
Cyrus2D Base: Source Code Base
for RoboCup 2D Soccer Simulation

League

Nader Zare1(B), Omid Amini4, Aref Sayareh5, Mahtab Sarvmaili1,
Arad Firouzkouhi6, Saba Ramezani Rad6, Stan Matwin1,2, and Amilcar Soares3

1 Institute for Big Data Analytics, Dalhousie University, Halifax, Canada
{nader.zare,mahtab.sarvmaili}@dal.ca, stan@cs.dal.ca

2 Institute for Computer Science, Polish Academy of Sciences, Warsaw, Poland
3 Memorial University of Newfoundland, St. John’s, Canada

amilcarsj@mun.ca
4 Qom University of Technology, Qom, Iran

5 Shiraz University, Shiraz, Iran
6 Amirkabir University of Technology, Tehran, Iran
{arad.firouzkouhi,saba ramezani}@aut.ac.ir

Abstract. Soccer Simulation 2D League is one of the major leagues of
RoboCup competitions. In a Soccer Simulation 2D (SS2D) game, two
teams of 11 players and one coach compete against each other. Several
base codes have been released for the RoboCup soccer simulation 2D
(RCSS2D) community that have promoted the application of multi-agent
and AI algorithms in this field. In this paper, we introduce “Cyrus2D
Base”, which is derived from the base code of the RCSS2D 2021 cham-
pion. We merged Gliders2D base V2.6 with the newest version of the
Helios base. We applied several features of Cyrus2021 to improve the
performance and capabilities of this base alongside a Data Extractor to
facilitate the implementation of machine learning in the field. We have
tested this base code in different teams and scenarios, and the obtained
results demonstrate significant improvements in the defensive and offen-
sive strategy of the team.

Keywords: 2D Soccer Simulation · RoboCup · Base code

1 Introduction

Soccer is one of the most popular team-based sports in the world. This is a multi-
player, real-time, strategic, and partially observable game in which players of
each team should cooperate to score more goals. In addition to the cooperative
strategy, the players should manage different tactical and technical strategies
against their opponent. Designing and implementing this game in a good, real-
istic graphical simulation environment and encouraging researchers to develop
fully autonomous players with human-like skills creates complex challenges for
A.I. research. Hence, soccer is considered an exciting environment for develop-
ing A.I. and robotic algorithms to solve real-world challenges. The importance
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Eguchi et al. (Eds.): RoboCup 2022, LNAI 13561, pp. 140–151, 2023
https://doi.org/10.1007/978-3-031-28469-4_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-28469-4_12&domain=pdf
https://doi.org/10.1007/978-3-031-28469-4_12


Cyrus2D Base: Source Code Base for RoboCup 2D Soccer Simulation League 141

of soccer as a game and as a challenging domain for testing the A.I. and machine
learning algorithms led to an overreaching vision of a robotic team competing
against the best human team by 2050 [1].

The world Cup Robot Soccer Initiative was founded to create a realistic envi-
ronment similar to real soccer that encourages researchers to employ Robotic and
A.I. for solving wide ranges of problems [2]. The first RoboCup was held dur-
ing the IJCAI-97 [3], and it offered three competition tracks: real robot league,
software robots, and expert robot competition. Among them, the Soccer Sim-
ulation 2D league (SS2D) [4] provides a wide range of research challenges such
as autonomous decision-making, communication and coordination, tactical plan-
ning, collective behaviour and teamwork, opponent modelling and behavior pre-
dicting [5–12].

In this league, the RoboCup Soccer Simulation Server (RCSSServer) executes
and manages a 2D soccer game between two teams of eleven autonomous software
programs(agents). It holds the complete knowledge of the game, such as the
exact position of every element in the game and their movements. The game
further relies on the communication between the server and each agent. Each
player receives relative and noisy information about the environment, and based
on its logic and algorithms, the agent produces basic commands (like dashing,
turning, or kicking) to influence the environment. A visual example of the game
is shown in Fig. 1. Another key component of this league is the base code1 of
agents that is responsible for communicating with the server, handling the noisy
partial observability of the game, modeling the server world, and making multi-
agent decisions throughout the game. Due to the complexity of these tasks,
designing an operational base code can astonishingly accelerates the RSS2D
teams’ progress.

Over the past years, many teams have contributed to the RCSS2D com-
munity by releasing their bases, which are mentioned below. One of the first
bases was from Carnegie Mellon University, a.k.a “CMUnited” in 2001 [13,14],
then a windows-based team was released by “TsinghuAeolus” [15] in 2002. The
release of “UvA Trilearn” base [16] in 2003, helped many teams worldwide.
“Brainstormers” [17], “WrightEagle” [18] and “Marlik” [19] released their team
codes in 2005, 2011 and 2012 respectively. “HELIOS-Base or Agent2D” has been
released by the “HELIOS” team from AIST Information Technology Research
Institute [20,21]; this is the most important, most relevant, and most frequently
used publicly available source code release in soccer simulation 2d. It has been
considered as the base code for many prosperous teams such as Cyrus2d [24–26]
and Glider2d [27,29]. Later, “Cyrus2D” and “Gliders2D” released their 2014 [22]
and 2019 [23] bases respectively that are based on agent2d.

In this paper we are planning to describe and release a more advanced base
that is called Cyrus2D in three consecutive versions. We have followed the incre-
mental strategy of evolving base code proposed by [23,30] to exemplify the
impact of different approaches and to trace their functionalities. In the first

1 For simplicity, throughout this paper we will use the “base” term instead of base
code.



142 N. Zare et al.

version(v0.0) we combined the newest release of Helios and Gliders bases with
some modifications on their parameters. In the second version(v1.0), we have
developed this base code to include three A.I.-based components of Cyrus2D that
were successfully implemented in this team. Finally, in the third version(v1.1) we
took advantage of Pass Prediction Deep Neural Network module for unmarking
decision-making. The performance of these versions went on the rigorous evalua-
tions against the Agent2D, Glider2D bases and the obtained outcomes (number
of scored and received goals, and the winning rate) proved the prevalence of our
base code. The rest of the paper is organized as follows: Sect. 2 we will define
the foundation of our base (version zero), in the next section we will explain the
deployment of three ideas(Blocking Strategy, Offensive Risk Evaluation, Simple
Unmarking Strategy) on the Cyrus2D v0.0 which results in Cyrus2D v1.0. In
Sect. 4, we will present the idea of using Pass Prediction in Unmarking Strat-
egy(Cyrus2D v1.1). In the next section, we will compare Cyrus2D base with
other Soccer Simulation 2D bases against best three teams in RoboCup 2021.
Finally, we talk about our future works.

Fig. 1. A: Soccer simulation 2D league. B: The evolution of Helios2D, Glider2D and
Cyrus2D base codes

2 Cyrus2D Base Version 0.0

One of the most popular SS2D bases is the Helios Base (agent2d) V3.11 which
was released in 2010 [20,21]. This base includes several components such as
librcsc-4.0.0, soccerwindow2-5.0.0 and fedit2-2.0.0. Gliders and Fractals, who use
the Agent2D base, won the championship of RoboCup 2016 and 2019, respec-
tively [27–29]. They also released a simplified version of their teams called Glid-
ers2d base [23,30]. It is an advanced version of Helios base v3.11 with improved
formation, passing behavior, and stamina management. It employs a modified
version of the Marlik team [19] blocking algorithm, and few unique strategies
specifically designed for each team. On the other hand, Helios has started improv-
ing its base and components such as librcsc based on the new versions of C++
from 2019 [31,32]. In this paper we start by introducing the first version of
Cyrus2D base (V0.0). It is established by rewriting the newest version of the
Agent2D by merging the latest Gliders2D base (see Figure 1[B]). This base code



Cyrus2D Base: Source Code Base for RoboCup 2D Soccer Simulation League 143

is fully compatible with the latest version of librcsc, but the blocking algorithm
and tuning parameters of the Gliders2D base are removed. The Cyrus2D base is
released in the Cyrus team repository and will be updated to be compatible with
the rcssserver and librcsc2. In order to enhance the functionality of this base,
we have implanted three simplified functionalities of Cyrus on this base and we
introduce them as the consecutive versions of Cyrus2D base. In the following
sections, we will describe these ideas.

3 Cyrus2D Base Version 1.0

3.1 Blocking Strategy 3

As the environment of SS2D is highly dynamic and unpredictable, an innovative
defensive strategy can increase the winning chance of the team. To establish the
defensive strategies, we need to understand defensive actions and how players
can cooperatively perform to minimize the risk of receiving the goal. Blocking
and marking are two main defensive actions that prevent the opposing team
from controlling the ball and playing with it. Blocking stops the progress of the
opponent’s ball holder on the field, and marking prevents the passing of the ball
to the opposing team players. Therefore, when one of our agents tries to block
the ball holder, the other players should choose to mark the opponent players.
In the Cyrus2D base, we implemented multi-agent blocking decision-making.
The blocking function or “Blocking Simulator” is called when the opponent
owns the ball. It simulates the dribbling behavior of the opponent ball holder
called the “dribbling curve” and then finds a position that one of our players
can arrive in, before arrival of the opponent’s ball holder and (our) players. To
simulate the dribbling curve, it predicts the first position of the ball that the
opponent’s player can kick the ball. In the next step, it predicts the following ball
positions of dribbling behavior. The dribbling speed is considered 0.7 m/s. To
find the dribbling direction, we evaluate ten positions around the ball position
using the reversed formulation of “Field Evaluator” in Helios base. To improve
the performance of the Blocking algorithm, we implemented some conditions to
prevent players from using extra stamina or going far from their home position.

3.2 Offensive Risk Evaluation 4

To score more goals, the team’s ball holder must move the ball towards the
opponent’s goal area, and a final striker must shoot the ball towards the goal.
Dribbling and passing are examples of possible actions that can lead the ball
towards the goal. Henceforth, the ball holder must choose the best action between
the possible passes and dribbles. For this purpose, we need to scrutinize our base
code and improve the implementation of the offensive strategy.

2 https://github.com/Cyrus2D/Cyrus2DBase.
3 This Algorithm Is Implemented in Src/bhv basic block.cpp.
4 This Algorithm Is Implemented in Src/chain action/action chain graph.cpp.

https://github.com/Cyrus2D/Cyrus2DBase


144 N. Zare et al.

The Agent2D base has a decision-making algorithm called Chain-Action,
which uses a modified version of Breadth-First Search to decide an action for
the ball owner in an action graph tree. The Chain-Action has action generator
modules such as Pass-Generator, Short-Generator, and Dribble-Generator. An
action generator module receives a state of the game and then generates all
possible actions in that state. The Chain-Action also includes a simple predictor
module that receives a state and an action; then, it generates a new state. It sim-
ulates the possible outcome of the game after applying the received action [26].

After predicting a new state, Chain-Action evaluates the state based on the
ball position using a module called Field-Evaluator. This module receives a state
and uses the X coordinate of the ball and its distance to the opponent’s goal to
measure its value. To expand the tree to the next level, the chain-action chooses
a node with the maximum value. An example of this procedure is shown in Fig. 2.

Fig. 2. Example of Chain-Action. A multi-branch tree search is performed. Each edge
presents an action and each node corresponds to a state instance.

We improved the Field-Evaluator module by including a term that is sub-
tracted to its calculation algorithms which is called Offensive Risk Evaluation
(ORE). This value is calculated based on the minimum number of cycles that
the opponent players need to reach the ball in the input state of Field-Evaluator.

The Field-Evaluator first calculates the minimum number of cycles c that
the opponent player needs to reach the ball. Then it uses an array with seven
elements where the n-Th element would be the ORE term if the opponent reaches
the ball in n-Th-cycles. To populate this array, we took advantage of the genetic
algorithm5.

For our task, the genetic representation is a list of seven values. A solution
must be an array of seven values between 0 to 50, in descending order, as oppo-
nents closer to the ball are more dangerous. The fitness function is the average

5 We reduced the array size to seven because our GA algorithm with several settings
found that the eighth and following cells of the best arrays will be 0.



Cyrus2D Base: Source Code Base for RoboCup 2D Soccer Simulation League 145

goal difference of Cyrus2D base in 100 games against random opponents from
10 teams of RoboCup competitions in 2021. To initialize the first population, we
randomly generated 100 solutions. After evaluating with the fitness function, we
generate 80 new children, from 160 parents which are selected randomly with
probability based on their fitness score. After cross-over, we update the new
children to possible solutions by making sure each value is less than or equal to
the value before it. In the next step, some of their genes can be mutated with
a low random probability. The mutation is done in a manner that the mutated
solution is still considered possible.

If the generated solution is not in descending order, to preserve the validity
of the solution, we replace the first occurrence of illegal value with a value lower
than the previous element for example if the generated solution looks like solution
= [10 18 5 4 3 2 1], the validity procedure transforms it to fixed solution = [10 9
5 4 3 2 1]. Afterwards, we create the new population of 100 by selecting 20 of the
best chromosomes of the previous generation and adding the 80 new children.

We repeat this process until the population converges or until 100 iterations
are evaluated.

3.3 Unmarking Strategy 6

Unmarking is the player’s ability to move, avoid being marked, and relocate
himself in a space where he could receive a pass from the ball possessor.

In the unmarking algorithm, a player who wants to unmark is called the
“unmarker”, and the player who will pass the ball to the unmarker is called the
“passer”. The passer player can be a player who owns the ball or does not have
ball possession at the moment, but it is possible to be a ball possessor in the
future. An unmarking Strategy identifies the passer, and after identifying the
passer, the unmarker should find a position to receive a pass from the passer in
future cycles. An effective unmarking should consider the actions of other agents
and the cooperation between them.

Cyrus2D base version 1.0 includes a simple unmarking strategy. In this algo-
rithm, all players do unmarking for the ball possessor to receive a pass from him.
After identifying the passer, the unmarker simulates ten targets in ten directions
around him according to its previous movement. After generating 100 targets,
it ignores targets close to teammate or opponent players and targets far from
its home position. The home position is the target position of a player that is
calculated based on team’s formation. The next step simulates eight lead passes
from the passer to itself in every target to find which target it can receive a
pass. A pass has a score calculated using the “Field Evaluation” formula in the
Helios base. The score of each target is calculated based on the scores of possible
received passes in the position and the minimum distance of opponent players
to the position. Eventually, the target with the maximum score will be selected
as the unmarking target.

6 This Algorithm Is Implemented in Src/bhv unmark.cpp.



146 N. Zare et al.

4 Cyrus2D Base Version 1.1 7

In Cyrus2D base Version 1.0, we improved the offensive strategy, using a novel
Blocking behavior, and a simplified Unmarking strategy. In this section, we will
explain the improvement on the Unmarking strategy using a module called Pass
Prediction. The Pass Prediction module includes a trained DNN, that receives
a state of the game, and identifies which player will be the pass receiver in that
state. This module enables us to generate a tree that assigns a passer to each
player in the future cycles of the game. To generate a data set for training the
DNN, we employed Data Extractor module.

4.1 Data Extractor

As in real soccer, passing is one of the possible actions that can lead the ball
to the goal. Predicting the pass target player, from the point of view of the
ball possessor, has many benefits in defensive and offensive algorithms. In this
paper, the ball possessor is the player who can kick the ball in the current cycle
or receive the ball in the future cycles.

To predict the behavior of (our) ball possessor, we were required to create
the dataset of game states from this player point of view. For this purpose,
we embedded a Data Extractor module in each one of the players and then
we recorded the features of game states and their corresponding label. The label
shows the uniform number of the player who is target of the best pass [12,25,26].

To generate a data set, our player (ball holder) feeds the state of the game
and its selected pass receiver uniform number to the Data Extractor when the
ball is in its kickable area. After that it saves the features and the label in a CSV
file. Later this dataset will be used to train the Pass Prediction model.

4.2 Unmarking Strategy with Help of Pass Prediction Module

To improve the Unmarking Strategy and sketching the flow of the game, each
player of Cyrus2D base tries to simulate a tree that includes the probable passes
and their outcoming states. Each node of the tree contains a state of the game
where one of our players is the ball owner in that state. The edges from the
current state shows a probable pass in the future. The root node of the tree
is the first state of the game where one of our players can kick the ball. A
player can not be ball possessor in more than one node of the tree. To create
the tree, the unmarker feeds the state of the root node to the Pass Prediction
module, and receives the probability of players for receiving a pass. This module
includes a trained DNN that can receives features of the game generated by
Data Extractor and gives probability of players to receive a pass in the given
state. In the next step, the unmarker selects two passes with the maximum
probability higher than a limit and inserts them into a list called Pass List.

7 This Algorithm Is Implemented in Src/bhv unmark.cpp, Src/data extractor/
DEState.cpp and Src/data extractor/offensive data extractor.cpp.



Cyrus2D Base: Source Code Base for RoboCup 2D Soccer Simulation League 147

Then after, it pops the pass with highest probability from the Pass List. Next, it
simulate the outcome that it send the outcome state to Pass Prediction module
and eventually insert best passes from the outcome of Pass Prediction module.
This procedure continues until the number of tree nodes is equal to ten or there
is not any pass in the Pass List. Figure 3 shows an overview of the Unmarking
Decisioning. After termination of this procedure, the umarker agent looks for its
corresponding node in the tree, then it chooses the parent player as the ”Passer”
for the unmarking procedure in order to receive the pass from that player in the
future.

Fig. 3. Overview of the unmark decisioning algorithm. The left tree shows the result
states and their points. The Bold circles (full, dotted, and long dashed) in the right tree
present the selected best nodes from the candidate list. The dashed circle one indicates
the node that the unmarker is the ball owner in its state, and its parent node is the
dotted circle.

5 Results

5.1 Training DNN for Cyrus2D V1.1 8

For generating a data-set for training the “Pass Prediction DNN”, we ran 500
games against Helios Base v3.11 and newest version, Gliders2D base v1.6 and
v2.6, Cyurs 2021, Helios 2021, and YuShan 2021. We obtained total 1,429,032
data instances. We split them into two subsets, 85% for training and 15% for
testing. The prediction model (DNN) has three layers of 128, 64, 32 and 11
neurons, with RELU activation function and a softmax function at the last
layer. The validation accuracy of the trained neural network on the test data
was 68.1%. We used Python TensorFlow Keras library [33] for training the model,
and we implemented a library called CppDnn [34] to use the trained model in
C++. The CppDnn is a C++ library powered by Eigen [37]; this library creates
a deep neural network model by reading the weights of a trained DNN model.

To evaluate the impact of the implemented features and algorithms and com-
paring the Cyrus2D base with the HELIOS base(Ag) and Gliders2d Base(G2D),
we ran X-number games between two versions of HELIOS base(3.1.1/newest),
two versions of Gliders2d Base (1.6/2.6), six versions of Cyrus2D base (C2D0
= Cyrus2D zero, C2DB = Cyrus2D zero base with Blocking Strategy, C2DR

8 All Scripts for Training Are Available in Scripts/training unmark.



148 N. Zare et al.

Table 1. Win rate

Team H2D 3.11 H2D new G2D 2.6 Cyrus21 Helios21 YuShan21 Average

H2D 3.11 – 26.2 3.5 0.0 0.0 0.0 4.9

H2D new 73.8 – 9.8 0.2 0.0 0.0 14.0

G2D 1.6 95.5 85.4 30.3 0.4 0.0 0.2 35.3

G2D 2.6 96.5 90.2 – 1.9 0.0 1.0 31.6

C2D 0.0 100.0 98.1 78.5 7.2 0.0 4.3 48.0

C2D B 99.6 97.2 77.0 6.4 0.0 3.6 47.3

C2D R 99.4 97.4 81.0 7.9 0.2 6.3 48.7

C2D U 100.0 99.0 80.8 5.6 0.2 5.8 48.6

C2D 1.0 99.3 98.6 79.9 8.6 0.3 4.6 48.6

C2D 1.1 99.8 99.6 84.1 5.8 0.8 4.9 49.1

Table 2. Goals scored (Goals Conceded)

Team H2D 3.11 H2D new G2D 2.6 Cyrus21 Helios21 YuShan21 Average

H2D 3.11 — 1.6(2.7) 0.5(3.0) 0.2(6.2) 0.1(13.0) 0.2(7.5) 0.4(5.4)

H2D new 2.7(1.6) — 0.7(2.3) 0.3(5.9) 0.1(11.1) 0.3(6.4) 0.7(4.5)

G2D 1.6 3.5(0.7) 2.6(1.0) 0.8(1.4) 0.5(5.3) 0.1(6.5) 0.2(4.8) 1.3(3.3)

G2D 2.6 3.0(0.5) 2.3(0.7) — 0.5(3.5) 0.1(5.5) 0.2(3.8) 1.0(2.3)

C2D 0.0 4.3(0.2) 2.8(0.3) 1.1(0.4) 0.6(2.8) 0.2(3.6) 0.3(1.9) 1.6(1.5)

C2D B 4.2(0.2) 2.9(0.2) 1.1(0.4) 0.6(2.7) 0.2(3.8) 0.3(2.4) 1.6(1.6)

C2D R 4.1(0.2) 2.9(0.3) 1.1(0.4) 0.6(2.6) 0.2(3.8) 0.3(1.7) 1.5(1.5)

C2D U 4.4(0.2) 3.2(0.3) 1.3(0.5) 0.6(2.9) 0.2(4.0) 0.4(2.1) 1.7(1.7)

C2D 1.0 4.8(0.2) 3.6(0.2) 1.3(0.4) 0.7(2.6) 0.2(3.9) 0.4(2.5) 1.8(1.6)

C2D 1.1 4.4(0.2) 3.2(0.2) 1.2(0.4) 0.6(2.8) 0.2(3.8) 0.3(2.3) 1.7(1.6)

= Cyrus2D zero base with ORE, C2DU = Cyrus2D zero base with UnMark-
ing Strategy, C2DV1.0 = Cyrus2D version one with all of the previous features
and C2DV1.1 = V1.0 with pass prediction) against Helios bases [20], Glider2d
Base(v2.6) and three of the best teams in RoboCup (Helios2021 [35], YuShan
[36], Cyrus2021 [25]).

Table 1 shows the expected winning rate of all version of Cyrus against
opponent teams. The winning rate is calculated by num wins/(num games −
num draws). Table 2 presents the average number of our scored goals and con-
ceded goals respectively.

The results demonstrate Cyrus2D base v1.1 prevalence over other released
bases. For instance the Cyrus2D base wins Helios and Gliders2D bases in more
than 99% and 84% of games respectively. The average win-rate of Cyrus2D
against best three RoboCup teams is 3.76 (0.2% to 3.8%) percent higher than
the winning rate of Helios base against those teams, and 2.86 (2.9% to 3.8%)
percent higher than Gliders2D base.



Cyrus2D Base: Source Code Base for RoboCup 2D Soccer Simulation League 149

6 Conclusion

In this paper, we aimed to introduce three versions of Cyrus2D base code and
their particular features. The first version of Cyrus2D base was created by com-
bining the latest release of Helios Agent2D and Gliders2D bases. For this version,
we removed some of the fine tuned parameters. In the next version, Cyrus2D
v1.0, we have upgraded the Blocking, and offensive strategy by using the Offen-
sive Risk Evaluation and unmarking behavior. In the Cyrus2D v1.1 we improved
the unmarking behavior using the Pass Prediction. To evaluate the performance
of Cyrus2D, we ran 500 games against Gliders2D, Helios base, and best three
teams in RoboCup 2021. The obtained results shows significant improvement on
win-rate, scored goals and conceded goals. For our future work, we are planning
to enhance the Cyrus2D base in terms of chain action movement prediction, and
marking by using multi-agent decision-making.

Acknowledgements. We acknowledge the support of the Natural Sciences and Engi-
neering Research Council of Canada (NSERC). We thank the HELIOS and Gliders
teams for their code bases and extraordinary contributions to the SS2D league.

References

1. Burkhard, H.D., Duhaut, D., Fujita, M., Lima, P., Murphy, R., Rojas, R.: The
road to RoboCup 2050. IEEE Robot. Autom. Mag. 9(2), 31–38 (2002)

2. Noda, I. and Matsubara, H.: Soccer server and researches on multi-agent systems.
In Proceedings of the IROS-96 Workshop on RoboCup, pp. 1–7 (1996)

3. Kitano, H., Asada, M., Kuniyoshi, Y., Noda, I., Osawa, E.: Robocup: the robot
world cup initiative. In: Proceedings of the 1st International Conference on
Autonomous Agents, pp. 340–347 (1997)

4. Kitano, H., Asada, M., Kuniyoshi, Y., Noda, I., Osawa, E., Matsubara, H.:
RoboCup: a challenge problem for AI. AI Mag. 18(1), 73–73 (1997)

5. Noda, I., Stone, P.: The RoboCup soccer server and CMUnited clients: imple-
mented infrastructure for MAS research. Auton. Agents Multi-Agent Syst. 7(1–2),
101–120 (2003)

6. Riley, P., Stone, P., Veloso, M.: Layered disclosure: revealing agents’ internals. In:
Castelfranchi, C., Lespérance, Y. (eds.) ATAL 2000. LNCS (LNAI), vol. 1986, pp.
61–72. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44631-1 5

7. Stone, P., Riley, P., Veloso, M.: Defining and using ideal teammate and opponent
models. In: Proceedings of the 12th Annual Conference on Innovative Applications
of Artificial Intelligence (2000)

8. Butler, M., Prokopenko, M., Howard, T.: Flexible synchronisation within robocup
environment: a comparative analysis. In: Stone, P., Balch, T., Kraetzschmar, G.
(eds.) RoboCup 2000. LNCS (LNAI), vol. 2019, pp. 119–128. Springer, Heidelberg
(2001). https://doi.org/10.1007/3-540-45324-5 10

9. Reis, L.P., Lau, N., Oliveira, E.C.: Situation based strategic positioning for coor-
dinating a team of homogeneous agents. In: BRSDMAS 2000. LNCS (LNAI), vol.
2103, pp. 175–197. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-
44568-4 11

https://doi.org/10.1007/3-540-44631-1_5
https://doi.org/10.1007/3-540-45324-5_10
https://doi.org/10.1007/3-540-44568-4_11
https://doi.org/10.1007/3-540-44568-4_11


150 N. Zare et al.

10. Prokopenko, M., Wang, P.: Relating the entropy of joint beliefs to multi-agent
coordination. In: Kaminka, G.A., Lima, P.U., Rojas, R. (eds.) RoboCup 2002.
LNCS (LNAI), vol. 2752, pp. 367–374. Springer, Heidelberg (2003). https://doi.
org/10.1007/978-3-540-45135-8 32

11. Prokopenko, M., Wang, P.: Evaluating team performance at the edge of chaos. In:
Polani, D., Browning, B., Bonarini, A., Yoshida, K. (eds.) RoboCup 2003. LNCS
(LNAI), vol. 3020, pp. 89–101. Springer, Heidelberg (2004). https://doi.org/10.
1007/978-3-540-25940-4 8

12. Zare, N., Sarvmaili, M., Sayareh, A., Amini, O., Matwin, S., Soares, A.: Engineer-
ing features to improve pass prediction in soccer simulation 2d games. In: Alami,
R., Biswas, J., Cakmak, M., Obst, O. (eds.) RoboCup 2021. LNCS (LNAI), vol.
13132, pp. 140–152. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-
98682-7 12

13. Stone, P., Asada, M., Balch, T., Fujita, M., Kraetzschmar, G., Lund, H., Scerri,
P., Tadokoro, S., Wyeth, G.: Overview of Robocup-2000. In: Stone, P., Balch,
T., Kraetzschmar, G. (eds.) RoboCup 2000. LNCS (LNAI), vol. 2019, pp. 1–29.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45324-5 1

14. Stone, P., Riley, P., Veloso, M.: The CMUnited-99 champion simulator team. In:
Veloso, M., Pagello, E., Kitano, H. (eds.) RoboCup 1999. LNCS (LNAI), vol. 1856,
pp. 35–48. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45327-X 2

15. Yao, J., Chen, J., Cai, Y., Li, S.: Architecture of TsinghuAeolus. In: Birk, A.,
Coradeschi, S., Tadokoro, S. (eds.) RoboCup 2001. LNCS (LNAI), vol. 2377, pp.
491–494. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45603-1 66

16. Kok, J.R., Vlassis, N., Groen, F.: UvA Trilearn 2003 team description. In: Polani,
D., Browning, B., Bonarini, A., Yoshida, K. (eds.) Proceedings CD RoboCup 2003.
Springer, Padua (2003)

17. Riedmiller, M., Gabel, T., Knabe, J., Strasdat, H.: Brainstormers 2d - team descrip-
tion 2005. In: Bredenfeld, A., Jacoff, A., Noda, I., Takahashi, Y. (eds.) Proceedings
CD RoboCup 2005. Springer (2005)

18. Bai, A., Chen, X., MacAlpine, P., Urieli, D., Barrett, S., Stone, P.: WrightEagle
and UT austin villa: RoboCup 2011 simulation league champions. In: Röfer, T.,
Mayer, N.M., Savage, J., Saranlı, U. (eds.) RoboCup 2011. LNCS (LNAI), vol.
7416, pp. 1–12. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-
32060-6 1

19. Tavafi, A., Nozari, N., Vatani, R., Yousefi, M.R., Rahmatinia, S., Pirdir, P.: MarliK
2012 soccer 2D simulation team description paper. In: RoboCup 2012 Symposium
and Competitions: Team Description Papers, Mexico City, Mexico (2012)

20. Akiyama, H., Nakashima, T.: HELIOS base: an open source package for the
robocup soccer 2d simulation. In: Behnke, S., Veloso, M., Visser, A., Xiong, R.
(eds.) RoboCup 2013. LNCS (LNAI), vol. 8371, pp. 528–535. Springer, Heidelberg
(2014). https://doi.org/10.1007/978-3-662-44468-9 46

21. Akiyama, H.: Agent2D base code. http://www.rctools.sourceforge.jp (2010)
22. Khayami, R., et al.: CYRUS 2D simulation team description paper 2014. In:

RoboCup 2014. Joao Pessoa, Brazil (2014)
23. Prokopenko, M., Wang, P.: Gliders2d: source code base for RoboCup 2D Soccer

simulation league. CoRR abs/1812.10202 (2018)
24. Zare, N., et al.: Cyrus Soccer 2D Simulation Team Description Paper: In: RoboCup

2013, p. 2013. Eindhoven, Netherlands (2013)
25. Zare, N., Sayareh, A., Sarvmaili, M., Amini, O., Soares, A., Matwin, S.: CYRUS

2D soccer simulation team description paper 2021. In: RoboCup 2021 Symposium
and Competitions, Worldwide (2021)

https://doi.org/10.1007/978-3-540-45135-8_32
https://doi.org/10.1007/978-3-540-45135-8_32
https://doi.org/10.1007/978-3-540-25940-4_8
https://doi.org/10.1007/978-3-540-25940-4_8
https://doi.org/10.1007/978-3-030-98682-7_12
https://doi.org/10.1007/978-3-030-98682-7_12
https://doi.org/10.1007/3-540-45324-5_1
https://doi.org/10.1007/3-540-45327-X_2
https://doi.org/10.1007/3-540-45603-1_66
https://doi.org/10.1007/978-3-642-32060-6_1
https://doi.org/10.1007/978-3-642-32060-6_1
https://doi.org/10.1007/978-3-662-44468-9_46
http://www.rctools.sourceforge.jp


Cyrus2D Base: Source Code Base for RoboCup 2D Soccer Simulation League 151

26. Zare, N., et al.: improving dribbling, passing, and marking actions in soccer sim-
ulation 2D games using machine learning. In: Alami, R., Biswas, J., Cakmak, M.,
Obst, O. (eds.) RoboCup 2021. LNCS (LNAI), vol. 13132, pp. 340–351. Springer,
Cham (2022). https://doi.org/10.1007/978-3-030-98682-7 28

27. Prokopenko, M., Wang, P., Obst, O., Jaurgeui, V.: Gliders 2016: integrating multi-
agent approaches to tactical diversity. In: RoboCup 2016 Symposium and Compe-
titions: Team Description Papers, Leipzig, Germany (2016)

28. Prokopenko, M., Wang, P.: Disruptive innovations in RoboCup 2D soccer simula-
tion league: from Cyberoos’98 to gliders2016. In: Behnke, S., Sheh, R., Sarıel, S.,
Lee, D.D. (eds.) RoboCup 2016. LNCS (LNAI), vol. 9776, pp. 529–541. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-68792-6 44

29. Prokopenko, M., Wang, P.: Fractals 2019: Guiding self-organisation of intelligent
agents. In: RoboCup 2019 Symposium and Competitions, Sydney, Australia (2019)

30. Prokopenko, M., Wang, P.: Fractals2019: combinatorial optimisation with dynamic
constraint annealing. In: Chalup, S., Niemueller, T., Suthakorn, J., Williams, M.-
A. (eds.) RoboCup 2019. LNCS (LNAI), vol. 11531, pp. 616–630. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-35699-6 50

31. Akiyama, H.: Agent2D base code. https://github.com/helios-base/helios-base
(2010)

32. Akiyama, H.: LibRCSC, component of Agent2D base code. https://github.com/
helios-base/librcsc (2010)

33. Mart́ın Abadi, et al. TensorFlow: large-scale machine learning on heterogeneous
systems (2015). Software available from tensorflow.org

34. Nader, Z., et al.: CPPDNN: A C++ library to use a trained DNN by Tensor Flow
Keras. https://github.com/Cyrus2D/CppDNN

35. Yamaguchi, M., Kuga, R., Omori, H., Fukushima, T., Nakashima, T., Akiyama,
H.: Helios 2021: team description paper. In: RoboCup 2021 Symposium and Com-
petitions, Worldwide (2021)

36. Cheng, Z., Zhang F., Guang, B., Wang, L.: YuShan2021 team description paper
for RoboCup2021. In: RoboCup 2021 Symposium and Competitions, Worldwide
(2021)

37. Guennebaud, G., Jacob, B., et al.: Eigen v3 (2010). http://eigen.tuxfamily.org

https://doi.org/10.1007/978-3-030-98682-7_28
https://doi.org/10.1007/978-3-319-68792-6_44
https://doi.org/10.1007/978-3-030-35699-6_50
https://github.com/helios-base/helios-base
https://github.com/helios-base/librcsc
https://github.com/helios-base/librcsc
https://github.com/Cyrus2D/CppDNN
http://eigen.tuxfamily.org

	Cyrus2D Base: Source Code Base for RoboCup 2D Soccer Simulation League
	1 Introduction
	2 Cyrus2D Base Version 0.0
	3 Cyrus2D Base Version 1.0
	3.1 Blocking Strategy This Algorithm Is Implemented in Src/bhv_basic_block.cpp. 
	3.2 Offensive Risk Evaluation This Algorithm Is Implemented in Src/chain_action/action_chain_graph.cpp.
	3.3 Unmarking Strategy This Algorithm Is Implemented in Src/bhv_unmark.cpp.

	4 Cyrus2D Base Version 1.1 This Algorithm Is Implemented in Src/bhv_unmark.cpp, Src/data_extractor/DEState.cpp and Src/data_extractor/offensive_data_extractor.cpp.
	4.1 Data Extractor
	4.2 Unmarking Strategy with Help of Pass Prediction Module

	5 Results
	5.1 Training DNN for Cyrus2D V1.1 All Scripts for Training Are Available in Scripts/training_unmark.

	6 Conclusion
	References




