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Abstract Molecular descriptors are mathematical representation of a molecule 
obtained by a well-specified algorithm applied to a defined molecular representa-
tion or a well-specified experimental procedure. The molecular descriptors as the 
core feature-independent parameters used to predict biological activity or molecular 
property of compounds in the quantitative structure property/activity relationship 
(QSPR/QSAR) models. Over the years, more than 5000 molecular descriptors have 
been introduced and calculated using different software. In this chapter, the main 
classes of theoretical molecular descriptors including 0D, 1D, 2D, 3D, and 4D-
descriptors are described. The most significant progress over the last few years in 
chemometrics, cheminformatics, and bioinformatics has led to new strategies for 
finding new molecular descriptors. The different approaches for deriving molecular 
descriptors here reviewed, and some of the new important molecular descriptors and 
their applications are presented. 
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DHFR Dihydrofolate Reductase 
DLS Dynamic Light Scattering 
EM Electronic Microscopy 
EDX Energy Dispersive X-ray Spectrometry 
ESEM Environmental Scanning Electron Microscopy 
FFF Field Flow Filtration 
FMO Frontier Molecular Orbital Theory 
HOMO Highest Occupied Molecular Orbital 
WW Hyper-Wiener Index 
ICPOES Inductively Coupled Plasma Emission Spectroscopy 
ICP-MS Inductively Coupled Plasma Mass Spectrometry 
LC Liquid Chromatography 
LUMO Lowest Unoccupied Molecular Orbital 
MW Molecular Weight 
MVC Multivariate Characterization 
PCA Principal Component Analyses 
PPs Principal Properties 
QSAR Quantitative Structure–Activity Relationship 
QSPR Quantitative Structure–Property Relationship 
SMILES Simplified Molecular Input Line Entry System 
TMACC Topological Maximum Cross Correlation 
TEM Transmission Electron Microscopy 

2.1 Introduction 

2.1.1 History 

The history of molecular descriptors as a feature vector for each compound is closely 
related to the concept of molecular structure [1]. The years between 1860 and 1880 
were marked by a strong disagreement about the theory of molecular structure, 
which arose from studies on substances showing optical isomerism and Kekulé’s 
(1867–1861) studies on the structure of benzene [2]. 

Today, many chemical, physical, and biological characteristics of compounds rely 
on the principle that these parameters are effects of its structural descriptors. 

In 1868, Crum-Brown and Fraser [3] introduced first formulation about relation-
ship between the bioactivity/property of a chemical (Φ) and its chemical constitution 
(C), as the following equation:

Φ = f (C) (2.1)
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Based on this concept, many studies were conducted on the relationship of molec-
ular descriptors to observed properties, including the relationship between the anes-
thetic power of various aliphatic alcohols with chain length of carbon and molecular 
weight [4], between the color of disubstituted benzenes with various ortho-, meta-, 
and para-orienting [5], and between the narcotic toxicity and solubility in water [6]. 

One of the most attractive quantitative structure–activity relationship (QSAR) 
approach is the Hammett equation [7]. In 1973, he showed a linear relationship 
between the rate constants of a series of methyl ester reactions with N(CH3)3 and the 
ionization equilibrium constants of the related carboxylic acids in aqueous solution 
at ambient temperature. The linear relationship between the ionization constant of 
the ester containing a substituent X in the meta (m) or para (p) orientation (KX ) and 
the ionization constant of the unsubstituted ester (KH ) is defined by the following 
formula: 

log

(
KX 

KH

)
= ρ · σX , (2.2) 

where σX is the constant of the substituent in m or p position is indicated by σm or σp, 
respectively. The absolute value of σ , which varies for each substituent, refers to the 
measure of the global electronic effect exerted on the reaction center by the presence 
of substituent X. The sign of σ is positive for electron-withdrawer and negative 
for electron-donor substituent. The electronic induction effect and the electronic 
resonance effect denote by σI and σR , respectively; the constant for the unsubstituted 
aromatic ring as a reference represented by σ 0 R . Hammett’s equation in this case 
defined by the following equation. 

log

(
KX 

KH

)
= ρI · σI + ρR · σ 0 R (2.3) 

2.1.2 QSPR/QSAR Modeling 

In cheminformatics, a QSPR/QSAR model, either qualitative or quantitative, is a 
mathematical function that can be used to describe the connection between the 
molecular structures of a series of chemical compounds and their physicochemical 
properties/biological activities [8–14]. 

This field of knowledge assumes that the activity or property of a compound 
depends on its structural features, which affect its overall activities and properties 
[15–19]. 

Despite the formal differences between different methodologies, each 
QSPR/QSAR method is based on a QSPR/QSAR table that can be generalized as 
presented in Fig. 2.1 [20].
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Fig. 2.1 Flowchart of the combinatorial QSAR methodology 

The differences in various QSPR/QSAR studies can be explained in the following 
terms: 

• Endpoint value 
• Molecular descriptors 
• Optimization algorithms. 

Endpoint value as dependent variables can generally be of three types: 

• Continuous 

This endpoint is real values covering certain range, e.g., physicochemical properties 
of compounds such as boiling point and melting point. or IC50 values and binding 
constant. 

• Categorical-related 

This is classes of activities covering certain range of values, e.g., active and 
inactive compounds. 

• Adjacent classes of metabolic stability
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Adjacent classes of metabolic stability such as unstable, moderately stable, stable; 
and categorical-unrelated (i.e., classes of endpoints that do not relate to each other in 
any continuum, e.g., compounds that belong to different pharmacological categories, 
or compounds that are categorized as drugs vs. non-drugs). 

Understanding this classification is indeed very important because the choice 
of descriptor types as well as modeling methods is often determined by the type 
of endpoints. Thus, in general the latter two types require classification modeling 
methods, whereas the former type of the target properties allows using linear regres-
sion modeling. Therefore, the latter two types require categorical modeling methods, 
generally while the former type of endpoint characteristics allows the use of linear 
regression modeling. Methods related to data analysis are called classification or 
continuous QSPR/QSAR. 

2.1.3 Molecular Descriptors 

Chemical descriptors as independent features in QSPR/QSAR modeling are usually 
classified into the following two types: 

• Continuous 

There are so many continuous descriptors such as molecular weight or many 
molecular connectivity indices. 

• Categorical-related 

The categorized descriptors such as counts of functional groups, binary descriptors 
indicating the presence or absence of a chemical functional group or an atom in a 
molecule. 

2.1.3.1 Types of Molecular Descriptors 

Molecular descriptors can be obtained from different representations of molecules. 
Knowing various types of descriptors is also critical for a fundamental understanding 
of QSPR/QSAR modeling because, as mentioned above, any modeling requires 
establishing a relationship between the chemical similarity of compounds and their 
target properties [21–24]. Chemical similarity is calculated in descriptor space using 
various similarity metrics [25]. For example, in the case of continuous molecular 
descriptors, the Euclidean distance in the descriptor space is an advisable choice of 
similarity metric, while in the case of binary descriptors metrics such as the Tanimoto 
coefficient or the Manhattan distance seem more appropriate. 

The grade of the sufficiency of molecular structure samples differs from 0 to 4D 
demonstrations.
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0D Descriptors 

The 0D models contain the simplest molecule interpretation that does not hold any 
information about atom connections. Chemical formula, which organizes the atom 
types and their occurrences within a molecule, is independent of any information 
about the molecular structure. Therefore, molecular descriptors gained from the 
chemical formula stated as 0D descriptors. The most usual examples are atom type, 
number of atoms, molecular weight (MW), and any function of atomic properties. 

1D Descriptors 

Substructure list representation can be classified as a 1D description and contain 
of structural fragments of a molecule such as functional groups, bonds, rings, and 
substituents. Therefore, 1D descriptors do not involve a full information of molecular 
structure. These descriptors are inanimate to any conformation variation and, hence, 
do not recognize between isomers. 

2D Descriptors 

The 2D models include knowledge about the structure of the compound on the 
basis of its structural formula [26]. These patterns solely mirror the topology of the 
molecule. Such templates are highly common. The ability of such methods is that the 
topology model of the molecular structure includes information about the possible 
combinations of the molecule in virtual form. 

Evaluation of the internal atomic arrangement of compounds is done by topolog-
ical parameters [27]. They originated from the topological exhibition of molecules 
and can be measured as structure-manifest descriptors. These factors numerically 
code data related to molecular shape, size, branching, attendance of heteroatoms, and 
multifold bonds in numeric form. These topological parameters show the correlation 
of atoms by the characteristic of chemical bonds. 

In modeling distinct biological, physicochemical, and pharmacokinetic proper-
ties, they have considerable performance. A topological display of the molecule is 
accessible as a molecular diagram. This diagram is defined in mathematical phrases 
as G = (V , E), where V is a series of vertices corresponding to the atoms of the 
molecule and E is a series of elements that initiate a double connection between pairs 
of vertices. 

These chemical diagrams illustrate a non-numerical figure of the molecular 
compound although a numeric interpretation of the diagram is crucial for computing 
topological parameters [28]. 

Some common 2D descriptors together with their description have been listed in 
the following. 

Wiener (W) Index 

The structure descriptor based on the classical molecular diagram is the Wiener index 
(W ) which has become one of the most heavily applied descriptors in QSAR/QSPR 
approaches [29]. The descriptor is defined as the sum of edges on the shortest path 
in a chemical diagram.
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Actually, the following equation denotes Wiener index W (G) of the graph G (the 
graph G is a tree, T ): 

W (G) =
∑

e∈E(G) 

n1(e|G)n2(e|G) (2.4) 

n1(e|G) and n2(e|G) counts the vertices of G lying closer to the endpoints of the 
edge e than to its other endpoint 

Hyper-Wiener Index (WW) 

This index of a chemical tree T is defined as the sum of n1n2 products over all pairs 
of u vertices of T [30]. In fact, WW is the path number, and it is defined as the sum of 
the distances between any two atoms in the molecule, in terms of atom-atom bonds. 
Actually, WW can be calculated by multiplying the number of atoms on one side of 
any path by those on the other side, and the sum of these values for all paths. Wiener 
index is restricted to bonds and in Hyper-Wiener index bond is replaced with path. 

Modified Wiener Index (W*) 

Bond contribution is determined by using the reciprocal of the number of atoms on 
each side of the bond [31]. 

Novel Wiener Index 

It is obtained as an additive bond quantity, where the bond contribution is given as 
the product of the number of atoms close to each of the two points of each bond [32]. 

Connectivity Indices 

It is structural invariant. Such indices are widely used in structure–property and 
structure–activity studies. These descriptors are on the basis of graph-theoretical 
constants that are presented to calculate the branching index of alkenes [33]. 

Kier and Hall extended these indices and intrinsic valence coupling indices to 
differentiate heteroatoms. Today, these phenomena have been optimized for a wide 
range of biological and physicochemical properties [34]. Randic [35] proposed some 
descriptors for topological indices: (i) they should be well-correlated with at least 
one feature; (ii) have structure commentary; (iii) be normal and self-determining; 
(iv) easily applied in a situational structure; (v) be free of empirical features; and (vi) 
be independent of other parameters. 

Higher Order Connectivity 

These indices are weight paths, where higher weight is given to terminal bonds and 
a lower weight to less exposed internal bonds [36]. 

Kier Shape 

The descriptor defines shape indexes from molecular graphs. The shape of molecules 
is defined by the number of atoms and their bonding pattern which present in various 
orders [37].
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Balaban Index 

It is also one of the most distinctive molecular descriptors. Its value is independent 
of the molecular size or the number of rings [38]. 

Zagreb Indices 

This descriptor is the first topological indices used for the total π-energy of conju-
gated molecules. The significant use of these indices is the distinction between the 
size of the molecules, flexibility, degree of branching, and entire shape [39]. 

Augmented Zagreb Index (AZI) 

This index is based on the atom-bond connectivity (ABC index) used to obtain 
extreme values of AZI in chemical trees, and it can be used for upper and lower 
bonds’ power of chemical trees [40]. 

Hosoya (Z) 

It constructs QSAR/QSPAR models that describe the physical properties [41]. 

Modified Hosoya Index (Z*) 

The frequency of occurrence of single CC bond in disjoint bond patterns is considered 
[42]. 

Autocorrelation Indices 

This is a function of spatial separation and has particular advantageous for any 
QSAR/QSPAR study [43] 

Szeged (SZ) 

It is obtained as an additive bond quantity, where the bond contributions are given 
as the product of the number of atoms close to each of the two points of each bond 
[44]. 

Luckily, most of these parameters are identified in the topological descriptors. 
Therefore, they have been widely utilized in QSAR/QSPR simulation to determine 
the structural resemblance or disparity of chemical compounds. 

Topological Maximum Cross Correlation (TMACC) 

These descriptors generated from atom properties determined by molecular topology 
based on concepts derived from autocorrelation descriptors. In 2007, Topological 
Maximum Cross Correlation (TMACC) was developed through atomic features 
characterized by molecular topology [45]. These parameters are based on mean-
ings derived from coefficient descriptors. The ability to decode TMACC descriptors 
using QSAR simulation of angiotensin-converting enzymes (ACE) and dihydrofolate 
reductase (DHFR) inhibitors was demonstrated by Spowage et al. [46]. Altogether, 
TMACC revealed specific properties for C domain-selective ACE inhibition, which 
was an improvement on prior QSAR studies [46].
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The physical and chemical features of a molecule that are evaluated by examining 
its 2D structure are physicochemical descriptors. These features play a main role in 
characterizing the drug condensation in the body. The convenient characteristics of 
a drug can enhance its effect and thus its market value. 

Therefore, investigating these features of a drug not only contributes to the general 
plan of drug safety but also plays a significant role in drug detection collaboration by 
optimizing the selected compounds. Thus, it is necessary to pay attention to properties 
like solubility, permeability, and lipophilicity that can warrant optimal power, as well 
as to select the volunteer compounds with proper physicochemical properties. 

The lipophilicity of a drug is related to its dependence on a lipophilic surrounding. 
It is an essential feature in the movement of drugs in the body, which includes 
intestinal absorption, membrane penetrance, protein linkage, and dispensation among 
multiple tissues [47]. 

Generally, a drug exhibits negligible chemical absorption, distribution, 
metabolism, excretion, and toxicity (ADMET) properties in the presence of low 
lipophilicity [48]. Many pieces of research have been conducted on in vitro cellular 
permeance, which have demonstrated its connection to lipophilicity with other 
parameters, like molecular size, hydrophilicity, hydrogen bonds, and degree of 
ionization. These factors are recognized to have a considerable role in the intestinal 
absorption of a molecule. Molecular size is the main operative influencing biological 
activity like intestinal absorption. 

Hydrogen bond donors and lipophilicity play considerable roles in predicting 
human intestinal permeability [49]. MW is associated with reduced permeability. 
Solubility in water plays a significant role in the distribution of drugs and their 
permeance through biological membranes, and their redeploy and sorption. 

3D Descriptors 

The 3D QSAR models [50–53] provide complete structural data including composi-
tion, topology, and steric form of the molecule for only one conformer. These patterns 
are the most common. Geometrical descriptors are computed from the 3D correla-
tions of atoms in a given molecule. These parameters are in contrast to topological 
descriptors in terms of data and distinction power for similar chemical structures and 
molecular compounds [54]. 

In addition, they also contain data procured from atomic van der Waals regions 
and their participation on the molecular surface. In spite of their high data quantity, 
these parameters normally have drawbacks. 

Geometrical descriptors need geometry optimization and, thus, the overhead 
to compute them. Thus, new data are available and can be extracted for flexible 
molecules that can have different molecular compositions. However, this propels 
the complexity that can enhance considerably. In addition, most of these parameters 
(grid-based descriptors) require arrangement rules to accomplish molecule abduc-
tion. Different groups of descriptors can be recognized using the set of geometric 
descriptors [54].
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A diversity of 3D descriptors is accessible, some of them are: 

3D-Molecular Representation of Structures Based on Electron Diffraction 
(MoRSE) 

MoRSE descriptors have been shown to have good modeling power for various 
biological and physicochemical properties and can also be used to simulate infrared 
spectra [55]. 

Weighted Holistic Invariant Molecular (WHIM) 

WHIM descriptors are applied to obtain related 3D data about molecular shape, size, 
symmetry and atom dispensation and have been utilized to model several physico-
chemical and toxicology properties. At the minimum, ten distinct sorts of WHIM 
parameters with distinct molecular characteristics have been expanded [54]. 

3D Autocohesion 

Using the autocohesion function, these parameters are computed at individual spots 
on molecular surface. For a specific geometry and sensitive conformational change, 
they are unique and are constant to rototranslation [56]. 

GEometry, Topology, Atom-Weights AssemblY (GETAWAY) 

These parameters are on the basis of spatial coherence formula, which weights the 
atom to calculate van der Waals volume, atomic mass, and electronegativity along-
side 3D data. According to data factors and the matrix operator, seven GETAWAY 
descriptors have been declared until now [54]. 

4D Descriptors 

In 3D descriptors, the choice of the analyzed conformer is often random. The most 
adequate explanation of the molecular structure will be provided by 4D-QSAR 
patterns [57]. These models are similar to 3D models, but unlike them, structural 
data are discussed for a set of conformers (in essence, the fourth dimension), for a 
firm conformation. 

Representation of molecular descriptors used in QSPR/QSAR modeling indicated 
in Fig. 2.2.

2.1.3.2 Molecular Descriptors’ Resources 

To get a considerable connection in QSAR studies, suitable descriptors must be used, 
whether they are empirical, theoretical, or derived from easily accessible exper-
imental features of the molecules. Multiple descriptors mirror simple molecular 
features and thus can equip vision into the physicochemical characteristics of the 
property/activity under observation.
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Fig. 2.2 Representation of molecular descriptors used in QSPR/QSAR modeling

Quantum Chemical Descriptors. Quantum chemical computations are an important 
source of new molecular descriptors that can actually represent all electronic and 
geometrical properties of molecules and their interactions. 

Quantum chemical and molecular modeling techniques provide the description 
of a large number of molecular and local values that determine the shape, reactivity, 
and binding characteristics of an entire molecule in addition to its molecular pieces 
and substituents. 

In the last years, quantum chemical parameters have been significant in QSAR 
models helping researchers illustrate the biological activities and toxicity mecha-
nisms of various chemicals. In the past decades, semiempirical calculations were the 
prior ways to generate descriptors owing to the restrictions of the software and applied 
systems. Recent advances in computational hardware and the expansion of effective 
algorithms have helped to expand molecular quantum mechanical computations. In 
particular, the parameters derived from density functional theory (DFT) and hybrid 
density functional calculations (mPW1PW91) have excellent potential through their 
better accuracy in contrast to the semiempirical procedure and have good efficiency 
to fit into the geometrical, electrostatic, and orbital energy calculations [58–61]. 

Since the context of large discrete physical data is encoded in a large number 
of theoretical descriptors, their usage in the scheme of instruction sets in QSAR 
studies offers two significant priorities: (a) molecules, their diverse parts, and their
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substitutions; can be instantly identified based on their molecular structure, and (b) the 
presented mechanism of action can be straight considered for the chemical reaction 
of the studied compounds [62]. As a result, the derived QSAR models contain data on 
the essence of the intermolecular interactions imported in specifying the biological or 
other properties of the investigated compounds. The most commonly used quantum 
chemical descriptors can be classified as follows: 

Geometry Descriptors. The bond lengths, angles, and molecular dihedrals of the 
root segment should be the same for all molecules in the series. 

Atomic Charges. In accordance with the classical theory of chemistry, all chem-
ical interactions are either orbital (covalent) or electrostatic (polar) in nature. The 
electric charges in the molecule are clearly the order of the electrostatic interac-
tions. Indeed, local electron density or charges have been shown to be momentous 
in a large number of physicochemical properties and chemical reactions of struc-
tures. Therefore, charge-based descriptors have been broadly utilized as indicators of 
chemical reactivity or as a measure of fragile intermolecular interactions. Numerous 
quantum chemical descriptors are derived from partial charge. Partial atomic charges 
are known as indicators of static chemical reactivity [63]. The computed σ- and π-
electron densities on a specific atom determine the feasible direction of the chemical 
interactions and, hence, are often discussed as indices of directional reactivity. Unlike 
the total electron density, specific charges on atoms are observed as indicators of non-
directional reactivity. Several sums of absolute or squared values of partial charges 
have also been used to characterize intermolecular interactions, e.g., solute–solvent 
interactions [64–66]. 

Molecular Orbital Energies. Highest occupied molecular orbital (HOMO) and 
lowest unoccupied molecular orbital (LUMO) energies are very universal quantum 
chemical descriptors. It has been displayed [67] that these orbitals play an important 
role in controlling various chemical reactions and specifying electronic band gaps in 
solids. They are also in charge of the formation of several charge transfer complexes 
[63, 68]. Based on the frontier molecular orbital theory (FMO) of chemical reactivity, 
the organization of a transition state is owing to the interaction between the frontier 
orbitals (HOMO and LUMO) of the reacting fragments [69]. Therefore, the behavior 
of frontier molecular orbitals is distinct from others based on the general origins 
controlling the character of chemical reactions [69]. The HOMO energy is straightly 
connected to the ionization potential and characterizes the ability of the molecule 
to attack by electrophiles. The LUMO energy is straightly connected to the electron 
affinity and determines the readiness of the molecule against nucleophile attack. 
Both the HOMO and the LUMO energies are essential in radical reactions [70, 71]. 
The meaning of soft and hard nucleophiles and electrophiles is also connected to the 
relative energy of the HOMO/LUMO orbitals. 

Soft nucleophiles have high-energy HOMOs. Hard nucleophiles have low-energy 
HOMOs. Soft electrophiles have low-energy LUMO, and hard electrophiles have 
high-energy LUMOs[72]. The HOMO–LUMO gap, i.e., the energy difference 
between HOMO and LUMO, is a major stability indicator [73].
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Egap = ELUMO − EHOMO (2.5) 

A large HOMO–LUMO gap indicates high resistance for the molecule by defi-
nition its less reactivity in chemical reactions [67]. The HOMO–LUMO gap has 
also been utilized as an estimate of the lowest stimulation energy of the molecule. 
However, this definition ignores electronic restructuring in the excited state and hence 
may mostly make incorrect theoretical results. The meaning of activation hardness 
(η) and softness (S) is also determined based on the HOMO–LUMO energy gap. 

η = 
(ELUMO − EHOMO) 

2 
(2.6) 

S = 
1 

2η 
(2.7) 

Activation hardness determines the rate of reaction at various sites of the molecule 
and is therefore related to anticipating direction effects [67]. The qualitative descrip-
tion of hardness is intimately connected to polarizability, as a reduction in the energy 
gap normally results in an easier polarization of the molecule [74]. 

Frontier Orbital Densities. Frontier orbital electron densities on atoms provide an 
effective alternative or accurate description of donor–acceptor interactions [71, 75]. 
Due to the theory of frontier electron reactivity, most chemical reactions happen 
in the location and direction where the overlap of the HOMO and LUMO of the 
respective reactants can be maximized [69]. 

In the matter of a donor molecule, both ionization potential (IE) and HOMO 
density (electrophilic electron density, f E r ) are necessary to charge transfer: 

f E r =
∑(

CHOMO,n
)2; CHOMO,n are atomic orbital factors in HOMO (2.8) 

IE = −EHOMO (2.9) 

and in the terms of an acceptor molecule, LUMO density (nucleophilic electron 
density, f N r ) and electron affinity (EA) are critical [63]. 

f N r =
∑(

CLUMO,n
)2; CLUMO,n are atomic orbital factors in LUMO (2.10) 

EA = −ELUMO (2.11) 

These descriptors have been applied in QSAR studies to characterize drug– 
receptor interaction sites. By comparing the relativities of different molecules, the 
frontier electron density should be normalized by the energy of the frontier molecular
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orbitals, and hence molecules with lower ionization potentials are predicted to be 
more reactive as nucleophiles. Absolute electronegativity index (χ ), electron affinity 
(ω), and electron charge transfer (ΔN) are also determined based on ionization 
potential and electron affinity: 

χ = 
(I + A) 

2 
absolute electronegativity (2.12) 

ω = 
μ2 

2η 
electrophilicity index (2.13)

ΔN = 
(μB − μA) 
2(ηA + ηB) 

electron charge transfer (2.14) 

Molecular Polarizability. The polarization of a molecule by an external electric 
[76] area is given by the potential tensors of order n of the molecular mass. The 
first-order term is used as polarizability (α): 

α = 
1 

3

(
αxx  + αyy  + αzz

)
(2.15) 

The second-order term is mentioned in the first hyperpolarizability, etc. Therefore, 
the most considerable characteristic of molecular polarizability is binding to the 
molecular bulk or molar volume [73]. Polarizability values have been demonstrated 
to depend on hydrophobicity and other biological activities [77–79]. In addition, 
the electronic polarizability of the molecules contributes to the typical parameters of 
electrophilic super-delocalizability [80]. The first-order polarizability tensor includes 
data about feasible inductive interactions in the molecule [70, 73, 81, 82]. The total 
anisotropy of the polarizability (second-order term) determines the properties of a 
molecule as an electron acceptor: 

β2 = 
1 

2 
[(αxx  − αyy

)2 + (
αyy  − αZ Z

)2 + (αZ Z  − αxx  )
2] (2.16) 

Dipole Moment and Polarity Indices. The polarity of a molecule is essential 
for several physicochemical properties. A large number of descriptors have been 
suggested to estimate the polarity effects. For instance, molecular polarity counts for 
chromatographic retention in a polar static phase [65, 83]. The dipole moment (μ) 
is the most obvious and is often used to explain the polarity of the molecule [64, 65, 
70, 81, 84]. Difference between net charges on atoms (Δ) [68, 84], and topological 
electronic index (TE) [68]. 

TE =
∑
i j,i /= j

||qi − q j
||

r2 i j  
(2.17)
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The quadrupole moment tensor can also be applied as an index to characterize 
probable electrostatic interactions. However, such tensors belong to the selection of 
the coordinate system and thus the direction of the molecular root section must be 
the same for all molecules in the series [70]. 

Energy. The total energy computed by quantum mechanical methods has been 
presented as a good descriptor in several cases [64, 68, 85, 86]. 

In addition, thermodynamic parameters contain entropy (S°), internal energy 
(Eth), constant-enthalpy (H°), free energy (G°), zero-point vibrational energy (ZPE), 
and volume heat capacity (CV°) can be computed from frequency quantum mechan-
ical calculations. Reaction enthalpy (ΔH), entropy (ΔS), and free energy (ΔG) can 
be calculated by the difference in heats of formation, entropy, and free energies of 
formation between reactants and products or between conjugate forms [87, 88]. The 
protonation energy, described as the difference between the total energy of the proto-
nated and neutral forms of the molecule, can be discussed as a good scale of the 
power of hydrogen bonds (the higher the energy, the stronger the bond) and can be 
used to specify the correct position of the most desirable hydrogen bond acceptor 
[89]. 

The others. The descriptors considered above form the bulk of quantum chemical 
descriptors effectively used in QSAR/QSPR studies. Other descriptors have also been 
designed but do not fall into the categories mentioned above, such as frequency and 
NMR chemical shifts. 

2.1.3.3 Empirical and Experimental Descriptors 

Quantum chemical and molecular modeling techniques allow the description of many 
molecular and local values that determine the reactivity, binding features, and shape 
of a molecule in addition to molecular moieties and substituents. A principled combi-
nation of theoretical molecular descriptors with both empirical Hammett’s substituent 
constants (σ m and σ p) [90, 91], Swain–Lupton’s field and resonance constants (F and 
R) [92], hydrophobic constant (P) [92], Taft’s steric parameter (Es) [92], Verloop’s 
steric parameters [90, 91], etc., and experimental descriptors (substituent-induced 
chemical shifts, molecular weight and molecular refractivity (MR) [92]) are available. 
Table 2.1 shows the list of empirical and experimental descriptors.

The mentioned substituent descriptors can be categorized pursuant to three 
main cluster groups: (a) descriptors that capture the effects of the substituent on 
the aromatic ring (electronic charges on the ring carbon atoms, resonance and 
field substituent constants, and substituent-induced chemical shifts); (b) descrip-
tors characterizing the properties of the majority of substituents (Verloop’s steric 
parameters and the molecular refractivity) are clustered with theoretical descriptors 
describing the polarizability properties of the substituents, molecular polarizability 
anisotropy, dispersion interaction terms (IP*ANIS, IP*∑Pmol) and electrophilic 
super-delocalizability of the substituent.
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Table 2.1 List of empirical and experimental descriptors 

Descriptor Definition References 

σ x Taft’s substituent electronegativity effect parameter [93] 

σ α Taft’s substituent polarizability effect parameter [93] 

σ f Taft’s substituent field effect parameter [93] 

σ r Taft’s substituent resonance effect parameter [93] 

C0 
13C substituent chemical shift on the ortho-carbon atom [94] 

Ci 
13C substituent chemical shift on the ipso-carbon atom [94] 

Cm 
13C substituent chemical shift on the meta-carbon atom [94] 

Cp 
13C substituent chemical shift on the para-carbon atom [94] 

σ m Hammett’s substituent constant for the meta position [90, 91] 

σ p Hammett’s substituent constant for the para position [90, 91] 

F Swain–Lupton’s field constant [92] 

R Swain–Lupton’s resonance constant [92] 

P P hydrophobic constant [92] 

MR Molecular refractivity [92] 

Es Taft’s steric parameter [92] 

Ha Number of hydrogen bonds that the substituent can accept [95] 

Hd Number of hydrogen bonds that the substituent can donate [95] 

L Verloop multidimensional steric parameter [90, 91] 

B1 Verloop multidimensional steric parameter [90, 91] 

B2 Verloop multidimensional steric parameter [90, 91] 

B3 Verloop multidimensional steric parameter [90, 91] 

B4 Verloop multidimensional steric parameter [90, 91] 

μar Lien’s group dipole moment for aromatic substituent [22] 

λar Testa’s lipophobic constant for aromatic substituent [95]

IP = ionization potential derived from the AM1 wave function. 
ANIS = anisotropy of the molecular polarizability. 
IP*ANIS = product of the molecular ionization potential and the anisotropy of 

the molecular polarizability. 
IP*∑Pmol = product of the molecular ionization potential and the sum of the 

self-atom polarizability over all the atoms of the molecule.
∑PXX = sum of the self-atom polarizability values of the substituent atoms.
∑Pmol = sum of the self-atom polarizability over all the atoms of the molecule.
∑SH 

X = sum of the electrophilic super-delocalizability on the substituent atoms.
∑SE,X = sum of the electrophilic super-delocalizability (computed over all the 

occupied molecular orbitals) on the substituent atoms.
∑SN,X = sum of the nucleophilic super-delocalizability (computed over all the 

unoccupied molecular orbitals) on the substituent atoms.
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The hydrophobic parameter P is near to this cluster and to the solvent hydrophobic 
available surface of the substituent and the electrophilic super-delocalizability with 
the polarizability of the benzene ring; (c) molecular dipole moments and their 
experimental and theoretical substituents and their square. 

(a) Hammett substituent constants, substituent-induced chemical shifts, and Taft 
and Lupton’s resonance constants are mapped by the first component, the major 
contribution of which is the electronic charges of the carbon atoms of the benzene 
ring, the super-electrophilic mobility of the benzene ring and the energy of frontier 
molecular orbitals; (b) Verloop steric descriptors and the molecular refraction along 
with substituent van der Waals volumes and molecular weight are mapped by the 
second principal component, which includes theoretical parameters described as 
polarizability (∑PXX, ANIS, ∑Pmol), dispersion forces (IP*∑Pmol, IP*ANIS), and 
substituent reactivity indices (∑SH 

X ,∑SE,X , and∑SN ,X ). These recent cases perhaps 
indicate the portion of the molecular orbital development to molecular shape; (c) the 
third component models the lipophobic descriptor λar and the lipophilic descriptor 
P. The parameters that collaborate to this part are the dipole moments (consisting of 
the group dipole moment, μar) and their square terms, the solvent available surfaces 
of the substituent, the energy difference between the HOMO and the LUMO (GAP), 
the P-symmetry component of the electronic charges and the polarizability of the 
ring. 

However, λar and P are not solely modeled by this section, as they also contribute 
significantly to the first and the third components, respectively. This suggests that 
more than one type of substituent effect specifies the values of these parameters. The 
same result is for the steric descriptors Es modeled both by the first and the second 
components. These findings are similar to other research aimed at modeling P [96] 
and Es [97] and support the intricate character of these empirical parameters. 

Empirical scales called principal properties (PPs) which define the physicochem-
ical features of twenty naturally encoded amino acids were recently developed by 
Sjostrom and Wold [98]. 

Sjostrom et al. applied the PPs in the same way to categorize several types of 
signal peptides of different lengths [99]. Carlson and co-workers have reported prin-
cipal component analyses (PCA) of multivariate characterization (MVC) charac-
terize PPs, the physicochemical properties of organic solvents [100], Lewis acids 
in organic synthesis [101], amines in the Willgerodt Kindler reaction [102], and 
aldehyde/ketones [103]. 

These PPs are now heavily used in their laboratory to explore the realm and 
limits of new organic reactions. PPs of amino acids may be suitable for instance for 
screening of peptides [104]. The expansion of PPs for many aromatic substituents 
for subsequent uses has been the aim of researchers, and unfortunately, it is very 
difficult to find experimental information evaluated in a coordinated manner on a 
large number of substituents. Therefore, they should use the next best kind of data, 
famous and broadly used physicochemical parameters that are accessible for a large 
number of substituents.
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The empirical parameter used to characterize a class of monosubstituted benzenes 
were P, MR,  σ m, σ p [92, 105], and the Verloop descriptors L and B1–B4 [106]. The 
Verloop parameters B1–B4, derived from STERIMOL calculations, are normally 
listed in order of magnitude improvement. Researchers attempt to choose the vari-
ables to define steric bulk (MR), hydrophobicity (P), the shape of each substituent 
(Verloop parameters), and electronic properties (sigmas). 

In this case, they knew that there are three groups of variables: hydropho-
bicity/bulk, electronic, and size. 

From the numeric amounts of the loadings, it is shown that the first component 
is significantly connected to the steric bulk and hydrophobicity because the length, 
molecular refractivity, and P have the largest contributions. The second component is 
dominated by the two electronic descriptors, σ m and σ p, while the third component 
is again mainly hydrophobicity (P) but also shape since L and B1–B4 (Verloop 
parameters) [106] have relatively large contributions. 

Since biological sieving of chemical substances is both expensive and time-
consuming, it is essential to expand an instrument for the statistical design of the 
compounds in a filtering experiment. The main features are heavily appropriate for 
this purpose because they are few and orthogonal. 

2.2 Descriptors for Nano-QSPR/QSAR 

Over the past few decades, nano-based technology has become one of the top research 
areas in all fields of science and technology. A wide variety of consumer products 
are at the nanoscale, typically defined by all species having at least one diameter 
of 100 nm or less. Currently, nanotechnology has integrated various fields including 
biomedicine, pharmaceutical industry, food industry, environmental protection, solar 
batteries, energy, information and communication, heavy industry, consumer goods, 
and so on. However, it seems that we are only at the beginning of the “nano-industrial 
revolution.” Because of the unique electrical as well as optical, magnetic, thermal, 
and chemical properties of nanomaterials, the range of their possible applications is 
likely to expand rapidly. 

Some recent papers report obvious evident toxicity of selected nanoparticles 
and highlight potential risk associated with the development of nano-engineering. 
Currently, there are many gaps in nanomaterial data. Predictive nano-QSAR/QSPR 
is one of the most promising methods used by chem informaticians to extrapolate 
the activity/property of nanomaterials. We believe that some of the missing data 
that are crucial for environmental risk assessment can be obtained using computa-
tional chemistry, saving the time and cost of conducting experiments. It is worth 
noting that the nano-QSPR/QSAR approach should be employed to predict not only 
activity responses (e.g., toxicity) but also many important physicochemical properties 
(e.g., water solubility, n-octanol/water partition coefficient, vapor pressure). These 
physicochemical properties affect the absorption, distribution, and metabolism of the 
compound in the organism, as well as environmental transport and the fate.
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In nano-QSPR/QSAR modeling, one of the important parameters for building a 
validate model is suitable descriptors. In general, there are more than 5000 different 
descriptors for the characterization of molecular structure from zero to four dimen-
sional (0D–4D). Only a few of traditional descriptors can characterize nanostruc-
tures. There are some reports that [107, 108] the existing descriptors are not enough 
to express the specific physical and chemical properties of nanoparticles. Therefore, 
new and more suitable types of descriptors for characterizing of nanoparticles should 
be developed. 

Even though the computational features used for QSPR/QSAR modeling, exper-
imentally derived features may also be employed as descriptors for nano-QSARs 
development (Fig. 2.3). The experimental descriptors seem to be especially useful for 
expressing size distribution, aggregation mode, shape, porosity, and surface disorder. 
Moreover, the combination of experimental results with a numerical approach can 
be used to define a new descriptor. For instance, images obtained by scanning elec-
tron microscopy (SEM), transmission electron microscopy (TEM), or atomic force 
microscopy (AFM) might be processed with new chemometric methods of image 
analysis. This means that first a series of pictures of different particles of a nanostruc-
ture should be taken. Then, the images must be numerically averaged and converted 
into a matrix containing numerical values that correspond to each pixel’s grayscale 
intensity or red, green, and blue (RGB) color value. The other descriptors can be 
produced based on the matrix (i.e., the shape descriptor can be obtained as the sum of 
the nonzero elements in the matrix; the porosity as the sum of the relative differences 
between each pixel and its “neighbors,” etc.) [109].

Undoubtedly, proper characterization of nanoparticle structure is currently one 
of the most challenging tasks in nano-QSAR. Although more than five thou-
sand QSAR descriptors have been defined until now, they may be insufficient to 
express the supramolecular phenomena governing the unusual activity/property of 
nanomaterials. Consequently, much more effort is needed in this area. 

2.3 SMILES and Quasi-SMILES Descriptors 

The CORrelation And Logic (CORAL) software (http://www.insilico.eu/coral/) was  
developed by Alla Toropova and Andrey Toropov used to build up QSPR/QSAR 
models using Simplified Molecular Input Line Entry System (SMILES) [61, 111– 
116] and quasi-SMILES descriptors. SMILES is a chemical notation system designed 
by Weininger et al. [117, 118]. According to the principles of molecular graph theory, 
SMILES uses a very small, natural grammar to specify precise structural features. 
The SMILES symbol system is also suitable for high-speed machine processing 
[119, 120]. 

Over the last two decades, there have been numerous reports on the QSAR/QSPR 
modeling of nanomaterials and other compounds using CORAL software. This 
approach provides simple representation of molecular structures. There are defined 
equivalences between the representation of molecular structure using diagrams and

http://www.insilico.eu/coral/
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Fig. 2.3 Experimental characteristics as descriptors in nano-QSAR research [110]

the SMILES symbol. However, one should also be aware of their significant differ-
ences [121]. The SMILES can be produced by popular software such as ChemSketch, 
Biovia, and Chem Draw [122]. 

The prediction of activity/property of nanomaterials can be predicted by SMILES 
[123–125]. Quasi-SMILES is an alternative of SMILES-based optimal descriptors to 
build up predictive models for nanomaterials and other materials by consideration of 
the experimental conditions. Quasi-SMILES may be eclectic condition [126, 127] or  
combination of SMILES and eclectic conditions [128, 129]. The continuous eclectic 
conditions can be normalized by the following equation for assigning codes: 

Norm(Pi ) = 
min(Pi ) + Pi 

min(Pi ) + max(Pi ) 
(2.18) 

Pi is its value of physicochemical parameter P, min(Pi ) is minimum value of P and 
max(Pi ) indicates maximum value of P.
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Table 2.2 Distinction of 
standardized physiochemical 
features into classes 1–9 
according to its value 

Norm value Class 

Norm(P) > 0.9 9 

0.8 < Norm(P) < 0.9 8 

0.7 < Norm(P) < 0.8 7 

0.7 < Norm(P) < 0.6 6 

0.6 < Norm(P) < 0.5 5 

0.5 < Norm(P) < 0.4 4 

0.4 < Norm(P) < 0.3 3 

0.3 < Norm(P) < 0.2 2 

0.2 < Norm(P) < 0.1 1 

Norm(P) < 0.1 0 

According to Table 2.2, the number of unique values in each parameter was less 
than 10; therefore, the quasi-SMILES descriptors representations could be coded by 
assigning a number between zero and nine in a single character. 

2.3.1 Quasi-SMILES Examples in Peer-Reviewed Papers 

Table 2.3 shows an example of the construction codes for the quasi-SMILES. Based 
on the data shown in Table 2.3, the quasi-SMILES can be generated, which can be 
used to build a model according to the optimal descriptors. Table 2.4 indicates some 
examples for quasi-SMILES generated by codes shown in Table 2.3.

The new reported QSPR analysis of MOFs by Ahmadi et al. is application of quasi-
SMILES parameters including Brunauer, Emmett, and Teller (BET) specific surface 
area and pore volume, pressure, and temperature for prediction of CO2 adsorption 
of MOFs [128]. Tables 2.5 and 2.6 show the eclectic data range and quasi-SMILES 
codes for them, respectively.

In the code-2019 of CORAL software for quasi-SMILES groups of symbols %10– 
%99 (reserved for representation of complex systems of rings for usual SMILES) 
were applied as codes for the quasi-SMILES (Table 2.6). The disadvantage of this 
version of quasi-SMILES is the difficulty of interpretation of results by a user. 

Further development of the CORAL software (CORAL-2020) allows the display 
of experimental conditions through groups of symbols enclosed in parentheses. Table 
2.7 shows the comparison codes in the last version (CORAL-2020) and old version of 
CORAL for creating quasi-SMILES in recently proposed models for the mutagenic 
potential. One can see codes-2020 are quite transparent and consequently are more 
convenient for a user. As is clearly evident, CORAL-2020 codes are quite transparent 
and thus more user-friendly.
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Table 2.3 Codes used for the cell line, method, time exposition, concentration, size of nanoparti-
cles, and type of metal oxide to convert various information of experimental data into quasi-SMILES 
[126] 

Feature Value or 
type 

Code Feature Value or type Code 

Cell line MCF-7 H Normalized 
nanoparticles size 

0.2 < Norm(size) ≤ 0.3 P 

HT-1080 I 0.3 < Norm(size) ≤ 0.4 Q 

HepG-2 J 0.4 < Norm(size) ≤ 0.5 R 

HT-29 K 0.5 < Norm(size) ≤ 0.6 S 

PC-12 L 0.9 < Norm(size) ≤ 1.0 T 

Method MTT M Metal oxide type SnO2 1 

NRU N MnO2 2 

Time exposition 24 X ZnO 3 

48 Y Bi2O3 4 

72 Z NiO 5 

Concentration 
(μg mL−1) 

5 A CeO2 6 

10 B SiO2 7 

25 C TiO2 8 

50 D 

100 E 

200 F

Toropov et al. reported the model of toxicity examined based on four eclectic 
data including three possible forms of silver nanoparticles (bare, coat, cons), organ-
isms (Daphnia magna or Zebrafish), size (nm), and zeta-potential (mV) [131], 
where “bare” characterizes nanoparticles without any coating, coat (coating) demon-
strates nanoparticles with a shell, and “cons” defines nanoparticles including coating 
material descriptors (Table 2.8).

2.4 Software for Generation of Molecular Descriptors 

Over the last two decades, the growing interest in property/activity prediction has 
led to the release of many software products to the market and open-source domains 
for scientists working in the field of QSPR/QSAR modeling. Table 2.9 shows some 
popular software for calculating molecular descriptors. In addition, some of them are 
complex packages that also include modules for QSPR/QSAR modeling, statistical 
analysis, and data visualization.
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Table 2.5 Lower and high levels of CO2 capture capacity, BET, pore volume, pressure (bar), and 
temperature (K) [128] 

CO2 capture 
capacity (mol/kg) 

BET Pore volume 
(cm3/g) 

Pressure (bar) Temperature (K) 

Low level 0.1 0 0.035 0.01 195 

High level 54.5 6240 7.5 55 318 

Table 2.6 Defined quasi-SMILES codes for eclectic conditions (BET-normalized, normalized pore 
volume normalized, pressure-normalized, and temperature-normalized) of CO2 capture capacity of 
MOFs [128] 

Normalized range BET Code-2019 for pore 
volume 

Code-2019 for 
pressure 

Code-2019 for 
temperature 

0 < BET − 
normalized ≤ 0.1 

%10 %20 %30 %40 

0.1 < BET − 
normalized ≤ 0.2 

%11 %21 %31 %41 

0.2 < BET − 
normalized ≤ 0.3 

%12 %22 %32 %42 

0.3 < BET − 
normalized ≤ 0.4 

%13 %23 %33 %43 

0.4 < BET − 
normalized ≤ 0.5 

%14 %24 %34 %44 

0.5 < BET − 
normalized ≤ 0.6 

%15 %25 %35 %45 

0.6 < BET − 
normalized ≤ 0.7 

%16 %26 %36 %46 

0.7 < BET − 
normalized ≤ 0.8 

%17 %27 %37 %47 

0.8 < BET − 
normalized ≤ 0.9 

%18 %28 %38 %48 

0.9 < BET − 
normalized ≤ 1 

%19 %29 %39 %49

2.5 Conclusion and Future Direction 

Molecular descriptors are a critical component of the methodological toolbox used to 
study quantitative structure–property/activity relationship (QSPR/QSAR) modeling 
and are widely used to describe the structures of chemical compounds for design 
of new compounds. The predictive and reliable QSPR/QSAR models depend on 
accurate descriptors, as accurate predictions can save the time and cost needed to 
design new compounds with the desired property/activity. 

In this chapter, the main classes of theoretical molecular descriptors including 
0D, 1D, 2D, 3D, and 4D descriptors are described. The most significant progress
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Table 2.7 Definition of eclectic condition for the definition of quasi-SMILES [130] 

Condition Code-2019 Code-2020 

Coating TA100 %10 [TA100] 

TA98 %11 [TA98] 

20-nm citrate %12 [20cit] 

20-nm PVP %13 [20PVP] 

50-nm citrate %14 [50cit] 

50-nm PVP %15 [50PVP] 

100-nm citrate %16 [100cit] 

Doses (μg/plate) 100-nm PVP %17 [100PVP] 

0.0 %18 [d0.0] 

6.3 %19 [d6.3] 

12.5 %20 [d12.5] 

25 %21 [d25] 

50 %22 [d50] 

100 %23 [d100]

Table 2.8 Indicates some quasi-SMILES used to generate nano-QSAR model for pLC50 [131] 

Status of 
nanoparticles 

Organisms Size (nm) Zeta-potential 
(mV) 

Quasi-SMILES 

nanoparticles without 
any coating 

Daphnia 
magna 

17.150–21.700 − 8.480 to − 
5.050 

[Bare][Daph][s%14][z%25] 

NPs without any 
coating 

Daphnia 
magna 

12.600–17.150 − 25.630 to 
− 22.200 

[Bare][Daph][s%13][z%20] 

NPs with a shell Daphnia 
magna 

53.550–58.100 − 11.910 to 
− 8.480 

[Daph][s%22][z%24] 

NPs including 
coating material 
descriptors 

Daphnia 
magna 

21.700–26.250 − 11.910 to 
− 8.480 

[Daph][s%15][z% 24] 

NPs without any 
coating 

Zebrafish 135.450–140.000 − 22.200 to 
− 18.770 

[Bare][Fish][s%40][z%21] 

NPs with a shell Zebrafish 44.450–49.000 − 25.630 to 
− 22.200 

[Fish][s%20][z%20]

over the last few years in chemometrics, cheminformatics, and bioinformatics has 
led to new strategies for finding new molecular descriptors. Here, some of the most 
common molecular descriptors and some new molecular descriptors especially for 
design and QSPR/QSAR modeling of nanocomposites have been highlighted. 

In nano-QSPR/QSAR modeling, the data in many different publications are small 
and not ready enough for model building. In addition, nanomaterials exhibit high 
complexity and heterogeneity in their structures, which makes data collection and 
processing more challenging compared to traditional QSPR/QSAR. Quasi-SMILES
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descriptors are one of the solutions to this challenge and have been introduced as 
new descriptors combining SMILES and eclectic conditions. These novel descrip-
tors provide transparent interpretation equation models with correlation weights 
calculated by Monte Carlo optimization using CORAL software. 

Finally, a list of the most commonly used software packages for calculating 
molecular descriptors is reviewed here.

Table 2.9 List of software packages for the calculation of molecular descriptors 

Name Organization/institution Availability Descriptors Platform/license 

RDKit GitHub https://git 
hub.com/ 
rdkit 

> 200 Windows/Linux/Mac 
(freeware) 

PaDELPy University of 
Massachusetts Lowell 

https://git 
hub.com/ 
ecrl/pad 
elpy 

> 2500 Windows/Linux/Mac 
(freeware) 

ADAPT Pennsylvania State 
University 

http://res 
earch. 
chem.psu. 
edu/pcj 
group/ 
adapt.html 

> 260 Unix/Linux (freeware) 

ADMET Simulations Plus, Inc http://www. 
simula 
tions-plus. 
com/ 

297 Windows (commercial) 

Predictor™ 
CODESSA 

Semichem http://www. 
semichem. 
com/cod 
essa/defaul 
t.php 

> 600 Windows/Linux (commercial) 

DRAGON Talete SRL http://www. 
talete.mi.it/ 
products/ 
dragon_des 
cription. 
htm 

4885 Windows/Linux (commercial) 

EPISUITE™ EPA http://www. 
epa.gov/ 
opptintr/ 
exposure/ 
pubs/epi 
suite.htm 

20 Windows (freeware) 

MOE Chemical Computing 
Group 

http://www. 
chemcomp. 
com/sof 
tware-moe 
2009.htm 

> 300 Windows/Linux/SGI/MAC/Sun 
(freeware)

(continued)
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http://www.epa.gov/opptintr/exposure/pubs/episuite.htm
http://www.epa.gov/opptintr/exposure/pubs/episuite.htm
http://www.epa.gov/opptintr/exposure/pubs/episuite.htm
http://www.epa.gov/opptintr/exposure/pubs/episuite.htm
http://www.chemcomp.com/software-moe2009.htm
http://www.chemcomp.com/software-moe2009.htm
http://www.chemcomp.com/software-moe2009.htm
http://www.chemcomp.com/software-moe2009.htm
http://www.chemcomp.com/software-moe2009.htm
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Table 2.9 (continued)

Name Organization/institution Availability Descriptors Platform/license

Molconn-Z™ EduSoft http://www. 
edusoft-lc. 
com/mol 
conn/ 

327 Windows/Unix/MAC 
(commercial) 

MOLD NCTR/FDA http://www. 
fda.gov/Sci 
enceResea 
rch/Bioinf 
ormaticsT 
ools/ 
Mold2/def 
ault.htm 

777 Windows (freeware) 

MOLGEN University of Bayreuth http://www. 
molgen. 
de/?src 
¼docume 
nts/molgen 
qspr.html 

707 Windows (commercial 

PowerMV NISS https:// 
www.niss. 
org/res 
earch/sof 
tware/pow 
ermv 

> 1000 Windows (freeware) 

Sarchitect™ Strand Life Sciences http://www. 
strandls. 
com/sarchi 
tect/index. 
html 

1084 Windows/Linux (commercial) 

SciQSAR™ SciMatics http://www. 
scimatics. 
com/jsp/ 
qsar/QSA 
RIS.jsp 

> 600 Windows (commercial) 

Alvadesc Alvascience https:// 
www.alv 
ascience. 
com/alv 
adesc/ 

> 6000 Windows/Linux/MAC 
(commercial) 

CORAL Istituto di Ricerche 
Farmacologiche Mario 
Negri 

http://www. 
insilico.eu/ 
coral/SOF 
TWAREC 
ORAL. 
html 

> 1000 Windows (freeware)

http://www.edusoft-lc.com/molconn/
http://www.edusoft-lc.com/molconn/
http://www.edusoft-lc.com/molconn/
http://www.edusoft-lc.com/molconn/
http://www.fda.gov/ScienceResearch/BioinformaticsTools/Mold2/default.htm
http://www.fda.gov/ScienceResearch/BioinformaticsTools/Mold2/default.htm
http://www.fda.gov/ScienceResearch/BioinformaticsTools/Mold2/default.htm
http://www.fda.gov/ScienceResearch/BioinformaticsTools/Mold2/default.htm
http://www.fda.gov/ScienceResearch/BioinformaticsTools/Mold2/default.htm
http://www.fda.gov/ScienceResearch/BioinformaticsTools/Mold2/default.htm
http://www.fda.gov/ScienceResearch/BioinformaticsTools/Mold2/default.htm
http://www.molgen.de/?src%C2%BCdocuments/molgenqspr.html
http://www.molgen.de/?src%C2%BCdocuments/molgenqspr.html
http://www.molgen.de/?src%C2%BCdocuments/molgenqspr.html
http://www.molgen.de/?src%C2%BCdocuments/molgenqspr.html
http://www.molgen.de/?src%C2%BCdocuments/molgenqspr.html
http://www.molgen.de/?src%C2%BCdocuments/molgenqspr.html
https://www.niss.org/research/software/powermv
https://www.niss.org/research/software/powermv
https://www.niss.org/research/software/powermv
https://www.niss.org/research/software/powermv
https://www.niss.org/research/software/powermv
https://www.niss.org/research/software/powermv
http://www.strandls.com/sarchitect/index.html
http://www.strandls.com/sarchitect/index.html
http://www.strandls.com/sarchitect/index.html
http://www.strandls.com/sarchitect/index.html
http://www.strandls.com/sarchitect/index.html
http://www.scimatics.com/jsp/qsar/QSARIS.jsp
http://www.scimatics.com/jsp/qsar/QSARIS.jsp
http://www.scimatics.com/jsp/qsar/QSARIS.jsp
http://www.scimatics.com/jsp/qsar/QSARIS.jsp
http://www.scimatics.com/jsp/qsar/QSARIS.jsp
https://www.alvascience.com/alvadesc/
https://www.alvascience.com/alvadesc/
https://www.alvascience.com/alvadesc/
https://www.alvascience.com/alvadesc/
https://www.alvascience.com/alvadesc/
http://www.insilico.eu/coral/SOFTWARECORAL.html
http://www.insilico.eu/coral/SOFTWARECORAL.html
http://www.insilico.eu/coral/SOFTWARECORAL.html
http://www.insilico.eu/coral/SOFTWARECORAL.html
http://www.insilico.eu/coral/SOFTWARECORAL.html
http://www.insilico.eu/coral/SOFTWARECORAL.html
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