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Preface

RoboCup 2022 was successfully held in-person (with limited online participation
options) after two unusual years – under unprecedented circumstances. RoboCup 2020
was canceled due to the COVID-19 pandemic. However, in 2021, each league’s com-
mitments and efforts with creative solutions led to the great success of the first fully
online RoboCup competition, which brought the community closer together. In 2022,
although teams from some regions had difficulty traveling to Bangkok, Thailand, many
RoboCuppers gathered to participate in the in-person event, which made the community
stronger by building onto the online experience from 2021. Many leagues continued to
utilize the tools and strategies developed for the online competition in 2021 to strengthen
the league experience.

As a challenging multidisciplinary endeavor, RoboCup continues to contribute to
the advancement in robotics, and the Symposium highlights teams’ accomplishments
and robotics research that translate to better, faster, safer, more capable robots - and
competitionwins. This proceedings presents the science behind the advances in robotics,
including the key innovations that led the winning teams to their successes, and the
outcomes of research inspired by challenges across the different leagues at RoboCup.

The RoboCup 2022 Symposium received a total of 28 submissions for the Main and
Development Tracks. The submissions were reviewed by the Program Committee of
63 members, receiving at least 3 reviews per paper. The committee carefully weighed
the merits and limitations of each paper, and accepted 16 papers to be presented at
the Symposium, for an overall acceptance rate of 57%. In addition, the Symposium
proceedings includes 12 papers from the winners of the RoboCup 2022 competitions
under the Champions Track. Every Champion Track paper had at least 2 positive reviews
from experts in the corresponding league involving more members who were not on the
Symposium Program Committee.

For the first time, the RoboCup Symposium hosted two satellite events. The “Open
Humanoid Competition” was a hybrid workshop organized by the RoboCup Humanoid
League to discuss a pathway to making the league more accessible for novice teams.
The Rescue Simulation League hosted an online workshop, entitled “2022 Workshop
on Artificial Intelligence and Simulation for Natural Disaster Management”, aiming to
bring together and build a community of researchers, disaster responders, and policy-
makers interested in developing and applying AI and simulation techniques for natural
disaster management.

Among the 16 accepted research papers, four papers were nominated as best paper
award finalists. The awards committee evaluated the finalists based on the paper as well
as their associated reviews and presentations, and selected one best paper:

– Maximilian Giessler, Marc Breig, Virginia Wolf, Fabian Schnekenburger, Ulrich
Hochberg and Steffen Willwacher — “Gait Phase Detection on Level and Inclined
Surfaces for Human Beings with an Orthosis and Humanoid Robots”.



vi Preface

The RoboCup 2022 Symposium was delighted to host three Keynote Speakers:

Satoshi Tadokoro (Graduate School of Information Sciences, Tohoku University):
“Search in Rubble Piles - ImPACT Tough Robotics Challenge”
Angelica Lim (Rosie Lab, School of Computing Science at Simon Fraser Univer-
sity): “Social Signals in the Wild: Multimodal Machine Learning for Human-Robot
Interaction”
Manukid Parnichkun (Asian Institute of Technology): “Driverless Car Technologies”

We thank the members of the Program Committee and the additional reviewers for
their time and expertise to help uphold the high standards of the Symposium Technical
Program, as well as the members of the awards committee for their work in selecting the
best paper award. This event would not have been possible without the tireless efforts of
the Organizing Committee including the Local Organizing Committee (LOC) members
in Thailand. We appreciate the enthusiastic support and participation of RoboCuppers
across theworld, both in-person and remote, and the technical and organizing committees
of every league. Finally, our sincere gratitude goes to Jackrit Suthakorn, the RoboCup
2022 General Chair; Thanapat Wanichanon and Nantida Nillahoot, Program Chairs;
Pattaraporn Posoknistakul, Secretariat, and all the Local Organizing Committee Chairs.
The Symposium Co-chairs greatly appreciated all the support that we received from the
LOC members and enjoyed this wonderful opportunity to work collaboratively together
to help make the event another success.

February 2023 Amy Eguchi
Nuno Lau

Maike Paetzel-Prüsmann
Thanapat Wanichanon
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Object Recognition with Class
Conditional Gaussian Mixture

Model - A Statistical Learning Approach

Wentao Lu1(B), Qingbin Sheh2, Liangde Li3, and Claude Sammut1

1 The University of New South Wales, Sydney, NSW 2052, Australia
{wentao.lu,c.sammut}@unsw.edu.au

2 Kingsoft Office Software, Beijing, China
3 University of California San Diego, La Jolla, CA, USA

lil009@ucsd.edu

Abstract. Object recognition is one of the key tasks in robot vision. In
RoboCup SPL, the Nao Robot must identify objects of interest such as
the ball, field features et al. These objects are critical for the robot players
to successfully play soccer games. We propose a new statistical learning
method, Class Conditional Gaussian Mixture Model (ccGMM), that can
be used either as an object detector or a false positive discriminator. It
is able to achieve a high recall rate and a low false positive rate. The
proposed model has low computational cost on a mobile robot and the
learning process takes a relatively short time, so that it is suitable for
real robot competition play.

Keywords: Mixture model · Object recognition · Statistical learning

1 Introduction

In RoboCup 2016, SPL introduced a natural lighting rule that makes the compe-
tition environment more similar to a real soccer game. This significantly increases
the difficulty for the robot to effectively and efficiently detect object of interest
on the field. One way to address the natural lighting challenge is to binarize
images taken by the robot’s cameras. Adaptive thresholding binarizes an image
using a sliding window to generate a monochrome image. While adaptive thresh-
olding reduces variations due to different lighting across the field, it groups pixels
into only two classes, black or white. Thus, to find such as balls or field lines
in SPL are black and white, we need an effective algorithm to perform object
recognition with this limited information.

In this paper, we propose a statistical learning algorithm, named Class Con-
ditional Gaussian Mixture Model (ccGMM) to solve common vision recognition
problems in RoboCup soccer. A Gaussian Mixture Model [10] is a probabilis-
tic model for representing groups of sample data, called components, where a
component is a statistical term to represent a sub-sample of the overall data
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Eguchi et al. (Eds.): RoboCup 2022, LNAI 13561, pp. 3–13, 2023
https://doi.org/10.1007/978-3-031-28469-4_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-28469-4_1&domain=pdf
https://doi.org/10.1007/978-3-031-28469-4_1
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population. Each component is characterized by its weighted mean and vari-
ance. The paper is organised as follows: the background of mixture models and
the related works are discussed in Sect. 2; Sect. 3 will focus on the statistical
approach to estimate the best number of components; In Sect. 4, the applica-
tions and experiments will be demonstrated to explain the performance of the
proposed work.

2 Background

2.1 Mixture Models

A mixture model is a probabilistic model for representing a sub-population of the
overall population in unsupervised learning. Mathematically, we can represent a
mixture model by Eq. 1 [5], where we first sample the latent variable z and then
sample the observation x from a distribution given z.

p(z, x) = p(z)p(x|z) (1)

If the prior probability p(x|z) is a Gaussian Distribution, this model is called
Gaussian Mixture Model.

Equation 2 shows a weighted univariate Gaussian mixture model.

p(θ) =
K∑

1

wiN (μi, σ
2
i ), where

K∑

1

wi = 1 (2)

Generally, binarized images in robot vision are 2-dimensional arrays. Hence,
to apply a GMM, a multivariate GMM is needed, where each component (i.e.
sub-population) is represented by the weighted mean vector μi and covariance
matrix Σi . Equation 3 shows the multivariate version of the GMM.

p(θ) =
K∑

1

wiN (μi ,Σi), where

K∑

1

wi = 1 (3)

In machine learning, a GMM is used as a form of unsupervised learning where
the task is to cluster the data, without labels, into groups by given metrics. The
GMM does not perform prediction, as is in supervised learning. However, in this
work, we follow training the GMM with a Maximize A Posterior algorithm. This
combined model is called a Class Conditional Gaussian Mixture Model as it does
clustering and prediction in one model. The details of the method are discussed
in Sect. 3.

2.2 Related Work

Gaussian Mixture Models are widely used for image categorisation. Greenspan
and Pinhas [4] use a GMM to extract coherent image regions for image matching.
Compared with our work, both use a GMM plus a posterior process to build the
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final algorithm, however, the main differences are: firstly, they use the GMM
as an image descriptor extractor, while we use the GMM to represent images;
second, they use the trained GMM to perform image matching while we do
prediction. Ribeiro and Gonzaga’s [4] give an analysis of how different real-time
GMMs perform in background subtraction. Similar to our approach, they use
a pixel-wise model to generate the Gaussian components and since their main
focus is on video processing, real-time processing is also an essential requirement.
The main difference is that background subtraction is a typical unsupervised
learning application that groups coherent pixels into certain cluster, in their
case, the hand regions.

In Robocup, there is also an application of GMMs in robot vision. Team
TJArk propose a GMM-based approach to perform field colour recognition [11].
In their work, they use a GMM for green pixel recognition to find the field area.
Similar to background subtraction, the GMM maintains components of different
colours and then groups similar pixels into clusters.

3 Algorithm Design

3.1 Order Estimation

The first critical information we want to know is what is the best number of
components we create. There are different methods for achieving this. Brute
force search can be used. The main disadvantage of this approach is that it uses
no prior knowledge and takes a long time to find the best number of components
within a preset range. Furthermore, this approach can not guarantee that we
can find the globally optimum number of components. Alternatively, we can
perform a statistical estimation to find the estimated lower and upper bound of
the best number of components that can be used in model selection. We test
three different methods and discuss them below.

Algebraic Moment-Based Method. We first apply the method proposed by
Dacunha-Castelle and Gassiat [3]. Considering the components in our application
are multivariate, we can represent our model as in Eq. 4, where Σ−1

i , i = 1, . . . , r
are r different covariance matrices.

Q =
r∑

1

πiG(Σ−1
i ·) (4)

After the data have been prepossessed, we want to know what is the optimal
value for r, the number of components. We take the result of the moment-
based estimation as in Proposition 2 of Dacunha-Castelle and Gassiat. We select
q = (r(r − 1)/2 + 1)) different unitary vectors vi, i = 1, . . . , q and the estimators
of their algebraic moments can be calculated from Eqs. 5 to 7.

Xt = St · Yt (5)
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Yt is a random vector with distribution G and St is a random matrix with
distribution μ. Then we can get

E(X1 · XT
1 ) = E(S2

1) (6)

E((X1 · XT
1 )k) = E(S2k

1 )E((Y1 · Y T
1 )k), for every k ∈ Z

+. (7)

The estimator of order r̂n can be derived from the following function.

r̂n = arg min
p

q∑

i=1

|L(ĉpn(vi), p)| + A(p)l(n) (8)

where ĉpn are the algebraic moments derived from Eqs. 5 to 7, L(., p) = detH(., p)
is a function defined on Hankel matrix [6,8] and A(p)l(n) is a penalty term where
A(p) is a positive strictly increasing function and l(n) is a positive function of n
such that limn→+∞ l(n) = 0.

Maximum Penalized Likelihood Method. Assume we have a mixture
model set GQ, proposed by Keribin [7], for any order r ∈ 1, . . . , Q and g ∈ Gr,
we can define the log sum function

ln(g) =
n∑

i=1

log g(Xi) (9)

and the maximum likelihood statistic function

Tn,r = sup
g∈Gr

ln(r) (10)

Now we can find the boundary for the order estimator by calculating

q̂n = arg sup
p∈{1,...,Q}

(Tn,p − an,p) (11)

where an,r is some penalty function.

Likelihood Ratio Test Method. McLachlan and Rathnayake [9], proposed
the Likelihood Ratio Test(LRTS) to find the smallest value of the number of
components or the lower bound.

Again, we assume there are r components in the model, shown in Eq. 4. As
described in their work, we first test the null hypothesis

H0 : r = r0 (12)

against

H1 : r = r1 (13)



Object Recognition with ccGMM 7

for some r1 > r0. We define the likelihood ratio as

λ =
L(Σr0)
L(Σr1)

(14)

Now we can play the log trick and get

− 2 log λ = 2{log L(Σr1) − log L(Σr0)} (15)

We reject H0 if the left-had side of Eq. 15 is sufficiently large. We keep doing
the test by letting r1 = r0 + 1 until the log likelihood stops increasing.

3.2 Algorithm Overview

Due to the fact that most false positives for an object in SPL share some common
features and objects of interest can show up in different orientations and scales,
a trained ccGMM preserves two same length lists of Gaussian Mixtures of true
positives and false positives. For example, T-junctions are often misclassified as
corners; the ball is easily confused with the penalty spot; corners also can appear
significantly different due to the robot’s pose et al.

To deal with these challenges, two same length lists of Gaussian components
are created to represent common objects on the soccer field. The best number of
components is estimated using different statistical methods and then confirmed
using the Grid Search algorithm.

Algorithm 1. Train
X train, Y train,X test, Y test ← random split(data)
best accuracy ← 0
while Grid Search not finished do

X train ← PCA(X train)
TP components ← GMM(X train[label = True], Y train[label = True])
FP components ← GMM(X train[label = False], Y train[label = False])
accuracy ← 1 · {Inference(X test) = Y test}/ length(X test)
if accuracy > best accuracy then

best accuracy ← accuracy
best model ← this model

end if
end while
return best model

Algorithm 1 shows the training method for the proposed model. Training is
similar to the traditional Gaussian Mixture model where we use Principle Com-
ponent Analysis(PCA) to reduce data dimensionality. We then perform a Grid
Search by setting the lower and upper bounds derived from order estimation.
During the Grid Search, in each iteration, we use the current hyper-parameter
setting to get the trained GMM for both true positives and false positives for
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Algorithm 2. Inference
Input log weights, covariance, log prior, image data, PCA model, Precision matrix :

P, num components
X ← PCA model.transform(image data)
max likelihood ← −∞
argmax index ← 0
i ← 0
while i < 2 do

max ll ← −∞
j ← 0
likelihood ← 0
log likelihood ← 0
component loglikelihood = Array[2]
while j < num components do

X ← X − X̃
logprob ← cholesky decomp(covariance[i][j] − prior ∗ (XPXᵀ)[0])
component loglikelihood[j] ← log weights[i][j] + logprob

end while
if component loglikelihood[j] > max ll then

max ll ← component loglikelihood[j]
end if
while j < num components do

likelihood + = exp(component loglikelihood[j] − max ll)
end while
log likelihood + = max ll+ log(likelihood)
if log likelihood > max likelihood then

max likelihood ← log likelihood
argmax index ← i

end if
end while

a certain object. We use the Expectation Maximization algorithm to perform
the training where the algorithm updates parameters in the model and tries to
maximize the log-likelihood. At the end of each iteration, we evaluate the current
model by calculating the metrics using the Inference algorithm. When the Grid
Search meets the upper bound, the model with the best metrics will be selected.

Algorithm 2 is the inference process used both in training and prediction.
Unlike the normal GMM, which is in unsupervised learning, ccGMM is a super-
vised learning model that performs classification. The main difference is that
when we make the inference, we calculate the posterior likelihood for each com-
ponent in the model, given the test data. We then perform Maximize A Posterior
estimation to get the prediction. Hence, the method is called class conditional
GMM. To avoid underflow, we play the log trick here to use the posterior log-
likelihood instead of likelihood. Cholesky decomposition [1] is used to accelerate
matrix decomposition.
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4 Applications and Experiments

4.1 Field Feature Recognition

Team rUNSWift uses ccGMM as a false positives discriminator for detecting
field features on the SPL soccer field.

Field features are the most important measurements for robot localisation
and are found by probabilistic estimation, including variations of the Kalman
filter or partial filter. To achieve minimum uncertainty, the localisation system
requires accurate measurements that must not have many false positives. The
rUNSWift code has a pipeline to detect possible field features in a camera frame.

The first part of the pipeline includes several handcrafted vision algorithms
that find regions that contain candidate field features. Before introducing the
ccGMM algorithm, we used the candidate regions directly for localisation, result-
ing in many false positives, greatly affecting the performance of the localisation
system. The motivation for applying the ccGMM algorithm in the localisation
system was to reduce the number of false positives.

The ccGMM is now the second part of the pipeline, which acts as a discrim-
inator to remove false positives. Since there are many different kinds of field
features, we maintain several ccGMM models for the important features.

To test how many false positives are removed by ccGMM, we place the robot
at three different locations on the field and performs a quick scan for 60 s. We
then compare how many candidate field features are accepted by the handcrafted
algorithm but are rejected by the ccGMM discriminator.

A second qualitative experiment is designed to analyse the quality of the
ccGMM discriminator. The robot performs normal game play behaviours on
the field, randomly sampling field features rejected or accepted by the ccGMM.
Manual qualitative analysis is done after the session.

As Table 1 and Fig. 1 show, the average rejection rates for T-junctions and
corners are 92.7% and 87.0% respectively. This high rejection rate is mostly
due to the handcrafted candidate region proposal algorithm counting pixels in
extremely low resolution. In the next qualitative experiment, we analyse the
sample rejected cases and discuss why so many are rejected.

Figures 2 and 3 show some accepted and rejected corners. The rejected candi-
dates include shapes, such as robot feet, lines and the hardest case, centre curves.
However, limited by the robot’s perceptive and low resolution, some corners are
still too similar to curves, resulting in misclassification. With most of the false
positives removed, the robot’s localisation remains stable most of the time, even
in extreme lighting conditions, as reported by team rUNSWift 2019 [2].
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Table 1. Static robot field feature experiment

Trial Pose(X, Y, Theta) T Rejected T Total Corner Rejected Corner Total

1 (−4500, 0, 0) 284 286 3700 4588

2 (−4500, 0, 0) 666 680 3761 4335

3 (−4500, 0, 0) 595 605 4058 4413

4 (2000, 0, 0) 486 524 2020 2407

5 (2000, 0, 0) 380 414 1819 2350

6 (2000, 0, 0) 410 444 2261 2808

7 (3000,−1500, 0) 633 684 4435 4788

8 (3000,−1500, 0) 284 307 3831 4031

9 (3000,−1500, 0) 269 350 3893 4127

Fig. 1. Rejection rate

Fig. 2. Accepted corners

Fig. 3. Rejected corners

4.2 Bottom Camera Ball Recognition

Team rUNSWift also uses the ccGMM method on the Nao V6’s bottom camera
and both Nao V5’s cameras for ball recognition. On the V6, we implemented a
neural network based recognition system for the top camera. This neural network
consists of three convolutional layers and two fully connected layers with the
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same input size as the ccGMM. Comparing the approaches, several advantages
and disadvantages were apparent. First, the processing time is lower for ccGMM
than for our convolutional neural network (CNN). While the CNN has a longer
detection range, the ccGMM works better in low-resolution, with more robust
detection. Considering these facts, we chose to use ccGMM on the bottom camera
with half resolution (640×480) for ball recognition. For comparison, we conduct
an experiment where we set up a single Nao robot to track the ball in different
field settings.

Fig. 4. Two standing position

Figure 4 shows two different standing position settings for the experiment. In
this experiment, the observer robot will stand on the boundary line to perform
normal stand behaviour while trying to track the ball. The ball observation
range is recorded while the robot can consistently see and track the ball. In this
case, we define the consistent tracking as not losing the ball for consecutive 10
frames. Also, 0 to 3 opponent robots are randomly placed near the ball during
the experiment. The experiment is terminated when either the proposed ccGMM
or the CNN is called 1000 times after the ball is placed at the edge of observer
robot’s consistent tracking range. Both observation range and running time are
reported as the overall average shown in Table 2.

Table 2. Experiment result

Algorithm Time/Call (us) Consistent observation range (m)

ccGMM 158 3.56

CNN 739 3.92
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Fig. 5. Accepted balls

Figure 5 shows the accepted balls. The ccGMM on the bottom camera has
almost zero false positives and works consistently with the ball on field line or
at the robot’s feet.

Fig. 6. Mean Components for True Positive Balls(Weights: 0.18, 0.19, 0.19, 0.21, 0.23)

Fig. 7. Mean Components for False Positive Balls(Weights: 0.15, 0.18, 0.18, 0.22, 0.27)

Figures 6 and 7 show a sample mean components for a trained ccGMM for
ball recognition where we set number of components = 5. Weights for each
component are included.

5 Conclusion

We proposed a new statistical learning method for real-time object recognition.
The Class Conditional Gaussian Mixture Model (ccGMM) is a novel combina-
tion of aspects of unsupervised and supervised learning. The method requires
only limited computational power and works robustly for different light condi-
tions, and on low-resolution images in the RoboCup SPL competition. In further
research, we will extend and generalise the method to be applicable in a wider
variety of robotics vision problems.
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Abstract. The ability to correctly anticipate an opponent’s next action
in real-time adversarial environments depends on both, the amount of
collected observations of that agent’s behavior as well as on the capability
to incorporate new knowledge into the opponent model easily. We present
a novel approach to instance-based action prediction that utilizes graph-
based structures for the efficiency of retrieval, that scales logarithmically
with the amount of training data, and that can be used in an online and
anytime manner. We apply this algorithm to the use case of predicting
a dribbling agent’s next action in Soccer Simulation 2D.

1 Introduction

Opponent modeling and action prediction have a long history in robotic soccer.
The ability to anticipate what an opponent player is going to do in the next time
step and reacting with appropriate counter measures can bring about significant
advantages to one’s own agents. In this paper, we extend our previous work
[8] on predicting the low-level behavior of agents in Soccer Simulation 2D into
a direction that makes it scalable and practically applicable under the hard
real-time constraints that are imposed in this domain. Hitherto, we approached
the task of predicting an opponent’s next action in an instance-based manner
by explicitly storing all training instances in memory and then (e.g. during a
match) searching linearly for the nearest neighbor to the current situation and
using that neighbor’s class label as the predicted next opponent action.

Unfortunately, it is well-known that instance-based classification approaches,
when being applied in the described naive manner, scale poorly (usually linearly)
with the amount of training data. As a consequence, when intending to apply
these ideas in our soccer simulation competition team, we arrive at a set of
challenging requirements:

a) Instance-based: Instance-based learning is a lazy learning approach; new
instances shall, if necessary, be memorized easily.

b) Real-time capable: There are hard real-time constraints in robotic soc-
cer. Thus, when searching for the nearest neighbor from the set of stored
instances, hard time limits must be respected.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Eguchi et al. (Eds.): RoboCup 2022, LNAI 13561, pp. 14–26, 2023
https://doi.org/10.1007/978-3-031-28469-4_2
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c) Incremental: The approach should be applicable online, which means that it
must be possible to incorporate new experience on the fly during the appli-
cation without the need to perform some computationally heavy relearning.

d) Anytime: Usually, the available computational budget varies from time to
time. Thus, it would be highly desirable to have an anytime prediction algo-
rithm whose accuracy improves with more computational power.

e) Simplicity: The desired prediction algorithm shall be simple to implement
and have no dependency on certain libraries or mighty learning frameworks
such that it can be utilized easily on any (competition) machine.

Needless to say that any prediction algorithm with linear time requirements
in the number n of training examples is ruled out as it would perform too poorly
and not scale for larger dataset sizes. Hence, for an instance-based prediction
algorithm ideally logarithmic complexity is desired or at least a dependency on
n according to some power law with a power value significantly below one.

Our contribution in this paper is twofold. On the one hand, we propose
a novel instance-based classification approach that fulfills the mentioned five
requirements. At the heart of this approach is the construction of an index
structure to efficiently guide the search for most similar instances that we call
a Boundary Graph. We build up the graph structure from training data, which
means that its topology is not fixed a priori. It is also worth noting that the
construction process can be applied in an online setting, i.e. no batch access to
the full dataset of instances is needed and, hence, the graph index structure can
be extended as more and more training examples come in. Both, the build-up
as well as the employment of that graph-based index structure are inherently
stochastic – a fact that we found to substantially improve the robustness of the
approach as well as to reduce its dependency on other factors like the order of
presentation of instances during learning.

On the other hand, we empirically evaluate the performance of the delineated
approach for the use case of predicting a dribbling opponent agent’s next action
in soccer simulation. Knowing the opponent’s next action with high certainty
before it is executed by the opponent may enable our agents to simultaneously
compute the best possible answer to that future action and, hence, improve our
team’s playing strength.

We start by providing background knowledge and reviewing related work in
Sect. 2. While Sect. 3 presents the mentioned boundary graph-based approach in
full detail, in Sect. 4 we return to robotic soccer simulation, explain how to utilize
the proposed approach for the dribble action use case and present corresponding
empirical findings.

2 Background and Related Work

In the following, we outline the basics that are needed to understand our app-
roach as well as the application use case it is intended for and discuss relevant
related work.
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2.1 Robotic Soccer Simulation

In RoboCup’s 2D Simulation League, two teams of simulated soccer-playing
agents compete against one another using the Soccer Server [12] as real-time
soccer simulation system. The Soccer Server allows autonomous software agents
to play soccer in a client/server-based style: It simulates the playing field, com-
munication, the environment and its dynamics, while the player clients connect
to the server and send their intended actions (e.g. a parameterized kick or dash
command) once per simulation cycle to the server. The server takes all agents’
actions into account, computes the subsequent world state and provides all agents
with information about their environment.

So, decision making must be performed in real-time or, more precisely, in dis-
crete time steps: Every 100 ms the agents can execute a low-level action and the
world-state will change based on the individual actions of all players. Speaking
about low-level actions, we stress that these actions themselves are “parameter-
ized basic actions” and the agent can execute only one of them per time step:

– dash(x, α) – lets the agent accelerate by relative power x ∈ [0, 100] into
direction α ∈ (−180◦, 180◦] relative to its body orientation

– turn(α) – turn the body by α ∈ (−180◦, 180◦] where, however, the Soccer
Server reduces α depending on the player’s current velocity (inertia moment)

– kick(x, α) – kick of the ball (only, if the ball is within the player’s kick range)
by relative power x ∈ [0, 100] into direction α ∈ (−180◦, 180◦]

– There exist a few further actions (like tackling, playing foul, or, for the goal
keeper, catching the ball) whose exact description is beyond scope.

It is clear that these basic actions must be combined cleverly in consecutive time
steps in order to create “higher-level actions” like intercepting balls, playing
passes, marking players, or doing dribblings.

2.2 Related Work on Opponent Modeling

Opponent modeling enables the prediction of future actions of the opponent. In
doing so, it also allows for adapting one’s own behavior accordingly. Instance-
based approaches have frequently been used as a technique for opponent mod-
eling in multi-agent games [5], including the domain of robotic soccer [2,6].

In [15], the authors make their simulated soccer agents recognize currently
executed higher-lever behaviors of the ball leading opponent. These include pass-
ing, dribbling, goal-kicking and clearing. These higher-level behaviors correspond
to action sequences that are executed over a dozen or more time steps. The
authors of [14] deal with the instance-based recognition of skills (shoot-on-goal
skill) executed by an opponent soccer player, focusing on the adjustment of the
distance metrics employed. In [8] we argued that opponent modeling is useful
for counteracting adversary agents, but that we disagree with the authors of [14]
claiming that “in a complex domain such as RoboCup it is infeasible to predict an
agent’s behavior in terms of primitive actions”. Instead we have shown prototyp-
ically in [8] that a low-level action prediction can be achieved during an on-going
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play using instance-based methods. We grasp this prior work of ourselves now,
addressing the crucial point that we omitted to handle in that paper: Instance-
based learning algorithms learn by remembering instances, which is why, for
certain applications, specifically data intensive ones, retrieval times over the set
of stored instances can quickly become the system’s bottleneck. This issue is a
showstopper in a real-time application domain like robotic soccer simulation.

2.3 Related Work on Index Structures for Efficient Retrieval

Index structures in instance-based methods are supposed to more efficiently
guide the search for similar instances. Before the actual retrieval utilizing an
index structure can take place that structure must be created. Tree-based struc-
tures have often been employed to speed up access to large datasets (e.g. geo-
metric near-neighbor access trees [4] or nearest vector trees [10]). Tree-based
algorithms that also feature online insertion capabilities include cover trees [3],
boundary trees [11] (see below), or kd-trees [16] where the latter have the advan-
tage of not requiring full distance calculations at tree nodes.

Boundary Trees [11] are a powerful tree-based index structure for distance-based
search. They consist of nodes representing training instances connected by edges
such that any pair of parent and child node belongs to different classes1. This
fact is eponymous as with each edge traversal a decision boundary is crossed.

Given a boundary tree T and a new query q, the tree is traversed from its
root by calculating the distance between q and all children of the current node,
moving to and traversing successively that child which has the lowest distance
to q. Boundary trees use a parameter k ∈ [1,∞] that determines the maximal
number of children any node is permitted to have. The retrieval is finished, if a
leaf has been reached or if the current (inner) node v has less than k children
and the distance between q and v is smaller than the distance between q and
all children of v. This way, a “locally closest” instance x∗ to the query is found,
meaning that neither the parent(s) of x∗ nor the children of x∗ are more similar.

The tree creation procedure for boundary trees is inspired by the classical
IB2 algorithm [1]. The next training instance xi is used as query using the so far
existing boundary tree Ti−1. If the result of the tree-based retrieval returns an
instance x∗ whose class label does not match the class label of xi (i.e. xi could
not be “solved” using Ti−1), then xi is added as a new child node of x∗.

In [11], Mathy et al. propose to extend the described approach to an ensem-
ble of boundary trees, which they name a boundary forest (BF). Essentially,
they train an ensemble of (in that paper usually 50) boundary trees on shuffled
versions of the training data set and employ different kinds of voting mecha-
nisms (e.g. majority voting or Shepard weighted average [13]) using the retrieval
results of the boundary trees. The Boundary Graph approach we are presenting
in the next section takes some inspiration from boundary trees which is why we
also use them as a reference method in our empirical evaluations.
1 While the definition given here focuses on classification tasks, a straightforward

generalization to other tasks like regression or mere retrieval can easily be made.
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3 Boundary Graphs

It is our goal to develop an instance-based technique that covers both, a method
to decide which instances to store in memory and which not as well as algorithms
to build up and employ an index structure that facilitates an efficient retrieval.
Boundary graphs (BG) in combination with techniques to create and utilize
them, represent the backbone of our approach.

3.1 Notation

In what follows, we assume that each instance x ∈ R
D is a D-dimensional tuple

of real values and has a label l(x) ∈ L ⊂ R
m attached to it (where in case of a

classification task L is simply the enumeration of class labels). Distance between
instances is measured using a distance metric d : RD × R

D → R
+ that for any

two instances returns a non-negative real number d(x, y). Note that we do not
impose any further requirements on d throughout the rest of the paper, except
that, for ease of presentation, we assume it to be symmetric. Furthermore, we
need a metric function dl : L × L → R

+ to assess the difference of label vectors.
For a given set of training instances X = {x1, . . . , xn}, a Boundary Graph

B = (V,E) is an undirected graph without loops with a set of nodes V ⊆ X and
a set of edges

E ⊆ {(xi, xj)|xi, xj ∈ V and i �= j}, (1)

where, by construction, each edge from E connects only instances with differing
labels. This means, for each (xi, xj) ∈ E it holds

dl(l(xi), l(xj)) > ε (2)

where ε > 0 is a threshold that defines when two label vectors are considered
to be different. The definition given so far and the relations in Formula 1 and
2 are not finalized, most specifically since Eq. 1 gives just a subset specification.
We are going to concretize this specification in the next paragraphs, emphasizing
upfront that the boundary graphs we are creating will be a sparse representation
of the case data and, thus, contain only a tiny fraction of the edges that would
be allowed to be contained in E according to Eqs. 1 and 2.

3.2 Querying a Boundary Graph

Given a query q ∈ RD and a boundary graph B = (V,E), the retrieval algorithm
moves repeatedly through the graph structure, calculating the distance between
q and the current node x ∈ V as well as between q and the neighbors of x,
i.e. for all v ∈ V for which an edge (x, v) ∈ E exists. It successively and greedily
“moves” onwards to the node with the lowest distance to q until some minimum
x� has been reached, which means that d(q, x�) ≤ d(q, x)∀(x�, x) ∈ E.

Importantly, this procedure is repeated for r times, where the starting node is
selected randomly from V each time. Hence, r determines the number of random
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BG Predict(q, B, r) BG Retrieve(q, B, r)
Input: query q ∈ R

D, Input: query q ∈ R
D,

boundary graph B = (V, E), boundary graph B = (V, E) with V �= ∅,
number r of random retrieval number r of random retrieval restarts

restarts, Output: r-dimensional vector N r
q of

amalgamation function A potential nearest neighbors
Output: BG-based prediction R(q) 1: N r

q ← r-dimensional vector
1: // retrieval 2: for i = 1 to r do
2: N r

q ← BG Retrieve(q, B, r) 3: x� ← random node from V
3: // prediction (cf. Eqn. 4-6) 4: stop ← false
4: R(q) ← A(N r

q ) 5: while stop = false do
5: return R(q) 6: x ← arg minv∈V s.t. (x�,v)∈E d(q, v)

7: if d(q, x) < d(q, x�)
8: then x� ← x else stop ← true
9: N r

q [i] ← x�

10: return N r
q

Algorithm 1: Boundary Graph-Based Prediction and Retrieval

retrieval starting points from which the distance-guided search is initiated. Con-
sequently, as retrieval result a vector N r

q = (n1, . . . , nr) of r estimated nearest
neighbors is obtained.

Algorithmically, we embed the delineated step (function BG Retrieve in
Algorithm 1) into the superjacent function BG Predict for boundary graph-
based prediction which, effectively, performs both, the retrieval task and the
prediction on top of it. The entries of the vector of r nearest neighbor estimates
are combined to form an overall prediction R(q) using some amalgamation func-
tion A, such that

R(q) = A(N r
q ) = A((n1, . . . , nr)). (3)

For classification tasks, we might use a simple majority vote

A((n1, . . . , nr)) ∈ arg max
t∈L

|{nj |l(nj) = t, j = 1, . . . , r}| (4)

or an inverted distance-weighted voting scheme, like

A((n1, . . . , nr)) ∈ arg max
t∈L

r∑

j=1

{
1/d(q, nj) if l(nj) = t

0 else
. (5)

In a similar manner, for regression tasks the estimated value becomes [13]

A((n1, . . . , nr)) =

∑r
j=1 l(nj)/d(nj , q)∑r

j=1 1/d(nj , q)
. (6)

A pseudo-code summary of the entire retrieval and prediction approach using
a BG is given in Algorithm 1. For the empirical case study presented below we
stick to a simple majority vote according to Eq. 4 and employ a normalized L1

norm as distance measure d. Before, however, we can utilize a BG, we must build
it up which is why we focus on the construction of boundary graphs next.
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BG Construct(X , r) BG Train(B, x, r)
Input: set of train instances Input: single (new) instance x,

X = {x1, . . . , xn}, boundary graph B = (V, E),
number r of random number r of random retrieval restarts
retrieval restarts Requires (global variables):

Output: boundary tree B amalgamation function A, metric d and dl,
1: B ← (∅, ∅) label discrimination threshold ε
2: // loop over all instances Output: (possibly extended) boundary graph B
3: for i = 1 to n do 1: if V = ∅ then V ← V ∪ x
4: B ← BG Train(B, xi, r) 2: else
5: return B 3: N r

x ← BG Retrieve(x, B, r)
4: for i = 1 to r do
5: δ ← dl(l(x), l(N r

x [i]))
6: if δ > ε then
7: V ← V ∪ x
8: E ← E ∪ (x, N r

x [i])
9: return (V, E)

Algorithm 2: Construction of and Retain Procedure for Boundary Graphs

3.3 Graph Construction

We assume that the instances x1 to xn from the set of training instances X
are presented to the boundary graph construction algorithm successively. Given
a single training instance xi, the algorithm first queries the boundary graph
Bi−1 = (Vi−1, Ei−1) which has been trained for the preceding i − 1 training
instances, yielding a vector N r

xi
= (n1, . . . , nr) of r possible nearest neighbors.

The algorithm then iterates over these nj (j = 1, . . . , r) and, if dl(l(xi), l(nj)) > ε
(i.e. nj does “not solve” xi, which in the case of classification tasks boils down to
l(xi) �= l(nj)), then xi is added as a new node to Vi−1 and a (bidirectional) edge
(xi, nj) is added to Ei−1. The resulting, extended boundary graph is accordingly
denoted as Bi. To sum up, training instances are added as nodes to the graph
(including connecting edge), if the algorithm stochastically discovers a random
retrieval starting point for which the currently existing boundary graph’s pre-
diction would be wrong and where, hence, a correction is needed.

Again, a pseudo-code summary of the algorithm to constructively building
up a boundary graph for a sequence of training instances X is provided in Algo-
rithm2, denoted as BG Construct. Note that the algorithm can be easily
deployed in an online setting where new instances arrive during runtime by
simply calling the BG Train function given in the right part of Algorithm2.
Additionally, Fig. 1 visualizes exemplary boundary graphs for two synthetic two-
dimensional two-class problem.

Constructing vs. Applying the Graph Structure. As we will show below, the
algorithms described have a logarithmic retrieval complexity in the amount of
training instances n for the opponent action prediction dataset we use subse-
quently. Accordingly, training time scales mildly as well because each train step
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Negative Training Instance Not Stored as Vertex
Negative Training Instance Stored as Vertex

Positive Training Instance Not Stored as Vertex
Positive Training Instance Stored as Vertex

+ Test Instance
Edge in Boundary Graph

Fig. 1. Two Exemplary Visualizations of Boundary Graphs for Synthetic Domains:
Out of the 80 training instances (left), 19 are included in the graph’s set of vertices (11
from the negative class, 8 from the positive one), when trained using r = 9. Among
that set of nodes, there are 88 possible edges that would cross the decision boundary.
From those, 40 are included in the graph’s set of edges. The boundary graph for the
“doughnut” domain (right) has been constructed using r = 3. The graph stores 203
out of the 400 training instances and connects them by 534 edges.

essentially includes a retrieve step, rendering the complexity of training to be a
loop of n repetitions wrapped around the retrieval procedure (O(n log n)).

The boundary graph approach has the favorable characteristic to be an any-
time retrieval algorithm. By handling the parameter r of random retrieval start-
ing points within the graph differently during training (rt) and the application
(ra) of the learned graph, i.e. separating rt := r from ra (ra �= r), one can gain a
significant performance boost by letting ra > rt, given that a sufficient amount
of time is available for the system to respond to a query. This is a desirable
property in real-time and online application settings since the accuracy of the
retrieval grows with ra as we will delineate in the next section.

4 Empirical Evaluation

Our empirical investigations on the boundary graph approach were primar-
ily driven by our target application problem of predicting an opponent soccer
player’s next low-level action. We focus on a dribbling opponent, leaving the
investigation of other opponent behaviors for future work. We first more intro-
duce the task at hand more precisely and then present achieved classification
results including an analysis of our algorithms’ scaling behavior. In a separate
paper [9], we present detailed results on the performance of our proposed algo-
rithms for a variety of classical benchmark datasets beyond the realm of robotic
soccer.
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4.1 Problem Formulation and Data Collection

We focus on the task of predicting a ball leading opponent player’s next dribbling
action, although we stress that our approach could generally be applied to any
other action prediction task as well. Therefore, we selected an opponent agent,
placed it randomly on the field with the ball in its kick range and allowed it to
dribble towards our goal for maximally 20 consecutive time step (or till it lost the
ball) when it was relocated to a new random position. The state of the dribbler
was described by a 9-tuple consisting of the player’s and the ball’s position on
the field (4), the player’s and ball’s current velocity vectors (4) and the angle of
the player’s body orientation (1). The actually performed action (kick, dash, or
turn) was extracted from the game log file, though we might deduce this piece of
information during a match, too, by applying inverse kinematics on two consecu-
tive states exploiting the knowledge about the physics models the Soccer Server
[12] applies. We collected half a million training examples using the described
methodology using a FRA-UNIted agent as dribbling opponent which utilizes
its established dribbling behavior that was trained with reinforcement learning
[7]. The class distribution in this dataset features 7.2% turning, 20.4% kicking,
and 72.4% dashing actions such that a naive classifier that always predicts the
majority class would yield an error of 27.6%. Note that in the context of the
evaluation presented here, we solely focused on the classification of the type of
the performed action, not on its real-valued parameter(s) (cf. Sect. 2.1).

We compare our boundary graph approach to the classical nearest neighbor
algorithm (which linearly iterates over all stored training instances) as well as to
the boundary forest approach (BF) from the literature (cf. Sect. 2.3). We measure
performance in terms of the achieved classification error on an independent test
set as well as in terms of required real-time (on a contemporary 3 GHz CPU,
single-core, i.e. without any parallelization2).

4.2 Results

Table 1 summarizes the remaining classification errors when predicting the oppo-
nent’s low-level dribble actions for different training set sizes n. All numbers
reported are averages over 100 repetitions of the experiment using different ran-
dom number seedings. As expected, the nearest neighbor classifier turns out to
be a simple, but computationally prohibitive baseline. When opposing boundary
forests and boundary graphs, it is advisable to compare settings that are con-
ceptually similar, viz when the number t of trees and the number r of random
retrieval restarts match. The result table reports results for r = t ∈ {50, 100}
and shows that boundary graphs slightly, but consistently outperform the forest
approach except for small training set sizes where, however, all approaches “fail”
since their accuracy is not so far off the error of the naive classifier (27.6%) that
just predicts the majority class.

2 We emphasize that all discussed approaches are easily parallelizable and that com-
putation times could, thus, be reduced dramatically given the appropriate hardware.
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Table 1. Classification errors and belonging standard errors of the discussed algorithms
in percent subject to different amounts of training data for 100 experiment repetitions.
Better-performing algorithms (between BF and BG only) are highlighted in bold.

n k-NN (k = 1) BF (t = 50) BG (r = 50) BF (t = 100) BG (r = 100)

400 27.80 ± 0.48 28.26 ± 0.44 29.41 ± 0.47 27.64 ± 0.45 29.44 ± 0.45

1600 23.92 ± 0.19 25.12 ± 0.21 25.22 ± 0.20 24.71 ± 0.21 25.49 ± 0.20

6400 22.10 ± 0.10 22.14 ± 0.11 21.88 ± 0.11 21.51 ± 0.11 21.92 ± 0.11

25600 18.77 ± 0.06 18.55 ± 0.06 18.07 ± 0.05 17.94 ± 0.05 18.19 ± 0.05

51200 16.64 ± 0.02 16.31 ± 0.04 15.72 ± 0.03 15.75 ± 0.03 15.72 ± 0.02

102400 13.46 ± 0.03 13.27 ± 0.02 12.62 ± 0.02 12.78 ± 0.03 12.61 ± 0.02

204800 8.70 ± 0.01 9.25 ± 0.02 8.77 ± 0.01 8.79 ± 0.01 8.64 ± 0.01

409600 5.42 ± 0.01 5.90 ± 0.01 5.43 ± 0.01 5.55 ± 0.01 5.22 ± 0.01

The left part of Fig. 2 visualizes the scaling behavior of boundary graphs
(black) and boundary forests (gray), reporting the average number of millisec-
onds required to answer a single test query, i.e. to predict the opponent’s next
dribble action, subject to different amounts of training data that has been pro-
cessed to generate the BF/BG. Apparently, boundary graphs need about a third
more computational effort compared to their same-sized tree-based counterparts,
but achieve lower classification errors as discussed in the preceding paragraph. It
is worth noting that we have set the value of the BF parameter k (cf. Sect. 2.3)
to infinity during all our experiments. Setting k to a finite value would further
reduce the computational requirements of that algorithm, but at the same time
impair its performance even more as delineated by [11].

Another interesting observation is that a boundary graph (r = 50), which
has been constructed using n = 409.6k instances, stores about 60% of them
as vertices in the graph (space complexity grows linearly with n). Yet, during a
BG-based retrieval for a single test query q the distance calculation (which, essen-
tially, represents the computational bottleneck) between q and stored instances
must, effectively, be done for only ≈1.8% of the n given training instances.

After all, the chart shows that any of the graph- or forest-based approaches
have a logarithmic time complexity and could very well be deployed practically
by a soccer-playing agent since the retrieval time of less than 40 ms (on the men-
tioned hardware) would fit well into a soccer simulation time step (even without
any parallelization). Since the addition of a single new instance requires basi-
cally one retrieval plus a loop over r (which has constant effort in n), it requires
roughly the same amount of computation as processing a test query and, thus,
even an online extension of a boundary graph during a running match is feasi-
ble, for example when observing the current opponent dribbling. By contrast, the
nearest neighbor classifier (also shown in the chart) has linear complexity and
requires more than 50 ms already for 8000 stored instances (and even 3000 ms
per test query for n = 409.6k) which renders this algorithm practically useless.
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Fig. 2. Scaling Behavior of Boundary Graphs: See the text for details.

An outstanding characteristic of the boundary graph algorithm is its any-
time behavior. By increasing the number of random retrieval restarts during
the application phase (for example in a match, when in a specific time step less
other computations are done for whatever reason) the accuracy of the prediction
increases. This relationship is visualized in the right part of Fig. 2 for a boundary
graph that has been constructed using rt = 50 random retrieval restarts. So, the
point of origin represents the “default” setting where rt = ra = 50. For posi-
tive x values the computational budget during application (not during training,
i.e. rt = 50 is not altered) has been increased expressing the relative extra effort
on top of the default in terms of additional real-time. Likewise, negative x values
denote that less computational power is invested into the retrieve process during
testing. The ordinate shows the impact of the described variation of ra in terms
of relative gain/loss in classification performance compared to what is achieved
with the default setting. So, for example, for n = 409.6k training instances (here,
processing a test query for ra = 50 needs 18.6 ms on average) we observe that
by doubling the retrieval time (+100%, i.e. 37.2 ms, corresponding to ra ≈ 350)
the originally achieved classification error can be reduced by ca. 3.5%.

5 Conclusion

We have proposed boundary graphs as a useful and scalable tool for instance-
based prediction. Although we have focused solely on its use for classification
throughout this paper, the approach is general enough to cover other tasks like
regression or mere instance retrieval as well. We provided algorithms for creating
and utilizing boundary graphs and applied them successfully for the prediction
of the next low-level action of a dribbling simulated soccer player. In so doing, we
found that this approach scales very well and is applicable under hard real-time
constraints even with large sets of training data which are required for high-
quality predictions. Our next steps include the employment of this approach
for determining the real-valued parameters of the predicted action which, of
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course, represents a regression task. Moreover, we also intend to evaluate in
depth the performance of boundary graphs for other established benchmark
datasets beyond the realm of robotic soccer.
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Abstract. The RoboCup Small Size League employs cylindrical robots
of 15 cm height and 18 cm diameter. Presently, most teams utilize a
Kalman predictor to forecast the trajectory of other robots for better
motion planning and decision making. The predictor is limited for such
task, for it typically cannot generate complex movements that take into
account the future actions of a robot. In this context, we introduce an
encoder-decoder sequence-to-sequence neural network that outperforms
the Kalman predictor in trajectory forecasting. The network consists of a
Bi-LSTM encoder, an attention module and a LSTM decoder. It can pre-
dict 15 future time steps, given 30 past measurements, or 30 time steps,
given 60 past observations. The proposed model is roughly 50% more
performant than a Kalman predictor in terms of average displacement
error and runs in less than 2 ms. We believe that our new architecture
will improve our team’s decision making and provide a better compet-
itive advantage for all teams. We are looking forward to integrating it
with our software pipeline and continuing our research by incorporating
new training methods and new inputs to the model.

Keywords: Trajectory prediction · Neural networks ·
Encoder-decoder · Small Size League · Sequence-to-sequence

1 Introduction

The Small Size League (SSL) is one of the robot soccer categories in the RoboCup
competition, an international scientific community focused on intelligent robots.
SSL robots are cylindrical with 18 cm diameter and 15 cm height. Games are
very dynamic and competitive, so teams have constant pressure to improve their
strategies and predict their opponent’s behavior and trajectory.

Predicting the opponent’s trajectory is an important step in trajectory plan-
ning, as it avoids collision between robots, and in decision making, as it helps us
determinate the opponent team’s strategy. SSL teams employ a Kalman filter
to filter measurements from the SSL vision server and estimate robots’ position.
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It is possible to extend Kalman’s algorithm into a predictor by propagating its
state matrix over the last estimated state.

Such an approach has some limitations. First, the Kalman predictor cannot
generate complex movements, like the ones seen in an SSL game, because it prop-
agates the estimate using simple kinematic-based models that do not consider
future actions taken by the robots. Second, it models only kinematics aspects of
the robots, however, the robots’ trajectory depends on the ball’s position and
the position of other robots surrounding the one we are analyzing.

In the RoboCup context, most efforts have been in predicting the opponent’s
behavior. Adachi et al. [1,2] propose a classification for all possible actions of
robots during a game. They use their classes to cluster robots’ movements into
groups and identify their behavior, using similarities between the robots’ trajec-
tories. Likewise, in Erdogan, C., Veloso, M.M [7], researches define a “behavior”
as a trajectory during the period a team has the ball under control. Then, they
cluster behaviors according to their similarity. During a game, the system is
supposed to identify which trajectory pattern a robot is executing among the
classified ones. The authors, cite, however, that, although their algorithm could
effectively detect the rival’s behavior, it did not do so fast enough for the team
to adapt.

All the aforementioned works have tried to predict an opponent’s behavior.
Our work aims at predicting the opponents’ trajectories (velocities and positions)
by abstracting robots’ behavior in a time series forecasting neural network. The
contribution of our work is adapting time series forecasting to predict trajecto-
ries, aiming at an efficiency superior to a Kalman predictor.

There has been multiple works regarding trajectory prediction of different
types of agents. Park, S. et al. [10] introduces an encoder-decoder architecture
to forecast the trajectory of multiple vehicles. They utilize an occupancy grid
map, whose cells should contain a maximum of one road car, to reduce the
prediction into a classification problem. Although the system showed promising
results for the proposed experiments, the RoboCup SSL field is too big to be
divided into cells that contain a single robot, rendering an occupancy grid map
too computationally complex.

In addition, Capobianco, S. et al. [6] presents an encoder-decoder architecture
that contains an attention module to aggregate information from the past and
the future for vessel trajectory prediction. They also analyze the influence of
adding the vessel’s destination to improve prediction.

Regarding multi-agent prediction, Ivanovic, B. Pavone, M [8] proposed using
a graph to account for the influence of neighboring pedestrians in the trajectory
of the target agent, whose path we want to predict, in an attempt to obtain a
better forecast. The model has been updated in Salzmann, T. [12] to include the
influence of many types of agents in the trajectory of each other, providing a
more accurate prediction for a multi-agent scenario.

Our work mingles the aforementioned techniques and ideas into the RoboCup
SSL world. Our contribution is to introduce an encoder-decoder sequence-to-
sequence (seq2seq) architecture using attention to successfully predict the tra-
jectory of robots in this context.
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This paper is organized as follows. Section 2 describes our data set preprocess-
ing, Sect. 3 describes our proposed model, Sect. 4 talks about how we trained the
network, and Sect. 5 discusses our testing methodology. Sections 6 and 7 presents
our results and conclusions.

2 Dataset Cleansing

All SSL games are recorded and their data is publicly available at the Robocup’s
website1. The data is not completely trustworthy because some detection packets
are missing and others are repeated. Packets may be missing due to network
delays or a faulty camera. Repeated detection may happen if an object appears
in the field of view of multiple cameras.

The detection rate 60 Hz. It means that the interval between two frames is
0.0166 s. After analyzing the data set, we found the time range for two frames
to be consecutive. If the difference between the time of capture of two frames is
in the range [0.01, 0.022] s, we consider them consecutive. When the difference is
less than 0.01, we discard the newest frame.

Nonetheless, whenever the difference is greater than 0.022, we might create
a problem, because our time series would not have a constant time difference
between elements. To solve this, we repeated the last valid measurement in
our stream, using intervals of 1/60 s, until the time difference between the last
inserted item and the detected one stays within our defined range.

To distinguish between repeated data and real data, we created a new
attribute for the measurement packet: a boolean mask. It contains true for each
real element and false for repeated ones. We leverage this mask to smooth the
time series we are interested in analyzing. We employed the algorithm described
in Barrat, S. et al. [4] to optimize the parameters of a Kalman smoother, which
substitutes the repeated points for a reliable interpolation that considers the
objects’ dynamics. A smoother is reliable because we are dealing only with pre-
viously collected data, not a stream. For our smother, we consider a linear system
with the dynamics shown in 1 and with the sensor measurements shown in 2.

xt+1 = Axt + ωt, (1)

yt = Cxt + vt, (2)

where xt is the state, ωt is the process noise, yt the sensor measurement, A is the
state dynamics matrix and C is the output matrix [4]. Our optimizer calculates
the best ωt and vt, having set A and C as follows:

A =

⎛
⎜⎜⎝

1 1 0 0
0 1 0 0
0 0 1 1
0 0 0 1

⎞
⎟⎟⎠ C =

(
1 0 0 0
0 0 1 0

)
. (3)

1 https://ssl.robocup.org/game-logs/.

https://ssl.robocup.org/game-logs/
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2.1 Robot’s Trajectory and Velocity

From each data packet, we can extract the position of each robot in the field.
We captured each x and y coordinate between a play and a stop signal from
the game controller (virtual referee). We will reference henceforth such a period
as play time. This way we avoid tracking robots that team members displace
during time out.

The positioning data for robots that come from the SSL vision system (the
RoboCup program that processes cameras’ images), which transforms coordi-
nates in pixel to coordinates in the field’s system, has quantization noise: the
robot’s position oscillates between two adjacent pixels.

To bypass it, we utilized the algorithm described in Barrat, S. et al. [4]
to optimize the parameters for a Kalman smoother. We set the learning rate
to 1 × 10−2 and the regularization parameter to 1 × 10−10. After running the
optimizer for 25 iterations in a single trajectory, we smoothed all the trajectories
from our data set.

The advantage of using Kalman to smooth data is that although our obser-
vations contain only the robot’s x and y position, we can configure our state
dynamics to track the speed in the x axis and in the y axis. After doing so, the
Kalman smoother returns the velocity of the robot, in addition to its position.
To streamline the development of a prediction algorithm, we chose to track the
robot’s speed in mm/frame instead of mm/s.

2.2 Robots’ Heading

The robots orientation angle (heading) is defined within the range [0, 2π) and,
when the robot’s heading is close to 0 radians, the measurements jump too
frequently from 0 to the surroundings of 2π.

To overcome this problem, we calculated the sine and cosine of the heading
and smoothed the data using a Kalman smoother, whose parameters we opti-
mized using the optimization algorithm we described in Sect. 2. We configured
it with a regularization parameter of 1 × 10−10 and a learning rate of 1 × 10−4.
After running the algorithm for 25 iterations in a single sequence of headings, we
had the parameters to smooth all sequences of sine and cosine we obtained from
our data set. From the smoothed sine and cosine, we calculate the arc tangent
to obtain the heading in radians again.

3 Neural Network

We chose an encoder-decoder architecture for our network because it has shown
outstanding performance for sequence to sequence neural networks [13]. Our
neural network has been implemented using Tensorflow and Keras. An overview
of the architecture we developed is shown in Fig. 1a. It has an encoder which
summarizes information [5] from the past into a fixed size tensor he and a decoder
that predicts the future trajectory from the context vector z. Our model utilizes
data from only a single robot to forecast its future position.
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The decoder state initializer transforms LSTM hidden and cell states into
initialization states for the decoder’s LSTM cells. We also employed an additive
attention mechanism to score the relationship between a summarization of the
past and a prediction of the future [6]. The attention mechanism has also shown
the best performance for such task, in comparison to other techniques [6].

Encoder Decoder

Inputs

Decoder
state

initializer

Attention

Outputs

(a) Overview of the neural network we de-
veloped.

Encoder

LSTM LSTM LSTM LSTM

LSTM LSTM LSTM LSTM

(b) Simplified overview of the model’s en-
coder.

Fig. 1. Diagrams of the building blocks of our proposed architecture.

Considering the data we captured from the robots and the pre-processing we
made, we can define a measurement Pt at time t as the following:

Pt =
[
xt yy ẋt ẏt ψt

]� ∈ R
5, (4)

where xt and yt represent the position of the robot at time t, ẋt and ẏt its
velocity and ψt its heading.

If we want to use a look back window of size n to predict m time steps in
the future from t, the input is going to be the following:

X =
[
Pt−n+1 ... Pt−1 Pt

] ∈ R
n×5. (5)

The neural network outputs a sequence of speeds the robot is going to have
in the future m time steps. Let Q be the following:

Qi =
[
ẋi ẏi

]� ∈ R
2, (6)

where the subscript i represents a future time step i, so the neural network
prediction of m time steps ahead of t consists of:

Y =
[
Qt+1 Qt+2 ... Qt+m,

] ∈ R
m×2. (7)

As the velocity we use is measured in millimeters per frame, we can use (8)
and (9) to obtain the robot’s future positions from the predicted velocity.

xi = xi−1 + ẋi−1, (8)
yi = yi−1 + ẏi−1. (9)
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3.1 Encoder

Figure 1b depicts a simplified version of the model’s encoder. For simplicity,
the diagram shows an input of four time steps in the past. We use a BiLSTM
architecture for the encoder, as it has shown great performance in summarization
tasks [5]. The number of LSTM units (cells) for both the forward network and
the backward network equals the size of the look back window.

In Fig. 1b, cb ∈ R
n and cf ∈ R

n represent the cell states for the backward
and the forward network, respectively. We call hb ∈ R

n and hf ∈ R
n the hidden

states of the backward and the forward networks, respectively. They are defined
as the concatenation of the hidden state for each LSTM cell.

The encoded representation for the given input is he, which is defined as
follows:

he =
[
hf hb

]� ∈ R
n×2. (10)

3.2 State Initializer

As demonstrated in Bahdanau et al. [3], we apply a transformation to initialize
our decoder. Our approach, however, is slightly different than the one proposed
in [3]. We apply the following equations to create the initial states hd ∈ R

n

(hidden state) and cd ∈ R
n (cell state) for our decoder:

hd = tanh (W1hb + b1) , (11)

cd = tanh (W2cb + b2) , (12)

where W1, W2, b1, and b2 are trainable parameters.

3.3 Attention Aggregator

We use the additive attention mechanism as an aggregator for our encoder-
decoder architecture. The inputs for our aggregator are he as the key and hd

for the query. It outputs a context vector z ∈ R
n. We calculate the context

vector z for each time step prediction, based on the decoder state hd for the last
prediction. We will refer henceforth to z as zi as the context vector for the time
step i.

The attention mechanism serves to score each context vector zi with respect
to the decoder’s state hd at time step i, while it is generating the output trajec-
tory. It means we are “assigning a probability to each context of being attended
by the decoder” [6].

3.4 Decoder

The decoder, depicted in Fig. 2a, has n LSTM cells, which are initialized with
the output of the state initializer module (Subsect. 3.2). The initialization states
are depicted in the figure as hinit and cinit.
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Decoder

LSTM LSTM LSTM LSTM

MLP

Inputs

(a) Simplified overview of the model’s de-
coder.

Decoder Decoder Decoder

(b) Diagram of the decoder recursive pre-
diction mechanism.

Fig. 2. Diagrams of the building blocks of our decoder.

The output of the forward LSTM network is hd, which we built as the con-
catenation of all cells’ hidden state. The hd is then fed into a multilayer percep-
tron network (MLP) with linear activation to calculate Qi, so the MLP has two
neurons. We concatenate Qi−1 with zi−1 to serve as the input for the decoder.

The decoder works in a recursive manner, as shown in Fig. 2b. The figure
depicts the prediction of three time steps. To predict the first one, we feed the
decoder with ẋn and ẏn from Pn. z0 represents the context vector obtained
using the decoder’s initialization states. For the time steps after the first one,
we always utilize Qi−1 and zi−1 (calculated from hd at time step i).

4 Training

We trained the neural network for 10 epochs with batches of 2.048 elements.
We employed Adam as the optimizer, using its standard parameters [9]. We
utilized an exponential learning rate decay that follows the implementation of
Keras ExponentialDecay function with the following parameters: 10−3 as the
initial learning rate, 1000 decay steps, 0.98 as the decay rate and the staircase
parameter as false.

Our loss function L for training is the sum of the mean squared error and the
mean absolute error. We multiply this sum by a factor of 100 to avoid working
with small numbers for loss, which have shown to slow down training [11]. Our
loss function is, then, described as follows:

L(Ytrue, Ypred) =
100
K

[
K∑
k

(
Y k
true − Y k

pred

)2
+

K∑
k

|Y k
true − Y k

pred|
]

, (13)

where K is the number of samples, Ytrue represent real values and Ypred predicted
ones. The superscript k indicates which sample we are analyzing.
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We used two logs of RoboCup games to build our training and validation set
and one for our testing set. In terms of percentages, the training set contains
78.03% of all data, the validation set has 8.67% and the testing set, 13.2%.
The logs for training and validation were captured in 2019 during the games
RobotTeam versus RoboDragons and ER-Force versus MRL. For the testing set,
the data came from a 2019 log captured during the game RoboJackets versus
nAMec.

To create an element for our data set, we fragment each measurement array
for a single robot into all possible subarrays of size n + m. Then, we break each
into two arrays of size n and m. The former serves as input and the latter as
output. We normalize the data to be fed into the neural network so that is has
zero mean and unit variance.

We chose the pairs (n,m) = (30, 15) and (n,m) = (60, 30) for our architec-
ture. The former represents half a second of input and outputs a quarter second
and the latter is an input of a second of measurements to predict the next half
second. As the tuple (n,m) is variable, so is the exact number of elements in our
dataset. For n = 30 and m = 15, we have a total of 325,504 elements, and for
n = 60 and m = 30, we have 306,739. Despite this difference, the distribution of
elements in each sub-set remains the same for every n and m.

5 Testing

To properly assess the effectiveness of our algorithm, we utilized three metrics.
The mean absolute error (MAE), the average displacement error (ADE) and the
final displacement error (FDE). The ADE is the result of 14 calculated for every
predicted x and y coordinate. FDE is result of 14 considering only the position
at the last time step of each predicted trajectory. In 14, x and y are the ground
truth positions, xpred and ypred are predicted values and n is the number of
samples we have for testing.

∑√
(x − xpred)

2 + (y − ypred)
2

n
. (14)

A lower ADE implies a lower drift from the ground truth and a lower FDE
indicates a better prediction on the long term. These metrics, thus, provide us
a concrete way to measure how bad we are predicting the trajectories.

We compared our model to a Kalman predictor and to multi-layer perceptron
network. The Kalman predictor receives as input raw measurements from the
robots’ positions and updates its state matrices. The predictor has been initial-
ized with the parameters we got from the optimizer described in Sect. 2. It first
updates its state with the first n measurements for each trajectory. Afterwards,
updates are done at each time step. After each update, we use its state dynamics
matrix to forecast m time steps in the future, given the last valid measurement.
We calculate the MAE, ADE and FDE from the results using the smoothed
trajectories as the ground truth.

The multilayer perceptron (MLP) developed for the comparison, in turn, con-
sists of four layers. Every layer has a ReLu activation function, except the last,
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which has no activation. The layers have 128, 1024, 128 and 2 m neurons, respec-
tively. The MLP network receives the same input X as our proposed model. Its
last layer predicts Q for each of the m future time steps.

To perform inference in the context of a Robocup game, the neural network
must run in real time, so we also analyze the execution time of each proposed
solution, calculating it for 100 inferences and getting the average. We discarded
the first inference time before starting to count the time, as it involves load-
ing libraries. We optimized the neural network using Tensorflow Lite default
optimizer for inference in CPUs. We set a restriction of inference time to the
maximum of 0.016 s, the interval between two vision frames.

We have also done a qualitative analysis of the predicted trajectory, i.e. how
well it predict sharp turns, how noisy the prediction is and how trustworthy the
results are.

6 Results

We present on Table 1 the results of the MAE, FDE and ADE for the pro-
posed architecture, the MLP network and the Kalman predictor, using (n,m) =
(30, 15).

Table 1. Comparison between our architectures and other forecasting methods for
(n,m) = (30, 15).

Metric Proposed model MLP Kalman predictor

MAE 53.95 67.73 155.70

ADE 43.64 53.89 123.60

FDE 4.80 6.36 16.46

Our proposed sequence-to-sequence network outperforms the Kalman pre-
dictor and the MLP network. We were able to decrease MAE, ADE and FDE,
respectively in 65.35%, 64.69% and 70.83%. In comparison to a simple MLP
architecture we improve our results, respectively, in 20.34%, 19.02% and 24.52%.

In Table 2 we present again the values of MAE, FDE and ADE for the meth-
ods we are comparing. This time we used (n,m) = (60, 30).

Table 2. Comparison between our architectures and other forecasting methods for
(n,m) = (60, 30).

Metric Proposed model MLP Kalman predictor

MAE 328.23 440.49 705.18

ADE 261.82 350.57 560.02

FDE 22.79 30.03 42.31
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For (n,m) = (60, 30), errors are naturally higher, as we are predicting more
time steps into the future and all methods tend to diverge in longer predictions.
However, our model still outperforms the Kalman predictor and the MLP net-
work. With respect to the Kalman filter, we improve MAE, ADE and FDE in
53.45%, 53.32% and 46.13%, respectively. Considering the MLP network, the
improvements are 25.48%, 25.31% and 24.10%.

Optimizing the (n,m) = (30, 15) for inference using Tensorflow Lite default
optimizer, we get an execution time of 0.6 ms for each sample in an Intel Core i7-
7550U CPU. When we consider a batch prediction of eleven inputs (the number
of robots in a team), we optimize the model again and achieve an execution
time of 2.08 ms for each batch of eleven elements. The optimization increases
the MAE, ADE and FDE values in 0.1%.

For the (n,m) = (60, 30) model, the optimization for a single input gives an
execution time of 1.85 ms in the aforementioned CPU model. When we optimize
for the batch prediction of eleven elements, our inference time for batches is
11.51 ms. The same worsening in the performance scores has been observed here.

SSL robots have a diameter of 18 cm. The final displacement error between
the real trajectory and the predicted one is less than 6 mm for a prediction of 15
time steps. In terms of dimensions, the error is a remarkable result. Considering
the prediction of 30 time steps, the FDE is 22 mm.

We present in Fig. 3a many predictions on a curved trajectory. The black line
represents the ground truth and the green lines represent forecasted trajectories
from several consecutive inputs. It illustrates how the neural network updates
its predictions based on newer information. We can notice that the algorithm
works well when predicting the curvature radius of a turn. In addition, Fig. 3b
highlights the fidelity of prediction while performing a turn.
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(a) Up close in a curved trajectory, con-
taining consecutive predictions (in green),
compared to the whole trajectory (black),
using (n,m) = (30, 15)
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(b) Single prediction for the (n,m) =
(60, 30) network (green), compared to the
true trajectory (red).

Fig. 3. Plots of examples of predictions. (Color figure online)

It is worth mentioning that the network struggles with sharp turns. During
a sharp turn, there is not enough information in the past about what the robot



Trajectory Prediction for SSL Robots Using Seq2seq Neural Networks 37

might do, no matter how big is the look back window. As soon as the robot start
turning, the neural network quickly correct its prediction to the right direction.

The network with (n,m) = (60, 30) provides us with more information about
the future, nonetheless its short term prediction is not as accurate as that of the
(n,m) = (30, 15). If we calculate the MAE, ADE and FDE for the look back
window of 60, considering only its first 15 predicted time steps for the error
metrics we got a MAE of 64.32, an ADE of 52.08 and a FDE of 5.98.

7 Conclusions

We applied time series forecasting techniques to the context of RoboCup Small
Size League to propose a sequence-to-sequence architecture that outperforms
a Kalman predictor and a multi-layer perceptron network while meeting our
inference time restrictions. The next step in our research will be integrating them
to our software pipeline to identify whether we need a more precise prediction
or more time steps in the future. A simple video of the network forecasting a
trajectory is available at Youtube2.

Future work can be done to improve our network. We can leverage the graph
architecture introduced in [12] to model the whole opponent team and predict
the trajectories of all robots. This is interesting because a single entity controls
all the robots of a team in a SSL game. In addition, we can add new features
to the prediction, like the kick and the dribble actions as they are important for
the decision making of our team. We can also aggregate more information from
the game to improve our prediction, for using the trajectory of the ball and of
other robots as inputs might provide us with improved results.

As we are committed to contributing to the RoboCup community and to
ensuring the transparency of our research, every code we used at this paper is
available at our git repository3. It also includes a bash script to download the
dataset from the RoboCup’s official repository.
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Abstract. In this paper, we propose an approach for gait phase detec-
tion for flat and inclined surfaces that can be used for an ankle-foot
orthosis and the humanoid robot Sweaty. To cover different use cases, we
use a rule-based algorithm. This offers the required flexibility and real-
time capability. The inputs of the algorithm are inertial measurement
unit and ankle joint angle signals. We show that the gait phases with
the orthosis worn by a human participant and with Sweaty are reliably
recognized by the algorithm under the condition of adapted transition
conditions. E.g., the specificity for human gait on flat surfaces is 92 %.
For the robot Sweaty, 95 % results in fully recognized gait cycles. Fur-
thermore, the algorithm also allows the determination of the inclination
angle of the ramp. The sensors of the orthosis provide 6.9◦ and that of
the robot Sweaty 7.7◦ when walking onto the reference ramp with slope
angle 7.9◦.

Keywords: Orthosis · Gait phase detection · Inclined surface ·
Inertial measurement unit · Humanoid robot · Sweaty

1 Introduction

Gait phase detection is a frequently discussed area in biomechanics. Gait phase
detections (e.g. detecting initial and final contact of the feet with the ground)
using spatially fixed force plates, motion capture systems, or the combination
of both systems currently represent the reference [1,3,9,12]. In this work, we
will study the scope of application of a gait phase detection approach both for
humans handicapped in their locomotion and for humanoid robots. Our focus is
specifically on bipedal walking on inclined surfaces.

An actuated orthosis can allow people with impaired dorsiflexion of the ankle
to walk again on inclined surfaces [2,3,5]. Figure 1(b) shows an example of such
an orthosis. The sensors built into the orthosis use an algorithm to detect gait
phases and the angle of inclination of the walking surface [13].

For humanoid robots, there are also several possible applications. Knowledge
of the gait phase for each leg can be an input for stability-maintaining control
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Eguchi et al. (Eds.): RoboCup 2022, LNAI 13561, pp. 39–49, 2023
https://doi.org/10.1007/978-3-031-28469-4_4
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(a) Humanoid robot
Sweaty

(b) Orthosis for human

Fig. 1. Humanoid robot Sweaty (a), which was originally designed to compete in the
RoboCup Soccer and the orthosis (b).

algorithms. E.g., we could determine a leg with which to perform a reflex like
quick motion (e.g., a forward lunge) for stabilization. Similarly, we can assign
either a position- or force-controlled control algorithm to specific gait phases.
We can use the gait phase detection as a transition condition between position
or force-control [6]. In analogy to the use by people with a handicap, we can also
estimate the slope angle of the walking surface. This allows an adjustment of
the ankle joint angle and the leg length for bipedal walking on sloped surfaces.

Both application scopes indicate a positive influence of gait phase detection
for walking on inclined surfaces. To detect gait phases in different application
areas, we propose an algorithm that uses sensor signals of an inertial measure-
ment unit (IMU) and the angle of the ankle joint as inputs. We focus on an
algorithm with a low time delay. We validate the algorithm both by measure-
ments with a self-developed orthosis and by simulated and physical data of the
humanoid robot Sweaty (cf. Fig. 1 (a)).

2 State of the Art

There are many published methods for gait phase detection in the literature.
On the one hand, these differ in the number of detectable gait phases. Between
two and eight phases can be detected [14]. Likewise, different sensors are used
such as force sensors [13], electromyography (EMG) [1] and IMU sensors [6,11].
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Various detection algorithms e.g. threshold methods [4,8,10] or machine learning
[5,7,11] are also used.

IMUs are widely used because of the measurable quantities, weight, low
energy consumption and mounting options on different parts of the body [14].
From Vu et al. [14] it appears that better results are obtained when placing the
IMU on the shank compared to mounting it on the thigh or hip.

Furthermore, IMUs are also combined with machine learning (ML) methods
such as long short-term memory [11], hidden Markov models [7,11], or neural
networks [5]. Vu et al. show in [14] that these algorithms are also suitable for
online applications, but these methods require high computing capacities. Fur-
thermore, ML methods require a sufficiently large data set to enable training
[4]. In perspective of frequently changing gait behavior, such as for humanoid
robots, we see a high effort to generate the training data sets.

In contrast to the approaches mentioned above, we use a rule-based method
because it offers both the necessary real-time capability and the flexibility to
adapt to the varying use cases. Based on defined transition conditions, we detect
the gait phases using a state machine. We estimate the inclination angle of the
surface during the stance phase through the orientation of the IMU.

The contribution of our method is that we can determine the inclination of
the walking surface. This allows adapting the planned trajectory of the feet of
humanoid robots for walking on inclined surfaces. For this purpose, the planned
orientation and the leg length are adjusted depending on the gait phase. With
the help of this information, the actuated orthosis can allow disabled people to
walk on inclined surfaces by actively adjusting the foot pitch angle to the angle
of inclination.

3 Method

Some previous publications [8,10] divide the human gait cycle into four different
phases. We use the same four gait phases in our work. These can be detected
with a single IMU. For the detection of more finely differentiated gait phases,
we would need additional sensors, such as additional IMUs or force sensors, as
shown in [14].

For this classification of the gait phases, the contact phase begins with the
initial contact with the ground surface. When the foot is entirely touched down,
the stance phase is initiated. As soon as the heel lifts off, the pre-swing phase
begins. After the foot is entirely lifted off the surface, the swing phase begins.
With the following contact of the heel with the surface, the current gait cycle
ends. Likewise, this contact represents the starting point of the next gait cycle.

For the transition between the gait phases, we define the transition conditions
T1 to T4, shown in Fig. 2. The transition conditions are described by logical
operators. Here, three measurements in a row and/or their time derivatives must
fulfill these conditions to switch the state. We calculate the derivatives by a
backward difference. The quantitative threshold values are determined and set
using recorded IMU data from the orthosis and the simulation. The transition
options depending on the current gait phase are defined by the state machine.
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Fig. 2. Model of the ruled-based algorithm implemented. The detectable gait phases
are visualized in gray boxes. The transition conditions are labeled with the abbreviation
T1 to T5, where T5 is only used for the robot.

For humanoid robots, we add the dashed transition condition T5 in Fig. 2.
This allows the transition from the swing to the stance phase. We need this to
reinitialize the gait phase detection in case of a deviating gait pattern due to
external perturbations or instabilities.

We use the sensor signals of the IMU Grove IMU 9DOF and the rotation
angle sensor AS5048 as the input signals. The IMU provides the spatial orien-
tation, of which we use the Cardan angle about the y-axis (γy) and the linear
acceleration vector a of a body segment in the transition conditions. Further-
more, we use the time derivative of the ankle joint angle βy, the acceleration
coefficients ax and az, as well as that of the rotation angle γy in the transition
conditions. We use the time derivative to qualitatively identify the trend of the
curve development. We do not use their quantitative values. The sensors are
mounted on the orthosis at the height of the upper ankle joint and on the foot
segment of Sweaty.

Generally, the data from the IMU is overlaid with white noise. We filter the
input signals by a moving average. We record the sensor data from the orthosis
with a sampling frequency of 300 Hz and we choose a filter length of the 10th
order. Physical and simulated locomotion data of the robot Sweaty are also used
for the application of the algorithm. For the simulation, Webots by Cyberbotics
Ltd. is used (cf. Fig. 3). This simulator was used for the virtual RoboCup 2021.

The field bus frequency of the robot Sweaty is 125 Hz. Similarly, we simulate
the robot with the fixed step size of 8 ms. We choose a filter length of the 4th
order. Furthermore, we subtract the acceleration due to gravity as a function of
IMU rotation from the measured acceleration vector a. We verify the algorithm
by the detection precision and the time delay.

The rule-based algorithm was tested with custom made orthosis on three
human participants, two healthy and one with foot drop syndrome, and on the
robot Sweaty. The orthosis is adapted to the individual anatomy of the lower
extremity and is not applicable to other participants. Due to this the count of
human participants was limited to three. For the evaluation of the algorithm,
video data of the human subjects walking on a treadmill was compared with the
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Fig. 3. Sweaty walks on a ramp with a slope of 7.9◦ in the simulation environment
Webots.

synchronized data of the IMU. We also used this procedure in the evaluation of
the real data and simulation results of Sweaty. In the following we show the data
and results from one healthy participant and the robot Sweaty.

4 Results

We evaluate the gait phase algorithm on the level and inclined surface using
sensor data from the orthosis and sensor data as well as simulation results from
Sweaty. Since the robot Sweaty can currently only walk on level surfaces, we use
just the simulation results for the evaluation of the gait phase detection on the
inclined surfaces. For the evaluation, we determine the transition conditions as
shown in Table 1.

Figure 4 (a) and (c) show curves of the acceleration coefficients ax and az for
one gait cycle. Thereby, Fig. 4 (a) contains the sensor data of the orthosis and
Fig. 4 (c) the simulated data from the robot Sweaty. These curves show similarity
in their behavior.

The gait cycle begins and ends with the contact phase. This phase is shown
in both Fig. 4 (a) and (c) characterised by a local acceleration minimum for ax.
The stance phase is recognisable by acceleration values ax ≈ 0 and az ≈ 0. The
pre-swing is characterized by a positive deflection of az. Thereby, the deflection
is more pronounced in human motion than in the gait of the robot Sweaty. The
swing phase is defined by the most prominent curve section of ax. There is a
positive acceleration peak followed by a negative peak in both figures. The zero
intersection of ax ais approximately at the midpoint of the swing phase. The
described negative acceleration peak of ax marks both the endpoint of the gait
cycle and the starting point of the periodically repeating gait cycle. In contrast,
the duration of a gait cycle shows a more distinct difference. Humans need 1.40 s,
the robot Sweaty needs 0.44 s for a complete gait cycle.
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Figure 4 (b) and (d) shows the curves of the ankle angle βy and the IMU
angle γy. For an easier interpretation, we have mirrored the curves. Therefore,
for example, the dorsal extension of the foot is now assigned with a positive
value. This convention applies to all the following figures that contain angle
curves.

The curves in Fig. 4 (b) and (d), however, are different in their progression.
In the contact phase in Fig. 4 (b) the ankle joint is almost in the neutral zero
position. The IMU rotation is negative because the leg is in front of the body
and the toe points upwards in this phase. Compared to Fig. 4 (b), (d) shows a
curve with significantly lower amplitudes for γy. While the humans have a range
of approx. −31◦ to 40◦, the robot has only a range of −23◦ to 3◦. The ankle joint
angle βy also has a much steadier progression than that of humans and is at a
much lower baseline. During the stance phase, the ankle joint βy is close to zero
in humans and Sweaty ’s averages approx. −18◦. The subjects’ amplitudes for
the ankle joint angle βy range between approx. −12◦ and 9◦. The robot Sweaty
shows a smaller range of approx. −27◦ to −17◦.

4.1 Detection Precision and Time Delay

To determine the detection precision and the overall time delay, we randomly
selected 300 gait cycles from a data set. The ground truth for evaluating our
algorithms applied to the orthosis are synchronized video, force plate and IMU
data. For Sweaty, we use the synchronized 6-axis force/torque and IMU sensor
signals and simulation data.

For the participant wearing our orthosis, we correctly detect 92 % of the gait
phases. When applying the algorithm to Sweaty, we detect the stance, pre-swing
and swing phase with an accuracy of 98 % and 95 % for the contact phase.

The overall time delay τoverall is caused, among other factors, by the moving
average filter used. Here, we can calculate this time delay with the equation
τ = n−1

2 · Δt. The order of the filter is n. Δt is the difference between two
measured values in time.

Considering that the sensor measurements and/or their time derivatives have
to fulfill the transition conditions three times in a row. We have to add two
additional Δt to τ . This leads to an overall time delay τoverall of 21.67 ms for the
gait of the participant. The time delay for the detection of Sweaty is 28 ms.

4.2 Determination of the Slope

Figure 5 shows γy of the IMU for walking on level and inclined surface of a subject
with orthosis (a) and of Sweaty (b). Figure 5 (a) shows similar developments
between the two curves. The curves significantly differ in the amplitude of the
peaks. For walking on inclined planes, the positive angular deflections are less
prominent. In addition, in the stance phases the inclination angle of the surface
can be recognized by the significant, almost constant curve progression. In the
stance phases of the displayed gait cycles in Fig. 5 (a) and (b), the orthosis
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(b) Ankle joint angle and rotation of the orthosis
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(c) Acceleration of Sweaty’s foot
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(d) Ankle joint angle and rotation of Sweaty’s foot
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Fig. 4. Plot of accelerations a, ankle joint angle βy and the orientation of the IMU γy

for bipedal locomotion of a human being and the robot Sweaty. The recognized gait
phases are delineated and labeled with vertical lines.

measures inclination angles of −0.4◦ and −0.3◦ for the flat ground. For the
inclined surface it measures inclination angles of 6.6◦ and 7.2◦.

The curves from Fig. 4 (b) are also similar in shape. A characteristic difference
is that the curve of γy,sloped is shifted in a positive direction. The IMU in Sweaty ’s
foot determines −0.2◦ and 0.1◦ for the level ground. For the inclined ground it
gives 7.4◦ and 7.8◦. The reference ramp has an inclination angle of 7.9◦.

4.3 Validation with Physical Data

Figure 6 (a) and (b) shows recorded data of the physical robot Sweaty for walking
on the flat surface. In Fig. 6 (a) and (b), we see also the characteristic peaks of
the acceleration coefficients ax and az compared to the simulation. Differences
are in the amplitudes of the local extremes. Equally, the gradients of the curves
during the swing phase are smaller in contrast to Fig. 4 (c). On the other hand,
the ankle joint angles βy and the rotation of the IMU γy are almost identical to
the values of the simulation in Fig. 4 (d).
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(a) Orientation angle of the IMU on the orthosis
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(b) Orientation angle of the IMU on Sweaty’s foot
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Fig. 5. The rotation of the IMU γy displays the participant with the orthosis (a)
and the robot Sweaty (b) for level and inclined surfaces. The solid curves illustrate the
rotation of the IMU γy,level on leveled and γy,incline dashed lines on the inclined ground.
The horizontal dotted line indicates the inclination of the surface.

5 Discussion

From Figs. 4, 5 and 6 it can be seen that different curve progressions are deter-
mined for each application scenario. The selection of the rule-based algorithm
proved to be practicable. Due to the flexibility, we assume the advantages of
ML-based algorithms here.

The occurring differences in the curves can be explained, for instance, by
the fact that Sweaty adjusts the leg length difference during walking in the
double and single support phases by knee and hip flexion. In the current gait
patterns of Sweaty, there is only a minimal rolling motion implemented. On the
one hand, this results in a negative shifted curve for the ankle joint angle. On
the other hand, there is much less movement of the feet compared to humans.
The differences in the amplitudes of the acceleration curves between physical
and simulated sensor data of the robot Sweaty can also attribute to the elastic
and shock-absorbing sole on the physical robot feet.

Table 1. The transition conditions applied for gait phase detection for a participant
and the humanoid robot Sweaty.

Human conditions Robot conditions

T1 az > 3 m/s2 ∧ βy > 5◦ ax < 0 m/s2 ∧ az > 0 m/s2

ȧz > 0 m/s3 ∧ β̇y > 0 ◦/s γy > 0 ◦ ∧ ȧz > 0 m/s3

T2 ȧz < 0 m/s3 ∧ β̇y < 0 ◦/s ȧx > 0 m/s3 ∧ ȧz > 0 m/s3 ∧ γ̇y < 5◦/s

T3 ax < 0 m/s2 ∧ γy < 0 ◦ ∧ γ̇y > 0 ◦/s az > 0 m/s2 ∧ γy < 0 ◦ ∧ ȧx > 0 m/s3

T4 β̇y > 0 ◦/s ax ≈ 0 m/s2

T5 NA ax ≈ 0 m/s2
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(a) Acceleration of Sweaty’s foot
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(b) Ankle joint angle and rotation angle of Sweaty’s foot
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Fig. 6. The plots show under physical conditions the accelerations a in (a), the ankle
joint angle βy and the orientation of the IMU γy in (b) for the robot Sweaty. The
recognized gait phases are delineated and labeled with vertical lines.

Although there were significant differences in the curves and the motion, the
algorithm was able with adapted transition conditions to correctly identify the
gait phases for all three scenarios. Compared to the algorithm described in the
review by Vu et al. [14], we achieve similar detection precision values. For human
with orthosis, we detect 92 % and for the robot Sweaty 95 % correctly. Also in
case of the time delay we lie with 21.67 ms for humans and 28 ms for robots in
the average compared to the reviewed approaches. Consequently, our algorithm
seems suitable for online applications.

We were able to show that the algorithm is able to deal with high variance of
gait patterns. We can detect the gait phases of them after adapting the declared
parameters to the specific characteristics of the gait patterns. Therefore, we
assume our approach is applicable for other participants and robots.

For the reference inclination of 7.9◦, we detected a mean value of approx. 6.9◦

with the orthosis and 7.6◦ with the robot in the simulation. With this adjustment
of the βy, it was now possible for the test person with foot-drop symptoms to
walk on a ramp.

The difference in the referenced inclination angle can be explained by the
positioning inaccuracy of the IMU and the elasticity of the soles on the feet.
Similar behavior is evident for the robot Sweaty. By applying the algorithm,
it can walk on the inclined surface in the simulation. Due to the rigid-body
modeling of the segments in the simulation, the deviation for the determined
inclination angle is smaller compared to the determinations of the orthosis.

6 Conclusion and Future Work

With this work, we demonstrate that with our approach for a gait phase detection
in combination with the self-designed orthosis, the test person was able to walk
on inclined surfaces. By similarity, the method transfered to the robot Sweaty
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in the simulation. As a result, the robot Sweaty was able to move stable on the
inclined plane.

The selection of a rule-based algorithm in combination with a filtering
method leads to the requirement of measurement data from the previous time
steps. On the one hand, the real-time ability is ensured by the underlying algo-
rithm because no optimization iterations are needed. The flexibility of the rule-
based algorithm is an advantage concerning the highly varying curves depending
on the application. One the other hand, there is an overall time delay. To further
reduce the time delay, specially adapted filter methods could be implemented.

Next, we will validate the algorithm in further investigations using a force
plate and an optical motion capture system. For the application on humanoid
robots, the algorithm will be extended for curves, lateral and backward walking.
In the future, the algorithm will also be used to allow the robot Sweaty to walk
on inclined surfaces.
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Abstract. This work introduces a ultra-fast object detection method
named FLA-CNN for detecting objects in a scene from a planar LIDAR
signal, using convolutional Neural Networks (CNN). Compared with
recent methods using CNN on 2D/3D lidar scene representation, detec-
tion is done using the raw 1D lidar distance signal instead of its projection
on a 2D space, but is still using convolutional neural networks. Algorithm
has been successfully tested for RoboCup scene analysis in Middle Size
League, detecting goal posts, field boundary corners and other robots.
Compared with state of the art techniques based on CNN such as using
Yolo-V3 for analysing Lidar maps, FLA-CNN is 2000 times more efficient
with a higher Average Precision (AP), leading to a computation time of
0.025ms, allowing it to be implemented in a standard CPU or Digital
Signal Processor (DSP) in ultra low-power embedded systems.

Keywords: Lidar processing · Scene analysis · Convolutional neural
networks · Low-power

1 Introduction

Mobile autonomous robots in unknown or changing environment need to take
decisions based on the surrounding scene analysis. For this task, two types of
sensors are mainly used: cameras and LIDAR. This latter is an interesting exte-
roceptive sensor in robotics providing reliable maps of the surrounding environ-
ment, with a better precision in object positioning than using only cameras. This
interesting feature greatly helps to ensure a high level of safety in human-robots
interactions.

This paper focuses on autonomous robot soccer scene analysis, including
robots, humans, goals (posts), and field boundary using a planar Lidar, but with
limited computing capabilities, and at least without using a GPU (such as for
image processing). Chosen Lidar is a Pepperl+Fuchs R2000 UHD one generating
a 1D sequence of 1440 distance measurements at each scan of the scene, 50 times
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per second, with a maximum range of 60 m. Application of this paper is analysis
of RoboCup Middle Size League scenes. RoboCup is an international competition
where robot teams play soccer autonomously. Its main objective in the future is
to won against a professional, human soccer team by 2050. In the Middle Size
League (MSL), teams are composed of five robots playing autonomously on a
22 m by 14 m soccer field with a real soccer ball.

Having limited computing capabilities have a deep impact on the algorithms
that can be used in a robot. Most scene analysis algorithms are using 2D or even
3D representations of the scene, leading to huge computation time on limited
computing systems. This paper aims at introducing a novel algorithm for a
LIDAR scene analysis, using state of the art CNN with end to end learning, but
without using a 2D representation of the scene. Instead of that CNN is applied
to the raw 1D lidar signal, using the 1440 distance data of each LIDAR rotation
as input tensor. This algorithm is called Fast Lidar Analysis using Convolutional
Neural Network (FLA-CNN). It achieves an excellent precision while having a
very low detection time and a low power consumption, making it usable for
mobile robots with CPU or DSP for real time detection, without requiring a
GPU.

This work is divided into 3 parts:

– In Sect. 2, an overview of scene analysis techniques using cameras or LIDAR
is presented, focusing on their advantages and disadvantages.

– In Sect. 3, Fast Lidar Analysis using Convolutional Neural Network (FLA-
CNN) algorithm is introduced, allowing to analyse scenes with low latency
and computing power requirements.

– In Sect. 4, application to the RoboCup scene analysis is presented, with a
focus on dataset creation and labeling, training process, and a discussion on
results and performance.

2 State of the Art in Robot Scene Analysis

Deep neural networks, and particularly convolutional neural networks are consid-
ered as state of the art models for feature extraction due to their great ability to
learn their features and classifiers from data into an end to end learning process.
However, their main drawback is to require high computing capabilities, making
them difficult to implement in an embedded computer or microcontroller. More-
over, using these algorithms for controlling fast robots in real time, requires a fast
processing time considering the speed of the robots (up to 6 m/s in Middle Size
League) corresponding to at least 30 frame per second (FPS). Combining these
two aspects, high frame rate and embedded processing, is the key for efficient
embedded robot control.

2.1 Object Detection Based on Images

Camera is one of the most used sensor in robotics combined with processing
for scene analysis. Among the most efficient ones are detectors based on CNN,
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having one stage or two stages. Both of them have interesting performances in
terms of accuracy, but are relatively slow [1,2]. [1] gives an interesting comparison
of these detectors on Coco dataset: using an Intel i7-8700 CPU and an NVIDIA
GeForce RTX 2080Ti 12GB GPU on 640×960 images, Average Precision (AP)
reaches 32.4 on the most accurate models (i.e. Faster RCNN Res2Net101), but
at the price of a computation time of 63 ms. Reaching a computation speed of 30
FPS requires to use Mobile Net Models at the price of a loss in accuracy (mAP
= 24.3).

An interesting result in [1] is that two stages models [3–8] are more accurate
than one stage ones such as YOLO [9–11], even if the main trend is nowadays
to use these latter. Figure 1) shows a result of scene analysis on a 360◦C image
using YOLOv3. This image has been recorded using an omnidirectional camera
and transformed to a panorama image because Yolo algorithms are not rotation
invariant and cannot be applied directly to omnidirectional images. Models have
been proposed to cope with this issue [12,13] but are more resource consuming.

Fig. 1. YOLOv3 for object detection running on a GPU with omnidirectional camera.

In conclusion, cameras are potentially rich sensors but requires a high pro-
cessing power for extracting segmenting the scene at a high FPS rate, making
them difficult to use on embedded CPU or micro-controllers. Considering stereo-
vision cameras would also be interesting, but it would require more computing
power making them out of scope on proposed application to MSL robots.

2.2 Object Detection Based on 2D Map Lidar Images

An alternative to the use of cameras, is to use 2D or 3D lidars. An example of
2D map obtained using a Pepperl+Fuchs R2000 lidar is presented in Fig. 2.



Ultra-Fast Lidar Scene Analysis Using Convolutional Neural Network 53

Fig. 2. 2D map image created with 1D lidar signal

This kind of 2D image can be analysed using image processing algorithms
for detecting shapes or objects. However, doing that would lead to the same
drawbacks as for image processing: important computation time and computer
power requirement.

Considering the strong constraints of embedded systems in terms of limi-
tations in computing power and the need for high FPS, another approach is
proposed in this paper, using CNN on th raw 1D-Lidar signal.

3 Contribution: Fast Lidar Analysis Using Convolutional
Neural Network (FLA-CNN)

In this paper, Fast Lidar Analysis using Convolutional Neural Network (FLA-
CNN) is introduced. It aims at analysing 1D raw lidar distance data using a
state of the art deep learning model predicting corners of a RoboCup field and
posts of a RoboCup goal. FLA-CNN design has been inspired by YOLO: its
design is being presented in details.

Notation. We use P = (Pd, Pθ, Pconf , Pclass) ∈ �4 to denote a ground-truth
points, where Pd, Pθ are the distance and its corresponding angle in robot refer-
ential, Pd ∈ [0, 60] and Pθ ∈ [0, 2π]. Pconf is the confidence score of an existing
object and Pclass is the index of the corresponding class name to the detected
object. Similarly P̂ = (P̂d, P̂θ, P̂conf , P̂class) ∈ �4 denotes a predicted object.

3.1 CNN Architecture

FLA-CNN network can be divided into two parts: feature extractor neural net-
work (FNN) (Eq. 1) and object regression network (ORN) (Eq. 2).

F = FNN(D) (1)

T = ORN(F ) (2)

where D ∈ R
1440 is the input tensor featuring the measured distance for each

angle during a full rotation. F denotes a feature vector and T denotes a list of
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predicted points that represents the objects in 1D signal in transformed notation
(the relationship between T and P will be defined soon - Eq. 11). Figure 5 shows
the overall the FLA-CNN architecture, while below we describe each stage in
some depth.

Feature Extractor Network FNN: The feature extractor network, takes an
input vector D and outputs a list of features T. This stage is composed with
2 layers, each layer apply a convolution 1D, batch normalisation, max pooling
and leaky relu as an activation function. The first layer takes as input the 1D
signal(D), the second layer takes as input the output of the first layer. This
network extract features from signal, only one layer is not capable to identify
the signal for that reason we added the second layer that will complete the
recognition stage (Fig. 3).

Fig. 3. Model network for object detection using 1D lidar signal detection

The convolution 1D is faster than 2D one, decreasing drastically computa-
tional complexity, making it suitable for running on mobile devices, embedded
systems, and on some microcontrollers and DSP.

In each convolutional layer, the forward propagation is expressed as follows:

xl
k = bl

k +
Nl−1∑

i=1

conv1D(wl−1
ik , sl−1

i ) (3)

where xl
k is defined as the input, bl

k is defined as the bias of the kth neuron at
layer l, sl−1

i is the output of the ith neuron at layer l-1, wl−1
ik is the kernel from

the ith neuron at layer l-1 to the kth neuron at layer l.
The output of the convolutional layer is followed by a batch normalisation

layer for fixing means and variances. Learning is done using stochastic optimi-
sation due to the memory limits, for reducing over-fitting and training time.
Normalisation process is expressed as follows, where B is a mini-batch of size m
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of the whole training dataset. The mean and variance of B could be expressed
as:

μB =
1
m

m∑

i=1

xi (4)

σB2 =
1
m

m∑

i=1

(xi − μB)2 (5)

For a layer of the network with d-dimensional input, x = (x(1), ..., x(d)), each
dimension of its input is then normalized (i.e. re-centered and re-scaled) sepa-
rately,

x̂k
i =

xk
i − μk

B√
σk2

B2 + ε
(6)

where k ∈ [1, 1440] and i ∈ [1,m]; μ
(k)
B and σ

(k)2

B are the per-dimension mean
and variance, respectively.

ε is added in the denominator for numerical stability and is an arbitrarily
small constant we used ε = 1e−6. The resulting normalized activation x̂(k) have
zero mean and unit variance, if ε is not taken into account. To restore the rep-
resentation power of the network, a transformation step then follows as

yk
i = γkxk

i + βk (7)

Object Regression Network. Following the FNN, a separate MLP is applied
to each feature vector F to produce a transformed version of object points predic-
tions, noted T < Nθ, Nd, 3+Nclasses >, a 3-dimensional matrix where Nθ = 10 is
the numbers of angular cells (size of each cell is 0.63 rad). Nd = 10 is the numbers
of radial cells (size of each cell is 6 m). First and second indexes correspond to
the location (θ, d) in the prediction polar grid, and last index corresponds to the
intra-cell predicted position and classification of the point in the considered polar
grid cell with the following information: TCellθ the predicted point angle in the
considered cell, TCelld the predicted distance in the considered cell, TCellConf

the probability that an object exist in the considered cell and TCellClassi
the

probability that the object belongs to the ith class.
Exact coordinates of the object in the signal can be obtained using the fol-

lowing equations:

Pd = (d + Sig(TCelld))Sd (8)
Pθ = (θ + Sig(TCellθ))Sθ (9)

Pconf = Sig(TCellConf )) (10)
Pclassi

= softmax(TCellClassi
) (11)

where Sig(·) is the logistic (sigmoid) activation function is defined by:

sig(x) =
1

1 + e−x
(12)
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where Softmax() is the normalized exponential function is defined by:

softmax(z)i =
ezi

∑k
j=1 ezj

for i=1...k and z = (z1...zk) ∈ �k (13)

where Sd is the radial grid size Sd = max(d)
Nd

and where Sθ is the angular grid size Sθ = 2π
Nθ

A flatten layer has been added between the FNN and OPN, and all the feature
vectors obtained with the CNN 2 layers in the FNN are transformed to one vector
that will be the input for the final multi layer perceptron. The number of neurons
in the last MLP layer must be equal to (Nd ∗ Nθ ∗ (N c + 3), where Nθ is the
number of grid bellowing to x, Nd is the number of grid bellowing to y axis and 5
represent the predictions coordinates (T̂ = (T̂Celld, T̂Cellθ, T̂CellConf , T̂CellClassi

)
∈ �5) where N c is the class numbers.

4 Application to the RoboCup Scene Analysis

4.1 Data Set Creation and Labelling

Data uses in this work have been recorded using Robot Club Toulon (RCT)
robots participating to RoboCup Middle Size League, using a Pepperl+Fuchs
1D lidar delivering 1440 distance measurements per rotation (angular resolution
is 0.25◦), 50 times per second with a maximum range of 60m. Its precision is
approximately ±1 cm. This work aims at detecting field boundary corners and
goal posts. These information are sufficient for computing position of our robot
in the field using distance and angles of each detected post, and developing
strategies for playing soccer and shooting with precision.

Signal labelling application has been designed for labelling 1D lidar signal
easily, with labels having the same format as the model output discussed in
(3.1). This labelling tool uses data files containing timestamped Lidar data that
is decoded and extracted to create one lidar file for every lidar sample, each file
name containing the timestamp of the lidar acquisition. Each file contains 1440
lines and 2 columns, first one for the distance and second one for the lidar angle
in robot referential.

In a LIDAR scene recorded in our RoboCup field, four points can be con-
sidered as field boundary corners, and two of them can be considered as posts
(our dataset has been recorded with only one goal in the scene). Creating labels
directly on the 1D signal is difficult and would lead to many faults in the dataset:
using a 2D representation, only for labeling 1D signal, is a better way to easily
find and label field corners and posts in the scene (Fig. 4).
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Fig. 4. LIDAR data signal labeling: 1D signal (left) and 2D map (right). (Color figure
online)

For transforming each 1D lidar sample to a 2D map, following transformation
is used, where d is the measured distance, θ the measurement angle, and (x, y)
the cartesian position of the obstacle in the robot referential:

x = cos(θ) ∗ d (14)
y = sin(θ) ∗ d (15)

Once the map is created, object class is selected manually, and cartesian map
coordinates are transformed back to polar coordinates for labeling a specific point
in the 1D signal. As shown in (Fig. 4), 4 points have been labelled in pink for the
boundary corners, and 2 points have been labelled in blue for the posts. Inverse
transformation (from cartesian to polar point) is expressed as follows:

d =
√

x2 + y2 (16)

θ = 2arctan(
y

x + d
) (17)

This process is repeated for every lidar Sample, after each annotation for
each sample an xml file is created that contain distance, angle and the class
name of each object which is represented by a point on the 2D Map. Once the
labeling process is finished, a new dataset with a unique .txt file containing lidar
1D data and its corresponding .xml file for the labels is generated.

4.2 Training

FLA-CNN has been trained from scratch on our dataset, as model has been
fully customised for our application. During training, model prediction has been
optimised by minimising the loss function (Eq. 18). Output of our model is a
tensor of dimansion < Nd = 10×Nθ = 10× (3+NClasses) = 5) >, since we have
2 objects classes (goals and corners) to detect, so that every grid may contain
1 or in some cases 2 objects. Anchors boxes for multiple detection in the same
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grid cell are not used, since object bounding boxes have same size always in the
2D map.

Proposed loss function is a sum of squared errors between the different com-
ponents of the predictions and the ground truth. First term is related to angle
and distance only when there is an object. 1obj

i is equal to 1 when there is an
object in the grid cell i, and to 0 if there is no object. Second and third terms are
related to prediction confidence when there is an object 1obj

i and when there is
no object 1noobj

i . λpredobj = 3 is higher than λprednoobj = 2.5 to focus on objects.
Fourth term is related to the probability that an object belongs to each one of
the classes.

.

loss = λcord

S2∑

i=0

1obj
i [(P i

θ − P̂θ
i
)2 + (P i

d − P̂d
i
)2]

+λpred obj

S2∑

i=0

1obj
i (P i

conf − P̂ i
conf )2

+λpred noobj

S2∑

i=0

1noobj
i (P i

conf − P̂ i
conf )2

+
S2∑

i=0

k∑

j=1

1obj
i (P classi

j − P̂ classi
j)

2

(18)

Network has been trained on 336 samples of 1440 elements. 200 epochs have
been iterated, with a batch size of 8. Optimiser used is adam, with a learning
rate = 1e−4, decay= 0.005 and beta = 0.99. To avoid overfitting issues, training
has been stopped when loss function was increasing for 10 epochs. Only the best
weights of the last 10 epochs will be saved.

5 Results

The dataset that we created in Sect. 4 is devided in 2 parts, 80% for training
and 20% for the evaluation, we used the AUC of the ROC curve to evaluate our
detection results, ROC curve is a graph showing the performance of a detection
model at all detection thresholds. This curve plots two parameters: True Positive
Rate (TPR) (Eq. 19) and False Positive Rate (FPR) (Eq. 20)

TPR =
TP

TP + FN
(19)

FPR =
FP

FP + TN
(20)
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Fig. 5. Model evaluation with ROC curve

The ROC curve (Fig. 5) that we obtain on the evaluation dataset for different
threshold starting with 0 ending with 1 with a step of 0.1, for our model the
AUC = 0.94 which is an excellent result in term of precision.

We used other metric to evaluate the detection results which is the mean
absolute error between the predictions of our model and the ground truth of the
evaluation dataset (Fig. 5), the maximum error of the distance is 0.17 cm, and
the maximum angular error is 0.05 rad (2◦C).

The detection results are shown above, the model predicts the distance and
angle of each object that below to pink and blue on the signal and using the
transformation discussed in (3) we are showing the correspondent object position
in the 2D MAP (Fig. 6).
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Fig. 6. Model predictions for different samples : : 1D signal (left) and 2D map (right).

6 Conclusion

This work introduces a ultra-fast object detection method named FLA-CNN for
detecting objects in a scene from a planar LIDAR signal, using convolutional
Neural Networks (CNN). Compared with recent methods using CNN on 2D/3D
lidar scene representation, detection is done using the raw 1D lidar distance
signal instead of its projection on a 2D space, but is still using convolutional
neural networks.

Algorithm has been successfully tested for RoboCup scene analysis in Mid-
dle Size League, detecting goal posts, field boundary corners and other robots.
Prediction inferences are computed in 25 μs with 94% of mAP. Thanks to the
reduced size of the proposed CNN processing directly 1D lidar signal instead of
converting it to a 2D image, implementing it in an embedded system is possible
and doesn’t require a high computational power such as a GPU, but can be
achieved in a DSP or a microcontroller for real time detection in mobile robots.

In term of precision and speed our model achieve the better results compared
to the start of art methods that we tested ourselves as explained as follows:

Method Input size mAP Time(ms) Computing system

SSD 321× 321× 3 45.4 61 GPU (GTX 1080)

SSD 513× 513× 3 50.4 125 GPU (GTX 1080)

YOLO v3 416× 416× 3 55.3 29 GPU (GTX 1080)

YOLO v3 608× 608× 3 57.9 51 GPU (GTX 1080)

Faster RCNN 1000× 600× 3 73.2 142 GPU (GTX 1080)

Ours (FLA-CNN) 1440× 1 94 0.025 CPU (i5-9500)
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Even if proposed results are preliminary and require a large database with
many objects and labels to detect for a full validation of the proposed algorithm,
first results are promising and clearly show that converting a 1D lidar data into
a 2D map leads to dramatically increase computation power requirement.
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Abstract. This work presents a study for building a Deep Vision pipeline suit-
able for the Robocup Standard Platform League, a humanoid robot soccer tourna-
ment. Specifically, we focus on end-to-end trainable object detection for effective
perception using Aldebaran NAO v6 robots. The implementation of such a detec-
tor poses two major challenges, those of speed, and resource-effectiveness with
respect to memory and computational power. We benchmark architectures using
the YOLO and SSD detection paradigms, and identify variants that are able to
achieve good detection performance for ball detection, while being able to per-
form rapid inference. To add to the training data for these networks, we also
create a dataset from logs collected by the UT Austin Villa team during previous
competitions, and set up an annotation pipeline for training. We utilize the above
results and training pipeline to realize a practical, multi-class object detector that
enables the robot’s vision system to run 35Hz while maintaining good detection
performance.

1 Introduction

Object detection [12,25,31] is one of the paramount challenges of computer vision
and a key component of robotic perception. This paper develops an effective percep-
tion module for robot soccer under the stringent hardware constraints of the Robocup
Standard Platform League (SPL) [2,5,19], in which the vision system needs to identify
various objects and landmarks in real time, such as the ball or other robots.

Neural network-based detectors have progressed tremendously over the past decade.
However, many network architectures require computational power that limits their
applicability in low-resource real-time scenarios such as the SPL [6]. On the other
hand, the necessity for fast, resource-friendly solutions for mobile computing and the
IoT has led to increasing attention on specialized hardware and network architectures
[6,10,16,18]. In this project, we aim to leverage these advances to develop an object
detection pipeline suitable for use in the SPL. The implementation uses a software stack
based on TensorFlow Lite [1] (TFLite).

The paper starts with an investigation of candidate object detection architectures by
attending to reliable detection in the field and testing speed with the robot hardware.
Next, it describes the methods used for data collection, labeling, and data augmenta-
tion. Finally, the performance of the detector is evaluated, and it is demonstrated to be
effective at detecting objects under the computational constraints for real-time operation.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Eguchi et al. (Eds.): RoboCup 2022, LNAI 13561, pp. 62–74, 2023
https://doi.org/10.1007/978-3-031-28469-4_6
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2 Background

This section goes over some preliminaries, a description of SPL, the hardware and com-
pute setup, and the object detection challenge this paper seeks to solve.

2.1 Robocup Standard Platform League

The Robocup SPL is a humanoid soccer tournament in which our team competes as
the UT Austin Villa. Soccer games are played between teams of five Aldebaran NAO
v6 robots each, on a scaled version of a soccer field. The competition tests four main
systems: vision, localization, motion and coordination. Localization relies on the vision
results, such as by using detected markers to estimate the robot’s position. Subsequently,
the localization information is used to direct coordination. Thus reliable and fast object
detection is important to achieve effective gameplay. No assistance from external hard-
ware, including remote, is allowed (i.e., the robot’s hardware is the Standard Platform).

2.2 Hardware Setup

Camera. There are two identical cameras available on the top and bottom of the NAOs
(located above and below the eyes). The top camera is meant to give a full view of the
field, while the bottom camera provides a close-up view of the ground immediately in
front of the robot. Both cameras are, in principle, able to capture video at a resolution
of 1280 × 960 pixels at 30 frames per second, with automatic exposure adjustment
capabilities [27]. However, to save computation in various steps of the vision pipeline,
and since the bottom camera does not view anything distant, we use a bottom camera
resolution of 320× 240 resolution. Example views are shown in Fig. 2.

Compute. The NAO has an Intel® Atom E3845 CPU, along with 4 GB of RAM [39].
The CPU has 4 cores running at 1.91GHz, and supports some advanced SIMD instruc-
tion sets such as SSE4, enabling parallel computation. This CPU is optimized for low-
power applications, and its performance compares to today’s mobile processors.

An integrated GPU (Intel® HD Graphics for Intel Atom® Processor Z3700 Series)
is present in the CPU, clocked at 542MHz. It is capable of compute acceleration
through OpenCL, enabled using a custom compiled Linux Kernel and drivers. This
GPU is comparable in clock speed to today’s mobile GPUs as well. However, experi-
ments in Sect. 7.1 will show that it is not able to perform significantly faster than the
CPU. Nevertheless, it remains viable as an additional source of compute power.

2.3 Object Detection Challenges

Object detection needs to run alongside the other components involved. To guarantee
the functionality of all the components, the perception loop needs to maintain a pro-
cessing rate 30Hz, which comes to 33.3ms. Within this time, both the top and bottom
camera images need to be processed, and any other stages of the vision pipeline also
need to be completed. These stringent timing requirements, in conjunction with the lim-
ited compute capabilities described above, challenge the implementation of a neural-
network based object detector. Even real-time desktop applications such as YoloV3-
Tiny [3] prove to be too expensive for these purposes.
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3 Related Work

This section presents an overview of previous work related to various aspects of low-
resource real-time object detection. Additional discussion of the merits and demerits of
relevant approaches is handled later in the context of our design choices.

General Object Detection. There are three main classes of methods for detection. One,
a two-stage approach which proposes regions of interest, followed by the actual detec-
tion. Regions with CNN features (R-CNN) [12] and related methods such as Faster-
RCNN [34], or Mask-RCNN [13] for segmentation fall into this class. Two, single stage
detectors with You Only Look Once (YOLO) [7,31,32] being one of the most well-
known paradigms that performs direct bounding box regression. Related approaches
have also been developed based on corner point detection [20]. Three, detection at mul-
tiple resolutions and scales simultaneously, with methods like Single Shot MultiBox
Detector (SSD) [25] and Feature Pyramid Networks [23], using existing architectures
as backbones [22,25].

Low-Resource Object Detection. MobileNets [16,17,37] are a series of architectures
developed for inference on mobile devices that use depthwise separable convolutional
layers to achieve fast performance. Other lightweight architectures include Squeezenet
[18] and NASNet [44], though these are mainly optimized for parameter count rather
than speed as sought here. OFA Net [9] is an approach for training full scale networks,
and subsequently deploying distilled versions with greatly reduced sizes. One class
of approaches such as XNOR-Net [29] use binarized or heavily quantized versions of
larger networks to reduce the computational cost for a given network size. Although
these architectures are much less resource intensive than real-time detectors for desktop
hardware [3], they are still significantly slower than what SPL requires. One major
reason for this slowness is that these works target a large number of object classes,
whereas there are many fewer classes in the Robocup setting.

Existing Approaches for Humanoid Soccer. The SPL introduced the current NAO v6
robots in 2017. Until then, NAO v5 robots were used, which had an older, single core
CPU that almost entirely prohibited deep learning pipelines. As a result, Deep Vision
detectors in this competition are still in nascent stages of development, and even the
winner of the 2018 competition did not use them [8]. UT Austin Villa has also been rely-
ing on more classical techniques such as SVM or feedforward classification on features
extracted from region proposals [26]. The deep approaches that have been proposed
[11,28,36] have largely been based on RoI proposals. To the best of our knowledge,
these RoI-based approaches detect one object at a time. [11] use XNOR-Nets for ball
detection, while [35] use an encoder-decoder architecture for ball localization on pre-
processed RoI images. [28] propose Jet-Nets based on MobileNet for robot detection.

xYOLO [6] is a lightweight detector proposed for the Robocup Humanoid League
that is based on Tiny-YOLO [3]. It achieves good ball-detection and speed using XNOR
operations and a reduced number of layers and filters. We note however, that this archi-
tecture was developed for a different league with differing robots and slightly more
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permissive compute constraints, including access to more powerful modern hardware
such as the Raspberry Pi 3 [6]. A more recent work proposes YOLO-Lite [43], which
uses lightweight inference libraries (as we also do here) and was tested on the NAO v6
robots. However, their proposed networks are not nearly fast enough to meet our target
frame-rates, and they do not test the NAO’s GPU.

4 Data Curation and Data Augmentation

We used three sources of data used to train our Deep Vision system. These datasets
provide a good amount of variety in lighting conditions, decor, and clutter:

– xYOLO: This dataset contains 1400 images collected using a webcam in the
Robocup Humanoid League for training the xYOLO network [6]. Annotations are
provided for the ball and goalposts in the form of rectangular boxes, and we manu-
ally label other objects.

– UTAV: We created this internal dataset from our team logs collected during cali-
bration and practice sessions in the SPL 2019 competition. There are about 1000
images from the top and bottom cameras, which were annotated manually for balls,
robots and crosses. The images are recorded after the autoexposure adjustment.

– NaoDevils: This dataset contains 10 thousand images from the NaoDevils team’s
matches at SPL 2019 and the German Open 2019 [4]. The images contain segmen-
tation labels from six classes: line, ball, robot, center circle, goal, and penalty cross.
We transformed the segmentation masks to rectangular bounding boxes. Approxi-
mately 10% of the images are high-quality manually annotated images, the rest are
lower-quality automatically segmented used for pre-training.

Manual Annotation. Manual annotation of existing and future data is a time-
consuming process. To expedite this process, we utilize general purpose, full scale
detectors to provide a seed set of labels, which can then be refined by human annota-
tors. This idea is tested using Efficient-Det D7 [40], which is among the state-of-the-art
detectors at present. We use a detector that is pretrained on the MS-COCO dataset [24].
Efficient-Det D7 was able to detect the ball and robots in many of the data images.

Thus, we use these annotations as a starting point in order to save time, as well as
to allow us to use data not directly from the robot’s camera for more robust detection.
To this end, we used the CV Annotation Tool (CVAT) [38] by Intel, which provides
a convenient user interface to execute detectors and correct their output, as well as
enabling users to upload data in many data formats. Using CVAT, we annotated the ball,
robots and the penalty crosses in the xYOLO and UTAV dataset images. Although we
focus most of our study on ball detection with a single-class detection architecture, we
also train and deploy a multi-class detector that also detects robots and penalty crosses.

Data Augmentation. Multiple data augmentation techniques are used based on the
Pytorch implementations available in the YOLOv5 codebase [42]. One kind of aug-
mentations we use are kinematic augmentations which include rotations, translations
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and scaling. These serve to improve detections at image locations where objects are not
frequently present in dataset images, and also in sizes that are not present frequently.
Mosaic augmentation [7] is also used to combine multiple images, which is useful when
multiple objects are present. The other class of augmentations is photometric in nature.
We use transformations in the HSV color space in order to bring about invariance to
lighting conditions, material color and texture, and camera exposure fluctuations.

5 Analyzing Computational Constraints

The computational requirements are critical considering that the amount of compute
resources available is non-negotiable in the competition. This restriction has meant that
a significant portion of our efforts so far have been directed towards understanding these
constraints and studying what can be accomplished within them.

This section first describes the motivations behind the choice of software stack used.
It then presents a benchmark study involving this stack to give an idea of the scale of
the networks that can be executed in real time on the NAO.

5.1 Software Stack

There are several low-resource libraries available for performing inference on Machine
Learning models, both general purpose [1,30] as well as ones made by other teams
competing in Robocup [14,41]. Models are first trained in PyTorch with an adapted
version of the YOLOv5 repository [42]. The network weights are then transformed to
TensorFlow Lite (TFLite). We use TFLite [1] for several reasons:

– Advanced NN Layer support: TFLite has support for a much wider range of activa-
tion functions and layer types than the other libraries (e.g. batch normalization).

– Multi-threaded operation: The special purpose libraries mentioned above do not
allow for the use of more than one thread, whereas TFLite does.

– Optimizations for NN inference using the XNNPack [21] library, including the usage
of advanced instruction sets (mainly SSE) as many other libraries also do.

– GPU Support: TFLite is the only lightweight library to have OpenCL support, thus
enabling us to use the GPU as additional hardware.

5.2 Computational Benchmarks

We conduct a set of first principle benchmarks to study the computational cost as a
function of network size:

We generate CNNs with random weights, with varying layer sizes and numbers of
filters in each layer. Each convolutional layer has n filters, except for the last one, which
has 2n. They convert to a dense layer through a softmax of 10 units, representative of
the number of objects we will eventually have to detect. The convolutional layers all
use ReLU activations, and each is followed by a (2,2) Max Pooling layer. This template
is based on an architecture that has been tested by the team B-Human [36]. Weights for
the network were initialized at random (Gaussian with σ = 0.01). Four threads on the
CPU were used to perform inference.
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Fig. 1. Runtime benchmark results for synthetically generated CNN models. Times are presented
in milliseconds.

The results are presented in Fig. 1. For a target inference rate of 60 frames per
second for both cameras together, we see that the network with 16 filters per layer,
with 6 layers is comfortably feasible. The main impact on inference time appears to be
due to the number of filters rather than the layers. This suggests that narrow, but deep
architectures with skip connections might be the best computational choice.

For the above, quantization of weights is not performed. When testing with
MobileNet-v2, we observed that the quantized models performed slower (64ms vs.
58ms).

6 Detector Design

As mentioned earlier, in the past, region proposal methods have been used in the SPL
for detecting a single class of objects. However, this design aims to be scalable and to
detect the full set of objects on the field. Region proposals tend to be more expensive
with more objects to detect. Thus, this study focuses on YOLO and SSD setups.

Although SSD is more expensive than YOLO, it has potential advantages in terms
of detecting objects at multiple scales. A suitable backbone architecture needs to be
provided on top of which the SSD layers are implemented. We use Mobilenet-v2 [37]
due to the fast runtimes while maintaining good performance in an SSD setup. SSD
requires designing prior boxes for each of the feature maps from the SSD layers. How-
ever, such a design is not much more expensive compared to the design of anchor boxes
for YOLO-9000 [32], which is necessary to get good performance with YOLO setups.

xYOLO [6] uses a greatly reduced version of YOLO in terms of layers and number
of filters. It gets good performance on the accompanying dataset while 10Hz detection
rate on a Raspberry Pi 4, which is hardware similar to the NAOs. Taking into account
the simplicity of the YOLO paradigm, we consider xYOLO a good starting point for
creating reduced models. xYOLO also uses XNOR layers instead of regular convolu-
tion. They are not used in this study since XNOR layers can be detrimental to accuracy
[6], and the TFLite library was not able to leverage quantization for significant speed
improvements on the NAO’s hardware. We also incorporate the improvements up to
YOLOv3 [33], such as multiple class labels and anchor boxes.
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7 Experiments

We create variants of the Mobilenet-v2+SSD and xYOLO architectures, and evaluate
their performance on the task of ball detection, with the goal of identifying suitable
architectures that are fast, and also maintain reasonable performance. The models are
trained on both the xYOLO as well as the UTAV datasets, holding out 10% of the data
as validation data. Test time performance is reported on the UTAV (test) dataset alone,
as these images are closer to the expected playing conditions. Performance is measured
in terms of Mean Average Precision at a confidence threshold of 0.5 (mAP@0.5).

7.1 MobileNet and xYOLO Results

The following variants of the architectures are tested:

– SSD-Mobilenet-v2: This is the same architecture as in [37].
– SSD-Mobilenet-v2-6: This is a reduced version of the architecture with only 6 layers
total. This reduction is achieved by not repeating layers and using a stride of 2 at each
layer.

– SSD-Mobilenet-v2-8n: This is also a similarly reduced version, but it has 8 layers
and half as many filters.

– xYOLO: This is the architecture from the xYOLO paper [6], but as mentioned ear-
lier, we do not use XNOR layers in place of regular convolutional ones.

– xYOLO-nano: We drop the two widest layers from xYOLO, in addition to xNOR.
– xYOLO-pico: We replace the maxpool layers in xYOLO-nano with strided convo-
lutions. We also drop the extra layers in the detection/classification head.

We use 224×224 inputs in batches of 4 for training all the above models. Mosaic load-
ing is used, in conjunction with standard data augmentations such as cropping and resiz-
ing. Training iterations are performed for 100 epochs of the combined datasets. Training
is done using the Pytorch framework, and the saved models are exported to TFLite for-
mat for runtime benchmarks. We use 4 threads on the NAO’s CPU. 150 inferences are
performed to estimate the inference times for each model. We use existing codebases
for both MobileNet+SSD1 and xYOLO [42].

The results are presented in Table 1 (left). We see that the xYOLO models are
all able to achieve good mAP, while the MobileNet models struggle, particularly the
reduced variants. The xYOLO-pico variant appears to have the best trade-off between
speed and mAP. However, the unreduced xYOLO is also able to easily meet the 16.7ms
bound. Thus, it would remain a viable option when data becomes available for a larger
number of objects.

7.2 Reduced Models for Bottom Camera

While it would be feasible to use the above models identically for both the top and
bottom cameras, the bottom camera needs to detect only the ball and field markers like
the cross. These also always appear at a fixed scale, and so we can reduce the detector

1 https://github.com/qfgaohao/pytorch-ssd.

https://github.com/qfgaohao/pytorch-ssd
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Table 1. Left: Performance of Mobilenet and xYOLO variants with runtimes on the CPU and
GPU. Runtimes are given in ms. Right: Performance of extra xYOLO variants for only the bottom
camera images.

Architecture mAP@0.5(%) CPU GPU

xYOLO (no XNOR) 95.6 7.7 11.0

xYOLO-Nano 95.1 7.1 10.4

xYOLO-Pico 89.5 2.7 4.7

Mobilenet-v2 78.7 58.1 88.1

Mobilenet-v2-6 46.7 6.9 7.2

Mobilenet-v2-8 30.8 1.1 3.4

Architecture mAP(%)

xYOLO-femto 85.0

xYOLO-atto 75.0

xYOLO-zepto 2.5

size and the number of anchor boxes greatly. The input image size can also be reduced,
leading to significant computational savings. Thus, we also benchmark the following
variants of xYOLO:

– xYOLO-femto: Operates on 224× 224 input with 6 layers.
– xYOLO-atto: Operates on 80× 80 input, with only 4 layers.
– xYOLO-zepto: Operates on 40× 40, with only 3 layers.

We also pretrain these networks on the same data as above, and fine tune on only the
bottom camera images. The results are presented in Table 1 (right). We see that xYOLO-
atto is able to attain decent performance comparable to xYOLO-femto, despite operat-
ing on lower 80×80 input. Thus, this size range is a viable option for the bottom camera
since very high accuracy is not necessary in this case. xYOLO-zepto is unable to learn
due to the drastically reduced network and input size.

8 Practical Deployment

Although we use the above results as the basis for designing the network used in the
2021 competition, we did not base our final networks on the above architectures, and
adaptations needed to be made. We describe the chosen architectures and the major
adaptations in this section, followed by benchmarks and results.

Architectures. We settled on particular architectures for the top and bottom camera
networks as summarized in Fig. 2c. The inputs are YUV-422 format images that are
transformed to RGB using a (non-learnable) convolution. (See next section for addi-
tional discussion.) The bottom camera architecture is similar to the top camera but
with the fist backbone layer removed. The overall architecture is based on YOLOv3
tiny [3], but aggressively shrunk in the number of channels and layers to increase
speed. For the top camera, we trained and deployed the network both for single ball
detection (micro-256) and a multi-class variant that also detects robots and crosses
(microx-256). These two variants only differ on the last detection layer. For the bot-
tom camera, the input size is 128× 96 (micro-128).
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Color Conversion and Subsampling. The cameras are set to capture images in
YUV422 format due to the hardware characteristics favoring this format, as well as
the requirements of other existing vision components. This means that the images need
to be converted to RGB, the format they were trained on. We express this conversion as
a pointwise convolution, and add another layer in TF-Lite to our models to perform this
convolution. As mentioned earlier, the cameras capture at a higher resolution than what
the model uses. As the scale factor is an integer (5), we subsample the image by drop-
ping 4 pixels for every pixel kept. This method avoids the need to perform expensive
interpolation for resizing the image.

Results. Table 2 reports the individual runtimes and performances of the architectures
described above. Also reported are the vision system frame-rates after the detection has
been fully integrated into the vision system with the above features in place. Note that
motion and localization algorithms are also running concurrently. A visualization of the
results is in Fig. 2. We see that the networks exhibit high detection performance and
the entire vision system is able to run at 30Hz for multi-class detection, which goes
up 35Hz when the top and bottom detectors are run simultaneously in a multithreaded
setup. Higher framerates enable more reliable estimates of object positions, as well as
better localization.

(a) Top camera (b) Bottom camera

(c) Architecture

Fig. 2. Detection examples for the network used in the 2021 competition. (c) shows the architec-
ture for the top camera.
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Table 2. Left: Performances and runtimes (ms) of deployment architectures. Right: vision system
framerates (Hz) of different combinations (bottom network is always micro-128). “Simultaneous”
indicates top and bottom networks run simultaneously on CPU (3 threads) and GPU respectively.
Otherwise, they are run one after the other.

Network mAP@0.5 CPU(3 threads) GPU

micro-256 98.7 9.9 15.4

microx-256 97.2 14.6 19.1

micro-128 98.3 2.9 5.3

Top Network Framerate

micro-256 33

microx-256 30.5

microx-256
(simultaneous)

35

9 Conclusions

Through this project, we have gained understanding of the challenges involved in object
detection for the SPL. We implemented a data collection pipeline to enable training
our object detectors, and data augmentation strategies for robustness of detections. We
identified network architectures and ways to improve on runtime while maintaining
good detection performance. We put these to the test, and realize a practical, multi-
class object detector that is robust to lighting conditions, and is able to work 35Hz for
both cameras. There are several avenues to pursue in the future:

– There has been work based on Stochastic Scene Generation specific to Robosoccer
[15] using the Unreal Engine to render realistic Robosoccer game scenes, which pro-
vides a promising avenue for data augmentation in our proposed training pipeline,
and we are currently investigating the feasibility of using such an approach. In con-
junction with GANs, such a setup could be used to perform high quality data aug-
mentation for increased robustness.

– Depthwise Separable Convolutional are used in MobileNets, leading to signifi-
cant computational savings, without degradation in detection performance. We con-
ducted initial tests in our setting obtaining promising results. Thus, these layers open
avenues for using larger networks for better performance and speed.
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Abstract. In the RoboCup@Work competition, the Rotating Table
Test problem refers to the task of automatically grasping an object
from a circular table, rotating at constant angular velocity. This task
requires the robot to track the target object’s position and grasp it.
In this work, we propose a camera-based online tracking system which
works in real-time. Our approach is based on the YOLOv5 detection
backbone and uses a novel, modified version of the SORT tracker. The
tracker is trained solely on a pre-existing detection dataset containing
annotated static images, thanks to which the collection of additional
situation-specific video data is not required. We evaluate and compare
SORT with YOLOv5 and SqueezeDet backbones and demonstrate the
improvement in tracking performance when using the former. The eval-
uation dataset and corresponding annotations are made available for use
in the community.

Keywords: Rotating Table Test · RoboCup · Tracking by detection ·
YOLO · SORT

1 Introduction

RoboCup@Work is a competition focused on the use of mobile manipulators
and their integration with automation equipment to perform relevant industrial
tasks [11]. From the several tasks in the competition, this work focuses on the
Rotating Table Test (RTT). In this, as depicted in Fig. 1, several objects are
placed on a circular table of 1 m diameter, which rotates at an angular velocity
of 0.5 rad s−1. The robot is then instructed to pick up one moving object of a
particular class (with a velocity between 5 cm s−1 and 20 cm s−1 [1]). A low-
latency, robust object detection and prediction is essential to solve this test.

In this work, we leverage tracking-by-detection, which has emerged as the
preferred paradigm to solve multi-object tracking problems like the RTT task
described above, in which the robot needs to perceive the live feed from the rotat-
ing table and identify the objects on it. Given a target object, the robot should
track the object and grasp it when it moves into the manipulator’s workspace.
Ultimately, successful completion of the grasping task not only requires detecting
and tracking the objects but also predicting their trajectories. However, predicting

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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Fig. 1. Overview of the RTT setup

the trajectory is not within the
scope of this work. Our contribu-
tion is the extension of the SORT [5]
tracker and the experimental evalu-
ation deploying two different back-
bones1. We investigate the tracking
quality as well as robustness against
lower video frame rates, which is a
crucial aspect of the implementa-
tion on the real robot with limited
computational resources. We use a
youBot robot with an Intel NUC
Core i7 and a RealSense D435 cam-
era (the camera view can be seen in Fig. 1 and Fig. 3c). We make available our
dataset2 that features 1,200 images and annotations from the RTT task.

The remainder of this report is structured as follows: Sect. 2 introduces impor-
tant concepts and recent work done from the field of object tracking. Section 3
presents the applied detection algorithm and datasets used for training and eval-
uation. In Sect. 4, we discuss the approach we use to address the tracking problem
of RTT. Section 5 describes the dataset created for evaluation and discusses the
evaluation results. Finally, in Sect. 6, we present conclusions and future work.

2 Related Work

In the domain of object tracking, most state-of-the-art approaches follow the
tracking by detection paradigm [8], depicted in Fig. 2. Such methods involve two
independent steps: (i) object detection on all individual frames and (ii) tracking
or association of those detections across frames [13]. This heavily relies on the
performance of the object detector.

Neural Network based detectors have become the current state-of-the-art,
particularly since the proposal of detectors such as Faster-RCNN [19] and
SDP [26]. Most state-of-the-art methods for data association in the scope of
object tracking follow a formalization of the problem as a graph, in which each
detection is a node and every edge indicates a possible link. The data association
can then be formulated as a maximum flow [2] or equivalently minimum cost [9]
problem. Such delineations as optimization problems suffer from high complexity
and are infeasible for online applications [3]. Since the task at hand has a criti-
cal real-time constraint, a simpler frame-by-frame approach with an underlying
assumption of a small change in position from one frame to another is chosen.
Bergmann et al. [3] proposed Tracktor, a tracking algorithm that firstly initial-
izes the track from the detection done by Faster-RCNN and secondly performs
the tracking. The latter is a process based on bounding box regression, namely
the process of applying ROI pooling on the features obtained from the new frame
1 https://github.com/VincentSch4rf/rtt_tracking
2 https://github.com/VincentSch4rf/RoboCup-RTT-Dataset

https://github.com/VincentSch4rf/rtt_tracking
https://github.com/VincentSch4rf/RoboCup-RTT-Dataset


Object Tracking for the Rotating Table Test 77

Fig. 2. Tracking-by-detection paradigm. Firstly, an independent detector is applied to
all image frames to obtain likely pedestrian detections. Secondly, a tracker is run on
the set of detections to perform data association, i.e., link the detections to obtain full
trajectories [13].

and bounding box coordinates from the previous frame. Although the proposed
approach is an online approach, it cannot run at high frequency, which is a strict
requirement for our application. Moreover, it is based on the assumption of only
little motion between frames, which cannot always be fulfilled.

Another approach, named SORT, has been presented by Bewley et al. [5]
which uses a Kalman filter to estimate the position of the objects in the next
frame. An extension of this approach, named DeepSORT, was published by
Wojke et al. [23]. Both of these methods focus on leveraging a detector with
minimal additions to enable real-time tracking. Naturally, this focus also leaves
them more vulnerable to errors. SORT calculates affinities based on the overlap of
the estimated bounding box generated using the Kalman filter and the bounding
box generated by the detector for the next frame, and matches these with previ-
ous detections using the Hungarian algorithm [12]. DeepSORT builds upon this
framework, and additionally incorporates appearance feature vectors extracted
with a CNN architecture. The affinity is then calculated using the cosine distance
between two feature vectors. Lastly, information from the motion features and
the appearance features is combined (using the Hungarian algorithm) in order
to associate objects. This method has shown improvement over the previous
approach, primarily in reducing the number of ID switches (IDSWs) [23]. One
major contrast of our work when compared to the original work is the dataset.
While the original work showed a significant improvement in reducing IDSWs
by using re-ID features, the objects belonging to the same class, in our case,
do not have significantly discernible features. Therefore, the information from
the feature vectors doesn’t add significant value. Moreover, the addition of a
feature extracting CNN also increases the execution time. For this reason, our
work focuses on utilizing the SORT tracker for the RTT.

Commonly, re-identification, i.e., associating an object that has not been
visible for some time to an existent track, is of concern in tracking tasks [21],
but we do not consider it. As the majority of the rotating table is visible from
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the camera’s perspective, we assume that there is sufficient time to accurately
estimate the position of the object and grasp it before it leaves the frame. Thus,
we deem re-identification not critical for successful execution of RTT.

3 Detection

Tracking-by-detection, as introduced in Sect. 2, is a tracking paradigm which
relies on object detection to identify an unknown number of individual objects of
interest in each frame [13]. A typical challenge for tracking-by-detection systems,
especially when applied online, has always been the limited performance of the
underlying detector, which may produce false positive and missed detections [6].
This problem only becomes more prominent in the context of deployment on
a mobile manipulator, as we are not only dealing with an online scenario but
also face limited compute capabilities. These in turn limit the complexity of the
detector and therefore add to the performance problem.

Performing object detection online with fast inference while maintaining
a base level of accuracy was the declared goal of the “You Only Look Once”
(YOLO) architecture [16]. YOLO combines the problem of localization and clas-
sification in one end-to-end differentiable network by interpreting it as a regres-
sion problem of spatially separating bounding boxes and associating class prob-
abilities [16]. While a lot faster, the initial architecture suffered from lower recall
and larger localization errors [17], compared to two-stage detectors, like Faster-
RCNN [19], which perform localization and classification in two separate steps.
With the following YOLOv2 [17], YOLOv3 [18] and particularly YOLOv4 [7],
the architecture and training procedure were incrementally improved, rendering
it one state-of-the-art real-time object detector [7].

One of their main contributions, which allows for efficient training of a YOLO
detector when used in a tracking framework, is Mosaic [7]. It is a data augmenta-
tion method introduced by Glenn Jocher for YOLOv3, which mixes four training
images and thereby allows for detection of objects outside their normal context.
An example of this can be seen in Fig. 3b. It reduces the problem of YOLO
relying on the scenery an object appears in, to perform correct classification.
This problem is significantly more pronounced for YOLO architectures than in
two-stage detectors, as the one-stage detection architectures enable the model to
consider the entire image for classification rather than only the region of inter-
est. Therefore, training a model on a general detection dataset unspecific to the
RTT scenario is more feasible and the labor-intensive step of producing perfectly
tailored datasets for a tracking task at hand is no longer required. In addition,
batch normalization calculates activation statistics from four different images on
each layer. This significantly reduces the need for a large mini-batch size and
thus reduces the memory footprint of the model during training.

In this work, we therefore use the most recent iteration of the YOLO detector,
YOLOv5 [10], which is a PyTorch implementation of the YOLOv4 architecture
with a CSPNet [22] backbone, PANet [14] neck and anchor-based YOLOv3 [18]
head with three levels of detection granularity. The model is trained on an exist-
ing object detection dataset [15], consisting of 18 distinct objects, 13 workshop
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items and five additional helper objects used in the RoboCup@Work competi-
tion [1]. The dataset contains 1,150 images, captured under different conditions,
in various surroundings and ensembles. In order to assess the model’s general-
ization capabilities with respect to the RTT scenario that this work is concerned
with, we use a 300-sample subset of the tracking dataset, which we created in
the context of this publication (see Subsect. 5.1). The final results are reported
on 902 held-out samples of the same. Example images from the two datasets are
presented in Fig. 3.

Fig. 3. (a) Sample from the training dataset, (b) training sample after mosaic aug-
mentation, consisting of four images in four tiles of random ratio (c) sample from the
tracking sequence. As one can see from this comparison, the detection dataset used for
training, does not resemble the RTT scenario of the tracking dataset.

We use the hyperparameter tuning provided with the YOLOv5 implementa-
tion. The model is then trained for 1,500 epochs with a batch size of 376 using
those optimized hyperparameters. Validation is performed after each epoch. As
we can see from Fig. 4, which depicts the learning curve of the model, together
with the respective validation metrics, the model converges to a maximum of
around 0.85 validation mAP0.5:0.95 around the 400th epoch. The iteration of
the model with the best validation performance is saved and evaluated on the
held-out test set. It has to be noted that the test dataset only contains eight
of the 18 object classes, on which the detector was trained. Usually, this would
make the evaluation insufficient. However, we are only interested in the general-
ization capabilities of the detector with respect to the task we are deploying it
for. Hence, the evaluation on the tracking dataset reflecting only a subset of the
object classes is acceptable. The results are summarized in Table 1. The large
difference between the 0.5 Intersection-over-Union (IOU) and 0.95 IOU mean
average precision (mAP) of some classes can be explained by imperfect annota-
tions. Since the M20 and Bearing objects are a lot smaller compared to the other
objects present in the test set, imprecise annotations have a much larger impact
on the IOU of the predicted bounding box. Hence, the object is not correctly
detected at higher IOU thresholds and, thus, the mAP score is lower. Apart
from this, the S40_40_B class shows a much lower recall than all other object
classes. Investigating the missed detections, we found, that the S40_40_B, once
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Fig. 4. Learning curve, depicting the losses on the training, as well as relevant metrics
on the validation set.

it is positioned directly underneath the camera, does not feature any recogniz-
able perspective or contours any more. It becomes a black rectangle without any
depth perception to it. This probably makes it not only hard for a human to
infer the correct object class, but also for the YOLO detector, as the lack of tex-
ture and perspective, only leaves the pure two-dimensional shape of the object
as a remaining criterion for discrimination. Unfortunately, this two-dimensional
shape of the S40_40_B is very similar to the R20’s, which, however, exhibits a
cylindrical form considering all three dimensions. Another problem with the eval-
uation, as such, is that the dataset follows the convention of annotating objects
only once they are between 50 and 70% visible. However, the YOLO detector
does detect a lot of the objects even after they are more than 70% outside the
frame. This produces a large portion of incorrect false positives.

However, even despite those difficulties, the detector generalizes very well
to the RTT scenario, even though it was trained on data whose scenery could
be considered out-of-distribution for the particular problem. The near perfect
precision and recall (with the exception of the discussed S40_40_B), combined
with the good average precision, even at high IOUs, leads us to conclude that the
detector is sufficiently trained and can produce reliable and robust detections
under most circumstances.
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Table 1. Evaluation results of YOLO detector

Class Images Labels Precision Recall mAP0.5 mAP0.5:0.95

All 902 4889 0.972 0.983 0.993 0.784
Axis 902 378 0.998 1.000 0.995 0.911

Bearing 902 817 0.997 0.999 0.993 0.681
F20_20_G 902 779 0.946 0.996 0.994 0.776

M20 902 1122 0.932 0.994 0.990 0.556
M20_100 902 351 0.997 1.000 0.995 0.946

Motor 902 340 0.958 1.000 0.995 0.938
S40_40_B 902 349 1.000 0.875 0.995 0.639
S40_40_G 902 753 0.952 1.000 0.985 0.827

4 Tracking

Once the detections have been generated by the detector, we use a tracker to
assign, associate and keep track of the objects. In this work, we primarily focus
on the SORT tracker [5] and utilize the implementation available online.

Input Video Frames Detector

YOLOv5 Kalman
Filter

Hungarian
Assignment

Distance
Measure

IOUOverlap

SORT Tracker

[u, v, s, r, u’,v’,s’]
u, v - Center coordinates
s - Scale of bounding box
r - Aspect ratio of bounding box

Generates estimates of
next states

Fig. 5. SORT Architecture

The SORT tracker [5] initializes tracks based on the received input detections.
It then generates estimates of the next state of each track using a Kalman
filter. The detections for the next frame are then compared with the estimates
generated by the Kalman filter. All bounding boxes which have a significant
overlap are considered as potential candidates to be matched as the same objects.
Finally, tracks and new detections are associated using Hungarian matching.
The procedure has been depicted in Fig. 5. It provides a lightweight, yet efficient
framework for tracking objects on the rotating table. It should be noted that the
original SORT implementation does not take the object class into consideration
that is returned by the detector. We extended the code such that when a track is
initialized, the tracker stores the object class. This is essential as we are interested
in knowing which object is being tracked so that it can be grasped.
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4.1 Updated Track Handling

Several modifications were made to the original SORT implementation which
significantly change the results. In the original implementation, in order for a
track to be initialized, it must be associated with the detections for Tmin frames.
A track then needs consecutive detections in order to remain active. If a track is
temporarily lost, i.e., no detections are associated with it for more than 1 frame,
it requires Tmin detections to be matched with it to be reactivated. In case there
are no detections for Tlost frames, the corresponding track is discarded. It should
be noted that for both active and inactive tracks, the tracker keeps estimating
the bounding boxes. However, it only returns outputs for active tracks.

For our case, some of these conditions are problematic, as we require the
tracker to remain active even in the absence of detections. We modify the track
handling method in two major ways. Firstly, we remove the need for consecutive
detections of a track to remain active, i.e., once a track is initialized, it returns
outputs for the next Tlost frames even without detections. Secondly, we modify
the track re-initialization scheme such that even if a single detection is associated
with a track, the Tlost counter is set to zero, i.e., it no longer requires Tmin detec-
tions to be re-initialized. Not only do these changes allow us to deal with missing
detections but also to use intermittent detections for tracking. Furthermore, this
change enables us to return predicted positions of tracked objects several frames
into the future. This is particularly useful in deployments with limited computa-
tional resources, where running the detection head multiple times isn’t practical,
as it is the case with mobile manipulators.

5 Evaluation

5.1 Dataset

The aforementioned (in Sect. 3) additional dataset was created as part of this
work. It contains not only annotated objects but also their trajectories, thus it
can also be used for evaluating the tracking performance. We use part of the
test split of this dataset (which is basically a short video) to evaluate the chosen
tracking approach. The video was recorded with a frequency of 30 frames per
second, consists of 451 frames and ten unique tracks. It captures one full table
rotation with a RealSense D435 camera. The experiment setup reflects the setup
of the real competition, where the mobile manipulator is positioned next to the
table. Each frame has a size of 640× 480. There are eight different object types
in the video (all of them are described in [1]): Bearing, F20_20_G, S40_40_G,
S40_40_B, M20, axis, M20_100 and Motor.

5.2 Metrics

Finally, to evaluate the performance of the model, we use the following metrics.
(↑) for a metric denotes that higher scores are preferable and (↓) denotes that
lower scores are better. As it is difficult to quantify the performance of the
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tracker by a single metric, we use multiple commonly used metrics from Classical
metrics [25], CLEAR MOT metrics [4] and ID scores [20]:

• MOTA(↑): Multi Object Tracking Accuracy [4]
• MOTP(↓): Multi Object Tracking Precision [4]
• IDF1(↑): Ability of tracker to track the same object with same ID for the

longest duration possible [20]
• TP(↑): Number of correct detections
• FP(↓): Number of incorrect detections
• FN(↓): Number of missed detections
• IDSW(↓): Number of times IDs are switched
• MT(↑): Tracks overlapping with ground truth for at least 80% of the sequence
• PT: Tracks overlapping with ground truth from 20% to 80% of the sequence
• ML(↓): Tracks overlapping with ground truth for at most 20% of the sequence
• t(↓): Average detector inference time in for a single frame on the youBot

5.3 Results

We compare the performance of the SORT tracker with different detection back-
bones, i.e., SqueezeDet [24] and YOLOv5 [10]. The results have been tabulated
in Table 2. It should be noted that for the following tests, we have set Tmin = 3
and Tlost = 11. Our trained YOLO detector performs better in detection, having
higher MOTA and MOTP scores, which also improves the IDF1 score. Further-
more, we should also add that even though the IDF1 score of SqueezeDet is
significantly less than YOLO, on inspection of the outputs, a single switch of
a partially visible object causes this difference. For the purposes of the RTT
task, this difference is insignificant. This is also evidenced by a less significant
difference in the MOTA score of the two detectors. Nevertheless, YOLO tracker
performs slightly better than its SqueezeDet counterpart. Hence, we use this as
the default backbone detector. It should be noted that because the total number
of tracks in the test dataset is 10, the number of partially tracked objects can
then be estimated based on this information as PT = 10 − MT − ML.

Table 2. Comparison of different tracker backbones

Detector MOTA↑ MOTP↑ IDF1↑ TP↑ FP↓ FN↓ IDSW↓ MT↑ ML↓ t[ms]↓
YOLO 88.7% 79.4% 0.89 2260 252 0 3 10 0 114

SqueezeDet 86.3% 72.2% 0.86 2164 211 94 5 9 0 93

As the computational resources are limited on deployable systems such as
robots, we evaluate the effect of low input frame rate on tracking. We simulate
lower frame rates by skipping frames from the original video recorded at 30 Hz.
The results have been tabulated in Table 3. We observe that although there is
a slight and steady decline in the MOTA, MOTP and IDF1 scores, the effect
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Table 3. Effect of video frame rate on tracking performance (YOLO backbone)

FPS (Hz) Frames MOTA↑ MOTP↑ IDF1↑ TP↑ FP↓ FN↓ IDSW↓ MT↑ ML↓
30 451 88.7% 79.4% 0.89 2260 252 0 3 10 0

15 226 87.5% 78.7% 0.89 1132 139 2 1 10 0

10 151 86.7% 76.7% 0.88 755 97 4 0 10 0

5 76 78.9% 66.9% 0.82 373 71 9 1 9 0

3 46 19.8% 67.0% 0.36 102 56 122 8 5 4

of low frame rates is relatively insignificant even if the frame rate is reduced to
7.5 Hz (FPS). Additionally, the performance at 5 Hz remains satisfactory. The
performance only starts to dip when the input frame rate is reduced below 5 Hz.
This shows that the system is able to function properly even at frame rates as
low as 5 Hz. This has also been illustrated in Fig. 6.
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Fig. 6. Effect of frame rate on tracking performance (YOLO backbone)

6 Conclusion

In this study, we evaluated the SORT tracker deploying two different detection
backbones, namely: SqueezeDet and YOLOv5. The results are reported in terms
of established tracking performance measures. We evaluated the performance of
the tracker at lower frame rates. Based on our findings, we propose a tracking
system, a combination of a YOLOv5 detector backbone and a modified SORT
tracker, capable of tracking objects in real-time which still functions satisfactorily
with low computational resources. We provide a test dataset which can be used
to evaluate the performance of the tracker.
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As an extension of our work, we plan to extend 2D tracking with 3D sensor
data. Based on this, we can estimate the entire three-dimensional object tra-
jectory, such that we can forecast the object position to grasp it at a proper
time. Since the objects circle around the same center, we will investigate how
simultaneously tracking multiple object trajectories can improve the accuracy of
an individual trajectory.

Real-world end-to-end experiments investigating the targeted grasping mech-
anism’s speed, accuracy, and success rate will allow for a rigorous, quantitative
evaluation of our proposed systems and all its individual components.
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Abstract. Due to increased demands related to flexible product con-
figurations, frequent order changes, and tight delivery windows, there is
a need for flexible production using AI methods. A way of addressing
this is the use of temporal planning as it provides the ability to generate
plans for complex goals while considering temporal aspects such as dead-
lines, concurrency, and durations. A drawback in applying such methods
in dynamic environments is their high and unpredictable planning time.
In this paper, we present an evaluation of the current state-of-the-art
temporal planners within the RoboCup Logistics League. Among the
many factors that impact automated planners applicability, the level of
abstraction of the planning model is paramount. We center our study on
the effect that modeling choices have on the performance of the assessed
planners. Our experimental results suggest that seeking for the right
level of abstraction of planning domain models allows for compromising
solutions between plan quality and plan solving time.

1 Introduction

Temporal planning is a technology allowing to deal with the changes introduced
by Industry 4.0. It allows for time and resource optimization, without violation
of constraints which may change on-the-fly. Drawbacks in applying such meth-
ods in dynamic environments (e.g., autonomous mobile robots in a warehouse
fulfilling on-the-fly orders) are their limited ability to react to unexpected dif-
ficulties in the plan execution as well as their high and unpredictable planning
time (e.g., robots need to come up with decisions in short time). Moreover,
replanning may be necessary frequently, for example to handle a new order or
to tackle a failing execution in the physical world. To better react to external
changes, the replanning process has to be conducted fast. In this paper we focus
on these issues, analyzing the performance of state-of-the-art temporal action-
based planners and their applicability to the RoboCup Logistics League (RCLL)
[15]. Moreover, different ways of encoding the domain are also object of this eval-
uation. The RoboCup Logistics League was founded with the goal of providing
a benchmark for dynamic intra-logistics domains. The main challenge posed by
this competition is building a full software stack, comprising elements from both
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Eguchi et al. (Eds.): RoboCup 2022, LNAI 13561, pp. 87–99, 2023
https://doi.org/10.1007/978-3-031-28469-4_8
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AI and Robotics. Subcomponents of the robots, like sensing and object manip-
ulation, together with the general management and task assignments strategies
have to be developed and connected together. We propose different modelings
of the problem, featuring various levels of abstraction. Abstracting away some
details of the domain represents a way to mitigate the planning complexity at
the cost of plan quality. For each modeling, a set of instances with increasing
complexity (in terms of size and number of orders) is tested with each planner.
The metric for this evaluation is formed by the combination of planning time and
plan makespan. In fact, since in dynamic domains there is no separation between
planning and execution time and goals are not known in advance, the sum of
the two values represents the expected end of the plan. Execution is out of the
scope of this paper, yet the ability of computing a good plan quickly provides
advantages to the execution phase as well. A fast planning process implies more
time for dispatching the plan. Moreover, the plan dispatcher can better rely on
replanning to tackle unexepected events, further optimizing the final outcome
w.r.t. a greedy approach like plan repairing.

The remainder of the paper is organized as follows. In the next section, the
RoboCup Logistics League is briefly described. In Sect. 3, we discuss about the
actual research involving scheduling and execution in the RCLL. In Sect. 4, the
planners used to solve the planning domains for the RCLL are presented. In
the next section we present the different encodings, highlighting the featured
strategies and level of abstractions. A comprehensive evaluation is presented in
Sect. 6. Finally, in Sect. 7 we draw the conclusions and discuss future work.

2 The RoboCup Logistic League

The league aims to stimulate the development of Robotics and AI using robotics
competitions. A fleet of three autonomous mobile robots cooperate to assem-
ble a set of products, by interacting with production stations in a real world
environment. Orders (product configuration and delivery time) to accomplish
are randomly generated during the game on an incremental basis. A product is
mimicked by stacks of one base, from zero up to three rings, and a single cap.
The different intermediate production steps are provided specific stations. The
amount of rings determines the complexity of the product (C0 to C3). Moreover,
the mounting of some rings asks for a payment to the corresponding station by
providing extra pieces. In general, several refining steps of intermediate products
by different machines are needed to assemble a product. Depending on the com-
plexity of a delivered product, the corresponding amount of points is awarded.

3 Research and Strategies in the RoboCup Logistics
League

Most of the research in the area of scheduling and execution within the RCLL
of the last years was conducted mainly by two teams participating in the league,
namely the Carologistics team from Aachen University and the GRIPS team from
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Graz University of Technology. In this section we will discuss their work and the
adopted strategies to tackle this domain in more details. Focus is mainly on plan-
ning and scheduling. However, some approaches adopted by the teams interleave
both scheduling and execution, making it difficult to draw a clear separation. For
example, the Carologistics team uses a greedy decentralized approach based on
Goal Trees [16]. Such system ensures the flexibility to integrate scheduling, goal
reasoning, and execution needed for a dynamic domain such as RCLL. Precondi-
tions and a priority are assigned to every task. Then, every time a robot is idle,
it selects and executes task with the highest priority among the ones whose pre-
conditions are satisfied. This strategy has the advantage to keep the robots busy
without requiring heavy computational load, coordinating tasks, and allocating
resources to the robots on-the-fly, but without considering long-term scheduling
and optimization. The GRIPS team was adopting a similar strategy [13]. Recently
the team adapted a long-term strategy based on temporal planning. The Carolo-
gistics team did an attempt with a similar paradigm, by using ASP [18] to calcu-
late a plan for a short time window. The use of temporal planning for a dynamic
domain such as the RCLL poses some issues, related to the heavy computational
load typical for solving techniques based on enumeration. In order to make this
technology applicable for dynamic domains one has to apply measures to miti-
gate the complexity of solving. For instance, one will not plan for all the available
orders at the same time, in order to avoid increasing the problem size. As a conse-
quence, a Goal Reasoning strategy is used to heuristically select different sets of
goals where it is likely the planner finds a solution in time. Then, a separate plan-
ning process is performed over each set, at the same time, in order to exploit the
multi-threads capabilities of modern CPUs. The best plan within a fixed amount
of time is selected and executed. However, further modifications are needed to
shorten the planning time. Abstracting away some details of the domain may sig-
nificantly reduce the size of the problems. This abstraction comes often at the cost
of plan quality (which, in our case, is related to the makespan), since the planner
is provided with less information. This encoding is discussed in details in Sect. 5.

The Freiburg team developed a mixed approach, making use of both long-
term planning and on-the-fly task assignment to the robots. In [10], the strategy
is generalized to all multi-agent domains. The plan is generated abstracting away
the agents, and the actions are auctioned off to robots during the execution.

4 Planner Candidates

In this section a brief overview of the evaluated planner is given. The paper is
focused on a comparison of action-based temporal planners supporting the stan-
dardized PDDL language [7]. This comparison involves the following planners: (1)
POPF [3], (2) Optic [1], (3) Temporal Fast-Downward (TFD) [6], (4) C4PT [8], (5)
ITSAT [17] and (6) YAHSP3 [21]. All of them participated in the temporal track
of the International Planning Competition (IPC) 2014 [20] and/or 2018 [12]. A
few others has been excluded, like the PDDL temporal planners tBurton [22] and
DAEYAHSP [5], because public implementations were not available. The evalua-
tion including also Timeline-Based planners [9] or hierarchical temporal planners
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is more difficult, since there are no standardized languages widely adopted by all
of them and a specific encoding for each planner is needed. Although the support
for the HDDL language [11] increased in the last years thanks to the IPC, many
hierarchical planners from the past still use their own language, like FAPE [2] with
ANML [19]. However, a similar evaluation of the state-of-the-art planners using
these approaches will be part of future work. All the tested planners support the
PDDL language. More specifically they support the 2.1 version of the modelling
language, which includes durative actions. Durative actions allows for concurrent
execution and time management and are therefore necessary to encode tempo-
ral domains. Although temporal constraints and concurrency could be handled
by classical planners expressive enough with some post-processing [14], temporal
planners has been built to manage specifically such features. POPF and Optic are
two planners developed by the planning group at King’s College London. Optic
is built over POPF, and it augments to support PDDL feature such as prefer-
ences and time-dependent goal-collection costs, making it possible to encode soft
constraints. POPF, which is itself an evolution of the previous planner Colin [4],
applies forward-chaining state-based search strategy to partial-order planning, in
combination with a late-commitment approach and linear programming to handle
continuous linear numeric change. The TFD planner is a forward-chained planner
that performs a heuristic search in the space of time-stamped states, where the two
types of search steps are the insertion of a durative action at the current time point
and the advancement of the current time by a certain increment. C4PT is a porfo-
lio planner, which tries to solve the problem with different solving algorithm given
a priority order, after a compilation of the temporal domain into a classic one. If
a planner fails within a certain amount of time, the next one is selected. ITSAT is
a planner based on satisfiability. It applies two preprocessing methods for mutex
relation extraction and action compression, compiling the planning problem into
a SAT formula. Violation of temporal constraints are detected through a Sim-
ple Temporal Network, and solved by adding the corresponding formula to the
problem, preventing that inconsistency. YAHSP3 is a forward state-space heuris-
tic search planner that embeds a lookahead policy based on an analysis of relaxed
plans.

5 Domain Encodings and Abstraction

In this section we present five PDDL modelings of the challenge of the RoboCup
Logistics League with different levels of abstraction. Abstraction allows to speed
up the search process, usually at the cost of plan makespan. Since RCLL is
a dynamic domain, we are interested in the sum of the solving time and the
makespan. In fact, in a dynamic domain such value corresponds to the real end
of the plan execution. We refer to this value as total-time. The least and the
most abstracted domains have been developed by the Carologistics and GRIPS
team respectively. We call these modeling CARO1 and GRIPS2. The other three
1 https://github.com/timn/ros-rcll ros.
2 https://tinyurl.com/2dkbasft.

https://github.com/timn/ros-rcll_ros
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domains lay in the middle, encoding an intermediate level of abstraction. Two of
them are derived from the GRIPS encoding. Each one reintegrates the explicit
modeling of an aspect which was abstracted away in the original GRIPS domain.
We refer to them as GRIPS-MOVE and GRIPS-MPS, that reintegrate the move
actions and the station processing respectively. The last domain has been devel-
oped by the Freiburg team (FREIBURG)3.

5.1 The GRIPS and CARO Encodings

We start by introducing the main difference between the CARO and GRIPS
PDDL encodings. The former is very accurate and models every detail of the
domain. It has been compared to other modelling and planning approaches in
[18]. The latter abstracts away the following details: (1) the sending of prepa-
ration messages to production stations and the corresponding processing task,
(2) the move action of agents and (3) the representation of every base work-
piece present in the environment. In GRIPS, all of these aspects are considered
implicitly and not modeled as standalone actions or objects. This modeling is
currently used by the GRIPS team in the RCLL competition. The performance
of this approach can be seen in the result of RoboCup Asia Pacific 20214.

Machine Processing and Preparation Messages: One can identify two
types of preparation messages. The ones required to interact with a station,
which needs to be sent before performing some kind of delivering or retrieving
task and the ones used to start the processing task on a ring or a cap station. A
processing task consists of performing an activity on a piece placed on the input
side of a station, mounting a ring or a cap on it, and making it available on
the output side for the retrieval. In the GRIPS domain, both type of messages
are abstracted away. The plan dispatcher will handle the preparation messages
implicitly during the execution. In the first case, the message is sent when the
robot starts moving towards the station, and there is no advantage in anticipating
it. This means that the makespan is not increased by this abstraction. However,
the same does not apply for the second type of preparation messages. Such
messages are sent automatically by the GRIPS plan dispatcher as soon as a piece
is delivered to the input side of a machine. As a consequence, both the input
and output sides of the station’s conveyor need to be empty during the delivery.
Being able to postpone the processing w.r.t to the delivery action, possible in
CARO, means that a piece can be delivered to the input even if the output is
occupied. Such freedom increases the options for action concurrency and may
shorten the makespan.

Move Actions: In GRIPS movements of the robots are not represented as
atomic actions. Every movement is integrated into an interaction of the robot
with a machine. If a robot needs to use a station, the time needed to travel
between its actual position and the station is added to the duration of the

3 https://github.com/GKIFreiburg/rcll-sim-freiburg.
4 https://tinyurl.com/bdzk8v6v.
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action representing the interaction with the machine. This results in potentially
suboptimal solutions in terms of concurrency, but the solving time improves
drastically because an explicit move action can be applied almost anytime and
increases the search space a lot. In fact, removing the possibility for a robot to
move in advance towards a position may cut out plans with better makespans.
For instance, a robot is allowed to retrieve a piece from the output side of a
station only after the processing of the piece was performed by the station. The
corresponding PDDL action is then scheduled after the delivery of the piece
to the input side. However, in the Carologistics modeling a different robot can
move to the output side beforehand, waiting there until the piece is ready to be
retrieved. In the GRIPS modeling, instead, the absence of a standalone move
action means that the robot can not anticipate the movement to the output
side of a station w.r.t. the retrieving task. It will start moving towards it only
after the processing. Listing 1.1, which depicts the plans obtained using the
GRIPS and Carologistics encoding for the interaction with a ring station, shows
this behaviour. The Carologistics model can finish 15 s earlier, namely the time
needed by a robot to move to the right position.

Workpiece Representation: Another important difference between the two
modelings is that CARO explicitly models every base with a dedicated object.
Every base can either be linked to an actual order or used as a resource to be
provided to the ring station. In the former case, its features (like the presence
and colors of rings and/or a cap mounted on top of the workpiece) are added as
soon as the workpiece is processed by other stations. The bases situated on the
shelf of the cap station, which are used as cap carriers and have to be delivered to
the input side to provide a cap, are also individually represented with an object.
In the GRIPS encoding the workpieces are not directly modeled. For each order,
a dedicated predicate to keep track of the progressing is used. Stations’ resources
which can not be refilled by robots and need human intervention, namely the
bases used as cap carriers or stored inside the Base Station, are supposed to
be infinite. However, the usage of such resources by robots is modeled, to avoid
the derivation of invalid plans. We can conclude that adopting a more general
modeling which supposes infinite resources does not increase the makespan, as
long as the status of the intermediate product and the usage of resources are
properly modeled.

Dealing with the Abstracted Aspects During the Plan Execution. In
the GRIPS overall software architecture, which includes also other aspects like
plan execution and monitoring, all the details abstracted away during the plan-
ning phase are managed by the plan dispatcher. For instance, the GRIPS get-
BaseFromBaseStation action represents a robot retrieving a base piece from the
base station. This PDDL action is actually split into three different subtasks by
the plan dispatcher: the (1) the sending of a preparation message to the station,
which dispenses a base piece onto the conveyor; (2) the move task of the robot
from its actual position to the base station, together with the alignment to the
right side; (3) the actual grasping of the base piece by the robot.
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Listing 1.1. GRIPS and Carologistics plans to retrieve a base. We assume 15 seconds
for robot movements, 30 seconds for interaction with the station and 1 second for
machine processing. The action descriptions of GRIPS and Carologistics models have
been simplified and uniformed for better readability. Numbers between square brackets
represent the time point of the start or the end of the corresponding action.

GRIPS :
[ 3 0 . 0 0 0 ] de l iverProductToRS1 start ( r1 , p1 )
[ 7 6 . 0 0 0 ] del iverProductToRS1 end ( r1 , p1 )
[ 7 6 . 0 0 1 ] getProductFromRS start ( r2 , p1 )
[ 1 2 1 . 0 0 1 ] getProductFromRS end ( r2 , p1 )
Ca r o l o g i s t i c s :
[ 3 0 . 0 0 0 ] moveTo start ( r1 , r s 1 i npu t )
[ 3 0 . 0 0 0 ] moveTo start ( r2 , r s1 output )
[ 3 0 . 0 0 0 ] prepare−r s s t a r t ( r s1 )
[ 3 0 . 0 0 1 ] prepare−r s end ( r s1 )
[ 4 5 . 0 0 0 ] moveTo end ( r1 , r s 1 i npu t )
[ 4 5 . 0 0 0 ] moveTo end ( r2 , r s1 output )
[ 4 5 . 0 0 1 ] de l iverProductToRS1 start ( r1 , p1 )
[ 7 5 . 0 0 1 ] del iverProductToRS1 end ( r1 , p1 )
[ 7 5 . 0 0 2 ] rs−mount−r i n g 1 s t a r t ( r s1 )
[ 7 6 . 0 0 2 ] rs−mount−r ing1 end ( r s1 )
[ 7 6 . 0 0 3 ] getProductFromRS start ( r2 , p1 )
[ 1 0 6 . 0 0 3 ] getProductFromRS end ( r2 , p1 )

5.2 GRIPS-MOVE and GRIPS-MPS Encodings

The GRIPS-MOVE and GRIPS-MPS modelings are derived from the GRIPS
encoding, by adding some of the aspects which have been abstracted away.
GRIPS-MOVE features the standalone move actions. Robots are free to travel
between locations and the move action is no more integrated into an interaction
task.

The GRIPS-MPS encodings adds the handling of processing tasks by produc-
tion stations. Simple preparation messages are still abstracted away, since they
do not provide any benefit in terms of plan quality. The sending of a message
to trigger the processing of a workpiece by a station is encoded as a standalone
action. As a result, a delivery task on a station can be performed even if the
output side is occupied by another piece. As soon as the output side is freed, the
processing action can be performed.

5.3 FREIBURG Encoding

The FREIBURG encoding, we are evaluating in this paper, is similar to GRIPS-
MPS in terms of abstraction level. Simple preparation messages are not modeled,
while processing messages are present. Move actions are partially abstracted
away, but in a different way as in GRIPS-MPS. The key differences between
GRIPS-MPS and FREIBURG are the following:
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Modelling of Processing Tasks: Like in GRIPS-MPS, the processing tasks
of production stations are explicitly modeled. However, there is an important
difference. In FREIBURG, it is not allowed to deliver an object to the input
side as long as an workpiece is present on the conveyor of the station, even if
it is on the output side. As a result, the modeling of processing tasks does not
provide any advantage in terms of makespan w.r.t. the original GRIPS domain.
GRIPS-MPS is instead able to find plans with better degrees of concurrency.

Modelling of Move Actions: In FREIBURG the move actions are also
abstracted away, but in a different way w.r.t. GRIPS. In GRIPS, every move
action is integrated into one interaction action. Differently, the FREIBURG
domain include the encoding of a transport action, which combines a move action
with two interaction actions. More specifically, a transport action includes the
(1) retrieve task of a workpiece from a station by a robot, (2) the move of that
robot to another station and (3) the delivery of the workpiece to that station.
However, a standalone move action is still necessary, to place the robot in the
right place before the execution of a transport action. In other words, a robot can
freely move around only if he is not carrying anything. Otherwise, the movement
is combined with two interaction tasks.

6 Evaluation

In this section detailed results of the evaluation are presented, discussing the
planners and the encodings separately.

Metrics: In the evaluation we are considering different kind of metrics: (1) the
total-time, (2) the makespan, (3) the solving time and (4) the number of planning
problems instances the planner is able to solve in a given time. Regarding the
evaluation of planners, the main metric is the number of solved instance. For the
evaluation of encodings we focus on the average total-time of the best plan in
each solved instance. The total-time of a plan is the sum of the plan makespan
and the solving time needed to derive that plan. In this case, with best plan
we do not mean the plan with the best makespan, but the one with the best
total-time. We consider a time limit of 17 min for the solving time, as 17 min
is the duration of a RCLL game. Since we are testing a dynamic domain, and
the solving phase needs to be integrated into the game, we are interested into
minimizing the sum of the solving time and the makespan. All the tested planners
iteratively finds better and better plans during the solving process. The best
plan (in terms of makespan) can not be executed if we spent all the 17 min for
planning. On the opposite, the first found plan may have a very long makespan
w.r.t. a plan found after a few more seconds of solving. To estimate when to
stop the planning process and commit to the best plan found that far is not
possible. As a consequence, the idea is to commit to the best plan (in terms of
total-time) found so far. If a better plan is found, the old plan is discarded and
the new one is executed. As long as the total-time is smaller, we know that we
are able to finish its execution before the old one. The saved time can then be
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used to derive and dispatch a plan for other products. The same reasoning does
not apply if we consider the makespan alone. If a plan with a better makespan is
found, we may have no time to dispatch it anymore. A possible issue is that this
strategy only works together with the hypotesis that we are able to immediately
dispatch a new found plan. If we were dispatching a different plan, we have to
adapt the new plan to the actual situation. However, since both the old and the
new plan involve the same products, this task can be done without increasing the
makespan. On the contrary, since in the old plan we may have already solved
some of the steps needed to assemble the same products, the real makespan
may decrease. To summarise, a new found plan can be easily merged with the
current one and the total-time may further decrease. By using total-time, we
are considering both the solving time and the makespan, allowing to choose to
which plan commit on-the-fly during the execution.

Setup: For each planner and each encoding we test 5 different product configu-
rations in terms of complexity. For each product configuration we use 10 different
game configuration. A game configuration determines the position of the stations
on the field, the features of the product (color of caps, bases and rings), and the
requested payment for each ring color. The game configurations have been ran-
domly generated using the Referee Box, the official software referee of the compe-
tition. The product configuration represents the complexity of the orders, in terms
of number and size of the products: p1 (1 C0 product), p2 (1 C1 product), p3 (1
C2 product), p4 (1 C3 product), p5 (1 C0, 1 C2, 1 C3 products). The total number
of runs are 1500, decreasing to 1350 due to incompatibility issues between some
encodings and some planners (e.g., C4PT with FREIBURG, C4PT and TFD with
CARO). The evaluation has been executed on a laptop with 16 GB of RAM and
an Intel i5 8500u CPU, featuring Ubuntu 16.04.

Table 1. Number of solved instances by different planners in relation to the complex-
ity of the problem instance. Number of tested instance per planner can vary due to
unsupported features like numeric fluents or math operators.

Optic POPF TFD C4PT ItSAT YAHSP3

P1 40/50 40/50 40/40 30/30 40/50 42/50

P2 41/50 40/50 31/40 30/30 40/50 41/50

P3 40/50 38/50 29/40 30/30 4/50 38/50

P4 34/50 35/50 30/40 30/30 0/50 31/50

P5 25/50 26/50 25/40 30/30 0/50 31/50

Overall 180/250 179/250 155/200 150/150 84/250 183/250

Results: For the evaluation of planners and domain encodings in the context
of RCLL we performed an extensive evaluation on various combinations of plan-
ners, encoding, and problem instances. While we present the results of this
evaluation in a condensed form here, all detailed results can be found on the
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Fig. 1. Comparison of different problem encodings for different complex problems. The
total-time is given in seconds for the best performing planner per encoding. Failure of
such planner to find a solution within 17 min results into missing data points.

web5. In Table 1 the comparison between the planner is shown. Due to incom-
patibility issues, C4PT has not been tested on CARO and FREIBURG, while
TFD has not been tested on CARO. Optic, POPF, ItSAT and YAHSP3 run
flawless with all the domains. Between them, YAHSP3 is the clear winner, since
it was able to solve most of the instances. Optic and POPF are close, while
ItSAT shows the overall worse performance in the comparison. Overall, C4PT
is the only planner able to solve 100% of the tested instances. However, we have
to highlight that almost no instance of CARO, the most complex encoding, has
been solved by any planner. The fact that C4PT has not been tested on CARO
has had a significant impact on the score. Nevertheless, by looking at the set
of common tested instances between C4PT and Optic, or C4PT and YAHSP3,
the portfolio planner beats both of them. TFD manages to solve 155 instances
out of 200. Considering that it has not been tested on CARO, it shows worse
performance w.r.t to all the other planners, except for ItSAT. The comparison
between the modelings is depicted in Fig. 1. For space reason, and to ensure a
better readibality, for each modeling we show the results of the planner which
performs better, depending on the number of solved instances for that particu-
lar modeling. If two or more planners solved the same number of instances, we
select the one with the best average total-time. In the plot, for each encoding and
each product configuration the average total-time of the corresponding 10 game
configurations is shown. From the plot, the contribution of the various levels of
abstraction is well depicted. First, it is clear that a detailed and deep represen-
tation of the domain, like CARO, is too complex for an dynamic domain. Only
a few instances have been solved, more specifically two p1, four p2 and two p3.
5 https://tinyurl.com/2p86r4hj.

https://tinyurl.com/2p86r4hj
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The reason why some planners manage to solve p2 and p3 instances but not p1
is unclear. However, finding a solution for them required a huge amount of time,
as can be seen on the plot. In this case, most of the contribution to the total-
time comes from the solving time. Even considering a perfect solution in terms
of makespan, the quantity of time invested in planning is too high for a dynamic
domain. While this is conditional to the available compute resources, it is hard
to imagine that such combinatorial explosion may be compensated by a more
powerful hardware. The best performing modeling is GRIPS, namely the one
with the higher degree of abstraction. From the results, it is clear how the draw-
back of abstraction, namely a potential worse makespan, become meaningless if
compared with the gain obtained in terms of better solving time. The trade-off
between makespan and solving time favors the usage of abstraction. By analyz-
ing the other encodings, we can weight the impact of each abstracted aspect.
Abstracting away the move actions is the aspect affecting the total-time the
most. In fact, in the two domains where move actions are not (GRIPS-MOVE)
or only partially (FREIBURG) abstracted away, the total-time of the most com-
plex instance is significantly higher w.r.t. GRIPS and GRIPS-MPS, where move
actions are completely abstracted away. This behaviour is also confirmed by the
other metrics we tested. For example, CARO and GRIPS-MOVE have worse
makespans than expected. This can be explained by the high complexity of the
two domains. In fact, the 17 min limit for the planning time prevents the plan-
ners to find the real optimal solutions for these encodings. For some planners,
the suboptimal plans found within the time limit are worse than the ones found
with more abstracted encodings. This means that, due to the short time window
w.r.t. to the size of the problem, abstracting away the move actions does not
even results into an higher makespan. We obtain both a faster computation and
a better plan. Finally, abstracting away the processing task of production sta-
tions has also a positive impact, how can be seen by the comparison of GRIPS
and GRIPS-MPS, although way smaller than the movement abstraction.

7 Conclusion and Future Work

In this paper we performed a comparison between PDDL temporal planners in
the context of the RoboCup Logistics League. Moreover, we evaluated different
domain encodings in order to investigate the impact of abstraction. Abstracting
away some aspects allows to decrease the problem complexity, but it may results
in worse plans. Since RCLL is a dynamic domain and solving time is crucial,
we exploited the trade-off between planning time and makespan to verify if
abstraction leads to an overall benefit, considering the sum of the two times.
Looking at the final results, we can conclude that it is the case. As part of
future work, we want to investigate the performance of other type of planner
which support temporal domain, like some Hierarchical Task Network (HTN)
planners and Timeline-based planners. Different modelings will be considered
as well. For instance, we plan to exploit the task hierarchy property of HTN
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planners, to verify that using knowledge of the structure of a solution (e.g., order
of production steps) available in RCLL can speed up planning significantly.
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Abstract. In the RoboCup Small Size League (SSL), teams are encour-
aged to propose solutions for executing basic soccer tasks inside the SSL
field using only embedded sensing information. Thus, this work proposes
an embedded monocular vision approach for detecting objects and esti-
mating relative positions inside the soccer field. Prior knowledge from
the environment is exploited by assuming objects lay on the ground,
and the onboard camera has its position fixed on the robot. We imple-
mented the proposed method on an NVIDIA Jetson Nano and employed
SSD MobileNet v2 for 2D Object Detection with TensorRT optimiza-
tion, detecting balls, robots, and goals with distances up to 3.5 m. Ball
localization evaluation shows that the proposed solution overcomes the
currently used SSL vision system for positions closer than 1 m to the
onboard camera with a Root Mean Square Error of 14.37 mm. In addi-
tion, the proposed method achieves real-time performance with an aver-
age processing speed of 30 frames per second.

Keywords: Autonomous navigation · Position estimation · Object
detection

1 Introduction

At the RoboCup Small Size League (SSL) robot soccer competition, games occur
between two teams of omnidirectional mobile robots with eight players for divi-
sion A and six for division B. Frames from cameras placed above the field are
processed by a dedicated computer, which runs SSL Vision: a standard vision
system for detecting and tracking elements such as robots, goals, balls and field
lines [24]. Off-field computers, one for each team, receive the position informa-
tion and referee commands and perform most of the computation and exchange
of information with robots using Radio Frequency (RF) communication with
minimal bandwidth.

In recent RoboCup editions, the League has proposed a new technical com-
petition in which teams are only allowed to use embedded sensing information
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for executing basic soccer tasks inside the field [15]. The Vision Blackout chal-
lenge encourages teams to propose autonomous navigation solutions for the SSL
environment. In 2021 the teams were assigned three tasks for the competition:
grabbing a stationary ball somewhere on the field (1), scoring with the ball on
an empty goal (2), and scoring with the ball on a statically defended goal (3).
Therefore, detecting and locating balls, robots, and goals from embedded devices
is needed.

SSL robots are constrained to a 180mm diameter limit and achieve up to 3.7
m/s velocities, requiring low-power, small-size, high-throughput solutions. For
example, SSL ball detection using scan lines and color segmentation has been
previously proposed [17]. However, even though this approach has achieved accu-
rate results in recent competitions, it cannot detect other SSL objects. Moreover,
it lacks robustness concerning local illumination or field changes.

With the advances in Deep Neural Networks (DNN) architectures and paral-
lel processing technologies, the use of Convolutional Neural Networks (CNN) for
object detection has grown considerably in embedded applications [2]. This app-
roach presents significant advantages compared to traditional computer vision
techniques, especially in robustness to environmental conditions and adaptabil-
ity to new object classes. For that, an open-source SSL dataset1 containing 2D
bounding boxes for detecting balls, goals, and robots on images is available [6].

Computing position and orientation (pose) from detected objects is
also essential for autonomous navigation. Considering the robot’s resource-
constraints, solutions employing a single monocular camera for object detection
and position estimation are preferred. Exploiting prior knowledge from the envi-
ronment, Inverse Perspective Transformation can be applied for computing three
dimensional positions from camera frames [3].

This research proposes a monocular vision solution for detecting and estimat-
ing the relative positions of SSL objects, using bounding boxes’ 2D coordinates
from a CNN-based Object Detection model and previously calibrated camera
parameters for back-projecting objects positions on the soccer field. The pro-
posed solution is tested on an NVIDIA Jetson Nano Developer Kit [7] employ-
ing a Logitech C922 camera, both mounted on the top of a SSL robot, and
we evaluate accuracy results for ball localization, achieving a 14.37 mm Root
Mean Square Error (RMSE), overcoming position accuracy from the standard
SSL Vision system. The implemented system runs at 30 frames per second, with
an average 10.8 W power consumption, and respects all League’s restrictions,
showing it can be applied for the desired challenge, and the main contributions
of this work are:

– A complete architecture for detecting and locating SSL objects using CNN-
based object detection.

– Presenting procedures for calibrating onboard camera intrinsic and extrinsic
parameters.

– A detailed pipeline and configurations for training SSL Object Detection and
deploying to NVIDIA Jetson Nano.

1 https://github.com/bebetocf/ssl-dataset.

https://github.com/bebetocf/ssl-dataset
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2 Related Work

The SSL Vision Blackout Challenge was introduced in the League in 2019, with
Tigers Mannheim achieving the best results [17]. Their work aims to detect the
ball and estimate its relative position to the robot and their research reports that
CNNs may achieve robust results [13], but the team has discarded its use due to
the lack of embedded hardware accelerators by the time; blob detection methods
are too slow and highly sensitive to lighting changes; an edge detection method
took too much processing time as well and identified moving balls as ellipsoids.
Therefore, Tigers comes up with a novel approach: an algorithm that searches
for ball candidates by applying a sharp edge detection kernel along logarithmi-
cally distributed horizontal lines. A vertical scan is performed when candidates
are found, and the ball’s radius, confidence, and position are estimated. The
team also shares a deployment infrastructure for the on-bot vision software [21]
and a full architecture for autonomous robot-ball interaction [10], on which ball
distances to the robot are estimated from the object size on the image.

At other RoboCup soccer leagues, Deep Learning methods are proposed for
detecting elements such as balls, robots, goalposts, and field lines. At the Stan-
dard Platform League, for instance, CNNs are used for detecting field boundaries
[9], robots and balls, while also estimating ball’s positions [14]. Since detect-
ing goals and field lines are essential for self-localization on the soccer field,
another approach defines four object classes for the network to detect: balls, line
crossings, robots, and goalposts [19]. Exploiting prior knowledge about the ball
characteristics, another research presents an algorithm for searching ball regions
proposal to accelerate inference time by applying the object detection CNN to
a smaller region of the image [20].

An open-source dataset containing 2D bounding boxes labels for SSL robots,
balls and goals was introduced in 2021’s RoboCup edition [6]. The research also
benchmarks Deep Learning state-of-the-art object detection models evaluating
their accuracy and inference speed on a Google Coral TPU accelerator, reporting
SSD MobileNets V1 and V2 to achieve the best overall performances.

The main bottleneck for using CNNs on SSL was the lack of hardware-
accelerated embedded platforms for running DNNs in real-time [10]. With Deep
Learning empowering several IoT applications, the concept of Edge Computing
rapidly gains huge attention, urging for low power devices capable of running
complex DNNs [18]. Edge Devices comparisons show that NVIDIA Jetson Nano
and Google Coral Developer Board achieve the best overall results when run-
ning object detection models, concerning the accuracy, inference time and power
consumption [2].

As minor performance improvements are extremely relevant in real-time
applications, numerous CNN architectures are proposed in the object detection
domain, being mostly divided into two categories: two-stage and one-stage, such
as single shot detectors (SSD). For mobile applications, single-shot ones gain
most of the attention and previous comparisons between state-of-the-art mod-
els report SSD MobileNet V2 [11,16] to achieve great speed-accuracy trade-offs,
especially under hardware constrained scenarios [6,8,12].
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As 2D object detection models are only capable of computing two-
dimensional bounding box positions on images, we also search for three-
dimensional position estimation solutions. A DNN combining human seman-
tic segmentation and depth prediction achieves remarkable accuracy with high-
speed inferences on Jetson Nano [1]. However, the network must be trained
with a depth-labeled dataset, which is not available for SSL objects. At the
RoboCup@Home League, OpenPose CNN architecture [5] is used for detect-
ing key points, and object poses are calculated from 2D-3D correspondences
between detected and ground-truth key points using PnP-RANSAC [22]. How-
ever, the method presents limitations when dealing with symmetric objects. Also,
works on vision-based self-localization show that relative positions from points
on images can be retrieved by Inverse Perspective Transformation if one of its
world coordinates is known [3].

In this work, we solve the Perspective-n-Point (PnP) problem for 2D-3D cor-
respondences between a set of hand-marked points on the field for estimating a
camera’s relative pose to the field coordinates. Also, we employ SSD MobileNet
v2 for regressing object’s 2D bounding boxes and a linear regression model
for calculating their bottom-centers projection on camera frames. Extrinsic and
intrinsic parameters are used for solving the Inverse Perspective Transformation
problem for points on the ground and object’s relative positions are estimated.

3 Proposed Approach

During soccer matches and especially for the Vision Blackout challenge, SSL
objects mostly lay on the soccer field, and we exploit this prior knowledge for
proposing a monocular vision solution for detecting and estimating their relative
positions to the robot. For that, the camera is fixed to the robot and its intrinsic
and extrinsic parameters are obtained using calibration and pose computation
techniques from the Open Computer Vision Library (OpenCV) [4]. A state-of-
the-art CNN-based object detection model, SSD MobileNet v2 [11,16], is used for
detecting objects on camera frames. After labeling, linear regression is applied to
the bounding box’s coordinates, assigning a point on the field that corresponds
to the object’s bottom center, which has its relative position to the camera,
and, therefore, to the robot estimated using pre-calibrated camera parameters.
Position information can be delivered to decision-making and path planning
algorithms to execute autonomous navigation. Figure 1 illustrates a scheme for
the proposed method and all software is open-source2.

In the following subsections, in-depth explanations for each of the steps from
the proposed pipeline for object localization are presented. Firstly, we depict the
camera pinhole model and calibration procedures. Then, in sequence, since the
proposed approach for estimating objects’ positions is based on ground points
localization, a method for computing field points’ relative positions is presented.
Then, CNN model conversion and training details are given, followed by an
explanation of the procedure adopted for fitting a linear regression model for
estimating the object’s ground pixel.
2 https://github.com/jgocm/ssl-detector.

https://github.com/jgocm/ssl-detector
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Fig. 1. Designed architecture for detecting and locating SSL objects with a single
monocular camera.

3.1 Camera Calibration

Camera parameters are divided into intrinsic and extrinsic, and the process for
projecting three-dimensional points to the image plane can be described in three
steps: converting 3D world position to the camera coordinates system using the
extrinsic parameters (1); projecting points to the image plane using intrinsic
parameters (2); and re-scaling pixels using a scale parameter (3). The pinhole
camera model describes the mathematical representation for this process [10],
which is given in detail by Eq. 1 and simplified on Eq. 2.
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s pc = K [R | t] pw (2)

In Eq. 2: pw represents a 3D point in the world coordinates system; [R | t]
describes the camera axis rotation and translation concerning the world coor-
dinates, which are called extrinsic parameters; K is the intrinsic parameters
matrix, consisting of αx and αy scale factors, u0 and v0 coordinates for the prin-
cipal point and the γ skew factor; pc is the pixel position on screen; and s is a
depth scale factor. Thus, for back-projecting image pixels to three-dimensional
world coordinates, camera parameters must be calculated beforehand.

The chosen procedure for estimating intrinsic camera parameters requires
multiple images of a planar pattern from different viewpoints, making 2D-3D
correspondences between pattern points from different images [23]. For instance,
a chessboard pattern was used and OpenCV implementations for camera cali-
bration and chessboard corner detection for pattern recognition were applied, as
illustrated in Fig. 2.
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Fig. 2. Corner detection and chessboard pattern recognition result. The method is
applied to multiple images and, by the end, the 2D points and its 3D correspondences
are used for estimating the camera’s intrinsic parameters and lens distortions [23].

For extrinsic parameters estimation, 2D-3D correspondences between SSL
field points can be used to find the camera rotation and translation regarding
field axis by solving a Perspective-n-Point (PnP) problem, which consists of
finding a camera’s pose based on a set of pixels and its corresponding three-
dimensional world coordinates. Figure 3 describes the calibration procedure.

Fig. 3. With the camera mounted onto the robot, pixels corresponding to field points
with known positions are hand-marked, for instance, penalty area corners, field corners,
goal corners, or the goal center can be used. A PnP problem for the 2D points and
their three-dimensional correspondences is solved by minimizing re-projection error.
The employed algorithm is an implementation from OpenCV library and computes the
camera‘s rotation and translation vectors with respect to field coordinates.

3.2 Ground Point Localization

By using the calibrated extrinsic and intrinsic parameters, given a pixel on the
screen, the camera model can be rewritten as Eq. 3. From that, if rotation matrix
R, translation vector t, and intrinsic parameters matrix K are computed, any
position pw can be retrieved if one of its coordinates is known. For example,
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points on the ground, which in case correspond to zw = 0, can have their xw

and yw coordinates estimated.
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3.3 Object Detection Model

Object detection tasks require high computing power, being the most time-
consuming step of our proposed architecture. Thus, the SSD MobileNet v2 model
was selected for its better trade-off between accuracy and inference time, among
other state-of-the-art models [8].

With pre-trained weights on the COCO dataset, a model from the Tensorflow
framework was retrained for 57, 565 steps on a Google Colab Notebook, running
with a Tesla K80 GPU. The proposed dataset for SSL Object Detection contains
931 images with up to 4182 instances of balls, robots, and goals labeled in Pascal
VOC and YOLO formats [6]. For the training, images were randomly partitioned
into train and test sets with an 80/20 proportion, and batch size was configured
to 24.

Using appropriate format conversion is essential for enabling high-
performance hardware acceleration, especially on embedded platforms. For Jet-
son Nano, NVIDIA’s TensorRT deep learning framework, which is built on
CUDA parallel programming model, delivers low latency and high throughput for
inference applications while also supporting models generated from Tensorflow,
Pytorch, ONNX and other frameworks. Figure 4 gives an in-depth explanation
for the model conversion procedure.

Trained Model
Checkpoint

Inference
Graph

TF Lite
Model

ONNX
Model

TensorRT
Engine

Fig. 4. The inference graph was exported from the Tensorflow retrained model check-
point. TF Lite model was extracted from the graph and converted to ONNX format.
NonMaxSupression (NMS) post-processing operation was replaced due to incompati-
bility issues, and the TensorRT Inference Engine was successfully generated from the
ONNX file.

3.4 Ground Point Linear Regression

In order to compute three-dimensional positions with the proposed method, we
fit linear regression weights for predicting a pixel that corresponds to the point
where the object touches the ground, that is zw = 0. The inputs for the model
are bounding box coordinates generated from the 2D object detection inference.
Figure 5 illustrates the procedure for finding the regression weights for the ball.
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Fig. 5. With landmarks positioned with a 250 mm grid on the field, the ball was placed
on each of the markers and its bounding boxes were regressed from the object detec-
tion model. Then, removing the ball, the pixels that correspond to the center of each
landmark on the screen were annotated. Thirty markers were used in the procedure.

4 Evaluation

The SSL uses standard golf orange balls, with an average 42.7 mm diameter,
for the soccer matches, and its localization was tested to evaluate the proposed
method. Landmarks were positioned on the SSL field with a 250 mm grid and
used as the ground truth during the experiments. We placed the robot at a fixed
position, setting camera XY coordinates to 0 and −500. After calibrating camera
intrinsic and extrinsic parameters, we estimated object relative positions on a
set of images from the ball placed in 30 marked coordinates and compared the
results to the SSL Vision system.

For qualitative comparison and behavior analysis, ball XY coordinates were
plotted on Fig. 6. As for quantitative measurements, Root Mean Square Error
(RMSE) was employed for the set of points taking landmark positions as the
ground truth. Angles between the objects and the robot are essential for navigat-
ing in the SSL environment and were also computed for evaluation. Coordinates
measurements are in millimeters, while angles are in degrees.

4.1 Camera Calibration Results

Intrinsic parameters were estimated from 20 chessboard pictures taken in
640× 480 resolution with a Logitech C922 camera, as presented in Sect. 3.1.
From the previously presented approach for extrinsic parameters calibration,
5 points were hand-marked on the screen: the bottom left and right goal cor-
ners, the lower left and right penalty area corners, and the goal bottom center.
Estimating rotation and translation vectors from the PnP solution, camera to
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field axis relative pose can be computed. Calibration results are exhibited on
Eq. 4.
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4.2 Objects Detection Performance

Table 1 and Table 2 show accuracy results for the retrained weights on the test
set. After deploying to Jetson Nano, the model runs at an average processing
time of 24 ms, equivalent to 41.67 frames per second, and SSL objects can be
detected for up to 3.5 m distances using the onboard camera.

Table 1. Average Precision (AP) evaluation on the test set. Results are measured by
Intersection over Union (IoU) threshold, where 50 and 75 indexes indicate 0.5 and 0.75
IoU, while APS , APM and APL represent small, medium and large objects.

Model AP AP50 AP75 APS APM APL

SSD MobileNet v2 62.2% 93.4% 68.2% 35.0% 81.9% 91.1%

Table 2. Average Recall (AR) evaluation on the test set. 1 and 10 indexes indicate the
maximum number of objects per image, while ARS , ARM and ARL represent small,
medium and large objects.

Model AR1 AR10 ARS ARM ARL

SSD MobileNet v2 47.3% 68.8% 48.5% 85.6% 93.3%

4.3 Ball Localization

For evaluating the proposed object localization approach, we chose 30 different
field positions for the ball. Since errors from points closer to the robot have a
higher impact than further ones for autonomous navigation, points were split into
subsets according to their distance. The estimated locations from the onboard
vision system and RMSE can be seen in Fig. 6.

From the given plot and RMSE measurements, errors increase with the dis-
tance to the robot. This is due to objects on screen getting smaller for further
distances, resulting in less accurate bounding boxes and position estimation
being more sensitive to pixel differences for distant points. Thus, we present
an in-depth analysis from the four nearest positions in Table 3, showing that the
proposed solution is capable of overcoming SSL Vision accuracy for locations
near the robot. Angles are measured by the tangent arc of relative XY positions.
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Fig. 6. Ball relative positions were estimated from the on-board detection system
(green), being compared to SSL Vision (orange) and the ground truth (blue). Sub-
sets of points were selected and the respective RMSE’s were computed, reporting a
14.37 mm error for the four nearest points. The dashed lines highlight the divisions
between subsets and the RMSE for the whole set of points was 67.32 mm (Color figure
online).

Table 3. Comparison between estimated and ground-truth relative positions and rota-
tion. In the last two lines, mean error and standard deviation of our method are com-
pared to SSL Vision for the correspondent set of points. Coordinates are measured in
millimeters, while angles are in degrees.

Ground Truth (x, y, θ) On-Board Vision (x, y, θ)

0 500 0 −0.03 508.86 0.00◦

−250 750 −18.43 −259.17 762.23 −18.78◦

0 750 0 −1.08 772.20 −0.08◦

250 750 18.43 247.12 753.32 18.16◦

Mean Error (Ours) −0.03 ± 3.39 3.32 ± 8.38 0.00◦ ± 0.15◦

Mean Error (SSL Vision) 15.31 ± 11.04 −11.03 ± 7.00 0.72◦ ± 1.12◦

Accuracy results can be interpreted from comparisons to the robot and ball
dimensions: SSL robots have an approximate 100 mm wide front area for grab-
bing and shooting the ball, which has a fixed diameter of 42.7 mm. Mean errors
of 3.32 mm, in the y axis, −0.03 mm, in the x axis, and 0◦, in direction, should
suffice the accuracy needed for autonomously approaching the ball, for instance.
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5 Conclusion

This work presents an approach for detecting and locating objects on the SSL
soccer field, employing SSD MobileNet v2 CNN architecture for Object Detec-
tion and estimating ground points for calculating relative positions. Images from
a chessboard pattern are used for computing intrinsic camera parameters. The
camera pose is measured by solving a PnP problem for a set of 2D-3D corre-
spondences from points on the field. The system is implemented on an NVIDIA
Jetson Nano Developer Kit, enabling TensorRT acceleration. CNN-based object
detection is employed, and we fit a linear regression model for predicting ground
points based on bounding box positions. The pinhole camera model equation is
solved for zw = 0, and the object’s relative XY coordinates are regressed.

Evaluation shows that our approach overcomes the current vision system
accuracy for points near the camera with an average processing speed of 30
frames per second, while also respecting the league’s 180 mm diameter restric-
tion and consuming low power. Ball relative localization can be used for
autonomously moving on its direction or rotating around it, for instance. In
addition, our method is capable of detecting robots and goals, differently from
existing ones in the SSL, while also being more robust to environment changes.

Future work include reproducing the presented procedure for estimating the
robot and goal positions and searching for field lines detection solutions, which
can have their relative coordinates calculated by the proposed method as well,
enabling online camera pose calibration. Also, performance evaluations in a more
dynamic environment, with moving objects and camera, must be done.
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Abstract. In its operating life, an agent that needs to act in real envi-
ronments is required to deal with rules and constraints that humans ask
to satisfy. The set of rules specified by the human might influence the role
of the agent without changing its goal or its current task. To this end,
classical planning methodologies can be enriched with temporal goals
and constraints that enforce non-Markovian properties on past traces.
This work aims at exploring the application of real-time dynamic gen-
eration of policies whose possible trajectories are compliant with a set
of Pure-Past Linear Time Logic rules, introducing novel human-robot
interaction modalities for the high-level control of strategies for multi-
ple agents. For proving the effectiveness of the proposed approach, we
have carried out an evaluation on a partially observable, unpredictable,
and dynamic scenario: the RoboCup soccer competition. In particular,
we exploit human indications to condition the robot’s behavior before or
during the time of the match, as happens during human soccer matches.

Keywords: Plan conditioning · Multi-agent planning · Robot soccer

1 Introduction

The flexibility of a robotic player’s behavior is a key point in a soccer compe-
tition like the RoboCup. Changing team strategy in real-time can be hard to
achieve given the fact that in most leagues, state-machine behaviors are still
predominant [3], and, even when the deployed behavior is learning-based, the
resulting policies can suffer in challenging and dynamic environmental condi-
tions. In order to enable a team behavior to receive external conditioning, we
propose a planner system capable of accepting constraints in real-time from the
external environment. This allows the online adaptation of team behaviors (even
during matches) with the potential outcome of modifying the collective strategy
of the team, as shown in Fig. 1.
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Fig. 1. A use case of the proposed architecture. The human can suggest possible mod-
ifications to the team strategy that are grounded over PLTLf templates.

The application on which we are going to focus is represented by the real-
time, in-game interaction with a coach. External guidance is a determinant fac-
tor in all human sports. Real-time conditioning may originate from humans
that have more information about the current scenario (e.g., a coach or the
crowd’s reaction to an in-game situation [4]), providing high-level instructions
to the team. In human psychology, for instance, we have several examples of
how important the coach is in influencing the athletes [13,17]. In the path to
reach the 2050 official goal, it might be beneficial to explore the possibilities
of the introduction of adaptive team behaviors using human coach commands.
An attempt at involving a human coach in high and low-level control of a team
during matches was already made in Simulated 3D League. The possibility of
using a coach is not novel even in RoboCup SPL, since a robot coach has been
allowed in Standard Platform League (SPL) in the past. The attempt did not
achieve resounding success, ruling out the robot coach from the official rulebook.
This experience demonstrated that it is extremely difficult to blend past experi-
ence and perceptions to condition the actions of an entire team in real-time. To
achieve this ambitious goal, human-robot interaction (HRI) can be an interme-
diate step and an important component worthy of being investigated in such a
scenario.

In the adoption of suggestions from human beings, one of the main limitations
has been represented by the different planning depths in robots and humans.
To this end, performing combined planning, blending the two, can limit the
capacities of the usual planner systems. To exploit the human-robot interaction
capabilities in RoboCup SPL, we present a novel architecture to condition team
behaviors based on the combined use of non-deterministic planning and a set of
Pure-Past LTL (PPLTL) rules, also known as PLTLf rules in literature, which
are used to express temporal goals on finite non-empty traces. The application
allows for real-time generation of non-deterministic policies during a RoboCup
SPL match, as shown in Fig. 1. Even though the interaction with the human is
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Fig. 2. Work flow representation of the presented approach to online behavior con-
ditioning for robot soccer teams. The user (i.e. a coach) can set vocal constraints to
modify the team behavior.

not allowed under the current set of rules, we think that it is worth to be inves-
tigated, as high-level commands might give way to new methodologies for team
behavior conditioning. In particular, we deployed online conditioning through
PLTLf rules expressing temporally extended goals and non-Markovian proper-
ties over traces, natively, using past-temporal operators as shown in Fig. 2. The
main contributions of the present work are: the use of PLTLf over finite past
traces to improve over previous planning approaches using LTLf constraints;
the deployment of non-deterministic planning, which is necessary to model the
uncertainty of conditions in which actions are performed; the conditioning of the
overall strategy by human-understandable commands encoding non-Markovian
temporal properties; the release of the presented software as a tool for addi-
tional experimentation, built on top of the B-Human framework [16], with addi-
tional modules from the SPQR team. The code and the additional material
mentioned in this paper is released on https://sites.google.com/diag.uniroma1.
it/robocupcoach.

The rest of the paper is organized as follows: in Sect. 2, we survey the current
state of the art and compare it to our approach; in Sect. 3, we expose a brief
theoretical helpful background to fully understand the concepts expressed in the
paper; in Sect. 4 we show more in detail the proposed method; in Sect. 5 we
illustrate two use cases of the presented system; in Sect. 6 we discuss the experi-
mental results obtained; finally in Sect. 7 we discuss the conclusion obtained and
the possible future developments of this work.

2 Related Work

The first attempt at creating a language to coach a RoboCup team can be
found in [15], where COACH UNILANG is presented for Simulated 3D League.
COACH UNILANG is a standard language for coaching robot soccer teams that
enables high-level and low-level coaching, including tactics, formations used in

https://sites.google.com/diag.uniroma1.it/robocupcoach
https://sites.google.com/diag.uniroma1.it/robocupcoach


Adaptive Team Behavior Planning Using Human Coach Commands 115

each situation, and giving instructions. An evolution of that language is rep-
resented by GOL [14] (Group Organizing Language), a novel language, league
independent, that allows designing tactical instructions in robot soccer through
a formalization of the Tactical Instruction for RoboCup players. To model those
strategies in RoboCup, several approaches have been adopted over the years.
Planning-based approaches have been widely deployed in different leagues of the
competition. All these approaches cannot easily capture procedural constraints
on executions. Linear dynamic logic on finite traces (LDLf ), as an extension of
LTLf by the means of regular expressions, can capture procedural constraints
during the execution. In this case, the constraints are typically expressed as reg-
ular expressions that must be fulfilled by traces. The logics LTLf/LDLf are
also used to express non-Markovian rewards/goals in extensions of MDPs [5].

Online generation of plans can be time-consuming. There have been previous
approaches handling the generation of behaviors starting from pre-determined
plans [2]. To this end, [8] proposes FOND Planning with Linear Temporal Logic
over finite traces with temporally extended goals in Fully Observable Non-
Deterministic (FOND) domains. To simplify the solving of FOND planning for
LTLf/PLTLf , in [7] FOND4LTLf is presented, an architecture that compiles
FOND planning for LTLf and PLTLf goals into standard FOND planning and
computes the associated policy.

3 Background

Planning Domain Definition Language (PDDL) is a family of languages
for the definition of planning problems. There are now many versions of PDDL
available with different levels of expressivity. PDDL1 [1] is the first version of
the language that has been released. A predicate logic way of modeling drives it.
The model creator defines a set of actions. Each action has a set of preconditions
that have to be matched. Actions modify the world’s state, the effect of the
action on the modeled environment is specified as the effect of the action. Both
preconditions and effects are expressed in predicates logic. This logic can be
extended to include ∧, ∨, ¬, =⇒ , and the other traditional logical operators,
allowing to express several complex concepts. The ultimate aim in planning is to
achieve some goal state, which is also expressed as a predicate formula. PDDL2
[10] extended PDDL1 by introducing action time durations and numeric fluents
while PDDL3 [12] introduced soft constraints to AI planning.

Linear Temporal Logic (LTL) [18] proposes an extension of modal logic in
which worlds are organized in an infinite linear structure: each world represents
a discrete moment in time. In temporal logic, the evaluation takes place within
a set of worlds. Thus, a predicate may be satisfied in some worlds but not in
others. How to navigate between the worlds depends on the specified view of
time. A temporal accessibility relation between worlds captures the particular
model of time. Given a trace τ = s1, ..., sn, that is a sequence of states, where
si at instant i is a propositional interpretation over an alphabet of propositions,
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LTL extends the propositional logic by adding temporal operators over states
in the trace: X or ◦ (“Next”), applied to a logical proposition P , is verified in a
state st only if P is verified in the state st+1; U (“Until”), applied to a couple of
propositions P1 and P2, is verified if and only if ∃tn such that P2(stn) is true and
P1(si) is true ∀i < tn; F or � (“Eventually”), applied to a single predicate P ,
is verified in a state st only if there is a state st+i such that P (st+i) is verified;
G or � (“Globally”), applied to a proposition P , is verified in a state st only if
P (st+i) is verified for all the successors of the state st.

Past Time Linear Temporal Logic. Although it is possible to obtain a past-
time specification in LTL [11], Pure-Past LTL (PPLTL) describes past-time
relationships directly, introducing the operators Y (“Yesterday”), S (“Since”),
O (“Once”) and H (“Historically”), corresponding to the future operators X,
U, F, G, respectively. PPLTL keeps the same expressiveness of LTL although
the worst-case complexity of FOND Planning for PPLTL goals is EXPTIME-
complete in both the domain and the goal formula, instead of the 2EXPTIME-
complete complexity for LTLf goals [6].

Planning for PPLTL Goals. Following [9] and [8], in classical planning for
LTLf goals, a plan satisfying the LTL goal formula is obtained by first building
the deterministic automaton for the planning domain and the nondeterministic
automaton for the goal formula, computing their product, and then checking
the non-emptiness of the resulting automaton. Following [8], in FOND planning,
a DFA game is to be solved on the aforementioned cross-product, to obtain a
policy. The result presented in [6] instead converts a PPLTL goal φ into a set
of sub-formulas Σφ, using only the Y and S past-time operators, such that the
evaluation of the PPLTL goal only depends on the propositional interpretation of
Σφ in the current state and the truth value of the other sub-formulas computed
up to the previous state. Following this idea, the original planning problem Γ
is compiled into a new planning problem Γ ′, with D′ being a new planning
domain where each sub-formula in Σφ is represented by an additional fluent.
This domain is then translated into PDDL, using derived predicates to represent
the truth value of each sub-formula. The PPLTL goal itself is represented as a
derived predicate and effects for the already existing domain actions are modified
so that they also update predicates associated to propositions in Σφ. After this
compiling, which is shown to have a polynomial complexity, any off-the-shelf
planner supporting these syntactic devices (such as FastDownward or MyND,
which was used in the case at hand) can be used to solve the compiled planning
problem Γ ′. As shown in [6], the obtained plan or policy is a solution to the
original planning problem Γ and requires no further manipulation.

4 Proposed Approach

Behavior engineering is a crucial task when dealing with a robot soccer player.
Behaviors are usually hand-crafted and modeled as tree structures, covering all
possible cases and encoding team strategies as an emergent property of the multi-
agent system itself. This trending habit tends to over-complicate the generation



Adaptive Team Behavior Planning Using Human Coach Commands 117

Fig. 3. Overall software architecture. This example, involves policies for Striker and
Jolly roles, implementing a collective behavior for passing the ball or scoring.

of context-specific team strategies and task-allocation-based approaches. In the
implemented approach, we focus on obtaining dynamic plans through constraints
applied using Pure-Past LTL. Given an existing PDDL domain, a new domain
embedding the PPLTL constraint is compiled, with the tool presented in [7]. The
compiled domain can then be used with any off-the-shelf PDDL planner to gener-
ate robot behaviors that are compliant with the PPLTL constraints. In scenarios
where fluents from the environment are needed to model conditions that are not
known at planning time, policies can be obtained by non-deterministic PDDL
domains, where oneof constructs are used in the post-conditions of actions to
enumerate the set of their possible unpredictable results. Plans generated with
non-deterministic planners from such a domain are robust for a set of unpre-
dictable outcomes. We used the MyND planner for our experiments. When the
non-deterministic post-conditions contain fluents, i.e., predicates whose value
depends on the execution environment, policy execution is directly determined
by the agent’s own world model and percepts.

4.1 Architecture

The overall architecture is depicted in Fig. 3. The high modularity allows for an
easy extension of its components. The architecture features three main parts.

(1) The robot control framework instances running on each robot. The
framework manages the execution of received actions and announces their com-
pletion. Robots communicate at a lower level to ensure synchronization of per-
cepts and to allow role assignment using a mutually exclusive coordination algo-
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rithm. (2) A communication manager that wraps communication controllers
(each one statically assigned to a robot and managing communication with it)
and a policy for each robot’s role in the team. The current policy action for
each role is sent to the robot assigned to that role. Role assignment is performed
autonomously by robots, and their percepts are labeled with the robot role. Poli-
cies are updated only when the previous action has been completed. The current
set of percepts, updated by the robots, a set of selected fluents, and robot actions
are stored in the Environment Registries. Fluents, computed from the latest per-
cepts, are stored in the Fluent Registry. Percepts, labeled with the role that sent
them, are stored in the Value Registry and are retrieved during the evaluation
of fluents. The Action registry stores action templates and instances, mapping
them to the available robot skills. (3) A non-deterministic planning mod-
ule with behavior conditioning. Textual or vocal commands are translated to
PLTLf rules by matching them with pre-defined templates, selected according to
keywords in the command. Given the expected command structure, conditioned
predicates are extracted. The formula is then generated from the retrieved data.
For each role, only a chosen set of domain predicates is constrainable and only
commands constraining those predicates will be considered valid.

Several constraints can be specified for each role, and the final temporal
goal is obtained as their conjunction with the original goal (which is fixed for
the case at hand but can be specified in the same way). Given an existing role-
specific and context-specific PDDL domain, a new domain that encodes the given
conditioning constraint is compiled, following the technique in [6], and a policy
is then generated and mapped to the specific role. This process is performed
every time a new constraining command is received.

The modularity of this architecture allows running the communication and
planning modules directly on each robot. The generated policies will therefore
be correctly mapped to the role currently assigned to the local robot.

4.2 Plan Generation and Execution

The proposed solution obtains dynamic behavior generation by harnessing both
the power of non-deterministic planning, and the conditioning of behaviors with
constraints expressed in Pure-Past Linear Temporal Logic, which encode non-
Markovian properties on the trace. As demonstrated in [6], the advantage of using
PLTLf over LTLf is that the same worst-case computational complexity as in
classical planning can be obtained for both deterministic and non-deterministic
domains, giving an exponential advantage with respect to LTLf , while keeping
the same expressiveness. In our case, policies, generated as in [6], are modeled
as graphs where outgoing edges are labeled with fluents.

The main problem with the mentioned approaches is that generated policies
are not ready to be executed with temporally-extended actions: PDDL actions
are instead considered instantaneous. To solve this problem, percepts sent by the
robots are stored in “environment registries”. In this way, the current state of
a policy is updated only when the completion of the previous action is notified.
Fluents for outgoing edges from the current state are evaluated by recovering
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the necessary percepts, and only one outgoing edge will have verified fluents (by
construction). The appropriate edge is selected, and the associated action is sent
to the robot. An example of such a policy is shown in Fig. 4, that represents
a “striker” which, depending on the non-deterministic fluents that model the
presence of an opponent blocking the opponent’s goal and the availability of a
robot with a “jolly” role (which always tries to receive a pass), decides whether
to pass the ball, dribble the opponent or try and kick directly to the goal.

4.3 PLTLf Temporal Goals over PDDL Domains

Given the role-specific goal g and a mapping between PDDL predicates and their
corresponding PLTLf atoms (such as the PDDL predicate isat robot waypoint
maps to the atom isat robot waypoint in the formula), the conditioned goal is
obtained as the conjunction of g with the constraining formula. For example, in
the temporal goal g ∧O(P1)∧H(P2), the trace reaching goal g, is constrained to
entail both the requirement that the predicate P1 happens “at least once” and
that the predicate P2 is always verified. Textual command templates featured in
our experiments are:

– “[‘at least once’ | ‘once’ | ‘sometimes’ | ‘sooner or later’ ] {P}”, where P
is chosen from a subset of constrainable PDDL predicates, maps to O(P ),
imposing that the condition expressed by P is verified at least once along the
past finite trace.

– “[‘at all times’ | ‘always’ | ‘historically’ ] {P}” maps to g ∧H(P ). The condi-
tion expressed by φ has to be always verified along the finite trace preceding
the goal g.

– “[‘never’ | ‘avoid’ ] {P}”, maps to g∧H(¬P ) ⇐⇒ g∧¬O(P ). The condition
expressed by P has to never be verified along the finite trace preceding g.

It should be noted that the last two templates are fit to be used as safety rules,
stating that some condition has to always (or never) be verified.

5 Examples

To show the versatility of this approach, we propose some use cases.

Single-Agent Examples. Our PDDL domain for a naive striker behavior fea-
tures three actions: moverobot, kickball and carryball. In our case, kickball
and carryball have the same post-conditions, but they are linked to different
low-level skills in the robot (a kick and a dribbling skill). The goal for the striker
is to have the ball at the goaltarget. To condition the policy, at least one con-
strainable predicate is needed: in our case, the only conditionable predicate is
isat, modeling the position of the ball or the robot. The user is allowed to specify
a role-specific constraint. Initially, the goal isat ball goaltarget is unconstrained,
resulting in a simple plan requiring the robot to reach the ball and then carry it to
the goal. The robot can then be forced to carry the ball to the kickingposition
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Fig. 4. Non-deterministic striker (left) and jolly (right) policies for the multi-robot
example. Fluents are in the gray boxes while actions are the edge labels.

waypoint before carrying it to the goal with the constraint “at least once isat
ball kickingposition”, translated to PLTLf as O(isat ball kickingposition) and
added as a conjunct to the original goal. All domain objects (such as locations)
have to be grounded using the Environment registries. Robots perform policy
actions, executing their corresponding low-level atomic behaviors implemented
in an option framework (which is the common approach used in SPL).

A Multi-agent Example. In our multi-agent scenario, the policy for the
“striker” and the “jolly” role, which receives a pass, are obtained from non-
deterministic domains, both shown in Fig. 4. The jolly turns to the striker if it is
already reachable for a pass or reaches its waiting position otherwise. The striker
initially reaches the ball, and then, depending on the current situation on the
field, it chooses the best policy branch. Without opponents, the striker attempts
to kick to goal; if a jolly is not available, it tries to dribble the opponent and
bring the ball to the goal; otherwise, it waits for the jolly to be in position, and
then it passes the ball. Once the jolly receives the ball, it automatically becomes
the striker, according to the role-assignment algorithm running at a lower level
on robots, and the policies are reset and reassigned to the respective robots.

6 Experimental Evaluation

The evaluation of the proposed approach has been carried out using real and
simulated RoboCup environments. In order to evaluate planning time over an
increasing planning depth, a simple simulated RoboCup environment was used,
with a single robot starting from one side of a soccer field, tasked with bringing
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Fig. 5. A comparison between the plot for planning time over an increasing planning
depth in a domain where adjacency between waypoints is modeled (on the right, adja-
cency is considered along diagonals as well). We can notice how including a PLTLf

constraint forcing the robot to pass through a waypoint lying on the optimal path to
the goal leads to generally lower planning times.

the ball to the opposite side. Conditioning can be imposed to the whole team,
but to evaluate the timing we only analyze the planning performance of the
Striker, that is the most active role in our architecture. The planning domain is
modeled in PDDL as a square grid of waypoints on the field and the robot is only
allowed to move the ball between adjacent waypoints, with adjacency modeled
by a specific predicate (“adjacent waypoint1 wapoint2”). The goal waypoint is
placed on the opposite side of the field, such that by increasing the number of
grid cells per-side, the length of the shortest path required to reach the goal
increases as well and can be used to control the minimal planning depth for
a successful plan. Fig. 5 shows how significantly the performance can decrease
with a different representation of the environment and how the external guid-
ance can impact the performance of the planner. We evaluated the approach
using a simplified adjacency grid (on the left), that does not consider diagonally
adjacent waypoints, and a complete one (on the right), considering the whole
neighborhood. In both scenarios, planning time was evaluated with and without
an additional constraint forcing the robot to pass through a waypoint located
approximatively in the middle of the shortest path, expressed using the “O(is at
ball waypoint)” constraint. Grid size (therefore the expected minimal planning
depth) varies between 4 and 35 in all cases. In the simplified representation,
the conditioning does not significantly affect the planning time. Rather, with
the complete waypoint adjacency representation, the planning time increases
around 20 times, and the improvement given by the conditioning becomes rel-
evant, as can be seen in the plot. Furthermore, the conditioning reduces the
search space and improves the planner’s performance.

To qualitatively evaluate also the benefit of the conditioning in a Multi-agent
scenario, the field was instead modeled such that the robot would try to move
the ball between waypoints located respectively at the initial robot position,
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Table 1. Results of 10 matches between the human conditioned team and the not
conditioned one used as baseline. The human coach conditioned the overall strategy
by exploiting the weakness of the opponent team strategy.

Win % Average goals per match Total Goals %

Coach guided behavior 80 2.2 68.75

Baseline 20 1 31.25

the goal target (which has to be reached by the ball as a final goal) and other
waypoints regularly arranged along the field. We ran 10 test matches between
the guided team and the unconditioned one as a baseline. The baseline behavior
consisted in moving the ball between waypoints by kicking it, leaving it slightly
unprotected during approach maneuvers. The human coach was able to notice
and exploit this vulnerability by forcing the striker robot to always “dribble” the
ball to a flank before kicking to goal. The ball is therefore moved more slowly
but also more protectively, allowing the robot to exploit the slower opponent
approach times, occasionally stealing the ball from the opponent. The results
are shown in Table 1. A test with real robots was successfully performed as well,
confirming the robustness of this system in a real environment.

7 Conclusions and Future Directions

A key aspect to achieve a successful integration of robots in complex scenarios is
to make robots able to perceive and understand the environment around them,
conditioning the behavior given indications or rules that can only be acquired
during the task. This paper lays the foundation for working on a higher level of
abstraction in the decision-making process that can condition the strategies of a
robot team through the use of intelligible commands. It uses a modular architec-
ture that is easy to adapt to different purposes and teams as it is based on one
of the most popular frameworks in the RoboCup@Soccer SPL competition. Fur-
thermore, the use of hard and soft constraints also allows for adapting the given
commands to different areas, such as robot security, allowing to model strategies
that can ensure the safety of both the robot and any human operators working
in contact with the robot itself. In the future, it would be interesting to extend
this work to create a system capable of automatically learning a domain from
natural language, for example, dynamically modifying the behaviors of robots
from the RoboCup regulation of the current year. In conclusion, this work is
a first step towards using and learning new forms of interaction and condition-
ing between natural language and robot behavior. This allows the creation of
new strategies to generalize and deal dynamically with unexpected and complex
situations such as those that the RoboCup environment can create.

References

1. Aeronautiques, C., et al.: PDDL—the planning domain definition language (1998)



Adaptive Team Behavior Planning Using Human Coach Commands 123

2. Antonioni, E., Riccio, F., Nardi, D.: Improving sample efficiency in behavior learn-
ing by using sub-optimal planners for robots. In: Alami, R., Biswas, J., Cak-
mak, M., Obst, O. (eds.) RoboCup 2021. LNCS (LNAI), vol. 13132, pp. 103–114.
Springer, Cham (2022). https://doi.org/10.1007/978-3-030-98682-7 9

3. Antonioni, E., Suriani, V., Riccio, F., Nardi, D.: Game strategies for physical robot
soccer players: a survey. IEEE Trans. Games 13(4), 342–357 (2021)

4. Antonioni, E., Suriani, V., Solimando, F., Nardi, D., Bloisi, D.D.: Learning from the
crowd: improving the decision making process in robot soccer using the audience
noise. In: Alami, R., Biswas, J., Cakmak, M., Obst, O. (eds.) RoboCup 2021. LNCS
(LNAI), vol. 13132, pp. 153–164. Springer, Cham (2022). https://doi.org/10.1007/
978-3-030-98682-7 13

5. Camacho, A., Triantafillou, E., Muise, C., Baier, J.A., McIlraith, S.A.: Non-
deterministic planning with temporally extended goals: LTL over finite and infinite
traces. In: Thirty-First AAAI Conference on Artificial Intelligence (2017)

6. De Giacomo, G., Favorito, M., Fuggitti, F.: Planning for temporally extended goals
in pure-past linear temporal logic: a polynomial reduction to standard planning
(2022). https://doi.org/10.48550/ARXIV.2204.09960

7. De Giacomo, G., Fuggitti, F.: FOND4LTL: fond planning for LTL//PLTL/goals
as a service (2021)

8. De Giacomo, G., Rubin, S.: Automata-theoretic foundations of fond planning for
LTLF and LDLF goals. In: IJCAI, pp. 4729–4735 (2018)

9. De Giacomo, G., Vardi, M.Y.: Linear temporal logic and linear dynamic logic on
finite traces. In: Proceedings of the Twenty-Third International Joint Conference
on Artificial Intelligence, IJCAI 2013, pp. 854–860. AAAI Press (2013)

10. Fox, M., Long, D.: PDDL2.1: an extension to PDDL for expressing temporal plan-
ning domains. J. Artif. Intell. Res. 20, 61–124 (2003)

11. Gastin, P., Oddoux, D.: LTL with past and two-way very-weak alternating
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Abstract. This paper presents the approach of the RoboCup@Work
team tyrolics of the university of Innsbruck to design, develop and build a
mobile manipulator with 10 degrees of freedom. The mobile manipulator
LeoBot uses Mecanum wheels to enable omnidirectional movement and
includes a Franka Emika Panda serial manipulator. This paper focuses
on hardware development and provides information on mechanical, elec-
tronic, and mechatronic system components. Basic algorithms developed
and used for the competition are briefly described.
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1 Introduction

Mobile robotic systems are used in modern flexible industrial solutions. The
combination of serial manipulators and mobile robotic systems is called mobile
manipulator [1]. Depending on the application there are a lot of different solu-
tions for mobile manipulators regarding load capability, drive technology and
dimensions. In 2012 the RoboCup@Work league [2] was introduced to support
and increase development of mobile manipulators for industrial related pur-
pose. The challenges have to be completed autonomously and contain detection,
manipulation and transport of various objects as well as classical robotics chal-
lenges like the peg-in-hole task1. A mobile manipulator called LeoBot shown
in Fig. 1, to be used in the RoboCup@Work league, was developed and will
be discussed in this paper. The field of application for the robot besides the
RoboCup@Work competition is research and education.

1 RoboCup@Work rulebook 2022, https://github.com/robocup-at-work/rulebook.

Supported by the University of Innsbruck and the “Foerderkreis 1669 – Wissenschaft
Gesellschaft”.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Eguchi et al. (Eds.): RoboCup 2022, LNAI 13561, pp. 127–139, 2023
https://doi.org/10.1007/978-3-031-28469-4_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-28469-4_11&domain=pdf
https://github.com/robocup-at-work/rulebook
https://doi.org/10.1007/978-3-031-28469-4_11


128 M. Sereinig et al.

Fig. 1. Mobile manipulator LeoBot including the 7 rotational axis of the serial manip-
ulator (red). (Color figure online)

Fig. 2. Design sketch of the mobile manipulator LeoBot with some of its main features
and separation of the inner structure with different layers (left); System overview with
main parameters (right)

2 LeoBot Hardware Components and Design

LeoBot can be separated into two main parts, the mobile base platform using
Mecanum wheels and the mounted Franka Emika Panda serial manipulator. This
section describes main parts as well as used hardware components and system
properties (see Fig. 2, right). The development of this mechatronic system was
done following the so called “V model” for mechatronic developments according
to the VDI2206 standard. The requirements on the system where given by the
rules of the targeted competition (RoboCup@Work) and additional specifications
according human-robot interaction. Some main features of LeoBot are shown in
a design sketch in Fig. 2 including the three layers to include electronic compo-
nents. Additional information can be found in the supplementary material on
the teams git-hub page (https://github.com/leobot-UIBK/LeoBotRoboCup).

2.1 Mechanical System and Construction

A laser-cut aluminum plate is used for the mobile base. To investigate the dis-
placement at the tool center point of the dynamic system mobile base with

https://github.com/leobot-UIBK/LeoBotRoboCup
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Fig. 3. Backside plate with buttons, switches and ports for easy access and backside
plate top view, inside the housing with switching relays and fuse stacks (left). Drive
assembly group. Mecanum wheel with timing-belt construction (right).

manipulator, a multibody simulation was done using the multibody simulation
framework Exudyn2. The base plate was modeled as a flexible body using the
floating frame of reference formulation with model order reduction as described
in [3]. The deformation of the selected aluminum base plate can be seen in Fig. 5
and is negligible small. For a precise movement of the mobile manipulator it
is important that all four Mecanum wheels stay in contact to the floor while
driving. With the simulation, further improvements will be done to design the
stiffness of the aluminum plate, such that it compensates small unevenness of
the ground by small twists. In addition to the base plate, two plates are used
to place electronic components onto three levels inside the robot. An additional
frame construction made with aluminum profiles is used to set up the used alu-
minum plates to the right level.

Electronic Components and Payload Placement: The robot is build up
of four layers (0 to 3) and a back plate to mount all components. This individual
layer can be seen in Fig. 2 and the back plate is shown in Fig. 3. Layer 0 (base
plate) contains all motors, gears and timing-belts as well as the four Mecanum
wheels the Franka Emika Panda serial manipulator and the laser scanners. Layer
1 is used for the Franka Emika Panda controller and layer 2 contains the major-
ity of electronic devices. Layer 3 (top plate) is used for additional devices and
payload.

Mounting Points: The used serial manipulator is located on layer 0 (base
plate) to achieve a low center of mass to avoid tilting during movements with
high acceleration. Layer 0 (base plate) is not rectangular and includes special
mounting points where two laser scanners are mounted (front-left and back-right)
on the very outside to achieve a 360◦ sensor view.
2 Exudyn is a C++ based Python library for efficient simulation of flexible multibody

dynamics systems,https://github.com/jgerstmayr/EXUDYN.

https://github.com/jgerstmayr/EXUDYN
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Timing-Belt Connection, Bearings and Axles: The four Mecanum wheels
are driven by maxon-motors which are connected to the wheels via a timing-belt
construction see Fig. 3 (right). This includes the Mecanum wheels the electric
motor as well as the timing-belt system. The calculation of the angular velocities
for each individual component (e.g.Mecanum wheels, pully) can be found in [4].
The timing-belt has been choosen due to the available construction space and
the geometric configuration of the motor-gear assembly group. Furthermore the
usage of a timing-belt gives the possibility to reconfigure and adjust the possible
velocity and torque of the system by variation of the gear ratio.

Mass Distribution and Influence on Driving Performance: The total
mass is about mtotal = 60 kg and the mass for individual components can be
seen in Table 1. Due to the fact that it is not possible to equally distribute all
components within the robot, the center of mass and the geometric center do not
match. During operation, the center of mass (COM), shown in Fig. 4 (left), is also
shifted depending on the configuration of the manipulator and payload. In the
configurations (Fig. 5) the center of mass is shifted forward. Detailed description
of the COM shift and its effect on the movement behavior can be found in [5].

Table 1. Overview of the individual component mass and mounting position.

Components Quantities Mass in g Total mass g Mounted on layer

Motor and gear unit

Ball bearing 4 42 168 0

Cylindrical roller bearing 4 47 188 0

Bearing block 8 60 480 0

Belt pully big 4 44 176 0

Belt pully small 4 17 68 0

Electric motors and gears 4 407 1628 0

Motormount 4 162 648 0

Mecanum wheel and axle 4 2585 10340 0

Motorcontroller 4 138 552 0

Housing

Aluminum plate top 1 1783 1783 3

Wood housing left/right 2 189 378 0–3

Wood housing front/back 2 116 232 0–3

Aluminum profile 20 × 20 10 103 1030 0–3

Aluminum profile 45◦ 2 220 440 0–3

Connectors and screws 13 17.2 223.6 0–3

Slot stones 13 1.8 23.4 0–3

Screws DIN 7380 M5x80 50 1.9 95 0–3

(continued)
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Table 1. (continued)

Components Quantities Mass in g Total mass g Mounted on layer

Base unit

Aluminum base plate 1 3606 3606 0

Aluminum plate level 2 1 1432 1432 2

Sick laser TIM7x 2 248 496 0

Sick modules 4 147 588 0

LiFePo4 battery 1 4476 4476 0

PC mainboard and power supply 1 1098 1098 2

Nvidia Jetson Nano 1 249 249 2

Switching relais 2 99.7 199.4 2

Network switch 1 248 248 2

Network router 1 233 233 2

DC/DC converter 12V 1 650 650 1

DC/DC converter 5V 1 650 650 1

DC/AC converter 1 630 630 2

Fan 2 41 82 2

Cable 1 4000 4000 0–3

Serial manipulator

Franka Emika Panda 1 17800 17800 0

Controller 1 3989 3989 1

Endeffector 1 702 702

Total mass 60069.4

Fig. 4. Simplified geometry of LeoBot including shifted center of mass (left). Base plate
including Mecanum wheels, electric motors and timing belt (right).
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Fig. 5. Different configurations of the manipulator with a COM shift in x and y direc-
tion. [Lc,x = 0.059 m, Lc,y = 0.01 m] (left), [Lc,x = 0.003 m, Lc,y = −0.004 m](right).

2.2 Mechatronic Systems

Mechatronic systems including the installed sensors, safety systems and the drive
components are described in this section.

Sensors: The sensors shown in Table 2 can be divided into two groups. One to
interact with the environment (e.g. vision, distance, force/torques,...) and one
to be used to fulfill basic functionality (e.g. encoder, current sensors,...).

Safety System: The safety system is based on a combination of the included
safety stop modules within the Franka Emika Panda serial manipulator and
products form the company SICK for the mobile base. This company was chosen
due to the fact that the used LIDAR sensors as well as the modbus module are
compatible with the used robot operating system (ROS) version. In addition, the
products fulfilled all given requirements (e.g. budget, size, accuracy,...). Table 3
shows these components and their safety ratings. The EN ISO 13849 safety
norm for machinery control systems is applied and the safety categories (b, 1, 2,
3 and 4) are described there. Figure 7 shows the connections between the SICK
components and the rest of the system.

Electric Motor and Timing-Belt. To derive required torque and rotational
speed for the electric motor for the platform, assumptions for the max. velocity
vmax = 1ms−1, max. acceleration amax = 1ms−2 and max. mass mmax = 70 kg
are made. Thus, we propose the following method to calculate the needed motor
torque for the base platform, select the electric motor and verify the selection
using a simplified dynamic model. With F = mmax ·amax = 70N the inertia force
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Table 2. Overview of the used sensors on the mobile manipulator LeoBot.

Sensor Name Measurement Information

Intel Realsense D415 Stereo vision and depth Mounted on end effector

Intel Realsense D435i Stereo vision, depth and IMU Mounted on mobile base

SICK laser scanner TIM781S Distance Mapping and safety

Franka Emika Panda force/torque Joint forces and torques Franka Emika Panda internal

Maxon rotational encoder Rotations Mounted on each wheel

Maxon current sensor Current Actual current on each wheel

Maxon temperature sensor Temperature Motor controller internal

Table 3. Overview of the used SICK safety system components.

Component Information Safety Norm, EN ISO 13849

SICK laser scanner TIM781S Category B

SICK IO module FX3-XTIO84002 Category 4

SICK CPU FX3-CPU Category 4

SICK Modbus module FX0 modbus TCP No safety certification

SICK safety stop ES11 B10d = 105 switching cycles

which has to be overcome during acceleration of the mobile manipulator can be
calculated assuming only movement on flat ground. Using TW = F ·rW

4 with the
wheel radius rW = 0.075m, the desired torque per wheel TW = 1.3125Nm can

be determined. With nmax =
vmax · 60
rW · 2π

the desired maximal wheel rotational

speed nmax = 127.32min−1 can be determined. Using nmax and TW the electric
motor with a power of PM = 75W, a nominal torque of TN = 0.110Nm and
a rated speed of nR = 6870min−1 is selected. This brushless ec-motor from
maxon3 can be combined with a planetary gear and an incremental encoder. To
confirm the selected motor and to ensure the torque safety ratio as well as the
needed timing-belt gear transmission ratio iR has to be calculated. Using the
calculations above and the rated rotational speed nR of the chosen motor as
well as the chosen gearbox ratio ip = 33 the rotational speed of the small pulley
nN2 =

nR

iP
= 208.18min−1 can be calculated. Together with the maximal desired

rotational speed the gear ratio iR =
nN2

nmax
= 1.64 of the timing-belt system can

be calculated. By the help of the overall efficiency ηges = ηP · ηB · ηL including
the planet gear efficiency ηP = 0.75, the timing-belt efficiency ηB = 0.98 and
the bearings efficiency ηL = 0.98, the resulting wheel torque

Teff = TN · iP · iR · c · ηges = 3.21Nm (1)

3 Maxon a provider of highprecision drive systems, www.maxongroup.com, Motor:
EC-i30, 539487, Gear: GP32C, 166938, Encoder: ENC16RIO4096.

www.maxongroup.com
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can be calculated using the gear transmissions iR and iP and the parameter
c = 0.75 to include additional losses of the mounted Mecanum wheels. Unknown
parameters for machine elements and general approach taken from [6]. The safety
factor can be calculated with S = Teff

TW
= 2.4 which meets a desired safety factor

of S ≥ 2 and can be seen as sufficient for the system. Suitable to the motor-
gear-encoder package the Maxon motor controller EPOS4 module was used as
discussed in Sect. 2.2. The Mecanum wheels motors and timing belt mounting
points can be seen in Fig. 4 (right).

Mecanum Wheels Control: Mecanumwheels are used to enable omnidi-
rectional movability of the platform in the plane without the need of steer-
ing, thus allowing for the use of holonomic path planning, see Sect. 3.1. Each
Mecanumwheel consists of rollers around the circumference which can rotate
freely. The roller axes are arranged here at an angle of 45◦ with the wheel
axis [7]. Each wheel is driven by a separate brushless ec motor, which angu-
lar velocity is controlled by a Maxon EPOS4 controller utilizing the fieldbus
system EtherCAT. The communication with the motor controllers as follower
was implemented on main unit (see Fig. 7) in C++ using the Open Source
library Simple Open EtherCAT Master (SOEM) V1.4.0 [4]. The leobot base
node uses four threads to operate. One thread, running with 1 kHz with real-
time priority handles the process data objects from the EtherCAT communica-
tion (sending control word, target velocity, acceleration/deceleration and receiv-
ing status, actual position/velocity/torque) by loading/storing the data in a
C-structure and sending/receiving the EtherCAT frames. Another thread reads
entries from the follower (EPOS4 controller) object dictionary for monitoring
(temperature, voltage, and communication statistics), using lower priority and
frequency. The ROS communication is split into different threads with medium
priority. The subscriber-thread receives the velocity commands [vx, vy, ω]T from
the ROS system at 1 kHz, calculating the corresponding wheel velocities ωi using
the kinematics equation ωωω= Jv with

J =
1

rW

⎡
⎢⎢⎣

1 −cc −(Lx + cc · Ly)
1 cc (Lx + cc · Ly)
1 cc −(Lx + cc · Ly)
1 −cc (Lx + cc · Ly)

⎤
⎥⎥⎦ (2)

and saves ωi in the structure for the communication. The publisher thread cal-
culates the odometry by integration of the local velocity and publishes the wheel
position/velocity/torque as measured by the controller. It is important to use
the parameter cc = 1 according to the used Mecanum wheels O-configuration.
An analysis of the motion of LeoBot is done by Manzl et al. [5,8], investigations
on the movement of an individual Mecanum wheel can be found in [9]. Therein
the dynamic simulations where done within the multibody simulation library
Exudyn.
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Fig. 6. Overview of different voltage levels.

2.3 Franka Emika Panda

The manipulator Panda of the company Franka Emika has 7 rotational joints as
shown in Fig. 1 (right). Therefore, this system is called kinematically redundant.
Each joint includes a torque sensor as mentioned in Sect. 2.2 and its total mass is
mpanda = 18 kg. Main parameters are given in Fig. 2 (left), a detailed parameter
description can be found in the work of Gaz et al. [10]. The Franka Emika Panda
serial manipulator can be controlled using the Franka Control Interface (FCI).
Using the libfranka library, joint positions q, joint velocities q̇ and joint torques
τττ are provided within a sample frequency fs = 1kHz. Libfranka is also used
by the standard Franka Emika Panda ROS stack to use the manipulator with
moveIt (see Sect. 3.1).

2.4 Electronic System

To achieve a maintenance friendly and save system all connections are installed
by the help of a WAGO connection panel4 with additional fuses for each elec-
tronic sub circuit which can be seen in Fig. 3 (left, top view) on the backside
plate. Different levels of voltage are necessary for the robot to work properly,
therefore two DC/DC switch mode converters are used to generate 5 V and 12 V
from the 24 V battery voltage. Furthermore a 230 V inverter is needed to power
the Franka Emika serial manipulator. This power supply can also be provided
by an external IEC 60320-C13 connector. This allows the use of the robotic arm
stationary with its original software. A relay automatically switches the power
source for the Franka Emika power supply and shuts down the inverter when a
230 V cable is connected to the robot. A more efficient way to generate the 48 V
directly from 24 V battery voltage is, however, not allowed by the Franka Emika
controller. The main voltage level is chosen as 24 V which results in an optimal
voltage/current distribution with all individual electronic components. DC/DC
as well as DC/AC converters are used to achieve different needed voltage lev-
els. Figure 6 shows an overview on the electronic circuit and the different used
voltage levels.

4 WAGO, Electronic Interconnections, Interface Electronic and Automation Technol-
ogy, www.wago.com.

www.wago.com
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Fig. 7. Communication structure with computation units (blue), sensors (green), safety
components (yellow), actuators (orange) and development PC (red). Main unit: Intel
I7-6700K CPU with MINI ITX mainboard, second unit: Franka Emika Panda Con-
troller, third unit: NVIDIA Jetson Nano GPU. (Color figure online)

Universal Utility Connector (UUC): The UUC is a multi-pin connector
on the back of the robot (see Fig. 3) which provides 24V, 12V, 5V, GND and
10Mbit Ethernet for external hardware which can be mounted on the robot. The
24V pins are connected to the implemented SICK safety PLC (Programmable
Logic Controller, see Sect. 2.2) and are turned off by the emergency circuit.

Batteries and Battery Charger: For power supply a LiPoFe4 battery with
24V and 20Ah is used. This lithium-ferrophospat cell battery technology simpli-
fies the usage of the robot while charging the battery. It consists out of eight cells
with a nominal voltage of vn,cell = 3.2 → 3.3V each. The battery provides nomi-
nal current of imax,b = 25A and a peak current of ipeak,b = 37.5A for a maximum
duration of tpeak = 20 s. The battery dimensions are 240mm × 154mm × 83mm
with a mass of mb = 5kg. During laboratory tests the average current consump-
tion of 9.8A was measured and LeoBot can be used for approximately 2 h which
is sufficient for the proposed usage in the RoboCup@Work competition as well
as during research and education. To ensure a working system also during the
charging process a LiPoFe4 charger with direct supply of up to 15A from the
company Victron is used.

3 Leobot Software Architecture and Operating System

All software developments can be found on the GIT repository of the university of
Innsbruck RoboCup team tyrolics5, including supplemental material describing
the system. All software developments are made under the Berkeley Software
Distribution license (BSD). Three computer units as shown in Fig. 7 are used.

5 Team GIT repository https://github.com/leobot-UIBK/LeoBotRoboCup.

https://github.com/leobot-UIBK/LeoBotRoboCup
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3.1 Robot Operating System

LeoBot is a combination of different hardware and software components and
since all of these systems need to be interconnected, a common interface is cru-
cial. The communication between different program instances on the individual
computation units is established by the used robot operating system (ROS). The
robot operating system (version noetic6) is used due to its standardization, large
and active community and a variety of external libraries and software stacks as
well as its large hardware support. To display results of algorithms and sensor
data the ROS-tool rviz7 is used. CoppeliaSim8 was used to simulate the mobile
platform movement to evaluate the path planning functionality [11].

Arm Motion Planning: To establish easy to use arm motion planning the
MoveIt [12] framework is chosen. The framework is highly integrated into the
ROS ecosystem, directly supports the Franka Emika Panda manipulator and
comes with C++ and Python interfaces. A variety of services to perform complex
motions, the ability to avoid self collision or collision with pre-defined obstacles
are provided. To make the system more robust to unknown or changing environ-
ments in addition the point cloud that is generated by the arm depth camera
can be fed into the collision map. MoveIt is mainly built to perform pre-planned
motions and has only limited real-time support. However, most manipulation
tasks in the RoboCup@Work do not need complex feedback during execution,
therefore pre-planed motions are sufficient. The Orcos Kinematics and Dynamics
Library (KDL)9 is the standard inverse kinematic solver used in MoveIt. This
solver uses a pseudo-inverse Jacobian approach, however, this seems to perform
bad with robot arms that have joint limits. The TRAC inverse kinematic solver
[13] uses a combination of the method used for KDL, extended by joint limit
detection, combined with a Sequential Quadratic Programming (SQP) nonlinear
optimization approach. Running both methods and taking the first converging
solution has shown to lead to a better solve rate with comparable run-time. As
solving type Distance is used which minimizes the sum of squared differences
to find the solution with shortest motion distance. To have more flexibility and
robustness while performing grasps, a custom grasp function has been built on
top of MoveIt. Basic motions like approaching a pre-grasp pose are still per-
formed by MoveIt, however it is possible to react adjusted on collisions with the
environment between several steps of a grasp motion in different scenarios.

Mobile Platform Navigation: For navigation of the base platform, the ROS
navigation stack functionality is used. This includes various algorithms and so-
called plugins to set up individual navigation parameters for the mobile manip-
ulator. Detailed tests and parameter setups are described in [11]. Based on the
6 https://www.ros.org/.
7 rViz, 3D visualizer for ROS.
8 Robotics simulator CoppeliaSim, www.coppeliarobotics.com/.
9 https://www.orocos.org/wiki/Kinematic and Dynamic Solvers.html.

https://www.ros.org/
www.coppeliarobotics.com/
https://www.orocos.org/wiki/Kinematic_and_Dynamic_Solvers.html
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sensor data, 2D or 3D occupancy grid maps (costmaps) and predefined maps of
the environment are used to evaluate the costs for different path to a specific
goal. This occupancy grids are separated into global and local costmaps. Path
planning is also separated by a global planner (planes the initial path from start
to goal) and a local planner (takes additional information into account). For
omnidirectional driven robots it is important to use a suitable planner as for
example the teb local planner [14]. Which can be configured for omnidirec-
tional movement.

Object Recognition, Computer Vision and Task Planning: To output
the correct label and the corresponding bounding box of an object in an image
the deep neural network You Only Look Once [15] (YOLO) is implemented on
the Nvidia Jetson Nano GPU. Therefore the network is trained by minimizing
the error of a predicted box and the corresponding class to a pre-labeled box
and class. This also works with multiple objects present in the same picture. To
order the given start and goal state of the arena to a (by the LeoBot) executable
sequence of tasks the framework ROSPlan [16] is chosen. All possible actions
of LeoBot like move to or pick and their change to the environment can be
modeled in a domain file. The start and end state of the arena from the so-called
atwork commander is parsed automatically into a problem file in pddl format.
This problem file can be converted into a plan by considering the domain file.
During execution of a plan a dispatcher calls the corresponding implementations
of actions specified in the domain file.

4 Conclusion and Outlook

In this paper the technical details of a newly developed mobile manipulator plat-
form including the mechatronic design are discussed. The RoboCup@Work team
participated in 2021 successfully in the RoboCup@Work competition, showing
the suitability of the presented mobile manipulator to solve the demanded tasks.
LeoBots mecanumwheeled mobile base enables omnidirectional movement and
by including a Franka Emika Panda serial manipulator, the resulting kinemat-
ically redundant system with 10 degrees of freedom can interact safely with its
environment. In addition, the utilized manipulator with 7 degrees of freedom
enables a reach of 0.855 m, which is significantly lager than the reach of the well-
established Kuka YouBot, which has 5 degrees of freedom. Further, the presented
system costs approx. 38000 Euros and is thus low-cost compared to equivalent
commercial systems. The easy accessible sensor data and the well known param-
eter are a significant advantage for ongoing and future research. Future work will
be done by the researchers to identify the behavior of Mecanum wheels based
on laboratory evaluation shown in [5,9]. Furthermore the system will be used to
investigate the base positioning problem which comes with mobile manipulators
as described in [17].



Mobile Manipulator LEOBOT 139

References

1. Sereinig, M., Werth, W., Faller, L.-M.: A review of the challenges in mobile manipu-
lation: systems design and RoboCup challenges. e & i Elektrotechnik und Informa-
tionstechnik 137(6), 297–308 (2020). https://doi.org/10.1007/s00502-020-00823-8

2. Kraetzschmar, G.K., et al.: RoboCup@Work: competing for the factory of the
future. In: Bianchi, R.A.C., Akin, H.L., Ramamoorthy, S., Sugiura, K. (eds.)
RoboCup 2014. LNCS (LNAI), vol. 8992, pp. 171–182. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-18615-3 14

3. Zwölfer, A., Gerstmayr, J.: The nodal-based floating frame of reference formulation
with modal reduction. Acta Mech. 232(3), 835–851 (2020). https://doi.org/10.
1007/s00707-020-02886-2

4. Manzl, P.: Realtime Movement of a Mecanum Wheeled Robot using the Robot
Operating System ROS. Master thesis, University of Innsbruck (2020)

5. Manzl, P., Gerstmayr, J.: An improved dynamic model of the mecanum wheel
for multibody simulations. In: IDETC/CIE, vol. 85468, p. V009T09A031. Ameri-
can Society of Mechanical Engineers (2021). https://doi.org/10.1115/DETC2021-
70281

6. Mott, R.: Machine Elements in Mechanical Design. Pearson/Prentice Hall, Hobo-
ken (2004)

7. Gfrerrer, A.: Geometry and kinematics of the Mecanum wheel. Comput. Aided
Geom. Des. 25(9), 784–791 (2008). https://doi.org/10.1016/j.cagd.2008.07.008

8. Manzl, P., Sereinig, M., Gerstmayr, J.: Modellierung und experimentelle Vali-
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Abstract. Soccer Simulation 2D League is one of the major leagues of
RoboCup competitions. In a Soccer Simulation 2D (SS2D) game, two
teams of 11 players and one coach compete against each other. Several
base codes have been released for the RoboCup soccer simulation 2D
(RCSS2D) community that have promoted the application of multi-agent
and AI algorithms in this field. In this paper, we introduce “Cyrus2D
Base”, which is derived from the base code of the RCSS2D 2021 cham-
pion. We merged Gliders2D base V2.6 with the newest version of the
Helios base. We applied several features of Cyrus2021 to improve the
performance and capabilities of this base alongside a Data Extractor to
facilitate the implementation of machine learning in the field. We have
tested this base code in different teams and scenarios, and the obtained
results demonstrate significant improvements in the defensive and offen-
sive strategy of the team.

Keywords: 2D Soccer Simulation · RoboCup · Base code

1 Introduction

Soccer is one of the most popular team-based sports in the world. This is a multi-
player, real-time, strategic, and partially observable game in which players of
each team should cooperate to score more goals. In addition to the cooperative
strategy, the players should manage different tactical and technical strategies
against their opponent. Designing and implementing this game in a good, real-
istic graphical simulation environment and encouraging researchers to develop
fully autonomous players with human-like skills creates complex challenges for
A.I. research. Hence, soccer is considered an exciting environment for develop-
ing A.I. and robotic algorithms to solve real-world challenges. The importance
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Eguchi et al. (Eds.): RoboCup 2022, LNAI 13561, pp. 140–151, 2023
https://doi.org/10.1007/978-3-031-28469-4_12
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of soccer as a game and as a challenging domain for testing the A.I. and machine
learning algorithms led to an overreaching vision of a robotic team competing
against the best human team by 2050 [1].

The world Cup Robot Soccer Initiative was founded to create a realistic envi-
ronment similar to real soccer that encourages researchers to employ Robotic and
A.I. for solving wide ranges of problems [2]. The first RoboCup was held dur-
ing the IJCAI-97 [3], and it offered three competition tracks: real robot league,
software robots, and expert robot competition. Among them, the Soccer Sim-
ulation 2D league (SS2D) [4] provides a wide range of research challenges such
as autonomous decision-making, communication and coordination, tactical plan-
ning, collective behaviour and teamwork, opponent modelling and behavior pre-
dicting [5–12].

In this league, the RoboCup Soccer Simulation Server (RCSSServer) executes
and manages a 2D soccer game between two teams of eleven autonomous software
programs(agents). It holds the complete knowledge of the game, such as the
exact position of every element in the game and their movements. The game
further relies on the communication between the server and each agent. Each
player receives relative and noisy information about the environment, and based
on its logic and algorithms, the agent produces basic commands (like dashing,
turning, or kicking) to influence the environment. A visual example of the game
is shown in Fig. 1. Another key component of this league is the base code1 of
agents that is responsible for communicating with the server, handling the noisy
partial observability of the game, modeling the server world, and making multi-
agent decisions throughout the game. Due to the complexity of these tasks,
designing an operational base code can astonishingly accelerates the RSS2D
teams’ progress.

Over the past years, many teams have contributed to the RCSS2D com-
munity by releasing their bases, which are mentioned below. One of the first
bases was from Carnegie Mellon University, a.k.a “CMUnited” in 2001 [13,14],
then a windows-based team was released by “TsinghuAeolus” [15] in 2002. The
release of “UvA Trilearn” base [16] in 2003, helped many teams worldwide.
“Brainstormers” [17], “WrightEagle” [18] and “Marlik” [19] released their team
codes in 2005, 2011 and 2012 respectively. “HELIOS-Base or Agent2D” has been
released by the “HELIOS” team from AIST Information Technology Research
Institute [20,21]; this is the most important, most relevant, and most frequently
used publicly available source code release in soccer simulation 2d. It has been
considered as the base code for many prosperous teams such as Cyrus2d [24–26]
and Glider2d [27,29]. Later, “Cyrus2D” and “Gliders2D” released their 2014 [22]
and 2019 [23] bases respectively that are based on agent2d.

In this paper we are planning to describe and release a more advanced base
that is called Cyrus2D in three consecutive versions. We have followed the incre-
mental strategy of evolving base code proposed by [23,30] to exemplify the
impact of different approaches and to trace their functionalities. In the first

1 For simplicity, throughout this paper we will use the “base” term instead of base
code.
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version(v0.0) we combined the newest release of Helios and Gliders bases with
some modifications on their parameters. In the second version(v1.0), we have
developed this base code to include three A.I.-based components of Cyrus2D that
were successfully implemented in this team. Finally, in the third version(v1.1) we
took advantage of Pass Prediction Deep Neural Network module for unmarking
decision-making. The performance of these versions went on the rigorous evalua-
tions against the Agent2D, Glider2D bases and the obtained outcomes (number
of scored and received goals, and the winning rate) proved the prevalence of our
base code. The rest of the paper is organized as follows: Sect. 2 we will define
the foundation of our base (version zero), in the next section we will explain the
deployment of three ideas(Blocking Strategy, Offensive Risk Evaluation, Simple
Unmarking Strategy) on the Cyrus2D v0.0 which results in Cyrus2D v1.0. In
Sect. 4, we will present the idea of using Pass Prediction in Unmarking Strat-
egy(Cyrus2D v1.1). In the next section, we will compare Cyrus2D base with
other Soccer Simulation 2D bases against best three teams in RoboCup 2021.
Finally, we talk about our future works.

Fig. 1. A: Soccer simulation 2D league. B: The evolution of Helios2D, Glider2D and
Cyrus2D base codes

2 Cyrus2D Base Version 0.0

One of the most popular SS2D bases is the Helios Base (agent2d) V3.11 which
was released in 2010 [20,21]. This base includes several components such as
librcsc-4.0.0, soccerwindow2-5.0.0 and fedit2-2.0.0. Gliders and Fractals, who use
the Agent2D base, won the championship of RoboCup 2016 and 2019, respec-
tively [27–29]. They also released a simplified version of their teams called Glid-
ers2d base [23,30]. It is an advanced version of Helios base v3.11 with improved
formation, passing behavior, and stamina management. It employs a modified
version of the Marlik team [19] blocking algorithm, and few unique strategies
specifically designed for each team. On the other hand, Helios has started improv-
ing its base and components such as librcsc based on the new versions of C++
from 2019 [31,32]. In this paper we start by introducing the first version of
Cyrus2D base (V0.0). It is established by rewriting the newest version of the
Agent2D by merging the latest Gliders2D base (see Figure 1[B]). This base code
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is fully compatible with the latest version of librcsc, but the blocking algorithm
and tuning parameters of the Gliders2D base are removed. The Cyrus2D base is
released in the Cyrus team repository and will be updated to be compatible with
the rcssserver and librcsc2. In order to enhance the functionality of this base,
we have implanted three simplified functionalities of Cyrus on this base and we
introduce them as the consecutive versions of Cyrus2D base. In the following
sections, we will describe these ideas.

3 Cyrus2D Base Version 1.0

3.1 Blocking Strategy 3

As the environment of SS2D is highly dynamic and unpredictable, an innovative
defensive strategy can increase the winning chance of the team. To establish the
defensive strategies, we need to understand defensive actions and how players
can cooperatively perform to minimize the risk of receiving the goal. Blocking
and marking are two main defensive actions that prevent the opposing team
from controlling the ball and playing with it. Blocking stops the progress of the
opponent’s ball holder on the field, and marking prevents the passing of the ball
to the opposing team players. Therefore, when one of our agents tries to block
the ball holder, the other players should choose to mark the opponent players.
In the Cyrus2D base, we implemented multi-agent blocking decision-making.
The blocking function or “Blocking Simulator” is called when the opponent
owns the ball. It simulates the dribbling behavior of the opponent ball holder
called the “dribbling curve” and then finds a position that one of our players
can arrive in, before arrival of the opponent’s ball holder and (our) players. To
simulate the dribbling curve, it predicts the first position of the ball that the
opponent’s player can kick the ball. In the next step, it predicts the following ball
positions of dribbling behavior. The dribbling speed is considered 0.7 m/s. To
find the dribbling direction, we evaluate ten positions around the ball position
using the reversed formulation of “Field Evaluator” in Helios base. To improve
the performance of the Blocking algorithm, we implemented some conditions to
prevent players from using extra stamina or going far from their home position.

3.2 Offensive Risk Evaluation 4

To score more goals, the team’s ball holder must move the ball towards the
opponent’s goal area, and a final striker must shoot the ball towards the goal.
Dribbling and passing are examples of possible actions that can lead the ball
towards the goal. Henceforth, the ball holder must choose the best action between
the possible passes and dribbles. For this purpose, we need to scrutinize our base
code and improve the implementation of the offensive strategy.

2 https://github.com/Cyrus2D/Cyrus2DBase.
3 This Algorithm Is Implemented in Src/bhv basic block.cpp.
4 This Algorithm Is Implemented in Src/chain action/action chain graph.cpp.

https://github.com/Cyrus2D/Cyrus2DBase
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The Agent2D base has a decision-making algorithm called Chain-Action,
which uses a modified version of Breadth-First Search to decide an action for
the ball owner in an action graph tree. The Chain-Action has action generator
modules such as Pass-Generator, Short-Generator, and Dribble-Generator. An
action generator module receives a state of the game and then generates all
possible actions in that state. The Chain-Action also includes a simple predictor
module that receives a state and an action; then, it generates a new state. It sim-
ulates the possible outcome of the game after applying the received action [26].

After predicting a new state, Chain-Action evaluates the state based on the
ball position using a module called Field-Evaluator. This module receives a state
and uses the X coordinate of the ball and its distance to the opponent’s goal to
measure its value. To expand the tree to the next level, the chain-action chooses
a node with the maximum value. An example of this procedure is shown in Fig. 2.

Fig. 2. Example of Chain-Action. A multi-branch tree search is performed. Each edge
presents an action and each node corresponds to a state instance.

We improved the Field-Evaluator module by including a term that is sub-
tracted to its calculation algorithms which is called Offensive Risk Evaluation
(ORE). This value is calculated based on the minimum number of cycles that
the opponent players need to reach the ball in the input state of Field-Evaluator.

The Field-Evaluator first calculates the minimum number of cycles c that
the opponent player needs to reach the ball. Then it uses an array with seven
elements where the n-Th element would be the ORE term if the opponent reaches
the ball in n-Th-cycles. To populate this array, we took advantage of the genetic
algorithm5.

For our task, the genetic representation is a list of seven values. A solution
must be an array of seven values between 0 to 50, in descending order, as oppo-
nents closer to the ball are more dangerous. The fitness function is the average

5 We reduced the array size to seven because our GA algorithm with several settings
found that the eighth and following cells of the best arrays will be 0.
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goal difference of Cyrus2D base in 100 games against random opponents from
10 teams of RoboCup competitions in 2021. To initialize the first population, we
randomly generated 100 solutions. After evaluating with the fitness function, we
generate 80 new children, from 160 parents which are selected randomly with
probability based on their fitness score. After cross-over, we update the new
children to possible solutions by making sure each value is less than or equal to
the value before it. In the next step, some of their genes can be mutated with
a low random probability. The mutation is done in a manner that the mutated
solution is still considered possible.

If the generated solution is not in descending order, to preserve the validity
of the solution, we replace the first occurrence of illegal value with a value lower
than the previous element for example if the generated solution looks like solution
= [10 18 5 4 3 2 1], the validity procedure transforms it to fixed solution = [10 9
5 4 3 2 1]. Afterwards, we create the new population of 100 by selecting 20 of the
best chromosomes of the previous generation and adding the 80 new children.

We repeat this process until the population converges or until 100 iterations
are evaluated.

3.3 Unmarking Strategy 6

Unmarking is the player’s ability to move, avoid being marked, and relocate
himself in a space where he could receive a pass from the ball possessor.

In the unmarking algorithm, a player who wants to unmark is called the
“unmarker”, and the player who will pass the ball to the unmarker is called the
“passer”. The passer player can be a player who owns the ball or does not have
ball possession at the moment, but it is possible to be a ball possessor in the
future. An unmarking Strategy identifies the passer, and after identifying the
passer, the unmarker should find a position to receive a pass from the passer in
future cycles. An effective unmarking should consider the actions of other agents
and the cooperation between them.

Cyrus2D base version 1.0 includes a simple unmarking strategy. In this algo-
rithm, all players do unmarking for the ball possessor to receive a pass from him.
After identifying the passer, the unmarker simulates ten targets in ten directions
around him according to its previous movement. After generating 100 targets,
it ignores targets close to teammate or opponent players and targets far from
its home position. The home position is the target position of a player that is
calculated based on team’s formation. The next step simulates eight lead passes
from the passer to itself in every target to find which target it can receive a
pass. A pass has a score calculated using the “Field Evaluation” formula in the
Helios base. The score of each target is calculated based on the scores of possible
received passes in the position and the minimum distance of opponent players
to the position. Eventually, the target with the maximum score will be selected
as the unmarking target.

6 This Algorithm Is Implemented in Src/bhv unmark.cpp.



146 N. Zare et al.

4 Cyrus2D Base Version 1.1 7

In Cyrus2D base Version 1.0, we improved the offensive strategy, using a novel
Blocking behavior, and a simplified Unmarking strategy. In this section, we will
explain the improvement on the Unmarking strategy using a module called Pass
Prediction. The Pass Prediction module includes a trained DNN, that receives
a state of the game, and identifies which player will be the pass receiver in that
state. This module enables us to generate a tree that assigns a passer to each
player in the future cycles of the game. To generate a data set for training the
DNN, we employed Data Extractor module.

4.1 Data Extractor

As in real soccer, passing is one of the possible actions that can lead the ball
to the goal. Predicting the pass target player, from the point of view of the
ball possessor, has many benefits in defensive and offensive algorithms. In this
paper, the ball possessor is the player who can kick the ball in the current cycle
or receive the ball in the future cycles.

To predict the behavior of (our) ball possessor, we were required to create
the dataset of game states from this player point of view. For this purpose,
we embedded a Data Extractor module in each one of the players and then
we recorded the features of game states and their corresponding label. The label
shows the uniform number of the player who is target of the best pass [12,25,26].

To generate a data set, our player (ball holder) feeds the state of the game
and its selected pass receiver uniform number to the Data Extractor when the
ball is in its kickable area. After that it saves the features and the label in a CSV
file. Later this dataset will be used to train the Pass Prediction model.

4.2 Unmarking Strategy with Help of Pass Prediction Module

To improve the Unmarking Strategy and sketching the flow of the game, each
player of Cyrus2D base tries to simulate a tree that includes the probable passes
and their outcoming states. Each node of the tree contains a state of the game
where one of our players is the ball owner in that state. The edges from the
current state shows a probable pass in the future. The root node of the tree
is the first state of the game where one of our players can kick the ball. A
player can not be ball possessor in more than one node of the tree. To create
the tree, the unmarker feeds the state of the root node to the Pass Prediction
module, and receives the probability of players for receiving a pass. This module
includes a trained DNN that can receives features of the game generated by
Data Extractor and gives probability of players to receive a pass in the given
state. In the next step, the unmarker selects two passes with the maximum
probability higher than a limit and inserts them into a list called Pass List.

7 This Algorithm Is Implemented in Src/bhv unmark.cpp, Src/data extractor/
DEState.cpp and Src/data extractor/offensive data extractor.cpp.
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Then after, it pops the pass with highest probability from the Pass List. Next, it
simulate the outcome that it send the outcome state to Pass Prediction module
and eventually insert best passes from the outcome of Pass Prediction module.
This procedure continues until the number of tree nodes is equal to ten or there
is not any pass in the Pass List. Figure 3 shows an overview of the Unmarking
Decisioning. After termination of this procedure, the umarker agent looks for its
corresponding node in the tree, then it chooses the parent player as the ”Passer”
for the unmarking procedure in order to receive the pass from that player in the
future.

Fig. 3. Overview of the unmark decisioning algorithm. The left tree shows the result
states and their points. The Bold circles (full, dotted, and long dashed) in the right tree
present the selected best nodes from the candidate list. The dashed circle one indicates
the node that the unmarker is the ball owner in its state, and its parent node is the
dotted circle.

5 Results

5.1 Training DNN for Cyrus2D V1.1 8

For generating a data-set for training the “Pass Prediction DNN”, we ran 500
games against Helios Base v3.11 and newest version, Gliders2D base v1.6 and
v2.6, Cyurs 2021, Helios 2021, and YuShan 2021. We obtained total 1,429,032
data instances. We split them into two subsets, 85% for training and 15% for
testing. The prediction model (DNN) has three layers of 128, 64, 32 and 11
neurons, with RELU activation function and a softmax function at the last
layer. The validation accuracy of the trained neural network on the test data
was 68.1%. We used Python TensorFlow Keras library [33] for training the model,
and we implemented a library called CppDnn [34] to use the trained model in
C++. The CppDnn is a C++ library powered by Eigen [37]; this library creates
a deep neural network model by reading the weights of a trained DNN model.

To evaluate the impact of the implemented features and algorithms and com-
paring the Cyrus2D base with the HELIOS base(Ag) and Gliders2d Base(G2D),
we ran X-number games between two versions of HELIOS base(3.1.1/newest),
two versions of Gliders2d Base (1.6/2.6), six versions of Cyrus2D base (C2D0
= Cyrus2D zero, C2DB = Cyrus2D zero base with Blocking Strategy, C2DR

8 All Scripts for Training Are Available in Scripts/training unmark.



148 N. Zare et al.

Table 1. Win rate

Team H2D 3.11 H2D new G2D 2.6 Cyrus21 Helios21 YuShan21 Average

H2D 3.11 – 26.2 3.5 0.0 0.0 0.0 4.9

H2D new 73.8 – 9.8 0.2 0.0 0.0 14.0

G2D 1.6 95.5 85.4 30.3 0.4 0.0 0.2 35.3

G2D 2.6 96.5 90.2 – 1.9 0.0 1.0 31.6

C2D 0.0 100.0 98.1 78.5 7.2 0.0 4.3 48.0

C2D B 99.6 97.2 77.0 6.4 0.0 3.6 47.3

C2D R 99.4 97.4 81.0 7.9 0.2 6.3 48.7

C2D U 100.0 99.0 80.8 5.6 0.2 5.8 48.6

C2D 1.0 99.3 98.6 79.9 8.6 0.3 4.6 48.6

C2D 1.1 99.8 99.6 84.1 5.8 0.8 4.9 49.1

Table 2. Goals scored (Goals Conceded)

Team H2D 3.11 H2D new G2D 2.6 Cyrus21 Helios21 YuShan21 Average

H2D 3.11 — 1.6(2.7) 0.5(3.0) 0.2(6.2) 0.1(13.0) 0.2(7.5) 0.4(5.4)

H2D new 2.7(1.6) — 0.7(2.3) 0.3(5.9) 0.1(11.1) 0.3(6.4) 0.7(4.5)

G2D 1.6 3.5(0.7) 2.6(1.0) 0.8(1.4) 0.5(5.3) 0.1(6.5) 0.2(4.8) 1.3(3.3)

G2D 2.6 3.0(0.5) 2.3(0.7) — 0.5(3.5) 0.1(5.5) 0.2(3.8) 1.0(2.3)

C2D 0.0 4.3(0.2) 2.8(0.3) 1.1(0.4) 0.6(2.8) 0.2(3.6) 0.3(1.9) 1.6(1.5)

C2D B 4.2(0.2) 2.9(0.2) 1.1(0.4) 0.6(2.7) 0.2(3.8) 0.3(2.4) 1.6(1.6)

C2D R 4.1(0.2) 2.9(0.3) 1.1(0.4) 0.6(2.6) 0.2(3.8) 0.3(1.7) 1.5(1.5)

C2D U 4.4(0.2) 3.2(0.3) 1.3(0.5) 0.6(2.9) 0.2(4.0) 0.4(2.1) 1.7(1.7)

C2D 1.0 4.8(0.2) 3.6(0.2) 1.3(0.4) 0.7(2.6) 0.2(3.9) 0.4(2.5) 1.8(1.6)

C2D 1.1 4.4(0.2) 3.2(0.2) 1.2(0.4) 0.6(2.8) 0.2(3.8) 0.3(2.3) 1.7(1.6)

= Cyrus2D zero base with ORE, C2DU = Cyrus2D zero base with UnMark-
ing Strategy, C2DV1.0 = Cyrus2D version one with all of the previous features
and C2DV1.1 = V1.0 with pass prediction) against Helios bases [20], Glider2d
Base(v2.6) and three of the best teams in RoboCup (Helios2021 [35], YuShan
[36], Cyrus2021 [25]).

Table 1 shows the expected winning rate of all version of Cyrus against
opponent teams. The winning rate is calculated by num wins/(num games −
num draws). Table 2 presents the average number of our scored goals and con-
ceded goals respectively.

The results demonstrate Cyrus2D base v1.1 prevalence over other released
bases. For instance the Cyrus2D base wins Helios and Gliders2D bases in more
than 99% and 84% of games respectively. The average win-rate of Cyrus2D
against best three RoboCup teams is 3.76 (0.2% to 3.8%) percent higher than
the winning rate of Helios base against those teams, and 2.86 (2.9% to 3.8%)
percent higher than Gliders2D base.
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6 Conclusion

In this paper, we aimed to introduce three versions of Cyrus2D base code and
their particular features. The first version of Cyrus2D base was created by com-
bining the latest release of Helios Agent2D and Gliders2D bases. For this version,
we removed some of the fine tuned parameters. In the next version, Cyrus2D
v1.0, we have upgraded the Blocking, and offensive strategy by using the Offen-
sive Risk Evaluation and unmarking behavior. In the Cyrus2D v1.1 we improved
the unmarking behavior using the Pass Prediction. To evaluate the performance
of Cyrus2D, we ran 500 games against Gliders2D, Helios base, and best three
teams in RoboCup 2021. The obtained results shows significant improvement on
win-rate, scored goals and conceded goals. For our future work, we are planning
to enhance the Cyrus2D base in terms of chain action movement prediction, and
marking by using multi-agent decision-making.

Acknowledgements. We acknowledge the support of the Natural Sciences and Engi-
neering Research Council of Canada (NSERC). We thank the HELIOS and Gliders
teams for their code bases and extraordinary contributions to the SS2D league.
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Mayer, N.M., Savage, J., Saranlı, U. (eds.) RoboCup 2011. LNCS (LNAI), vol.
7416, pp. 1–12. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-
32060-6 1

19. Tavafi, A., Nozari, N., Vatani, R., Yousefi, M.R., Rahmatinia, S., Pirdir, P.: MarliK
2012 soccer 2D simulation team description paper. In: RoboCup 2012 Symposium
and Competitions: Team Description Papers, Mexico City, Mexico (2012)

20. Akiyama, H., Nakashima, T.: HELIOS base: an open source package for the
robocup soccer 2d simulation. In: Behnke, S., Veloso, M., Visser, A., Xiong, R.
(eds.) RoboCup 2013. LNCS (LNAI), vol. 8371, pp. 528–535. Springer, Heidelberg
(2014). https://doi.org/10.1007/978-3-662-44468-9 46

21. Akiyama, H.: Agent2D base code. http://www.rctools.sourceforge.jp (2010)
22. Khayami, R., et al.: CYRUS 2D simulation team description paper 2014. In:

RoboCup 2014. Joao Pessoa, Brazil (2014)
23. Prokopenko, M., Wang, P.: Gliders2d: source code base for RoboCup 2D Soccer

simulation league. CoRR abs/1812.10202 (2018)
24. Zare, N., et al.: Cyrus Soccer 2D Simulation Team Description Paper: In: RoboCup

2013, p. 2013. Eindhoven, Netherlands (2013)
25. Zare, N., Sayareh, A., Sarvmaili, M., Amini, O., Soares, A., Matwin, S.: CYRUS

2D soccer simulation team description paper 2021. In: RoboCup 2021 Symposium
and Competitions, Worldwide (2021)

https://doi.org/10.1007/978-3-540-45135-8_32
https://doi.org/10.1007/978-3-540-45135-8_32
https://doi.org/10.1007/978-3-540-25940-4_8
https://doi.org/10.1007/978-3-540-25940-4_8
https://doi.org/10.1007/978-3-030-98682-7_12
https://doi.org/10.1007/978-3-030-98682-7_12
https://doi.org/10.1007/3-540-45324-5_1
https://doi.org/10.1007/3-540-45327-X_2
https://doi.org/10.1007/3-540-45603-1_66
https://doi.org/10.1007/978-3-642-32060-6_1
https://doi.org/10.1007/978-3-642-32060-6_1
https://doi.org/10.1007/978-3-662-44468-9_46
http://www.rctools.sourceforge.jp


Cyrus2D Base: Source Code Base for RoboCup 2D Soccer Simulation League 151

26. Zare, N., et al.: improving dribbling, passing, and marking actions in soccer sim-
ulation 2D games using machine learning. In: Alami, R., Biswas, J., Cakmak, M.,
Obst, O. (eds.) RoboCup 2021. LNCS (LNAI), vol. 13132, pp. 340–351. Springer,
Cham (2022). https://doi.org/10.1007/978-3-030-98682-7 28

27. Prokopenko, M., Wang, P., Obst, O., Jaurgeui, V.: Gliders 2016: integrating multi-
agent approaches to tactical diversity. In: RoboCup 2016 Symposium and Compe-
titions: Team Description Papers, Leipzig, Germany (2016)

28. Prokopenko, M., Wang, P.: Disruptive innovations in RoboCup 2D soccer simula-
tion league: from Cyberoos’98 to gliders2016. In: Behnke, S., Sheh, R., Sarıel, S.,
Lee, D.D. (eds.) RoboCup 2016. LNCS (LNAI), vol. 9776, pp. 529–541. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-68792-6 44

29. Prokopenko, M., Wang, P.: Fractals 2019: Guiding self-organisation of intelligent
agents. In: RoboCup 2019 Symposium and Competitions, Sydney, Australia (2019)

30. Prokopenko, M., Wang, P.: Fractals2019: combinatorial optimisation with dynamic
constraint annealing. In: Chalup, S., Niemueller, T., Suthakorn, J., Williams, M.-
A. (eds.) RoboCup 2019. LNCS (LNAI), vol. 11531, pp. 616–630. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-35699-6 50

31. Akiyama, H.: Agent2D base code. https://github.com/helios-base/helios-base
(2010)

32. Akiyama, H.: LibRCSC, component of Agent2D base code. https://github.com/
helios-base/librcsc (2010)

33. Mart́ın Abadi, et al. TensorFlow: large-scale machine learning on heterogeneous
systems (2015). Software available from tensorflow.org

34. Nader, Z., et al.: CPPDNN: A C++ library to use a trained DNN by Tensor Flow
Keras. https://github.com/Cyrus2D/CppDNN

35. Yamaguchi, M., Kuga, R., Omori, H., Fukushima, T., Nakashima, T., Akiyama,
H.: Helios 2021: team description paper. In: RoboCup 2021 Symposium and Com-
petitions, Worldwide (2021)

36. Cheng, Z., Zhang F., Guang, B., Wang, L.: YuShan2021 team description paper
for RoboCup2021. In: RoboCup 2021 Symposium and Competitions, Worldwide
(2021)

37. Guennebaud, G., Jacob, B., et al.: Eigen v3 (2010). http://eigen.tuxfamily.org

https://doi.org/10.1007/978-3-030-98682-7_28
https://doi.org/10.1007/978-3-319-68792-6_44
https://doi.org/10.1007/978-3-030-35699-6_50
https://github.com/helios-base/helios-base
https://github.com/helios-base/librcsc
https://github.com/helios-base/librcsc
https://github.com/Cyrus2D/CppDNN
http://eigen.tuxfamily.org


Distributed Optimization Tool
for RoboCup 3D Soccer Simulation

League Using Intel DevCloud

Guilherme N. Oliveira(B) , Marcos R. O. A. Maximo ,
and Vitor V. Curtis

Autonomous Computational Systems Lab (LAB-SCA), Computer Science Division,
Aeronautics Institute of Technology, São José dos Campos, São Paulo, Brazil
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Abstract. Due to the physical limitations of real robots, simulated
robotics is an important area of research that opens up a lot of possibilities
to study the robots’ dynamics and program their behaviors. RoboCup 3D
Soccer Simulation league is a tournament to encourage the development
of robots that compete in a high-fidelity simulation ambient.

Due to the high complexity of simulated humanoid robots, numerical
optimization techniques are often used to determine the best parameters
to control their motion sequence. Even the simplest movements, such as
walking, stopping and getting up, can have a meaningful impact on a
simulated soccer match if well optimized. Such a process is time con-
suming and has a high computational cost. For this reason, the usage of
high performance clusters is a good way to accelerate the optimization,
and for this technology to be used, it is necessary to develop a reliable
tool that interfaces the cluster, simulation, and optimization.

The main contribution of this work is to provide a distributed opti-
mization tool for the RoboCup 3D Soccer Simulation League based on
the Intel DevCloud cluster.

Keywords: Mathematical optimization · Robotics simulator · Parallel
computing

1 Introduction

Mobile robotics is a growing area of knowledge. Robots are increasingly assist-
ing humans in various tasks to overcome challenges and increase the speed and
efficiency of processes. To encourage university research, several national and
international robotics tournaments, such as RoboCup, where robots must per-
form tasks or play sports in a competitive manner.

The robots that participate in these competitions still have many physical
limitations to overcome. For this reason, there are also robot competitions that
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deal only with simulations in different levels of realism. The two-dimensional sim-
ulations focus on the development of strategies [15], and the three-dimensional
simulations have to develop control sequences for the physical parts of the robots
besides creating the strategies [8].

Soccer 3D is RoboCup’s 3D soccer simulation league, based on the robot
simulator SimSpark [22]. In this league, teams of 11 agents each compete against
each other in a sophisticated physics simulator. A Soccer 3D match is exemplified
in Fig. 1. Each agent is a virtualization of a humanoid robot (NAO) that is
controlled at the joint level. Each robot has its own program, i.e. the agent is
independent from the other agents and the simulation environment, and the
communication between the agents and the server is done through a simple
protocol to specify the desired angular velocity of each of the robot’s joints.

Fig. 1. A match of RoboCup 3D Soccer Simulation League. The circles and lines are
visual representations of robot agent variables used for debugging the code.

To soften the human job when writing a motion sequence for the robot, some
techniques are used that convert high-level instructions, such as robot positions
in time, into low-level instructions for the robot joints. One technique widely
used in simulations is to register various positions of the robot at different times
(steps) and, from this, calculate the instructions that should be sent to the joints
by interpolation. This technique is known as keyframe, as explained in [9].

Even with such simplifications, designing a sequence of keyframes to directly
control the robots’ movements is a very complex task. It is possible to use graphic
tools to create these keyframes [7], but this task is very time-consuming and the
final movement can be unpredictable and sub-optimal. For this reason, many
teams use machine learning techniques [14] and optimization algorithms [3] to
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build and optimize these movements. In the case of the keyframes, the instruc-
tions created manually are often used as starting values for the optimization
algorithms. For these techniques to be successful, hundreds to thousands of sim-
ulations are required to determine parameters that define a good configuration
for the keyframe sequence. In robotics, this is usually the slowest step in an
optimization due to the high computational cost of the high-fidelity physics
simulation.

To illustrate this computational challenge, two motions with less than 10
keyframes that were optimized in the past took an average of 4 days to optimize
on a single conventional computer, according to [13]. Another challenge for 3D
simulation is the existence of intentional noise created in the server environ-
ment, which exists to simulate the non-ideality of the real world. This makes
optimization difficult by adding a stochastic factor to the simulations.

Even with these difficulties, simulated environments are good study objects
for artificial intelligence, mainly because they do not suffer the same physical
limitations of real robots, such as the need for construction and maintenance.
It also allows the possibility of accessing and modifying the physics of the sim-
ulation. In fact, reinforcement learning enabled the robots to do complex tasks
such as running [12] and recovering from pushes [11]. Indeed, deep reinforcement
learning has been widely used to improve kick motions [10,20]. Nevertheless,
these machine learning techniques can be data inefficient [19], and mathemat-
ical optimization algorithms may still have their usefulness in the simulated
robotics environment. Additionally, mathematical optimization techniques have
been used in practice and have obtained expressive results in increasing the speed
and precision of simulated robot movements [17]. In particular, an algorithm that
has shown better results than most others for simulated robotics is the CMA-
ES [21]. Because mathematical optimizations present good results when solving
complex problems, several improvements have been sought in the last decades
to make them faster and more effective.

One way to alleviate the problem of optimization time is to develop a tool
that performs several simulations in parallel [16]. This tool, when applied to
a cluster with many processing units, is able to perform the optimization of
systems and tasks in less time [2]. This technique is highly efficient on keyframe
optimizations [13].

However, since the processing is divided among several cores in a cluster, it
is essential that this tool is able to guarantee the synchronism and the balancing
of tasks, foreseeing and fixing eventual errors automatically. In addition, it must
ensure that work already done is saved periodically, since task processing is very
time-consuming and power or internet failures can halt the process.

By combining this tool with the Intel DevCloud infrastructure, the Soccer
3D community can leverage a large amount of processing power for optimizing
motions, high-level behaviors, and many other tasks that can be improved by
parameter optimization. Furthermore, this tool may be easily adapted for other
leagues.
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The rest of this work is organized in the following logical sequence: the Sect. 2
presents the tools needed for optimization. Then, Sect. 3 explains the case study
with the simulated humanoid robot. Next, the results of the study are presented
in Sect. 4. Finally, Sect. 5 concludes the article and proposes future works in the
field.

2 Background

2.1 Evolution Strategy

The evolution strategy chosen as the basis for optimization was the Covariance
Matrix Adaptation Evolution Strategy (CMA-ES). Compared to other evolu-
tionary strategies, CMA-ES is more efficient when the object of study is a sys-
tem with many interdependent variables. Furthermore, it is possible to alter the
initial parameters to seek a balance between the speed of convergence and the
tendency to get stuck at a local optimum [4].

To implement the evolutionary strategy, it was chosen to use the pycma
open source library from the Python package catalog (PyPi), maintained by the
original creator of the CMA-ES and available at [5]. This option was picked due
to the high number of implemented functionalities and the constant updates
that the library receives from several contributors. In addition, the higher the
sample efficiency of the algorithm, the less costly the optimizations become, as
the total number of simulations that must be performed decreases. Therefore, it
is important to give priority to a code that is well developed and has frequent
fixes over one that is lean and runs quickly.

The main functions of the library are ask and tell. The function ask returns a
multidimensional array with a series of values to be used in the next simulations.
With the tell function it is possible to return the fitness of each of these values,
i.e. a number that measures how well the robot performed with the implemented
parameters. The workflow is represented in Fig. 2.

Fig. 2. Example workflow of a CMA-ES evolutionary strategy execution.
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2.2 Parallel Computing Control

For the workflow control of the optimization, the software chosen was Dask [18].
It is responsible for ensuring that all the parallel simulations in Fig. 2 occur
simultaneously on different processing units.

Dask is an open source library written in Python that is capable of auto-
matically organizing and executing workflows in parallel. Dask also has tools to
implement this parallelized computing on servers.

Dask also has a dashboard for viewing past, present, and scheduled tasks, as
shown in Fig. 3.

The optimization tool was developed to allow high levels of flexibility.
Even the CMA-ES algorithm can be replaced by another iterative optimization
method, according to the user’s needs.

2.3 Error Prevention

The DevCloud server [6] operates with a waitlist and a maximum time per task
and therefore terminates a submitted task if the time limit runs out. Further-
more, both the simulation server and the simulated agents are subject to possible
failures. Therefore, measures are needed to minimize errors caused by sudden
interruptions of the optimization.

To prevent errors like the ones mentioned from causing the loss of work
already done, the open source pickle library, available in Python, was adopted.
Pickle is a tool for object serialization, i.e. for converting an object into a
sequence of bytes, which in turn can be saved in a file. Serialization is per-
formed on the main CMA-ES object at each fixed number of ask/tell iterations,
defaulting to 2 iterations. If the CMA-ES tool is restarted, it will first look for
an existing backup file before starting a new optimization.

It is necessary to take into account the possibility of a simulation failing,
for various reasons. For this reason a timeout has been implemented in the cost
function. A reward of -5 is assigned to the simulation if it fails five times in a
row.

The control of the independent processing units is performed by Dask, which
is able to redistribute the tasks according to the need of the process and can
identify any defective processing unit and rearrange its pending jobs, as seen in
Fig. 3.

In Fig. 3, three threads are initially active. Each vertical bar of one color
represents a function call, and they are interdependent. At a certain point one
thread stops running. Then its tasks are distributed among the other two remain-
ing ones and the program is able to continue running. When another thread is
added to the system, the tasks are redistributed again.

2.4 Keyframes

One possible application of the framework is the optimization of a keyframe.
The case study will cover the improvement of a kick keyframe.
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Fig. 3. Dask dashboard on a mock test.

A keyframe [9] is an ordered set of joint angular positions at a given instant,
similar to a photography. In a keyframe-based movement, several keyframes are
defined and each one is associated to a determined time step. These informations
are saved on a JSON file.

To compute the movement, an interpolator uses the data of these keyframes
to calculate the joints’ position at each time instant. Usually, this interpolator
is implemented by an iterator that uses a mix of linear regressions and cubic
splines to generate smooth movements, as exemplified in Fig. 4. The joints are
then individually controlled by proportional controllers.

Fig. 4. Reference value for angular pitch of the left knee in a kick motion.

The initial keyframe can be troublesome to the stability of a robot because
the initial position of the robot is often very different from the first keyframe.
Consequently, the proportional controller’s commands can lead to the loss of
stability. For this reason, the first keyframe iteration is usually smoothed.
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A kick performed by the simulated robot can be controlled by keyframes.
The kick motion of Fig. 5, for example, consists of 3 submovements.

Fig. 5. The three keyframe moments of the kick. From left to right: prepFrontKickFast,
moveLegBack and moveLegFront.

The three moments of Fig. 5 are divided into 4, 3 and 4 steps respectively, for
a total of 11 steps. Each step has 22 different parameters corresponding to angles
of the robot joints at a given moment and one extra parameter corresponding
to the keyframe’s expected duration. Of these 23 parameters, the 4 that were
considered the least relevant ones were excluded to increase the optimization con-
vergence speed, as they were related to neck and shoulder angles. The remaining
19 parameters along the 11 steps result in a total of 209 optimizable values.

3 Methodology

The optimization server operates in the Intel DevCloud, whose structure is shown
in Fig. 6. DevCloud is a powerful computing environment for edge, AI, high-
performance computing (HPC) and rendering workload [6]. It has different Intel
CPUs, GPUs, Accelerators and FPGAs available to the public, and it also offers
the oneAPI programming environment for developing applications that target
multiple hardware architectures.

The number of workers can be adjusted at any time by the user via a file
interface. The status of the entire system can be checked via ssh or a web interface
on the DevCloud website.

3.1 Kick Keyframe Optimization

Recent changes in the dynamics of robot soccer simulation matches altered the
pace of the game. Now, any robot that is at most 0.5 m from the ball can request
a Pass command, and it will be granted if there is not an opponent within a 1 m
radius circle from the ball. The pass command creates a situation in which the
agent has four seconds to do a free kick without the opponents’ interference, as
any opponent that enters a 1 m radius circle from the ball will be sent back.
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Fig. 6. Structure of the optimization program on DevCloud.

However, the robot must not directly score a goal with this kick. These changes
have made the mid-range kick an important element of the team’s strategy.
Therefore, setting up this kick is the goal of the optimization.

Since there are 209 parameters in total, it would be extremely costly to
optimize from scratch. Therefore, a generic kick keyframe was used as a seed
(initial value). The fitness function of the simulation prioritizes kicks that end up
with the ball near the opponent’s goal and that have a high maximum altitude.
If the kick reaches the objective of leaving the ball in the opponent’s penalty
area, a large reward is added. A medium reward is given if the agent scores a
goal, which is not the kick’s main objective. To minimize the influence of random
factors on the outcome of the fitness function, each kick was performed six times
divided in three different positions, and the total fitness was given as the sum of
the fitnesses.

The fitness function is defined according to the equation

fitness = 0.5 · hmax +

⎧
⎪⎨

⎪⎩

50, if the ball lands on the penalty area,
25, if a goal is made,
−dgoal, in other cases,

(1)

where hmax is the maximum height reached by the ball and dgoal is the final
distance from the ball to the center of the goal projected on the ground. However,
since the default of CMA-ES is to prioritize results with lower values, the fitness
function was transformed into a cost function by multiplying it by −1 before
sending it to the optimization algorithm.
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4 Results and Discussions

The optimization ran for approximately nine hours in the DevCloud with 6
concurrent parallel simulations (matching pycma’s default population size), each
allocated to a thread on a CPU Intel Xeon 6128 or 8256, and the results are
depicted in Fig. 7.

Fig. 7. Evolution of the cost function of the best element of each generation.

The graph in Fig. 7 shows that there is a slow convergence of the cost function.
The slow speed of the optimization is expected due to the large number of
parameters to be optimized and the random factors involved in the simulations.

By the 1000th generation the robots began to achieve the target of kicking
the ball into the penalty area. This result was consolidated, and in the next
generations the goal started to be achieved multiple times in the 6 kicks per-
formed with each keyframe. This result demonstrates that the robot is able to
kick in the target area consistently, and therefore the goal of the optimization
was achieved.

For performance comparison purposes, this same optimization was run for
one hour from the same initial conditions in different virtual environments. The
first was performed in a sequential manner, i.e. without parallelism, on a personal
computer with the Intel Core i7-9750H @ 2.60 GHz. The second was performed
in DevCloud by submitting a job requesting three cores, each one assigned to
two processes of one thread each, resulting in 6 possible parallel simulations. As
the DevCloud’s processors have hyper-threading, each simulation was assigned
to a single thread. The third was also performed in DevCloud on three cores,
but each core had eight processes of two threads each, resulting in 16 parallel
simulations per core or 48 in total. The results are arranged in Table 1.
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Table 1. Effect of different virtual environments on optimization performance over the
period of one hour.

Cores Total of threads Total simulations

1 1 281

3 6 912

3 48 1584

The test results show a 225% increase in the total number of simulations
performed when parallelism with 3 jobs and 6 threads is used compared to
sequential optimization. The number of simulations also increases by 73.7% when
the number of threads is increased from 6 to 48. As the number of threads
increased, the average value of simulations run per thread decreased. This is
mainly due to the fact that the processors are progressively more overloaded in
environments with 6 and 48 threads.

To increase the number of simultaneous simulations, it is necessary to increase
the population size of the CMA-ES algorithm. By doing so, the speed of each
individual simulation decreases and, consequently, the time spent per generation
increases, which can slow down the speed of convergence. Therefore, caution is
needed when increasing the number of simultaneous simulations, and the optimal
number varies depending on the optimization. However, if well managed, this
feature can further increase the speed of optimization.

The total computational time is mainly dictated by the evaluation time of
each individual in a population. Thus, the major focus of the parallelism is
to speed up these evaluations, which are done through physical simulations. To
further increase the speed of the evaluations, a new physics simulator specifically
optimized for this task has to be developed, which is beyond the scope of this
project.

5 Conclusions

The optimization tool created in this project will be of great importance to the
ITAndroids team, and it will help in future ITAndoids Soccer 3D projects and
researches. Other teams are also encouraged to use the tool, available in the
ITAndroids Open repository [1].

There are still many keyframes of different movements that can be optimized
for different purposes. However, with the optimization tool ready, this can be
done almost routinely by the team. Future work can be developed to study
and optimize other movements of the simulated humanoid robot, such as the
movement of getting up from the ground after a fall or walking.

The trend is that in the future more and more teams will use AI tools to
control their agents, which will make the Soccer 3D scenario more and more
competitive and professional.
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8. Kögler, M., Obst, O.: Simulation league: the next generation. In: Polani, D.,
Browning, B., Bonarini, A., Yoshida, K. (eds.) RoboCup 2003. LNCS (LNAI),
vol. 3020, pp. 458–469. Springer, Heidelberg (2004). https://doi.org/10.1007/978-
3-540-25940-4 40

9. MacAlpine, P., Stone, P.: UT Austin Villa RoboCup 3D simulation base code
release. In: Behnke, S., Sheh, R., Sarıel, S., Lee, D.D. (eds.) RoboCup 2016. LNCS
(LNAI), vol. 9776, pp. 135–143. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-68792-6 11
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Abstract. This paper presents a open-source omnidirectional walk con-
troller that provides bipedal walking for non-parallel robots through
parameter optimization. The approach relies on pattern generation with
quintic splines in Cartesian space. Additionally, baselines of achieved
walk velocities in simulation for all robots of the Humanoid Virtual Sea-
son, as well as some commercial robot models, are provided.
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1 Introduction

Bipedal walking is one of the biggest challenges in humanoid robotics. Some
impressive results have been achieved, e.g. on the Cassie robot [18]. Still, there
is, to the best of our knowledge, no simple-to-use open-source controller avail-
able that works on a majority of bipedal robots. Commercial robots, e.g. the
Darwin-OP [16] or the NAO [15] may come with a walk controller provided
by the manufacturer. Some of these widespread platforms may also have open-
source solutions available, e.g. the different walk approaches from the RoboCup
Standard Platform League (SPL) for the NAO robot. But if a team constructs
its own robot, it needs to program its own walk controller or at least modify
an existing solution due to differences in the kinematics and dynamics. This
is one of the key issues that teams are still facing in the RoboCup Humanoid
League [7] and it leads to two problems. First, it creates a high entry barrier
for new teams since these need to build working hardware and a complete soft-
ware stack. For some trivial parts of this software stack, e.g. the connector to
the game controller, and even for some more complex parts, e.g. the computer
vision, software of other teams can easily be used. Since the robot designs dif-
fer, this is not true for the walking, which is arguably one of the most complex
parts. Second, even established teams may run into problems with their walking
controller if they want to modify their hardware, as this can require changes to
the controller or at least new parameter tuning. Therefore, teams may hesitate
to introduce hardware changes which is problematic, as this kind of development
is one of the goals of the league.

We present an open-source omnidirectional walk controller that is easy to
use and works on all non-parallel robots in the Humanoid League Virtual Sea-
son (HLVS). Additionally, we provide baselines for the achieved walk velocities
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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https://doi.org/10.1007/978-3-031-28469-4_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-28469-4_14&domain=pdf
http://orcid.org/0000-0002-7857-793X
http://orcid.org/0000-0002-7856-5760
https://doi.org/10.1007/978-3-031-28469-4_14


Bipedal Walking on Humanoid Robots Through Parameter Optimization 165

that are reached on different robots. These are measured in the standardized sim-
ulation environment of HLVS and are therefore easily comparable. Our goal is to
allow new teams an easier entry into the league as well as allowing comparison of
self-created walk controllers to a baseline for any specific robot. Furthermore, our
controller allows to easily test new robot platforms or modifications to existing
ones, thus enabling a faster hardware development cycle.

The walking consists of two parts: an open loop pattern generator based
on parameterized quintic splines and a closed loop stabilization module. First,
the pattern generator describes the desired trajectory of the feet in Cartesian
space. Then, PID controllers modify the torso orientation based on IMU data
in Cartesian space and optionally step phase modulations can be applied based
on either joint torque or foot pressure data. Due to the usage of the standard
MoveIt [11] interface, different inverse kinematics (IKs) can be applied, including
a generally applicable memetic approach. This facilitates the general usability
of the walking as we can abstract from the concrete kinematic structure of the
robot. Additionally, the walking does not require a model of the robot’s dynamics
but a set of parameters for the spline definitions and the PID controllers. We
show how these can be optimized automatically by using the Multi-Objective
Tree-structured Parzen Estimator (MOTPE). Integrating the walking into an
existing code base is convenient, since we provide a ROS 1 and a ROS 2 version
as well as direct interfaces in C++ and Python.

For our experiments, it was necessary to create URDF models as well as
MoveIt configurations for all evaluated robots. We provide these too, as they
may facilitate others in running software on different robots.

Our key contributions are:

– Open source walk controller that is easily usable on any non-parallel
humanoid robot

– Baselines of stable walk velocities on different robot platforms
– Collection of ROS 2 URDF description and MoveIt configurations for various

humanoid robots
– Comparison of different parameter optimization approaches

2 Related Work

There are many existing approaches to bipedal walking, but we are focusing
in this section on approaches that are either applied in the RoboCup domain
or similar to our presented approach. Model-free approaches that consist of an
open-loop trajectory generator and a stabilizing mechanism are often used in
RoboCup [8,23]. These do not require exact dynamic models, which are difficult
to obtain for the typical low-cost robots due to sensor noise and delay, joint
backlash, and imperfect actuation. The trajectories can be generated in joint
space or in Cartesian space, but specifically designed leg representations can also
be used [8]. Generating the trajectory in joint space does not require an IK and
therefore less computation. On the downside, it can only be applied on robots
with a certain joint configuration and is, therefore, less transferable between
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different robots. While some stabilization methods only work in Cartesian space,
there are different methods such as the hip and the ankle strategy that work
directly in joint space [3]. As an improvement to Euler angles, fused angles [5]
were proposed for improved modeling of balance and applied as the basis for
stabilization mechanisms [6].

Typically, a set of parameters needs to be optimized for a walk controller
since their performance highly depends on the used parameter set. Therefore,
different approaches have been investigated. Shafii et al. used Covariance Matrix
Adaptation Evolution Strategy (CMA-ES) [17] to search for optimal walking
parameters in simulation [27]. CMA-ES was also used by Seekircher et al. to
optimized their model parameters to improve its predictions [26]. Rodriguez
et al. used Bayesian optimization for walk parameters with a combination of
simulated and real experiments [22]. Silva et al. used reinforcement learning on
two of their walking parameters [28]. In the domain of quadrupeds, Saptura
et al. used the Nondominated Sorting Genetic Algorithm II (NSGA-II) [13] to
optimize the walk parameters [25].

We have used quintic splines with parameter optimization for controlled
stand-up motions [29]. While the general idea of our previous work is similar, a
different optimization procedure and different objectives are required for bipedal
walking. Additionally, our previous work was not evaluated on so many robots
and with no standardized simulation parameters, as these have only become
available recently.

3 Walk Controller

The presented walk controller expects a goal walk velocity as input, which is
typically provided by the path planning or human teleoperation. Based on this,
a finite state machine (FSM) decides on the kind of step that needs to be per-
formed and keeps track of the current step phase. Depending on the step type,
movements for the foot and torso are defined through Cartesian quintic splines.
Different stabilization approaches can be used based on sensor feedback. An
overview of the approach can be seen in Fig. 1 and the following sections explain
the different parts in more detail.

3.1 Finite State Machine

The walking controller needs to be able to stably start and stop the walking.
Therefore, it needs to perform different types of steps, that handle the movement
of the torso, and thereby the movement of the CoM, differently. Before lifting a
foot for the first step, it starts moving the torso to the side, initializing the lateral
swinging motion of the robot. Then the first step is performed with a phase offset
between the torso and foot movement. A similar procedure is performed when
stopping to walk so that the torso ends up in a centered position. This is modeled
with a FSM which leads to a clearer code structure (see Fig. 2). While the robot
is walking, it can also perform small dribbling kicks on request by modifying the
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Fig. 1. Overview of the approach with used
parameters, sensors and interfacing software
parts.

Fig. 2. Visualization of the finite
state machine. Transitions are acti-
vated if the corresponding condition
is met. Orange transitions can only
be activated when a step is finished.
(Color figure online)

spline to move the foot quickly to the front before setting it down. Generally, the
controller may prevent further steps during double support to let oscillations of
the robot settle (Stability Stop, see Sect. 3.3). A step is normally finished after
a fixed time period (defined by one parameter) but the step duration can be
modified by the Phase Reset and Phase Rest (see Sect. 3.3).

3.2 Spline Engine

The core part of the walk controller is the spline engine that generates a fixed
cycle gait which is partially based on the IKWalk from team Rhoban [23]. Depen-
dent on the current step type, two sets of six quintic splines are generated to
describe the Cartesian pose (x, y, z, roll, pitch, yaw) of the torso and the moving
foot in relation to the support foot over the duration of the step. The usage
of quintic splines ensures that the trajectories are continuous in the first and
second derivatives. This leads to smooth motions which are crucial for a stable
walk.

The quintic spline is defined by a list of knots that each specifies the position,
velocity and acceleration at a given time. Between these, polynomials are used
for interpolation. The values of these knots can be seen as the parameters of
the spline engine. Some of these are naturally defined, e.g. the foot is on the
ground at the end of the step, and some can be derived from the commanded
walking speed, e.g. how far the foot is put forward at the end of the step. The
remaining parameters need to be optimized as they depend on kinematic and
dynamic properties. A visualization of these parameters is shown in Fig. 3.
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Fig. 3. Illustration on how the parameters (orange) and the goal walk velocity (blue)
influence the motion. On the left, the positioning of the next step and the torso is
shown. On the right, the walk cycle is shown (with exaggerated double support) and
the phase variable is illustrated on the bottom. Additionally, a not shown parameter
defines phase shift of the torso movement towards the foot movement. These are all
parameters that are optimized. (Color figure online)

3.3 Stabilization

Different methods for stabilization can be applied to the open-loop pattern that is
created by the quintic splines. Two PID controllers modify the torso’s orientation
in relation to the ground, based on the IMU orientation. For this, we use fused
angles [5] which are an orientation representation that is specifically designed
for balancing. The PID controllers deal with arising oscillations and external
pushes. Another source of forces that lead to instabilities is making ground
contact with the moving foot, either by pushing too far downwards into the
ground or by starting a new step without having yet made ground contact. To
prevent this, we apply phase modulation which either ends a step early or waits
for the ground contact based on sensor data. This data can either come from foot
pressure sensors, if the robot has those, or from the joint torque feedback, which
the widespread Dynamixel servos provide. The latter approach is less reliable
due to noise in the sensor data, but is applicable without additional sensors. If
the robot gets too unstable, it is also possible to do a stability stop during a
double support phase, which completely stops the walk motion, allowing larger
oscillations to settle. While this is undesired, as it slows the robot, it is still
better than falling. The arms are not used for stabilization, since movements
can lead to fouls, i.e. ball holding. On the real hardware, the arms also might
get damaged during falls dependent on their position. Therefore, most teams
typically keep the arms in a fixed position in the RoboCup Humanoid League.
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3.4 Inverse Kinematics

Since the movement is defined in Cartesian space, we need to apply an IK to
compute the joint goal positions. To keep our walk controller generally usable,
we do not rely on a specific analytic IK. This would need to be adapted to new
robot models, and some of the used models, i.e. the Wolfgang-OP [10] and the
NUgus [14], do not have an analytic solution because the hip joint axes do not
intersect. We use the widespread MoveIt IK interface which provides multiple
solvers. For this work, we chose the BioIK [24] solver as it works for all non-
parallel robots. It combines genetic algorithms and particle swarm optimization
to allow solving of different IK goals. Still, it is fast enough to run in real-time
on computationally limited robot platforms.

3.5 Interfacing

We provide multiple interfaces for the walk controller, that allow simple integra-
tion into different code bases. The standard interface uses ROS 2 based message
passing to provide the motor goal positions and the odometery. Additionally,
multiple debug topics are provided that show the internal state of the walk con-
troller and can be visualized with standard ROS tools, i.e. PlotJuggler. This
allows simple integration for users of this middleware. We also provide a ROS 1
version. Since the code is written in C++, it is also possible to directly call the
corresponding methods without ROS 2 message transfers. Still, either ROS 2 or
ROS 1 packages are necessary as dependencies for building the code. Addition-
ally, we provide a direct Python 3 interface to the C++ methods which is also
used for the described parameter optimization (see Sect. 4).

4 Optimization

As described above, the definition of the splines does not only rely on the goal
walk velocity but also on a set of parameters. Naturally, the performance of the
walk control correlates to the quality of these parameters and the optimal values
differ for each robot type. It is possible to tune these by hand, but it is time-
consuming and might result in a local maximum. Therefore, we apply black-box
parameter optimization to automatically tune them in simulation. The different
stabilization approaches also require parameters, but these are either easy to
find, i.e. the thresholds for the phase modulation, or have an existing method
for tuning, i.e. the Ziegler-Nichols method [30] for the PID controllers. Therefore,
we do not optimize these parameters automatically and will not cover them in
the following section.

4.1 Problem Definition

Generally, such an optimization problem can be expressed as finding the param-
eter set x∗ which maximizes a single objective function f(x) (Eq. 1) or multiple
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objective functions f1(x), f2(x), ..., fn(x) (Eq. 2). The parameters x need to be
part of the set of possible parameters X.

x∗ = argmax
x∈X

f(x) (1) x∗ = argmax
x∈X

(f1(x), f2(x), ..., fn(x)) (2)

For each of the spline parameters, a continuous range is defined to create
the set of possible parameters X. This range can be identically for all robots,
e.g. the double support ratio, and is defined either through natural boundaries,
e.g. double support ratio ≥ 0, or our previous experience on which values make
sense, e.g. double support ratio ≤ 0.5. Some ranges are dependent on the robot
type since they are heavily influenced by its size, e.g. foot distance. These need
to be specified for each robot but can be found easily by trying out maximal
reachable poses of the feet. It is important to note, that these ranges do not
need to be exact and can be larger than necessary, but it can prolongate the
optimization process if they are chosen extremely large. The user might also
narrow these ranges to achieve a walking with certain desired properties, e.g.
with slow steps or a certain torso height.

A natural objective function for walking is the maximum speed that the con-
troller can achieve without the robot falling. Since our goal is an omnidirectional
walk controller, there are three continuous goal velocities (x, y, theta). Thus we
have an infinite amount of goals and can not describe this as an objective func-
tion. Still, our tests have shown that it is enough to optimize the parameters
for the four directions forward, backward, sideward, and turn. If the parameters
work for these, combinations, e.g. walking to the front-left while turning right,
are also working. For sideward and turn movements, only one direction has to be
tested, as the parameters are symmetrical enough. This results in four objective
functions ff (x), fb(x), fs(x), and ft(x).

This multi-objective optimization problem can directly be solved by Multi-
objective Tree-structured Parzen Estimator (MOTPE) [20]. But it can also be
scalarized a priori and then solved as a single-objective optimization problem,
e.g. by using Tree-structured Parzen Estimator (TPE) [9]. When using MOTPE,
an a posteriori scalarization is necessary for deciding on a parameter set, since
a multi-objective optimization will provide a Pareto front, not a single solu-
tion. The following scalarization is used. Its factors are based on the typically
achieved maximum walk speeds and ensure that each of the directions is con-
tributing equally to the objective. Without these factors, the optimization might
focus on the turn direction as the values are typically higher due to the different
unit (rad/s instead of m/s).

f(x) = ff (x) + fb(x) + 2 ∗ fs(x) + 0.2 ∗ ft(x) (3)

4.2 Optimization Process

The optimization process is based on the Optuna library [4] which provides
implementations of different optimization algorithms (called sampler) and a
framework to run the whole optimization process (called study). During the
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execution of a study, several trials will be executed. For each, the sampler will
propose a parameter set, based on the previously evaluated sets. The library user
needs to implement a function that evaluates these parameters and returns their
objective values to the study. Multiple trials of a study can also be executed in
parallel by using an SQL database to share data between the processes, thus
allowing good scalability on a computer cluster.

Basing our code on this library leads to a clear interface that is compat-
ible with different samplers and removes the need to implement any sampler
ourselves. The only part that is necessary to implement is the evaluation of a
trial. To do this, we use the Webots simulator [19] since the robots models of
the other teams are available for this simulator and we can use the exact same
artificial grass simulation environment as defined by the HLVS. Still, our code
also supports PyBullet [12] and has an interface to implement the usage of other
simulators, but this is not further discussed in this paper.

For each of the directions, we do the following procedure to compute the
objective value. First, the robot is initialized by performing steps in the air
without gravity and then put back onto the ground. This is necessary, to ensure
that the robot starts with the correct pose for the parameter set. Then, the
robot walks for 10 s in the corresponding direction, including an acceleration
and deceleration phase, as well as a complete stop at the end. This procedure
is repeated with linearly incrementing speed until the robot either falls or the
traveled distance does not increase. When all four directions are evaluated, the
maximally reached velocities are returned either as an array, in case of multi-
objective optimization, or scalarzied as a single value in case of single-objective
optimization (see Eq. 3).

5 Evaluation

To evaluate the presented walk controller, we first compare different samplers
that can be used to optimize the parameters. Then we show how well it gen-
eralizes to different robot platforms and provide the achieved baseline values.
Additionally, we discuss the previous impact of the approach.

5.1 Optimizer

There are multiple different optimization approaches available (see also Sect. 2).
Optuna provides samplers for CMA-ES [17], NSGA-II [13], TPE [9], and
MOTPE [20]. Additionally, for TPE and MOTPE a multivariate version
(MTPE/MMOTPE) is provided. Optuna claims that it outperforms the inde-
pendent TPE and MOTPE sampler. We compare the achieved objective value
of these samplers with a budget of 1,000 trials. Additionally, we provide the
baseline of a random search with 1,000 and 10,000 trials to highlight that these
values can not be easily found randomly. The experiment was performed on
three different robots, the Wolfgang-OP [10], the OP3 [2], and the Bez robot.
These robots were chosen, as they have different sizes, foot shapes (with cleats
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Table 1. Achieved objective values for dif-
ferent robot-sampler combinations (higher
is better)

Name Wolf. OP3 Bez

Multi. MOTPE 1.33 1.81 0.24

MOTPE 1.39 1.89 0.72

Multi. TPE 1.25 1.83 0.31

TPE 1.35 1.81 0.55

CMA-ES 0.90 1.53 0.69

NSGA-II 1.39 1.78 0.63

Random 1000 0.64 1.36 0.17

Random 10000 1.09 1.48 0.36

MOTPE Comb. 1.52 1.95 0.74

Fig. 4. Comparission between sampled
double support ration parameters (x-axis)
of MMOTPE (left) and MOTPE (right)
with achieved objective values (y-axis).

and without), and different degrees of realism in the model. Due to the long
time that is needed for the optimization process, each sampler-robot combina-
tion was only run a single time. Since the approaches are not deterministic (due
to a random initialization), the results may be influenced by randomness.

Of all samplers, the independent MOTPE performs the best (see Table 1).
These results are in accordance with our previous work on humanoid stand-up
motions [29], where MOTPE also performed better than CMA-ES. While we
only compare the samplers in the metric of trials, it is noteworthy that the
necessary time for one study is also significantly influenced by the choice of the
sampler. Since one parameter set is evaluated by trying to walk with increasing
velocity, bad parameter sets that directly lead to a fall are evaluated quicker.
For example, the multivariate MOTPE sampler needs only ca. 8 h for 1,000 trials
while the independent version needs ca. 24 h on the same machine with an AMD
Ryzen 9 5900× 12-core CPU. We observed that the independent (MO)TPE tries
to improve more on the current local maximum that it has found, while the
multivariate version explores the parameter space more (see Fig. 4). As it tries
out more bad parameter sets due to this, the multivariate version is also faster
to compute in our scenario. But, it is not performing well in fine-tuning the best
parameter set. Therefore, we propose to use a mixed approach of first optimizing
1,000 trials using the multivariate version and then optimizing further 500 trials
with the independent version, as this leads to slightly better results with similar
computation time (see MOTPE Combination in Table 1).

5.2 Generalization

We evaluate the presented walk controller on all robots of the Humanoid Virtual
Season [1], as well as some popular humanoid robots that are included in Webots
using the simulation parameters of the Humanoid Virtual Season. To do this,
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Table 2. Achieved walking velocities on different robot platforms

Robot Platform Team/Company Height Forward Backward Sideward Turn

[m] [m/s] [m/s] [m/s] [rad/s]

Bez UTRA 0.50 0.21 0.05 0.12 2.45

Chape ITAndroids 0.53 0.30 0.36 0.10 2.09

Gankenkun CITBrains 0.65 - - - –

KAREN MRL-HSL 0.73 0.54 0.48 0.18 3.10

NUgus NUbots 0.90 0.38 0.42 0.26 1.97

RFC2016 01.RFC Berlin 0.65 0.37 0.40 0.36 1.99

Wolfgang-OP Hamburg Bit-Bots 0.83 0.48 0.51 0.22 1.89

Darwin/OP2 Robotis 0.45 0.29 0.29 0.12 2.47

OP3 Robotis 0.51 0.45 0.54 0.13 2.01

NAO Aldebaran 0.57 0.43 0.58 0.25 0.85

for each robot a URDF is needed to solve the IK. These were only available
for the commercial robots. For the other robots, the URDF was created using
the URDF export function of Webots based on the simulator model. For each
robot, we optimized the spline parameters using the above-described approach
of doing 1,000 trials using the multivariate MOTPE and then 500 trials using
the independent MOTPE. We did not use any of the stabilization methods for
this comparison, since they are not necessary in a simulation without external
forces.

The reached walk velocities of the best parameter set are shown in Table 2.
There is only one robot in the HLVS, the Gankenkun, that does not work since
it has parallel-kinematics in the legs. This is generally not supported by URDF
and therefore it is not possible to solve the IK. We assume, that the robot would
be able to walk if a custom IK is used. All robots without parallel kinematics
were able to walk. Naturally, the larger robots, e.g. the Wolfgang-OP, reached
higher velocities than the smaller robots, e.g. the Bez. Noteworthy is that the
commercial robot models are less realistic, especially the OP3, which has a motor
torque of 1,000 Nm in simulation. Therefore, they reach high walk velocities.

5.3 Previous Usages

The Hamburg Bit-Bots used earlier versions of the presented walk algorithm
successfully on real hardware at the RoboCup championship in 2018 and 2019.
Furthermore, the walk controller won the teen-size push recovery technical chal-
lenge in 2019. We made the experience that the optimized parameters are often
not directly applicable to our real world robot. Mainly the torso pitch needs
to be adjusted. Our assumption is that the model of the robot has an inaccu-
rate weight distribution. Still, adapting the parameters from simulation to the
real robot is simpler than optimizing them from scratch. Furthermore, in our
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experience, it leads to better walking, as humans tend to focus on the first local
maximum when optimizing manually.

In simulation, it has been used by the Hamburg Bit-Bots to score third place
in the RoboCup 2021, first place in RoboCup Brazil Open 2021, and second place
in the HLVS 22. The Hamburg Bit-Bots also used it successfully on a simulated
Darwin-OP robot in the running robot competition 2020 and 2021, including a
modified controller version for walking on stairs. The team NUbots is using the
walk engine since 2019 [14]. The quintic spline engine has been used by Putra
et al. as a basis for their walking approach [21].

6 Conclusion

We presented our open-source walk controller that is working on all non-parallel
robots in the RoboCup Humanoid Virtual Season, as well as on widespread
commercial robots. It reduces the entry barrier for new teams by providing a
simple-to-use solution to the bipedal walk problem. The usefulness of this app-
roach has been evaluated in the multiple real and virtual RoboCup tournaments.

In the future, we would like to test the algorithm on further robot models
and are, therefore, asking more teams to make their models open-source. The
optimization procedure could be improved further by automatically limiting the
search space based on the kinematic restrictions of the robot.

The presented software, as well as accompanying videos and URDFs, can be
found at: https://bit-bots.github.io/quintic walk/.
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Abstract. An important part of ensuring continuous development and
betterment of performance of a robot soccer team is the process of ana-
lyzing past matches and generating insights about possible causes for
good or bad outcomes the team has in the field. RoboCup robot soccer
matches from leagues such as the 2D Simulation League generate log
files that can help create insights using data analysis, but since there
is currently no active open collaboration between teams for building an
ecosystem of analysis tools, this area is underdeveloped - as a commu-
nity - and could be improved. We propose an open-source data analysis
library that contains all of the basic structures needed for implementing
any analysis, as well as a collection of ready-to-use, quasi-agnostic anal-
ysis that can be used to analyze matches from any soccer league with
little or none adaptation. We believe this can be a common ground for
developers from any team to work together in the advancement of tech-
nology and lower the barrier of entry into the data analysis realm for
teams that are not yet involved in the area. We also demonstrate how
this library can be leveraged as a software component for other projects,
by building a custom web platform that utilizes it.

Keywords: Performance metrics · Data analysis · Web development ·
Open source · Data visualization

1 Introduction

RoboCup’s 2D Soccer Simulation League (SIM2D) and Small Size League (SSL)
are two robot soccer leagues in which a log file is generated and made available at
the end of a match containing rich information about the game such as position
of all the game entities at all times, game states, players states and scores.

This log file is a valuable record of a team’s execution, but presents a chal-
lenge to extract relevant insights by directly looking at it in its raw form, since
it contains huge amounts of data that would be very hard to look into in an
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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efficient analytic way, as a human. Hence, to transform data into intelligence,
it is necessary to create software capable of processing all that information to
present it in a more human-readable way. However, since there are no general
standards on how to operate these analyses or an active ecosystem of tools made
for this specific purpose in the RoboCup community, each team develops their
own isolated solutions, which prompts to a lot of re-work and missed collabora-
tion opportunity, limiting the rate of the possible technological advances in the
area.

The amount of data generated by a single match of RoboCup 2D Soccer
Simulation League (SIM2D) is about 25MB. In the Small Size League (SSL),
this log file can get up 500 MB. Despite being different in size, these files are
quite similar in what they store, but since there is no common ground or platform
that analyzes and manages this data, most of it is unused or left aside. A common
tool for collecting and organizing this information can bring tremendous value
to a team’s understanding of their robots or simulated agents.

Such a tool should be diverse, adequate and compatible across environments
and its development should be as context-agnostic as possible, meaning that all
of its internal components and systems should be designed with general purpose
and modular components, so that little to no adaptation is needed to correctly
function in different contexts.

A Python package can be used as a component for building other software.
This format is beneficial for sharing and coupling with other tools, for instance,
a modern web application that serves as a Graphical User Interface (GUI). This
type of usage improves the user experience by providing a more practical way of
interacting with them [2,4], and in the context of this paper: a soccer library. We
demonstrate how a thoughtful design of such a platform can boost the library’s
usability and enable a productive, efficient, and friendly environment for extract-
ing valuable insights from soccer matches.

We believe that a unified platform for data analysis development encourages
the community to collaboratively grow the field and encompass other related
areas such as Machine or Reinforcement Learning. Thus, taking into consider-
ation the utility of a unified codebase, the community growth possibilities and
the value brought by having data analyzed, our contributions in this paper are
the following.

1. The release of an open source data analysis Python library called “Soccer
Analyzer” for SIM2D and SSL. It proposes to be an open standard so that
any RoboCup community member can use its built-in analysis, collaborate to
improve the existing ones, or create new ways of exploring data from robot
soccer matches.

2. Built-in analysis algorithms compatible with SIM2D and SSL.
3. An evaluation of a model for expected goals in soccer matches using SIM2D

log files.
4. An evaluation of the released library capabilities as a module for building

other software by implementing a web platform that provides the user a web
application as a friendlier way of interacting with the Soccer Analyzer library.
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2 Related Work

Initiatives around gathering and analyzing data in sports have been developed
in real life [5,6] and simulated environments [14]. Within the SIM2D commu-
nity, we have found work from teams that developed heuristics to use the data
generated from the game events (logs), although all of the projects found were
category-specific and also built with other purposes besides transforming data
into information. Albeit useful, this approach lacks scalability, reuse, and mod-
ularity, which hampers the development in the area.

One of the first implementations of a log analyzer application found is from
the ITAndroids team in 2013 [7]. The software aimed to detect players’ positions
in order to detect formation patterns, its purpose was to be an auxiliary tool and
was created for this single usage. No entry point of development was provided
for future extensions of the mechanism.

Another example is the Namira Log Analyzer [1], a robust application devel-
oped by the Namira team in 2020 that receives the generated log files from
SIM2D matches and returns team and player analysis such as the amount of
complete passes and interceptions along with its accuracy, a shoot counter that
differentiates between three types of shots (goal shots, width or on length shots),
total stamina usage, stamina used per distance, etc. This approach is more
generic than ITAndroid’s, providing multiple algorithms that generate analyses
and the results are given as a JSON file which is a very useful format to trans-
fer data between applications. Other purposes were given to this tool, Namira
developed a tournament simulator named Namira TPAS, which is an interface
capable of running a batch of custom matches with ease, and utilizing the log
analyzer to process the games statistics. Although very useful, the tool was not
developed in a way that provides a simple programming interface for those who
want to contribute to the functionality already provided and also it is not very
customizable.

A similar tool was MT2018’s data miner [14]. They developed a way to
extract data from the SIM2D log files using regular expressions in Python, the
resulting data was output in a CSV file and stored in a MySQL database for
future consulting. Their goal was to mine the data and use them as input for
machine learning algorithms. But to build software over regular expressions can
considerably hinder the scalability and reuse of the code, due to its dense and
hard to read syntax which is not ideal for a large codebase that needs clarity
and readability.

In SSL analysis, the RoboFEI-SSL team built a log analyzer [10] with a
graphical interface capable of displaying the field’s current status, the players’
positions, and the ball direction, as well as referee messages in the log. The
application has a lot of features and filters, providing the user a custom experi-
ence for visualizing only the intended information and can be used in real time
matches. This approach provides the end user a more sophisticated interface,
but due to the use of QT5 for graphical interface, it restricts the application to a
non-friendly design if compared with more advanced front-end frameworks like
React, that allow richer interactions with the user.
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We have also created in the past a Log Analyzer for SIM2D [8], but it suffered
from the same limitations as some of the cited projects above: it wasn’t scalable,
since the GUI code was intertwined with the data analysis code, meaning that
creating new analysis with components already created was not possible; every
analysis was independent and did not communicated or shared information with
other parts of the code. Also it was focused on only SIM2D, so it couldn’t be
used to analyze matches from other leagues.

3 Soccer Analyzer

To assist a constant development cycle, a modular, reusable, and easily maintain-
able codebase is a must for fast scaling and implementation. Speed and clarity
are of the essence to having data-oriented development when on a search to eval-
uate Key Performance Indicators (KPIs). Soccer Analyzer1 (SA) is a common
structure designed exactly for that. It aims to be a foundational codebase that
provides building blocks for creating analyses using Python and Pandas whilst
presenting each of them as a resource for more advanced implementations.

This structure was created with the purpose of being a common and shared
codebase upon which the RoboCup community can construct data analysis on
top of any football-related robotic category. This initiative follows the tendency
of building common architecture designs [12] for Robocup competitions. Having
a common library that anyone can use, expands collaboration possibilities and
lessens the barriers for teams to start investing in the field of data analysis.
Besides that, it takes away the focus of the infrastructure required to create
such investigations and directs the attention where it is needed: in analyzing the
data.

The common structures created are elements such as the field, the ball, play-
ers/robots, a match, and characteristics of these elements such as width, height,
speed, score, and category among many others. These components can be manip-
ulated at will to adapt to different contexts enabling their usage in various robot
soccer categories.

Specific analyses are also common structures, ball possession can, for
instance, always be calculated in the same manner - considering the closest
player to the ball - and to achieve this information only position and time data
are needed. This analysis can be agnostic to the specific category that is being
evaluated, other analysis may not work in the same manner; SIM2D stamina
analysis makes no sense in SSL considering that robots don’t have stamina. The
library does not restrict its usage though, if a team using Soccer Analyzer decides
to use stamina as a feature to examine a robot battery, for instance, they will
still be able to do so. The package provides the tools, the method in which one
wants to use the tools provided is completely up to their development choices.

Currently, Soccer Analyzer supported contexts are Soccer Simulation League
(SIM2D) and Small Size League (SSL), and analyzing the log files from these

1 https://github.com/robocin/SoccerAnalyzer/.

https://github.com/robocin/SoccerAnalyzer/
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leagues works out of the box. Support for other contexts, such as other robot soc-
cer leagues, or even human soccer can be implemented systematically mapping
the provided modules or creating new ones.

3.1 Internal Architecture

The Soccer Analyzer architecture was carefully thought to be simple and able
of attaching new modules. The modules are operations, tools, collections, or
algorithms that bring results or assist other modules in any way required as can
be seen in Fig. 1. All components of the SA are called modules, with the most
important ones being the Match, MatchAnalyzer and every Analysis module.

Fig. 1. Soccer analyzer architecture

A Match object contains the most information possible of a given game
match: geometric dimensions such as width, height, interest spots, players, field,
events, final score and category. In essence, a match of any category can be rep-
resented in this structure. This object can be expressed as a block of information
that can be populated and consulted by any module. A match construction is
dependent on its category, a SIM2D match has different properties than a SSL
match, but a category match is not dependent on the match object because the
attributes are interchangeable and adaptive. This approach directs and priori-
tizes the information that is being represented and the various forms it can be
portrayed instead of structure necessary to describe it.

To create a match the necessary components are: a .csv file of a real match,
which contains information extracted from .log files in SSL and .rcg or .rcl files
in SIM2D; and a object with the mappings of each category attributes with the
contents in these files. The structure chosen for this purpose was an enumera-
tor. Besides mapping, the enumerator type determines which category is being
analyzed and having this information changes the behaviour of control modules
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like the MatchAnalyzer. The MatchAnalyzer is the central piece of SA work-
flow, the processing of almost every other module is centered around the usage
of MatchAnalyzer. It controls and triggers other regions of the framework and
its responsibilities are to manage the Match objects and create the available
Analysis objects of the given Match.

The Analysis modules are responsible to ingest the logs and process their
information running algorithms to generate the results, which are the analyses
themselves. This module can make use of other auxiliary components or even
other analyses. The architecture provides visibility of external scopes to read
information but not to alter, this lessens the points of incorrectness that could
propagate to the entire system given that the resources and information are
shared across the software. All Analyses inherit from an abstract analysis class
that defines an interface for computation and data sharing. This means that each
one, across all types and categories, have the same access methods and private
methods, which helps implementation and usage from anywhere in the code.
The general structure of SA contains other modules than the ones mentioned
above. The current release of SA contains packages providing algorithms and
data structures that enable the software to develop and visualize those analyses.

3.2 Inputs and Outputs

SA internally uses a Python library called Pandas [3] to manage the log’s infor-
mation. For this library to correctly parse the data, the logs must be in comma
separated values (csv) format, which is not the native logging arrangement of
SSL and SIM2D competition. The raw data of SSL comes in a .log file and
SIM2D server produces one rcl and one rcg file after a match. To convert these
files into csv format, we used two internal softwares previously developed by the
RobôCIn team, one for each category.

When SA executes, it provides a runtime interface with all information it was
able to process from a given csv input. The interface provides output methods
that generate pieces of information in different forms, depending only on the
needs of the developer. Currently, the output formats are: a JSON file, which
is a standard for data consumption in web applications; a populated Python
dictionary and a simple description text with the metrics calculated.

3.3 Analysis

The analysis modules are an important part of SA contributions. Their elabora-
tions were guided with category agnosticism in mind, meaning that one analysis
algorithm should bring correct results to data from any category. This approach
brings an inherent complexity to implementation, but delivers a much improved
user experience for anyone using the library as a data analysis engine. More
details on the analyses can be viewed in Table 1.
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Table 1. Soccer analyzer implemented analysis

Analysis list

Analysis Description

Ball History Collects the ball position columns in the data, returning a
tuple containing all ball positions in the x and y axis during
the entire match

Foul Charge The algorithm detects the positions where fouls were
committed during the game, along with their quantities and
proportion between both teams

Penalty Detects the game times in which penalties, or shootouts,
occurred by monitoring the playmode and returns two lists
containing the occurrences for each team

Playmodes Summarizes quantitatively which playmodes occurred in a
given match and returns this information as a list of distinct
playmodes

Stamina A simple extraction of stamina attribute in SIM2D players
during the game cycles.

Ball Possession Processes spatial data of all entities in the game relative to the
ball and determines the most likely entity to have the ball
possession in each cycle.

Time after events Measures the amount of time passed since the occurrence of a
desired event

Expected goals A model for evaluating goal probability using angle to
goalposts, distance from shot to goal and number of players
nearby the shot

3.4 Expected Goals (xG)

Results in soccer, more so than in any other sport, can be greatly influenced
by random factors. In order to score, one must first attempt a shot at goal.
Assessing a shoot performance could simply entail taking a look at the total
shots and shots on target. While these are useful metrics for dealing with chance
creation, they do not tell the whole story as not all shots bring the same value
when it comes to scoring. This is where expected goals (xG) comes into play. xG
is a metric that approximates the probability that a shot will result in a goal
based on a number of factors such as the distance from where the shot was taken,
angle with respect to the goal line, the game state (what is the score), if the shot
came during a counter attack and more. xG can therefore serve as a gauge of
how good a team is at creating chances and limiting the opponents’ chances. It
can also be used to analyze a player’s ability to create shooting opportunities in
dangerous areas and how well it takes its chances.

To create the xG model for 2D soccer, a dataset was constructed to store vari-
ables and needed attributes. To create the dataset the team used the Robocup
Archive database [9]. Then, we processed over 400 log files from matches between



184 F. N. A. Pereira et al.

the years 2019 and 2021 interested in variables such as shot location (x and y
coordinates), distance from shot location to goal, number of players near the
shooter, angle to goal posts and more. With the obtained dataset the team gen-
erated more attributes, such as distance squared, distance from center of the
pitch, etc to use in the model testing phase.

All models used are based on the logistic function and were built using the
Generalized Linear Model Regression from statsmodels module [13]. After testing
different model builds with different parameter combinations we concluded that
the best performance was achieved using angle, distance and players nearby
since they all achieved a P value of 0 in the model, which means that they
are all statistically significant at 1% level, and in further testing, using the log
likelihood and the ROC curve, the model built with cited parameters was the
best performer.

4 Web Platform

4.1 Motivation

A GUI for Soccer Analyzer: In order to be highly reusable and purpose-
focused, the Soccer Analyzer library is designed to have purely textual output;
this means that, for rendering plots, another software is needed. This second
software would use Soccer Analyzer as its core for data analysis, and render
plots based on the library outputs, while also providing a more user-friendly and
organic way of interacting with the library.

Hence, there is the possibility for existing a second application, responsible
for being the front-facing part of the software, and a facilitator that ensures
a better user experience. In this section we will describe the development and
outcomes of such a platform, as a way of demonstrating the Soccer Analyzer
library potential to serve as a component for other software.

4.2 Front-End and Back-End

Technologies and Implementation: Our front-end application was made
using the React framework. In the back-end, we run a server with Python and
Flask. By providing the output in JSON format natively, the Soccer Analyzer
library integrates well with such a framework, since JSON is a very commonly
used standard in the web applications space.

User Experience: One of our biggest priorities was ensuring that the user
experience was at the center of our design process, which was crucial in order
to align expectations with all parties involved. Hence, we worked closely with
RobôCIn SIM2D team, having discussions, watching games together to brain-
storm what could be useful points of interest to be analyzed, understanding their
needs and making sure we had their expected features and whether the solutions
we’ve made actually helped solve the problems raised by them.
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Data Visualization: Since providing a user-friendly way of visualizing data
about a match is one of the platform’s main objectives, the plotting aspect of
the application is highly important. The way the graphics are presented to the
users has the power to influence their interpretation of the information displayed,
thus it has a critical role in the process of creating new strategies, testing them,
and evaluating their results interactively, as well as in correctly understanding
the players’ and team’s behaviour. The process of developing the visualizations
on the front-end web platform is facilitated by the Soccer Analyzer library ability
of functioning in standalone form. It helps with quick prototyping by utilizing
packages such as Matplotlib for sketching visualizations, while also needing very
little adaptation in order to interface with the other software being developed
for showing the final graphics with web plotting libraries and frameworks.

General Dashboard: The General Dashboard is a screen responsible for show-
ing general analysis and statistics about how the teams’ performances compare.
Its function is to provide a macroscopic view of what is happening in recent
played matches, the statistical patterns of notable players across multiple teams
and leagues and which teams are doing a good campaign in which championships,
for example.

Team Profile: The team profile is made of two sections: the general team
information and the team analysis screen. The general team information section
shows some of the most important information about the team in a compact
form: number of played matches, wins, losses, draws, etc., are laid out in plots
that help achieve a sense for the team’s average situation in the competitions,
in any of the available Leagues.

The team analysis screen has been through two major iterations, the first one
featuring a list of the available matches and a list of the available analyses, and
an area in which the chosen analysis applied to the chosen match was displayed;
and the second one (still in development) is an infinite white canvas in which it
is possible to instantiate and move around any kind of media, such as images,
videos, PDF’s, and most importantly, the output from the analysis, both in
textual and in graphical form.

Integration of Front-End, Backend and Soccer Analyzer: Since Soccer
Analyzer is built from the ground up with the aim of being used as a soft-
ware component, it is really simple to integrate it in any application. Our cur-
rent architecture involves having a Python Flask server that imports the Soccer
Analyzer package and, upon receiving HTTP requests from the front-end app,
chooses which imported data analysis function to run and give back to the client
its response.

5 Experiments and Real World Use

The reported library has been used by the RobôCIn team during past SIM2D
competitions, and assisted in the decision-making process when determining how
the team’s code should be modified in order to achieve better results in those
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contests. Its aid helped the team win first place in the Latin American Robotics
Competition (LARC) of 2021.

One of the first data analysis experiments conducted while in a competition
was simple but insightful: by plotting a line graph of all teams’ mean stamina
along the time axis together with visual indicators on when a goal occurred, we
realized that significant drops in stamina happened consistently after a goal.

Fig. 2. Plots in jupyter notebook using SoccerAnalyzer

One of the insights in this situation was that, if we could avoid this drop in
stamina for at least some of the players, the mean stamina of our team would
be higher than the other team after each goal, which could be an advantage in
certain situations.

In 2021, we realized that our goalie was grabbing the ball with its hands and
thus making fouls whenever a teammate would back off the ball. In order to stop
this behaviour, a code change was made but its efficacy couldn’t be easily verified
by manually watching various matches. We used the Soccer Analyzer library to
build an analysis that was able to read multiple log files and detect when the
goalie as doing this erratic behaviour. With this information in hand, we were
able to quantitatively compare the occurrences before and after the change and
evaluate it more precisely.

In 2022, a Jupyter Adapter module, shown in Fig. 2, was implemented in SA,
integrating plotting functions targeted to be used inside a Jupyter Notebook.
This feature was designed to incorporate the mindset of data driven development
inside RobôCIn’s SIM2D team planning, development and testing cycles. The
feature was used as a playground for quick analyses of stored games and is
gradually being inserted into the team.

Some analysis have a inherit error factor due to its algorithm calculation
approach. For instance, ball possession minimal distance to ball might incor-
rectly assign possession in a cycle where the ball is travelling from a pass or
kick, or when two robots are disputing the ball, since there is no evaluation
or processing being done to handle these corner cases. This error can be mit-
igated using another heuristic but cannot be completely correct, since there is
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no ground truth data about this specific analysis. In contrast, foul charge, play-
modes, stamina, penalty, and time after events have a ground truth value which
can be manually counted by watching the game or reading the game logs; within
the SA architecture these last mentioned analysis had the exactly same results
as the ground truth values.

5.1 The xG Model

The xG value is calculated inside the shooting analysis module every time a shot
is identified, the module utilizes the model described in Sect. 3.4 passing the
parameters angle (from shot location to goal posts), distance from shot location
to goal and number of players near the shooter, and receiving the goal probability
value between 0 and 1. The results can then be used to plot goal probability per
region or to highlight a team’s chance quality in games (see Fig. 3). The xG value
can also be obtained through the course of a game or a sequence of games to
help assess the chance quality a team or a player is achieving and how well it is
taking those chances comparing actual goals scored and the expected value.

Fig. 3. Goal probability and shot quality

6 Conclusions and Future Work

SIM2D team algorithms tend to be very complex to develop and hard to make
improvements to, and game analysis helps significantly with this process because
it allows organizations to detect the strong and weak points of the team. The
main use of Soccer Analyzer is to provide support to SIM2D and SSL games, pos-
sibly extending to other categories in the future, for teams to better understand
and detect where is important to make changes in order to improve performance.

Soccer Analyzer is directly useful as a library for simple programs and also
functions well as a software component for developing other complex software. By
releasing it as an open-source project, we hope for it to become the go-to data
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analysis toolkit in the RoboCup community, help teams introduce themselves
to the data analysis realm and create a platform in which different teams can
collaborate and share code towards the advancement of the field.

We are already working on adapting Soccer Analyzer for other RoboCup
Leagues, and in the long-term we plan on adapting it for analyzing soccer played
by humans. Another long-term goal is generalizing the library even further, so it
can be an analysis tool for any kind of sport that shares fundamental similarities
with soccer. We have started to design a new serverless architecture for the Web
Platform that will ensure its scalability and ease of maintenance, and we aim to
ship this new infrastructure together with the software’s next version. Further
development, test and polishing of the Web Platform will also be conducted in
order to prepare it for public release, as we have plans of giving access for the
RoboCup community to our Web Platform.

In the next release, we plan on providing the Web Platform with a code
editor that can be used to create custom analysis directly inside the browser,
enabling users to have more control over their data analysis session. We also
plan on integrating the Web Soccer Monitor project [11] as a component inside
the Web Platform to enable visualization of past matches through log files.
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Abstract. The 2D Simulation League (SIM2D) is one of the most acces-
sible RoboCup leagues, since there are no hardware costs included, and
codebases from which you can build a new team are readily available for
free. The league, however, still has a notable barrier of entry: its setup.
The setup process for the SIM2D environment can be daunting for new-
comers, especially for people new to programming or that don’t have
access to a linux based distro. In this sense, if there is interest in low-
ering the barrier of entry of the SIM2D league, and with it, of robotics
in general, it would be helpful to have tools with minimal setup, or that
don’t require any setup at all. This article reports on an Open-Source
monitor for SIM2D games, “Web Soccer Monitor”, that runs entirely on
the browser and doesn’t require a setup to function. It is useful in itself
as it simplifies the experience of utilizing a monitor from the user’s per-
spective, while also providing developers with a more modern and agile
framework in which to implement new features, but it also serves as
the foundation in which the RoboCup community can start building an
entire ecosystem of SIM2D web tools, which would lower even more the
barrier of entry and would, among other things, facilitate the creation of
new categories, such as a fully-fledged SIM2D Junior League.

Keywords: Web development · Open source · Data visualization · 2D
soccer simulation league

1 Introduction

In 2021, a conversation about the development of a web-based simulator for
SIM2D began spreading between the league members and organizers. A possible
use-case for it would be to host SIM2D games for a new Junior league, since a
web simulator would simplify the setup aspects of the SIM2D environment and
thus facilitate the participation of Junior competitors in the category.

In that context, we decided to tackle part of this challenge by designing and
implementing from scratch a web-based monitor inspired by the already existent
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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and widely used monitors rcssmonitor [12] and soccerwindow2 [10], both desktop
programs that need a setup in order to work.

While in the design process, we realised that by tackling this problem, we are
not only helping to possibly create new RoboCup leagues, but also lowering the
barrier of entry for newcomers in the current SIM2D scene, and improving the
experience of current members. By developing this software, we are creating an
application that has the potential to be the foundation for a suite of new SIM2D
tools, all designed to run within an internet browser.

In this paper we report the development and community involvement of
an open source web-based SIM2D league monitor, and we also talk about the
potential it has for being a stepping stone for the flourishment of a new ecosystem
in the SIM2D RoboCup community, which might be influential to other leagues
as well.

2 Related Works

A number of SIM2D monitors exist. The software rcssmonitor [12] and soccer-
window2 [10], for example, are two widely used monitors in the scene, however,
they’re not web-based (require setup). There is also a project by the RoboFEI
team called “LogAnalyserRoboFei-SSL” [13] that provides, among other things,
a monitor for visualizing matches; this project, although, is for SSL only, and
runs locally as a desktop application.

The RoboCup Archive [7] uses JaSMIn [9] as a web monitor for replaying
past log matches, and it is a great project, but might be heavy to run on lower-
end computers due to its use of 3D graphics powered by opengl. Also, because of
its 3D nature, it is harder to develop new features for JaSMIn, when compared
with a 2D counterpart, namely, the 2D canvas API provided by the browser.
Another hindrance for its continued development and community engagement
is the use of vanilla JavaScript instead of a framework such as React [6], which
is a widely know library that helps developers program faster and manage their
projects more efficiently. Hence, it is justified to build another tool, focused on
2D graphics and implemented with a robust web framework, therefore enabling
us to offer the community a greater variety of choices (2D or 3D monitoring)
when a browser based monitor is needed. JasMIn and this new 2D monitor could
then be used alongside as different views inside other browser based projects.

3 Web Soccer Monitor

3.1 Technology and Architecture

Web Soccer Monitor uses the React framework [6] for building its core and
accessory UI (User Interface) components. It uses the React Konva library [11]
for rendering the 2D graphics of the monitor itself in a HTML canvas, which is
lightweight and should be easy to run on most computers.
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It is capable of processing a compacted log file uploaded by the user by
sending it to a back-end, responsible for extracting and converting the *.rcg.gz
file into a JSON format that is then sent back to the front-end so the monitor
can start playing it.

The back-end is a simple python Flask server that uses gzip [8] to uncompress
the file and the rcss-log-extractor [14] script to translate it to an intermediary
.csv format.

Although having a back-end works, it is not ideal for a reusable component
to have the necessity of connecting to a specific external service for basic func-
tioning. Thus, we are working on making Web Soccer Monitor a front-end only
application: the idea is that it should be able to function as a front-end software
by itself, meaning that no connection with a back-end should be mandatory
(Fig. 1).

Fig. 1. Web soccer monitor architecture diagram

3.2 Component-Based Modularity

Since it is crucial for the Web Soccer Monitor component to be reusable, it is
important that it respects a design pattern that takes into consideration that a
component must be as independent as possible, and, hence, every piece of data
that can be contained into the component itself must be handled locally, but all
of the data that needs external access must be received as a parameter.

In the current implementation, there is a general “Monitor” component
(shown in Fig. 2), which is responsible for rendering the graphics, and a SIM2D
specific “2DMonitor” component (shown in Fig. 3), which provides a custom
score bar at the top, plus a connection with SIM2D specific controls. This is
done in such a way as to modularize everything to the maximum and enable the
creation of new functionalities with less work, by reusing what already existing
components can offer.
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This design choice is what could enable us to create a “SSLMonitor” com-
ponent (for Small Size League), for example, without having to re-write all the
functionality related to rendering the graphics, since the Monitor component
already exists and could be used in conjunct with SSLMonitor or any other new
component. In this specific case, one example of a value passed as a parame-
ter down to the Monitor component is the function that draws the background:
since different leagues have slightly different pitches, the background drawing
function must be defined in the more specific component, such as 2DMonitor or
SSLMonitor, and passed down to Monitor, which will just execute it on every
frame before rendering the players and the ball, for example.

A contrary example to this is the scale value for the camera view (the zoom
the camera has, relative to the game pitch): it is completely controlled within the
Monitor component, so its value can be handled inside the component and no
input is needed for this control to happen. The current time of a playing match,
otherwise, is an information that both the Monitor and its parent component
(2DMonitor or SSLMonitor) need to know, so it must be defined in the parent
component and passed down to the child (Monitor).

All of this ensures that the components are as modular, reusable, and inde-
pendent as possible. It also simplifies development, by creating a simple frame-
work in which the relationships between components follow clear rules, and cre-
ating new components is mostly a matter of understanding its position in the
component hierarchy, and how it handles different types of data.

Fig. 2. Web soccer monitor general monitor component
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Fig. 3. Web soccer monitor SIM2D monitor component

3.3 Features

Currently, the main feature is the ability to replay SIM2D matches, by uploading
a log file in the *rcg.gz format. Support for real time viewing of matches is being
worked on, as well as support for replaying the log files of other categories, such
as SSL, which would eventually make Web Soccer Monitor a tool for multiple
RoboCup leagues.

Inside the 2DMonitor component, some of the controls are: horizontal bar for
jumping to any specific time in the game, along with fast forward and backward
time jumpers of 10 cycles, a play/stop button and a “Center View” button
that resets the camera position and scale, and the playback speed. An option for
showing or hiding the view area of the players is also available, with more similar
features being developed, some directly inspired by other existing software such
as soccerwindow2 [10], and some entirely new, such as ball trajectory and real
time statistics, i.e., ball possession percentage, which could improve the watching
experience.

3.4 A Ready-to-Use Website

Even though Web Soccer Monitor is thought of being a software component that
other software can be built with, it is a useful tool just by itself, since it enables
the replay of SIM2D log files on any device with access to an internet browser,
without the need for installing anything, which can facilitate the viewing of
match replays whenever a computer with SIM2D environment is not available,
such as while using smartphones.

Hence, it is important to have a ready-to-use website from where Web Soccer
Monitor is made accessible, which has been done and made available as a link
in the description of Web Soccer Monitor official repository [15].
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3.5 A Simpler Setup for Offline Use

Although by having a hosted website running Web Soccer Monitor (Fig. 4) frees
users from any kind of setup, if teams want to setup their own instance, the only
needed steps are to clone the project’s repository, use the Node Package Manager
and Python Pip utilities to automatically install the project’s dependencies and
then run the front end with Node Package Manager and back end with Python,
which is simpler than having to manually install all of the needed packages, such
as needed from currently available monitors.

Fig. 4. Web soccer monitor website greeting banner

4 Open Source Movement

4.1 Community Involvement

Since the beginning, this has been a project centered towards open source, which
is reflected in both the design philosophies talked about in Sect. 3.2 and also the
implementation code itself. With an effort to making sure that the code is easy
to understand and well documented, as shown in the Fig. 5, we try to make
collaborating to the project as interesting and engaging as possible, which is a
crucial point in ensuring the health and aliveness of the project in the long term.

Since its release, in late 2021, some interactions have already happened
between the community. For instance, an extensive days-long discussion about
how to implement real-time visualization for SIM2D within Web Soccer Monitor
engaged 4 people and occurred over the span of 3 different GitHub repositories
[1–3], including the repository for the rcsserver [5], and also extending itself to
the SIM2D Discord server [4].

As work continues, we believe and hope that this kind of interaction and
engagement continues to grow, as more members of the SIM2D and general
RoboCup community find value in the project at hand, and decide to also col-
laborate.
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Fig. 5. Web soccer monitor “monitor” component

4.2 Flourishment of a New Ecosystem

With the further development of Web Soccer Monitor and other open-source web
tools in the scene, we strongly believe that there is an opportunity for starting
the creation of a new ecosystem inside the SIM2D community that could also
influence and reach other RoboCup categories. Having a powerful web monitor
is the first step towards implementing a web simulator capable of running fully
fledged simulations on the browser, requiring no infrastructure from the user’s
point of view and facilitating the occurrence of matches between teams across
the world just by providing each team’s binary files, which in itself is extremely
useful, but could also give rise to another plethora of useful tools, platforms and
frameworks.

5 Conclusions

Web Soccer Monitor is an open-source web-based monitor that aims to be a con-
venient and powerful alternative for visualising matches from RoboCup soccer
leagues. It currently supports replays of SIM2D log files and already has some
traction within the community.

We believe it can help bootstrap an ecosystem of web tools that would ulti-
mately benefit the community and possibly aid the creation of new RoboCup
leagues, while lowering the barrier of entry of newcomers to the robotics space
and, thus, bringing more people to the scene.
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6 Future Works

Web Soccer Monitor (WSM) is still in its infancy. In order for it to reach a
level of quality necessary for being a widely used software, a number of features
must be included, and a good benchmark for that would be implementing all of
the features available in an already complete and very capable software such as
soccerwindow2 [10].

Real-time visualization is already in the works, and should be shipped in the
next major version of WSM. It will be a challenging task, but will bring WSM
closer to a tool that real teams would use on a daily basis.

Also expected to be shipped with the next major version is support for other
categories such as Small Size league and a binary file that can be run completely
locally, outside the browser and as a standalone software, which would remove
the need for utilizing the Node Package Manager and Python Pip utilities to
install dependencies and use WSM offline.

Another pair of important works that needs to be done is user validation
(gather feedback from users about their interactions with WSM for register-
ing purposes and to help iterate on the project’s development) and a practical
research on the performance of the software, which could help further discuss
the implications of choosing a 2D game visualization and reassure users that are
apprehensive of utilizing web based tools due to performance concerns.

In the long-term, having a web-based monitor capable of viewing a game hap-
pening in real time can promote the creation of a platform for running matches
on the browser, a different project, that would enable users to run and watch
matches without the need of any setup at all, just by uploading their team’s
binaries. This way, the existing 2D server simulation code (rcssserver) [5] could
be run on a back end on the cloud, enabling, on higher level, a full web based
simulation, removing the necessity of running not only the monior, but also the
server locally, which would lower even more the barrier of entry for newcomers.
A robust implementation of such a platform could also have an in-browser code
editor, that could be used to program a team’s logic, generate a binary file and
run matches all inside the browser.

This third project could use both WSM and JaSMIn [9] for the visualization
part of the game, which would provide the user with the ability of 3D visual-
ization for leagues that heavily rely on a 3-dimensional representation (such as
SIM3D or the Humanoid League) and 2D visualisation of leagues that are, by
nature, 2-dimensional (SIM2D) or that don’t rely as much on 3D aspects (Very
Small Size League, which although doesn’t exist on RoboCup, is very common
on, for example, Latin American robot soccer competitions). In some leagues
that are naturally 3D, having a 2D representation could also prove to be useful,
by enabling teams to look at a game with a different perspective and set of tools.
Developers of WSM and JaSMIn could communicate in order to understand bet-
ter what are the limitations and advantages of 2D and 3D monitors, and create
together a general standard for a web monitor, which could boost the usefulness
and re-usability of both projects.
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By bringing all aspects of the simulation experience to the web, it is possible
to innovate and create things that wouldn’t be practical in the past. Some inter-
esting ideas that could be built upon this more robust ”development-simulation-
visualization” ecosystem in the web would be

– Automatic daily championships: teams upload the latest versions of their
binaries to their account in a platform where hundreds of matches are played
between dozens of teams around the world in parallel, generating hundreds
of log files each day that could prove to be very useful for generating datasets
for statistics, data analysis, and machine learning purposes, while also help-
ing teams that don’t have a lot of available computing resources to run
high amounts of matches in batch, so they can get insights in their team’s
performance.

– Automatic team version evaluation: similar to the idea above, but
focused on running newer versions of teams against older versions of their own
code, in order to generate enough statistics about the interactions between
all versions as a way to understand if new changes in the code are making
the team more or less performant than before.

– Robot soccer interactive learning platform: a collection of interactive
articles that could teach the basics of robot soccer and give the users small
tasks that would require making changes in the in-browser code editor in
order to achieve their completion by evaluating if the changes made in the
code resulted in the desired behaviour of teams and individual players.
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Abstract. This paper presents the approach employed by the team
RoboBreizh to win the championship in the 2022 RoboCup@Home Social
Standard Platform League (SSPL). RoboBreizh decided to limit itself to
an entirely embedded system with no connection to the internet and
external devices. This article describes the design of embedded solutions
including manager, navigation, dialog and perception. We present results
from the competition showing up the value of our proposal.

1 Introduction

The progress of Artificial Intelligence (AI) and specifically deep learning algo-
rithms has been outstanding in recent years. However, some advanced algo-
rithms require significant hardware resources to perform local processing. In
the RoboCup@Home SSPL, the platform is the PEPPER robot, which today
is far from cutting-edge in terms of computing power. Therefore integrating
state-of-the-art algorithms with the robot in the competition becomes a real
challenge. A common alternative solution is to use remote algorithms via cloud
services, such as dialogue algorithms proposed by Google [4]. However, transmit-
ting information via the internet in the RoboCup is very challenging due to some
environmental factors such as internet stability and its limited bandwidth being
shared with other participants. The team RoboBreizh decided to limit itself to
an entirely embedded system which deprived Pepper of internet access and the
many AI solutions offered online, notably by the famous tech companies. The
limited conditions in the arena were not the sole reason for deploying the fully
embedded approach. Indeed, it was also inspired by the practical applications for
such robots, which are often designed for elderly or dependent persons who do
not necessarily have good internet access. The constant transmission of data for
online analysis also involves substantial energy and environmental cost. Finally,
a fully embedded solution has the major advantage of data confidentiality, espe-
cially for images and sounds, which are processed locally in the robot rather than
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Eguchi et al. (Eds.): RoboCup 2022, LNAI 13561, pp. 203–214, 2023
https://doi.org/10.1007/978-3-031-28469-4_17
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being sent to the cloud. It also protects household users against unauthorised
access to the robot, guaranteeing the respect of privacy.

This paper presents the embedded solutions employed by the team Robo-
Breizh winning the 2022 RoboCup@Home Social Standard Platform League.
Figure 1 illustrates a general overview of the proposal. It details the proposed
architecture to solve the competition tasks, software used and interconnection
between modules. The article is organized as follows. Firstly, Sect. 2 explains
the details of using the embedded software architecture as an alternative to
the classical NaoQi API for Pepper. Then, we outline the embedded manager
module in Sect. 3, that tackles interconnection between modules. Next Sect. 4
describes the embedded perception module, including the detection of objects,
persons, colors, distances, poses as well as age prediction. Following the embed-
ded navigation module is presented in Sect. 5. The embedded dialog module is
described in Sect. 6 providing details in speech detection, speech recognition and
Natural Language Processing (NLP) solutions. Section 7 presents results in the
RoboCup@Home challenge 2022. Finally, future works and improvements are
discussed in Sect. 8.

Fig. 1. RoboBreizh’s architecture, including used functionalities/technologies.

2 Embedded Software Architecture

The first challenge of working with the Pepper Robot is the integrated NaoQi
OS version 2.5.5, based on a 32 bits version of Linux Gentoo that restricted
the number of libraries that could be installed. Also, Pepper’s native API was
written in Python2 and it does not include commonly used libraries in modern
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libraries, such as PyTorch and TensorFlow or Robot Operating System (ROS).
The second limitation is the unavailability of root access to the robot’s OS. To
overcome those two limitations, we created a continuous integration pipeline
based on the work from [15]. Even though Gentoo is an old system, it offers
some interesting solutions such as the package manager Portage and the Gentoo
Prefix Project [2]. A Gentoo prefix is an offset version of Gentoo that could be
installed alongside another OS without root permission. In practice, we use an
integration pipeline based on a Docker Image of a 32 bits Gentoo prefix1. At
runtime, the required components of the prefix are extracted from the Docker
Image and pushed directly to the robot, alongside the NaoQi OS. This solution
resolved the root access problem but the limitations of Gentoo (32 bits and the
Portage package manager instead of Aptitude) remained. As a workaround, we
decided to cross-compile libraries, including ROS, in Docker using a dump of the
Pepper OS2 and our Gentoo prefix. We initially used the ros-overlay project3 to
cross-compile ROS Noetic. Since Python3 in the native Python API from Pepper
is not available, we built on top of the LibQi API a new version that could run
onboard and allows to still have access to the resources of the robot4. As we also
concern about computational speed and hardware optimisation, we decided to
use dedicated inference engines such as Tensorflow Lite [1] and ONNX5 cross-
compiled for the Pepper CPU Intel ATOM as well as other machine learning tools
such as OpenCV4.66 and Kaldi [16] running with Python3 on Pepper hardware.

3 Embedded Manager Module

The manager is the core module of our architecture. It is regarded as a decision
maker to choose which actions to perform and trigger the related components
for achieving a desired goal. For instance, the actions taken by the manager
could be navigating to a specified location, communicating with humans, detect-
ing and manipulating objects in the surrounding environment. The manager is
implemented using a Petri Net solution. It is a directed graph of places and
transitions that allows parallel processing and versatile finite-state machines.
Petri Nets are composed of markers that triggered a transition to move from
place to place. Multiple markers could be requested for a transition acting like
a semaphore. The possibility of having multiple markers in the graph makes
it non-deterministic meaning it is suitable for concurrent processing. For each
task, a plan was defined (Fig. 2) to describe the different steps of actions that
could be encountered as well as sub-plans that would be triggered upon certain
conditions. Having sub-plans allows to have a readable and modular approach.
To execute our Petri Net with ROS, we use a package named Petri Net Plans

1 https://github.com/awesomebytes/gentoo prefix ci 32b.
2 https://hub.docker.com/r/awesomebytes/pepper 2.5.5.5.
3 https://github.com/ros/ros-overlay.
4 https://github.com/Maelic/libqi-python.
5 https://github.com/onnx/onnx.
6 https://github.com/itseez/opencv.

https://github.com/awesomebytes/gentoo_prefix_ci_32b
https://hub.docker.com/r/awesomebytes/pepper_2.5.5.5
https://github.com/ros/ros-overlay
https://github.com/Maelic/libqi-python
https://github.com/onnx/onnx
https://github.com/itseez/opencv
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[24], which allows to link a set of places and transitions to the reference of C++
functions. Each function could then act as an independent process firing one or
multiple ROS nodes and returning a state to the Petri net to change state. Hav-
ing a returning state is primordial to adapt the next action and the rest of the
task depending on its result. Moreover, the manager is capable of re-planning its
behaviour in the situation of failure of certain actions or in blocking situations
where the robot could not proceed further. One issue we encountered with using
different processes was managing shared data between ROS nodes. To resolve
this issue, we use SQLite7, an embedded persistent storage solution that does
not require any server to run.

Fig. 2. Example of a Petri Nets: part of the plan for the “find my mates” task.

4 Embedded Perception Module

4.1 Objects

Object Detection. This module provides a set of ROS services with param-
eters, including a distance filter to prevent detecting objects outside of the
arena. The classes of objects to find is accepted as parameters in the service
/object detection. All objects are detected by default (Fig. 3). A home-made
combination of pre-trained Single Shot Detector (SSD) [12] with InceptionV3
[20] (600 classes) and MobileNet [8] (80 classes) are used. Based on such detec-
tion, specific post-processing are made. For instance, to tackle the task “stick-
ler for the rules”, a “shoe on/off and drink on hand” service is available as
/shoes and drink detection. To detect the presence of drinks, we interpolate
the 3D pose of detected objects with the 3D pose of wrist body joints detected by
the pose estimation detector. In addition, the service /seat detection provides
information regarding whether a specific seat is available or taken associated
with the surrounding complex situations, such as the presence of multiple chairs
and sofas.

7 https://www.sqlite.org.

https://www.sqlite.org
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Fig. 3. Detection of object (left), shoes (center in pink) and seats (right in green)
(Color figure online)

Color Estimation. Based on detection with the RGB camera, color estimation
is computed. Similar to [18], a K-means clustering algorithm is applied to extract
some dominant colors from a detected image. RGB pixel values are separated
into five clusters for each bounding box of a detected object. Then, the raw pixel
values are replaced by the RGB values of their corresponding cluster centroids.
Finally, the closest X11 color is used to deliver a color name (Fig. 5).

4.2 Person

Person Detection. This module is associated with the services /person
detection and /person detection posture. A tailored home-made combina-
tion of SSD with Inception, SSD with MobileNet and MoveNet Mulitpose8 is used
to detect persons (Fig. 4). SSD with MobileNet is used to get genders of persons.
Depending on the distance to a target, Movenet is used for short range detection
and SSD for long range detection.

Fig. 4. Combining models to detect person/gender (left) and distances (right).

8 https://www.tensorflow.org/hub/tutorials/movenet.

https://www.tensorflow.org/hub/tutorials/movenet
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Fig. 5. Color detection (center) and the corresponding raw input image (left). Real
time onboard multi pose estimation (right).

Age Estimation. Human faces images are cropped using SSD MobileNet detec-
tor. Then age estimation is computed based on the cropped image. Convolutional
neural network model (CNN) based caffemodel [10] and TensorFlow Lite model
(initially for Raspberry Pi)9 are used for estimating human age.

Pose Detection. A CNN-based model (MoveNet Multipose) predicts human
joint locations of multiple persons from an RGB image (Fig. 5). The model is
able to detect 17 body joints of up to 20 persons in the same frame. It is the
best trade-off between speed and accuracy for edge devices (originally designed
to run on smartphones) [9]. The job is done using /person detection posture
service. Similarly, /wave hand detection service applies the pose detector to
detect a hand waving information from a customer in the restaurant task.

4.3 Localization and Distances

The positions of object and person relative to the front camera are estimated
using the pinhole camera model [19] with the consideration of the intrinsic cam-

era matrix for raw (distorted) images:

⎡
⎣
fx 0 cx
0 fy cy
0 0 1

⎤
⎦ .

Considering Xobj , Yobj as center of an 2D bounding box from the RGB front
camera and considering Zobj as center of an 3D point cloud in connection with
Xobj , Yobj from the depth camera, the pinhole model of a camera is computed as

pointz = Zobj ; pointx =
(Xobj − cx) ∗ Zobj

fx
; pointy =

(Yobj − cy) ∗ Zobj

fy

Then the distance, in respect to the robot, is computed and could be used to
provide filters for object or person detection.

9 https://github.com/radualexandrub/Age-Gender-Classification-on-RaspberryPi4-
with-TFLite-PyQt5.

https://github.com/radualexandrub/Age-Gender-Classification-on-RaspberryPi4-with-TFLite-PyQt5
https://github.com/radualexandrub/Age-Gender-Classification-on-RaspberryPi4-with-TFLite-PyQt5


RoboBreizh, RoboCup@Home SSPL Champion 2022 209

4.4 Onboard Implementation

The perception module is designed to provide fast information in an embedded
implementation. The combination of hardware optimisation and the choice of
models designed for edge devices such as MobileNet allowed us to detect a person
and object efficiently. We accessed images from the Pepper cameras directly
through the NaoQi API thus we have the flexibility of choosing a resolution of
640 × 480 px (slower but more accurate detection) or 320 × 240 px (faster but
less accurate) depending on our needs. Metrics are available on Table 1.

Table 1. Performance of the embedded perception using 640 × 480 px RGB images.

Model Onboard computing

Object detection (SSD Inception + MobileNet) 2800 ms ± 300 ms

Person detection (SSD MobileNet) 800 ms ± 200 ms

Person detection (MoveNet Multipose) 1600 ms ± 100 ms

Pose estimation (MoveNet Multipose) 1900 ms ± 500 ms

Color estimation (K-mean, per object) 500 ms ± 450 ms

Age estimation (Caffemodel) 270 ms ± 30 ms

5 Embedded Navigation Module

The navigation module uses the ROS navigation stack [23] with Adaptive Monte-
Carlo Localization (ACML)10 for localization, the Dijkstra algorithm as global
planner over the global costmap and the Dynamic Window Approach (DWA)
as local planner11 over the local costmap. We use a corrected version of the
naoqi driver ROS package12 to access lidars and depth camera data. The
information provided from Pepper’s lidar is insufficient for computing costmaps,
therefore PointClouds obtained from the depth camera are added as inputs,
allowing Pepper to detect objects that could be out of range from its lidars
sensing capability, such as detecting tables or chairs. In addition, RoboBreizh
uses Spatio-Temporal Voxel Layer [13] as a 2D local costmap plugin continu-
ously adding a new layer of weight of temporary obstacles at every runtime of
detecting moving obstacles in a dynamic environment. With the contribution
from the voxel layer and DWA, our Pepper robot is able to safely navigate in a
known environment as well as avoiding dynamic obstacles. Timed Elastic Bands
local planner TEB [17] was also tested as local planner to dynamically avoid
obstacles, however, such methodology is resource intensive. For Simultaneous
Localization And Mapping (SLAM) we planned to use Octomap [7], but nev-
ertheless, drifts happened in the competition which made mapping unreliable
using this technique. Thus, we corrected the final map manually.
10 http://wiki.ros.org/amcl.
11 http://wiki.ros.org/dwa local planner?distro=noetic.
12 https://github.com/Maelic/pepper naoqi ros.

http://wiki.ros.org/amcl
http://wiki.ros.org/dwa_local_planner?distro=noetic
https://github.com/Maelic/pepper_naoqi_ros
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6 Embedded Dialog Module

The embedded dialog module allows Pepper to detect human speech and analyze
its semantic meaning. Robot’s native API provides a tool to record the sound
and a grammar parsing library. However, these tools are limited in terms of
maintainability and flexibility. Therefore RoboBreizh customises an embedded
dialog system. The first part is sound processing, which consists of listening to
the sound, detecting and recording voices from human. Next, the recorded sound
is transformed into text using speech recognition. Finally, a Natural Language
Processing algorithm is implemented to catch the intentions of the user.

Sound Processing. In noisy situation, processing raw audio signal to separate
noise from actual speech is resources consuming. This is why we implemented a
simple speech detection algorithm that will trigger the Automatic Speech Recog-
nition (ASR) only when necessary. This algorithm can also be tweak to process
sound coming from a specific location when the operator position is known for
instance. The only reported approach for sound processing in RoboCup@Home is
HARK13 [6,14] that is used for sound source detection and localization. Unlike
HARK, our solution is low-resource and optimize to process the Pepper raw
audio signals, without any conversion. The pseudo code is presented in Algo-
rithm1, taking inspiration from14. We use Pepper’s 4 microphones to compute
a weighted value of the energy level of current audio signal. It defines changes
in sound intensity to estimate whether a human is speaking. We set up differ-
ent weights for different microphones to adjust the detection when the speaker
location is known. An average of this energy value is compared to a threshold
(parameter reevaluated in real-time in order to adapt to the ambient noise). The
process run as a loop that continuously evaluates the average energy values and
moves from state to state: silence → possible speech → speech → possible silence
→ silence. Once the state of possible silence exited, the current sound buffer is
written to be processed by the speech recognition.

Speech Recognition. Speech recognition should not be significantly resource-
intensive and should work offline. Given these conditions, the considered speech
recognition options were PocketSphinx, Kaldi, Vosk15 and Deepspeech. In [3],
the speech recognition implementation from Kaldi, Pocketsphinx, Picovoice, and
Google were tested using the measurement metric “word error rate” (WER). We
performed the same test, and Vosk got better accuracy across the offline solutions
when measuring the WER with different sentences, 101 times. The lightest model
available is used (“vosk-model-small-en-us-0.15”).

Natural Language Processing (NLP). A straight forward but tedious
approach to parse commands is to write the grammar of a define language.
13 https://hark.jp/.
14 http://wiki.ros.org/speech recog uc.
15 https://alphacephei.com/vosk/.

https://hark.jp/
http://wiki.ros.org/speech_recog_uc
https://alphacephei.com/vosk/
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Algorithm 1: Detect User Speech
input :

counterSpeech, thOffset, counterSilence
FrontMicImportance,LeftMicImportance
RightMicImportance, RearMicImportance
hh

/* Initialisation */

1 STATE = SILENCE
2 firstTime = True
3 rstCounterSpeech = counterSpeech
4 rstCounterSilence = counterSilence

/* Main loop */

5 while True do

/* update energy */

6 energy = (getFrontMicEnergy()*FrontMicImportance) +
(getLeftMicEnergy()*LeftMicImportance) +
(getRightMicEnergy()*RightMicImportance) +
(getRearMicEnergy()*RearMicImportance) / 4

7 if firstTime then

8 ymin prev, ymax prev, ymed prev = energy
9 firstTime = False

10 end

/* update ymed */

11 if energy > ymax prev then

12 ymax = energy
13 else

14 ymax = hh * ymax prev + (1 -hh) * ymed prev
15 end

16 if energy < ymin prev then

17 ymin = energy
18 else

19 ymin = (1 -hh) * ymin prev + hh * ymed prev
20 end

21 ymed = (ymin + ymax) / 2
22 if STATE == SILENCE then

23 if energy > ymed prev + thOffset then

/* update threshold */

24 STATE = POSSIBLE SPEECH
25 threshold = ymed prev + thOffset
26 counterSpeech = rstCounterSpeech - 1

27 end

28 end

29 if STATE == POSSIBLE SPEECH then

30 counterSpeech -= 1
31 if energy >threshold and energy > ymed then

32 if counterSpeech <= 0 then

33 counterSpeech = rstCounterSpeech
34 STATE = SPEECH
35 startRecording()

36 else

37 STATE = POSSIBLE SPEECH
38 end

39 else

40 STATE = SILENCE
41 end

42 end

43 if STATE == POSSIBLE SILENCE then

44 counterSilence -= 1
45 if energy > threshold then

46 STATE = SPEECH
47 else if counterSilence == 0 then

48 STATE = SILENCE
49 stopRecording()

50 else

51 STATE = POSSIBLE SILENCE
52 end

53 end

54 if STATE == SPEECH then

55 if energy < ymed and energy < threshold then

56 STATE= POSSIBLE SILENCE
57 threshold = ymed
58 counterSilence = rstCounterSilence - 1

59 else

60 STATE = SPEECH
61 end

62 end

63 end
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Spacy model [5] is a solution to find relations between words. It is used for Part-
of-Speech Tagging to retrieve global and local dependency trees. Once these rela-
tions are set, we developed a parsing algorithm that explored each dependency
tree in the sentence and parse the command into intention and arguments. The
generated intent is a dictionary that delivers simple instructions (e.g. “navigate
to the kitchen” triggered the output {“intent”: “go”; “destination”: “kitchen”}).

7 Performance

RoboBreizh ranked 1rst in the competition. In the first stage, RoboBreizh
received a score of 913 points. In stage 2, RoboBreizh received 1363 points ranked
at 1rst and at the end won the final with 0.775 points. (Table 2).

Table 2. Final competition board (SSPL).

Place Team Stage 1 Stage 2 Finals

1 RoboBreizh 913 1363 0.775

2 Sinfonia Uniandes 334 634 0.458

3 LiU@HomeWreckers 87.33 87.33

Find My Mates (450 Pts). The robot got to the operator, waited for a signal
and then moved towards the centre of the living room. Then Pepper ran multiple
detections. If a person was detected, information about him and adjacent objects
were stored in the database. Then the robot looked for another person until he
found 3 individuals. Once all visual information was retrieved, Pepper came back
to the operator and described every person and their surroundings.

Receptionist (425 Pts). During this task Pepper needed to go to the entrance,
listened to guests’ names and drink, and then lead them to the living room. Once
navigated to the living room, the robot had to present the guest and the host to
each other. Then the robot detected available seats and offered one to the guest.
Finally, it came back to the entrance and repeated the process.

GPSR (0 Pts). Pepper had to parse a complex order from the host and defined
a plan accordingly. The robot was able to understand one command properly
and delivered a relevant plan as output. However, AMCL relocalized Pepper at
the wrong place during navigation, which muddled up the end of the task.

Stickler for the Rules (450 Pts). RoboBreizh decided to focus on the forbid-
den room rule. Pepper rotated on itself until it detected someone, then verified
its position. A person was detected in the forbidden room and Pepper kindly
asked the person to leave. Then the robot waited and verified the presence of
the detected person in the room. If the detected person was still in the room,
Pepper would ask the person to leave again.
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Finals. RoboBreizh created a scenario to showcase the robot’s abilities, inter-
acting with the team leader. During this presentation, we showed that all our
modules were running onboard the robot. PEPPER uses k-means to determine
objects’ color and provided information regarding posture and age of persons.
RoboBreizh showed how command parsing system works in detail The team
explained why having everything onboard was an interesting approach and how
difficult it was to make it practically works.

8 Conclusion and Future Work

In this paper, we offered an overview of the architecture developed by the team
RoboBreizh to perform at the SSPL RoboCup@Home contest. After introducing
developed modules, we presented the application of such proposals during the
competition in 2022. For its 24th edition, the city of Bordeaux in France has
been chosen to organize the RoboCup competition next year. The objective of
RoboBreizh is to do its best to make further improvements and win another
championship next year in our native country.

Future works will examine a proposal for implicitly detecting and under-
standing users’ intentions and needs. Traditional approaches to this problem
in robotics use explicit signals from the user such as voice [21] or gesture [22].
However, the deployment of service robots in assisting activities of daily life is
leading the way to more implicit interactions with autonomous agents [11].

Acknowledgment. This work benefits from the support of Brest City (BM), CERV-
VAL, Brittany and Normandy regions.
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Abstract. We describe the technologies of our autonomous soccer humanoid
robot system that won the RoboCup2022 Humanoid KidSize League. For
RoboCup2022, we developed both hardware and software. We developed a new
hardware SUSTAINA-OP.We aimed tomake it easier to build, harder to break, and
easier to maintain than our previous robot. SUSTAINA-OP is an open hardware
platform. As the control circuit, we selected a computer with higher processing
power for deep learning. We also developed its software. In terms of image pro-
cessing, the new system uses deep learning for all object detection. In addition,
for the development of action decision-making, we built a system to visualize
the robot’s states and solved many problems. Furthermore, kicking forward at an
angle action is added as a new tactical action. In RoboCup2022, even when the
robots were facing each other with the ball between them, by this action the robot
succeeded in getting the ball out in the direction of the opponent’s goal.

Keywords: Open hardware platform · Deep learning · Visualize

1 Introduction

We describe the technologies of our autonomous soccer humanoid robot systemwhich is
thewinner of the RoboCup2022HumanoidKidSize League. In RoboCup2022Bangkok,
we won the first prize in the soccer 4on4 and the drop-in challenge. The results are
indicated in Table 1. For RoboCup2022, we developed both hardware and software. We
developed a new hardware SUSTAINA-OP. We aimed to make it easier to build, harder
to break, and easier to maintain than our previous robots GankenKun [1]. SUSTAINA-
OP is an open hardware platform, and its design data is available to the public [2].
Several research groups have previously proposed open platform robots for KidSize
League. For example, DARwIn-OP [3] is the pioneer regarding open platforms and has
been used by many RoboCup participants and researchers. Recently, Wolfgang-OP [4]
was developed to address the increasing difficulty of Humanoid League regulations.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Eguchi et al. (Eds.): RoboCup 2022, LNAI 13561, pp. 215–227, 2023
https://doi.org/10.1007/978-3-031-28469-4_18
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Compared to those robots, the main features of SUSTAINA-OP are as follows: parallel
link leg, high computational power for machine learning, and a structure that does not
require bending. As the control circuit, we selected a computer NVIDIA Jetson Xavier
NX16GB[5]with higher processing power, so that high computational processes such as
deep learning can be processed in real-time in the robot. We also developed its software.
In terms of image processing, the previous system used a color lookup table, but the
new system uses deep learning for all object detection. In addition, for the development
of action decision-making, we built a system to visualize the robot’s states and solved
many problems. For example, we were able to identify and solve a problem seen at
RoboCup2019 of not being able to approach the ball in a straight line. Furthermore,
kicking at an angle action is added as a new tactical action. In RoboCup2022, even when
the robots were facing each other with the ball between them, by this action, the robot
succeeded in getting the ball out in the direction of the opponent’s goal.

CIT Brains is a team of Chiba Institute of Technology (CIT) from 2007. The aim
of the development is not only research, but also education. Most of our team mem-
bers are undergraduate students. Through developing the autonomous humanoid robot
system, they study many hands-on robot technologies. Students continue to meet daily
throughout the year to discuss and develop their robots. None of the students who partic-
ipated in RoboCup this year had an experience of the previous competitions. We believe
that the reason why our team, which was almost newly established, was able to win
the competition is that they have been meeting remotely every day to progress their
development.

Table 1. Result of CIT brains in RoboCup2022 humanoid kidsize league

Category Results

Soccer 4 on 4 1st place (11 teams participated)
5 wins – 0 loss
Total goals: 55 goals – 1 loss

Drop-in challenge 1st place (33 points)

2 Mechanics

We have developed a new robot, SUSTAINA-OP, our sixth-generation robot hardware
for RoboCup2022. It was designed by Masato Kubotera. For RoboCup2022, we have
built 6 robots with the same configuration. SUSTAINA-OP is available on GitHub as an
open hardware platform with a CC BY-NC-SA 4.0 license [2]. We provide the robot’s
3D model and printed circuit board data. The 3D robot models can be viewed in a
browser using Autodesk Viewer [6]. We provide the data as an open hardware platform
to promote developing humanoid robots for RoboCup, with the hope that our platform
can foster future engineers. The contents of the open hardware platform will be further
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enhanced in the future. Figure 1 shows the history of typical KidSize robots developed
by CITBrains. CITBrains has been participating in the Humanoid League KidSize since
RoboCup2007, with six major generations of robots and numerous minor versions.

Figure 2 shows the robot configuration of SUSTAINA-OP, and Table 2 shows the
specifications. The mechanism follows that of our conventional robots, but is easier to
assemble, harder to break, and easier to maintain. For example, the structure is such that
parts can be assembled by fitting them into holes without bending, which requires a high
level of skill. This mechanism is intended to be able to maintain and operate the robot
with a minimum of engineering knowledge; the reason behind this is that our student
members graduate and leave the team typically within a few years before they are fully
experienced.

An example of ease of assembly is described below. The previous mechanisms use
thrust bearings in the hip yaw joint. Although they are relatively inexpensive and easily
available, the gap adjustment is difficult. If the gap is too narrow, the frictional force
increases and the joint cannot move smoothly. If the gap is too wide, the rigidity of the
hip joint decreases and gait becomes unstable. In the SUSTAINA-OP, we eliminated the
need for gap adjustment by using cross-roller bearings. An example of being harder to
break is that the ball bearings have been replaced with oilless plain bearings. In addition,
TPU bumpers made by a 3D printer were attached to the front and back of the waist,
chest, and shoulders to soften the impact of falls. As a result, the robots played 9matches
in RoboCup2022 and had about 50 falls, but no robot was removed from the field due to
hardware failure. CIT Brains has been participating in RoboCup since 2007, and in each
match there has been at least one robot that has been unable to move, including wiring
disconnections and CPU resets, and has had to leave the competition. In RoboCup2022,
however, none of these problems occurred. This result indicates that SUSTAINA-OP
has achieved its goal of hardware that is less prone to failure.

3 Control Circuit

SUSTAINA-OP is equipped with NVIDIA’s Jetson Xavier NX 16 GB as the control
circuit. The previous robot, GankenKun, was equipped with an NVIDIA Jetson TX2.
Comparing their maximum processing power, the TX2 has 1.33TFLOPS (FP16) while
the Xavier NX has 6TFLOPS (FP16). In our system developed for RoboCup2022, all
image processing was performed by deep learning, as described in the following sec-
tions, which could increase the computation cost. Hence, a new computer was adopted
as preparation for adding more computationally demanding processing in the future.
Figure 3 shows the configuration of the control circuit.

The camera interface of SUSTAINA-OP has been changed from the USB to MIPI
CSI-2. In our previous robot GankenKun, the USB camera was sometimes disconnected
when the robot was given an impact force such as when it fell down. The software
automatically reconnected the camera so that recognition could be continued as much as
possible, but the recovery system sometimes did not work. After switching to a camera
with MIPI CSI-2 connection, such a problem no longer occurs. As mentioned above, in
RoboCup2022, none of our robots were picked up due to hardware problems.
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Fig. 1. The history of the KidSize robots in CIT Brains

Fig. 2. Structure of the humanoid robot SUSTAINA-OP

Table 2. Specifications of the humanoid robot SUSTAINA-OP

Category Specification

Robot Name SUSTAINA-OP

Height 646.61 mm

Weight 5.18 kg

Walking speed Max. 0.33 m/s

Degrees of freedom 19

Actuators Kondo B3M-SC-1170-A x 10 pcs
Kondo B3M-SC-1040-A x 9 pcs

(continued)
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Table 2. (continued)

Category Specification

Sensors TDK InvenSense MPU-9250
(The included Magnetometer is not used)
e-con Systems e-CAM50_CUNX

Computing unit NVIDIA Jetson Xavier NX 16 GB
AVerMedia EN715

Battery Hyperion HP-G830C2800S3 LiPo 3S1P 2800 mAh

Fig. 3. Overview of the control circuits [2]. Red parts indicate our developed parts [7–9] (Color
figure online).

4 Quality Control of Servo Motors

Webelieve that one of the factors that kept the robot walking stably in RoboCup2022was
the quality control of the servo motors. In RoboCup2021, which was conducted using a
simulator, we created a device to measure the characteristics of the servo motors shown
in Fig. 4 in order to create our own model. Using this device, we measured the torque
of each servo motor. As a result, we could not find any motor with significantly reduced
torque, including used servo motors. Therefore, the results of these torque studies were
not used in the development of RoboCup2022.

Next, the error in the output of each servo motor was measured using originally
developed software [10]. The error represents the difference in output when a weak
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force is applied. Figure 5 shows the measurement. The output errors were measured at
servomotor angles of -90, -45, 0, 45, and 90deg. TheKondoB3M-SC-1040-A andB3M-
SC-1170-A used in SUSTAINA-OP are multifunctional servo motors that can measure
the angle of the output. For example, we set 0 deg as the target angle and apply weak
external clockwise and counterclockwise forces. By measuring the degree of angular
displacement with an angle sensor in the servo motor, the width of the output axis
displacement can be measured. This range indicates the range in which the joint angle
changes with a small force, and when used in a leg joint, it is related to the displacement
of the toe position. Even small displacements in angle are magnified at the toe position.
Therefore, it is important to make this as small as possible, in other words, to prevent
the toes from being moved by external forces as much as possible. Table 3 shows the
measured angles and applied joints. As shown above, by using servo motors with small
displacement for the legs and servo motors with large displacement for the arms, we
were able to construct a robot that can walk stably. The servo motors with a larger
displacement than 0.50° were sent to the manufacturer for repair.

Fig. 4. Torque measurement device Fig. 5. Measurement of displacement width

Table 3. Examples of applied joints and maximum displacement

Ankle pitch Ankle roll Knee pitch Hip roll Hip yaw Arm/Neck

0.17° 0.18° 0.36° 0.17° 0.17° 0.36°

5 Walking Control and Motion

For walking control, we use the same gait pattern generator [11] as the previous robot
GankenKun. However, by changing the hardware to SUSTAINA-OP, the robot appeared
to almost fall over when turning while moving forward. This was due to the fact that the
lateral width of the sole had narrowed from 92.5 mm to 80.0 mm from the previous robot
GankenKun. Since this gait pattern generator simply adds a crotch yaw axis rotation to
the forward gait pattern as the toe trajectory, the center position of the foot sole and the
target ZMP (ZeroMoment Point) [12] are not always at the same position.When the foot
is large, as in the case of the previous robot GankenKun, the displacement between the
center position of the foot and the target ZMPdoes not affect the gait somuch. The narrow
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width of the sole of SUSTAINA-OP in the early stage of development have brought this
problem to the surface. In RoboCup2022, we solved this problem by increasing thewidth
of the sole. In the future, the gait pattern generator should be changed so that the target
ZMP is centered on the sole.

To solve such problems related to gait, we developed a system that automatically
collects robot behavior in response to arbitrary commands. The gait control module
of this system generates a gait pattern by receiving from other modules the values of
the number of steps, angle, forward stride length, side step length, and period. We
constructed a system that can automatically replay those commands written in yaml.
This enables the reproduction of the robot’s behavior when given a series of walking
commands, including the timing of command transmission. Figure 6 shows an example
of a set of commands written in yaml. This system shortens the time required to find and
solve problems, such as the problem described above. The system was also used in the
refactoring of the gait control module. By verifying that the motion is the same before
and after various scenarios, we were able to prevent bugs from occurring.

Figure 7 shows the kick motion being played back. Generating a stable kicking
motion without falling over is important in soccer. In RoboCup2022, the soccer player
kicked 360 times during the 9 matches, and fell only 3 times except for collisions with
robots. One of the reasons might be the small error between the leg joint angles and the
target angles as described above. Another factor is the standardization of operations. The
system replays the motion by linearly complementing the angles of each joint specified
at each keyframe. Since the joint angles for each keyframe are set manually, differences
in the success rate of kicks occurred depending on the operator. In order to prevent
falls during kicking, a manual for motion creation was prepared and shared among the
members of the team. As a result, we found that all six robots can kick with the same
motion data, so only the initial posture is adjusted.

Fig. 6. Example of yaml describing a series of commands
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Fig. 7. Kick motion playback

6 Perception

6.1 Computer Vision

Our image processing system is twofold. One is the object detector using YOLO [13],
and the other is pixel-level semantic segmentation, both based on deep learning. In the
previous competition, we employed deep learning for detecting the ball, goal posts, and
white lines but for other objects including opponent robots and the green area of the
soccer field, we employed a simple method that mainly uses a color lookup table created
in advance. However, the color-based method often causes misrecognition. In particular,
the robot sometimes misrecognized its own shoulders and arms as those of other robots,
resulting in unnecessary obstacle avoidance behavior. This year, we extended our system
to detect all types of objects using deep-learning-based methods.
In RoboCup2022, we attempted to recognize robots using YOLO. The challenge was
that, unlike balls and goals, there are many types of robots, making it difficult to collect
enough images for training the detector. We employed several enhancements to easily
collect training images: first, instead of using two robot classes (teammates and opponent
robots), we employed a unified robot class for all robots and added a post-processing
classifier to distinguish the robot teams by their color marker. Second, we added a feature
to save captured camera images while the robot is playing soccer.
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By continuing to collect images during the competition, we succeeded in building
a large dataset. Figure 8 shows an example of the collected images. We selected 9410
images collected at the venue of RoboCup2022 and combined them with the dataset
collected at the Chiba Institute of Technology. The dataset included images of the balls
provided at the venue in addition to several types of balls prepared in advance. The total
number of images in the dataset was 18426, of which the annotated numbers were 14881,
24035 and 20730 for the ball, post, and robot, respectively. The images collected during
the competition were uploaded to our institute server so that our 11 offshore support
members could immediately make annotations and expand the dataset. Several types
of balls were used in RoboCup2022, and the computer vision was able to stably detect
them. Figure 9 shows the object detection including the other team robot. Figure 10
shows a scene from a RoboCup2022 match, in which the robot was avoiding obstacles
as it weaved between enemy robots. This kind of obstacle avoidance behavior was also
observed in many other matches.

We employed deep-learning-based semantic segmentation to detect green areas and
white lines on a soccer field. In the previous competitions, the semantic segmentationwas
used only for white lines, and the green areas were detected using the color lookup table;
however, we have found themethod unreliable under natural light, which was introduced
in RoboCup2019, and varying sunlight conditions during RoboCup2021/2022 Virtual
Season. Therefore, we expanded the semantic segmentation to detect not only white but
also green. In RoboCup2022, the robot was able to stably detect the white line and green
in all three fields regardless of the time of day, and there was no significant error in
self-localization. Figure 11 shows an example of white line and green detection result.

Fig. 8. Example of dataset Fig. 9. Results of object detection

6.2 Self-localization

We employ Monte Carlo Localization for self-localization. Landmark measurements
from the abovementioned computer vision system are fused with motion predictions
from kinematic odometry using a particle filter.

The landmarks employed are goal posts and white lines on the field. We employed
YOLO for detecting goal posts and semantic segmentation for detecting white lines.
Since white line detection can be affected by lighting conditions, we improve the robust-
ness by interpreting only the edges between white and green segments as white lines.
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Fig. 10. Avoiding a robot during a game

Fig. 11. Example of white line and green detection by deep learning (Color figure online)

The 3D position of the detected objects using the kinematic camera poses, assuming that
all objects are on the ground.

7 Visualization

Visualization is important in developing robot intelligence. We developed a system that
collects and visualizes robots and game status during development. Figure 12 shows an
example of the information obtained by our visualization system. We installed a wide-
angle camera on the ceiling of our soccer field to capture images of the entire field. In
addition, we developed software that displays the internal information of the robots and
visualizes the data communicated between robots for information sharing. The following
information can be viewed with this software.

1) Location and orientation of the robot
2) Selected role and action
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3) Moving target position

4) Detected ball position

5) Period of processing loop

Fig. 12. System to display images of the field and internal information of the robots

This information made it clear at a glance what kind of data the robot chose to act on.
This enabled the development of decision-making for actions to be made more easily.
For example, in RoboCup2019, there was a problem that the robot could not approach
the ball in a straight line. By using this system, we were able to discover and solve the
problem of occasional processing delays that were causing unstable walks towards the
ball.

8 Action Decision Making

In this system, the HTN (Hierarchical Task Network) planner [14] is used for action
decision-making instead of GOAP (Goal Oriented Action Planning), which we have
used in the past. Both planners have a mechanism in which, by describing the elements
of actions, the planner automatically selects and executes the elements of actions that
will achieve the goal, such as “putting the ball in the goal”. Each robot is assigned a
different role in the game, and different objectives are set for each role, such as forward,
defender, and keeper. These roles are changed depending on the position of the ball
and other factors. These mechanisms allow for flexible role changes. When these roles
were written in GOAP, it was relatively difficult to find and correct bugs and to create
the desired action pattern because of the complexity of the cost setting during planning.
However, after using the HTN planner, it became relatively easy.



226 Y. Hayashibara et al.

In RoboCup2022, we have added a new feature: the ability to kick a ball forward at
an angle. This function was added because SUSTAINA-OP’s hip motion range is larger
than that of our previous robot, and deep learning enables stable detection of the robot.
Figure 13 shows the kick. In the past, when robots faced each other like this, they often
kicked the ball in front of each other, resulting in a stalemate. By kicking forward at an
angle, the ball moves toward the opponent’s goal and is positioned out of the opponent’s
field of view, allowing us to gain an advantage in the game. We think the new kick was
the key factor for winning the final match with team Rhoban. We have kept it a secret
before the final match; we had a practice match with the team before the official games
with the secret kick disabled, and we lost the game. Although other factors may have
had an influence, the most significant change was the kicking forward at an angle, so we
believe that the influence was greater than other factors.

Fig. 13. Kicking forward at an angle in RoboCup2022

9 Conclusion

In this paper,we present our autonomous soccer robot system thatwon theRoboCup2022
KidSize Humanoid League. For RoboCup2022, we put a lot of development efforts in
both hardware and software. As a result, we were able to build a stable system that
was able to compete in RoboCup2022 without serious problems in both hardware and
software. The hardware used in RoboCup2022 is available to the public, and part of the
software is also available to the public. We hope to continue to provide information on
the development of autonomous humanoid robots in the future.
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Abstract. This paper presents the team AutonOHM and their solutions
to the challenges of the RoboCup@Work league. The hardware section
covers the robot setup of Ohmn3, which was developed using knowledge
from previous robots used by the team. Custom solution approaches
for the @Work navigation, perception, and manipulation tasks are dis-
cussed in the software section, as well as a control architecture for the
autonomous task completion.

1 Introduction

The RoboCup@Work league, established in 2012, focuses on the use of mobile
manipulators and their integration with automation equipment for performing
industrial-relevant tasks [1].

The competition is divided into several tests of increasing difficulty. Points are
awarded for reaching workstations, picking up and placing objects. Additional
points are given for arbitrary surfaces, containers and special workstations such
as shelves. Arbitraries are unknown prior to the competition and can be anything
from grass to aluminium foil. Manipulating incorrect objects, losing objects, and
colliding with visual obstacles such as barrier tape lead to point deductions. One
restart per test is allowed, which is triggered instantly upon collision with arena
elements. After restart, all points are reduced to zero. If the restart is triggered
due to a collision, all following points for this test are multiplied by 75%.

The first test is the Basic Manipulation Test. Five objects need to be detected
and transported from one table to another. The next three tests are Basic Trans-
portation Test 1–3, where the robot has to grasp several objects from multiple
workstations. With each test, more objects and workstations are used. Decoy
objects, arbitrary surfaces, different table heights as well as physical and visual
obstacles are introduced. Additionally, the robot needs to grasp and place on a
shelf and place objects into containers.

The following two tests are speciality tests. During the Precise Placement
Test, the robot has to place objects into object-specific cavities. For the Rotating
Turntable Test, the robot needs to pick the correct objects from a rotating
turntable. The finale combines all previous challenges, all table heights and table
configurations are used as well as decoy objects, arbitrary surfaces, containers,
visual and physical obstacles.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Eguchi et al. (Eds.): RoboCup 2022, LNAI 13561, pp. 228–239, 2023
https://doi.org/10.1007/978-3-031-28469-4_19
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2 AutonOHM

The AutonOHM-@Work team at the University of Applied Sciences Nuremberg
Georg-Simon-Ohm was founded in September 2014. In 2017, the team was able
to win both the German (Magdeburg) and the World Championship (Nagoya)
title. With the knowledge and experience gained in the former tournaments, the
team was also able to defend both of these titles in 2018.

In late 2018 most of the members finished their studies, which is why the
team had to be rebuilt in 2019. Since then, the team consists of a small group
of “core” members and changing short-term members. In 2021 the AutonOHM-
@Work team won the SciRoc Challenge 2021 - Episode 5: Shopping Pick & Pack,
as well as the World Championship title in the RoboCup Worldwide competition.
Since late 2021 the team has welcomed new members.

Furthermore, the team defended the World Championship title in the
RoboCup Worldcup 2022.

3 Hardware Description

We are using a customized Evocortex [3] R&D platform with the smallest form
factor available. The platform is equipped with an omnidirectional mecanum
drive, an aluminum chassis capable of carrying loads up to 100 kg and a Li-
Ion Battery with a nominal voltage of 24 V and roughly 12.5 Ah capacity. In
our configuration, the platform does include any sensors, power management
or computation units, which means it only serves as our base. Every further
component needed was mounted in or on the chassis.

3.1 Sensors

Lidars. Mapping, navigation and the detection of physical obstacles is per-
formed by three SICK TiM571 2D Lidars. One each is mounted at the front and
the back of the robot scanning 180◦. As this creates dead zones at the robot’s
sides, a third sensor was mounted centred at the bottom of the robot, resulting
in a full 360◦ scan of the robot’s surroundings.

Fig. 1. 360◦ fisheye camera setup

Cameras. We use an Intel RealSense D435
3D-camera for the object perception. It is
attached to the manipulator so that it can be
positioned above the workstations to detect
the surface and the position of the objects.

For barriertape detection, multiple ELP
USB fisheye cameras can be mounted around
the robot, which enables a 360◦ view. During
the competition, we usually rely on a single
fisheye camera because we have observed that
all the barriertape is still detected.
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Fig. 2. Image of our Ohmnibot

Fig. 3. Robot bottom

Fig. 4. Laser scan area

3.2 PC

The newly introduced neural networks require a GPU for computation onboard
of the robot. As embedded GPU chips such as the Nvidia Jetson TX2 do not
provide enough processing power for the task optimization and navigation algo-
rithms, we designed a custom PC solution consisting of an AMD Ryzen 3700x
processor, a mini-ATX mainboard and a low power Nvidia GTX1650 graphics
card, which is connected to the mainboard with a riser cable. This enabled us to
build a flat case with both the mainboard and the graphics card safely mounted
inside. The form factor of the case makes it possible to slide it into the robot’s
back, similar to a server rack.

3.3 PSU

We developed a custom PSU circuit board containing emergency switches for
the actuators, a main power switch and high efficiency voltage controllers for
5 V and 12 V. It is equipped with a custom designed plug system with selectable
voltage, so every peripheral device can be connected using the same plug type.
In addition to that, we use an adjustable DC-DC controller for the power supply
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of the manipulator, as its power consumption exceeds the limits of the onboard
controllers. For the custom PC system, we use a standard 250 W automotive
ATX power supply.

3.4 Manipulator

Arm. As our budget did not allow the purchase of an applicable robot arm, we
had to develop a custom solution. Industrial pick and place applications are often
solved with SCARA robot arms. However, the SCARA concept was not exactly
suitable for our purpose, which is why we combined the idea of a cylindrical
robot arm with joint arms.

The concept utilizes linear gears to control the z- and x-axis of the arm. In
combination with the first rotational z joint, the TCP can be moved to every
point (x, y, z) given within the operation area. For more flexibility, two additional
rotational joints (y and z) were added between the TCP and the linear x-axis to
compensate for the object and arm orientation. The actuators we used are simple
Dynamixel MX-106 and AX-64 motors, which were available in our laboratory.
They have enough power to control each axis, with the linear z axis being able
to lift up to 5 kg.

Most of the parts used were 3D printed using PETG material, including
some main mounting parts and all gears. The main bearing, the linear rail and
the full extension tray rails have to be purchased. Including the actuators, our
current configuration sums up to about 2,500 EUR. We are planning to release
the plans once the arm is fully developed, so that any student or research facility
can rebuild the arm for educational purposes.

Fig. 5. Gripper

Gripper. The gripper concept also utilizes 3D
printed linear gears to convert the rotational force
of a motor into linear movement of the fingers. It
is based on a single Dynamixel AX-12 motor con-
nected to the driving gear. The power transmis-
sion enables the motor to grasp objects with its full
torque, rather than it being reduced by a lever with
its length conditioned by the gripper fingers. The
fin-ray fingers are custom printed out of rubber fila-
ment, making them soft and enabling them to close
around grasped objects. They are also more wide
than standard FESTO fin-ray fingers. This gripper
concept is currently being revised to allow the use
of force feedback.

4 Software Description

We use Linux Ubuntu 18.04 and ROS Melodic [4] as our operating systems. A
custom software architecture was created to simplify the overall structure and
to regain system flexibility. Our new design is displayed in Fig. 6.
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Fig. 6. Software architecture - BCMD

The idea derives from the Model-View-Controller software design pattern,
which is adjusted to the usage of the ROS framework. Regarding the frequent use
of hardware, an additional driver layer is added below the model layer. Models
that need data from hardware, e.g. sensor data, can get them from the individual
driver programs. The view layer is realized with each program using interfaces to
RVIZ or simple console logging, which makes custom implementations obsolete.
Components that require additional control features, such as the robot arm,
have dedicated controllers providing simple interfaces for the brain layer, which
is responsible for the actual task interpretation and execution. The individual
layer components will be explained in the following sections.

4.1 Driver

The driver layer only contains actual hardware control programs, such as the
sensor interfaces. The idea here is that the whole layer can be replaced with
simulation tools such as Gazebo.

Base Platform. The base platform driver converts incoming cmd vel messages
into wheel rpm and calculates the odometry from obtained rpm. It stops the
robot automatically if the incoming commands time out to prevent uncontrolled
movements. An additional twist mux node throttles incoming commands from
the joy controller, move base and the pose approach.

Laser Scanner. Three sick tim nodes provide the interface to the scanners
with given IP address and scan area configuration. However, as the Lidar is
prone to measurement errors such as shadows or reflections, custom laser filters
are applied to the raw data for later computation.



Champion Paper Team AutonOHM 233

Camera. We use the Intel Realsense SDK with the provided ROS wrapper.
The fisheye cameras are accessed via the ROS usb cam package [20].

Dynamixel Workbench. The tower arm is controlled with a controller
instance of the dynamixel workbench package. It provides a trajectory inter-
face to control multiple motors at once, which we use for trajectory execution.
As our gripper also uses a dynamixel motor, but needs extended access to motor
variables (e.g. torque), a dedicated controller instance is used for the gripper
controls and feedback.

4.2 Model

Our models contain all algorithms used to challenge the problems of the tasks
in the @Work league. This includes localization, navigation and perception. The
task planner is not included as a model but in the brain layer because it is more
convenient to attach it directly to the task manager, as discussed in Sect. 4.4.

Laser Filter. As mentioned in Sect. 4.1, we filter the raw laser data before
computing. The first filters are simple area filters to delete the robot’s wheels
from the scan. The second filter is a custom jumping point filter implementation.
We faced problems with reflections of the alu profile rails used for the walls of
the arena, which caused the robot to mark free space as occupied. The filter
calculates the x- and y-position for each scan point and checks if there are
enough neighbors in close range to mark a point as valid. All points with less
than n neighbors in the given range will be handled as measurement errors and
therefore deleted.

Ohm PF. For localization in the arena, we use our own particle filter algo-
rithm. Its functionality is close to amcl localization, as described in [5,13], with
optional support for other sensor types such as cameras. The documentation
can be found in German under [22]. The algorithm is capable of using multi-
ple laser scanners and an omnidirectional movement model. Due to the Monte
Carlo filtering approach, the localization is robust and accurate enough to pro-
vide useful positioning data to the navigation system. Positioning error with the
particle filter is about 6 cm, depending on the complexity and speed of the actual
movement.

Move Base. We use the ROS navigation stack [10] for global path planning
and the local path control loops. Path cost calculations are performed by using
the costmap 2D plugins. The base layer is a 2D laser map created with gmap-
ping [11,12]. On top of that, we use a barriertape map layer which contains all
detected barriertape points. For local obstacle avoidance, we added an obsta-
cle layer which includes laser data from all three laser scanners. All layers are
combined in the final inflation layer. Global path planning is computed with
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the mcr global planner [17] while the path is executed using the TEB local
planner [6–9]. As the local planner is not able to precisely navigate to a given
goal pose, we set the goal tolerance relatively high. Once we reached our goal
with move base, we continue exact positioning with our custom controller, the
pose approach.

Pose Approach. The pose approach package utilizes a simple PID controller to
move the robot to a given pose. It utilizes the robot’s localization pose as input
and the target pose as reference. As the controller does not consider costmap
obstacles, the maximum distance to the target is 20 cm to prevent collisions.
A laser monitor algorithm checks for obstacles in the current scan and stops the
robot if necessary.

Fisheye Rectification. The ra fisheye images need to be rectified to be used
as input for the detection network. A specific image pipeline fork [21] is used,
which contains this functionality.

NN - Barriertape For the barriertape detection, we use a U-Net with manually
labelled datasets. The ROS node receives raw input images and returns a masked
binary image. We have ported the network node from Python to C++ to increase
the detection rate from 5 Hz up 20 Hz.

NN - Objects. The detection and classification of objects is done with a Tiny-
YOLO-v3 network. The node receives a raw input image and returns a vector
with the ID, bounding box and confidence of all objects that were found. As our
dataset would require more than 10,000 labelled images, which would require
a high amount of time to create, we have implemented an automated dataset
creation method using Blender and Python. It basically changes environments,
illumination, camera and object pose as well as object appearance in pre-defined
bounds. The script creates rendered images as well as bounding box, segmenta-
tion and 6DoF labels. With this data generation method, data which is quite sim-
ilar to the original scene can be created, as well as rather abstract data (Fig. 7).
We are currently also working on data generation for deformable objects, such
as the objects used in the SciRoc Challenge 2021 - Episode 5: Shopping Pick &
Pack [19].

Using an original to artificial image ratio of 1:10, we achieved a detection
reliability of over 90% for most scenes. Our data generation scripts are public
and free to use [15]. The trained network is converted to TRT-Engine using
code from the TRT-YOLO-App from the Deepstream Reference Apps [16]. This
increases performance as the CUDA cores will be used more efficient, and makes
a detection rate of up 60 Hz possible. In the future, other network types such as
segmentation networks and 6DoF networks will be explored.
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4.3 Controller

Model nodes that require additional control features are connected to control
nodes, which then provide interfaces for the brain layer. They use our robot-
custom msgs interfaces to share information about the subtask, workstation, or
objects. Nodes may have specific subtask types implemented into their behaviour
to react optimized.

Joy Control. We use a PS5 joystick to move our robot manually (e.g. for
mapping). For this, we have implemented a custom teleop joy node with similar
functionality. We also plan to implement the usage of the PS5 feedback functions
such as rumble.

Barriertape Control. The barriertape controller is a custom mapping imple-
mentation for visual obstacles. It throttles the input images to the barriertape
network and computes the masked images. Looping through multiple cameras
enables us to perform 360◦ barriertape detection.

Received masked images are converted into a point cloud with a predefined
density. This pointcloud is then transformed from the individual camera frame
into the global map frame. Afterwards, all new points are compared to the exist-
ing map points. New barriertape points that are already occupied are ignored to
save computation. As we faced problems with image blur and therefore result-
ing non-precise barriertape detection, we also compute pixels that mark free
space (no barriertape detected). They are compared to existing points, which
get deleted if they overlap.

The whole map is converted into an occupancy grid and then published
periodically, so it can be included in the costmap of the move base node. The
node is controlled via service calls, which enable or disable the detection loop.
The map is always published once the node finishes the init process.

Arm Control. As the kinematic model of the tower arm has only one solution
for a given TCP position, we developed a custom arm controller node instead

Fig. 7. Abstract image (a) corresponding mask label (b) Abstract image with bounding
box label (c)
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of using moveIt. It is possible to adjust the amount and type of joints and links
via ROS parameters, only the inverse kinematics solution has to be adjusted
for new arms. Using predefined danger zones, the arm executes a self calculated
trajectory to the target pose considering the individual motor parameters. The
arm is controlled via ROS services or a development GUI for debugging. When
using the services, the arm executes a full task using the given information,
which means, in case of a pick task, it moves the TCP to the object position,
closes the gripper, and stores the object. After the subtask finishes, feedback of
the exit status is returned to the caller.

Perception Control. The perception control node is responsible for the work-
station analysis and object detection from a given scene (3D Pointcloud and
RGB image). First, the surface equation of the workstation is calculated using
the RANSAC [14] algorithm. If a valid result is obtained, raw images are sent
to the object perception network (Sect. 4.2). All found objects are then localized
using the pinhole camera model, the workstation plane and the bounding box
pixels. Finally, the position is transformed into the workstation frame and saved.
For moving objects, multiple positions are recorded and then used to calculate
the movement equation with RANSAC.

4.4 Brain

The brain layer provides nodes which contain the intelligence of the robot, which
means the tracking of itself, its environment and the received tasks.

Worldmodel. All data obtained about the robot’s environment is stored in the
worldmodel database. This includes the map, all workstation positions and all
detected objects on the workstations. The data can be accessed using service
calls.

Status Monitor. The status monitor keeps track of the robot itself. It saves
the current pose, inventory and state. The associated color code is sent to the
RGB LED driver node.

Task Manager. The robot can receive tasks from multiple sources, such as the
RefBox or voice commands. In order to process different input formats, different
parsers are used to standardize the input for the task manager.

When the robot receives a new transportation task, it is analysed and planned
before the execution. All extracted subtasks are managed by the task manager
node, which replans the order of all subtasks. With the increasing numbers
of transportation tasks in the competition, high efficiency is crucial to achieve
perfect runs. The score of a single subtask is calculated considering expected
duration, points, and the risk of failure. These factors may change if certain
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conditions are met, for example, the navigation time is set to zero if the robot
already is at the given position.

Before even starting the planning of subtasks, the received task is analysed
for impossible tasks. This would be the case if the target workstation is unknown
or unreachable, or an object is lost. All subtasks that cannot be executed are
moved to a deletion vector.

A self developed planning algorithm then calculates the raw score of the
remaining subtask vector, followed by a simple nearest neighbour search (NN).
This result is then fed to a recursive tree calculation method, which searches
for the optimal solution. A branch is only fully calculated if the score sum does
not exceed the best solution found with the NN. This way, we have achieved an
overall planning time for the BTT3 challenge (14 subtasks) of around 10 s. For
subtask numbers below 12 the planning only takes 2 s. If the task load exceeds
14 tasks, we skip the recursive strategy, as planning time grows exponentially
and therefore cannot produce results in the given time frame of a run.

Fig. 8. Task manager states

After planning, every subtask is sent to the task executioner (Sect. 4.4). If
the execution was not successful, the task is moved to a failed subtask vector
and deleted from the current working STV. The short planning times enable us
to replan every time a subtask fails, or new data is available. This is necessary
because even simple changes can cause serious errors in the intentional plan.
If certain paths are blocked, the navigation time for transportation tasks can
increase dramatically, causing a huge loss of efficiency. A final garbage collection
checks all deleted and failed subtasks for plausibility again and adds retries for
possible subtasks.

Task Executioner. Subtasks that are sent to the Task Executioner get run
through an interpreter to extract the actions that are necessary for the task
execution. All actions are performed in custom states, which can be adjusted
via parameters at creation. The interpreter uses information from the status
monitor, the worldmodel and the given subtask to create substates accordingly.
The resulting state vector is iterated until finished or failed. While executing,
the node reads and modifies the data in the status monitor and worldmodel
package. This way, every change is immediately available for all other nodes too.
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Fig. 9. Task executioner - subtask interpretation

5 Conclusion and Future Work

During the last season, we optimized our robot concept and further extended it.
The robot arm concept has been reworked and improved, a new display has been
implemented as well as voice-feedback functionality. We’ve started to bundle
our knowledge in a repository [22], where many aspects of our solution will
be publicly available. With this repository, we want to share our knowledge to
provide other researchers with a basic foundation for autonomous robots and task
completion. Last but not least, we’ve defended our title in the 2022 RoboCup
WorldCup in Thailand.

In the coming season we plan on improving our object detection by using
other network architectures such as segmentation, 6DoF and grasp detection
networks. We are also reworking our gripper concept to enable the use of force
feedback, which will improve our system. We also want to introduce performance
monitoring, allowing us to identify bottlenecks and plan future improvements.
Finally, we plan to extend the above-mentioned repository by adding more doc-
umentation as well as some theses from our students.

We are very much looking forward to the upcoming season, where we aim to
defend our title once again at RoboCup 2023 in Bordeaux.
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Abstract. Beating the human world champions by 2050 is an ambi-
tious goal of the Humanoid League that provides a strong incentive for
RoboCup teams to further improve and develop their systems. In this
paper, we present upgrades of our system which enabled our team Nim-
bRo to win the Soccer Tournament, the Drop-in Games, and the Tech-
nical Challenges in the Humanoid AdultSize League of RoboCup 2022.
Strong performance in these competitions resulted in the Best Humanoid
award in the Humanoid League. The mentioned upgrades include: hard-
ware upgrade of the vision module, balanced walking with Capture Steps,
and the introduction of phase-based in-walk kicks.

1 Introduction

The Humanoid AdultSize League works towards the vision of RoboCup: A
team of robots winning against the human soccer world champion by 2050.

Fig. 1. Left: NimbRo AdultSize robots: NimbRo-OP2 and NimbRo-OP2X. Right: The
NimbRo team at RoboCup 2022 in Bangkok, Thailand.
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Hence, the participating teams are challenged to improve their systems in order
to reach this ambitious goal. Physical RoboCup championships have not been
held in the previous two years, due to the COVID-19 pandemic. For RoboCup
2022, we upgraded our visual perception module with better cameras and more
powerful GPUs as well as an improved deep neural network to enhance game per-
ception and localization capabilities. We improved our gait based on the Capture
Steps Framework to further enhance the stability of walking. Finally, introduc-
tion of phase-based in-walk kicks allowed for more ball control in close-range
duels with opponents. We used three NimbRo-OP2X robots alongside with one
NimbRo-OP2. Our robots came in first in all competitions of the Humanoid
AdultSize League: the main Soccer Competition, Drop-in Games, and the Tech-
nical Challenges. Consequently, our robots won the Best Humanoid award in the
Humanoid League. Our team is shown in Fig. 1. The highlights of our perfor-
mance during the RoboCup 2022 competition are available online1.

2 NimbRo-OP2(X) Humanoid Robot Hardware

For the competition in Bangkok, we have prepared four capable robots: one
NimbRo-OP2 [2] and three NimbRo-OP2X robots. Both platforms are fully
open-source in hardware2 and software3, with several publications [6,7] con-
taining beneficial information on reproducing the platform. The robots, shown
in Fig. 1 share similarities in naming, design and features, but are not identical.
Both platforms feature a similar joint layout with 18 Degrees of Freedom (DoF),
with 5DoF per leg, 3DoF per arm, and 2DoF actuating the head. In contrast to
other humanoid robots competing in the Humanoid League, the legs have a par-
allel kinematic structure that locks the pitch of the foot w.r.t. to the trunk [4].
The actuators receive commands from the ROS-based control framework through
a CM740 microcontroller board with a built-in six-axis IMU (3-axis accelerom-
eter & 3-axis gyro). As the hardware is based on off-the-shelf consumer-grade
technology, the robots can be acquired at a fraction of the cost of similarly sized
research-platforms [4] such as: ASIMO [15], HRP-2 [9], and HUBO [12].

Apart from updating the OP2 actuator controller firmware to allow current-
based torque measurements, its hardware was not changed from the RoboCup
2019 competition [13]. The OP2X robots were upgraded to accommodate for
the weak points from the 2019 competition. After the field size increase, per-
ceiving objects from larger distances was challenging, as they would often be
represented by single pixels. To address this issue, the 2 MP Logitech C905
camera was replaced by a 5 MP C930e camera. With an increase of the image
capture resolution, the object perception improved greatly. The increase in res-
olution necessitated more computing power, for which we upgraded the GPU of
each OP2X robot to the Nvidia RTX A2000. Applying these modifications was
straightforward due to the modular design of the robot.
1 RoboCup 2022 NimbRo highlights video: https://youtu.be/DfzkMawtSFA.
2 NimbRo-OP2X hardware: https://github.com/NimbRo/nimbro-op2.
3 NimbRo-OP2X software: https://github.com/AIS-Bonn/humanoid_op_ros.

https://youtu.be/DfzkMawtSFA
https://github.com/NimbRo/nimbro-op2
https://github.com/AIS-Bonn/humanoid_op_ros
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3 Visual Perception of the Game Situation

Our visual perception module benefits from both hardware and software
improvements. First, upgrading the camera, equipped with a wide-angle lens,
and GPU; second, supporting a dynamic resolution and enhancing our previous
deep convolutional neural network to recognize soccer-related objects, including
the soccer ball, goalposts, robots, field boundaries, and line segments.

The upgraded GPU enabled us to use higher resolution images for the net-
work input without decreasing the frame rate. Moreover, the new camera pro-
vided images with a high-quality and a wider horizontal field-of-view, compared
to our previous Logitech C905 camera. We compare the two cameras by images
captured from the same scene in Fig. 2.

Fig. 2. An image example taken by Logitech C905 camera, heatmap, and segmenta-
tion predictions of NimbRoNet2 (first row). The same scene from the Logitech C930e
camera, heatmap, and segmentation predictions of the new model (second row).

Inspired by our previous perception model (NimbRoNet2) [13], we used a
deep convolutional neural network which is adapted from [1]. Our model has
an asymmetric U-Net architecture [14] which consists of a pre-trained ResNet18
model [8] as an encoder and a decoder with a feature pyramid structure, where
we only use the 1/4 resolution, and three skip connections. This lighter model
reduces inference time to 13ms by using bilinear upsampling in comparison to
the 19ms runtime of NimbRoNet2. In addition, the new model yields better
performance, as illustrated in Fig. 2. The visual perception network has two
prediction heads: object detection and segmentation. For object detection, we
represent the object locations by heatmaps. We then apply a post-processing
step to retrieve the locations from the estimated heatmaps.

We employ the mean squared error loss for training the heatmaps that rep-
resent the location of the balls, goalposts, and robots. Additionally, we use the
cross entropy loss for training to predict the segmentation of background, field,
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and lines. The total loss is hence the linear combination of the two mentioned
losses. As announced in RoboCup 2022, instead of using a single ball, 17 balls4
were selected as possible choices, of which three balls were used in the com-
petition. To deal with this challenge, we exploited augmentation by randomly
substituting the ball in the images with the announced balls.

Our pipeline shows the ability to cover the entire field and detects objects
that are far away from the robot. Furthermore, since the localization module
depends on landmarks (lines, center circle, and goalposts), the improvements
of the vision perception module allow us to localize more precisely in the new
field, where penalty area lines were added, through minor modifications in the
localization module, e.g., increasing the weights of the center circle and goalposts.

4 Robust Omnidirectional Gait with Diagonal Kick

4.1 Capture Step Walking

The walking of our robots is based on the Capture Step Framework [11]. This
framework combines an open loop gait pattern [10], that generates leg-swinging
motions with a sinusoid swing pattern, with a balance control layer that models
the robot as a linear inverted pendulum (LIP) and computes the timing, and
location, of the next step in order to absorb disturbances and return the robot
to an open-loop stable limit cycle. The parameters of the LIP are fitted to center
of mass data recorded from the robot while the robot is walking open loop. The
footstep locations computed by the LIP are then met by modifying the amplitude
of the sinusoid leg swings during a step. The timing of the footsteps modulates
the frequency of the central pattern generator such that the step motion is slowed
down, or sped up, in order to touch the foot down at the commanded time. This
year, for the first time, all of our robots were equipped with a Capture Step-
capable walk. The Capture Steps proved especially useful for regaining balance
after a collision with an opponent while fighting for the ball, for regaining balance
after moving the ball with our seamlessly integrated in-walk kicks, and, of course,
for winning the Push Recovery Challenge. Figure 3 and Fig. 4 show plots of a
lateral and a sagittal push recovery example, respectively.

4.2 Balance State Estimation

As with any real system, there is inherent noise in the IMU and joint sensors.
Estimating balance-relevant state variables in presence of this noise is a critical
task, as the control is strictly tied to the state estimation.

Before the 2022 competition [11], the Center of Mass (CoM) movement was
estimated purely through a combination of joint encoders, kinematics, and a
torso attitude estimator. The final output would be then smoothed with a Golay
filter, also providing velocity and acceleration estimates. This solution, while
working to an extent, was not ideal. Noise would then be further suppressed
4 https://humanoid.robocup.org/hl-2022.

https://humanoid.robocup.org/hl-2022
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Lateral Push Recovery
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Fig. 3. Lateral push recovery example. From top to bottom, the remaining time of a
step, the lateral center of mass (CoM) location, and the lateral step size are plotted.
The push occurs at time 0. The timing of the step is immediately adjusted for a longer
step duration. The center of mass approaches the stance foot and then returns to the
support exchange location at approx. 0.6 s when the actual Capture Step is performed.
The size of the Capture Step is adjusted from the default 30 cm to 35 cm. After the
Capture Step at 1.25 s, the gait returns to nominal values.

in post-processing, along with balance-relevant dynamic effects, leading to the
robot tending to walk open-loop at higher walking velocities.

We have adopted the idea of the Direct Centroidal Controller (DCC) from [5]
to use a Kalman Filter to estimate the CoM state c =

[
c ċ c̈

]
on the sagittal cx

and lateral cy planes and supplementing the measurement model zk with the
unrotated and unbiased for gravity g trunk acceleration Gẍt from the IMU:
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Unlike in the DCC, the mass position does not consider limb dynamics [3] and
equates to a fixed point in the body frame. This simplification is an advantage
in the sensing scheme, as the accelerations of the trunk are directly linked to the
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trunk-fixed CoM. As a result, Capture Steps operated on the estimated state
directly, allowing for precise and uniform balance control, independent of the
walking speed.

Sagittal Push Recovery
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Fig. 4. Sagittal push recovery example. From top to bottom, the sagittal center of mass
(CoM) location, the sagittal zero moment point (ZMP) coordinate, and the sagittal
step size are plotted. At the time 0 the robot experiences a backwards push. The ZMP
immediately moves into the physical limit in the heel, and the step size is adjusted to
perform a backwards step. After the first Capture Step is finished at 0.5 s, the robot
still has a small backwards momentum, which is nullified during the second recovery
step and the gait returns to nominal values.

Fig. 5. The feasible kick direction for the right leg. The dotted boundary represents
the optimal ball position relative to the foot, shown as an ellipse from the configured
optimal distance for the side and front kick.
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4.3 Phase-Based In-Walk Kick

We introduced the “in-walk kick” approach in [13] and implemented it on
NimbRo-OP2(X) platforms to compete at RoboCup 2019. The “in-walk kick”
approach eliminated unnecessary stops to execute kicking motions, resulting in
an improvement in the overall pace of the game.

However, the previously introduced approach had limitations that needed to
be addressed. The strength of the kick depended on the accuracy of the foot
placement behind the ball; the closer or farther the ball was from the optimal
distance, the weaker the kicks were. To shoot in the desired direction, the robot
had to first rotate in that direction before executing the forward kick. For effec-
tive ball handling, the robot first had to align its foot behind the ball.

For RoboCup 2022, we addressed the above limitations to further improve
the pace of the game. Our approach allows the robot to perform kicks in feasible
directions, while adjusting the foot behind the ball before the ball is actually
kicked. It also improves the strength of kicks where the ball is at a less than
optimal distance from the foot. The kick direction is not feasible if the leg is
physically limited to move in that direction. Figure 5 shows the feasible kick
directions of the NimbRo-OP2 robot.

We define the kick coordinate frame such that the x axis is along the direc-
tion of the kick and the origin of the frame is at the center of the kicking foot.
The formulation of the kick trajectories is represented in this frame and later
transformed into the local frame of the robot and applied to the sagittal and
lateral trajectories of the leg, allowing the robot to perform diagonal and side-
kicks in addition to the forward kick. We create two swing trajectories: the kick
swing skick and the adjust swing sadj . The former applies a swing trajectory to
the kick, the latter is a swing trajectory that adjusts the y offset of the foot to
the ball. Figure 6 shows three examples of the generated swing trajectories5. The
function of the swing trajectory s is defined as:

g (φ, y0, yf , c) = y0 + (yf − y0)
(
6 (1 − φ)2 φ2c + 4 (1 − φ)φ3 + φ4

)
,

s (φ, α, φp, c) =

⎧
⎨

⎩

g
(

φ
φp

, 0, α, c
)

0 ≤ φ < φp

g
(

φ−φp

1−φp
, α, 0, 1 − c

)
φp ≤ φ ≤ 1

,
(2)

where y0 and yf are the initial and final domains for the quartic Bezier curve
g. The function s for the phase variable φ represents a swing curve that reaches
the peak amplitude α in the phase φp and returns to 0 at the end of the phase
while following a curvature defined by c. The kick and swing trajectories are
then formulated as follows:

sfw(φ) = s (φ, αfw, φfw, cfw) ,

sbw(φ) = s (φ, αbw, φbw, cbw) ,

skick(φ) = sfw(φ) + sbw(φ),
sadj(x) = s (φ, αy, φadj , cadj) ,

(3)

5 Online in-walk kick graph: https://www.desmos.com/calculator/v7wlvjtchl.

https://www.desmos.com/calculator/v7wlvjtchl
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Fig. 6. In-walk kick swing trajectories. φk is the kick phase (like xK in Fig. 6 of [13]).
sfw, sbw, skick, and sadj are the forward, backward, kick, and adjust swings, respec-
tively, formulated in (3). Three examples are given, from left to right: the ball farther
away than the optimal distance with an offset along the y-axis, the ball at the optimal
distance without y-offset, and the ball close to the foot with y-offset.

where skick denotes a swing trajectory for kicking the ball and sadj denotes an
adjustment swing trajectory before kicking the ball. αfw = αx +0.8 (αopt − αx)
is the forward swing amplitude calculated with respect to the optimal swing
amplitude αopt and the ball position in the kick frame, αbw = αfw − αopt is
the back-swing amplitude, and cfw, cbw, and cadj are the curvature gains of the
forward, backward, and adjust swings, respectively.

With phase-based in-walk kicks, the behavior has more freedom to adjust
the robot state before the kick and therefore makes faster decisions, which is
especially beneficial in one-on-one fights where the opponent is also behind the
ball and trying to kick it.

5 Behavior Control

For controlling the high-level behavior, which steers the robot behind the ball,
avoids obstacles, and triggers inline kicks towards the opponent goal, we use a
simple force field method. We are able to regard the robot as a holonomic point
mass due to the omnidirectional control layer of our gait [10] and can control it
with a directional input vector whose direction determines the walking direction
and its length determines the walking velocity. The vector has a separate compo-
nent for turning, which is independent of the 2D walking direction on the plane.
Using this interface, we can simply sum up forces that pull the robot towards
the behind ball position and push the robot away from obstacles to obtain a
suitable gait control vector. Orthogonal forces to the robot-ball line and to the
robot-obstacle line help with circumventing the ball and walking around obsta-
cles, respectively. The orientation of the robot is controlled by its own set of
forces that rotate the robot first towards the ball, and then towards the ball
target when the robot is near the behind ball position. Tuning parameters that
determine the strength of the individual forces allow us to quickly adapt the
behavior controller to different types of robots. This year, where all our robots
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were of a very similar build, we were able to use the same parameters for all
robots. Figure 7 shows visualizations of components involved with the behavior
control. There is no special goalie behavior since we find it more efficient to have
two active field players.

Fig. 7. The graphical debugging and diagnostics tool of team NimbRo. The 3D visu-
alization area provides a large variety of information at one glimpse, such as: the
whole-body state estimation of the robot, the localization, and the observed objects.
The orange sphere is a ball. The red cross marks the spot towards which the robot
should kick the ball. The small red circle is the behind ball position. The stack of
arrows drawn around the robot model indicate the output of different control layers,
where the top arrow is the force that controls the robot. The white vertical bar is the
goalpost, and the gray cylinder around it represents an obstacle. The tool comes with
an inbuilt plotter, and sliders for parameter tuning during operation. (Color figure
online)

6 Debugging and Diagnostics

As the complexity of the soccer-playing software increases over time, it is very
important to develop visualization tools that help with debugging and allow
for comprehensive diagnostics of hardware failures. Figure 7 shows a screenshot
of our graphical analyzer. A 3D OpenGL scene shows the whole-body state
estimation of our robot, the localization on the soccer field, observations such
as the ball and the goal posts, the game state according to the game controller,
the role and task of the robot, and information about the behavior and gait
controller output. Obstacles are marked with a black cylinder. Our tool also
includes a plotter for variables that cannot be easily visualized, such as the
estimated time until the next support exchange shown by the blue curve in the
plot area at the bottom of the screen. The communication interface between the
debugging tool and the robot seamlessly integrates into our ROS infrastructure.
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7 Technical Challenges

In this section, we describe our approach to Technical Challenges, which is a
separate competition within AdultSize League. In a 25min long time slot, the
robots are required to perform four individual tasks: Push Recovery, Parkour,
High Kick, and Goal Kick from Moving Ball. The strict time restriction strongly
advocates for robust and reliable solutions.

7.1 Push Recovery

In this challenge, the robot has to withstand three pushes in a row from the
front and from the back while walking on the spot. The pushes are induced
by a pendulum which hits the robot at the height of the CoM. The robots
are ranked by the combination of pendulum weight and pendulum retraction
distance, normalized by the robot mass. Our robot managed to withstand pushes
from both 3 kg and 5 kg pendulums, thanks to the Capture Steps Framework,
winning in this challenge.

7.2 Parkour

In this challenge, the robot has to go up a platform and then go back down. The
robots are ranked by the height of the platform. We performed this challenge
using a manually designed motion. Since our robots have parallel leg kinematics,
it was advantageous for us to go on top of the platform with a side-step, where
our robots have more mobility. The motion included a controlled fall on the
platform, allowing the foot to land closer to the center of the platform, creating
space for the other foot in the later stage of the ascent. During this phase, the
gains of the actuators were reduced, providing a damping effect when landing on
the platform. Then, a series of CoM shifts brought the other foot on the platform,
achieving a stable stance (Fig. 8). We did not descend from the platform, because
such motion imposed a significant load on the motors. Our robot managed to go
up a 30 cm high platform, coming in second in this challenge.

Fig. 8. Technical challenge: Parkour.

7.3 High Kick

In this challenge, the goal is to score a goal by kicking the ball over an obstacle.
The teams are ranked by the height of the obstacle in a successful attempt.
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The ball starts at the penalty mark and the obstacle is at the goal line. In
order to reliably kick over the obstacle, we first perform a kick of low strength
to move the ball closer to the obstacle. Then, we kick over it utilizing a kick
motion with the foot making contact with the ball as low as possible and using a
“scoop”-shaped foot. Our robot came in first, kicking over a 16 cm high obstacle.

7.4 Goal Kick from Moving Ball

In this challenge, a robot has to score a goal by kicking a moving ball. The robot
is stationary at the penalty mark and the ball is at the corner. The ball is passed
to the robot by a human. The teams are ranked by the number of goals scored
in three successive attempts. In order to reliably score goals from a moving ball,
we estimate the ball arrival time from velocity and acceleration estimates, which
are calculated from the series of ball detections. This enables our robots to start
kicking at the right moment, when the ball is approaching the foot (Fig. 9). Our
robot came in first in this challenge, scoring in three successive attempts.

Fig. 9. Technical Challenge: Goal Kick from Moving Ball.

8 Soccer Game Performance

At the RoboCup 2022 AdultSize soccer competition, robots played 2 vs. 2 soccer
games autonomously on a 9 × 14m soccer field. In addition to the main tour-
nament, there were Drop-in games, where robots from different teams formed
temporary joint teams to compete in 2 vs. 2 games. Our robots performed well
and won the AdultSize tournament, which included six round-robin games and
the finals, with a total score of 43:2, winning the final 7:1. Our robots also won
the Drop-In competition, accumulating 22 points compared to 5.5 points of the
second-best team, finishing three games with a total score of 15:3. During the
competition, our robots played 10 games with a total score of 58:5 and total
duration of 200min.

9 Conclusions

In this paper, we presented improvements of hardware and software components
of our humanoid soccer robots which led us to winning all available competitions
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in the AdultSize league of RoboCup 2022 in Bangkok: main tournament, Drop-
In games, and Technical Challenges, where our robots scored in each challenge.
Consistently strong performance of our robots through the competition resulted
in receiving the Best Humanoid Award. Improved components include: upgraded
perception module, Capture Steps gait, and phase-based in-walk kicks. These
innovations allowed for improved localization and ball perception, more robust
walking, and more dynamic ball handling—contributing to winning the RoboCup
2022 AdultSize Humanoid League.
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Abstract. The RoboCup Soccer Simulation 2D Competition is the old-
est of the RoboCup competitions. The 2D soccer simulator enables
two teams of simulated autonomous agents to play a game of soccer
with realistic rules and sophisticated game play. This paper introduces
the RoboCup 2022 Soccer Simulation 2D Competition champion team,
HELIOS2022, a united team from Okayama University of Science and
Osaka Metropolitan University. The overview of the team’s two recent
approaches is also described. The first one is the method of online search
of cooperative behavior for the setplay planning. The second is a perfor-
mance evaluation system for efficient team development.

1 Introduction

This paper introduces the RoboCup 2022 Soccer Simulation 2D Competition
champion team, HELIOS2022, a united team from Okayama University of Sci-
ence and Osaka Metropolitan University. The team has been participating in
the RoboCup competition since 2000, and won 2010, 2012, 2017, 2018 and 2022
competitions. The team released several open source software for developing a
simulated soccer team using the RoboCup Soccer 2D simulator. A team base
code, a visual debugger, and a formation editor are available now1. The details
can be found in [1].

2 Soccer Simulation 2D Competition

The RoboCup Soccer Simulation 2D Competition is the oldest of the RoboCup
competitions [6]. The simulation system2 enables two teams of 11 autonomous
player agents and an autonomous coach agent to play a game of soccer with real-
istic rules and game play. Figure 1 shows a scene from the final of RoboCup2022.
Player agents receive a visual sensor message, an aural sensor message,
1 Available at: https://github.com/helios-base.
2 Available at: https://github.com/rcsoccersim.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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Fig. 1. A scene from the final of RoboCup2022, a match between HELIOS2022
(Okayama University of Science and Osaka Metropolitan University, Japan) and
CYRUS (Dalhousie University, Canada).

and a body sensor message from the simulation server, and can send a few
types of abstract action commands (kick, dash, turn, turn neck, and so on). In
the game of RoboCup Soccer Simulation 2D Competition, player agents make a
decision at each simulation cycle in real time. In 2022, the player dash model was
changed. This change made it more difficult for players to accelerate backward
and required them to plan their movement actions more deliberately.

In RoboCup2022, 16 teams qualified and 12 teams participated in the com-
petition. The competition consisted of five round-robin rounds and a final tour-
nament. HELIOS2022 won the championship with 26 wins and 1 loss and 1
draw, scoring 92 goals and conceding 12 goals. CYRUS from Dalhousie Univer-
sity won second place, and YuShan2022 from Anhui University of Technology
won third place. HELIOS2022 also won the Cooperation Challenge, a challenge
competition that mixes players from two different teams to form one team.

3 Online Setplay Planning

This section shows an overview of online planning of cooperative behavior imple-
mented in our team. First, the model of cooperative behavior and its planning
process are described. Then, extensions to setplay planning by the coach agent
are described.
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3.1 Action Sequence Planning by Player Agents

In order to model the cooperative behavior among players as action sequence
planning, we employed a tree search method for generating and evaluating action
sequences performed by multiple players [3]. This method searches for the best
sequence of ball kicking actions among several teammate players using a tree-
structured candidate action generator and an evaluation function of the can-
didate actions. We assume the considered actions are abstracted ones, such as
pass, dribble, and shoot. Best first search algorithm is used to traverse a tree
and expand nodes. A lot of ball kicking action plans are generated during the
search process and the best action plan is selected based on the evaluation value.
A path from the root node to the branch represents a kick action sequence that
defines a certain cooperative behavior planned by the ball holder player. If other
players can generate the same tree, all players can cooperate using the same
plan. However, due to the noise of observation, it isn’t easy to generate the same
tree. And, communication among players is limited. Therefore, the generated
plan often is not completed as planned first.

An example of the planning process is depicted in Fig. 2. The kicker generates
three candidates for the first action (i.e., pass, pass, and dribble). Each of the
three actions has an evaluation value in the corresponding node. That is, the
evaluation value of the first pass is 30, the second pass is 20, and the dribble
is 15. In this case, the first pass with the highest evaluation value is employed
as the first action. Further candidate actions are generated from the selected
pass action. We call the level of the tree the depth of the action sequence. Two
actions (pass and dribble) in Depth 2 are added as the candidate action with
the corresponding evaluation values. The action sequence is updated as the one
with the highest evaluation value among the candidate. In this case, the pass
in Depth 2 is selected as it has the highest evaluation of 35. Thus the resultant
action sequence is “pass–pass”.

The decision of players highly depends on the evaluation function, which com-
putes the evaluation value of each action plan. We have to design an appropriate
evaluation function in order to select the action plan corresponding to the team
strategy and tactics. We have proposed several methods to acquire the evalu-
ation function and are obtaining promising results [2,5,7]. However, because it
is still difficult to acquire evaluation functions that can be used in competitions
by machine learning, our team used a manually designed evaluation function in
RoboCup2022.

3.2 Setplay Planning by Coach Agent

This year, we extend the above action sequence planning method to the coach
agent. The coach agent in the Soccer Simulator is supposed to analyze the game
and advice the players. The coach can observe the field conditions without error,
whereas the player’s field of view is limited and much noise is introduced into
the visual information. Therefore, under the current rules, communication from
the coach agent to player agents is strongly restricted during play on in order to
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Fig. 2. An example search tree of action sequence planning.

restrict the central control. On the other hand, during setplays, the coach agent
is relatively free to send advice to players.

Our coach agent tries to plan two sequential actions among teammate players
during our freekick period. In the current implementation, only pass actions are
subject to search. However, in the case of setplays, the optimal position of the
player’s movement can be calculated according to the simulator’s physics model
because the coach agent can observe noiseless information and players can stand
still until it is time to move. If properly communicated, the timing of the players’
movements can be synchronized so that the fastest possible pass actions can be
executed.

Figure 3 shows an example of setplay planning. The first set play kicker is the
number 7 player, slightly above center in the image. That player has the ball in
a controllable position. The small squares indicate candidate receiving positions
for the first pass. The line segments radiating from players indicate the paths
of movement along which each player can receive the first pass without being
intercepted by an opponent player. The small circles indicate candidate receiving
positions for the second pass. The double circle indicates the positions where the
second pass can be received without being intercepted by an opponent player.
These combinations are searched and evaluated with an evaluation function to
find the best combination. Once the best combination is determined, the coach
informs the players of their receiving positions and when each player will move.
The result is a chain of the fastest passes, often breaking through a wall of the
opposing player’s defense.

4 Performance Evaluation System

When developing a team, it is important to be efficient in team performance
evaluation. This section describes our performance evaluation system in order
to facilitate team development.
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Fig. 3. An example of setplan plan and candidate receiver actions generated by the
coach agent.

4.1 Overview of the System

Figure 4 shows the overview of our performance evaluation system. This system
reduces the burden of the developers and promotes efficient performance evalu-
ation of the developed teams. The performance evaluation system is available at
our code repository3. The procedure of the system is as follows:

1. Select game settings
2. Assign computers
3. Execute games respectively
4. Analyze game log og files
5. Write game results

– Select game settings
First, the user sends game settings (the branch name in Git repository, the
name of the opponent team, the number of games, and so on) to the server com-
puter through a chat bot application as a request. We used Slack as the chat
system and developed a chat bot that runs on it. A chat bot is pragmatically
controlled via a bot user token that can access one or more APIs. One advan-
tage of using a chat bot as UI is that it can be used on multiple devices, such as
PCs, smartphones, and tablets. Another advantage is that multiple users can
execute the same procedure at the same time. Figure 5 shows an example of a
dialog screen between a user and the chat bot.

3 Available at: https://github.com/opusymcomp/autogame.

https://github.com/opusymcomp/autogame
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Fig. 4. Overview of our performance evaluation system.

– Assign Computers
Second, in response to the request in Step 1, the server assigns the requested
games to the host computers according to the availability of computational
resources. The server searches for available host computers by checking the
CPU usage. If a host computer returns a busy status, the server does not
assign any task to that host computer to avoid a resource conflict.

– Execute games respectively
Third, each assigned host runs the soccer simulator according to the specified
game settings. Note that the assigned host computers keep the game log files
after the games are finished.

– Analyze game log files
After finishing the game, the host computer analyzes the game log files. In the
developed system, LogAnalyzer34 is used to analyze game log files. The ana-
lyzed game results are saved in CSV format on the assigned host computers.
Then the CSV file is transferred to the server.

– Write game results

4 Available at: https://github.com/opusymcomp/loganalyzer3.

https://github.com/opusymcomp/loganalyzer3
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Fig. 5. An example of a dialogue between a user and the chat bot.

Fig. 6. An example of game results shared by Google Spreadsheet.

Finally, the game results are summarized in Google Spreadsheets in order
to share the results with all team members. The system uses SheetsAPI5,
which is an API to read and write data in Google Spreadsheets, to write the
analysis results. Figure 6 shows an example of the game results shared by
Google Spreadsheets on the Web.

4.2 Case Study: Effect of Team Names on the Team Strategy

Changing Team Strategy According to Opponent Team Names. In
the 2D competition, almost all teams have developed their own strategies while
there seem to be a few teams that have specialized strategies to some particular
teams. Our team has also been trying to adopt the strategy according to the
specific opponent strategy [4].
5 https://developers.google.com/sheets/api.

https://developers.google.com/sheets/api
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Fig. 7. Difference of the kickoff formations according to the opponent team name

For example, Fig. 7 shows the difference in formations before the start of the
game in the same matchup. Our team is on the right side. In the left of the
figure (Fig. 7(a)), both teams know their opponent teams. That is, the infor-
mation about the opponent’s team name is known before the game starts. On
the other hand, the right figure (Fig. 7(b)) shows the kickoff formation when
the information on their opponent team (i.e., team names of each other’s oppo-
nent) was not allowed to be sent to both teams. As shown in the figures, our
team obviously changes the formation only by the name of the opponent team.
This indicates that our team has a specialized strategy for a particular team.
Because the specialized team strategies indicate that the phase of team develop-
ment is shifting to the second way, the investigation into this will give us some
information on the progress in this league in terms of team development.

Numerical Experiments. In order to assess the effect of team names on
the team strategy, we conducted numerical experiments using our performance
evaluation system. We investigate the difference in team performance between
Anonymous and Non-Anonymous settings. We have collected the binaries of
the top 13 teams in RoboCup 2021. The teams played round-robin games 1000
times. This process was applied to both cases of Anonymous mode and Non-
Anonymous mode.

In order to see whether teams change strategy according to the opponent
team name or not, the difference in winning rates between Anonymous and
Non-Anonymous modes are calculated for each team. Table 1 shows the total
average point and the rank of the team in this experiment. The points of some
teams have increased or decreased by 1.0 or more. Although the fluctuation of
the ranking is small, it is considered that there is a difference in terms of points.

The significance of the differences in the team strategies was checked by using
the Chi-squared test. The test was conducted in two rounds. In the first round of
the test, we used two indices the number of winning and the others. Second, we
used three indices: The number of wins, draws, and losses. If both tests proved
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Table 1. Total average point (rank) in 1000 games.

Team Non-anonymous Anonymous

CYRUS 26.047 (3) 26.219 (3)

HELIOS2021 32.188 (1) 32.281 (1)

YuShan2021 27.812 (2) 26.781 (2)

HfutEngine2021 16.656 (7) 16.281 (7)

Alice2021 24.391 (4) 25.500 (4)

Oxsy 21.688 (5) 18.656 (6)

RoboCIn 12.938 (9) 12.977 (9)

FRA-UNIted 17.375 (6) 19.219 (5)

Jyo sen2021 9.102 (10) 9.039 (10)

MT2021 14.023 (8) 14.117 (8)

ITAndroids 4.820 (13) 5.207 (13)

Persepolis 7.453 (11) 7.695 (11)

ARAS 6.227 (12) 6.188 (12)

Fig. 8. Distribution of difference in winning rate

that the difference is significant, Point 1 is given to the team. If the significant
difference is proved only from one of the two tests, point 0.5 is given. If neither
of the two tests recognizes any significant difference, no point is given (i.e., the
point is zero).

Figure 8 shows the difference in the winning rates. Most of the differences in
the winning rates are less than 5%. However, there are some matches where the
difference was tested significantly.

Figure 9 shows heat maps of the winning rate and the result of the Chi-
squared test. The value represents the winning rates of the teams in a row
against the teams in a column. This means that the larger the positive value is,
the stronger the corresponding team is, and the smaller the negative value is, the
weaker the corresponding team is in the Non-Anonymous mode. On the other
hand, if the value is near 0, there is not much difference between Anonymous and
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(a) Difference of winning rate (b) Chi-squared test result

Fig. 9. Heat map representations.

Non-Anonymous . Regarding the same matchups whose difference of winning
rate is more than several percent: We found that the Chi-squared test decided
that there is a difference in such frequency of result.

5 Conclusion

This paper introduced the champion of RoboCup 2022 Soccer Simulation 2D
Competition. First, the overview of the competition is described. Then, we
described our current research topics, online search of cooperative behavior plan-
ning, and the performance evaluation system. The HELIOS team won 4 cham-
pionships in the past RoboCup competitions. Currently, our released software is
widely used in the 2D community not only for competition but for research.
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Abstract. This paper provides an overview of the main developments
of the Tech United Eindhoven RoboCup@Home team. Tech United uses
an advanced world modeling system called the Environment Descrip-
tor. It allows for straightforward implementation of localization, navi-
gation, exploration, object detection & recognition, object manipulation
and human-robot cooperation skills based on the most recent state of
the world. Other important features include object and people detec-
tion via deep learning methods, a GUI, speech recognition, natural lan-
guage interpretation and a chat interface combined with a conversation
engine. Recent developments that aided with obtaining the victory dur-
ing RoboCup 2022 include people and pose recognition, usage of HSR’s
display and a new speech recognition system.

1 Introduction

Tech United Eindhoven1 (established 2005) is the RoboCup student team
of Eindhoven University of Technology2 (TU/e), which joined the ambitious
@Home League in 2011. The RoboCup@Home competition aims to develop ser-
vice robots that can perform everyday tasks in dynamic and cluttered ‘home’
environments. The team has been awarded multiple world vice-champion titles
in the Open Platform League (OPL) of the RoboCup@Home competition dur-
ing previous years, and two world champion titles in 2019 and 20223 4 5 in
the Domestic Standard Platform League (DSPL). In the DSPL, all teams com-
pete with the same hardware; all teams compete with a Human Support Robot
(HSR), and use the same external devices. Therefore, all differences between the
teams regard only the software used and implemented by the teams.
1 http://www.techunited.nl.
2 http://www.tue.nl.
3 https://tinyurl.com/DSPLBangkok2022Stage1Score.
4 https://tinyurl.com/DSPLBangkok2022Stage2Score.
5 https://tinyurl.com/DSPLBangkok2022FinalScore.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Eguchi et al. (Eds.): RoboCup 2022, LNAI 13561, pp. 264–275, 2023
https://doi.org/10.1007/978-3-031-28469-4_22
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Tech United Eindhoven consists of (former) PhD and MSc. students and staff
members from different departments within the TU/e. This year, these team
members successfully migrated the software from our TU/e built robots, AMIGO
and SERGIO, to HERO, our Toyota HSR. This software base is developed to
be robot independent, which means that the years of development on AMIGO
and SERGIO are currently being used by HERO. Thus, a large part of the
developments discussed in this paper have been optimized for years, whilst the
DSPL competition has only existed since 20176. All the software discussed in this
paper is available open-source at GitHub7, as well as various tutorials to assist
with implementation. The main developments that resulted in the large lead at
RoboCup 2022, and eventually the championship, are our central world model,
discussed in Sect. 2, the generalized people recognition, discussed in Sect. 4, the
head display, discussed in Sect. 5.3 and the new speech recognition system in
Sect. 5.4.

2 Environment Descriptor (ED)

The TU/e Environment Descriptor (ED) is a Robot Operating System (ROS)
based 3D geometric, object-based world representation system for robots. ED is
a database system that structures multi-modal sensor information and represents
this such that it can be utilized for robot localization, navigation, manipulation
and interaction. Figure 1 shows a schematic overview of ED.

ED has been used on our robots in the OPL since 2012 and was also used this
year in the DSPL. Previous developments have focused on making ED platform
independent, as a result ED has been used on the PR2, Turtlebot, Dr. Robot
systems (X80), as well as on multiple other @Home robots.

Fig. 1. Schematic overview of TU/e Environment Descriptor. Double sided arrows
indicate that the information is shared both ways, one sided arrows indicate that the
information is only shared in one direction.

6 https://athome.robocup.org/robocuphome-spl.
7 https://github.com/tue-robotics.

https://athome.robocup.org/robocuphome-spl
https://github.com/tue-robotics
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ED is a single re-usable environment description that can be used for a mul-
titude of desired functionalities such as object detection, navigation and human
machine interaction. Improvements in ED reflect in the performances of the sep-
arate robot skills, as these skills are closely integrated in ED. This single world
model allows for all data to be current and accurate without requiring updating
and synchronization of multiple world models. Currently, different ED plug-ins
exist that enable robots to localize themselves, update positions of known objects
based on recent sensor data, segment and store newly encountered objects and
visualize all this in RViz and through a web-based GUI, as illustrated in Fig. 9.
ED allows for all the different subsystems that are required to perform challenges
to work together robustly. These various subsystems are shown in Fig. 2, and are
individually elaborated upon in this paper.

Fig. 2. A view of the data interaction with robot skills that ED is responsible for.

2.1 Localization, Navigation and Exploration

The ed localization8 plugin implements AMCL based on a 2D render of the
central world model.With use of the ed navigation plugin9, an occupancy
grid is derived from the world model and published. With the use of the
cb base navigation package10 the robots are able to deal with end goal con-
straints. The ed navigation plugin allows to construct such a constraint w.r.t. a
world model entity in ED. This enables the robot to navigate not only to areas
or entities in the scene, but to waypoints as well. Figure 3 also shows the naviga-
tion to an area. Modified versions of the local and global ROS planners available
within move base are used.

8 https://github.com/tue-robotics/ed localization.
9 https://github.com/tue-robotics/ed navigation.

10 https://github.com/tue-robotics/cb base navigation.

https://github.com/tue-robotics/ed_localization
https://github.com/tue-robotics/ed_navigation
https://github.com/tue-robotics/cb_base_navigation
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Fig. 3. A view of the world model created with ED. The figure shows the occupancy
grid as well as classified objects recognized on top of the cabinet.

2.2 Detection and Segmentation

ED enables integrating sensors through the use of the plugins present in the
ed sensor integration package. Two different plugins exist:

1. laser plugin: Enables tracking of 2D laser clusters. This plugin can be used
to track dynamic obstacles such as humans.

2. kinect plugin: Enables world model updates with use of data from a RGBD
camera. This plugin exposes several ROS services that realize different func-
tionalities:
(a) Segment : A service that segments sensor data that is not associated with

other world model entities. Segmentation areas can be specified per entity
in the scene. This allows to segment object ‘on-top-of’ or ‘in’ a cabinet.
All points outside the segmented area are ignore for segmentation.

(b) FitModel : A service that fits the specified model in the sensor data of a
RGBD camera. This allows updating semi-static obstacles such as tables
and chairs.

The ed sensor integration plugins enable updating and creating entities.
However, new entities are classified as unknown entities. Classification is done
in ed perception plugin11 package.

2.3 Object Grasping, Moving and Placing

The system architecture developed for object manipulation is focused on grasp-
ing. In the implementation, its input is a specific target entity in ED, selected by
a Python executive and the output is the grasp motion joint trajectory. Figure 4
shows the grasping pipeline.
11 https://github.com/tue-robotics/ed perception.

https://github.com/tue-robotics/ed_perception
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Fig. 4. Custom grasping pipeline base on ED, MoveIt and a separate grasp point
determination and approach vector node.

MoveIt! is used to produce joint trajectories over time, given the current
configuration, robot model, ED world model (for collision avoidance) and the
final configuration.

The grasp pose determination uses the information about the position and
shape of the object in ED to determine the best grasping pose. The grasping
pose is a vector relative to the robot. An example of the determined grasping
pose is shown in Fig. 5. Placing an object is approached in a similar manner to
grasping, except for that when placing an object, ED is queried to find an empty
placement pose.

Fig. 5. Grasping pose determination result for a cylindric object with TU/e built robot
AMIGO. It is unpreferred to grasp the object from behind.

2.4 World Model Creation

A world model is described in a SDFormat file for compatibility with the Gazebo
simulation engine. Currently, world models in ED are generated in a semi-
automated way by manually composing and updating multiple object models
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templates12 built over the years. New ED plugins are in works that would fully
automate the updation of these templates in the future.

3 Image Recognition

The image recognition packages apply state of the art image classification tech-
niques based on Convolutional Neural Networks (CNN).

Fig. 6. Illustration of Convolutional Neural Networks (CNN) used in our object recog-
nition nodes with use of Tensorflow.

1. Object recognition: Tensorflow™ with retrained top-layer of a Inception
V3 neural network, as illustrated in Fig. 6.

2. Face recognition: OpenFace13, based on Torch.
3. Pose detection: OpenPose14.

Our image recognition ROS packages are available on GitHub15 and as Debian
packages: ros-kinetic-image-recognition.

4 People Recognition

As our robots need to operate and interact with people in a dynamic environ-
ment, our robots’ people detection skills have been upgraded to a generalized
system capable of recognizing people in 3D. In the people recognition stack,
an RGB-D camera is used as the sensor to capture the scene information. A
recognition sequence is completed in four steps. First, people are detected in the
scene using OpenPose and if their faces are recognized, using OpenFace, as one
of the learned faces in the robot’s database, they are labeled using their known
name. The detections from OpenPose are associated with the recognitions from
OpenFace by maximizing the IoUs of the face ROIs. Then, for each of the rec-
ognized people, additional properties such as age, gender and the shirt color
are identified. Furthermore, the pose keypoints of these recognitions are coupled
with the depth information of the scene to re-project the recognized people to
3D as skeletons. Finally, information about the posture of each 3D skeleton is
calculated using geometrical heuristics. This allows for the addition of properties
such as “pointing pose” and additional flags such as ‘is waving’, ‘is sitting’, etc.
12 https://github.com/tue-robotics/ed object models.
13 https://cmusatyalab.github.io/openface/.
14 https://github.com/CMU-Perceptual-Computing-Lab/openpose.
15 https://github.com/tue-robotics/image recognition.

https://github.com/tue-robotics/ed_object_models
https://cmusatyalab.github.io/openface/
https://github.com/CMU-Perceptual-Computing-Lab/openpose
https://github.com/tue-robotics/image_recognition
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4.1 Pointing Detection

Similar to the previous years, this year’s tournament challenges too involved
various non-verbal user interactions such as detecting an object the user was
pointing to. In the previous section, we explained our approach to recognizing
people in 3D. Once the recognition results are inserted into the world model,
additional properties can be added to the people taking other entities in the
world model into account, e.g. “is pointing at entity”. This information is used
by the top-level state machines to implement challenges such as ‘Hand Me That’,
the description of which can be found in the 2019 Rulebook16. However an
additional check based on spatial queries is inserted to ensure that the correct
operator is found. By using such a query it is possible to filter out people based
on their location. Finally, to determine at which entity the operator is pointing
to, we implemented ray-tracing, as illustrated in Fig. 7.

Fig. 7. Ray-tracing based on pose detection with AMIGO.

5 Human-Robot Interface

We provide multiple ways of interacting with the robot in an intuitive manner:
WebGUI, Subsect. 5.1, and Telegram™ interface, Subsect. 5.2, which uses our
conversation engine, Subsect. 5.2.

5.1 Web GUI

In order to interact with the robot, apart from speech, we have designed a web-
based Graphical User Interface (GUI). This interface uses HTML517 with the
Robot API written in Javascript and we host it on the robot itself.

16 http://www.robocupathome.org/rules.
17 https://github.com/tue-robotics/tue mobile ui.

http://www.robocupathome.org/rules
https://github.com/tue-robotics/tue_mobile_ui
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Fig. 8. Overview of the WebGUI architecture. A webserver that is hosting the GUI
connects this Robot API to a graphical interface that is offered to multiple clients on
different platforms.

Fig. 9. Illustration of the 3D scene of the WebGUI with AMIGO. User can long-press
objects to open a menu from which actions on the object can be triggered

Figure 8 gives an overview of the connections between these components and
Fig. 9 represents an instance of the various interactions that are possible with
the Robot API.

5.2 Telegram™

The Telegram interface18 to our robots is a ROS wrapper around the python-
telegram-bot library. The software exposes four topics, for images and text resp.
from and to the robot. The interface allows only one master of the robot at a
time. The interface itself does not contain any reasoning. This is all done by the
conversation engine, which is described in the following subsection.

Conversation Engine. The conversation engine19 bridges the gap between
text input and an action planner (called action server). Text can be received
from either Speech-to-Text or from a chat interface, like Telegram™. It is then
parsed according to a (Feature) Context Free Grammar, resulting in an action

18 https://github.com/tue-robotics/telegram ros.
19 https://github.com/tue-robotics/conversation engine.

https://github.com/tue-robotics/telegram_ros
https://github.com/tue-robotics/conversation_engine
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description in the form of a nested mapping, along with (sub)actions and their
parameters are filled in. This mapping may include references such as “it”.

Based on the action description, the action server tries to devise a sequence
of actions and parameterize those with concrete object IDs. To fill in missing
information, the conversation engine engages with the user and parses any addi-
tional inputs in context to the missing info. Lastly, it keeps the user “informed”
whilst actions are being performed by reporting on the current sub-task.

Custom Keyboard, Telegram HMI. The user interface modality as
explained above has been extended to reduce the room for operator error by
only presenting the user with a limited number of buttons in the Telegram app.
This has been realized through Telegram’s custom keyboards20 feature. This fea-
ture is especially useful when there are only a few options, like a predetermined
selection of drinks, as shown in our RoboCup@Home 2019 Finals.

We have employed this custom keyboard to compose commands word-for-
word (hmi telegram21). After a user input has been received, either via text or
previous buttons, for example “Bring me the ...”, the user is presented with only
those words as options that might follow the input according to the grammar,
eg. “apple”, “orange” etc. This process iterates until a full command has been
composed.

5.3 Head Display

Most people find interacting with robots a very challenging task, especially when
they do not deal with them on a regular basis. It is often difficult for people to
hear what the robot is saying and not always intuitive to know when to respond
to it. As a solution, we use the integrated screen on the Toyota HSRs’ ‘head’
to display useful information. Through the hero display22 we have integrated
a few different functionalities. As a default, our Tech United @Home logo with
a dynamic background is shown on the screen, as depicted in Fig. 10. When
the robot is speaking, the spoken text is displayed, and when it is listening, a
spinner along with an image of a microphone is shown. It is also possible to
display custom images on this screen.

20 https://github.com/tue-robotics/telegram ros.
21 https://github.com/tue-robotics/hmi telegram.
22 https://github.com/tue-robotics/hero-display.

https://github.com/tue-robotics/telegram_ros
https://github.com/tue-robotics/hmi_telegram
https://github.com/tue-robotics/hero-display
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Fig. 10. The default status of HERO’s head display.

5.4 Speech Recognition

Over the years, with the change of base hardware and operating systems, we
implemented and experimented with multiple speech recognition systems to
allow our robots to hear and understand the operator in noisy environments.
We started with the Dragonfly speech recognition framework23 using Windows
Speech Recognition engine as the backend on a Windows 10 virtual machine.
This system proved to not be robust against noisy environments primarily due
to the default microphone of HERO. As an alternative, we investigated Kaldi-
ASR [4], but finally settled with Picovoice24, alongside the existing Dragonfly
system, as it provided seamless support for our custom context-free grammars.

6 Task Execution

In the previous sections, we have described the various modules that contribute
towards the functioning of our robots. However, for a challenge to be success-
fully performed by HERO, these modules need to be strategically integrated
together in context to the said challenge. We do this by creating hierarchical state
machines using SMACH25. Over the years, we have extracted all the commonly
used integrations into the modules“robot smach states” and “robot skills”, and
started retaining only challenge specific behaviors within the challenges.

23 https://dragonfly2.readthedocs.io/en/latest/.
24 https://picovoice.ai/.
25 https://github.com/tue-robotics/tue robocup.

https://dragonfly2.readthedocs.io/en/latest/
https://picovoice.ai/
https://github.com/tue-robotics/tue_robocup
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7 Re-usability of the System for Other Research Groups

Tech United takes great pride in creating and maintaining open-source soft-
ware and hardware to accelerate innovation. Tech United initiated the Robotic
Open Platform website26, to share hardware designs. All our software is available
on GitHub27. All packages include documentation and tutorials. The finals of
Robocup@Home 202228 demonstrates all the capabilities of HERO, as described
in the previous sections. Tech United and its scientific staff have the capacity to
co-develop (15+ people), maintain and assist in resolving questions.

8 Community Outreach and Media

Tech United has organised 3 tournaments: Dutch Open 2012, RoboCup 2013
and the European Open 2016. Our team member Loy van Beek was a member
of the Technical Committee between 2014-2017 and Peter van Dooren has been
since 2022. We also carry out many promotional activities for children to pro-
mote technology and innovation. Tech United often visits primary and secondary
schools, public events, trade fairs and has regular TV appearances. Each year,
around 50 demos are given and 25k people are reached through live interaction.
Tech United also has a very active website29, and interacts on many social media
like: Facebook30, Instagram31, YouTube32, Twitter33 and Flickr34. Our robotics
videos are often shared on the IEEE video Friday website.

A HSR’s Software and External Devices

A standard Toyota™ HSR robot is used. To differentiate our unit, it has been
named HERO. This name also links it to our AMIGO and SERGIO domestic
service robots.

HERO’s Software Description. An overview of the software used by the
Tech United Eindhoven @Home robots can be found in Table 1.

26 http://www.roboticopenplatform.org.
27 https://github.com/tue-robotics.
28 https://tinyurl.com/TechUnited2022AtHomeFinals.
29 http://www.techunited.nl.
30 https://www.facebook.com/techunited.
31 https://www.instagram.com/techunitedeindhoven.
32 https://www.youtube.com/user/TechUnited.
33 https://www.twitter.com/TechUnited.
34 https://www.flickr.com/photos/techunited.

http://www.roboticopenplatform.org
https://github.com/tue-robotics
https://tinyurl.com/TechUnited2022AtHomeFinals
http://www.techunited.nl
https://www.facebook.com/techunited
https://www.instagram.com/techunitedeindhoven
https://www.youtube.com/user/TechUnited
https://www.twitter.com/TechUnited
https://www.flickr.com/photos/techunited
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Table 1. Software overview

Operating system Ubuntu 20.04 LTS Server

Middleware ROS Noetic [5]

Simulation Gazebo

World model Environment Descriptor (ED), custom

https://github.com/tue-robotics/ed

Localization Monte Carlo [2] using Environment Descriptor (ED), custom

https://github.com/tue-robotics/ed localization

SLAM Gmapping

Navigation CB Base navigation

https://github.com/tue-robotics/cb base navigation

Global: custom A* planner

Local: modified ROS DWA [3]

Arm navigation MoveIt!

Object recognition Inception based custom DNN [6]

https://github.com/tue-robotics/image recognition/image recognition tensorflow

People detection Custom implementation using contour matching

https://github.com/tue-robotics/people recognition

Face detection & recognition OpenFace [1]

https://github.com/tue-robotics/image recognition/image recognition openface

Speech recognition Windows Speech Recognition, Picovoice

https://github.com/reinzor/picovoice ros.git

Speech synthesis Toyota™ Text-to-Speech

Task executors SMACH

https://github.com/tue-robotics/tue robocup

External Devices. HERO relies on the following external hardware:

– Official Standard Laptop
– Gigabit Ethernet Switch
– Wi-Fi adapter
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Abstract. In 2022, TIGERs Mannheim won the RoboCup Small Size
League competition with individual success in the division A tournament,
the blackout technical challenge and the dribbling technical challenge.
The paper starts with an outline of the robot’s dribbling hardware and
ball catching computations, followed by a high level summary of the AI
used in the tournament. Given 62 scored goals and no conceded goals at
RoboCup 2022, the focus is on describing the used attack and support
behaviors and how they are selected. The paper concludes with a statistic
of the tournament backing the efficiency of our employed strategies.

1 Robot Dribbling Hardware and Ball Interaction

As in all other RoboCup soccer leagues ball handing and control is a key factor
to success. It has gained more importance recently as our offensive employs an
increasing number of actions to steal the ball from opponents, to move with the
ball, or to protect it from opponents (see Sect. 2). Section 1.1 gives an overview
of the robot hardware which is in direct contact with the ball and recent updates
applied to it. Section 1.2 describes how to approach the ball to actually make
use of the hardware.

1.1 Dribbling Device

In the SSL a golf ball is used, which is the most rigid game ball of all leagues.
Hence, the ball itself provides only very little damping during reception and
dribbling. It also has a low friction coefficient, complicating ball control even
further.

Consequently, damping and a high friction coefficient must be provided by
the robots controlling the ball. This is done by a unit which is called the dribbling
device. It is depicted in Fig. 1 for our v2022 robot generation.

We decided to use a design with two degrees of freedom, as we did in our v2016
robots [1]. We combined the v2016 2-DoF dribbler with ZJUNlict’s additional
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Eguchi et al. (Eds.): RoboCup 2022, LNAI 13561, pp. 276–286, 2023
https://doi.org/10.1007/978-3-031-28469-4_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-28469-4_23&domain=pdf
https://doi.org/10.1007/978-3-031-28469-4_23
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dampers [2]. The top damper is mainly used to absorb impact energy of incoming
passes. As soon as the ball is actively controlled the exerted backspin on the ball
can push the whole dribbler upwards on the sideward sliders. The additional
load is absorbed by flexible elements and the motor is current and temperature
controlled to prevent overstress. If the dribbler drops during the dribbling process
(either due to a skirmish or an uneven ground) it is damped via the small bottom
dampers. All dampers are 3D printed from a flexible TPE material with a 70A
shore hardness. The damping properties of the top damper can be adjusted by
changing its shape (mainly by varying the branch thickness).

Fig. 1. Dribbling device with highlighted damping elements.

Compared to the version used in the 2021 hardware challenges some addi-
tional improvements were made [3]. The material of the dribbling bar has been
changed to a soft silicone, which is much less abrasive than the previously used
polyurethane. Due to the complex shape of the dribbling bar it is molded by
using two 3D-printed half shells as a mold and pouring in the liquid silicone
from the top. Furthermore, the gear modulus has been changed from 0.5 to 0.7
as the small gears tended to break under heavy load.

With the updated dribbling device, we achieve excellent damping properties
and can stop an incoming pass directly at the robot. This was tested with another
robot kicking the ball so that it reaches the dribbling device with 5 m/s. The
rebound was assessed visually and no separation of the ball from the dribbling
device could be identified. To retain ball control the dribbler can run at up to
25000 rpm. Depending on carpet friction it consumes between 2 A and 8 A of
current. A higher current corresponds to a better grip of the ball. This current
is also reported back to our central AI which uses it to asses if a difficult move
with the ball can be executed. A detailed description of our v2020 hardware can
be found in [4,5].
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1.2 Catching a Rolling Ball

When a ball is rolling on the field, the robots have to stop or catch the ball. We
use two different approaches to catch such a ball. If it is possible to intercept
the ball by moving onto the ball travel line just in time, we try to intercept.
Otherwise, we try to approach the ball from behind and stop it with the dribbler.

Intercepting the Ball. The approach of intercepting the ball is based on a method
from CMDragons [6]. It samples multiple points along the ball travel line. A
robot trajectory is then planned to each point and the resulting travel time is
associated with the respective point. Then, we calculate the time that the ball
needs to reach each point by using our internal ball model [7]. This gives us the
slack time that a given point has. A negative slack time means that the robot
reaches the position before the ball. Plotting the slack times results in the graph
shown in Fig. 2. In most situations in which a ball is rolling towards the robot,
there are two time slots (interception corridors) where the robot can actually
catch the ball. Usually one small time window to catch the ball close to the
robots current position and one large time window far in future, when the ball
is getting so slow that the robot can overtake the ball again.

Fig. 2. Ball interception calculation.

The robot will try to move towards the first reachable interception corridor
(negative slack time) that meets some requirements (corridor width > 0.2 s and
min slack-time < −0.2 s). The selected corridor begins at a given ball travel time
(x-axis), which we can use to feed the ball model to calculate a target position
where to actually catch the ball. This will be done for each robot on the field.
The robot that can catch the ball most rapidly will be selected as the primary
offensive robot. If it is uncertain that the primary robot is able to catch the ball,
then multiple robots may try to intercept the ball.
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Approach and Stop Ball. The fallback, when intercepting the ball is not feasible
is to approach the ball from behind by moving onto the ball travel line and then
approaching the ball until it hits the spinning dribbler. As soon as the ball is on
the dribbler, the robot brakes as quickly as possible without loosing the ball. If
tuned well, this is quite an effective approach to quickly gain back ball control.

2 Offensive Strategies

This section introduces the basic foundation of the offensive decision making.
One key aspect of the offensive strategy are the OffensiveActionMoves. An Offen-
siveActionMove represents a specific action a robot can execute. An Offensive-
ActionMove can be a simple pass, a kick on the opponents goal, or a special
behavior in close engagements with robots from the opponent team. Currently,
we have ten OffensiveActionMoves. There are three methods that each Offen-
siveActionMove has to implement. The method isActionViable determines the
viability of an ActionMove. The viability can either be TRUE, PARTIALLY or
FALSE. The method activateAction controls the actual execution of the move.
The method calcViabilityScore will determine a score between 0 and 1 for the
current situation. This score should be connected to the likelihood, that this
action can be executed successfully. The viability and its score are calculated
in a unique way for each OffensiveActionMove. For example, the viability of a
GOAL SHOT is determined mainly by the open angle through which the ball
can enter the opponent’s goal. The viability of a PASS is mainly determined by
the pass target rating (see Sect. 3.2). The different scores are made comparable
by additional weights set by hand, based on an educated guess. In addition, a
self-learning algorithm is used that takes into account the successes and failures
of past strategies to fine-tune these weights during a match. This algorithm was
first presented in our 2018 TDP [1].

Algorithm 1 shows how the best OffensiveActionMove out of one given Offen-
siveActionMoveSet is determined. It is important to note that the OffensiveAc-
tionsMoves inside a given set have a specific ordering, which represents the
priority. The OffensiveActionMove in the first position of the set has the highest
priority. An OffensiveActionMove will be activated if its viability returns TRUE
and it has a higher priority than all other OffensiveActionMoves that return
a TRUE viability. Actions that return the viability FALSE will be ignored in
any further processing. All actions that are PARTIALLY viable are sorted by
their viabilityScore and if there is no action that has a TRUE viability, then the
action with the highest viabilityScore will be activated. In case all actions have
a FALSE viability then a default strategy will be executed.
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Algorithm 1. Pseudocode - Find the best OffensiveActionMove

for (var action : actionsSet) {

var viability = action.isActionViable();

if (viability == TRUE) {

// activate first move that got declared as viable

return action.activateAction();

} else if (viability == PARTIALLY)

partiallyMoves.add(action);

}

partiallyMoves.sort(); // sort by viabilityScore

if (!partiallyMoves.isEmpty()) {

// choose best partially viable move to be activated

return partiallyMoves[0].activateAction();

}

return defaultMove.activateAction()

The separation into viable and partially viable actions, combined with pri-
orities leads to a very stable and easily modifiable/extendable algorithm for the
offensive strategy. For example, the OffensiveActionMove that controls direct
kicks on the opponent goal will return a TRUE viability if there is a high chance
to score a goal. If there is a extremely low chance to score a goal it will return
FALSE. Otherwise, if the hit chance is reasonable but not really high, it will
return PARTIALLY. Additionally, this action has a high priority. Thus, the
robot will surely shoot on the goal if there is a good opportunity to score a goal.
However, if the viability is PARTIALLY the action will be compared with the
other actions and based on the viabilityScores the robot will decide whether it
should shoot on the goal or execute another action, e.g. a pass to another robot.

2.1 Offensive Dribbling

Another offensive action that the robot may choose is the so called DribbleKick,
which is one of the dribbling actions the robot can do. Figure 3a shows a typical
scenario of a ball located in front of the opponent goal. In this case the robot
chooses to do a DribbleKick. The robot approaches the ball and tries to bring
it onto its dribbler. The strength of the dribble contact can be estimated from
the power drawn by the dribble motor (see Sect. 1.1). The robot will wait until
the ball has a strong contact and also checks if it is possible to score a goal from
another position on a curve around the opponents penalty area. Multiple points
on the curve are sampled and evaluated for their chance to score a goal (white
= high chance to score, gray = low chance to score). The robot will drive along
the curve towards the best point, while keeping the ball on the dribbler. As soon
as the target is not blocked anymore the robot will kick the ball as shown in
Fig. 3b.
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Fig. 3. Execution of a DribbleKick

The entire sample-curve can move closer or further away from the opponent
goal, depending on the behavior of the defending robots. In general the robot will
try to avoid coming to close to opponent robots. The robot must also adhere to
the maximum dribble distances allowed. Therefore, it does not sample positions
farther away than the maximum allowable dribble distance (1 m) to avoid dribble
rule violations. The robot tries to move laterally and shoot the ball while it is still
in the acceleration phase. Since the opposing robot only reacts to the measured
position of our robot, it will always have a disadvantage due to overall system
latency. As the robot tries to shoot during acceleration it may not be possible to
change movement anymore if a dribbling violation is imminent. In such a case,
the robot will simply shoot the ball to avoid a violation, even if there is no good
chance to score a goal.

The calculations are done on every AI frame. Meaning that there is no plan
that the robot follows. Each frame the destination or the kick target can change.
This is important, because we need to react fast to the opponents movement and
re-evaluate our strategy constantly. In order not to lose the ball while dribbling,
the robot balances its orientation so that the rotational force of the ball points
in the direction of our robot. When a dribbling robot changes its orientation,
the force vector of the rotating ball also changes. However, it lags behind the
robots movement. If the orientation or the direction of movement is changed
too quickly, ball control may be lost. The robot will give priority to ball control
during the movement. However, if the robot sees that it could score a goal, it
will quickly align itself towards the target and shoot. For the final shot, the
robot will take into account its current velocity to calculate the final alignment
towards the target to make an accurate shot.
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2.2 Defensive Dribbling

Our AI distinguishes between defensive and offensive dribbling. Defensive drib-
bling is concerned with getting the ball and protecting it from the opponent
robots while always adhering to the dribbling rule constraints. Our attacking
robot will remain in the defensive dribbling state until a good enough offensive
strategy has been found.

Figure 4 shows a common situation. The ball is located in front of the translu-
cent robot and an opponent robot is about to attack us. Our robot has ball
control, but no offensive action with a good enough viability score. Thus, the
robot will enter the defensive dribbling mode. The robot will then try to protect
the ball from the opponent robots. Multiple points within the allowed dribbling
radius are sampled and evaluated. The robot will then dribble the ball towards
the position that is rated to be the safest from opponent robots. At the same
time the robot will try to turn the ball away from the opponent robots.

Fig. 4. Defensive dribbling calculations.

3 Support Strategies

Robots which are not assigned to any attacking or defending role become sup-
porting robots. They are supposed to run free, look for good positions on the field
from where they can safely receive a pass and ideally also have a good chance to
score a goal. Section 3.1 gives an overview of the high-level behaviors a support-
ing robot may get assigned. They define where a robot should go. Section 3.2
outlines where our robots may receive passes and forms the connection between
support and attack strategies.

3.1 Supporting Robots

Given the fast-paced nature of the Small Size League, planning too far in the
future is not advisable. Situations change within fractions of a second. So instead
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of finding good positions globally on the field, we focus on optimizing current
robot positions first, while still observing the global supporter distribution. With
the increasing number of robots in the league (2012–2017: 6, 2018–2019: 8, 2021–
2022: 11) more and more robots take over the supporting roles. During a free
kick in the opponent half, we may use up to 9 supporters, while 5 years ago, it
were 4 at most.

Over the previous years, we developed different supporting behaviors. Each
supporter is assigned a behavior. There can be limits on the number of robots
having a certain behavior and behaviors may be disabled based on situation,
tactics or game state. For each robot, the viability and a score between 0 and 1
of each behavior is determined and the best rated behavior is assigned. The via-
bility algorithm is similar to the one described in Sect. 2. The following sections
describe some of the most important behaviors.

Direct Goal Redirector. Find a position from where a goal can be scored, optimiz-
ing for the redirect angle, namely the angle between the current ball position, the
desired supporter position and the goal center. A small redirect angle is better,
because receiving it is more reliable and precise.

Fake Pass Receiver. If a supporter is near an ongoing or planned pass, it pretends
to receive this pass by standing close to the passing line, but without actually
receiving the ball. Opponents will need to figure out which is the right receiver
or need to defend all potential receivers. This behavior could often be observed
quite clearly in matches1.

Penalty Area Attacker. Position the robot as close as possible to the opponent
penalty area to prepare it for a goal kick. Passing through the penalty area and
scoring from that position will leave the defense few chances to block the goal
kick.

Repulsive Attacker. Bring the supporter to a good attacking position without
interfering with other supporters using a force field with several force emitters.
For example field boundaries, other robots and a general trend towards the
opponent goal. The desired position is determined by following the forces in the
field a fixed number of iterations. Figure 5 shows such a force field fully visualized
for the team playing towards the left goal. In the own half, forces are directly
towards the opponent half, while in the opponent half, forces are directly towards
the middle of the left or right side of the opponent half and away from opponents
and the ball.

Repulsive Pass Receiver. Based on the same repulsive principal as the Repulsive
Attacker behavior, a position with a certain distance to the ball that is not
covered by opponents is targeted.

1 https://youtu.be/W8Z 2a2Ieak?t=80.

https://youtu.be/W8Z_2a2Ieak?t=80
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Fig. 5. Repulsive force field for Repulsive Attacker behavior

3.2 Pass Targets

Pass targets are potential positions where the ball can be received and are cal-
culated for each friendly robot on the field, except for the keeper. Multiple pass
targets exist for each robot. Each one having a rating which is based on its pass-
ability, chance to score a goal from the pass targets location and the chance of an
opponent intercepting the ball on its way to the pass target. The pass targets are
calculated in a circle around the robot, where the circle is additionally shifted
in the current motion path of the robot. The radius of the generation circle is
determined by the current velocity of the robot. A fixed number of unfiltered tar-
gets is generated in each frame. The list of targets is then filtered to ensure that
all targets can be reached in time by the designated robot until the scheduled
pass arrives. Different times are taken into account: The time until the attacking
robot is able to shoot the ball, the travel time of the ball and the time needed
for the pass receiving robot to reach its passing target. The best pass targets
from the past are reused to efficiently optimize the targets over time. Figure 6a
shows the calculated pass targets for a single robot.

Once an offensive robot gets close to the ball, it will choose the currently
calculated offensive action. In case of a pass, the offensive strategy will take over
the robot with the best rated pass target as the pass receiver shortly before the
pass is executed. This allows a tighter and more stable coordination between the
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Fig. 6. Illustration of pass target generation and selection.eps

robots. Figure 6b shows a typical pass situation generated by our AI. Robot 2
plans to pass the ball to robot 3. Rather than passing to the robot’s position,
it passes to a pass target near robot 3. Since we use trajectories to control our
robot movement, we can calculate the time at which robot 2 needs to kick the
ball. Furthermore, we can use the initial ball velocity and our ball model [7] to
calculate the time at which the ball needs to reach the pass target. Also, we can
calculate the time robot 3 needs to reach his pass target. By combining these
numbers we can synchronize the time in which the ball and robot 3 will reach
the pass target.

4 Conclusion

At RoboCup 2022, TIGERs Mannheim played 10 official matches during the
group and elimination phase of the division A tournament and scored 62 goals
in total, while not conceding any goal throughout the tournament. Every second
attempted goal shot was successful and two thirds of passes between TIGERs
robots succeeded on average. These numbers support the focus and strength of
the team: A fast paced and dynamic attack strategy.

The numbers were extracted from the official log files2 using the TIGERs log
analyzer from the technical challenge 20193 and the leagues match statistics4.
Table 1 shows the full set of gathered statistics. Only shots with a duration of at
least 300 ms were considered. The ball possession specifies the amount of time
that the team uniquely possessed the ball relative to the time that either team
uniquely possessed the ball. So a value larger than 50% means that this team
possessed the ball more often than the other team.

2 https://ssl.robocup.org/game-logs/.
3 https://ssl.robocup.org/robocup-2019-technical-challenges/.
4 https://ssl.robocup.org/match-statistics/.

https://ssl.robocup.org/game-logs/
https://ssl.robocup.org/robocup-2019-technical-challenges/
https://ssl.robocup.org/match-statistics/
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Table 1. Tournament statistics from RoboCup 2022 (Division A)

Team Goals
scored

Goal
shots

Goal shot
success

Ball pos-
session

Passes Pass
success

TIGERs Mannheim 62 113 54.9% 63.2% 648 66.6%

ER-Force 13 95 13.7% 59.3% 619 53.3%

RoboTeam Twente 3 28 10.7% 37.6% 255 34.9%

KIKS 1 29 3.4% 52.1% 268 34.3%

RoboDragons 1 127 0.8% 35.5% 270 29.3%

The number of goals scored indicates a good positioning by the supporters
and also a reliable and precise execution of kicks by the actual robots on the
goal. The outstanding goal shot success ratio underlines very well the offensive
action selection based on viabilities. Our robots do not blindly force kick towards
the opponent goal on every opportunity but carefully decide if this action would
have a chance to score at all. Alternative actions like the defensive dribbling
ensure a high ball possession rate in case no other reasonable offensive strategy
is available. The high number of passes and the pass success ratio show that our
supporters are in good positions to receive passes and the offense often selects a
passing action to get in a good position to score.

5 Publication

Our team publishes all their resources, including software, electronics/schemat-
ics and mechanical drawings, after each RoboCup. They can be found on our
website5. The website also contains several publications with reference to the
RoboCup, though some are only available in German.
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Abstract. The B-Human team won all of its seven games at the
RoboCup 2022 competition in the Standard Platform League (SPL),
scoring a total of 48 goals and conceding 0. B-Human achieved this high
level of performance with a new behavior architecture that enables more
cooperative game play while sending fewer team communication mes-
sages. This paper presents the parts of the behavior that we consider
crucial for this year’s success. We describe the strategic evaluation, action
selection, and execution aspects of our new pass-oriented play style. The
effectiveness of our algorithms is supported by statistics from competition
games and extensive testing in our simulator. Empirically, our approach
outperforms the previous behavior with a significant improvement of the
average goal difference.

1 Introduction

Soccer is a team sport. Thus, the overall success always depends on the proper
coordination among all players, which is, for instance, reflected in their posi-
tioning and the execution of cooperative actions such as passes. In recent years,
the implementation of passing skills has been encouraged in the SPL by hold-
ing different technical challenges as well as by introducing (indirect) set pieces.
However, in the normal course of most games, only very few actual passes were
seen. Such a complex cooperation requires a common understanding of the cur-
rent game situation as well as of the intentions of the teammates. Although
cooperation has already been complicated in itself, in 2022, the SPL decided to
significantly reduce the number of wireless messages that the robots can exchange
within their team.

In this paper, we present our contributions that we assume had the most
impact on winning RoboCup 2022 as well as the RoboCup German Open 2022: a
new behavior architecture along with new skills, such as passing, as well as a new
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Eguchi et al. (Eds.): RoboCup 2022, LNAI 13561, pp. 287–299, 2023
https://doi.org/10.1007/978-3-031-28469-4_24
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communication approach. Overall, we aimed for more sophisticated cooperation
despite lower communication capabilities.

In our 2017 champion paper [11], we already argued that in the current state
of the RoboCup Standard Platform League, the development of flexible robot
behaviors makes a significant difference, while other tasks such as perception,
modeling and motion have mostly been solved. Therefore, we developed a new
behavior architecture this year, which is described in Sect. 2. It decouples differ-
ent layers of complexity, along with the new cooperative skills for passing and
positioning. Furthermore, we enhanced our behavior in one vs. one situations.

To cope with the SPL’s new team-wide message budget, which allows way
less communication than in previous years, the implementation of an approach
that is more intelligent than just sending messages in static intervals became
necessary to allow the intended high level of team play. In Sect. 3, we describe our
new techniques to remain within the given budget whilst timely communicating
important information to teammates.

2 Behavior

With the advancement of RoboCup, team play turns into a key feature of suc-
cess [5]. It appears that individual robots dribbling and shooting at the goal
is an approach that fails to fully explore the tactical possibilities of the game.
This is why we introduce a more progressive approach to the SPL: coordinated
passing of the ball between teammates. This involves planning and evaluating
possible passes and goal shot opportunities as well as appropriate positioning
of the cooperating robots. Furthermore, alternative actions for situations with
opponents in the vicinity of the ball need to be taken into account.

2.1 Strategy

This year, B-Human extended the behavior architecture from 2019 [10]
with a new strategy component. It encapsulates team and long- to mid-
term decisions and lowers them to high-level commands for an individual
robot. Team decisions include, e.g., which tactic to use, which position (i.e.
defender/midfielder/forward) to fill, whether to play the ball, etc. Different
tactics can be defined in configuration files by specifying a set of base posi-
tions, including their prioritization, which influence dynamic task allocation and
positioning of the individual players. A state machine switches between tactics
depending on the number of active field players and the ball position, which is
stabilized by a team majority vote so all players use the same tactic. The strategy
component is not interrupted by short-term events, such as falling down or one
vs. one situations, such that long-term desires of the team are kept. The output
of the strategy is rather abstract, e.g. shoot at the goal, pass to player X, position
at Y, without defining which kick type, angle or path to use. These decisions are
up to the skill layer, which can also decide for a completely different action if
short-term circumstances require this (e.g. one vs. one situations), the action is
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currently impossible (e.g. if the goal is out of range, dribbling is preferred), or
the resulting behavior would be illegal.

2.2 Passing

Passing has been dominant in other RoboCup leagues for many years, especially
with the wheeled robots of the Small Size League (SSL) and Middle Size League
(MSL). The objective of passing is getting closer to the opponent’s goal while
keeping possession of the ball to create scoring opportunities in a controlled
way [3]. This creates tactical opportunities as the opponent team is often unable
to cover multiple angles on their goal at the same time. This stems from the
fact that the ball can be kicked and rolls faster than the robots are able walk
or react. Therefore, if the ball is moved over a large distance with a pass, as
long as a teammate is able to play the ball within a given time, an opening is
guaranteed.

Planning. At the strategic level, a player wanting to manipulate the ball must
decide between shooting at the goal or which teammate to pass the ball to using
our so called “SmashOrPass” algorithm. We opted for an approach where the
action is selected based on the probability that it will lead to a goal in the short
term. This must consider the fact that the outcome of all actions is uncertain.
For passing in particular, a kicking robot might hit the ball imprecisely or even
fall over in the process [4]. In addition, the inaccuracies in the perception and
the resulting world model make it unrealistic to compute accurate probabilities.
Therefore, the chance of success of these actions is estimated by rating functions
with hand-crafted features [1] that attempt to approximate the probability of
succeeding in a computationally feasible way [2].

Goal Evaluation. The goal rating is the estimated probability of scoring a
goal from a hypothetical ball position. This means, there is a wide enough open
angle on the opponent’s goal that is not blocked by obstacles currently present
in the world model [8] and the goal is within kicking range [1]. These criteria are
combined in the goal rating function rgoal(x), where x is the hypothetical ball
position. The resulting rating is shown in Fig. 1a.

Pass Evaluation. The pass rating is the estimated probability that a team-
mate can receive the ball at a hypothetical target position when kicked from its
current position [2]. Several criteria take into account the positions of the oppo-
nents currently present in the world model of the robot to assess the risk of an
interception of the rolling ball before it arrives at the target [3]. Figure 1b shows
the pass rating function rpass(x) where x is the hypothetical target position.

Action Selection. The “SmashOrPass” algorithm iterates over the positions
of the teammates T and compares their combined rating (see Fig. 1c) for a pass



290 T. Röfer et al.

Fig. 1. Visualization of the rating functions. The world state of the robot shows the
teammates (black squares), opponents (blue squares), ball (white circle), and goalposts
(colored circles). The black team is playing from left to right. (Color figure online)

to the player and a following goal shot by that player. The best pass target x∗

is selected as:

x∗ = arg max
x∈T

rpass(x) · rgoal(x) (1)

Equation (1) maximizes the estimated probability of success for a pass to the
player at position x directly followed by a goal shot. This is compared to the
rating of a direct goal shot from the current ball position xball, to ensure that a
pass is only played if its combined rating is higher, i.e. the following condition
is true:

rpass(x∗) · rgoal(x∗) > rgoal(xball) (2)

Skill Execution. The pass skill interprets the pass request from the strategy
layer and calculates the optimal parameters for the kick towards the receiver
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with the specified player number [4]. This process involves planning a trajectory
for the pass that avoids interception by opponents and maximizes the probability
of the teammate successfully receiving the ball [2].

2.3 Positioning

One of the most important aspects of the strategy, which makes a soccer game
dynamic, is the positioning of field players, who are not currently playing the
ball [3]. When the pass receiver is in the shadow area behind an opponent, the
pass will most likely end in a loss of ball possession [3]. Therefore, we developed
a procedure according to which players can create space and make themselves
available for a pass. Initially, the entire field was considered for the recogni-
tion of open space. This is both inefficient, because distant areas cannot be
reached quickly, and problematic, because role assignment could oscillate, when
approaching a teammate’s base position from the tactic [4]. As a solution, the
search space can be reduced to the area that this player of the team is currently
assigned to by the strategy. For this purpose, Voronoi diagrams have been inte-
grated into the B-Human system, to be utilized for different tasks, such as the
ball search and the positioning for passes or field coverage.

As mentioned before, the B-Human behavior architecture provides multiple
tactics for a given number of players, each describing exactly one base position
for each player and thus the general formation of the team [4]. A Voronoi diagram
can be generated from these base positions of the currently active tactic. Since
all possible combinations of base positions are known in advance, the Voronoi
diagrams can be precomputed. The behavior can then utilize the corresponding
Voronoi regions for any situation that can arise in the game. To find a specific
position inside the Voronoi region, we utilize rating functions that differ between
the roles to express their duty [6]. In general, the task of a position role is to
calculate a position, where the player is of great strategic use [4]. Examples of the
resulting rating functions for the position roles in their corresponding Voronoi
region are shown in Fig. 1d.

For the forward, the rating function consists of a combination of the pass
and goal ratings, which are described in Sect. 2.2, as well as the distance to the
base position b from the tactic. They are combined using the following formula:

rforward(x) = rpass(x) · rgoal(x) · e− ‖x−b‖2

2σ2
︸ ︷︷ ︸

distance factor

(3)

This represents the task of the forward position to position itself in such a way
that it can receive a pass and then shoot directly at the opponent’s goal.

The midfielder uses a different rating function that focuses on field coverage,
as it is beneficial to position away from teammates and the field border. It also
takes the position’s distance to the base position and a preferred distance to the
ball into account.

Using gradient ascent, a local optimum of the rating function inside the
Voronoi region is found. This makes it possible to react dynamically to changes
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in the world model [5]. As we start each cycle at the position that was found
in the last frame, we tend to stick to the same local optimum, which provides a
good resistance to noise. The limitation to find only local optima due to gradient
ascent is not drastic as in most situations there are only a few that do not differ
much.

2.4 One vs. One Situations

Although passing is supposed to prevent one vs. one situations with other robots
in the first place, they are still a major part of the game, so it is clearly advan-
tageous to win as many of them as possible. An example of such a situation can
be seen in Fig. 2.

Falling or executing kicks that let the ball bounce off the opponent will
always result in losing ball possession in the short term. Walking faster than
the opponent and wasting less time also gives an advantage to gain or keep ball
possession. In previous competitions the behavior ignored that the robot could
fall while walking to the ball or while kicking, but also that kicking the ball far
away without a teammate in sight would result in losing ball possession. This
resulted in many situations, in which the robots walked or kicked directly into
the opponent and fell as a result of the collision, or they kicked the ball far away,
so no teammate could gain ball possession.

We now use two new approaches: On the one hand, as long as no pass is
desired, the ball is kept close and only dribbled a short distance forward. This
allows to react quickly to changes of the situation, for instance a pass becomes
possible or an opponent walks into our path. On the other hand, we explicitly
determine whether a kick would lead to a collision with another robot and only
use such kicks when no other one is possible. Even then, the relative position
behind the ball is adjusted to prevent walking into the opponent. The kick itself
will adjust automatically, as the movement is calculated based on relative ball
position offsets. If no kick is possible, e.g. if an opponent stands directly behind
the ball, the robot places itself behind the ball and forms a V-shape with its
feet. Afterwards, the swing leg will be rapidly moved to the ball and back to
the starting position to move the ball sideways away from the opposing player.
This gives us a head start to follow the ball and can generate an opening to
outmaneuver the opponent.

Although passes are hard to execute in such situations, the high-level pass
request is used to determine passes to a specific teammate. A bad pass is pre-
ferred over a one vs. one situation and losing the ball, mainly because the ball
would be moved into a better position for scoring a goal. Therefore, instead of
positioning exactly behind the ball to kick it as close to the target direction as
possible, we willingly allow high deviations in the direction and range. To reduce
the execution time as much as possible, based on the distance to the next robot,
a handful of restrictions for the kicks are deactivated and thresholds increased.
For example, most kicks require the robot to stop or have executed only a small
walking step before. Moreover, the relative ball position to the kicking foot must
lie within a given threshold range in order to start a kick. But given a close
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Fig. 2. A one vs. one situation. A B-Human robot (black) kicking the ball past the
opponent (blue). Photos by JT Genter (2022, CC BY-SA 4.0) (Color figure online)

opponent, we prefer the risk of a failed kick or higher deviations to not kicking
at all, as positioning behind the ball takes too much time. Note that a failed kick
means the ball was not touched or the ball moved significant less than expected.

This combination of short dribble kicks, dynamic ball adjustments, and far
passes, whilst maintaining a stable posture without the need for accurate posi-
tioning, is possible thanks to our walk step adjustment [9]. It ensures no matter
the situation, like bumping into other robots, switching the target multiple times
or an executed kick, the robots will fall as little as possible but still maintain
a high walking speed and can react to changes within one walk step duration,
which is currently 250 ms. A more detailed description how the behavior works
in one vs. one situations can be found in the wiki1 of this year’s code release.

2.5 Results

Simulation. In order to test the effectiveness of our new passing behavior, an
experiment in our simulator “SimRobot” [7] was designed based on an a priori
power analysis. A one-sample t-test was conducted to compare the average goal
difference of a passing team, that scored 234 goals and conceded 100 goals against
a team that cannot pass. There was a very significant difference in the mean value
of the goal difference (M = 0.67, 99% CI [0.43, 0.91], SD = 1.31) for the passing
team; t(199) = 7.225, p < .0001. These results suggest that passing leads to
more goals, based on a sample of N = 200 simulated halves. Specifically, the
passing team scored 70% more goals and conceded 30% fewer goals against a
team that cannot pass, compared to the results of two teams that both cannot
pass. Therefore, the detected effect size of this analysis (d = 0.51) is considered
practically significant.

Competitions. The new behavior on real robots enabled more frequent passing
to teammates during the competition games at RoboCup 2022. Compared to
RoboCup 2019 the average number of passes per game in normal play increased
sevenfold, while remaining at a comparable success rate, as seen in Table 1. Fewer
passes have been attempted at the German Open 2022. This could be due to

1 https://wiki.b-human.de/coderelease2022/behavior/#zweikampf.

https://wiki.b-human.de/coderelease2022/behavior/#zweikampf
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Table 1. B-Human’s pass statistics for the last three regular competitions

Competition #Games Normal play Set play

#Passes Success #Passes Success

RoboCup 2019 7 11 81.8% 18 83.3%

German Open 2022 8 29 75.9% 7 85.7%

RoboCup 2022 6a 68 72.1% 15 73.3%
aDue to missing video footage, one game could not be evaluated.

Table 2. B-Human’s duel
statistics at RoboCup 2019
and 2022

Games RoboCup #Duels Success

All 2019 129 52.7%

2022 149 70.5%

Final 2019 45 42.2%

2022 42 59.5%

Table 3. Fall statistics of the top 4 teams at RoboCup
2019 and 2022 (Due to missing video footage, the num-
ber of games per team varies. The numbers in paren-
theses include falls due to already broken gears, the
regular numbers do not.)

Team RoboCup Avg. #falls per game

Overall Collision Walking

B-Human 2019 10.1 9.4 0.7

2022 9.3 (14.3) 6.0 3.3 (8.3)

HTWK Robots 2019 18.5 14.1 4.4

2022 21.9 16.0 5.9

rUNSWift 2019 16.6 14.0 2.6

2022 22.2 14.7 7.5

Nao Devils 2019 18.3 12.6 5.7

2022 31.5 21.2 10.3

the fact, that the dynamic positioning based on rating functions, as presented in
this paper, was not yet developed. Additionally, the early iteration of the passing
algorithm had an inaccuracy in the implementation of the rating functions that
led to systematically lower pass ratings.

For one vs. one situations, the number of won encounters increased signifi-
cantly, as shown in Table 2; on average by about 33.8% and about 41% against
the runner-up team HTWK Robots. Meanwhile, the number of falls through col-
lisions (Table 3) decreased by about 36.2%, while it increased for the other top 4
teams by between 5% to 69%. Overall, it must be noted that the fall rate for the
other teams increased dramatically, by between 18% to 73%, while B-Human
decreased by about 9%, despite a higher walking speed.

3 Limited Team Communication

In this year, the major rule change was to limit the maximum number of messages
robots can broadcast to their teammates to 1200 per game for the whole team.
This is significantly less than the single message each robot was allowed to send
at RoboCup 2019 per second. For instance, the 2022 final lasted around 25 min.
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According to the 2019 rules, the robots would have been allowed to send 7500
messages, but now have to make do with only 16% of that amount. The league’s
referee application keeps track of the number of messages each team sent. It
broadcasts information about the state of the game to the robots twice per
second. The remaining message budget and the remaining game time are part
of that information, allowing the teams to monitor their budget use.

Although the intention of this rule change is that robots should rely more on
their own perceptions rather than sharing them regularly, our general approach is
to exchange mostly the same information as before, but limit the communication
based on relevance. There is a multi-step approach to sending messages. Firstly,
each robot waits at least one second after it sent the previous message before it
sends the next one. On the one hand, this limits the maximum sending frequency
to its 2019 counterpart. On the other hand, it ensures that the message sent was
already counted by the referee application and is reflected in its latest broadcast.
The second step is to make sure that the message budget is never exceeded,
because this would nullify any goals scored according to the rules, which would
prevent our robots from winning the game. There are two different approaches
based on the importance of the information that should be sent.

3.1 Priority Messages

If the whistle was just detected, the message should be sent as soon as possible,
because teammates would interpret a missing message as the whistle not being
heard, impeding the majority decision of the team whether the referee actually
whistled. Therefore, such messages are sent immediately as long as there is still a
budget left (keeping a small reserve), i.e. if βremaining > βreserve, where βremaining

is the message budget remaining as broadcast by the referee application and
βreserve is the number of messages we want to keep at the end of the game. This
must be at least #robots− 1 messages, because all robots could send a message
at the same time and thereby reduce the budget by #robots at once.

3.2 Normal Messages

For all other information, a sliding budget is used based on the remaining game
time and the remaining message budget using the following condition (ignoring
some edge cases here):

βremaining − βreserve

tremaining − tlookahead
>

βgame − βreserve

tgame
(4)

βgame is the overall message budget for a game, i.e. 1200. tremaining is the
remaining time in the game. tlookahead is a time period into the future, of which
the message budget can already be used. It allows to send a certain number of
messages at the beginning of the game that are basically borrowed from the end
of the game. This was set to 5 s. tgame is the overall time of a game. However,
the overall duration of a game is unknown, because there are certain periods in a
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game in which the clock is stopped. This is at least the time until the first kick-off
in each half. In playoff matches, the clock is also stopped between each goal and
the next kick-off. Therefore, our robots do not send normal messages during such
times, not even in preliminary matches. This allows us to set tgame = 1200 s.

3.3 Message Relevance

The approach so far would basically result in each robot sending a message
every five seconds, but also adapting dynamically to phases without messages
during preliminary games (in which the clock keeps running) and messages not
sent by robots that are penalized for a while. However, whether a normal mes-
sage is actually sent also depends on its relevance, i.e. whether it would contain
information different enough from the previous message sent.

How “different enough” is defined depends on the kind of information. Behav-
ior information such as the current role, tactic, set play, or pass target consists of
discrete values, i.e. if one changes, it should be sent to the teammates. Position
information such as the robot’s own position, the ball position, or the kick tar-
get position consists of continuous values. Here, “different enough” means that
it has changed significantly enough from its state sent previously both from the
perspective of the sending robot as well as from the perspective of at least one
of the receiving teammates. The further away a position is, the less precise it is
usually observed. Also, the further away it is, the less important is its precision,
because, for instance, kicking over long distances is also imprecise. As a result,
the deviation accepted before a message is sent depends on the distance to the
position in question. Another opportunity to save messages is to communicate
information that allows to predict future positions for a while. The ball position
is sent together with its speed. Using a friction model, this allows to predict the
position where the ball will come to a halt. Robots also communicate how fast
they are walking and where they intend to go. Thereby, teammates can predict
their current position. Actually, the criterion for sending a message is whether
the information sent previously would still suffice to predict the current position.

3.4 Team Play Under Limited Communication

Not all messages are sent, because the sliding budget might prevent it. Therefore,
the team behavior must consider which information has actually reached the
teammates, resulting in two different levels of strategic decisions: The ones that
the behavior control would like to perform and the ones the teammates were
actually informed about. Only the latter can actually be acted upon.

A very long-term variant of this problem is the coordination during the phases
of the game without any communication. It is entirely based on the last infor-
mation that was shared before the communication stopped. For instance, each
robot decides about the kick-off position it will walk to based on the positions
of all teammates at the time when the goal was scored.

During normal play, the robots act as a team, as described in Sect. 2. In
addition, the robots orient themselves to face the ball at all times. This results
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Table 4. Message delays due
to budget limits in the German
Open 2022 final

Player Half #Msg Delay
Msg

1 1st 63 2.32 s

2nd 84 1.48 s

2 1st 126 1.51 s

2nd 107 2.09 s

3 1st 161 1.58 s

2nd 162 2.13 s

4 1st 141 1.89 s

2nd 129 1.91 s

5 1st 94 1.97 s

2nd 129 2.33 s

Game 1196 1.91 s

Fig. 3. Number of times a change was a reason for
sending a message in the German Open 2022 final

in mostly sideways or diagonal walking, to ensure the head can still look in the
walk direction to prevent collisions with other robots. Such behavior allows the
robots to react to the movement of the ball. This way, a robot can intercept a
rolling ball to receive a pass that could not be announced via communication.

3.5 Results

We analyzed the team communication of the RoboCup German Open 2022 final,
which was very similar to the final at RoboCup 2022 (same teams, same score).
On average, each message was delayed by 1.91 s (see Table 4), which was deter-
mined by summing up all the frames in which messages should have been sent,
but were not allowed to due the dynamic limit, divided by the number of mes-
sages sent. Figure 3 shows the reasons for sending messages. Simulations con-
ducted (50 playoff games each) show that the average score of our software
playing against itself is 2.6:3.0 goals if the players of the second team send one
message per second each (which would be illegal) and 3.2:2.6 goals if they always
wait 5 s instead (which would just be legal). So our dynamic sending approach
is better than a static one, but it cannot fully compensate the rule change in
comparison to what was allowed before.

4 Conclusion

In this paper, we described some of the aspects that contributed to our success
in the RoboCup 2022 competition. B-Human played seven games and scored a
total of 48 goals while conceding 0. These accounted for 30% of all goals scored
in this competition between 13 teams and a total of 38 games.
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Our new behavior architecture enables more cooperative game play with less
communication. The improved behavior for one vs. one situations maintains ball
possession and integrates high-level strategic decisions. The dynamic passing
strategy turned out to be advantageous and increased the performance of the
B-Human team. It incorporates the new ability to play passes in any game sit-
uation to outmaneuver the opposing team. Experimental results show that this
cooperative play style outperforms the previous behavior with improvements in
key metrics such as the average goal difference and win rate. However, effective
countermeasures have to be developed, such as marking opponents and inter-
cepting their passes. Moreover, the accuracy of the kicks has to be improved in
order to minimize failed passing attempts and losses of ball possession.
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Abstract. The RoboCup Logistics League (RCLL) is a robotics compe-
tition in a production logistics scenario in the context of a Smart Factory.
In the competition, a team of three robots needs to assemble products
to fulfill various orders that are requested online during the game. This
year, the Carologistics team was able to win the competition with a new
approach to multi-agent coordination as well as significant changes to
the robot’s perception unit and a pragmatic network setup using the
cellular network instead of WiFi. In this paper, we describe the major
components of our approach with a focus on the changes compared to
the last physical competition in 2019.

1 Introduction

The Carologistics RoboCup Team is a cooperation of the Knowledge-Based
Systems Group (RWTH Aachen University) and the MASCOR Institute (FH
Aachen University of Applied Sciences). The team was initiated in 2012 and con-
sists of Doctoral, master’s, and bachelor’s students of both partners who bring
in their specific strengths tackling the various aspects of the RoboCup Logistics
League (RCLL): designing hardware modifications, developing functional soft-
ware components, system integration, and high-level control of a group of mobile
robots.

In previous competitions [6,7], we have pursued a distributed approach to
multi-agent reasoning, where each robot acts on its own and coordinates with
the other robots to resolve conflicts. This year, we have pursued a different
strategy: Instead of having multiple agents each acting on its own, we now use one
central goal reasoner that assigns tasks to each robot. This allows a more long-
term strategy and avoids coordination overhead. Additionally, we have changed
our approach to perception and manipulation. Instead of a pointcloud-matching
approach that uses RGB/D data to iteratively determine an object’s pose, we
use a neural network to determine the bounding box of an object in an RGB
image and then use closed-loop visual servoing to approach the object. Finally,

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Eguchi et al. (Eds.): RoboCup 2022, LNAI 13561, pp. 300–312, 2023
https://doi.org/10.1007/978-3-031-28469-4_25
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Fig. 1. Path for a product (green) of highest complexity, along with possible options
to supply material for the ring assemblies (blue, brown and red). product in the RCLL
(Color figure online).

we have taken first steps towards switching our navigation to ROS 2 and multi-
agent path finding.

In the following, we summarize the RCLL in Sect. 2 and provide an overview
of our system, starting with our robot platform in Sect. 3. In Sect. 4, we present
our software architecture and continue by describing our advances towards multi-
agent path planning in Sect. 5, before we explain our approach to perception
and visual servoing in Sect. 6. In Sect. 7, we summarize our approach to high-
level decision making and describe our new centralized approach to multi-agent
coordination, before we conclude in Sect. 8.

2 The RoboCup Logistics League

The RoboCup Logistics League (RCLL) [12] is a RoboCup [10] competition
with a focus on smart factories and production logistics. In the RCLL, a team
of mobile robots has to fulfill dynamically generated orders by assembling work-
pieces. The robots operate and transport workpieces between static production
machines to assemble the requested products or to supply the stations with
material necessary to perform some assembly steps. The major challenges of the
RCLL include typical robotics tasks such as localization, navigation, perception,
and manipulation, with a particular focus on reasoning tasks such as planning,
plan execution, and execution monitoring.

The game is controlled by a semi-automatic Referee Box (refbox) [18]. The
refbox generates dynamic orders that consist of the desired product configu-
ration and a requested delivery time window for the product, which must be
manufactured by the robots of each team. Each requested product consists of a
base piece (colored red, black, or silver), up to three rings (colored blue, green,
orange, or yellow), and a cap (colored black or gray), resulting in 246 possi-
ble product configurations. The complexity of a product is determined by the
number of required rings, where a C0 product with zero rings is a product of
the lowest complexity, and a C3 product with three rings is a product of the
highest complexity. Each team has an exclusive set of seven machines of five
different types of Modular Production System (MPS) stations. To manufacture
a requested product, the team has to execute a sequence of production steps
by means of operating the MPS stations. An exemplary production is shown in
Fig. 1.
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3 The Carologistics Platform

Fig. 2. The Carologistics
Robotino

The standard robot platform of this league is the
Robotino by Festo Didactic [9]. The Robotino is
developed for research and education and features
omni-directional locomotion, a gyroscope and webcam,
infrared distance sensors, and bumpers. The teams
may equip the robot with additional sensors and com-
putation devices as well as a gripper device for prod-
uct handling. The Carologistics Robotino is shown in
Fig. 2.

Sensors. We use one forward-facing and one tilted,
backward-facing SICK TiM571 laser scanner for col-
lision avoidance and self-localization. Using a second
laser scanner in the back allows us to fully utilize
the omni-directional locomotion of the Robotino. In
addition to the laser scanners, we use a webcam for
detecting the MPS identification tags, and a Creative
BlasterX Senz3D camera for conveyor belt detection.

3.1 Gripper System

Our gripper system consists of three linear axes and a three-fingered gripper,
as shown in Fig. 3. The three axes are driven by stepper motors, which allows
movements with sub-millimeter accuracy. The axes are controlled by an Arduino,
which in turn receives commands from the Robotino main computer.

(a) The three linear axes
driven by stepper motors

(b) The CADmodel of the (c) The complete gripper
system

Fig. 3. The gripper system consisting of three linear axes and a self-centering gripper
with three fingers
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The gripper uses three fingers and grips the workpiece from above. This
allows increased robustness and precision, as the workpiece is always centered
between the three spring-loaded fingers, independent of positioning errors.

Since 2021, the laptop on top of the Robotino (cf. Fig. 2) was removed, as
the Robotino 4 is capabale of running our full software stack without further
need for additional computational power. As the laptop also served as an access
point, initially, a small access point was mounted to ensure WiFi connectivity.

3.2 Cellular Network Setup via Tailscale

The challenging characteristics of tens of competing wireless networks commu-
nicating across the different leagues are an ever existing issue at RoboCup. The
change of our hardware components in terms of the network equipment attached
to the Robotinos rendered our communication platform virtually unusable due
to tremendous paket loss among systems trying to communicate across the play-
ing field. In addition, the change to a central goal reasoning approach increased
the dependency on reliable communication among the participating machines.

Fig. 4. Smartphone for
USB based LTE tether-
ing to the robot

To address these issues and allow us to compete
properly, we switched from a local WiFi connection
to the cellular network of a generic local provider
using a Long Term Evolution (LTE) network. However,
according to the current rules of the RCLL1 “Com-
munication among robots and to off-board comput-
ing units is allowed only using WiFi”. This rule was
mainly intended to prohibit wired connections, so we
approached the other teams and the TC to get approval
for the usage of the cellular network during the com-
petition.

Each robot has a direct connection to the internet
by using a smartphone, which tethers its LTE connec-
tion to the robot without using WiFi (Fig. 4). As the
robots expect a local network connection to each other,
we equipped the VPN service Tailscale2, which issues
a static IP address to each robot and which is based
on the WireGuard [4] network tunnel.

Albeit having some delay (100–200 ms), the UDP
based connection was stable enough to reliably operate
the robots and communicate to and from the central
goal reasoning.

The authentication to join the Tailscale network is based on an existing
identity provider (in our case we utilized our GitHub organization). In addition,
the WireGuard tunnel encrypts the communication between the peers.
1 See Sect. 7 of https://github.com/robocup-logistics/rcll-rulebook/releases/
download/2022/rulebook2022.pdf.

2 https://tailscale.com/.

https://github.com/robocup-logistics/rcll-rulebook/releases/download/2022/rulebook2022.pdf
https://github.com/robocup-logistics/rcll-rulebook/releases/download/2022/rulebook2022.pdf
https://tailscale.com/
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A drawback of this solution is the dependency on the cellular network infras-
tructure on site, which at the venue of RoboCup Bangkok was no issue. Addi-
tionally, we had to be mindful of the data usage as the we had limited data
available on the chosen prepaid plans. By only sparsely using network-based
visualization tools (such as pointcloud or camera output streams), we had more
than 50% of our 20 GB limit available by the end of the tournament, hence it
turned out to be a feasible solution.

4 Architecture and Middleware

The software system of the Carologistics robots combines two different middle-
wares, Fawkes [13] and ROS [19]. This allows us to use software components from
both systems. The overall system, however, is integrated using Fawkes. Adapter
plugins connect the systems, for example to use ROS’ 3D visualization capabil-
ities. The overall software structure is inspired by the three-layer architecture
paradigm [5], as shown in Fig. 5. It consists of a deliberative layer for high-level
reasoning, a reactive execution layer for breaking down high-level commands
and monitoring their execution, and a feedback control layer for hardware access
and functional components. The communication between single components –
implemented as plugins – is realized by a hybrid blackboard and messaging app-
roach [13].

Vision · · ·

AMCL Motion Components
Actuator/Sensor proc.
Localization, etc.

Behavior Engine Reactive Behaviors
Skill execution/monitoring

CLIPS Executive Deliberation
Decision making/planning

Fig. 5. Behavior Layer Separation [17]

Recent work within Fawkes
includes the support to cou-
ple the reasoning component
CLIPS Executive (CX) with
multiple reactive behaviour en-
gines (cf. Sect. 7.1) of remote
Fawkes instances. This enabled
us to use Fawkes to build a
centralized reasoner controlling
the robots to fulfill the tasks
of the RCLL (see Sect. 7). Now
each Robotino runs a Fawkes
instance without a reasoning
unit along with a ROS-based
navigation stack (cf. Sect. 5). Additionally, a central computer runs a Fawkes
instance with the CX (see Sect. 7.2) that deliberates about the production strat-
egy and sends commands to the behavior engines running on the robots.

Also, while the current setup offers bridging capabilities between Fawkes and
ROS, as ROS 2 [22] becomes more prominent, we also implemented interfaces
between Fawkes and ROS 2 to prepare for a future switch to ROS 2. Since the
Carologistics are using Fedora as operating system on the Robotino platforms,
which is not officially supported by ROS 2, we work on providing appropriate
packages as we already do for ROS 13. Moreover, as an entry point of ROS 2 into
3 https://copr.fedorainfracloud.org/coprs/thofmann/ros/.

https://copr.fedorainfracloud.org/coprs/thofmann/ros/
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the RCLL, we are currently porting the Robotino hardware driver from Fawkes
to ROS 2. The Fawkes driver directly uses the hardware interfaces instead of the
Robotino REST API, which lacks reliable time stamps.

5 Towards Path Planning in ROS 2

Our current setup utilizes our navigation stack as described in [6]. As a first use
case for ROS 2 we actively work towards a multi-agent path finding (MAPF)
solution with the help of the ROS 2 Navigation framework [11]. With the MAPF
approach, it is possible to handle narrow situations or intersection scenarios,
which are well known problems for our current single-agent navigation solution.

However, as the work on the ROS 2 solution is still in active development
and not yet ready for usage in competitions, we chose to deploy the ROS based
navigation from previous years. Notably, the network middlware DDS4 deployed
in ROS 2 is quite complex and we could not configure it robustly, which some-
times caused faulty pose state estimations leading to unpredictable navigation
behaviour.

6 Perception

Fig. 6. Object detection with YOLO [23]. It detects objects of the three classes con-
veyor belt (green), workpiece (blue), and slide (red). (Color figure online)

Every production step in the RCLL comes down to a pick-and-place task on or
from a narrow conveyor belt that is only a few millimeters wider than the work-
piece itself. Since producing a medium-high complexity product can already
involve 18 pick or place operations and a single manipulation error is likely
4 https://www.dds-foundation.org/.

https://www.dds-foundation.org/
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to result in total loss of the product, reliability (and therefore precision) is of
paramount importance. In previous years [6], we have relied on a multi-stage
procedure to detect conveyor belts of the target MPS stations. At its core, our
previous approach used a model fitting approach based on the Iterative Closest
Point (ICP) algorithm. It iteratively compared the current RGB/D pointcloud
to a previously recorded model of the goal location (e.g., the conveyor belt) and
computed a transformation from the current to the target position [2]. While this
approach worked reliably, the iterative model matching of pointclouds made it
comparably slow. Also, the approach relied on a good quality of the reference
pointcloud, minor modifications to the machines often resulted in failed manip-
ulation attempts.

For these reasons, we have replaced the pointcloud-based method by a simpler
approach that only uses RGB camera images and point-based visual servoing
(PBVS). It uses YOLOv4 [3,20] to detect objects in the image of the RGB
camera, as shown in Fig. 6. The approach works in several stages [23]:

1. As long as the object of interest has not been detected near the expected
position, the robot navigates to a pre-defined position near the expected goal
location.

2. As soon as an object of the correct class has been detected in proximity to
the expected position, the robot’s base and its gripper are positioned simul-
taneously, using a closed-loop position-based visual servoing approach.

3. Once the robot reaches a position near the goal position, the robot’s base is
stopped while the PBVS task continues to position the gripper relative to the
detected object.

The visual servoing task iteratively computes the distance between the cur-
rent robot’s pose and the goal pose based on the current object position. There-
fore, the object detection needs to be fast enough to match with the control
frequency of the robot. While YOLOv4 performed better, YOLOv4-tiny was
sufficiently precise and fast enough for this task.

6.1 ARUCO Tag Detection

As of 2022 the rulebook of the RCLL requires ARUCO tags [24] in order to repre-
sent type and side of each machine. In comparison to the previously used ALVAR
approach, ARUCO tags are commonly used and software solutions are widely
available. We opted for the OpenCV based implementation5 which required
proper integration into Fawkes. During the development we encountered the need
to actively calibrate the cameras for each robot to achieve a usable reported tag
pose. The ALVAR-based solution did not require active calibration.

5 https://docs.opencv.org/4.x/d5/dae/tutorial aruco detection.html.

https://docs.opencv.org/4.x/d5/dae/tutorial_aruco_detection.html
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7 Behavior Engine and High-Level Reasoning

In the following we describe the reactive and deliberative layers of the behavior
components. In the reactive layer, the Lua-based behavior engine provides a set
of skills. Those skills implement simple actions for the deliberative layer, which
is realized by an agent based on the CX [16], a goal reasoning framework that
supports multi-agent coordination.

7.1 Lua-Based Behavior Engine

In previous work we have developed the Lua-based Behavior Engine (BE) [14]. It
serves as the reactive layer to interface between the low- and high-level systems.
The BE is based on hybrid state machines (HSM). They can be depicted as a
directed graph with nodes representing states for action execution, and/or mon-
itoring of actuation, perception, and internal state. Edges denote jump condi-
tions implemented as Boolean functions. For the active state of a state machine,
all outgoing conditions are evaluated, typically at about 15 Hz. If a condition
fires, the target node of the edge becomes the active state. A table of variables
holds information like the world model, for example storing numeric values for
object positions. It remedies typical problems of state machines like fast growing
number of states or variable data passing from one state to another. Skills are
implemented using the light-weight, extensible scripting language Lua.

7.2 Reasoning and Planning with the CLIPS Executive

We implemented an agent based on the CLIPS Executive (CX) [16], which uses
a goal reasoning model [1] based on the goal lifecycle [21]. A goal describes
objectives that the agent should pursue and can either achieve or maintain a
condition or state. The program flow is determined by the goal mode, which
describes the current progress of the goal. The mode transitions are determined
by the goal lifecycle, which is depicted in Fig. 7. When a goal is created, it is
first formulated, merely meaning that it may be relevant to consider. The goal
reasoner may decide to select a goal, which is then expanded into one or multiple
plans, either by using manually specified plans or automatic planners such as
PDDL planners [15]. The reasoner then commits to one of those plans, which is
dispatched, typically by executing skills of the behavior engine. Eventually, the
goal is finished and the outcome is evaluated to determine the success of the
goal.

7.3 Central Coordination

We utilize the CLIPS Executive framework to implement a central reasoner,
which dispatches skill commands to the individual robots via the remote black-
board feature of Fawkes. In contrast to the distributed incremental approach pur-
sued in the past [6,8], the central reasoner only maintains a single worldmodel,
without the overhead of complex coordination and synchronization mechanisms
required in the previous approach.
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Setup. An off-field laptop runs a Fawkes instance with the CLIPS Executive and
its dependencies. It connects to the blackboards of the remote Fawkes instances
running on each Robotino over a TCP socket by subscribing as a reader to
all necessary interfaces. This allows the central agent to read data from and
send instructions to the robots. The most crucial communication channel is the
Skiller interface, which is used to trigger skill execution and obtain feedback.
Exploration tasks may require sensory feedback to locate machines based on
their tags and laser feedback. The exploration results are then sent back to the
navigator on the robots.

However, sending raw sensor data via the network can be a drawback of
this setup compared to our previous distributed approach, where only processed
worldmodel data was shared. This is especially critical in competitions where
bandwidth and connection quality is suboptimal. To avoid this issue, the data
could be pre-processed on the robot such that only the relevant information is
sent, which is planned in the future.
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Fig. 7. The goal lifecycle with all pos-
sible goal modes [16].

Central Goal Reasoning. In contrast
to our previous incremental approach [8],
our new approach focusses on a long-term
strategy, driven by a two-layer system:
Decisions to commit to an order result in
the creation of a goal tree with all nec-
essary goals to build the requested prod-
uct. Those decisions are made by filter-
ing all available orders according to mul-
tiple criteria, such as estimated feasibil-
ity of attached time constraints, expected
points and the workload required on each
machine to assemble the product. Sup-
portive steps, such as providing material
to mount rings or caps are not part of the
order-specific trees, but rather are main-
tained dynamically in a separate tree that
contains all those tasks across all pur-
sued orders and may perform optimiza-
tions based on the requested support tasks
(e.g., providing a cap to a cap station
yields a waste product at that cap sta-
tion, which can be used as material at a
ring station if any pursued order needs it,
else it needs to be discarded). Essentially,
the goal creation step defines the long-term strategy and goals for specific orders
persist as long as the order is actively pursued. Figure 8 shows which goals are
created if an order of complexity 1 and with a single material required to mount
the ring is chosen.
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The second layer consists of short-term decisions such as the distribution of
robots to the respective goals, which is done lazily. Whenever a robot is idling, the
reasoner evaluates the set of formulated goals that are currently executable for
that robot and selects one among them. The selection is made by again filtering
all the possible candidates. However, the criteria are much less complex and for
now are based on a static priority of each goal (depending on the complexity of
the belonging order), as well as constraints imposed through the corresponding
goal tree (e.g., if goals must be executed in sequence).

Execution Monitoring. In order to become resilient to failures during the
game, we handle execution errors in similar fashion as the distributed agent did:
The damage is assessed, the worldmodel is updated accordingly and recovery
methods are invoked if necessary (e.g., retrying failed actions or removing a goal
tree, when the associated product is lost). In addition to the implications of a
failed goal, the central agent needs to recognize a robot that not responding,
de-allocate assigned tasks from it and react on successful maintenance. This is
realized through a heartbeat signal, which is sent periodically by each robot.
Lastly, the central agent itself may suffer a critical error that completely shuts
it down. Even then the system is able to pick up on the work done so far by
maintaining a persistent backup of the current worldmodel in a database and by
restoring it, if necessary.
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Fig. 8. Structure of goal trees for a single order. Ellipsis nodes are inner nodes, where
blue ones always select the highest executable goal among them, while green ones
only select the left-most child goal. Orange nodes denote the actual goals that are
physically executed, either through the robots, or by the central instance itself, incase
it only involves communication with the refbox (Color figure online).
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8 Conclusion

In 2022, we have deployed a central agent based on the CLIPS Executive, which
provides an explicit goal representation including plans and actions with their
preconditions and effects. Focus was put on making explicit decisions about
the orders that should be started. We replaced our established reasoner that
grew over many past competitions, because we believe that its heavy focus on
robustness made substantial tradeoffs to peak performance, which is not neces-
sary anymore. This is mainly due to our matured gripping system. Unexpected
side effects due to the dependency on a centralized reasoning server arrived in
the form of WiFi issues, which we managed to overcome by utilizing cellular
network-based communication with the help of a VPN and USB tethering from
off-the-shelf smartphones.

Our perception setup is extended by a machine learning approach to detect
workpieces, conveyor belts, and slides, which is used to approach the object with
closed-loop visual servoing. This procedure turned out to be more robust and
faster compared to our previous pointcloud-based approach.

A lot of effort was put into the integration of ROS 2 and towards multi-
agent path planning to ensure fast and reliable navigation in tight and narrow
environments. While not finished yet, important steps such as bridging Fawkes
and ROS 2 are already implemented. We recon that completely exchanging most
of our major components was an ambitious roadmap and the ROS 2 integration
could not be finished yet, due to the amount of other tasks we worked on.
Nevertheless, we believe that the decision to switch to ROS 2 is right and will
benefit us in future competitions.
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6. Hofmann, T., Limpert, N., Mataré, V., Ferrein, A., Lakemeyer, G.: Winning the
RoboCup logistics league with fast navigation, precise manipulation, and robust
goal reasoning. In: Chalup, S., Niemueller, T., Suthakorn, J., Williams, M.-A. (eds.)
RoboCup 2019. LNCS (LNAI), vol. 11531, pp. 504–516. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-35699-6 41

7. Hofmann, T., et al.: Enhancing software and hardware reliability for a successful
participation in the RoboCup logistics league 2017. In: Akiyama, H., Obst, O.,
Sammut, C., Tonidandel, F. (eds.) RoboCup 2017. LNCS (LNAI), vol. 11175, pp.
486–497. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00308-1 40

8. Hofmann, T., Viehmann, T., Gomaa, M., Habering, D., Niemueller, T., Lakemeyer,
G.: Multi-agent goal reasoning with the CLIPS executive in the Robocup logistics
league. In: Proceedings of the 13th International Conference on Agents and Arti-
ficial Intelligence (ICAART) (2021). https://doi.org/10.5220/0010252600800091

9. Karras, U., Pensky, D., Rojas, O.: Mobile robotics in education and research
of logistics. In: Workshop on Metrics and Methodologies for Autonomous Robot
Teams in Logistics, IROS 2011 (2011)

10. Kitano, H., Asada, M., Kuniyoshi, Y., Noda, I., Osawa, E.: RoboCup: the robot
world cup initiative. In: Proceedings 1st International Conference on Autonomous
Agents (1997)

11. Macenski, S., Mart́ın, F., White, R., Clavero, J.G.: The marathon 2: a navigation
system. arXiv preprint arXiv:2003.00368 (2020)

12. Niemueller, T., Ewert, D., Reuter, S., Ferrein, A., Jeschke, S., Lakemeyer, G.:
RoboCup logistics league sponsored by Festo: a competitive factory automation
testbed. In: Jeschke, S., Isenhardt, I., Hees, F., Henning, K. (eds.) Automation,
Communication and Cybernetics in Science and Engineering 2015/2016, pp. 605–
618. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-42620-4 45

13. Niemueller, T., Ferrein, A., Beck, D., Lakemeyer, G.: Design principles of the
component-based robot software framework Fawkes. In: Ando, N., Balakirsky, S.,
Hemker, T., Reggiani, M., von Stryk, O. (eds.) SIMPAR 2010. LNCS (LNAI),
vol. 6472, pp. 300–311. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-17319-6 29

14. Niemüller, T., Ferrein, A., Lakemeyer, G.: A Lua-based behavior engine for con-
trolling the humanoid Robot Nao. In: Baltes, J., Lagoudakis, M.G., Naruse,
T., Ghidary, S.S. (eds.) RoboCup 2009. LNCS (LNAI), vol. 5949, pp. 240–251.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-11876-0 21

15. Niemueller, T., Hofmann, T., Lakemeyer, G.: CLIPS-based execution for PDDL
planners. In: ICAPS Workshop on Integrated Planning, Acting and Execution
(IntEx) (2018)

16. Niemueller, T., Hofmann, T., Lakemeyer, G.: Goal reasoning in the CLIPS Execu-
tive for integrated planning and execution. In: Proceedings of the 29th International
Conference on Planning and Scheduling (ICAPS) (2019)

17. Niemueller, T., Lakemeyer, G., Ferrein, A.: Incremental task-level reasoning in a
competitive factory automation scenario. In: Proceedings of AAAI Spring Sympo-
sium 2013 - Designing Intelligent Robots: Reintegrating AI (2013)

18. Niemueller, T., Zug, S., Schneider, S., Karras, U.: Knowledge-based instrumenta-
tion and control for competitive industry-inspired robotic domains. KI - Künstliche
Intelligenz 30(3), 289–299 (2016)

19. Quigley, M., et al.: ROS: an open-source Robot Operating System. In: ICRA Work-
shop on Open Source Software (2009)

https://doi.org/10.1007/978-3-030-35699-6_41
https://doi.org/10.1007/978-3-030-00308-1_40
https://doi.org/10.5220/0010252600800091
http://arxiv.org/abs/2003.00368
https://doi.org/10.1007/978-3-319-42620-4_45
https://doi.org/10.1007/978-3-642-17319-6_29
https://doi.org/10.1007/978-3-642-17319-6_29
https://doi.org/10.1007/978-3-642-11876-0_21


312 T. Viehmann et al.

20. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified,
real-time object detection. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 779–788 (2016)

21. Roberts, M., et al.: Iterative goal refinement for robotics. In: Working Notes of the
Planning and Robotics Workshop at ICAPS (2014)

22. Thomas, D., Woodall, W., Fernandez, E.: Next-generation ROS: building on DDS.
In: ROSCon Chicago 2014. Open Robotics, Mountain View, CA (2014). https://
doi.org/10.36288/ROSCon2014-900183

23. Tschesche, M.: Whole-body manipulation on mobile robots using parallel position-
based visual servoing. Master’s thesis, RWTH Aachen University (2022). https://
kbsg.rwth-aachen.de/theses/tschesche2022.pdf

24. Wubben, J., et al.: Accurate landing of unmanned aerial vehicles using ground
pattern recognition. Electronics 8(12), 1532 (2019)

https://doi.org/10.36288/ROSCon2014-900183
https://doi.org/10.36288/ROSCon2014-900183
https://kbsg.rwth-aachen.de/theses/tschesche2022.pdf
https://kbsg.rwth-aachen.de/theses/tschesche2022.pdf


FC Portugal: RoboCup 2022 3D
Simulation League and Technical

Challenge Champions

Miguel Abreu1(B) , Mohammadreza Kasaei2 , Lúıs Paulo Reis1 ,
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Abstract. FC Portugal, a team from the universities of Porto and
Aveiro, won the main competition of the 2022 RoboCup 3D Simula-
tion League, with 17 wins, 1 tie and no losses. During the course of the
competition, the team scored 84 goals while conceding only 2. FC Portu-
gal also won the 2022 RoboCup 3D Simulation League Technical Chal-
lenge, accumulating the maximum amount of points by ending first in
its both events: the Free/Scientific Challenge, and the Fat Proxy Chal-
lenge. The team presented in this year’s competition was rebuilt from
the ground up since the last RoboCup. No previous code was used or
adapted, with the exception of the 6D pose estimation algorithm, and
the get-up behaviors, which were re-optimized. This paper describes the
team’s new architecture and development approach. Key strategy ele-
ments include team coordination, role management, formation, commu-
nication, skill management and path planning. New lower-level skills were
based on a deterministic analytic model and a shallow neural network
that learned residual dynamics through reinforcement learning. This pro-
cess, together with an overlapped learning approach, improved seamless
transitions, learning time, and the behavior in terms of efficiency and sta-
bility. In comparison with the previous team, the omnidirectional walk
is more stable and went from 0.70 m/s to 0.90 m/s, the long kick from
15 m to 19 m, and the new close-control dribble reaches up to 1.41 m/s.

1 Introduction

Historically, FC Portugal has contributed to the simulation league (2D and 3D)
in numerous ways, including competitive methodologies and server improve-
ments.1 In the last years, the team has been focused on developing low-level
1 For previous contributions concerning coaching, visual debugging, team coor-

dination, sim-to-real, optimization algorithms and frameworks please refer to
https://tdp.robocup.org/tdp/2022-tdp-fcportugal3d-robocupsoccer-simulation-3d/.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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skills and methodologies that leverage model knowledge to design more efficient
reinforcement learning (RL) techniques [1–3,7–10,13,14]. In 2019, it introduced
the first running behavior in the league, which was learned from scratch using
RL. After that, the development focus was on leveraging the robot’s symmetry
and analytical models to improve the learning efficiency, producing human-like
skills in less time. However, due to the intensive use of high-level optimization
algorithms, the low-level C++ code of the team grew more convoluted with a
network of interrelated skills and the addition of environment frameworks to
bridge the gap between C++ and Python. Maintenance complexity along with
lack of compatibility of some libraries with modern Linux distributions led to a
turning point in 2021.

After RoboCup 2021, we decided to rebuild all the code from the ground
up in Python, without using or adapting previous code, with the exception of
the 6D pose estimation algorithm [4], and the get-up behaviors, which were re-
optimized. The new code is compatible with most data science libraries and
machine learning repositories, allowing for fast development of new behaviors
and tactics. Due to hardware improvements in recent years, developing a team
in Python is no longer a major concern in terms of computational efficiency.
However, some computationally demanding modules were written in C++ to
ensure the agent is always synchronized with the server.

2 3D Simulation League

The RoboCup 3D simulation league uses SimSpark [15] as its physical multiagent
simulator, which is based on the Open Dynamics Engine library. The league’s
environment is a 30 m by 20 m soccer field containing several landmarks that can
be used for self-localization: goalposts, corner flags and lines. Each team consists
of 11 humanoid robots modeled after the NAO robot. Agents get internal data
(joints, accelerometer, gyroscope and foot pressure sensors) with a 1-step delay
every 0.02 s and visual data (restricted to a 120◦ vision cone) every 0.06 s. Agents
can send messages to teammates every 0.04 s (see Sect. 3.3 for further details).
There are 5 humanoid robot types with 22 to 24 controllable joints, and slightly
different physical characteristics. Each team must use at least 3 different types
during an official game.2

3 Team Description

An overview of the agent and server can be seen in Fig. 1. The white and green
modules are implemented in Python and C++, respectively. The agent takes
advantage of Python’s development speed and compatibility with major data
science libraries, and C++’s performance for time-sensitive modules.

The server is responsible for updating the soccer environment, based on the
actions received from all agents. It adds noise to the world state in the form

2 The official rules can be found at https://ssim.robocup.org/3d-simulation/3d-rules/.

https://ssim.robocup.org/3d-simulation/3d-rules/
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of a calibration error that is constant and affects the robot’s vision sensor, a
perception error that follows a normal distribution and affects the coordinates
of visible objects according to their distance, and a rounding error introduced
by a lossy transmitter, where all numbers (including coordinates, joint angles
and sensor readings) are rounded to the nearest hundredth.
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Fig. 1. Overview of the internal decision flow of agent and server, and their exter-
nal interaction. White modules are implemented in Python while green modules are
implemented in C++. Gray blocks represent static data. (Color figure online)

As aforementioned, the agent receives internal data from the server every 20
ms, and visual data every 60 ms. The latter is a noisy partial view of the world
state, which is fed to a 6D pose estimator to extract the robot’s localization
and orientation in a three-dimensional space. The algorithm leverages the known
noise models to maximize the probability of the current map of perceived objects,
by iteratively adjusting the robot’s 6D pose. For an extensive description of this
process please refer to Abreu et al. [4]. Forward kinematics is then used to
estimate the pose of every body part for a given robot type. This self-awareness
ability in conjunction with team communication allows each agent to have a
reliable representation of the world state. The following paragraphs will describe
the main components of the agent.

3.1 Low-Level Control

The low-level control consists of an Inverse Kinematics module, used by the
Walk and Dribble, and a 1-step predictive controller, which is indirectly used
by the same skills, and directly used by the Long/Short Kick and Get Up.
The Inverse Kinematics module simplifies locomotion by abstracting the joint
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information from the skill. The Long/Short Kick and Get Up do not use this
module, as it did not improve the final behavior performance. Since the server
sends the observations with a 1-step delay, the current robot state can only be
estimated by combining the previous observations with the last sent actions.
This technique is nearly optimal when the actuators work below their maximum
torque specifications, although the lossy transmission protocol impedes actual
optimality.

3.2 Mid-Level Skills

As depicted in Fig. 1, the team has four major skills:

– Kick: A short kick is mainly used for passes, with a controllable range
between 3 and 9 m. The long kick is generally used for shooting, and has
an average distance of 17 to 19 m, depending on the robot type;

– Walk: The omnidirectional walk is able to sustain an average linear speed
between 0.70 and 0.90 m/s, depending on robot type and walking direction;

– Dribble: The dribble skill pushes the ball forward, retaining close control
with an avg. max. speed of 1.25 to 1.41 m/s, depending on robot type. The
walk skill can push the ball but it is slower and provides no close control;

– Get Up: The robot uses this skill to get up after falling to the ground.
There are three variations of the skill per robot type depending on the falling
direction (front, back, side).

The model architecture used for all skills that rely on neural networks can
be seen in Fig. 2. An underlying base model is used to guide the optimization
at an early stage, expediting the learning process and improving the quality
and human-likeness of the final behavior. For the Walk and Dribble skills, the
underlying model is based on a Linear Inverted Pendulum (LIP) solution, which
generates a cyclic walk-in-place behavior. The kick skills are built upon a hand-
tuned base model which is divided into two sections: back swing and forward
acceleration. The state of the base model is fed to the neural network as a single
integer variable. The state of the robot comprises its internal sensors, position
and velocity of joints, head height and a step counter. Depending on the skill,
the target denotes a set of variables that encode small variations of the main
objective, such as direction and distance. The relative position of the ball is
always required except for the Walk skill.

The output of the shallow neural network (single hidden layer with 64 neu-
rons) is added to the output of the base model to generate a target position for
each feet and hand. As shown in Fig. 1, only the Walk and Dribble skills generate
relative positions, thus requiring the Inverse Kinematics module to obtain target
joint angles. The optimization is performed by the Proximal Policy Optimization
algorithm [12], extended with a symmetry loss.

3.3 Team Communication

According to official rules, team communication is restricted to messages of 20
characters, taken from the ASCII subset [0x21, 0x7E], except for normal brackets
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Fig. 2. Model architecture for the Long/Short Kick, Walk, and Dribble skills

{0x28,0x29}. However, due to server limitations, some characters create unde-
fined behaviors, such as single (0x27) or double (0x22) quotation marks, back-
slash (0x5C), and semicolon (0x3B) at the beginning of messages. Therefore,
FC Portugal uses 88 alternatives for the first character and 89 alternatives for
the remaining 19 characters, since the semicolon is included. This gives about
9.6 × 1038 combinations per message.

The team uses three consecutive messages to send all the desired informa-
tion. Accordingly, there are three distinct groups of variables, as seen in Table 1.
Group A contains the position of the ball, and the position and state of team-
mates number 10 and 11, and opponents from number 7 to 11. The state is a
Boolean indicating whether the agent has fallen. The position of a teammate has
a precision of 10 cm and x ∈ [−16, 16], y ∈ [−11, 11], yielding 321 ∗ 221 = 70941
combinations. Considering the position and state of the robot, each teammate
represents 141882 combinations. The opponents’ position has the same range
but lower precision (16 cm in x and 20 cm in y), generating 201∗ 111 ∗ 2 = 44622
(including the state). Finally, the position of the ball has a precision of 10 cm and
x ∈ [−15, 15], y ∈ [−10, 10], resulting in 301 ∗ 201 = 60501 combinations. Group
B contains information about 7 teammates, and group C combines 2 teammates
and 7 opponents.

Table 1. Description of message groups for the team communication protocol

Group Teammates Opponents Ball Combinations

A 10,11 7–11 Yes 141882̂2 ∗ 44622̂5 ∗ 60501 = 2.2e38

B 1–7 None No 141882̂7 = 1.2e36

C 8,9 1–6 No 141882̂2 ∗ 44622̂6 = 1.6e38

The design of each group followed two principles: maximize the amount of
information per message, and gather entities that are usually seen together on
the field. Every agent can send messages at a given time step. However, the server
only broadcasts one of the messages to the whole team. Therefore, agents should



318 M. Abreu et al.

only try to communicate if they have relevant and up-to-date data. A naive rule
would be to only send a message if all the elements of a given group were recently
seen. However, as an example, if group A was always visible, it could monopolize
the communication medium, or if teammate number 5 was far from all the others,
group B would never be sent. To solve these issues, a protocol was proposed, as
seen in Table 2.

Table 2. Team communication protocol

Time step Round Group Max. RLP Max. MP Ball

0.00 s 1 A 0 0 is visible

0.04 s B –

0.08 s C –

0.12 s 2 A 1 – is visible

0.16 s B –

0.20 s C –

0.24 s 3 A 2 – is visible

0.28 s B –

0.32 s C –

0.36 s 1 ... ... ... ...

Message groups are synchronized with the game time, which is the provided
to all players by the server. There are three rounds of messages that are repeated
every 0.36 s. Each round contains messages from all groups in a sequential order:
A, B, C. Round 1 is the strictest, since an agent must see all the elements of the
current group before it is allowed to broadcast. This means that the maximum
number of recently lost players (RLP) and missing players (MP) is zero. The
former includes player not seen in the last 0.36 s and the latter encompasses
players that have not been seen in the last 3 s. Rounds 2 and 3 allow any number
of missing players, but apply restrictions to the number of recently lost players.
During a soccer match, missing players are typically far from the field or have
crashed and left the server. In both cases, it is generally safe to ignore them.
The main purpose of having rounds with different restrictions is to force high
quality updates in round 1, and, if that is currently not possible, allow some
losses in rounds 2 and 3. If a group is fully visible by any agent, all teammates
will receive new information every 0.12 s, even if there are missing players; if one
of the elements was recently lost, all teammates will be informed twice every
0.36 s; and if no agent has recently lost less than 2 elements from the current
group, all teammates will get a broadcast once every 0.36 s.

3.4 Role Manager

The role manager is responsible for dynamically assigning roles to each player.
Figure 3 shows an overview of this process. The formation, shown on the left,
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indicates the desired position of each role, not the current position of each team-
mate. The red circles denote the actual position of the opponents. This exam-
ple shows the formation when the team is attacking, i.e. the ball is closer to
our team. The displayed roles are: goalkeeper (GK), central back (CB), man-
marking (MM), left and right support (LS, RS), left and right front (LF, RF).
The support roles are always close to the active player (AP) to assist when ball
possession is lost, while the front roles are always closer to the opponent’s goal
to receive long passes. The man-marking roles mark the closest opponents to our
goal in a sticky way, to avoid frequent switching.

Ball position
and velocity

Players

World Model

Ball predictor

Players-ball
interception

R
ole M

anager

Assign AP

Att./Def. Mode

Get GK

Get Other Roles

Attack

LS
RS

LF RF

Ball

CB

GK

MM

MM MM

MM

Formation

Goal

Defense

AP AP

GK GK

LF, RF AP2

LS, RS,
4 MM,

CB

4 MM,
CB

AP3

LF, RF

Role Precedence

AP

Fig. 3. Overview of the role manager. The formation (left) represents the desired posi-
tion of each role, depending on the ball and opponents. The decision flow (middle)
describes how the role manager assigns roles according to their precedence (right).
(Color figure online)

The decision flow of the role manager is shown on the middle of Fig. 3. The
world model provides the position and velocity of all players and ball. The ball
predictor yields a sequence of ball positions for future time steps, until the ball
stops completely. This information is combined with the maximum walking speed
to estimate when and where each player would intercept the ball. At this point,
it is possible to answer which player should go to the ball, and whether the
opponent will get there faster. If the latter is true, the defense mode is activated,
changing the role precedence, as indicated on the right of Fig. 3.

The roles with highest priority are the AP followed by the GK. Therefore,
if the closest player to the ball is the goalkeeper, it becomes the AP, and the
GK role will be assigned to another player. If the team is attacking, the next
roles are LF and RF, to create space and supporting angles for the AP. Then,
the low priority roles are assigned: LS, RS, 4 MM and CB. This assignment is
an optimization problem where the objective is to reduce the distance between
the player and the assigned role. However, the man-marking roles have differ-
ent weights, according to the distance of the marked opponent to our goal. In
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general, the optimization algorithm prioritizes dangerous opponents, and gives
less importance to the CB, in relation to the LS and RS roles. If the team is
defending, after the AP and GK comes the Active Player 2 (AP2), and later the
Active Player 3 (AP3). The position of these roles is the ball position. Three
player will try to intercept it until at least one of them is closer than the closest
opponent. In defense mode, there are no support roles, and the front roles are
the least important.

3.5 Path Planning

The path search algorithm is based on A* [6] and divides the soccer field into
70941 nodes (32 m × 22 m, 10 cm grid size). It is only employed when the player
is not able to walk to the objective in a straight line. When dribbling the ball,
the player is only allowed inside the field, reducing the work area to 30 m ×
20 m. Static obstacles include the goalposts and the goal net, while dynamic
obstacles include the players and the ball. Dynamic obstacles are identified by a
4-tuple 〈position, hard radius, soft radius, cost〉, where the hard radius defines
the inaccessible region around the obstacle, and the soft radius defines a region
with an additional radially decreasing cost for the path search algorithm. When
defining a player as an obstacle, the hard radius takes into consideration the
position of each arm and leg, when possible, to avoid colliding with fallen players.
The soft radius depends on several factors:
– Is the agent walking or dribbling? If dribbling, the radius of other players

increases, since the maneuverability decreases;
– The radius of an opponent decreases when closer to the ball, to allow tackling;
– The radius of a teammate increases if it was assigned a more important role.

Regarding the last factor, the role precedence introduced in Fig. 3 is not only
used to assign roles to players. It is also important to ensure some additional
space is given to higher priority roles. As an example, when the team is defending
and there are 3 active players, AP2 will give extra space to AP (through a larger
soft radius), and AP3 will get away from AP and AP2. This also applies to
all the other roles. Players are not considered obstacles if their distance is over
4 m or they have not been seen (or perceived through team communication) for
longer than 0.5 s.

In order to achieve path stability, the initial path position is obtained by
estimating the position of the robot after 0.5 s, considering the current velocity
as a constant. To extract the current target for walking or dribbling, the number
of considered path segments depends on the current speed of the robot. This
technique generates a smooth path without losing too much accuracy.

This module was implemented in C++ due to its computational complexity.
To ensure that no simulation cycle is lost, the path planning algorithm runs
until the end or until a timeout (5 ms) expires. In the latter case, the best cur-
rent path is returned. Therefore, while running asynchronously with the server,
the performance of the team depends on the computational power of the host
machine, but not to the point where it misses a significant amount of cycles,
except for abnormally slow host machines.
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3.6 Main Routine

The main routine is divided into 5 major steps as depicted in Fig. 4. The agent
starts by selecting a general intention from: get up, dribble or push the ball, kick
to pass or shoot, move to some point, or beam before a kickoff. Some situations
require a specific intention: the active player is required to kick the ball during
kickoff and other play modes, fallen players must get up, inactive players must
move to strategic positions, etc. However, the active player faces more complex
scenarios where it must decide whether to dribble, push or kick the ball.

Decide Intention Decide Skill Decide Target Execute Skill Broadcast

MoveDribble

Push

Kick

Get Up Beam

WalkDribble Kick

Get Up Idle

Fig. 4. Major steps of the agent’s main routine

To reach a verdict, the algorithm scores multiple passes along a grid of feasible
options, and shooting alternatives if the goal is reachable. The passing score
considers several factors as shown in Fig. 5: alignment between kicker, ball and
target (1); opponents’ distance within a kick obstruction radius of 0.8 m, centered
at 0.3 m from the ball in the target direction (2); distance of all players to the kick
path, considering a kick angle error, α, which depends on the robot type and kick
skill (3); target distance difference between the closest standing teammate and
the closest opponent (4); alignment between receiver, ball and opponent goal (5);
difference between the distance ball-goal before and after the kick, to ensure field
progression. Shooting takes into account factors 1–3. During a game, if shooting
is likely to be successful, the decision is immediate. Otherwise, passing is only
preferred if it allows a faster game progression than dribbling. When there is no
space to kick or dribble, the robot will push the ball by walking towards it.

0.3m 0.8m

1

2

4

3 5

fallen
teammate

kick
target opp. goal

kick
obstruction

radius

ball

Fig. 5. Passing score factors: convenience for kicker (1), kick obstructions (2), ball
obstructions (3), distance of both teams to target (4), convenience for the receiver (5).

The second step is to decide the current skill. As an example, if the agent
decides to kick or dribble, it must first walk until it is in the correct position
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to use the desired skills. Then the agent must compute a target for the selected
skill, if required, e.g., a target position and orientation while walking. Finally,
the skill is executed, by applying the respective model and feeding the output
to the low-level controller. An extra step broadcasts visual information to other
teammates if the conditions are met, as explained in Sect. 3.3.

4 Results

The results of the main competition are summarized in Fig. 6. FC Portugal
finished in first place without any loss, having 17 wins and only 1 tie during the
seeding round.3 It managed to end in first place in the respective group of all
round-robin rounds. During the course of the competition, the team scored 84
goals while conceding only 2. In the final, it defeated the strong magmaOffenburg
team by 6–1, a team that defeated UT Austin Villa, the 2021 champion [11], in
the semi-finals by 3–0.

Seeding Round Round 2
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1st 2nd 3rd

4th 5th

Round 1 Round 3

7th to 10th

Semi-finals

vs

vs

5th to 6th

vs

Final

3rd to 4th

Group B

1st 2nd 3rd

4th 5th

Group C

1st 2nd 3rd

4th 5th

Group D

1st 2nd 3rd

4th 5th

Group E

1st 2nd

3rd 4th

Group F

1st 2nd

3rd 4th

Group G

1st 2nd 3rd

4th 5th 6th

Group H

1st 2nd

3rd 4th

1st 2nd

1st 2nd

1st 2nd vs1st 2nd

vs1st 2nd

1st FC Portugal

Ranking 2nd magmaOffenburg

3rd UT Austin Villa

5-0

3-0

6-1

2-14-0

4th Apollo3D

5th HFUTEngine

6th Miracle3D

7th ITAndroids

8th KgpKubs

9th Wits-FC

10th BahiaRT

Fig. 6. Main competition results

In addition to the main competition, there was a Technical Challenge, which
was composed of two events: the Free/Scientific Challenge, where competing
teams presented their research work in the context of the 3D simulation league;
and the Fat Proxy Challenge, which was played in a single round-robin tourna-
ment using the magmaFatProxy [5]. The purpose of the proxy is to provide the
same skills to all teams, preventing the agent from controlling the joints of the
robot, thus making the competition exclusively about high-level strategies.

Table 3 shows the scores obtained in the Free/Scientific and Fat Proxy chal-
lenges by each participating team. The Technical Challenge is won by the team
3 Official results can be found at https://cloud.robocup.org/s/ifX7TDsaHpCFWWH.

https://cloud.robocup.org/s/ifX7TDsaHpCFWWH
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that accumulates more points in both events. In each case, the number of
awarded points is 25 − 20 ∗ (rank − 1)/(number of participants − 1).

Table 3. Technical Challenge results based on the number of points accumulated in
the Free/Scientific Challenge and the Fat Proxy Challenge

Team Overall Free/Scientific Fat proxy

Rank Points Rank Points Rank Points

FC Portugal 1 50 1 25 1 25

magmaOffenburg 2 25 3 5 2 20

BahiaRT 3 20 2 15 5 5

UT Austin Villa 4 15 – – 3 15

Wits-FC 5 10 – – 4 10

FC Portugal won both the Free/Scientific Challenge and the Fat Proxy Chal-
lenge, leading to a victory in the overall Technical Challenge with 50 points. The
presented scientific contribution introduced the dribble skill—the league’s first
close control dribble behavior, reaching speeds of up to 1.41 m/s. In the Fat
Proxy Challenge, the team registered 4 wins, no ties and no losses, 21 scored
goals and 3 conceded.

5 Conclusion

FC Portugal has developed numerous skills and methodologies concerning the
NAO humanoid robot and the simulation league in general. Currently, the team
has a very robust code base developed from scratch after RoboCup 2021, which
led to a victory in the 2022 RoboCup 3D simulation league, as well as the
Free/Scientific Challenge, the Fat Proxy Challenge, and consequently, the Tech-
nical Challenge. In the main competition it registered 17 wins, 1 tie, 0 losses, 84
goals scored, only 2 conceded, and in the Fat Proxy Challenge 4 wins, 0 ties, 0
losses, 21 goals scored, and 3 conceded.

An integrated learning approach guaranteed that skills such as the omnidi-
rectional walk, dribble and kick can attain high performance but also smooth
transitions, without falling or requiring intermediate steps. Despite the consid-
erable gain in performance and competitiveness, in comparison with previous
years, there are still many improvement opportunities. Future research direc-
tions include high-level multi-agent coordination strategies, opponent modeling,
goalkeeper skills, omnidirectional kicks, optimization algorithms, and more.
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Abstract. For the first time, the HERA robot won the RoboCup@Home
in the Open Platform League in Bangkok, Thailand. This robot was
designed and developed by the RoboFEI@Home team, considering all
mechanical, electronic, and computational aspects. It is an Open League
platform capable of performing autonomous tasks in home environments,
in addition to human-robot interaction, collaborating with people who
share the same environment. In this edition of the competition, the plat-
form presented advances in the methods of interacting with people and
social navigation. Interaction with people and objects is supported by
image segmentation processes, enhancing environment perceptions and
people recognition during tasks.

Keywords: RoboCup@Home · Open platform league · Domestic
service robotics

1 Introduction

The RoboCup 2022 edition in Thailand was the first in-person edition after the
pandemic. That was the first time the RoboFEI@Hone team won first place
in the RoboCup@Home Open Platform League. We are a passionate team for
RoboCup@Home, participatory and active since 2016, in our first participation in
the world competition. Participation in local competitions helps to promote the
league in South America, being a powerful ecosystem of knowledge exchange and
preparation. In the Brazilian Robotics Competition (partner RoboCup Brazil)
five consecutive titles were won.

In this edition of RoboCup in Thailand, a well-designed area was found, com-
prising a living room, kitchen, bedroom and office, containing 2 entrances/exits
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from the arena. There were several pieces of furniture in each environment,
allowing you to perform the tasks provided for in the rulebook. Using this envi-
ronment, it was possible to perform tasks with new features of computer vision,
new methodology with social navigation, and new software architecture that
integrates the various packages.

1.1 The RoboFEI@Home Team

The RoboFEI@HOME team started its activities in 2015 using the PeopleBot
platform to perform domestic tasks. Research on human-robot interaction has
been intensified with master’s and doctoral projects. Research is carried out in
different contexts considering human behavior, user modeling, interaction design,
social navigation, among others [2,9,13]. The mechanics and electronics of the
robot were completely redesigned after difficulties in purchasing spare parts from
the robotic platform on the market.

The mechanical, electronic, and computational design considered an econom-
ical platform for maintenance, but it can perform many domestic activities such
as: social and safe navigation, object manipulation, interaction with people and
appliances, and command recognition based on gestures or voice [1].

The RoboFEI@Home team seeks to be in constant evolution to always
develop new technologies in the domestic assistant area. The main researchers
developed by our team in these years are focused on making the HERA robot
even more autonomous.

2 Hardware

The Hera robot has an omnidirectional base, which makes it possible to move
in any direction, making it a great differential for movement in places with
restricted navigation. For manipulation, has a robotic arm of 6 DOF, com-
posed of Dynamixels servo motors, being controlled through an OpenCM 9.04
board, with a gripper revolute using flexible filaments for better grip objects.
Has attached a Logitech 1080p camera to its end effector, allowing it to perform
a wide variety of tasks. For the computer vision part, it used a Microsoft Kinect,
with the RGB camera and Depth for integration with the system. Counting on
a servo motor in its joint to adjust the tilt of the camera according to the need.
The robot head, has an Apple Ipad 2, and 2 RODE VideoMic GO directional
microphones, which make up our audio system, and a MATRIX CreatorTM at
the top of the head, with the main purpose of using this board is to perform
directional voice recognition.

The navigation system contains a Hokuyo UTM-30LX-EW sensor, capable of
detecting obstacles in the environment, and Asus Xtion, used to detect obstacles
that are difficult to recognize. For processing, has a Zotac Mini-PC with core
i5, 7500T, 16 Gb RAM, with Ubuntu 20.04, ROS Noetic, and an Nvidia Jetson
AGX Xavier, to compensate for the system’s graphics processing. The robot’s
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power supply consists of 5000 mAh Lipo battery packs, modularly connected
within the robotic platform (Fig. 1).

Fig. 1. Robot hardware

3 RoboCup@Home

The RoboCup@Home league aims to develop service robots for home applica-
tions. It is the largest annual international autonomous service robot competi-
tion. A domestics task group of varying themes is used to assess the skills and
performance of robots.

The main skills required by robots are Human-Robot Interaction and Coop-
eration, Navigation and Mapping in dynamic environments, Computer Vision
and Object Recognition under natural light conditions, Object Manipulation,
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Adaptive Behaviors, Behavioral Integration, Environmental Intelligence, Stan-
dardization, and Integration of Systems [11].

4 Skills

4.1 Robot Vision

The object detection system consists of Efficientdet-d0 [6], using TensorFlow
2.0. To create this dataset of objects, have been used synthetic data generation
[5] to save time in tagging the images and create a larger amount of data. An
efficient background removal method based on Deep Salient Object Detection
[10], is an algorithm to detect the most noticeable and important object in an
image, returning a binary mask of the image with the object. After generating
the mask, the object image can be used to compose new images with different
backgrounds (Fig. 2).

Fig. 2. Efficient background removal

Integrating a system of vision and manipulation of specific objects, with
image segmentation techniques using color extraction to perform the fine adjust-
ment in the object manipulation, not being necessary to train a model from
scratch to recognize a single object, reducing the time spent in the training. The
robot has people recognition, capable of memorizing names and faces using the
library dlib [3] that can identify a landmark, which allows guaranteeing a wide
variety of tasks with people.

4.2 Voice Recognition

The team decided to use Google’s Speech Recognition API. For this, a ROS
package was developed that operates through a set of APIs. They are online
tools that work directly on Ubuntu. In addition, a comparison is made with
generic sentences using the Hamming distance to recognize sentence variations.

This API was created from methods that facilitate the code adaptation to a
given environment, creating a new use of word choices in speech.

In competition, the team is using the MATRIX CreatorTM [4], a board with
sensors, wireless communication and an FPGA. The main objective of using this
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board is to perform directional voice recognition, thus being able to recognize
where the operator is talking to the robot from.

The Raspberry Pi connected to the MATRIX is used for communication with
the core of our robot. The Raspberry is responsible for reading the information
from the various sensors on the board and sending this information to the main
system.

4.3 Manipulator

The manipulator has a number of degrees of freedom (DOF) contained in a
human arm, aiming to obtain a great similarity with real movements using the
anthropomorphic principle. From this, a study of human anatomy and kinesi-
ology began, more specifically in the skeleton of the free portion of the upper
limbs, namely: arm, forearm, carpus, metacarpal. It was noticed that the main
movements are extension and flexion.

A new change in the manipulator is the new materials we are using, for
parts with more complex shapes we use 3D printing and for flat parts we are
using carbon fiber, resulting in greater resistance with less weight and smaller
dimension.

In the manipulation system, we used the Dynamixel Workbench package
for direct kinematics control when we need simpler movements. When we need
trajectory planning and deeper precision, we use Moveit with inverse kinematics.
For a more optimized and safer manipulation, we use the octomap integrated
with the manipulation system (Fig. 3). With this, we can have the perception
of the environment through the vision, considered in the robotic arm trajectory
planning, allowing a safety movement.

Fig. 3. Sensor interpretation using octomap in manipulation system.

4.4 Robot Navigation

An autonomous robot, to be able to navigate alone, needs the ability to map
where it is, define its position in space and decide the best possible route.
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For this to be possible, sensors that capture external environments are used,
and this information is transformed into interpretable data so that the robot
chooses the best route. When the robot is in an unknown location, it must map
the environment, where it is located, and at the same time define its position in
space. This technique is known as Simultaneous Location and Mapping (SLAM).
In navigation, the robot has the ability to choose the best possible route and
avoid possible obstacles using parameters where the smallest path error is cor-
rected instantly.

5 Implementation Highlights in Tasks

This section presents the main challenges encountered in implementing the tasks,
and how they were resolved. The implementation of these tasks was considering
the main strengths and weaknesses of the robot, and how they can be improved
for the next competition. Aiming to generalize the advances obtained, and facil-
itate the implementation of new tasks.

5.1 Stage I

In the first stage, the robot needs to perform simple tasks in a domestic envi-
ronment. The HERA robot scored 800 points in this stage.

Take Out the Garbage: This task consists of removing the garbage from
the recycle bin (300 score points) and placing it in a predefined location. The
challenge of this task was the positioning of the robot for manipulation. The
garbage location was predefined, however, it could vary within an area, thus
making it difficult to accurately position the robot. To solve this problem, we
trained a neural network with Framework TensorFlow 2 and Efficient-net [6]
to detect garbage, with this detection we use the depth camera to capture the
position of the object around the robot. When the robot arrived at the garbage
position, it used a Logitech camera coupled to an end effector to center the
object with image segmentation where we removed the HSV [14] of the object
to visualize the binary mask. After centering, the robot approached the garbage
and picked it up with the claw.

Receptionist: The purpose of this task was to receive people at a party and
take them to the Host in a pre-defined area. However, the place where the Host
and the other guests were seated was dynamic. The robot had to introduce the
new guest to the rest of the party, pointing them at their positions, worth 250
points for each person, in addition to talking about physical characteristics and
their favorite drinks worth 150 points.

The biggest challenge for the success of this task was finding an empty seat
for the new guest to sit. To solve this problem, we used a calculation performing
a triangulation of the position of the seated people detected within the useful
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area of the party, thus, having an estimate of their positioning within the room.
With this, we were able to predict which seat would be empty for the new guest
to be able to sit.

To brag about the task it is necessary to perform the delivery of a guest in
real-time. For this we use a model of disclosure of body recognition, with U-
2-Net [10] then remove the body from the image and that we remove only the
recognition of points of the body afterward, to extract only the points of the
body and thus, an image of the person in 3 parts: head, trunk, and legs. For
each part performed, by a resource acquisition process, we use neural to detect,
networks and masks. In the lower ones, it performs a classification of pieces and
color pieces.

5.2 Stage II

In the second stage, the robot needs to perform more complex tasks in a domestic
environment. The HERA robot scored 700 points in this stage.

Stick for the Rules: This task had a higher level of difficulty, the robot had
to be able to monitor the four rooms of the house with 5 people walking. Inside
the house, there were four rules that the robot would have to identify when
they were being broken and correct the violators (100 points for each infraction
detected). Among them, prohibited room, banned the use of shoes inside the
house, prohibited throwing garbage on the floor and all people should have drinks
in hand.

However, the difficulty encountered was detecting a guest with a drink in
his hand, and thus, directing the guest to the bar. For this, we use two neural
networks with TensorFlow to detect a person and another for drinks. Thus per-
forming an IOU (Intersection Over Union) heuristic and bounding box relation
to join the two detections and create a complex object. With that, the robot
approached the guest and directed him to the bar.

To monitor people in the forbidden room (worth 100 points to detect the
person and clarify which rule is being broken), we used a neural network trained
to perform Person Recognition, and with the point cloud, we obtained the coor-
dinate of the person in relation to the map of the house, being able to identify
if she really was in the forbidden room and then take the necessary measures.

5.3 Final

The final task consisted of carrying out an emergency care approach in a home
environment. This theme was proposed by the organizing committee of the com-
petition. Our team chose to perform home emergency assistance, in which the
robot made the connection between the patient and the hospital, informing and
following instructions from the medical team.

For this, the robot needed to identify the act of a fall inside the house and
confirm the accident. Then, establishing a connection via Telegram with the
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hospital, opening the triage process, sending all the data of the injured resident,
and ending with a photo of the accident. With the communication established,
the judges of the task were able to make the decisions by interacting with a
tablet that was given to them for the Human-Robot Interface. With the type of
medicine chosen by them and the specific milligram, the robot went to the shelf,
collected the exact medicine requested and delivered it to the patient, while the
doctor did not arrive.

Upon the arrival of the doctor, the robot received him and took him to the
injured patient. Due to the competition being in Thailand, the robot explained
everything that happened in the local language, for a better understanding of
the doctor. And so, the robot ended his assistance task successfully.

6 Current Research

6.1 Social Navigation

The main focus of this research is on the people’s comfort in spatial interactions
with a social robot. This research had as motivation the difficulty found when
dealing with the social robot’s navigation in a safe, natural and social way,
making the robot’s presence comfortable for the people interacting around it.

Initially, simulated experiments presented in [9] were carried out, then 20
volunteers were invited to participate in the real experiments. The characteristics
of the volunteers varied in terms of age, gender, previous experience with a
robot and previous knowledge of robotics. The real experiments were carried out
following the project with a Certificate of Presentation of Ethical Appreciation
number 43096121.7.0000.5508 presented to the ethics committee in research in
Brazil. In this research, all safety protocols related to the pandemic of the new
coronavirus (Covid-19) indicated by competents institutions were followed.

For the real experiments, two types of spatial interaction between people
and the robot were applied. In the first type, the robot navigated through the
environment passing through some specific points. Between each point, there
were people performing a certain action (standing, moving, interacting with
other people or objects). In the second type, the robot approached a person or a
group of people in a certain location. From these experiments, an ontology was
developed, initially proposed in [2] where it was possible to determine the type
of navigation that the robot performs, social distancing and how to approach
people in a socially accepted and comfortable way.

The ontology was used in the robot to build the semantic maps as proposed
by [7] in the form of social navigation layers as proposed by [8].

The robot receives objects information, people and the relationships between
these entities. 3 layers of cost maps are created representing objects, people or
people formations and relationships as areas of interaction. Then, the expansion
of obstacles is performed in each of the elements of the classes of objects, people
and formations. The robot’s radius is used to expand objects and areas where
interactions take place, and proxemics are used to expand the area of people
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and formations. The cost maps are used by ROS Navigation Stack to plan the
robot’s trajectories.

The robot also receives an identification of a place or a person existing in
its knowledge base and performs the navigation to this place in a social way,
respecting the social norms and rules based on the ontology. The robot receives
the destination name and Navigation type and returns a robot pose at the target.
Checks if the destination is a location or a person. If is a location, the destination
is set to the location itself, if it is a person, the destination is defined as a
location close to the person within its field of vision, respecting the proxemics
and within a possible trajectory for the robot, so the robot send a new destination
to the navigation system. During navigation, constant changes are made to the
trajectory to prevent it from passing through people’s personal space.

The robot performs reasoning on ontological information to perform social
navigation respecting social rules and norms. The type of formation group is
not classified here, however, the positioning of the formation members and the
best approach can be found based on the guidance of the closest person and cost
maps. Thus, it is possible to generalize the solution to any formation of groups.

The ontology identifies the type of navigation (location, person, walking side
by side, guide, follow). Calculates the robot’s destination coordinates depend-
ing on the navigation type. It publishes information about people, formations,
objects and the interactions between them. Then from the navigation type and
proxemics it returns the approach pose.

The type of social navigation the robot is currently performing can be To-
Local, To-Person, Side-to-Side, Guiding or Following navigation. The type of
navigation determines the robot’s destination, the angle relative to the destina-
tion, safe distance from the destination, orientation relative to the destination as
seen in the Table 1 and in the Fig. 4 which presents a robot positioning depending
on the type of navigation performed. In Fig. 6, the cost maps of people and areas
of interaction are shown (in yellow it is possible to check the possible approach
points that a robot can use, these points are inferred using the ontology).

Table 1. Robot navigation types

Navigation
type

Robot
destination

Approach angle
relative to the
destination

Distance from
destination

Angle of
approach relative
to destination

To-location Location 0 0 0
To-person Person 0 Defined by

proxemic
180

Side-by-side Person 90 Defined by
proxemic

0

Guiding Person 0 Defined by
proxemic

0

Following Person 180 Defined by
proxemic

0
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(a) To-person (b) Side-by-side (c) Guiding (d) Following

Fig. 4. Types of navigation when a destination is a person.

In this study, was observed that elements such as the appearance of the
robot and noise produced by the robot stand out compared to elements of spa-
tial interaction causing discomfort in the human being. It was observed that
the volunteer’s previous experience influences the way in which social norms are
accepted. Volunteers with previous experience of the robot’s capabilities usually
reveal some points of discomfort such as appearance, noise and even sudden
interventions in people’s interactions. With this, it was observed that the exis-
tence of previous experience in people with the capabilities of the robot has a
great influence on the comfort of these people.

At the end of this study, a computational solution was obtained that allows
a mobile social robot to be able to interact properly in spatial terms in a social
environment, reducing the feeling of discomfort for the human being during
this type of interaction. This study is designed to address current scientific and
social challenges. Having potential for a positive impact both in the academic
environment and in the daily life of the common citizen.

6.2 Dynamic Power Management

The constant development of our robotic platform substantially increased its
power consumption. As a consequence, our first solution was to increase the our
robot. After that, the next step was to migrate to higher energetic density bat-
teries, which solved our problem but wasn’t a good solution due to its prices so
we started research into Dynamic Power Management [15]. The Dynamic Power
Management (DPM) is a method developed with the purpose of optimizing avail-
able energy sources. DPM proposes to optimize energy use through the control
of the energy used by the system’s modules, made by the idleness exploitation:
If a device (or components of a device) is idle, its energy consumption should
be reduced as much as possible to save for when it will be needed. There are
several ways to implement the DPM, but the first step is to detect with accuracy
the idleness in the system’s module to quickly deactivate and force it into an
energetic dissipation state in which the wasted energy is as low as possible. To
develop the research and implement the most suitable DPM [15]. In our system,
it was necessary to conduct a lot of tests, which consisted into analyse the oper-
ating current of each module as a function of time, while the robot performs a
task. The current was acquired using a ACS712 sensor and the data was sent
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Fig. 5. Consumption of each module
and total consumption.

Fig. 6. People approach points.

to a computer through an Arduino. Then the operating current of each module
was multiplied by its operating voltage to obtain the energy consumption of each
module, generating the graph shown in Fig. 5.

Analyzing the graph, the Average Consumption per Second (Cps), Execution
Time (Texec) and the Total Consumption (Ct) were calculated. From the data
obtained, simulations were made considering different DPM methods, and the
one closest to the ideal was the predictive method with pre-wake up, saving
more than 35% of wasted energy, increasing the running time substantially and
by consequence the batteries lifespan [15]. Our team implemented this DPM
module on HERA utilizing an electronic relay module to deactivate the module
that is in idleness and is conducting new research into implementing a battery
bank to supply energy to the entire robot and make the management even more
efficient.

7 Summary

This paper describes the main strategies and technologies used on robot HERA
to win first place in the RoboCup@Home 2022 (Open Platform League), focus-
ing on the organization of tests and rapid implementations of technologies for
validation. In addition, we modulate our strategy to be easily adapted to differ-
ent environments and situations. With this, we hope that the strategy presented
can be applied to different contexts and replicated by other groups.
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Abstract. During the RoboCup 2022 tournament in Bangkok, Thai-
land, Tech United Eindhoven achieved the first place in the Middle Size
League. This paper presents the work done leading up to the tournament.
It elaborates on the new swerve drive platform (winner of the techni-
cal challenge) and the progress of making the strategy software more
semantic (runner-up of the scientific challenge). Additionally, the imple-
mentations of the automatic substitution and of more dynamic passes
are described. These developments have led to Tech United winning the
RoboCup 2022 tournament, and will hopefully lead to more successful
tournaments in the future.

Keywords: RoboCup soccer · Middle Size League · Multi-robot ·
Swerve drive · Semantic strategy

1 Introduction

Tech United Eindhoven represents the Eindhoven University of Technology in the
Robocup competition. The team joined the Middle Size League (MSL) in 2006
and played in 13 finals of the world championship, winning them 6 times. The
MSL team consists of 4 PhD, 7 MSc, 2 BSc, 6 former TU/e students, 7 TU/e staff
members, and 1 member not related to TU/e. This paper describes the major sci-
entific improvements of the Tech United soccer robots over the past year and elab-
orates on some of the main developments for future RoboCup tournaments. The
paper starts with a description of the fifth generation soccer robot used during the
RoboCup 2022 competition in Sect. 2. Additionally, some statistics of the robots
during the tournament are given in Sect. 3. In Sect. 4 the developments on the
swerve drive platform are described. Section 5 elaborates on how we will increase
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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the level of semantics in our strategy. The work on the automatic substitution
and on more dynamic passes is briefly described in Sect. 6. Finally, the paper is
concluded in Sect. 7, which also presents our outlook for the coming years.

2 Robot Platform

The Tech United soccer robots are called TURTLEs, which is an acronym for
Tech United Robocup Team: Limited Edition. Their development started in
2005, and through years of experience and numerous improvements they have
evolved into the fifth generation TURTLE, shown in Fig. 1. A schematic repre-
sentation of the robot design can be found in the work of Lopez et al. [8]. A
detailed list of hardware specifications, along with CAD files of the base, upper-
body, ball handling and shooting mechanism, is published on the ROP wiki1.

Fig. 1. Fifth generation TURTLE robots, with the goalkeeper on the left-hand side.
(Photo by Bart van Overbeeke)

The software controlling the robots consists of four modules: Vision, World-
model, Strategy, and Motion. These parts of the software communicate with each
other through a real-time database (RtDB) designed by the CAMBADA team
[1]. The Vision module processes the vision sensors data, such as omni-vision
images, to obtain the locations of the ball, opponents, and the robot itself. This
position information is fed into the Worldmodel. Here the vision data from all
the team members is combined into a unified representation of the world. The
Strategy module makes decisions based on the generated worldmodel using the
Strategy, Tactics and Plays (STP) framework. More information on STP can be
found in [7]. Finally, the Motion module translates the instructions of Strategy
1 http://roboticopenplatform.org/wiki/TURTLE.

http://roboticopenplatform.org/wiki/TURTLE
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into low-level control commands for the robot’s actuators. Further details on the
software can be found in [11].

3 RoboCup 2022 Statistics

Six teams participated at RoboCup 2022 in the MSL: Barelang 63, ERSOW,
IRIS, Falcons, Robot Club Toulon, and Tech United Eindhoven. Of these six
teams, five participated in the soccer competition, which resulted in a total
of thirty-three matches. Tech United played fourteen of these matches, during
which they were able to score 172 times, while only conceding one goal (plus
three regulatory goals). Compared to the previous tournament in 2019 where
our robots scored on average 7.0 goals per match, this year they scored 12.3
goals per match. The robots passed a total of 364 times. Based on odometry,
the robots collectively drove 61.7 km over the course of the tournament, of which
1.4 km was covered by the goalkeeper.

4 Swerve Drive Platform

The RoboCup MSL matches take place on flat, homogeneous surfaces and are
primarily focused on strategic and autonomous multi-agent decision-making at
high velocity. Nevertheless, humans are able to maneuver on a wide variety of ter-
rains, where bumpy soil and tall (wet) grass are no challenge at all. Most teams
have equipped their platforms with multiple (mostly three) omni-directional
wheels, enabling the possibility to instantaneously translate in both forward and
sideways direction. In addition, being able to quickly rotate around the robot’s
vertical axis is very effective in outplaying its opponent, like ball shielding and
interception. These wheels have shown great performance in terms of maneuver-
ability and flexibility, but require flat surfaces due to the limited radius of the
small rollers on the perimeter. Besides, more uneven or slippery surfaces result
in slipping motion or even getting stuck, hence the omni-directional wheels are
not functional on (artificial) grass-like surfaces. To achieve the ultimate goal of
RoboCup, namely to win against the winner of the human World Cup, an impor-
tant aspect is being able to play soccer on more diverse and outdoor terrains.

An earlier attempt to improve the traction in the target direction has resulted
in the development of an eight-wheeled platform [5], consisting of four wheel sets
each having two hub-drive motors. The torque delivered by the wheels could
directly be applied into the desired direction, thus increasing the overall acceler-
ations and velocities. Furthermore, each pair of wheels could act as a differential
drive using the friction between wheel and surface to generate a rotational move-
ment around the pivot point. Indeed the results show great performance in terms
of acceleration and agility. Nevertheless, the platform lacks performance when
accelerating on uneven surfaces, since the evenly distributed friction between the
wheels in each set and the ground needs to be guaranteed.
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Our primary motivation is enabling the important step of the RoboCup MSL
to play outdoor on regular fields and is able to achieve higher maximum accelera-
tions and velocities in all directions. Besides, developing an open-source platform
that is robust and cost-effective will provide an accessible option for all current
teams.

4.1 Hardware Design

The swerve drive principle [4] seems rather promising when considering move-
ments that are less dependent on the friction between wheel and surface, while
these platforms are generally equipped with separate steering actuators. Besides,
these platforms could take full advantage of their acceleration capabilities, since
‘normal’ wheels have greater contact surface (and thus friction) than the small
rollers of omni-directional wheels.

We have chosen for a three-wheeled coaxial-drive configuration (rather than
two- or four-wheeled) to comply with the MSL dimensions, while simultaneously
considering the required space for shooting and ball handling mechanism (see
Fig. 2a). Besides, even mass distribution and axisymmetric design were important
reasons for choosing this configuration. The coaxial-drive controls the rotation and
propulsion of each wheelset separately, which could be more easily manufactured
and made dust- and water-tight, and hence is a more cost-effective solution.

(a) Three-wheeled coaxial swerve drive. (b) Cross-section of a single wheelset.

Fig. 2. Design and realisation of a robust, outdoor motion platform

Figure 2b shows the compact design of a single wheel-set, consisting of the
drive motor and the pivot motor. Direct-drive in-wheel brushless DC (BLDC)
motors are found in a wide variety of electrical scooters and skateboards nowa-
days and form the basis of the wheelset design. Since space is very limited, the
wheel and drive motor are combined into one part. The inner-coils of the motor
controls the outer magnets, which in turn is attached to the tire.
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One major challenge is how to provide high power to the drive motor, while
it rotates along the pivot axis. It is not preferable to limit the possible amount of
rotations, therefore twisting wires through the center of the pivot is not feasible.
Since the motor requires a considerable amount of current of at least 15A RMS,
special slip rings have been developed. Three brass rings, one for each BLDC
motor coil, are put together in a single disk, with the motor wires assembled to
one side of the ring. Spring loaded pins are pushed against the other side of the
ring, which bridges the gap between the rotational and stationary side.

A secondary motor is attached to the propulsion motor, responsible for rotat-
ing the wheel around its own axis. Again, a low-cost BLDC outer runner motor
was chosen that is widely available within the consumer market. Since the pivot
angle requires a high torque and a lower maximum velocity, the motor and the
driven axle are connected by a belt transmission. For ease of assembly it was
chosen to point the motor upwards, but could as well be pointing downwards in
later iterations. The wheelset has been designed such that three identical sets
could be created: one for each corner of the platform.

Next, the position and velocity of each motor needs to be obtained for accu-
rate control of the overall platform. Most off-the-shelf high resolution encoders
are either not accurate enough, built rather bulky or are expensive. Therefore,
a small PCB for accurate 19-bit encoder positioning was developed for accurate
encoder placement, including an external EEPROM for configuration settings
and line driver for stable communication. A magnetic ring with a unique pat-
tern is centered on the rotating side, while the encoder chip is placed off-center
against the stationary side.

The pivot encoder was directly placed onto the outgoing axis to make sure
the wheels are always properly aligned, even if a problem appears, such as slip
on the driven belt. The encoder for the drive motor was placed directly along
the pivot axis within the fork. The encoder cables are fed through a slip ring,
centered along the pivot axis.

4.2 Software Design

First, each of the motor drivers needs to be configured by saving information
about the motor, gear ratio, encoders and low-level control structure in the
driver’s Service Data Object (SDO) dictionary. Furthermore, the Process Data
Object (PDO) map has to be assigned, such that the device knows which registers
should be available for reading and writing real-time data. Configuration and
communication between the master controller and the motor driver slaves make
use of the Simple Open EtherCAT Master (or SOEM) library2. The library
provides an application layer for reading and writing process data, keeping data
synchronized and detecting and managing potential errors.

The propulsion and pivot motor of one wheelset have a different amount of
pole pairs. Besides, the pivot motor is equipped with a hall-sensor and includes
a gear ratio with the outgoing axis. Finally, the minimal PDO-map consists of:

2 https://github.com/OpenEtherCATsociety/SOEM.

https://github.com/OpenEtherCATsociety/SOEM
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controlword, torque, velocity and position setpoint for the RxPDO and status-
word, error code, torque, velocity and position value for the TxPDO. The full
configuration file has been published on the ROP wiki3.

The software architecture was designed such that parts of the robot could
change without having to change the entire model. In this case, only the motion
platform has changed when introducing the swerve drive, for which a new model
was designed.

Receiving and sending information between the motor driver and Simulink
is handled by creating read and write Simulink S-functions. These functions set
RxPDO and get TxPDO values respectively based on the selected slave ID.
Besides, a MATLAB function has been written for stepping through the Drive
State Machine (CiA 402) by reading the current state using statusword and
transitioning towards the next state with the controlword. Furthermore, when
an error occurs and the fault state is entered, the function automatically resets
and enables the driver again.

The motor drivers are already capable of performing cyclic synchronous posi-
tion and cyclic synchronous velocity mode based on the low-level setpoints. What
remains is to calculate the setpoint position for the pivot motor and setpoint
velocity for the drive motor.

Fig. 3. Schematic representation of swerve drive platform.

Figure 3 shows a graphical representation of the swerve drive platform. Each
wheelset has a position and center of rotation with respect to the platform’s
center of rotation, which is known by design. These positions are used to calculate
the polar coordinate position of each wheelset, represented as arm Li and angle
θi with respect the platform’s x-axis, as

Li =
√

xi
2 + yi2

θi = arctan2 (yi, xi)
(1)

3 http://roboticopenplatform.org/wiki/SwerveDrive.

http://roboticopenplatform.org/wiki/SwerveDrive
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where i = 1, 2, 3 correspond to the wheelset.
Next, the desired platform reference velocity [ẋ ẏ φ̇]Tref could be used to

calculate the velocity and orientation of each wheelset. First, the velocity vector
of each wheelset is calculated as follows

ẋi = ẋref − sin (θi) vc,i

ẏi = ẏref + cos (θi) vc,i
(2)

in which the linear velocity from the angular reference is calculated as

vc,i = φ̇refLi (3)

Finally, the angular setpoint of each wheel is calculated as follows, which is
used as the target position for the pivot motor.

αi = arctan2 (ẏi, ẋi) (4)

The velocity setpoint for the propulsion motor is calculated as

vi =
√

ẋ2
i + ẏ2

i (5)

The calculations above were implemented in the model-based framework
within MATLAB and Simulink, in order to create an easy to maintain and
scalable design. The hardware communication takes place through EtherCAT,
using the S-functions as mentioned above. The software design is compiled and
runs real-time onto the robot platform.

4.3 Results

The swerve drive platform was presented for the first time during the MSL
technical challenge at RoboCup 2022 and got first place. The results are very
promising as the prototype showed great performance in terms of acceleration
and robustness on uneven, bumpy terrain. Currently, the acceleration is lim-
ited by the motor drivers, which are not capable of delivering more than 30A
peak. The goal for next year is to have a swerve drive platform based robot
participating in the team and scoring its first goal.

5 Decision Making Through Semantic Regions in Robotic
Soccer

In the game of soccer, strategy has a significant contribution to winning games.
The effectiveness of a strategy is dependent on the capability of the players and
the opposing strategy. It is therefore something that is adjusted often, requiring a
proper definition. In human soccer this is developed over the years and comprises
the formation, the type of build up, the width of play and many more qualitative
notions [3]. In the context of the RoboCup MSL, the strategy and configuration
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of this has been solved in various ways [2,9,10]. Currently the Tech United team
uses Skills, Tactics and Plays (STP) as the overall strategy framework [7]. Within
STP ad-hoc decisions about which skill to deploy still have to be made to react
properly to changes on the field, which is solved by the use of potential fields,
called mu-fields. These fields include many parameters and are therefore hard
to configure. This work aims at enhancing this configurability by incorporating
semantic information about the skills in the world model of the robot. 2D regions
are constructed that represent the affordance of a certain skill. Knowledge of the
possible combination of skills and targets allows for explainable decision making,
improving configurability.

5.1 Strategy Framework

As already mentioned, the STP framework is used to deploy the strategy. The
global team plan consists of a list of plays that are selected based on the game
situation. Within a play each robot gets a specific role, e.g., goal keeper, attacker,
defender. Each role has a specific action or a sequence of actions to execute. An
example of the first being in an attacking play and possession of the ball. The
action is then described by ‘advancing the game’, in which the player needs
to choose the appropriate skill and target ad-hoc based on the game situation
(position of ball, peers and opponents). The potential field used for this is a
grid field where for each cell a number of cost-functions are calculated giving a
score to that specific location, which is visualized in Fig. 4a. Assisting players
create such a field to select to position themselves on the field strategically and
communicate this to the player in possession of the ball. The player in possession
of the ball creates a field for dribbling, and calculates its current scoring position.
It then compares all skills and selects the skill and target with the highest score.
The downside of using potential fields is that it has a lot of parameters, in the
case of our TURTLEs up to 16 parameters. Only regarding the region to where
a skill is actually possible would make all involved parameters redundant.

5.2 Semantic Representation of Soccer

Figure 4b visualizes the semantic regions for an arbitrary game situation. To
create these, first the different skills of a soccer robot are defined. In case of
attacking game play we make a distinction between a shot, pass (forwards and
backwards) and dribble (forwards and backwards). Hereafter, constraints are
defined restricting the region of a skill. Shots are constrained by opponents and
peers between the ball and goal, while a dribble is constrained by opponents
within the dribbling region. The dribbling region is a confined region where a
robot is allowed to dribble from the position were it got the ball and is set by
the competition rules. A pass has the following constraints:

– The region in which a pass can be received is constrained by the estimated
pass time.

– Opponents between the ball and the pass receiving region limit this region.
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– Target positions closer to an opponent than the receiver are not reachable.

These geometrical calculations are executed by the use of the Shapely Python
package4 and result in a world model as visualised in Fig. 4b. The resulting skill
regions are evaluated by a simple decision tree structure explained in Sect. 5.3.
Assisting players use a similar semantic representation to decide on their target
for strategic positioning.

(a) Current method: mu-field (b) Semantic regions (pass, dribble, shot)

Fig. 4. Visualization of decision making methods for soccer robots

5.3 Decision Making

Now that a semantic representation of possible skills (and targets) exist, this
enables the decision process to be based on a tree structure. A few risk and
reward parameters are used to evaluate the actions. For now the following param-
eters are used:

– Scoring position: distance to the optimal position for making a shot.
– Pressure on the ball: the area of the region is a measure for the amount of

pressure on the ball by opponents.
– Duration of the action: the longer the action takes, the more time the oppo-

nent has to react or intercept.

Actions are evaluated in the following order. From the semantic map it is
determined if a shot is possible. If possible and the shooting position score is
above a certain threshold, a shot is taken. If not, the possible forward passes
are evaluated. If the reward and risk are above and below a certain threshold a
pass is given. If not, forward dribbles are evaluated. Hereafter backward passes
and dribbles are considered. In case none of them satisfies the thresholds, values
are compared and the best possible action is taken. Note that this can also be
staying idle.

4 Shapely, a Python package for computational geometry - https://shapely.
readthedocs.io/en/stable/manual.html.

https://shapely.readthedocs.io/en/stable/manual.html
https://shapely.readthedocs.io/en/stable/manual.html
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6 Miscellaneous

6.1 Automatic Substitution

Last year’s addition of autonomous substitutions is one of the advancements
towards an even more autonomous game. Without the autonomous substitution,
a human team member has to remove the robot from the field and during the
next game stoppage after a repair period of 20 s, a robot may be placed at the
sideline again. In the new situation, the humans only indicate the number of the
robot to be substituted. Once that robot leaves the field and enters the Team
Technical Area (TTA) next to the field autonomously, then the other robot is
immediately allowed to move from the TTA to the sideline and participate when
the game continues. In this way, there is no longer a disadvantage of temporarily
playing with one less player. If the robot is unable to autonomously leave the
field, a manual substitution has to be performed and a 20 s penalty is applied.

One of the main challenges for the implementation of the autonomous substi-
tution on the TURTLEs is their localization outside the field lines. The position
of robots in the TTA is about 1.5 m away from the sideline of the field. There
our original localization method [6], which was built upon the assumption that
the robot is in the field or at least very close to it, was not sufficiently robust
anymore. This issue was solved by initializing the robots within the field before
the game starts, and moving the substitute robot from there into the TTA. Even
if the position with respect to the field lines cannot be found anymore using the
omnivision camera data, the fused encoder and IMU data still provide an accu-
rate enough update of the location estimate until the substitute enters the field
when it is allowed to.

6.2 Through Balls

Instead of only using static passes, i.e., a robot passes the ball to the position
another robot is already located, the gameplay becomes a lot more dynamic by
through balls. In general, a through ball is a pass between opponents to receive
the ball behind them, as shown in Fig. 5. When we refer to through balls, we also
mean passes into open space that are not in between defenders. The addition
of such passes does not only drastically increase the amount of opportunities
to give a pass, it also enables the pass receiver to already cover a significant
distance within the time the ball is on its way. This accelerates the gameplay
during ball possession, making it more difficult for the opponent to defend.

Through balls are implemented in our software by first letting the pass giver
and pass receiver agree on a position to give the pass to. Whereas for static passes
the only possible position is the current position of the pass receiver, now all
positions on the field are considered as possible targets. The best target within
this large set is found by applying a multi-objective optimization, for instance
taking into account the distance of the receiver to the target, whether there are
opponents blocking the path of the ball and how close to the opponent goal the
pass target is. This optimization is now performed by the mu-fields, but can in
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Fig. 5. Example of a through ball from robot 2 to robot 4. The black circles represent
opponents.

the future be based on semantic regions, both explained in Sect. 5. As long as
the decision to pass is not considered to be better than dribbling or shooting,
the players without the ball will continue moving around the field. Once the pass
giver and receiver agree on a good target for a pass, the robot in possession of
the ball will kick it towards the agreed target and the other robot moves towards
the target to intercept the ball.

7 Conclusion

In this paper we have described the major scientific developments of team Tech
United Eindhoven in preparation of RoboCup 2022, and the results we have
achieved during the tournament. Not all developments contributed actively to
the result, but will lead to improvements of our soccer robots in future tourna-
ments.

We have elaborated on our work on a new platform that utilizes the swerve
drive principle. This platform won the Technical Challenge of RoboCup 2022
and will hopefully participate in its first matches at RoboCup 2023. The new
design reduces the dependency on friction between the wheels and soccer field,
therefore making the robot rely less on a flat and homogeneous field and hence
more future-proof.

We also discussed how we are transforming our potential fields, used in the
decision making, by more semantic models. This gives us more insight in the
decision making process, which in turn allows for better configuration of the
overall strategy.

The automatic substitution will make the MSL even more autonomous. The
challenges and solutions for implementing this were briefly discussed. By utilizing
the through balls our robots can now perform, the game play will be more
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dynamic and fluent. It will allow the pass receivers to cover much more distance
during the pass, making it extra dangerous for static opponents. Altogether we
think our developments will contribute to an even higher level of dynamic and
scientifically challenging robot soccer. The latter, of course, while maintaining
the attractiveness of our competition for a general audience. In this way we hope
to stay with the top of the MSL for many more years and contribute to the long
term goal of beating the human world champion in soccer in 2050.

Acknowledgement. The development of the swerve drive platform was part of
RoboCup Federation and MathWorks Support for Research Projects 2022.
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3280, pp. 876–886. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-
540-30182-0 88

2. Antonioni, E., Suriani, V., Riccio, F., Nardi, D.: Game strategies for physical robot
soccer players: a survey. IEEE Trans. Games 13(4), 342–357 (2021). https://doi.
org/10.1109/TG.2021.3075065

3. FIFA: Futsal coaching manual (2019)
4. Holmberg, R., Slater, J.C.: Powered caster wheel module for use on omnidirec-

tional drive systems. uS Patent 6,491,127 (2002). https://www.google.it/patents/
US4741207

5. Houtman, W., et al.: Tech United Eindhoven middle-size league winner 2019. In:
Chalup, S., Niemueller, T., Suthakorn, J., Williams, M.-A. (eds.) RoboCup 2019.
LNCS (LNAI), vol. 11531, pp. 517–528. Springer, Cham (2019). https://doi.org/
10.1007/978-3-030-35699-6 42

6. Kon, J., Houtman, W., Kuijpers, W., van de Molengraft, M.: Pose and velocity
estimation for soccer robots. Student Undergraduate Res. E-J. 4 (2018). https://
doi.org/10.25609/sure.v4.2840

7. de Koning, L., Mendoza, J.P., Veloso, M., van de Molengraft, R.: Skills, tactics and
plays for distributed multi-robot control in adversarial environments. In: Akiyama,
H., Obst, O., Sammut, C., Tonidandel, F. (eds.) RoboCup 2017. LNCS (LNAI),
vol. 11175, pp. 277–289. Springer, Cham (2018). https://doi.org/10.1007/978-3-
030-00308-1 23

8. Lopez Martinez, C., et al.: Tech United Eindhoven team description (2014).
https://www.techunited.nl/media/files/TDP2014.pdf

9. Neves, A.J.R., Amaral, F., Dias, R., Silva, J., Lau, N.: A new approach for dynamic
strategic positioning in RoboCup middle-size league. In: Pereira, F., Machado, P.,
Costa, E., Cardoso, A. (eds.) EPIA 2015. LNCS (LNAI), vol. 9273, pp. 433–444.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23485-4 43

10. Reis, L.P., Lau, N., Oliveira, E.C.: Situation based strategic positioning for coor-
dinating a team of homogeneous agents. In: BRSDMAS 2000. LNCS (LNAI), vol.
2103, pp. 175–197. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-
44568-4 11

11. Schoenmakers, F., et al.: Tech United Eindhoven team description (2017). https://
www.techunited.nl/media/images/Publications/TDP 2017.pdf

https://doi.org/10.1007/978-3-540-30182-0_88
https://doi.org/10.1007/978-3-540-30182-0_88
https://doi.org/10.1109/TG.2021.3075065
https://doi.org/10.1109/TG.2021.3075065
https://www.google.it/patents/US4741207
https://www.google.it/patents/US4741207
https://doi.org/10.1007/978-3-030-35699-6_42
https://doi.org/10.1007/978-3-030-35699-6_42
https://doi.org/10.25609/sure.v4.2840
https://doi.org/10.25609/sure.v4.2840
https://doi.org/10.1007/978-3-030-00308-1_23
https://doi.org/10.1007/978-3-030-00308-1_23
https://www.techunited.nl/media/files/TDP2014.pdf
https://doi.org/10.1007/978-3-319-23485-4_43
https://doi.org/10.1007/3-540-44568-4_11
https://doi.org/10.1007/3-540-44568-4_11
https://www.techunited.nl/media/images/Publications/TDP_2017.pdf
https://www.techunited.nl/media/images/Publications/TDP_2017.pdf


Author Index

A
Aangenent, W. H. T. M. 337
Abreu, Miguel 313
Aggarwal, Arpit 264
Akiyama, Hidehisa 253
Alves, Tales T. 177
Amini, Arash 240
Amini, Omid 140
Antonioni, Emanuele 112
Appeldoorn, Rein. P. W 264
Aquino-Junior, Plinio Thomaz 325

B
Barange, Mukesh 203
Barros, Edna N. S. 177, 190
Barros, Edna 100
Behnke, Sven 240
Bennewitz, Maren 240
Bestmann, Marc 164
Beumer, R. M. 337
Bloisi, Domenico D. 112
Bouabdelli, Maël 203
Breig, Marc 39
Briegel, M. 337
Bruijnen, D. J. H. 337
Buche, Cédric 203

C
Conceição, Olavo R. 177
Curtis, Vitor V. 152

D
da Silva, José R. 177
De Bortoli, Marco 87
de Mattos Neto, Paulo S. G. 177
Deniz, E. 337
Deogan, A. S. 337
Desai, Siddharth 62
Douven, Y. G. M. 337
Durugkar, Ishan 62

F
Ferrein, Alexander 300
Ficht, Grzegorz 240
Firouzkouhi, Arad 140
Fujikawa, Takumi 253

G
Gabel, Thomas 14
Geiger, Mark 276
Geijsberts, Josja 264
Gerstmayr, Johannes 127
Gies, Valentin 50
Gießler, Maximilian 39
Gonçalves, Tiago H. R. P. 177
Grotti Meireles Aguiar, Nicolas Alan 325

H
Hameeteman, D. M. J. 337
Hasselbring, Arne 287
Hatakeyama, Kyo 253
Hayashibara, Yasuo 215
Henning, Mike 300
Hochberg, Ulrich 39
Hofmann, Patrick 127
Hofmann, Till 300
Hosseini, Mojtaba 240
Houben, Sebastian 75

I
Inoue, Satoshi 215
Irie, Kiyoshi 215

J
Janssen, Lars. G. L 264
Jiang, Tianjiao 203

K
Kambe, Hayato 215
Kasaei, Mohammadreza 313
Kempers, S. T. 337

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2023
A. Eguchi et al. (Eds.): RoboCup 2022, LNAI 13561, pp. 349–351, 2023
https://doi.org/10.1007/978-3-031-28469-4

https://doi.org/10.1007/978-3-031-28469-4


350 Author Index

Kokkelmans, A. A. 337
Kon, J. J. 337
Kubotera, Masato 215
Kuijpers, W. J. P. 337
Kuwano, Gaku 215

L
Lakemeyer, Gerhard 300
Lau, Nuno 313
Laue, Tim 287
Li, Liangde 3
Li, Louis 203
Lienhoop, Jo 287
Limpert, Nicolas 300
Lu, Wentao 3
Lunenburg, Janno. J. M 264

M
Manzl, Peter 127
Masannek, Marco 228
Masetty, Bharath 62
Matwin, Stan 140
Maximo, Marcos R. O. A. 27, 152
Meessen, K. J. 337
Mehta, Mihir 75
Meinken, Yannik 287
Melo, João G. 100
Memmesheimer, Raphael 240
Messing, Lotte 264
Mibuchi, Yuta 215
Missura, Marcell 240
Moura Pimentel, Fagner de Assis 325
Moussa, Houssem 50
Musumeci, Emanuele 112

N
Nakashima, Tomoharu 253
Narayanaswami, Sai Kiran 62
Nardi, Daniele 112
Narvekar, Sanmit 62
Neau, Maëlic 203
Neto, Paulo S. G. de Mattos 190
Neurauter, Rene 127
Nicolau Marostica, Guilherme 325
Noguchi, Hiroki 215
Nounou, Y. M. A. 337
Núñez, Rodrigo Martin 264

O
Oliveira, Guilherme N. 152
Olthuis, J. J. 337

Olucha Delgado, E. J. 337
Ommer, Nicolai 276

P
Pavlichenko, Dmytro 240
Pereira, Felipe N. A. 177
Pieber, Michael 127

R
Rad, Saba Ramezani 140
Reichenberg, Philip 287
Reis, Luís Paulo 313
Ren, Tsang I. 177, 190
Röfer, Thomas 287
Ryll, Andre 276

S
Sammut, Claude 3
Sarvmaili, Mahtab 140
Sato, Dan 215
Sayareh, Aref 140
Scharf, Vincent 75
Schnekenburger, Fabian 39
Schoenmakers, F. B. F. 337
Schulz, Stefan M. 240
Selten, J. 337
Sereinig, Martin 127
Sheh, Qingbin 3
Soares, Amilcar 140
Soares, Mateus F. B. 177, 190
Sommer, Fabian 14
Soriano, Thierry 50
Steinbauer-Wagner, Gerald 87
Steuernagel, Lucas 27
Stolarz, Michał 75
Stone, Peter 62
Suriani, Vincenzo 112
Syed, Ibrahim Shakir 75

T
Tec, Mauricio 62
Teurlings, P. 337

U
Ung, Thomas 203

V
van Beek, Loy. L. A. M 264
van Brakel, P. E. J. 337



Author Index 351

van de Loo, H. C. T. 337
van de Molengraft, M. J. G. 264, 337
van der Burgh, Mathijs. F. B 264
van der Stoel, J. P. 337
van Dooren, Peter 264
van Gerwen, T. J. 337
van Lith, P. H. E. M. 337
van den Bogaert, R. 337
Verhees, E. D. T. 337
Viehmann, Tarik 300
Villar-Corrales, Angel 240

W
Willwacher, Steffen 39
Wolf, Virginia 39

Y
Yokoo, Riku 215

Z
Zare, Nader 140
Zeitler, Sally 228
Zhang, Jianwei 164


	 Preface
	 Organization
	 Contents
	Main Track
	Object Recognition with Class Conditional Gaussian Mixture Model - A Statistical Learning Approach
	1 Introduction
	2 Background
	2.1 Mixture Models
	2.2 Related Work

	3 Algorithm Design
	3.1 Order Estimation
	3.2 Algorithm Overview

	4 Applications and Experiments
	4.1 Field Feature Recognition
	4.2 Bottom Camera Ball Recognition

	5 Conclusion
	References

	Instance-Based Opponent Action Prediction in Soccer Simulation Using Boundary Graphs
	1 Introduction
	2 Background and Related Work
	2.1 Robotic Soccer Simulation
	2.2 Related Work on Opponent Modeling
	2.3 Related Work on Index Structures for Efficient Retrieval

	3 Boundary Graphs
	3.1 Notation
	3.2 Querying a Boundary Graph
	3.3 Graph Construction

	4 Empirical Evaluation
	4.1 Problem Formulation and Data Collection
	4.2 Results

	5 Conclusion
	References

	Trajectory Prediction for SSL Robots Using Seq2seq Neural Networks
	1 Introduction
	2 Dataset Cleansing
	2.1 Robot's Trajectory and Velocity
	2.2 Robots' Heading

	3 Neural Network
	3.1 Encoder
	3.2 State Initializer
	3.3 Attention Aggregator
	3.4 Decoder

	4 Training
	5 Testing
	6 Results
	7 Conclusions
	References

	Gait Phase Detection on Level and Inclined Surfaces for Human Beings with an Orthosis and Humanoid Robots
	1 Introduction
	2 State of the Art
	3 Method
	4 Results
	4.1 Detection Precision and Time Delay
	4.2 Determination of the Slope
	4.3 Validation with Physical Data

	5 Discussion
	6 Conclusion and Future Work
	References

	Ultra-Fast Lidar Scene Analysis Using Convolutional Neural Network
	1 Introduction
	2 State of the Art in Robot Scene Analysis
	2.1 Object Detection Based on Images
	2.2 Object Detection Based on 2D Map Lidar Images

	3 Contribution: Fast Lidar Analysis Using Convolutional Neural Network (FLA-CNN)
	3.1 CNN Architecture

	4 Application to the RoboCup Scene Analysis
	4.1 Data Set Creation and Labelling
	4.2 Training

	5 Results
	6 Conclusion
	References

	Towards a Real-Time, Low-Resource, End-to-End Object Detection Pipeline for Robot Soccer*-6pt
	1 Introduction
	2 Background
	2.1 Robocup Standard Platform League
	2.2 Hardware Setup
	2.3 Object Detection Challenges

	3 Related Work
	4 Data Curation and Data Augmentation
	5 Analyzing Computational Constraints
	5.1 Software Stack
	5.2 Computational Benchmarks

	6 Detector Design
	7 Experiments
	7.1 MobileNet and xYOLO Results
	7.2 Reduced Models for Bottom Camera

	8 Practical Deployment
	9 Conclusions
	References

	Object Tracking for the Rotating Table Test
	1 Introduction
	2 Related Work
	3 Detection
	4 Tracking
	4.1 Updated Track Handling

	5 Evaluation
	5.1 Dataset
	5.2 Metrics
	5.3 Results

	6 Conclusion
	References

	Evaluating Action-Based Temporal Planners Performance in the RoboCup Logistics League
	1 Introduction
	2 The RoboCup Logistic League
	3 Research and Strategies in the RoboCup Logistics League
	4 Planner Candidates
	5 Domain Encodings and Abstraction
	5.1 The GRIPS and CARO Encodings
	5.2 GRIPS-MOVE and GRIPS-MPS Encodings
	5.3 FREIBURG Encoding

	6 Evaluation
	7 Conclusion and Future Work
	References

	An Embedded Monocular Vision Approach for Ground-Aware Objects Detection and Position Estimation
	1 Introduction
	2 Related Work
	3 Proposed Approach
	3.1 Camera Calibration
	3.2 Ground Point Localization
	3.3 Object Detection Model
	3.4 Ground Point Linear Regression

	4 Evaluation
	4.1 Camera Calibration Results
	4.2 Objects Detection Performance
	4.3 Ball Localization

	5 Conclusion
	References

	Adaptive Team Behavior Planning Using Human Coach Commands
	1 Introduction
	2 Related Work
	3 Background
	4 Proposed Approach
	4.1 Architecture
	4.2 Plan Generation and Execution
	4.3 PLTLf Temporal Goals over PDDL Domains

	5 Examples
	6 Experimental Evaluation
	7 Conclusions and Future Directions
	References

	Development Track
	Omnidirectional Mobile Manipulator LeoBot for Industrial Environments, Developed for Research and Teaching
	1 Introduction
	2 LeoBot Hardware Components and Design
	2.1 Mechanical System and Construction
	2.2 Mechatronic Systems
	2.3 Franka Emika Panda
	2.4 Electronic System

	3 Leobot Software Architecture and Operating System
	3.1 Robot Operating System

	4 Conclusion and Outlook
	References

	Cyrus2D Base: Source Code Base for RoboCup 2D Soccer Simulation League
	1 Introduction
	2 Cyrus2D Base Version 0.0
	3 Cyrus2D Base Version 1.0
	3.1 Blocking Strategy This Algorithm Is Implemented in Src/bhv_basic_block.cpp. 
	3.2 Offensive Risk Evaluation This Algorithm Is Implemented in Src/chain_action/action_chain_graph.cpp.
	3.3 Unmarking Strategy This Algorithm Is Implemented in Src/bhv_unmark.cpp.

	4 Cyrus2D Base Version 1.1 This Algorithm Is Implemented in Src/bhv_unmark.cpp, Src/data_extractor/DEState.cpp and Src/data_extractor/offensive_data_extractor.cpp.
	4.1 Data Extractor
	4.2 Unmarking Strategy with Help of Pass Prediction Module

	5 Results
	5.1 Training DNN for Cyrus2D V1.1 All Scripts for Training Are Available in Scripts/training_unmark.

	6 Conclusion
	References

	Distributed Optimization Tool for RoboCup 3D Soccer Simulation League Using Intel DevCloud
	1 Introduction
	2 Background
	2.1 Evolution Strategy
	2.2 Parallel Computing Control
	2.3 Error Prevention
	2.4 Keyframes

	3 Methodology
	3.1 Kick Keyframe Optimization

	4 Results and Discussions
	5 Conclusions
	References

	Bipedal Walking on Humanoid Robots Through Parameter Optimization
	1 Introduction
	2 Related Work
	3 Walk Controller
	3.1 Finite State Machine
	3.2 Spline Engine
	3.3 Stabilization
	3.4 Inverse Kinematics
	3.5 Interfacing

	4 Optimization
	4.1 Problem Definition
	4.2 Optimization Process

	5 Evaluation
	5.1 Optimizer
	5.2 Generalization
	5.3 Previous Usages

	6 Conclusion
	References

	A Library and Web Platform for RoboCup Soccer Matches Data Analysis
	1 Introduction
	2 Related Work
	3 Soccer Analyzer
	3.1 Internal Architecture
	3.2 Inputs and Outputs
	3.3 Analysis
	3.4 Expected Goals (xG)

	4 Web Platform
	4.1 Motivation
	4.2 Front-End and Back-End

	5 Experiments and Real World Use
	5.1 The xG Model

	6 Conclusions and Future Work
	References

	Web Soccer Monitor: An Open-Source 2D Soccer Simulation Monitor for the Web and the Foundation for a New Ecosystem
	1 Introduction
	2 Related Works
	3 Web Soccer Monitor
	3.1 Technology and Architecture
	3.2 Component-Based Modularity
	3.3 Features
	3.4 A Ready-to-Use Website
	3.5 A Simpler Setup for Offline Use

	4 Open Source Movement
	4.1 Community Involvement
	4.2 Flourishment of a New Ecosystem

	5 Conclusions
	6 Future Works
	References

	Champion Papers Track
	RoboBreizh, RoboCup@Home SSPL Champion 2022
	1 Introduction
	2 Embedded Software Architecture
	3 Embedded Manager Module
	4 Embedded Perception Module
	4.1 Objects
	4.2 Person
	4.3 Localization and Distances
	4.4 Onboard Implementation

	5 Embedded Navigation Module
	6 Embedded Dialog Module
	7 Performance
	8 Conclusion and Future Work
	References

	RoboCup2022 KidSize League Winner CIT Brains: Open Platform Hardware SUSTAINA-OP and Software
	1 Introduction
	2 Mechanics
	3 Control Circuit
	4 Quality Control of Servo Motors
	5 Walking Control and Motion
	6 Perception
	6.1 Computer Vision
	6.2 Self-localization

	7 Visualization
	8 Action Decision Making
	9 Conclusion
	References

	Champion Paper Team AutonOHM
	1 Introduction
	2 AutonOHM
	3 Hardware Description
	3.1 Sensors
	3.2 PC
	3.3 PSU
	3.4 Manipulator

	4 Software Description
	4.1 Driver
	4.2 Model
	4.3 Controller
	4.4 Brain

	5 Conclusion and Future Work
	References

	RoboCup 2022 AdultSize Winner NimbRo: Upgraded Perception, Capture Steps Gait and Phase-Based In-Walk Kicks
	1 Introduction
	2 NimbRo-OP2(X) Humanoid Robot Hardware
	3 Visual Perception of the Game Situation
	4 Robust Omnidirectional Gait with Diagonal Kick
	4.1 Capture Step Walking
	4.2 Balance State Estimation
	4.3 Phase-Based In-Walk Kick

	5 Behavior Control
	6 Debugging and Diagnostics
	7 Technical Challenges
	7.1 Push Recovery
	7.2 Parkour
	7.3 High Kick
	7.4 Goal Kick from Moving Ball

	8 Soccer Game Performance
	9 Conclusions
	References

	HELIOS2022: RoboCup 2022 Soccer Simulation 2D Competition Champion
	1 Introduction
	2 Soccer Simulation 2D Competition
	3 Online Setplay Planning
	3.1 Action Sequence Planning by Player Agents
	3.2 Setplay Planning by Coach Agent

	4 Performance Evaluation System
	4.1 Overview of the System
	4.2 Case Study: Effect of Team Names on the Team Strategy

	5 Conclusion
	References

	Tech United Eindhoven @Home 2022 Champions Paper
	1 Introduction
	2 Environment Descriptor (ED)
	2.1 Localization, Navigation and Exploration
	2.2 Detection and Segmentation
	2.3 Object Grasping, Moving and Placing
	2.4 World Model Creation

	3 Image Recognition
	4 People Recognition
	4.1 Pointing Detection

	5 Human-Robot Interface
	5.1 Web GUI
	5.2 Telegram™
	5.3 Head Display
	5.4 Speech Recognition

	6 Task Execution
	7 Re-usability of the System for Other Research Groups
	8 Community Outreach and Media
	A  HSR's Software and External Devices
	References

	RoboCup 2022 SSL Champion TIGERs Mannheim - Ball-Centric Dynamic Pass-and-Score Patterns
	1 Robot Dribbling Hardware and Ball Interaction
	1.1 Dribbling Device
	1.2 Catching a Rolling Ball

	2 Offensive Strategies
	2.1 Offensive Dribbling
	2.2 Defensive Dribbling

	3 Support Strategies
	3.1 Supporting Robots
	3.2 Pass Targets

	4 Conclusion
	5 Publication
	References

	B-Human 2022 – More Team Play with Less Communication
	1 Introduction
	2 Behavior
	2.1 Strategy
	2.2 Passing
	2.3 Positioning
	2.4 One vs. One Situations
	2.5 Results

	3 Limited Team Communication
	3.1 Priority Messages
	3.2 Normal Messages
	3.3 Message Relevance
	3.4 Team Play Under Limited Communication
	3.5 Results

	4 Conclusion
	References

	Winning the RoboCup Logistics League with Visual Servoing and Centralized Goal Reasoning
	1 Introduction
	2 The RoboCup Logistics League
	3 The Carologistics Platform
	3.1 Gripper System
	3.2 Cellular Network Setup via Tailscale

	4 Architecture and Middleware
	5 Towards Path Planning in ROS 2
	6 Perception
	6.1 ARUCO Tag Detection

	7 Behavior Engine and High-Level Reasoning
	7.1 Lua-Based Behavior Engine
	7.2 Reasoning and Planning with the CLIPS Executive
	7.3 Central Coordination

	8 Conclusion
	References

	FC Portugal: RoboCup 2022 3D Simulation League and Technical Challenge Champions
	1 Introduction
	2 3D Simulation League
	3 Team Description
	3.1 Low-Level Control
	3.2 Mid-Level Skills
	3.3 Team Communication
	3.4 Role Manager
	3.5 Path Planning
	3.6 Main Routine

	4 Results
	5 Conclusion
	References

	RoboFEI@Home: Winning Team of the RoboCup@Home Open Platform League 2022
	1 Introduction
	1.1 The RoboFEI@Home Team

	2 Hardware
	3 RoboCup@Home
	4 Skills
	4.1 Robot Vision
	4.2 Voice Recognition
	4.3 Manipulator
	4.4 Robot Navigation

	5 Implementation Highlights in Tasks
	5.1 Stage I
	5.2 Stage II
	5.3 Final

	6 Current Research
	6.1 Social Navigation
	6.2 Dynamic Power Management

	7 Summary
	References

	Tech United Eindhoven Middle Size League Winner 2022
	1 Introduction
	2 Robot Platform
	3 RoboCup 2022 Statistics
	4 Swerve Drive Platform
	4.1 Hardware Design
	4.2 Software Design
	4.3 Results

	5 Decision Making Through Semantic Regions in Robotic Soccer
	5.1 Strategy Framework
	5.2 Semantic Representation of Soccer
	5.3 Decision Making

	6 Miscellaneous
	6.1 Automatic Substitution
	6.2 Through Balls

	7 Conclusion
	References

	Author Index

