32) is estimated by choice a suffi-

ciently large value a in the inequality (30) for any N ∈ N so that its right-hand side
may be done less that δ. Thus, by selecting δ < ε/3 and, at first, choosing a suitable
value a, and then choosing a sufficiently large number N so that the inequalities (33)
and (34) are satisfied, we will ensure the satisfiability of the inequality (31).

Theorem 6 If HΛ ∈ Hν , then there exists the finite limit

f (M,HΛ) = lim
L→∞

ln ZΛ(L)

|Λ(L)| . (35)

The limit function f (M,HΛ) is the continuous functional in the space of Hν .

Proof The inequality (23) points out that the estimate

1

|Λ|
∣∣∣ ln ZΛ[H(1)

Λ(L)] − ln ZΛ[H(2)
Λ(L)]

∣∣∣ ≤
(
EΛν(|ũ|)

)
· ‖H(1)

Λ(L) − H(2)
Λ(L)‖ , (36)

takes place for any pair of classes {H(1)
Λ(L); L ∈ N }, {H(2)

Λ(L); L ∈ N } of Hamiltonians
in the space Hν .

Since the manifold H(0) is dense in Hν , then, for a given class of Hamiltonians
HΛ(L) ≡ H(1)

Λ(L) ∈ Hν , L ∈ N and for the value ε > 0, choosing such a class H(0) ≡
H(2)

Λ(L), L ∈ N in H(0) for which ‖HΛ(L) − H(0)
Λ(L)‖ < ε, we get

εEΛν(|ũ|) + 1

|Λ| ln ZΛ[H(0)
Λ(L)

] >
1

|Λ| ln ZΛ[HΛ(L)] >
1

|Λ| ln ZΛ[H(0)
Λ(L)

] − εEΛν(|ũ|) .

Since, according to Theorem 5, the sequence of functions |Λ(L)|−1 ln ZΛ(L)[H(0)
Λ(L)],

L ∈ N converges to a fixed limit, then, going to the limit L → ∞, we get an estimate
for the difference between the upper and lower limits of the sequences of functions
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lim sup
L→∞

ln ZΛ[HΛ(L)]
| Λ| − lim inf

L→∞
ln ZΛ[HΛ(L)]

| Λ| < εEΛν(|ũ|) .

Taking into account the arbitrariness of the value ε > 0,wefind that the first statement
of the theorem is true.

The limit function f (M,HΛ) (35) depends functionally on the set of potentials
V�(u(�)), � ⊂ Zd , 1 < |�| < ∞, that is, on the class of Hamiltonians {HΛ(L); L ∈
N }. Since such limiting at L → ∞ functions f (M,H(m)

Λ(L)) exist for every pair

{H(m)

Λ(L); L ∈ N }, m ∈ {1, 2} of Hamiltonians classes in Hν , then, going to the limit
when L → ∞ in (36), for of these limit functions, we obtain

∣∣∣ f (M,H(2)
Λ(L)) − f (M,H(1)

Λ(L))

∣∣∣ ≤
(
EΛν(|ũ|)

)
· ‖H(1)

Λ(L) − H(2)
Λ(L)‖ .

From here, it follows that the limit functional f (M,HΛ) is continuous on the space
of Hamiltonians Hν that proves the second part of the statement.

5 Conclusion

In the paper it is proved the extensiveness of the free energy FΛ[HΛ] of classical
vector lattice models in statistical mechanics, that is, the presence of asymptotic
behavior (9) at Λ → Zd for this thermodynamic function. The proved statement is
valid for any classes of translationally invariant Hamiltonians of the space Hν and
for any dimension d of the immersion space of the specified type models.

It is necessary to note that investigatedmodels are used in statistical physics only at
d = 3 for bulk physical samples of a solid and at d = 2 in the study of thermodynamic
phenomena on the boundaries of macroscopic physical bodies (in particular, the
surface tension). Besides, in practical calculations within the framework of statistical
mechanics, as a rule, Hamiltonians of pair interaction are used that is V�(u(�)) �= 0
only when |�| = 2 with a summable potential.

At the same time, it should be noted that we have proved the presence of extensive
asymptotic only in the special case, which is used when applying models of statis-
tical mechanics in problems of theoretical statistical physics. Namely, the sets Λ

which serve as geometric models of crystals, have the form Λ = Λ(L). So, it would
be desirable to extend the constructions proposed in this paper to the case when Λ

sets have a more general form. It may be done if it is permissible to determine the
so-called thermodynamic Van Hove limit transition (see [2]). Such a generalization
is important as from the viewpoint of development of the general theory of the Gibbs
random fields and as from the physical viewpoint because of the development of the-
oretical physics. The latter is connected with the fact that different constructions of
thermodynamic limit transition may describe different physical reality. For example,
if it is violated the so-called Fisher condition (see [2, Sect. 2]) when the thermody-
namic limit transition is fulfilled, in particular, there are violated those conditions
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that are inherent in the definition of the Van Hove limit transition, then it seems that
one may describe fractal solid-state structures within the framework of statistical
mechanics.

In conclusion, we note that, from our opinion, the development of an alternative
approach in the theory of Gibbs random fields proposed by Dobrushin [7], despite
its undoubted general theoretical importance, will not lead to the elimination of
the concept of thermodynamic limit transition in the traditional sense in statistical
mechanics.
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Family of Smooth Solutions of
Hyperbolic Differential-Difference
Equation

Natalya V. Zaitseva

Abstract Three-parameter familie of solutions is constructed for hyperbolic
differential-difference equation with shift operators of the general-type acting with
respect to all spatial variables.We prove theorem showing that the solutions obtained
are classical provided that the real part of the symbol of the correspondingdifferential-
difference operator is positive. Classes of equations for which these conditions are
satisfied is given.

Keywords Hyperbolic equation · Differential-difference equation · Classical
solution · Shift operator · Operational scheme · Fourier transform

1 Introduction

Problems for elliptic differential-difference equations in bounded domains have been
studied quite comprehensively by now; the theory for such equations was created
and developed by Skubachevskii [1, 2]. Problems for elliptic differential-difference
equations in unbounded domains have been studied to a much lesser extent. An
extensive study of such problems is presented in Muravnik’s papers [3–5]. In partic-
ular, boundary value problems for multidimensional elliptic differential-difference
equations are considered in [3–5].

Problems for parabolic differential-difference equations were studied in
Muravnik’smonograph [6].Vlasov andMedvedev [7] studiedhyperbolic differential-
difference equations for the case where the shift operators act on the time variable.

As far as the present author is aware, at present, there are few papers dealing with
hyperbolic differential-difference equations containing shifts with respect to the spa-
tial variable. In [8–10], families of classical solutions are constructed for hyperbolic
equations with shifts in the space variable x; the shifts occur in the potentials.
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In the present paper, we study the existence of smooth solutions of hyperbolic
differential-difference equation in the half-space {(x, t)| x ∈ Rn, t > 0}. The equa-
tion contains a sum of differential operators and shift operators with respect to each
of the spatial variables,

utt (x, t) = a2
n∑

j=1

ux j x j (x, t) −
n∑

j=1

b ju(x1, . . . , x j−1, x j − h j , x j+1, . . . , xn, t),

(1)
where a, b1, . . . , bn and h1, . . . , hn are given real numbers.

Definition 1 A function u(x, t) is called a classical solution of Eq. (1) if the deriva-
tives utt and ux j x j ( j = 1, . . . , n) exist in the classical sense (i.e., as limits of finited-
ifference ratios) at each point of the half-space {(x, t)| x ∈ Rn, t > 0} and if Eq. (1)
holds at each point of the half-space.

2 Construction of Solutions of Equation (1)

To find solutions of the equation, we use the classical operational scheme [11,
Sect.10], whereby one formally applies the Fourier transform with respect to the
n-dimensional variable x to Eq. (1),

f̂ (ξ) =
∫

Rn

f (x)eiξ·xdx,

and passes to the dual variable ξ.
In view of the formulas [12, Sect. 9]

Fx [∂α
x ∂

β
t f ] = (−iξ)α∂

β
t Fx [ f ], Fx [ f (x − x0)] = eix0·ξFx [ f ],

for the function û(ξ, t) := Fx [u](ξ, t) we obtain the initial value problem

d2û

dt2
= −

⎛

⎝a2|ξ|2 +
n∑

j=1

b j cos (h jξ j ) + i
n∑

j=1

b j sin (h jξ j )

⎞

⎠ û, ξ ∈ Rn, (2)

û(0) = 0, ût (0) = 1. (3)

For convenience, in the subsequent calculations we use the notation

α(ξ) :=
n∑

j=1

b j cos (h jξ j ), β(ξ) :=
n∑

j=1

b j sin (h jξ j ).
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Then Eq. (2) becomes

d2û

dt2
= − (

a2|ξ|2 + α(ξ) + i β(ξ)
)
û, ξ ∈ Rn,

and the roots of the corresponding characteristic equation are determined by the
formula

k1,2 = ± i
√
a2|ξ|2 + α(ξ) + i β(ξ) = ± iρ(ξ)ei ϕ(ξ),

where

ρ(ξ) :=
[(
a2|ξ|2 + α(ξ)

)2 + β2(ξ)
]1/4

, (4)

ϕ(ξ) := 1

2
arctg

β(ξ)

a2|ξ|2 + α(ξ)
. (5)

Thus, the general solution of Eq. (2) has the form

û(ξ, t) = C1(ξ)e
i t ρ(ξ)[cosϕ(ξ)+i sinϕ(ξ)] + C2(ξ)e

−i t ρ(ξ)[cosϕ(ξ)+i sinϕ(ξ)],

where C1(ξ) and C2(ξ) are arbitrary constants depending on the parameter ξ; to
determine these constants, we substitute the function û(ξ, t) into the initial conditions
(3). From the system

{
C1(ξ) + C2(ξ) = 0,
C1(ξ) − C2(ξ) = (i ρ(ξ)[cosϕ(ξ) + i sinϕ(ξ)])−1 ,

we find the values of these constants,

C1(ξ) = e−i ϕ(ξ)

2i ρ(ξ)
, C2(ξ) = − e−i ϕ(ξ)

2i ρ(ξ)
.

As a result, the solution of problem (2), (3) is given by the formula

û(ξ, t) = e−i ϕ(ξ)

2i ρ(ξ)

[
ei t ρ(ξ)[cosϕ(ξ)+i sinϕ(ξ)] − e−i t ρ(ξ)[cosϕ(ξ)+i sinϕ(ξ)]] =

= e−i ϕ(ξ)

2i ρ(ξ)

[
e−t ρ(ξ) sinϕ(ξ)ei t ρ(ξ) cosϕ(ξ) − et ρ(ξ) sinϕ(ξ)e−i t ρ(ξ) cosϕ(ξ)

]
=

= 1

2i ρ(ξ)

[
e−t ρ(ξ) sinϕ(ξ)ei(t ρ(ξ) cosϕ(ξ)−ϕ(ξ)) − et ρ(ξ) sinϕ(ξ)e−i(t ρ(ξ) cosϕ(ξ)+ϕ(ξ))

]
=

= 1

2i ρ(ξ)

[
e−t G1(ξ)ei(t G2(ξ)−ϕ(ξ)) − et G1(ξ)e−i(t G2(ξ)+ϕ(ξ))

]
, (6)
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where we use the notation

G1(ξ) := ρ(ξ) sinϕ(ξ), G2(ξ) := ρ(ξ) cosϕ(ξ). (7)

Now we formally apply the inverse Fourier transform F−1
ξ to relation (6) and

obtain

u(x, t) = 1

(2π)n

∫

Rn

1

2i ρ(ξ)

[
e−t G1(ξ)ei(t G2(ξ)−ϕ(ξ)) − et G1(ξ)e−i(t G2(ξ)+ϕ(ξ))

]
e−i x ·ξdξ =

= 1

2i(2π)n

∫

Rn

1

ρ(ξ)

[
e−t G1(ξ)ei(t G2(ξ)−ϕ(ξ)−x ·ξ) − et G1(ξ)e−i(t G2(ξ)+ϕ(ξ)+x ·ξ)] dξ.

Since the functions α(ξ), ρ(ξ), and G2(ξ) are even and the functions β(ξ), ϕ(ξ),
and G1(ξ) are odd in each of the variables ξ j , we transform the last expression as
follows:

1

2i(2π)n

∫

Rn

1

ρ(ξ)

[
e−t G1(ξ)ei(t G2(ξ)−ϕ(ξ)−x ·ξ) − et G1(ξ)e−i(t G2(ξ)+ϕ(ξ)+x ·ξ)] dξ =

= 1

2i(2π)n

⎡

⎢⎢⎣

∫

Rn−

1

ρ(ξ)

[
e−t G1(ξ)ei(t G2(ξ)−ϕ(ξ)−x ·ξ) − et G1(ξ)e−i(t G2(ξ)+ϕ(ξ)+x ·ξ)] dξ+

∫

Rn+

1

ρ(ξ)

[
e−t G1(ξ)ei(t G2(ξ)−ϕ(ξ)−x ·ξ) − et G1(ξ)e−i(t G2(ξ)+ϕ(ξ)+x ·ξ)] dξ

⎤

⎥⎥⎦ =

= 1

2i(2π)n

⎡

⎢⎢⎣

∫

Rn+

1

ρ(ξ)

[
et G1(ξ)ei(t G2(ξ)+ϕ(ξ)+x ·ξ) − e−t G1(ξ)e−i(t G2(ξ)−ϕ(ξ)−x ·ξ)] dξ+

∫

Rn+

1

ρ(ξ)

[
e−t G1(ξ)ei(t G2(ξ)−ϕ(ξ)−x ·ξ) − et G1(ξ)e−i(t G2(ξ)+ϕ(ξ)+x ·ξ)] dξ

⎤

⎥⎥⎦ =

= 1

2i(2π)n

∫

Rn+

1

ρ(ξ)

[
2i et G1(ξ) sin (t G2(ξ) + ϕ(ξ) + x · ξ)+

2i e−t G1(ξ) sin (t G2(ξ) − ϕ(ξ) − x · ξ)
]
dξ =

= 1

(2π)n

∫

Rn+

1

ρ(ξ)

[
et G1(ξ) sin (t G2(ξ) + ϕ(ξ) + x · ξ)+ e−t G1(ξ) sin (t G2(ξ) − ϕ(ξ) − x · ξ)

]
dξ.

We use the resulting representation to prove the following assertion.
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3 Existence of Smooth Solutions of the Equation (1)

Theorem 1 Under condition

a2|ξ|2 +
n∑

j=1

b j cos (h jξ j ) > 0, (8)

for all ξ ∈ Rn, the functions

F(x, t; ξ) := et G1(ξ) sin (t G2(ξ) + ϕ(ξ) + x · ξ), (9)

H(x, t; ξ) := e−t G1(ξ) sin (t G2(ξ) − ϕ(ξ) − x · ξ), (10)

where ϕ(ξ) is determined by formula (5) and G1(ξ) and G2(ξ) are determined by
relations (7), satisfy Eq. (1) in the classical sense.

Proof First, let us substitute the function (9) directly into Eq. (1). To this end, we
find the derivatives

Fx j (x, t; ξ) = ξ j e
t G1(ξ) cos (t G2(ξ) + ϕ(ξ) + x · ξ),

Fx j x j (x, t; ξ) = −ξ2j e
t G1(ξ) sin (t G2(ξ) + ϕ(ξ) + x · ξ),

Ft (x, t; ξ) = G1(ξ)e
t G1(ξ) sin (t G2(ξ) + ϕ(ξ) + x · ξ) +

+G2(ξ)e
t G1(ξ) cos (t G2(ξ) + ϕ(ξ) + x · ξ),

Ftt (x, t; ξ) = [
G2

1(ξ) − G2
2(ξ)

]
et G1(ξ) sin (t G2(ξ) + ϕ(ξ) + x · ξ) +

+2G1(ξ)G2(ξ)e
t G1(ξ) cos (t G2(ξ) + ϕ(ξ) + x · ξ).

Now let us evaluate the expressions 2G1(ξ)G2(ξ) and G2
1(ξ) − G2

2(ξ). Since
G1(ξ) and G2(ξ) are defined in (7), we conclude that

2G1(ξ)G2(ξ) = ρ2(ξ) sin 2ϕ(ξ).

It follows from formula (5) that |2ϕ(ξ)| < π/2 and hence cos 2ϕ(ξ) > 0. Then
we have
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sin 2ϕ(ξ) = tg 2ϕ(ξ)√
1 + tg2 2ϕ(ξ)

=

= tg

(
arctg

β(ξ)

a2|ξ|2 + α(ξ)

) [
1 + tg2

(
arctg

β(ξ)

a2|ξ|2 + α(ξ)

)]−1/2

=

= β(ξ)

a2|ξ|2 + α(ξ)

[
1 + β2(ξ)

(
a2|ξ|2 + α(ξ)

)2

]−1/2

=

= β(ξ)

a2|ξ|2 + α(ξ)

[ (
a2|ξ|2 + α(ξ)

)2
(
a2|ξ|2 + α(ξ)

)2 + β2(ξ)

]1/2

=

= β(ξ)

a2|ξ|2 + α(ξ)

|a2|ξ|2 + α(ξ)|
ρ2(ξ)

.

By virtue of condition (8), from the last relation we obtain

sin 2ϕ(ξ) = β(ξ)

a2|ξ|2 + α(ξ)

a2|ξ|2 + α(ξ)

ρ2(ξ)
= β(ξ)

ρ2(ξ)
,

and hence

2G1(ξ)G2(ξ) = β(ξ). (11)

With the inequality cos 2ϕ(ξ) > 0 established above and under condition (8), now
we find

G2
1(ξ) − G2

2(ξ) = ρ2(ξ)
[
sin2 ϕ(ξ) − cos2 ϕ(ξ)

] =

= −ρ2(ξ) cos 2ϕ(ξ) = − ρ2(ξ)√
1 + tg2 2ϕ(ξ)

= (12)

= −ρ2(ξ)

[ (
a2|ξ|2 + α(ξ)

)2
(
a2|ξ|2 + α(ξ)

)2 + β2(ξ)

]1/2

= −a2|ξ|2 − α(ξ).

In view of the expressions (11) and (12), the function Ftt becomes

Ftt (x, t; ξ) = [−(a2|ξ|2 + α(ξ)) sin (t G2(ξ) + ϕ(ξ) + x · ξ)+
+β(ξ) cos (t G2(ξ) + ϕ(ξ) + x · ξ)] et G1(ξ).

Now let us substitute the derivatives F̃tt and F̃x j x j into Eq. (1),
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Ftt (x, t; ξ) − a2
n∑

j=1

Fx j x j (x, t; ξ) =

= [−(a2|ξ|2 + α(ξ)) sin (t G2(ξ) + ϕ(ξ) + x · ξ) +
+β cos (t G2(ξ) + ϕ(ξ) + x · ξ) +

+a2
n∑

j=1

ξ2j sin (t G2(ξ) + ϕ(ξ) + x · ξ)]et G1(ξ) =

= −[α(ξ) sin (t G2(ξ) + ϕ(ξ) + x · ξ) −
−β(ξ) cos (t G2(ξ) + ϕ(ξ) + x · ξ)]et G1(ξ) =

= −
⎡

⎣
n∑

j=1

b j cos (h jξ j ) sin (t G2(ξ) + ϕ(ξ) + x · ξ)−

−
n∑

j=1

b j sin (h jξ j ) cos (t G2(ξ) + ϕ(ξ) + x · ξ)

⎤

⎦ et G1(ξ) =

= −
n∑

j=1

b j sin (t G2(ξ) + ϕ(ξ) + x · ξ − h jξ j )e
t G1(ξ) =

= −
n∑

j=1

b j sin (t G2(ξ) + ϕ(ξ) + x1ξ1 + · · · + xnξn − h jξ j )e
t G1(ξ) =

= −
n∑

j=1

b j sin (t G2(ξ) + ϕ(ξ) + x1ξ1 + · · · + x j−1ξ j−1+

+(x j − h j )ξ j + x j+1ξ j+1 + · · · + xnξn)e
t G1(ξ) =

= −
n∑

j=1

b j sin (t G2(ξ) + ϕ(ξ) +

+(x1, . . . , x j−1, x j − h j , x j+1, . . . , xn) · ξ)et G1(ξ) =

= −
n∑

j=1

b j F(x1, . . . , x j−1, x j − h j , x j+1, . . . , xn, t; ξ).

Next, let us substitute the function (10) into Eq. (1). To this end, we find the
derivatives

Hx j (x, t; ξ) = −ξ j e
−t G1(ξ) cos (t G2(ξ) − ϕ(ξ) − x · ξ),

Hx j x j (x, t; ξ) = −ξ2j e
−t G1(ξ) sin (t G2(ξ) − ϕ(ξ) − x · ξ),

Ht (x, t; ξ) = −G1(ξ)e
−t G1(ξ) sin (t G2(ξ) − ϕ(ξ) − x · ξ) +

+G2(ξ)e
−t G1(ξ) cos (t G2(ξ) − ϕ(ξ) − x · ξ),
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Htt (x, t; ξ) = [
G2

1(ξ) − G2
2(ξ)

]
e−t G1(ξ) sin (t G2(ξ) − ϕ(ξ) − x · ξ) −

−2G1(ξ)G2(ξ)e
−t G1(ξ) cos (t G2(ξ) − ϕ(ξ) − x · ξ) =

= [−(a2|ξ|2 + α(ξ)) sin (t G2(ξ) − ϕ(ξ) − x · ξ)−
−β(ξ) cos (t G2(ξ) − ϕ(ξ) − x · ξ)] e−t G1(ξ).

Now let us substitute the derivatives Htt and Hx j x j into Eq. (1),

Htt (x, t; ξ) − a2
n∑

j=1

Hx j x j (x, t; ξ) =

= [−(a2|ξ|2 + α(ξ)) sin (t G2(ξ) − ϕ(ξ) − x · ξ) −
−β(ξ) cos (t G2(ξ) − ϕ(ξ) − x · ξ) +

+a2
n∑

j=1

ξ2j sin (t G2(ξ) − ϕ(ξ) − x · ξ)]e−t G1(ξ) =

= −[α(ξ) sin (t G2(ξ) − ϕ(ξ) − x · ξ) +
+β(ξ) cos (t G2(ξ) − ϕ(ξ) − x · ξ)]e−t G1(ξ) =

= −
⎡

⎣
n∑

j=1

b j cos (h jξ j ) sin (t G2(ξ) − ϕ(ξ) − x · ξ)+

+
n∑

j=1

b j sin (h jξ j ) cos (t G2(ξ) − ϕ(ξ) − x · ξ)

⎤

⎦ e−t G1(ξ) =

= −
n∑

j=1

b j sin (t G2(ξ) − ϕ(ξ) − x · ξ + h jξ j )e
−t G1(ξ) =

= −
n∑

j=1

b j sin (t G2(ξ) − ϕ(ξ) − x1ξ1 − · · · − xnξn + h jξ j )e
−t G1(ξ) =

= −
n∑

j=1

b j sin (t G2(ξ) − ϕ(ξ) − x1ξ1 − · · · − x j−1ξ j−1−

−(x j − h j )ξ j − x j+1ξ j+1 − · · · − xnξn)e
−t G1(ξ) =

= −
n∑

j=1

b j sin (t G2(ξ) − ϕ(ξ) −

+(x1, . . . , x j−1, x j − h j , x j+1, . . . , xn) · ξ)e−t G1(ξ) =

= −
n∑

j=1

b j H(x1, . . . , x j−1, x j − h j , x j+1, . . . , xn, t; ξ).
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A straightforward substitution into Eq. (1) shows that the function H(x, t; ξ)
satisfies this equation in the classical sense.

Note that the functions (4) and (5) are well defined for any ξ ∈ Rn under condition
(8), because the radicand in formula (4) is always positive, and the denominator in
the argument of the arctangent in (5) does not vanish. This means that the functions
(9) and (10) are smooth solutions of the Eq. (1).

The proof of the theorem is complete.

Corollary 1 Under condition (8), the family of functions

G(x, t; A, B, ξ) := A et G1(ξ) sin (t G2(ξ) + ϕ(ξ) + x · ξ) +
+B e−t G1(ξ) sin (t G2(ξ) − ϕ(ξ) − x · ξ), (13)

where ϕ(ξ) is given by (5) and G1(ξ) and G2(ξ) are given by (7), satisfies Eq. (1) in
the classical sense for any real values of the parameters A, B, and ξ.

We represent the condition (8) in the form

(
a2ξ21 + b1 cos (h1ξ1)

) + . . . + (
a2ξ2n + bn cos (hnξn)

)
> 0.

Each of the n terms on the left side of this inequality will be positive if the
conditions

0 < b jh
2
j ≤ 2a2, j = 1, n.

For ξ = −→
0 the condition (8) will be satisfied if the coefficients at the nonlocal

potentials satisfy the inequality
n∑

j=1

b j > 0.

Condition (8), holds for any shifts h1, . . . , hn and any values ξ1, . . . , ξn if the
coefficients and the shifts of the equation satisfy the conditions

n∑

j=1

b j > 0, 0 < b jh
2
j ≤ 2a2, j = 1, n.

These conditions are sufficient conditions that ensure the existence of a family of
smooth solutions (13) to Eq. (1).
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