
Chapter 8 
Quasi-SMILES-Based QSPR/QSAR 
Modeling 

Shahin Ahmadi and Neda Azimi 

Abstract Quantitative structure–property/activity relationships (QSPRs/QSARs) 
have been used to predict the physicochemical property and biological activity 
of different substances, considering that the physicochemical property/biological 
activity of a new or untested substance can be inferred from the molecular structure or 
other properties of similar compounds whose properties/activities have already been 
assessed. Traditional QSPR/QSAR models based on physicochemical properties and 
molecular information are not so successful in predicting endpoint of substances 
such as nanomaterials due to scarcity of available dataset in same conditions. A 
new approach using eclectic information as descriptors to predict the endpoint of 
substance materials was developed in CORAL software (http://www.insilico.eu/ 
coral). In this approach, physicochemical properties and the experimental condi-
tions of substance are represented by so-called quasi-SMILES, which are character-
based representations derived from traditional Simplified Molecular Input Line Entry 
System (SMILES). Thus, a main advantage of the quasi-SMILES is to increase the 
number of available datasets by using the eclectic data in developing quasi-SMILES-
based QSPRs/QSARs models. This chapter provides instructions on how to use 
CORAL software for building QSPR/QSAR models based on quasi-SMILES. 
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Abbreviations 

AD Applicability Domain 
CCC Concordance Correlation Coefficient 
CORAL CORrelation And Logic 
CII Correlation Intensity Index 
EP Endpoint 
F Fischer ratio 
IIC Index of Ideality Correlation 
MAE Mean Absolute Error 
NPs Nanoparticles 
OECD Organization of Economic Co-operation and Development 
QSAR Quantitative Structure–Activity Relationship 
QSPR Quantitative Structure–Property Relationship 
RMSE Root-Mean-Square Error 
SMILES Simplified Molecular Input Line Entry System 
TF Target Function 

8.1 Introduction 

Quantitative structure–activity/property relationship (QSAR/QSPR) approach is 
indubitably of considerable importance in food chemistry [1, 2], environmental 
chemistry [3], modern chemistry [4–6], biochemistry [7], nanotechnology [8, 9], and 
drug design [10, 11]. The QSAR/QSPR approach is the mathematical and comput-
erized search for compounds with desired activities/properties using chemical intu-
ition and experience. Once a structure–activity/property correlation has been estab-
lished, any number of compounds, including those not yet synthesized, can be easily 
screened on a computer to select structures with the desired activity/properties. Then 
the most promising compounds can be found for synthesis and experimental testing 
[12]. Therefore, QSAR/QSPR study saves cost and time for the development process 
of new molecules as drugs, materials, additives, or any other purpose. While finding 
successful structure–activity models is not an easy task, the recent increase in the 
number of papers in QSPR/QSAR research clearly indicates the rapid evolution in 
this area. To obtain a significant correlation, it is very important to use appropriate 
descriptors, whether they are theoretical, empirical, or derived from easily empirical 
properties of the constructs [12]. A group of descriptors shows simple molecular 
properties and therefore can give insight into the physicochemical nature of the 
activity/property under consideration. 

Considering the growth of nanotechnology, modeling the properties or toxicity 
of nanoparticles (NPs) on living organisms is very important [13–15]. Although it is 
difficult to conduct toxicological experiments or obtain physical properties of NPs on 
a case-by-case basis, QSPR/QSAR is a computationally efficient technique because
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it saves time, cost, and animal sacrifice. The first part of nano-QSPR/QSAR model 
implementation includes data collection (including descriptors and endpoints) and 
data processing. The dataset can be obtained from the literature, databases, exper-
iments, or integrated multiple sources. Therefore, to construct nano-QSPR/QSAR 
models, it is important to identify a new set of descriptors that can accurately represent 
the properties of NPs as well as the experimental conditions. 

During recent years, the Simplified Molecular Input Line Entry System (SMILES) 
and quasi-SMILES descriptors have been examined by some researchers for 
QSPR/QSAR modeling [16–19]. The SMILES can reveal molecular structures, and 
quasi-SMILES can represent molecular structure and physicochemical properties 
and exposure conditions [8, 20, 21]. SMILES of a molecule is based on a set 
of rules that allow a molecular structure to be represented as a sequence of atom 
and bond symbols, but quasi-SMILES imports the physicochemical properties and 
experimental conditions as a string of characters after SMILES symbol. 

8.2 Principals of QSPR/QSAR Models 

Although QSPR/QSAR modeling has been used for over five decades, many studies 
still do not follow the Organization of Economic Co-operation and Development 
(OECD) guidelines. Figure 8.1 summarizes the best practices for each step of 
QSPR/QSAR approach using models in peer reviewed literature. Dearden et al. have 
reported a detailed description of common errors in QSPR/QSAR research [22].

According to OECD guidelines, if a QSPR/QSAR study is to be reliable, the 
following five principles must be met: (i) a well-defined endpoint, (ii) an unam-
biguous algorithm, (iii) a defined applicability domain (AD), (iv) appropriate 
measures of goodness-of-fit, robustness, and predictivity, and (v) a mechanistic 
interpretation, if possible. 

8.3 Monte Carlo Technique for Nano-QSPR/QSAR 

8.3.1 SMILES and Quasi-SMILES 

SMILES is a chemical notation system designed by Weininger et al. [23, 24]. 
According to the principles of molecular graph theory, SMILES uses a very small, 
natural grammar to specify precise structural features. The SMILES symbol system 
is also suitable for fast machine processing. Quasi-SMILES is an alternative to 
SMILES, which is used for substances considering physicochemical properties and 
experimental conditions.
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Fig. 8.1 General flowchart 
for QSPR/QSAR modeling

8.3.2 The Main Step for QSPR/QSAR Modeling by SMILES 
or Quasi-SMILES 

CORrelation And Logic (CORAL) software (http://www.insilico.eu/coral) has two 
possibilities for building QSPR/QSAR models based on SMILES or quasi-SMILES. 
In the following, the method of preparing the input data for the CORAL software is 
described.

http://www.insilico.eu/coral
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Fig. 8.2 Sample of data based on a SMILES, and b quasi-SMILES as input for CORAL 

8.3.2.1 Dataset Preparation for Models Based on SMILES 

The SMILES string is a procedure for representing a two-dimensional molecular 
graph as a one-dimensional string that can show the connectivity and chirality of a 
molecule. In most cases, there are too many SMILES strings for a structure. Canonical 
SMILES gives a single ‘canonical’ form for any particular molecule. Molecular struc-
tures of desired compounds were transformed to canonical SMILES using different 
software such as Open Babel and ACD/ChemSketch program. Figure 8.2a, b indi-
cates the sample of data based on SMILES, and quasi-SMILES as input for CORAL 
software, respectively. The first column indicates set, the second is compound ID, 
the third is SMILES/quasi-SMILES, and the last column is desired property/activity. 

8.3.2.2 Dataset Preparation for Models Based on Quasi-SMILES 

For building of QSPR/QSAR in different physicochemical properties and/or the 
experimental conditions of substance, one can use quasi-SMILES instead of SMILES 
of molecules. Dataset preparation for quasi-SMILES is same as SMILES, only 
SMILES is replaced by quasi-SMILES. 

8.3.2.3 Quasi-SMILES Definition for Various Datasets/Endpoints 

Quasi-SMILES is a sequence of symbols that not only represents the molecular 
structure but also the different conditions that can affect the endpoint under investi-
gation. Eclectic data can include: different physical properties such as temperature,
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Table 8.1 Distinction of 
standardized physiochemical 
features into classes 1–9 
according to its value 

Normalized value Class 

Norm(E) > 0.9 9 

0.8 < Norm(E) < 0.9 8 

0.7 < Norm(E) < 0.8 7 

0.7 < Norm(E) < 0.6 6 

0.6 < Norm(E) < 0.5 5 

0.5 < Norm(E) < 0.4 4 

0.4 < Norm(E) < 0.3 3 

0.3 < Norm(E) < 0.2 2 

0.2 < Norm(E) < 0.1 1 

Norm(E) < 0.1 0 

pressure, and assay of experiment to obtain an endpoint, or cell line type, time expo-
sition, concentration, etc. to obtain an activity. The type and number of eclectic data 
can be different in various datasets. 

Quasi-SMILES may be made by eclectic condition, only [4, 13] or combination 
of SMILES and eclectic conditions [5, 8]. The continuous eclectic conditions can be 
normalized by the following equation for assigning codes: 

Norm(Ei ) = 
min(Ei ) + Ei 

min(Ei ) + max(Ei ) 
(8.1) 

Ei is its value of physicochemical parameter E, min(Ei ) is minimum value of E, and 
max(Ei ) indicates maximum value of E. 

According to Table 8.1, the number of unique values in each parameter was less 
than 10; therefore, the quasi-SMILES descriptors representations could be coded by 
assigning a number between zero and nine in a single character. 

A further development of the CORAL software (CORAL-2020) allows the display 
of experimental conditions through groups of symbols enclosed in parentheses. 
Table 8.2 shows the comparison codes in the last version (CORAL-2020) and old 
version of CORAL for creating quasi-SMILES in recently proposed models for cyto-
toxicity of metal oxide NPs [4]. One can see codes-2020 are quite transparent and 
consequently are more convenient for a user. As is clearly evident, CORAL-2020 
codes being quite transparent and thus more user-friendly. Table 8.2 indicates codes 
used for the cell line, method, time exposition, concentration, nanoparticle size, and 
metal oxide type. Table 8.3 indicates the examples of quasi-SMILES obtained based 
on these codes.

Toropov and Toropova developed a QSAR model based on the new version 
of CORAL for the toxicity of ZnO NPs [14]. Experimental data from the litera-
ture are toxicity assessment of ZnO NPs and ZnO NPs coated with polyethylene 
glycol (PEG), which are investigated by intraperitoneal injections in the rat (50, 
100, 200 mg/kg) for one month. Measurement of the toxic effects of renal factors
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Table 8.4 Codes used as 
fragments of quasi-SMILEs 
and their meaning 

Code Meaning 

[15d] Renal factor measured after fifteen days 
post-injection 

[30d] Renal factor measured after thirty days 
post-injection 

[RF1] Variation in creatinine as renal factor 

[RF2] Variation in uric acid as renal factor 

[RF3] Variation in blood urea nitrogen as renal 
factor 

[50] 50 mg per kg of body weight 

[100] 100 mg per kg of body weight 

[200] 200 mg per kg of body weight 

[ZnO] Uncoated ZnO NPs is injected 

[ZnO][peg] ZnO coated by PEG NPs is injected 

including creatinine, uric acid, and blood urea nitrogen was measured after 15 and 
30 days after injection. Table 8.4 shows the quasi-SMILES attributes together with 
experimental conditions. Table 8.5 represents examples of available quasi-SMILES 
obtained based on this condition and related activity. 

Toropova et al. developed new nano-QSAR model for predicting toxicity of nano-
mixtures to Daphnia magna based on quasi-SMILES [25]. The binary mixtures of 
TiO2 NPs and with of one of the second component including AgNO3, Cd(NO3)2, 
Cu(NO3)2, CuSO4, Na2HAsO4, NaAsO2, benzylparaben, and benzophenone-3 have 
been investigated. Quasi-SMILES contain the following information: (1) Second

Table 8.5 Some examples for quasi-SMILES extracted by codes presented in Table 8.4 

Time 
exposition 
(days) 

Renal 
factor type 

NPs 
(mg/kg) 

NPs type Quasi-SMILES Experimental 
renal factor 

15 Creatinine 50 ZnO [15d][RF1][50][ZnO] 0.79 

15 Creatinine 100 ZnO [15d][RF1][50][ZnO] 0.87 

15 Creatinine 100 ZnO-peg [15d][RF1][50][ZnO][peg] 0.50 

15 Uric acid 100 ZnO-peg [15d][RF2][200][ZnO][peg] 1.37 

15 Blood urea 
nitrogen 

100 ZnO-peg [15d][RF3][100][ZnO][peg] 62.30 

30 Creatinine 100 ZnO [30d][RF1][100][ZnO] 0.72 

30 Uric acid 50 ZnO-peg [30d][RF2][50][ZnO][peg] 1.30 

30 Blood urea 
nitrogen 

50 ZnO-peg [30d][RF3][50][ZnO][peg] 50.33 

30 Blood urea 
nitrogen 

200 ZnO-peg [30d][RF3][200][ZnO][peg] 49.0 
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Fig. 8.3 Transfer of experimental data into quasi-SMILES [25] 

component of mixture represented by SMILES; (2) core diameter of TiO2 NPs; (3) 
Zeta potential of TiO2 NPs; (4) mole fraction of TiO2 NPs; (5) mole fraction of 
mixed substance; and (6) exposure time. Figure 8.3 shows the transformation of the 
experimental condition and substance into the quasi-SMILES. 

8.3.2.4 Model Development 

Model development has several steps that can be organized in CORAL software and 
does not require any software for data partitioning, descriptor generation, and model 
validation. In the following sections, the main step for QSPR/QSAR modeling using 
CORAL software is described. 

8.3.2.5 Dataset Splitting 

After the preparation and curation of dataset, the next step of building a QSAR/QSPR 
model for an endpoint by CORAL software (http://www.insilico.eu/coral) is loading 
an array of lines. Each line consists of four components.

http://www.insilico.eu/coral
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The first column is the types of set which ‘+’, ‘−’, ‘#’, and ‘*’ indicate the active 
training, passive training, calibration, and validation, respectively (Fig. 8.2). 

• The second column without space with type of set is number or ID of compound. 
• The third column is quasi-SMILES. 
• The last column is endpoint value. 

After the preparation of input file, the dataset was splitted into training, passive 
training, calibration, and validation sets using CORAL software, randomly with 
desired present for each set. 

8.3.2.6 Monte Carlo Optimization Process 

Quasi-SMILES is a group of attributes where each attribute group is converted into 
a group of coefficients called correlation weights. Monte Carlo optimization refines 
the correlation weights that provide numerical data on them, which maximizes the 
predictive potential of a model as much as possible. Figure 8.4 shows the flowchart 
of one cycle of Monte Carlo optimization of correlation weights (n is the number of 
correlation weights that contribute to model construction). 

There are different target functions (TFs) in CORAL software for Monte Carlo 
optimization [25–29], which are introduced below four TFs:

Fig. 8.4 Flowchart of one 
cycle of the Monte Carlo 
optimization for finding 
correct correlation weights (n 
is the number of correlation 
weights that contribute to 
model construction) 
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TF0 = rAT + rPT − |rAT − rPT| × C (8.2) 

TF1 = TF1 + IICC × WIIC (8.3) 

TF2 = TF1 + CIIC × WCII (8.4) 

TF3 = TF1 + IICC × WIIC + CIIC × WCII (8.5) 

rAT and rPT represent the correlation coefficient between the experimental and 
predicted endpoints for active and passive training sets, respectively. Empirical 
constant (C), W IIC, and WCII have a defined numerical value [1, 18, 30–33]. 

IICC is the index of ideality correlation. IICC is obtained based on the calibration 
set as follows: 

CIIC = rC 
min

(−MAEC, +MAEC
)

max(−MAEC, +MAEC) 
(8.6) 

−MAEC = 
1 

− N

∑
|Δi |, − N is the number ofΔi < 0 (8.7) 

+MAEC = 
1 

− N

∑
|Δi |, + N is the number ofΔi ≥ 0 (8.8)

Δi = Obsi − Calci (8.9) 

The Obsi and Calci are the experimental and predicted endpoint for i th compound. 
The correlation intensity index (CII), like IIC criteria, was developed to modify 

the quality of the Monte Carlo optimization used to build the QSPR/QSAR models. 
CII is formulated as follows: 

CII = 1 −
∑

ΔR2 
i > 0, IfΔR2 

i < 0 thenΔR2 
i = 0 (8.10)

ΔR2 
i = R2 

i − R2 (8.11) 

where R2 is the coefficient of determination for all endpoints and R2 
i is the coefficient 

of determination for all endpoints in the absence of ith compound. Therefore, ifΔR2 
i 

is greater than zero, the meaning of ith is an ‘opposite’ for the correlation between 
the experimental and calculated values of the set. 

A small  sum of ΔR2 
i means a more ‘intensive’ correlation. 

The CORAL model for an endpoint (EP) is defined by the below equation: 

EP = C0 + C1 × DW(T , N ) (8.12)
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C0 and C1 represent regression coefficients, T is a threshold, and N is the number of 
optimization cycles. The DCW(T, N) is defined as the below equation: 

DCW(T , N ) =
∑

CW(Sk) (8.13) 

where Sk represents the symbol of a quasi-SMILES line; the CW(Sk) shows  the  
correlation weights of Sk . 

8.3.2.7 Applicability Domain 

The AD of QSAR/QSAR models for CORAL software is determined in two steps 
based on the distribution of SMILES or quasi-SMILES features in the training and 
calibration sets: 

Step 1: the statistical defect (dk) is calculated for each involved (unblocked) SMILES 
or quasi-SMILES feature (Sk) to build the model with the following equation: 

dk =
||P(Sk) − P '(Sk)

||

N (Sk) + N '(Sk) 
(8.14) 

here, P(Sk) and P'(Sk) represent the probability of Sk in the active training set and 
calibration sets, respectively; N(Sk) and N '(Sk) denote the frequencies of Sk in the 
active training and calibration sets, respectively. 

Step 2: the quasi-SMILES (Di) statistical defect of all compounds is defined 
according to the following equation: 

Di = 
NA∑

k=1 

dk (8.15) 

here NA denotes the number of non-blocked quasi-SMILES features in the quasi-
SMILES. 

Quasi-SMILES falls in the AD if: 

Di < 2 × D (8.16) 

where D represents average statistical defect of the training set.



204 S. Ahmadi and N. Azimi

8.3.2.8 Model Validation 

Validation, as the fourth principle of OECD, is recognized as an intrinsic component 
to check the robustness, predictability, and reliability of any QSPR/QSAR models. 
There are three approaches to examine the robustness, reliability, and predictive 
potential of the QSPR/QSAR models in CORAL software, including: 

• Internal validation 
• External validation 
• Y-scrambling or data randomization. 

Various statistical criteria such as determination coefficient (R2), concordance 
correlation coefficient (CCC), cross-validated correlation coefficient (Q2), Q2 

F1, Q
2 
F2, 

Q2 
F3, standard error of estimation (s), mean absolute error (MAE), Fischer ratio 

(F) and root-mean-square error (RMSE), R2 
m, and average of R

2 
m metric (R2 

m) are  
calculated to authenticate the QSPR/QSAR models constructed based on the Monte 
Carlo optimization by the CORAL software. Table 8.6 indicates the mathematical 
equation of diverse statistical benchmark of the predictive potential for CORAL 
models. 

Table 8.6 Mathematical formulation of different statistical benchmark of the predictive potential 
for CORAL models 

Criterion of the predictive potential Description References 

Q2 = 1 −
∑

( ̂yi−yi )
2

∑
(yi−y)2

Leave-one-out cross-validated correlation 
coefficient 

[34] 

Q2 
F1 = 1 −

∑NEXT 
i=1 ( ̂yi−yi )

2

∑NEXT 
i=1 ( ̂yi−yTR)

2 Criteria of predictability [35] 

Q2 
F2 = 1 −

∑NEXT 
i=1 ( ̂yi−yi )

2

∑NEXT 
i=1 ( ̂yi−yEXT)

2 Criteria of predictability [35] 

Q2 
F3 = 1 −

[∑NEXT 
i=1 ( ̂yi−yi )

2
]
/NEXT

[∑NEXT 
i=1 ( ̂yi−yEXT)

2
]
/NTR 

Criteria of predictability [36] 

R2 
m = R2 ×

(
1 − 

/
R2 − R2 

0

)
[36] 

R2 
m = R

2 
m(x,y)−R2 

m(y,x) 
2 Average of R2 

m metric [36] 

CCC = 2
∑

(x−x)(y−y)∑
(x−x)2+∑

(y−y)2+n(x−y)2
Concordance correlation coefficient [37] 

CR2 
p 

= R
/(

R2 − R2 
r

)
Coefficient of determination for 
Y-randomization 

[38]
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8.3.2.9 Mechanistic Interpretation 

The 5th OECD principle focuses on mechanistic interpretation of the QSPR/QSAR 
model if possible. The model interpretation is used to examine the critical and respon-
sible attributes that influence the endpoint. Finally, the new compounds are designed 
based on these attributes. In the QSPR/QSAR modeling based on the CORAL soft-
ware, the same structural attributes (Sk) collected from three or more different splits 
are used to perform the mechanistic interpretation [39–42]. These structural attributes 
(Sk) are divided into three categories according to previous studies: 

• Increasing factor if the CW(Sk) is positive in all splits and in three attempts, 
• Decreasing factor if the CW(Sk) is negative in all splits and in three attempts, 
• Undefined attributes if the CW(Sk) is both positive and negative [43–45]. 

8.4 Examples of Quasi-SMILES-Based QSPR/QSAR 
Models 

Some examples of QSAR/QSPR models base on quasi-SMILES with CORAL 
software using different TFs are presented in Table 8.7.

8.5 Conclusion and Future Direction 

QSPR/QSAR modeling based on SMILES and quasi-SMILES by CORAL software 
is useful for big dataset. In CORAL software, QSPR/QSAR generally follows the 
five OECD principles. In addition, additional principles may be defined practically 
for nano-QSPR/QSAR that reflect the nature of the nanomaterial under investigation. 
For example, the new principles should take into account the test conditions and the 
quality of the applied equipment. 

The use of CORAL software in building QSPR/QSAR models for nanomaterials in 
different conditions is simple, and the models can be easily predicted and interpreted. 
There are very good TFs (TF0–TF3) to find reliable correlation weights and this is 
one of the important capabilities of CORAL for building excellent QSAR/QSAR 
models. The type and number of input features can change the performance of a 
QSAR/QSPR model. But there is one of a shortcoming for CORAL software, the 
user can use only CORAL software descriptors, and it is impossible to add the other 
descriptors produced by other descriptor generators. 

In CORAL software, there is only Monte Carlo algorithm to find correlation 
weights. The use of various algorithms can increase the quasi-SMILES QSPR/QSAR 
performance. Data splitting in CORAL software is done randomly; the possibility 
of using different methods of data splitting can increase the validity of the models.
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Since the correlation weight of the descriptors in this software is calculated through 
Monte Carlo approach, the use of consensus modeling can dramatically increase the 
prediction results. 
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