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Abstract. This article presents an unsupervised machine learning app-
roach for the problem of detecting use of air conditioning in households,
during the summer. This is a relevant problem in the context of the
modern smart grid approach under the paradigm of smart cities. The
proposed methodology applies data analysis, a thermal inertial model
for estimating the temperature inside a household, statistical analysis,
clustering, and classification. The proposed model is validated on a real
case study, considering households with known use of air conditioning
in summer. In the evaluation, the proposed classification methodology
reached an accuracy of 0.897, a promising result considering the very
small cardinality of the set of households. The proposed method is valu-
able since it applies an unsupervised approach, which does not require
large volumes of labeled data for training, and allows determining char-
acteristics in the electricity consumption patterns that are useful for cat-
egorization. In turn, it is a non-intrusive method and does not require
investing in the installation of complex devices or conducting consumer
surveys.

Keywords: Unsupervised learning · Data analysis · Residential
electricity consumption

1 Introduction

Currently, electricity utilities have advanced strongly in the deployment of vari-
ous smart devices that assist monitoring and decision making. Final consumers
have taken a very active role, given that there is greater knowledge of their
behavior and their use of the electrical resource [23]. For utilities, it is essential
to analyze the large amount of data gathered by using smart devices, to add
value to the electricity business. In the residential sector, the existence of smart
meters is crucial to improve management and profit. At the same time, it makes
it possible to carry out commercial policies in which the consumer is a key player
and feels part of the improvements.
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Usually, utilities only consider the benefits obtained by being able to operate
the smart meter remotely when analyzing the technical requirements of the smart
meter to be deployed. For example, the benefits to obtain consume measurements
without the presence of an employee in the field, to the detect blackouts remotely,
or to perform remote power cuts in case of unpaid bills. For this reason, many
electric utilities do not properly plan the selection of smart meters considering
the benefit they will generate when analyzing the measured data. One of the fea-
tures of smart meters that is not properly valued is the measurement frequency.
Many of the tools that can be developed using consumption data require a high
granularity in the values measured from smart meters. Another technical fea-
ture of smart meters usually underestimated for the creation of these tools, is
the measurement of harmonics.

A very useful approach for building a detailed profile of consumers is to detect
which electrical devices are in use. The literature shows that for obtaining a very
precise disaggregation of the electrical appliances uses from smart meter data,
very high measurement frequency and harmonic measurement are needed [9,10].
If the smart metering infrastructure is already deployed additional devices would
need to be installed in households. However, this type of intrusive intervention
is not always financially profitable and is often frowned upon by clients.

This article addresses the problem of detecting the use of air conditioning
in summer, using the existing infrastructure of the Uruguayan electricity com-
pany (UTE). The company deployed smart meters on residential consumers, so
replacing them would be very expensive. The meters are not capable of mea-
suring harmonics, and have a quarterly consumption measurement frequency.
However, despite the technological limitations, it is feasible to detect air condi-
tioners using the available information and climate data. Detecting the use of
this type of device, which is intensive in the summer, allows designing appropri-
ate energy efficiency policies and commercial products, to optimize the electrical
system and reduce the cost for the company, for consumers, and for the coun-
try [2,12].

An unsupervised machine learning algorithm is proposed to detect the use
of air conditioning in summer. Given a household, the proposed methodology
applies urban data analysis [15] over consumption measurements, and tempera-
ture and irradiance measured at the nearest weather station. An approximation
of the internal temperature of the household is then obtained a simplified model
of thermal inertia for a standard Uruguayan residential building. Thus, a func-
tion is obtained that approximates the internal temperature from the external
temperature and the irradiance. With the fifteen-minute data on consumption
and internal temperature, consumption measurements less than 10% of the aver-
age consumption are excluded, as a criterion to consider the moments in which
there is activity in the household. The resulting data is classified into two sets
using the k-means clustering algorithm, only considering its temperature. A set
of consumptions for low temperatures and another one for high temperatures
are obtained. The average consumption is calculated for each set and if the dif-
ference between these values is greater than a threshold value, the consumer in
the studied household is classified as an air conditioning user.
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A practical validation of the proposed methodology is presented for a case
study with a set of 29 households for whom the use of air conditioning in summer
is known. The main results of the research applying the proposed methodology to
this set, yields an accuracy of 0.897. This result is promising, especially consider-
ing that the study could only be carried out on a very small set of households due
to lack of labeled consumers. The proposed method is valuable since it applies
an unsupervised approach, which does not require large volumes of labeled data
for training and it is non-intrusive. Thus, it is a viable alternative to intru-
sive methods, which require replacing the currently installed smart meters with
more sophisticated ones (a very costly task in economical terms). In turn, having
labeled data to use supervised learning or to validate the presented algorithm
requires conducting surveys that demand a hard and expensive task. Therefore,
the proposed methodology has the advantage that it can be applied immedi-
ately using the current installed infrastructure, without incurring in significant
investments costs.

The article is organized as follows. Section 2 describes the problem addressed
in this article and reviews related works. Section 3 describes the proposed app-
roach, including a description of data sources, the process of data preparation
and the definition of the classification algorithm. Details of the developed imple-
mentation are provided in Sect. 4. Section 5 present the experimental evaluation
of the proposed approach and discusses the obtained results. Finally, Sect. 6
present the conclusions of the research and formulates the main lines for future
work.

2 Problem Definition and Literature Review

This section describes the general problem addressed problem and reviews rele-
vant related works.

2.1 General Problem: Energy Disaggregation

Traditionally, electricity companies have mainly worked using static information
from consumers. The only source of data that dynamically linked consumers to
the company was the measurement that a company official obtained monthly
from traditional meter. Nowadays, the massive deployment of smart meters has
allowed companies in the energy sector to know in greater detail the behavior of
consumers, regarding energy use. It is possible to detect various details regarding
the behavior of consumers with greater or lesser accuracy, depending on the
technical specifications of the smart meters deployed.

If smart meters with high metering frequency and harmonic measurement
are available, it is possible to successfully address the overall problem of energy
disaggregation. It consists of identifying the individual consumption of different
household appliances, using only aggregate measurements of all the measured
variables. Many studies have analyzed the problem of energy disaggregation
using smart meters with advanced technological features.
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2.2 Problem Description: Detection of Air Conditioning Usage

The addressed problem is detecting the use of air conditioners in summer, from
smart meters with a measurement frequency of fifteen minutes and without
measuring harmonics. Air conditioner is the only electrically-intensive device to
lower the temperature of households in the summer. It is highly correlated with
climatic variables and allows addressing the classification problem without the
need to have labeled consumers or to have more advanced measurement devices.
Then, the solution proposed is considered non-intrusive.

The input data consist of electricity consumption curves with quarterly fre-
quency, the geographical location of the consumer, and weather information
to approximate the temperature inside the household. One of the hypotheses
assumed is that the only electrical device for thermal comfort in summer with a
relevant consumption is the air conditioner. Other thermal conditioning devices
for the summer have negligible power consumption respect to air conditioners.
For example, the average power of fans is 50 W and coolers 100 W, compared
to 1000 W to 2000 W for air conditioner. The other hypotheses is that its use is
strongly correlated with the internal temperature of the household.

2.3 Related Work

The application of energy disaggregation tools to the residential sector has devel-
oped strongly after the high penetration of smart meters in electrical systems.
The addressed problem is to estimate the consumption of each of the electrical
devices in the household, considering as input the overall energy consumption.
When disaggregation is coarse-grained, the main objectives are related to provide
more information to consumers on energy bills, or even offer specific commer-
cial products depending on the type of use. When the disaggregation problem is
solved in real time, the main applicability is to identify problems such as elec-
trical losses in the household, detection of overloads, and other relevant issues.

Non-intrusive load monitoring (NILM) and the dissagregation problem in
households were introduced by Hart [11], as an alternative to existing intrusive,
hardware-based monitoring approaches. The main advantages of NILM is that
it does not require installing specific devices, but makes use of existing smart
meters, focusing on more sophisticated software for data analysis. Hart also
introduced the binary (ON/OFF) variant of the dissagregation problem and
proposed the principle of continuity switch, i.e., assuming that in a given small
time interval, few appliances change their status (from ON to OFF or vice versa).

Many recent articles have dealt with NILM as a learning problem, applying
computational intelligence to solve it, both in supervised and unsupervised fash-
ion. Supervised approaches (e.g., Bayesian learning, neural networks (ANN),
patterns similarity) make use of specific datasets of electricity consumption
of each device and the aggregate household consumption signal. Unsupervised
approaches (e.g., Hidden Markov Models, HMM) seek to learn the ON/OFF
state of devices from the aggregate consumption, without explicit knowledge
about the consumption of each device [4].
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Kelly and Knottenbelt [13] studied ANNs for the NILM problem, using the
UK-DALE dataset, which includes the electricity consumption of appliances
(fridge, washing machine, dishwasher, kettle, and microwave) in five houses in
the UK. A denoising autoencoder ANN computed the best results, outperform-
ing over a long short-term memory (LSTM) and a rectangles ANN. Kolter and
Johnson [14] introduced the REDD dataset to study a HMM for the NILM prob-
lem. Mixed results were computed over two weeks of data from five households
(64.5% accuracy on the training set and just 47.7% in the evaluation test).

Our previous articles [6,7] studied the dissagregation of electricity consump-
tion in residential buildings and proposed a method based on detecting simi-
larities in the electricity consumption patterns from previously recorded labeled
datasets. The method was evaluated over four different problem instances that
model real household scenarios, reporting accurate results regarding standard
prediction metrics.

Computational models are also very valuable for energy demand management
and demand response [16,17]. Our previous articles [19,20] applied computa-
tional methods for defining a thermal index associated with an active demand
management that interrupts domestic electric water heaters. Specific models
using Extra Trees Regressor and a linear model were defined for water utiliza-
tion and water temperature considering continuous power consumption measure-
ments of water heaters, and Monte Carlo simulations to compute the proposed
index. The approach was evaluated using real data from the ECD-UY dataset,
Uruguay [8]. The thermal discomfort index correctly modeled the impact on
temperature, providing accurate inputs for demand response and load shifting.
Data analysis and computational intelligence techniques were also applied for
the characterization and forecasting of short term electricity consumption on
industrial facilities [21,22]. The model was validated for an industrial park in
Burgos (Spain), the total electricity demand for Uruguay, and demand from a
distribution substation in Montevideo (Uruguay).

3 The Proposed Approach for the Detection of Air
Conditioning Usage in Summer

This section describes the data sources, the methodology to approximate indoor
temperature, the data preparation and the methodology applied for the detection
of air conditioning usage in summer.

3.1 Data Sources

The consumption data used in this article was provided by the Uruguayan
National Electricity Company (UTE). It corresponds to “Total household con-
sumption” and “Disaggregated electricity consumption by appliance”, two of
the three subsets included in the ECD-UY dataset [8]. The Total household con-
sumption set gathers data of quarterly total consumption from 110953 house-
holds and Disaggregated electricity consumption by appliance contains data of 9
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households with minutal measures and dissagegated consumption by appliance.
These sets have measurements from January 1, 2019 to November 2, 2020. In
turn, data obtained from 20 additional households from known consumers was
used for validation. The overall dataset includes 29 labeled households (19 use
air conditioning in the summer and 10 do not).

To approximate the temperature of the household, which is the variable that
has the strongest correlation with the use of air conditioning, climate information
on temperature and solar irradiance was used. The data used was obtained
manually from Uruguayan Institute of Meteorology (INUMET), disaggregated
by weather station. Only data from January 1, 2019 to November 2, 2020 were
considered, to match with the consumption data. Therefore, the horizon of data
analyzed in this article is determined by these dates.

Likewise, both the consumption and the climate information contains the
location of the measurement, which allows households to be associated with the
climate data obtained from the nearest station.

3.2 Approximation of the Internal Temperature of the Household
from the External Temperature and Solar Irradiance

An approximation of the temperature inside each household is needed for the
proposed model. The proposed approach consists in estimating the inside tem-
perature from the curve of the outside temperature and the external solar irra-
diance.

The thermal inertia that occurs inside the household is considered. The most
relevant factors to model this effect are the construction material, the number
of windows, and the insulation. Cengel et al. [5] showed that the heat flux is
proportional to the magnitude of the temperature gradient, and opposite in
sign. This article only requires an approximation of the internal temperature,
and for this purpose a simplified model, proposed by Absi et al. [1] is used.

The model by Absi et al. assumes that the effect of the walls of a house pro-
duces two transformations in the external temperature curve: a delay (thermal
lag) and an attenuation in the amplitude of the curve. Fig. 1 shows that the
amplitude of the indoor temperature (Aind) is smaller than the amplitude of the
external temperature (Aext). It also shows that indoor temperature is lagged by
β × wirr, the thermal lag considering the irradiance.

According to the aforementioned model, these parameters depend on the wall
material, the wall thickness, and the solar irradiance. Intuitively, the flow of heat
from outside to inside is more delayed (thermal lag) and also the indoor thermal
amplitude decreases when thicker and more robust walls are used, and the lower
the solar irradiance. For instance, if the wall is extremely thin, the indoor tem-
perature and the external temperature are almost equal. This model provides a
rough simplification of the real temperature dynamics, which is appropriate for
the proposed case study, especially considering that there is not enough infor-
mation about households to estimate the internal temperature using a more
complex model.
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Fig. 1. Amplitude variation and thermal lag of indoor and outdoor temperature.

The internal temperature is represented as a function of the external tem-
perature and the irradiance, according to the formulation in Eq. 1.

Tind(t) = (Text(t − β × wirr) − T 24(t))ρ × wirr + T 24(t) (1)

In Eq. 1, the function Tind(t) is the indoor temperature at time t and the
function Text(t) is the external temperature at time t. The function T 24(t) is
the external average temperature of the last 24 h, used as a baseline to esti-
mate the amplitude. Then, β × wirr is the thermal lag and the parameter
ρ = Aind/Aext × wirr captures the amplitude reduction. Finally, wirr = 1 when
irradiance is 0 and a maximum value when irradiance reach its maximum. So
β and ρ are the thermal lag and the amplitude reduction factor when solar
irradiance is 0.

3.3 Data Preparation

The objective of preparing the data is to obtain a historical bivariate series
for the summer, in the considered analysis horizon. The first variable of the
series represents the electricity consumption of the considered household and
the second variable is an approximation of the internal temperature. First, since
the temperature and irradiance data are hourly, they are converted to quarterly
simply by using the hourly value. There are no missing values in either the
consumption data or the climate data.
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To generate the series of indoor temperatures, the parameters β, ρ and wirr

must be estimated. β, ρ and wirr are estimated by measuring real temperature
curves in three types of buildings (considering the most used construction mate-
rials in Uruguay: brick, concrete and wood [3]. First, measures were performed
during the night, so wirr = 1 (since there is no irradiance).

According to Eq. 1, β × wirr is the thermal lag between indoor and outdoor
temperature, considering irradiance. The lag is calculated using the measured
curves at night (i.e., the difference between Text and Tind along the x-axis).
Then, setting wirr = 1, the value of β is determined. Analogously, ρ × wirr =
Aind/Aext; Aind and Aext are measured, and wirr = 1 at night, so, the value of
ρ is determined.

Then, fixing β and ρ, the value of wirr is estimated for a completely clear
day using Eq. 1, so the maximum wirr is determined (wmax

irr ). All estimations are
performed using real indoor and external temperature measures. To compute
Eq. 1 for an intermediate value of irradiance Ireal, wirr must be calculated for
Ireal, proportionally. So wirr = Ireal × (wmax

irr − 1)/(Imax −1), where Imax is the
maximum irradiance measured in a clear day.

Once the three relevant parameters of the temperature model are estimated,
the indoor temperature series is obtained from the outdoor temperature series
and irradiance series applying Eq. 1. This procedure is performed for each house-
hold, using weather data of the closest meteorological station. Figure 2 presents
the internal temperature curves for the same external temperature and solar
irradiance, depending on the type of construction.

Fig. 2. Indoor temperature curves for wood, brick and concrete constructions.
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The graphic in Fig. 2 shows that brick constructions present a thermal inertia
between wood and concrete constructions. In the proposed study, since there is no
information on the construction material of each household, the set of parameters
estimated for a brick construction was used, considering that it represents a non-
extreme thermal inertia. Also, brick is widely used in Uruguay, due to solidity
and durability [3].

Finally, on the bivariate series with quarterly values, the data that do not
correspond to the summer months (December, January, February, and March)
are excluded, since they are not usseful for the proposed analysis. Then, the
maximum consumption for the resulting data is obtained, and all data with
consumption less than 10% of the maximum are excluded from the series, con-
sidering that in those cases there is no activity in the household.

3.4 Unsupervised Machine Learning Classification Algorithm

The unsupervised classification algorithm must take into account the high cor-
relation between the consumption of the household and its internal temperature
when there is activity in it. In the preparation of data, very low consumption was
excluded, to focus on the correlation between consumption and temperature in
the case of activity in the household. It is important to consider that if there is
any device with relevant consumption not associated with thermal conditioning,
it will not present a strong correlation with temperature.

The proposed algorithm consists of performing the following seven steps,
including data preparation:

1. Construction of the indoor temperature curve of the analyzed household,
using the technique described in Sect. 3.2 applied to the meteorological data
of the nearest station. As a result, a bivariate quarterly series is obtained with
consumption and indoor temperature variables.

2. From the series obtained, entries with consumption less than 10% of the
maximum of the series are excluded.

3. A clustering is performed applying k-means, with k = 2 in the temperature
variable. Thus obtaining a set of consumption values for low temperatures
(L) and another set of consumption values for high temperatures (H).

4. A clustering is performed applying k-means, with k = 2 in the consumption
variable for the set L (obtaining two classes, LL and LH).

5. A clustering is performed applying k-means, with k = 2 in the consumption
variable for the set H (obtaining two classes, HL and HH).

6. centerL = (TL, EL) is defined as the center of LH and centerH = (TH , EH)
as the center of the cluster HH

7. if EH/EL ≥ Θ, then the consumer is classified as user of air conditioning,
otherwise it is classified as non-user of air conditioning. Parameter Θ must be
calibrated considering the average increase in quarterly consumption when the
air conditioning is on. The calibration methodology is described in Sect. 5.3.
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Figure 3 presents the main steps of the algorithm. Figure 3a presents the
original data for a consumer. Figure 3b shows the data after excluding low con-
sumptions (step 2). Figure 3c presents the data after step 3, the class L in blue
and the class H in orange. Finally, in Fig. 3d presents the four classes: LL, LH ,
HL and HH after step 6. The blue cross is centerH = (TH , EH) and the orange
cross is centerL = (TL, EL). In this case, the value of EH is significantly greater
than the value of EL, so with a value of Θ barely greater than 1, the condi-
tion EH/EL ≥ Θ would be met and the consumer would be classified as an air
conditioning user.

(a) Original data (b) Low consumptions excluded

(c) Clustering of temperatures (d) EH and EL calculation

Fig. 3. Main steps of the proposed classification algorithm.

The rationale behind the proposed classification algorithm is that if there is
indeed an intensive electrical use associated with thermal comfort, consumption
at high temperatures tends to be greater than consumption at low temperatures.
By separating the consumption by temperature (low and high) into two sets, and
then taking the averages of the highest consumption foe each set, if the value
associated with high temperatures is significantly higher than that associated
with low temperatures, this is due to the use of air conditioning, since no other
thermal conditioning device for summer consumes a significant amount of energy.
However, if the averages are similar, there is not statistical significance in the
reported electricity consumption values with respect to the indoor temperature
and the consumer is classified as a non air-conditioning user.
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4 Implementation

This section presents the implementation details of the proposed solution.

4.1 Implementation Details

The implementation of the proposed classification algorithm involved four stages,
which are described next.

Construction of the Indoor Temperature Curve. The geographical coordinates
of each consumer and the weather stations available were processed to find the
closest station for each household. The curves of temperature and hourly solar
irradiance are obtained from the corresponding station. Next, both curves are
converted from hourly to quarterly, assigning each 15-minute time step the value
of the corresponding hour. Finally, Eq. 1 is applied using the calibrated param-
eters to obtain the indoor temperature series. A new quarterly bivariate series
S, is constructed with consumption and indoor temperature variables.

Selection of Relevant Consumption Entries. To properly capture the correlation
between electricity consumption and internal temperature, the periods of time
when there is activity in the household must be considered.

To determine those periods, the method excludes entries from the series S
with low consumption. Any entry with a consumption less than 10% of the
maximum consumption existing in the considered time horizon is excluded from
the series.

Classification by Indoor Temperature. To perform the classification according to
the indoor temperature, the Keras library is used to apply the the k-means algo-
rithm, using two clusters (k = 2). The resulting clusters represent consumptions
with low temperatures, and consumptions with high temperatures.

Classification by Consumption. For each cluster found according to the indoor
temperature, the k-means algorithm is applied again for classification according
to the consumption variable, using two clusters (k = 2). The resulting clusters
correspond to lower consumptions and higher consumptions values.

4.2 Final Classification

After determining the indoor temperature curve, the selection of relevant con-
sumption entries, the classification by indoor temperature, and the classification
by consumption, four sets are obtained. They represent:

1. Samples that have high consumption with high temperatures;
2. Samples that have low consumption with high temperatures;
3. Samples that have high consumption with low temperatures; and
4. Samples that have low consumption with low temperatures.
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Sets 2 and 4 are ignored, because the focus is analyzing high consumptions
depending on the temperature. The consumption average is calculate for sets
1 and 3. If the quotient between the average obtained for set 1 and the aver-
age obtained for set 2 is greater than a specified threshold Θ, the consumer is
classified as user of air conditioning in the summer. The value of Θ must be esti-
mated in such a way that it correctly considers the difference in consumption at
high and low temperatures. In Sect. 5.3, a value of Θ appropriate for Uruguayan
households is estimated.

5 Experimental Analysis and Discussion

This section presents the experimental analysis and discussion of the results.

5.1 Development and Execution Platforms

The proposed solution was implemented on Python. Many scientific libraries and
packages were used to handle data, fit the models and visualize results, including
Pandas and Matplotlib and Numpy. The experimental evaluation was performed
on the high performance computing infrastructure of National Supercomputing
Center (Cluster-UY), Uruguay [18].

5.2 General Considerations

The labeled data set, consisting of 29 users, was used for the analysis. In any
case, for the calibration of the theta parameter, information from these users was
not used, since in this way supervision would be introduced into the algorithm
and, given the small amount of available data, this strategy would not have
statistical support. For this reason, in this experimental analysis, the set of 29
consumers is used to evaluate the proposed unsupervised methodology but not
for designing it. The vast amount of unsupervised data was used to perform an
exploratory analysis to design the algorithm.

5.3 Parameter Calibration

To calibrate the parameter Θ, the maximum consumption of the considered
household is considered. If it is a consumer that has a relatively low average
consumption for the residential sector, the consumption of air conditioning will
be relevant. However, if the household has a high base consumption, when turn-
ing on an air conditioner, the relative increase in consumption may be small.
Therefore, if the parameter Θ is adjusted for households with high average con-
sumption, it will be suitable for households with low consumption. Taking into
account that the average energy consumed by an air conditioner in fifteen min-
utes on extreme situation is 300 Wh (standard power is 1200 W), and assuming
an average intense consumption in peak hours of 1000 Wh, an appropriate value
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for theta would be Θ = 1300/1000. But the costumer does not use the air condi-
tioner in all extreme temperature situations. Therefore, a conservative Θ value
could be estimated if it is assumed that on average 1 out of 10 times the cos-
tumer uses the air conditioner. Then, the average increase in consumption would
be 300 1

/10 = 30, so Θ = 1300/1270 = 1.0237. This value is the one used for the
experimental analysis and subsequent evaluation.

5.4 Analysis of the Proposed Methodology

To validate the proposed methodology, two analysis are presented. On the one
hand, to calculate the precision of the algorithm in the set of 29 labeled house-
hold data. On the other hand, apply the proposed classification algorithm to the
complete set of non-labeled households of the data from ECD-UY and observe
the percentage of households that results classified in the category of air con-
ditioning use in summer. The purpose of estimating the number of households
that use air conditioning in summer is to compare this value with the continuous
survey of households carried out by the National Statistics Institute. To classify
the unlabeled data, a sample of 1000 households is randomly taken. In both
lines, the procedure described in the Sect. 3.4 is applied to the analyzed set.

5.5 Validation Results on Labeled Data

To validate the results of the application of the algorithm on the labeled data
and considering that the sample is balanced, the accuracy metric is used. The
result obtained on the set of 29 households is an accuracy of 0.897.

All 16 households were correctly classified as users of air conditioning in
summer. However, of the 12 who were classified as not using air conditioning in
the summer, 3 were misclassified. This shows that there were no false positives
and also allows us to conclude that in order to improve the algorithm it is
necessary to avoid the occurrence of false negatives. These considerations are
preliminary, due to the small size of the sample used.

5.6 Validation Results on Unlabeled Data

According to the continuous household survey, by 2021, 53% of households have
at least one air conditioner. When applying the developed algorithm to the
sample of 1,000 non-labeled households, 497 households were classified as users of
air conditioning in summer. Bearing in mind that most households that have air
conditioning use it in summer, since there are no equivalent alternative thermal
conditioning devices in this season (as is the case in winter), the result obtained
of 49.7% is reasonable. This result is preliminary since there are no labels and
it could happen that, although the total percentage is reasonable, many were
misclassified. In any case, it could have happened that this analysis invalidated
the algorithm if the percentage obtained was very different from the one shown
by the survey.
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6 Conclusions and Future Work

This article presented an unsupervised algorithm to detect the use of air con-
ditioning in households, during summer. The proposed approach is valuable
because it can be implemented in Uruguay with the existing infrastructure,
without incurring large investment costs. The unsupervised algorithm applies
the urban data analysis approach. First, it applies a filter by electricity con-
sumption, then a chain of clustering, and finally estimates an indicator related
to the variation in consumption with respect to temperature. As a result, the
proposed algorithm classifies each consumer as a user (or not) of air conditioning
in summer.

The proposed detection methodology was evaluated on a real case study
considering data from 29 households in Montevideo, Uruguay. The unsupervised
algorithm obtained an accuracy of 0.897 in the considered dataset. This is a
promising result, considering the very small cardinality of the set of households.

The main lines of future work are related to improving the accuracy of the
air conditioner detection tool, eventually using supervised learning. For this
approach, communication with consumers (for example, through a mobile app)
would be needed to allow a progressive labeling of households. Another line
of future work consists of detecting the use of devices in real time, using the
information from various sources and big data analysis.
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versidad de Antioquia (2020)

8. Chavat, J., Nesmachnow, S., Graneri, J., Alvez, G.: ECD-UY, detailed household
electricity consumption dataset of Uruguay. Sci. Data 9(1) (2022)

9. Chiang, J., Zhang, T., Chen, B., Hu, Y.: Load disaggregation using harmonic
analysis and regularized optimization. In: IEEE Asia Pacific Signal and Information
Processing Association Annual Summit and Conference, pp. 1–4 (2012)

10. Devarapalli, H., Dhanikonda, S., Gunturi, S.: Non-intrusive identification of load
patterns in smart homes using percentage total harmonic distortion. Energies
13(18), 4628 (2020)

11. Hart, G.: Nonintrusive appliance load monitoring. Proc. IEEE 80(12), 1870–1891
(1992)

12. Hu, M., Xiao, F.: Price-responsive model-based optimal demand response control
of inverter air conditioners using genetic algorithm. Appl. Energy 219, 151–164
(2018)

13. Kelly, J., Knottenbelt, W.: Neural NILM: Deep Neural Networks Applied to Energy
Disaggregation. In: 2nd ACM International Conference on Embedded Systems for
Energy-Efficient Built Environments, pp. 55–64 (2015)

14. Kolter, J., Johnson, M.: Redd: A public data set for energy disaggregation research.
In: Workshop on Data Mining Applications in Sustainability, pp. 59–62 (2011)

15. Massobrio, R., Nesmachnow, S.: Urban mobility data analysis for public trans-
portation systems: a case study in Montevideo. Uruguay. Appl. Sci. 10(16), 1–20
(2020)

16. Muraña, J., et al.: Negotiation approach for the participation of datacenters and
supercomputing facilities in smart electricity markets. Program. Comput. Softw.
46(8), 636–651 (2020)

17. Muraña, J., Nesmachnow, S.: Simulation and evaluation of multicriteria planning
heuristics for demand response in datacenters. Simulation, p. 003754972110200
(2021)

18. Nesmachnow, S., Iturriaga, S.: Cluster-UY: collaborative scientific high perfor-
mance computing in Uruguay. In: Torres, M., Klapp, J. (eds.) ISUM 2019. CCIS,
vol. 1151, pp. 188–202. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
38043-4 16

19. Porteiro, R., Chavat, J., Nesmachnow, S.: A thermal discomfort index for demand
response control in residential water heaters. Appl. Sci. 11(21), 10048 (2021)

20. Porteiro, R., Chavat, J., Nesmachnow, S., Hernández-Callejo, L.: Demand response
control in electric water heaters: evaluation of impact on thermal comfort. In:
Nesmachnow, S., Hernández Callejo, L. (eds.) ICSC-CITIES 2020. CCIS, vol. 1359,
pp. 74–89. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-69136-3 6

21. Porteiro, R., Hernández-Callejo, L., Nesmachnow, S.: Electricity demand forecast-
ing in industrial and residential facilities using ensemble machine learning. Revista
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