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Preface 

Who is this book for intended? Primarily for students who are planning their carrier. 
Ph.D. students can also get valuable ideas for their careers if they are sure that their 
scientific activity somehow connects with chemistry, biology, medicine, informatics, 
and mathematical chemistry. The author’s team contains specialists in different 
directions of chemistry, biochemistry, and medicinal chemistry. The geography of 
the authors is vast enough: USA, Canada, Iran, India, China, Uzbekistan, Czech 
Republic, Portugal and Italy. 

It seems that recognizing the differences in the paths of transition of randomness 
into regularity or, conversely, the ways of randomness into stable chaos may be of 
interest to everyone since this task affects any area of human activity. In fact, this 
book describes attempts to solve the mentioned problem concerning development 
processes QSPR/QSAR and nano-QSPR/QSAR. 

The curious intrigue of the proposed book demonstrates the ability of randomness 
to provide patterns through variational autoencoders (VAEs) defined over SMILES 
string and molecular graph, the Monte Carlo technique, and using so-called quasi-
SMILES (i.e., traditional SMILES extended via special symbols which are reflecting 
experimental conditions). However, the philosophic principle “nothing is the only” 
should make the reader sure that every model should be validated as much as possible, 
i.e., checked up under a diversity of experimental conditions. 

Thus, there is the probability that the book can become curiously and attractive to 
various “random” readers (professors, engineers, players) who are capable of curios 
and wonder relevant to the process of building up models for different phenomena. 

Milan, Italy Alla P. Toropova 
Andrey A. Toropov
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Chapter 1 
Fundamentals of Mathematical Modeling 
of Chemicals Through QSPR/QSAR 

Andrey A. Toropov, Maria Raskova, Ivan Raska Jr., and Alla P. Toropova 

Abstract The evolution of mathematical chemistry in its applications to establish 
the quantitative structure–property/activity relationships (QSPRs/QSARs) between 
molecular structure and the physicochemical and biochemical behavior of substances 
is discussed. The gradual improvement of molecular descriptors and the statistically 
validated methods developed for the above general task are described. The possible 
ways of applying and extending OECD principles are demonstrated via computa-
tional experiments to build QSPR/QSAR models. The leading role of validation 
in obtaining applicable models is noted. Stochastic procedures able to improve the 
reliability of QSPR/QSAR models are demonstrated. 

Keywords Mathematical modeling · QSPR/QSAR · OECD principles ·
Molecular descriptors · Data curation · Reproducibility · Applicability domain ·
Model validation 

1.1 Introduction 

A considerable amount of valuable fundamental work on mathematical chemistry 
was carried out in the twentieth century and the first decade of the twenty-first century. 
However, this chapter will discuss the results obtained later, that is, in fact, in the 
second decade of the twenty-first century. Mathematical chemistry aims for many 
tasks. However, if try defines primary aims, one can extract the main word “model”. 
The term model itself relates to a grand manifold of phenomena. The impossibility
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of connecting thinking experiments with traditional experiments becomes a great 
challenge that is the beginning of mathematical chemistry and other sciences. Science 
is the step from usual to unexpected. Naturally, mathematical chemistry is not an 
exception. 

Thus, mathematical chemistry [1] is the area of research engaged in novel appli-
cations of mathematics to chemistry, biochemistry, and biology. A significant part of 
the above research is dedicated to the mathematical modeling of complex molecular 
phenomena that are “quite visible” at the macro-level and can be measured. Those 
are named endpoints (e.g., boiling point, heat capacity, or toxicity) [2]. Much has 
been said about the role and significance of the sciences, but if we single out the 
average, it turns out that few people are interested in this issue. Repeated sentences 
in the literature are necessary to find new words and meanings for old concepts. For 
instance, it has often been noted that science across all disciplines has become data-
driven, leading to additional needs concerning software for collecting, processing, 
and analyzing data. Consequently, software becomes necessary for reproducibility 
and analysis of the evolution of scientific methods, often even in real time. Currently, 
research work is impossible without a computer for collecting, processing, and 
analyzing data [3]. 

Transparency about the software used as the essence of the scientific process 
is crucial to ensure reproducibility and to understand the provenance of individual 
research data and results. Even minor changes to the software might significantly 
influence the results of computational experiments [3]. 

The history of mathematical chemistry contains the contributions of many 
outstanding scientists, such as H. Weiner, A. T. Balaban, M. Randić, I. Gutman, 
N. Trinajstić, D. Bonchev, S. C. Basak, R. Carbó-Dorca, as well as many others 
[4–15]. 

Many scientific reviews have become available in this area—nevertheless, the 
most attractive ones consist of the quantitative features and characteristics of science 
and scientific research collected in the literature [16]. Nonetheless, success in math-
ematical chemistry in different fields, especially in drug design, has been and will 
continue to be on the verge of randomness and the danger of capital disappointments 
resulting from overly bold optimizations and globalization [17]. 

Biopharmaceutical companies have done everything possible in the last decade 
to globalize their capabilities. It is generally recognized that health information is a 
crucial external function that must continually focus on optimizing its capabilities 
to meet medical and even political challenges around the world [18]. However, the 
essential quality of the developed resources for a mathematical understanding of 
physical, chemical, and biochemical phenomena should be their open, general right 
of usage, that is, the data and results being accessible to a broad mass of users, from 
students to specialists working in other often distant fields, to apply QSPR/QSAR 
results.
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1.2 QSPR/QSAR: Tools and Tasks 

Developing new types of sweeteners, skin protection products, and cosmetics 
is costly; however, it requires economically suitable solutions. Drug research 
and development are even more complex, expensive, and time-consuming tasks 
requiring acceptable solutions. Quantitative structure–property/activity relationships 
(QSPRs/QSARs) are a popular approach to searching for answers to the above-listed 
functions and solutions to many others. 

The attractiveness of QSPR/QSAR is caused by: (i) this is a concept of compact 
representation of complex physicochemical and biochemical phenomena; (ii) this is 
a more economical way of searching for appropriately defined aims substances in 
comparison with the experimental analysis; (iii) this is an additional way of knowing 
of the nature, in general, and (iv) this is a way to avoid or at least to reduce the use 
of animal tests drastically. 

The wide variety of substances known now seems incomprehensible. This variety 
appears to be far from our understanding. However, applying computer technologies 
allows examining logically interacted parts of the above great list, at least fragmen-
tally. To select substances for practical aims, detecting one quality (e.g., boiling point, 
heat capacity, toxicity, therapeutic effects, blood–brain barrier, and other properties) 
is not enough. Knowledge of the similarity and dissimilarity of the substance with 
others is necessary. The molecular structure is the basis for the comparison aimed at 
collecting the similarity and dissimilarity of different substances. 

There are many manners to compare molecules—topology, i.e., connecting atoms, 
atoms composition, symmetry, and chirality. The 2D geometry represents these 
molecular features reliable enough. The diversity of molecular architecture rapidly 
increases in 3D space, starting from rotation conformers and finishing in supramolec-
ular systems [19, 20]. The molecular biological systems demo incredible levels of 
simplicity and complexity. All living things depend on the ability of biomolecules to 
perform the functions of encoding and transmitting information, that is, to preserve 
and share various bio codes, including genetic ones [21–23]. 

The destruction of these molecular regulators leads to severe often-irreversible 
consequences in organisms. Predicting and controlling such damage is an ideal but 
hardly achievable goal of biochemistry and mathematical chemistry [24, 25]. Self-
consistency and antagonism of molecular systems are also essential properties of 
biomolecules [26, 27]. Mathematical modeling of these phenomena is a complicated 
but essentially solvable problem. Moreover, for these purposes, there are pretty well-
tested mathematical descriptions [28–30] and software available via the Internet 
[31–34]. 

The similarity and differences of molecules are considered. The results of such 
a comparison have been repeatedly described and found in numerous applications 
[31–34]. 

Of course, such comparisons are a very effective heuristic tool. However, it is no 
less exciting and promising to establish similarities and differences in various physic-
ochemical and biochemical parameters from a heuristic point of view. Suppose the
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comparison of molecules is carried out through configurations of atoms and bonds. 
In that case, the search for analogies and antagonism for arbitrary endpoints can be 
carried out based on comparisons of the corresponding structural fragments (alerts) 
that strongly or weakly affect the endpoints [35, 36]. However, the molecular struc-
ture is not very convenient for making numerous comparisons using a computer. 
The corresponding procedures are well implemented using molecular graphs or 
their representation utilizing special matrices. With multiple matrices representing 
different molecules and corresponding physicochemical or biochemical parameter 
values, molecular descriptors can be calculated using a single algorithm. The descrip-
tors obtained by the manner can correlate with the endpoints of interest. Such corre-
lations make it possible to build models calculated through linear regression equa-
tions obtained by the least squares method. These can be either models calculated 
using only one variable (descriptor) or models calculated using several or even many 
variables (descriptors). 

This approach convinced many researchers that the high accuracy of such fore-
casts is possible since the correlation coefficients often showed very high values. 
Unfortunately, reality soon dispelled these high hopes. It turned out that a high 
correlation on the so-called training set was often accompanied by an extremely low 
correlation between the predicted and experimentally obtained values for physico-
chemical parameters (boiling points, melting points). Mainly, discouraging results 
were observed for biological activity (toxicity, drug efficacy). As a result, the term 
“chance correlation” appeared. Computer experiments have shown that, in principle, 
chance correlations can be recognized through the ratio of the number of descrip-
tors involved in constructing the model and the number of molecules (substances) 
available for analysis. According to the Topliss-Costello rule [37], this ratio should 
be one to five (the ratio of the number of descriptors to the number of molecules). 
The problem of the dimensionality paradox and linear dependence also should be 
considered [38]. 

Despite these efforts devoted to improving the predictability of models, the QSAR 
practice has faced significant challenges, even if a group of several conceptual 
approaches to solving the same task is applied. Poor validation strategy is the most 
prevalent cause of the unsuitability of many QSAR models. The simple postulate 
“structurally those similar molecules should have similar biological properties” has 
also been seriously questioned and renamed the “QSAR paradox”. Such an occur-
rence is significant for the case of drugs since, as a rule, a drug should act on multiple 
targets rather than a single one. It increases the uncertainty of QSAR tasks and hence 
QSAR results related to drug discovery [38]. 

All these listed circumstances indicated that some reforms were needed in 
constructing and using QSPR/QSAR, both in theoretical and in practical terms. A 
contradiction or conflict often becomes a point of development, a transition to some 
new quality. Something similar happens from time to time in many, if not all, areas 
of the natural sciences. So, it happened with the QSPR/QSAR theory/practices. 

The proclamation of the so-called Setúbal principles, which later became known 
as the “OECD principles”, can be considered a leap change in the paradigm of 
constructing “structure–property/activity” models.
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1.3 Five OECD Principles 

Gradually, the understanding of the necessity to check the statistical quality of a 
model for compounds unknown at the moment of building up the model did become 
the accepted principle. 

The Organization for Economic Co-operation and Development (OECD) curates 
QSPR/QSAR studies. The agreed OECD principles are as follows: for real applying 
a QSAR model for regulatory purposes, it should be associated with the following 
information: 

1. A defined endpoint; 
2. An unambiguous algorithm; 
3. A defined domain of applicability; 
4. Appropriate measures of goodness-of-fit, robustness, and predictive potential; 
5. A mechanistic interpretation, if possible. 

Unfortunately, these principles are more legal than mathematical. But even in this 
capacity, they are instrumental. 

1.4 Praxis of the QSPR/QSAR Development 

Practice shows that in the field of QSPR/QSAR research, there are several paradigms 
(analytical comparisons of these may be helpful) for solving the problem of predicting 
the values of various endpoints (well-known to get truthful results if the comparison 
of two or more opinions is necessary). Most likely, the number of such paradigms 
will increase since none of the mentioned paradigms lacks both advantages and 
disadvantages. A brief overview of the paradigms used to build the QSPR/QSAR 
models follows, based on the diversity of molecular descriptors or algorithms for 
building models. 

1.5 Molecular Descriptors are the Basis 
for the QSPR/QSAR 

One might determine five construction levels according to the dimensionality of 
the spaces in which information is taken to calculate the molecular descriptor. A 
0D descriptor is one for calculating which no information on the molecular struc-
ture is used (e.g., physicochemical property, solubility, or molecular weight). The 
1D descriptor requires stoichiometric data for its calculation (e.g., the number of 
atoms or double/triple bonds). Then, 2D -descriptors are calculated according to 
molecular topology (configuration of atoms and bonds between atoms). The 3D
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descriptors require data on molecular geometry (distances between atoms in three-
dimensional space) for their calculation. And 4D descriptors are calculated by aver-
aging all possible rotational conformers. Another version of 4D descriptors is the 
consideration of molecules in a relativistic space, where time (T) is considered a 
specific geometric component similar to the axes X, Y, and Z. 

In practice, different methodologies apply all mentioned descriptors for 
QSPR/QSAR analysis, often without an attempt to elucidate—why this descriptor 
and no other one? 

1.5.1 Principal Component Analysis 

Principal component analysis (PCA) is probably the most popular multivariate statis-
tical technique, and almost all scientific disciplines use it. PCA analyzes a data table 
representing observations described by several dependent variables, which are, in 
general, inter-correlated. Its goal is to extract the primary information from the data 
table and to express it as a set of new orthogonal variables called principal compo-
nents. PCA also represents the pattern of similarity of the observations and the 
variables by displaying them as points in plots [39]. 

1.5.2 Multiple Linear Regressions 

Multiple linear regression (MLR) is a statistical tool that uses independent variables 
to model dependent variable. The objective of MLR is to find a linear model of the 
property of interest according to the paradigm “Endpoint is a mathematical function 
of a group of descriptors” [40]. However, this leads to a vast labyrinth of possibilities; 
the number of options for combinations of descriptors grows exponentially with 
the growth of the number of available descriptors and the growth of the model 
dimensionality (three-, four-, … n-dimension models). 

1.5.3 Partial Least Squares 

For structure–activity correlation, partial least squares (PLS) has many advantages 
over regression, including the ability to robustly handle more descriptor variables 
than compounds, non-orthogonal descriptors, and multiple biological results while 
providing more predictive accuracy and a much lower risk of facing the chance 
correlation. The significant limitations are a higher risk of overlooking “real” corre-
lations and sensitivity to the relative scaling of the descriptor variables [41]. PLS
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is the regression extension of PCA and is used for establishing QSARs. Judging by 
the number of mentions of PLS in the SCOPUS database, this method has a lot of 
supporters. 

1.5.4 K-Nearest Neighbor Classification 

K-nearest neighbors (KNN) is a nonparametric method used in the computational 
scheme of establishing the correlation “structure–property/activity” that specifies 
the class of each chemical based on K nearest of its neighbors (chemicals) from the 
training set. The class is equal to the type of the majority of the K neighbors of the 
tested chemical [42]. The molecular similarity is the basis of the approach. 

1.5.5 Artificial Neural Network 

Artificial neural networks are parallel computational devices consisting of groups of 
highly interconnected processing elements called neurons. Neural networks are char-
acterized by topology, computational characteristics of their elements, and training 
rules. Traditional neural networks have neurons arranged in a series of layers. The 
first layer is termed the input layer, and each of its neurons receives information 
from the exterior, corresponding to one of the independent variables used as inputs. 
The last layer is the output layer; its neurons handle the output from the network. 
The layers of neurons between the input and output layers are called hidden layers. 
Each layer may make independent computations and pass the results to another 
layer. In feedforward neural networks, the connections among neurons are directed 
upwards, i.e., relationships are not allowed among the neurons of the same layer 
or the preceding layer. Networks where neurons are connected to themselves, with 
neurons in the same layer or neurons from a preceding layer, are termed feedback or 
recurrent networks. At a very simplified level, artificial neural networks mimic the 
way a biological brain organizes, stores, and processes information [43, 44]. 

The popularity of neural networks borders on complete trust in them; however, 
the emergence of hybrid approaches partially using neural networks indicates the 
possibility of improvements in “classical” neural networks [45]. 

1.5.6 Support Vector Machine 

Support vector machine (SVM) is gaining popularity due to several attractive features 
and promising empirical performances. The primary aim of SVM is data classifica-
tion, which is much easier and more applicable than artificial neural networks. Briefly, 
a classification task usually involves training and testing data which consists of some
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data instances. Each instance in the training set contains one “target value” (class 
labels) and several “attributes” (features). The goal of SVM is to produce a model 
which predicts the target value of data instances in the test set, which is given only 
the attributes [46]. 

Thus, SVM has many advantages, but together with two disadvantages. These 
are the empirical nature of selecting descriptors and, as a rule, a large number of 
molecular features involved in a model [46]. 

1.5.7 Random Forest 

The algorithm random forest is widely used in classification and regression, given that 
it has several features that make it suitable for QSAR/QSPR tasks. These include good 
predictive performance even when there are more variables than observations. The 
availability of measures of the ranging of descriptors and the ability to integrate a large 
number of simple models allow the possibility of reducing overtraining problems 
[47]. 

The main disadvantages are the possibility of the initial data influencing the predic-
tive potential of the models, as well as the large amount of data required for the 
implementation of the models. 

1.5.8 Monte Carlo Method 

The main idea of the Monte Carlo method is to play a set of random changes in 
the simulation system, accompanied by quality control (evaluation) of the resulting 
models. The strength of this approach is its real objectivity (due to the random nature 
of all transformations). At the same time, the need to conduct many implementa-
tions/checks of these random modifications should be recognized as a weakness. 
Unfortunately, Monte Carlo methods cannot provide high accuracy in modeling 
anything, but they offer a comprehensive, absolutely random coverage of the 
phenomenon under study, that is, an analysis of even those situations that may seem 
illogical or unlikely; as a result, these possibilities escape from the attention of 
researchers. Here, so-called optimal 2D descriptors calculated by the Monte Carlo 
method for the defined endpoint are discussed [35, 36]. 

1.5.9 Data Curation 

The curation of data selected for developing a model is a critically significant compo-
nent of a QSPR/QSAR analysis. Previously, before the advent of computers and the 
Internet, an experiment was the primary data source. With the advent of computers,
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the experiment has lost its privilege of being the sole source of data. It turned out 
that studying existing data (e.g., checking for consistency) can be a source of new 
data. Sometimes, the data should be averaged. Also, this includes procedures for 
identifying recent trends (new substances, new technologies) and new details in the 
behavior of complex biochemical objects. In other words, QSPR/QSAR analysis is 
possible only based on verified consistent data [48]. 

1.6 Reproducibility 

A QSPR/QSAR loses significance if corresponding models are not reproducible in 
defined parametrization. At the same time, it must be taken into account that the 
ideal reproducibility of models with the appearance of new data (new substances, 
the establishment of additional factors affecting the physicochemical or biochemical 
behavior of molecular systems) is unattainable. However, the availability of reli-
able estimates of the dispersion of results indicates the reproducibility of predictive 
systems. QSPR/QSAR models should aim to meet a standard level of quality and be 
clearly described, ensuring their reproducibility [49]. 

In other words, each model should be checked up for a group of random splits 
into the training and validation sets. 

1.6.1 Applicability Domain 

One cannot apply a model if the domain of applicability of the model is not defined. 
The moment of determining the applicability domain is usually not considered. 
However, whether to determine the domain of applicability before building the 
model or the scope should be determined for the finished model nevertheless seems 
quite natural and quite important. From the practical point of view, the definition 
of the domain of applicability before building up a model appears more realistic. 
Appreciating the mechanisms is critical to determining the most likely applicability 
domain [50]. Four practical approaches for estimating the applicability domain in a 
multivariate space are applied: range, distance, geometrical, and probability density 
distribution [51]. 

1.6.2 Model Validation 

Any QSPR/QSAR model becomes significant (suitable for practices) only after an 
appropriate assessment of the statistical quality of the model. Currently, there are no 
specific recommendations that suit everyone for assessing the predictive potential of 
models. The need for this kind of verification is noted, and the unreliability of the
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existing criteria for the predictive potential is indicated, but the answer to the question 
“how can this be done?” remains in the realm of philosophy, that is, “practice is the 
reliability criterion of an approach”. In essence, this means that any approach is 
suitable for solving a problem if this approach has shown its ability to solve similar 
problems. Only models that have been validated externally can be considered reliable 
and applicable for external prediction: “validation” is the word that is constantly used 
but seldom defined [52]. 

A primitive and reliable model is possible, indicating the need for one or a few 
structural fragments to guarantee the desired effect. But in such a situation, nothing 
needs to be checked. 

1.7 Recommendations for Building Robust QSPR/QSAR 
Models 

QSAR is a collection of well-defined protocols and procedures that enable the defi-
nition of promising chemical collections [53, 54]. All QSPR/QSAR models are the 
result of computer experiments. One way or another, the identified molecular features 
line up in a series of factors contributing to increasing or decreasing the endpoint 
value. In some cases, unexpected analogies are observed between a computer exper-
iment with numerical data and an actual physical experiment. For example, Fig. 1.1 
shows the dependence of the number of poor predictions and the percentage of poor 
predictions for the validation set in group of models observed for different splits 
into the training and validation sets. One can see that 20% in the test set is prefer-
able compared to the case where the test set contains 60% of the total set data. 
The graphic of the above dependence is similar to the graphic of the dependence of 
conductivity solutions of nanoparticles and their sizes [55]. Perhaps, this is a coin-
cidence. Perhaps, there exists some invisible analogy between the computational 
process and the behavior of nanoparticles.

Therefore, it should be recognized that the formulation of a computer experi-
ment, as well as any other experiment, requires the exclusion of the influence of the 
authors on this experiment. In other words, it is necessary to develop some standards 
that ensure the reproducibility of the results obtained, regardless of the conditions 
of a particular laboratory, well or poorly equipped, and irrespective of the person-
ality of the researcher (only the latter must be conscientious enough so that the 
implementation of the instructions meets the necessary standards). 

The traditional classical experiment with substances, energy, and information 
aims to formulate a question about nature and, secondly, to obtain an answer to 
this question. The computer experiment, in this sense, entirely coincides with the 
classical one despite being related mainly to information. 

Below, some examples of applying the computational experiments based on the 
Monte Carlo method are discussed.
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Fig. 1.1 Dependence of numbers of poor predictions and percentage of poor predictions for the 
validation set in group of models observed for different splits into the training and validation sets

1.8 Is It Possible to Obtain Correlations Suitable 
for QSPR/QSAR Using SMILES? 

A positive answer to the first of the above questions was obtained from more than 
a hundred published works where the Monte Carlo technique (CORAL software, 
http://www.insilico.eu/coral) aimed to correlation weighting of molecular features 
to bring models of various physicochemical and biochemical endpoints collected in 
Table 1.1.

It should be noted that the development of optimal descriptors is possible not 
only based on SMILES, but it is also possible to develop optimal descriptors using 
both SMILES and the molecular graph (Table 1.2). The optimal descriptors of such 
categories were named hybrid ones [67–71]. Besides, optimal descriptors can be 
obtained from molecular graphs without using SMILES [72].

However, the practical use of a model should be in agreement with the research 
targets. SMILES and molecular graphs aim to represent the molecular structure. 
However, these representations are not identical. Can the superposition (hybrid) of 
these representations improve the quality of a model?

http://www.insilico.eu/coral
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Table 1.1 Applying the Monte Carlo method to build up QSPR/QSAR models based on optimal 
descriptors 

Endpoint The statistical quality Comments References 

Carcinogenic potency 
(pTD50) 

n = 170, R2 = 0.628, 
RMSE = 0.87; 
n = 61, R2 = 0.758, 
RMSE = 0.602 

The statistics for the 
training and validation set 

[56] 

The cellular uptake in 
PaCa2 cancer cells of 
nanoparticles 

n = 20, R2 = 0.87, MAE 
= 0.15 

The statistics for the 
validation set 

[57] 

Cytotoxicity for metal 
oxide nanoparticles 

The statistical 
characteristics of these 
models are correlation 
coefficients 0.90–0.94 
(training set) and 
0.73–0.98 (validation set) 

The average statistics on 
several splits 

[58] 

The mutagenic potential 
of multi-walled carbon 
nanotubes, pTA100 

n = 14, R2 = 0.8087, Q2 

= 0.6975, s = 0.026, F = 
51 
(training set); 
n = 5, R2 = 0.9453, s = 
0.074 
(test set); 
n = 5, R2 = 0.8951, s = 
0.052 (validation set) 

The approach checked up 
with three random splits 

[59] 

Cytotoxicity of different 
types of multi-walled 
carbon nanotubes to 
human lung cells 

R2 for internal validation 
datasets: 0.60–0.80; 
R2 
pred for external 

validation datasets: 
0.81–0.88 

Three random splits 
examined 

[60] 

Model for effective 
antidepressants, selective 
serotonin reuptake 
inhibitors 

For the test sets of the four 
random splits, observed 
R2 was 0.9459, 0.9249, 
0.9473, and 0.9362 

Four random splits 
examined 

[61] 

Aromatase inhibitors, a 
promising class of 
therapeutic anticancer 
agents (pIC50) 

R2 about 0.65(training 
set); 
R2 about 0.68 (validation 
set) 

Three random splits 
examined 

[62] 

Focal adhesion kinase 
inhibitors 

The best statistical 
parameters R2 = 0.8398 
(validation set) 

Four random splits 
examined 

[63]

(continued)
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Table 1.1 (continued)

Endpoint The statistical quality Comments References

Acute toxicity of 
pesticides in rainbow trout 
(LC50) 

training set: R2 ranges 
0.72–0.81, RMSE ranges 
0.54–1.25; validation set 
R2 ranges 0.74–0.84; and 
RMSE ranges 0.64–0.75 

Three random splits 
examined 

[64] 

Biological activity of 
anti-diabetic drugs 

R2 = 0.6837 (training 
set); 
R2 = 0.8623 (validation 
set) 

Three random splits 
examined 

[65] 

Models for potential 
therapeutic SIRT1 for 
several diseases like 
cardiovascular, metabolic, 
and inflammatory 
disorders 

R2 = 0.9524 (training 
set), and R2 = 0.9058 
(test set) 

Three random splits 
examined 

[66]

Table 1.2 Applying the Monte Carlo method to build up QSPR/QSAR models based on hybrid 
optimal descriptors, which are calculated with SMILES, HSG, and GAO 

Endpoint The statistical quality Comments References 

Biological activity of 
antihypertensive used in 
the treatment of 
hypertension, heart 
failure, and renal diseases 

R2 = 0.8701 (training set); 
R2 = 0.8430 (test set) 

Hybrid optimal 
descriptors are used, 
which are calculated with 
SMILES and HSG 

[68] 

Adsorption coefficients of 
aromatic compounds on 
multi-wall carbon 
nanotubes were studied 

R2 ranges 0.9463–0.8528 
(training set); 
R2 ranges 0.9573–0.8228 
(validation set) 

Hybrid optimal 
descriptors are used, 
which are calculated with 
SMILES and HSG 

[69] 

HIV-protease inhibitors 
(experimental inhibitory 
constant, Ki) 

n = 75; R2 = 0.830; 
RMSE = 0.489 (training 
set); 
n = 15; R2 = 0.915; 
RMSE = 0.311 
(validation set) 

Hybrid optimal 
descriptors are used, 
which are calculated with 
SMILES and HSG 

[70] 

The prediction of binding 
affinities (pEC50) 

The best statistical 
parameters 
R2 = 0.95 (training set) 
R2 = 0.77 (validation set) 

Hybrid optimal 
descriptors are used, 
which are calculated with 
SMILES, HSG, and GAO 

[67] 

The prediction of binding 
affinities (pEC50) 

The R2 values of the three 
validation sets (splits 1 to 
3) are 0.966, 0.921, and 
0.886, respectively 

Hybrid optimal 
descriptors are used, 
which are calculated with 
SMILES, HSG, and GAO 

[71] 

HSG Hydrogen suppressed graph; GAO Graph of atomic orbitals
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1.9 The Main Quality of a Descriptor Is to Indicate 
the Differences Between Molecules 

Most molecular descriptors correlate with molecular weight [73] and the length of the 
carbon chain or the carbon skeleton branching in organic molecules. An uncompleted 
list of molecular features that molecular descriptors should recognize includes the 
presence/absence of various rings, symmetry, and chirality [74]. In addition, desir-
able descriptors should “capture” the tendency of molecules to form intra- and inter-
molecular hydrogen bonds. The features mentioned above are quite interpretable. 
Descriptors that target correlation with the mentioned features are represented in 
the literature. However, the purpose of descriptors is to “capture” ultimately other 
abilities of molecules. 

All models in the descriptor space might be wrong, but some are useful. How to 
prove that some model is valid? 

Suppose a model’s construction is considered a particular event characterized 
by the values of statistical criteria. In that case, constructing a specific group of 
such models can be qualified as a group of random models. If the method is chosen 
adequately, then the statistical characteristics of these models should be more or less 
reproducible, albeit with some variance. 

Having the statistical characteristics of groups of random in the above sense, 
models obtained by several methods, it is possible to compare the predictive potential 
of these methods. The method that gives the best statistical characteristics for external 
testing sets should be recognized as the most reliable for solving the problem. 

To carry out the described computational experiments, (1) some set of compounds 
with experimental data on the considered endpoint is necessary; (2) a group of random 
distributions into a training set and a validation set; (3) a group of different methods 
for building up the model. 

To confirm the above hypothesis, dataset on toxicity to Rainbow Trout of 309 pesti-
cides (no mixtures) was taken in the literature [75]. Five random splits are calculated 
randomly using the CORAL software (http://www.insilico.eu/coral). These splits are 
random. The training sets are structured into three subgroups: active training set (≈ 
25%), passive training set (≈ 25%), and calibration set (≈ 25%). The external vali-
dation set also contains 25% of the total dataset. Three versions of hybrid optimal 
descriptors were used to develop a model for the above toxicity. The first hybrid 
descriptor calculated using SMILES and Morgan extended connectivity of the zero, 
first, and second order in HSG 

DCW(T , N ) =
∑

CW(Sk) +
∑

CW(SSk) +
∑

CW(SSSk) 

+
∑

CW(EC0k) +
∑

CW(EC1k) +
∑

CW(EC2k) (1.1) 

The second hybrid descriptor calculated using SMILES and Morgan extended 
connectivity of the zero order in GAO

http://www.insilico.eu/coral
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DCW(T , N ) =
∑

CW(Sk) +
∑

CW(SSk) +
∑

CW(SSSk) +
∑

CW(EC0k) 
(1.2) 

The second hybrid descriptor calculated using SMILES and Morgan extended 
connectivity of the zero and first order in GAO as follows: 

DCW(T , N ) =
∑

CW(Sk) +
∑

CW(SSk) +
∑

CW(EC0k) 

+
∑

CW(EC1k) (1.3) 

In Eqs. 1.1–1.3, T is the threshold, i.e., the minimal frequency of SMILES attribute 
(S, SS, SSS) or Morgan’s extended connectivity of zero, first, and second order (EC0k , 
EC1k , and EC2k , respectively) in the active training set; N is the number of epochs 
of the Monte Carlo optimization applied to calculate the correlation weights (CWs) 
of the SMILES attributes and graph invariants. 

The calculation of optimal descriptors needs the numerical data on the above 
correlation weights. Monte Carlo optimization is a tool to calculate those correlation 
weights. The target functions for the Monte Carlo optimization are the following: 

TF = rAT + rPT − |rAT − rPT| × 0.1 + IIC × 0.5 (1.4)  

The rAT and rPT are correlation coefficients between the observed and predicted 
endpoints for the active and passive training sets. The IICC is the index of ideality of 
correlation [76, 77]. The IICC is calculated with data on the calibration set as follows: 

IICC = rC 
min(−MAEC, +MAEC) 
max(−MAEC, +MAEC) 

(1.5) 

min(x, y) =
{
x, if x < y 
y, otherwise 

(1.6) 

max(x, y) =
{
x, if x > y 
y, otherwise 

(1.7) 

−MAEC = 
1 

− N

∑
|�k |, − N is the number of �k < 0 (1.8) 

+MAEC = 
1 

+ N

∑
|�k |, + N is the number of �k ≥ 0 (1.9)

�k = observedk − calculatedk (1.10) 

The observed and calculated are corresponding values of the endpoint. 
Having the numerical data on the correlation weights, one can calculate the model 

via the equation
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pLC50 = C0 + C1 × DCW(T , N ) (1.11) 

Tables 1.3, 1.4, and 1.5 contain the statistical characteristics of models calculated 
with the hybrid descriptors calculated using Eqs. 1.1–1.3, respectively. 

Thus, the modeled properties’ valid values should be sought in the average plus 
minus a variance format. 

Figure 1.2 represents the average determination coefficient values observed for 
descriptors calculated with Eqs. 1.1–1.3 as well dispersion of these values. Thus, the 
comparison of the random QSAR models observed for different methods (Eqs. 1.1– 
1.3) indicated that the best method is the one observed for descriptor calculated 
with Eq. 1.2. In contrast, other methods are characterized by smaller determination 
coefficients for validation set and by more significant dispersion of this value.

Table 1.3 Statistical quality of the model is based on the optimal descriptor calculated with Eq. 1.1 

Split Set* n R2 CCC IIC Q2 RMSE MAE F 

1 A 75 0.6695 0.8020 0.7553 0.6487 0.950 0.821 148 

P 80 0.7316 0.7504 0.7204 0.7171 1.06 0.906 213 

C 72 0.8069 0.8856 0.8981 0.7883 0.556 0.406 293 

V 82 0.7561 0.791 0.602 

2 A 74 0.7272 0.8421 0.8079 0.7099 0.856 0.729 192 

P 81 0.7141 0.8413 0.7562 0.7005 0.921 0.746 197 

C 77 0.7434 0.8616 0.8622 0.7305 0.682 0.554 217 

V 77 0.7785 0.680 0.533 

3 A 79 0.6703 0.8026 0.7588 0.6525 0.901 0.706 157 

P 76 0.7595 0.7509 0.7657 0.7495 1.06 0.942 234 

C 77 0.8886 0.9422 0.9425 0.8834 0.415 0.311 598 

V 77 0.7265 0.631 0.507 

4 A 78 0.6144 0.7611 0.7074 0.5946 0.976 0.855 121 

P 79 0.7157 0.6209 0.5627 0.7009 1.32 1.16 194 

C 76 0.8570 0.9233 0.9257 0.8504 0.380 0.288 443 

V 76 0.8270 0.515 0.431 

5 A 76 0.7702 0.8702 0.7492 0.7573 0.777 0.657 248 

P 77 0.7370 0.8474 0.7655 0.7211 0.895 0.753 210 

C 78 0.7734 0.8551 0.8794 0.7605 0.804 0.648 259 

V 78 0.6199 0.903 0.699 

*) Here and below, A, P, C, and V are active training, passive training, calibration, and validation 
sets, respectively
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Table 1.4 Statistical quality of the model is based on the optimal descriptor calculated with Eq. 1.2 

Split Set n R2 CCC IIC Q2 RMSE MAE F 

1 A 75 0.5006 0.6672 0.6191 0.4728 1.17 1.04 73 

P 80 0.7189 0.6233 0.8064 0.7056 1.18 1.07 199 

C 72 0.8489 0.9194 0.9213 0.8272 0.427 0.306 393 

V 82 0.8443 0.493 0.395 

2 A 74 0.7196 0.8369 0.6828 0.7006 0.868 0.730 185 

P 81 0.6099 0.7700 0.6277 0.5912 1.19 1.01 124 

C 77 0.8109 0.8978 0.9005 0.8017 0.601 0.499 322 

V 77 0.7966 0.676 0.496 

3 A 79 0.6764 0.8069 0.6885 0.6588 0.893 0.775 161 

P 76 0.6792 0.7455 0.7009 0.6653 1.11 0.956 157 

C 77 0.8637 0.9268 0.9292 0.8573 0.478 0.392 475 

V 77 0.7774 0.554 0.439 

4 A 78 0.5351 0.6972 0.6270 0.5056 1.07 0.977 87 

P 79 0.6353 0.6177 0.6677 0.6163 1.32 1.15 134 

C 76 0.8245 0.9010 0.9080 0.8162 0.430 0.339 348 

V 76 0.8470 0.495 0.397 

5 A 76 0.5481 0.7081 0.6320 0.7805 0.5213 1.09 0.957 

P 77 0.5098 0.7114 0.6547 0.8097 0.4850 1.27 1.13 

C 78 0.8346 0.9117 0.9135 0.8986 0.8239 0.536 0.447 

V 78 0.8067 0.528 0.420

1.10 Significant Notes 

• A QSPR/QSAR model is a random event (an unpleasant, ugly truth that cannot 
be ignored when building wrong, but perhaps useful, models). 

• An approach should be estimated for a few different distributions into training 
and validation sets. 

• The accurate measure of model robustness is likely to be the reproducibility of the 
statistical quality of the model across multiple splits into training and validation 
sets [78] rather than the high statistical quality of the model for a single split into 
training and validation sets. 

• All published models built using CORAL software can be reproduced with 
an accuracy that users can measure by carrying out (repeated) corresponding 
computational experiments.
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Table 1.5 Statistical quality of the model is based on the optimal descriptor calculated with Eq. 1.3 

Split Set n R2 CCC IIC Q2 RMSE MAE F 

1 A 75 0.5207 0.6848 0.7026 0.4951 1.14 0.985 79 

P 80 0.7080 0.6379 0.7026 0.6916 1.20 1.08 189 

C 72 0.8230 0.9061 0.9072 0.8073 0.465 0.371 325 

V 82 0.6865 0.714 0.528 

2 A 74 0.6059 0.7546 0.6986 0.5789 1.03 0.823 111 

P 81 0.5314 0.7286 0.6403 0.5035 1.20 0.978 90 

C 77 0.7359 0.8448 0.8577 0.7221 0.661 0.521 209 

V 77 0.7151 0.705 0.558 

3 A 79 0.5649 0.7219 0.6621 0.5408 1.04 0.868 100 

P 76 0.6861 0.6892 0.7636 0.6651 1.17 0.983 162 

C 77 0.8155 0.8958 0.9030 0.8054 0.518 0.412 332 

V 77 0.6603 0.666 0.509 

4 A 78 0.4362 0.6074 0.5960 0.4006 1.18 1.06 59 

P 79 0.6106 0.5728 0.6648 0.5901 1.36 1.19 121 

C 76 0.7266 0.8139 0.8524 0.7118 0.557 0.416 197 

V 76 0.7758 0.588 0.452 

5 A 76 0.6432 0.7829 0.7609 0.6227 0.968 0.803 133 

P 77 0.5779 0.7566 0.7134 0.5552 1.22 1.02 103 

C 78 0.7659 0.8750 0.8751 0.7533 0.657 0.486 249 

V 78 0.5973 0.863 0.629

Fig. 1.2 Comparison of the 
predictive potential of 
considered methods in 
building up models for 
toxicity of pesticides to 
Rainbow Trout



1 Fundamentals of Mathematical Modeling of Chemicals Through … 21

1.11 Conclusions 

Estimating a physicochemical or biochemical parameter by QSPR/QSAR is a surro-
gate for a real experiment. However, the reproducibility of the results is necessary 
for assessing the QSPR/QSAR approach as successful. Despite the inconvenience of 
applying many criteria for the statistical quality of the model, if they are diverse in 
nature, they are the guarantors of the statistical reliability of the model and, therefore, 
the patrons of confidence in the used approach. The general philosophical signifi-
cance of QSPR/QSAR lies in the satisfactory quality of the forecast of the phenomena 
under consideration and in the semantic load on obtaining and using QSPR/QSAR 
results. In other words, there must be harmony between the user and the logic of the 
program as a tool for solving the problem. 
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9. Gutman I, Miljković O, Caporossi G, Hansen P (1999) Chem Phys Lett 306(5–6):366–372. 

https://doi.org/10.1016/S0009-2614(99)00472-8 
10. Gutman I, Araujo O, Morales DA (2000) J Chem Inf Comput Sci 40(3):593–598. https://doi. 

org/10.1021/ci990095s 
11. Hansch C, Fujita T (1964) J Am Chem Soc 86(24):5710. https://doi.org/10.1021/ja01078a623 
12. Dearden JC (2017) In: Leszczynski J (ed) Challenges and advances in computational chemistry 

and physics, vol 24, pp 57–88. https://doi.org/10.1007/978-3-319-56850-8_2 
13. Doweyko AM (2008) J Comput Aided Mol Des 22(2):81–89. https://doi.org/10.1007/s10822-

007-9162-7 
14. Tóth G, Bodai Z, Héberger K (2013) J Comput-Aided Mol Des 27(10):837–844. https://doi. 

org/10.1007/s10822-013-9680-4 
15. Weininger D (1988) J Chem Inf Comput Sci 28(1):31–36. https://doi.org/10.1021/ci00057a005 
16. Mak K-K, Balijepalli MK, Pichika MR (2022) Expert Opin Drug Discov 17(1):79–92. https:// 

doi.org/10.1080/17460441.2022.1985108 
17. Segall MD, Beresford AP, Gola JMR, Hawksley D, Tarbit MH (2006) Expert Opin Drug Metab 

Toxicol 2(2):325–337. https://doi.org/10.1517/17425255.2.2.325 
18. Giffin SA, Shah R, Soloff A, Vaysman AM, Oreper J, Gažo A, Gandhi P, Shah I, Malieckal T, 

Boulos D, Flowers T, Stevens CA, Rocco MS, Patel AS, Albano D (2019) Ther Innov Regul 
Sci 53(3):332–339. https://doi.org/10.1177/2168479018779920

https://doi.org/10.1021/ja01193a005
https://doi.org/10.1063/1.1746328
https://doi.org/10.7717/PEERJ-CS.835
https://doi.org/10.7717/PEERJ-CS.835
https://doi.org/10.1021/ja01203a022
https://doi.org/10.1063/1.434593
https://doi.org/10.1007/BF00555695
https://doi.org/10.1016/S0021-9673(00)85645-9
https://doi.org/10.1016/0009-2614(87)80626-7
https://doi.org/10.1016/0009-2614(87)80626-7
https://doi.org/10.1016/S0009-2614(99)00472-8
https://doi.org/10.1021/ci990095s
https://doi.org/10.1021/ci990095s
https://doi.org/10.1021/ja01078a623
https://doi.org/10.1007/978-3-319-56850-8_2
https://doi.org/10.1007/s10822-007-9162-7
https://doi.org/10.1007/s10822-007-9162-7
https://doi.org/10.1007/s10822-013-9680-4
https://doi.org/10.1007/s10822-013-9680-4
https://doi.org/10.1021/ci00057a005
https://doi.org/10.1080/17460441.2022.1985108
https://doi.org/10.1080/17460441.2022.1985108
https://doi.org/10.1517/17425255.2.2.325
https://doi.org/10.1177/2168479018779920


22 A. A. Toropov et al.

19. Varnek A, Fourches D, Hoonakker F, Solov’ev VP (2005) J Comput-Aided Mol Des 19(9– 
10):693–703. https://doi.org/10.1007/s10822-005-9008-0 

20. Thurston BA, Ferguson AL (2018) Mol Simul 44(11):930–945. https://doi.org/10.1080/089 
27022.2018.1469754 
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Chapter 2 
Molecular Descriptors in QSPR/QSAR 
Modeling 

Shahin Ahmadi, Sepideh Ketabi, and Marjan Jebeli Javan 

Abstract Molecular descriptors are mathematical representation of a molecule 
obtained by a well-specified algorithm applied to a defined molecular representa-
tion or a well-specified experimental procedure. The molecular descriptors as the 
core feature-independent parameters used to predict biological activity or molecular 
property of compounds in the quantitative structure property/activity relationship 
(QSPR/QSAR) models. Over the years, more than 5000 molecular descriptors have 
been introduced and calculated using different software. In this chapter, the main 
classes of theoretical molecular descriptors including 0D, 1D, 2D, 3D, and 4D-
descriptors are described. The most significant progress over the last few years in 
chemometrics, cheminformatics, and bioinformatics has led to new strategies for 
finding new molecular descriptors. The different approaches for deriving molecular 
descriptors here reviewed, and some of the new important molecular descriptors and 
their applications are presented. 

Keywords Molecular descriptors · QSAR · QSPR · Chemometrics ·
Chemoinformatic 
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DHFR Dihydrofolate Reductase 
DLS Dynamic Light Scattering 
EM Electronic Microscopy 
EDX Energy Dispersive X-ray Spectrometry 
ESEM Environmental Scanning Electron Microscopy 
FFF Field Flow Filtration 
FMO Frontier Molecular Orbital Theory 
HOMO Highest Occupied Molecular Orbital 
WW Hyper-Wiener Index 
ICPOES Inductively Coupled Plasma Emission Spectroscopy 
ICP-MS Inductively Coupled Plasma Mass Spectrometry 
LC Liquid Chromatography 
LUMO Lowest Unoccupied Molecular Orbital 
MW Molecular Weight 
MVC Multivariate Characterization 
PCA Principal Component Analyses 
PPs Principal Properties 
QSAR Quantitative Structure–Activity Relationship 
QSPR Quantitative Structure–Property Relationship 
SMILES Simplified Molecular Input Line Entry System 
TMACC Topological Maximum Cross Correlation 
TEM Transmission Electron Microscopy 

2.1 Introduction 

2.1.1 History 

The history of molecular descriptors as a feature vector for each compound is closely 
related to the concept of molecular structure [1]. The years between 1860 and 1880 
were marked by a strong disagreement about the theory of molecular structure, 
which arose from studies on substances showing optical isomerism and Kekulé’s 
(1867–1861) studies on the structure of benzene [2]. 

Today, many chemical, physical, and biological characteristics of compounds rely 
on the principle that these parameters are effects of its structural descriptors. 

In 1868, Crum-Brown and Fraser [3] introduced first formulation about relation-
ship between the bioactivity/property of a chemical (Φ) and its chemical constitution 
(C), as the following equation:

Φ = f (C) (2.1)
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Based on this concept, many studies were conducted on the relationship of molec-
ular descriptors to observed properties, including the relationship between the anes-
thetic power of various aliphatic alcohols with chain length of carbon and molecular 
weight [4], between the color of disubstituted benzenes with various ortho-, meta-, 
and para-orienting [5], and between the narcotic toxicity and solubility in water [6]. 

One of the most attractive quantitative structure–activity relationship (QSAR) 
approach is the Hammett equation [7]. In 1973, he showed a linear relationship 
between the rate constants of a series of methyl ester reactions with N(CH3)3 and the 
ionization equilibrium constants of the related carboxylic acids in aqueous solution 
at ambient temperature. The linear relationship between the ionization constant of 
the ester containing a substituent X in the meta (m) or para (p) orientation (KX ) and 
the ionization constant of the unsubstituted ester (KH ) is defined by the following 
formula: 

log

(
KX 

KH

)
= ρ · σX , (2.2) 

where σX is the constant of the substituent in m or p position is indicated by σm or σp, 
respectively. The absolute value of σ , which varies for each substituent, refers to the 
measure of the global electronic effect exerted on the reaction center by the presence 
of substituent X. The sign of σ is positive for electron-withdrawer and negative 
for electron-donor substituent. The electronic induction effect and the electronic 
resonance effect denote by σI and σR , respectively; the constant for the unsubstituted 
aromatic ring as a reference represented by σ 0 R . Hammett’s equation in this case 
defined by the following equation. 

log

(
KX 

KH

)
= ρI · σI + ρR · σ 0 R (2.3) 

2.1.2 QSPR/QSAR Modeling 

In cheminformatics, a QSPR/QSAR model, either qualitative or quantitative, is a 
mathematical function that can be used to describe the connection between the 
molecular structures of a series of chemical compounds and their physicochemical 
properties/biological activities [8–14]. 

This field of knowledge assumes that the activity or property of a compound 
depends on its structural features, which affect its overall activities and properties 
[15–19]. 

Despite the formal differences between different methodologies, each 
QSPR/QSAR method is based on a QSPR/QSAR table that can be generalized as 
presented in Fig. 2.1 [20].
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Fig. 2.1 Flowchart of the combinatorial QSAR methodology 

The differences in various QSPR/QSAR studies can be explained in the following 
terms: 

• Endpoint value 
• Molecular descriptors 
• Optimization algorithms. 

Endpoint value as dependent variables can generally be of three types: 

• Continuous 

This endpoint is real values covering certain range, e.g., physicochemical properties 
of compounds such as boiling point and melting point. or IC50 values and binding 
constant. 

• Categorical-related 

This is classes of activities covering certain range of values, e.g., active and 
inactive compounds. 

• Adjacent classes of metabolic stability
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Adjacent classes of metabolic stability such as unstable, moderately stable, stable; 
and categorical-unrelated (i.e., classes of endpoints that do not relate to each other in 
any continuum, e.g., compounds that belong to different pharmacological categories, 
or compounds that are categorized as drugs vs. non-drugs). 

Understanding this classification is indeed very important because the choice 
of descriptor types as well as modeling methods is often determined by the type 
of endpoints. Thus, in general the latter two types require classification modeling 
methods, whereas the former type of the target properties allows using linear regres-
sion modeling. Therefore, the latter two types require categorical modeling methods, 
generally while the former type of endpoint characteristics allows the use of linear 
regression modeling. Methods related to data analysis are called classification or 
continuous QSPR/QSAR. 

2.1.3 Molecular Descriptors 

Chemical descriptors as independent features in QSPR/QSAR modeling are usually 
classified into the following two types: 

• Continuous 

There are so many continuous descriptors such as molecular weight or many 
molecular connectivity indices. 

• Categorical-related 

The categorized descriptors such as counts of functional groups, binary descriptors 
indicating the presence or absence of a chemical functional group or an atom in a 
molecule. 

2.1.3.1 Types of Molecular Descriptors 

Molecular descriptors can be obtained from different representations of molecules. 
Knowing various types of descriptors is also critical for a fundamental understanding 
of QSPR/QSAR modeling because, as mentioned above, any modeling requires 
establishing a relationship between the chemical similarity of compounds and their 
target properties [21–24]. Chemical similarity is calculated in descriptor space using 
various similarity metrics [25]. For example, in the case of continuous molecular 
descriptors, the Euclidean distance in the descriptor space is an advisable choice of 
similarity metric, while in the case of binary descriptors metrics such as the Tanimoto 
coefficient or the Manhattan distance seem more appropriate. 

The grade of the sufficiency of molecular structure samples differs from 0 to 4D 
demonstrations.
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0D Descriptors 

The 0D models contain the simplest molecule interpretation that does not hold any 
information about atom connections. Chemical formula, which organizes the atom 
types and their occurrences within a molecule, is independent of any information 
about the molecular structure. Therefore, molecular descriptors gained from the 
chemical formula stated as 0D descriptors. The most usual examples are atom type, 
number of atoms, molecular weight (MW), and any function of atomic properties. 

1D Descriptors 

Substructure list representation can be classified as a 1D description and contain 
of structural fragments of a molecule such as functional groups, bonds, rings, and 
substituents. Therefore, 1D descriptors do not involve a full information of molecular 
structure. These descriptors are inanimate to any conformation variation and, hence, 
do not recognize between isomers. 

2D Descriptors 

The 2D models include knowledge about the structure of the compound on the 
basis of its structural formula [26]. These patterns solely mirror the topology of the 
molecule. Such templates are highly common. The ability of such methods is that the 
topology model of the molecular structure includes information about the possible 
combinations of the molecule in virtual form. 

Evaluation of the internal atomic arrangement of compounds is done by topolog-
ical parameters [27]. They originated from the topological exhibition of molecules 
and can be measured as structure-manifest descriptors. These factors numerically 
code data related to molecular shape, size, branching, attendance of heteroatoms, and 
multifold bonds in numeric form. These topological parameters show the correlation 
of atoms by the characteristic of chemical bonds. 

In modeling distinct biological, physicochemical, and pharmacokinetic proper-
ties, they have considerable performance. A topological display of the molecule is 
accessible as a molecular diagram. This diagram is defined in mathematical phrases 
as G = (V , E), where V is a series of vertices corresponding to the atoms of the 
molecule and E is a series of elements that initiate a double connection between pairs 
of vertices. 

These chemical diagrams illustrate a non-numerical figure of the molecular 
compound although a numeric interpretation of the diagram is crucial for computing 
topological parameters [28]. 

Some common 2D descriptors together with their description have been listed in 
the following. 

Wiener (W) Index 

The structure descriptor based on the classical molecular diagram is the Wiener index 
(W ) which has become one of the most heavily applied descriptors in QSAR/QSPR 
approaches [29]. The descriptor is defined as the sum of edges on the shortest path 
in a chemical diagram.
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Actually, the following equation denotes Wiener index W (G) of the graph G (the 
graph G is a tree, T ): 

W (G) =
∑

e∈E(G) 

n1(e|G)n2(e|G) (2.4) 

n1(e|G) and n2(e|G) counts the vertices of G lying closer to the endpoints of the 
edge e than to its other endpoint 

Hyper-Wiener Index (WW) 

This index of a chemical tree T is defined as the sum of n1n2 products over all pairs 
of u vertices of T [30]. In fact, WW is the path number, and it is defined as the sum of 
the distances between any two atoms in the molecule, in terms of atom-atom bonds. 
Actually, WW can be calculated by multiplying the number of atoms on one side of 
any path by those on the other side, and the sum of these values for all paths. Wiener 
index is restricted to bonds and in Hyper-Wiener index bond is replaced with path. 

Modified Wiener Index (W*) 

Bond contribution is determined by using the reciprocal of the number of atoms on 
each side of the bond [31]. 

Novel Wiener Index 

It is obtained as an additive bond quantity, where the bond contribution is given as 
the product of the number of atoms close to each of the two points of each bond [32]. 

Connectivity Indices 

It is structural invariant. Such indices are widely used in structure–property and 
structure–activity studies. These descriptors are on the basis of graph-theoretical 
constants that are presented to calculate the branching index of alkenes [33]. 

Kier and Hall extended these indices and intrinsic valence coupling indices to 
differentiate heteroatoms. Today, these phenomena have been optimized for a wide 
range of biological and physicochemical properties [34]. Randic [35] proposed some 
descriptors for topological indices: (i) they should be well-correlated with at least 
one feature; (ii) have structure commentary; (iii) be normal and self-determining; 
(iv) easily applied in a situational structure; (v) be free of empirical features; and (vi) 
be independent of other parameters. 

Higher Order Connectivity 

These indices are weight paths, where higher weight is given to terminal bonds and 
a lower weight to less exposed internal bonds [36]. 

Kier Shape 

The descriptor defines shape indexes from molecular graphs. The shape of molecules 
is defined by the number of atoms and their bonding pattern which present in various 
orders [37].
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Balaban Index 

It is also one of the most distinctive molecular descriptors. Its value is independent 
of the molecular size or the number of rings [38]. 

Zagreb Indices 

This descriptor is the first topological indices used for the total π-energy of conju-
gated molecules. The significant use of these indices is the distinction between the 
size of the molecules, flexibility, degree of branching, and entire shape [39]. 

Augmented Zagreb Index (AZI) 

This index is based on the atom-bond connectivity (ABC index) used to obtain 
extreme values of AZI in chemical trees, and it can be used for upper and lower 
bonds’ power of chemical trees [40]. 

Hosoya (Z) 

It constructs QSAR/QSPAR models that describe the physical properties [41]. 

Modified Hosoya Index (Z*) 

The frequency of occurrence of single CC bond in disjoint bond patterns is considered 
[42]. 

Autocorrelation Indices 

This is a function of spatial separation and has particular advantageous for any 
QSAR/QSPAR study [43] 

Szeged (SZ) 

It is obtained as an additive bond quantity, where the bond contributions are given 
as the product of the number of atoms close to each of the two points of each bond 
[44]. 

Luckily, most of these parameters are identified in the topological descriptors. 
Therefore, they have been widely utilized in QSAR/QSPR simulation to determine 
the structural resemblance or disparity of chemical compounds. 

Topological Maximum Cross Correlation (TMACC) 

These descriptors generated from atom properties determined by molecular topology 
based on concepts derived from autocorrelation descriptors. In 2007, Topological 
Maximum Cross Correlation (TMACC) was developed through atomic features 
characterized by molecular topology [45]. These parameters are based on mean-
ings derived from coefficient descriptors. The ability to decode TMACC descriptors 
using QSAR simulation of angiotensin-converting enzymes (ACE) and dihydrofolate 
reductase (DHFR) inhibitors was demonstrated by Spowage et al. [46]. Altogether, 
TMACC revealed specific properties for C domain-selective ACE inhibition, which 
was an improvement on prior QSAR studies [46].
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The physical and chemical features of a molecule that are evaluated by examining 
its 2D structure are physicochemical descriptors. These features play a main role in 
characterizing the drug condensation in the body. The convenient characteristics of 
a drug can enhance its effect and thus its market value. 

Therefore, investigating these features of a drug not only contributes to the general 
plan of drug safety but also plays a significant role in drug detection collaboration by 
optimizing the selected compounds. Thus, it is necessary to pay attention to properties 
like solubility, permeability, and lipophilicity that can warrant optimal power, as well 
as to select the volunteer compounds with proper physicochemical properties. 

The lipophilicity of a drug is related to its dependence on a lipophilic surrounding. 
It is an essential feature in the movement of drugs in the body, which includes 
intestinal absorption, membrane penetrance, protein linkage, and dispensation among 
multiple tissues [47]. 

Generally, a drug exhibits negligible chemical absorption, distribution, 
metabolism, excretion, and toxicity (ADMET) properties in the presence of low 
lipophilicity [48]. Many pieces of research have been conducted on in vitro cellular 
permeance, which have demonstrated its connection to lipophilicity with other 
parameters, like molecular size, hydrophilicity, hydrogen bonds, and degree of 
ionization. These factors are recognized to have a considerable role in the intestinal 
absorption of a molecule. Molecular size is the main operative influencing biological 
activity like intestinal absorption. 

Hydrogen bond donors and lipophilicity play considerable roles in predicting 
human intestinal permeability [49]. MW is associated with reduced permeability. 
Solubility in water plays a significant role in the distribution of drugs and their 
permeance through biological membranes, and their redeploy and sorption. 

3D Descriptors 

The 3D QSAR models [50–53] provide complete structural data including composi-
tion, topology, and steric form of the molecule for only one conformer. These patterns 
are the most common. Geometrical descriptors are computed from the 3D correla-
tions of atoms in a given molecule. These parameters are in contrast to topological 
descriptors in terms of data and distinction power for similar chemical structures and 
molecular compounds [54]. 

In addition, they also contain data procured from atomic van der Waals regions 
and their participation on the molecular surface. In spite of their high data quantity, 
these parameters normally have drawbacks. 

Geometrical descriptors need geometry optimization and, thus, the overhead 
to compute them. Thus, new data are available and can be extracted for flexible 
molecules that can have different molecular compositions. However, this propels 
the complexity that can enhance considerably. In addition, most of these parameters 
(grid-based descriptors) require arrangement rules to accomplish molecule abduc-
tion. Different groups of descriptors can be recognized using the set of geometric 
descriptors [54].
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A diversity of 3D descriptors is accessible, some of them are: 

3D-Molecular Representation of Structures Based on Electron Diffraction 
(MoRSE) 

MoRSE descriptors have been shown to have good modeling power for various 
biological and physicochemical properties and can also be used to simulate infrared 
spectra [55]. 

Weighted Holistic Invariant Molecular (WHIM) 

WHIM descriptors are applied to obtain related 3D data about molecular shape, size, 
symmetry and atom dispensation and have been utilized to model several physico-
chemical and toxicology properties. At the minimum, ten distinct sorts of WHIM 
parameters with distinct molecular characteristics have been expanded [54]. 

3D Autocohesion 

Using the autocohesion function, these parameters are computed at individual spots 
on molecular surface. For a specific geometry and sensitive conformational change, 
they are unique and are constant to rototranslation [56]. 

GEometry, Topology, Atom-Weights AssemblY (GETAWAY) 

These parameters are on the basis of spatial coherence formula, which weights the 
atom to calculate van der Waals volume, atomic mass, and electronegativity along-
side 3D data. According to data factors and the matrix operator, seven GETAWAY 
descriptors have been declared until now [54]. 

4D Descriptors 

In 3D descriptors, the choice of the analyzed conformer is often random. The most 
adequate explanation of the molecular structure will be provided by 4D-QSAR 
patterns [57]. These models are similar to 3D models, but unlike them, structural 
data are discussed for a set of conformers (in essence, the fourth dimension), for a 
firm conformation. 

Representation of molecular descriptors used in QSPR/QSAR modeling indicated 
in Fig. 2.2.

2.1.3.2 Molecular Descriptors’ Resources 

To get a considerable connection in QSAR studies, suitable descriptors must be used, 
whether they are empirical, theoretical, or derived from easily accessible exper-
imental features of the molecules. Multiple descriptors mirror simple molecular 
features and thus can equip vision into the physicochemical characteristics of the 
property/activity under observation.
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Fig. 2.2 Representation of molecular descriptors used in QSPR/QSAR modeling

Quantum Chemical Descriptors. Quantum chemical computations are an important 
source of new molecular descriptors that can actually represent all electronic and 
geometrical properties of molecules and their interactions. 

Quantum chemical and molecular modeling techniques provide the description 
of a large number of molecular and local values that determine the shape, reactivity, 
and binding characteristics of an entire molecule in addition to its molecular pieces 
and substituents. 

In the last years, quantum chemical parameters have been significant in QSAR 
models helping researchers illustrate the biological activities and toxicity mecha-
nisms of various chemicals. In the past decades, semiempirical calculations were the 
prior ways to generate descriptors owing to the restrictions of the software and applied 
systems. Recent advances in computational hardware and the expansion of effective 
algorithms have helped to expand molecular quantum mechanical computations. In 
particular, the parameters derived from density functional theory (DFT) and hybrid 
density functional calculations (mPW1PW91) have excellent potential through their 
better accuracy in contrast to the semiempirical procedure and have good efficiency 
to fit into the geometrical, electrostatic, and orbital energy calculations [58–61]. 

Since the context of large discrete physical data is encoded in a large number 
of theoretical descriptors, their usage in the scheme of instruction sets in QSAR 
studies offers two significant priorities: (a) molecules, their diverse parts, and their
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substitutions; can be instantly identified based on their molecular structure, and (b) the 
presented mechanism of action can be straight considered for the chemical reaction 
of the studied compounds [62]. As a result, the derived QSAR models contain data on 
the essence of the intermolecular interactions imported in specifying the biological or 
other properties of the investigated compounds. The most commonly used quantum 
chemical descriptors can be classified as follows: 

Geometry Descriptors. The bond lengths, angles, and molecular dihedrals of the 
root segment should be the same for all molecules in the series. 

Atomic Charges. In accordance with the classical theory of chemistry, all chem-
ical interactions are either orbital (covalent) or electrostatic (polar) in nature. The 
electric charges in the molecule are clearly the order of the electrostatic interac-
tions. Indeed, local electron density or charges have been shown to be momentous 
in a large number of physicochemical properties and chemical reactions of struc-
tures. Therefore, charge-based descriptors have been broadly utilized as indicators of 
chemical reactivity or as a measure of fragile intermolecular interactions. Numerous 
quantum chemical descriptors are derived from partial charge. Partial atomic charges 
are known as indicators of static chemical reactivity [63]. The computed σ- and π-
electron densities on a specific atom determine the feasible direction of the chemical 
interactions and, hence, are often discussed as indices of directional reactivity. Unlike 
the total electron density, specific charges on atoms are observed as indicators of non-
directional reactivity. Several sums of absolute or squared values of partial charges 
have also been used to characterize intermolecular interactions, e.g., solute–solvent 
interactions [64–66]. 

Molecular Orbital Energies. Highest occupied molecular orbital (HOMO) and 
lowest unoccupied molecular orbital (LUMO) energies are very universal quantum 
chemical descriptors. It has been displayed [67] that these orbitals play an important 
role in controlling various chemical reactions and specifying electronic band gaps in 
solids. They are also in charge of the formation of several charge transfer complexes 
[63, 68]. Based on the frontier molecular orbital theory (FMO) of chemical reactivity, 
the organization of a transition state is owing to the interaction between the frontier 
orbitals (HOMO and LUMO) of the reacting fragments [69]. Therefore, the behavior 
of frontier molecular orbitals is distinct from others based on the general origins 
controlling the character of chemical reactions [69]. The HOMO energy is straightly 
connected to the ionization potential and characterizes the ability of the molecule 
to attack by electrophiles. The LUMO energy is straightly connected to the electron 
affinity and determines the readiness of the molecule against nucleophile attack. 
Both the HOMO and the LUMO energies are essential in radical reactions [70, 71]. 
The meaning of soft and hard nucleophiles and electrophiles is also connected to the 
relative energy of the HOMO/LUMO orbitals. 

Soft nucleophiles have high-energy HOMOs. Hard nucleophiles have low-energy 
HOMOs. Soft electrophiles have low-energy LUMO, and hard electrophiles have 
high-energy LUMOs[72]. The HOMO–LUMO gap, i.e., the energy difference 
between HOMO and LUMO, is a major stability indicator [73].
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Egap = ELUMO − EHOMO (2.5) 

A large HOMO–LUMO gap indicates high resistance for the molecule by defi-
nition its less reactivity in chemical reactions [67]. The HOMO–LUMO gap has 
also been utilized as an estimate of the lowest stimulation energy of the molecule. 
However, this definition ignores electronic restructuring in the excited state and hence 
may mostly make incorrect theoretical results. The meaning of activation hardness 
(η) and softness (S) is also determined based on the HOMO–LUMO energy gap. 

η = 
(ELUMO − EHOMO) 

2 
(2.6) 

S = 
1 

2η 
(2.7) 

Activation hardness determines the rate of reaction at various sites of the molecule 
and is therefore related to anticipating direction effects [67]. The qualitative descrip-
tion of hardness is intimately connected to polarizability, as a reduction in the energy 
gap normally results in an easier polarization of the molecule [74]. 

Frontier Orbital Densities. Frontier orbital electron densities on atoms provide an 
effective alternative or accurate description of donor–acceptor interactions [71, 75]. 
Due to the theory of frontier electron reactivity, most chemical reactions happen 
in the location and direction where the overlap of the HOMO and LUMO of the 
respective reactants can be maximized [69]. 

In the matter of a donor molecule, both ionization potential (IE) and HOMO 
density (electrophilic electron density, f E r ) are necessary to charge transfer: 

f E r =
∑(

CHOMO,n
)2; CHOMO,n are atomic orbital factors in HOMO (2.8) 

IE = −EHOMO (2.9) 

and in the terms of an acceptor molecule, LUMO density (nucleophilic electron 
density, f N r ) and electron affinity (EA) are critical [63]. 

f N r =
∑(

CLUMO,n
)2; CLUMO,n are atomic orbital factors in LUMO (2.10) 

EA = −ELUMO (2.11) 

These descriptors have been applied in QSAR studies to characterize drug– 
receptor interaction sites. By comparing the relativities of different molecules, the 
frontier electron density should be normalized by the energy of the frontier molecular
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orbitals, and hence molecules with lower ionization potentials are predicted to be 
more reactive as nucleophiles. Absolute electronegativity index (χ ), electron affinity 
(ω), and electron charge transfer (ΔN) are also determined based on ionization 
potential and electron affinity: 

χ = 
(I + A) 

2 
absolute electronegativity (2.12) 

ω = 
μ2 

2η 
electrophilicity index (2.13)

ΔN = 
(μB − μA) 
2(ηA + ηB) 

electron charge transfer (2.14) 

Molecular Polarizability. The polarization of a molecule by an external electric 
[76] area is given by the potential tensors of order n of the molecular mass. The 
first-order term is used as polarizability (α): 

α = 
1 

3

(
αxx  + αyy  + αzz

)
(2.15) 

The second-order term is mentioned in the first hyperpolarizability, etc. Therefore, 
the most considerable characteristic of molecular polarizability is binding to the 
molecular bulk or molar volume [73]. Polarizability values have been demonstrated 
to depend on hydrophobicity and other biological activities [77–79]. In addition, 
the electronic polarizability of the molecules contributes to the typical parameters of 
electrophilic super-delocalizability [80]. The first-order polarizability tensor includes 
data about feasible inductive interactions in the molecule [70, 73, 81, 82]. The total 
anisotropy of the polarizability (second-order term) determines the properties of a 
molecule as an electron acceptor: 

β2 = 
1 

2 
[(αxx  − αyy

)2 + (
αyy  − αZ Z

)2 + (αZ Z  − αxx  )
2] (2.16) 

Dipole Moment and Polarity Indices. The polarity of a molecule is essential 
for several physicochemical properties. A large number of descriptors have been 
suggested to estimate the polarity effects. For instance, molecular polarity counts for 
chromatographic retention in a polar static phase [65, 83]. The dipole moment (μ) 
is the most obvious and is often used to explain the polarity of the molecule [64, 65, 
70, 81, 84]. Difference between net charges on atoms (Δ) [68, 84], and topological 
electronic index (TE) [68]. 

TE =
∑
i j,i /= j

||qi − q j
||

r2 i j  
(2.17)
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The quadrupole moment tensor can also be applied as an index to characterize 
probable electrostatic interactions. However, such tensors belong to the selection of 
the coordinate system and thus the direction of the molecular root section must be 
the same for all molecules in the series [70]. 

Energy. The total energy computed by quantum mechanical methods has been 
presented as a good descriptor in several cases [64, 68, 85, 86]. 

In addition, thermodynamic parameters contain entropy (S°), internal energy 
(Eth), constant-enthalpy (H°), free energy (G°), zero-point vibrational energy (ZPE), 
and volume heat capacity (CV°) can be computed from frequency quantum mechan-
ical calculations. Reaction enthalpy (ΔH), entropy (ΔS), and free energy (ΔG) can 
be calculated by the difference in heats of formation, entropy, and free energies of 
formation between reactants and products or between conjugate forms [87, 88]. The 
protonation energy, described as the difference between the total energy of the proto-
nated and neutral forms of the molecule, can be discussed as a good scale of the 
power of hydrogen bonds (the higher the energy, the stronger the bond) and can be 
used to specify the correct position of the most desirable hydrogen bond acceptor 
[89]. 

The others. The descriptors considered above form the bulk of quantum chemical 
descriptors effectively used in QSAR/QSPR studies. Other descriptors have also been 
designed but do not fall into the categories mentioned above, such as frequency and 
NMR chemical shifts. 

2.1.3.3 Empirical and Experimental Descriptors 

Quantum chemical and molecular modeling techniques allow the description of many 
molecular and local values that determine the reactivity, binding features, and shape 
of a molecule in addition to molecular moieties and substituents. A principled combi-
nation of theoretical molecular descriptors with both empirical Hammett’s substituent 
constants (σ m and σ p) [90, 91], Swain–Lupton’s field and resonance constants (F and 
R) [92], hydrophobic constant (P) [92], Taft’s steric parameter (Es) [92], Verloop’s 
steric parameters [90, 91], etc., and experimental descriptors (substituent-induced 
chemical shifts, molecular weight and molecular refractivity (MR) [92]) are available. 
Table 2.1 shows the list of empirical and experimental descriptors.

The mentioned substituent descriptors can be categorized pursuant to three 
main cluster groups: (a) descriptors that capture the effects of the substituent on 
the aromatic ring (electronic charges on the ring carbon atoms, resonance and 
field substituent constants, and substituent-induced chemical shifts); (b) descrip-
tors characterizing the properties of the majority of substituents (Verloop’s steric 
parameters and the molecular refractivity) are clustered with theoretical descriptors 
describing the polarizability properties of the substituents, molecular polarizability 
anisotropy, dispersion interaction terms (IP*ANIS, IP*∑Pmol) and electrophilic 
super-delocalizability of the substituent.
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Table 2.1 List of empirical and experimental descriptors 

Descriptor Definition References 

σ x Taft’s substituent electronegativity effect parameter [93] 

σ α Taft’s substituent polarizability effect parameter [93] 

σ f Taft’s substituent field effect parameter [93] 

σ r Taft’s substituent resonance effect parameter [93] 

C0 
13C substituent chemical shift on the ortho-carbon atom [94] 

Ci 
13C substituent chemical shift on the ipso-carbon atom [94] 

Cm 
13C substituent chemical shift on the meta-carbon atom [94] 

Cp 
13C substituent chemical shift on the para-carbon atom [94] 

σ m Hammett’s substituent constant for the meta position [90, 91] 

σ p Hammett’s substituent constant for the para position [90, 91] 

F Swain–Lupton’s field constant [92] 

R Swain–Lupton’s resonance constant [92] 

P P hydrophobic constant [92] 

MR Molecular refractivity [92] 

Es Taft’s steric parameter [92] 

Ha Number of hydrogen bonds that the substituent can accept [95] 

Hd Number of hydrogen bonds that the substituent can donate [95] 

L Verloop multidimensional steric parameter [90, 91] 

B1 Verloop multidimensional steric parameter [90, 91] 

B2 Verloop multidimensional steric parameter [90, 91] 

B3 Verloop multidimensional steric parameter [90, 91] 

B4 Verloop multidimensional steric parameter [90, 91] 

μar Lien’s group dipole moment for aromatic substituent [22] 

λar Testa’s lipophobic constant for aromatic substituent [95]

IP = ionization potential derived from the AM1 wave function. 
ANIS = anisotropy of the molecular polarizability. 
IP*ANIS = product of the molecular ionization potential and the anisotropy of 

the molecular polarizability. 
IP*∑Pmol = product of the molecular ionization potential and the sum of the 

self-atom polarizability over all the atoms of the molecule.
∑PXX = sum of the self-atom polarizability values of the substituent atoms.
∑Pmol = sum of the self-atom polarizability over all the atoms of the molecule.
∑SH 

X = sum of the electrophilic super-delocalizability on the substituent atoms.
∑SE,X = sum of the electrophilic super-delocalizability (computed over all the 

occupied molecular orbitals) on the substituent atoms.
∑SN,X = sum of the nucleophilic super-delocalizability (computed over all the 

unoccupied molecular orbitals) on the substituent atoms.
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The hydrophobic parameter P is near to this cluster and to the solvent hydrophobic 
available surface of the substituent and the electrophilic super-delocalizability with 
the polarizability of the benzene ring; (c) molecular dipole moments and their 
experimental and theoretical substituents and their square. 

(a) Hammett substituent constants, substituent-induced chemical shifts, and Taft 
and Lupton’s resonance constants are mapped by the first component, the major 
contribution of which is the electronic charges of the carbon atoms of the benzene 
ring, the super-electrophilic mobility of the benzene ring and the energy of frontier 
molecular orbitals; (b) Verloop steric descriptors and the molecular refraction along 
with substituent van der Waals volumes and molecular weight are mapped by the 
second principal component, which includes theoretical parameters described as 
polarizability (∑PXX, ANIS, ∑Pmol), dispersion forces (IP*∑Pmol, IP*ANIS), and 
substituent reactivity indices (∑SH 

X ,∑SE,X , and∑SN ,X ). These recent cases perhaps 
indicate the portion of the molecular orbital development to molecular shape; (c) the 
third component models the lipophobic descriptor λar and the lipophilic descriptor 
P. The parameters that collaborate to this part are the dipole moments (consisting of 
the group dipole moment, μar) and their square terms, the solvent available surfaces 
of the substituent, the energy difference between the HOMO and the LUMO (GAP), 
the P-symmetry component of the electronic charges and the polarizability of the 
ring. 

However, λar and P are not solely modeled by this section, as they also contribute 
significantly to the first and the third components, respectively. This suggests that 
more than one type of substituent effect specifies the values of these parameters. The 
same result is for the steric descriptors Es modeled both by the first and the second 
components. These findings are similar to other research aimed at modeling P [96] 
and Es [97] and support the intricate character of these empirical parameters. 

Empirical scales called principal properties (PPs) which define the physicochem-
ical features of twenty naturally encoded amino acids were recently developed by 
Sjostrom and Wold [98]. 

Sjostrom et al. applied the PPs in the same way to categorize several types of 
signal peptides of different lengths [99]. Carlson and co-workers have reported prin-
cipal component analyses (PCA) of multivariate characterization (MVC) charac-
terize PPs, the physicochemical properties of organic solvents [100], Lewis acids 
in organic synthesis [101], amines in the Willgerodt Kindler reaction [102], and 
aldehyde/ketones [103]. 

These PPs are now heavily used in their laboratory to explore the realm and 
limits of new organic reactions. PPs of amino acids may be suitable for instance for 
screening of peptides [104]. The expansion of PPs for many aromatic substituents 
for subsequent uses has been the aim of researchers, and unfortunately, it is very 
difficult to find experimental information evaluated in a coordinated manner on a 
large number of substituents. Therefore, they should use the next best kind of data, 
famous and broadly used physicochemical parameters that are accessible for a large 
number of substituents.
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The empirical parameter used to characterize a class of monosubstituted benzenes 
were P, MR,  σ m, σ p [92, 105], and the Verloop descriptors L and B1–B4 [106]. The 
Verloop parameters B1–B4, derived from STERIMOL calculations, are normally 
listed in order of magnitude improvement. Researchers attempt to choose the vari-
ables to define steric bulk (MR), hydrophobicity (P), the shape of each substituent 
(Verloop parameters), and electronic properties (sigmas). 

In this case, they knew that there are three groups of variables: hydropho-
bicity/bulk, electronic, and size. 

From the numeric amounts of the loadings, it is shown that the first component 
is significantly connected to the steric bulk and hydrophobicity because the length, 
molecular refractivity, and P have the largest contributions. The second component is 
dominated by the two electronic descriptors, σ m and σ p, while the third component 
is again mainly hydrophobicity (P) but also shape since L and B1–B4 (Verloop 
parameters) [106] have relatively large contributions. 

Since biological sieving of chemical substances is both expensive and time-
consuming, it is essential to expand an instrument for the statistical design of the 
compounds in a filtering experiment. The main features are heavily appropriate for 
this purpose because they are few and orthogonal. 

2.2 Descriptors for Nano-QSPR/QSAR 

Over the past few decades, nano-based technology has become one of the top research 
areas in all fields of science and technology. A wide variety of consumer products 
are at the nanoscale, typically defined by all species having at least one diameter 
of 100 nm or less. Currently, nanotechnology has integrated various fields including 
biomedicine, pharmaceutical industry, food industry, environmental protection, solar 
batteries, energy, information and communication, heavy industry, consumer goods, 
and so on. However, it seems that we are only at the beginning of the “nano-industrial 
revolution.” Because of the unique electrical as well as optical, magnetic, thermal, 
and chemical properties of nanomaterials, the range of their possible applications is 
likely to expand rapidly. 

Some recent papers report obvious evident toxicity of selected nanoparticles 
and highlight potential risk associated with the development of nano-engineering. 
Currently, there are many gaps in nanomaterial data. Predictive nano-QSAR/QSPR 
is one of the most promising methods used by chem informaticians to extrapolate 
the activity/property of nanomaterials. We believe that some of the missing data 
that are crucial for environmental risk assessment can be obtained using computa-
tional chemistry, saving the time and cost of conducting experiments. It is worth 
noting that the nano-QSPR/QSAR approach should be employed to predict not only 
activity responses (e.g., toxicity) but also many important physicochemical properties 
(e.g., water solubility, n-octanol/water partition coefficient, vapor pressure). These 
physicochemical properties affect the absorption, distribution, and metabolism of the 
compound in the organism, as well as environmental transport and the fate.



2 Molecular Descriptors in QSPR/QSAR Modeling 43

In nano-QSPR/QSAR modeling, one of the important parameters for building a 
validate model is suitable descriptors. In general, there are more than 5000 different 
descriptors for the characterization of molecular structure from zero to four dimen-
sional (0D–4D). Only a few of traditional descriptors can characterize nanostruc-
tures. There are some reports that [107, 108] the existing descriptors are not enough 
to express the specific physical and chemical properties of nanoparticles. Therefore, 
new and more suitable types of descriptors for characterizing of nanoparticles should 
be developed. 

Even though the computational features used for QSPR/QSAR modeling, exper-
imentally derived features may also be employed as descriptors for nano-QSARs 
development (Fig. 2.3). The experimental descriptors seem to be especially useful for 
expressing size distribution, aggregation mode, shape, porosity, and surface disorder. 
Moreover, the combination of experimental results with a numerical approach can 
be used to define a new descriptor. For instance, images obtained by scanning elec-
tron microscopy (SEM), transmission electron microscopy (TEM), or atomic force 
microscopy (AFM) might be processed with new chemometric methods of image 
analysis. This means that first a series of pictures of different particles of a nanostruc-
ture should be taken. Then, the images must be numerically averaged and converted 
into a matrix containing numerical values that correspond to each pixel’s grayscale 
intensity or red, green, and blue (RGB) color value. The other descriptors can be 
produced based on the matrix (i.e., the shape descriptor can be obtained as the sum of 
the nonzero elements in the matrix; the porosity as the sum of the relative differences 
between each pixel and its “neighbors,” etc.) [109].

Undoubtedly, proper characterization of nanoparticle structure is currently one 
of the most challenging tasks in nano-QSAR. Although more than five thou-
sand QSAR descriptors have been defined until now, they may be insufficient to 
express the supramolecular phenomena governing the unusual activity/property of 
nanomaterials. Consequently, much more effort is needed in this area. 

2.3 SMILES and Quasi-SMILES Descriptors 

The CORrelation And Logic (CORAL) software (http://www.insilico.eu/coral/) was  
developed by Alla Toropova and Andrey Toropov used to build up QSPR/QSAR 
models using Simplified Molecular Input Line Entry System (SMILES) [61, 111– 
116] and quasi-SMILES descriptors. SMILES is a chemical notation system designed 
by Weininger et al. [117, 118]. According to the principles of molecular graph theory, 
SMILES uses a very small, natural grammar to specify precise structural features. 
The SMILES symbol system is also suitable for high-speed machine processing 
[119, 120]. 

Over the last two decades, there have been numerous reports on the QSAR/QSPR 
modeling of nanomaterials and other compounds using CORAL software. This 
approach provides simple representation of molecular structures. There are defined 
equivalences between the representation of molecular structure using diagrams and

http://www.insilico.eu/coral/
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Fig. 2.3 Experimental characteristics as descriptors in nano-QSAR research [110]

the SMILES symbol. However, one should also be aware of their significant differ-
ences [121]. The SMILES can be produced by popular software such as ChemSketch, 
Biovia, and Chem Draw [122]. 

The prediction of activity/property of nanomaterials can be predicted by SMILES 
[123–125]. Quasi-SMILES is an alternative of SMILES-based optimal descriptors to 
build up predictive models for nanomaterials and other materials by consideration of 
the experimental conditions. Quasi-SMILES may be eclectic condition [126, 127] or  
combination of SMILES and eclectic conditions [128, 129]. The continuous eclectic 
conditions can be normalized by the following equation for assigning codes: 

Norm(Pi ) = 
min(Pi ) + Pi 

min(Pi ) + max(Pi ) 
(2.18) 

Pi is its value of physicochemical parameter P, min(Pi ) is minimum value of P and 
max(Pi ) indicates maximum value of P.
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Table 2.2 Distinction of 
standardized physiochemical 
features into classes 1–9 
according to its value 

Norm value Class 

Norm(P) > 0.9 9 

0.8 < Norm(P) < 0.9 8 

0.7 < Norm(P) < 0.8 7 

0.7 < Norm(P) < 0.6 6 

0.6 < Norm(P) < 0.5 5 

0.5 < Norm(P) < 0.4 4 

0.4 < Norm(P) < 0.3 3 

0.3 < Norm(P) < 0.2 2 

0.2 < Norm(P) < 0.1 1 

Norm(P) < 0.1 0 

According to Table 2.2, the number of unique values in each parameter was less 
than 10; therefore, the quasi-SMILES descriptors representations could be coded by 
assigning a number between zero and nine in a single character. 

2.3.1 Quasi-SMILES Examples in Peer-Reviewed Papers 

Table 2.3 shows an example of the construction codes for the quasi-SMILES. Based 
on the data shown in Table 2.3, the quasi-SMILES can be generated, which can be 
used to build a model according to the optimal descriptors. Table 2.4 indicates some 
examples for quasi-SMILES generated by codes shown in Table 2.3.

The new reported QSPR analysis of MOFs by Ahmadi et al. is application of quasi-
SMILES parameters including Brunauer, Emmett, and Teller (BET) specific surface 
area and pore volume, pressure, and temperature for prediction of CO2 adsorption 
of MOFs [128]. Tables 2.5 and 2.6 show the eclectic data range and quasi-SMILES 
codes for them, respectively.

In the code-2019 of CORAL software for quasi-SMILES groups of symbols %10– 
%99 (reserved for representation of complex systems of rings for usual SMILES) 
were applied as codes for the quasi-SMILES (Table 2.6). The disadvantage of this 
version of quasi-SMILES is the difficulty of interpretation of results by a user. 

Further development of the CORAL software (CORAL-2020) allows the display 
of experimental conditions through groups of symbols enclosed in parentheses. Table 
2.7 shows the comparison codes in the last version (CORAL-2020) and old version of 
CORAL for creating quasi-SMILES in recently proposed models for the mutagenic 
potential. One can see codes-2020 are quite transparent and consequently are more 
convenient for a user. As is clearly evident, CORAL-2020 codes are quite transparent 
and thus more user-friendly.
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Table 2.3 Codes used for the cell line, method, time exposition, concentration, size of nanoparti-
cles, and type of metal oxide to convert various information of experimental data into quasi-SMILES 
[126] 

Feature Value or 
type 

Code Feature Value or type Code 

Cell line MCF-7 H Normalized 
nanoparticles size 

0.2 < Norm(size) ≤ 0.3 P 

HT-1080 I 0.3 < Norm(size) ≤ 0.4 Q 

HepG-2 J 0.4 < Norm(size) ≤ 0.5 R 

HT-29 K 0.5 < Norm(size) ≤ 0.6 S 

PC-12 L 0.9 < Norm(size) ≤ 1.0 T 

Method MTT M Metal oxide type SnO2 1 

NRU N MnO2 2 

Time exposition 24 X ZnO 3 

48 Y Bi2O3 4 

72 Z NiO 5 

Concentration 
(μg mL−1) 

5 A CeO2 6 

10 B SiO2 7 

25 C TiO2 8 

50 D 

100 E 

200 F

Toropov et al. reported the model of toxicity examined based on four eclectic 
data including three possible forms of silver nanoparticles (bare, coat, cons), organ-
isms (Daphnia magna or Zebrafish), size (nm), and zeta-potential (mV) [131], 
where “bare” characterizes nanoparticles without any coating, coat (coating) demon-
strates nanoparticles with a shell, and “cons” defines nanoparticles including coating 
material descriptors (Table 2.8).

2.4 Software for Generation of Molecular Descriptors 

Over the last two decades, the growing interest in property/activity prediction has 
led to the release of many software products to the market and open-source domains 
for scientists working in the field of QSPR/QSAR modeling. Table 2.9 shows some 
popular software for calculating molecular descriptors. In addition, some of them are 
complex packages that also include modules for QSPR/QSAR modeling, statistical 
analysis, and data visualization.
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Table 2.5 Lower and high levels of CO2 capture capacity, BET, pore volume, pressure (bar), and 
temperature (K) [128] 

CO2 capture 
capacity (mol/kg) 

BET Pore volume 
(cm3/g) 

Pressure (bar) Temperature (K) 

Low level 0.1 0 0.035 0.01 195 

High level 54.5 6240 7.5 55 318 

Table 2.6 Defined quasi-SMILES codes for eclectic conditions (BET-normalized, normalized pore 
volume normalized, pressure-normalized, and temperature-normalized) of CO2 capture capacity of 
MOFs [128] 

Normalized range BET Code-2019 for pore 
volume 

Code-2019 for 
pressure 

Code-2019 for 
temperature 

0 < BET − 
normalized ≤ 0.1 

%10 %20 %30 %40 

0.1 < BET − 
normalized ≤ 0.2 

%11 %21 %31 %41 

0.2 < BET − 
normalized ≤ 0.3 

%12 %22 %32 %42 

0.3 < BET − 
normalized ≤ 0.4 

%13 %23 %33 %43 

0.4 < BET − 
normalized ≤ 0.5 

%14 %24 %34 %44 

0.5 < BET − 
normalized ≤ 0.6 

%15 %25 %35 %45 

0.6 < BET − 
normalized ≤ 0.7 

%16 %26 %36 %46 

0.7 < BET − 
normalized ≤ 0.8 

%17 %27 %37 %47 

0.8 < BET − 
normalized ≤ 0.9 

%18 %28 %38 %48 

0.9 < BET − 
normalized ≤ 1 

%19 %29 %39 %49

2.5 Conclusion and Future Direction 

Molecular descriptors are a critical component of the methodological toolbox used to 
study quantitative structure–property/activity relationship (QSPR/QSAR) modeling 
and are widely used to describe the structures of chemical compounds for design 
of new compounds. The predictive and reliable QSPR/QSAR models depend on 
accurate descriptors, as accurate predictions can save the time and cost needed to 
design new compounds with the desired property/activity. 

In this chapter, the main classes of theoretical molecular descriptors including 
0D, 1D, 2D, 3D, and 4D descriptors are described. The most significant progress
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Table 2.7 Definition of eclectic condition for the definition of quasi-SMILES [130] 

Condition Code-2019 Code-2020 

Coating TA100 %10 [TA100] 

TA98 %11 [TA98] 

20-nm citrate %12 [20cit] 

20-nm PVP %13 [20PVP] 

50-nm citrate %14 [50cit] 

50-nm PVP %15 [50PVP] 

100-nm citrate %16 [100cit] 

Doses (μg/plate) 100-nm PVP %17 [100PVP] 

0.0 %18 [d0.0] 

6.3 %19 [d6.3] 

12.5 %20 [d12.5] 

25 %21 [d25] 

50 %22 [d50] 

100 %23 [d100]

Table 2.8 Indicates some quasi-SMILES used to generate nano-QSAR model for pLC50 [131] 

Status of 
nanoparticles 

Organisms Size (nm) Zeta-potential 
(mV) 

Quasi-SMILES 

nanoparticles without 
any coating 

Daphnia 
magna 

17.150–21.700 − 8.480 to − 
5.050 

[Bare][Daph][s%14][z%25] 

NPs without any 
coating 

Daphnia 
magna 

12.600–17.150 − 25.630 to 
− 22.200 

[Bare][Daph][s%13][z%20] 

NPs with a shell Daphnia 
magna 

53.550–58.100 − 11.910 to 
− 8.480 

[Daph][s%22][z%24] 

NPs including 
coating material 
descriptors 

Daphnia 
magna 

21.700–26.250 − 11.910 to 
− 8.480 

[Daph][s%15][z% 24] 

NPs without any 
coating 

Zebrafish 135.450–140.000 − 22.200 to 
− 18.770 

[Bare][Fish][s%40][z%21] 

NPs with a shell Zebrafish 44.450–49.000 − 25.630 to 
− 22.200 

[Fish][s%20][z%20]

over the last few years in chemometrics, cheminformatics, and bioinformatics has 
led to new strategies for finding new molecular descriptors. Here, some of the most 
common molecular descriptors and some new molecular descriptors especially for 
design and QSPR/QSAR modeling of nanocomposites have been highlighted. 

In nano-QSPR/QSAR modeling, the data in many different publications are small 
and not ready enough for model building. In addition, nanomaterials exhibit high 
complexity and heterogeneity in their structures, which makes data collection and 
processing more challenging compared to traditional QSPR/QSAR. Quasi-SMILES
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descriptors are one of the solutions to this challenge and have been introduced as 
new descriptors combining SMILES and eclectic conditions. These novel descrip-
tors provide transparent interpretation equation models with correlation weights 
calculated by Monte Carlo optimization using CORAL software. 

Finally, a list of the most commonly used software packages for calculating 
molecular descriptors is reviewed here.

Table 2.9 List of software packages for the calculation of molecular descriptors 

Name Organization/institution Availability Descriptors Platform/license 

RDKit GitHub https://git 
hub.com/ 
rdkit 

> 200 Windows/Linux/Mac 
(freeware) 

PaDELPy University of 
Massachusetts Lowell 

https://git 
hub.com/ 
ecrl/pad 
elpy 

> 2500 Windows/Linux/Mac 
(freeware) 

ADAPT Pennsylvania State 
University 

http://res 
earch. 
chem.psu. 
edu/pcj 
group/ 
adapt.html 

> 260 Unix/Linux (freeware) 

ADMET Simulations Plus, Inc http://www. 
simula 
tions-plus. 
com/ 

297 Windows (commercial) 

Predictor™ 
CODESSA 

Semichem http://www. 
semichem. 
com/cod 
essa/defaul 
t.php 

> 600 Windows/Linux (commercial) 

DRAGON Talete SRL http://www. 
talete.mi.it/ 
products/ 
dragon_des 
cription. 
htm 

4885 Windows/Linux (commercial) 

EPISUITE™ EPA http://www. 
epa.gov/ 
opptintr/ 
exposure/ 
pubs/epi 
suite.htm 

20 Windows (freeware) 

MOE Chemical Computing 
Group 

http://www. 
chemcomp. 
com/sof 
tware-moe 
2009.htm 

> 300 Windows/Linux/SGI/MAC/Sun 
(freeware)

(continued)

https://github.com/rdkit
https://github.com/rdkit
https://github.com/rdkit
https://github.com/ecrl/padelpy
https://github.com/ecrl/padelpy
https://github.com/ecrl/padelpy
https://github.com/ecrl/padelpy
http://research.chem.psu.edu/pcjgroup/adapt.html
http://research.chem.psu.edu/pcjgroup/adapt.html
http://research.chem.psu.edu/pcjgroup/adapt.html
http://research.chem.psu.edu/pcjgroup/adapt.html
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Table 2.9 (continued)

Name Organization/institution Availability Descriptors Platform/license

Molconn-Z™ EduSoft http://www. 
edusoft-lc. 
com/mol 
conn/ 

327 Windows/Unix/MAC 
(commercial) 

MOLD NCTR/FDA http://www. 
fda.gov/Sci 
enceResea 
rch/Bioinf 
ormaticsT 
ools/ 
Mold2/def 
ault.htm 

777 Windows (freeware) 

MOLGEN University of Bayreuth http://www. 
molgen. 
de/?src 
¼docume 
nts/molgen 
qspr.html 

707 Windows (commercial 

PowerMV NISS https:// 
www.niss. 
org/res 
earch/sof 
tware/pow 
ermv 

> 1000 Windows (freeware) 

Sarchitect™ Strand Life Sciences http://www. 
strandls. 
com/sarchi 
tect/index. 
html 

1084 Windows/Linux (commercial) 

SciQSAR™ SciMatics http://www. 
scimatics. 
com/jsp/ 
qsar/QSA 
RIS.jsp 

> 600 Windows (commercial) 

Alvadesc Alvascience https:// 
www.alv 
ascience. 
com/alv 
adesc/ 

> 6000 Windows/Linux/MAC 
(commercial) 

CORAL Istituto di Ricerche 
Farmacologiche Mario 
Negri 

http://www. 
insilico.eu/ 
coral/SOF 
TWAREC 
ORAL. 
html 

> 1000 Windows (freeware)

http://www.edusoft-lc.com/molconn/
http://www.edusoft-lc.com/molconn/
http://www.edusoft-lc.com/molconn/
http://www.edusoft-lc.com/molconn/
http://www.fda.gov/ScienceResearch/BioinformaticsTools/Mold2/default.htm
http://www.fda.gov/ScienceResearch/BioinformaticsTools/Mold2/default.htm
http://www.fda.gov/ScienceResearch/BioinformaticsTools/Mold2/default.htm
http://www.fda.gov/ScienceResearch/BioinformaticsTools/Mold2/default.htm
http://www.fda.gov/ScienceResearch/BioinformaticsTools/Mold2/default.htm
http://www.fda.gov/ScienceResearch/BioinformaticsTools/Mold2/default.htm
http://www.fda.gov/ScienceResearch/BioinformaticsTools/Mold2/default.htm
http://www.molgen.de/?src%C2%BCdocuments/molgenqspr.html
http://www.molgen.de/?src%C2%BCdocuments/molgenqspr.html
http://www.molgen.de/?src%C2%BCdocuments/molgenqspr.html
http://www.molgen.de/?src%C2%BCdocuments/molgenqspr.html
http://www.molgen.de/?src%C2%BCdocuments/molgenqspr.html
http://www.molgen.de/?src%C2%BCdocuments/molgenqspr.html
https://www.niss.org/research/software/powermv
https://www.niss.org/research/software/powermv
https://www.niss.org/research/software/powermv
https://www.niss.org/research/software/powermv
https://www.niss.org/research/software/powermv
https://www.niss.org/research/software/powermv
http://www.strandls.com/sarchitect/index.html
http://www.strandls.com/sarchitect/index.html
http://www.strandls.com/sarchitect/index.html
http://www.strandls.com/sarchitect/index.html
http://www.strandls.com/sarchitect/index.html
http://www.scimatics.com/jsp/qsar/QSARIS.jsp
http://www.scimatics.com/jsp/qsar/QSARIS.jsp
http://www.scimatics.com/jsp/qsar/QSARIS.jsp
http://www.scimatics.com/jsp/qsar/QSARIS.jsp
http://www.scimatics.com/jsp/qsar/QSARIS.jsp
https://www.alvascience.com/alvadesc/
https://www.alvascience.com/alvadesc/
https://www.alvascience.com/alvadesc/
https://www.alvascience.com/alvadesc/
https://www.alvascience.com/alvadesc/
http://www.insilico.eu/coral/SOFTWARECORAL.html
http://www.insilico.eu/coral/SOFTWARECORAL.html
http://www.insilico.eu/coral/SOFTWARECORAL.html
http://www.insilico.eu/coral/SOFTWARECORAL.html
http://www.insilico.eu/coral/SOFTWARECORAL.html
http://www.insilico.eu/coral/SOFTWARECORAL.html
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Chapter 3 
Application of SMILES 
to Cheminformatics and Generation 
of Optimum SMILES Descriptors Using 
CORAL Software 

Andrey A. Toropov and Alla P. Toropova 

Abstract This chapter uses a simplified molecular input-line entry system 
(SMILES) to solve diverse problems in science, technology, and medicine. 
SMILES can be useful to model quantitative structure–property/activity relationships 
(QSPRs/QSARs). The evolution of the applications of SMILES and the evolution of 
SMILES descriptors are discussed. The construction of so-called optimal descriptors 
based on SMILES using the CORAL software is described. These optimal descriptors 
are useful for training QSPR/QSAR models for a wide range of diverse properties. 

Keywords QSPR/QSAR · SMILES · Quasi-SMILES · Variational autoencoders ·
SmilesDrawer · DeepSMILES 

3.1 Introduction 

Simplified molecular input-line entry system (SMILES) is a chemical notation system 
for chemical information processing. Weininger developed the SMILES system 
in 1988 [1–3]. It is based on principles of molecular graph theory and allows 
rigorous structure specification using minimal and natural grammar. SMILES is 
a line notation for representing molecular structure that is intuitive to chemists and 
also well suited for high-speed computer-based analysis. SMILES has an increasing 
number of database-related applications. Here we discuss the use of SMILES to train 
quantitative structure–property/activity relationship (QSPRs/QSARs) models. 

There are several useful text-based line formalisms based on the molecular graph 
that has been applied to QSPR/QSAR analysis. Those include SMILES [4, 5], 
SMILES arbitrary target specification (SMARTS) [6, 7], International Chemical 
Identifier (InChI) [8–13]. SMILES is the most popular of these for the QSPR/QSAR 
community while the use of SMARTS [6, 7, 14] and InChI [15, 16] is much  less
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Table 3.1 Examples of 
representation for 2-methyl 
butane 

Structure 

SMILES CC(C)CC 

InChI InChI=1/C5H12/c1-4̄5(2)3/h5H,4H2,1-3H3 

SMART [#6]-[#6]-[#6](-[#6])-[#6] 

common. The acronym SMARTS stands for SMILES arbitrary target specification. It 
is a language that allows specification of substructures for searching databases. Using 
SMARTS, flexible and efficient substructure-search specifications can be made in a 
way that is convenient for users. InChI, the International Chemical Identifier, also 
represents the molecular structure by sequences of special symbols. 

The number of accessible internet molecular databases that use SMARTS and 
InChI representations is gradually increasing. This has accelerated the develop-
ment models for physicochemical and/or biochemical endpoints based on SMARTS, 
SMILES, or InChI (i.e. directly from Internet databases). However, the number of 
models trained on SMARTS or InChI is still considerably smaller than those using 
SMILES. The main reason is that SMILES is a more natural and intuitive way to 
represent molecular structures for scientists. Table 3.1 contains examples of SMILES, 
InChI, and SMART for 2-methyl butane. 

According to Einstein, “everything should be made as simple as possible, but not 
simpler” [17]. Despite SMILES being simpler than chemical graphs, historically, 
most of the descriptors used in practice are calculated using molecular graphs [18– 
29]. The molecular graph is a convenient representation of the molecular structure 
for the search for similarity and dissimilarity. This mathematical object has two 
categories of elements (i) vertexes (atoms) and (ii) edges (covalent bonds). 

Wiener combined chemistry and mathematics in pioneering work on generating 
models for thermodynamic properties of paraffin compounds as a mathematical 
function of the molecular structure represented using the so-called the hydrogen-
suppressed graph (HSG) [18–29]. The HSG can be expressed via the adjacency 
matrix, where 0 indicates the absence and 1 indicates the presence of a covalent 
bond between atoms. Figure 3.1 contains an example of the hydrogen-suppressed 
graph together with its equivalent adjacency matrix. 

Fig. 3.1 
Hydrogen-suppressed graph 
and the adjacency matrix for 
2-methyl butane
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The adjacency matrix is the basis for many topological indices [30–35]. Table 
3.2 contains examples of topological indices calculated from the adjacency matrix. 
Researchers have generated many univariate and multivariate QSPR models for 
physicochemical endpoints using these as descriptors. Subsequently, Fujita et al. [30] 
established the first correlations for biochemical endpoints using these indices. The 
relationships between the molecular structure and biochemical effects can be more 
complex than between molecular structure and physicochemical properties. Metrics 
for the quality of those models were (i) the total number of compounds in the avail-
able set; (ii) correlation coefficient; (iii) root mean error or mean absolute error. The 
number of the topological indices and similar descriptors encoding physicochemical 
information increases exponentially with the size of molecules [36]. Unfortunately, 
in general, the increase in the quantity of indices and other descriptors derived from 
them is not accompanied by a rise in the quality of the corresponding models because 
of overfitting and other issues [37]. 

The uncertainty in model predictions even using superficial criteria was of concern 
to researchers, and new criteria for the statistical reliability of models were needed. 
Internal and external validation sets are commonly used to assess predictive power 
of models. The internal validation involves successively leaving or more molecules 
aside, calculating a model with the remainder, and using it to predict the properties of 
the molecules held aside [18]. When one molecule at a time is omitted (leave-one-out 
cross-validation, LOO), there is a low correlation between the external test set and 
LOO predictive [19]. The QSPR/QSAR model quality is heavily influenced by the 
type of molecular features used. Although the molecular graph was the mathematical 
representation of molecular features for building QSPR/QSAR models, SMILES 
[1–3, 20] can also represent molecular features. 

The prediction of physicochemical and/or biochemical endpoints for a substance 
via computational procedures is an attractive alternative to the experimental measure-
ment of the endpoints if this prediction is reliable. However, as machine learning

Table 3.2 Examples of topological indices (molecular descriptors) calculated from adjacency 
matrices [38] 

Comment Equations 

Kier and Hall Zero-order connectivity index 0 X = ∑

k 
(0ECk )

−1/2 

Randic’s connectivity index 1 X = ∑

(k, j )edge 
(0ECk × 0EC j )

−1/2 

Zagreb group index M1 M1 = ∑

k 
(0ECk )

2 

Zagreb group index M2 M2 = ∑

(k, j )edge 
(0ECk × 0EC j ) 

Balaban index J = m 
γ +1

∑

(k, j)edge 
(0ECk × 0EC j ) 

where γ is the circuit rank of the graph, i.e. 
γ = m − n + c; m is the number of nodes; m is 
the number of edges; c is the number of cycles 
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methods used to generate QSAR models are data-driven, they are critically depen-
dent on experimental data on similar substances with similar molecular structures 
being available. 

Many studies have been dedicated to the similarity of substances. However, the 
best definition of molecular similarity is still not clear and is still controversial [38– 
40]. Comparative molecular similarity indices analysis (CoMSIA) and compara-
tive molecular field analysis (CoMFA) provided important rational paradigms for 
molecular similarity [31]. The quality, quantity, and chemical diversity of experi-
mental data used to train models is also very important if unbiased models with good 
predictive powers and lack of bias are to be achieved [33]. Molecular descriptors 
are also very important determinants of model quality and interpretability [34, 35]. 
Descriptors can be generated from molecular structure, physicochemical properties, 
biological properties, provenance properties or an other factors that may influence 
the property in question [36, 41]. Some descriptors are measured in experiments 
(e.g. octanol/water partition coefficient) but the most useful ones are generated 
mathematically experiment [37]. 

Thus, the SMILES representation of the molecular structure is visually and 
intuitively useful for perception and interpretation by users. In contrast, InChI or 
SMARTS text strings are less intuitive for people, despite (or perhaps because of) the 
higher levels of information available in an InChI. Modelling of complex phenomena 
almost always involves some simplification. Simplicity is a necessary and often useful 
abstraction in science, promoting clarity and interpretability at the expense of rigour. 
As best stated by Box: “All models are wrong, but some are useful” [42, 43]. The 
domain of applicability of models is also a very important and sometimes neglected 
property of QSAR models (indeed any ML models). This is the region of descriptor 
and property space spanned by the molecules in the training set. A large number 
of articles devoted to the applicability domain were written under the auspices of 
the Organisation for Economic Co-operation and Development (OECD) [44–46]. 
Clearly, models with ideal applicability domains that can generalize to any molecules 
in the whole of chemistry space are impossible. However, with appropriate choice 
of descriptors that encode all relevant molecular properties relevant to the property 
being modelled quite wide extrapolations of training chemical spaces are possible. 

Molecular descriptors can be calculated in many ways, from high-level quantum 
chemical calculations or mathematical analyses of molecules, though descriptors 
derived from the chemical graph to those that are molecular fragment-, fingerprint-, 
or signature-based. Software packages that are easy to learn and produce useful 
results are clearly more popular with researchers. 

SMILES has a growing cadre of users for solving diverse problems, especially 
since the advent of convolutional neural networks and related algorithms. Several 
other new descriptor generation and property modelling methods based on SMILES 
have been developed recently.
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Variational autoencoders (VAEs) are a deep learning method designed to learn 
nonlinear latent representations which generalize to unseen data using SMILES [47– 
51]. A novel co-regularized variational autoencoders (Co-VAE) can predict drug-
target binding affinity based on drug structures and target sequences. The Co-VAE 
model gives pairs VAEs for generating SMILES strings of therapeutically useful 
agents [47]. 

Deep neural networks effectively learn directly from low-level encoded data [52– 
57]. These models take the SMILES representation of the molecules as input to detect 
promising SMILES fragments from the latent descriptors they generate. In addition, 
the approach allows assessment of prediction uncertainty [58]. 

SmilesDrawer is a research tool capable of parsing and drawing SMILES-encoded 
molecular structures. It can display organic molecules in large numbers and fast 
succession. SmilesDrawer can draw structurally and stereochemically extremely 
complex structures [59, 60]. 

DeepSMILES is a recently proposed variant of SMILES, designed for rational 
analysis of extremely complex molecular structures. In addition, DeepSMILES 
propose useful simplifications to the SMILES syntax [61–63]. 

CurlySMILES: a chemical language to customize and annotate encodings of 
molecular and nanodevice structures [64] that is one more original modification 
of the traditional SMILES. 

In 2015, an extension of traditional SMILES, quasi-SMILES, was proposed [64– 
69]. Quasi-SMILES extends standard SMILES but appends special codes for, for 
example, experimental conditions, and can also be used to generate models [65–70]. 

Quasi-SMILES can be used in the CORAL program discussed here, so we first 
describe this modification of traditional SMILES in more detail. The main reasons 
for developing quasi-SMILES are derived from the apparent analogy between the 
structure of peptides and ordinary molecules (in other words, for peptides we take 
amino acids as atoms) secondly, the strong influence of experimental conditions on 
various endpoints related to nanomaterials leads to attractively to apply special codes 
reflecting these conditions. 

Initially, it was found that the correlation weighting of amino acids for peptides 
gives quite statistically significant results [65]. In addition, it was found that consid-
ering the experimental conditions significantly expands the possibilities for the 
development of nano-QSPR/QSAR [65–69]. 

The first attempts to construct quasi-SMILES used isolated symbols (1-hot 
descriptors) accounting for simple on/off effects (e.g. for the effect of lighting or 
heating). Later, special symbols were added to convey continuous properties (temper-
atures, solubility). Currently, users of the CORAL program can describe experimental 
conditions using identifiers (which include several characters for clarity) enclosed in 
square brackets [68–70]. Table 3.3 contains examples of quasi-SMILES.

For molecules, there is ambiguity in the sequence of symbols representing the 
molecule’s structure, as valid SMILES can be defined starting from any point in 
the structure. This has been addressed by the concept of canonical SMILES, which 
are unique for every molecule. Developers of software generally enforce the use of 
generation of canonical SMILES for this reason.
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Table 3.3 Examples of quasi-SMILES with the interpretation of components 

Quasi-SMILES Comment References 

X0 + A The code ‘X’ means the presence of fullerene 
The code ‘0’ means the presence of dark 
The code ‘+’ means ‘with Mix S9’ 
The code ‘A’ means the dose 50 g/plate 

[66] 

[Bare][Daph][s%14][z%25] [bare] = “nanoparticles without any coating” 
[daph] = “Daphnia magna” 
[s%14] = the range of size from 17.1 to 21.7 nm 
[z%25] = the range of zeta potential from − 8.48 to 
− 5.05 eV 

[70]

3.1.1 The CORAL software description 

Here we discuss a user-friendly program, CORAL (http://www.insilico.eu/coral). 
CORAL is an abbreviation of the words CORrelation And Logics. It aims to generate 
QSPR/QSAR models using input data lists of SMILES strings, together with corre-
sponding experimental data on endpoints. In addition, this program can be applied to 
nano-QSPR/QSAR problems using lists of quasi-SMILES together with testing data 
on endpoints related to nanomaterials. In both mentioned cases, strings of symbols 
(SMILES or quasi-SMILES) are translated into the optimal descriptors. 

A detailed description of the CORAL software follows that aims to provide a user 
with the necessary information on using the software without excess detail. 

3.1.1.1 CORAL: Preparation of Input Files 

CORAL website (http://www.insilico.eu/coral) contains several versions of the 
program. Previous versions may be convenient for users who have used them before 
(2016, 2017, 2019, and 2020) and may wish to apply them for similar new tasks. In 
addition, they provide the ability to verify and reproduce published models. However, 
only the program’s latest version is described below since it contains all the features 
used in previous versions. 

The standard name for the input file is “#TotalSet.txt”. The file contains a list of 
the following strings: 

ID…SMILES…Endpoint (here, three dots mean space). 

ID 

ID can be mean simple numbering 1, 2, 3, …, N. In the case of research work 
dedicated to QSPR/QSAR analysis, the ID can be the chemical abstract service 
number (CAS) [71].

http://www.insilico.eu/coral
http://www.insilico.eu/coral


3 Application of SMILES to Cheminformatics and Generation … 63

SMILES 

Simplified molecular input-line entry system (SMILES) [1–3] is the widely used 
format for molecular structure representation. It is preferable to use canonical 
SMILES [72]. A popular software package to generate SMILES is ACD/ChemSketch 
[73, 74] although it is also easy to encode SMILES strings by hand if required. 

Endpoint 

There are no limitations for the endpoint for generating models using CORAL, but 
some rules should be considered. First, all compounds should express the endpoint in 
the same units. Second, ideally experimental data should be taken from one source. 
Third, the experimental conditions should be the same. For instance, solubility should 
relate to the same temperature, and toxicity should be associated with the same 
organisms, organs, and conditions. 

3.1.1.2 CORAL: Selection of the Method 

CORAL generates linear regression models expressed as: 

Endpoint = Intercept + Slope ∗ Descriptor (SMILES) (3.1) 

This model may appear extremely simple. However, the simplicity disappears 
after the task of the defining the calculation system for the optimal descriptor form 
SMILES is undertaken. 

3.1.1.3 Defining the Optimal Descriptor 

Figure 3.2 shows the interface of the CORAL program that defines how the optimum 
descriptors for QSAR/QSPR models are calculated. The complexity of this task 
arises from compromises between the information content of the selected molecular 
features extracted from SMILES and their representation across the training set. For 
example, the representation of molecules may be too detailed for the training set, 
resulting in an overfitted model that predicts the training set well but generalizes 
poorly. Structures outside the training set may also contain molecular features not 
in molecules in the training set. Conversely, if too few molecular features are used, 
then the model will be uninformative and predict both training and test sets poorly 
since a significant number of relevant molecular characteristics will be ignored when 
constructing the model. A suitable compromise can be reached using a simple logical 
trick or heuristic. The impact of molecular moieties from the simplest to the most 
complex are assessed by conducting appropriate computational experiments.

Below, the conception of the optimal descriptor is represented in more detail.
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Fig. 3.2 Interface of the CORAL program to define the scheme of calculation of the optimal 
descriptor

1. Definition of SMILES components for the development of the optimal 
descriptor 

Figure 3.3 shows part 1 of the interface in detail. 
The user may ignore some contributions to the SMILES string, in which case 

the box relating to SMILES remains empty. If the user intends to use contributions 
coming directly from SMILES to construct an optimal descriptor, then the square 
referring to SMILES must be activated (Fig. 3.2). 

In part 1, “s” denotes a “SMILES atom”, that is, a single character from the string 
SMILES (e.g. ’C’, ’N’, ’O’, ‘=’, ‘#’, etc.) or a group of characters that cannot be 
considered in separately (e.g. ’Cl’, ’Br’, %11, [Zn], etc.). The “ss” denotes a pair of 
SMILES atoms following one after the other in the string SMILES (e.g. “CC”, “N1”,

Fig. 3.3 Choosing or not 
choosing to use SMILES 
attributes to calculate the 
optimal descriptor 
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“C=”, “ON”, etc.). The “sss” denotes a triple of SMILES atoms following one after 
the other in the string SMILES (e.g. “CCC”, “O=C”, “=C2”, etc.). 

It should be noted that it is unacceptable for pairs or triplets of SMILES atoms 
to be written in various sequences. For example, in one situation, “=C” is observed, 
and in the other, “C=”, since, in fact, both fragments represent the same situation in 
the molecule. The corresponding characters’ pairs and triples are fixed according to 
the ASCII codes [75] to avoid such inconsistencies. 

s, ss, and sss are local SMILES attributes since they reflect the quality of local 
parts of SMILES strings. 

BOND, HALO, NOSP, and HARD are global SMILES attributes since these 
reflect overall features of molecules extracted from SMILES. The BOND repre-
sents the presence or absence of different covalent bonds (double, triple, and 
stereo-chemical). The BOND is not sensitive to the numbers of these covalent bonds. 

BOND 

The BOND is built up as a configuration of twelve symbols. Table 3.4 contains 
examples of the twelve symbols in the BOND. Figure 3.4 contains graphical 
representations of the BOND attribute.

HALO 

The HALO is a global SMILES attribute that reflects the presence or absence of 
fluorine, chlorine, bromine, and iodine atoms in a molecular structure. The HALO is 
a configuration of twelve symbols representing information on the above chemical 
elements. Table 3.5 contains simple examples of the HALO configurations. Figure 3.5 
contains graphical representations for different statuses of the HALO attribute.

NOSP 

The NOSP is a global SMILES attribute that reflects the presence or absence of 
nitrogen, oxygen, sulphur, and phosphorus atoms in a molecular structure. The 
NOSP is a configuration of twelve symbols representing information about the above 
chemical elements. Table 3.6 contains simple examples of the NOSP configura-
tions. Figure 3.6 contains graphical representations of different statuses of the NOSP 
attribute.

HARD 

In contrast to the above BOND, HALO, and NOSP, the global attribute HARD 
contains all the information in these attributes separately. 

However, the information content of the HARD may be redundant if the training 
set is divided into many non-overlapping classes of molecular structures. Using 
BOND, HALO, and NOSP separately is a rational division of molecular structures 
into subclasses. Table 3.7 contains the general scheme of building up the twelve 
symbols code. Figure 3.7 shows the HARD configurations with the corresponding 
examples of the molecular structures.
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Fig. 3.4 Examples of different configurations for the BOND attribute

2. Definition of local and global graph invariants for the development of the 
optimal descriptor 

SMILES and the molecular graph can be used to represent molecular structure data. 
Both approaches aim to represent molecular structure but have specific features so are 
not identical. This makes it tempting to compare the performance of these approaches 
for QSPR/QSAR analyses and to use both methods simultaneously in the hope of 
obtaining better results than those from the use of either of these approaches alone. 
Figure 3.8 contains the interface to select a group of different graph invariants.

The degree of the molecular graph vertex is the number of edges attached to this 
vertex. Figure 3.9 shows an example of a molecular graph. Having some (arbitrary) 
numbering, one can build up so-called adjacency (0, 1) matrix, where 1 means a 
covalent bond, and 0 indicates the absence of a bond for the corresponding pair of 
atoms in the graph. The adjacency matrix that gives possibility defines the sum of 
vertex degrees of neighbour atoms or defines the extended connectivity (Morgan 
extended connectivity [76]) (Fig. 3.10). A molecular graph built without considering 
hydrogen atoms is called a hydrogen-suppressed graph (HSG).

Note that the CORAL software allows use of the hydrogen-suppressed graph 
(HSG), the hydrogen-filled graph (HFG), and the graph of atomic orbitals (GAO) 
[75]. Figure 3.11 contains an example of GAO.

3. Accounting for the influence of molecular rings 

The CORAL software interface allows the user with the opportunity to include the 
presence or absence of various rings. Figure 3.12 shows some examples of different 
versions of the use of the interface to take into account for the influence of molecular 
rings for building a model.

Special codes have been developed to account for the influence of molecular 
rings and other molecular features. Correlation weights are calculated that are used 
in calculating optimal descriptors. Figure 3.13 presents some examples of such codes 
that reflect the quality of the rings according to their size (3–7 membered rings), the 
presence (or absence) of heteroatoms, and the presence (or absence) of aromaticity.
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Fig. 3.5 Examples of different configurations for the HALO attribute

4. Atom pairs proportions (APP) 

As discussed, molecular topology, i.e. the adjacency matrix of a molecular graph, 
provides detailed information on molecular structure. For modelling some, the ratio 
of various atoms can be important for building a model. In other words, biological 
activity may be affected by the ratio of the number of oxygen and nitrogen atoms or 
the ratio of the number of chlorine atoms and the double bonds [77]. 

To account for the influence of self-organizing vectors on the proportions of pairs 
of atoms when building a model, a fragment of the interface shown in Fig. 3.14 can 
be used.

5. Individual contributions of atoms 

Descriptors or feature importance metrics are important for QSAR modelling because 
removing low relevance features and retaining only high relevance ones substantially 
improves model predictively and interpretability. One can test an atom (or several 
atoms from the list) for its ability to improve the statistical quality of the model and 
thus check whether the selected atom affects the predictive potential of the model or 
not. Figure 3.15 contains examples of applying the mentioned possibility.

6. Monte Carlo method algorithms 

CORAL is a system of algorithms for building models and verifying them. There 
are several non-traditional methods for solving problems associated with modelling 
various endpoints. There is a long-held opposition between the ideas of determinism 
and randomness. It can be assumed that any model is a kind of random event, similar 
to the experimental observations of various physicochemical properties or biological 
activity. 

CORAL uses random processes to build models that ensure the significance of 
reproducibility over the significance of accuracy for predictions of the model. These 
principles can be implemented in different ways. 

• Classical QSPR/QSAR employs training and test sets. The information from the 
training set should is used to build a model, and the test set is being used to assess 
the ability of the model to generalize to unseen data. 

• The balance of correlations method used active training, passive training sets, and 
some calibration set (an analogy of the test set). Figure 3.16 shows the difference 
between the classic scheme and the balance of correlations scheme.
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Fig. 3.6 Examples of different configurations for the NOSP attribute

The balance of correlations attempts to reduce the probability of a false model by 
employing the passive training set. A passive training set is a group of compounds 
similar to the active training set but with no overlap in these lists. In other words, 
the result of the traditional scheme can be expressed as “if the model is quite good 
for the training set, then one can expect that the model is good for external test set”. 
The result of the balance of correlations can be expressed as “the model is nice for 
active compounds which have been used to develop the model, and in addition, the 
model is not bad for compounds which are not used to develop the model”. 

Computational experiments with the above two manners described in the literature 
confirm that the balance of correlations often gives better models than the traditional 
scheme ones [5, 78–82]. 

7. Monte Carlo optimization: its implementation and verification 

The Monte Carlo method can be used to generate models using CORAL. The aim is 
to build an optimal descriptor capable of predicting endpoints through a regression 
relation of the form: 

EndPoint = C0 + C1 × DCW(T , N ) (3.2) 

C0 and C1 are the regression coefficients. The T and N are special parameters 
governing the stochastic Monte Carlo optimization process. The T is the threshold 
for the definition of the active and blocked components of the optimal descriptor. If 
some component occurs in the training set (in the case of the balance of correlation, 
the active training set) more than T times, then it is active and is involved in building 
the model. If the indicated component occurs less than T times, it is blocked, and its 
correlation weight is equal to zero. Thus, a blocked component does not affect the 
model. The N is the number of iterations for Monte Carlo optimization. One iteration 
is a sequence of the modifications of all active components. The sequence of compo-
nent modifications is random, and for each iteration, this sequence is determined 
anew. 

The optimal descriptor is calculated as follows: 

DCW(T , N ) =
∑

CW
(
Componentk

)
(3.3)
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Fig. 3.7 Examples of different configurations for the HARD attribute

Fig. 3.8 Interface to select graph invariants: e0= vertex degree; e1–e3=Morgan extended connec-
tivity of first—third orders, respectively; p2–p4 paths of lengths 2–4, respectively; s2, s3 = valence 
shells of second and third orders, respectively; nn = nearest neighbours codes

Fig. 3.9 Hydrogen-suppressed graph and the adjacency matrix
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Fig. 3.10 Examples of Morgan’s extended connectivity [76] (e0–e3), paths of length 2, 3, and 4 
(p2–p4), and valence shells of second and third orders (s2 and  s3)

GAO 
Numbering:                                                                Vertex degree 0EC: 

Fig. 3.11 An example of the graph of atomic orbitals [55]

Do not take into account 

the influence of the rings 

at all 

Take into account in the 

model the influence of 

various variants of five-

membered rings 

Take into account in the 

model the influence of 

various variants of five-

membered and six-

membered rings 

Fig. 3.12 Interface of the CORAL is related to taking into account molecular rings for building up 
QSPR/QSAR models
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Fig. 3.13 Examples of codes applied to take into account for the influence of molecular rings

The CW(x) is the correlation weight of component x, obtained by the above Monte 
Carlo optimization. In addition to T and N, the optimization is controlled by special 
parametrization that defines the target function of the optimization: 

TargetFunction = rAT + rPT − |rAT − rPT| × α + IIC × β + CII × γ (3.4) 

The rAT and rPT are correlation coefficients between the observed and predicted 
endpoint for the active and passive training sets, respectively. The IIC is the index 
of ideality of correlation [83–89]. The CII is the correlation intensity index [90–92]. 
The IIC is calculated with data on the calibration set as follows: 

IIC = r 
min(−MAE, +MAE) 
max(−MAE, +MAE) 

(3.5)
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Do not build a self-

organizing vector of 

atoms pairs proportions 

Construct a self-organizing 

vector of proportions of 

pairs of atoms for oxygen 

and nitrogen, as well as the 

ratio of the numbers of 

double and triple covalent 

bonds in molecules. 

Construct a self-organizing 

vector of proportions of 

pairs of atoms for a list 

including atoms, chlorine, 

bromine, nitrogen, oxygen, 

Sulphur, phosphorus, as 

well as double and triple 

covalent bonds. 

Fig. 3.14 Examples of various variants of the self-organizing vector of atom pairs of proportions 
(APP)

No granting "extra powers" to any atom "Additional weight" is given to the nitrogen 

atom and the number of rings in the molecule 

(Cmax) 

Fig. 3.15 Possible uses for additional individual atom weights

min(x, y) =
⎧
x, if x > y 
y, otherwise 

(3.6) 

max(x, y) =
⎧
x, if x > y 
y, otherwise 

(3.7) 

−MAE = 
1 

− N

∑
|Δk |, − N is the number of Δk < 0 (3.8) 

+MAE = 
1 

+ N

∑
|Δk |, + N is the number of Xk ≥ 0 (3.9)

Δk = observedk − calculatedk (3.10)
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Fig. 3.16 Comparison of the classic scheme and the balance of correlations

The observed and calculated are corresponding values of the endpoint. Having 
data on all Δk for the calibration set, one can calculate the sum of negative (−MAE) 
and positive (+MAE) values ofΔk , similar to traditional mean absolute error (MAE). 

The CII is calculated as follows: 

CII = 1 −
∑

Protestk (3.11) 

Protestk =
⎧
R2 
k − R2, if R2 

k − R2 > 0 
0, otherwise 

(3.12) 

The R2 is the correlation coefficient for a set that contains n substances. The 
R2 
k is the correlation coefficient for n − 1 substances of a set, after removing of 

kth substance. Hence, if the (R2 
k − R2) is larger than zero, the kth substance is an 

“oppositionist” for the correlation between experimental and predicted values of the 
set. A small sum of “protests” means a more “intensive” correlation.
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Fig. 3.17 An example of a model that is built up using the balance of correlations 

3.1.2 An Example of Model Training and Validation 
(Graphically) 

Figure 3.17 contains an example of a model for toxicity towards Rainbow Trout 
(LC50) built using the balance of correlations. The interface provides a user with 
information on the selected method and the statistical quality of the model on all sets 
used to construct the model. 

Figure 3.18 contains the results of applying the model for the external validation 
set and demonstrates a strange quality of the CORAL models calculated with IIC.

The active and passive training sets are divided into pairs of clusters (red colour 
shows calculated values that are overestimated, green colour shows calculated values 
that are underestimated). Thus, the involvement of IIC (as well CII) leads to an 
improvement in the quality of the model for the calibration set and for the validation 
set, but to the detriment of the statistical quality of the model for both training sets. 

3.2 Conclusions 

The SMILES concept has found numerous applications. Moreover, new SMILES 
applications are currently emerging for both applied and theoretical research in the 
field of physics, chemistry, and biology, as well as at the intersections of the natural 
sciences. SMILES modifications, both in practical and general theoretical terms, are
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Fig. 3.18 Strange quality (indicated by red and green) of the CORAL models calculated with IIC 
and/or CII

also an important attribute of modern natural sciences. The CORAL program is one 
of the possible ways to use SMILES for building models of various endpoints, as 
well as for solving other problems in the field of natural sciences. 
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Chapter 4 
All SMILES Variational Autoencoder 
for Molecular Property Prediction 
and Optimization 

Zaccary Alperstein, Artem Cherkasov, and Jason Tyler Rolfe 

Abstract Variational autoencoders (VAEs) defined over SMILES string and graph-
based representations of molecules promise to improve the optimization of molecu-
lar properties, thereby revolutionizing the pharmaceuticals and materials industries. 
However, these VAEs are hindered by the non-unique nature of SMILES strings and 
the computational cost of graph convolutions. To efficiently pass messages along all 
paths through the molecular graph, we encode multiple SMILES strings of a sin-
gle molecule using a set of stacked recurrent neural networks, harmonizing hidden 
representations of each atom between SMILES representations, and use attentional 
pooling to build a final fixed-length latent representation. By then decoding to a 
disjoint set of SMILES strings of the molecule, our All SMILES VAE learns an 
almost bijective mapping between molecules and latent representations near the 
high probability mass subspace of the prior. Our SMILES-derived but molecule-
based latent representations significantly surpass the state of the art in a variety of 
fully and semi-supervised property regression and molecular property optimization 
tasks. 
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4.1 Introduction 

The design of new pharmaceuticals, OLED materials, and photovoltaics all requires 
optimization within the space of molecules [ 1]. While well-known algorithms ranging 
from gradient descent to the simplex method facilitate efficient optimization, they 
generally assume a continuous search space and a smooth objective function. In 
contrast, the space of molecules is discrete and sparse. Molecules correspond to 
graphs, with each node labeled by one of ninety-eight naturally occurring atoms, and 
each edge labeled as a single, double, or triple bond. Even within this discrete space, 
almost all possible combinations of atoms and bonds do not form chemically stable 
molecules, and so must be excluded from the optimization domain, yet there remain 
as many as 1060 small molecules to consider [ 2]. Moreover, properties of interest 
are often sensitive to even small changes to the molecule [ 3], so their optimization 
is intrinsically difficult. 

Efficient, gradient-based optimization can be performed over the space of 
molecules given a map between a continuous space, such as Rn or the n-sphere, 
and the space of molecules and their properties [ 4]. Initial approaches of this form 
trained a variational autoencoder (VAE) [ 5, 6] on SMILES string representations 
of molecules [ 7] to learn a decoder mapping from a Gaussian prior to the space of 
SMILES strings [ 8]. A sparse Gaussian process on molecular properties then facili-
tates Bayesian optimization of molecular properties within the latent space [ 8– 11], 
or a neural network regressor from the latent space to molecular properties can be 
used to perform gradient descent on molecular properties with respect to the latent 
space [ 12– 15]. Alternatively, semi-supervised VAEs condition the decoder on the 
molecular properties [ 16, 17], so the desired properties can be specified directly. 
Recurrent neural networks have also been trained to model SMILES strings directly 
and tuned with transfer learning, without an explicit latent space or encoder [ 18, 19]. 

SMILES, the simplified molecular-input line-entry system, defines a character 
string representation of a molecule by performing a depth-first pre-order traversal of 
a spanning tree of the molecular graph, emitting characters for each atom, bond, tree-
traversal decision, and broken cycle [ 7]. The resulting character string corresponds 
to a flattening of a spanning tree of the molecular graph, as shown in Fig. 4.1. The  
SMILES grammar is restrictive, and most strings over the appropriate character set 
do not correspond to well-defined molecules. Rather than require the VAE decoder to 
explicitly learn this grammar, context-free grammars [ 10] and attribute grammars [ 9] 
have been used to constrain the decoder, increasing the percentage of valid SMILES 
strings produced by the generative model. Invalid SMILES strings and violations of 
simple chemical rules can be avoided entirely by operating on the space of molecular 
graphs, either directly [ 14, 20– 23] or via junction trees [ 13]. 

Every molecule is represented by many well-formed SMILES strings, correspond-
ing to all depth-first traversals of every spanning tree of the molecular graph. The 
distance between different SMILES strings of the same molecule can be much greater 
than that between SMILES strings from radically dissimilar molecules [ 13], as shown 
in Fig. 4.2. A generative model of individual SMILES strings will tend to reflect this
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Fig. 4.1 Molecular graph of the amino acid Tryptophan (a). To construct a SMILES string, all cycles 
are broken, forming a spanning tree (b); a depth-first traversal is selected (c); and this traversal is 
flattened (d). The beginning and end of intermediate branches in the traversal are denoted by 
“( and )" respectively. The ends of broken cycles are indicated with matching digits. The full 
grammar is listed in Sect. 4.7. A small set of SMILES strings can cover all paths through a 
molecule (e) 

(a) COCOC1CNCC(C)N1 (b) CCCCC(CCCC)CCCC 

CC1NC(CNC1)OCOC 

Fig. 4.2 Multiple SMILES strings of a single molecule may be more dissimilar than SMILES 
strings of radically dissimilar molecules. The top SMILES string for molecule (a) is 30% similar 
to the bottom SMILES string by string edit distance, but 60% similar to the SMILES string for 
molecule (b) 

geometry, complicating the mapping from latent space to molecular properties and 
creating unnecessary local optima for property optimization [ 24]. To address this 
difficulty, sequence-to-sequence transcoders [ 25] have been trained to map between 
different SMILES strings of a single molecule [ 26– 29]. 

Reinforcement learning, often combined with adversarial methods, has been used 
to train progressive molecule growth strategies [ 30– 35]. While these approaches 
have achieved state-of-the-art optimization of simple molecular properties that can 
be evaluated quickly in silico, critic-free techniques generally depend upon property 
values of algorithm-generated molecules (but see [ 20, 36]) and so scale poorly to 
real-world properties requiring time-consuming wet laboratory experiments. 

Molecular property optimization would benefit from a generative model that 
directly captures the geometry of the space of molecular graphs, rather than SMILES 
strings, but efficiently infers a latent representation sensitive to spatially distributed 
molecular features. To this end, we introduce the All SMILES VAE, which uses 
recurrent neural networks (RNNs) on multiple SMILES strings to implicitly per-
form efficient message passing along and among many flattened spanning trees of 
the molecular graph in parallel. A fixed-length latent representation is distilled from 
the variable-length RNN output using attentional mechanisms. From this latent rep-
resentation, the decoder RNN reconstructs a set of SMILES strings disjoint from
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those input to the encoder, ensuring that the latent representation only captures fea-
tures of the molecule, rather than its SMILES realization. Simple property regressors 
jointly trained on this latent representation surpass the state of the art for molecu-
lar property prediction and facilitate exceptional gradient-based molecular property 
optimization when constrained to the region of the prior containing almost all the 
probability around it. We further demonstrate that the latent representation forms a 
near bijection with the space of molecules and is smooth with respect to molecular 
properties, facilitating effective optimization. 

4.1.1 Summary of Novel Contributions 

Starting with the work of Gómez-Bombarelli et al. [ 8], previous molecular variational 
autoencoders have used one consistent SMILES string as both the input to the RNN 
encoder and the target of the RNN decoder. Any single SMILES string explicitly 
represents only a subset of the pathways in the molecular graph. Correspondingly, 
the recurrent neural networks in these encoders implicitly propagated information 
through only a fraction of the possible pathways. Kipf and Welling [ 37], Liu et al. [ 14], 
and Simonovsky and Komodakis [ 23], among others, trained molecular VAEs with 
graph convolutional encoders, which pass information through all graph pathways 
in parallel, but at considerable computational expense. None of these works used 
enough layers of graph convolutions to transfer information across the diameter of 
the average molecule in standard drug design datasets. This is partially overcome 
by Lusci et al. [ 38] who ensemble RNN-based representations of multiple directed-
acyclic graphs of a single molecule for property prediction. The All SMILES VAE 
introduces the use of multiple SMILES strings of a single, common molecule as 
input to a RNN encoder, with pooling of homologous messages among the hidden 
representations associated with different SMILES strings. This allows information 
to flow through all pathways of the molecular graph, but can efficiently propagate 
information across the entire width of the molecule in a single layer. 

Bjerrum and Sattarov [ 27] and Winter et al. [ 29] trained sequence-to-sequence 
transcoders to map between different SMILES strings of the same molecule. These 
transcoders do not define an explicit generative model over molecules, and their latent 
spaces have no prior distributions. The All SMILES VAE extends this approach to 
variational autoencoders and thereby learns a SMILES-derived generative model of 
molecules, rather than SMILES strings. The powerful, learned, hierarchical prior of 
the All SMILES VAE regularizes molecular optimization and property prediction. 
To ensure that molecular property optimization searches within the practical support 
of the prior, containing almost all of its probability mass, we introduce a hierarchical 
radius constraint on optimization with respect to the latent space.
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4.2 Efficient Molecular Encoding with Multiple SMILES 
Strings 

A variational autoencoder (VAE) defines a generative model over an observed space x 
in terms of a prior distribution over a latent space p(z) and a conditional like-
lihood of observed states given the latent configuration p(x |z) [ 5, 6]. The true 
log-likelihood log [p(x)] = log

[∫
z p(z)p(x |z)

]
is intractable, so the evidence lower 

bound (ELBO), based upon a variational approximation q(z|x) to the posterior dis-
tribution, is maximized instead: 

L = Eq(z|x)
[
log p(x |z)] − KL [q(z|x)||p(z)] . (4.1) 

The ELBO implicitly defines a stochastic autoencoder, with encoder q(z|x) and 
decoder p(x |z). 

Many effective encoders for molecules rely upon graph convolutions: local mes-
sage passing in the molecular graph, between either adjacent nodes or adjacent 
edges [ 38– 42]. To maintain permutation symmetry, the signal into each node is a 
sum of messages from the adjacent nodes, but may be a function of edge type, or 
attentional mechanisms dependent upon the source and destination nodes [ 43]. This 
sum of messages is then subject to a linear transformation and a pointwise nonlinear-
ity. Messages are sometimes subject to gating [ 42], like in long short-term memories 
(LSTM) [ 44] and gated recurrent units (GRU) [ 45], as detailed in Sect. 4.3. 

More specifically, graph convolutions are conventionally defined by: 

h(n) 
t = f 

⎛ 

⎝ 

⎛ 

⎝
∑

m∈N (n) 

h(m) 
t−1 

⎞ 

⎠ Wt 

⎞ 

⎠ (4.2) 

whereN (n) is the set of neighbors of node n, for which there is an edge between n and 
m ∈ N (n), and f (x) is a pointwise nonlinearity such as a logistic function or rectified 
linear unit. This message passing can be understood as a first-order approximation to 
spectral convolutions on graphs [ 46]. Kipf and Welling [ 41] additionally normalize 
each message by the square root of the degree of each node before and after the sum 
over neighboring nodes. Kearnes et al. [ 40] maintain separate messages for nodes 
and edges, with the neighborhood of a node comprising the connected edges and the 
neighborhood of an edge comprising the connected nodes. Li et al. [ 42] add gating 
analogous to a GRU. 

Message passing on molecular graphs is analogous to a traditional convolutional 
neural network applied to images [ 47, 48], with constant-resolution hidden lay-
ers [ 49] and two kernels: a 3 × 3 average-pooling kernel that sums messages from 
adjacent pixels (corresponding to adjacent nodes in a molecular graph) and a train-
able 1 × 1 kernel that transforms the message from each pixel (node) independently, 
before a pointwise nonlinearity. While convolutional networks with such small ker-
nels are now standard in the visual domain, they use hundreds of layers to pass
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information throughout the image and achieve effective receptive fields that span 
the entire input [ 50]. In contrast, molecule encoders generally use between three and 
seven rounds of message passing [ 11, 13, 14, 34, 39, 40, 51]. This limits the compu-
tational cost, since molecule encoders cannot use highly optimized implementations 
of spatial 2D convolutions, but each iteration of message passing only propagates 
information a geodesic distance of one within the molecular graph. 1 In the case of the 
commonly used ZINC250k dataset of 250,000 drug-like molecules [ 8], information 
cannot traverse these graphs effectively, as their average diameter is 11.1 and their 
maximum diameter is 24, as shown in Sect. 4.5. 

Non-local molecular properties, requiring long-range information propagation 
along the molecular graph, are of practical interest in domains including pharma-
ceuticals, photovoltaics, and OLEDs. The pharmacological efficacy of a molecule 
generally depends upon high binding affinity for a particular receptor or other tar-
get, and low binding affinity for other possible targets. These binding affinities are 
determined by the maximum achievable alignment between the molecule’s electro-
magnetic fields and those of the receptor. Changes to the shape or charge distribution 
in one part of the molecule affect the position and orientation at which it fits best 
with the receptor, inducing shifts and rotations that alter the binding of other parts 
of the molecule and changing the binding affinity [ 52]. Similarly, efficient next-
generation OLEDs depend on properties, such as the singlet-triplet energy gap, that 
are directly proportional to the strength of long-range electronic interactions across 
the molecule [ 53]. The latent representation of a VAE can directly capture these non-
local, nonlinear properties only if the encoder passes information efficiently across 
the entire molecular graph. 

Analogous to graph convolutions, gated RNNs defined directly on SMILES strings 
effectively pass messages, via the hidden state, through a flattened spanning tree of 
the molecular graph (see Fig. 4.1). The message at each symbol in the string is a 
weighted sum of the previous message and the current input, followed by a pointwise 
nonlinearity and subject to gating. This differs from explicit graph-based message 
passing in that the molecular graph is flattened into a chain corresponding to a depth-
first pre-order traversal of a spanning tree, and the set of adjacent nodes that affect 
a message only includes the preceding node in this chain. Rather than updating all 
messages in parallel, RNNs on SMILES strings move sequentially down the chain, so 
earlier messages influence all later messages, and information can propagate through 
all branches of a flattening of a spanning tree in a single pass. With a well-chosen 
spanning tree, information can pass the entire width of the molecular graph in a single 
RNN update.

1 All-to-all connections allow fast information transfer, but computation is quadratic in graph 
size [ 40, 51].  Lusci et al.  [  38] considered a set of DAGs rooted at every atom, with full message 
propagation in a single pass. 
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4.3 Review of Recurrent Neural Networks 

Recurrent neural networks, such as long short-term memories (LSTMs) [ 44] and 
gated recurrent units (GRUs) [ 45], are commonly used to model text, audio, and 
other one-dimensional sequences. Gated recurrent units (GRUs) are defined by Cho 
et al. [ 45]: 

[r, z] =  σ
(
xt

[
Wr , Wz

] + ht−1
[
Ur , Uz

] + [br , bz]
)

ht = (1 − z) ʘ ht−1 + z ʘ tanh (xt W + (r ʘ ht−1) U + bh) 

where r , z, and h are row vectors, [x, y] denotes the column-wise concatenation 
of x and y, and the logistic function σ(x) = (

1 + e−x
)−1 

and hyperbolic tangent 
are applied element-wise to vector argument x . The hidden state ht , comprising 
the message from node t , is a gated, weighted sum of the previous message ht−1 

and the current input xt , both subject to an element-wise linear transformation and 
nonlinear (sigmoid) transformation. Specifically, the sum of the message from the 
input, xt WU−1 and the gated message from the previous node, r ʘ ht−1, is subject to 
a linear transformation U and a pointwise nonlinearity. This is then gated and added 
to a gated residual connection from the previous node. 

Long short-term memories (LSTMs) are defined similarly [ 44]: 

[ ft , it , ot ] =  σ
(
xt [W f , Wi , Wo] +  ht−1[U f , Ui , Uo] + [b f , bi , bo]

)

ct = ft ʘ ct−1 + it ʘ tanh (xt Wc + ht−1Uc + bc) 
ht = ot ʘ tanh (ct ) 

where f is the forget gate, i is the input gate, and o is the output gate. LSTMs impose 
a second hyperbolic tangent and gating unit on the nonlinear recurrent message, 
but nevertheless still follow the form of applying width-two kernels and pointwise 
nonlinearities to the input and hidden state. 

An LSTM, taking a SMILES string as input, can realize a subset of the messages 
passed by graph convolutions. For instance, input gates and forget gates can conspire 
to ignore open parentheses, which indicate the beginning of a branch of the depth-
first spanning tree traversal. If they similarly ignore the digits that close broken rings, 
the messages along each branch of the flattened spanning tree are not affected by 
the extraneous SMILES syntax. Input and forget gates can then reset the LSTM’s 
memory at close parentheses, which indicate the end of a branch of the depth-first 
spanning tree traversal, and the return to a previous node, ensuring that messages only 
propagate along connected paths in the molecular graph. While an LSTM decoder 
generating SMILES strings faces ambiguity regarding which of the set of SMILES 
strings representing a molecule to produce, this is analogous to the problem faced 
by graph-based decoders, as discussed in Sect. 4.7.2.
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4.4 All SMILES VAE Architecture 

To marry the latent space geometry induced by graph convolutions to the informa-
tion propagation efficiency of RNNs on SMILES strings, the All SMILES encoder 
combines these architectures. It takes multiple distinct SMILES strings of the same 
molecule as input and applies RNNs to them in parallel. This implicitly realizes a 
representative set of message passing pathways through the molecular graph, corre-
sponding to the depth-first pre-order traversals of the spanning trees underlying the 
SMILES strings. Between each layer of RNNs, the encoder harmonizes homologous 
messages between parallel representations of the multiple SMILES strings. In this 
harmonization, all messages to a single atom across the multiple SMILES strings are 
replaced with their pooled average, so that information flows along the union of the 
implicit SMILES pathways. 

Initially, the characters of the multiple SMILES strings are linearly embedded, 
and each string is preprocessed by a bidirectional GRU (BiGRU) [ 45], followed by 
a linear transformation, to produce the layer 0 representation H0 

i for each SMILES 
string i . For each SMILES string i and layer l, Hl 

i is a sequence of vector embed-
dings, one for each character of the original SMILES string, collectively forming 
a matrix. The encoder then applies a stack of modules, each of which harmonizes 
atom representations across SMILES strings, followed by layer norm [ 54], concate-
nation with the linearly embedded SMILES input, and a GRU applied to the parallel 
representations independently, as shown in Figs. 4.3 and 4.4. 

Multiple SMILES strings representing a single molecule need not have the same 
length, and syntactic characters indicating branching and ring closures rather than 
atoms and bonds do not generally match. However, the set of atoms is always con-
sistent, and a bijection can be defined between homologous atom characters. At 
the beginning of each encoder module (Fig. 4.3), the parallel inputs correspond-
ing to a single, common atom of the original molecule are pooled, as shown in 
Fig. 4.4. This harmonized atom representation replaces the original in each of the 
input streams for the subsequent layer normalizations and GRUs, reversing the infor-
mation flow of Fig. 4.4. To realize atom harmonization, we experimented with aver-
age and max pooling, but found element-wise sigmoid gating to be most effective [42, 

Fig. 4.3 In each layer of the encoder after the initial BiGRU and linear transformation, hidden states 
corresponding to each atom are harmonized across encodings of different SMILES strings for a 
common molecule, followed by layer norm and a GRU on each SMILES encoding independently
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Fig. 4.4 To pass information between multiple SMILES representations of a molecule (a), the 
encoder harmonizes the representation of each atom. Homologous messages corresponding to the 
same atom are pooled (b), and the original messages are replaced with this pooled message, reversing 
the information flow of (b) 

Fig. 4.5 The approximating posterior is an autoregressive set of Gaussian distributions. The 
mean (μ) and log-variance (log σ 2) of the first subset of latent variables z1 are a linear transforma-
tion of the max-pooled final hidden state of GRUs fed the encoder outputs. Succeeding subsets zi 
are produced via Bahdanau-style attention with the pooled atom outputs of the GRUs as keys (k), 
and the query (q) computed by a neural network on z<i 

43, 55]: a' = 1 k
∑

k

(
ak ʘ σ

(
W

[
ak, 1 k

∑
k ak

] + b
))
, where [x, y] is the concatena-

tion of vectors x and y and the logistic function σ(x) is applied element-wise. The 
pooling effectively sums messages propagated from many adjacent nodes in the 
molecular graph, analogous to a graph convolution, but the GRUs efficiently transfer 
information through many edges in each layer, rather than just one. The hidden repre-
sentations associated with non-atom, syntactic input characters, such as parentheses 
and digits, are left unchanged by the harmonization operation. 

The approximating posterior distills the resulting variable-length encodings into 
a fixed-length hierarchy of autoregressive Gaussian distributions [ 56]. The mean and 
log-variance of the first layer of the approximating posterior, z1, are parametrized 
by max-pooling the terminal hidden states of the final encoder GRUs, followed by 
batch renormalization [ 57] and a linear transformation, as shown in Fig. 4.5. 

Succeeding hierarchical layers use Bahdanau-style attention [ 58] over the pooled 
final atom vectors. Specifically, the final encoder hidden vectors for each atom com-
prise the key vectors k, whereas the query vector q is computed by a one-hidden 
layer network of rectified linear units given the concatenation of the previous latent 
layers as input. The final output of the attentional mechanism, c, is computed via:
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ei = tanh (qWa + kiUa) vT

αi = exp(ei )∑
j exp(e j ) 

c =
∑

i 

αi ki 

The output of the attentional mechanism is subject to batch renormalization and a 
linear transformation to compute the conditional mean and log-variance of the layer. 

This is analogous to the order-invariant encoding of set2set, but an output is pro-
duced at each step, and processing is not gated [24]. The attentional mechanism is also 
effectively available to property regressors that take the fixed-length latent represen-
tation as input, allowing them to aggregate contributions from across the molecule. 
The prior has a similar autoregressive structure, but uses neural networks of ReLUs in 
place of Bahdanau-style attention, since it does not have access to the atom vectors. 
For molecular optimization tasks, we usually scale up the term KL [q(z|x)||p(z)] 
in the ELBO by the number of SMILES strings in the decoder, analogous to multi-
ple single-SMILES VAEs in parallel; we leave this KL term unscaled for property 
prediction. 

The decoder is a single-layer LSTM, for which the initial cell state is computed 
from the latent representation z = [z1, z2, . . .] by a neural network, and a linear 
transformation of the latent representation is concatenated onto each input. It is 
trained with teacher forcing to reconstruct a set of SMILES strings disjoint from 
those provided to the encoder, but representing the same molecule. As in conven-
tional language models, the decoder LSTM autoregressively produces a sequence 
of categorical distributions for each successive SMILES character conditioned on 
the preceding characters. Grammatical constraints [ 9, 10] can naturally be enforced 
within this LSTM by parsing the unfolding character sequence with a pushdown 
automaton and constraining the final softmax of the LSTM output at each time step 
to grammatically valid symbols. This is detailed in Sect. 4.7, although we leave the 
exploration of this technique to future work. 

The full All SMILES VAE architecture is summarized in Fig. 4.6. The evidence 
lower bound (ELBO) of the log-likelihood (Eq. 4.1) is the sum of the conditional 
log-likelihoods of x'

i in Fig. 4.6, minus the Kullback–Leibler divergence between 
the approximating posterior, q(z|x), computed by node AP in Fig. 4.6, and the prior 
depicted in Fig. 4.7. 

The All SMILES VAE is a generative model over both the structure and properties 
of molecules M, so we define the conditional likelihood to be 

p(M|z) = p
(
ρM|z) ·

∏

j 

p
(
xM 
j |z), 

where
{
xM 
j

}N 

j=1 
is a set of N SMILES strings of a molecule M with properties ρM. 

Unlike a conventional VAE, the representation of the moleculeM input to the encoder
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Fig. 4.6 Multiple SMILES strings representing a single, common molecule are preprocessed by a 
BiGRU and a linear transformation, followed by multiple encoder blocks as in Figs. 4.3 and 4.4. 
The approximating posterior depicted in Fig. 4.5 then produces a sample from the latent state z, 
which is decoded into SMILES strings by LSTMs. Note that all SMILES strings, in both the input 
and the output, are distinct. The encoder blocks also receive a linear embedding of the original 
SMILES strings as input 

Fig. 4.7 Prior distribution over z = [z1, z2, . . .] is a hierarchy of autoregressive Gaussians. The con-
ditional prior distribution of hierarchical layer i given layers 1 through i − 1, p(zi |z1, z2, . . .  zi−1), 
is a Gaussian with mean μ and log-variance log σ 2 determined by a neural network with input[
z1, z2, . . . ,  zi−1

]

q(z|M) is not identical to the target of the conditional likelihood p(M|z); rather, it 
comprises a set of SMILES strings

{
xM 
i

}M 

i=1 of the molecule M disjoint from the 
decoding target and does not include the molecular properties. Nevertheless, both 
encoder input and decoder target correspond to a single moleculeM. The conditional 
log-likelihood of the molecular properties log p

(
ρM|z) is implicitly parametrized 

by scaling its contribution to the ELBO by λ. For instance, if p
(
ρM|z) is a unit-

variance Gaussian distribution, then λ sets the effective variance to λ−1. Finally, when 
optimizing molecular properties, we scale the KL term by M , the number of SMILES 
strings in the decoder, rendering the ELBO analogous to multiple single-SMILES 
VAEs in parallel. The resulting ELBO is 

L = Ez∼q
(
z|{xi }N i=1

)

⎡ 

⎣λ · log p(ρ|z) + 
M∑

j=1 

log p(x j |z) 
⎤ 

⎦ − M · KL
[
q

(
z|{xi }N i=1

)
||pθ (z)

]
. 

Since the SMILES inputs to the encoder are different from the targets of the 
decoder, the decoder is effectively trained to assign high probability to all SMILES 
strings of the encoded molecule. The latent representation must capture the molecule 
as a whole, rather than any particular SMILES input to the encoder. To accommodate 
this intentionally difficult reconstruction task, facilitate the construction of a bijection
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between latent space and molecules, and following prior work [ 16, 29], we use a 
width-five beam search decoder to map from the latent representation to the space 
of molecules at test time. 

In all experiments, we use a set of M = 5 randomly selected SMILES strings 
for encoding and N = 5 disjoint SMILES strings as the decoding target. We use 
encoder stacks of depth three, with 512 hidden units in each GRU. The approximating 
posterior uses four layers of hierarchy, with 128 hidden units in the one-hidden layer 
neural network that computes the attentional query vector. In practice, separate GRUs 
were used to produce the final hidden state for z1 and the atom representations for z>1. 
The single-layer LSTM decoder has 2048 hidden units. Training was performed using 
ADAM, with a decaying learning rate and KL annealing. In all multiple SMILES 
strings architectures, we use five SMILES strings for encoding and decoding which 
are selected with RDKit [ 59]. 

In contrast to many previous molecular VAEs, we do not scale down the term 
KL [q(z|x)||p(z)] in the ELBO by the number of latent units [ 9, 10]. However, our 
loss function does include separate reconstructions for multiple SMILES strings of 
a single molecule. For molecular optimization tasks, we usually scale up this KL 
term by the number of SMILES strings in the decoder, analogous to multiple single-
SMILES VAEs in parallel; we leave the KL term unscaled for property prediction. 

4.4.1 Computational Complexity 

Since the length of a SMILES string is linear in the total number of bonds b, the  
computational complexity of each layer of the All SMILES encoder is O(M · b), 
where M = 5 is the number of random SMILES strings of the molecule. Simi-
larly, the complexity of each layer of graph convolution is O(b). However, to pass 
information through the entire molecule, graph convolutions require a number of 
layers proportional to the graph diameter. Molecular graph convolutions generally 
use a fixed architecture for all molecules. In principle, the maximum diameter of a 
molecule is equal to the number of bonds. As a result, the computational complex-
ity for graph convolutions to pass information through all molecules is O (

b2
)
. In  

contrast, each RNN in the All SMILES encoder can in principle pass information 
through the entire graph, so the computational complexity remains O(M · b). 

4.4.2 Latent Space Optimization 

Unlike many models that apply a sparse Gaussian process to fixed latent representa-
tions to predict molecular properties [ 9– 11, 13], the All SMILES VAE jointly trains 
property regressors with the generative model (as do [ 14]). 2 We use linear regressors

2 Gómez-Bombarelli, et al. [ 8] jointly train a regressor, but still optimize using a Gaussian process. 
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for the log octanol-water partition coefficient (logP) and molecular weight (MW), 
which have unbounded values, and logistic regressors for the quantitative estimate 
of drug-likeness (QED) [ 60] and twelve binary measures of toxicity [ 61, 62], which 
take values in [0, 1]. We then perform gradient-based optimization of the property of 
interest with respect to the latent space and decode the result to produce an optimized 
molecule. 

Naively, we might either optimize the predicted property without constraints on 
the latent space, or find the maximum a posteriori (MAP) latent point for a conditional 
likelihood over the property that assigns greater probability to more desirable values. 
However, the property regressors and decoder are only accurate within the domain 
in which they have been trained: the region assigned high probability mass by the 
prior. For a n-dimensional standard Gaussian prior, almost all probability mass lies 
in a practical support comprising a thin spherical shell of radius n − 1 

√
[ 63]. With 

linear or logistic regressors, predicted property values increase monotonically in the 
direction of the weight vector, so unconstrained property maximization diverges from 
the origin of the latent space. Conversely, MAP optimization with a Gaussian prior is 
pulled toward the origin, where the density of the prior is greatest. Both unconstrained 
and MAP optimization thus deviate from the practical support in each layer of the 
hierarchical prior, resulting in large prediction errors and poor optimization. 

We can use the reparametrization trick [ 5, 6] to map our autoregressive prior 
back to a standard Gaussian. The image of the thin spherical shell through this 
reparametrization still contains almost all of the probability mass. We therefore 
constrain optimization to the reparametrized n − 1 dimensional sphere of radius 
n − 1 

√
for each n-dimensional layer of the hierarchical prior by optimizing the 

angle directly. 3 Although the reparametrization from the standard Gaussian prior to 
our autoregressive prior is not volume preserving, this hierarchical radius constraint 
holds us to the center of the image of the thin spherical shell. The distance to which 
the image of the thin spherical shell extends away from the n − 1 dimensional sphere 
at its center is a highly nonlinear function of the previous layers. 

The pseudocode for optimization in the latent space is shown in Algorithms 1 
and 2. We project each layer of latent variables separately onto the radius defined by 
their conditional Gaussian distribution and then optimize with respect to the n − 1 
angles. 

To further ensure that the optimization is constrained to well-trained regions of 
latent space, we add β · log p(z) to the objective function, where β is a hyperparam-
eter. Finally, to moderate the strictly monotonic nature of linear regressors, we apply 
an element-wise hard tanh to all latent variables before the regressor, with a linear 
region that encompasses all values observed in the training set. 

To compare with previous work as fairly as possible, we optimize 1000 random 
samples from the prior to convergence, collecting the last point from each trajectory 
with a valid SMILES decoding. From these 1000 points, we evaluate the true molecu-
lar property on the 100 points for which the predicted property value is the largest. Of 
these 100 values, we report the three largest. However, optimization within our latent

3 This generalizes the slerp interpolations of Gómez-Bombarelli et al. [ 8] to optimization. 
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space is computationally inexpensive and requires no additional property measure-
ment data. We could somewhat improve molecular optimization at minimal expense 
by constructing additional optimization trajectories in latent space and evaluating 
the true molecular properties on the best points from this larger set. 

N − 1 

∈i ||∈i || N − 1 

Algorithm 1: Initialize Angles 
output: Angular coordinates of latent variable sample on the spherical shell with radius √
for i ← 0 to K do // For each layer i in the hierarchy

∈i ← N (0, I ) 
∈̂i ← · √ ; // project onto spherical shell 

θi ← ToPolarCoords(∈̂i) 
end 
return {θi }N 1 

Algorithm 2: Optimization in Latent Space with Hierarchical Radius Constraint 
input : Property models: [ f1, . . . ,  fm ], Prior distribution: 

[p(zK |NNK (z<K )), . . . , p(z1|NN0(z0)), p(z0)], Objective function: O(·) 
output: Spherical coordinates of a molecule in latent space with converged property values 
initialize {θi }K 1 ← InitializeAngles() ; 
// The first layer of the prior is a standard Gaussian 
μ0 ← 0, σ0 ← 1; 
for i ← 0 to K do // For each layer i in the hierarchy 

zi ← ToCartesianCoords( θi) 
ẑi ← zi · σi + μi ; // Re-parametrize standard Gaussian variable 
to conditional Gaussian at position i in the hierarchy 
. μi+1, σi+1 ← NNi(ẑ<i) ; // Compute μ and σ of the next level 

end 
// Optimize {θi } until the objective function O(·) has converged 
{θ ∗i }N 1 ← GradientDescent(O({ f j }M 

1 , {zi (θi )}K 1 )) ; 
return {θ ∗i }K 1 

Molecular optimization is quite robust to hyperparameters. We considered ADAM 
learning rates in {0.1, 0.01, 0.001, 0.0001} and β ∈ {0.1, 0.01, 0.001, 0.0001}. 

4.5 Datasets 

SMILES strings, as well as the true values of the log octanol-water partition coeffi-
cient (logP), molecular weight (MW), and the quantitative estimate of drug-likeness 
(QED), are computed using RDKit [ 59].
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Fig. 4.8 Histogram of molecular diameters in the ZINC250k dataset. The diameter is defined as 
the maximum eccentricity over all atoms in the molecular graph. The mean is 11.1; the maximum 
is 24. Typical implementations of graph convolution use only three to seven rounds of message 
passing [ 11, 13, 14, 34, 39, 40, 51] and so cannot propagate information across most molecules in 
this dataset 

4.5.1 ZINC 

For molecular property optimization and fully supervised property prediction, we 
train the All SMILES VAE on the ZINC250k dataset of 250,000 organic molecules 
with between 6 and 38 heavy atoms and penalized logPs from −13 to 5 [  8]. This 
dataset is curated from a subset of the ZINC12 dataset [ 64] and available from https:// 
github.com/aspuru-guzik-group/chemical_vae. The distribution of molecular diam-
eters in ZINC250k is shown in Fig. 4.8. Penalized logP is commonly used in molecu-
lar optimization benchmarks and comprises the log octanol-water partition coefficient 
minus the synthetic accessibility score and the number of rings with more than six 
atoms, with all component terms normalized to have zero mean and unit standard 
deviation on the ZINC250k dataset [ 9– 11, 13, 34, 35]. 

For semi-supervised property prediction on logP, MW, and QED, we train on 
the ZINC310k dataset of 310,000 organic molecules with between 6 and 38 heavy 
atoms [ 16]. This dataset is curated from the full ZINC15 dataset [ 65] and available 
from https://github.com/nyu-dl/conditional-molecular-design-ssvae.

https://github.com/aspuru-guzik-group/chemical_vae
https://github.com/aspuru-guzik-group/chemical_vae
https://github.com/aspuru-guzik-group/chemical_vae
https://github.com/aspuru-guzik-group/chemical_vae
https://github.com/aspuru-guzik-group/chemical_vae
https://github.com/aspuru-guzik-group/chemical_vae
https://github.com/aspuru-guzik-group/chemical_vae
https://github.com/aspuru-guzik-group/chemical_vae
https://github.com/nyu-dl/conditional-molecular-design-ssvae
https://github.com/nyu-dl/conditional-molecular-design-ssvae
https://github.com/nyu-dl/conditional-molecular-design-ssvae
https://github.com/nyu-dl/conditional-molecular-design-ssvae
https://github.com/nyu-dl/conditional-molecular-design-ssvae
https://github.com/nyu-dl/conditional-molecular-design-ssvae
https://github.com/nyu-dl/conditional-molecular-design-ssvae
https://github.com/nyu-dl/conditional-molecular-design-ssvae
https://github.com/nyu-dl/conditional-molecular-design-ssvae
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4.5.2 Tox21 

For the semi-supervised prediction of twelve forms of toxicity, we train on the Tox21 
dataset [ 61, 62], accessed through the DeepChem package [ 66], with the provided 
random train/validation/test set split. This dataset contains binarized binding affini-
ties against up to 12 proteins for 6264 training, 783 validation, and 784 test molecules. 
Tox21 contains molecules with up to 140 atoms, ranging from large peptides to lan-
thanide, actinide, and other metals. Many of these metal atoms are not present in 
any of the standard molecular generative modeling datasets, and there are metal 
atoms in the validation and test set that never appear in the training set. To address 
these difficulties, we curated an unsupervised dataset of 1.5 million molecules from 
the PubChem database [ 67]. To maintain commensurability with prior work, this 
additional unsupervised dataset is only used on the Tox21 prediction task. 

4.6 Results 

We compare the performance of the All SMILES VAE to a variety of state-of-the-
art algorithms that have been evaluated on standard molecular property prediction 
and optimization tasks. In particular, we compare to previously published results 
on the character/chemical VAE (CVAE) [ 8] (with results reported in [ 10]), gram-
mar VAE (GVAE) [ 10], syntax-directed VAE (SD-VAE) [ 9], junction tree VAE (JT-
VAE) [ 13], NeVAE [ 11], semisupervised VAE (SSVAE) [ 16], graph convolutional 
policy network (GCPN) [ 34], molecule deep Q-network (MolDQN) [ 35], and the 
DeepChem [ 66] implementation of extended connectivity fingerprints (ECFP) [ 68] 
and graph convolutions (GraphConv) [ 39, 40, 66]. Extended connectivity finger-
prints are a fixed-length hash of local fragments of the molecule, used as input to 
conventional machine learning techniques such as random forests, support vector 
machines, and non-convolutional neural networks [ 66]. For toxicity prediction, we 
also compare to PotentialNet [ 69], ToxicBlend [ 70], and the results of [ 71]. 

4.6.1 Reconstruction Accuracy and Validity 

The full power of continuous, gradient-based optimization can be brought to bear on 
molecular properties given a bijection between molecules and contractible regions 
of a latent space, along with a regressor from the latent space to the property of 
interest that is differentiable almost everywhere. Such a bijection is challenging to 
confirm, since it is difficult to find the full latent space preimage of a molecule 
implicitly defined by a mapping from latent space to SMILES strings, such as our 
beam search decoder. As a necessary condition, we confirm that it is possible to map 
from the space of molecules to latent space and back again, and that random samples
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from the prior distribution in the latent space map to valid molecules. The former is 
required for injectivity, and the latter for surjectivity, of the mapping from molecules 
to contractible regions of the latent space. 

Using the approximating posterior as the encoder, but always selecting the mean of 
each conditional Gaussian distribution, and a using beam search over the conditional 
likelihood as the decoder, 87.4% ± 1% of a held-out test set of ZINC250k (80/10/10 
train/val/test split) is reconstructed accurately. With the same beam search decoder, 
98.5% ± 0.1% of samples from the prior decode to valid SMILES strings. We 
expect that enforcing grammatical constraints in the decoder LSTM, as described 
in Sect. 4.7, would further increase these rates. All molecules decoded from a set 
of 50,000 independent samples from the prior were unique, 99.958% were novel 
relative to the training dataset, and their average synthetic accessibility score [ 72] 
was 2.97 ± 0.01, compared to 3.05 in the ZINC250k dataset used for training. 

Previous molecular variational autoencoders have been evaluated using the per-
centage of molecules that are correctly reconstructed when sampling from both the 
approximating posterior q(z|x) and the conditional likelihood p(x |z) (reconstruction 
accuracy), and the percentage of samples from the prior p(z) and conditional like-
lihood p(x |z) that are valid SMILES strings (validity). While these measures have 
intuitive appeal, they reflect neither the explicit training objective (the ELBO), nor the 
requirements of molecular optimization. In particular, when optimizing molecules 
via the latent space, a deterministic decoder ensures that each point in latent space 
is associated with a single set of well-defined molecular properties. 

The All SMILES VAE is trained on a more difficult task than previous molecular 
VAEs, since the reconstruction targets are different SMILES encodings than those 
input to the approximating posterior. This ensures that the latent representation only 
captures the molecule, rather than its particular SMILES encoding, but it requires the 
decoder LSTM to produce a complex, highly multimodal distribution over SMILES 
strings. As a result, samples from the decoder distribution are less likely to correspond 
to the input to the encoder, either due to syntactic or semantic errors. 

To compensate for this unusually difficult decoding task, we evaluate the All 
SMILES VAE using a beam search over the decoder distribution. 4 That is, we decode 
to the single SMILES string estimated to be most probable under the conditional 
likelihood p(x |z). This has the added benefit of defining an unambiguous decoding 
for every point in the latent space, simplifying the interpretation of optimization in 
the latent space (as discussed in Sect. 4.6.3). However, it renders our reconstruction 
and validity results incommensurable with much prior work, which use stochastic 
encoders and decoders.

4 The full decoder distribution is still used for training. 
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Fig. 4.9 Semi-supervised mean absolute error (MAE) ± the standard deviation across ten replicates 
for the log octanol-water partition coefficient (a), molecular weight (b), and the quantitative estimate 
drug-likeness (c) [  60] on the ZINC310k dataset. Plots are log-log; the All SMILES MAE is a fraction 
of that of the SSVAE [ 16] and graph convolutions [ 40]. Semi-supervised VAE (SSVAE) and graph 
convolution results are those reported by Kang and Cho [ 16] 

4.6.2 Property Prediction 

Ultimately, we would like to optimize molecules for complicated physical proper-
ties, such as binding affinity to selected receptors and low toxicity. Networks can 
only be trained to predict such physical properties if their true values are known 
on an appropriate training dataset. While simple properties can be accurately com-
puted from first principles, properties like drug efficacy arise from highly nonlinear, 
poorly characterized processes, and can only be accurately determined through time-
consuming and expensive experimental measurements. Since such experiments can 
only be performed on a small number of molecules, we evaluate the ability of the 
All SMILES VAE to perform semi-supervised property prediction. 

As Fig. 4.9 and Table 4.1 demonstrate, we significantly improve the state of the 
art in the semi-supervised prediction of simple molecular properties, including the 
log octanol-water partition coefficient (logP), molecular weight (MW), and quantita-
tive estimate of drug-likeness (QED) [ 60], against which many algorithms have been 
benchmarked. We achieve a similar improvement in fully supervised property predic-
tion, as given in Table 4.2, where we compare to extended connectivity fingerprints 
(ECFP) [ 68], the character VAE (CVAE) [ 8], and graph convolutions [ 39]. We also 
surpass the state of the art in toxicity prediction on the Tox21 dataset [61, 62], as given 
in Table 4.2, despite refraining from ensembling our model, or engineering features 
using expert chemistry knowledge, as in previous state-of-the-art methods [ 70]. 

Rather than jointly modeling the space of molecules and their properties, some 
earlier molecular variational autoencoders first trained an unsupervised VAE on 
molecules, extracted their latent representations, and then trained a sparse Gaus-
sian process over molecular properties as a function of these fixed latent represen-
tations [ 9– 11, 13]. Sparse Gaussian processes are parametric regressors, with the 
location and value of the inducing points trained based upon the entire supervised 
dataset [ 73]. They have significantly more parameters, and are correspondingly more 
powerful, than linear regressors.
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Table 4.1 Mean absolute error (MAE) of semi-supervised property prediction on the log octanol-
water partition coefficient (logP), molecular weight (MW), and the quantitative estimate of drug-
likeness (QED) on ZINC310k dataset 

Model % labeled MAE logP MAE MW MAE QED 

ECFP 50 0.180 ± 0.003 9.012 ± 0.184 0.023 ± 0.000 
GraphConv 50 0.086 ± 0.012 4.506 ± 0.279 0.018 ± 0.001 
SSVAE 50 0.047 ± 0.003 1.05 ± 0.164 0.01 ± 0.001 
All SMILES 50 0.007 ± 0.002 0.21 ± 0.07 0.0064 ±0.0002 

ECFP 20 0.249 ± 0.004 12.047 ± 0.168 0.033 ± 0.001 
GraphConv 20 0.112 ± 0.015 4.597 ± 0.419 0.021 ± 0.002 
SSVAE 20 0.071 ± 0.007 1.008 ± 0.370 0.016 ± 0.001 
All SMILES 20 0.009 ± 0.002 0.33 ±0.06 0.0079 ±0.0003 

ECFP 10 0.335 ± 0.005 15.057 ± 0.358 0.045 ± 0.001 
GraphConv 10 0.148 ± 0.016 5.255 ± 0.767 0.028 ± 0.003 
SSVAE 10 0.090 ± 0.004 1.444 ± 0.618 0.021 ± 0.001 
All SMILES 10 0.014 ± 0.002 0.30 ± 0.06 0.0126 ± 0.0006 
ECFP 5 0.380 ± 0.009 17.713 ± 0.396 0.053 ± 0.001 
GraphConv 5 0.187 ± 0.015 6.723 ± 2.116 0.034 ± 0.004 
SSVAE 5 0.120 ± 0.006 1.639 ± 0.577 0.028 ± 0.001 
All SMILES 5 0.036 ± 0.004 0.4 ± 0.1 0.0217 ± 0.0003 
Results other than the All SMILES VAE are those reported by Kang and Cho [ 16] 

Table 4.2 Fully supervised regression on ZINC250k (a), evaluated using the mean absolute error; 
and Tox21 (b), evaluated with the area under the receiver operating characteristic curve (AUC-ROC), 
averaged over all 12 toxicity types 

(a) ZINC250k (b) Tox21 

Model MAE logP MAE QED Model AUC-ROC 

ECFP 0.38 0.045 GraphConv + SN 0.854 

CVAE 0.15 0.054 PotentialNet 0.857 ± 0.006 

CVAE enc 0.13 0.037 ToxicBlend 0.862 

GraphConv 0.05 0.017 All SMILES (no 
harmonization) 

0.864 ± 0.003 

All SMILES 0.005 ± 0.0006 0.0052 ± 0.0001 All SMILES 0.8751 ± 0.0008 

Aside from All SMILES, results are those reported by ECFP: [ 68], CVAE: [ 8], GraphConv: [ 39], 
Graph Conv + Super Node (SN): [ 71], PotentialNet: [ 69], and ToxicBlend: [ 70]. The ablation of 
atom harmonization is also evaluated on the Tox21 dataset 

Molecular properties are only a smooth function of the VAE latent space when 
the property regressor is trained jointly with the generative model [ 8]. Results using 
a sparse Gaussian process on the latent space of an unsupervised VAE are very poor 
compared to less powerful regressors trained jointly with the VAE. Our property 
prediction is two orders of magnitude more accurate than sparse Gaussian process 
regression on an unsupervised VAE latent representation, as given in Table 4.3.
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Table 4.3 Root mean square error of the log octanol-water partition coefficient (logP) on the 
ZINC250k dataset 

Model RMSE 

Character VAE (CVAE) [ 8, 10] 1.504 

Grammar VAE (GVAE) [ 10] 1.404 

Syntax-directed VAE (SD-VAE) [ 9] 1.366 

Junction tree VAE (JT-VAE) [ 13] 1.290 

NeVAE [ 11] 1.23 

All SMILES 0.011 ± 0.001 
Results other than the All SMILES VAE are those reported in the cited papers 

Accurate property prediction only facilitates effective optimization if the true 
property value is smooth with respect to the latent space. In Fig. 4.10a, we plot the 
true (not predicted) logP over a densely sampled 2D slice of the latent space, where 
the y-axis is aligned with the logP linear regressor. 

Pathways on which activity (active or inactive) is assessed for the Tox21 dataset 
include seven nuclear receptor signaling pathways: androgen receptor, full (NR-AR); 
androgen receptor, LBD (NR-AR-LBD); aryl hydrocarbon receptor (NR-AHR); aro-
matase (NR-AROMATASE); estrogen receptor alpha, LBD (NR-ER-LBD); estrogen 
receptor alpha, full (NR-ER); and peroxisome proliferator-activated receptor gamma 
(NR-PPAR-GAMMA). The Tox21 dataset also includes activity assessments for 
five stress response pathways: nuclear factor (erythroid-derived 2)-like 2/antioxidant 
responsive element (SR-ARE); ATAD5 (SR-ATAD5); heat shock factor response ele-
ment (SR-HSE); mitochondrial membrane potential (SR-MMP); and p53 (SR-p53). 
We report the area under the receiver operating characteristic curve (AUC-ROC) on 
each assay independently in Table 4.4. The average of these AUC-ROCs is reported in 
Table 4.2. We do not include the result of [ 40] in Table 4.2, since it is not evaluated on 
the same train/validation/test split of the Tox21 dataset, and so is not commensurable. 

4.6.3 Molecular Optimization 

We maximize the output of our linear and logistic property regressors, plus a log-
prior regularizer, with respect to the latent space, subject to the hierarchical radius 
constraint described in Sect. 4.4.2. After optimizing in the latent space with ADAM, 
we project back to a SMILES representation of a molecule with the decoder. Follow-
ing prior work, we optimize QED and logP penalized by the synthetic accessibility 
score and the number of large rings [ 9– 11, 13, 34, 35]. Figure 4.10b depicts the 
predicted and true penalized logP over an optimization trajectory, while Table 4.5 
compares the top three values found among 100 such trajectories to the previous state
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(a) True logP over a 2D slice of latent space (b) Predicted and true logP over optimization 

(c) Coarse sampling of decoded molecules from a 2D slice of latent space 

Fig. 4.10 Dense decodings of true penalized logP along a local 2D sheet in latent space, with 
the y-axis aligned with the regressor (a), and predicted and true penalized logP across steps of 
optimization (b). We also display a coarse sampling of the molecules corresponding to the logP 
heatmap (c)
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Table 4.4 Area under the receiver operating characteristic curve (AUC-ROC) per assay on the 
Tox21 dataset 

NR-AR NR-AR-LBD NR-AHR NR-
AROMATASE 

NR-ER NR-ER-LBD 

0.864 0.921 0.909 0.908 0.719 0.811 

NR-PPAR-
GAMMA 

SR-ARE SR-ATAD5 SR-HSE SR-MMP SR-p53 

0.935 0.860 0.870 0.901 0.927 0.882 

Table 4.5 Properties of the top three optimized molecules trained on ZINC250k 

Model Penalized logP Model QED 

JT-VAE 5.30, 4.93, 4.49 JT-VAE 0.925, 0.911, 0.910 

GCPN 7.98, 7.85, 7.80 CGVAE 0.938, 0.931, 0.880 

MolDQN 8.93, 8.93, 8.91 GCPN 0.948, 0.947, 0.946 

All SMILES 12.31, 12.13, 12.01 MolDQN 0.948, 0.948, 0.948 

All SMILES (KL unscaled) 29.80, 29.76, 29.11 All SMILES 0.948, 0.948, 0.948 

Other results are taken from JT-VAE: [ 13], GCPN: [ 34], MolDQN: [ 35], and CGVAE: [ 14]. Fol-
lowing prior work, penalized logP is normalized by the statistics of the Zinc250k dataset 

of the art. 5 The molecules realizing these property values are shown in Fig. 4.11. The  
molecules optimized for penalized logP in Fig. 4.11a are more akin to polymers than 
small molecules, despite the training set consisting of small molecules from ZINC, 
reflecting the ability of the model to generalize beyond its training set. We present 
an optimization trajectory for the quantitative estimate of drug-likeness (QED) in 
Fig. 4.12. 

For the molecules depicted in Fig. 4.11, we scaled KL(q(z|x)||p(z))) in the ELBO 
(Eq. 4.1) of the All SMILES VAE by the number of SMILES strings in the decoder. 
This renders the loss function analogous to that of many parallel single-SMILES 
VAEs, but with message passing between encoders leading to a shared latent rep-
resentation. If we leave the KL term unscaled, latent space embeddings are subject 
to less regularization forcing them to match the prior distribution. Optimization of 
molecular properties with respect to the latent space therefore searches over a wider 
space of molecules, which are less similar to the training set.

5 Zhou et al. [ 35] appear to report unnormalized penalized logP values: 11.84, 11.84, and 11.82. In 
Table 4.5, we recompute normalized values for their best molecules. Recently, Winter et al. [ 28] 
reported molecules with penalized logP as large as 26.1, but train on an enormous, non-standard 
dataset of 72 million compounds aggregated from the ZINC15 and PubChem databases. 
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(a) Molecules with the top three penalized logP 

values 

(b) Molecules with the top three QED values 

Fig. 4.11 Molecules produced by gradient-based optimization in the All SMILES VAE 

Fig. 4.12 Predicted (red line) and true (blue x’s) quantitative estimate of drug-likeness (QED) over 
the optimization trajectory resulting in the molecule with the maximum observed true QED (0.948) 

4.6.4 Ablation of Model Components 

In Table 4.6, we progressively ablate model components to demonstrate that all ele-
ments of the All SMILES architecture contribute to building a powerful fixed-length 
representation of molecules, rather than their particular SMILES string instantia-
tions. We evaluate the effect of these ablations on the mean absolute error (MAE) of 
logP and QED predictions, as well as the percentage of samples from the prior that 
decode to valid SMILES strings (Val) and the percentage of test molecules that are 
reconstructed accurately (Rec acc). In all cases, we use the mean of each conditional 
Gaussian distribution and a beam search decoder. 

No atom harmonization removes the pooling among each instance of an atom 
across SMILES strings in the encoder, depicted in Fig. 4.4. As a result, the multiple 
SMILES inputs are processed independently until the final max pooling over GRU 
hidden states. A random SMILES string is chosen to serve as input to the attention 
mechanisms of the approximating posterior. Table 4.2b shows the significant effect 
of this ablation on toxicity prediction, demonstrating the importance of atom harmo-
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Table 4.6 Effect of model ablation on fully supervised property prediction and generative modeling 
using the ZINC250k dataset 

Ablation MAE logP MAE QED Val Rec acc 

Full model 0.005 ± 0.0006 0.0052 ± 0.0001 98.5 ± 0.1 87.4 ± 1.0 

No atom 
harmonization 

0.008 ± 0.004 0.0076 ± 0.0005 97.6 ± 0.2 84.0 ± 0.4 

One SMILES enc 0.008 ± 0.005 0.0073 ± 0.0002 98.4 ± 0.1 82.3 ± 0.4 
One SMILES 
enc/dec (/=) 

0.009 ± 0.001 0.0091 ± 0.0003 97.1 ± 0.7 80.9 ± 0.4 

One SMILES 
enc/dec (=) 

0.025 ± 0.003 0.0115 ± 0.0004 85.7 ± 1 91.3 ± 0.6 

No posterior 
hierarchy 

0.010 ± 0 .003 0.0051 ± 0.0001 98.2 ± 0.5 85.2 ± 0.6 

Table 4.7 Effect of the hierarchical radius constraint on penalized logP optimization 

Ablation First best logP Second best logP Third best logP 

With radius constraint 17.0 ± 3.0 16.0 ± 2.0 14.8 ± 0.3 
Without radius 
constraint 

8.5044 ± 0.0 6.9526 ± 0 5.36 ± 0.05 

Predicted penalized logP was evaluated on 1000 optimization trajectories. From these, the true logP 
was evaluated on the 100 best trajectories, and the top three true penalized logPs are reported. Each 
optimization was repeated 5 times 

nization for nonlinear properties of the entire molecule, in contrast to the quasi-linear 
logP and QED reported in Table 4.6. We extend this process in One SMILES enc 
by only feeding a single SMILES string to the encoder, although the decoder still 
reconstructs multiple disjoint SMILES strings. One SMILES enc/dec (/=) further 
reduces the size of the decoder set to one, but the encoded and decoded SMILES 
strings are distinct. Finally, One SMILES enc/dec (=) encodes and decodes a sin-
gle, shared SMILES string. Except for One SMILES enc/dec (=), all of these abla-
tions primarily disrupt the flow of messages between the flattened spanning trees and 
induce a similar, significant decay in performance. One SMILES enc/dec (=) fur-
ther permits the latent representation to encode the details of the particular SMILES 
string, rather than forcing the representation of only the underlying molecule, and 
causes a further reduction in performance. 

We also observe a meaningful contribution from the hierarchical approximating 
posterior. In No posterior hierarchy, we move all latent variables to the first 
layer of the hierarchy, removing the succeeding layers. The remaining prior is a 
standard Gaussian, and there is no attentional pooling over the atom representations. 

Table 4.7 shows that the hierarchical radius constraint significantly improves 
molecular optimization. In contrast to Table 4.5, optimization is performed on penal-
ized logP alone, without a log prior regularizer. This produces better results without 
the radius constraint and so constitutes a more conservative ablation experiment.
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4.7 SMILES Grammar Can Be Enforced with a Pushdown 
Automaton 

The subset of the SMILES grammar [ 7] captured by Dai et al. [ 9] and Kusner et al. [ 10] 
is equivalent to the context-free grammar as shown in Fig. 4.13. This subset does not 
include the ability to represent multiple disconnected molecules in a single SMILES 
string, multiple fragments that are only connected by ringbonds, or wildcard atoms. 
element_symbols includes symbols for every element in the periodic table, 
including the aliphatic_organic symbols. 

Productions generally begin with a unique, defining symbol or set of 
symbols. Exceptions include bond and charge (both can begin with -), and 
aromatic_organic and aromatic_symbols (both include c, n, o, s, and 
p), but these pairs of productions never occur in the same context, and so cannot be 
confused. The particular production for chiral can only be resolved by parsing 
characters up to the next production, but the end of chiral and the identity of the 
subsequent production can be inferred from its first symbol of the production after 
chiral. Alternatively, the strings of chiral can be encoded as monolithic tokens. 

Whenever there is a choice between productions, the true production is uniquely 
identified by the next symbols. The only aspect of the SMILES grammar that requires 

Fig. 4.13 Context-free grammar of SMILES strings
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more than a few bits of memory is the matching of parentheses, which can be per-
formed in a straightforward manner with a pushdown automaton. As a result, parse 
trees [ 9, 10] need not be explicitly constructed by the decoder to enforce the syntactic 
restrictions of SMILES strings. Rather, the SMILES grammar can be enforced with 
a pushdown automaton running in parallel with the decoder RNN. The state of the 
pushdown automaton tracks progress within the representation of each atom and the 
sequence of atoms and bonds. The output symbols available to the decoder RNN 
are restricted to those consistent with the current state of the pushdown automaton. 
( and [ are pushed onto the stack when emitted and must be popped from the top of 
the stack in order to emit ) or ] respectively. 

For example, in addition to simple aliphatic organic (B, C, N, O, S, P, F, Cl, Br, or  
I) or aromatic organic (b, c, n, o, s, or  p) symbols, an atom may be represented by 
a pair of brackets (requiring parentheses matching) containing a sequence of isotope 
number, atom symbol, chiral symbol, hydrogen count, charge, and class. With the 
exception of the atom symbol, each element of the sequence is optional, but is easily 
parsed by a finite state machine. isotope, symbol, chiral, hcount, charge, 
and class can all be distinguished based upon their first character, so the position 
in the progression can be inferred trivially. 6

When parsing branched_atom, all productions after the initial atom are 
ringbonds until the first (, which indicates the beginning of a branch. After  
observing a ), and popping the complementary ( off of the stack, the SMILES 
string is necessarily in the third component of a branched_atom, since only a 
branched_atom can emit a branch, and only branch produces the symbol 
). The next symbol must be a (, indicating the beginning of another branch, 
or one of the first symbols of rest_of_chain, since this must follow the 
branched_atom in the chain production. 

4.7.1 Ringbond and Valence Shell Semantic Constraints 

Similarly, the semantic restrictions of ringbond matching and valence shell con-
straints can be enforced during feedforward production of a SMILES string using a 
pushdown stack and a small (100-element) random access memory. Our approach 
depends upon the presence of matching bond labels at both sides of a ringbond, 
which is allowed but not required in standard SMILES syntax. We assume the trivial 
extension of the SMILES grammar to include this property. 
ringbonds are constrained to come in pairs, with the same bond label on both 

sides. Whenever a given ringbond is observed, flip a bit in the random access 
memory corresponding to the ring number (the set of digits after the bond). When 
the ringbond bit is flipped on, record the associated bond in the random access 
memory associated with the ring number; when the ringbond bit is flipped off, 
require that the new bondmatches the recorded bond, and clear the random access

6 symbol and hcount can both start with ‘H’, but symbol is mandatory, so there is no ambiguity. 
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memory of the bond. The molecule is only allowed to terminate (rest_of_chain 
produces ∈ rather than bond? chain) when all ringbond bits are off (parity 
is even). The decoder may receive as input which ringbonds are open and the 
associated bond type, so it can preferentially close them. 

The set of nested atomic contexts induced by chain, branched_atom, and 
branch can be arbitrarily deep, corresponding to the depth of branching in the 
spanning tree realized by a SMILES string. As a result, the set of SMILES symbols 
describing bonds to a single atom can be arbitrarily far away from the associated 
atom. However, once a branch is entered, it must be traversed in its entirety before 
the SMILES string can return to the parent atom. For each atom, it is sufficient to 
push the valence shell information onto the stack as it is encountered. If the SMILES 
string enters a branch while processing an atom, simply push on a new context, with 
a new associated root atom. Once the branch is completed, pop this context off the 
stack and return to the original atom. 

More specifically, each atom in the molecule is completely described by a sin-
gle branched_atom and the bond preceding it (from the rest_of_chain 
that produced the branched_atom). Within each successive pair of bond and 
branched_atom, track the sum of the incoming rest_of_chain bond, the  
internal ringbond and branch bonds, and outgoing rest_of_chain bond 
(from the succeeding rest_of_chain) on the stack. That is, each time a new 
bond is observed from the atom, pop off the old valence shell count and push on 
the updated count. Require that the total be less than a bound set by the atom, any 
remaining bonds are filled by implicit hydrogen atoms. Provide the number of avail-
able bonds as input to the decoder RNN, and mask additional ringbonds and 
branches once the number of remaining available bonds reaches one (if there are 
still open ringbonds) or zero (if all ringbonds are closed). Mask the outgo-
ing bond, or require that rest_of_chain produce ∈, based upon the number of 
remaining available bonds. 

4.7.2 Redundancy in Graph-Based and SMILES 
Representations of Molecules 

To avoid the degeneracy of SMILES strings, for which there are many encodings 
of each molecule, some authors have advocated the use of graph-based representa-
tions [ 14, 21– 23]. While graph-based processing may produce a unique representa-
tion in the encoder, it is not possible to avoid degeneracy in the decoder. Parse trees [ 9, 
10], junction trees [ 13], lists of nodes and edges [ 11, 14, 22], and vectors/matrices of 
node/edge labels [ 20, 21, 23] all imply an ordering among the nodes and edges, with 
many orderings describing the same graph. Canonical orderings can be defined, but 
unless they are obvious to the decoder, they make generative modeling harder rather 
than easier, since the decoder must learn the canonical ordering rules. Graph match-
ing procedures can ensure that probability within a generative model is assigned to
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the correct molecule, regardless of the order produced by the decoder [ 23]. However, 
they do not eliminate the degeneracy in the decoder’s output, and the generative loss 
function remains highly multimodal. 

4.8 Conclusion 

For each molecule, the All SMILES encoder uses stacked, pooled RNNs on multi-
ple SMILES strings to efficiently pass information throughout the molecular graph. 
The decoder targets a disjoint set of SMILES strings of the same molecule, forcing 
the latent space to develop a consistent representation for each molecule. Attentional 
mechanisms in the approximating posterior summarize spatially diffuse features into 
a fixed-length, non-factorial approximating posterior, and construct a latent represen-
tation on which linear regressors achieve state-of-the-art semi- and fully supervised 
property prediction. Gradient-based optimization of these regressor outputs with 
respect to the latent representation, constrained to a subspace near almost all proba-
bility in the prior, produces state-of-the-art optimized molecules when coupled with 
a simple RNN decoder. 
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Chapter 5 
SMILES-Based Bioactivity Descriptors 
to Model the Anti-dengue Virus Activity: 
A Case Study 

Soumya Mitra, Sumit Nandi, Amit Kumar Halder, 
and M. Natalia D. S. Cordeiro 

Abstract The present work aims to demonstrate the significance of the newly 
suggested bioactivity descriptors (so-called signaturizers) towards developing 
predictive 2D-QSAR models. As a case study, we examined the development of 
2D-QSAR models based on a dataset containing 77 compounds with inhibitory 
activity reported in a DENV2ProHeLa assay, which is basically a cell-based assay that 
estimates the Dengivirus-2 (DENV-2) protease inhibitory potential within cellular 
atmosphere. Indeed, though dengue is a well-known neglected tropical disease, its 
global incidence has risen sharply in recent years. Moreover, DENV infections may 
lead to serious and life-threatening diseases such as haemorrhagic fever and dengue 
shock syndrome. Inhibition of the DENV protease may therefore be a potential 
target for discovering anti-DENV agents. Interestingly, our initial attempts to set 
up QSAR models based solely on a number of chemicals descriptors coming from 
a range of different software packages/programs completely failed, since none of 
these yielded satisfactory statistical results. Hybrid QSAR models were generated 
also by combining both chemical and biological descriptors. Noteworthy is that 
the predictive quality of the 2D-QSAR models significantly improved by resorting 
instead to solely bioactivity descriptors or those combined with chemical descrip-
tors. The comparison analysis carried out in this work certainly shows that bioactivity 
descriptors can be useful for setting up predictive models to characterise complex
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biological activity data, but then of course at the expense of their mechanistic interpre-
tation. Simultaneously, this work provides important guidelines to exploit different 
linear and non-linear model development strategies in a systematic and consistent 
manner. What is more, it is based on non-commercial open-access tools, programs 
and webservers, so that the models can be reproduced, and the proposed models’ 
development strategies be easily and productively followed in the near future. 

Keywords Dengue virus · Protease inhibitor · QSAR · Descriptor · Signaturizer 

5.1 Introduction 

The incidence of dengue fever has increased drastically in recent years owing to 
high population density, poor environment and health management systems as well 
as due to increased vector distributions [1, 2]. Being endemic in tropical and sub-
tropical regions, dengue has been categorised as a ‘neglected tropical disease’, but 
the rise in international travel to those regions led to an increased number of imported 
dengue cases in Western countries as well [3]. Around 390 million dengue infections 
occur per year globally though only 30% cases are clinically recognised [4]. Similar 
to malaria and filariasis, dengue is a mosquito-borne viral disease that typically 
causes symptoms such as high fevers, headaches, muscle pains and rash. Dengue 
virus (DENV) belongs to the Flaviviridae family, which are single-positive-stranded 
RNA viruses. The DENV is transmitted by four major serotypes, namely: DENV-
1, DENV-2, DENV-3 and DENV-4. The DENV-carrying female Aedes mosquitoes, 
including Aedes albopictus and Aedes aegypti may infect humans [2]. One critical 
disorder caused by dengue infections is thrombocytopenia, which is normal in both 
gentle and severe cases [5, 6]. The DENV infections may lead to serious and life-
threatening diseases such as haemorrhagic fever and dengue shock syndrome [7]. 
The WHO declared that the reported deaths increased from 960 to 4032 between the 
year 2000 and 2015. Despite growing threats of dengue, its treatment still remains 
symptomatic, focusing mainly on the management of fever, pain and body fluid [8]. 
Even though a vaccine Dengvaxia has recently been developed, it performs differently 
in seropositive and seronegative patients, and its application is thus highly restricted 
[9, 10]. In-depth studies are thus required to develop small molecules as potential 
therapeutic agents to resist DENV infection. 

Meanwhile, the protease inhibitors remained one of the most potential targets for 
antiviral chemotherapy. The flaviviral protease complex (NS2B-NS3) is responsible 
for the cleavage of the viral polyprotein into separate functional proteins responsible 
for the replication of viruses [8, 11]. Inhibition of the DENV protease may therefore 
be a potential target for discovering anti-DENV agents. Recently, Klein and co-
workers of the Heidelberg University have designed and synthesised a series of 
synthetic small molecules as potential inhibitors of NS2B-NS3 in DENV-2. The 
authors set up a luciferase-based DENV-2 protease reporter system in HeLa cells 
(DENV2ProHeLa) that was employed to estimate the activity of the compounds
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in a cellular environment [8, 12]. In the current study, we collected 77 of such 
data-points from two reports, where the DENV2ProHeLa activity was expressed in 
50% effective concentration (EC50), with the aim of setting up linear QSAR models 
that may characterise the structural attributes important for the higher anti-DENV 
property of these compounds [8, 12]. Overall, we followed a conventional 2D-QSAR 
modelling approach but have also employed distinct categories of descriptors step-
by-step with the goal of generating the best predictive and validated models from this 
dataset. By doing so, we attempt to find the significance of the bioactivity molecular 
descriptors recently introduced by Bertoni et al. [13], which the authors so-referred to 
as ‘signaturizers’. In contrast to chemical descriptors, that mainly rely on the chemical 
attributes of compounds, signaturizers tend to describe their biological profile in 
terms of numerical values. Specifically, this work focuses on a case study with anti-
DENV protease inhibitors that combine the influence of both chemical and bioactivity 
descriptors in order to develop validated predictive 2D-QSAR models. However, as 
it will be described in this chapter, our case study highlights the significance of these 
newly developed (as well as less exploited) bioactivity descriptors for setting up 
predictive models. 

5.2 Materials and Methods 

5.2.1 Importance of Bioactivity Descriptors 

The 2D-QSAR modelling primarily relies on chemical descriptors that represent 
physicochemical and structural properties of small molecules. Due to availability of 
large bioactivity databases, it is now possible to set up other numerical representa-
tions of molecules beyond chemical structures by detecting their biological prop-
erties. Bioactivity signatures are multidimensional vectors that capture 25 different 
biological traits of the molecule (including target profiles, cellular response and clin-
ical outcomes) in a numerical vector format that is similar to the structural descriptors 
or fingerprints used in the field of cheminformatics [13]. The source of bioactivity 
signatures is Chemical Checker (CC) [14], which is an integration of major chemoge-
nomics and drug databases containing 25 different elements ranging from A1–E5 (A: 
chemistry, B: targets, C: networks, D: cells, E: clinics). The details of their sublabels 
are shown in Table 5.1.

In CC, each molecule is annotated with multiple n-dimensional vectors (i.e., bioac-
tivity signatures) with respect to the spaces for which experimental information is 
available. Evidently, all these elements do not have the same number of available data 
and in fact significant differences exist. However, since these bioactivity spaces are 
correlated, signatures for any novel compound may be obtained by tackling the metric 
learning problem using the Siamese neural network (SNN) containing a stacked array 
of CC signatures available for the compound (belonging to any of the A1–E5 layers: 
Si) as input whereas a n-dimensional embedding optimised to distinguish between
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Table 5.1 Summary of Chemical Checker spaces 

Space Description Sublabels Name 

A Chemistry A1 2D fingerprints 

A2 3D fingerprints 

A3 Scaffolds 

A4 Structural keys 

A5 Physicochemical parameters 

B Targets B1 Mechanisms of action 

B2 Metabolic genes 

B3 Crystals 

B4 Binding 

B5 High-throughput screening bioassays 

C Network C1 Small-molecule roles 

C2 Small-molecule pathways 

C3 Signalling pathways 

C4 Biological processes 

C5 Interactome 

D Cells D1 Gene expression 

D2 Cancer cell lines 

D3 Chemical genetics 

D4 Morphology 

D5 Cell bioassays 

E Clinics E1 Therapeutic areas 

E2 Indications 

E3 Side effects 

E4 Diseases and toxicology 

E5 Drug–drug interactions

similar and dissimilar molecules in Si as output [13]. More specifically, the SNN 
is fed with triplets of molecules (an anchor molecule, one that is similar to the 
anchor—i.e., positive, and one that is not—i.e., negative), and the SNN is expected 
to correctly classify this pattern with a distance measurement based on Euclidean 
distances computed in the embedding space. Therefore, the 25 SNNs are trained 
on the basis of existing CC signature molecule triplets reflecting Si similarities. The 
SNN embedding of 128 is chosen for all CC space to get an output of 128 dimensions 
and with ‘global’ option 3200 (= 25 × 128) biological signatures are obtained for 
each molecule. In the present work, we calculated these global signatures for each 
dataset compound to build 2D-QSAR models.
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5.2.2 Dataset Collection 

The EC50 (in µM) values of cell-based DENV2ProHeLa activity of 77 compounds 
were collected from the literature and these were then converted to pEC50 (in M) 
and subsequently used as response variables. The SMILES notation and the reported 
biological activity of the dataset compounds is given in the supplementary mate-
rials (Table S1). In-depth details of this comparatively novel assay method can be 
found elsewhere [12]. Briefly, the DENV2ProHeLa assay, also named as DENV-
2 protease reporter gene assay, is basically a high-throughput screening (HTS)-
capable intracellular DENV-2 protease assay with luciferase reporter system that 
enables us to estimate the DENV-2 protease activity in a cellular atmosphere. The 
assay results also reflect membrane permeability, metabolic stability and cytotoxi-
city of the compounds under investigation. Since the protease in DENV2ProHeLa 
cells interacts with a number of human host proteins and membranes, this assay 
provides biologically more meaningful environment as compared to the biochemical 
assay conducted with isolated protease. The SMILES structures of the 77-dataset 
compounds were directly collected from the reports of Klein et al. [8, 12], and these 
were then converted into 3D.sdf formats using the Discovery Studio Visualizer. 

5.2.3 Calculation of Molecular Descriptors 

The 3D structures of these compounds were submitted to the OCHEM webserver [15] 
for the calculation of molecular descriptors. This work resorts to a range of different 
theoretical chemical descriptors other than biological signatures with attempts to 
generate statistically reliable models. We looked in the OCHEM webserver [15] for  a  
number of well-known software packages to calculate the molecular descriptors for 
the dataset compounds, including the following ones: (a) AlvaDesc v.2.0.4 [16], (b) 
CDK 2.7.1 [17], (c) RDKit (https://www.rdkit.org/docs/), (d) simplex representation 
of molecular structure—SIRMS (https://github.com/DrrDom/sirms) [18], (e) ISIDA 
fragments and GSFragment [19], (f) multilevel neighbourhoods of atoms (MNA) 
[20], (g) Mera + Mersy [21], (h) Mordred descriptors [22], and (i) PyDescriptors 
[23]. The application of so many diverse types of descriptors basically aimed to check 
which descriptors are more capable of generating validated and predictive models. In 
OCHEM, the structures are first pre-processed using Chemaxon following steps such 
as standardisation, neutralise, remove salts and clean structures [24]. For calculation 
of 3D structures, optimisation of the compounds geometries was performed using the 
Corina tool under the OCHEM platform. The ‘global’ signaturizer descriptors were 
calculated with signaturizer tool (accessed from https://gitlabsbnb.irbbarcelona.org/ 
packages/signaturizer), where the SMILES notation of the several structures was 
submitted as inputs for the calculation of the descriptors using Jupyter notebook 
provided with this tool [13].

https://www.rdkit.org/docs/
https://github.com/DrrDom/sirms
https://gitlabsbnb.irbbarcelona.org/packages/signaturizer
https://gitlabsbnb.irbbarcelona.org/packages/signaturizer
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5.2.4 Development of Linear 2D-QSAR Models 

Since the present work compares the performance of a number of descriptor calcu-
lating tools (e.g., alvaDesc, PyDescriptors) for setting up predictive and validated 
linear models, we needed robust but consistent model development strategies. We 
initially used our in-house SFS-QSAR tool (accessed from https://github.com/ncorde 
irfcup/SFS-QSAR-tool) for developing multiple models using the sequential forward 
selection (SFS) technique [25], as illustrated in Fig. 5.1. 

Each dataset containing the response variables and the descriptors were randomly 
divided into three training set-test set combinations, using in the SFS-QSARtool 
random seed values of 3, 20 and 42. For each division, the following four scoring 
functions were applied: the determination coefficient (R2), the negative mean abso-
lute error (NMAE), the negative mean Poisson deviance (NMPD) and the negative 
mean gamma deviance (NMGD). Similarly, for each of these scoring functions, two 
cross-validation strategies were used for model development, namely: (i) no cross-
validation and (ii) fivefold cross-validation. Therefore, for each descriptor calcu-
lating tool, a total of 24 (= 3 × 4 × 2) models were generated (see Fig. 5.1). After 
developing these models, the statistical quality of each model was assessed on the 
basis of internal and external predictivities, as explained later in this chapter. The 
data division that produced the best statistical result from SFS was then utilised for 
generating genetic algorithm-based multiple linear regression (GA-MLR) models by 
employing the GeneticAlgorithm v.4.1_2 [26]. In contrast to SFS, GA is a stochastic 
feature selection technique and the latter is based on random selection of the set 
of descriptors, estimation of fitting scores of these random models followed by 
cross-over and mutation schemes to improve the fitting scores when setting up the 
final models [26]. The SFS technique, meanwhile, is a non-stochastic technique that 
includes descriptors in the model one by one following specific scoring functions, 
and given the same dataset and parameter settings for model development, the users 
end up with the same model every time [27]. Descriptor pre-treatment was carried

Fig. 5.1 SFS-QSAR model development strategies for each dataset 

https://github.com/ncordeirfcup/SFS-QSAR-tool
https://github.com/ncordeirfcup/SFS-QSAR-tool
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out for each model development in which constant, near-constant and highly corre-
lated descriptors were eliminated by setting a variance cut-off of 0.0001 and an inter 
correlation cut-off of 0.99. Notice that even though a high intercorrelation cut-off was 
employed, the maximum intercollinearity of the final models was carefully checked 
to ensure that the descriptors of the model are unique and independent. Apart from 
these, the following parameter settings were used for GA-MLR: (a) total number 
of iterations/generations: 100, (b) equation length: 8, (c) mutation probability: 0.3, 
(d) cross-over probability: 1 (default), (e) initial number of equations generated: 100 
(default), (f) number of equations selected in each generation: 30. Since GA-MLR 
models require multiple runs for selecting the best model, in this work, we ran each 
model 20 times with the training set, and the best model was then chosen based on 
the overall higher statistical quality [26]. 

5.2.5 Statistical Analysis of Models 

The goodness of fit, robustness and predictivity of the final 2D-QSAR models were 
estimated using a range of well-known statistical parameters. Initially, the models’ 
internal predictivity was estimated by Q2 

LOO and rm 
2 
LOO, whereas their external 

predictivity was assessed from R2 
Pred and rm 

2 
test. The final models were more crit-

ically examined by checking the R2, R2 
Adj, the Fisher’s statistics (F-test), and the 

mean absolute error (MAE) values. Furthermore, along with the rm 
2 
LOO and rm 

2 
test 

values, their deviations (Δrm 
2 
LOO andΔrm 

2 
test) were also determined [28–30]. Three 

additional parameters R2 
Test, k, k' and |r0 2 − r'

0 
2|, which belong to Golbraikh and 

Tropsha’s acceptable model, criteria were also considered for checking the external 
predictivity of the test set [30, 31]. 

As discussed before, the proposed models were checked for intercollinearity, and 
at the same time, the multicollinearity of the final models was estimated by calculating 
the variation inflation factor (VIF) using the following equation. 

VIF = 1/
(
1 − R2 

i

)
(5.1) 

In this equation, R2 
i is the determination coefficient (R2) determined by regressing 

the ith descriptor on the other descriptors [32]. 
Additionally, to confirm that the 2D-QSAR model was not developed by chance, 

the Y-randomisation test was performed to generate the parameter cRP 
2 that 

measures the difference between original R2 and average value of randomised R2. 
1000 randomised models were generated in this work by scrambling the response 
values [33].
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5.2.6 Applicability Domain of the Models 

The applicability domain is basically the chemical-biological space within which 
the prediction of a specific model is deemed reliable. In this work, the Williams plot 
(leverage vs. standardised residuals) was obtained to identify structural and response 
outliers in the linear 2D-QSAR models [34, 35]. 

5.2.7 Non-linear Model Development 

The non-linear models were developed using three well-known machine learning 
tools namely (a) support vector regression (SVR), (b) random forest regression (RFR) 
and (c) multilayer perception-based regression (MLPR) using our in-house non-
linear regression tool (accessed from https://github.com/ncordeirfcup/Non-linear-
Regression-tools) that employs scikit-learn algorithms to set up non-linear models. In 
this work, we also performed hyperparameter optimisation for each machine learning 
technique and the parameters that were tuned during model development are listed 
in Table 5.2. 

Fivefold cross-validated R2 and R2 
Pred were used to estimate the internal and 

external predictivity of the non-linear models. 

Table 5.2 Parameters 
optimised during the 
development of non-linear 
2D-QSAR models 

Technique Parameters tuning 

RFR Bootstrap: true/false 

Criterion: Gini, entropy 

Maximum depth: 10, 30, 50, 70, 90, 100, 200, none 

Maximum features: auto, sqrt 

Minimum samples leaf: 1, 2, 4 

Minimum samples split: 2, 5, 10 

Number of estimators: 50, 100, 200, 500 

SVR C: 0.1, 1, 10, 100, 1000 

Gamma: 1, 0.1, 0.01, 0.001 

Kernel: RBF, linear 

MLPR Hidden layer sizes: 100 

Activation: identity, logistic, tanh, relu 

Solver: SGD, Adam 

Alpha: 0.0001, 0.001, 0.01, 1 

Learning rate: constant, adaptive, invscaling

https://github.com/ncordeirfcup/Non-linear-Regression-tools
https://github.com/ncordeirfcup/Non-linear-Regression-tools
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5.3 Results and Discussion 

As referred to above, descriptors calculated from eight different tools were applied 
to establish predictive models from the dataset. Finally, the bioactivity descriptors 
(signaturizers) were employed for setting up models. At first, we resorted to the SFS 
feature selection technique since this technique is non-stochastic in nature and with 
a given dataset and parameter settings yields the same model each time. For each 
descriptor calculating tool, 24 SFS-QSAR models were developed by varying the 
data distributions (i.e., using as random seed values 3, 20 and 42), scoring functions 
(i.e., R2, NMAE, NMPD and NMGD) and cross-validation techniques (i.e., none and 
fivefold), as previously shown in Fig. 5.1. To assess the overall quality of these linear 
2D-QSAR models, the average values of Q2 

LOO and R2 
Pred were also calculated (see 

Table 5.3). 
One thing which is clearly seen from the results in Table 5.3 is that, obtaining a 

predictive linear 2D-QSAR model based on the current dataset is quite challenging. 
Indeed, models with poor overall predictivity were obtained for descriptors calcu-
lated by means of Mera + Mersy, CDK, GSFrag + ISIDA and MNK, whereas 
moderate predictability was obtained for the models generated with the descrip-
tors coming from PyDescriptors, Mordred, AlvaDes, SIRMS and RDKit. Finally, it 
is evident from these results that bioactivity descriptors (i.e., signaturizers) led to 
a linear model, the statistical predictivity of which is considerably higher (around 
20%) than the best models generated with other types of descriptors, which clearly 
underlines the importance of such descriptors in model generation. We hypothesised 
that better models may be retrieved from PyDescriptors, Mordred, AlvaDes, SIRMS,

Table 5.3 Summary of the statistical results obtained from SFS-QSAR modelling with molecular 
descriptors calculated with a number of descriptors calculating software/programs 

Descriptors Random seed Scoring Fold Q2 
LOO R2 

Pred rm 
2 
LOO rm 

2 
test Averagea 

Mera + 
Mercy 

20 R2 5 0.288 0.203 0.194 0.162 0.246 

CDK 20 NMAE 0 0.332 0.398 0.189 0.318 0.365 

GSFrag + 
ISIDA 

3 NMAE 5 0.411 0.463 0.274 0.301 0.437 

MNK 3 NMAE 5 0.539 0.360 0.401 0.295 0.449 

PyDescriptors 20 R2 0 0.536 0.498 0.403 0.301 0.517 

Mordred 3 R2 5 0.537 0.550 0.401 0.423 0.544 

AlvaDesc 42 NMAE 5 0.526 0.576 0.386 0.468 0.551 

SIRMS 3 NMAE 0 0.565 0.570 0.439 0.530 0.567 

RDKit 3 R2 0 0.658 0.540 0.546 0.380 0.599 

Signaturizers 20 R2 0 0.717 0.720 0.615 0.660 0.718 

a Average value of Q2 
LOO and R2 

Pred 
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Table 5.4 Summary of statistical results obtained from GA-MLR modelling 

Descriptors Random seed Q2 
LOO R2 

Pred rm 
2 
LOO rm 

2 
test Averagea 

Signaturizers 20 0.582 0.468 0.448 0.419 0.525 

AlvaDesc 42 0.495 0.62 0.356 0.356 0.558 

PyDescriptors 20 0.455 0.505 0.308 0.509 0.480 

Mordred 3 0.388 0.312 0.243 0.232 0.350 

RDKit 3 0.485 0.503 0.343 0.37 0.494 

SIRMS 3 0.523 0.483 0.39 0.261 0.503 

a Average value of Q2 
LOO and R2 

Pred 

RDKit and Signaturizers if other feature selection techniques are explored. There-
fore, we selected the data distributions of Table 5.3 for each of these descriptors to 
set up MLR models by means of the stochastic GA feature selection technique and 
the results are presented in Table 5.4. 

As seen, the GA technique failed to improve the quality of the 2D-QSAR MLR 
models significantly. Indeed, only the model based on the descriptors computed 
using AlvaDesc reveals a slight quality improvement. Summing up, the SFS-MLR 
model based on signaturizer descriptors gave us the most predictive linear 2D-QSAR 
model, judging from the attained Q2 

LOO and R2 
Pred values (= 0.717 and 0.720, 

respectively). The statistical quality of this model is significantly better than the 
models developed with any other tool. Therefore, the next step to be followed is 
to merge the chemical descriptors with the biological signatures in order to check 
if more predictive models can be generated or not. For such purpose, we merged 
the signaturizer descriptors separately with the descriptors calculated by AlvaDesc, 
RDKit, SIRMS, PyDescriptors, Mordred and MNA. It should be noticed however that 
descriptors calculated by the remaining tools, such as CDK, Mera + Mercy, were 
not included since these produced the least predictive models. The same model 
development strategy was applied for each set of descriptors, i.e., the best model 
was picked from 24 initially developed SFS-QSAR models by varying the data 
distributions, the scoring functions, and the cross-validation schemes. The attained 
results are provided in Table 5.5.

It is now clearly observed that the combination of biological signatures with 
chemical descriptors improves the overall predictivity of the models as compared 
to that of the models developed only with chemical descriptors. More importantly, 
even though the biological signatures provided the most predictive models among 
descriptors, they do not afford mechanistic interpretations. Yet, hybrid models devel-
oped with both the chemical descriptors and biological signatures are able to unveil 
by some means mechanistic interpretability. From Table 5.5, it is inferred that the 
most predictive hybrid model is generated with the AlvaDesc descriptors followed by 
SIRMS and RDKit descriptors. Noticeably, the model produced with signaturizers 
and Mordred descriptors has a very low rm 

2 
test value (= 0.497) indicating that it does 

not have satisfactory external predictivity. We also attempted to generate these MLR 
models by using the GA selection but no better model was retrieved. Additionally,
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Table 5.5 Summary of the SFS-QSAR models obtained after combining the chemical descriptors 
calculated with a number of software packages/programs with biological signatures 

Descriptors Random 
seed 

Score Fold Q2 
LOO R2 

Pred rm 
2 
LOO rm 

2 
test Averagea 

Signaturizers + 
PyDescriptors 

20 R2 0 0.740 0.647 0.644 0.582 0.693 

Signaturizers + 
MNA 

42 NMGD 0 0.761 0.654 0.674 0.540 0.707 

Signaturizers + 
RDKit 

20 R2 0 0.742 0.710 0.647 0.626 0.726 

Signaturizers + 
Mordred 

42 R2 0 0.782 0.673 0.698 0.497 0.728 

Signaturizers + 
SIRMS 

20 NMGD 5 0.741 0.722 0.644 0.648 0.731 

Signaturizers + 
AlvaDesc 

20 NMGD 0 0.760 0.720 0.668 0.631 0.740 

a Average value of Q2 
LOO and R2 

Pred

when AlvaDesc and SIRMS descriptors were combined with biological signatures, 
the statistical quality of the resulting models largely deteriorated, having the best 
obtained model values of 0.691 and 0.623 for Q2 

LOO and R2 
Pred, respectively. A 

detailed description of the four most predictive linear 2D-QSAR models obtained 
in the present work is given in Table 5.6, and the observed versus predicted activity 
plots for such models are shown in Fig. 5.2.

The statistical significance of these models was also established by the fact that the 
maximum intercorrelation obtained from these four models are 0.620 (for Model 1), 
0.639 (for Model 2) and 0.511 (for both Models 3 and 4). Furthermore, we determined 
the VIF value for each model descriptor and found that all values were less than five, 
indicating that multicollinearity does not exist in these models. Moreover, the Y-
randomization tests (1000 runs) carried out for each of such models yielded high 
cRP 

2 values always (> 0.7), which lead us to conclude that they are indeed unique in 
nature. 

Here, it should be also noticed that the biological signatures of the hybrid 2D-
QSAR models prevailed in fact in all of them. Out of eight descriptors of these hybrid 
models, 6–7 descriptors belong to the biological signatures, clearly pinpointing their 
key role. Furthermore, some biological signatures like D0253 and D2942 appear 
almost in every model, whereas D0406, D1581 and D2035 were found to be present 
in multiple models. 

As shown in Fig. 5.3, the relative significance of the descriptors computed for 
each of these four models patently portrays the fact that it is significantly lower 
for the chemical descriptors than for the biological signatures. Therefore, biological 
signatures mainly prevailed in these hybrid models, and even if with low importance 
helped in improving the quality of the models to a considerable extent.
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The determined Williams plots are shown in Fig. 5.4. Inspection of these plots 
reveals that, save for Model 3 developed by considering both SIRMS and signatur-
izers descriptors, no structural outliers were detected in these models. It may therefore 
be inferred that the descriptors of these models assured that the data-points are within 
their AD. Moreover, two structural outliers of Model 2 were in fact predicted very 
well by this model. All hybrid models contain two response outliers which naturally

Table 5.6 Detailed outline of the four most predictive linear 2D-QSAR models obtained in the 
present work by mixing different type of descriptors 

Model Descriptors Equation Statistical resultsa 

1 AlvaDesc + signaturizers pEC50 = +  3.728 (± 0.205) 
− 3.000 (± 0.602) D0253 + 
1.597 (± 0.609) D0791 − 
6.828 (± 0.940) D1649 + 
1.858 (± 0.544) D2144 − 
3.717 (± 0.898) D2830 − 
4.380 (± 0.648) D2942 + 
0.092 (± 0.018) 
CATS3D_09_DL + 0.143 
(± 0.029) CATS3D_08_PL 

N training = 61; R2 = 0.821; 
R2 

Adj = 0.790; F(52; 8) = 
29.780; Q2 

LOO = 0.743; 
MAE = 0.137; MSE = 
0.179; rm 

2 
LOO = 0.668;

Δrm 
2 
LOO = 0.153; N test = 

16; R2 
Pred = 0.720; RMSEP 

= 0.311; rm 
2 
test = 0.631;

Δrm 
2 
test = 0.043; R2 

Test = 
0.719; k = 1.013, k' = 
0.984; |r0 2 − r'

0 
2| = 0.078; 

cRP 
2 = 0.756 

2 SIRMS + signaturizers pEC50 = +  5.767 (± 0.151) 
− 2.918 (± 0.586) D0253 − 
1.412 (± 0.521) D0856 + 
4.232 (± 0.677) D1581 + 
5.338 (± 1.480) D2035 + 
1.525 (± 0.521) D2199 + 
0.816 (± 0.589) D2492 − 
3.768 (± 0.673) D2942 − 
0.321 (± 0.073) |S|n| ||4|| 
|REFRACTIVITY| C-D.C = 
D 

N training = 61; R2 = 0.791; 
R2 

Adj = 0.759; F(52; 8) = 
24.569; Q2 

LOO = 0.741; 
MAE = 0.136; MSE = 
0.194; rm 

2 
LOO = 0.644;

Δrm 
2 
LOO = 0.068; N test = 

16; R2 
Pred = 0.722; RMSEP 

= 0.309; rm 
2 
test = 0.648;

Δrm 
2 
test = 0.020; R2 

Test = 
0.733; k = 1.017, k' = 
0.980, |r0 2 − r'

0 
2| = 0.079; 

cRP 
2 = 0.724 

3 RDKit + signaturizers pEC50 = +  4.967 (± 0.219) 
− 3.311 (± 0.449) D0253 − 
3.260 (± 0.580) D0406 + 
3.071 (± 0.733) D0448 + 
4.523 (± 0.653) D1581 + 
5.914 (± 1.360) D2035 − 
4.830 (± 0.628) D2942 + 
0.314 (± 0.116) MoRSE42 
+ 0.006 (± 0.001) RDF197 

N training = 61; R2 = 0.821; 
R2 

Adj = 0.794; F(52; 8) = 
29.829; Q2 

LOO = 0.742; 
MAE = 0.135; MSE = 
0.179; rm 

2 
LOO = 0.647;

Δrm 
2 
LOO = 0.142; N test = 

16; R2 
Pred = 0.710; RMSEP 

= 0.316; rm 
2 
test = 0.626;

Δrm 
2 
test = 0.032; R2 

Test = 
0.714; k = 1.010; k' = 
0.987; |r0 2 − r'

0 
2| = 0.027; 

cRP 
2 = 0.756

(continued)
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Table 5.6 (continued)

Model Descriptors Equation Statistical resultsa

4 Signaturizers pEC50 = 5.578 (± 0.176) − 
3.1407 (± 0.522) D0253 − 
2.440 (± 0.597) D0406 + 
1.526 (± 0.533) D0605 + 
3.763 (± 0.675) D1581 + 
6.832 (± 1.4912) D2035 − 
1.795 (± 0.631) D2619 + 
1.601 (± 0.675) D2895 − 
4.444 (± 0.689) D2942 

N training = 61; R2 = 0.788; 
R2 

Adj = 0.756; F(52; 8) = 
24.210; Q2 

LOO = 0.717; 
MAE = 0.142; MSE = 
0.195; rm 

2 
LOO = 0.615;

Δrm 
2 
LOO = 0.147; N test = 

16; R2 
Pred = 0.720; RMSEP 

= 0.311; rm 
2 
test = 0.660;

Δrm 
2 
test = 0.030; R2 

Test = 
0.742; k = 1.020; k' = 
0.977; |r0 2 − r'

0 
2| = 0.064; 

cRP 
2 = 0.723 

a N training: number of training set compounds; R2: determination coefficient; R2 
Adj: adjusted R2; F: 

Fisher statistics; Q2 
LOO: leave-one-out cross-validated R2; MAE: mean absolute error; MSE: mean 

square error; rm 
2 
LOO: leave-one-out rm 

2 metric; Δrm 
2 
LOO: standard deviation of rm 

2 
LOO; N test: 

number of test set compounds; R2 
Pred: R2 for external prediction; RMSEP: root mean square error 

of prediction; rm 
2 
test: rm 

2 for the test set; Δrm 
2 
test: standard deviation of rm 

2 
test; R2 

Test, k, k' and 
|r0 2 − r'

0 
2|: parameters belong to Golbraikh and Tropsha’s acceptable model criteria for test set 

validation; and cRP 
2: statistical parameter of the Y-randomization test [28–31, 33] 

Fig. 5.2 Observed versus predicted plots of the 2D-QSAR hybrid models
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Fig. 5.3 Relative significance of the descriptors in the 2D-QSAR hybrid models

lowers their overall predictivity, but these should not be removed since they lie very 
well within the applicability structural domain of the models. 

We finally left with the question whether non-linear 2D-QSAR models with higher 
statistical predictivity might exist using the employed descriptors so far. Even though

Fig. 5.4 Williams plots of the 2D-QSAR models 
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the main goal of this work is to develop linear models, since most of the chem-
ical descriptors failed to accomplish such a goal, the question becomes even more 
significant. Therefore, we also attempted to develop non-linear models to check 
that. Nowadays, it is well known that there are multiple ways of developing non-
linear models as regards to (a) the applied machine learning (ML) technique, (b) the 
setting of parameters for the targeted ML technique and (c) the descriptors selec-
tion strategy. In this work, we paid particular attention on two different schemes 
for developing such non-linear models using the following three ML techniques: 
(a) support vector regression (SVR), (b) random forests regression (RFR) and (c) 
multilayer perception-based regression (MLPR). The models were firstly developed 
after careful hyperparameter optimisation, the details of which were provided in 
Table 5.2. As far as the descriptor selection is concerned, we followed two schemes. 
In the first one, descriptors and data distributions obtained from the best linear models 
were considered for model development. In the second, 20 most distinct descriptors 
were obtained from the differential Shannon entropy (dSe) technique calculated with 
the IMMAN software (http://mobiosd-hub.com/imman-soft/) [36, 37]. A statistical 
summary of the performance of the best non-linear models found by following these 
schemes is given in Table 5.7.

The attained results may be summarised as follows: 

(a) Descriptors selected by dSe as well the descriptors selected directly from 
the linear 2D-QSAR models failed to generate predictive non-linear models. 
However, the performance of the models was better when the descriptors of the 
respective linear model were deployed for model generation. Therefore, we did 
not consider the dSe selected descriptors for deriving hybrid non-linear models, 
that is, based on chemical descriptors plus bioactivity descriptors. 

(b) Even more importantly, none of the non-linear models achieved a statistical 
predictivity significantly higher than that pertaining to the linear 2D-QSAR 
models. 

(c) The SVR remained the most successful regressor among the three ML tech-
niques employed for model generation. All predictive SVR models were derived 
with a ‘linear’ kernel and not with a ‘RBF’ kernel. Nevertheless, the SVR models 
were not statistically more predictive when compared to the linear 2D-QSAR 
models (see Table 5.5). 

(d) Hybrid non-linear models were found to be more predictive compared to models 
generated either with only chemical descriptors or with only biological signa-
tures. The best non-linear model found was produced by SVM with AlvaDesc 
and signaturizer descriptors (Q2 

LOO = 0.750, R2 
Pred = 0.705). However, the 

statistical quality of this model was no better than that of the linear models. 
(e) Finally, it is worth mentioning here that we even attempted to derive models 

including all the descriptors from each set, after removing the constant and 
near-constant descriptors as well as highly correlated features by setting the 
correlation cut-off to 0.95 and the variance cut-off to 0.001. Still, we realised 
that the quality of the non-linear models rather deteriorates with the increase in 
the number of descriptors (results not shown).

http://mobiosd-hub.com/imman-soft/
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Table 5.7 Summary of the statistical results achieved for the non-linear models 

Descriptors Random seed Type of 
descriptors 

ML Q2 
LOO R2 

Pred Averagea 

AlvaDesc 42 dSe MLPR − 0.463 0.522 0.030 

AlvaDesc 42 dSe RFR 0.203 0.258 0.231 

AlvaDesc 42 dSe SVR 0.198 0.182 0.190 

RDKit 3 dSe MLPR − 0.049 0.028 − 0.011 
RDKit 3 dSe RFR 0.264 0.135 0.200 

RDKit 3 dSe SVR 0.140 0.162 0.151 

SIRMS 3 dSe MLPR 0.169 − 0.073 0.048 

SIRMS 3 dSe RFR 0.384 0.209 0.297 

SIRMS 3 dSe SVR 0.384 0.209 0.297 

Signaturizers 20 dSe MLPR 0.183 0.176 0.180 

Signaturizers 20 dSe RFR 0.110 0.237 0.174 

Signaturizers 20 dSe SVR 0.162 0.315 0.239 

AlvaDesc 42 Linear 
model 

MLPR 0.190 0.526 0.358 

AlvaDesc 42 Linear 
model 

RFR 0.426 0.432 0.429 

AlvaDesc 42 Linear 
model 

SVR 0.579 0.556 0.568 

RDKit 3 Linear 
model 

MLPR 0.003 0.099 0.051 

RDKit 3 Linear 
model 

RFR 0.317 0.522 0.420 

RDKit 3 Linear 
model 

SVR 0.655 0.516 0.586 

SIRMS 3 Linear 
model 

MLPR 0.427 − 0.066 0.181 

SIRMS 3 Linear 
model 

RFR 0.472 0.514 0.493 

SIRMS 3 Linear 
model 

SVR 0.310 0.513 0.412 

Signaturizers 20 Linear 
model 

MLPR 0.200 0.163 0.182 

Signaturizers 20 Linear 
model 

RFR 0.391 0.536 0.464 

Signaturizers 20 Linear 
model 

SVR 0.715 0.695 0.705 

AlvaDesc + 
Signaturizers 

20 Linear 
model 

MLPR 0.362 0.598 0.480

(continued)
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Table 5.7 (continued)

Descriptors Random seed Type of
descriptors

ML Q2
LOO R2

Pred Averagea

AlvaDesc + 
Signaturizers 

20 Linear 
model 

RFR 0.470 0.450 0.460 

AlvaDesc + 
Signaturizers 

20 Linear 
model 

SVR 0.750 0.705 0.728 

RDKit + 
Signaturizers 

20 Linear 
model 

MLPR − 0.200 0.132 − 0.034 

RDKit + 
Signaturizers 

20 Linear 
model 

RFR 0.592 0.713 0.653 

RDKit + 
Signaturizers 

20 Linear 
model 

SVR 0.695 0.669 0.682 

SIRMS + 
Signaturizers 

20 Linear 
model 

MLPR 0.203 0.210 0.207 

SIRMS + 
Signaturizers 

20 Linear 
model 

RFR 0.603 0.180 0.392 

SIRMS + 
Signaturizers 

20 Linear 
model 

SVR − 0.147 − 0.121 − 0.134 

aAverage value of Q2 
LOO and R2Pred

5.4 Conclusions 

In this chapter, we attempted to highlight the importance of the newly developed 
descriptors—i.e., bioactivity descriptors or biological signatures, for setting up 
predictive 2D-QSAR models. Such descriptors require only the SMILES notation for 
the targeted compounds and provide a range of descriptor values jointly embodying 
their chemical, biological and clinical profiles. As a case study for such purpose, 
we employed a dataset comprising 77 compounds with cell-based biological activity 
against the DENV-2 protease. What is more, it is also important to understand the 
significance of the current work from the context of the nature of biological activity 
data used for modelling. As referred to earlier, the outcomes of such cell-based assays 
(i.e., the DENV2ProHeLa assay) are influenced not only by the type of biological 
target (i.e., the NS2B-NS3 protease) but also by the complex multifactorial condi-
tions that do exist inside a specific cellular system. The less satisfactory performance 
of chemical descriptors to characterise the structure activity relationships may well 
be explained from the fact that they fail to encode the complexity of biological 
results. Therefore, most likely the outcomes of such cell-based assays can only be 
modelled by some kind of bioactivity descriptors that not only encode chemical 
attributes but also biological profiles with numerical values. From this very reason, 
we were encouraged to explore the newly developed bioactivity descriptors (also 
named signaturizers) for building 2D-QSAR models. For the sake of comparisons, 
we attempted to develop linear 2D-QSAR models using different sets of chemical 
descriptors calculated with a number of different software packages/programs. As
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such, the present work paid particular attention to both the robustness and consis-
tency of the models’ development techniques. For each descriptor, we generated as 
many as 44 (i.e., 24 SFS-MLR plus 20 GA-MLR) different models to select the most 
predictive model, which is reported here. Regardless of chemical descriptors (or 
fragments) or model development techniques, no linear 2D-QSAR model was found 
with satisfactory statistical predictivity. The global signaturizer descriptors however 
supplied us a linear 2D-QSAR model, the overall statistical quality of which was 
around 20% better than the most predictive model generated with chemical descrip-
tors. Bioactivity descriptors were then merged with chemical descriptors to generate 
hybrid linear models in a bid to improve the overall predictivities of the 2D-QSAR 
models. The combination of signaturizers with AlvaDesc descriptors afforded the 
most predictive linear hybrid model, although SIRMS and RDKit descriptors also 
delivered hybrid models with similar statistical predictivity. What is more, non-
linear models generated with multiple machine learning techniques also showed the 
importance of bioactivity descriptors. The results from this work therefore mean 
that the newly proposed biological signatures proposed by Bertoni et al. [13] shall 
be very useful in the future for developing predictive 2D-QSAR models. Naturally, 
their true significance may only be established when these bioactivity descriptors are 
compared with other chemical descriptors just as it was carried out here. Thanks to 
that, this work conveys important guidelines to exploit different linear and non-linear 
model development strategies in a systematic and consistent manner. The entire work 
outlined in this chapter is based on non-commercial open-access tools, programs and 
webservers, so that the models can easily be reproduced, and a model development 
strategic landscape followed in the future as well. 
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Chapter 6 
QSPR Models for Prediction of Redox 
Potentials Using Optimal Descriptors 

Karel Nesměrák and Andrey A. Toropov 

Abstract The redox potential is an important physicochemical property widely used 
for the characterization of chemical species, and, as a characteristic constant of a 
given chemical species, it is also useful for predicting various other properties of the 
species. In the chapter, we review and discuss the pros and cons of QSPR models 
for the prediction of redox potentials using optimal descriptors calculated with the 
SMILES as well as using the so-called hybrid descriptors calculated with considering 
SMILES and molecular graphs of atomic orbitals. 

Keywords QSPR · Redox potential · Drug design · Monte Carlo method 

6.1 Introduction, Redox Potential, and Its Significance 

The electron and its transfer play a fundamental role in chemical reactions, processes 
that are very common in our real world and that lead to the chemical transformation 
of one set of chemical substances to another [1]. When a chemical reaction involves 
a change in the oxidation states of the reactants, we refer to such a reaction as 
an oxidation–reduction reaction, or redox reaction, for short. A reactant that has a 
strong affinity for electrons (an electron acceptor) is referred to as an oxidant, and 
its oxidation number decreases during the reaction. The opposite is a reactant called 
a reductant, which is an electron donor, and its oxidation number increases during 
the reaction. 

The tendency of a chemical species to electron transfer is characterized by 
the oxidation–reduction (redox) potential [2]. The redox reaction between two
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substances can be represented by the general chemical equation, 

nB ARed + nA BOx ⇌ nB AOx + nA BRed, (6.1) 

where AOx/Red, respectively, BOx/Red, is termed oxidation–reduction chemical pair, and 
nA, respectively, nB, is the stoichiometric coefficient. Equation (6.1) also represents 
the chemical transformation of the system from state I to state II. The equilibrium 
constant based on the activities ai of the individual reactants or products can be 
written for this reaction as 

K = 
anB 
AOx 

an A BRed 

anB 
ARed 

an A BOx 

. (6.2) 

The shift of equilibrium of any chemical reaction depends, at constant temperature 
and pressure, on the change in the free enthalpy ΔG corresponding to the transition 
from state I to state II, which can be expressed as the change of the chemical potential 
μi, that is for Eq. (6.1)

ΔG = GII − GI = nBμAOx + nAμBRed − nB μARed − nAμBOx . (6.3) 

The chemical potential is generally defined on the basis of the activity of a 
substance by the relationship, 

μi = μ◦ 
i RT ln ai , (6.4) 

where μ◦ 
i is standard chemical potential, R is the molar gas constant 

(8.314 J K−1 mol−1), and T is thermodynamic temperature. 
Inserting Eq. (6.4) into Eq. (6.3) and rearranging leads to

ΔG = nB μ
◦ 
AOx 

+ nAμ
◦ 
BRed 

− nB μ
◦ 
ARed 

− nAμ
◦ 
BOx 

+ RT ln 
anB 
AOx 

an A BRed 

anB 
ARed 

an A BOx 

= ΔG◦ + RT ln 
anB 
AOx 

an A BRed 

anB 
ARed 

an A BOx 

. (6.5) 

At the same time, the redox reaction can be seen as a chemical work in which a 
certain number of electrons n is transferred and the potential difference E between 
the two redox pairs is overcome [3, 4]. The change in free enthalpy representing this 
chemical work is given,

ΔG = −n F E, (6.6) 

where F is the Faraday constant (96,485 C mol−1), representing the electric charge 
of one mole of electrons.
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Substituting Eq. (6.6) into Eq. (6.5), we obtain the famous Nernst equation, 
which represents the basic relation defining the dependence of the equilibrium redox 
potential on the activity of the electroactive species, 

E = E◦ − 
RT 
n F 

ln 
anB 
AOx 

an A BRed 

anB 
ARed 

an A BOx 

, (6.7) 

in which E° is a characteristic of the redox system (called the standard redox potential) 
that is intrinsically linked to the chemical nature of the species, and the term after 
the logarithm describes the effect of the actual composition of the system. 

When the system reaches equilibrium (ΔG = 0), Eq. (6.7) goes – applying 
simultaneously Eq. (6.2) – to the form, 

E◦ = 
RT 
n F 

ln K , (6.8) 

which is the fundamental relationship between the standard redox potential and 
the equilibrium constant. By combining Eq. (6.8) with Eq. (6.6), we obtain the 
relationship between the standard redox potential and the standard Gibbs energy of 
the system,

ΔG◦ = −RT ln K = −n F E◦. (6.9) 

This equation describes the intrinsic relationship between the change in free 
energy for a chemical reaction and the redox potential value. In addition, as will be 
shown below, this is the basic relationship underlying the possibility of a correlation 
between the structure and redox potential. 

The standard redox potential is a characteristic constant for a given 
molecule/species and is directly connected to its chemical structure. It is an impor-
tant physicochemical characteristic of any chemical species that characterizes the 
ease, or difficulty, of structural changes of this molecule related to the transfer of 
electrons. Therefore, the redox potential is of great importance both for chemistry 
as such and for the application of chemical species in biological systems in which 
redox reactions are predominant (hence its application in medicinal chemistry, e.g., 
in drug development) [5, 6]. The redox potential also finds application in many other 
areas of applied chemistry and chemical technology [7, 8]. 

Like other physicochemical quantities, the redox potential can be obtained exper-
imentally, based on electrochemical measurements [2]. In particular, wide ranges of 
voltammetric techniques are used in which a signal, which results from the inter-
action of electrons directly with the chemical species under study, is obtained. In 
addition, the facile variability of the electrochemical measurement conditions makes 
it easy to change the desired conditions for the reaction under investigation, for 
example, by measuring at different pH [9] or in the non-aqueous medium [10, 11]. 
Depending on the measurement technique used, the redox potential may be expressed 
as the half-wave potential (E1/2) measured by direct-current voltammetry or the peak
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potential (Ep) measured by, most often, differential pulse voltammetry. Using cyclic 
voltammetry, the potentials of the oxidation (Epa) or reduction (Epc) peaks are avail-
able. In some cases, calculated values such as Eredox = (Epc + Epa)/2 (for reversible 
systems) or Emid = Ep − Ep/2 (for irreversible systems) are used. Occasionally, other 
parameters are used [12, 13]. 

6.2 Relationship Between Redox Potential and Structure 

The wide application of the redox potential is the reason why quantitative relation-
ships between the structure of a chemical species and the value of the redox potential 
are sought [14]. The possibility of quantifying the relationships between structure 
and redox potential leads to a better understanding of the role of redox properties of 
a chemical species in its chemical, biological, therapeutic, or other action. This can 
be found using methods of quantitative structure–activity/structure–property rela-
tionships (QSAR/QSPR). The objective of QSPR is to find a function, described 
by a mathematical equation, of the dependence of physicochemical property on the 
structure of a chemical species [15–17]. 

QSPR allows general conclusions to be drawn from experimental data and to 
predict the behavior and properties of unstudied or even non-existent chemical 
species. This is a practical application of the central assumption of QSPR that struc-
turally similar molecules have similar properties [18]. A tool to achieve the objectives 
of QSPR is to compare quantitative experimental and theoretical data using different 
mathematical models and procedures. In short, the result of any QSPR should be the 
equation 

Endpoint = mathematical function (Molecular descriptors), (6.10) 

where molecular descriptors are a set of calculated or measured values that effectively 
describe the molecular structure of a chemical species. 

The process of producing QSPR models essentially follows the procedures used 
in any conventional data mining task. Thus, the process consists of five basic steps 
[19]: 

1. Measurement of physicochemical data and their processing. 
2. Selection and calculation or measurement of appropriate molecular descriptors. 
3. Model establishing and training. 
4. Model validation. 
5. Determination of the applicability of the QSPR model. 

Generally, physicochemical data are the most important component of any QSPR. 
Many studies indicated that the quantity and quality of input physicochemical data 
seriously affect the quality of the model [20, 21]. When dealing with experimental 
data, the study is always dependent on the data provider, and care should be taken to 
be aware of errors and variability/irregularities in the data [22].
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Molecular descriptors play a crucial role in any QSPR. They are derived using 
graph theory, information theory or physical, quantum, and organic chemistry. 
Thousands of types of molecular descriptors are currently defined [23]. Molecular 
descriptors can be roughly divided into two main groups: 

1. Descriptors based on experimental measurements (e.g., octanol–water partition 
coefficient, molar refractivity), which are generally applicable as physicochem-
ical descriptors. 

2. Theoretical descriptors, which are derived from symbolic representations of the 
molecule (e.g., graph theory) or are derived from physicochemical theories and 
have some natural overlap with experimental methods (e.g., Hammett constants). 

The fundamental difference between experimental and theoretical molecular 
descriptors is that theoretical descriptors, unlike experimental ones, do not contain 
statistical error due to noise in experimental measurements. 

The relationship between the redox potential of chemical species and its structure 
was already noticed by one of the founders of modern electrochemistry, Heyrovsky, 
who in 1934 defined the conjugation rule [24]: ‘The polarographic reduction becomes 
easier as the number of conjugated bonds in the organic molecule increases.’ The 
next empirical rule was the electronegativity rule formulated in 1938 by Shikata and 
Tachi [25]: ‘The more electronegative the substituent, the more positive the half-wave 
potential.’ 

The actual quantification of the relationship between redox potential and chemical 
species structure was only possible after the introduction of the Hammett approach 
to QSPR. Hammett studied the effect of substituents on the reaction rate constants 
of a series of substituted organic acids [26]. From the results, he postulated that the 
effect of substitution (i.e., the change in the distribution of electrons in a compound 
due to a substituent) on the quantitative change in a property (the value of the rate or 
equilibrium constant) could be expressed by the equation, 

log kX = log kH + ρσX, (6.11) 

where kX is the rate (or equilibrium) constant of the substituted derivative, kH is the 
rate (equilibrium) constant of the unsubstituted derivative (with a hydrogen atom 
in place of the substituent), ρ is the reaction constant, which is a measure of the 
sensitivity of a given reaction to the electronic effect of substituents (and is therefore 
characteristic of the reaction), and σ X is the Hammett constant of the substituent, 
describing—in general, since it is transferable between single reactions—the effect 
of the substituent on the distribution of electrons in a given molecule. Equation (6.11) 
became one of the first examples of the approach that received the name linear free 
energy (Gibbs energy) relationship [18], and Hammett constant became the first 
descriptor that allowed the encoding of chemical information into a mathematical 
expression. 

By combining Eq. (6.11) with Eq. (6.8), the Hammett equation for the redox 
potential is obtained,
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E◦ 
X = E◦ 

H + ρσX, (6.12) 

where E◦
X is the standard redox potential of the substituted derivative and E

◦
H is the 

standard redox potential of the unsubstituted derivative. 
Currently, a variety of techniques is used for QSPR relationships describing the 

effect of structure on the redox potential of a chemical speciation. The fundamental 
work on QSPR of the redox potential was published by Zuman [27]. In the 1990s, the 
subfield of QSPR that deals with the influence of the structure of a chemical species 
on its electrochemical properties acquired the acronym QSER, that is, quantitative 
structure–electrochemical relationships [28]. Table 6.1 summarizes recent QSER 
relationships between a redox potential and a structure. 

Table 6.1 A review of recently published papers on quantitative structure–electrochemical relation-
ships for redox potential using different structural descriptors (descriptors used class of compounds, 
number of compounds in study, squared correlation coefficient of test set, references) 

Descriptors Compounds Number of 
compounds 

R2 References 

Electronic effect 
descriptor 

1,4-Naphthoquinones 19 0.96 [29] 

Electrophilicity 
index 

Quinones 26 0.98 [30] 

Group of different 
descriptors 

Chlorinated organic 
compounds 

21 0.88 [31, 32] 

Quinones 36 < 0.36 [33] 

Steroids 40 n/a [34] 

Hammett constants 9-Anilinoacridines 18 0.69 [35] 

1,4-Benzoquinones 54 0.79 [28] 

Benzoxazines 40 0.90 [36] 

Benzylideneanilines 49 0.89 [37] 

4-(Benzylsulfanyl)pyridines 22 0.99 [38] 

1,4-Naphthoquinones 30 0.83 [28] 

Polysubstituted benzenes 9 n/a [39] 

α,β-Unsaturated ketones 17 0.98 [40] 

α,β-Unsaturated ketones 11 0.99 [41] 

Minimum charges 
on oxygen atoms 

Quinones 9 n/a [42] 

Molecular graphs Aldehydes and ketones 73 > 0.80 [43] 

Anthraquinones 30 0.96 [44] 

Anthraquinones 33 0.94 [45]

(continued)
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Table 6.1 (continued)

Descriptors Compounds Number of
compounds

R2 References

Steroids 38 0.59 [46] 

Molecular orbital 
energy 

Benzoxazines 40 0.80 [36] 

Flavonoids 29 0.93 [47] 

Polycyclic aromatic 
hydrocarbons 

44 0.99 [48] 

Polarizability ZZ 
index 

Carotenoids 23 0.77 [49] 

Quantum chemical Benzoxazines 40 0.95 [50] 

Benzylsulfanyltetrazoles 19 0.98 [51] 

Nitrobenzenes 15 0.96 [52] 

Phenylquinolinylethynes 30 0.84 [53] 

Quinones 8 n/a [54] 

Quinones 10 n/a [55, 56] 

Quinones 18 n/a [57] 

Quinones 5 n/a [58] 

Squaric acid 5 n/a [59] 

Thioxanthenes 4 n/a [60] 

Swain–Lupton 1,4-Benzoquinones 54 0.80 [28] 

1,4-Naphthoquinones 30 0.86 [28] 

Topological indices Aldehydes 6 n/a [61] 

Benzenoids 23 0.97 [62] 

Indolizines 52 0.89 [63] 

Quinones 6 0.99 [61] 

6.3 Optimal Descriptors in QSPR of Redox Potential 

6.3.1 Basic Principles of Employing Optimal Descriptors 
in QSPR 

Molecular descriptors derived from symbolic representations of the molecule are 
one of the very promising directions in QSPR because they do not contain statistical 
errors as experimentally derived descriptors [23]. The basic idea is to use molec-
ular graphs to calculate descriptors that, being a representation of the molecular 
structure, can then be correlated with arbitrary physicochemical properties including 
the thermodynamic of the chemical species. Since their introduction in the 1980s, 
simplified molecular-input line-entry systems (SMILES) have represented an attrac-
tive alternative for the representation of the molecular structure by graph [64–66].
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Currently, most molecule editors, computer programs for creating and modifying 
representations of chemical structures, support the conversion of graphical repre-
sentations of chemical structure (i.e., topological information) to SMILES and vice 
versa. For the use of SMILES in QSPR, an efficient computer program CORAL [67] 
has been developed which is able to extract from the SMILES various graph theo-
retical invariants such as the vertex degree and the extended connectivity of higher 
order, as well as invariants for the graph of atomic orbitals. SMILES-based QSPR 
has been proven to be a powerful tool in the correlation of many physicochemical or 
biological properties [68]. 

A detailed description of CORAL and its use, including a discussion of the advan-
tages and disadvantages of its use, is provided by Toropov et al. [69]. In a nutshell, 
the SMILES-based QSPR can be summarized as follows: 

1. Collection of a set of chemical compounds and measurement of the desired 
physicochemical property (e.g., redox potential). 

2. Conversion of the structure of the studied compounds into SMILES. 
3. Calculation of the optimal descriptor of the correlation weight (DCW) as a 

mathematical function of SMILES, which is defined as, 

DCW = 
N∑

k=1 

CW(Sk), (6.13) 

where Sk is a rule one-character fragment of the SMILES notation (situations 
where two symbols cannot be examined separately, e.g., ‘Cl,’ ‘Br’), CW(Sk) 
the so-called correlation weight of Sk , N is the number of characters in the 
given SMILES. The correlation weight CW(Sk) is calculated by the Monte Carlo 
method [70] as coefficients which produce the largest correlation coefficient 
between the DCW and the endpoint examined of the training set. Using calculated 
CW(Sk), it is possible to calculate DCW for training and test sets of all substances 
examined. 

4. The QSPR model is then based on the least squares method, 

(Endpoint)pred = C0 + C1 × DCW, (6.14) 

where (Endpoint)pred is the predictive endpoint, which can be validated with the 
structures of the test set, and C0 and C1 are regression coefficients. 

6.3.2 Published Studies on SMILES-Based QSPR for Redox 
Potential 

To date, only four QSPR studies using SMILES-based optimal descriptors have been 
published in the literature to correlate redox potential with the structure.
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In 2006, the first SMILES-based QSPR analysis of half-wave potentials was 
performed for 40 benzoxazines, which belong to possible antituberculotic agents. 
Toropov et al. [71] have shown that the statistical quality of this approach (R2 = 
0.882) is fully comparable with the classical approach based on Hammett constants 
for the same data set (R = 0.897 [36]). This pilot study demonstrated and confirmed 
the suitability of using SMILES-based optimal descriptors for predicting the redox 
potentials of heterocyclic organic compounds. 

In 2012, Toropov and Nesmerak [72] established SMILES-based QSPR 
for half-wave potential of 16 antimycobacterially active 1-phenyl-5-benzyl-
sulfanyltetrazoles. The predictive potential of the applied approach was tested with 
three random splits into training and test sets, and R2 > 0.75 was observed for all 
splits. The SMILES attributes, which are promoters of decrease of the half-wave 
potential in this QSPR, were identified. 

This was followed in 2013 by a study by Nesmerak et al. [73] in which SMILES 
notation was used in QSPR of the half-wave potential of 24 derivatives of N-
benzylsalicylthioamide. A detailed statistical evaluation of the predictive potential of 
the applied approach was carried out with three random splits into the sub-training, 
calibration, test, and validation sets. The R2 > 0.72 was observed for all validation 
sets. Again, the SMILES attributes, which are promoters of an increase and decrease 
of the half-wave potential in this QSPR, were identified. 

The most recent work published so far using SMILES-based optimal descriptors 
is the 2016 paper by Nesměrák et al. [38], which studied the half-wave potentials of 
22 derivatives of 4-(benzylsulfanyl)pyridine. In the work, the QSPR approach using 
Hammett σ constants was compared with SMILES-based QSPR for three random 
distributions of derivatives into three sets (training, calibration, and validation). It was 
found that the SMILES-based equations have more validity from a statistical point 
of view (higher coefficients of determination); moreover, this approach allows one 
to identify the influence of individual structural motifs on the value of the half-wave 
potential. 

6.3.3 Case Study of Two Large Data Sets 

Here, the feasibility of using SMILES-based optimal descriptors in QSPR of the 
redox potential is demonstrated on two large data sets that have not been tested in 
this way before. Both data sets contain different chemical compounds with different 
numbers of atoms, which is reflected in the variability of their SMILES: 

1. Data Set 1, which contains data on half-wave potentials for 71 aldehydes and 
ketones, has already been published by Garkani-Nejad and Rashidi-Nodeh [43]. 
In their study, the authors searched the QSPR for the half-wave potential using 
multiple linear regression, partial least square, artificial neural network, and 
wavelet neural network modeling methods. The best-established model was 
based on an artificial neural network and has R2 = 0.993 for validation set.
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Table 6.2 contains the data applied here to build up models using the Monte 
Carlo method.

2. Data Set 2 contains the data obtained in our previous work [38, 71–73] (which  
we mentioned in Sect. 6.3.2). The data applied here to build up models using the 
Monte Carlo method are tabulated in Table 6.3.

Data for each individual data set studied were haphazardly distributed into four 
sets: an active training set (≈ 25%), a passive training set (≈ 25%), a calibration set 
(≈ 25%), and a validation set (≈ 25%). The specific distribution of individual data 
to a given set is shown in Tables 6.2 and 6.3, respectively. The assignment of the 
active training set is to project the model. The molecular features, which are extracted 
from SMILES of this set, are included in the Monte Carlo optimization process to 
grant correlation weights that give the maximum correlation coefficient between the 
DCW and the half-wave potential. The passive training set is used to test whether 
the model projected from the active training set is acceptable for such SMILES that 
were not present in the active training set. The purpose of the calibration set is to 
detect the onset of the overtraining (overfitting). At the start of the optimization 
process, the correlation coefficients between the half-wave potential experimental 
values and DCW simultaneously increase for all sets, but the correlation coefficient 
for the calibration set attains a maximum; that is, the onset of overfitting is reached. 
The continuation of the optimization process results in a decrease of the correlation 
coefficient value for the calibration set. Thus, optimization procedure should be 
ceased when overtraining begins. After the Monte Carlo optimization procedure is 
completed, the validation set is employed to evaluate the predictive potential of the 
obtained model. 

Models for both data sets were built using a single type of molecular descriptor, 
calculated as, 

DCW(T , N ) =
∑

CW(Sk) +
∑

CW(SSk) +
∑

CW(EC0k) +
∑

CW(EC1k), 
(6.15) 

where the Sk is a SMILES-atom, i.e., single symbol in SMILES or a group of symbols 
which cannot be examined separately, and the SSk is a pair of SMILES-atoms. The 
EC0k and EC1k are the Morgan extended connectivity of zero and first order, respec-
tively. The CW(x) is the correlation weights of the listed molecular features extracted 
from SMILES or the graph of atomic orbitals (GAO) [74]. Figure 6.1 and Table 6.4 
contain an example of the adjacency matrix of GAO for compound #1 of Data Set 
1, which is acetaldehyde.

The numerical data on the CW(x) are calculated by the Monte Carlo method, 
which is the optimization process with the target function defined as, 

TF = rAT + rPT − 0.1 |rAT − rPT| + 0.1 IIC  + 0.5CII, (6.16) 

where rAT and rPT are correlation coefficients between the observed and predicted 
endpoint for the active training set and the passive training set, respectively. The IIC
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Fig. 6.1 An example of a 
graph of atomic orbitals for 
compound #1 of Data Set 1 
(acetaldehyde, SMILES is 
O=CC)

is the index of ideality of correlation [75], and the CII is the correlation intensity 
index [76]. 

QSPRs based on hybrid optimal descriptors were performed for both data sets 
examined. Table 6.5 contains an example of calculation of the DCW(1, 15) for 
compound #1 of Data Set 1 (acetaldehyde, SMILES is O=CC). The definition of 
DCW(1, 15) is the follows: (i) the threshold to define minimal number of the molec-
ular features extracted from SMILES or from GAO in the training set (this is 1)
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Table 6.4 Adjacency matrix of the graph of atomic orbitals for compound #1 of Data Set 1 
(acetaldehyde, SMILES is O=CC) 

1 2 3 4 5 6 7 8 9 10 11 12 13 EC0 EC1 

1s2 2s2 2p4 1s2 2s2 2p2 1s2 2s2 2p2 1s1 1s1 1s1 1s1 

1 1s2 0 0 0 1 1 1 0 0 0 0 0 0 0 3 21 

2 2s2 0 0 0 1 1 1 0 0 0 0 0 0 0 3 21 

3 2p4 0 0 0 1 1 1 0 0 0 0 0 0 0 3 21 

4 1s2 1 1 1 0 0 0 1 1 1 1 0 0 0 7 30 

5 2s2 1 1 1 0 0 0 1 1 1 1 0 0 0 7 30 

6 2p2 1 1 1 0 0 0 1 1 1 1 0 0 0 7 30 

7 1s2 0 0 0 1 1 1 0 0 0 0 1 1 1 6 30 

8 2s2 0 0 0 1 1 1 0 0 0 0 1 1 1 6 30 

9 2p2 0 0 0 1 1 1 0 0 0 0 1 1 1 6 30 

10 1s1 0 0 0 1 1 1 0 0 0 0 0 0 0 3 21 

11 1s1 0 0 0 0 0 0 1 1 1 0 0 0 0 3 18 

12 1s1 0 0 0 0 0 0 1 1 1 0 0 0 0 3 18 

13 1s1 0 0 0 0 0 0 1 1 1 0 0 0 0 3 18

and (ii) the number of iterations in the Monte Carlo optimization for the correlation 
weights (this is 15).

The following QSPR equations were obtained: 

1. for Data Set 1 

−(
E1/2

)
pred = 1.0353363(± 0.0412942) + 0.0347993(± 0.0023327) 

× DCW(1, 15) (6.17) 

2. for Data Set 2 

−(
E1/2

)
pred = 0.5574662(± 0.0099109) + 0.0263809(± 0.0002835) 

× DCW(1, 15) (6.18) 

Table 6.6 contains the statistical quality of these models. Figure 6.2 shows a graph-
ical comparison of the correlation between the experimental and predicted values of 
the half-wave potential for the validation set for both data sets studied. The model 
for Data Set 1, published by Garkani-Nejad and Rashidi-Nodeh [43], is statistically 
better, but the model which is given by Eq. (6.17) is based on representation of 
the molecular structure solely by SMILES (GAO is extracted from SMILES using 
CORAL software).

The scope of applicability of the CORAL model is defined by the so-called 
statistical defects of the SMILES attributes [77]. These defects are calculated as,
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Table 6.5 Calculation of the 
DCW(1, 15) for compound #1 
of Data Set 1 (acetaldehyde, 
SMILES is O=CC) 

x CW(x) 

EC0-1s2 3… − 0.6596 
EC0-2s2 3… 0.0746 

EC0-2p4 3… 2.2005 

EC0-1s2 7… 0.4244 

EC0-2s2 7… − 0.1800 
EC0-2p2 7… − 0.0190 
EC0-1s2 6… − 0.4280 
EC0-2s2 6… − 0.7785 
EC0-2p2 6… 0.1469 

EC0-1s1 3… 0.8279 

EC0-1s1 3… 0.8279 

EC0-1s1 3… 0.8279 

EC0-1s1 3… 0.8279 

EC1-1s2 21… 1.6104 

EC1-2s2 21… 1.9570 

EC1-2p4 21… 0.7659 

EC1-1s2 30… 1.9697 

EC1-2s2 30… 1.7082 

EC1-2p2 30… 1.2908 

EC1-1s2 30… 1.9697 

EC1-2s2 30… 1.7082 

EC1-2p2 30… 1.2908 

EC1-1s1 21… − 0.4715 
EC1-1s1 18… − 0.2068 
EC1-1s1 18… − 0.2068 
EC1-1s1 18… − 0.2068 
O……… 1.6307 

=……… − 0.4282 
C……… − 0.1585 
C……… − 0.1585 
O…=…… 1.0734 

C…=…… − 0.0588 
C…C…… − 0.3071 
DCW(1, 15) 18.865
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Table 6.6 Statistical characteristics of the models for the data sets examined for (AT) active training 
set, (PT) passive training set, (C) calibration set, and (V) validation set 

n R2 CCC IIC CII Q2 RMSE MAE F 

Data Set 1 AT 19 0.5257 0.6891 0.6525 0.7187 0.3882 0.343 0.276 19 

PT 18 0.7412 0.7171 0.5221 0.8367 0.6584 0.403 0.346 46 

C 17 0.7952 0.8914 0.8917 0.9442 0.6983 0.122 0.106 58 

V 17 0.6679 0.165 0.124 

Data Set 2 AT 25 0.9301 0.9638 0.7578 0.9499 0.9191 0.049 0.038 306 

PT 27 0.9431 0.9635 0.6634 0.9619 0.9335 0.054 0.040 415 

C 28 0.9543 0.9702 0.9761 0.9684 0.9458 0.052 0.035 543 

V 25 0.9153 0.061 0.043 

Abbreviations used: n is the number of compounds in the corresponding set, R2 is determination 
coefficient, CCC is the concordance correlation coefficient, IIC is the index of ideality of the 
correlation, CII is the correlation intensity index, Q2 is cross-validated R2, RMSE is root mean 
squared error, MAE is the mean absolute error, and F is the Fischer F-ratio 
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Fig. 6.2 Correlation between the experimental and predicted values of the half-wave potential 
for the validation set of a Data Set 1 and b Data Set 2. The numbers at each point indicate the 
compound numbers in Table 6.2, resp. Table 6.3. On the abscissa are plotted the experimentally 
measured values of the half-wave potential, on the ordinate are the values calculated according to 
Eqs. (6.17) and  (6.18), respectively

dk =
||P(Ak) − P '(Ak)

||
N (Ak) − N '(Ak) 

+
||P(Ak) − P ''(Ak)

||
N (Ak) − N ''(Ak) 

+
||P '(Ak) − P ''(Ak)

||
N '(Ak) − N ''(Ak) 

, (6.19) 

where P(Ak), P
'
(Ak), and P

''
(Ak) are the probability of Ak in the active training set, the 

passive training set, and the calibration set, respectively; N(Ak), N
'
(Ak), and N

''
(Ak) 

are the frequencies of Ak in the active training set, the passive training set, and the 
calibration set, respectively. The statistical SMILES-defects (Dj) are calculated as



6 QSPR Models for Prediction of Redox Potentials Using Optimal … 163

D j = 
NA∑

k=1 

dk, (6.20) 

where NA is the number of non-blocked SMILES attributes in the SMILES. A given 
SMILES falls in the domain of applicability if 

D j < 2D (6.21) 

The D is average value of the statistical defect on the association of the active 
training set, passive training set, and calibration set. As can be seen from Table 6.2, 
the model for Data Set 1, given by Eq. (6.17), cannot be applied to compounds #19, 
#25, #37, and #42, which represent 5.6% of the data set. In the case of Data Set 2, the 
model given by Eq. (6.18) is not applicable for compounds #25, #37, #44, #68, #81, 
#82, #94, and #103; that is 7.6% in total (Table 6.3). For this model, it is interesting 
that the compounds that are excluded are all substituted on one of the ring moieties 
by two chlorine atoms; the probable reason is that chlorine is a substituent with a 
very strong negative induction effect. 

From the statistical quality of the QSPRs obtained, it can be seen that the model 
derived for Data Set 2 has a higher statistical validity. This is probably due to the 
smaller variability in the SMILES of the individual compounds included in Data Set 
2 compared to Data Set 1. In Data Set 1, the length of the SMILES ranges from 3 to 
51 characters while in Data Set 2 the length ranges from 23 to 54 characters. 

Finding successful QSPR models between the half-wave potential and the struc-
ture of the molecule for both data sets studied demonstrated that optimal descriptors 
calculated with molecular features extracted from SMILES together with molec-
ular features extracted from GAO are very useful molecular descriptors applicable 
to QSPR of non-congeneric and structurally diverse compounds (which is a very 
topical issue in QSAR/QSPR [78]). 

6.4 Conclusions 

As the redox potential is an important electrochemical property used for the charac-
terization of chemical species, this chapter illustrates the possibilities of using hybrid 
optimal descriptors calculated with molecular features extracted from SMILES 
together with molecular features extracted from GAO for developing QSPR models 
for redox potential. The CORAL software is able to be an efficient tool for building 
a robust model for redox potentials of various classes of compounds. On two large 
data sets, it was found that although the sets contained structurally very different 
substances, statistically significant correlations could be found. The quality of the 
correlations is affected by the difference in the number of features that form SMILES. 
It has also been confirmed that an optimal descriptor can be a translator of eclectic 
information into a model for the prediction of redox potential.
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51. Nesměrák K, Doležal R, Hudská V, Bártl J, Štícha M, Waisser K (2010) Electroanalysis 
22:2117–2122. https://doi.org/10.1002/elan.201000092 

52. Fatemi MH, Hadjmohammadi MR, Kamel K, Biparva P (2007) Bull Chem Soc Jpn 80:303–306. 
https://doi.org/10.1246/bcsj.80.303 

53. Beheshti A, Riahi S, Ganjali MR (2009) Electrochim Acta 54:5368–5375. https://doi.org/10. 
1016/j.electacta.2009.04.020

https://doi.org/10.1016/0003-2670(92)85179-A
https://doi.org/10.1016/0003-2670(92)85179-A
https://doi.org/10.1002/chem.201403703
https://doi.org/10.1080/00268970903042266
https://doi.org/10.1080/00268970903042266
https://doi.org/10.14233/ajchem.2013.13061
https://doi.org/10.14233/ajchem.2013.13061
https://doi.org/10.1134/S102319351503009X
https://doi.org/10.1134/S102319351503009X
https://doi.org/10.1016/j.aca.2008.11.062
https://doi.org/10.1016/j.aca.2008.11.062
https://doi.org/10.1021/jm00386a006
https://doi.org/10.1016/j.electacta.2004.08.031
https://doi.org/10.1063/1674-0068/29/cjcp1508173
https://doi.org/10.1063/1674-0068/29/cjcp1508173
https://doi.org/10.1016/j.jelechem.2016.01.032
https://doi.org/10.1016/j.jelechem.2016.01.032
https://doi.org/10.1007/s10800-020-01417-0
https://doi.org/10.1016/0003-2670(94)00354-O
https://doi.org/10.1016/j.theochem.2005.12.001
https://doi.org/10.1007/s10953-010-9646-2
https://doi.org/10.1007/s10953-010-9646-2
https://doi.org/10.1016/j.electacta.2009.11.083
https://doi.org/10.1016/j.electacta.2009.11.083
https://doi.org/10.1016/j.molliq.2015.08.055
https://doi.org/10.1016/j.molliq.2015.08.055
https://doi.org/10.1016/j.jelechem.2006.09.006
https://doi.org/10.1016/j.jelechem.2006.09.006
https://doi.org/10.1007/s11771-016-3246-2
https://doi.org/10.1016/j.molliq.2021.116223
https://doi.org/10.1016/j.molliq.2021.116223
https://doi.org/10.1016/j.egypro.2018.11.216
https://doi.org/10.1016/j.egypro.2018.11.216
https://doi.org/10.2478/s11532-009-0033-z
https://doi.org/10.2478/s11532-009-0033-z
https://doi.org/10.1002/elan.201000092
https://doi.org/10.1246/bcsj.80.303
https://doi.org/10.1016/j.electacta.2009.04.020
https://doi.org/10.1016/j.electacta.2009.04.020
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Chapter 7 
Building Up QSPR for Polymers 
Endpoints by Using SMILES-Based 
Optimal Descriptors 

Valentin O. Kudyshkin and Alla P. Toropova 

Abstract The general scheme of QSPR analysis of endpoints related to polymers 
is described. The basic idea of the approach is building up a model of a polymer as 
a mathematical function of monomer structure represented by a simplified molec-
ular input line-entry system (SMILES). The suitability of so-called hybrid optimal 
descriptors in QSPR analysis of polymer systems is suggested and discussed. QSPR 
models for glass transition temperature and refractive index are represented in detail. 
Possible ways of evolution of the QSPR for polymers are listed and discussed. 
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QSAR Quantitative Structure–Activity Relationships 
QSPR Quantitative Structure–Property Relationships 
SMILES Simplified Molecular Input Line-Entry System 
SVM Support Vector Machine 

7.1 Introduction 

It is rather difficult, perhaps, impossible, to name classes of economically useless 
substances. It is perhaps even more challenging to call substances that are 
unpromising, useless, and not of any interest from the point of view of the theory and 
practice of the natural sciences. According to Engels (Dialectics of Nature. Frederick 
Engels, 1883), “Life is the mode of existence of protein bodies”. In other words, life 
is the mode of existence of biopolymers. It seems that conventional polymers should 
also have some applications and some practical significance (Table 7.1).

The rational use of polymeric materials requires data on their physicochemical 
as well as biochemical properties. Experimental determination of all properties of 
polymers, and even more so of their solutions, alloys, and mixtures, is impossible. 
Under such circumstances, developing appropriate models is a promising task. If 
for organic, inorganic, and coordination compounds, multiple structural descriptors 
have been developed, based on which the corresponding models are built (boiling, 
melting points, solubility, toxicity), whereas for polymers, in that case, developing 
such descriptors is carried out according to somewhat different rules, taking into 
account the peculiarities of the molecular structure polymers. Often, monomer units 
are the basis for developing quantitative structure–property (activity) relationships 
(QSPR/QSAR) for different polymers. Unfortunately, this is not always possible 
because there are situations when different polymers consist of identical monomer 
units. However, owing to the significant economic and scientific sounds of polymers, 
many models for phenomena related to polymers cannot be reached via QSPR/QSAR 
analysis (Table 7.2).

It follows from the above that the models describing the behaviour of polymers 
are numerous and varied. Here, we consider recently proposed approaches to solving 
the problems of QSPR/QSAR related to polymer systems. 

7.1.1 The General Scheme of QSPR/QSAR Analysis 
of Endpoints Related to Polymers 

Most often, polymers’ properties are modelled using the molecular structure of 
monomer units [46–49]. In the case of modelling the properties of polymer solutions 
in organic solvents, the structures of monomer units are considered together with the 
molecular structure of solvents [50]. The list of physicochemical properties for which
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Table 7.1 Use of polymers in economics and natural science research 

Application area Comment References 

Technology The automotive industry [1] 

Molecularly imprinted polymers [2] 

Improving thermal conductivity of multi-walled carbon 
nanotubes 

[3] 

Optics [4] 

In the telecommunications industry, medicine, and analytical 
chemistry 

[5] 

Glass transition temperature [6] 

Intrinsic viscosity in polymer–solvent combinations [7] 

Optics and mechanics properties of polymers [8] 

Refractive index, glass transition thermal decomposition 
temperature, solubility 

[9] 

Polymer photovoltaic research [10] 

Electronics Superparamagnetic polyacrylamide/magnetite composite gels [11] 

The efficiency of polymer solar cells [10] 

Generation and transfer of energy [10, 12] 

Medicine Drug discovery; anti-Alzheimer drugs [3, 13] 

The aesthetic action of polymer systems [14] 

Antimicrobial activity [15] 

Pharmaceuticals [16] 

Anticancer therapy [17, 18] 

Polymeric foams [19–21] 

Agriculture Innovative polymeric materials and intelligent delivery systems; 
increasing the efficiency of pesticides and herbicides; protecting 
the environment through filters or catalysts to reduce pollution 
and clean up existing pollutants 

[22] 

Superabsorbent polymers [23] 

Systems using nature-derived polymers for agriculture [24] 

Drug delivery, bioremediation, firefighting, biosensors, food 
industries, thermal energy storage, and tissue engineering 

[25] 

Nanotechnology The effect of nanosurfactant in emulsion polymerization [26] 

Polymer brushes: prevention of bacterial adherence and cell 
protection 

[27] 

Cooperative phenomena “nanoparticles-polymers”: new 
information and sensor technology approaches may be possible 

[28]
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Table 7.2 Phenomena related to polymers are objects of different manners of modelling 

The object to model Comment References 

Viscosity High molecular weight, viscoelastic 
polymers are used for heavy oil recovery 

[29] 

The viscoelastic properties of polymers have 
been widely studied due to their extensive 
range of engineering applications in 
aerospace and automotive industries, fluid 
transport, and electronics 

[30] 

Thermo-viscoelastic shape memory 
polymers are an emerging class of active 
materials that respond to a specific 
temperature influenced by a shape change 

[31] 

Viscoelasticity Shape memory polymers an increasing 
potential for various applications in 
biomedicine 

[32–34] 

Diffusion Tune of time the release of drugs from a 
polymer matrix 

[35] 

Elastic properties Effective properties of the composite 
structure for optimization of the design of 
composite structures 

[36] 

Electrical conductivity Applications in electronics, sensors, 
aerospace, and shielding 

[37] 

Thermo-elastic properties Thermo-plastic polymers have been widely 
used to fabricate engineering components in 
industries ranging from automotive and 
aerospace to biomedical fields due to their 
excellent impact resistance, high 
strength-to-weight ratio, and good 
bio-affinity 

[38] 

Various forms of 3D printing systems rely 
on the extrusion of polymer materials 

[39] 

Biodegradation Biodegradable polymers, mainly aliphatic 
polyesters, have highly desirable 
applications in the biomedical field and are 
presently being used as disposable products 
(e.g. syringes, blood bags), supporting 
materials (e.g. sutures, bone plates), artificial 
tissue/organs (e.g. artificial heart, kidney, 
eyes), and controlled release formulations 
for use with various drugs and hormones 

[40]

(continued)
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Table 7.2 (continued)

The object to model Comment References

Laser-based polymers The parts are obtained without needing 
moulds, cutting tools, or other auxiliary 
resources, starting from a computer-aided 
design with a laser. The technology can 
handle details with complex geometries with 
excellent efficiency and near-zero material 
waste 

[41] 

Polymer-supported membranes Polymer-supported membranes as models of 
the cell surface are the tools of modern 
genetic engineering. Bioorganic chemistry 
makes it possible to tune many biomolecule 
types to supported membranes 

[42] 

Smart materials The so-called soft matters, touted to be the 
next generation intelligent materials, can be 
categorized into many different types, such 
as gels, shape memory polymers, dielectric 
elastomers, liquid crystals 

[43] 

Fuel cells Fuel cells employing polymer systems are 
promising candidates for electric vehicle 
applications. The polymer electrolyte 
provides room temperature start-up, 
eliminating corrosion-related problems 

[44] 

Polymer solvent systems The intrinsic viscosity of polymer solutions 
has technological and biomedical 
applications 

[45]

QSPR/QSAR models are developed according to the “structure–property” paradigm 
includes the following: refractive indices [5, 51–53]; critical solution temperature 
[54, 55]; solubility [56, 57]; transport behaviour in amorphous polymeric materials 
[58]; solubility of CO2 and N2 in polymers [21]; melting point and glass transition 
temperature [59]; thermal decomposition [60, 61]; retention factor [62]; flamma-
bility characteristics [63]; Flory–Huggins parameter [64]; micellar properties [65]; 
and binding of drugs to polymer [66]. Below are some approaches to QSPR/QSAR 
analysis examined in more detail. 

7.1.2 QSPR Analysis of Endpoints Related to Polymers 
with MLR 

In QSPR studies based on multiple regression analysis (MLR), the goal is to find one 
or more equations that are functions of a small number of structure-based molecular 
descriptors that accurately predict the experimental property. As it is possible to
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generate a large number of molecular descriptors for each compound in the data set, 
the problem becomes how to efficiently select the set of molecular descriptors that 
yield a reliable relationship [45]. 

7.1.3 QSPR/QSAR Analysis of Endpoints Related 
to Polymers with PLS 

Quantitative structure–activity and structure–property relationship models should 
contain detailed information regarding how differences in the molecular struc-
ture of compounds correlate with differences in the observed biological or other 
physicochemical properties of those compounds. Partial least squares (PLS) regres-
sion analysis allows for identifying specific structural trends related to observed 
properties’ differences. The study of the completed model is the last step of the 
process [67]. PLS models are built up with different descriptors such as Constitu-
tional (molecular composition, molecular weight, number of atoms/bonds, number 
of H-bond donors/acceptors); topological (2D structural formula, Kier–Hall indices, 
branching); geometrical (3D structure of molecule, molecular volume, polar and 
non-polar surface area); electrostatic (charge distribution, atomic partial charges, 
electronegativity); and quantum mechanical (electronic structure, HOMO–LUMO 
energies, dipole moment) [68]. 

7.1.4 QSPR Analysis of Endpoints Related to Polymers 
with ANN 

QSPR models can be constructed to predict polymer properties using artificial neural 
networks (ANN). ANN-Procedures are carried out using functional monomers, 
which serve as input for generating molecular descriptors. Constitutional, topolog-
ical, geometrical, electrostatic, and quantum mechanical descriptors are suitable for 
building ANN models. Some sets of descriptors fed to ANN should be selected 
preliminary as input vectors. As a rule, the networks consist of an input layer, an 
output layer, and some number of intermediate layers known as hidden layers. Each 
unit in the network is influenced by those units to which it is connected. The degree 
of influence is dictated by the values of the links or connections. The system’s overall 
behaviour can be modified by adjusting the importance of the relationships or weights 
through a repeated application of a learning algorithm. The advantage of the ANN 
approach is the possibility of building models for nonlinear phenomena [69].
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7.1.5 QSPR Analysis of Endpoints Related to Polymers 
with SVM 

A support vector machine (SVM) is an original and capable classification and regres-
sion method. SVM models are primarily developed for classification problems; 
however, they can also be applied to solve nonlinear regression problems. To realize 
an accurate regression model, SVM is used to construct a nonlinear model based 
on a subset of descriptors. The performances of SVM for regression rely on the 
combination of several parameters [70]. 

7.2 Significant Notes 

The four approaches discussed regarding modelling the properties of polymers do 
not exhaust all the ideas related to this topic. However, they are currently the most 
common. 

Speaking of QSPR/QSAR, it is necessary to take into account that all proposed 
models must comply with the five famous OECD principles, which state: 

• A defined endpoint; 
• An unambiguous algorithm; 
• A defined applicability domain; 
• Appropriate measures of goodness-of-fit and robustness; 
• A mechanistic interpretation, if possible. 

7.3 Building Up Models of Polymers Endpoints Using 
SMILES 

The approaches considered above are widely used to construct models of polymer 
systems’ physicochemical and biochemical behaviour and throughout the whole 
area of QSPR/QSAR analysis. However, all of the approaches mentioned need to 
use various additional descriptors. This section discusses methods that require only 
data on the structure of monomeric units (without additional geometrical, electro-
static, and quantum mechanical descriptors) for their implementation. The general-
ized name for these approaches is formulated as “optimal descriptors” calculated via 
a simplified molecular input line-entry system (SMILES) [71].
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Table 7.3 Representation of 
molecular structure by 
SMILES 

Name Structure SMILES 

Hydrogen 
cyanide 

HC≡N C#N 

Triethylamine CCN(CC)CC 

Acetic acid CC(=O)O 

Cyclohexane C1CCCCC1 

Benzene c1ccccc1 

1,3-Butadiene C=CC=C 

7.3.1 SMILES 

For the practical implementation of input data in the form of SMILES, as practice 
shows, it is better to use programs that use not only capital letters of the Latin 
alphabet but also small ones to point out aromaticity. The ACD/ChemSketch (www. 
acdlabs.com) is an example of such a program. SMILES can be used to represent 
chemical reactions, but these features, while in demand for database development, 
have not yet been used in QSPR/QSAR analysis. Table 7.3 contains examples of the 
representation of substances via SMILES. 

7.3.2 Optimal SMILES-Based Descriptors 

The set of descriptors was calculated using the adjacency matrix, which was the 
source of the vertex degrees. The vertex degree for the kth vertex is actually the sum 
of the elements of the adjacency matrix in the kth row (or column). It has been shown

http://www.acdlabs.com
http://www.acdlabs.com
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that the correlation potential of a descriptor can be improved by using the optimal 
non-zero values of the diagonal elements in the adjacency matrix for heteroatoms 
(non-carbon atoms), calculating the degrees of vertices as the sum of the elements 
of the adjacency matrix [72]. 

Instead of the adjacency matrix, you can use SMILES, choosing a special corre-
lation weight for each SMILES atom. A SMILES atom is a single character in the 
string SMILES (e.g. “C”, “O”, “N”, etc.) or several characters that cannot be consid-
ered separately (e.g. “Cl”, “Br”, etc.). Hence, the optimal SMILES-based descriptor 
calculated as 

DCW(T , N ) =
∑

CW(Sk) (7.1) 

The CW(Sk) is the correlation weight of a SMILES atom. The Monte Carlo 
optimization procedure calculates the CW(Sk) numerical data. 

7.3.3 The Monte Carlo Optimization Procedure 

It is assumed that as a model, there is a one-parameter equation (QSPR-regression 
model) of the form [73]: 

Endpoint = C0 + C1 × DCW(T , N ) (7.2) 

C0 and C1 are the regression coefficients; T is the threshold, i.e. an integer limits 
frequency of a SMILES atom in the training set; and N is the number of epochs 
of the optimization process (step-by-step modifications) of all correlation weights 
accepted to build up the model accordingly to the threshold (T ). 

7.3.4 The Classic Scheme of Building Up the QSPR/QSAR 
Model Using the Optimal Descriptors 

The essence of the classical model building scheme is to establish a correlation 
between the optimal descriptor and a property for the training set in the hope that this 
correlation will be preserved for similar external molecules not taken into account 
when building this correlation. Thus, it should be emphasized: that the classical 
optimization scheme is reduced to selecting such correlation weights that give the 
maximum value of the coefficient of determination between the endpoint and the 
descriptor for the entire training set. However, it was stated that the so-called balance 
of correlations gives more reliable models than the classical scheme [73].
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7.3.5 The Balance of Correlations for the QSPR/QSAR 
Model Using the Optimal Descriptors 

The balance of correlations [73] provides the division of data for building models 
into two groups—active and passive training samples. The molecules of the active 
training set are used to build the model. Passive training set molecules are used to 
control whether the resulting model works for “outside observers” (passive training 
set). In practice, this is achieved by modifying the objective function (instead of the 
determination coefficient on the whole training set) for optimization to the following: 

TF0 = rAT + rPT − |rAT − rPT| × 0.1 (7.3) 

The rAT and rPT are correlation coefficients between the observed and predicted 
endpoints for the active and passive training sets, respectively. 

7.3.6 Search and Use for Reliable Criteria of the Predictive 
Potential of QSPR/QSAR Models Based on the Optimal 
Descriptors 

The index of ideality of correlation (IIC) [74] and the correlation intensity index (CII) 
[75] are two relatively new criteria for the predictive potential of the QSPR/QSAR 
models. The IICC is calculated with data on the calibration set as the following: 

IICC = rC 
min

(−MAEC, +MAEC
)

max(−MAEC, +MAEC) 
(7.4) 

min(x, y) =
{
x, if x < y 
y, otherwise 

(7.5) 

max(x, y) =
{
x, if x > y 
y, otherwise 

(7.6) 

−MAEC = 
1 

− N

∑
|�k |, − N is the number of�k < 0 (7.7) 

+MAEC = 
1 

+ N

∑
|�k |, + N is the number of�k ≥ 0 (7.8)

�k = observedk − calculatedk (7.9) 

The observed and calculated are corresponding values of the endpoint.



7 Building Up QSPR for Polymers Endpoints by Using SMILES-Based … 177

The correlation intensity index (CII), similarly to the above IIC, was developed 
as a tool to improve the quality of the Monte Carlo optimization to build up QSPR 
models. 

The CIIC calculated as follows: 

CIIC = 1 −
∑

Protestk (7.10) 

Protestk =
{
R2 
k − R2, if R2 

k − R2 > 0 
0, otherwise 

(7.11) 

The R2 is the determination coefficient for a set that contains n substances. The R2 
k 

is the determination coefficient for n − 1 substances of a group after removing of kth 
substance. Hence, if the (R2 

k − R2) is more significant than zero, the kth substance 
is an “oppositionist” for the correlation between experimental and predicted values 
of the set. A small sum of “protests” means a more “intensive” correlation. 

7.3.7 Hybrid Optimal Descriptors 

Both a molecular graph and a SMILES are a representation of a molecular structure. 
These representations partly coincide (that is, they contain identical information) 
and somewhat differ (complement each other). Optimal descriptors calculated from 
the correlation weights of molecular features extracted from SMILES and molecular 
features extracted from graphs are called hybrid optimal descriptors [76]. Using 
hybrid optimal descriptors can improve the statistical characteristics of a model. 

7.3.8 Model Complication 

Another way that can lead to model improvement is the complication of optimal 
descriptors [51]. The SMILES components of the optimal descriptor can connect to 
the calculation scheme, considering the influence of neighbouring pairs of SMILES 
atoms and neighbouring triplets of SMILES atoms. In addition, it is possible to 
involve global SMILES attributes, such as the configuration of covalent bonds, as 
well as configurations of four atoms (nitrogen, oxygen, sulphur, phosphorus and/or 
fluorine, chlorine, bromine, iodine). For graph components of optimal descriptors, 
complication can be achieved through correlation weighting the sums and differ-
ences of various graph invariants. However, it should be noted that increasing the 
complexity of the model often leads to a significant improvement in the statistical 
quality of the model for the training set, but which is accompanied by deterioration 
of the statistical quality of the model for the test set.
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7.4 Examples of Improving Models Built Up with Optimal 
Descriptors 

The described possibilities for improving models calculated using optimal descrip-
tors should be confirmed with specific examples. Below are the results of using the 
correlation intensity index (CII) to increase the efficiency of the Monte Carlo method 
for developing models for glass transition temperature and refractive index. 

7.4.1 Development of a New Conception to Building Up 
a Model 

The application of the CII is the main improvement of the models for glass transi-
tion temperature and refractive index of polymers. The optimal descriptor has been 
defined as the following: 

DCW
(
T ∗, N ∗

) =
∑

CW(Sk) +
∑

CW(SSk) +
∑

CW(SSSk ) (7.12) 

Sk is the SMILES atom (one symbol or a group of symbols which cannot be exam-
ined separately); SSk and SSSk are two and three connected SMILES atoms. CW(Sk), 
CW(SSk), and CW(SSSk) are the correlation weights for the attributes mentioned 
above of the SMILES. The correlation weights were calculated by the Monte Carlo 
optimization with the target function calculated as the following: 

TF = TF0 + 0.5 × IIC + 0.5 × CII (7.13) 

Models for the glass transition temperature GTT (experimental data taken [77]): 

GTT′K = 303.15 (± 2.50) + 6.536 (± 0.225) ∗ DCW(1, 15) (7.14) 

Models for the refractive index RI (experimental data taken [78]): 

RI = 1.5009 (± 0.0007) + 0.00427 (± 0.00007) ∗ DCW(1, 15) (7.15) 

It is to be noted both models were obtained by the same calculating scheme. 
Figure 7.1 contains the graphical interface of the CORAL method (http://www.ins 
ilico.eu/coral) for the calculations above endpoints.

http://www.insilico.eu/coral
http://www.insilico.eu/coral
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Fig. 7.1 Graphical representation of the CORAL method applied to build up models for glass 
transition temperature and refractive index 

7.4.2 QSPR Models for the Glass Transition Temperature 

The best model for the glass transition temperature built up with the optimal SMILES-
based descriptors [77] is characterized by a determination coefficient of 0.9058. The 
model was calculated with hybrid optimal descriptors sensitive combinations of 
single SMILES atoms together with their connected pairs and three SMILES atoms. 
In addition, the model is sensitive to the presence of Morgan’s extended connectivity 
of first- and second-order as well as to the fact of five- and six-member rings [77]. 
The Monte Carlo optimization was carried out by considering the IIC values. Monte 
Carlo optimization of the descriptor based on the mentioned SMILES combinations 
of atoms, without taking into account molecular graph invariants, in the case of using 
the CII, gives a model for the glass transition temperature for the case of the same 
polymers, which is characterized (validation set) by a coefficient of determination of 
0.9184. Thus, thanks to using CII in Monte Carlo calculations, obtaining a glass tran-
sition temperature model with improved predictive potential is obtained. It is a more 
straightforward model calculated using only SMILES without involving molecular 
graph invariants. Supplementary materials section contains technical details on the 
model (Table S1 for QSPR models for the glass transition temperature).



180 V. O. Kudyshkin and A. P. Toropova

7.4.3 QSPR Models for the Refractive Index 

The best model for the refractive index that has been built up with the optimal 
SMILES-based descriptors [78] is characterized by a determination coefficient of 
0.9028. This model is calculated by means of a correlation adjustment of a descriptor 
that includes both molecular features expressed by SMILES attributes and molec-
ular features represented by invariants of molecular graphs. Models suggested in 
the literature [78] were built up by the Monte Carlo technique by applying the IIC. 
The approach described above (the same descriptor and the same Monte Carlo opti-
mization that involves CII) gives for the refractive index model, which is statistically 
characterized (validation set) by the determination coefficient of 0.9452. Thus, a 
simpler model with improved predictive potential was also obtained for modelling 
the refractive index. Supplementary materials section contains technical details on 
the model (Table S2 for QSPR models for refractive index). 

7.5 Comparison QSPR-Models 

The comparison of the statistical quality of different models and models suggested 
here confirms that models obtained with the Monte Carlo optimization involving IIC 
and CII characterize models with quite comparable statistical quality (Table 7.4). 

Table 7.4 Comparison of the statistical quality for different models 

Endpoint Method Statistical quality References 

Glass transition 
temperature 

CODESSA R2 = 0.946 [46] 

CORAL Training set R2 = 0.7477, 
validation set R2 = 0.9058 

[77] 

MLR R2 = 0.755 [79] 

SVM R2 = 0.479 [79] 

RF R2 = 0.721 [79] 

ANN Training set R2 = 0.8477, 
test set R2 = 0.5272 

[80] 

DRAGON PLS: R2 = 0.848 
SVM: R2 = 0.886 
MLR: R2 = 0.860 
Least absolute shrinkage and 
selection operator: R2 = 
0.869 
Elastic net: R2 = 0.880 
Gaussian process regression: 
R2 = 0.899 

[81]

(continued)
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Table 7.4 (continued)

Endpoint Method Statistical quality References

Virtual Computational 
Chemistry Laboratory 

Training set R2 = 0.9473, 
validation set R2 = 0.9283 

[82] 

SVM Training set R2 = 0.920, 
validation set R2 = 0.779 

[83] 

CORAL Training set R2 = 0.683, 
validation set R2 = 0.877 

[84] 

CORAL Training set R2 = 0.4490, 
validation set R2 = 0.9184 

In this work 

Refractive index CODESSA R2 = 0.940 [47] 

MLRA R2 = 0.929 [49] 

Correlating the refractive 
indices with two 2D 
descriptors 

R2 = 0.801 [49] 

Correlation between the 
refractive indices and the 
three 2D descriptors 

R2 = 0.918 [49] 

Regression model based on 
DRAGON and CORAL 
descriptors 

Training set R2 = 0.96, 
validation set R2 = 0.95 

[51] 

ANN Training set R2 = 0.971, 
validation set R2 = 0.9613 

[52] 

PLS with DRAGON and 
PaDEL descriptors 

Training set R2 = 0.895, 
validation set R2 = 0.707 
Training set R2 = 0.899, 
validation set R2 = 0.794 
Training set R2 = 0.897, 
validation set R2 = 0.766 
Training set R2 = 0.896, 
validation set R2 = 0.796 

[53] 

CORAL Training set R2 = 0.7764, 
validation set R2 = 0.9028 

[78] 

DRAGON Training set R2 = 0.907, 
validation set R2 = 0.823 

[85] 

Genetic algorithm and 
QSARINS 

Training set R2 = 0.932, 
validation set R2 = 0.882 

[86] 

CORAL Training set R2 = 0.7788, 
validation set R2 = 0.9452 

In this work 

It should be noted that in the case of using the objective function of the involving 
CII, as well as in the case of the objective function of the involving Monte Carlo IIC, 
optimization improves the statistical quality of the models for the calibration set as 
well for the validation set, but to the detriment of the training set.
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7.6 Possible Ways of Evolution of the QSPR for Polymers 

The list of main unpleasant peculiarities of QSPR/QSAR is as follows: (i) possibility 
of “chance correlations”; (ii) possibility of overtraining; (iii) possibility of weak 
reproducibility of statistical quality of an approach suggested [87]. 

Often the modern QSPR/QSAR researches are based solely on one distribution 
of available data into the training and validation sets. According to many authors, 
a rational split into training and validation sets gives better statistical results for the 
validation sets than models based on a group of random splits. An examination of 
several splits decreases the probability of “chance correlations”: solely one good 
correlation easily can become a chance correlation; however, three good correlations 
hardly can be “chance correlations”. 

The number of statistical characteristics aimed to measure the predictive potential 
of a model gradually increases, despite the attractiveness of a small number of criteria 
for the predictive potential for practical applications. On the one hand, the diversity 
of different standards of predicting potential is a tool to improve the quality of 
QSPR/QSAR models. On the other hand, this situation causes uncertainty in choosing 
the best model. In other words, contradictions in the recommendations of various 
criteria force the researcher to search for the best choice in a maze of numerous 
possibilities. 

As a rule, the contribution of the molecular structure is crucial to an endpoint. 
However, any physicochemical property, as well as any biological activity, is a math-
ematical function of many different conditions and circumstances. In other words, 
non-equilibrium physicochemical processes or pharmaceutical effects are caused by 
not only molecular structure but also physicochemical conditions (e.g. temperature, 
humidity) and circumstances (noise/silence, illumination/darkness). Apparently, one 
can agree with the above postulation, but the majority of QSPR/QSAR has built up 
without taking into account something besides molecular structure. However, it is 
to be noted that in some cases, the molecular structure is not informative to build 
up a predictive model of endpoints, e.g. endpoints related to polymers and/or nano-
materials. Sometimes, in addition to the molecular structure, one should consider 
experimental conditions. Thus, the definition of a model as a mathematical function 
of experimental conditions (after consultations with experimentalists) could be a 
shorter and consequently more attractive way to solve the corresponding tasks. 

QSPR/QSAR should be assessed as a surrogate of a real experiment for tradi-
tional substances as well for polymers. QSPR/QSAR aimed to measure an endpoint 
value. However, to expect adequate prediction of physicochemical and biochemical 
behaviour of an arbitrary substance by means of the QSPR/QSAR model is naive. 
Despite the above-mentioned thesis, QSPR/QSAR has become an integral part of 
modern science as a tool to detect “fuzzy tendencies” in the behaviour of groups of 
substances. This fact logically echoes the theory of fuzzy sets. This is not surprising, 
as fuzzy set theory has solved some QSPR/QSAR analysis problems. One can extract 
two components in the total wide variety of QSPR/QSAR studies: (i) “extensive” 
studies and (ii) “intensive” studies. “Extensive” studies aim to integrate the results of
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applying current approaches to solve practical tasks. The “intensive” studies attempt 
to develop new conceptions of the QSPR/QSAR analysis. Naturally, a small part of 
the results of the “intensive” studies gradually become a tool for robust “extensive” 
studies. Nowadays, multi-target QSPR/QSAR is a part of “intensive” studies. The 
development of criteria for models’ predictive potential is also a part of the “inten-
sive” studies. Maybe searching for the similarity of endpoints will also become part 
of “intensive” QSPR/QSAR research. 

Reliable prediction of endpoints related to different substances using unam-
biguous algorithms is an attractive alternative to experimental investigation. 

7.7 Quasi-SMILES Can Be a Tool for the Discussion 
of Experimentalists and Model Developers 

Quasi-SMILES is a sequence of symbols representing all available eclectic data, 
i.e. the molecular structure and different conditions, which can influence examined 
endpoint [88, 89]. Descriptor calculated with optimal correlation weights of different 
fragments of quasi-SMILES defined by the Monte Carlo technique is used to predict 
an endpoint as a mathematical function of molecular structure and arbitrary experi-
mental conditions. The statistical quality of the models based on correlation weights 
of fragments of quasi-SMILES can be better than the statistical quality of models 
obtained with traditional SMILES. 

7.8 Conclusions 

The QSPR for polymers can be developed from SMILES representing the molecular 
structure of monomer units or their compositions. These models can be improved 
by means of applying the IIC and CII. Quasi-SMILES is a possible way to establish 
new models which will extract all available eclectic data on the endpoint of interest. 
All QSPR/QSAR related to polymer systems should be qualified as random events. 

References 

1. Creton B, Veyrat B, Klopffer M-H (2022) Fluid Phase Equilib 556:113403. https://doi.org/10. 
1016/j.fluid.2022.113403 

2. Lowdon JW, Ishikura H, Kvernenes MK, Caldara M, Cleij TJ, van Grinsven B, Eersels K, 
Diliën H (2021) Computation 9(10):103. https://doi.org/10.3390/computation9100103 

3. Qu Z, Wang K, Xu C-A, Li Y, Jiao E, Chen B, Meng H, Cui X, Shi J, Wu K (2021) Chem Eng 
J 421:129729. https://doi.org/10.1016/j.cej.2021.129729 

4. Owolabi TO, Abd Rahman MA (2021) Polymers 13(16):2697. https://doi.org/10.3390/polym1 
3162697

https://doi.org/10.1016/j.fluid.2022.113403
https://doi.org/10.1016/j.fluid.2022.113403
https://doi.org/10.3390/computation9100103
https://doi.org/10.1016/j.cej.2021.129729
https://doi.org/10.3390/polym13162697
https://doi.org/10.3390/polym13162697


184 V. O. Kudyshkin and A. P. Toropova

5. Schustik SA, Cravero F, Ponzoni I, Díaz MF (2021) Comput Mater Sci 194:110460. https:// 
doi.org/10.1016/j.commatsci.2021.110460 

6. Miccio LA, Schwartz GA (2021) Macromolecules 54(4):1811–1817. https://doi.org/10.1021/ 
acs.macromol.0c02594 

7. Wang S, Cheng M, Zhou L, Dai Y, Dang Y, Ji X (2021) SAR QSAR Environ Res 32(5):379–393. 
https://doi.org/10.1080/1062936X.2021.1902387 

8. Minami T, Okuno Y (2018) MRS Adv 3(49):2975–2980. https://doi.org/10.1557/adv.2018.454 
9. Venkatraman V, Alsberg BK (2018) Polymers 10(1):103. https://doi.org/10.3390/POLYM1 

0010103 
10. Bernardo G, Deb N, King SM, Bucknall DG (2016) J Polym Sci Part B Polym Phys 54(10):994– 

1001. https://doi.org/10.1002/polb.24002 
11. Filho E, Brito E, Silva R, Streck L, Bohn F, Fonseca J (2021) J Dispers Sci Technol 42(10):1504– 

1512. https://doi.org/10.1080/01932691.2020.1774382 
12. Yu T, Kim R, Park H, Yi J, Kim W-S (2014) Chem Phys Lett 592:265–271. https://doi.org/10. 

1016/j.cplett.2013.12.006 
13. Ghasemi G (2019) J Sci Ind Res 78(5):323–327 
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16. Podrazka M, Báczyńska E, Kundys M, Jeleń PS, Nery EW (2017) Biosensors 8(1):3. https:// 
doi.org/10.3390/bios8010003 

17. Yipel M, Ghica MV, Albu Kaya MG, Spoiala A, Radulescu M, Ficai D, Ficai A, Bleotu C, 
Cornelia N (2016) Curr Org Chem 20(28):2934–2948. https://doi.org/10.2174/138527282066 
6160919112919 

18. Yan R, Hallam A, Stockley PG, Boyes J (2014) Biochem J 461(1):1–13. https://doi.org/10. 
1042/BJ20140173 

19. Toropov AA, Toropova AP, Begum S, Achary PGR (2016) SAR QSAR Environ Res 27(4):293– 
301. https://doi.org/10.1080/1062936X.2016.1172666 

20. Valenzuela LM, Knight DD, Kohn J (2016) Int J Biomater 2016:6273414. https://doi.org/10. 
1155/2016/6273414 

21. Golzar K, Amjad-Iranagh S, Modarress H (2013) Measurement 46(10):4206–4225. https://doi. 
org/10.1016/j.measurement.2013.08.012 

22. Puoci F, Iemma F, Spizzirri UG, Cirillo G, Curcio M, Picci N (2008) Am J Agric Biol Sci 
3(1):299–314. https://doi.org/10.3844/ajabssp.2008.299.314 

23. Chen P, Zhang W, Luo W, Fang Y (2004) J Appl Polym Sci 93(4):1748–1755. https://doi.org/ 
10.1002/app.20612 

24. Sampathkumar K, Tan KX, Loo SCJ (2020) iScience 23(5):101055. https://doi.org/10.1016/j. 
isci.2020.101055 

25. Behera S, Mahanwar PA (2020) Polym-Plast Technol Mater 59(4):341–356. https://doi.org/10. 
1080/25740881.2019.1647239 

26. Paul DR, Robeson LM (2008) Polymer 49(15):3187–3204. https://doi.org/10.1016/j.polymer. 
2008.04.017 

27. Ayres N (2010) Polym Chem 1(6):769–777. https://doi.org/10.1039/b9py00246d 
28. Fujiki M, Koe JR, Terao K, Sato T, Teramoto A, Watanabe J (2003) Polym J 35(4):297–344. 

https://doi.org/10.1295/polymj.35.297 
29. Azad MS, Trivedi JJ (2019) Fuel 235:218–226. https://doi.org/10.1016/j.fuel.2018.06.030 
30. Meng R, Yin D, Drapaca CS (2019) Int J Non-Linear Mech 113:171–177. https://doi.org/10. 

1016/j.ijnonlinmec.2019.04.002 
31. Nguyen TD, Jerry Qi H, Castro F, Long KN (2008) J Mech Phys Solids 56(9):2792–2814. 

https://doi.org/10.1016/j.jmps.2008.04.007 
32. Li Y, Liu Z (2018) Polymer 143:298–308. https://doi.org/10.1016/j.polymer.2018.04.026

https://doi.org/10.1016/j.commatsci.2021.110460
https://doi.org/10.1016/j.commatsci.2021.110460
https://doi.org/10.1021/acs.macromol.0c02594
https://doi.org/10.1021/acs.macromol.0c02594
https://doi.org/10.1080/1062936X.2021.1902387
https://doi.org/10.1557/adv.2018.454
https://doi.org/10.3390/POLYM10010103
https://doi.org/10.3390/POLYM10010103
https://doi.org/10.1002/polb.24002
https://doi.org/10.1080/01932691.2020.1774382
https://doi.org/10.1016/j.cplett.2013.12.006
https://doi.org/10.1016/j.cplett.2013.12.006
https://doi.org/10.1016/j.compbiolchem.2018.04.009
https://doi.org/10.1016/j.compbiolchem.2018.04.009
https://doi.org/10.1016/j.jddst.2017.12.010
https://doi.org/10.3390/bios8010003
https://doi.org/10.3390/bios8010003
https://doi.org/10.2174/1385272820666160919112919
https://doi.org/10.2174/1385272820666160919112919
https://doi.org/10.1042/BJ20140173
https://doi.org/10.1042/BJ20140173
https://doi.org/10.1080/1062936X.2016.1172666
https://doi.org/10.1155/2016/6273414
https://doi.org/10.1155/2016/6273414
https://doi.org/10.1016/j.measurement.2013.08.012
https://doi.org/10.1016/j.measurement.2013.08.012
https://doi.org/10.3844/ajabssp.2008.299.314
https://doi.org/10.1002/app.20612
https://doi.org/10.1002/app.20612
https://doi.org/10.1016/j.isci.2020.101055
https://doi.org/10.1016/j.isci.2020.101055
https://doi.org/10.1080/25740881.2019.1647239
https://doi.org/10.1080/25740881.2019.1647239
https://doi.org/10.1016/j.polymer.2008.04.017
https://doi.org/10.1016/j.polymer.2008.04.017
https://doi.org/10.1039/b9py00246d
https://doi.org/10.1295/polymj.35.297
https://doi.org/10.1016/j.fuel.2018.06.030
https://doi.org/10.1016/j.ijnonlinmec.2019.04.002
https://doi.org/10.1016/j.ijnonlinmec.2019.04.002
https://doi.org/10.1016/j.jmps.2008.04.007
https://doi.org/10.1016/j.polymer.2018.04.026


7 Building Up QSPR for Polymers Endpoints by Using SMILES-Based … 185

33. Omidian H, Hashemi SA, Sammes PG, Meldrum I (1998) Polymer 39(26):6697–6704. https:// 
doi.org/10.1016/S0032-3861(98)00095-0 

34. Richbourg NR, Peppas NA (2020) Prog Polym Sci 105:101243. https://doi.org/10.1016/j.pro 
gpolymsci.2020.101243 

35. Masaro L, Zhu XX (1999) Prog Polym Sci 24(5):731–775. https://doi.org/10.1016/S0079-670 
0(99)00016-7 

36. Raju B, Hiremath SR, Roy Mahapatra D (2018) Compos Struct 204:607–619. https://doi.org/ 
10.1016/j.compstruct.2018.07.125 

37. Zare Y, Rhee KY (2018) Compos Sci Technol 155:252–260. https://doi.org/10.1016/j.compsc 
itech.2017.10.007 

38. Shen F, Kang G, Lam YC, Liu Y, Zhou K (2019) Int J Plast 121:227–243. https://doi.org/10. 
1016/j.ijplas.2019.06.003 

39. Duty C, Ajinjeru C, Kishore V, Compton B, Hmeidat N, Chen X, Liu P, Hassen AA, Lindahl 
J, Kunc V (2018) J Manuf Process 35:526–537. https://doi.org/10.1016/j.jmapro.2018.08.008 

40. Sevim K, Pan J (2018) Acta Biomater 66:192–199. https://doi.org/10.1016/j.actbio.2017. 
11.023 

41. Brighenti R, Cosma MP, Marsavina L, Spagnoli A, Terzano M (2021) J Mater Sci 56(2):961– 
998. https://doi.org/10.1007/s10853-020-05254-6 

42. Tanaka M, Sackmann E (2005) Nature 437(7059):656–663. https://doi.org/10.1038/nature 
04164 

43. Huang R, Zheng S, Liu Z, Ng TY (2020) Int J Appl Mech 12(2):2050014. https://doi.org/10. 
1142/S1758825120500143 

44. Springer TE, Zowodzinski TA, Gottesfeld S (1991) J Electrochem Soc 138(8):2334–2342. 
https://doi.org/10.1149/1.2085971 

45. Gharagheizi F (2007) Comput Mater Sci 40(1):159–167. https://doi.org/10.1016/j.commatsci. 
2006.11.010 

46. Katritzky AR, Sild S, Lobanov V, Karelson M (1998) J Chem Inf Comput Sci 38(2):300–304. 
https://doi.org/10.1021/ci9700687 

47. Katritzky AR, Sild S, Karelson M (1998) J Chem Inf Comput Sci 38(6):1171–1176. https:// 
doi.org/10.1021/ci980087w 

48. Cypcar CC, Camelio P, Lazzeri V, Mathias LJ, Waegell B (1996) Macromolecules 29(27):8954– 
8959. https://doi.org/10.1021/ma961170s 

49. Xu J, Chen B, Zhang Q, Guo B (2004) Polymer 45(26):8651–8659. https://doi.org/10.1016/j. 
polymer.2004.10.057 

50. Afantitis A, Melagraki G, Sarimveis H, Koutentis PA, Markopoulos J, Igglessi-Markopoulou 
O (2006) Polymer 47(9):3240–3248. https://doi.org/10.1016/j.polymer.2006.02.060 

51. Duchowicz PR, Fioressi SE, Bacelo DE, Saavedra LM, Toropova AP, Toropov AA (2015) 
Chemom Intell Lab Syst 140:86–91. https://doi.org/10.1016/j.chemolab.2014.11.008 

52. Xu J, Liang H, Chen B, Xu W, Shen X, Liu H (2008) Chemom Intell Lab Syst 92(2):152–156. 
https://doi.org/10.1016/j.chemolab.2008.02.006 

53. Khan PM, Rasulev B, Roy K (2018) ACS Omega 3(10):13374–13386. https://doi.org/10.1021/ 
acsomega.8b01834 

54. Xu J, Liu L, Xu W, Zhao S, Zuo D (2007) J Mol Graph Model 26(1):352–359. https://doi.org/ 
10.1016/j.jmgm.2007.01.004 

55. Melagraki G, Afantitis A, Sarimveis H, Koutentis PA, Markopoulos J, Igglessi-Markopoulou 
O (2007) J Mol Model 13(1):55–64. https://doi.org/10.1007/s00894-006-0125-z 

56. Yu X, Wang X, Wang H, Li X, Gao J (2006) QSAR Comb Sci 25(2):156–161. https://doi.org/ 
10.1002/qsar.200530138 

57. Koç DT, Koç ML (2015) Chemom Intell Lab Syst 144:122–127. https://doi.org/10.1016/j.che 
molab.2015.04.005 

58. Tokarski JS, Hopfinger AJ, Hobbs JD, Ford DM, Faulon J-LM (1997) Comput Theor Polym 
S7(3–4):199–214. https://doi.org/10.1016/S1089-3156(98)00007-5 

59. Bertinetto C, Duce C, Micheli A, Solaro R, Starita A, Tiné MR (2009) J Mol Graph Model 
27(7):797–802. https://doi.org/10.1016/j.jmgm.2008.12.001

https://doi.org/10.1016/S0032-3861(98)00095-0
https://doi.org/10.1016/S0032-3861(98)00095-0
https://doi.org/10.1016/j.progpolymsci.2020.101243
https://doi.org/10.1016/j.progpolymsci.2020.101243
https://doi.org/10.1016/S0079-6700(99)00016-7
https://doi.org/10.1016/S0079-6700(99)00016-7
https://doi.org/10.1016/j.compstruct.2018.07.125
https://doi.org/10.1016/j.compstruct.2018.07.125
https://doi.org/10.1016/j.compscitech.2017.10.007
https://doi.org/10.1016/j.compscitech.2017.10.007
https://doi.org/10.1016/j.ijplas.2019.06.003
https://doi.org/10.1016/j.ijplas.2019.06.003
https://doi.org/10.1016/j.jmapro.2018.08.008
https://doi.org/10.1016/j.actbio.2017.11.023
https://doi.org/10.1016/j.actbio.2017.11.023
https://doi.org/10.1007/s10853-020-05254-6
https://doi.org/10.1038/nature04164
https://doi.org/10.1038/nature04164
https://doi.org/10.1142/S1758825120500143
https://doi.org/10.1142/S1758825120500143
https://doi.org/10.1149/1.2085971
https://doi.org/10.1016/j.commatsci.2006.11.010
https://doi.org/10.1016/j.commatsci.2006.11.010
https://doi.org/10.1021/ci9700687
https://doi.org/10.1021/ci980087w
https://doi.org/10.1021/ci980087w
https://doi.org/10.1021/ma961170s
https://doi.org/10.1016/j.polymer.2004.10.057
https://doi.org/10.1016/j.polymer.2004.10.057
https://doi.org/10.1016/j.polymer.2006.02.060
https://doi.org/10.1016/j.chemolab.2014.11.008
https://doi.org/10.1016/j.chemolab.2008.02.006
https://doi.org/10.1021/acsomega.8b01834
https://doi.org/10.1021/acsomega.8b01834
https://doi.org/10.1016/j.jmgm.2007.01.004
https://doi.org/10.1016/j.jmgm.2007.01.004
https://doi.org/10.1007/s00894-006-0125-z
https://doi.org/10.1002/qsar.200530138
https://doi.org/10.1002/qsar.200530138
https://doi.org/10.1016/j.chemolab.2015.04.005
https://doi.org/10.1016/j.chemolab.2015.04.005
https://doi.org/10.1016/S1089-3156(98)00007-5
https://doi.org/10.1016/j.jmgm.2008.12.001


186 V. O. Kudyshkin and A. P. Toropova

60. Ajloo D, Sharifian A, Behniafar H (2008) Bull Korean Chem Soc 29(10):2009–2016. https:// 
doi.org/10.5012/bkcs.2008.29.10.2009 

61. Mallakpour S, Hatami M, Golmohammadi H (2013) Polym Bull 70(2):715–732. https://doi. 
org/10.1007/s00289-013-0906-3 
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Part IV 
Quasi-SMILES for QSPR/QSAR



Chapter 8 
Quasi-SMILES-Based QSPR/QSAR 
Modeling 

Shahin Ahmadi and Neda Azimi 

Abstract Quantitative structure–property/activity relationships (QSPRs/QSARs) 
have been used to predict the physicochemical property and biological activity 
of different substances, considering that the physicochemical property/biological 
activity of a new or untested substance can be inferred from the molecular structure or 
other properties of similar compounds whose properties/activities have already been 
assessed. Traditional QSPR/QSAR models based on physicochemical properties and 
molecular information are not so successful in predicting endpoint of substances 
such as nanomaterials due to scarcity of available dataset in same conditions. A 
new approach using eclectic information as descriptors to predict the endpoint of 
substance materials was developed in CORAL software (http://www.insilico.eu/ 
coral). In this approach, physicochemical properties and the experimental condi-
tions of substance are represented by so-called quasi-SMILES, which are character-
based representations derived from traditional Simplified Molecular Input Line Entry 
System (SMILES). Thus, a main advantage of the quasi-SMILES is to increase the 
number of available datasets by using the eclectic data in developing quasi-SMILES-
based QSPRs/QSARs models. This chapter provides instructions on how to use 
CORAL software for building QSPR/QSAR models based on quasi-SMILES. 
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Abbreviations 

AD Applicability Domain 
CCC Concordance Correlation Coefficient 
CORAL CORrelation And Logic 
CII Correlation Intensity Index 
EP Endpoint 
F Fischer ratio 
IIC Index of Ideality Correlation 
MAE Mean Absolute Error 
NPs Nanoparticles 
OECD Organization of Economic Co-operation and Development 
QSAR Quantitative Structure–Activity Relationship 
QSPR Quantitative Structure–Property Relationship 
RMSE Root-Mean-Square Error 
SMILES Simplified Molecular Input Line Entry System 
TF Target Function 

8.1 Introduction 

Quantitative structure–activity/property relationship (QSAR/QSPR) approach is 
indubitably of considerable importance in food chemistry [1, 2], environmental 
chemistry [3], modern chemistry [4–6], biochemistry [7], nanotechnology [8, 9], and 
drug design [10, 11]. The QSAR/QSPR approach is the mathematical and comput-
erized search for compounds with desired activities/properties using chemical intu-
ition and experience. Once a structure–activity/property correlation has been estab-
lished, any number of compounds, including those not yet synthesized, can be easily 
screened on a computer to select structures with the desired activity/properties. Then 
the most promising compounds can be found for synthesis and experimental testing 
[12]. Therefore, QSAR/QSPR study saves cost and time for the development process 
of new molecules as drugs, materials, additives, or any other purpose. While finding 
successful structure–activity models is not an easy task, the recent increase in the 
number of papers in QSPR/QSAR research clearly indicates the rapid evolution in 
this area. To obtain a significant correlation, it is very important to use appropriate 
descriptors, whether they are theoretical, empirical, or derived from easily empirical 
properties of the constructs [12]. A group of descriptors shows simple molecular 
properties and therefore can give insight into the physicochemical nature of the 
activity/property under consideration. 

Considering the growth of nanotechnology, modeling the properties or toxicity 
of nanoparticles (NPs) on living organisms is very important [13–15]. Although it is 
difficult to conduct toxicological experiments or obtain physical properties of NPs on 
a case-by-case basis, QSPR/QSAR is a computationally efficient technique because
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it saves time, cost, and animal sacrifice. The first part of nano-QSPR/QSAR model 
implementation includes data collection (including descriptors and endpoints) and 
data processing. The dataset can be obtained from the literature, databases, exper-
iments, or integrated multiple sources. Therefore, to construct nano-QSPR/QSAR 
models, it is important to identify a new set of descriptors that can accurately represent 
the properties of NPs as well as the experimental conditions. 

During recent years, the Simplified Molecular Input Line Entry System (SMILES) 
and quasi-SMILES descriptors have been examined by some researchers for 
QSPR/QSAR modeling [16–19]. The SMILES can reveal molecular structures, and 
quasi-SMILES can represent molecular structure and physicochemical properties 
and exposure conditions [8, 20, 21]. SMILES of a molecule is based on a set 
of rules that allow a molecular structure to be represented as a sequence of atom 
and bond symbols, but quasi-SMILES imports the physicochemical properties and 
experimental conditions as a string of characters after SMILES symbol. 

8.2 Principals of QSPR/QSAR Models 

Although QSPR/QSAR modeling has been used for over five decades, many studies 
still do not follow the Organization of Economic Co-operation and Development 
(OECD) guidelines. Figure 8.1 summarizes the best practices for each step of 
QSPR/QSAR approach using models in peer reviewed literature. Dearden et al. have 
reported a detailed description of common errors in QSPR/QSAR research [22].

According to OECD guidelines, if a QSPR/QSAR study is to be reliable, the 
following five principles must be met: (i) a well-defined endpoint, (ii) an unam-
biguous algorithm, (iii) a defined applicability domain (AD), (iv) appropriate 
measures of goodness-of-fit, robustness, and predictivity, and (v) a mechanistic 
interpretation, if possible. 

8.3 Monte Carlo Technique for Nano-QSPR/QSAR 

8.3.1 SMILES and Quasi-SMILES 

SMILES is a chemical notation system designed by Weininger et al. [23, 24]. 
According to the principles of molecular graph theory, SMILES uses a very small, 
natural grammar to specify precise structural features. The SMILES symbol system 
is also suitable for fast machine processing. Quasi-SMILES is an alternative to 
SMILES, which is used for substances considering physicochemical properties and 
experimental conditions.
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Fig. 8.1 General flowchart 
for QSPR/QSAR modeling

8.3.2 The Main Step for QSPR/QSAR Modeling by SMILES 
or Quasi-SMILES 

CORrelation And Logic (CORAL) software (http://www.insilico.eu/coral) has two 
possibilities for building QSPR/QSAR models based on SMILES or quasi-SMILES. 
In the following, the method of preparing the input data for the CORAL software is 
described.

http://www.insilico.eu/coral
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Fig. 8.2 Sample of data based on a SMILES, and b quasi-SMILES as input for CORAL 

8.3.2.1 Dataset Preparation for Models Based on SMILES 

The SMILES string is a procedure for representing a two-dimensional molecular 
graph as a one-dimensional string that can show the connectivity and chirality of a 
molecule. In most cases, there are too many SMILES strings for a structure. Canonical 
SMILES gives a single ‘canonical’ form for any particular molecule. Molecular struc-
tures of desired compounds were transformed to canonical SMILES using different 
software such as Open Babel and ACD/ChemSketch program. Figure 8.2a, b indi-
cates the sample of data based on SMILES, and quasi-SMILES as input for CORAL 
software, respectively. The first column indicates set, the second is compound ID, 
the third is SMILES/quasi-SMILES, and the last column is desired property/activity. 

8.3.2.2 Dataset Preparation for Models Based on Quasi-SMILES 

For building of QSPR/QSAR in different physicochemical properties and/or the 
experimental conditions of substance, one can use quasi-SMILES instead of SMILES 
of molecules. Dataset preparation for quasi-SMILES is same as SMILES, only 
SMILES is replaced by quasi-SMILES. 

8.3.2.3 Quasi-SMILES Definition for Various Datasets/Endpoints 

Quasi-SMILES is a sequence of symbols that not only represents the molecular 
structure but also the different conditions that can affect the endpoint under investi-
gation. Eclectic data can include: different physical properties such as temperature,
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Table 8.1 Distinction of 
standardized physiochemical 
features into classes 1–9 
according to its value 

Normalized value Class 

Norm(E) > 0.9 9 

0.8 < Norm(E) < 0.9 8 

0.7 < Norm(E) < 0.8 7 

0.7 < Norm(E) < 0.6 6 

0.6 < Norm(E) < 0.5 5 

0.5 < Norm(E) < 0.4 4 

0.4 < Norm(E) < 0.3 3 

0.3 < Norm(E) < 0.2 2 

0.2 < Norm(E) < 0.1 1 

Norm(E) < 0.1 0 

pressure, and assay of experiment to obtain an endpoint, or cell line type, time expo-
sition, concentration, etc. to obtain an activity. The type and number of eclectic data 
can be different in various datasets. 

Quasi-SMILES may be made by eclectic condition, only [4, 13] or combination 
of SMILES and eclectic conditions [5, 8]. The continuous eclectic conditions can be 
normalized by the following equation for assigning codes: 

Norm(Ei ) = 
min(Ei ) + Ei 

min(Ei ) + max(Ei ) 
(8.1) 

Ei is its value of physicochemical parameter E, min(Ei ) is minimum value of E, and 
max(Ei ) indicates maximum value of E. 

According to Table 8.1, the number of unique values in each parameter was less 
than 10; therefore, the quasi-SMILES descriptors representations could be coded by 
assigning a number between zero and nine in a single character. 

A further development of the CORAL software (CORAL-2020) allows the display 
of experimental conditions through groups of symbols enclosed in parentheses. 
Table 8.2 shows the comparison codes in the last version (CORAL-2020) and old 
version of CORAL for creating quasi-SMILES in recently proposed models for cyto-
toxicity of metal oxide NPs [4]. One can see codes-2020 are quite transparent and 
consequently are more convenient for a user. As is clearly evident, CORAL-2020 
codes being quite transparent and thus more user-friendly. Table 8.2 indicates codes 
used for the cell line, method, time exposition, concentration, nanoparticle size, and 
metal oxide type. Table 8.3 indicates the examples of quasi-SMILES obtained based 
on these codes.

Toropov and Toropova developed a QSAR model based on the new version 
of CORAL for the toxicity of ZnO NPs [14]. Experimental data from the litera-
ture are toxicity assessment of ZnO NPs and ZnO NPs coated with polyethylene 
glycol (PEG), which are investigated by intraperitoneal injections in the rat (50, 
100, 200 mg/kg) for one month. Measurement of the toxic effects of renal factors
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Table 8.4 Codes used as 
fragments of quasi-SMILEs 
and their meaning 

Code Meaning 

[15d] Renal factor measured after fifteen days 
post-injection 

[30d] Renal factor measured after thirty days 
post-injection 

[RF1] Variation in creatinine as renal factor 

[RF2] Variation in uric acid as renal factor 

[RF3] Variation in blood urea nitrogen as renal 
factor 

[50] 50 mg per kg of body weight 

[100] 100 mg per kg of body weight 

[200] 200 mg per kg of body weight 

[ZnO] Uncoated ZnO NPs is injected 

[ZnO][peg] ZnO coated by PEG NPs is injected 

including creatinine, uric acid, and blood urea nitrogen was measured after 15 and 
30 days after injection. Table 8.4 shows the quasi-SMILES attributes together with 
experimental conditions. Table 8.5 represents examples of available quasi-SMILES 
obtained based on this condition and related activity. 

Toropova et al. developed new nano-QSAR model for predicting toxicity of nano-
mixtures to Daphnia magna based on quasi-SMILES [25]. The binary mixtures of 
TiO2 NPs and with of one of the second component including AgNO3, Cd(NO3)2, 
Cu(NO3)2, CuSO4, Na2HAsO4, NaAsO2, benzylparaben, and benzophenone-3 have 
been investigated. Quasi-SMILES contain the following information: (1) Second

Table 8.5 Some examples for quasi-SMILES extracted by codes presented in Table 8.4 

Time 
exposition 
(days) 

Renal 
factor type 

NPs 
(mg/kg) 

NPs type Quasi-SMILES Experimental 
renal factor 

15 Creatinine 50 ZnO [15d][RF1][50][ZnO] 0.79 

15 Creatinine 100 ZnO [15d][RF1][50][ZnO] 0.87 

15 Creatinine 100 ZnO-peg [15d][RF1][50][ZnO][peg] 0.50 

15 Uric acid 100 ZnO-peg [15d][RF2][200][ZnO][peg] 1.37 

15 Blood urea 
nitrogen 

100 ZnO-peg [15d][RF3][100][ZnO][peg] 62.30 

30 Creatinine 100 ZnO [30d][RF1][100][ZnO] 0.72 

30 Uric acid 50 ZnO-peg [30d][RF2][50][ZnO][peg] 1.30 

30 Blood urea 
nitrogen 

50 ZnO-peg [30d][RF3][50][ZnO][peg] 50.33 

30 Blood urea 
nitrogen 

200 ZnO-peg [30d][RF3][200][ZnO][peg] 49.0 
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Fig. 8.3 Transfer of experimental data into quasi-SMILES [25] 

component of mixture represented by SMILES; (2) core diameter of TiO2 NPs; (3) 
Zeta potential of TiO2 NPs; (4) mole fraction of TiO2 NPs; (5) mole fraction of 
mixed substance; and (6) exposure time. Figure 8.3 shows the transformation of the 
experimental condition and substance into the quasi-SMILES. 

8.3.2.4 Model Development 

Model development has several steps that can be organized in CORAL software and 
does not require any software for data partitioning, descriptor generation, and model 
validation. In the following sections, the main step for QSPR/QSAR modeling using 
CORAL software is described. 

8.3.2.5 Dataset Splitting 

After the preparation and curation of dataset, the next step of building a QSAR/QSPR 
model for an endpoint by CORAL software (http://www.insilico.eu/coral) is loading 
an array of lines. Each line consists of four components.

http://www.insilico.eu/coral
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The first column is the types of set which ‘+’, ‘−’, ‘#’, and ‘*’ indicate the active 
training, passive training, calibration, and validation, respectively (Fig. 8.2). 

• The second column without space with type of set is number or ID of compound. 
• The third column is quasi-SMILES. 
• The last column is endpoint value. 

After the preparation of input file, the dataset was splitted into training, passive 
training, calibration, and validation sets using CORAL software, randomly with 
desired present for each set. 

8.3.2.6 Monte Carlo Optimization Process 

Quasi-SMILES is a group of attributes where each attribute group is converted into 
a group of coefficients called correlation weights. Monte Carlo optimization refines 
the correlation weights that provide numerical data on them, which maximizes the 
predictive potential of a model as much as possible. Figure 8.4 shows the flowchart 
of one cycle of Monte Carlo optimization of correlation weights (n is the number of 
correlation weights that contribute to model construction). 

There are different target functions (TFs) in CORAL software for Monte Carlo 
optimization [25–29], which are introduced below four TFs:

Fig. 8.4 Flowchart of one 
cycle of the Monte Carlo 
optimization for finding 
correct correlation weights (n 
is the number of correlation 
weights that contribute to 
model construction) 
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TF0 = rAT + rPT − |rAT − rPT| × C (8.2) 

TF1 = TF1 + IICC × WIIC (8.3) 

TF2 = TF1 + CIIC × WCII (8.4) 

TF3 = TF1 + IICC × WIIC + CIIC × WCII (8.5) 

rAT and rPT represent the correlation coefficient between the experimental and 
predicted endpoints for active and passive training sets, respectively. Empirical 
constant (C), W IIC, and WCII have a defined numerical value [1, 18, 30–33]. 

IICC is the index of ideality correlation. IICC is obtained based on the calibration 
set as follows: 

CIIC = rC 
min

(−MAEC, +MAEC
)

max(−MAEC, +MAEC) 
(8.6) 

−MAEC = 
1 

− N

∑
|Δi |, − N is the number ofΔi < 0 (8.7) 

+MAEC = 
1 

− N

∑
|Δi |, + N is the number ofΔi ≥ 0 (8.8)

Δi = Obsi − Calci (8.9) 

The Obsi and Calci are the experimental and predicted endpoint for i th compound. 
The correlation intensity index (CII), like IIC criteria, was developed to modify 

the quality of the Monte Carlo optimization used to build the QSPR/QSAR models. 
CII is formulated as follows: 

CII = 1 −
∑

ΔR2 
i > 0, IfΔR2 

i < 0 thenΔR2 
i = 0 (8.10)

ΔR2 
i = R2 

i − R2 (8.11) 

where R2 is the coefficient of determination for all endpoints and R2 
i is the coefficient 

of determination for all endpoints in the absence of ith compound. Therefore, ifΔR2 
i 

is greater than zero, the meaning of ith is an ‘opposite’ for the correlation between 
the experimental and calculated values of the set. 

A small  sum of ΔR2 
i means a more ‘intensive’ correlation. 

The CORAL model for an endpoint (EP) is defined by the below equation: 

EP = C0 + C1 × DW(T , N ) (8.12)
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C0 and C1 represent regression coefficients, T is a threshold, and N is the number of 
optimization cycles. The DCW(T, N) is defined as the below equation: 

DCW(T , N ) =
∑

CW(Sk) (8.13) 

where Sk represents the symbol of a quasi-SMILES line; the CW(Sk) shows  the  
correlation weights of Sk . 

8.3.2.7 Applicability Domain 

The AD of QSAR/QSAR models for CORAL software is determined in two steps 
based on the distribution of SMILES or quasi-SMILES features in the training and 
calibration sets: 

Step 1: the statistical defect (dk) is calculated for each involved (unblocked) SMILES 
or quasi-SMILES feature (Sk) to build the model with the following equation: 

dk =
||P(Sk) − P '(Sk)

||

N (Sk) + N '(Sk) 
(8.14) 

here, P(Sk) and P'(Sk) represent the probability of Sk in the active training set and 
calibration sets, respectively; N(Sk) and N '(Sk) denote the frequencies of Sk in the 
active training and calibration sets, respectively. 

Step 2: the quasi-SMILES (Di) statistical defect of all compounds is defined 
according to the following equation: 

Di = 
NA∑

k=1 

dk (8.15) 

here NA denotes the number of non-blocked quasi-SMILES features in the quasi-
SMILES. 

Quasi-SMILES falls in the AD if: 

Di < 2 × D (8.16) 

where D represents average statistical defect of the training set.
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8.3.2.8 Model Validation 

Validation, as the fourth principle of OECD, is recognized as an intrinsic component 
to check the robustness, predictability, and reliability of any QSPR/QSAR models. 
There are three approaches to examine the robustness, reliability, and predictive 
potential of the QSPR/QSAR models in CORAL software, including: 

• Internal validation 
• External validation 
• Y-scrambling or data randomization. 

Various statistical criteria such as determination coefficient (R2), concordance 
correlation coefficient (CCC), cross-validated correlation coefficient (Q2), Q2 

F1, Q
2 
F2, 

Q2 
F3, standard error of estimation (s), mean absolute error (MAE), Fischer ratio 

(F) and root-mean-square error (RMSE), R2 
m, and average of R

2 
m metric (R2 

m) are  
calculated to authenticate the QSPR/QSAR models constructed based on the Monte 
Carlo optimization by the CORAL software. Table 8.6 indicates the mathematical 
equation of diverse statistical benchmark of the predictive potential for CORAL 
models. 

Table 8.6 Mathematical formulation of different statistical benchmark of the predictive potential 
for CORAL models 

Criterion of the predictive potential Description References 

Q2 = 1 −
∑

( ̂yi−yi )
2

∑
(yi−y)2

Leave-one-out cross-validated correlation 
coefficient 

[34] 

Q2 
F1 = 1 −

∑NEXT 
i=1 ( ̂yi−yi )

2

∑NEXT 
i=1 ( ̂yi−yTR)

2 Criteria of predictability [35] 

Q2 
F2 = 1 −

∑NEXT 
i=1 ( ̂yi−yi )

2

∑NEXT 
i=1 ( ̂yi−yEXT)

2 Criteria of predictability [35] 

Q2 
F3 = 1 −

[∑NEXT 
i=1 ( ̂yi−yi )

2
]
/NEXT

[∑NEXT 
i=1 ( ̂yi−yEXT)

2
]
/NTR 

Criteria of predictability [36] 

R2 
m = R2 ×

(
1 − 

/
R2 − R2 

0

)
[36] 

R2 
m = R

2 
m(x,y)−R2 

m(y,x) 
2 Average of R2 

m metric [36] 

CCC = 2
∑

(x−x)(y−y)∑
(x−x)2+∑

(y−y)2+n(x−y)2
Concordance correlation coefficient [37] 

CR2 
p 

= R
/(

R2 − R2 
r

)
Coefficient of determination for 
Y-randomization 

[38]
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8.3.2.9 Mechanistic Interpretation 

The 5th OECD principle focuses on mechanistic interpretation of the QSPR/QSAR 
model if possible. The model interpretation is used to examine the critical and respon-
sible attributes that influence the endpoint. Finally, the new compounds are designed 
based on these attributes. In the QSPR/QSAR modeling based on the CORAL soft-
ware, the same structural attributes (Sk) collected from three or more different splits 
are used to perform the mechanistic interpretation [39–42]. These structural attributes 
(Sk) are divided into three categories according to previous studies: 

• Increasing factor if the CW(Sk) is positive in all splits and in three attempts, 
• Decreasing factor if the CW(Sk) is negative in all splits and in three attempts, 
• Undefined attributes if the CW(Sk) is both positive and negative [43–45]. 

8.4 Examples of Quasi-SMILES-Based QSPR/QSAR 
Models 

Some examples of QSAR/QSPR models base on quasi-SMILES with CORAL 
software using different TFs are presented in Table 8.7.

8.5 Conclusion and Future Direction 

QSPR/QSAR modeling based on SMILES and quasi-SMILES by CORAL software 
is useful for big dataset. In CORAL software, QSPR/QSAR generally follows the 
five OECD principles. In addition, additional principles may be defined practically 
for nano-QSPR/QSAR that reflect the nature of the nanomaterial under investigation. 
For example, the new principles should take into account the test conditions and the 
quality of the applied equipment. 

The use of CORAL software in building QSPR/QSAR models for nanomaterials in 
different conditions is simple, and the models can be easily predicted and interpreted. 
There are very good TFs (TF0–TF3) to find reliable correlation weights and this is 
one of the important capabilities of CORAL for building excellent QSAR/QSAR 
models. The type and number of input features can change the performance of a 
QSAR/QSPR model. But there is one of a shortcoming for CORAL software, the 
user can use only CORAL software descriptors, and it is impossible to add the other 
descriptors produced by other descriptor generators. 

In CORAL software, there is only Monte Carlo algorithm to find correlation 
weights. The use of various algorithms can increase the quasi-SMILES QSPR/QSAR 
performance. Data splitting in CORAL software is done randomly; the possibility 
of using different methods of data splitting can increase the validity of the models.
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Since the correlation weight of the descriptors in this software is calculated through 
Monte Carlo approach, the use of consensus modeling can dramatically increase the 
prediction results. 
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Chapter 9 
Quasi-SMILES-Based Mathematical 
Model for the Prediction of Percolation 
Threshold for Conductive Polymer 
Composites 

Swayam Aryam Behera, Alla P. Toropova, Andrey A. Toropov, 
and P. Ganga Raju Achary 

Abstract The traditional method for creating conductive polymer composites 
(CPCs) involves mixing carbon black, metal powder, or carbon fibre into a polymer 
matrix. Since the polymer matrix acts as an insulator, when a threshold filler level 
is achieved, the conductivity of these composites can exhibit a sharp increase. The 
common term generally used to describe such phenomena is called ‘percolation’. 
As the conductive filler content increases in the insulator polymer matrix, it creates 
different conductive routes, steady rise in the electrical conductivity is observed at a 
critical volume fractionΦ. That critical volume fractionΦ responsible for the transi-
tion of polymers from insulators to conducting is called the ‘percolation threshold’. 
The diverse experimental percolation threshold cured data of 45 conductive polymer 
composite systems were classified into four sets: A = active training set; P = passive 
training set; C = calibration set; V = validation set. Systems of eclectic condi-
tions of various processes of mixing such as dry mixing, latex technology, and melt 
blending employed to fabricate the conducting polymer composites with various 
polymer matrixes like high-density polyethylene (HDPE), low-density polyethylene 
(LDPE), maleic anhydride (MA), polyamide (PA) and the conducting fillers such 
as multi-wall carbon nanotube (MWNT), single-wall carbon nanotube (SWNT), 
polyaniline (PANI) are very important and crucial to have desired properties. Unique 
quasi-SMILES codes for different CPCs were suggested taking into consideration 
various systems of eclectic conditions. These quasi-SMILES codes were the basis 
for building mathematical models for predicting percolation threshold CPCs.
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Keywords Conductive polymer composites · Percolation threshold · Quantitative 
structure–property relationship (QSPR) · Quasi-SMILES 

9.1 Introduction 

Electrically conductive polymer composites (CPCs), which are made of metallic, 
carbonaceous or conducting polymeric particles dispersed in a multi-phase blend or 
a single polymer matrix, have drawn considerable industry and academic attention 
over several decades [1–5]. The number of research publications about CPCs that 
were found on 20th May 2014 when the term ‘conductive polymer composite was 
searched in the (Web of Science database) Institute for Scientific Information (ISI), 
serves as evidence of their popularity. CPCs have served applications as electromag-
netic interference (EMI) shielding, conductors, and sensors due to their low cost, ease 
of processing, and tunable electrical characteristic compared to intrinsic conducting 
polymers [6–9]. The specific applications of CPCs depend on their electrical resis-
tivity (Table 9.1). For instance, EMI shielding necessitates electrical resistivity values 
of 10−2Ω cm, whereas CPC materials for electrostatic dissipation typically require 
an electrical resistivity of 10−6Ω cm in plastic fuel tanks. 

The CPCs having electrical performance depend only on conductive (continuous) 
networks built after inserting the conductive fillers because the majority of common 
host polymers are fundamentally insulating [10, 11]. The CPC material will demon-
strate an insulator/conductor transition at a critical level when the conductive filler 
content reaches; particularly, the electrical conductivity dramatically increases when 
the initial conducting channels are produced by several orders of magnitude. The 
percolation threshold Φc is referred to as this critical volume fraction Φ. As the  
conductive filler content rises, additional conductive routes may be created in the

Table 9.1 Classifying conductive polymer composite materials according to their electrical 
resistivity and application ranges 

Resistivity (Ω cm) Applications and products 

Insulating (1011 to 1014) Insulators 

Electrostatic dissipative (106 to 1011) Anti-static materials: microscope housing materials, fuel 
tanks, anti-static storage containers, electronic 
connectors, electrostatic paintable compounds, mining 
pipes, etc. 

Conductive (101 to 106) Sensors & EMI shielding: electronic nose devices, strain 
sensing materials, self-regulated heating elements, 
organic liquid sensing devices, over-current protectors, 
etc. 

Highly conductive (10-6 to 101) Conductors: conducting adhesives & coatings. Resistors, 
bipolar plates, metal replacement, bus bars, 
thermos-electric materials, etc. 
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polymer matrix, steadily increasing the electrical conductivity until a plateau is 
achieved at its saturation. Typically, a power law can be used for a CPC material 
to objectively describe the electrically conductive behaviour [10]. 

σ = σ0(Φ−Φc)
t (9.1) 

where σ is the electrical conductivity of the CPC and t is the critical exponent for the 
conductive networks related to the dimensionality in the CPC. For two-dimensional 
(2D) conductive networks, this model uses t ≈ 2, and for three-dimensional (3D), t ≈ 
1.3. However, the experimental values frequently differ from these expected values 
[12, 13]. 

The melt-mixing technologies, such as internal mixing, twin-screw extrusion, and 
injection moulding, are the widely used approaches among the conventional CPC 
fabrication methods (i.e. melt mixing, solution processing, and in situ polymerisa-
tion) used to fabricate commercial CPC materials. This is because current industrial 
practices are compatible with these techniques. However, traditional melt-mixing 
techniques typically have a high Φc in which the CPCs are made. Theoretically, the 
16 vol% percolation value anticipated by the classical percolation theory [14, 15] 
is close to 10–20 vol% of the Φc for randomly dispersed, spherical fillers, such as 
metallic particles, carbon black (CB), and conducting polymer particles. 

Although carbon nano-tubes (CNT) and graphene nano-sheets (GNS) have huge 
surface areas that can sustain well-developed transport networks, these high-aspect-
ratio conductive nanoparticles’ severe agglomeration characteristic during host poly-
mers processing produces the high Φc relatively. Unfortunately, a number of disad-
vantages are in CPCs with high Φc, including low economic viability, high-melt 
viscosities, and worse mechanical qualities, particularly in terms of ductility and 
toughness [16, 17]. Therefore, high-performance CPC materials manufacturing, 
lowering Φc efficiently has emerged as a persistent, significant concern. 

The most promising method for achieving low Φc [18–20] in a CPC material has 
remained the formation of a segregated structure. Throughout the entire CPC system, 
instead of being distributed randomly conductive fillers are largely found at the poly-
meric matrix particle interfaces in segregated CPC (s-CPC) materials. Several times 
this particular structure reduce the percolation value as compared to ordinary melt-
mixed CPCs because in the interfacial regions of s-CPC materials, there is perfect 
mutual contact and an extremely high percentage between the conductive fillers. 
For example, in acrylonitrile–butadiene–styrene (ABS), Gupta et al. created a segre-
gated CB-based conductive network with an exceptionally 0.0054 vol% of low Φc 

value, the lowest value for CPC materials (CB-based) in the literature at this time 
[21]. A polymeric matrix with conductive fillers and an exclusionary microstruc-
ture assigned a constrained volume is the basis for the formation of a segregated 
conductive network mechanism, which at specific filler concentrations, the effec-
tive density of the conductive pathways significantly raises. In a nutshell, with little 
filler loading, this intriguing topology offers an effective paradigm for establishing 
a conducive network.
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As depicted in Fig. 9.1, there have been three primary methods developed to 
prepare s-CPCs. To create segregated conductive networks, the first method is using 
dry or solution mixing, a combination of polymer granules compression coated with 
conductive fillers (Fig. 9.1a) [22, 23]. Different conducive fillers (e.g. CB, metallic 
particles, GNSs, and CNTs) on the external surfaces of polymeric particles can be 
distributed without overly emphasising the filler dispersion levels before being hot 
compressed to form bulk materials with segregated structures due to the simplicity of 
the mixing and compaction processing methods [24–27]. However, due to processing 
difficulties, the filler concentration cannot reach very high values (often less than 10 
wt%), and the polymers should have relatively high-melt viscosities utilised with 
this construction approach to sustain the segregated conducting networks during hot 
compression moulding. The second method, known as latex technology, involves 
spreading conductive fillers into polymeric latex. The fillers are kept between the 
latex particles within the interstitial spaces while the polymer emulsion is freeze-
dried (Fig. 9.1b) [18, 28, 29]. In spite of the somewhat sophisticated manufacturing 
technology, this method has clear advantages: when compared to materials made 
through dry or solution mixing, latex materials made using only distilled water have 
the following advantages: (i) an environmentally friendly and inexpensive process; 
(ii) a satisfactory dispersion at the surfaces of the latex particles of conductive fillers; 
(iii) and the availability of any composition of polymer-filler systems without being 
constrained by high-melt viscosities during melt-mixing [30, 31].

The third tactic relies on melt blending, which is at the interfaces of immiscible 
polymer mixes and conductive fillers’ selective distribution (Fig. 9.1c) [32, 33]. Melt 
blending is the initial option when producing s-CPC products industrially because 
of how straightforward it is. However, because this method encompasses so many 
influencing factors, such as kinetics parameters (such as sequence and mixing proce-
dures, shear strength, and blending time), thermodynamic coefficients (such as the 
interfacial energy between the conductive fillers and polymer matrices), and forming 
a stable segregated conductive network are significantly more challenging than it is 
for other technologies at the interfaces of polymer blends [34–36]. The ‘segregated 
conductive network concept’ for nickel particle/(HDPE) high-density polyethylene 
composites was first put forth by Turner and colleagues in 1971 [22, 23]. Since then, 
s-CPCs based on conductive fillers and various polymeric matrices have undergone 
extensive research to determine the relationships between processing, morphology, 
and property. In order to maximise their performance, the associated CPC variables 
(such as grain size, polymer modulus, and processing and parameter) have also been 
identified. 

The present chapter highlights the importance of the percolation threshold, the 
effect of conductive filler and host polymers, different methods generally employed 
to fabricate the conductive polymer, the changes in the conducting properties, appli-
cations of such conductive polymer systems and a theoretical attempt to build 
a mathematical model to predict percolation threshold for conductive polymer 
composites.
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Fig. 9.1 Schematic for the fabrication of the s-CPCs using various processing methods: a dry or 
solvent mixing, b latex technology, and c melt-blending methods

9.2 Theoretical Background of the Percolation Threshold 

Significant effort has been put towards customising separated structures during the 
past ten years to achieve ultralow Φc. The ultralow percolation behaviours, such as 
conductive filler type, the polymeric matrix, and fabrication procedures, help explain
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the highly intriguing electrical percolation behaviours of s-CPCs. Polymers having 
high-melt viscosity, like polystyrene (PS), ultrahigh molecular weight polyethylene 
(UHMWPE), and natural rubber (NR), make up the majority of s-CPC matrices 
because they can preserve the conductive pathways that are confined in the interfa-
cial areas during processing. Furthermore, conductive fillers with high aspect ratios 
(such GNSs and CNTs) have drawn more attention than those with low aspect ratios 
(e.g. metallic particles, CB, and graphite flakes). Great-aspect-ratio fillers are quite 
popular because of their excellent transport characteristics and high effectiveness in 
constructing segregated conductive networks. 

The s-CPC systems at very low (below 0.5 vol%) conductive filler loadings typi-
cally change from being an insulator to a conductor, as seen in row 4 of Table 9.1. The  
values for UHMWPE-based s-CPCs varied from 0.028 to 0.5 vol%, depending on the 
unique morphology of segregated conductive networks and the types of conductive 
fillers. Despite this, there does not appear to be agreement regarding the Φc of s-
CPCs. After inserting large polymeric beads for the segregated conductive networks 
(about a diameter of 5 mm) as a scaffold, Gerhardt’s group in a segregated CB/ABS 
system was able to achieve the lowest (0.0054 vol%) Φc recorded among s-CPC 
materials [21]. 

The CPCs with emulsion-based and melt-blended have greater Φc than those 
made through solution mixing or dry technology when the impact of the dispersion 
methods onΦc of s-CPCs is examined. By latex technology, the relatively highΦc of 
s-CPCs produced can be attributed to two factors: (i) the size of the polymeric latex 
particles (typically at the nanometre level) is too small to achieve even distribution 
with the conductive fillers [37, 38], and (ii) the low melt viscosity of the latex polymer 
makes the conductive fillers more difficult to easily stabilise at the interface between 
the polymeric matrix granules. The conductive fillers are entrenched in the polymeric 
matrix during mixing in the s-CPCs created by melt compounding, which reduces 
their effectiveness in creating segregated conducting networks [31, 39]. 

The range of values for σ max, another critical s-CPC parameter, is wide (10–7 to 
104 S/cm). The obvious discrepancies in the maximum values in Table 9.1 may be 
explained by the junction resistance between the conductive fillers and the inherent 
electrical conductivity of the conductive fillers. For instance, the transport charac-
teristics of thermally or chemically reduced GNSs are poorer; hence, the s-CPCs, 
which are based on CNT, always demonstrate greater conductance than the GNS-
based materials [24, 40–42]. High junction resistance is caused by the segregated 
conductive channels, which are caused by host polymer layers forming insulating 
gaps between the neighbouring conductive fillers or surfactants like (SDS) sodium 
dodecyl sulphate [43, 44]. Additionally, the inter-diffusion of the molecular chains 
is primarily prevented by the segregated distribution of conductive fillers, which 
hinders the melting process, especially at high loading levels [19]. 

As a result, the filler weight percentage of s-CPCs made using dry, melt-blending, 
and mechanical processes cannot be greater than 10%. The melt viscosity has little 
bearing on the filler concentration of the s-CPCs manufactured using the latex 
method, which can range practically between 0 and 100 wt% anywhere [2]. As 
a result, the σ max of the s-CPCs made using dry, melt-blending, and mechanical
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procedures is often smaller than that of the materials manufactured using latex tech-
nology. Several works [45–47] must be acknowledged in order to expand the σ max 

number of these CPC. Instead of the usual insulating stabilisers, they used an intrin-
sically conducting polymer system, specifically poly(3,4-ethylenedioxythiophene): 
poly (styrene sulfonate) (PEDOT: PSS), to disperse the CNTs as the conducting 
surfactant. At 30 vol% CNTs, they achieved high σ max values (103 S/cm), which 
is comparable to the electrical conductivity of pristine CNTs. Theoretically, thanks 
to the segregated distribution, conductive fillers can build a typical two-dimensional 
conductive network [24, 48, 49]. The intricacy of the segregated conductive networks 
and many contributing elements, such as the morphology, dispersion, and distribution 
of conductive fillers, are attributed to this phenomenon [30]. This is accomplished 
by attributing the variations in the percolation behaviours of the s-CPC materials 
to a variety of factors, such as the electrical properties, processing techniques and 
dispersion quality of the conducting fillers, and the modulus, molecular weight, and 
particle size of the polymeric matrices. 

9.2.1 Effect of the Conductive Fillers 

The sort of conductive fillers significantly impacts how electrically conductive s-CPC 
materials are. In this section, we focus on the impact of geometrical morphology, 
aspect ratio, intrinsic electrical conductivity, and dispersion techniques for conduc-
tive fillers on the c, max, and t of s-CPC systems. According to the excluded volume 
theory [50], the Φc of the s-CPCs decrease as the conductive filler aspect ratio 
is increased when the conductive fillers are uniformly dispersed at the interfaces 
between polymeric domains. Grossiord et al. discovered that the high-aspect-ratio 
(~ 120) MWNTs reduced to 20% of Φc that for the low-aspect-ratio MWNTs (~ 
40) for the PS-based s-CPCs made by the latex technique [51]. The percolation 
behaviours of PVAc-based s-CPCs filled with low-aspect-ratio CB and high-aspect-
ratio SWNTs were explored by Grunlan et al. [18, 28, 52]; theΦc of the SWNT/PVAc 
s-CPCs reached an ultralow value (0.03 vol%), which is significantly lower than 
that of the CB ones (2.39 vol%). These two instances show that creating segre-
gated conductive networks is frequently made easier by high-aspect-ratio conduc-
tive fillers. Additionally, the conductive fillers with high aspect ratios always result in 
greater maximum values. According to Mierczynska and colleagues, the UHMWPE-
based s-CPC materials were less conductive than the MWNT ones due to the high 
level of SWNT agglomeration [53]. Therefore, while building segmented conduc-
tive networks, effective dispersion techniques are required to achieve the benefits of 
high-aspect-ratio conductive fillers. 

The majority of the conductive filler in the separated CPCs remains at the polymer 
domains’ interface. As a result, it is challenging to maintain the uniform dispersion of 
the conductive fillers, particularly the high-aspect-ratio ones at relatively high load-
ings. The MWNTs continue to localise as aggregates at the surfaces of the UHMWPE
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granules despite the extensive sonication and mechanical stirring treatment. High-
aspect-ratio conductive nano-fillers are not advised for use in the construction of 
segregated conductive networks without effective dispersion methods due to their low 
economic affordability and efficiency (e.g. adding surfactants followed by intensive 
sonication and mechanical stirring measurements). 

The geometry of the conductive fillers inseparably affects the t of the segregated 
conductive networks because t largely depends on the distribution of the tunnelling 
distance within the CPC materials [12, 13]. Using the two most common high-
aspect-ratio fillers, 2D GNS, and one-dimensional (1D) CNT, as examples, the 2D 
GNS segregated networks frequently show a value of t below 1.3. Disparities in 
the conductive network microstructure may be the reason for the variable dimen-
sions of the segregated conductive networks. Due to the flat nature of 2D GNSs, the 
nano-sheets are frequently restacked, resulting in a segregated conductive network 
formed by plane-to-plane contact, which accounts for the low dimensionality of the 
segregated conductive networks. Furthermore, compared to 1D CNTs, 2D structure 
fillers, GNSs were less inclined to interlace and build high-dimensional conductive 
networks [24]. 

Due to changes in the intrinsic electrical conductivity and dispersion of the 
conductive fillers, their chemical surface qualities also have an impact on the dimen-
sionality of the segregated conductive networks [54]. In order to stabilise the place-
ment of GNSs at the interfaces between the PS and PMMA phases, Tan et al. func-
tionalised GNSs covalently with P(St-co-MMA) recently. This s-CPC displayed an 
odd value of t that reached a maximum of 6.9 and was indicative of a complete 
departure from the conventional percolation hypothesis [54]. Due to the insulating 
layers of grafted molecular chains coated on the conductive nano-sheets and the poor 
electrical conductivity of the chemically modified GNS, t underwent a significant 
divergence. In the following section, we’ll talk about how conductive fillers affect 
the σ max s-CPC. 

The σ max of s-CPCs is determined by the junction resistance between nearby 
conductive fillers and the inherent electrical conductivity of those fillers. The intrinsic 
electrical conductivity of impurities, such as amorphous carbon, catalyst particles, 
and surface imperfections, in traditional carbon fillers is typically below 102 S/cm. 
Due to its comparatively low electrical conductivity, high σmax values are less 
accessible, even at large loadings, and conductor applications, such as those for 
bipolar plates, conducting polymer adhesives, and thermoelectric materials, are not 
possible [44]. However, it appears that metallic fillers with better intrinsic elec-
trical conductivities would be better candidates for achieving reasonably high σ max 

[55–57]. 

9.2.2 Effect of the Host Polymers 

The chemical and physical characteristics of host polymers, which serve as scaffolds 
for segregated conductive networks, inexorably impact the electrical performance
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of S-CPCs. The host polymeric matrices’ molecular weight and modulus affect the 
percolation behaviours. Because there is less mixing of the host polymers and conduc-
tive fillers during hot compaction, host polymers with large molecular weights and 
moduli are better able to resist plastic deformation [25, 36]. The s-CPCs that have 
high molecular weights and moduli in their polymer matrix consequently invariably 
have relatively low Φc. In contrast to low molecular weight (1 × 106 g/mol) one, 
the Φc (~ 1.0 wt%) of the CB/UHMWPE s-CPCs with a high molecular weight (6 
× 106 g/mol) showed attenuation of about 100%. The σ max increased to 10–2 S/cm 
for the high molecular weight material from 10–4 S/cm for the low molecular weight 
UHMWPE s-CPCs [25]. 

9.3 Methods for the Synthesis of Conductive Polymers 

9.3.1 Chemical Method 

Conductive polymers (CPs) have been created chemically by polymerising matching 
monomers after they have undergone oxidation or reduction. The potential for afford-
able mass production is one of its benefits. To improve the yield and quality of the 
manufactured product produced using the oxidative polymerisation process, numer-
ical studies have been used. The employment of electrochemical techniques is not 
mandated by chemical route principles [58]. For instance, the well-known and widely 
researched CP poly (3-hexylthiophene) is virtually always created chemically. Chem-
ical methods can be used to manufacture polypyrrole (PPy) and polyaniline (PANI); 
however, electrochemical methods typically result in variations with higher conduc-
tivity and mechanical qualities. After conjugation, stability is the primary require-
ment when getting ready for chemical polymerisation. Oligomers and low molecular 
weight polymers must be sufficiently reactive and soluble to polymerise in order for 
high molecular weight polymerisation to be successful. The polymerisation should 
continue using a heterogeneous technique if an oligomer precipitates out of the solu-
tion, although this is becoming less and less likely as the concentration of monomer 
and reactive polymer decreases. A failed chemical polymerisation would stop before 
the molecular entanglement weight is reached, leaving the reaction vessel walls with 
a mechanically unstable covering. However, chemical polymerisation guarantees the 
exact choice of oxidant to selectively create cation radicals at the appropriate position 
on the monomer in an adequately soluble system.
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9.3.2 Metathesis Method 

The interchange of one component from each substance to create a new one is 
known as metathesis, and it occurs when two chemicals interact chemically. Ring-
opening cyclo-olefin metathesis, acyclic or cyclic alkynes metathesis, and di-olefin 
metathesis are the three types of metathesis polymerisation. Evans et al. investigated 
the metathesis of derivatives of aniline and 1,2-dihydroquinoline [59]. Masuda has 
examined the characteristics of polymers created using metathesis polymerisation 
that is typically based on acetylene [60]. 

9.3.3 Photochemical Method 

The primary techniques for locating polymers in industry and academic research 
facilities have been chemical approaches [61]. However, during the past two 
decapods, although extensively studied, photochemical preparation has been claimed 
to have minimal advantages due to its speed, low cost, and environmental friendli-
ness. The technique can be used to fabricate some CPs. As an illustration, pyrrole 
has been successfully polymerised to PPy by exposure to visible light while acting 
as either a suitable electron acceptor or photosensitiser. 

9.3.4 Electro-Chemical Method 

Among the various described synthesis techniques, electrochemical synthesis of CPs 
is highly important since it is straightforward, affordable, can be carried out in a 
single-section glass cell, is reproducible, and the generated films have the necessary 
thickness and homogeneity. Anodic oxidation of suitable electroactive functional 
monomers is the electrochemical method utilised the most frequently to prepare 
electro-CPs; cathodic reduction is employed much less frequently. In the earlier 
example, the simultaneous creation of a polymer layer and the doping of counter ions 
as a result of oxidation takes place. The capacity for monomer oxidation leading to 
polymerisation is frequently higher than the potential for charging oligomeric inter-
mediate polymers. A streamlined method of electropolymerisation, using alternate 
chemical and electrode reaction stages, was used to polymerise an electroactive 
monomer, such as pyrrole or thiophene [62]. For instance, in the potential dynamic 
electropolymerisation of thiophene, a radical cation is typically likely to form in the 
initial electrode reaction stage of thiophene electro-oxidation, cleared by an anodic 
peak of high positive potential [63]. At the subsequent chemical reaction stage, the 
radical cation reacts with the monomer to produce the protonated dimer of a radical 
cation. Then, during the electrode reaction step, the protonated dimer of the radical 
cation is electro-oxidised to the decomposition.



9 Quasi-SMILES-Based Mathematical Model for the Prediction … 221

9.3.5 Plasma Polymerisation 

An innovative method for creating thin films from a variety of organic and 
organometallic starting ingredients is plasma polymerisation. Pinhole-free and 
strongly cross-linked plasma polymerised films are insoluble, thermally stable, chem-
ically inert, and physically robust. Furthermore, these films stick exceedingly well 
to various substrates, including those made of common polymer, glass, and metal 
surfaces [64]. They have been widely used in recent years for a variety of appli-
cations, including perm-selective membranes, protective shells, biological mate-
rials, electronic, optical devices, and adhesion supports, thanks to their exceptional 
qualities. 

9.3.6 Solid-State Method 

By using vacuum, heat, or removal with an inert gas to drive away reaction by-
products, solid-state polymerisation enlarges polymer chain lengths in the absence 
of oxygen and water. Pressure, temperature, and the diffusion of waste products from 
the pellet’s core to the shell all influence the reaction. After melt polymerisation, it is 
a crucial step frequently employed to improve polymers’ mechanical and rheological 
characteristics before injection blow moulding [65]. This process is incredibly helpful 
in the commercial manufacturing PET films, advanced industrial fibres, and fibres 
suitable for bottles. The main industrial benefits of solid-state polymerisation are 
using straightforward, inexpensive equipment, and avoiding some of the issues with 
traditional polymerisation processes. 

9.3.7 Inclusion Method 

Atomic or molecular-level manufacturing of composite materials is often accom-
plished using inclusion polymerisation. Therefore, this type of polymerisation can 
open the door to extraordinary low-dimensional composite materials that have a lot 
of potentials. An electroconductive polymer, for instance, might be used to create a 
molecular wire. Composites of these polymers with organic hosts have been created 
based on inclusion. According to Miyata et al., this polymerisation can be seen as a 
typical space-dependent polymerisation and shouldn’t only be seen from the stand-
point of stereo-regular polymerisation [66]. The author failed to mention conventional 
solutions and bulk polymerisations in previous investigations.
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9.4 Various Properties of Conducting Polymers 

Conductive polymers are the subject of intensive research due to their exceptional 
qualities, such as tunable electrical properties, high optical, and mechanical capabil-
ities. Conducting polymer composites have several uses in the electrical, electronic, 
and optoelectronic domains thanks to their synergistic effects. 

9.4.1 Magnetic Properties 

Due to their exceptional magnetic properties and technological implications, CPs’ 
magnetism is greatly interesting. Transition metal oxide nanoparticles are crucial, in 
addition to the structural and magnetic properties of nanomaterials to be included in 
a polymer matrix. EPR and magnetisation measurements are the two basic experi-
mental methods for examining the magnetic characteristics of conductive polymers 
[67]. EPR is highly sensible, and it is able to look at low energy changes in the 
produced polymers’ magnetic characteristics that are related to unpaired electrons. 
On the other hand, magnetisation measurements track the samples’ overall reaction to 
magnetic moments. Consequently, from this vantage point, these two methodologies 
offer complementing information. 

9.4.2 Optical Properties 

In optical absorption, i.e. in an excited state, a pi electron can be promoted from 
the lower energy state to the highest energy state in a tiny molecule with an isolated 
double bond by absorbing a photon with energy greater than the energy gap (Eg) 
between the two orbitals. However, a comparable molecule with conjugated double 
bonds will have an energy difference between its lowest unoccupied molecular orbital 
(LUMO) and its highest occupied molecular orbital (HOMO). A lower energy photon 
can encourage a pi electron from HOMO to LUMO because orbital interactions 
reduced the energy gap; as a result, in conductive polymers, the energy gap Eg can 
be even smaller [68]. 

However, in excited state relaxation through optical emission, a semiconducting 
polymer can boost an electron from HOMO to LUMO and create an exciton. This 
electron–hole pair is electrostatically bonded when the polymer absorbs a suitable 
energy photon. This excited state species can move from one place to another until it 
relaxes due to some deactivation process. Luminescence is one of the most practical 
methods for deactivating conductive polymers (light emission).
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9.4.3 Electrical Properties 

The doping level, chain arrangement, conjugation length, and sample purity all affect 
how the conductivity of polymers is determined. Electrical CPs lack long-range 
organisation and are molecular in origin. Electronic motion occurs around the indi-
vidual macromolecules because polymers are molecular. For polymers and inorganic 
semiconductors, different processes are used to achieve high conductivity. The devel-
opment of self-localised excitons such as solitons, polarons, and bi-polarons is related 
to the higher conductivities, which depend on doping in the polymers. These parti-
cles result from a powerful interaction between the charges on the chain that doping 
enabled. Charged solitons are the charge carriers in CPs with degenerate ground 
states, such as trans-polyacetylene, while polarons are typically formed on doping 
in CPs with non-degenerate ground states, such as PPy. After that, these polarons 
combine to create spinless bi-polarons, which are used as charge carriers [68]. The 
inexpensive cost of the polymers and the ability to molecularly design the appro-
priate characteristics have made them incredibly desirable materials for electrically 
conductive applications. 

9.5 Applications of Conductive Polymers 

9.5.1 Sensors 

As an electrode modification, conductive polymers are used in sensor technologies to 
improve sensitivity, impart selectivity, minimise interference, and provide a support 
matrix for sensing materials. Below are some examples of sensors that use conductive 
polymers [69]: 

(a) Gas Sensor: A major ecological problem is the release of gaseous pollutants, 
including nitrogen oxide, SO2, and hazardous gases from related businesses. To 
recognise and assess the concentration of such gaseous contaminants, sensors 
are necessary. Gas sensor equipment has typically been made using PANI and 
PPy. 

(b) Humidity Sensor: According to electrical, optical, and other physical prop-
erties, humidity sensors (HSs) are capable of detecting relative humidity in a 
variety of situations. The industrial and medical communities paid these sensors 
a lot of attention. Humidity calculations and regulation are important in various 
fields, including the food and electronics industries, residential environments, 
and medicine, among others. Humidity sensor devices have made use of the 
hydrophilic features of polymers, polymer composites, and modified polymers. 

(c) Bio Sensor: Conductive polymers are being employed in chemical analysis for 
the large-scale detection of ions and molecules in the liquid phase. Over the
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past 20 years, the development of biosensors has been one of the most signif-
icant areas. It is reported that the most recent developments in biosensors and 
their applications are in the fields of agriculture, medicine, environmental moni-
toring, and clinical detection [70]. Conductive polymers might be used in the 
sensing mechanism or to immobilise the component that senses the molecular 
modifications. Biosensors have been created using the films produced by the 
electrochemical co-deposition of enzymes on CP or conductive substrates [71]. 

9.5.2 Solar Cells 

Polymer solar cells (PSCs) have developed into a competitive substitute for silicon-
based solar cells. PSCs provide a number of important benefits, including inexpensive 
production costs, straightforward processing, mechanical flexibility, and adaptability 
of a chemical structure due to advancements in organic chemistry. A plastic film 
substrate has been used in various experiments on flexible and lightweight appliances 
in place of fragile glass. A transparent anode must be applied using organic-based 
materials in order to create entirely plastic PSCs. 

9.5.3 Supercapacitors 

The popular name for a group of electrochemical capacitors is supercapacitors (SC). 
Because of their variety of uses, conductive polymers are a topic of interest to 
many researchers. Developing novel, specifically designed electrode materials with 
improved performance has received emphasis from SCs [72]. Conductive polymers, 
high-surface carbons, and transition metal oxides are typically used as SC elec-
trode materials. Superior capacitive energy density and inexpensive cost of materials 
are two advantages of SCs based on CPs. Their main advantages are increased elec-
trical conductivity, improved pseudo-capacitance, and a quick doping/de-doping rate 
during the charge/discharge process. 

9.5.4 Data Storage Transistors 

Due to their exceptional qualities, conductive polymers have found widespread use 
in electronics as charge storage and field effect transistors. Due to its capacity to 
enhance in-situ and gate-modulate channel conductance, conductive polymers can 
be used as field effect transistors to achieve high sensitivity.
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9.5.5 Batteries 

The first area where conductive polymers are sure to have a significant commercial 
influence is this one. The electrolyte provides a physical separation between the 
cathode and the anode and provides a source of cations and anions to balance the 
redox processes [73]. The electrodes allow for the accumulation of current and the 
diffusion of power. 

9.6 Mathematical Models for the Prediction of Percolation 
Threshold 

Thus, the electrically conductive properties of polymeric materials find numerous 
and varied applications. However, the experimental tuning of polymer systems for 
certain tasks is complex (requiring time for qualified performers) and expensive 
(purely economic factors, such as the cost of materials, energy, and labour remu-
neration). Under such circumstances, the attractiveness of computational methods 
becomes quite obvious as a tempting alternative to direct experiments. In other 
words, the development of computer technologies for the development of appro-
priate models becomes an important or even an integral part of technologies related 
to the electrically conductive properties of polymer systems. 

9.6.1 Data and Building the Quasi-SMILES Codes 

The diverse experimental percolation threshold data of 55 conductive polymer 
composite systems were obtained from the literature [74]. The above data were 
manually cured to remove the duplicity in the data. The refined data of 45 best 
diverse system data were chosen to build a quasi-simplified molecular input-
line entry systems (quasi-SMILES) [75, 76]-based quantitative structure–prop-
erty relationships (QSPR) mathematical model to predict the percolation threshold 
theoretically. 

Systems of eclectic conditions of various processes of mixing such as dry mixing, 
latex technology, and melt blending employed to fabricate the conducting polymer 
composites with different polymer matrixes like high-density polyethylene (HDPE), 
low-density polyethylene (LDPE), maleic anhydride (MA), polyamide (PA) and the 
conducting fillers such as multi-wall carbon nanotube (MWNT), single-wall carbon 
nanotube (SWNT), and polyaniline (PANI) are very important and crucial to have 
desired properties. 

Table 9.2 contains a list of symbols and groups of symbols (quasi-SMILES atoms, 
i.e. fragments of quasi-SMILES line, which cannot be examined separately) which
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Table 9.2 Details of the quasi-SMILES codes employed 

Polymer matrix Quasi-SMILES 
code 

Fillers Quasi-SMILES 
code 

Process of 
mixing 

Quasi-SMILES 
code 

ABS A CB 1 Dry 
mixing 

w 

HDPE B GRAPHITE 2 Latex 
technology 

x 

BA C SWNT 3 Melt 
blending 

y 

MMA D GNS 4 Solution 
mixing 

z 

AAEM E MWNT 5 

LDPE F EG 6 

NR G Al 7 

PA H ITO 8 

PC I CNT 9 

PE J Clay U 

PS K PANI V 

PP L CU 0 

PET M CUNW I 

PMMA N 

PPS O 

PVC P 

PVDF Q 

SAN R 

UHMWPE S 

WPU T 

PVAc U 

are utilised to represent various conditions. These systems were randomly split into 
the training (≈ 65–70%), calibration (≈ 15–17%), and validation (≈ 15–17%) sets. 

Table 9.3 lists the final quasi-SMILES Codes of each polymer composite system 
with their experimental percolation threshold.

9.6.2 Optimal Descriptor 

The correlation weights of the various components that can be included in the 
construction of a model are used to calculate the best descriptors. The circum-
stance that occurs the most frequently is when data on molecular structure features
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Table 9.3 Quasi-SMILES 
code of polymer composites 
with their experimental 
percolation threshold and 
critical exponent (Eq. 9.1) 

S. No. Quasi-SMILES code Φc t 

1 A1w− 0.0054 

2 A2w− 0.16 1.68 

3 B4z− 0.95 1.08 

4 F1w− 1.0 

5 G4x− 0.62 

6 I4x− 0.14 4.04 

7 BK1y+ 0.40 

8 BM1y− 3.80 

9 N7w− 10.0 2.0 

10 N1w− 0.26 

11 N3x+ 0.20 

12 N4x− 0.16 

13 N8w+ 3.0 

14 LKA1y− 0.95 2.90 

15 L9x+ 0.30 

16 L4x− 0.03 1.69 

17 Kx+ 0.28 1.58 

18 K1x+ 1.50 

19 K9z+ 0.05 

20 K3x+ 0.40 

21 K4x− 0.20 

22 K4x+ 0.60 

23 Kiz− 0.67 

24 KN4z− 0.02 6.92 

25 U1x− 2.39 1.57 

26 U1ux− 0.90 

27 U3x+ 0.04 

28 Uvx+ 0.60 4.6 

29 P5w− 0.05 3.50 

30 P0w− 5.0 2.9 

31 P4x+ 0.30 

32 Q4z− 0.11 1.10 

33 Q5z+ 0.07 

34 Q5w+ 0.08 1.04 

35 R5z+ 0.03 2.15 

36 S1w− 0.26 2.90 

37 S1w+ 0.50

(continued)
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Table 9.3 (continued) S. No. Quasi-SMILES code Φc t

38 S5w+ 0.50 

39 S5z− 0.07 1.13 

40 S3w+ 0.14 2.0 

41 S5w− 0.06 1.80 

42 S4z− 0.06 1.54 

43 S4w− 0.10 1.17 

44 SN5z− 0.09 0.37 

45 S45z+ 0.10 

46 T1x− 0.23 1.20

are used to create a model for an endpoint that would see quantitative structure– 
property-activity relationships (QSPRs/QSARs) based on molecular graphs [77–79]. 
Simplified molecular input-line entry systems (SMILES), which can also be used to 
construct QSPR/QSAR, are an alternative to the molecular graph [80]. 

When SMILES/quasi-SMILES is employed as the foundation for QSPR or QSAR, 
an endpoint is viewed as a mathematical function of the SMILES/quasi-SMILES 
nomenclature, such as 

Endpoint = F(SMILES/quasi−SMILES). (9.2) 

However, there are occasions when an endpoint is a mathematical function of 
not just a particular chemical molecular structure but also of its physicochemical 
(temperature, pressure), biochemical (toxicity and/or mutagenicity), and/or both 
circumstances [75, 76]. Instead of using conventional SMILES, which represent the 
molecular structure, in these situations, one might utilise quasi-SMILES, which are 
lines of symbols that reflect not only molecular structure but also physicochemical 
and/or biological parameters that can have an impact on an endpoint [75, 76]. 

The foundation of the theoretical mathematical model to forecast the percolation 
threshold is the one-variable correlations between descriptor of correlation weights 
(DCW) calculated with correlation weights of quasi-SMILES fragments [75, 76] and 
various experimental percolation threshold data. 

The following formula is used to compute the ideal descriptor: 

DCW(T, N ) =
∑

CW(Sk)+
∑

CW(SSk) +
∑

CW(SSSk) (9.3) 

where the Sk , SSk , and SSSk are pieces of a quasi-SMILES line that, respectively, 
contain one, two, and three quasi-SMILES ‘atoms’. The quasi-SMILES atom is 
a collection of symbols that cannot be studied individually since they collectively 
represent a specific situation [81]. In Table 9.2, the groups that are used to construct 
quasi-SMILES are depicted.
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For example, symbols H, I, J, M, N, L, O, U, P and Q represent polyamide 
(PA), polycarbonate (PC), polyethylene (PE), poly(ethylene terephthalate) (PET), 
poly(methyl methacrylate) (PMMA), polypropylene (PP), poly(phenylenesulfide) 
(PPS), poly(vinyl acetate) (PVAc), poly(vinyl chloride) (PVC), poly(vinylidene fluo-
ride (PVDF), respectively (Table 9.2). The quasi-SMILES codes are assigned for 
different fillers such as CB:1; GRAPHITE:2; SWNT:3; GNS:4; MWNT:5 (Table 
9.2). Similarly, processes of mixing to fabricate the conducting polymer compos-
ites such as dry mixing, latex technology, melt blending, and solution mixing were 
assigned the quasi-SMILES codes as ‘w’, ‘x’,’y’, and ‘z’, respectively. 

The optimisation process employing the Monte Carlo approach is used to deter-
mine the correlation weights of all Sk , SSk , and SSSk , i.e. CW(Sk), CW(Sk), and 
CW(Sk) [80]. The procedure has two parameters: I the T, which is the threshold for 
classifying quasi-SMILES fragments into rare and non-rare categories (correlation 
weights of quasi-SMILES fragments that are rare, according to the selected T, have  
correlation weight equal to zero); and (ii) the N, which is the number of optimisation 
epochs. 

The correlation coefficient between the endpoint and descriptor, computed using 
Eq. 9.3 for the training set, is the desired outcome of the optimisation approach. When 
the calibration set’s correlation coefficient reaches its maximum, the operation should 
be ended. If the process is continued past this point, the model will likely exhibit 
overtraining (i.e. excellent statistical quality for the training set but poor quality for 
the calibration and the validation set). 

Since T = T* and N = N* yield the highest correlation coefficient for the cali-
bration set, there is where the model should start. These T* and N* ought to be 
established using computational studies using T from a range of T 1, T 2,…, Tn and N 
from a range of N1, N2,…, Nm. With the correlation weights produced in the method 
just explained, one can use Eq. 9.4 to determine the best descriptor for each system 
with eclectic circumstances and then create a model using the systems in the training 
set. 

Percolation Threshold (Φc) = C0 + C1 × DCW(T∗, N ∗) (9.4) 

The generated model should have predictive capability after cross-checking 
against the calibration set to ensure sufficient statistical quality. The validation 
set serves as the final estimate of the predictive potential for Eq. 9.4 in the stated 
model-building process. 

9.7 Results and Discussion 

These quasi-SMILES-based mathematical models for three random splits into the 
training, calibration, and validation sets are presented in the following Eqs. (9.5)– 
(9.7):
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Percolation Threshold (Φc) = −1.2561(± 0.1050) 
+ 0.4076(± 0.0629) ∗ DCW(1, 15) (9.5) 

Percolation Threshold (Φc) = −1.7077(± 0.1087) 
+ 0.7008(± 0.0501) ∗ DCW(1, 15) (9.6) 

Percolation Threshold (Φc) = −1.0869(± 0.0653) 
+ 0.6465(± 0.0420) ∗ DCW(1, 15) (9.7) 

The statistical characteristics of the quasi-SMILES-based model for the prediction 
of the percolation threshold (Φc) of different conductive polymer composites are 
summarised in Table 9.4.

Table 9.5 lists the percentage of identity for three random splits adopted in the 
present study.

The list of structural attributes (SA) and their correlation weights with the 
defect SAk for the above three models are represented in Tables 9.6, 9.7, and 9.8, 
respectively.

Figure 9.2 shows the experimental and predicted percolation threshold (Φc) of  
the above three models.

These ranges of the statistical characteristics of models for the validation set for 
models based on the correlation weights of quasi-SMILES fragments are: 

r2 ∈ [0.5082, 0.5504], RMSE ∈ [0.371, 0.532] 

Thus, the suggested models’ level is overage compared with models from work 
[82]. However, the model (calculated with Eq. 9.4) is built up by utilising conceptually 
other approaches. In addition, in fact, the suggested approach is checked up with three 
different splits into the training, calibration, and validation sets (Table 9.4). In other 
words, the approach is reliable. 

Here the Monte Carlo method using the CORAL software (http://www.insilico. 
eu/coral) has been applied. But it should be taken into account, the range of problems 
involved in modern polymer science is exactly the same as the range of problems in 
the natural sciences as a whole. Hence, many other approaches QSPR/QSAR uses to 
analyse the polymer systems. There are both QSPR analysis [83–89] and QSAR anal-
ysis devoted to polymer systems [90–95]. Along with polymer electrical conductivity, 
stability [83–85], thermodynamic properties [86–88], and viscosity of polymers [89] 
are important modelling objectives. Of considerable interest are studies devoted to 
QSAR analysis of polymer systems, both natural [84] and transport-oriented poly-
meric substances introduced through membranes, which can be drug deliverers and 
means of reducing undesirable environmental consequences [92]. Quantum mechan-
ical approaches to the study of polymer systems are gradually becoming on the same 
flow as traditional quantum mechanical analysis applied to organic and inorganic

http://www.insilico.eu/coral
http://www.insilico.eu/coral
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Table 9.5 Percentage of identity for three splits acceptable 

(i, j)a Split 1 Split 2 Split 3 

Split 1 0 43.5 45.5 

Split 2 27.3 0 34.8 

Split 3 27.3 54.5 0 

a Matrix Element [i, j], i > j the identity for the active training sets; Matrix Element [i, j], i < j the 
identity for the validation sets

Table 9.6 List of structural attributes (SA) and their correlation weights (CW) for the model 
(Eq. 9.5) 

SAk CW(SAk) ID N1 N2 N3 DEFECT[SAk] 

+… 0.3842 1 4 6 2 0.053 

−… 0.7312 2 7 6 9 0.0289 

1… − 0.0165 3 3 5 1 0.0724 

2… 0 4 0 0 1 0 

3… − 0.4746 5 2 0 0 1 

4… − 0.2081 6 5 1 5 0.0675 

5… − 0.4387 7 2 1 3 0.0631 

7… 0 8 0 1 0 0 

8… 0 9 0 1 0 0 

9… 0 10 0 1 0 0 

A… − 0.6578 11 2 0 1 0.1212 

B… 0.8268 12 2 0 0 1 

F… 0 13 0 1 0 0 

G… 0 14 0 1 0 0 

K… 0.3147 15 4 2 2 0.0492 

L… − 0.0436 16 2 1 0 1 

M… 1.3778 17 1 0 0 1 

N… 0.5097 18 1 2 2 0.0364 

P… 0.5975 19 1 0 1 0.0909 

Q… 0 20 0 0 1 0 

S… − 0.0732 21 1 2 5 0.0909 

U… 0.0626 22 1 3 0 1 

i… 0 23 0 1 0 0 

u… 0 24 0 1 0 0 

v… 0 25 0 1 0 0 

w… 0.5219 26 2 5 3 0.047

(continued)
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Table 9.6 (continued)

SAk CW(SAk) ID N1 N2 N3 DEFECT[SAk]

x… 0.3165 27 4 6 4 0.0195 

y… 1.1738 28 2 0 0 1 

z… − 0.4104 29 3 1 4 0.0701 

Threshold= 1 Number of SMILES Attributes (SA) = 29 Number of active SA = 19 

Table 9.7 List of structural attributes (SA) and their correlation weights (CW ) for the model 
(Eq. 9.6) 

SAk CW(SAk) ID N1 N2 N3 DEFECT[SAk] 

+… 1.2095 1 5 3 6 0.039 

−… 1.0054 2 7 8 5 0.0273 

0… 2.1456 3 1 0 0 1 

1… − 0.1480 4 4 4 0 1 

2… 0.3166 5 1 0 0 1 

3… − 0.1899 6 2 0 1 0.1111 

4… − 0.4728 7 2 3 4 0.0438 

5… − 0.5935 8 1 1 5 0.1061 

7… 0 9 0 1 0 0 

8… 0 10 0 1 0 0 

9… 0 11 0 0 1 0 

A… − 0.4671 12 2 1 0 1 

B… 0.7469 13 2 1 0 1 

F… 0 14 0 1 0 0 

G… 0 15 0 1 0 0 

K… 0.4414 16 4 2 2 0.0379 

L… 0.3774 17 2 0 0 1 

M… 1.1834 18 1 0 0 1 

N… 0.6094 19 2 2 1 0.0364 

P… 0.1610 20 1 0 1 0.0909 

Q… 0 21 0 0 1 0 

R… 0 22 0 0 1 0 

S… 0.5237 23 1 1 5 0.1061 

U… − 0.1338 24 2 2 0 1 

i… 0 25 0 1 0 0 

u… 0 26 0 1 0 0 

v… 1.5677 27 1 0 0 1 

w… − 0.3257 28 3 5 3 0.0372

(continued)
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Table 9.7 (continued)

SAk CW(SAk) ID N1 N2 N3 DEFECT[SAk]

x… 0.0734 29 5 4 2 0.0427 

y… 0.1315 30 3 0 0 1 

z… − 0.3574 31 1 2 6 0.1027 

Threshold=1 Number of SMILES Attributes (SA) = 31 Number of active SA = 22 

Table 9.8 List of structural attributes (SA) and their correlation weights (CW) for the model 
(Eq. 9.7) 

SAk CW(SAk) ID N1 N2 N3 DEFECT[SAk] 

+… 0.3146 1 5 3 4 0.0303 

−… 0.2657 2 6 8 8 0.0165 

0… 0 3 0 1 0 0 

1… − 0.0708 4 3 3 2 0.0265 

2… 0 5 0 0 1 0 

3… − 0.4807 6 2 2 0 1 

4… − 0.3191 7 2 2 7 0.073 

5… − 0.2881 8 2 2 1 0.0394 

7… 0 9 0 0 1 0 

8… 1.6126 10 1 0 0 1 

9… − 0.7815 11 1 0 0 1 

A… − 0.5985 12 1 1 1 0.0051 

B… 0.3118 13 1 2 0 1 

F… 0 14 0 1 0 0 

G… 1.1463 15 1 0 0 1 

I… 0 16 0 0 1 0 

K… 0.1807 17 5 1 3 0.0808 

L… 0.1605 18 1 0 1 0.0909 

M… 0 19 0 1 0 0 

N… 0.1976 20 2 2 1 0.0394 

P… 0.2354 21 1 1 1 0.0051 

Q… 0 22 0 1 0 0 

S… − 0.098 23 1 2 4 0.0693 

U… 0.9848 24 2 0 0 1 

i… 0 25 0 1 0 0 

w… 0.1925 26 2 5 5 0.0455 

x… 0.0387 27 4 2 6 0.053 

y… 0.8251 28 2 1 0 1 

z… − 0.1994 29 3 3 1 0.0541 

Threshold=1 Number of SMILES Attributes (SA) = 29 Number of active SA = 21
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Fig. 9.2 Experimental and calculated percolation threshold valued for mathematical Model-1, 
Model-2, and Model-3

objects [93]. The development of the models for stochastic aspects of polymer agents’ 
influence in medicine also is necessary for QSPR/QSAR-researches fields [94, 95]. 

9.8 Conclusion 

The critical volume fraction that causes polymers to change from insulators to 
conductors is known as the ‘percolation threshold’. The experimental percolation 
threshold cured data of 45 conductive polymer composite systems used in the present 
article were quite good and gave better performance when it was divided into four 
groups: active training set, passive training set, calibration set, and validation set. 
The suggested approach based on the quasi-SMILES, which are analogous to the 
traditional SMILES, gives reasonably good predictions for the percolation threshold 
for the studied conducting polymer composites (CPCs). The stability and reliability 
of the reported mathematical models are found to be reasonably stable, which is 
evident from the statistical parameters obtained for three random splits. The described
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methodology is believed to be universal for similar situations where one aims to 
predict the response of an eclectic system upon a variety of physicochemical and/or 
biochemical conditions. The numerous conductive polymer variants, characteristics, 
conduction mechanisms, synthesis methods, and applications in diverse fields are 
also briefly highlighted in this communication. 
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Chapter 10 
On the Possibility to Build up the QSAR 
Model of Different Kinds of Inhibitory 
Activity for a Large List of Human 
Intestinal Transporter Using 
Quasi-SMILES 

P. Ganga Raju Achary, P. Kali Krishna, Alla P. Toropova, 
and Andrey A. Toropov 

Abstract Membrane transporters play a significant role in pharmacokinetics and 
drug resistance and mediate many biological effects of substances. Among biolog-
ically active chemicals, it is necessary to evaluate the profiles of their transporter 
interactions in order to identify potential medication candidates. The constraints and 
predictive capability of models for substances with heterogeneous physicochem-
istry and variable permeability/absorption are explored in this communication using 
the largest diverse permeability and absorption dataset for 3199 compounds. Here, 
we offer a classification-based QSAR model of different inhibitory activities for 
an extensive list of Human Intestinal Transporter using quasi-SMILES. The extrac-
tion of properties from quasi-SMILES and the computation of so-called correlation 
weights for these attributes using Monte Carlo techniques were the foundation for 
the classification-based models. As qualitative statistical validation criteria, the clas-
sification model was tested using sensitivity (= 0.86), specificity (= 1), accuracy (= 
0.96), and Matthews correlation coefficient (MCC = 0.90). Described computational 
experiments confirm the suitability of application of so-called Index of Ideality of 
Correlation to improve the predictive potential of the models.
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10.1 Introduction 

Even though oral medication delivery is the preferred method at the moment, 
intestinal drug absorption is hampered by a number of highly variable and unpre-
dictable processes, including gastrointestinal motility, intestinal drug solubility, and 
intestinal metabolism. The intestinal drug transport, which is mediated by many 
transmembrane proteins, including P-glicoprotein (P-gp), breast cancer resistance 
protein (BCRP), human peptide transporter 1 (PEPT1), and organic anion trans-
porting polypeptide 2B1(OATP2B1), is another factor that has been discovered and 
characterised over the past 20 years. It is generally known that intestinal transporters 
have a substantial impact on the oral absorption of many medications, either by 
promoting their cellular uptake or by pumping the medications back to the gut lumen, 
which reduces the oral bioavailability of the pharmaceuticals. When medications that 
elicit transporter induction or inhibition are given concurrently with other pharma-
ceuticals, the functional relevance of these drugs becomes even more clear in cases 
of unintended drug-drug interactions, which, in turn, affects the number of drugs 
exposed. The preferred site of intestinal medication absorption may be affected func-
tionally by the non-homogeneous longitudinal expression of a number of intestinal 
transporters along the human intestine. Understanding the precise location of phar-
macologically important transporters on the apical or basolateral membrane of ente-
rocytes, which is occasionally disputed, is also of importance. Furthermore, there 
is clearly a connection between intestine transporters (apical-basolateral), intestinal 
enzymes and transporters, and intestinal and hepatic transporters. 

For the development of new drugs, intestinal absorption prediction models are 
essential. For more common “drug-like” compounds (also known as “rule of 5” or 
Ro5 drugs), there are numerous in silico, in vitro, and in vivo models available to 
help and understand the process in a better way. However, there are many concerns 
regarding the applicability of these models to “nondrug-like” compounds typically 
found for “undruggable targets” (also known as “beyond the rule of 5” or “bRo5 
drugs”) [1–6]. Given that these drugs are frequently bigger, more complicated, and 
have lower permeability, there are concerns about the applicability of such models in 
this area. Medicinal researchers are uncomfortable using current or existing models 
that haven’t been thoroughly tested for intestinal absorption in these circumstances 
[6]. 

All biological species have membrane transport proteins, such as members of 
the ATP-binding cassette (ABC) superfamily and the solute carrier (SLC) family. 
By regulating their cellular inflow or efflux, transporters are known to impact the 
membrane permeability of numerous xenobiotic and endogenous substances [7]. 
Active transport proteins (like P-glycoprotein) are crucial for pharmacokinetics, 
drug-drug interactions, and multidrug resistance [8, 9]. Membrane transporters are
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widely distributed and expressed across all tissues and organs; the human genome 
only contains about 600 transport proteins from the ABC and SLC families [10, 11]. 
When one takes into account the interdependencies between membrane transporters 
as well as their relationships with other metabolic systems, one can see the actual 
intricacy of processes governing the permeability of tiny molecules across biological 
membranes [7, 12]. 

Absorption, distribution, metabolism, and elimination influence how drugs are 
disposed of (ADME). Understanding absorption is important because it affects total 
systemic exposure, and oral administration is the most frequent way to provide small 
compounds. The ability of a substance to pass through the intestinal wall (f a) and 
avoid intestinal and hepatic metabolism (Fg and Fh, respectively) determines how 
much of it can be absorbed orally. Total oral bioavailability (F),  the term used to  
describe the total fraction of a drug that reaches the systemic circulation, is a function 
of three factors (Eq. 10.1). 

F = fa ∗ Fg ∗ Fh (10.1) 

The susceptibility of a molecule to first-pass metabolism may have an impact on 
the compound’s overall oral bioavailability. When the bioavailability in the stomach 
and liver is known, fa can be calculated and used as a “cleaner” metric to assess 
human absorption. 

fa = F 

Fg ∗ Fh 
(10.2) 

Computer simulations have been used for in silico quantitative structure–activity 
relationship (QSAR) [12] models to realise how a compound’s chemical structure 
affects its ADME qualities. Over time, numerous QSAR techniques have been created 
to learn which chemical characteristics can enhance absorption through a variety of 
endpoints, including Caco-2 permeability, effective human permeability [12, 13], 
and first-order human rate of absorption (Ka) [14]. Before even being produced in 
the lab, these correlations can assist the design of novel molecules with enhanced 
absorption properties. 

The present book chapter aims to offer a distinctive viewpoint on the usefulness 
of the most recent and well-liked models for forecasting human f a for bRo5 and 
low permeability/absorption organic molecules. We can assess the constraints and 
predictive capability of models for substances with heterogeneous physicochem-
istry and variable permeability/absorption using the largest permeability and absorp-
tion dataset compiled to date (to our knowledge, with n = 3199). Here, we offer a 
classification-based QSAR model of different kinds of inhibitory activity for a large 
list of Human Intestinal Transporter using quasi-SMILES [15–20]. The suggested 
models were obtained by the Monte Carlo technique via the CORAL software (http:// 
www.insilico.eu/coral) with applying the quasi-SMILES technology.

http://www.insilico.eu/coral
http://www.insilico.eu/coral
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10.1.1 Literature Review on Various QSAR Models 
for Human Intestinal Transporter 

A hierarchical support vector regression-based in silico model for Caco-2 perme-
ability is being reported. One of the important considerations in the process of 
discovering and developing new drugs is drug absorption. To begin studying intestinal 
absorption, the human colon cancer cell layer (Caco-2) model has commonly been 
used as a surrogate. A novel machine learning-based hierarchical support vector 
regression (HSVR) method was used to create a QSAR model to represent the highly 
confusing passive diffusion and transporter-mediated active transport. The experi-
mental values of the training samples, test samples, and outlier samples showed a high 
degree of agreement with the HSVR model. A mock test and a number of rigorous 
statistical standards were used to validate further and confirm the predictability of 
HSVR. In order to aid in the creation of new drugs, this HSVR model can be used 
to predict the Caco-2 permeability [21]. 

A vast class of polyphenols known as flavonoids is present in a wide variety of 
plant-based meals. While flavonoids have a variety of biological properties, including 
anti-cancer, antioxidant, and anti-inflammatory properties, their poor oral bioavail-
ability has been viewed as a significant barrier to their utilisation as functional foods. 
The bioavailability of flavonoids is affected by cellular absorption and efflux. 

Twenty-seven flavonoids were assessed for their cellular absorption in Caco-
2 cells with verapamil and cellular uptake of flavonoids without verapamil to 
research their cellular uptake and efflux. Then, from each compound’s matching 
without verapamil, a quantitative structure–absorption relationship (QSAR) model 
was constructed. The model had a high cross-validation coefficient (Q2) value of 
0.809 and showed good resilience and predictability [22]. 

Flavonoid interactions during digestion, absorption, distribution, and metabolism: 
a sequential QSAR-based approach has been carried out in the study of bioavailability 
and bioactivity. When consumed, the group of polyphenols known as flavonoids 
promotes good health. However, their low bioavailability is a significant barrier to 
their usage as medications or nutraceuticals. Flavonoid interactions at digestion, 
absorption, and distribution phases have been linked to low bioavailability, and their 
molecular structure significantly impacts these interactions [23]. 

Critical evaluation of human oral bioavailability for pharmaceutical drugs is 
carried out by using various cheminformatics approaches. In clinical trials, a novel 
drug’s oral bioavailability (%F) is a critical element that influences its outcome. 
Historically, expensive, and time-consuming experimental tests have been used to 
determine %F. In order to improve the drug development process, computational 
models that assess potential drugs’ %F properties before they are manufactured 
should be created. To create a number of computational %F models, researchers 
used a combinatorial QSAR technique. A dataset of 995 medications is from open 
sources. Chemical descriptors for each drug were created, and the appropriate QSAR 
models were created using random forest, support vector machine, k closest neigh-
bour, and CASE Ultra. Fivefold cross-validation was used to validate the models that
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were generated. The reliability of %F values’ external predictivity was low (R2 = 
0.28, n = 995, MAE = 24), but it was enhanced (R2 = 0.40, n = 362, MAE = 21) by 
removing unreliable predictions that were highly likely to interact with MDR1 and 
MRP2 transporters. A further outcome of categorising the compounds using the %F 
values (%F 50% as “low”, %F 50% as “high”) and creating category QSAR models 
was an external accuracy of 76%. The integration of data on drug-transporter interac-
tions considerably improves the predictive %F QSAR models that were constructed, 
which might be utilised to assess new therapeutic compounds [24]. 

Structural determinants for transport across the intestinal bile acid transporter 
using C-24 bile acid conjugates are also reported. The human apical sodium-
dependent bile acid transporter (hASBT) is a potential prodrug target to improve 
oral drug absorption and reabsorption of bile acid per day. Cross-validation was used 
to assess the CSP-SAR models, which were developed using structural and physic-
ochemical descriptors. One structural and three physicochemical descriptors were 
used in the best CSP-SAR model for Km/normVmax, which similarly showed that 
hydrophobicity improved efficiency [25]. 

Computational models for drug inhibition of the human apical sodium-dependent 
bile acid transporter are carried out. The human apical sodium-dependent bile acid 
transporter (ASBT; SLC10A2) is the main mechanism for intestinal bile acid reab-
sorption. Secondary bile acids raise the danger of colon cancer. As a result, medica-
tions that block ASBT may raise the risk of colon cancer. The authors aimed through 
this work to develop computational models for ASBT inhibition and to discover FDA-
approved medications that inhibit ASBT [26, 27]. A modified Laplacian Bayesian 
modelling method using 2D descriptors, a HipHop qualitative approach, and a 
Hypogen quantitative approach were all used in computational modelling. Thirty 
substances were first tested for ASBT inhibition. The most powerful 11 molecules 
were used to create a qualitative pharmacophore, which was then used to search a 
drug database, producing 58 hits. The Ki values of other substances were evaluated 
after testing. Using 38 compounds, a 3D-QSAR and a Bayesian model were created. 
According to a validation examination, both models have shown good predictability 
in determining whether a medicine is a powerful or non-potent ASBT inhibitor. The 
most effective chemicals were appropriately rated by the Bayesian model. It was 
discovered that many FDA-approved medications from various families, including 
dihydropyridine calcium channel blockers and HMG CoA-reductase inhibitors, are 
ASBT inhibitors utilising a combined in vitro and computational method [26, 27]. 

A QSAR study for the translocation of tripeptides via the human proton-coupled 
peptide transporter, hPEPT1 (SLC15A1), is reported. It has been discovered that the 
human intestine proton-coupled peptide transporter, hPEPT1 (SLC15A1), functions 
as an absorptive transporter for both prodrugs and drug molecules. Models based 
on competitive tests have so far helped to grasp the conditions for transport. The 
predictive power of these models for substrate translocation via hPEPT1 is rather low. 
The study’s objective was to look into the prerequisites for translocation via hPEPT1. 
Using a statistical approach, a set of 55 tripeptides was chosen using a principal 
component analysis based on VolSurf descriptors. A large portion of these tripeptides 
has not yet been studied. An MDCK/hPEPT1 cell-based translocation assay assessing
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substrate-induced variations in the fluorescence of a membrane potential-sensitive 
probe was used to quantify the tripeptides’ translocation via hPEPT1. Competition 
experiments with [14C]Gly-Sar in MDCK/hPEPT1 cells were used to evaluate the 
affinities of pertinent tripeptides for hPEPT1. It was discovered that forty tripeptides 
were hPEPT1 substrates, with Km app values ranging from 0.4 to 28 mM. A QSAR 
model connecting Km app values with VolSurf descriptors was built to rationalise the 
need for transportation. This is the first prediction model for the hPEPT1-mediated 
translocation of tripeptides [28]. 

The discovery of ligands for the human intestinal di-/tripeptide transporter 
(hPEPT1) was carried out using a QSAR-assisted virtual screening strategy [29–31]. 

SAR models were proposed for the binding of tripeptides and tripeptidomimetics 
to the human intestinal di-/tripeptide transporter hPEPT1. 3D-QSAR models were 
built based on a series of 25 different tripeptides for the binding of tripeptides 
and tripeptidomimetics to hPEPT1. By using multivariate data analysis, VolSurf 
descriptors were created and associated with binding affinities. Using Caco-2 cell 
monolayers, tripeptides and tripeptidomimetics have their affinities for hPEPT1 
experimentally evaluated. The structural variety of the 25 tripeptides and tripep-
tidomimetics was defined by VolSurf descriptors, and their Ki values ranged from 
0.15 to 25 mM. A QSAR model was created to connect the tripeptides’ experi-
mentally determined binding affinity for hPEPT1 with their VolSurf characteristics. 
The QSAR model was used to derive structural data on tripeptide characteristics 
impacting the binding to hPEPT1. This knowledge could be useful for developing 
tripeptides and tripeptidomimetics that target hPEPT1 as an absorptive transporter 
to enhance intestinal absorption [30]. 

The dipeptide model suggested the intestinal oligopeptide transporter. By creating 
peptidomimetic prodrugs, it has been proposed that the human intestinal di/tripeptide 
carrier, hPepT1, could be a drug delivery target for enhancing intestinal transport 
of poor permeability substances. These findings suggest that the dipeptide prodrug 
principle is a promising drug delivery paradigm. It has been demonstrated that model 
ester prodrugs use D-Glu-Ala and D-Asp-Ala as pro-moieties for benzyl alcohol 
maintain an affinity for hPepT1. D-Asp(BnO)-Ala and D-transepithelial Glu(BnO)-
Ala’s transport investigations in Caco-2 cells revealed that the Km for transepithelial 
transport was not significantly different for the two compounds. Additionally, there is 
no difference in the maximum transport rate of the carrier-mediated flux component 
between the two model prodrugs [31]. 

The progress in predicting human ADME parameters by various in silico methods 
is being continuously given attention from time to time. Analysing the evolution of a 
scientific approach is a useful exercise for predicting the future course that the process 
might follow. There are distinct eras in the recent history of computational techniques 
to study absorption, distribution, metabolism, and excretion (ADME). With the work 
of Corwin Hansch and others, the first started in the 1960s and continued into the 
1970s [32]. Small collections of in vivo ADME data were used in their models. The 
second period, which spanned the 1980s and 1990s, saw extensive use of in vitro 
methods as substitutes for in vivo ADME research. These strategies encouraged the 
development and expansion of interpretable computational ADME models that are
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now widely available in the literature. The third era is now, and there are numerous 
literature datasets for absorption, drug-drug interactions (DDI), drug transporters 
and efflux pumps [P-gp, multidrug resistance protein (MRP)], intrinsic clearance, 
and brain penetration that are derived from in vitro data and can theoretically be 
used to predict the situation in vivo in humans. 

Pharmaceutical corporations have been under constant pressure to accelerate drug 
discovery while lowering drug development costs, which has led to the emergence of 
combinatorial synthesis, high throughput screening, and computational techniques. 
Reduced drug candidate dropout rates are desired in drug development’s final, most 
expensive phases. This is done by speeding up the nomination of likely clinical 
candidates and raising the failure rate of candidate molecules during the preclinical 
stages. The market is now aware that toxicity and pharmacokinetics are the primary 
causes of clinical failure aside from efficacy. In order to evaluate features such as 
metabolic stability, cytochrome P-450 inhibition, absorption, and genotoxicity earlier 
in the drug discovery paradigm, major firm investment in ADME and drug safety 
departments occurred in the late 1990s. Evaluating higher throughput data to see 
if computational (in silico) models can be built and verified from it is the natural 
next step in this process. With such models, the number of chemicals that could be 
virtually screened for ADME characteristics could expand exponentially. To address 
intestinal permeability and cytochrome P-450-mediated DDI, many researchers have 
begun to use in silico, in vitro, and in vivo techniques concurrently [33]. 

Another study uses comparative molecular field analysis (CoMFA), a three-
dimensional method for developing QSAR, to examine the relationship between 
chemical structure (steric and electrostatic fields) and affinity for the small intestinal 
oligopeptide carrier (PepT1). Numerous chemical descriptors (CoMFA fields, 
isobutyl alcohol/water distribution coefficients, Kt, Jmax, and Pc) and biological 
activity parameters (Kt, Jmax, and Pc) were investigated. The regression line between 
the experimental and calculated Pc had a slope of 0.994 and an intercept of 0.009. The 
model suited the experimental data with a correlation coefficient of 0.993 and a stan-
dard error of 0.041. These findings improve our knowledge of the molecular prereq-
uisites for ideal drug-carrier interactions with the intestinal peptide transporter and 
provide a helpful visual tool for developing novel, potentially intriguing structures 
that have an affinity for PepT1 [34]. 

In a comparative molecular field analysis, data from a number of bile acid 
analogues were used to create a link between structure and binding activity for 
the intestinal bile acid transporter (CoMFA). The investigated compounds included 
a number of bile acid-peptide conjugates with modifications at the cholic acid sterol 
nucleus position 24, as well as compounds with minor modifications at positions 
3, 7, and 12. These substances were split into a training set and a test set for the 
CoMFA investigation, each consisting of 25 and 5 molecules, respectively. With 
a cross-validated, conventional, and predictive R2 of 0.63, 0.96, and 0.69, respec-
tively, the best three-dimensional QSAR model discovered rationalises the steric and 
electrostatic factors that modulate affinity to the bile acid carrier, indicating a good 
predictive model for carrier affinity. Positioning an electronegative moiety at the 
specified positions and adding steric bulk to the side chain’s terminus help bind. The
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model recommends replacements that could result in novel substrates with a suitable 
affinity for the carrier at the positions selected positions [35]. 

10.1.2 An Overview of Computer Simulations Study 
of Human Intestinal Transporter 

An interesting in vivo, in situ, in vitro, and in silico studies report the influence of rhein 
on the absorption of rehmaionoside D. Authors stated that breast cancer resistance 
and multidrug resistance-associated protein 2 affected the intestinal epithelium’s 
permeability by mediating the stimulation of absorption of rehmaionoside D in the 
presence or absence of rhein [36]. 

Physiologically based pharmacokinetic (PBPK) modelling presented to evaluate 
in vitro-to-in vivo extrapolation for intestinal P-glycoprotein (P-gp) inhibition. In 
order to quantitatively anticipate drug-drug interactions (DDIs) on drug-metabolising 
enzymes and transporters, PBPK modelling coupled with in vitro-to-in vivo extrap-
olation (IVIVE) is commonly used in model-informed drug discovery and develop-
ment. Through the use of PBPK modelling, this study sought to examine an IVIVE 
for intestinal P-gp-mediated DDIs, including three P-gp substrates-digoxin, dabi-
gatran etexilate, and quinidine- and two P-gp inhibitors-itraconazole and verapamil 
[37]. 

A comparative study on the intestinal absorption of three gastrodin analogues 
via the glucose transport pathway is reported in the paper [38]. Three gastrodin 
analogues, salicin, arbutin, and 4-methoxyphenyl-D-glucoside, have their intestinal 
absorption characteristics assessed using conventional biopharmaceutical and 
computer-aided molecular docking techniques (4-MG). The logP values of the 
gastrodin analogues were found to be in the following order: 4-MG > salicin > 
arbutin, according to the oil–water partition coefficient (logP) studies. Arbutin’s 
apparent permeability coefficient value was found to be higher than that of salicin 
and 4-MG for in vitro Caco-2 cell transport studies. Arbutin and 4-MG were more 
effectively absorbed than salicin, according to in situ single-pass intestinal perfusion 
tests, and the three compounds were more effectively absorbed in the small intestine 
than the colon. Therefore, the difference in chemical structure can have an impact 
on absorption [38]. 

An in silico, in vitro, and ex vivo approach was presented for the intestinal efflux 
transporter inhibition activity of xanthones from mangosteen pericarp [39]. 

PBPK model-informed drug development for fenebrutinib is presented to under-
stand complex drug-drug interactions. In vitro, fenebrutinib inhibits BCRP and 
OATP1B transporters as well as CYP3A substrate and time-dependently. The 
ultimate goal of developing PBPK modelling methodologies was to comprehend 
complex drug-drug interactions (DDIs) and suggest doses for hypothetical situa-
tions. Because fenebrutinib inhibits intestine BCRP rather than hepatic OATP1B, 
the results of two separate methods: PBPK simulation and endogenous biomarker
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measurement were consistent and supported this theory. The unexpected obser-
vation of itraconazole-fenebrutinib DDI (maximum plasma concentration (Cmax) 
lowered, and area under the curve (AUC) increased) was explained by a mechanistic-
absorption model that took into consideration the effects of excipient complexation 
with fenebrutinib. Overall data from clinical and nonclinical studies, sensitivity anal-
yses, and other sources indicated that fenebrutinib is probably a sensitive CYP3A 
substrate. Without the need for additional clinical DDI trials, this enhanced PBPK 
application enabled the adoption of a model-informed approach to assist in the 
establishment of concomitant medicine recommendations for fenebrutinib [40]. 

Development of simplified in vitro P-Glycoprotein substrate assay and in silico 
prediction models was presented to evaluate the transport potential of P-gp. Simpli-
fying P-gp substrate tests and offering in silico models that forecast P-transport gp’s 
potential are essential for effective drug discovery and screening. The study aimed at 
creating a more straightforward in vitro screening approach to assess P-gp substrates 
in cells overexpressing P-gp via unidirectional membrane transport. Additionally, 
the test set’s low-potential classes in the random forest three-class classification 
model displayed high balanced accuracy of 0.821 and precision of 0.761. Authors 
concluded that the streamlined in vitro P-gp substrate assay was appropriate for 
screening compounds in the early stages of drug discovery and that the in silico 
regression model and three-class classification model using only chemical structure 
information could identify the transport potential of compounds, including P-gp-
mediated flux ratios. The approach is anticipated to be a useful tool to enhance 
efficient central nervous system medications and enhance intestine absorption [41]. 

Prebiotics and probiotics, which are combined to form synbiotics, may be utilised 
to treat diseases like colorectal cancer (CRC) by altering the human gut micro-
biota. The potential combinatorial mechanisms of action of such regimens have not 
yet been identified due to methodological restrictions. In order to co-culture CRC-
derived epithelial cells with a model probiotic under a simulated prebiotic regimen, 
HuMiX gut-on-a-chip model was enlarged. Researchers also linked the multi-omic 
data with in silico metabolic modelling. In contrast to separate prebiotic or probi-
otic treatments, the synbiotic regimen decreased levels of the oncometabolite lactate 
and downregulated genes involved in drug resistance and procarcinogenic pathways. 
The simulated regimens resulted in various ratios of organic and short-chain fatty 
acids being generated. The synbiotic diet was applied to primary CRC-derived cells, 
which resulted in a diminished capacity for self-renewal. This strategy exemplifies 
the promise of modelling for logically developing medicines based on synbiotics in 
future [42]. 

Computational discovery and experimental validation of inhibitors of the Human 
Intestinal Transporter OATP2B1 are elaborated on in the article [43]. Human organic 
anion transporters (OATPs) are essential for medication absorption and endoge-
nous chemical efflux. Experimental screening is currently used to identify these 
transporter inhibitors. Because there aren’t enough experimental three-dimensional 
protein structures, virtual screening is still difficult. An outline of the process for 
finding OATP2B1 transporter inhibitors in the DrugBank library of more than 5,000 
pharmaceuticals and drug-like compounds is explained. The OATP member 2B1
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transporter is abundantly expressed in the intestine and takes a role in the absorption 
of medications taken orally [43]. 

The role of in silico and in vitro modelling for the intestinal transport of 
thyrotropin-releasing hormone (TRH) analogues through PepT1 is discussed in the 
chapter [44]. In order to determine how structural changes affect the PepT1-mediated 
transport of TRH analogues, the current study uses molecular docking, molecular 
dynamics (MD) simulation studies, and a Caco-2 cell monolayer permeability assay. 
Using a homology model of the human PepT1, four TRH analogues were molecularly 
docked, and then the following MD simulation studies were conducted. Four TRH 
analogues were subjected to apical to basolateral and basolateral to apical tests on the 
permeability of the Caco-2 cell monolayer. Gly-Sar, a common PepT1 substrate, was 
used in inhibition tests to verify the PepT1-mediated transport mechanism of TRH 
analogues. According to MD simulation studies, the majority of substrate binding is 
caused by polar interactions with amino acid residues in the active site, and a decline 
in substrate binding was seen as bulkiness at the N-histidyl moiety of TRH analogues 
increased [44]. 

10.2 Materials and Methods 

10.2.1 Experimental Data Curation 

Purpose membrane transporters mediate many biological effects of chemicals and 
play a major role in pharmacokinetics and drug resistance. The selection of viable 
drug candidates among biologically active compounds requires the assessment of 
their transporter interaction profiles. Dataset on 3199 compositions of compounds 
which are potential transporters is extracted from the literature [7]. These were repre-
sented by quasi-SMILES containing data on molecular structure together with special 
codes related to activity in different directions (Table 10.1). The transporter behaviour 
data of the inhibitors were classified as the two main classes of inhibitors [versus 
non-inhibitors]. The data on the inhibitory activity of these 3199 compounds were 
assigned “1” for active and “− 1” for inactive or non-inhibitors [7]. These contain 
1548 active quasi-SMILES (represented inhibitors of different quality) and 1651 
inactive samples.

An example of building up a quasi-SMILES: 

1. SMILES=“N1C(=NC(=C2C=1N(C=N2)[C@@H]3C[C@@H] 
(C=C3)CO)NC4CC4)N”; 

2. Code for transporter (Table 1)=[ASBT]; 
3. Quasi-SMILES=“N1C(=NC(=C2C=1N(C=N2)[C@@H]3C[C@@H] 

(C=C3)CO)NC4CC4)N[ASBT]”.
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Table 10.1 Quasi-SMILES 
code of the inhibitors 

Code for quasi-SMILES Comment 

ASBT Apical sodium-dependent bile acid 
transporter 

BCRP Breast cancer resistance protein 

MCT1 Monocarboxylate transporter I 

MDR1 Multidrug resistance protein I 

MRP1 Multidrug resistance-associated 
protein 1–4 

OATP2B1 Organic anion transporting 
polypeptide 2B1 

OCT1 Organic cation transporter 1 

PEPT1 Peptide transporter 1

10.2.2 Development of the Models 

A classification-based model to forecast the inhibitor or non-inhibitor of the 
combined potential transporters. The so-called quasi-simplified molecular input-line 
entry system (quasi-SMILES), which is equivalent to the conventional SMILES, 
is used in QSPR/QSAR evaluations but uses all available data (not just informa-
tion about the molecular structure). Such derived quasi-SMILES codes were used 
in the models to represent transporter behaviour [15–20, 45]. Further, the combined 
dataset (n = 3199) of the transporters was split into active-training set (ATS) (25%), 
passive-training set (PTS) (25%), calibration set (CS) (25%), and validation set (VS) 
(25%). 

Using the technique of semi-correlation [14, 45] models for the inhibitory activity 
of different samples was built up. 

y = C0 + C1 × DCW(quasi_SMILES) (10.3) 

DCW(quasi_SMILES) =
∑

CW(code of quasi_SMILESk) (10.4) 

The codes for quasi-SMILES are calculated by the Monte Carlo optimisation 
procedure that provides the maximum of the target function 

TF = RA + RP − 0.1 × |RA − RP | + I I  C  × WI I  C (10.5) 

RA and RP are correlation coefficient values for ATS and PTS, respectively. The IIC 
is the Iindex of Ideality of Correlation [46, 47]. The same Monte Carlo optimisation 
without the IIC gave significantly poorer predictive potential of the models. 

In order to construct the classification model for the two classes of inhibitor (1) and 
non-inhibitor (− 1), additional statistical criteria like sensitivity, specificity, accuracy, 
and Matthews correlation coefficient (MCC) were also employed [48, 49]. The MCC
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coefficient is mainly utilised in machine learning to evaluate the accuracy of binary 
classifications, and it can be applied when the classes have extremely disparate sizes 
[50]. 

MCC = TP × TN − FP × FN √
(TP + FP)(TP + FN)(TN + FP)(TN + FN) 

(10.6) 

Sensitivity = TP 

TP + FN 
(10.7) 

Specificity = TN 

FP + TN 
(10.8) 

Accuracy = TP + TN 
TP + FP + FN + TN 

(10.9) 

In a confusion matrix, the combined two letters TP, TN, FP, and FN stand for 
the corresponding numbers of true positives, true negatives, false positives, and false 
negatives. MCC values vary from − 1 to  + 1, with the former denoting a poor 
prediction that is exactly wrong, 0 denoting a prediction that is no better than random, 
and + 1 denoting a complete adequating between predicted and observed values [50]. 

10.3 Result and Discussion 

The calculation of the optimal descriptor (DCW ), which is the key parameter 
to build any classification-based model, is using the CORAL software (http:// 
www.insilico.eu/coral). The calculation of DCW for a given molecule here 
depends on the quasi-SMILES structure of that molecule, where the given 
quasi-structure is split into a number of the small structural attributes (SA), 
and the Monte Carlo optimisation calculates the correlation weights (CWs) for  
each SA of the quasi-SMILES. These CWs for each SA thus obtained by the 
above optimisation are added so that they constitute the full molecule; in this 
case, it is the quasi-SMILES structure. Table 10.2 lists the CWs obtained for 
each SA of the quasi-SMILES present in the molecules. An example of the 
calculation of the DCW for one of the molecules having the quasi-SMILES code 
(N1C(=NC(=C2C=1N(C=N2)[C@@H]3C[C@@H](C=C3)CO)NC4CC4)N[ASBT]) 
is provided in Table 10.3.

where NAT , NPT, and NC are the numbers of SA in active-training set, in passive-
training set, and calibration set, respectively (Tables 10.2 and 10.3). The data given 
in Tables 10.2 and 10.3 were obtained for WIIC = 0.5, which is discussed in the 
subsequent section. 

One of the aims of the given study was the assessment of ability of the IIC to 
improve the predictive potential of classification models. The WIIC is weight of the 
IIC, i.e. coefficient ranged 0.1–0.7.

http://www.insilico.eu/coral
http://www.insilico.eu/coral
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Table 10.2 Correlation weights (CWs) for each SA of the quasi-SMILES 

Ak CW(SAk) ID NAT NPT NC DEFECT[SAk] 

#… 0.5113 1 31 36 18 0.0005 

(…(… 0.1667 2 219 220 194 0.0001 

(… 0.0918 3 796 823 782 0 

/…(… 0.4731 4 41 50 49 0.0002 

/… − 0.3147 5 53 65 57 0.0001 

1…(… − 0.2059 6 398 410 372 0 

1… 0.8357 7 774 807 765 0 

1…/… − 5.0785 8 1 3 1 0.0009 

2…(… − 0.5258 9 402 421 372 0.0001 

2… 0.3407 10 675 692 668 0 

2…/… − 2.5945 11 5 8 5 0.0004 

2…1… − 1.0360 12 59 59 55 0 

3…(… − 0.6801 13 298 307 274 0.0001 

3… 0.0936 14 535 528 509 0 

3…/… 4.8924 15 1 4 1 0.0012 

3…1… 0.5043 16 11 5 12 0.0007 

3…2… 0.8259 17 36 30 29 0.0002 

4…(… − 0.4946 18 211 217 184 0.0001 

4… 0.5763 19 356 353 342 0 

4…/… 0 20 0 1 0 0 

4…1… 6.4339 21 6 3 7 0.0007 

4…2… − 2.9543 22 8 8 10 0.0002 

4…3… 1.0088 23 27 20 35 0.0005 

5…(… 0.1400 24 105 98 80 0.0002 

5… 0.0189 25 209 202 166 0.0002 

5…/… 5.6393 26 2 0 0 1 

5…1… − 7.4750 27 1 1 2 0.0007 

5…2… − 1.2957 28 1 4 3 0.0009 

5…3… − 0.2638 29 8 3 4 0.0008 

5…4… − 0.6366 30 9 6 5 0.0005 

6…(… − 1.0850 31 72 51 47 0.0004 

6… − 0.4438 32 94 78 65 0.0003 

6…/… 0 33 0 3 0 0 

6…1… 2.5367 34 1 3 0 1 

6…3… 6.1258 35 2 0 1 0.0017 

6…4… 0 36 0 1 0 0

(continued)
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Table 10.2 (continued)

Ak CW(SAk) ID NAT NPT NC DEFECT[SAk]

6…5… 2.0127 37 4 4 4 0 

7…(… − 0.7746 38 36 22 20 0.0005 

7… − 1.5993 39 46 32 28 0.0004 

7…6… − 1.1444 40 3 5 3 0.0004 

8…(… − 1.4578 41 15 8 7 0.0007 

8… − 1.4890 42 15 8 8 0.0006 

8…7… 0.7743 43 2 1 0 1 

9…(… − 5.2887 44 1 1 3 0.001 

9… − 4.0709 45 3 2 3 0.0004 

9…6… 0 46 0 1 3 0 

9…8… − 5.0209 47 1 0 0 1 

= …(… 0.0766 48 656 663 639 0 

= … 0.1613 49 724 757 716 0 

= …1… 0.2969 50 280 317 305 0.0001 

= …2… 0.3230 51 269 261 239 0.0001 

= …3… 1.6280 52 232 227 216 0 

= …4… 0.0092 53 131 135 131 0 

= …5… 2.8998 54 83 97 80 0.0001 

= …6… − 0.1574 55 59 45 37 0.0004 

= …7… − 0.8928 56 36 20 15 0.0007 

= …8… − 0.8572 57 10 5 2 0.0012 

= …9… 7.5056 58 1 0 0 1 

C…#… − 0.3565 59 29 35 16 0.0005 

C…(… 0.2899 60 785 806 767 0 

C… 0.0453 61 795 820 783 0 

C…/… 1.4637 62 41 52 52 0.0002 

C…1… 0.5849 63 585 631 584 0 

C…2… 1.0689 64 539 563 545 0 

C…3… 0.4973 65 446 430 409 0.0001 

C…4… − 0.0300 66 267 287 265 0 

C…5… 0.1184 67 163 165 128 0.0002 

C…6… − 0.5474 68 74 62 54 0.0002 

C…7… − 0.2580 69 43 23 19 0.0007 

C…8… − 0.8147 70 14 6 5 0.0009 

C…9… 1.2824 71 2 1 3 0.0009 

C… = … 0.3848 72 553 559 527 0

(continued)
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Table 10.2 (continued)

Ak CW(SAk) ID NAT NPT NC DEFECT[SAk]

C…C… 0.8918 73 723 742 705 0 

F…(… − 0.5111 74 63 75 68 0.0001 

F… 1.9909 75 73 83 76 0.0001 

F…1… 0 76 0 1 0 0 

F…2… − 7.0879 77 1 0 1 0.0013 

F…4… 0 78 0 0 3 0 

F…C… − 1.0458 79 41 46 32 0.0002 

Br.(… 0.2533 80 7 2 3 0.0011 

Br… − 0.1213 81 7 2 3 0.0011 

Br.0.2… 0 82 0 0 1 0 

Br.0.3… − 0.9756 83 1 1 0 1 

Br.0.4… − 1.0217 84 1 0 2 0.0017 

Br..C… 0 85 0 1 0 0 

I…(… − 0.7582 86 2 3 6 0.0009 

I… − 0.1647 87 2 4 6 0.0009 

I…3… 0 88 0 0 1 0 

I…C… 0 89 0 1 2 0 

Cl..(… − 0.2604 90 28 26 26 0.0001 

Cl… 1.3187 91 31 32 28 0.0001 

Cl.0.1… − 2.4033 92 4 2 5 0.0007 

Cl.0.2… 0 93 0 1 0 0 

Cl.0.3… 0 94 0 1 0 0 

Cl..C… − 2.9645 95 4 3 4 0.0003 

N…#… 1.3416 96 25 32 15 0.0005 

N…(… − 0.8278 97 480 501 460 0 

N… − 0.3147 98 583 622 584 0 

N…/… − 1.9614 99 7 9 3 0.0007 

N…1… − 0.5937 100 142 142 151 0.0001 

N…2… − 0.3584 101 143 168 165 0.0001 

N…3… 0.1814 102 144 137 133 0.0001 

N…4… − 0.1822 103 67 66 66 0 

N…5… 0.6578 104 17 19 16 0.0001 

N…6… − 3.3376 105 8 4 10 0.0007 

N…7… 0.5438 106 3 1 1 0.001 

N…8… 0 107 0 1 3 0 

N…9… − 2.9121 108 1 0 0 1

(continued)
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Table 10.2 (continued)

Ak CW(SAk) ID NAT NPT NC DEFECT[SAk]

N… = … 0.2142 109 177 178 186 0.0001 

N…C… 0.5314 110 490 525 496 0 

N…F… 0 111 0 1 0 0 

N…Cl… 0 112 0 0 1 0 

N…N… − 2.3714 113 16 11 6 0.0007 

O…(… − 0.1308 114 695 705 683 0 

O… 0.0593 115 732 756 736 0 

O…/… − 2.8947 116 4 3 5 0.0005 

O…1… 1.0195 117 139 129 140 0.0001 

O…2… − 0.1934 118 83 87 95 0.0001 

O…3… 1.0158 119 71 60 53 0.0002 

O…4… 0.3474 120 36 26 37 0.0003 

O…5… − 0.2599 121 50 39 43 0.0002 

O…6… 0.0207 122 10 9 4 0.0006 

O…7… 3.6845 123 4 5 4 0.0002 

O…8… − 2.5514 124 1 0 2 0.0017 

O… = … 0.2706 125 610 602 622 0.0001 

O…C… 0.0309 126 520 530 506 0 

O…N… 1.7677 127 3 8 4 0.0008 

O…O… 0 128 0 0 1 0 

P…(… − 1.0819 129 4 4 2 0.0005 

P… 2.6365 130 7 7 2 0.0008 

P…1… − 1.1353 131 3 3 0 1 

P… = … 1.6753 132 6 3 2 0.0009 

P…O… − 2.4209 133 1 4 0 1 

S…(… − 0.7941 134 94 78 93 0.0002 

S… − 0.1689 135 117 111 124 0.0001 

S…/… 1.6703 136 1 1 0 1 

S…1… 0.4432 137 5 9 10 0.0005 

S…2… − 3.4664 138 9 21 20 0.0006 

S…3… 4.2809 139 5 6 0 1 

S…4… 0.0080 140 5 2 2 0.0008 

S…5… 0 141 0 0 1 0 

S…8… 0 142 0 0 1 0 

S… = … 0.3710 143 35 35 38 0.0001 

S…C… 1.0060 144 46 47 48 0.0001

(continued)
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Table 10.2 (continued)

Ak CW(SAk) ID NAT NPT NC DEFECT[SAk]

S…N… − 0.9896 145 10 7 6 0.0004 

S…O… 8.5332 146 5 3 4 0.0004 

\…(… 0.5120 147 37 39 26 0.0003 

\… 0.7106 148 52 55 49 0 

\…1… − 2.7657 149 2 1 3 0.0009 

\…3… − 2.1106 150 2 1 0 1 

\…4… 0 151 0 1 0 0 

\…C… 0.9521 152 42 49 44 0.0001 

\…N… 1.8119 153 12 13 9 0.0002 

\…O… − 2.9818 154 5 7 3 0.0006 

[C + ]… 7.4452 155 1 0 0 1 

[BCRP]… − 0.596 156 79 104 99 0.0002 

[ASBT]… − 2.3700 157 31 43 33 0.0002 

[C@@H]… − 0.0922 158 193 168 198 0.0002 

[C@@]… 0.3572 159 86 81 80 0.0001 

[C@H]… 0.0880 160 189 169 190 0.0001 

[C@]… 0.4880 161 93 87 85 0.0001 

[CH]… − 0.8197 162 8 13 12 0.0003 

[Br−]… − 0.4078 163 4 2 1 0.0011 

[Cl−]… − 1.7000 164 1 1 0 1 

[Br]… 2.1211 165 6 10 3 0.0009 

[I−]… − 4.3498 166 1 2 0 1 

[Cl]… 1.0336 167 45 58 34 0.0004 

^… − 1.2665 168 9 7 2 0.001 

^…2… 8.3159 169 1 0 0 1 

^…3… 3.5091 170 1 0 0 1 

^…4… 0 171 0 1 0 0 

^…5… 0 172 0 2 0 0 

^…C… 1.2156 173 6 3 1 0.0012 

^…F… 1.6154 174 3 2 1 0.0008 

^…Cl… − 4.5392 175 1 0 0 1 

^…O… 0 176 0 1 1 0 

[H]… − 1.7327 177 11 14 11 0.0002 

[N + ]… − 1.0429 178 23 12 11 0.0006 

[O−]… − 0.5924 179 13 9 13 0.0003 

[MCT1]… 3.0453 180 12 10 24 0.0008

(continued)
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Table 10.2 (continued)

Ak CW(SAk) ID NAT NPT NC DEFECT[SAk]

[MDR1]… − 1.2082 181 399 409 377 0 

[P + ]… 0 182 0 0 1 0 

[P−]… − 2.6936 183 3 2 1 0.0008 

[NH2]… 1.5537 184 1 1 0 1 

[MRP1]… − 1.3966 185 119 100 108 0.0002 

[MRP2]… − 1.4168 186 27 27 19 0.0003 

[MRP3]… − 0.2338 187 7 11 9 0.0003 

[MRP4]… 4.2517 188 21 13 16 0.0004 

[NH]… 0.7952 189 3 5 1 0.0011 

[OATP2B1]… 1.1454 190 30 32 44 0.0004 

[OCT1]… 4.1562 191 51 54 43 0.0001 

[PEPT1]… 4.6009 192 26 26 12 0.0005 

[N]… − 4.6764 193 5 7 4 0.0004 

[Se]… 1.1415 194 2 1 0 1 

[Si]… 1.2054 195 1 1 1 0 

[n + ]… 0.8357 196 13 10 13 0.0003 

[nH]… 2.8228 197 13 13 15 0.0002 

c…(… − 0.0761 198 209 211 216 0.0001 

c… 0.0934 199 231 233 241 0.0001 

c…/… − 2.0681 200 2 5 3 0.0007 

c…1… 0.2582 201 188 197 207 0.0001 

c…2… 1.2260 202 148 139 157 0.0001 

c…3… 0.6555 203 84 69 90 0.0003 

c…4… 1.1246 204 67 54 62 0.0002 

c…5… 1.8007 205 44 29 32 0.0004 

c…6… 0.4491 206 12 10 11 0.0002 

c…7… − 3.5070 207 3 6 4 0.0005 

c…8… 6.3699 208 1 1 0 1 

c…9… 4.3633 209 1 1 0 1 

c… = … − 2.7384 210 2 0 0 1 

c…C… 0.5559 211 116 103 118 0.0002 

c…Cl… 0.8779 212 2 2 1 0.0005 

c…N… 1.3671 213 31 37 44 0.0003 

c…O… 0.6487 214 79 73 89 0.0002 

c…S… − 2.7646 215 3 5 6 0.0006 

c…\… − 1.0142 216 8 9 9 0.0001

(continued)
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Table 10.2 (continued)

Ak CW(SAk) ID NAT NPT NC DEFECT[SAk]

c…c… 0.6562 217 218 215 223 0.0001 

n…(… − 0.4899 218 23 26 33 0.0003 

n… − 0.7286 219 63 66 64 0 

n…1… − 1.0714 220 31 23 26 0.0003 

n…2… 0.2175 221 11 7 18 0.0008 

n…3… 0.9786 222 3 6 2 0.0009 

n…4… 2.8537 223 4 1 2 0.0011 

n…5… 0 224 0 2 1 0 

n…C… − 1.2624 225 4 7 2 0.0009 

n…O… 0 226 0 1 0 0 

n…c… 0.7512 227 45 55 44 0.0001 

n…n… − 1.8964 228 3 0 2 0.0015 

o…(… − 1.3584 229 9 5 4 0.0007 

o… − 0.5391 230 28 30 24 0.0001 

o…1… − 4.2328 231 6 10 6 0.0004 

o…2… 0 232 0 2 1 0 

o…3… 0.0319 233 1 3 3 0.0007 

o…4… 5.3312 234 4 7 1 0.0012 

o…5… 2.1397 235 3 3 0 1 

o…6… 0 236 0 1 0 0 

o…c… 0.2404 237 7 14 4 0.0009 

o…n… − 0.6625 238 21 15 18 0.0003 

s…(… 4.9839 239 7 4 7 0.0005 

s… 0.9463 240 24 22 27 0.0002 

s…1… 1.5798 241 11 13 15 0.0003 

s…2… − 6.3189 242 4 1 2 0.0011 

s…3… 5.9390 243 2 0 3 0.0015 

s…4… 0 244 0 2 0 0 

s…c… 2.7841 245 22 20 26 0.0003

So when we are changing the WIIC from 0.1 to 0.7, the changes in the classifica-
tion parameters of the model such as sensitivity, specificity, accuracy, and Matthews 
correlation coefficient (MCC) for the different sets of the data (active-training, 
passive-training, calibration and validation sets) are given in Table 10.4.

The graphical variation of these parameters for the validation set is represented in 
Fig. 10.1a the variation of sensitivity versus different WIIC ; Fig.  10.1b the  variation of  
specificity versus different WIIC ; Fig.  10.1c the variation of accuracy versus different 
WIIC ; and Fig. 10.1d the evolution of values of Matthews correlation coefficient
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Table 10.3 Example of the calculation of the optimal descriptor (DCW ) for quasi-SMILES 
“N1C(=NC(=C2C = 1N(C = N2)[C@@H]3C[C@@H](C = C3)CO)NC4CC4)N[ASBT]” 
Structural attribute 
(SA) 

CW(SA) ID NAT NPT NC 

N… − 0.3147 98 583 622 584 

1… 0.8357 7 774 807 765 

C… 0.0453 61 795 820 783 

(… 0.0918 3 796 823 782 

=… 0.1613 49 724 757 716 

N… − 0.3147 98 583 622 584 

C… 0.0453 61 795 820 783 

(… 0.0918 3 796 823 782 

=… 0.1613 49 724 757 716 

C… 0.0453 61 795 820 783 

2… 0.3407 10 675 692 668 

C… 0.0453 61 795 820 783 

= … 0.1613 49 724 757 716 

1… 0.8357 7 774 807 765 

N… − 0.3147 98 583 622 584 

(… 0.0918 3 796 823 782 

C… 0.0453 61 795 820 783 

=… 0.1613 49 724 757 716 

N… − 0.3147 98 583 622 584 

2… 0.3407 10 675 692 668 

(… 0.0918 3 796 823 782 

3… 0.0936 14 535 528 509 

C… 0.0453 61 795 820 783 

(… 0.0918 3 796 823 782 

C… 0.0453 61 795 820 783 

=… 0.1613 49 724 757 716 

C… 0.0453 61 795 820 783 

3… 0.0936 14 535 528 509 

(… 0.0918 3 796 823 782 

C… 0.0453 61 795 820 783 

O… 0.0593 115 732 756 736 

(… 0.0918 3 796 823 782 

N… − 0.3147 98 583 622 584 

C… 0.0453 61 795 820 783 

4… 0.5137 19 356 353 342

(continued)
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Table 10.3 (continued)

Structural attribute
(SA)

CW(SA) ID NAT NPT NC

C… 0.0453 61 795 820 783 

C… 0.0453 61 795 820 783 

4… 0.5137 19 356 353 342 

(… 0.0918 3 796 823 782 

N… − 0.3147 98 583 622 584 

N…1… − 0.6562 100 142 142 151 

C…1… 0.5849 63 585 631 584 

C…(… 0.2899 60 785 806 767 

=…(… 0.0766 48 656 663 639 

N… =… 0.2142 109 177 178 186 

N…C… 0.5314 110 490 525 496 

C…(… 0.2899 60 785 806 767 

= …(… 0.0766 48 656 663 639 

C… = … 0.3848 72 553 559 527 

C…2… 1.0689 64 539 563 545 

C…2… 1.0689 64 539 563 545 

C… =… 0.3848 72 553 559 527 

= …1… 0.2344 50 280 317 305 

N…1… − 0.6562 100 142 142 151 

N…(… − 0.8278 97 480 501 460 

C…(… 0.2899 60 785 806 767 

C… =… 0.3848 72 553 559 527 

N… =… 0.2142 109 177 178 186 

N…2… − 0.3584 101 143 168 165 

2…(… − 0.5258 9 402 421 372 

C…3… 0.4973 65 446 430 409 

C…(… 0.2899 60 785 806 767 

C… =… 0.3848 72 553 559 527 

C… =… 0.3848 72 553 559 527 

C…3… 0.4973 65 446 430 409 

3…(… − 0.6801 13 298 307 274 

C…(… 0.2899 60 785 806 767 

O…C… 0.0309 126 520 530 506 

O…(… − 0.1307 114 695 705 683 

N…(… − 0.8278 97 480 501 460

(continued)
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Table 10.3 (continued)

Structural attribute
(SA)

CW(SA) ID NAT NPT NC

N…C… 0.5314 110 490 525 496 

C…4… − 0.03 66 267 287 265 

C…4… − 0.03 66 267 287 265 

C…C… 0.8918 73 723 742 705 

C…4… − 0.03 66 267 287 265 

4…(… − 0.5571 18 211 217 184 

N…(… − 0.8278 97 480 501 460 

[C@@H]… − 0.0922 158 193 168 198 

[C@@H]… − 0.0922 158 193 168 198 

[ASBT]… − 2.4325 157 31 43 33 

DCW 4.9603

for different WIIC . One can see that the maximal value of the MCC observed for 
WIIC = 0.5 (Fig. 10.1d). So the classification model at WIIC = 0.5 gives better 
sensitivity, accuracy, and Matthews correlation coefficient. However, the highest 
specificity could be obtained at WIIC = 0.6 (Fig. 10.1b).

Hence, the value of the WIIC = 0.5 should be applied to build up a model for 
inhibitor activity for potential Human Intestinal Transporters. 

The outcomes of the classification-based models on the Human Intestinal Trans-
porters are represented in Table 10.4. This table contains the statistical quality of 
these models. The statistical criteria are calculated as: 

Category(quasi_SMILES) =
{

active if, y ≥ 0 
inactive if, y < 0 

(10.10) 

Using qualitative statistical validation metrics, such as sensitivity [0.7629– 
0.8067], specificity [0.7323–0.7626], accuracy [0.7526–0.7844], and Matthews 
correlation coefficient (MCC = [0.5058–0.5697]), a classification-based model 
that predicts the kind of combined inhibition (activator, non-activator) was veri-
fied. The CORAL classification model, which is being implemented to build these 
classification models, has the predictive potential. 

Supplementary materials section contains the technical details on the model 
observed in the case Wiic = 0.5.
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Fig. 10.1 a Variation of sensitivity versus different WIIC , b the variation of specificity versus 
different WIIC , c the variation of accuracy versus different WIIC, and d the changes in Matthews 
correlation coefficient for different WIIC

10.4 Conclusion 

The classification-based QSAR model of different kinds of inhibitory activity 
presented in the chapter for a large list of Human Intestinal Transporter using quasi-
SMILES codes was good. The extraction of biological characteristics from quasi-
SMILES and computation of so-called correlation weights (CWs) for these attributes 
using Monte Carlo techniques proved successful in building classification-based 
models. As qualitative statistical validation criteria, the classification model was 
tested using sensitivity (= 0.86), specificity (= 1), accuracy (= 0.96), and Matthews 
correlation coefficient (MCC = 0.90). A model of several types of inhibitory activity 
using quasi-SMILES was presented for a large dataset on 3199 of the Human 
Intestinal Transporter. The computational experiments confirm the ability of the 
IIC to improve the predictive potential of classification models. So it can be said 
that the reported classification-based models highlighted in the present chapter are 
a successful attempt to predict Human Intestinal Transporters’ behaviour of a large 
dataset. The selection of promising therapeutic candidates from libraries of bioactive
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compounds should be made more accessible by understanding such features. Addi-
tionally, these profiles might be useful for modelling higher-order ADMET effects 
mediated by intricate transporter interactions. 

Declaration of Competing Interest The authors declare that they have no known competing finan-
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Chapter 11 
Quasi-SMILES as a Tool for Peptide 
QSAR Modelling 

Md. Moinul, Samima Khatun, Sk. Abdul Amin, Tarun Jha, 
and Shovanlal Gayen 

Abstract Peptides have played an attractive role since a few decades in the discovery 
of new drugs in various areas involving hormones, antimicrobials, cytokines, etc. The 
peptide is very righteous alternative for small molecules and biological therapeutics. 
Different modelling approaches can be applied to accelerate the design of different 
peptides-based molecules. Simplified molecular input line entry system (SMILES) is 
a sequence of symbols which is used to recount the molecular structure of compounds. 
This method helps in the development of QSAR models that describe the physio-
chemical property of the compounds. In contrast to SMILES, quasi-SMILES is used 
as an encipher for both information about molecular structure and specific experi-
mental conditions (biological and physicochemical conditions). Quasi-SMILES uses 
eclectic information to design an extended representation of data. It represents all 
peptides in abbreviation of their corresponding amino acid and can be applied in 
the field of peptide-based QSAR modelling. In this chapter, we have discussed the 
different modelling approaches including quasi-SMILES approach for the develop-
ment of QSAR models of peptide. The different models and their success in peptide 
QSAR models have been covered in detail. 
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11.1 Introduction 

Peptides are a chain of amino acids (usually 2–20). Peptide is attracting wide atten-
tion due to its high activity and selectivity with few side effects against different 
targets [1–3]. To date, a variety of functional peptides have been reported, including 
antihypertensive, antithrombotic, opioid, antimicrobial, antioxidant, anticancer, and 
immunomodulatory peptides [3, 4]. Thus, peptides are playing a pivotal role in drug 
discovery, development of vaccines, hormones, antibiotics, cytokines, neurotrans-
mitters, immunomodulating agents, toxins, exogenous antigens, and food additives 
(Fig. 11.1). In comparison with small-molecule inhibitors, peptides as drug candi-
dates have the potential to combine the properties of easy modification, remarkable 
specificity, excellent biocompatibility, and low side effects [3, 5]. 

The successful applications of peptides in drug discovery were initiated with the 
use of insulin in type I diabetics which was extracted from the animal pancreas. Short 
peptides such as oxytocin, gonadotropin-releasing hormone (GnRH), vasopressin, 
and somatostatin have initiated the field of peptide drug development [5]. To date, 
over 60 peptide drugs have been approved in the United States, Europe, and Japan to 
date. More than 150 peptide drugs are in the clinical development phase, and another 
260 have been tested in human clinical trials [6]. 

Further, optimization of natural sequences of these peptides has led to the devel-
opment of a number of naturally occurring hormone-mimetic peptide drugs [7]. For 
instance, the development anti-T2DM peptide drugs such as liraglutide, dulaglutide, 
and semaglutide, peptide drugs derived from GnRH such as degarelix and leuprolide 
and some other approved peptide drugs such as octreotide (a somatostatin mimicking

Development of natural hormones 
(insulin, GLP-1, GnRH, oxytocin etc.) 

Development of natural hormone-
mimetic peptide drugs 
Eg. Dulaglutide, leuprolide 

Tumor-therapy, gastric cancer and 
Cardiovascular diseases 

Peptide-based nanomaterials, 
peptide vaccines 

Peptides 

Advantages Therapeutic Applications 

High specificity 

Good efficacy 

Low immunogenicity 

Easy modification 
Membrane  permeability 

Low cost 

Fig. 11.1 Current applications and advantages of peptides in therapeutics 
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peptide drug), desmopressin (synthetic analogue of 8-Arg-vasopressin), carbetocin 
(an oxytocin homologue), and atosiban (an oxytocin antagonist) [5]. 

Peptides are also used in development of antimicrobial drugs. These antimicrobial 
peptides are also useful in the cosmetic industry. Antiviral peptides [8–10] drew a lot  
of interest during the COVID-19 pandemic. Scientists have devoted extensive effort 
to develop peptide vaccines against SARS-CoV-2. Design and identification of poten-
tial peptide vaccine candidates have been accelerated by the rapid application of novel 
technologies such as immunoinformatics analysis, in silico identification, epitope-
based design, and molecular docking. Although, no antiviral peptide vaccine has 
been approved for COVID-19 treatment, and significant expertise has been gained in 
the development of antiviral peptide vaccines against potential future viruses, such 
as SARS-CoV-2 [5]. Due to their tiny size, strong affinity, ease of modification, 
and minimal immunogenicity, peptides have also gained interest in the treatment 
and diagnosis of tumours. Some altered peptides have also shown to be stable. For 
instance, stable-helical peptides were developed by Carvajal et al. as MDMX and 
MDM2 inhibitors for p53-dependent cancer treatment [11, 12]. Peptides have also 
demonstrated potential for treating gastric cancer. Additionally, it has been demon-
strated that peptides regulate gastrointestinal (GI) motility. By boosting CGRP and 
endogenous PGs instead of NO, GLP-2 peripheral injection improved GI blood flow 
and mucosal blood flow of stomach [13]. 

Several peptides are identified from natural products. Some bioactive peptides 
obtained from plants, animals, bacteria, and fungi exhibit therapeutic properties. For 
example, venom peptides extracted from scorpions and snakes have been transformed 
for therapeutic purposes. Snake venom is believed to be a vascular endothelial growth 
factor (VEGF) analogue (also known as svVEGF or VEGF-F) [14–16]. Addition-
ally, ziconotide derived from Conus magus venom and exenatide (a GLP-1 agonist) 
derived from Gila monster venom have both been used in the treatment of chronic 
neuropathic pain [17, 18]. Furthermore, another type of peptide obtained from natural 
products is non-ribosomal peptide (NRP). Vancomycin, lugdunin, teixobactin, and 
cyclosporin are antibacterial NRPs derived from bacteria and fungi, whereas a-
amanitin, actinomycin, and nanocystin A are anti-tumour NRPs [19–22]. Some 
cyclodepsipeptides [23–25] (a type of NRP found in plants), such as enniatin B 
and emodepside [26, 27], have improved plasma stability, allowing for oral adminis-
tration. Recently, recombinant technology is also employed for the longer peptide for 
lead discovery [5]. Peptide represents different physiological functions like natural 
biological messenger in endocrine signalling pathway. 

Currently, in silico methods such as molecular docking and simulations, mathe-
matical modelling, chemometrics, and quantum-chemical calculations are progres-
sively being employed to design, screen, and discover bioactive peptides [28]. The 
QSAR modelling techniques of peptides have attracted attention in the recent years 
[29–31]. QSAR modelling has been extensively used to predict the physicochemical 
properties or biological activity of chemicals and pharmaceuticals. Designing and 
screening new molecules, predicting their activities, and figuring out the mechanism 
of bioactive peptides have all been accomplished using QSAR techniques. A variety
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of techniques derived from QSAR have surfaced in the recent years [32–40]. To ratio-
nally research, evaluate, and design bioactive peptides or peptidic molecules with in 
silico assistance, computational peptidology has appeared as a distinct and promising 
area [41]. However, unfortunately, only few databases of peptides like CAMPR3 [42]; 
DBAASP [43]; BACTIBASE [44]; and CS-AMPPred [45] are available. Therefore, 
development of new mathematical models involving different activities of peptides 
is very much necessary along with conventional development of peptide containing 
medicines or therapy. 

11.2 A Brief Overview of QSAR 

The quantitative structure–property/activity relationships (QSPRs/QSARs) are a 
relatively emerging field in drug discovery [46]. The QSPRs/QSARs method is 
linked with a broad number of goals, the most important of which are likely the 
estimation of the physicochemical behaviour of various substances and their subse-
quent effect in human and animal bodies, prediction of the biochemical behaviour 
of various substances in medicinal aspects, and selection of substances that could 
be potential contender for the specific role [47]. The QSAR/QSPR approaches are 
based on the idea that a particular chemical compound’s activity or property such 
as a drug binding to receptors or poisonous effect relates to its structure through a 
particular mathematical equation. A chemical compounds molecular structure will 
be related to its properties or biological activity. The prediction, interpretation, and 
evaluation of novel compounds with desired activities or qualities can therefore be 
done using this connection, lowering and simplifying the time, effort, and expense 
of synthesis as well as the cost of developing new products [48]. The establishment 
of a mathematical relationship between a chemical reaction and quantitative chem-
ical characteristics characterizing the characteristics of the examined molecules is 
known as QSAR modelling on a group of structurally related chemicals. Therefore, 
this work aims to develop a mathematical formalism between a chemical’s behaviour, 
or reaction, and a collection of quantitative chemical properties that may be derived 
from chemical structures using the appropriate experimental or theoretical methods. 

Therefore, QSAR technique can be mathematically represented as 

Biological activity = f (Chemical attributes) (11.1) 

The fundamental idea behind the term “chemical attribute” is to refer to the 
characteristics that specify how a chemical compound behaves, or responds [49].
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11.3 Peptide QSAR Modelling 

Peptide QSAR modelling involves several steps, such as dataset collection, structural 
characterization, variable selection, model building, model validation, and evaluation 
[50]. Figure 11.2 depicts a workflow of QSAR modelling of peptides. 

The first important step in QSAR modelling of peptides is the dataset collection. 
The scope, application, and predictive power of a QSAR model depend largely on 
the selected dataset. The datasets can be obtained from databases, experimental 
results, and literature. Dearden et al. recommended avoiding datasets generated 
from different sources or datasets that were established using different protocols 
because they frequently produce unreliable modelling results [38]. The modelling 
results will suffer if the dataset contains duplicate samples or if two peptides have 
identical sequences but different endpoint values. Data collection should consider 
the subsequent modelling as one of the most important steps. For instance, the 
balance of sample size between the positive and negative groups should be taken 
into consideration to prevent over fitting in QSAR modelling. One of the crucial 
components of QSAR modelling is the characterization of molecular structures. To

ExperimentsDatabase Literature 

Dataset collection 

Structural Characterization 
•Amino acid descriptors
•Global descriptors 

Variable selection 

Model Construction 

ANN SVM PLS MLR 

Evaluation and applications 

PCAQuasi-SMILES 

Fig. 11.2 Workflow of QSAR modelling of peptides 
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describe the structure of peptides, global and local descriptors—also referred to as 
amino acid descriptors—are frequently used. Global descriptors are molecular terms 
that describe an entire compound. For instance, global descriptors of molecules 
are those that describe a compound holistically, such as volume and polar surface 
area. Researchers have used global descriptors such as hERG channel inhibitors 
[51], chemical reactivity properties, and bioactivity scores [52] to computationally 
predict the potential of compounds. Some programmes such as ADMETSar [53] and 
ADMETLab [54] can employ global descriptors for prediction of bioactive peptides. 
These programmes utilize the structural characteristics of compounds annotated in 
SMILES code rather than amino acid sequences. The basic idea behind amino acid 
descriptors is to transform the amino acid sequence into a matrix–vector of structural 
descriptors by describing the peptide residues quantitatively. “Z-scales” (scales of 
hydrophilicity and bulk and electronic properties) are a set of descriptors used in 
peptide QSAR modelling. It is based on 29 physicochemical variables of 20 coded 
amino acids and is determined by principal component analysis (PCA) [55]. Later, 
Sandberg et al. used 5z-scales [56], which combine 26 physicochemical variables 
with steric, lipophilic, electronic, and other properties derived from PCA, to char-
acterize the structures of 87 amino acids. Isotropic surface area (ISA) of the amino 
acid side chain and the electronic charge index (ECI) of all the atoms in the side 
chain are also used to interpret the peptide QSAR [57]. Moreover, peptides are 3D 
molecules with distinctive structures. From this viewpoint, the structural descrip-
tion of peptides should fairly represent their 3D properties. In this regard, global 
descriptors are superior to amino acid descriptors. 

After structural characterization, the next important step of peptide QSAR 
modelling is variable selection. To guarantee the reliability and appropriate inter-
pretation of a QSAR model, variable selection is essential. Currently, there are a 
lot of variable selection techniques used in QSAR modelling [58]. Some of the 
representative methods for variable selection include the genetic algorithm (GA), 
the stepwise method, forward selection, and backward elimination. Forward selec-
tion is also known as “in but not out” algorithm. In forward selection, a variable 
with a significant effect on dependent variables will be introduced until a new vari-
able cannot be introduced. Backward elimination is an “out but not in” algorithm 
in which each variable that has no significant impact on the dependent variables is 
eliminated until none of the independent variables can be eliminated. The stepwise 
method performs forward selection and backward elimination at the same time [59], 
making it an efficient method for locating the optimal subspace. Genetic algorithm 
is a variable selection method that mimics natural selection and the natural genetic 
mechanism of biology [60]. 

After preparing the selected variables as independent variables and the correct 
response values of the dataset as dependent variables, the next step is to use scientific 
methods to build the model. This step is known as model construction. The various 
approaches used for peptide modelling include simplified molecular input line 
entry system (SMILES) and quasi-SMILES approaches [41], linear approaches like 
partial least square (PLS) method, multiple linear regression (MLR), and nonlinear
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approaches, such as artificial neural network (ANN) and support vector machine 
(SVM). 

Simplified molecular input line entry system (SMILES) is a specific type of chem-
ical language or information system for defining chemical structure in a simpler way 
by using line notation [61]. This molecular representation can be trained faster and 
during training set generation improve the model and give less over fit. The molec-
ular generation system in SMILES follows two steps, scaffold generator and decora-
tors. Moreover, SMILES syntax is extended with aster marks [“*”]. To describe 
data that includes not just molecular structure but also physicochemical and/or 
biochemical circumstances, new expanded forms of representation must be found 
due to the diversity of substances used to decide activities in medicinal chemistry. 
Quasi-SMILES is alternative of SMILES to design the extended representation of 
data, which have all available eclectic information. Quasi-SMILES departs from 
regular simplified molecular input line entry system (SMILES) by incorporating 
additional symbols that encode for experiment circumstances. SMILES descrip-
tors can be used to construct quantitative structure–property/activity relationships 
(QSPRs/QSARs) [62–65], whilst quasi-SMILES descriptors can be used to develop 
quantitative models of experimental results derived under diverse situations. It is 
undeniable that the quasi-SMILES strategy is encouraging better communication 
and collaboration between experimentalists and computational researchers [41]. The 
most commonly used software CORAL [66] that is based on the SMILES with string 
symbol helps to develop QSAR of chemical structures. 

In this discussion, we have mainly focussed on QSAR studies of peptides based on 
quasi-SMILES tool for the development of QSAR model that will help to design new 
peptide molecules in the discovery and development of amino acid-based therapeutics 
and also in the development of peptide drug discovery in the future. This QSAR 
modelling will also help to improve other properties of peptide during new lead 
discovery, such as half-life of peptide, selectivity, potency, pharmacokinetics, and 
pharmacodynamics property. 

11.4 SMILES-Based Descriptors for QSAR Model 
Development 

For the development of QSAR model by using SMILES notation system, a simple 
mathematical equation is used for describing all descriptors which is representing in 
Eq. 11.2. 

DCW(T , N ) = yCW(BOND) + zCW(ATOMPAIR) 

+ xCW(NOSP) + tCW(HALO) + α
∑

CW(Sk) 

+ β
∑

CW(SSk) + γ
∑

CW(SSSk) (11.2)
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Coefficients y, x, z, t, α, β, and γ can be 0 (no) or 1 (yes). When the value of a 
coefficient is 1, an appropriate SMILES-based descriptor is used in model construc-
tion. If the value is 0, an appropriate SMILES-based descriptor is discarded during 
model construction. T and N stand for the respective threshold value and number 
of epochs in this equation. By using CW, the correlation weights were expressed 
[67–70]. To modify descriptors, various coefficients including x, y, z, and t were 
employed. The global SMILES qualities are represented by NOSP, HALO, BOND, 
and ATOMPAIR, whereas the local smile properties are indicated by Sk , SSk , and 
SSSk . 

Conventional SMILES-based QSAR methods have solved different types of 
problem but there have few disadvantages of these methods that is why not able 
to solve all task specially related to peptides for development of QSAR model. This 
is due to the fact that in general, very complicated molecular structures of peptides 
and related chemical compounds cannot be described by graphs or SMILES. In the 
peptide QSAR modelling, instead of SMILES, quasi-SMILES can be implemented. 

11.5 Quasi-SMILES 

Quasi-SMILES is a technique, which is initially used for representing aspects such as 
circumstances and conditions associated with the substance’s behaviour [71–74]. In 
another way, the quasi-SMILES allows for the representation of situations where the 
examined phenomena appear to be influenced by factors other than molecular archi-
tecture, such as physicochemical (biochemical) conditions and different environ-
mental factors (such as the presence or absence of light, concentration, and porosity) 
[72]. Each condition of the substances is represented by a specific code [71]. The total 
of the correlation weights of the codes of conditions serves as the best descriptor. 
The Monte Carlo approach is used to calculate the correlation weights’ numerical 
data [74]. 

The main purport for traditional QSAR model is 

Endpoint = F(molecular structure) = F(SMILES) (11.3) 

But in case of quasi-SMILES-based QSAR modelling, the equation changes 
because of the eclectic data that is 

Endpoint = F(All available eclectic conditions) = F(quasi-SMILES) (11.4) 

Toropova et al. [75] reported the representation of the quasi-SMILES based 
on the “SMILES + Cell Code”, where cell codes are like for MCF-7, 
Cell Code %11; for HCT-116, Cell Code %12; for A549, Cell Code %14 
and for HepG2, Cell Code %13. Further for example, if the SMILES is 
“COc1ccc(cc1)c2cc3c(cn2)C(=O)C(=CC3O)NC” and Cell Code is “%11”, then 
quasi-SMILES is like “COc1ccc(cc1)c2cc3c(cn2)C(=O)C(=CC3O)NC%11”. In
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case of peptide QSAR, the amino acid sequence can be directly used as input for the 
quasi-SMILES-based model development by using Monte Carlo approach. 

11.5.1 Development of QSAR Model by Quasi-SMILES 

For the development of QSAR model, firstly data should be collected for different 
literature like “cellular uptake potentials of specific cells” [73] or “cytotoxicity of 
different cell line” or any other biological data [75]. To get a proper QSAR model, 
the biological activity data is very much important. These are represented by specific 
way like IC50 value. Then, the dataset is separated into training dataset, invisible 
training set, calibration set, and validation sets. The special symbol in the first place 
of a quasi-SMILES string denotes the distribution: active training set is denoted by + 
, passive training set is denoted by −, calibration set is denoted by #, and validation 
set is denoted by *. Here, all splits are non-identical. There are different roles of 
these sets which are as follows: the active training set is used for the model builder 
whether the invisible training set acts as a model inspector (it should check that the 
current model is appropriate for quasi-SMILES that are not included in the active 
training set). The calibration set should indicate that no overtraining has occurred. On 
the other hand, validation set is used for the final estimation of a model’s predictive 
capacity [73–75]. 

11.5.2 Optimal Descriptor Approach 

The correlation weights of these fragments are utilized to calculate appropriate 
descriptors for quasi-SMILES fragments. The numerical data on the correlation 
weights come from the Monte Carlo optimization. Monte Carlo optimization is used 
to maximize value of a target function. Five steps are followed for the development 
of the model as described below [75–77] 

Step 1: Development of the quasi-SMILES of the peptides which is nothing but 
the amino acid sequence. 

Step 2: Correlation weights CW(Sk) calculation for attributes of quasi-SMILES 
using so-called balance of correlations. CW(SAk) is the correlation weights for the 
SAk . The numerical data on the CW(Sk) should provide maximal value for the target 
function. 

Step 3: Calculation of optimal descriptors (descriptor of correlation weights) for 
all quasi-SMILES by the simple equation: 

DCW(T ∗, N ∗) =
∑

CW(Sk) (11.5)
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The correlation weights for attributes of quasi-SMILES are calculated by the 
Monte Carlo method together with an example of calculation of optimal descriptor 
with the correlation weights. 

One can identify the amino acids of two classes using numerical data on correlation 
weights of various amino acids that were obtained in several optimization runs: (1) 
amino acids with stable positive correlation weights, which are promoters of increase 
of pIC50; and on the other hand (2) amino acids with stable negative correlation 
weights, which are promoters of decrease of pIC50. As a result, the method provides 
the models’ statistical mechanistic explanation. 

Step 4: Then, calculation of the model by least squares method, using quasi-
SMILES of the training set: 

Potential of the model = C0 + C1 × DCW(T ∗, N ∗) (11.6) 

where the C0 and C1 are the regression coefficients. 
Different types of potentiality of the model can be calculated, i.e., drug loading 

capacity, pIC50 of any therapeutic agents, antimicrobial activity of peptide, and 
cellular uptake in specific cell. 

Step 5: Further, binary classification of the model is done by using this formula 

Class =
⎧

1, if PoM > 0 
−1, if PoM ≤ 0 

(11.7) 

Step 6: Finally, check the model predictive potential. The schematic representation 
is given in Fig. 11.3.

Advantages of Quasi-SMILES 

(i) These approaches offer the chance to consider all variables that might have an 
impact on the endpoint being studied. 

(ii) In terms of the factors that support an increase or decrease in the endpoint, it 
ensures a transparent interpretation of the data. 

(iii) It is possible to compare the outcomes of various data splits into active training 
set, passive training set, calibration set, and validation set to the integrated 
statistical flaws of quasi-SMILES’ fragments and the quasi-SMILES algorithm 
itself [73]. 

Disadvantages of Quasi-SMILES 

(a) It is impossible to construct a model from a structured training set with a limited 
fraction of compounds (i.e., a composition that includes the training, invisible 
training, and calibration sets). 

(b) It is impossible to determine the function of quasi-SMILES’ attributes that are 
missing from the training set [73, 75].
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Fig. 11.3 Schematic representation of the peptide QSAR model by quasi-SMILES

11.6 Different Application of SMILES/Quasi-SMILES 
in Peptide QSPR/QSAR Modelling 

Quasi-SMILES-based QSAR model has applications in different peptide-based 
QSAR modelling. Here, we have highlighted its applications mainly as antimicrobial 
peptides and epitope peptides with class I major histocompatibility complex (MHC). 

11.6.1 Antimicrobial Peptides 

In today’s world, the development of novel antimicrobial peptides is very important. 
This is due to the fact that different bacteria are emerging as multi-drug resistant. In 
agricultural industry, the potent antimicrobial peptides are high in demand. As the 
experimental techniques for the optimization of the biological activity of the antimi-
crobial peptides is very time consuming as well as expensive, different computational 
strategies like QSAR can be applied to make the optimization process faster and 
cheaper. In 2015, Toropova et al. [77] established QSAR of peptides (mastoparan 
analogues) for their antibacterial activity. The sequence of the amino acids was used 
as an input for the molecular structure of the peptides. On a dataset of 33 peptides,
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QSAR modelling was done using the best descriptors possible based on the represen-
tation of the peptide structure by the amino acid sequence. The information for the 
examined peptides was divided into three groups: training, calibration, and test sets. 
To calculate QSAR models, the Monte Carlo approach was employed as a computa-
tional tool. The definition of correlation weights was done in the beginning to get the 
highest value for the correlation coefficient for the calibration set. In the second step, 
the model was validated by using external validation set. For the external validation 
set, the statistical quality of QSAR for peptide antibacterial activity was as follows: 
n = 7, r2 = 0.8067, s = 0.248 (split 1); n = 6, r2 = 0.8319, s = 0.169 (split 2); and 
n = 6, r2 = 0.6996, s = 0.297 (split 3). Other statistical parameters for the training 
set and calibration set of the QSAR model are shown in Table 11.1. The graphical 
representation of the observed and predicted values of the generated QSAR equation 
for different splits is shown in Fig. 11.4. 

Comparing the given QSAR models to the other QSAR models developed by 
using 2D and 3D descriptor-based ones, the statistical parameters are better in the 
current QSAR models. Moreover, QSAR model generated by 3D descriptor needs 
high computation power and complex calculations. The QSAR study indicates that 
Alanine (A), Aspartic Acid (D), Phenylalanine (F), Isoleucine (I), and other amino 
acids can raise the pMIC (negative decimal logarithm of minimum inhibitory concen-
trations) value. Glutamic acid (E) and serine are two amino acids that may lower 
the pMIC value (S). Glycine (G) plays an unspecified function. Thus, the QSAR

Table 11.1 Statistical parameters for training set and calibration set of the QSAR model in case 
of the peptides (mastoparan analogues) for their antibacterial activity 

Number of peptides R2 S Q2 F 

Training set (Split 1) 21 0.6063 0.219 0.5162 29 

Training set (Split 2) 22 0.6763 0.202 0.6255 42 

Training set (Split 3) 20 0.6161 0.228 0.5391 59 

Calibration set (Split 1) 5 0.9678 0.108 

Calibration set (Split 2) 5 0.9630 0.278 

Calibration set (Split 3) 8 0.6819 0.222 

Fig. 11.4 Experimental 
versus predicted antibacterial 
activities of the peptides 
(mastoparan analogues) 
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modelling analysis by using Monte Carlo method by using the sequence of amino 
acids as input of the molecular structure can generate statistically significant QSAR 
models, and the generated models can be used also for the design of better active 
antimicrobial peptides. 

In 2018, Toropova et al. [41] built a classification-based model by examining 
the amino acid sequences in peptides to predict the antibacterial activities of 1581 
peptides that are represented by quasi-SMILES. The large set of the peptides are 
taken from the literature [78] and are classified as actives and inactives. A semi-
correlation-based approach was used to build up models between different classes 
[41]. Firstly, all peptides were divided into four set which were training set, invis-
ible training, calibration, and finally validation sets. In this case also, amino acid 
sequences were used as a descriptor for model building. The model was generated 
by using Monte Carlo optimization technique by using CORAL software. When it 
comes to the training, invisible training, calibration, and validation sets, the predic-
tive potential of binary classification for antimicrobial activity for various splits was 
fairly strong. The statistical requirements were (i) sensitivity 0.82–097; (ii) speci-
ficity 0.88–0.99; (iii) accuracy 0.87–0.98; and (iv) Matthew’s correlation coefficient 
0.73–0.97 for the external validation sets. A plot of different statistical parameters 
was shown in Fig. 11.5. From Fig.  11.5, it is evident that classification-based models 
were fairly strong. True positive, true negative, false positive, and false negative 
values of different classification-based QSAR models were shown in Table 11.2. The  
obtained models have given insight about mechanistic insights about the biological 
activity of antimicrobial peptides. Attributes of the quasi-SMILES-related promoters 
of increase and decrease of antibacterial activity were obtained. These attributes for 
peptides’amino acid composition can be used to guide the design of peptides with 
higher antibacterial effectiveness. 

Fig. 11.5 Sensitivity, 
specificity, accuracy, and 
MCC values of different 
classification-based QSAR 
models in case of 
antimicrobial peptides
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Table 11.2 True positive, true negative, false positive, and false negative values of different 
classification-based QSAR models in case of antimicrobial peptides 

Splits True positive True negative False positive False negative 

Training set 1 146 216 10 24 

2 150 207 16 31 

3 147 213 11 27 

4 138 194 16 47 

Invisible training set 1 154 205 8 28 

2 134 214 9 30 

3 172 204 12 21 

4 140 186 18 51 

Calibration set 1 131 217 18 38 

2 156 206 10 24 

3 139 222 8 18 

4 123 242 0 30 

Validation set 1 137 202 16 31 

2 140 219 11 24 

3 138 200 22 27 

4 145 233 3 15 

11.6.2 Epitope Peptides with Class I Major 
Histocompatibility Complex (MHC) 

Identification of epitope peptides to induce cytotoxic T lymphocytes is very important 
for our immune system, and it is also very important for the development of vaccines 
as well as immunotherapy directed against different pathogens. Major histocompat-
ibility complex (MHC) is very important to present these peptides to T lymphocytes 
[79]. Thus, peptide interaction to MHC molecule is a very important step in the 
immunity process. The amino acid sequence can dictate the biochemical interaction 
between MHC-peptide complexes, and therefore, different modelling approaches 
can be applied to accurately predict the sequence of the peptide. In 2021, Toropova 
et al. [80] reported the sequence of amino acids as the basis for the development 
of biological activity model of these kinds of peptides. The quantitative information 
on class I major histocompatibility complex (MHC) molecules’ biological activity 
with epitope peptides was collected and was randomly distributed into the active 
training set (25%), passive training set (25%), calibration set (25%), and validation 
set (25%). These different sets have different purpose in model development. Calcu-
lation of optimal correlation weights was done by the active training set, and finally, 
model predictive power was calculated by the validation set. The QSAR models were 
developed with Monte Carlo optimization with target functions TF1 and TF2. The
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different statistical parameters obtained from the Monte Carlo-based QSAR models 
were shown in Table 11.3. 

From Table 11.3, it is clear that target function TF2 may be the best approach as 
there are better statistical parameters observed in case of calibration set and validation 
set. A comparison of statistical parameters of TF1 and TF2 approaches for the active 
training set as well as validation set was shown in Fig. 11.6.

These QSAR models identify the amino acid as promoters of increase and 
promoters of decrease the binding affinity with MHC. Developed QSAR model 
showed that the amino acids like valine, leucine, phenylalanine and isoleucine,

Table 11.3 Statistical parameters of different models on epitope peptides with class I MHC 

R2 Q2 IIC RMSE 

Active training set 

Optimization with TF1 Split 1 0.7625 0.5558 0.8732 0.36 

Split 2 0.8205 0.7052 0.9058 0.333 

Split 3 0.8846 0.8229 0.9406 0.265 

Optimization with TF2 Split 1 0.6416 0.3506 0.534 0.442 

Split 2 0.6976 0.4905 0.5568 0.432 

Split 3 0.5326 0.1846 0.7298 0.533 

Passive training set 

Optimization with TF1 Split 1 0.825 0.7065 0.6739 0.395 

Split 2 0.9165 0.8301 0.4709 0.374 

Split 3 0.7283 0.5982 0.8264 0.599 

Optimization with TF2 Split 1 0.7231 0.5868 0.412 0.507 

Split 2 0.9543 0.9192 0.8516 0.332 

Split 3 0.8128 0.6796 0.6251 0.562 

Calibration set 

Optimization with TF1 Split 1 0.6012 0.4017 0.3695 0.506 

Split 2 0.5223 0.2836 0.4258 0.592 

Split 3 0.5053 0.2612 0.3745 0.927 

Optimization with TF2 Split 1 0.9486 0.9157 0.9679 0.142 

Split 2 0.7102 0.5447 0.8406 0.337 

Split 3 0.8743 0.8139 0.8827 0.214 

Validation set 

Optimization with TF1 Split 1 0.622 0.4816 0.49 

Split 2 0.5481 0.3476 0.515 

Split 3 0.59 0.3277 0.7 

Optimization with TF2 Split 1 0.7766 0.6298 0.306 

Split 2 0.7856 0.6596 0.27 

Split 3 0.7909 0.6721 0.248 
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Fig. 11.6 Comparison of statistical parameters of TF1 and TF2 approaches for the active training 
set and validation set

alanine, glycine, tyrosine, etc., can increase the binding affinity value, and on the other 
hand, threonine and glutamic acid can decrease the binding affinity value (pIC50). 
Thus, in this example also, simple amino acid sequence can be nicely used to develop 
QSAR models by using Monte Carlo approach. 

11.7 Mathematical Approaches Used for Peptide QSAR 
Modelling 

11.7.1 Multiple Linear Regressions (MLR) 

The optimal QSAR model can be derived using multiple linear regression (MLR), 
a common mathematical modelling technique to gain more in-depth understanding 
of the structure–activity correlations between the chemical structure and bioactivity. 
MLR has the advantage of being a straightforward mathematical expression with an 
understandable form [18]. Despite its effective use, MLR is susceptible to descriptors 
that are correlated, making it unable to determine which correlated sets may be more 
important to the model. The best multiple linear regression (BMLR), the genetic 
algorithm-based multiple linear regression (GA-MLR), the heuristic method (HM), 
the stepwise MLR, the factor analysis MLR, and others are some of these techniques 
that are used recently for development of peptide QSAR [81]. Tong et al. [82] reported 
peptide quantitative structure activity relationship (QSAR) by using novel descriptor 
of amino acids (SVGER). Here, mainly amino acid descriptors were used instead 
of entire peptide sequences to represent the amino acid structure characteristics. It 
was used in two peptides, a dipeptide with a threshold of bitter taste and inhibitors 
of the angiotensin converting enzyme. Using stepwise multiple regression-multiple 
linear regression (SMR-MLR) and stepwise multiple regression-partial least square
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regression (SMR-PLS), QSAR models were created. Coefficient of correlation Rcum 
2 

was employed to estimate how well the model fit the data. The model was based on 
the correlation coefficient between cross-validation and observed activities (QLOO 

2) 
for internal validation and Qext 

2 for external validation. 
Masand et al. [83] built a peptide QSAR model for finding out the special structural 

feature in peptide type of inhibitors responsible for the SARS-CoV inhibition by 
using genetic algorithm–multi-linear regression (GA-MLR) methodology with the 
help of QSARINS ver. 2.2.2 software. 

11.7.2 Partial Least Square (PLS) 

PLS is widely utilized in many different industries. The PLS model attempts to 
determine the multidimensional direction in X space that best describes the highest 
multidimensional variance direction in Y space [49]. The ability to interpret the influ-
ence of descriptors on output prediction is the main advantage of PLS models. PLS is 
well-known in the realm of QSAR/QSPR for its use with CoMFA and CoMSIA. PLS 
has recently changed by combining with other mathematical techniques to perform 
better in QSAR/QSPR analysis. There have different types of PLS like genetic partial 
least squares (G/PLS), orthogonal signal correction partial least squares (OSC-PLS), 
and factor analysis partial least squares (FA-PLS) [81]. In 2007, Jenssen et al. [84] 
published peptide QSAR results using Simca-P 10.0 software and PLS techniques 
to find out the antimicrobial activity of peptide. 

11.7.3 Principal Component Analysis (PCA) 

Principal component analysis, or PCA, is a technique for reducing the number of 
dimensions in large data sets by condensing a large collection of variables into a 
smaller set that retains the majority of the large set’s information. Mahmoodi-Reihani 
et al. [85] developed a peptide QSAR model to calculate numerical descriptive vectors 
(NDVs) for peptide sequences that was based on the physicochemical properties of 
amino acids (AAs) and principal component analysis (PCA). 

For the development of composite variables, PLS and PCA function somewhat 
differently. Whilst PLS builds its composite variables to explain the maximum 
variability in the response within the context of linear regression, PCA builds its 
composite variables to explain the maximum variability in all the original predictors, 
or the explanatory variables of interest [86].
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11.7.4 Genetic Algorithm (GA)-Based Peptide QSAR 

This is another type of algorithm for the design of peptide QSAR. A binary string 
termed a chromosome, which defines each individual in the population, represents 
a subset of descriptors (Fig. 11.7). There are as many genes on the chromosome 
as there are descriptions. If the matching descriptor is chosen in the model, a gene 
is given the value 1; otherwise, it is given the value 0. The initial population of 
chromosomes is created during GA initialization. A generation is the development 
of a new population from an existing one. A fitness function in each generation 
makes sure that only the fittest chromosomes pass on their genes to the following 
one. A local change in a chromosome is produced by a second procedure called 
mutation, which is administered with a modest chance. The fitness function and 
selection process, along with the crossover and mutation procedures, are necessary 
to generate variation within the population, which leads to learning and evolution 
towards an optimum solution. One distinguishing characteristic of a GA is that, in 
keeping with Darwinian evolution, only the fittest chromosomes are allowed to pass 
on their traits to the following generation [87]. 

Andrade-Ochoa et al. [88] applied genetic algorithm-variable subset selection 
for peptide QSAR model generation with MobyDigs software. To establish which 
structural arrangement and functional groups are most crucial for biological activity, 
QSAR models were only run with structural descriptors.

Generation of first 
population (A set of 

chromosomes) 

Separation of the genes 
according to descriptors 

Determination of the fitness of the 
population 

If fitness creation 
achieved 

NoYes 

Termination 

of the GA 

Selection of 

that population 
Cross over (Exchange of gene between two 

chromosomes) 

Mutation 

Generation of 
new variances in 

chromosomes  

Fig. 11.7 Schematic representation of the genetic algorithm 
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11.7.5 Particle Swarm Optimization Algorithm (PSO) 

Each individual particle in the multidimensional search space is a potential solu-
tion for the PSO algorithm. Every particle’s updated location is influenced by its 
own and the swarm’s collective experience in each generation; specifically, each 
particle’s velocity is adjusted in the direction of its own personal best position (Pi) 
and the overall best position (Pg). The PSO algorithm limits each particle’s position 
to the 0 and 1 binary search space, and the velocity denotes the likelihood that each 
dimension’s position will take the value 1 or 0. The velocity updating equation does 
not change, and a sigmoid function maps each dimension’s velocity to the range 
[0, 1]. Schematic representation of the PSO-GA-SVM scheme for peptide QSAR is 
depicted in Fig. 11.8. 

Zhou et al. [89] proposed a novel method based on PSA-GO-SVM in order to fully 
utilize the advantages of genetic algorithm (GA) and particle swarm optimization 
(PSO) algorithm. The PSO-GA-SVM scheme is illustrated in Fig. 11.8. In this  
method, the kernel parameters of SVM were optimized, and the optimized features 
subset was simultaneously determined. In order to evaluate the proposed method, 
four peptide datasets were employed for the investigation of QSAR. The structural 
and physicochemical features of peptides from amino acid sequences were used to 
represent peptides for QSAR. A protein dataset of 277 proteins was employed to
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Fig. 11.8 Representation of the PSO-GA-SVM scheme for peptide QSAR 
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evaluate the proposed method to predict the structural class of protein. Good results 
were obtained which indicated that the proposed method may have a great potential 
for usage as a tool in peptide QSAR and protein prediction research [89]. 

11.7.6 Artificial Neural Network (ANN) 

ANN is a type of artificial intelligence that attempts to imitate some of the qualities 
of neural networks. In case of antimicrobial peptide discovery, ANN is represented 
by a network of descriptors, which can be thought of as input nodes or neurons. 
These nodes are linked together to form a network, which is then transformed in a 
hidden layer to produce an output node (Fig. 11.9). The ability of neural networks to 
naturally model nonlinear systems is one of their advantages. The potential to over 
fit the data and the difficulty in determining which descriptors are most important in 
the final model are drawbacks of this method [90]. 

He et al. [91] built a peptide QSAR model with the help of ANN algorithm and 
finally designed some ACE inhibitor peptide. In order to model the neural network, 
seven hidden layer neurons were chosen. Repeated modelling showed that the corre-
lation coefficient R reached 0.928, the mean square error for the training set was 
0.0188, and the mean square error for the prediction set was 0.2091. This study also 
suggested that Alcalase was a suitable protease for the production of ACE-inhibitory 
peptides, and C-terminal is particularly significant to ACE-inhibitory action. Proteins

Fig. 11.9 Artificial neural network for peptide QSAR modelling. Input layer represents the descrip-
tors of the peptide structure, the hidden layer illustrates the transformations of the input layer to a 
reduced level, and finally, the output layer is associated with activity of the peptide 
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Fig. 11.10 Schematic 
representation of proposed 
ANN-BPNN-based model 

Feature extraction 

Training data Testing data 

BPNN-PSO training BPNN-PSO testing 

Prediction data 

Import database 

Data 
preprocessing 

containing rich hydrophobic amino acids are also possible good sources to produce 
ACE-inhibitory peptides. 

Rajkumar et al. [92] utilized ANN approach with a back propagation neural 
network (BPNN) to detect the antifungal, antibacterial, and antiviral effects of 
antimicrobial peptides (AMPs). In the proposed model, BPNN was used to build 
an ANN framework that aids in the optimal categorization of peptide sequences with 
antimicrobial activity (Fig. 11.10). 

The BPNN is trained on the datasets, and then, a PSO algorithm was used to avoid 
over fitting. As a result, during testing, the BPNN clearly finds predicted samples 
pertaining to the same classes, avoiding the problem of false positives. The simulation 
is used to assess the model’s efficacy against various metrics such as accuracy, preci-
sion, recall, and f1-measure. The performance of the BPNN-PSO model demonstrates 
its effectiveness in classifying instances faster than other techniques. The principle 
is simple, easy to programme, converges faster, and it generally provides a better 
solution [92]. 

11.7.7 Support Vector Machine (SVM) 

SVM is essentially utilized as a classification method, with a hyperplane acting as 
a barrier between two classes (H). The margin between the two classes is measured 
by the distances between plane H and the planes cutting the closest sample points 
on either side of H, namely H1 and H2. The optimized plane is then defined as the
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one that maximizes this margin. In particular, support vectors are defined as sample 
points that are perfectly positioned on planes H1 and H2 [28]. 

Zhou et al. [93] reported peptide QSAR modelling for systematic comparison and 
comprehensive evaluation of the 80 amino acid descriptors (AADs) by using linear 
PLS, GA, and nonlinear SVM. 11 structural and physicochemical characteristics 
of peptide, including amino acid composition, dipeptide composition, autocorrela-
tion, composition, transition and distribution, sequence order, and pseudo-amino acid 
composition, were used to define peptide from amino acid sequences. This research 
also indicated that adding more new AADs with more diverse original features would 
not significantly enhance their performance in peptide QSAR modelling. Instead, the 
AAD characterization of peptide sequences can be handled using multivariate algo-
rithms that take into account residue interaction, context effect, and conformational 
factor, amongst other things. 

11.7.8 Other Methods 

Ant colony optimization algorithm (COA) and artificial immunization algorithm are 
also employed for the feature selection of any derivatives. 

11.8 Conclusions 

Peptides have recently emerged as a distinct class of bioactive molecules due to their 
high therapeutic potential. Several peptides are in the clinical development phase, 
and more than 80 have already made it to the market on a global scale. Peptide 
drugs are used to treat a variety of diseases, including cancer, cardiovascular disease, 
diabetes mellitus, digestive disorders, infectious diseases, and in the development of 
vaccines. We anticipate that therapeutic peptides will continue to draw funding and 
research attention due to their enormous therapeutic potential, economic value, and 
market potential. In silico approaches such as QSAR have been employed to identify, 
screen, and discover peptides. On the one hand, we need to emphasize more on the 
benefits of QSAR such as how it can be used to probe the mechanism(s) of action and 
significantly cut down on the time and expense associated with peptide identification 
and evaluation. On the other hand, we must confront the challenges of QSAR when 
applied to peptides, such as the difficulty in obtaining high-quality datasets, limited 
number of descriptors to generate models, and selection of model building methods 
which is a requirement for QSAR modelling. The method of model construction is 
an important factor in peptide QSAR modelling. Applications of SMILES, quasi-
SMILES, machine learning algorithms, and artificial intelligence in QSAR have 
received enough attention in the recent past. In the current work, various model 
building techniques are discussed, giving special emphasis to SMILES and quasi-
SMILES approaches. However, it is challenging to suggest a particular method as
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the best and only method for QSAR modelling of peptides due to the differences 
in the quality of the chosen sample, numbers, and structural parameters. We should 
not only rely on established modelling techniques, but also consciously apply novel 
modelling techniques or incorporate integrate modelling methodologies such as the 
sample grouping method and parameter selection algorithm. It is important to test 
a variety of approaches or combination strategies to accomplish QSAR analysis. 
Improved mathematical methods in the quasi-SMILES construction can be helpful 
for better statistical quality. There are not many peptide QSAR studies already avail-
able. Therefore, extensive research is required to advance our understanding for using 
QSAR approach in peptide drug discovery. 
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Chapter 12 
SMILES and Quasi-SMILES Descriptors 
in QSAR/QSPR Modeling of Diverse 
Materials Properties in Safety 
and Environment Application 

Yong Pan, Xin Zhang, and Juncheng Jiang 

Abstract A brief summary of QSAR/QSPR methodology, together with an explana-
tion of the approach using SMILES and quasi-SMILES descriptors to study diverse 
hazardous characteristics of diverse materials, is given. Studies of several properties 
of importance to safety and environment application are described including (i) the 
cytotoxicity of heterogeneous single metal oxide-based engineered nanoparticles, 
(ii) the cytotoxicity of a series of metal oxide nanoparticles, (iii) the flammability 
properties of chemicals and their mixture, (iv) thermal hazards properties of ionic 
liquids and their mixture and (v) the toxicity of ionic liquids and their mixtures. The 
limitations and outlook of this field in safety and environment are discussed. 

Keywords QSAR/QSPR · SMILES · Toxicity · Nano-metal oxide · Flammability 
properties · Ionic liquids 

12.1 Introduction 

12.1.1 QSAR/QSPR Methods 

Over the past few decades, cheminformatics has been emerging with the rise 
in information science and computational chemistry. Quantitative structure–prop-
erty/activity relationship (QSPR/QSAR) is a hot research topic in cheminformatics. 
Combining the theoretical computational methods with various statistical tools, 
QSPR/QSAR is used to determine the physicochemical or biological properties as 
a quantitative function of the molecular structure. The basic assumption is that the 
physicochemical properties or activities are dependent on the molecular structure. 
This means that the properties or activities can be expressed as a function of the chem-
ical structure. Taking the structure as the independent variable and the macroscopic
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properties as the dependent variable, a quantitative relationship between them can be 
established by using mathematical and statistical methods. Based on the constructed 
QSPR/QSAR models, it can be used to predict various properties of new or unsynthe-
sized compounds [1–3]. It can be also possible to identify the key structural factors 
of molecules that determine the macroscopic properties. Therefore, it is helpful to 
reveal the underlying mechanism and design the molecular structure to improve the 
property or activity. 

QSPR/QSAR has been widely used to predict the biological activity and toxicity, 
the metabolic kinetic parameters of drugs, the physicochemical properties and the 
environmental effects [1, 2, 4–7]. This research covers many disciplines such as 
chemistry, medicine, life sciences and environmental sciences. QSPR/QSAR can 
significantly reduce research time and costs, which is of both theoretical and practical 
significance. Therefore, QSPR/QSAR has been increasingly applied to the design of 
chemical processes, the design of drug molecules and the evaluation of environmental 
risks. 

12.1.2 Brief Description of the QSAR/QSPR Methodology 

A typical QSAR/QSPR study contains the main steps as below. 

(1) Data collection: It includes various physicochemical properties and structural 
data from databases, manuals or experimental measurements. 

(2) Description of the molecular structure: According to certain theories or rules, 
structural parameters that reflect various structural information can be calcu-
lated, such as topological, compositional and quantum chemical parameters. 

(3) Selection of the molecular descriptors: The characteristic structure parame-
ters should be closely related to the target properties, which are identified as 
molecular descriptors. Therefore, various statistical methods and optimization 
algorithms are applied to extract the characteristic molecular descriptors from 
a large number of structure parameters. 

(4) Construction of prediction model: The prediction models including regression 
methods, neural networks and support vector machines are often used to build 
a quantitative relationship between the selected molecular descriptors and the 
target properties. 

(5) Model evaluation and validation: The reliability of the constructed QSAR/QSPR 
model and the predictive capability of the model are evaluated by the mean 
correlation coefficient (R2) and root mean square error (RMSE). 

Among these steps, the description of molecular structure, the selection of molec-
ular descriptors and the construction of prediction model are three key steps, which 
will be described as below.
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12.1.2.1 Molecular Descriptors 

The selected molecular descriptors play a key role in the quality of the model. 
Commonly used molecular descriptors can be divided into two main categories: 
experimental descriptors and theoretical descriptors. Early QSPR/QSAR studies 
often used a number of experimental descriptors, such as octanol–water partition 
coefficient, water solubility, Hammett’s constant and Taft’s constant. The advantage 
of these descriptors is that the physicochemical meaning is clear, and the disadvantage 
is that the acquisition of these parameters is labor intensive and costly. 

With the development of knowledge in mathematics, molecular topology, quantum 
chemistry and other disciplines, theoretical molecular descriptors have been devel-
oped rapidly. Compared with experimental descriptors, theoretical descriptors have 
the following advantages: (1) Instead of the experimental characterizations, only the 
structural information of the molecule is required, which makes it possible to study 
the properties of unsynthesized compounds and greatly expands the application scope 
of QSPR; (2) the acquisition of these parameters is not restricted by experimental 
conditions, which is more convenient and faster. Moreover, the accuracy and speed 
of the calculations have also been improved with the development of computer tech-
nology; (3) these parameters provide a more comprehensive and detailed description 
of the molecular structure, which is beneficial to reveal the underlying mechanisms 
[8, 9]. 

12.1.2.2 Descriptor Selection Methods 

In QSAR/QSPR studies, if the underlying mechanism is unknown, as many molecular 
descriptors as possible are often chosen to avoid omitting the significant factors. 
From the above-mentioned discussions, many types of molecular descriptors can be 
calculated. Such a large number of structural parameters must contain a large amount 
of useless and repetitive information for modeling, which affects and interferes with 
the construction and interpretation of QSPR models. In order to build QSPR models 
with fine fitting, predictivity, stability and interpretation, it is necessary to effectively 
identify and filter the molecular descriptors. The commonly used selection methods 
are listed as follows. 

Multiple Linear Regressions-Based Selection Methods 

The multiple linear regressions-based selection methods take the significance of the 
molecular descriptors on the model as a criterion. The criterion is that the addition 
or elimination of the descriptor has a significant effect on the model and the other 
molecular descriptors, which should also meet a predetermined significance level. 
There are three main types of such kind of methods including the forward selection, 
backward elimination and stepwise regression [10, 11].
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The forward variable selection method starts with a one-parameter model and 
gradually increases the model parameters according to the significance criterion. The 
backward variable removal method starts with a model with all numerator descriptors 
and gradually decreases the model parameters according to the significance criterion. 
The stepwise regression method is a two-way selection regression that both adds and 
removes parameters from the model. It achieves two-way selection by setting two 
significance level criteria. One criterion is used to include the descriptor in the model, 
and the other criterion is used to remove the descriptor. 

These methods are suitable for variable selection and model optimization for data 
where there is no multicollinearity between variables. The advantages are that they 
are simple and intuitive. The procedures are easy to implement, and the corresponding 
solutions can be obtained quickly. The disadvantage is that they cannot traverse all 
combinations of variables, which does not guarantee that the optimal solution in the 
variable space is found. When variable selection is performed on a large amount of 
data, these methods often result in a locally optimal solution. 

Model Fitting-Based Selection Methods 

This type of method often uses the goodness of fit of the model as a criterion for 
the simulation screening of variables. Such methods include optimal multiple linear 
regression and heuristic regression [1, 3]. 

The optimal multiple linear regression method first finds all orthogonal pairs in 
the initial set of descriptors. These orthogonal pairs are then used separately to model 
the physical properties of the target, resulting in a series of two-parameter models. 
The remaining descriptors that are not colinear with the parameters of several of the 
models with the largest degree of fitting are then added to the model one by one, 
resulting in a series of three-parameter models. If the degree of fitting of each of 
these three-parameter models is less than that of the two-parameter model with the 
largest degree of fitting, then the two-parameter model is the final result. Otherwise, 
the model variables continue to be added as described above until the optimal result 
is produced. 

The heuristic regression method first calculates all the one-parameter models, 
removing the parts of them where the degree of fitting and significance is smaller than 
the set criteria. All two-parameter models are calculated from the retained numerator 
descriptors. The molecular descriptors with smaller parameter correlations to the part 
of the model with the largest degree of fitting are selected and added to the model 
resulting in a series of three-parameter models. The models with the largest degree of 
fitting were then selected. The model parameters are gradually increased as described 
above until the desired model size is reached and the model with the largest degree 
of fitting is selected as the final result. 

Both methods are fast and unlimited in the size of the dataset and often result in 
a globally optimal solution. In comparison, the optimal multiple linear regression 
method is faster than the heuristic regression method.
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Search Algorithms-Based Selection Methods 

The main disadvantage of the above-mentioned methods is that they do not have 
global search capability and thus do not guarantee a globally optimal solution. In 
contrast, search algorithms such as simulated annealing algorithms and genetic algo-
rithms (GAs) have considerable search capabilities. When they are combined with 
modeling methods such as multiple linear regression, partial least squares and arti-
ficial neural networks, they are able to search for the optimal model in the variable 
space within a limited time under certain conditions. Such methods have received 
great attention from researchers in recent years and have been better applied in QSPR 
research. 

The simulated annealing algorithm is a relatively new optimization algorithm, 
which is derived from the solid annealing principle. The algorithm starts from the 
initial solution and the initial values of the control parameters, repeats the iterative 
process of “generate a new solution → calculate the objective function difference 
→ accept or discard” for the current solution and gradually decays the values of 
the control parameters. It is a stochastic search algorithm based on the Monte Carlo 
iterative solution method, which has the potential to achieve global optimality and 
avoid local optimality. Therefore, it has been successfully used in QSPR studies 
of organic matter. For example, Jurs group [12] at Pennsylvania State University 
has combined simulated annealing algorithms with artificial neural networks for the 
selection of molecular structure parameters. They applied them to QSPR studies of 
many physical and chemical properties, achieving many interesting results. 

Genetic algorithm (GA) is an adaptive global optimization probabilistic search 
method that simulates the genetic and evolutionary processes of organisms in their 
natural environment. It was first proposed by Holland in 1960 [13].  Based on the  
Darwin’s fundamental principle of biological evolution in nature, superiority and 
inferiority produce individuals more adapted to their environment through crossover 
and mutation of genes. This principle is used to find the optimal answer to a practical 
problem and finally to obtain the optimal answer to a problem. GAs consist of three 
genetic operons: replication, hybridization and mutation. The evolutionary process 
is carried out by genetic operons. Genetic operators translate genetic concepts such 
as selection, recombination (or crossover) and variation into data processing to solve 
optimization problems dynamically. The problem is solved by so-called artificial 
chromosomes, which are changed and adapted by the optimization process until an 
optimization goal is obtained. The chromosomes contain information called genes, 
which are usually represented by strings. Depending on the problem to be solved, 
the string can be binary, an integer or even a real number. 

GA is a simple, flexible, common and efficient global optimization algorithm. It 
performs parallel searches along multiple routes and generally does not fall into the 
trap of local optimality. It is able to find the global optimal solution among better 
local solutions. As a result, the study and application of GA have now become a 
dynamic direction internationally, with successful applications in process control, 
fault diagnosis, nonlinear fitting and many other engineering and research areas.
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In 1994, Rogers and Hopfinger [14] introduced GAs into QSPR research for 
the first time. The GAs are used to intelligently select a reasonable combination of 
variables to obtain the optimal model. The main steps in QSPR research based on 
GAs are as follows 

(1) Generating initial groups 
First, an initial group set is generated. Once the initial groups are generated, 

each individual is evaluated using a score function. 
(2) Selecting operation 

A key feature of GAs is that only the optimal chromosomes pass on their 
characteristics to the next generation during evolution. Once all individuals in 
the group have been evaluated, the individuals to be retained in the new group 
can be selected based on the scores of the individuals in the group combined 
with a random method. For each individual to be eliminated, a new individual 
will be substituted. Commonly used selection functions are roulette selection, 
league selection and truncated selection. In roulette selection, the probability of 
selecting each individual is proportional to its score (fitness); in league selection, 
individuals are selected from the group to compete against each other, with the 
highest scoring individuals being retained; in the truncated selection, individuals 
are first ranked in order of their score and the optimal ones are selected. 

(3) Crossbreeding operations 
To perform the crossover operation, two retained individuals are selected 

as females in the group, then the two females are randomly divided into two 
segments, and a portion of the different females is later selected to form a new 
individual. 

(4) Variation operations 
The mutation operation, in which an individual is randomly selected in the 

group and an element of that individual is randomly changed to produce a new 
individual, results in a new property. All individuals generated by these two steps 
are evaluated using the score function, and new individuals are then selected 
according to their scores, resulting in a new group. 

(5) Comparing operations 
In order to preserve the optimal individuals, the optimal groups are used to 

preserve them. After the crosses and mutations have been made, the individuals 
of the new group are compared with those of the optimal group one by one, and 
if there are better individuals in the new group, they are copied into the optimal 
group. 

(6) Convergence judgment 
There are three ways to determine whether the calculation is converged: (1) 

The number of cycles is defined. When the number of steps has reached the 
defined value, the calculation is considered to be converged; (2) the total score 
of the optimal group is defined. When the total score of the optimal group no 
longer changes after a number of genetic operations, the calculation can be 
considered to be converged; (3) the average score of the group is defined. If
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the average score of the group maintains constant for a number of times, the 
calculation is considered to be converged. 

Compared to other methods, QSPR studies based on GA selection variables have 
three advantages: (1) the ability to find a set of models effectively, whereas other 
methods often provide only a single model. (2) The fitness function is not constrained 
by conditions such as continuity and differentiability and has a wide range of appli-
cability. (3) It has inherent implicit parallelism and a good global search capability. 
(4) To build the model of multiple forms of linear combinations, the mathematical 
transformation of variables can be defined. In particular, these parameters can be 
classified by building truncated models, to obtain more useful information. 

Because GA has a considerable search capability, when it is combined with 
modeling methods such as multiple linear regression, partial least squares and artifi-
cial neural networks, it is able to search for the optimal model in variable space in a 
limited time under certain conditions. Therefore, in recent years, GAs have received 
a great deal of attention and have been better applied in QSPR research [10]. 

It can be concluded that each of the above-mentioned variable selection methods 
has its own advantages, disadvantages and scope of application. Generally speaking, 
for problems with a linear relationship between the response variable and the indepen-
dent variable, stepwise regression, heuristic regression and variable optimal subset 
regression are mostly used. However, for complex nonlinear problems, variable 
selection based on GAs often gives more satisfactory results. 

12.1.2.3 Modeling Methods 

To build quantitative functional relationships between the properties/activities and 
the molecular descriptors, the selected mathematical methods are a major step in 
QSAR/QSPR research. The commonly used modeling methods are divided into 
two main categories: linear methods such as multiple linear regression, principal 
component regression and partial least squares regression and nonlinear methods 
such as artificial neural networks and support vector machines. 

Multiple Linear Regression Method 

Multiple linear regression methods are the most common statistical method used 
in traditional QSAR/QSPR studies. The multiple linear regression process is the 
process of establishing a linear expression between the response variable and multiple 
independent variables. Assuming that there are m molecular descriptors, denoted by 
x1, x2, …  xm, and the target materiality is denoted by y; and there are n sample 
compounds, x1, x2, …  xm, y are all n-dimensional vectors. Multiple linear regression 
refers to the establishment of a linear relationship between y and x1, x2, …  xm as 
below.
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y = b0 + b1x1 + b2x2 +  · · ·  +  bm xm (12.1.1) 

where b0, b1,…  bm are the constants. b0, b1,…  bm are obtained by solving a system of 
linear equations. The least squares parameter estimation is usually used to minimize 
the sum of squared errors. The molecular descriptors of the sample compounds form 
a matrix of coefficients that can only be solved when the matrix is full rank. 

The multiple linear regression method is easy to use with the intuitive model, 
which is favorable to obtain the underlying mechanism. The disadvantage is that 
the resulting linear regression model may be distorted when the system is noisy or 
disturbed. 

Principal Component Regression Method 

The principal component regression is a linear combination of the original molecular 
descriptors to obtain principal components, which act as estimation parameters to 
build a multivariate linear model of their relationship with the target properties. 
Therefore, it is a combination of principal component analysis and multiple linear 
regression. 

The purpose of principal component analysis, also known as factor analysis, 
is to obtain new variables of comparable variability but small dimensionality by 
linearly combining the original variables, which are known as principal components 
or factors. This process is achieved through matrix transformation. The principal 
components are inherently uncorrelated and can therefore be used directly in linear 
regression modeling. 

The main steps in principal component regression include (1) standardization of 
the data, (2) derivation of the eigenvectors from the covariance matrix of the data, 
and (3) selection of principal components for multiple regression analysis. 

The advantage of principal component regression is that it can effectively solve the 
problem of multicollinearity among variables by combining and filtering the infor-
mation in the original data; the disadvantage is that it only deals with the independent 
variables and does not consider the information of the response variables, so the first 
principal component it obtains does not necessarily have the strongest correlation 
with the response variables. For this reason, it has been improved by introducing the 
partial least squares regression method. 

Partial Least Squares Method 

The partial least squares method is also a regression method based on component 
extraction [15]. Unlike principal component regression, it combines the extraction of 
principal components with the target properties to ensure that the principal compo-
nents are correlated with the target properties. The process involves extracting compo-
nents from both the independent variable data and the respondent data, which should
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meet two requirements: (1) The extracted components represent as much informa-
tion as possible from the original data table; (2) the correlation between the extracted 
components from the independent variable data and the respondent data is maxi-
mized, and the extracted components are then used to model the regression. If the 
model meets the modeling requirements, the component extraction operation is termi-
nated; otherwise, the components are extracted again from the remaining data infor-
mation, and these components must also meet the two requirements above. Then, the 
extracted principal components are modeled again. This process is repeated several 
times until the modeling requirements are met. The model is then reduced to a model 
of the original variables. 

Compared with the traditional multiple linear regression and principal component 
regression methods, the partial least squares method has the following advantages: 
(1) The original data information is integrated and filtered, effectively solving the 
problem of multicollinearity among variables; (2) when the number of indepen-
dent variables is more than the number of samples, statistically significant equations 
can still be obtained; (3) both the information of the independent variables and the 
response variables are considered, making it easier to obtain meaningful; (4) the use 
of interaction tests to select the optimal number of principal components in the model 
reduces the “chance correlation” of the model. Because of these obvious advantages, 
the partial least squares method has good robustness and strong predictive power. The 
partial least squares method has become one of the more commonly used modeling 
methods in QSAR/QSPR studies of organic matter. 

Artificial Neural Network Method 

The artificial neural network is a nonlinear, adaptive information processing system 
composed of a large number of interconnected processing units. It is proposed on the 
basis of modern neuroscience research results and attempts to process information by 
simulating the way the brain’s neural network processes and remembers information. 

According to the different learning strategies, artificial neural networks can be 
divided into two categories: supervised neural networks and unsupervised neural 
networks. The supervised neural networks are mainly trained on known samples 
and then predict the unknown samples. Unsupervised methods, also known as self-
organizing neural networks, can be used to classify compounds without training on 
known samples, such as Kohonen neural networks and Hopfield models. Currently, 
BP neural networks are the most used in QSAR/QSPR research. 

BP neural networks generally adopt a three-layer network structure, i.e., input 
layer, implicit layer and output layer. The input layer receives the external data 
input, the implicit layer processes and transforms the input data, and the output 
layer produces the output results. A typical BP network structure model is shown in 
Fig. 12.1.

Each layer of the network contains a number of neurons, with the number of 
neurons in the input and output layers determined by the number of variables in the 
model and the number of neurons in the hidden layer determined by trial and error.
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Fig. 12.1 Structure model 
of BP neural network

Each neuron in the implicit and output layers contains two functions: a summation 
function and a transfer function. The sum function is a weighted sum of all input 
neurons entering each hidden layer neuron and converts the result into a single value 
for further processing in the transfer function; the transfer function is used to convert 
the summed information into output. The sigmoid transfer function is most widely 
used as below. 

F(x) = 1
[
1 + exp(−x)] (12.1.2) 

The specific steps of the BP algorithm are briefly described as follows: (1) initial-
ization. The coefficients and values of the weights of each layer are randomly set; (2) 
the training sample data X is added to the input layer of the network, and the output 
Y of each layer is calculated. The error is obtained by comparing the output with the 
expected value; (3) the connection weights according to the error are readjusted; (4) 
if it is less than the predetermined error, the network is considered to be converged 
and stops learning. Otherwise, it returns to Step (2) and continues to Step (3). 

Artificial neural networks have many advantages such as nonlinearity, self-
learning, adaptability, fault tolerance, associative memory and trainability, which are 
superior to traditional multiple linear regression and partial least squares and have 
become an important algorithm in QSAR/QSPR research. However, in the process 
of practical application, the neural network method also reveals the following short-
comings: (1) Due to the strong nonlinear fitting ability of neural networks, when the 
training set samples are small, the phenomenon of “overfitting” often occurs; (2) the 
neural network is built as a “black box” model and the input and output are not the 
same. The relationship between input and output is unclear; (3) due to the random-
ness of the initialization of the neural network weights, the results are difficult to 
repeat. 

The existence of these problems limits the further application of neural networks in 
QSAR/QSPR research, and new and more superior machine learning algorithms need 
to be introduced to promote the profound development of QSAR/QSPR research.
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Support Vector Machine Method 

(1) Theoretical background 

The support vector machine (SVM) algorithm is a new machine learning method 
proposed by Vapnik and his co-workers [16, 17] in 1995, based on statistical learning 
theory. 

The term “statistical learning theory” refers to a theory that specializes in the 
study of machine learning patterns in the context of small samples. Vapnik et al. 
[16] started to work on this area in the 1960s and 1970s, and by the mid-1990s, as 
their theory continued to develop and mature, the theory began to gain increasing 
attention. The traditional statistical approach regards empirical risk minimization 
(ERM) as the starting point, without examining theoretical issues such as its ratio-
nality, applicability and achievable quality of approximation. It finally makes the 
empirical risk minimization not guarantee expected risk minimization. Unlike the 
statistical learning theory, it proposes the principle of structural risk minimization 
and the core concept of VC dimension. It also states that to minimize the expected 
risk, both the empirical risk and the VC dimension must be minimized. VC dimen-
sion theory provides a rigorous justification for the ERM principle, i.e., a sufficient 
condition for consistent convergence, a sufficient condition for fast convergence and a 
sufficient condition for consistent convergence independent of the probability distri-
bution. Therefore, it has a rigorous theoretical foundation. It is on this theoretical 
basis that the SVM approach is developed. To obtain the optimal universality, it is 
based on VC dimensional theory and the principle of structural risk minimization 
and seeks the optimal compromise between the complexity of the model (i.e., the 
learning accuracy for a given training sample) and the learning ability (i.e., the ability 
to identify arbitrary samples without error) based on limited sample information. 

Compared with traditional statistical learning methods, the SVM method has the 
following main advantages [18]. (1) It has a strict theoretical and mathematical foun-
dation, overcoming the “empirical” nature of traditional methods; (2) it is specifically 
designed for the finite sample case and its optimal solution is based on the informa-
tion of the available samples, rather than the optimal solution when the number of 
samples tends to infinity; (3) the algorithm is ultimately transformed into a convex 
optimization problem, so the solution of SVM is globally unique, solving the local 
minimum problem that cannot be avoided by neural networks; (4) by applying the 
kernel function technique, the nonlinear problem in the input space is mapped to 
the high-dimensional feature space through the nonlinear and linear function in the 
high-dimensional feature space which is constructed to realize the nonlinear function 
in the original space. Therefore, the model has a good universality. The complexity 
of the algorithm is closely related to the dimensionality of the input vector, thus 
avoiding the “dimensionality disaster”.
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Therefore, SVM has become an international research hotspot. In an article 
published in Science, SVMs are “a very popular approach and success story in the 
field of machine learning and a very compelling direction for development”. 

(2) Mechanism 

SVM algorithms were originally applied to solve classification problems. In recent 
years, with the introduction of the ε-insensitive loss function, SVM algorithms have 
also been increasingly used to solve regression problems and have shown good perfor-
mance. In this paper, we focus on the application of SVM to regression problems, 
so the following is a brief introduction to the SVM regression algorithm and we do 
not go into the classification methods. The detailed principles of both can be found 
in the SVM user guidance. 

The core idea of the SVM regression algorithm is to find an optimal hyperplane 
that minimizes the distance from all sample points to the hyperplane, as illustrated 
in Fig. 12.2. As can be seen from Fig. 12.2, the optimal hyperplane is actually 
determined by a small number of samples called support vectors. 

We assume that the training sample set {(xi, yi), i = 1,… n} is given, where xi ∈ 
Rn is the input value of the ith learning sample and yi ∈ R is the corresponding target 
value. For linear regression, a linear function is applied for estimation. 

f (x) = (w · x) + b (12.1.3) 

To ensure that Eq. (12.1.3) is flat, a minimum w must be found. Assuming that all 
training data (xi, yi) can be fitted with a linear function at accuracy ε, the problem of 
finding the minimum w is transformed into minimizing the model complexity, which 
is shown below: 

min 
1 

2
||w||2 (yi − w · x − b ≤ ε, w · x + b − yi ≤ ε) (12.1.4) 

Taking the fitting error into account, a relaxation factor ξ ≥ 0, ξ* ≥ 0 and a penalty 
factor C are introduced and the corresponding quadratic programming problem is

Fig. 12.2 SVM for 
regression + 

ξi
-

ξi * 

Optimal 

Hyperplane 

f(x)=w x+b 

Support vector 
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rewritten as 

min 
1 

2
||w||2 + C 

n∑

i=1 

(ξi + ξ ∗ 
i ) 

(yi − w · x − b ≤ ε + ξi , w  · x + b − yi ≤ ε + ξ ∗ 
i , ξi , ξ  ∗ 

i ≥ 0) (12.1.5) 

The penalty factor C > 0 is used to balance the flatness of the regression function 
f (x) and the number of sample points with deviations greater than ε. Equation (12.1.5) 
is derived based on the following ε-insensitive loss function. |ξ ε | is expressed as 
follows 

|ξ |ε =
⎧
0(|ξ | ≤ ε) 
|ξ | − ε(otherwise) 

(12.1.6) 

When the number of samples is small, the above SVM is generally solved using 
pairwise theory, which transforms it into a quadratic programming problem. The 
following Lagrange equation is developed: 

l(w, ξ, ξ  ∗) = 
1 

2 
(w · w) + C 

n∑

i=1 

(ξi + ξ ∗ 
i ) − 

n∑

i=1 

αi (ε + ξi 

+ yi − ⟨w, xi ⟩ − b) − 
n∑

i=1 

αi (ε + ξ ∗ 
i + yi 

− ⟨w, xi ⟩ − b) − 
n∑

i=1 

(ηi ξi + η∗ 
i ξ 

∗ 
i ) (12.1.7) 

The partial derivatives of the above equation are equal to 0 for the parameters w, b, 
ξ i, ξ i*, and the pairwise optimization problem is obtained by substituting Eq. (12.1.7) 

min 
1 

2 

n∑

i, j=1 

(αi − α∗ 
i )(α j − α∗ 

j )
⟨
xi , x j

⟩ + 
n∑

i=1 

αi (ε − yi ) + 
n∑

i=1 

α∗ 
i (ε + yi )

(
n∑

i=1 

(αi − α∗ 
i ) = 0, αi , α

∗ 
i ∈ [0, C]

)

(12.1.8) 

For nonlinear regression, the SVM solution is to map the sample into a high-
dimensional feature space by a nonlinear mapping ϕ and solve it by conventional 
linear methods. Assuming that the sample X is mapped to a high-dimensional space 
using a nonlinear function ϕ(X), the nonlinear regression problem is transformed 
into Eq. (12.1.9).
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min 
1 

2 

n∑

i, j=1 

(αi − α∗ 
i )(α j − α∗ 

j )
⟨
φ(xi ), φ(x j )

⟩ + 
n∑

i=1 

αi (ε − yi ) + 
n∑

i=1 

α∗ 
i (ε + yi )

(
n∑

i=1 

(αi − α∗ 
i ) = 0, αi , α

∗ 
i ∈ [0, C]

)

(12.1.9) 

and thus obtain w = ∑n 
i=1 (αi − α∗ 

i )φ(xi ). 
A SVM can map samples to a high-dimensional feature space through a kernel 

function transformation, with the kernel function K(x, x') satisfying K (x, x ') =⟨
φ(x), φ(x ')

⟩
. Thus, Eq. (12.1.8) is rewritten as 

min 
1 

2 

n∑

i, j=1 

(αi − α∗ 
i )(α j − α∗ 

j )K (xi , x j ) + 
n∑

i=1 

αi (ε − yi ) + 
n∑

i=1 

α∗ 
i (ε + yi ) 

(12.1.10) 

The introduction of kernel functions allows the function to be solved directly 
in the input space, bypassing the feature space, thus avoiding the need to compute 
nonlinear mappings ϕ. The four main types of kernel functions commonly used in 
SVMs today are linear kernels, polynomial kernels, radial basis kernels and sigmoid 
kernels. 

(3) Parameter optimization 

In order to obtain the optimal universality, the SVM needs to adjust the corresponding 
combination of parameters in the modeling process, i.e., choosing the appropriate 
kernel function, determining the parameters of the kernel function, the penalty factor 
C and the size of ε in the ε-insensitive loss function. The kernel function determines 
the distribution of the input vectors in the high-dimensional space and the optimal 
hyperplane to be found and therefore determines the predictive power of the SVM 
to a large extent. There is no unified method for the selection of the kernel function, 
which is basically determined by empirical methods. The most commonly used 
kernel function in practice is the radial basis form of the radial basis function (RBF) 
kernel function, which has a high learning efficiency and learning rate. For the RBF 
kernel function, the most important parameter is the width of the kernel function 
γ , which determines the amplitude of the kernel function and therefore to some 
extent the universality of the SVM. The penalty factor (C) is also another important 
parameter controlling the prediction performance of the SVM, which controls the 
balance between maximizing the bound and minimizing the training error. If the 
parameter is too small, underfitting of the training data will occur; if the parameter 
is too large, the training data will be overfitted. Therefore, C also affects the training 
speed and universality of the SVM. The optimal value of ε depends on the noise of 
the data, which is usually unknown, while the number of support vectors has to be 
considered in practical problems even if sufficient knowledge is available to choose 
the optimal value of ε. The  ε-insensitive loss function prevents the entire training set
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from reaching the boundary condition, allowing sparsity in the solution of the dyadic 
form, and therefore theoretically, it is also important to choose the right value of ε. 

At present, there is no unified method to determine the optimal parameters of 
SVM. The commonly used methods are the single-factor rotation method and the 
grid point search (GS) method. The single-factor rotation method is based on a certain 
empirical basis to optimize the parameters under study one by one to find the optimal 
value, its advantage is that it can quickly build a model, but the disadvantage is that 
it does not consider the interaction between the parameters. The advantage of this 
method is that it is fast to build a model, but the disadvantage is that it does not take 
the interactions between the parameters into account. The grid point search method 
generally uses cross-validation to select the appropriate parameters through multiple 
trials. 

12.2 SMILES and Quasi-SMILES Descriptors 

Simplified molecular input line entry system (SMILES) is a specification for explic-
itly describing molecular structures using ASCII strings. SMILES was developed by 
Weininger and Weininger [19] in the late 1980s and has been modified and extended 
by others, notably Daylight Chemical Information Systems Inc. 

The SMILES formula consists of a series of characters without spaces, and it 
is essential to ensure that the chemical structure of a substance corresponds to its 
SMILES expression. One substance corresponds to only one SMILES structure. 
Therefore, in the calculation of SMILES expressions for substances, certain gram-
matical expression rules are set for atoms, chemical bonds (single, double and triple 
bonds), branched chains, rings, atomic chirality, isotopes, etc. The specific expression 
rules are listed in Table 12.1.

When using the SMILES formula to represent the chemical structure of a 
substance, the hydrogen atoms in the chemical structure are first eliminated. If the 
chemical structure contains rings, the rings also need to be opened and represented 
by breaking them off. The atoms in the rings are all represented in lowercase letters. 
The two atoms connected at the ring break are marked with the same number to 
indicate that there is a bond between the atoms. The branched chains in the chemical 
structure are written in parentheses. 

SMILES rules have recently become an international standard and are consid-
ered to be the most applicable and compatible form of linear coding compared to 
other rules. This is because SMILES can be used quickly to express the structural 
information of a compound into a computer-readable code, requiring only the atomic 
symbols of the compound, the bond symbols, and certain syntactic expression rules. 

SMILES is calculated by a longitudinal priority traversal tree algorithm, which 
converts the chemical formula of a compound into a SMILES expression by means 
of a sequence of characters without spaces. The basic rules to be followed in the 
SMILES coding transformation are (i) the hydrogen atom is ignored during the 
chemical structure transformation; (ii) the aromatic ring structure is opened before
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Table 12.1 Expression rules of SMILES 

Type SMILES expressions Notes Example 

Atom ➀ [Element symbol] Atoms such as C, N, O, 
P, S, Br, Cl and I of 
organic chemicals are 
omitted in the square 
brackets 

Iron atom: [Fe] 

➁ Hydrogen atom is 
omitted 

Water: O 

➂ [Element symbol ± 
electric charge] 

“+” and “−” denote 
positive and negative 
charges, respectively, 
followed by the charge 
value 

The tetravalent titanium 
ion: [Ti+4] 

Chemical bond ➀ Double bond is 
represented as “=” 

Carbon dioxide: O=C=O 

➁ Triple bond is 
represented as “#” 

Hydrogen cyanide: C#N 

➂ The ring needs to be 
broken, and the two 
atoms at the break are 
marked with the same 
number 

The C, O, S and N 
atoms in the aromatic 
ring are represented as 
lowercase letters 

Cyclohexane: 
C1CCCCC1 
Benzene: c1ccccc1 

Branched chain ➀ Branched chain on 
the carbon chain is 
represented as “()” 

Propionic acid: 
CCC(=O)O 

Stereochemistry ➀ The structure on each 
side of the double bond 
is represented as “/” 
and “\” 

“/” and “\” represent cis; 
“/” and “/” represent 
trans 

Trans difluoroethylene: 
F/C=C/F 
Cis difluoroethylene: 
F/C=C\F 

➁ Chiral carbon atom is 
marked with “@” or 
“@@” 

l-alanine: 
N[C@@H](C)C(=O)O 

Isotope ➀ Isotopes are shown 
with the mass number 
written in front of the 
element symbol 

Chloroform-d: 
[2H]C(Cl)(Cl)Cl

coding, or expressed in Kekuler style; (iii) in the opened chain expression, the number 
is used to mark the broken atom, the atom is represented by a lowercase letter, and 
the branched chain is characterized by round brackets. The SMILES strings are 
often used as input files in some calculation software and are converted into 2D 
or 3D structures, so that each compound has its own SMILES string structure. In 
addition, SMILES strings are compatible with a wide range of software and have 
been successfully applied to the toxicity prediction of traditional compounds.
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SMILES is a traditional tool for representing the molecular structure. In contrast 
to conventional SMILES, quasi-SMILES can be used as a tool to establish quan-
titative features-property/activity relationships (QFPRs/QFARs) for endpoints that 
are defined not by molecular structure alone, but by a set of physicochemical and/or 
biochemical conditions. 

The nano-QSAR study in this paper is divided into the following major steps. 

(1) Collection of sample data: The current data on physicochemical parameters 
(descriptors) and toxic effects of nanomaterials are mainly obtained from 
biological experiments, literature reports and authoritative databases. 

(2) Identification and acquisition of descriptors for metal oxide nanomaterials: The 
information on molecular structure, elemental periodicity and quantum chem-
istry of nanoparticles was studied to establish descriptors of physical and chem-
ical parameters such as absolute molecular weight, particle size distribution, 
surface area, morphological parameters and zeta potential to characterize the 
physical and chemical characteristics of nanomaterials and to select descriptors 
that are closely related to the cellular toxicity of nanoparticles. The SMILES 
descriptors were combined with the SMILES structures of the nanomaterials 
to optimize and improve the SMILES descriptors and the optimized SMILES 
descriptors were used to characterize the basic structural information of the 
particles. 

(3) Screening of metal oxide nanomaterial descriptors: Firstly, the descriptors with 
high similarity were removed by correlation analysis to complete the pre-
screening of descriptors. Then, support vector machine-recursive feature elimi-
nation (SVM-RFE) was jointly used to derive the importance ranking of subsets 
of descriptors. The optimal subset of features was determined according to the 
accuracy of the classification model. 

(4) Study and modeling of cytotoxicity of nanomaterials: Using the selected 
nanoparticle descriptors as input parameters and combining different modeling 
methods, nano-QSAR studies were conducted on the cytotoxicity of different 
nano-metal oxide systems to establish the corresponding toxicity classification 
and prediction models. 

(5) Evaluation and validation of the model: To evaluate and assess the fitting ability, 
stability and prediction ability of the model. 

(6) Mechanistic interpretation of the model: The model will be mechanistically 
interpreted to reveal the main factors affecting the cytotoxicity of different 
nanomaterials and their influence laws, to reveal the mechanism of toxicity 
of nanoparticles and to provide guidance for the synthesis and design of new 
nanomaterials. In summary, the characterization of nanomaterial structures, the 
calculation and screening of descriptors and the establishment of predictive 
models are the main contents of this study.
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12.3 Study of Several Important Properties/Activities 
in Safety and Environmental Applications 

12.3.1 The Cytotoxicity of Metal Oxide Nanoparticles 

Nanotechnology is a symbol of science and technology in the twenty-first century. 
With the rapid development of nanotechnology, there are increasing types of nano-
materials and widespread applications. Nanomaterials, in a broad sense, are materials 
that have at least one dimension in the nanoscale range (1–100 nm, 1 nm = 10–9 m) in 
three-dimensional space or are made up of the basic structural units of substances in 
this scale range. Nanomaterials are very small in size and have a very special structure 
and have many physical and chemical properties that are very different from those 
of macroscopic materials, such as large specific surface, very high reactivity and the 
unique surface effect, small size effect and macroscopic quantum tunneling effect 
of nanomaterials. With the industrialization of nanotechnology, nanomaterials are 
increasingly used in traditional and emerging industries such as the pharmaceutical 
industry, dyestuffs, coatings, food, cosmetics and environmental pollution control. 
However, this technology is a “double-edged sword”. While it brings great economic 
benefits and technological innovations, the safety issues arising from nanomaterials 
cannot be ignored, especially their biological toxicity, which has received widespread 
attention from researchers in various countries. There is a growing awareness of the 
enormous impact that atmospheric nanoparticles have on the environment and on 
living organisms. In addition to the atmospheric environment, nanoparticles are also 
present in local working environments, such as coal mining, welding and powder 
processing, where a large number of nanoparticles are floating in the surrounding 
environment and their impact on human health cannot be ignored. In addition, as 
nanomaterials are widely used in daily life, the possibility of contacting with nano-
materials for people has greatly increased. Either directly into the human body during 
production and use, or through the environment or food chain, nanomaterials have an 
inevitably negative impact on human health after an intrusion. It is found that many 
serious diseases can be caused by exposure to nanomaterials [20]. The toxicity of 
nanomaterials has become a major obstacle to the development of the nanotechnology 
industry. Therefore, the study of the biotoxicity of nanomaterials is an important issue 
that needs to be addressed in the development of nanotechnology and its industry. 

In April 2003, Service [21] first published an article in Science on the biotoxic 
effects of nanomaterials. In the following year, researchers from various countries 
discussed the biotoxicity of nanomaterials and the potential environmental safety 
issues [22–24]. As a result, policies and measures have been taken to increase research 
on the biotoxicity of nanomaterials. 

The determination of the cytotoxicity and safety of metal oxide nanomaterials 
has traditionally been carried out by experimental tests, and it is undoubtedly still 
the most effective way. However, traditional assays are controversial in terms of 
cost, efficiency and ethical implications and are not able to cope with the increasing 
number of newly developed nanomaterials on the market. With the development of
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nanotechnology, many experimental data on the cytotoxicity of nano-metal oxides 
have emerged in recent years, but the difference in experimental conditions and 
methods between studies often makes it difficult to assess the toxicity of metal oxide 
nanoparticles. Furthermore, even though there are many toxicological methods avail-
able for assessing nanotoxicity, the effects of nanomaterials on cellular metabolism 
in vitro and in vivo are still unknown. Moreover, the inconsistent results between 
the various studies make it hard to develop a comprehensive system for studying the 
mechanisms of cytotoxicity. 

The QSAR method is a simple and effective way to accurately predict the biolog-
ical activity of a compound before it is synthesized. By converting the structural 
information of a compound into a descriptor and using mathematical calculations, 
the link between the descriptor and the target property is established, which is helpful 
to predict the relevant toxic effects and elucidate the mechanisms. Nano-QSAR is 
an extension of the traditional QSAR research and is a method to predict the bioac-
tive effects of nanomaterials, which is a theoretical basis for the synthesis of new 
nanoparticles and the design of functional nanoparticles. 

In recent years, optimized descriptors based on SMILES structures have also 
received a lot of attention from nano-QSAR researchers. With the emergence and 
development of CORAL software, Toropov et al. [25–28] proposed a series of confor-
mational models for the study of the biotoxicity of nanomaterials, which facilitated 
the development of nano-QSAR research. 

12.3.1.1 The Cytotoxicity of Single Metal Oxide Nanoparticles 

Toropova et al. [29] established a model of malondialdehyde (MDA) levels in 
different organ wet tissues of rats under different effects of Al2O3 nanoparticles 
based on quasi-SMILES. The levels of MDA in different organ wet tissues were 
used as a standard measure of toxic effects. Numerical data on MDA concentrations 
in rat liver, kidney, brain and heart wet tissues were studied as endpoints, which 
were influenced by different doses, exposure times (3 and 14 days) and single oral 
treatments with 30 nm or 40 nm Al2O3. 

Manganelli et al. [30] developed a model to predict the survival of human embry-
onic kidney cells (HEK293) under 40 different experimental conditions using silica 
nanomaterials. They used SMILES-based descriptors as input parameters to the 
model and combined particle size, concentration and exposure time into the SMILES 
structure to form “quasi-SMILES”, thus fully characterizing the experimental condi-
tions of the nanomaterials. The sample set was randomly divided into five groups, 
and then Monte Carlo optimization and modeling were carried out using CORAL 
software. The prediction models all had complex R2 above 0.7, and the prediction 
results of the models were good. 

Toropov and Toropova [31] developed a model based on quasi-SMILES to esti-
mate the toxicity of ZnO nanoparticles to rats by intraperitoneal injection. They 
calculated the correlation weights of the quasi-SMILES fragments by the Monte 
Carlo method. A univariate toxicity model was developed with the numerical data of
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the correlation weights. All available data were randomly divided into five parts, and 
the results of 36 experiments were divided into a training subsystem and a validation 
subsystem. The mean coefficient of determination was 0.957 (with a dispersion of 
0.010 mg/kg), and the average root mean square error was 7.25 mg/kg (with a disper-
sion of 0.59 mg/kg). The method described is suitable for predicting the outcome 
of intraperitoneal injections of nanoparticles in rats and can also be used in other 
experiments which can be represented by quasi-SMILES, similar to the experiments 
described here. 

12.3.1.2 The Cytotoxicity of a Series of Metal Oxide Nanoparticles 

Toropova et al. [32] investigated the QSAR of the pLC50 for the toxic effects of 18 
nano-metal oxides on Escherichia coli and used a Monte Carlo algorithm to develop 
a predictive model. The SMILES-based descriptor was obtained by combining the 
SMILES string calculated by ACD/ChemSketch software with the symbol “^” char-
acterizing whether the cytotoxicity was photoinduced and was applied for the first 
time to the nano-QSAR model of nano-metal oxide cytotoxicity. The data were then 
randomly divided into training, calibration and validation sets with different func-
tions according to a certain ratio. The stability of the constructed prediction models 
was verified. 

Toropova et al. [33] developed a predictive model for cell membrane damage 
caused by a range of nano-metal oxides. They applied the optimal descriptors that 
were calculated from the so-called correlation weights for different concentrations 
and different exposure times. The numerical data of the correlation weights were 
calculated by Monte Carlo method. The results obtained are in good agreement 
with the experimental data. For the seven metal oxide nanoparticles, the chemical 
composition had the most important effect on cell membrane damage. Surprisingly, 
the effect of the dose on cell membrane damage was the lowest. Exposure time had 
a moderate effect on endpoints. 

Pan et al. [34] coded some physicochemical properties related to the toxicity 
of nanomaterials into codes and formed a new string with the traditional SMILES 
structure. They proposed a new descriptor, namely the improved SMILES-based 
descriptor, which can characterize the structure of nanomaterials more comprehen-
sively and easily. In this study, two nano-QSAR prediction models were developed 
for different nano-metal oxides targeting the toxicity effects of human keratinocytes 
and Escherichia coli, respectively. The average R2 of the two models was as high 
as 0.95, and the models were rigorously validated for stability, predictive power 
and robustness. The mechanistic interpretation of the models was that the original 
particle size and hydrated particle size were the main factors for the biotoxicity of 
the nanomaterials. 

Toropova et al. [29] developed a single QSAR model for predicting the cytotoxicity 
of metal oxide nanoparticles against (i) Escherichia coli (E. coli) and (ii) human 
keratinocyte cell lines (HaCaT) based on data on the half-lethal concentrations of 
32 metal oxides nanoparticles. The mean R2 and root mean square error (RMSE)
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for the training set were 0.79 and 0.216; the R2 and RMSE for the validation set 
were 0.90 and 0.247, respectively. The method yielded reasonably good models for 
compromised data related to the cytotoxicity of metal nanoparticles against E. coli 
and HaCaT. 

Choi et al. [35] collected a large amount of toxicity data from the S2NANO 
(www.s2nano.org) database and developed a QSAR model for predicting the cell 
viability of 21 metal oxide nanomaterials on human lung bronchial epithelial cells 
and human dermal keratinocytes. The physicochemical properties of the nanomate-
rials and experimental conditions were transformed into codes, which combine the 
SMILES structures to form the quasi-SMILES descriptors. The effects of different 
coding methods on the performance of the nano-QSAR model were compared. It was 
shown that the QSAR models generated using the hierarchical clustering analysis 
(HCA) method had better performance than the min–max method. 

Cao et al. [36] examined the LC50 of 21 nano-metal oxides on A549 cells by 
biological screening experiments to determine the nanotoxicity characteristics of 
the nanoparticles. A corresponding quantitative structure–activity relationship model 
for nanoparticles (nano-QSAR) was developed for the risk assessment of nano-metal 
oxides using an improved SMILES-based optimal descriptor and MC-PLS modeling 
approach. In addition, the effects and mechanisms of different physicochemical prop-
erties on their acute cytotoxicity are discussed. The R2 and Q2 

LOO values of all four 
models were above 0.8, while all external validation coefficients of Q2 

Ext were above 
0.7, indicating that all four models were reliable, stable and had satisfactory predic-
tive power. The applicability and reliability of the improved SMILES-based optimal 
descriptors in predicting the acute cytotoxicity of the novel nano-metal oxides were 
also verified. Furthermore, the effects of structural factors on the acute cytotoxicity 
of nano-metal oxides showed that individual size and aggregation size were the most 
critical physical factors affecting the acute cytotoxicity of nano-metal oxides to A549 
cells, followed by cat ion charge and zeta potential, with weaker effects of metal mass 
fraction and molecular weight. ROS experiments in A549 cells showed that the reac-
tive oxygen species theory (mechanism I) in nano-metal oxides predominated in the 
mechanism of toxicity to A549 cells. In addition, the developed model has potential 
applications in guiding risk assessment and safer and greener design of nanomate-
rials and can be prioritized in virtual screening. The study of acute cytotoxicity of 
nano-metal oxides on A549 cells will also contribute to medical development. 

Ahmadi [37] researched and developed a nano-QFAR (quantitative nano-featured 
activity relationship) model to predict the cell viability of metal oxide nanoparticles 
(MO-NPs) by applying quasi-SMILES such as cell line, assay method, exposure 
time, concentration, nanoparticle size and metal oxide type. A total of 83 quasi-
SMILES of metal oxide nanoparticles were randomly divided into three sets: training 
set, validation set and test set. The results of the statistical models based on the 
equilibrium-related target function (TF1), the exponential-desirability-related target 
function (TF2) and Monte Carlo optimization were compared. The comparison of the 
results of the two objective functions showed that TF2 improved the predictability 
of the model. The significance of the various trade-off features for increases and 
decreases in cell survival is provided. A mechanistic explanation of the important

http://www.s2nano.org
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factors of the model is also presented. The full statistical quality of the three TF2-
based nano-QFAR models suggests that the developed models can be used to predict 
the cell viability of MO-NPs. 

Toropova et al. [38] analyzed the sustainable nanotechnology (S2NANO) dataset 
containing 574 experimental cell viability and toxicity data points measured under 
different conditions for Al2O3, CuO, Fe2O3, Fe3O4, SiO2, TiO2 and ZnO. They 
used the quasi-SMILES molecular representation to develop a QSAR model based 
on classification and regression. The introduced quasi-SMILES takes all available 
information into account, including the structural characteristics of the nanoparti-
cles (molecular structure, core size, etc.) and relevant experimental parameters (cell 
line, dose, exposure time, assay method, hydrodynamic size, surface charge, etc.). 
The resulting regression models showed adequate predictive power, while the clas-
sification models showed higher accuracy. As the analyzed datasets reported cell 
viability and cytotoxicity measured under a variety of experimental conditions, the 
developed models were able to capture the general safety profile of the seven types 
of nanoparticles. 

The antibacterial activity and cytotoxicity of metal oxide nanoparticles are known 
to be determined by the energy band gap. Toropova and Toropov [39] gave prediction 
models for the energy gap (Eg) based on quasi-SMILES nano-QSARs for Eg of metal 
oxide nanoparticles. The new version of quasi-SMILES has been applied to model 
the energy band gap of metal oxide nanoparticles. Both the correlation index and 
the correlation strength index have the potential to improve the prediction potential 
of nano-QSAR for the energy band gap of metal oxide nanoparticles. However, 
calculations using three different data show that the correlation intensity index gives 
a more reliable model for the prediction of the energy band gap of metal oxide 
nanoparticles. 

12.3.2 Flammability Properties of Chemicals and Their 
Mixtures 

Although the flammability properties contain the flash point (FP), auto-ignition 
temperature, and flammability limits, etc., the current QSPR research with SMILES 
and quasi-SMILES descriptors only focused on the FP. Saldana et al. [40] developed a 
QSPR model using the SMILES molecular representation to model the FP and cetane 
number (CN) of molecules that may be found in alternative fuels. The models are 
applicable to hydrocarbons, alcohols and esters. A database containing FP and CN 
for these types of molecules has been created using experimental data from the avail-
able literature. For both properties, various methods of linear modeling approaches 
including GAs and PLS and nonlinear approaches including feed-forward artifi-
cial neural networks (FF-ANNs), generalized regression neural networks (GRNNs), 
SVMs and graph machines (GMs) have been investigated. For both properties, none 
of the models obtained was more accurate than the others. Therefore, the consensus
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modeling was proposed, which improves robustness and predictability compared to 
individual models. The results were that FP depends mainly on the total number of 
carbon atoms in the molecule. They also show how the CN evolves when one or 
two alcohol groups are added to a carbon chain and when these are moved along the 
chain. 

Toropova et al. [41, 42] applied quasi-SMILES to model the flammability of 
binary and ternary liquid mixtures separately. The method provides a good model 
for predicting the flash points (in degrees Celsius) of binary and ternary mixtures of 
organic substances. The associated ideality index (IIC) is a criterion for the predictive 
potential of the QSPR/QSAR model. The application of the IIC to improve the 
flammability model for ternary liquid mixtures confirms the applicability of this 
criterion to improve the predictive potential of the above models. 

Gantzer et al. [43] compared their work with that of Saldana et al. [40]. In the work 
of Saldana et al., the database was filtered to retain only compounds of interest, such 
as hydrocarbons and oxygenated molecules (mainly alcohols and esters). In the work 
of Gantzer et al., they considered the complete database including additional families 
of compounds such as aldehydes, ketones, ethers and alkynes. This database of 785 
chemicals was randomly divided into two subsets, 599 compounds for training and 
186 for testing the model. They calculated ISIDA descriptors to encode molecular 
features based on SMILES. For each descriptor set, the parameters of the support 
vector regression (SVR) were optimized using fivefold cross-validation (5-CV). The 
models based on two to four atomic sequences and their built descriptors performed 
well according to internal (cross-validation) and external validation. The model of 
Gantzer et al. showed a similar performance to that derived by Saldana et al. The 
small difference in performance can be attributed to the Gantzer et al. database, which 
contains a wider diversity than the database used by Saldana et al. and the use of a 
single QSPR, whereas Saldana et al. used several QSPRs in a consensus model. 

12.3.3 Thermal Hazard Properties of Ionic Liquids and Their 
Mixtures 

Thermal hazards have become one of the fundamental characteristics of different 
ionic liquids (ILs). The thermal decomposition of ionic liquids (ILs) is also an 
important aspect in the evaluation of the thermal hazards of ILs. 

Lotfi et al. [44] focused on predicting the thermal decomposition (T d) of ionic 
liquids (ILs). They developed QSPR models for the molecular structure of ILs based 
on the SMILES notation and used the Monte Carlo algorithm of the CORAL soft-
ware to calculate T d for 263 imidazole-like ionic liquids. They constructed four 
QSPR models with a hybrid optimal descriptor based on the correlation weights 
derived from SMILES and molecular hydrogen-suppression graphs (HSG). They 
also performed validation by using the criterion index of ideality correlation (IIC). 
In this descriptor, a balance of the desirability correlation index (TF2) was used to
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develop the models. The experimental dataset was split indiscriminately into training, 
stealth training, calibration (~74%) and validation (~26%) sets. Four models were 
developed from the four splits, all of which were statistically satisfactory and stable. 

Lotfi et al. [45] investigated the melting points of imidazolium-based ionic liquids 
using a QSPR approach to develop a melting point model for predicting the melting 
points of imidazolium-based ionic liquid datasets. A robust QSPR model was devel-
oped by applying the Monte Carlo algorithm of CORAL software to calculate 
the melting point values of 353 imidazole-like ionic liquids. Using a combina-
tion of SMILES and hydrogen-suppression molecular graphs (HSG), hybrid optimal 
descriptors were calculated and used to generate the QSPR model. Internal and 
external validation parameters were also used to assess the predictiveness and relia-
bility of the QSPR models. Four slices were prepared from the dataset, each randomly 
assigned to four sets, namely the training set (≈33%), the invisible training set 
(≈31%), the calibration set (≈16%) and the validation set (≈20%). In the QSPR 
modeling, the values of various statistical features of the validation set, such as 
R2 
Validation, Q

2 
Validation and IICValidation, were found to be in the range of 0.7846–0.8535, 

0.7687–0.8423 and 0.7424–0.8982, respectively. For mechanistic interpretation, they 
also extracted the structural properties that lead to an increase/decrease in melting 
point. 

Makarov et al. [46] have also carried out some research on the melting point of 
ionic liquids. They developed a new model based on the SMILES translator and 
neural network, which showed a significant improvement in prediction accuracy 
compared to the previous studies. The model had R2 = 0.67 and RMSE = 44 °C. 
The model is applicable to any type of ILs. 

The ability to quantitatively predict ionic liquid (IL) properties using QSPR 
models is of great importance. It is therefore necessary to understand which modern 
machine learning (ML) methods combined with which types of molecular charac-
terization are more suitable for this purpose. To address this issue, Baskin et al. 
[47] conducted a large-scale benchmarking study of QSPR models that were used to 
predict six important physical properties of ILs (density, conductivity, melting point, 
refractive index, surface properties) by combining three traditional ML methods 
and neural networks with seven different structures with five types of molecular 
representations (in the form of numerical molecular descriptors or SMILES text 
strings), melting point, refractive index, surface tension and viscosity. QSPR models 
for predicting the properties of ILs at eight different temperatures were developed 
using a multitask learning approach. The optimal combination of ML methods and 
molecular representation was determined for each property. A unified ranking system 
was introduced. The different ML methods and molecular representations were prior-
itized. This study shows that, on average, (i) nonlinear ML methods perform much 
better than linear methods, (ii) neural networks perform better than traditional ML 
methods and (iii) transformers, which are actively used in natural language processing 
(NLP), perform better than other types of neural networks due to the advanced ability 
to analyze chemical structures of ILs encoded into SMILES text strings. It has also 
employed a special “composition judgment” cross-validation scheme to assess how
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much the predictive performance deteriorates for ILs consisting of cations and anions 
that are not present in the dataset. 

12.3.4 Toxicity of Ionic Liquids and Their Mixtures 

In recent years, ionic liquids (ILs) have attracted a great deal of attention due to 
their remarkable physicochemical properties. Despite the advantages of ILs, these 
compounds can cause persistent pollution and pose an environmental risk. 

Ghaedi [48] used CORrelation And Logic (CORAL) software and cytotoxicity 
data for 225 ionic liquids to build QSAR models, where molecular structures are 
represented by SMILES symbols. These global SMILES descriptors account for the 
presence of a number of chemical elements and various types of chemical bonds 
(double bonds, triple bonds and stereochemistry). The balance of correlations (BC) 
of QSAR was constructed and compared with the classical scheme. The results of the 
three stochastic splits show that the R2 for the reliable model predicting the external 
test set and Q2 for the cross-validation range from 0.7315 to 0.8760 and 0.7062 to 
0.8490, respectively. The optimal predictions obtained from the classical scheme are 
incorporated into the modeling process together with the global SMILES descriptors. 
The mean statistical characteristics of the external test set were as follows: n = 44, 
R2 = 0.8760, Q2 = 0.8540, standard error (s) = 0.529, mean absolute error (MAE) 
= 0.400 and Fischer F-ratio (F) = 297. The results indicate that the classical scheme 
is in terms of predictability of the QSAR model compared with the BC method. The 
results showed that the classical scheme was improved in terms of the predictability 
of the QSAR model compared with the BC method. 

Lotfi et al. [49] predicted the minimum inhibitory concentration (MIC) of 204 of 
these ILs against Staphylococcus aureus (S. aureus) and the minimum bactericidal 
concentration (MBC) of 114 ILs using a QSAR based on a Monte Carlo approach. The 
molecular structures of all ILs are shown using the SMILES notation. For modeling 
pMIC and pMBC, a hybrid optimal descriptor was used, which was obtained by 
combining molecular maps and SMILES. For pMIC, the hybrid optimal descriptor 
was calculated by combining SMILES and a hydrogen-suppression molecular graph 
(HSG), while for pMBC the hybrid optimal descriptor was calculated by combining 
SMILES and a hydrogen filling graph (HFG). The full dataset was randomly divided 
into the training set, invisible training set, calibration set and validation set. QSAR 
models of pMIC and pMBC for ILs were developed by statistical analysis, and the 
index of correlation (IIC) was used as a benchmark for the predictive potential of these 
models. Their R2 values for the training, invisible training, calibration and valida-
tion components were 0.8585–0.8853, 0.8523–0.8898, 0.8809–0.9240 and 0.8036– 
0.8903 for pMIC and 0.8357–0.8991, 0.8223–0.9306 for pMBC, respectively. The 
results indicate that the predictability of the QSAR model developed for all splits 
is at a high level. The method is shown to have reasonable predictive potential and 
mechanistic interpretation.
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Ahmadi et al. [50] estimated the logarithm of the half-maximal effective concen-
tration (logEC50) for the toxicity of ILs to the leukemic rat cell line IPC-81 based on 
a QSAR using a Monte Carlo approach with CORAL software. QSAR models were 
developed using mixed optimal descriptors for 304 different ionic liquids, including 
ammonium, imidazole, morpholine, phosphorus, piperidine, pyridine, pyrrolidine, 
quinoline, sulfate and plasmalogen ionic liquids. The SMILES notation of the ionic 
liquids was used to calculate the descriptor correlation weights (DCW). Four splits 
were performed from the entire dataset, and each split was randomly divided into four 
groups (training subset and validation set). The index of correlation (IIC) was used 
to assess the veracity and stability of the QSAR model. One of the QSAR models 
with statistical parameters of R2 = 0.85, CCC = 0.92, Q2 = 0.84 and MAE = 0.25 
for the optimal split validation set was considered as a primary model. 

12.4 Limitations and Outlook in Safety and Environmental 
Applications 

12.4.1 Limitations 

(1) Limited data 
Biological systems are complex and have many indicators to measure toxi-

city. Besides, the toxicity data are few. Moreover, the physicochemical param-
eters of the nanomaterials are still unclear, which hindered the application of 
SMILES descriptors. Therefore, the nano-QSAR system needs to be tested, 
improved and refined. 

(2) Limited descriptors 
Descriptors largely determine the QSAR model. At present, there are very 

limited descriptors available for QSAR studies in nanomaterials. The predictive 
performance of models with different descriptors varies considerably. 

(3) Unclear molecular mechanism 
The toxic mechanism is very complex and not well understood, which needs 

to be explored from both experimental research and nano-QSAR research. From 
the existing studies, it can be found that mechanistic research is mainly focused 
on a few nano-metal oxides. Moreover, it is difficult to speculate on the molec-
ular mechanism as the diverse research methods of experimental methods and 
standards. 

(4) Insufficient database for model validation 
Few studies meet the requirements of the OECD for QSAR models to 

calculate the application areas and explain the mechanisms. They commonly 
focused on the construction of predictive models without validating and giving 
comprehensive explanations.
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12.4.2 Outlook 

(1) Reliable experimental database 
Currently, there are limited data available for nano-QSAR studies of metal 

oxide cytotoxicity. The reliability of the available experimental data on the 
biological effects of nanomaterials is yet to be verified due to the differences 
in their experimental methods and conditions. Therefore, the construction of a 
more complete and reliable nanomaterial cytotoxicity experimental database is 
still an important issue that needs to be addressed. 

(2) More descriptors 
Various nanomaterials have different compositions and different physico-

chemical properties. How to effectively characterize their structural and physic-
ochemical characteristics is one of the key issues to be solved in nano-QSAR 
research. It is necessary to develop a series of new structural descriptors, graph-
ical descriptors and other molecular descriptors to effectively characterize and 
describe their nanostructures, so as to establish more accurate and reliable 
prediction models. 

(3) Mechanistic explanation 
The mechanisms of toxicity of nano-metal oxides are complex. Although 

much research has been carried out, the underlying mechanism of toxicity of 
nano-metal oxides needs further in-depth research. This will provide guidance 
for the safe design, synthesis and application of nanoparticles. 

(4) Flammability and toxicity of ionic liquids 
SMILES has shown excellent performance in the field of ionic liquids. There 

are still many directions to be developed for the research on the flammability 
and toxicity of ionic liquids. 
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Chapter 13 
SMILES and Quasi-SMILES in QSAR 
Modeling for Prediction 
of Physicochemical and Biochemical 
Properties 

Siyun Yang, Supratik Kar, and Jerzy Leszczynski 

Abstract QSAR modeling of diverse physicochemical and biochemical proper-
ties of organic chemicals and nanomaterials utilizing the simplified molecular-input 
line-entry system (SMILES) and quasi-SMILES representation is quite a popular 
approach nowadays. Along with the SMILES, the quasi-SMILES approach offers 
the likelihood to identify and weigh the statistical importance of various eclectic 
data accessible for computational systematization and analysis. Therefore, the quasi-
SMILES can be helpful as a tool for drug design, environmental risk assessment, and 
regulation caused by applying nanomaterials and organic chemicals as the method 
gives the possibility to consider building up corresponding models. The Monte Carlo 
method is applied to build up the QSAR modeling employing information collected 
from SMILES and quasi-SMILES. The model can be freely developed using open-
access CORrelation And Logic (CORAL) software. The quasi-SMILES is an ideal 
approach for complex chemical systems like nanomaterials where there is no limi-
tation to choose the list of eclectic data to make a reliable, efficient, and predictive 
QSAR model. In the present book chapter, we will talk about the fundamental of 
SMILES and quasi-SMILES-based QSAR models and their major applications in 
physicochemical and biochemical properties prediction. 
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CCI Correlation Contradiction Index 
GNPs Gold nanoparticles 
HSG Hydrogen-suppressed graphs 
IIC Index of ideality of correlation 
MOFs Metal–organic frameworks 
QSAR Quantitative structure–activity relationship 
QSGFEAR Gibb’s free energy of activation relationship 
QSPRs Quantitative structure–property relationships 
QSRR Quantitative structure–retention relationship 
QSTR Quantitative structure–toxicity relationship 
SADT Self-accelerating decomposition temperature 
SMILES Simplified molecular-input line-entry system 
WS Water solubility 

13.1 Introduction 

Simplified molecular-input line-entry system (SMILES) and quasi-SMILES is a 
series of representative symbols including all accessible information from the dataset, 
like the structure of molecules, physicochemical conditions of the molecule, size of 
nanomaterials, etc. [1]. Among the major in silico approaches, quantitative structure– 
activity/toxicity/property relationships (QSARs/QSTRs/QSPRs) can utilize limited 
experimental resources and need minimal computing time, saving money. QSAR 
modeling can deliver significant information at a low expense for drug discovery and 
development by facilitating rational strategy design. In addition, the QSAR approach 
can predict the chemical response of a relatively large number of compounds within 
the chemical domain using the response data of a small number of chemicals which 
is commonly used in predictive toxicology studies for the evaluation of chemical 
risks [2]. 

Due to the convenience that SMILES and quasi-SMILES brought, modeling with 
these notations has become increasingly popular among scientists. The first and fore-
most reason is easy to represent any molecules followed by features calculation for 
modeling any physicochemical and biochemical properties. Quasi-SMILES is an 
analogy of traditional SMILES which contain some additional information besides 
the molecular architecture [3]. To develop the QSAR models, Toropova et al. [4] 
had developed CORAL software (http://www.insilico.eu/coral) where 2D-optimal 
descriptors can be calculated with so-called correlation weights for attributes of 
SMILES and quasi-SMILES where the correlation weights are obtained as results of 
the unique Monte Carlo optimization [5]. Although, additional features and condi-
tions may need to be considered during modeling to develop predictive QSAR 
models. 

A series of physicochemical and biochemical properties were already modeled 
using SMILES and quasi-SMILES employing Monte Carlo approach using CORAL

http://www.insilico.eu/coral


13 SMILES and Quasi-SMILES in QSAR Modeling for Prediction … 329

Fig. 13.1 Major research 
areas of SMILES and 
quasi-SMILES-based QSAR 
model 

software. Toropov and Toropova [6] also proposed an index of ideality of corre-
lation (IIC), which has been tested to improve the predictive potential of diverse 
QSAR endpoints. The fundamental aim of the IIC is to unite sensitivity to corre-
lation, dispersion, and symmetry of the distribution of images around the diagonal. 
Another important index, Correlation Contradiction Index (CCI), has been proposed 
by Toropov and Toropova [7] as a criterion of predictive potential. Therefore, the 
whole modeling process is simple, as no 3D structure is required for the study. The 
entire model can be developed in CORAL software followed by strong predictive 
indices like IIC and CCI. 

SMILES and quasi-SMILES-based method was successfully employed for the 
development of model for mutagenicity and mutagenic potential of fullerenes and 
multi-walled carbon nanotubes [8, 9], toxicity of nanoparticles [10, 11], and cytotox-
icity of metal oxide nanoparticles to bacteria Escherichia coli [12], predict behavior 
of complex systems like peptides [13, 14], physicochemical [15, 16] and biochem-
ical properties of polymers [17]. The wide range of successful applications of these 
mentioned approaches makes it one of the most powerful prediction tools (Fig. 13.1). 

13.2 Fundamentals of SMILES and Quasi-SMILES 

Simplified molecular-input line-entry system (SMILES) is a chemical notation that 
lets a user depict a chemical structure in a way the computer system can utilize. 
SMILES is a quickly learned and flexible notation that allows for a simple repre-
sentation of any molecular structure. There are defined equivalences between the 
representation of the molecular structure by graphs and using SMILES approach 
[18]. 

To model diverse endpoints, 0D to 7D descriptors have evolved over the years 
[19]. But it’s always best to use simple descriptors from 0D to 2D, which are easy 
to compute and interpret the developed QSAR models [2]. Optimal descriptors have 
been developed and refined along with advances in QSAR approaches. Initially, the 
molecular graph-derived features or descriptors were the basis for building a QSAR
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model. A similar idea has been introduced and developed for SMILES and SMILES 
attributes. It can be summed up as follows [20]: 

(a) Each SMILES of the modeling set computes a list of attributes, xkj: 

SMILESk → {xk1, xk2, . . . ,  xkm}. (13.1) 

(b) Followed by the Monte Carlo method offers correlation weights for the total set 
of attributes. They are extracted from all SMILES notations of the modeling set, 
which provide the maximal correlation coefficient between the studied endpoint 
and sums of correlation weights for SMILES of the modeling set: 

Monte Carlo method → {CW(xk1), CW(xk2), . . . ,  CW(xkm)}. (13.2) 

(c) A one-variable linear equation represents the predictive model: 

EPk = C0 + C1 ×
∑

xk j∈SMILES 

CW
(
xk j

) = C0 + C1 × DCW
(
T ∗, N ∗

)
. (13.3) 

In the vector and matrix depictions, this approach can be explained as the 
following: 

⎛ 

⎜⎜⎝ 

MS1 
MS2 
. . .  
MSn 

⎞ 

⎟⎟⎠ → 

⎡ 

⎢⎢⎣ 

x11 x12 . . .  x1m 
x21 x22 . . .  x2m 
. . .  . . .  . . .  . . .  
xn1 xn2 . . .  xnm 

⎤ 

⎥⎥⎦ ↔ 

⎛ 

⎜⎜⎝ 

E1 

E2 

. . .  
En 

⎞ 

⎟⎟⎠, (13.4) 

where MSk are molecular structures available from SMILES or graphs and xkj 
illustrate molecular features extracted from SMILES, while the basis of preparing 
quasi-SMILES can be removed from a graph, SMILES, and eclectic data. 

The traditional approach assumes that an endpoint depends on the molecular struc-
ture. However, there are cases in which this approach has to be revised. There are 
also situations where one can expect that the endpoint depends on other conditions 
(concentration, temperature, dose, etc.) and circumstances (magnetic field, the pres-
ence/absence of illumination, different times of exposure, etc.). In this case, instead 
of the hypothesis: “Endpoint (Y ) = function (Molecular Structure),” one can consider 
the following hypothesis: “Endpoint = functions (Eclectic Data).” 

⎛ 

⎜⎜⎝ 

ED1 

ED2 

. . .  
EDn 

⎞ 

⎟⎟⎠ → 

⎡ 

⎢⎢⎣ 

CW(x11) CW(x12) .  .  .  CW(x1m) 
CW(x21) CW(x22) .  .  .  CW(x2m) 

. . . . . . .  . . . . .  
CW(xn1) CW(xn2) .  .  .  CW(xnm) 

⎤ 

⎥⎥⎦ ↔ 

⎛ 

⎜⎜⎝ 

E1 

E2 

. . .  
En 

⎞ 

⎟⎟⎠ (13.5) 

EDk can be defined as symbols correlation weights obtained from quasi-SMILES, 
CW(xkj) is obtained experimental data for the endpoint, Ek . Finally, the vector
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Fig. 13.2 General scheme of SMILES and quasi-SMILES QSAR modeling 

computed from eclectic data signifies quasi-SMILES. Interesting to point out that, 
like SMILES, quasi-SMILES isn’t inevitably the depiction of molecular features. 

Once the user computed Eq. 13.5, the Monte Carlo method will be utilized to 
optimize the correlation weights. The explained methodology defines the mechanical 
interpretation of the model based on the correlation weights of effective features 
obtained from quasi-SMILES. Having the numerical data on the correlation weights 
of features that takes place in several runs of the Monte Carlo optimization, one can 
extract three categories of these features: 

1. Features with negative values of the correlation weight in all runs, which are 
reasons for endpoint decrease. 

2. Features with positive values of the correlation weight in all runs, which are 
reasons for endpoint increase. 

3. Features with both positive and negative values of the correlation weight in 
different runs of the optimization, which are features with an unclear role. 
A complete flow diagram of SMILES and quasi-SMILES QSAR model is 
illustrated in Fig. 13.2. 

13.3 Application of SMILES and Quasi-SMILES-Based 
QSAR Model 

To better understand readers, we have divided multiple physicochemical and 
biochemical properties into diverse materials, properties and toxicity.
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13.3.1 Nanoparticles Toxicity and Property Prediction 

Quasi-SMILES could acts as a flexible foundation for accessing the regulation and 
environmental risk of nano-QSAR [21]. The technique served as a bridge between 
experimentalists and model developers for nanomaterials-related endpoints. The 
boundary rejection between the effect of the biochemical reality of molecular level 
substance and the experiment conditions effect at the macro-level permits the devel-
opment of models that are epistemologically more reliable than traditional ways. 
The reason is solely based on the interdependence between molecular structure and 
biological activity (without taking into account experimental conditions). Nanopar-
ticle physicochemical and biochemical behavior models are required for developing 
and applying new industrial accomplishments like food, makeup, and medicine 
without detrimental impacts on the environment and human health. 

Nano-QSPR/QSAR should always follow the five OECD principles. In addi-
tion, it may be necessary to specify new regulations for nano-QSPR/QSAR that 
represent the nano-nature of the compounds under study. For example, the prin-
ciples should consider the experimental settings and the quality of the applicable 
equipment. In this case, the software could access environmental regulation and risk 
assessment. Nanomaterials exhibit unique physicochemical and biological proper-
ties. The logic of nanoparticles differs from the logic governing the behavior of 
conventional substances. An apparent distinction between nano-phenomena and 
phenomena associated with traditional substances was the vast number of physic-
ochemical circumstances that interact and mutually influence one another and the 
difficulty in identifying the nature of these relationships. The quasi-SMILES method 
allows for detecting and evaluating the statistical significance of various eclectic data 
accessible for computer systematization and analysis. Moreover, the approach allows 
for the relatively rapid modification of computational experiment bases (adding or 
removing eclectic conditions or circumstances). 

The quasi-SMILES technique could be utilized as a regulatory and environ-
mental risk assessment tool resulting from nanomaterials since the approach allows 
for the incorporation of the essential properties of the molecular structure and the 
experimental settings. 

Toropov and Toropova [7] reported that they have successfully applied the quasi-
SMILES to predict the mutagenicity of silver nanoparticles under different condi-
tions. With the 72 data points, the data was equally distributed into training, invisible 
training, calibration, and validation group, and the calculation is performed 15 times. 
As a result, two target functions were optimized, TF1 and TF2. Based on the rule of 
random effect of QSAR, fifteen random splits were completed with both functions 
and indicated that TF2 had better performance, as shown below: 

Ncp = −  7.240(± 5.835) + 26.43(± 2.92) × DCW(1, 10). (13.6) 

Additionally, the (i) Index of Ideality of Correlation (IIC) and (ii) Correlation 
Contradiction Index (CCI) were calculated based on TF2; the result showed that IIC
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has a value of R equal to 0.73, and the CCI showed a value of 0.78 which was better 
in comparison. The experimental result demonstrated that Quasi-SMILES could be a 
predictive model for silver nanoparticle mutagenicity. Simultaneously, IIC and CCI 
could be critical models to examine models’ predictive potential. 

Another application was executed on gold nanoparticles in 2021 [22]. A549 cell 
uptake potential of gold nanoparticles (GNPs) model under different conditions was 
computed, and Monte Carlo method was used for optimization. In this case, quasi-
SMILES was defined as an information system with fragments about the phenomena 
of the inhibitory activity of GNPs under defined conditions. From the original target 
function, four more target functions were optimized with the criteria of IIC and CII 
below: 

TF0 = rA + rB − |rA − rP | × 0.1 (13.7) 

TF1 = TF0 + IICC × 0.5 (13.8) 

TF2 = TF0 + IICC × 0.5 + IICP × 0.5 (13.9) 

TF3 = TF0 + CIIC × 0.5 (13.10) 

TF4 = TF0 + CIIC × 0.5 + CIIP × 0.5. (13.11) 

All four target functions that were used to compute models for cellular absorp-
tion of GNPs can predict the cell uptake. The created models enable mechanistic 
interpretation and promoters of an increase or decrease of the investigated endpoint 
to be identified. The use of the CII values for both the passive training set and the 
calibration set was what gives the model with the best predictive potential that has 
been seen in the case of the target function. 

Quasi-SMILES could work as a foundation of nanoparticle toxicity and risk 
assessment. In this experiment, quasi-SMILES was a series of symbols that serve as 
codes for the settings of studies designed to evaluate the toxicity of ZnO nanoparticles 
to rats when injected intraperitoneally [23]. Correlation weights of each fragment 
from quasi-SMILES could be accessed by the Monte Carlo method and used to 
develop the variable models as per Eq. 13.12: 

Renal Factor = C0 + C1 × DCW(T , N ). (13.12) 

The authors performed five random split sub-systems of training and validation. 
As a result, a 0.957 determination coefficient and a 7.25 root mean square error 
were gained. In this study, the applicability domain depended on the space of acces-
sible qualities of quasi-SMILES, which corresponded to experimental conditions. If 
the experimental circumstances were not included in the list of experimental condi-
tions, it becomes challenging to make a credible prediction of the endpoint using
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the model applied here. The disclosed method could be used to produce predictions 
for the outcomes of intraperitoneal nanoparticle injections in rats, as well as for 
other experiments that can be represented by quasi-SMILES that were comparable 
to those. 

In 2016, a model of an effective method for predicting the genotoxicity of carbon 
nanotubes was provided [24]. The experimental results of the bacterial reverse muta-
tion test (TA100) on multi-walled carbon nanotubes (MWCNTs) were gathered from 
the published literature and analyzed as the last step. A mathematical model of the 
endpoint was developed using the optimum descriptors computed with the Monte 
Carlo approach. The model is a function of (i) dosage (g/plate), (ii) metabolic acti-
vation, and (iii) two kinds of MWCNTs. The method employed yielded a semi-
quantitative prediction for three distinct distributions of experimental data: visible 
training and calibration sets and an invisible validation set. The predictive capability 
of these models varies. In the created models, quasi-SMILES exist with “atypical” 
behavior which suggests they are outliers even when included in the training set. 
However, deleting these quasi-SMILES conditions reduces the predictive capability 
of the models. 

With the quasi-SMILES, the toxicity of Daphnia magna to nano-mixtures was 
also predictable [25]. As a mathematical function of experimental circumstances, 
toxicity is simulated. Nano-QSAR for predicting the toxicity of nano-mixtures was 
constructed utilizing a database of experimental data and the Monte Carlo method 
for optimization to calculate optimal descriptors with the potential predictive criteria 
CCI and IIC. The optimized target functions TF1 and TF2 were listed below: 

TF0 = rAT + rPT − |rAT − rPT| × 0.1 (13.13) 

TF1 = TF0 + IICC × 0.5 (13.14) 

TF2 = TF1 + CIIC × 0.5. (13.15) 

The described quasi-SMILES method yields models of nano-mixtures toxicity of 
TiO2 nanoparticles with high prediction ability. Compared to the IIC, the CCI is a 
more effective predictability criterion for nano-QSAR analysis as per the obtained 
outcome in the present study. The quasi-SMILES method can serve as the foundation 
for a language that facilitates communication between experimentalists and modelers 
of the properties or activity of nanomaterials. 

Nano-QSPR model could also be modeled by quasi-SMILES which was proposed 
by Jafari et al. in 2022 [1]. Utilizing nanofluids as a suspension of nanoparticles 
in a common liquid was a relatively new subject that has attracted considerable 
interest recently. Quasi-SMILES is a series of representative symbols including all 
accessible information, like molecular structure and physicochemical conditions. 
This notation was used to illustrate the structure of nanofluids in consideration of 
the power of quasi-SMILES molecular representation to characterize diverse facts, 
such as nanoparticle size and form. To construct models, three random splits of



13 SMILES and Quasi-SMILES in QSAR Modeling for Prediction … 335

each dataset into active training, calibration, passive training, and validation sets 
were evaluated, and statistical assessment revealed that models generated using CII 
were superior to those developed using IIC. The following two target functions were 
examined via Monte Carlo optimization: 

TF0 = rAT + rPT − |rAT − rPT| × 0.1 (13.16) 

TF1 = TF0 + IICC × 0.5 (13.17) 

TF2 = TF1 + CIIC × 0.5. (13.18) 

In these formulas, rAT and rPT were the experimental and anticipated values of 
the endpoint for the active training set and passive training set, respectively. Due 
to the unique uses of nanofluids, it was necessary to optimize nanofluids’ compo-
sition and empirical circumstances rather than their intended thermophysical char-
acteristics. The size of nanoparticles affects viscosity; thus, it was possible to esti-
mate the model’s outcome. Through the analysis, TF2 was the best in the running 
datasets. It was determined that model creation based on the CII was statistically 
more trustworthy than model generation based on the IIC. 

Metal oxide nanoparticles could be modeled by quasi-SMILES [26] for the risk 
assessment and safety evaluation which was typically a time-consuming and expen-
sive experimentally. Hence, computational analyses were frequently employed to 
supplement actual testing. Structure–activity relationships (SAR) modeling was one 
of the most time-efficient approaches. The Sustainable Nanotechnology (S2NANO) 
collection comprises 574 experimental cell viability and toxicity for Al2O3, CuO,  
Fe2O3, Fe2O4, SiO2, TiO2, and ZnO were included in the model construction 
settings. A quasi-SMILES molecular representation-based QSAR models were built 
up for classification and regression-based structure–activity relationship. The quasi-
SMILES algorithm had all available data, including nanoparticle structural charac-
teristics like molecular structure, core size, and relevant experimental factors like 
cell line, dose, exposure time, assay, hydrodynamic size, and surface charge. Regres-
sion models generated sufficient predictive ability. However, classification models 
displayed more precision. Incorporating both theoretical and experimental data into 
quasi-SMILES descriptors might be helpful for early risk evaluation of metal oxide 
nanoparticles. The proposed descriptors are easily calculable and might be utilized 
to create statistically sound models. Since the examined dataset contained measure-
ments of cell viability and cytotoxicity under a range of experimental settings, 
seven types of nanoparticles were capable of capturing by the developed models 
and generalized safety pictures. 

A novel method for constructing and evaluating predictive models of the 
octanol/water partition coefficient for gold nanoparticles was set up by Toropova 
and Toropov [27]. The partition coefficient for nanoparticles in octanol/water is an 
essential parameter for estimating the ecological destiny of these novel chemicals 
rapidly disseminating in everyday life. The validation of a model’s prediction ability



336 S. Yang et al.

is a crucial component of QSPRs. The so-called system of self-consistent models 
may provide a novel strategy for validating predictive capability. The measure of 
self-consistency is the mean of the correlation coefficients found for several models 
on distinct validation sets. The purpose of the study was to assess the adequacy of the 
self-consistency of models derived from two methods to identify a superior modeling 
method for octanol/water partition coefficients for gold nanoparticles (GNPs). The 
models mentioned above are predicated on the representation of GNPs by so-called 
quasi-SMILES, which are unique sequences of symbols that translate data about the 
architecture and operating circumstances of GNPs. Two optimized target functions 
are listed below. 

TF1 = rAT + rPT − |rAT − rPT| × 0.1 (13.19) 

TF2 = TF1 + IICC × 0.5. (13.20) 

The first method involves the Monte Carlo optimization of the correlation coeffi-
cient between the observed and anticipated outcomes. The second technique modifies 
the first by incorporating an extra criterion, IIC. The self-consistency and predictive 
capability of the second method are superior. Concurrently, it is demonstrated that 
the described quasi-SMILES approach yields a model of log P for gold nanoparticles 
that is highly resilient. 

The models for solubility of fullerenes C[60] and C[70] were able to predict 
through SMILES and quasi-SMILES-based QSPR models [28]. Correlations of 
criteria of prediction ability of models for solubility of fullerenes C[60] and C[70] 
observed for the calibration (visible) set with determination coefficients of compa-
rable models for validation sets (external, invisible). The IIC participated in the 
Monte Carlo optimization to establish a one-variable QSPR to forecast the solubility 
of fullerenes C[60] and C[70]. This significantly enhanced the forecasting capability 
of models for this solubility. Following a study of the statistical quality of the calibra-
tion set, better models may be selected based on the criteria of predictive potential, 
and the genesis of the potential predictive measures addressed is distinct. Two statis-
tical elements, the correlation coefficient and the mean absolute error, are considered 
by the IIC, which may be a benefit. 

13.3.2 Toxicity Predictions and Risk Assessment of Organic 
Chemicals 

Quasi-SMILES could also be a helpful tool for removal rates of pharmaceuticals and 
dyes prediction in sewage [29]. In this study, quasi-SMILES codes could represent 
various eclectic conditions, such as the existence of light, X-rays beam impaction, 
and seasons. From the data collected from the literature, two CORAL models were 
constructed and stated below:
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Removal Rate (%) = −  83.32 + 1.63 ∗ DCW(1, 15) (13.21) 

Removal Rate (%) = 16.61 + 0.589 ∗ DCW(1, 20). (13.22) 

The approach described here gives quite efficient and predictive QSAR models. 
In addition, the process was much more straightforward with quasi-SMILES. Exper-
imental methods provide more precise numerical data on removal rates, but predic-
tive computer models are also required, at least for simple engineering decision 
estimations. 

Based on Monte Carlo approach, organic compounds’ ecotoxicological predic-
tion toward Pseudokirchneriella subcapitata could be performed [30]. Acute toxi-
city was one of the most critical factors utilized in ecotoxicological risk assessment. 
P. subcapitata have been used in ecotoxicological investigations to determine the 
toxicity of several toxic compounds in freshwater. Using quantitative structure–toxi-
city relationship (QSTR) modeling, the toxicity of 334 distinct compounds on P. 
subcapitata was evaluated in terms of EC10 and EC50 values. Using CORAL soft-
ware, the QSTR models were created by combining the target function (TF2) and 
the IIC using a hybrid optimum descriptor generated from SMILES and molecular 
hydrogen-suppressed graphs (HSG). Overall, the approach of balancing of correla-
tion with IIC was utilized to develop QSTR models. Using the IIC to create the QSTR 
models improved the robustness and predictability of the produced models, notably 
for the validation set. In addition, the generated QSTR models were nonparametric. 
Three random splits and four sets of single-split active training, invisible training, 
calibration, and validation sets were employed to prove the dependability of QSTR 
models. 

The Monte Carlo method examines the adsorption affinity of azo dyes by applying 
new predicted statistical criteria [31]. Due to their chemical stability and simplicity 
of production, azo dyes are widely employed in several sectors. However, these 
colors are often recognized as hazardous environmental contaminants. Consequently, 
a mathematical model for the adsorption affinity of azo dyes may be used for medical 
and ecological problems. As a result of their chemical stability and simplicity of 
production, azo dyes are utilized in a variety of sectors. However, these colors are 
frequently recognized as significant environmental contaminants. Consequently, a 
mathematical model for the adsorption affinity of azo dyes may be used to solve 
problems in the fields of health and ecology. The optimal SMILES-based descriptors 
were used to create QSPR for the adsorption affinity of azo dyes to a substrate (DAF, 
kJ/mol) using the Monte Carlo approach. The IIC and the CII improved the model’s 
predictive potential, primarily when they were used simultaneously. 

TF0 = rAT + rPT − |rAT − rPT| × 0.1 (13.23) 

TF1 = TF0 + IICC × 0.5 (13.24)
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TF2 = TF0 + CIIC × 0.3 (13.25) 

TF3 = TF0 + CIIC × 0.3 + IICC × 0.5. (13.26) 

The IIC in TF1 and CCI in TF2 enhance the prediction capability of QSPR for DAF. 
The concurrent usage of these indices (TF3) is particularly efficient. The significant 
absolute mean of the determination coefficient on ten random splits and the tiny 
dispersion of the value on ten random splits illustrate the benefit of the TF3. 

The Monte Carlo approach for constructing models of the half-lives of hydrol-
ysis of organic molecules was presented in 2021 [5]. The hydrolysis of organic 
molecules such as pesticides, pollutants, and pharmaceuticals can influence the 
destiny and behavior of environmental contaminants; thus, it is important to examine 
the substance’s stability in water for various reasons. However, the actual measure-
ments of all compounds would necessitate colossal resources, and computational 
models may become appealing. Using the CORAL program, QSPR models of hydrol-
ysis were constructed. The 2D-optimal descriptor is computed using correlation 
weights for SMILES characteristics. The correlation weights are derived using a 
unique Monte Carlo optimization. The composition of five or six carbon rings is 
a crucial component of this strategy. The QSPR models for predicting the half-
life of hydrolysis of organic compounds are based on the idea that “QSPR is a 
random occurrence.” In other words, this strategy was evaluated using three random 
splits. In every instance, the CORAL program provides accurate models. Moreover, 
this method provides insights into the mechanism and has been validated using the 
external validation set. Once again, the unique and paradoxical capacity of the index 
of ideality of correlation (IIC) to increase the statistical quality of a model for the 
calibration and validation sets at the expense of the training set is verified. 

SMILES could be used to develop a hybrid descriptor-based QSTR model for 
predicting the toxicity of dioxins and dioxin-like compounds using correlation inten-
sity index and consensus modeling [32]. The study included 95 halogenated dioxins 
and relevant chemicals with endpoint pEC50 for developing 12 QSTR models 
based on the Monte Carlo algorithm in CORAL software. Three target functions 
were computed and optimized. CII was discovered to be a dependable indicator 
of the prediction ability of QSTR models. In terms of the promoter of increase or 
decrease for pEC50, the fragments responsible for the toxicity of dioxins and similar 
substances were also found. Four QSTR models were developed for each target func-
tion type to get accurate statistical findings. Conforming to the idea that “QSAR is a 
random event,” three optimized functions were evaluated using four random splits. 

Models for organophosphates compounds (OPC) binding to acetylcholinesterase 
(AChE) developed via representing the molecular structure were proposed by 
Toropova et al. [33]. QSARs are used to construct organophosphate prediction 
models. The determination coefficient for the validation set varied from 0.87 to 
0.90, indicating that these models had a high predictive ability. These models were 
developed following the notion “QSAR is a random event,” which states that the
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predictive capacity of a method should be evaluated by dividing available data into 
training and test sets many times. 

New robust and predictive models for AChE binding to OPC were developed. 
The sphere of applicability and a mechanistic explanation accompany these models. 
The statistical quality of the models investigated here is superior to that of models 
for the same endpoint generated by the CODESSA program [34]. The method [33] 
is reasonably straightforward and utilizes open-source CORAL software. 

13.3.3 Miscellaneous Physicochemical and Biochemical 
Property Predictions of Organic Chemicals 

13.3.3.1 Vapor Pressure (VP) Prediction 

A self-consistent model system developed by Toropova et al. could be used to create 
and validate QSPRs [35]. The standard for these models’ self-consistency is their 
ability to reproduce statistical quality despite variations in distributions. The model 
was built up by CORAL software: 

log VP = C0 + C1 × DCW(T , N ), (13.27) 

C0 and C1 stand for regression coefficient; DCW was the optimal descriptor 
calculated by SMILES. Monte Carlo method was performed for optimizations. Five 
splits of models were gained from the calculation: 

log VP = −  3.838(± 0.012) + 0.2281(± 0.0010) × DCW(3, 15) (13.28) 

log VP = − 3.941(± 0.012) + 0.2400(± 0.0010) × DCW(3, 15) (13.29) 

log VP = −  3.625(± 0.011) + 0.2363(± 0.0009) × DCW(3, 15) (13.30) 

log VP = −  3.708(± 0.011) + 0.2638(± 0.0009) × DCW(3, 15) (13.31) 

log VP = − 4.241(± 0.010) + 0.1876(± 0.0010) × DCW(3, 15). (13.32) 

All the target formulas have an R2 of about 95%. One could assert that these 
models were generic and could be used for predictions since they were repeatable 
for the five splits, showing that they were not discovered by chance. Compared to 
various approaches, the system was applicable to realistically. The computational 
data confirmed that IIC could increase the predictive potential of the QSPR model. 
VP models were relatively simple to compute with SMILES structure.
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13.3.3.2 Food Property Prediction 

SMILES can be applied to food models. In 2019, Achary et al. proposed a model 
for sweetness [36]. With 315 molecules, QSAR models were built for the sweet-
ness value (log S). The descriptor used to build the model for log S was a hybrid 
optimal descriptor obtained by combining the following two descriptors: (1) molec-
ular graph-based descriptor built from molecular feature correlation weights, (2) 
SMILES code describing the sweetener molecules. The 315-molecule dataset was 
partitioned into four random splits. The four QSAR models constructed for log S 
based on the IIC criterion were compared to four comparable models built using the 
“conventional approach” detailed elsewhere. The comparison found that IIC-built 
models had a superior statistical performance. The CORAL program could correctly 
simulate the sweetness potential (log S). The IIC enables the statistical interpretation 
of CORAL-based QSAR models to be enhanced. The CORAL model had distinct 
criteria for estimating the quality of separating a given dataset into sets. Additionally, 
the requirements offered a statistically significant specification of the applicability 
domain (AD). The CORAL models’ statistical properties proved superior to the other 
models obtained from the 2D or 3D support vector regression. 

13.3.3.3 Solubility Model 

The water solubility (WS) model could be built up with SMILES introduced by 
Toropov et al. [37]. Water solubility models were constructed for 4224 molecules 
utilizing correlation weights of fragments of the SMILES, 2D graph invariants, and 
the ring hierarchy of the molecules. Two kinds of optimization were performed; one 
was the traditional version, and the other one was IIC version. Three splits were 
constructed for each version. The provided method produced reliable and resilient 
water solubility models. The IIC increased the descriptive models’ statistical quality. 
Despite the structural diversity of the examined compounds, the developed models 
were based on molecular structures without using 3D molecular descriptors, physico-
chemical descriptors, and/or quantum mechanical descriptors. The statistical quality 
of models derived using the IIC was equivalent to that of models constructed using 
recently proposed physicochemical endpoints and quantum mechanics descriptors. 

The models for pesticide water solubility proposed in this publication are crucial 
from an ecological engineering standpoint [38]. Good in silico models were identified 
using the IIC of groups of QSPR models for the aqueous solubility of pesticides asso-
ciated with the calibration sets. This comparison demonstrated that the high IIC set 
produces a model with superior statistical quality for the validation set. Even though 
there are extensive databases on solubility, the accurate prediction of the endpoint for 
novel compounds that might be used as pesticides is a crucial ecological challenge. 
The CORAL program provides a model for the WS of 1168 pesticides comparable to 
other solubility models proposed in the literature. Unfortunately, predictive models 
for various outcomes are susceptible to overtraining; the IIC aims to prevent or 
mitigate this. The IIC and correlation distribution enhance these models’ prediction
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ability. This method compares a group of distinct data distributions into training 
and validation sets. Lastly, these models may be utilized for at least a preliminary 
mechanistic interpretation of specific molecular characteristics. 

13.3.3.4 Self-accelerating Decomposition Temperature of Organic 
Peroxides Prediction 

The breakdown of the organic peroxide is exothermic, and this heat can be employed 
for the polymers’ or emulsion’s intended or anticipated reactions. However, the unin-
tended breakdown of these peroxides creates heat that is not efficiently dispersed and 
can lead to severe issues. Quasi-SMILES could be an appropriate way for computing 
self-accelerating decomposition temperature (SADT) [39]. A prediction model has 
constructed with the help of IIC and the organic peroxides dataset. Every fragment 
or component of SMILES could be evaluated in terms of its incidence and statistical 
impact as a promoter of an increase or decrease in SADT. The benefit of dividing the 
SADT dataset into sets is an understandable criterion for generating robust CORAL-
based QSPR models. However, the disadvantage of the SMILES-based technique, 
with or without the IIC criteria, is that it might take a long time to finish the optimiza-
tion on huge datasets. When the SMILES attribute is not present in the molecular 
fragment, the CWs for such an attribute cannot be computed, resulting in a significant 
variation in optimal descriptors. CORAL-based QSPR models are novel models that 
appear to be sufficiently efficient for predicting critical features such as SADT and 
others. 

13.3.3.5 Biological Activity of “Micelle–Polymer” Prediction 

Modeling the biological activity of “micelle–polymer” samples with quasi-SMILES 
was created in 2018 [3]. The primary step of drug discovery is determining the molec-
ular structure of novel pharmacological medicines. The delivery of active chemi-
cals to the proper destinations within an organism must be clarified in detail. The 
polymeric structures identification serving as the foundation for transferring thera-
peutic substances into the body is one solution to the problem. Typically, models 
computed using the CORAL program offer mechanistic interpretation information 
regarding promoters of rise or reduction in several runs of an endpoint’s optimiza-
tion. There are only two fragments with multiple occurrences in training and cali-
bration sets of quasi-SMILES with consistent positive correlation weights for arm 
star polymer and poly(ethylene glycol) methacrylate, and only one fragment with 
consistent negative correlation weights for Poly(ethylene glycol). However, the defi-
nition of quasi-SMILES and the strategy for extracting fragments of quasi-SMILES 
can be improved, for example, by separating micelles and polymers, defining not just 
digits but also integer coefficients, and possibly by making other changes. The stated 
investigation has demonstrated that suitable prediction models based on the provided
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quasi-SMILES are theoretically conceivable. Quasi-SMILES is adequate represen-
tations of the micelle–polymer systems that allow for the construction of models. 
The technique utilized to define pieces of quasi-SMILES in the modeling process 
can be enhanced. Due to the high quality of the proposed models, further information 
on the physicochemical and biochemical properties of the micelle–polymer samples 
is not required. 

13.3.3.6 CO2 Uptake Prediction Model 

Metal–organic frameworks MOFs were high-specific surface areas of hybrid 
organic–inorganic crystalline porous materials [40]. The model was examined and 
created that utilizes quasi-SMILES parameters such as Brunauer, Emmett, and Teller 
specific, surface area, pore volume, pressure, and temperature to MOFs for CO2 

uptake prediction. The dataset, which included 260 quasi-SMILES characteristics 
of MOFs, was randomly divided into training, validation, and test sets three times. 
Six QSPR models utilizing two target functions based on quasi-SMILES descrip-
tors have been developed. The relevance of several eclectic characteristics of CO2 

increases and decrease ability of MOFs to absorb CO2 is discussed: 

log(CO2 uptake) = C0 + C1 × DCW
(
T ∗, N ∗

)
(13.33) 

TF1 = RTRN + RiTRN − |RTRN − RiTRN| × 0.1 (13.34) 

TF2 = TF1 + IICCAL × WIIC. (13.35) 

RTRN and RiTRN experimental and projected log(CO2 uptake) correlation coeffi-
cients for the training and invisible training sets, respectively. Optimization using 
Monte Carlo develops QSPR models based on IIC (TF2). W IIC was an empirical 
coefficient (W IIC = 0.2 in this case), whereas IICCAL is the index of the ideality of 
correlation for the calibration set, which was defined by the calibration set’s data. 

The results show that TF2 improves the predictability of models. Hence, simple 
and predictive models may be used to forecast the CO2 capture capacity of MOFs. 
Based on the outputs of the QSPR models, the most critical factors that increase or 
decrease the CO2 uptake capacity correspond with observations from experimental 
studies. According to the results of the QSPR model, the impacts of temperature 
and pressure on capturing CO2 had been explored and are compatible with experi-
mental observations. In addition, the model demonstrates that functionalization was 
a powerful technique for enhancing CO2–MOF interaction and the CO2 absorption 
of MOFs. According to the model interpretation results, the addition of basic N-
and O-containing and double-bond-containing functional groups to the surfaces of 
organic linkers of MOFs was crucial for enhancing CO2 absorption capabilities.
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13.3.3.7 Monte Carlo Method-Based Gibbs Free Energy Studies 

Construct quantitative structure under SMILES, Gibb’s free energy of activation 
relationship (QSGFEAR) models with broad application and complete validation 
is feasible [41]. The experimental data of Gibb’s activation free energy (ΔG‡) at 
seven different temperatures served as the endpoint, and the descriptor of correlation 
weight (DCW) was generated from the SMILES notation of the compounds. Two 
target functions were optimized in this case, one with CCI and one without. 

TF1 = RATRN + RPTRN − |RATRN − RPTRN| × WIIC (13.36) 

TF2 = TF1 + CIICAL × 0.3. (13.37) 

The QSGFEAR models were validated with a new statistical parameter called 
correlation intensity index (CII). A total of eight models were formed from the 
dataset of experimentally determined ΔG‡ values, four using target function TF1 
(WCII = 0.0) and four using target function TF2 (WCII = 0.3). It was found that the 
models built by applying CII were more accurate, robust, and consistent than those 
without CII. All the developed models were effective for predicting ΔG‡ values 
reliably and consistently. The leading model was developed from split 3 using TF2 
with RVal 

2 = 0.9108. The mechanistic interpretation was done with the help of split 
3, and the SMILES attributes responsible for the increase and decrease ofΔG‡ value 
were identified. 

Using the CII as a measure of predictors, a new target function was utilized to 
generate the SMILES-based descriptors. It was determined that the statistical quality 
of all the created models was adequate and that the developed model had an excel-
lent predictive capacity. Examining the correlation weights of different molecular 
characteristics estimated through repeated Monte Carlo optimization runs provided 
a comprehensive mechanistic explanation of the increasing or decreasing structural 
features. 

13.3.3.8 Glass Transition Temperature Studies 

The optimal descriptors computed using SMILES indicated a structure of monomer 
units used to construct a model of the temperatures of glass transition of various poly-
mers [42]. QSPRs were developed for the dataset mentioned above. Robust statistical 
quality characterizes the model of transition temperatures for glass. The molecular 
structure of matching monomers has been represented using SMILES. As the foun-
dation for the one-variable model, the hybrid optimum descriptors generated using 
the so-called correlation weights of molecular characteristics taken from SMILES 
and molecular hydrogen-suppressed graph (HSG) were utilized. The IIC is a new 
criterion of the QSPR model’s predictive ability. Here, the usefulness of the IIC as a 
tool to enhance the model’s prediction capability for temperatures of glass transition



344 S. Yang et al.

is demonstrated. The target function with a R2 = 0.90 ± 0.01 listed below: 

Tg'K = C0 + C1 × DCW
(
T ∗, N ∗

)
. (13.38) 

The computation experiments conducted with three iterations of the Monte Carlo 
optimization verify that the predictive potential of models constructed with consider-
ation of the IIC is acceptable, as the dispersion of the statistical quality of the models 
is satisfactory at 0.01 for the determination coefficient and 0.5 for the mean absolute 
error of the predicted glass transition temperatures. 

13.3.3.9 Application on Chromatography Studies 

QSRR of taste and fragrance compounds was investigated on a stationary phase 
methyl silicone OV-101 column utilizing correlation intensity index and consensus 
modeling by CORAL [43]. In chromatography, the QSRR is a critical technique 
for estimating unknown substances’ retention period. Using the statistical parameter 
“correlation intensity index” (CII), the QSRR method is utilized to create robust 
models’ of 1176 taste and aroma chemicals on the OV-101 glass capillary gas chro-
matographic column. QSRR models are constructed using the optimum descriptor, 
i.e., the descriptor of correlation weight (DCW) derived using SMILES notation. 
Using the balance of correlation technique, two target functions, TF1 (WCII = 0) and 
TF2 (WCII = 0.3), are used to create 12 QSRR models from six splits. According to 
statistical outcomes, models developed using CII perform better. The lists of struc-
tural characteristics responsible for variations in the retention index (RI) of tastes 
and scents compounds were retrieved as well. Utilizing the allocation structure of 
split 1 and the revised consensus, a consensus model is constructed (CM1). The 
test set’s determination coefficient (R2) for the modified consensus (CM1) model 
is calculated to be 0.9772, which is more than the leading model. QSRR models 
are statistically robust and validated with many validation parameters, exhibiting 
exceptional performance for external chemical prediction inside the AD. 

Another relative research was proposed in 2022 [44]. A total of 1179 flavors and 
fragrances were included in this study for the creation of the QSRR model based on 
Monte Carlo algorithm in CORAL software. All organic molecules were encoded by 
SMILES notation to compute the correlation weight descriptor (DCW). The dataset 
of 1179 flavor and fragrance organic compounds was divided into nine subsets, each 
consisting of four subsets: training, invisible training, calibration, and validation. 18 
QSRR models and two types of target functions were developed. The function of the 
index of ideality correlation (IIC) was thoroughly analyzed, and it was discovered 
that the QSRR models created by using the IIC were more robust and significant.
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13.3.3.10 Models for Flammability of Binary Liquid Mixtures 

The binary liquid mixtures QSPR model was also developed in 2020 [45]. Data on 
the flammability of binary liquid mixes is required for the categorization of liquid 
mixtures rationally. The list of related binary mixes with practical uses is extensive 
and is growing continuously. Therefore, accurate predictions of the endpoint might be 
advantageous. SMILES is the molecular structure representation. Quasi-SMILES is 
the extension of standard SMILES with the addition of symbols representing “eclec-
tic” circumstances that might impact physicochemical endpoints. The application of 
quasi-SMILES to develop a model for the flammability of binary liquid mixtures 
revealed that the method provides an excellent model for the flash points (°C) of 
binary organic mixtures. 

The method enables the definition of a model’s mechanistic interpretation via a list 
of molecular characteristics that encourage flash points’ development (or reduction). 
The quasi-SMILES method yields relatively accurate predictions for the flash points 
of binary liquid mixes, including organic compounds. The IIC is an essential and 
valuable component of Monte Carlo optimization, as it provides the opportunity to 
enhance the prediction capability of models for flash points, for external, invisible 
validation sets. IIC is a new predictive capability metric. Successful attempts were 
made to utilize the IIC to enhance models for the flammability of binary liquid 
combinations. 

13.3.3.11 Model for Disease Treatment Study 

For a large database (n = 141,706), robust QSARs for hBACE-1 inhibitors (pIC50) 
are developed [46]. New statistical criteria for evaluating the predictive capability of 
models are proposed and evaluated. These are the ideality of the correlation index 
(IIC) and the correlation intensity index (CII). 

TF1 = rAT + rPT − |rAT − rPT| × 0.1 (13.39) 

TF2 = TF1 + IICC × 0.5 (13.40) 

TF3 = TF2 + CIIC × 0.5. (13.41) 

In conjunction with the Monte Carlo approach, the SMILES algorithm provides 
highly accurate models for hBACE-1 inhibitor action (IC50). The best model after 
optimization is from TF3. Computational investigations with five distinct distribu-
tions for the active training set, passive training set, calibration set, and validation set 
demonstrated the statistical validity of these models. The models’ statistical proper-
ties for the validation set are assessed to measure the model’s predictive capability.
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Despite the stochastic nature of the given technique, the proposed system of self-
consistent models measures both the predictive potential of the applied approach 
(chosen model) and the repeatability of the findings. 

13.4 Conclusion 

The present chapter summarizes the major concepts of SMILES, quasi-SMILES, the 
Monte Carlo method, and Coral software and their application in diverse research 
field. SMILES and quasi-SMILES QSAR models have already been successfully 
applied on various endpoints. Due to the simplified notation, it is easier to build up a 
model for the aimed target. Using the Monte Carlo approach, CCI, and IIC parame-
ters, one can make robust and significant QSAR models. From the existing models, 
SMILES and quasi-SMILES have satisfactory performance on environmental risk 
assessment, nanoparticle toxicity, property studies, drug design and discovery, envi-
ronmental risk assessment, etc. The open-access CORAL software makes the whole 
modeling approach user-friendly and accessible to academics, industry, and indepen-
dent researchers. One of this modeling method’s unique features is modeling complex 
nanomaterial toxicity and properties using SMILES and quasi-SMILES followed by 
successful prediction. We believe this popular QSAR modeling approach will solve 
many unsolved queries of diverse scientific areas in the upcoming days. 
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Chapter 14 
The CORAL Software as a Tool 
to Develop Models for Nanomaterials’ 
Endpoints 

Alla P. Toropova and Andrey A. Toropov 

Abstract This chapter discusses the evolution of the so-called quasi-SMILES. The 
traditional simplified molecular-input line-entry system (SMILES) is a string of char-
acters conveying information about the structure of molecules. Quasi-SMILES is a 
string of characters that can convey codes reflecting the structure of molecules and the 
conditions for conducting chemical or biochemical experiments. Several examples 
demonstrate the similarity in reporting data on individual nanomaterials and data on 
two or more nanomaterials subjected to the same type of experiment. The possibility 
of gradual expansion of the scope of application of quasi-SMILES, as well as the 
possibility of using quasi-SMILES as input information for the CORAL software 
(abbreviation CORrelation And Logic) when building models of physicochemical 
and biochemical phenomena for nanomaterials, is shown. 

Keywords Nano-QSPR · Nano-QSAR · Quasi-SMILES ·Monte Carlo method ·
CORAL software 

14.1 Introduction 

In their autobiography, Sir Harry Kroto (Nobel Prize, 1996) noted, ‘… I had the strong 
gut feeling that it was so beautiful a solution that it just had to be right.’ It is about 
fullerene structure C60. Although the practical applications of C60 have remained 
limited, its discovery changed the perception of the behavior of carbon and paved 
the way for work on carbon nanotubes and graphene. The existence and formation of 
C60 molecules in outer space were detected and confirmed; hence, the astronomical 
role of C60 is established [1–3]. Analysis of cave paintings suggests that people of 
ancient civilizations used nanomaterials, such as graphene, without knowing it [4].
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Luster ceramic decoration was revealed by analytical electron microscopy to have 
been the first nanostructured film made by man. This is a real technological discovery 
because nanocrystal films have been produced empirically since medieval times [5]. 

Currently, reports on nanomaterials are more common than on any other materials. 
There is both bad and good news. Nanomaterials are able to rapidly impact many 
areas of daily life, such as food, cosmetics, pharmaceuticals, electronics, building 
materials, medical materials, and so on. The question arises about the safety of using 
these still new but no longer exotic materials. Some life-threatening and health-
threatening effects can be detected quickly. However, many other deleterious effects 
can only be detected using long-term observations or even multi-generational data. 

For example, mutagenicity and/or carcinogenicity is harm that can only be 
detected by comparing the health of several generations. Thus, in the ‘ocean of 
nanotechnologies,’ there may be dangerous pitfalls. The dangers of some nanoma-
terials are currently established. It can be expected that in the near future, the list 
of dangerous effects of nanomaterials will expand. Nanomaterials are characterized 
by a strange and ‘uncomfortable’ molecular architecture. Traditional methods for 
predicting physicochemical and biological behavior are often not suitable for nano-
materials since the essence of traditional methods is to use molecular structure data 
to compare and further predict the behavior of substances. The behavior of traditional 
(small) molecules is mainly determined by the presence of various chemical elements 
and the configuration of covalent bonds between them. Other features resulting from 
the impacts of large clusters of chemical elements are likely to determine the behavior 
of nanomaterials. Thus, approaches aimed at predicting the behavior of nanomaterials 
require a new presentation of the relevant experimental data. 

Analogies are practically a necessary part of research work. The transition from 
the study of traditional ‘non-nanosubstances’ to the study of nanomaterials is analo-
gous to the transition from considering the economic state of villages to considering 
the economic state of cities [6] or the transition from looking at calculators to looking 
at computers. The village may be loosely connected to other parts of the planet. The 
city must be connected to other cities. The economic status of the village is deter-
mined by the ratio of men, women, and children: a small number of workers, as a rule, 
leads to a decrease in the economic potential of the village. In the case of a city, these 
criteria are not informative. However, it is possible to define specific indicators of the 
economic potential of the city (not informative for the countryside), for example, the 
number of stations and airports. If we continue this ‘village-city’ analogy, then we 
can state that in the case of traditional substances, the basis for predicting the physic-
ochemical and/or biological potential of a substance (‘village’) is a comparison of 
the molecular structure of this substance with the molecular structure of other similar 
substances (analogy proportion of men, women, and children in villages), while in 
the case of nanomaterials, other characteristics must also be compared. The condi-
tions of synthesis and the conditions of the impact of nanomaterials on biological 
targets (cells, membranes, organs, animals, humans) are informative characteristics 
analogous to the ‘number of stations and airports’ for cities. 

Thus, developing models of nanomaterials’ physicochemical and biochemical 
behavior is a real and important task of modern natural sciences. Previously, the
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solution to this problem was expected in the form of a paradigm like QSPR/QSAR 
(quantitative structure–property/activity relationships) [7]. However, apparently, 
such a solution will not have complete similarity with QSPR/QSAR, although some 
analogies are quite possible. 

The Organization for Economic Co-operation and Development (OECD) has 
numerous goals concerning the development of international cooperation in the field 
of economy and ecology, as well as in the field of natural and human sciences. 
The appearance of new categories of nanomaterials implies radical modifications 
of methods of computational modeling physicochemical and biochemical endpoints 
desired. For such a task, the traditional QSPR/QSAR approaches need a radical 
transformation. 

Modern society seems to increase its rate of risk production constantly (i.e., indus-
trial and agricultural pollutions, destroy of ecosystems via technological disasters 
and others), and this is not only due to the increased production of advanced tech-
nology [8]. There are four components of any real risk assessment: identification, 
risk analysis, risk impact, and economic aspect of the development of the corre-
sponding legislation documents. According to OECD, dissolution rate and disper-
sion stability in the environment are important parameters for nanomaterials, i.e., 
these parameters are the main drivers in the environmental fate of nanomaterials and 
nanomaterials (bio)availability [9]. Therefore, the development of models for other 
endpoints related to nanomaterials is a practical task that also is significant and urgent 
[7, 10, 11]. 

The problem of assessing the risk of using nanomaterials in the environmental 
aspect intersects with the problem of the correct, efficient, and safe use of nanotech-
nologies in medicine [12, 13]. Factually, medicine involves fullerenes [14–16], single 
carbon nanotubes [17, 18], multiwall carbon nanotubes [19, 20], nano-oxides [21, 
22], and quantum dots [23, 24]. 

Nanomaterials are widely used in cosmetics [25–31]. However, the lists of nano-
materials for medicine and cosmetics are pretty different. Nano-oxides are mainly 
used for cosmetics [27, 28] and, to a lesser extent, also fullerenes [30]. Concerns over 
health risks have limited the further incorporation of nanomaterials in cosmetics. 
Since the cosmetic industry may use new nanomaterials in the future, a detailed 
characterization and risk assessment are needed to fulfill the standard safety require-
ments. To solve the above task, undouble the fast methods of risk assessment using 
computational approaches, which are currently being developed [31]. It is to be 
noted that the stream of nanotechnology applications involves not only medicine and 
cosmetics but also electronics [23, 24] and even the design of nanorobots [32]. 

The term nano-QSAR appears for the first time in work of Puzyn et al. [33]. 
Thus, the efforts of researchers aimed at the development of nano-QSAR started less 
than fifteen years ago. Pretty soon, it became clear that some qualitative changes 
in the QSAR paradigm were needed for the cases of nanomaterials. It became 
obvious that a new approach was needed to re-define databases that were suit-
able for classical QSAR but were not suitable for the case of QSAR for nanomate-
rials. To solve this problem, an ISA-TAB-nanoparadigm (investigation–study–assay) 
was proposed [34]. The approach is based on the representation of nano-data in a
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particular format, ‘investigation–study–assay’ [34]. The term ‘nano-informatics’ was 
suggested perhaps to the same end [35]. 

Another critical point in the search for approaches for modeling the physico-
chemical properties and biological activity of nanomaterials is the search for ways 
to consolidate potential consumers of nano-models online, through special websites. 
For instance, to make the nano-model (the model is based on the k-Nearest Neighbors 
(kNN) algorithm) available to interested users, the model was made available via the 
Internet (Enalos In Silico Nanoplatform [36]). Quantum mechanical descriptors as 
a basis for nano-QSAR have been successfully used to model nano-oxides toxicity 
[37]. The k-nearest neighbors (kNN-based regression) and support vector machine 
(SVM) were applied to build up a good model for PaCa2 cell line uptake on 109 
nanoparticles [38]. 

Having a group of records related to the influence of nanomaterials upon the 
biological targets under different conditions, one can select conditions of three cate-
gories of their impacts: (i) conditions that are promoters of increased impact; (ii) 
conditions that are promoters of decreased impact; and (iii) conditions that do not 
influence the impact of nanomaterials. The CORAL software (http://www.insilico. 
eu/coral) gives the possibility to automatically carry out the analysis of the records 
related to nanomaterials, mentioned above. Moreover, it is possible to integrate 
separated recommendations into a united system of estimation for a large group 
of different nanomaterials in the future. 

Numerous disputes about the expediency of constructing quantitative structure– 
property/activity relationships (QSPRs/QSARs) have not yet led to a denial of the 
main issue—that such studies are useful both in practical and theoretical terms. At the 
beginning of its development, the theory and practice of the QSPR/QSAR research 
were criticized for the lack of transparency in the interpretation of models [38–40]. 
However, later, the questionable reliability and reproduction of the models became 
the main point of criticism [41–44]. 

Nevertheless, QSPR/QSAR method has gradually become a generally accepted 
tool for constructing models of physicochemical properties and biological activity 
for organic [44–47], inorganic [48], organometallic [49] compounds, and polymers 
[50]. The listed categories of substances are characterized by unambiguous molecular 
structure, which, in fact, is the basis for constructing QSPR/QSAR models. 

However, in the case of models related to nanomaterials [51], the representation 
of an exclusively molecular structure or even in conjunction with data from molec-
ular mechanics and quantum chemistry calculations [52] becomes insufficient for 
the development of new perspective ways of building up models for phenomena in 
biology, and medicinal nanotechnologies [53]. New technologies used in the agri-
culture and food industry, e.g., nano-pesticides, force a revision of the QSAR and the 
quantum mechanics as well all other descriptors suitability, owing to the high diver-
sity of dangerous effects which can be observed in the case of using nano-pesticides 
[53]. 

Significant difficulties arise from the fact that a small change in the production 
of such pesticides can lead to a significant change in their impact on biosystems, 
ecosystems or even economic systems. In other words, an agricultural process based

http://www.insilico.eu/coral
http://www.insilico.eu/coral
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on nanotechnology may become both environmentally and economically unsustain-
able, as the unclear impact on yields will be a danger to ecosystems and human health. 
Another important point is the increase in the diversity of nanomaterials. For example, 
in recent years, nano-cellulose has attracted increasing attention from researchers 
and industry as an alternative to traditional cellulose [54]. The same situation occurs 
for quantum dots, which are becoming more and more widespread in research and 
industry [55]. Obviously, a wide variety of nanomaterials inevitably leads to a greater 
likelihood of unexpected and often unpleasant or, moreover, dangerous effects. 

A sufficiently detailed analysis of a large number of various scenarios is econom-
ically complex. Therefore, for example, the development of reliable models of the 
physicochemical and biochemical behavior of quantum dots associated with nano-
materials is an evident and important task. It should be taken into account that these 
models should accurately reflect the experimental conditions. The choice of a list 
of experimental conditions that should be available for building a model is also a 
non-trivial and important problem. 

Unfortunately, the solution to the above problem likely should be selective and 
tuning for each specific experiment. Thus, consideration of a new nanomaterial 
category can imply radical modifications of QSPR and QSAR conception. 

QSPR/QSAR studies obey special rules defined by different international orga-
nizations (e.g., the above OECD). These rules supply particular standards to make 
the corresponding models and provide software reliable enough for practical use 
[56, 57]. However, it should be noted the above standards are not dogmas. More-
over, these standards will develop and change rapidly. Since the theory and prac-
tice of nanomaterials manufacturing are innovative, these standards will change and 
improve according to new experimental data on the abilities and dangerousness of 
nanomaterials. 

14.2 Theory and Practices of QSPR/QSAR 

Any QSPR/QSAR model implies a way of estimating of value of a parameter of 
interest to a substance y via a mathematical function 

y = F(all available influences on the system). (14.1) 

In the classical QSPR/QSAR, the equation defined as 

y = F(all available descriptors). (14.2) 

The predictive capability of the QSAR models is established by performing an 
external validation, information indices, topological indices, quantum mechanics 
descriptors, molecular operating environment indices, and just physicochemical 
parameters of substances under investigation. It has been shown that those measures 
are appropriate tools for selecting the model calculated with Eq. 14.2.
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The advantage of the one-variable model is their reliability. Often the one-variable 
model is characterized by a modest (but not poor) statistical quality for both the 
training and test sets. Multiple linear regression analysis (MLRA) can be utilized 
to obtain a model that is developed using a group of several descriptors. The model 
obtained by MLRA is often characterized by good (perfect) statistical quality for the 
training set, but this model can be a poor one for the external validation set. 

According to many authors, a rational split data into training and validation sets 
gives better statistical results for the validation sets than models based on random 
splits. However, the experiment confirms that often there are some distributions into 
the training and validation sets successful for one approach, which is unsuccessful 
for another method. 

All the above-mentioned circumstances and instructions become precise and reli-
able basis for building up models for the physicochemical and biochemical behavior 
of diverse substances. Nevertheless, in the science space, nanomaterials have become 
a new, unexpected scientific targets. The theory and practices of the QSPR/QSAR 
require new tools to analyze these new substances. There are, however, principal 
barriers that make corresponding efforts ineffective. 

First, molecules of nanomaterials are large; more exactly, nanomaterials’ 
molecules are much larger than molecules of most traditional substances (which are 
not nanomaterials). Second, the difference between the physicochemical or biochem-
ical behavior of the two nanomaterials is caused rather by an influence of the medium 
and not by intramolecular interactions. 

On the one hand, according to Bertrand Russell, ‘All exact science is dominated 
by the idea of approximation’; on the other hand, ‘all models are wrong but some 
are useful’ [58]. 

Gradually, the target of the QSPR/QSAR research shifted from the selection of 
a perfect molecular structure to the harmonization of all available often-eclectic 
circumstances. For example, a drug should not be toxic. Cosmetics should not be 
bio-accumulative. Plastic should be biodegradable. 

Applying QSPR/QSAR for regulatory aims is an attractive idea. Still, this idea is 
hardly realized since, for regulatory purposes, the experiment is the only way to get 
the necessary numerical data and technical information. Computational experiments 
aimed at estimating toxicity are surrogates of real experiments on toxicity assessment. 
No one could declare data on toxicity to be reliable if the data is provided from mathe-
matical methods, without verification by corresponding experiments. Economic and 
legal evaluation of a new substance is available only based on a real experiment. 

The different methodologies aimed to solve the above tasks in the ecologic risk 
assessment hardly can be systematized. In other words, the current QSPR/QSAR as 
well as the QSPR/QSAR in the future become a mathematical function of eclectic 
data, not solely a mathematical function of the molecular structure. Figure 14.1 
illustrates the trend.

Nevertheless, the various phenomena observed in computer experiments aimed 
at building QSPR/QSAR models are sometimes very similar to those observed in 
traditional science experiments, performed without computers. For example, the 
dependence of the numbers of poor predictions and percentage of poor predictions



14 The CORAL Software as a Tool to Develop Models for Nanomaterials’ … 357

Fig. 14.1 Essence of QSPR/QSAR models

for the data validation set in a group of models observed for different splits into the 
training and validation sets is similar to the dependence of conductivity and thickness 
in molybdenum disulfide MoS2 nanoflakes [59]. 

14.3 SMILES and Nanomaterials 

Paradoxically, the practical development of QSPR/QSAR models related to nanoma-
terials began without any data on the molecular structure of nanomaterials [60–62]. 
These were models aimed at predicting the solubility of fullerene (C60) in various 
organic solvents. Thus, although the solubility of the nanomaterial was modeled, its 
molecular structure was not used to develop this model. The only fact of the presence 
of fullerene in the solution was considered in this research. 

Nevertheless, soon after initial works the comparison of the regularities of biolog-
ical activity along different sequences of fullerene derivatives (C60) with considering 
molecular features of fullerene derivatives [63–65] began. Similar research was 
carried out for single-wall carbon nanotubes (SWCNTs) [66, 67] and multi-walls 
carbon nanotubes (MWCNTs) [68]. 

The unique qualities of SWCNTs, MWCNTs, and fullerenes C60 and C70 required 
an actual revision of the traditional concept of QSPR/QSAR as models based on 
molecular 2D and 3D descriptors obtained from molecular mechanics and quantum 
mechanical calculations. Instead, descriptors partially reflecting ‘nano-nature’ of 
substances were developed and tested. Such approach subsequently became almost 
independent of the molecular structure, concentrating on the experimental conditions 
[69–71]. Nevertheless, it is to be noted that some QSPR/QSAR research is based
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solely on the molecular structure of fullerene derivatives without considering the 
conditions of an experiment carried out [61, 64, 72–76]. 

Fullerene derivatives have been studied longer than most other nanomaterials. This 
led to a considerable flow of work devoted to these substances, which were considered 
exotic for a long time. At present, fullerene derivatives have found some applications. 
These applications do the QSPR/QSAR analysis of fullerene derivatives actual. The 
first attempts at such an analysis were carried out using a simplified molecular-
input line-entry system (SMILES) for anti-HIV activity [72], the solubility of C60 

in organic compounds [61], and mutagenicity of fullerene derivatives [73]. Further 
computation experiments dedicated to building up predictive models were aimed to 
extend the targets list, namely to the mutagenicity of SWCNTs and fullerene C60 

[76], and united models for mutagenicity of fullerenes C60 and C70 [64]. 
SMILES is the representation of the molecular structure by a sequence of 

special symbols that encode different molecular features such as atoms, bonds, pres-
ence/absence of various rings [77]. Briefly, the SMILES is a line where chemical 
elements represented by corresponding symbols (e.g., ‘C’ = carbon; ‘Br’ = bromine, 
etc.); double covalent bonds indicated by ‘=,’ triple covalent bonds indicated by ‘#,’ as 
well there are some other special codes for combination of rings (e.g., digits 1–9, and 
%10, %11, etc.); finally, some 3D features also taken into account (e.g., @, or @@). 
It can be said that, at present, there is some implicit competition between SMILES 
and graphs in the development of models of various physicochemical and biolog-
ical parameters for various molecular systems. In some cases, it is preferable to use 
molecular graphs. In other cases, SMILES is more convenient. At the same time, an 
important circumstance is that these representations are far from identical. However, 
they are aimed at solving the same task, namely representing molecular structures in 
databases, providing users with the ability to quickly identify and compare all kinds 
of molecular features [78–86]. 

14.4 Quasi-SMILES and Nanomaterials 

When developing any program, one should know the answers to several questions. 
Table 14.1 contains a collection of such questions as well as some typical responses 
to these.

Everything listed in Table 14.1 refers to SMILES as a tool for solving practical 
problems in mathematical and computational chemistry. Unfortunately, during the 
development of quasi-SMILES, logistics were not planned at all. It was assumed that 
quasi-SMILES is a tool for creating models according to the paradigm expressed by 
Eq. 14.2, i.e., quasi-SMILES was aimed to include maximum information to develop 
a model. 

Just as in traditional molecules, the presence of various fragments down to 
individual atoms and bonds affects molecules’ ability to be solvents, poisons, or 
something else. Additionally, the presence or absence of light, the concentration
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Table 14.1 Logistics of development QSPR/QSAR aimed software 

Questions Responses 

What is the model that is expected to build 
up? 

The model makes it possible, having some list of 
the features of the phenomenon, to predict how the 
situation will change if the values of the mentioned 
features are changed or the list is changed 
(expanded or shortened) 

For whom is the model? The model users will be those interested in the 
opportunity to influence the phenomenon under 
consideration (experimentations); those who 
develop similar models; those who plan to be an 
experimentations or developers of such models 

How to provide the model to potential 
consumers? 

It is obvious that, first, one should be informed 
about what this program can accomplish for the 
potential user, and second, information should be 
available on how to use it 

Does the software developer need user 
feedback? 

If the development of the program is planned, then 
feedback is needed 

How do establish feedback with 
consumers? 

The only option is dialogue. Dialogue is actually 
possible only if the user wants it

of impurities, and the nature of porosity can affect the ability of nanomaterials 
(physicochemical, biochemical, and others). 

Thus, at the very beginning, quasi-SMILES gave models for the behavior of nano-
materials depending on the experimental conditions, while the molecular architecture 
of nanomaterials was not involved in the development of the model at all [69, 87]. 
Table 14.2 contains an example of the list of experimental conditions used as a basis 
to build up such models. 

However, later, quasi-SMILES were improved by including codes indicating 
various nanomaterials [69, 70, 88]. It can be interpreted as ‘fullerene acts here’ 
or ‘multi-walled carbon nanotubes act here.’ The collection of such experimental 
conditions is represented in Table 14.3. Table 14.4 contains an example of codes for

Table 14.2 List of attributes of fullerene C60 nanoparticles exposure and their codes which are 
used for the construction of quasi-SMILES 

Experimental conditions Codes for quasi-SMILES 

The presence or absence of lighting The code ‘0’ means absence of lighting 
The code ‘1’ means presence of lighting 

Mix S9 The code ‘+’ means ‘with mix S9’ 
The code ‘−’ means ‘without mix S9’ 

Dose The code ‘A’ means the dose 50 g/plate 
The code ‘B’ means the dose 100 g/plate 
The code ‘C’ means the dose 200 g/plate 
The code ‘D’ means the dose 400 g/plate 
The code ‘E’ means the dose 1000 g/plate 
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Table 14.3 Brunauer–Emmett–Teller (BET) surface area analysis: an example of experimental 
conditions on bacterial reverse mutation tests on multi-walled carbon nanotubes of two types [88] 

MWCNTa 

Diameter, 
nm/BET 

Surface area, 
m2/g 

Concentration, 
µg/plate 

S9 microsomal 
fraction 

The average 
number of 
revertant 
colonies/plate, 
TA100 

44 69 0.78 Without mix S9 120 

44 69 1.56 Without mix S9 109 

44 69 3.13 Without mix S9 119 

44 69 6.25 Without mix S9 116 

44 69 12.5 Without mix S9 114 

44 69 25.0 Without mix S9 109 

44 69 50.0 Without mix S9 114 

44 69 100.0 Without mix S9 117 

44 69 0.78 With mix S9 105 

44 69 1.56 With mix S9 115 

44 69 3.13 With mix S9 114 

44 69 6.25 With mix S9 127 

44 69 12.5 With mix S9 133 

44 69 25.0 With mix S9 120 

44 69 50.0 With mix S9 125 

44 69 100.0 With mix S9 128 

70 23 0.78 Without mix S9 111 

70 23 3.13 Without mix S9 118 

70 23 6.25 Without mix S9 122 

70 23 12.5 Without mix S9 123 

70 23 25.0 Without mix S9 118 

70 23 50.0 Without mix S9 121 

70 23 100.0 Without mix S9 121 

70 23 0.78 With mix S9 126 

70 23 3.13 With mix S9 114 

70 23 6.25 With mix S9 135 

70 23 12.5 With mix S9 124 

70 23 25.0 With mix S9 124 

70 23 50.0 With mix S9 108 

70 23 100.0 With mix S9 134 

a N-MWCNT (diameter = 44 and surface area 69); MWNT-7 (diameter = 70 and surface area 23)
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Table 14.4 List of codes used to construct quasi-SMILES reflecting the situation where two kinds 
of multi-walled carbon nanotubes act in similar experimental conditions 

Experimental conditions Codes to construct quasi-SMILES 

Test substance The code ‘1’ means presence of N-MWCNT 
The code ‘2’ means presence of MWNT-7 

Mix S9 The code ‘+’ means ‘with mix S9’ 
The code ‘−’ means ‘without mix S9’ 

Concentration The code ‘A’ means the dose 0.78 µg/plate 
The code ‘B’ means the dose 1.56 µg/plate 
The code ‘C’ means the dose 3.13 µg/plate 
The code ‘D’ means the dose 6.25 µg/plate 
The code ‘E’ means the dose 12.5 µg/plate 
The code ‘F’ means the dose 25.0 µg/plate 
The code ‘G’ means the dose 50.0 µg/plate 
The code ‘H’ means the dose 100.0 µg/plate 

constructing quasi-SMILES reflecting the situation where two kinds of multi-walled 
carbon nanotubes act under similar experimental conditions.

Using codes (Table 14.4), one can obtain a predictive system represented by 
Table 14.5. One can see the result of three different distributions of data in the 
training set (T), calibration set (C), and validation set (V).

In fact, traditional SMILES uses a significant portion of the available characters. 
Under such circumstances, certain compromises had to be found to search for a letter 
(symbol) basis for quasi-SMILES constructions. Particular agreed-upon combina-
tions such as A1, A2, …, A9, B1, B2, …, B9, … were used to discretize various 
scales. 

The examples in Tables 14.2, 14.3, 14.4, 14.5, 14.6, and 14.7 showed similar 
situations when 10–15 additional special characters were enough to develop quasi-
SMILES and corresponding models. In principle, the collection of such models can 
be expanded with new analogous models of the physicochemical properties or biolog-
ical activity of nanomaterials [89, 90], peptides [91], or membranes [92]. However, 
this approach is not comfortable for users (limited number of special characters, 
weak mnemonics, etc.). To increase comfort, there was an attempt to involve special 
groups of symbols borrowed directly from the classic SMILES. These groups of 
symbols aimed to represent in SMILES information about the presence of more 
than ten rings [77], e.g., %11, %12, etc. (molecule contains eleven, twelve, or more 
rings, respectively). Figure 14.2 includes some examples of discretion of a parameter 
(experimental condition) to involve in quasi-SMILES.

The discretion representation for a parameter X is calculated using the formula 
Eq. 14.3 [93–95]. 

Discret(X) = Xmin + Xk 

Xmin + Xmax 
(14.3)
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Table 14.5 Three distributions of available experimental data into the training (T), calibration (C), 
and validation (V) sets; three-symbols quasi-SMILES representing genotoxicity by multi-walled 
carbon nanotubes, experimental and predicted average TA100 values (the number of revertant 
colonies/plate) 

ID Split Quasi-SMILES TA100 

1 2 3 Experiment Average prediction Dispersion 

01 C V T 1-A 120 111.98 ± 9.22 
02 T T T 1-B 109 108.19 ± 1.67 
03 C T T 1-C 119 112.96 ± 7.62 
04 V T C 1-D 116 119.16 ± 2.08 
05 T C T 1-E 114 118.34 ± 5.06 
06 T V C 1-F 109 111.94 ± 6.34 
07 T C T 1-G 114 116.98 ± 4.04 
08 V T V 1-H 117 119.25 ± 2.01 
09 T T T 1+A 105 116.03 ± 0.53 
10 V T V 1+B 115 119.86 ± 5.16 
11 V V T 1+C 114 118.32 ± 3.39 
12 V V C 1+D 127 135.19 ± 2.36 
13 T T T 1+E 133 128.83 ± 0.95 
14 C C V 1+F 120 123.06 ± 0.42 
15 T T T 1+G 125 116.93 ± 0.54 
16 C T V 1+H 128 132.60 ± 2.04 
17 T C T 2-A 111 115.33 ± 5.36 
18 T V C 2-C 118 116.31 ± 4.10 
19 T T T 2-D 122 122.52 ± 4.46 
20 T C T 2-E 123 121.68 ± 2.85 
21 T T C 2-F 118 115.29 ± 5.54 
22 T T T 2-G 121 120.33 ± 1.84 
23 T V T 2-H 121 122.60 ± 1.97 
24 T T T 2+A 126 115.11 ± 0.32 
25 T T T 2+C 114 117.40 ± 3.43 
26 T T T 2+D 135 134.26 ± 3.14 
27 T V T 2+E 124 127.90 ± 0.12 
28 C T V 2+F 124 122.14 ± 1.23 
29 T T T 2+G 108 116.01 ± 0.30 
30 T T T 2+H 134 131.68 ± 1.83
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Table 14.6 Features of action of nanomaterials (fullerene and MWCNT) and their codes 

ID Feature Code for the feature 

I Fullerene 
MWCNT 

The code ‘X’ means presence of fullerene 
The code ‘Z’ means presence of MWCNT 

II Dark or irradiation The code ‘0’ means presence of dark 
The code ‘1’ means presence of irradiation 

III Preincubation The code ‘N’ means absence of preincubation 
The code ‘Y’ means presence of preincubation 

IV Mix S9 The code ‘+’ means ‘with mix S9’ 
The code ‘−’ means ‘without mix S9’ 

V Dose Fullerene 
The code ‘A’ means the dose 50 g/plate 
The code ‘B’ means the dose 100 g/plate 
The code ‘C’ means the dose 200 g/plate 
The code ‘D’ means the dose 400 g/plate 
The code ‘E’ means the dose 1000 g/plate 
MWCNT 
The code ‘F’ means the dose 0 µg/plate 
The code ‘G’ means the dose 50 µg/plate 
The code ‘H’ means the dose 158 µg/plate 
The code ‘I’ means the dose 500 µg/plate 
The code ‘J’ means the dose 1581 µg/plate 
The code ‘K’ means the dose 5000 µg/plate 

Table 14.7 Construction of quasi-SMILES for the study of fullerene and MWCNT under the same 
experimental conditions 

No. I II III IV V Quasi-SMILES pTA100 

1 X 0 + A X0+A − 2.1640 
2 X 0 + B X0+B − 2.1490 
3 X 0 + C X0+C − 2.2010 
4 X 0 + D X0+D − 2.2040 
5 X 0 + E X0+E − 2.2480 
6 X 0 − A X0-A − 2.1550 
7 X 0 − B X0-B − 2.1430 
8 X 0 − C X0-C − 2.2280 
9 X 0 − D X0-D − 2.2250 
10 X 0 − E X0-E − 2.1820 
11 X 1 + A X1+A − 2.1110 
12 X 1 + B X1+B − 2.1170 
13 X 1 + C X1+C − 2.1400

(continued)
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Table 14.7 (continued)

No. I II III IV V Quasi-SMILES pTA100

14 X 1 + D X1+D − 2.1370 
15 X 1 + E X1+E − 2.2040 
16 X 1 − A X1-A − 2.1340 
17 X 1 − B X1-B − 2.1340 
18 X 1 − C X1-C − 2.1400 
19 X 1 − D X1-D − 2.2150 
20 X 1 − E X1-E − 2.2360 
21 Z N − F ZN-F − 2.0830 
22 Z N − G ZN-G − 2.1140 
23 Z N − H ZN-H − 2.0830 
24 Z N − I ZN-I − 2.0930 
25 Z N − J ZN-J − 2.0450 
26 Z N − K ZN-K − 1.9730 
27 Z Y − F ZY-F − 2.1210 
28 Z Y − G ZY-G − 2.1240 
29 Z Y − H ZY-H − 2.1000 
30 Z Y − I ZY-I − 2.1140 
31 Z Y − J ZY-J − 2.1070 
32 Z Y − K ZY-K − 2.0900 
33 Z N + F ZN+F − 2.1340 
34 Z N + G ZN+G − 2.1550 
35 Z N + H ZN+H − 2.1340 
36 Z N + I ZN+I − 2.1040 
37 Z N + J ZN+J − 2.0680 
38 Z N + K ZN+K − 2.0570 
39 Z Y + F ZY+F − 2.2740 
40 Z Y + G ZY+G − 2.2740 
41 Z Y + H ZY+H − 2.2790 
42 Z Y + I ZY+I − 2.2600 
43 Z Y + J ZY+J − 2.2430 
44 Z Y + K ZY+K − 2.2380 
The anatomy of the model is based on four-symbol quasi-SMILES [70]
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Fig. 14.2 Different versions of discretion of a parameter to involve in quasi-SMILES

Fig. 14.3 The scheme of building up quasi-SMILES 

Another way to construct quasi-SMILES codes has been suggested recently [96]. 
Such approach gives the possibility to encode experimental conditions by special 
codes in squared brackets. Figure 14.3 shows the general scheme of application of 
this approach. 

14.5 Optimal SMILES-Based Descriptor 

The practical realization of the approach expressed by Eq. 14.2 is the so-called 
optimal descriptor. The optimal descriptor is calculated with special coefficients 
named the correlation weights. These coefficients are calculated by the Monte 
Carlo method. The above-mentioned calculations can be implemented by the free-
downloading CORAL software available on the Internet (http://www.insilico.eu/ 
coral). 

The optimal quasi-SMILES-based descriptor DCW(T, N) is applied for a 
predictive model of the endpoint via the equation: 

Endpoint = C0 + C1 × DCW(T , N ) (14.4)

http://www.insilico.eu/coral
http://www.insilico.eu/coral
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DCW(T , N ) =
∑

CW(Sk). (14.5) 

T is a threshold, that is, an integer separating quasi-SMILES attributes into two 
classes, ‘rare’ and ‘non-rare.’ Only ‘non-rare’ quasi-SMILES attributes are used to 
build the model. N is the number of epochs of the Monte Carlo method optimization 
of correlation weights. Sk is a quasi-SMILES-atom, i.e., a single character of a 
quasi-SMILES string (e.g., ‘=,’ ‘O’) or a group of characters that cannot be treated 
in isolation (e.g., ‘Cu,’ ‘%11’). CW(Sk) are the correlation weights of the above 
quasi-SMILES attributes. 

14.6 The Monte Carlo Optimization 

Equation 14.5 requires the numerical data on the above correlation weights. Monte 
Carlo optimization is a tool to calculate those correlation weights. Two different 
target functions for the Monte Carlo optimization are applied: 

TF = rAT + rPT − |rAT − rPT| × 0.1 (14.6) 

The rAT and rPT are correlation coefficients between the observed and predicted 
endpoints for the active and passive training sets, respectively. It is to be noted that 
the CORAL software provides some additional information on the target function 
and the possibility to modify and use different versions of the above target function. 

Table 14.8 shows examples of applications of the optimal quasi-SMILES-based 
descriptors to build up models for endpoints for nanomaterials. One can see that the 
approach gives the significant quality of models. 

Table 14.8 Statistical characteristics of nano-QSPR/QSAR models built up using the optimal 
quasi-SMILES-based descriptors calculated by the Monte Carlo method 

Training set Validation set References 

N R2 N R2 

25 0.55 25 0.62 [96] 

66 0.85 26 0.89 [97] 

– 0.70 – 0.65 [98] 

– 0.99 – 0.97 [99] 

17 0.97 17 0.82 [100]
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14.7 Conclusions 

The application of quasi-SMILES provides the possibility to involve experimental 
conditions as components for the calculation of a model. The quasi-SMILES has 
several steps of their evolution, and the evolution can be further continued. Quasi-
SMILES is an approach to building models of new quality: The descriptor becomes a 
mathematical function of structure and experimental conditions or even a mathemat-
ical function of experimental conditions together with arbitrary circumstances that 
can impact the experiment results. In other words, the quasi-SMILES technique can 
be the source of a new way to address both theoretical and practical nanochemistry 
and nanobiology. In principle, quasi-SMILES can become a language of communi-
cation between experimenters and developers of the corresponding models of proper-
ties and biological activity for nanomaterials, peptides, membranes, and maybe other 
objects and phenomena. The CORAL software can be used as an interface for the 
assessment of different hypotheses (models) suggested by experimentalists analyzing 
situations related to nanomaterials and maybe other complex physicochemical and 
biochemical phenomena. 

Acknowledgements This work was supported by ONTOX, grant agreement 963845 of the 
European Commission under the Horizon 2020 research and innovation framework program. 

References 

1. García-Hernndez DA, Iglesias-Groth S, Acosta-Pulido JA, Manchado A, García-Lario P, 
Stanghellini L, Villaver E, Shaw RA, Cataldo F (2011) Astrophys J Lett 737(2):L30. https:// 
doi.org/10.1088/2041-8205/737/2/L30 

2. Iglesias-Groth S, Cataldo F, Manchado A (2011) Mon Not R Astron Soc 413(1):213–222. 
https://doi.org/10.1111/j.1365-2966.2011.18124.x 

3. Cami J, Bernard-Salas J, Peeters E, Malek SE (2010) Science 329(5996):1180–1182. https:// 
doi.org/10.1126/science.1192035 

4. Barhoum A, García-Betancourt ML, Jeevanandam J, Hussien EA, Mekkawy SA, Mostafa M, 
Omran MM, Abdalla MS, Bechelany M (2022) Nanomaterials 12(2):177. https://doi.org/10. 
3390/nano12020177 

5. Pérez-Arantegui J, Larrea A (2003) TrAC Trends Anal Chem 22(5):327–329. https://doi.org/ 
10.1016/S0165-9936(03)00502-8 

6. Atlas of Sciences. https://atlasofscience.org/the-coral-software-as-spyglass-to-detect-coral-
reefs-in-ocean-of-nanotechnologies/. Accessed 29 July 2022 

7. Villaverde JJ, Sevilla-Morán B, López-Goti C, Alonso-Prados JL, Sandín-España P (2018) 
Sci Total Environ 634:1530–1539. https://doi.org/10.1016/j.scitotenv.2018.04.033s 

8. Hellström T (2009) Technol Soc 31(3):325–331. https://doi.org/10.1016/j.techsoc.2009. 
06.002 

9. OECD (2020) Guidance document for the testing of dissolution and dispersion stability 
of nanomaterials and the use of the data for further environmental testing and assessment 
strategies, No. 318. ENV/JM/MONO(2020)9 

10. Mu Y, Wu F, Zhao Q, Ji R, Qie Y, Zhou Y, Hu Y, Pang C, Hristozov D, Giesy JP, Xing B 
(2016) Nanotoxicology 10(9):1207–1214. https://doi.org/10.1080/17435390.2016.1202352

https://doi.org/10.1088/2041-8205/737/2/L30
https://doi.org/10.1088/2041-8205/737/2/L30
https://doi.org/10.1111/j.1365-2966.2011.18124.x
https://doi.org/10.1126/science.1192035
https://doi.org/10.1126/science.1192035
https://doi.org/10.3390/nano12020177
https://doi.org/10.3390/nano12020177
https://doi.org/10.1016/S0165-9936(03)00502-8
https://doi.org/10.1016/S0165-9936(03)00502-8
https://atlasofscience.org/the-coral-software-as-spyglass-to-detect-coral-reefs-in-ocean-of-nanotechnologies/
https://atlasofscience.org/the-coral-software-as-spyglass-to-detect-coral-reefs-in-ocean-of-nanotechnologies/
https://doi.org/10.1016/j.scitotenv.2018.04.033
https://doi.org/10.1016/j.techsoc.2009.06.002
https://doi.org/10.1016/j.techsoc.2009.06.002
https://doi.org/10.1080/17435390.2016.1202352


368 A. P. Toropova and A. A. Toropov

11. Lubinski L, Urbaszek P, Gajewicz A, Cronin MTD, Enoch SJ, Madden JC, Leszczynska D, 
Leszczynski J, Puzyn T (2013) SAR QSAR Environ Res 24(12):995–1008. https://doi.org/ 
10.1080/1062936X.2013.840679 

12. Chugh H, Sood D, Chandra I, Tomar V, Dhawan G, Chandra R (2018) Artif Cells Nanomed 
Biotechnol 46(sup1):1210–1220. https://doi.org/10.1080/21691401.2018.1449118 

13. Marchesan S, Prato M (2013) ACS Med Chem Lett 4(2):147–149. https://doi.org/10.1021/ 
ml3003742 

14. Yamakoshi Y, Umezawa N, Ryu A, Arakane K, Miyata N, Goda Y, Masumizu T, Nagano T 
(2003) J Am Chem Soc 125(42):12803–12809. https://doi.org/10.1021/ja0355574 

15. Castro E, Garcia AH, Zavala G, Echegoyen L (2017) J Mater Chem B 5(32):6523–6535. 
https://doi.org/10.1039/c7tb00855d 

16. Anilkumar P, Lu F, Cao L, Luo PG, Liu J-H, Sahu S, Tackett KN, Wang Y, Sun Y-P (2011) 
Curr Med Chem 18(14):2045–2059. https://doi.org/10.2174/092986711795656225 

17. Sacchetti C, Motamedchaboki K, Magrini A, Palmieri G, Mattei M, Bernardini S, Rosato N, 
Bottini N, Bottini M (2013) ACS Nano 7(3):1974–1989. https://doi.org/10.1021/nn400409h 

18. Bhirde AA, Patel S, Sousa AA, Patel V, Molinolo AA, Ji Y, Leapman RD, Gutkind JS, Rusling 
JF (2010) Nanomedicine 5(10):1535–1546. https://doi.org/10.2217/nnm.10.90 

19. Benjamin SR, Vilela RS, de Camargo HS, Guedes MIF, Fernandes KF, Colmati F (2018) Int 
J Electrochem Sci 13(1):563–586. https://doi.org/10.20964/2018.01.51 

20. Wagay JA, Nayik GA, Wani SA, Mir RA, Ahmad MA, Rahman QI, Vyas D (2019) J Food 
Meas Charact 13(3):1805–1819. https://doi.org/10.1007/s11694-019-00099-3 

21. Schwaminger SP, Fraga-García P, Selbach F, Hein FG, Fuß EC, Surya R, Roth H-C, Blank-
Shim SA, Wagner FE, Heissler S, Berensmeier S (2017) Adsorption 23(2–3):281–292. https:// 
doi.org/10.1007/s10450-016-9849-y 

22. Zhong L, Yu Y, Lian H-Z, Hu X, Fu H, Chen Y-J (2017) J Nanopart Res 19(11):375. https:// 
doi.org/10.1007/s11051-017-4064-7 

23. Yong K-T, Law W-C, Hu R, Ye L, Liu L, Swihart MT, Prasad PN (2013) Chem Soc Rev 
42(3):1236–1250. https://doi.org/10.1039/c2cs35392j 

24. Zhang H, Yee D, Wang C (2008) Nanomedicine 3(1):83–91. https://doi.org/10.2217/174 
35889.3.1.83 

25. Raj S, Jose S, Sumod US, Sabitha M (2012) J Pharm Bioallied Sci 4(3):186–193. https://doi. 
org/10.4103/0975-7406.99016 

26. Nohynek GJ, Dufour EK, Roberts MS (2008) Skin Pharmacol Physiol 21(3):136–149. https:// 
doi.org/10.1159/000131078 

27. Lu P-J, Huang S-C, Chen Y-P, Chiueh L-C, Shih DY-C (2015) J Food Drug Anal 23(3):587– 
594. https://doi.org/10.1016/j.jfda.2015.02.009 

28. Auffan M, Pedeutour M, Rose J, Masion A, Ziarelli F, Borschneck D, Chaneac C, Botta C, 
Chaurand P, Labille J, Bottero J-Y (2010) Environ Sci Technol 44(7):2689–2694. https://doi. 
org/10.1021/es903757q 

29. Mihranyan A, Ferraz N, Strømme M (2012) Prog Mater Sci 57(5):875–910. https://doi.org/ 
10.1016/j.pmatsci.2011.10.001 

30. Benn TM, Westerhoff P, Herckes P (2011) Environ Pollut 159(5):1334–1342. https://doi.org/ 
10.1016/j.envpol.2011.01.018 

31. Fytianos G, Rahdar A, Kyzas GZ (2020) Nanomaterials 10(5):979. https://doi.org/10.3390/ 
nano10050979 

32. Jiang T, Song X, Mu X, Cheang UK (2022) Sci Rep 12(1):13080. https://doi.org/10.1038/s41 
598-022-17053-x 

33. Puzyn T, Leszczynska D, Leszczynski J (2009) Small 5(22):2494–2509. https://doi.org/10. 
1002/smll.200900179 

34. Marchese Robinson RL, Cronin MTD, Richarz A-N, Rallo R (2015) Beilstein J Nanotechnol 
6(1):1978–1999. https://doi.org/10.3762/bjnano.6.202 

35. Panneerselvam S, Choi S (2014) Int J Mol Sci 15(5):7158–7182. https://doi.org/10.3390/ijm 
s15057158

https://doi.org/10.1080/1062936X.2013.840679
https://doi.org/10.1080/1062936X.2013.840679
https://doi.org/10.1080/21691401.2018.1449118
https://doi.org/10.1021/ml3003742
https://doi.org/10.1021/ml3003742
https://doi.org/10.1021/ja0355574
https://doi.org/10.1039/c7tb00855d
https://doi.org/10.2174/092986711795656225
https://doi.org/10.1021/nn400409h
https://doi.org/10.2217/nnm.10.90
https://doi.org/10.20964/2018.01.51
https://doi.org/10.1007/s11694-019-00099-3
https://doi.org/10.1007/s10450-016-9849-y
https://doi.org/10.1007/s10450-016-9849-y
https://doi.org/10.1007/s11051-017-4064-7
https://doi.org/10.1007/s11051-017-4064-7
https://doi.org/10.1039/c2cs35392j
https://doi.org/10.2217/17435889.3.1.83
https://doi.org/10.2217/17435889.3.1.83
https://doi.org/10.4103/0975-7406.99016
https://doi.org/10.4103/0975-7406.99016
https://doi.org/10.1159/000131078
https://doi.org/10.1159/000131078
https://doi.org/10.1016/j.jfda.2015.02.009
https://doi.org/10.1021/es903757q
https://doi.org/10.1021/es903757q
https://doi.org/10.1016/j.pmatsci.2011.10.001
https://doi.org/10.1016/j.pmatsci.2011.10.001
https://doi.org/10.1016/j.envpol.2011.01.018
https://doi.org/10.1016/j.envpol.2011.01.018
https://doi.org/10.3390/nano10050979
https://doi.org/10.3390/nano10050979
https://doi.org/10.1038/s41598-022-17053-x
https://doi.org/10.1038/s41598-022-17053-x
https://doi.org/10.1002/smll.200900179
https://doi.org/10.1002/smll.200900179
https://doi.org/10.3762/bjnano.6.202
https://doi.org/10.3390/ijms15057158
https://doi.org/10.3390/ijms15057158


14 The CORAL Software as a Tool to Develop Models for Nanomaterials’ … 369

36. Melagraki G, Afantitis A (2014) RSC Adv 4(92):50713–50725. https://doi.org/10.1039/c4r 
a07756c 

37. Puzyn T, Rasulev B, Gajewicz A, Hu X, Dasari TP, Michalkova A, Hwang H-M, Toropov 
A, Leszczynska D, Leszczynski J (2011) Nat Nanotechnol 6(3):175–178. https://doi.org/10. 
1038/nnano.2011.10 

38. Fourches D, Pu D, Tassa C, Weissleder R, Shaw SY, Mumper RJ, Tropsha A (2010) ACS 
Nano 4(10):5703–5712. https://doi.org/10.1021/nn1013484 

39. Doweyko AM (2008) J Comput Aided Mol Des 22(2):81–89. https://doi.org/10.1007/s10822-
007-9162-7 

40. Maggiora GM (2006) J Chem Inf Model 46(4):1535. https://doi.org/10.1021/ci060117s 
41. Doweyko AM (2004) J Comput Aided Mol Des 18(7–9):587–596. https://doi.org/10.1007/ 

s10822-004-4068-0 
42. Johnson SR (2008) J Chem Inf Model 48(1):25–26. https://doi.org/10.1021/ci700332k 
43. Dearden JC, Cronin MTD, Kaiser KLE (2009) SAR QSAR Environ Res 20(3–4):241–266. 

https://doi.org/10.1080/10629360902949567 
44. Scior T, Medina-Franco JL, Do Q-T, Martínez-Mayorga K, Yunes Rojas JA, Bernard P (2009) 

Curr Med Chem 16(32):4297–4313. https://doi.org/10.2174/092986709789578213 
45. Lee Y, von Gunten U (2012) Water Res 46(19):6177–6195. https://doi.org/10.1016/j.watres. 

2012.06.006 
46. Papa E, Villa F, Gramatica P (2005) J Chem Inf Model 45(5):1256–1266. https://doi.org/10. 

1021/ci0502121 
47. Toropova AP, Toropov AA, Martyanov SE, Benfenati E, Gini G, Leszczynska D, Leszczynski 

J (2012) Chemom Intell Lab Syst 110(1):177–181. https://doi.org/10.1016/j.chemolab.2011. 
10.005 

48. Toropova AP, Toropov AA, Benfenati E, Gini G (2011) Chemom Intell Lab Syst 105(2):215– 
219. https://doi.org/10.1016/j.chemolab.2010.12.007 

49. Toropov AA, Toropova AP, Benfenati E (2010) Mol Divers 14(1):183–192. https://doi.org/ 
10.1007/s11030-009-9156-6 

50. Toropov AA, Toropova AP, Kudyshkin VO (2022) Struct Chem 33(2):617–624. https://doi. 
org/10.1007/s11224-021-01875-y 

51. Sivaraman N, Srinivasan TG, Vasudeva Rao PR, Natarajan R (2001) J Chem Inf Comput Sci 
41(4):1067–1074. https://doi.org/10.1021/ci010003a 

52. Toropov AA, Rasulev BF, Leszczynska D, Leszczynski J (2008) Chem Phys Lett 457(4– 
6):332–336. https://doi.org/10.1016/j.cplett.2008.04.013 

53. Villaverde JJ, Sevilla-Morán B, López-Goti C, Alonso-Prados JL, Sandín-España P (2020) 
In: Shukla V, Kumar N (eds) Environmental concerns and sustainable development, air, water 
and energy resources, vol 1. Springer, Singapore, pp 1–27 

54. Stoudmann N, Nowack B, Som C (2019) Environ Sci Nano 6(8):2520–2531. https://doi.org/ 
10.1039/c9en00472f 

55. Chopra SS, Bi Y, Brown FC, Theis TL, Hristovski KD, Westerhoff P (2019) Environ Sci Nano 
6(11):3256–3267. https://doi.org/10.1039/c9en00603f 

56. Organization for Economic Co-operation and Development (OECD) (2014) Ecotoxicology 
and environmental fate of manufactured nanomaterials. In: Series on the safety of manu-
factured nanomaterials, ENV/JM/MONO(2014)1, No. 40. OECD, Paris. Accessed 12 Aug 
2022 

57. Organization for Economic Co-operation and Development (OECD) (2020) Guidance docu-
ment for the testing of dissolution and dispersion stability of nanomaterials and the use of 
the data for further environmental testing and assessment strategies. In: OECD guidelines for 
the testing of chemicals, ENV/JM/MONO(2020)9, No. 318. OECD, Paris. Accessed 12 Aug 
2022 

58. Camacho J, Smilde AK, Saccenti E, Westerhuis JA (2020) Chemom Intell Lab Syst 
196:103907. https://doi.org/10.1016/j.chemolab.2019.103907 

59. Siao MD, Shen WC, Chen RS, Chang ZW, Shih MC, Chiu YP, Cheng C-M (2018) Nat 
Commun 9(1):1442. https://doi.org/10.1038/s41467-018-03824-6

https://doi.org/10.1039/c4ra07756c
https://doi.org/10.1039/c4ra07756c
https://doi.org/10.1038/nnano.2011.10
https://doi.org/10.1038/nnano.2011.10
https://doi.org/10.1021/nn1013484
https://doi.org/10.1007/s10822-007-9162-7
https://doi.org/10.1007/s10822-007-9162-7
https://doi.org/10.1021/ci060117s
https://doi.org/10.1007/s10822-004-4068-0
https://doi.org/10.1007/s10822-004-4068-0
https://doi.org/10.1021/ci700332k
https://doi.org/10.1080/10629360902949567
https://doi.org/10.2174/092986709789578213
https://doi.org/10.1016/j.watres.2012.06.006
https://doi.org/10.1016/j.watres.2012.06.006
https://doi.org/10.1021/ci0502121
https://doi.org/10.1021/ci0502121
https://doi.org/10.1016/j.chemolab.2011.10.005
https://doi.org/10.1016/j.chemolab.2011.10.005
https://doi.org/10.1016/j.chemolab.2010.12.007
https://doi.org/10.1007/s11030-009-9156-6
https://doi.org/10.1007/s11030-009-9156-6
https://doi.org/10.1007/s11224-021-01875-y
https://doi.org/10.1007/s11224-021-01875-y
https://doi.org/10.1021/ci010003a
https://doi.org/10.1016/j.cplett.2008.04.013
https://doi.org/10.1039/c9en00472f
https://doi.org/10.1039/c9en00472f
https://doi.org/10.1039/c9en00603f
https://doi.org/10.1016/j.chemolab.2019.103907
https://doi.org/10.1038/s41467-018-03824-6


370 A. P. Toropova and A. A. Toropov

60. Toropov AA, Toropova AP, Benfenati E, Leszczynska D, Leszczynski J (2009) J Math Chem 
46(4):1232–1251. https://doi.org/10.1007/s10910-008-9514-0 

61. Toropova AP, Toropov AA, Benfenati E, Gini G, Leszczynska D, Leszczynski J (2011) Mol 
Divers 15(1):249–256. https://doi.org/10.1007/s11030-010-9245-6 

62. Toropova AP, Toropov AA (2019) J Mol Struct 1182:141–149. https://doi.org/10.1016/j.mol 
struc.2019.01.040 

63. Mashino T, Shimotohno K, Ikegami N, Nishikawa D, Okuda K, Takahashi K, Nakamura 
S, Mochizuki M (2005) Bioorg Med Chem Lett 15(4):1107–1109. https://doi.org/10.1016/j. 
bmcl.2004.12.030 

64. Toropova AP, Toropov AA, Benfenati E (2019) Fuller Nanotub Carbon Nanostruct 
27(10):816–821. https://doi.org/10.1080/1536383X.2019.1649659 

65. Marchesan S, Da Ros T, Spalluto G, Balzarini J, Prato M (2005) Bioorg Med Chem Lett 
15(15):3615–3618. https://doi.org/10.1016/j.bmcl.2005.05.069 

66. Salahinejad M, Zolfonoun E (2013) J Nanopart Res 15(11):2028. https://doi.org/10.1007/s11 
051-013-2028-0 

67. Yilmaz H, Rasulev B, Leszczynski J (2015) Nanomaterials 5(2):778–791. https://doi.org/10. 
3390/nano5020778 

68. Salahinejad M (2015) Curr Top Med Chem 15(18):1868–1886. https://doi.org/10.2174/156 
8026615666150506145017 

69. Toropov AA, Toropova AP (2015) Chemosphere 124(1):40–46. https://doi.org/10.1016/j.che 
mosphere.2014.10.067 

70. Toropov AA, Toropova AP (2015) Chemosphere 139:18–22. https://doi.org/10.1016/j.che 
mosphere.2015.05.042 

71. Toropova AP, Toropov AA (2015) Mini Rev Med Chem 15(8):608–621. https://doi.org/10. 
2174/1389557515666150219121652 

72. Toropova AP, Toropov AA, Benfenati E, Leszczynska D, Leszczynski J (2010) J Math Chem 
48(4):959–987. https://doi.org/10.1007/s10910-010-9719-x 

73. Toropov AA, Toropova AP (2014) Chemosphere 104:262–264. https://doi.org/10.1016/j.che 
mosphere.2013.10.079 

74. Toropov AA, Toropova AP, Veselinović AM, Veselinović JB, Nesmerak K, Raska I Jr, 
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Chapter 15 
Employing Quasi-SMILES Notation 
in Development of Nano-QSPR Models 
for Nanofluids 

Kimia Jafari and Mohammad Hossein Fatemi 

Abstract Nowadays, variant strategies are proposed and evaluated to find the best 
scenario for upgrading the high-accurate QSAR/QSPR modeling, particularly on 
nano-scale. One of the most interesting samples is nanofluids because of high poten-
tial in heat transfer applications. In the case of nano-QSPR, some optimum empirical 
conditions and characteristic features (e.g., size of nanoparticles and temperature) 
play impressive roles in nanofluids’ properties. Quasi-simplified molecular input-
line entry-system (quasi-SMILES) is nominated as valuable linear notation to meet 
the demands for representation of nanofluids, either chemical structure or defined 
conditions. The outcomes of nano-QSPR modeling of nanofluids by quasi-SMILES 
not only make possible the incorporation of molecular structure with experimental 
conditions in modeling process but also reveal the influence of some molecular 
features on studied thermophysical properties. Herein, recent studies on the devel-
opment of predictive models of nanofluids using quasi-SMILES, which is a new 
trend to estimate the properties of nanofluids, were discussed comprehensively. It is 
remarkable to point out that the statistical evaluation of proposed models confirmed 
the predictability power, reliability, and credit of developed models in all reported 
cases. It is rational that scholars are working on improving QSAR/QSPR modeling; 
employing quasi-SMILES is an open opportunity to overcome the limitations of 
conventional molecular representation. 
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Nomenclature 

Abbreviations 

ANN Artificial neural network 
ANFIS Adaptive neuro-fuzzy inference system 
Fk Extracted feature of quasi-SMILES 
AAD Average absolute deviation 
CORAL Correlation and logic 
CW(Fk) Correlation weight of Fk 

CCC Concordance correlation coefficient 
Cp Isobaric heat capacity 
CII Correlation intensity index 
DTR Decision tree regression 
DCW Optimal descriptor based on quasi-SMILES 
EG Ethylene glycol 
IIC Index of ideality of correlation 
GBR Gradient boosting regression 
MAE Mean absolute error 
MLP Multi-layer perceptron 
Q2 Leave-one-out cross-validated correlation coefficient 
QSAR Quantitative structure–activity relationship 
QSPR Quantitative structure–property relationship 
Quasi-SMILES Quasi-simplified molecular input-line entry-system 
R2 Correlation coefficient 
RBF Radial basis function 
RFR Random forest regression 
RMSE Root mean square error 
LDM Liquid drop model 
LSSVM Least square support vector machine 
SVR Support vector regression 
TC Thermal conductivity 
TF Target function 

Greek Symbols 

ρ Density 
ϕ Volume fraction of nanoparticle (%)
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Subscripts 

bf Base fluid 
nf Nanofluid 
p Nanoparticle 
v Volume fraction 

Chemical Formula 

Ag Silver 
Al2O3 Aluminium oxide 
AlN Aluminum nitride 
Au Gold 
Bi2O3 Bismuth (III) oxide 
CeO2 Cerium (IV) oxide 
Co3O4 Cobalt (II,III) oxide 
Cr2O3 Chromium (III) oxide 
Cu Copper 
CuO Copper oxide 
Dy2O3 Dysprosium (III) oxide 
Fe Iron 
Fe2O3 Iron (III) oxide 
Fe3O4 Iron (II,III) oxide 
Gd2O3 Gadolinium (III) oxide 
HfO2 Hafnium (IV) oxide 
In2O3 Indium (III) oxide 
La2O3 Lanthanum oxide 
MgO Magnesium oxide 
Mn2O3 Manganese (III) oxide 
Mn3O4 Manganese (II,III) oxide 
Ni2O3 Nickel (III) oxide 
NiO Nickel (II) oxide 
Sb2O3 Antimony oxide 
Si3N4 Silicon nitride 
SiC Silicon carbide 
SiO2 Silicon dioxide 
SnO2 Tin (IV) oxide 
TiN Titanium nitride 
TiO2 Titanium dioxide 
WO3 Tungsten (VI) oxide 
Y2O3 Yttrium (III) oxide 
Yb2O3 Ytterbium (III) oxide
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ZnO Zinc oxide 
ZrO2 Zirconium oxide 

15.1 Introduction 

15.1.1 Nanofluids 

Nowadays, the sustainability plan on a global scale is toward the upgrade of energy 
efficiency in various scopes, for instance, high-efficient cooling systems, which are 
common in automobile radiators and air conditioning [1, 2]. One of the most inter-
esting novel products of nanotechnology is nanofluids, which are of broad poten-
tial for implementations in heat transfer operations and thermofluid systems by a 
remarkable enhancement in their performance. The suspension of nano-scale mate-
rials (including nanoparticle, nanotube, and nano-rod) with 1–100 nm size range in a 
conventional base fluid such as water, ethylene glycol, transfer oil, ionic liquids, 
and deep eutectic solvents are named nanofluids [3, 4], which cause to notable 
progress in thermophysical properties. Taking into account the unique character-
istics of nanofluids, in particular viscosity and thermal conductivity, it is predictable 
to take the place of traditional options in heat transfer equipment. Accordingly, these 
materials are a hot topic in both scientific researches and industrial applications. 

Nanofluids are prepared in two main ways: single-step and two-step methods. 
Most privileges belong to the two-step method since it is user-friendly and ease-
doing. Nanostructures (nanoparticles, carbon nanotubes, graphene, etc.) are added 
to a liquid fluid and then mixed properly by a mechanical homogenizer up to form a 
uniform suspension. With respect to this issue that homogeneity of nanofluids should 
be considered as a crucial aspect since it will influence thermophysical effectiveness, 
different processes are suggested to stabilize prepared nanofluids such as microwave 
radiation, usage of electrochemical equipment, and ultra-sonication (which is the 
most common method) [4, 5]. In the last years, there have been paramount contribu-
tions, mainly focused on the design of new nanofluids (considering various nanopar-
ticles in mono or hybrid forms and different base fluids), well-dispersion strategies, 
and ideas to use in numerous scopes (such as cooling, lubricant, and phase change 
materials) [2, 6–8]. Moreover, regarding the high potential of employing nanofluids 
for heat transfer operations, very diverse papers are published in respect to the evalu-
ation of thermophysical properties especially thermal conductivity and viscosity by 
different types of nanofluids, variant nanoparticles’ concentration, and temperature. 
Some effective parameters on thermal conductivity, as the most noteworthy property, 
are shown in Fig. 15.1.
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Fig. 15.1 Some of the most impressive parameters on thermal conductivity of nanofluids 

15.1.2 Theoretical Methods Applied for Study of Nanofluids’ 
Properties 

Despite there being many and ever-increasing experimental studies focused on the 
introduction of new nanofluids, measurement of their thermophysical properties, 
and analysis of their applications, the theoretical studies on a survey of the effec-
tive features of nanofluids’ characteristics in relevant literature are still limited 
(Fig. 15.1). Study of nanofluids with a theoretical point of view is pivotal, not only to 
subtract the quantity of high-cost experimental inspections (which are energy/time-
consuming as well), but to appreciate also the impressive components on nanofluids’ 
thermophysical properties. 

Among all available theoretical approaches, artificial neural network (ANN), 
radial basis function (RBF), adaptive neuro-fuzzy inference system (ANFIS), and 
support vector machine (SVM) are the most usual techniques, which are utilized to 
develop models for properties of nanofluids [8, 9]. For example, Sharma et al. [10] 
were collected a data set including 228 experimental thermal conductivity values 
of TiO2 dispersed in water with different sizes and shapes, then modeled thermal 
conductivity of nanofluids by five algorithms, ANN, support vector regression (SVR), 
random forest regression (RFR), gradient boosting regression (GBR), and decision 
tree regression (DTR) algorithms. Eventually, gradient boosting was suggested as the 
best algorithm with precise analysis and confirmed that the shape of titania nanopar-
ticles affected the thermal conductivity predictions of the nanofluids. In another 
study, Cui et al. [11] studied the effective parameters on thermal conductivity of 
nanofluids experimentally and theoretically. An empirical data set contains 469 data 
(80 collected from their experiments, 389 collected from relevant literature) which 
were considered of TiO2 nanoparticles (in shapes sheet, spherical, clubbed, and ellip-
soidal) suspended in water in temperature range of 20–60 °C. In order to generate a
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predictive network, four factors including shape factor, thermal conductivity, and 
concentration of nanoparticles and temperature introduced as input and thermal 
conductivity of nanofluids defined as a single output. Then, RBF, LSSVM, ANFIS, 
multi-layer perception (MLP), generalized regression neural network, and cascade 
feedforward were used to estimate statistical performance. Ultimately, the cascade 
feedforward neural network trained by Levenberg–Marquardt was nominated as the 
best-optimized network. 

15.1.3 The Importance of QSPR Study for Nanofluids 

Taking into account, great attention to nanofluids has been received both from the 
scientific community and industry, and the fact that their fabrication may increase 
by the year, environmental effects of these materials should be addressed, since 
such effects can accumulate and spread. Furthermore, revision of relevant literature 
indicated despite that the molecular structure of nanoparticles is impressment on 
nanofluids’ properties, particles’ size, volume fraction of nanoparticles and tempera-
ture are the most popular variables in theoretical studies [12]. Hence, the development 
of credible procedures to forecast their properties and/or activities connecting with 
the molecular structure is a serious object. 

A well-known powerful paradigm to design an accurate mathematical model 
related to the physicochemical properties and structural features of compounds is 
a quantitative structure–property relationship (QSPR), which is entitled nano-QSPR 
when performed for nano-scale samples [13–16]. Although there are various chal-
lenges in the route of chemometric studies of nanofluids which are arising from that 
the structure elucidation of nanofluids is still an open question, some nano-QSPR 
models generation has been successfully accomplished. Herein, besides the relevant 
insights in the current subject and providing prominent case studies, some key strate-
gies used in scientific reports to reach successful usage of quasi-simplified molecular 
input-line entry-system (quasi-SMILES) notation in the development of nano-QSPR 
models are discussed in detail. The future directions on using quasi-SMILES in 
designing predictive models for nanofluids are given as well. 

15.2 Methodology of CORAL-Based Models Generation 

15.2.1 Collection of a Valid Data Set 

The quality of QSPR procedure strongly appertains to the gathered experimental 
data set. Therefore, collecting a consistent and reliable data set is decisive. Since 
erratic data lift the risk of inconstant modeling process and then generate QSPR
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models with deficient statistical performance and/or predictability, a standard guide-
line including key criteria should apply to appraise existing data. Depending on 
the final purpose of generating nano-QSPR models, the intended principles toward 
collecting an acceptable data set are as follows: 

(i) accessible in a proper volume; 
(ii) supported with adequate concerned information; 
(iii) performed by good-quality laboratory skill through a clarified protocol; and 
(iv) confirmed by sufficient chemical characterization tests [17]. 

Also, this fact should be highlighted that different testing conventions, which are 
enforced by discrete operators/laboratories may cause a notable variance in data. 
Thus, although broad diversity is more suitable in collecting data, it is momentous 
to keep a logical coherency in selected data with regard to their method of analysis 
as much as possible. 

Fortunately, the rapid growth of empirical examinations of nanofluids’ thermo-
physical properties is highly profitable for complementary theoretical projects. The 
number and quantity of data for different properties, in particular thermal conduc-
tivity and viscosity, are not restricted and properly available in scientific journals. 
In order to gather a precise data set to start nano-QSPR modeling of nanofluids, 
the type, size, shape, and concentration of nanoparticles, base fluid nature, prepara-
tion method, temperature, and any specific experimental conditions in regard to the 
studied target property should define accurately. 

15.2.2 Quasi-SMILES for Nanofluids 

The quasi-SMILES is the advanced version of SMILES string, which is nowadays 
recognizing as a promising tackle to import molecular representation, especially 
in QSPR and nano-QSPR studies. Overall, quasi-SMILES is constructed of two 
key components, the first part includes chemical composition of the studied sample 
clarified by SMILES structure, and the other part consists of a symbols chain, 
which are codes of all available/intended experimental conditions and/or possible 
complementary information to better describe target samples [16, 18, 19]. 

The molecular structure of nanofluids is in such a way that besides chemical repre-
sentation of nanoparticles, it is necessary to consider extra variables to represent them 
accurately. The diversity of nanofluids is actually wide, changing nanoparticles and 
base fluid form a new nanofluids, and it can be even much more when two elements 
are defined for each part, such as hybrid nanofluids. Along with variety in possible 
choices as nanoparticles (different types, different size, shape, and concentration) 
and base liquid (such as water, organic solvents, ionic liquids, and deep eutectic 
solvents), which create a novel nanofluid, the specified experimental conditions 
(e.g., preparation method, temperature, pressure, dispersion technique, sonication 
time) are leading to define a new sample in nano-QSPR studies. In this condition,
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quasi-SMILES notation is the best option to reflect nanofluids. Indeed, using quasi-
SMILES makes possible to generate predictive models for any planned thermophys-
ical properties of nanofluids while equation is depended on each feature/condition 
that encoded in quasi-SMILES structure. It should be mentioned that more defined 
details in quasi-SMILES notation would cause a more informative model as an 
outcome, which is truly valuable. In order to display a proper outlook of the concept 
of quasi-SMILES structure for nanofluid samples, Fig. 15.2 is provided.

15.2.3 Optimal Descriptors, Predictability Criteria, 
and Optimization 

The whole modeling process is developed using the CORAL free and open-access 
framework. The optimal descriptors based on extracted features of intended quasi-
SMILES calculated as the following: 

DCW
(
T ∗, N ∗

) = 
n∑

k=1 

CW(Fk) (15.1) 

where T * and N* are the specific parameters of Monte Carlo method, while CW(Fk) 
is the calculated correlation weight for each certain quasi-SMILES feature [13, 16, 
20, 21]. Using the calculated optimal descriptors, a one variable correlation would 
be developed as overall format of suggested model, as follows: 

Target property = C0 + C1 × DCW
(
T ∗, N ∗

)
(15.2) 

where C0 and C1 are regression coefficients. The index of ideality of correlation 
(IIC) and correlation intensity index (CII) is suggesting as possible tools to rectify 
the predictive power of developed models. The detail of their calculation along with 
complete modeling process was well discussed in literature [13, 14, 16, 20]. It is 
notable to point out that precise statistical appraisement is a drastic step in model 
development. Through Monte Carlo method, some common criteria such as R2, CCC, 
Q2, and R2 

m parameters are employed to estimate the credit and validity of generated 
models. 

15.3 Successful Nano-QSPR Studies on Nanofluids 

This section is specialized in reviewing recent trend researches in nano-QSPR 
modeling of nanofluids. With the aim of covering all available studies on nano-QSPR 
modeling of nanofluids, besides performed papers with a precise focus on the elucida-
tion of the underlying physical aspects of these substances by quasi-SMILES, a brief
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overview of developed models for nanofluids using different methods is presented 
as well. 

To the best of one’s knowledge, the first paper on QSPR study of nanofluids has 
been performed by Sizochenko et al. [22] in 2015. They defined the assessment of 
the liquid drop approach to the model thermal conductivity of nanofluids as the main 
object of the project. Taking into account that thermal conductivity is dependent 
on both size and shape of nanoparticles, the domain of application was confined to 
spherical and near-spherical nanoparticles, and in addition to volume fraction and size 
of nanoparticles, liquid drop model (LDM)-based descriptors were applied as size-
dependent descriptors for a series of nanoparticles. Toward investigating the effectual 
structural features of nanofluids on the improvement of thermal conductivity, random 
forest regression was applied, which is a stepwise non-parametric method. In the end, 
a model composed of 10 trees was developed. 

After the aforementioned paper, a detailed analysis of viscosity and thermal 
conductivity of nanofluids was performed by Sizochenko et al. [23]. A varied database 
includes silica-derived, metals, and metal oxides nanoparticles with diverse size, and 
concentrations dispersed in water at the common range of temperature (21–25 °C) 
were subjected to modeling. Weka software package was used for computational 
process, and M5P classifier, which makes possible to incorporate a decision tree 
model with linear regressions at nodes, was exerted. It should be stated that struc-
ture of nanofluids was reflected by a new suggested hierarchical combination system 
of descriptors such as thickness and concentration of interfacial layer and size of 
nanoparticles. The final proposed model for viscosity was assigned by R2 = 0.79 
and RMSE = 0.234; also for thermal conductivity, it was determined by R2 = 0.81 
and RMSE = 0.055. Moreover, the increment in interfacial layer thickness, surface 
area ratio, and weighted fraction-dependent factors, together with decrement in size 
of nanoparticles were reported as efficient parameters on raising thermal conductivity 
and viscosity of nanofluids. 

Sizochenko et al. [24] applied a simple case of linear regression to build theo-
retical models for thermal conductivity of nanofluids based on alumina and copper 
oxide. In order to represent dependency of target property to size and concentration of 
nanoparticles, the weighted surface-area-to-volume ratio descriptor was calculated. 
Regarding their findings were confirmed that the dependency of thermal conduc-
tivity on concentration and size of nanoparticles was non-linear for alumina-based 
nanofluids and linear for CuO-based ones, and rising in weighted fraction-dependent 
parameters lead to thermal conductivity enhancement. 

With the aim of focusing on building up predictive models for nanofluids using 
quasi-SMILES, a detailed and comprehensive review of recently published studies 
is provided as follows. The stability of nanofluids is such an important aspect, which 
should be followed precisely due to its direct influence on thermophysical properties. 
Evaluation of zeta potential is one of the most usual analyzes to remark the stability 
of nanofluids, which Toropov et al. [25] chose it as an endpoint to subject nano-QSPR 
modeling using quasi-SMILES. 

Eighty-seven zeta values of metal oxide nanoparticles in water were compiled, 
then nominal size and size in the medium were ascertained as basic attributes which
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all encoded by specialized quasi-SMILES. Some example of defined quasi-SMILES 
structures in various studies is represented in Table 15.1.

Considering three different splits, mathematical models with content statistical 
qualities were built up, while they mentioned that because of high deviation, the 
obtained models were restricted to the aim of stability prediction. Nevertheless, 
through three different target functions, Toropov et al. [20] performed extra calcula-
tions on the previous benchmark data set to provide a comprehensive model evolu-
tion in zeta potential of nanofluids. The preferable target functions were defined with 
respect to different predictive ability criteria as follows: 

Target function #1: TF1 = R + R' − ||R − R'|| × 0.1 (15.3) 

Target function #2: TF2 = TF1 + IIC × 0.2 (15.4) 

Target function #3: TF3 = TF1 + CII × 0.2 (15.5) 

where R is correlation coefficient for training set and R
'
is that one for invisible 

training set. Each target function was checked by three different runs, and reported 
statistical qualities were quite satisfying since at the best result R2 

validation =0.9336 and 
RMSEvalidation = 6.6 while the best developed model in the previous study reached 
R2 
validation = 0.8213 and RMSEvalidation = 15.8. 
Due to the high potential application of nanofluids in heat transfer systems, 

thermal conductivity is the exact property that attracts the most attention. Some 
reputable theoretical relationships of thermal conductivity used repetitively in rele-
vant literature are as follows, which revealed thermal conductivity of all elements 
(nanoparticles, base fluids, and nanofluids), and volume fraction is the common 
variables. 

Maxwell [27] 

keff = kf 
kp + 2kf + 2ϕ

(
kp − kf

)

kp + 2kf − ϕ
(
kp − kf

) (15.6) 

Bruggeman [27] 

ϕ

[
kp − keff 
kp + 2keff

]
+ (1 − ϕ)

[
kf − keff 
kf + 2keff

]
= 0 (15.7) 

Hamilton and Crosser [27] 

keff = kf 
kp + (n − 1)kf + (n − 1)ϕ

(
kp − kf

)

kp + (n − 1)kf − ϕ
(
kp − kf

) (15.8)
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At the first try of implementation of quasi-SMILES as a tool to generate models for 
thermal conductivity of nanofluids, Jafari and Fatemi [13] collected a reliable data 
set involving several common-use metal oxides nanoparticles in ethylene glycol, 
the second choice as the popular base liquid. As far as is known, this is the most 
general and largest provided data set in nano-QSPR studies of nanofluids up to now. 
Four random split were designated to build up models, which averagely a training 
sets of 270 nanofluids and a validation set of 90 nanofluids were used. Monte Carlo 
optimization has provided an interesting option, named promoters, which are the sole 
features extracted of quasi-SMILES with reiterative positive/negative computed CW 
values in all executed runs. Regarding the sign of CW for each promoter, an increasing 
or decreasing effect on the endpoint would be granted to those features. The authors 
reported by checking calculated CWs in all splits, it was concluded that high volume 
fractions and nanoparticles size of 20 and 31 nm had a positive role on thermal 
conductivity, while the feature represented of double bond and low volume fractions 
(in the range of 0.2–0.75) displayed a reduction impact on thermal conductivity. 
Table 15.2 represents a nutshell of some considerable impressive features extracted 
by Monte Carlo modeling using quasi-SMILES. 

In order to make proposed models for nanofluids thermal conductivity more 
acceptable, Jafari et al. [28] regenerated nano-QSPR model by a specific index, 
CII, and recommended new models using same original data set of ethylene glycol-
based metal oxide nanofluids and identical data distribution to sub-sets defined in 
the previous study [13]. Their theoretical findings have confirmed that applying 
CII in target function cause a considerable augment in statistical characteristics of 
developed models and built up more robust computational relationships since the 
range of correlation coefficient and leave-one-out cross-validated coefficient (Q2) of  
validation set, respectively, in the previous study [13] were achieved 0.68–0.86 and 
0.66–0.85, while by concerning CII they improved up to R2 

validation set = 0.82–0.91, 
and Q2 

validation set = 0.81–0.90. Also, in the case of mean absolute error (MAE) of

Table 15.2 Some highlighted effective structural features on thermophysical properties of 
nanofluids extracted by developed nano-QSPR models 

Properties of nanofluids Notable features 

Positive Negative 

Thermal conductivity High ϕv, T range (24–55 °C), 
Al, Ce, Mg, Ti, Zn [13] 

Low ϕv (0.2–0.79 v.%), double 
bond [13] 

Zeta potential Low nominal size range 
(3.59–45.23 nm), and Ni [25] 

Not defined [25] 

Density Size range (25–50 nm), Al, N, 
Ti [14] 

Double bond, triple bond, low ϕv 
(0.01 wt.%) [14] 

Isobaric heat capacity Low ϕv (0.01–0.05 wt.%), size 
range (20–80 nm), Al, Ti [14] 

Double bond, high ϕv (0.1 wt.%) 
[14] 

Viscosity High ϕv (3–5 v.%), O, Zn, 
shapes of platelet, cylindrical 
[26] 

Low ϕv (1 v.%), Al [26] 
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validation set in the previous study [13] was calculated in the range of 0.028–0.037, 
while via using suggested criteria, CII, it decreased to the range of MAEvalidation set = 
0.023–0.029. 

In the route of evaluation of nanofluids’ characteristics, Jafari and Fatemi [14] 
investigated the modeling of density and isobaric heat capacity of some nitride-based 
nanofluids using the Monte Carlo method in CORAL framework. Even though the 
thermophysical properties of dispersions containing nano-sized particles have been 
extensively studied in the literature, there is still a lack of accurate models to predict or 
correlate these kinds of properties. The optimal descriptors based on quasi-SMILES 
considering chemical structure of AlN, TiN, and Si3N4, as well as temperature, 
size, and concentration of nanoparticles were computed, and predictive models were 
generated via Monte Carlo optimization for three random splits in each property. 
To take a closer look at proficiency of suggested models by way of nano-QSPR 
paradigm, a comparison with popular classic models was subjected to gage. Pak and 
Cho [29] is a classic model to describe the heat capacity of nanofluids, which the 
equation is as follows: 

Cp,nf = (1 − ϕv)Cp,bf + ϕvCp,p (15.9) 

Moreover, in order to illustrate the relation of the density of nanofluids, Pak and 
Cho [29] equation is given below: 

ρnf = (1 − ϕv)ρbf + ϕvρp (15.10) 

Jafari and Fatemi [14] compared qualities of acquired models by Monte Carlo 
method to the aforementioned classical equations. Interestingly, the efficiency of 
proposed models was premier to the classical models since statistical characteristics 
of the best split (split 1) were calculated as R2 = 96.8 and AAD = 0.225 for density 
whenever by Pak and Cho equation was as R2 = 96.3 and AAD = 0.302, also in 
the case of isobaric heat capacity as the best results of nano-QSPR models (split 
2), R2 = 96.8 and AAD = 0.447, and the worst results were calculated by split 1 
with R2 = 93.2 and AAD = 0.640, while using Pak and Cho equation R2 = 86.0 
and AAD = 3.593. It was crystal clear that even by worst split, the performance of 
developed nano-QSPR models was better than classic equations. Furthermore, the 
outcomes obtained by calculated CWs made disclosed that some attributes such as 
double and triple bond influence on density and isobaric heat capacity of nanofluids, 
while nanoparticles’ size did not efficient touch on intended properties. 

Lately, Jafari et al. [26] used quasi-SMILES representation to take into considera-
tion the size and shape of nanoparticles in modeling nanofluids’ viscosity by calcula-
tion of optimal descriptors through Monte Carlo method. Their contribution not only 
had been directed to the calculation of size and shape-dependent optimal descrip-
tors but also supplied a comparison of model generation using different indexes, CII 
and IIC, simultaneously. An authentic data sets contain four types of nanoparticles 
suspended in water which was distinguished with the aim of survey the size effect. 
Also, another data set of 100 water-based nanofluids was utilized to take into account
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the particles’ shape effect on viscosity. In order to division of the original data sets, 
the authors maintained the ratio of 25% for all training, invisible training, calibration, 
and validation sets. The authors asserted that although the results achieved from three 
random splits in both intended target functions (using CII and IIC) were credible and 
robust for total sub-sets, the statistical qualities have markedly elevated when the 
CII was included in the target function. For instance, the reported results for the best 
achieved splits were as follows: for data set I (study of size effect), R2 value of split 
1 was increased from 0.8686 to 0.9444, and for data set II (study of shape effect), R2 

value of split 1 was enhanced from 0.8230 to 0.9402. 
This chapter dealt with an overview of nanofluids, their characteristics, and 

theoretical studies in particular by QSPR paradigm (Table 15.3).

15.4 Conclusion and Perspective Outlook 

A general modeling workflow based on optimal descriptor of quasi-SMILES was 
subjected to provide an overall outlook of the development nano-QSPR modeling of 
nanofluids, which did not require long-term and complicated computations. Owing 
to the simplicity, transparency, and availability of empirical data, it is expected even 
if just a few studies have been currently reported in applying quasi-SMILES in 
the design of nano-QSPR models for thermophysical properties of nanofluids, the 
attention on this notation due to high potential in considering of different aspects of 
nanofluids would be continuously growing. It was discussed that the proposed models 
on nanofluids’ properties not only should be statistically sound, trusty, and robust, 
but it is better also consist of varied data sets in order to have a satisfying applicability 
domain. By a comprehensive review of relevant literature, a number of nano-QSPR 
developed models based on quasi-SMILES for the most prominent thermophysical 
properties of nanofluids, i.e., thermal conductivity, density, isobaric heat capacity, 
and viscosity were discussed. It was mentioned accurately, the proposed models on 
nanofluids’ properties not only should be statistically sound, trusty, and robust, but 
it is better also consist of varied data sets in order to have a satisfying applicability 
domain. Furthermore, regarding the successful studies, it was confirmed the models 
generated by the application of CII are statistically more valid than those developed 
with IIC. It worth to mention that the newest version of CORAL software is offered 
novel target functions based on CII, which could be profitable to develop predictive 
nano-QSPR models for various thermophysical properties of nanofluids with possible 
better statistical performance. 

Since moving forward always should be appreciated, the availability of all data 
sets utilized in reviewed studies (well provided by authors in manuscripts and/or 
supplementary materials) encourages other chemometric scholars to challenge the 
current suggested method by performing further researches on a generation of theo-
retical models for nanofluids and supply a competition between nano-QSPR models 
based on quasi-SMILES with other possible ones. In spite of the fact that it is explicit 
that experimental strategies can never be quite replaced by computational process,
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these approaches can be integrated to provide a better comprehension. Neverthe-
less, it is well expected to consider nano-QSPR based on quasi-SMILES as an 
exciting trend in theoretical studies of nanofluids due to great potential in introducing 
computational relationships of nanofluids’ thermophysical properties with different 
aspects including structural features and experimental circumstances. Hence, one can 
conclude that the demand to develop more number of nano-QSAR models is not only 
advisable but also supports its certain role in prediction of nanofluids’ characteristics. 

Declaration of Competing Interest The authors declare that they have not any known personal 
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Chapter 16 
On Complementary Approaches 
of Assessing the Predictive Potential 
of QSPR/QSAR Models 

Andrey A. Toropov, Alla P. Toropova, Danuta Leszczynska, 
and Jerzy Leszczynski 

Abstract This chapter covers an overview of recent studies performed to improve 
the statistical tools to assess and compare different QSPR/QSAR models. The critical 
analysis of existing approaches to assess the predictive potential is briefly presented. 
The disadvantages of the systems of self-consistent models are also discussed. The 
potential advantages of the systems of self-consistent models are defined. A series of 
successful applications of the approach for several endpoints are discussed in order 
to confirm the potential of the approach as a tool to validate QSAR models. 

Keywords QSPR/QSAR · Index ideality of correlation (IIC) · Correlation 
intensity index (CII) · Self-consistent models · Monte Carlo method 
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CCC Concordance correlation coefficient 
CII Correlation Intensity Index 
IIC Index Ideality of Correlation 
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MLR Multiple Regression Analysis 
PLS Partial Least-Squares regression analysis 
RF Random forest 
RMSE Root mean squared error 
R2 Determination coefficient 
Q2 The leave-one-out cross-validation R2 

QSPR Quantitative structure–property relationships 
QSAR Quantitative structure–activity relationships 
SMILES Simplified molecular-input line-entry system 

16.1 Introduction 

Complex biochemical interactions, that define different kinds of biological activities, 
could be expressed as a “mathematical function” not only of the molecular struc-
ture but also some additional circumstances, such as physicochemical conditions, 
interactions via energy, and information effects between a substance and organisms, 
organs, or cells. These circumstances lead to the great complexity of prediction for 
biochemical endpoints since all “details” of corresponding phenomena are practically 
unavailable for accurate registration and analysis. Researchers have no possibility 
to carry out an analysis of all possible ways of the biochemical interactions, which 
define toxicological or therapeutically attractive effects via direct experiment. Conse-
quently, a compromise, i.e., development of predictive models describing the above 
phenomena, becomes necessary. However, the estimation of the predictive potential 
of these models remains a vital task that by now is solved only partially. 

Establishing quantitative structure–property/activity relationships 
(QSPRs/QSARs) between a desired endpoint (property) and structural details 
(descriptors) of the investigated compounds is one of the key goals of computational 
chemistry, and possibly, one of the directions to follow for theoretical chemistry. 
Perhaps both research areas could benefit from such an approach. If one considers 
the articles of H. Wiener [1–3] published in 1947 to be the beginning of QSAR 
research, then it could be argued that this direction has been successfully developing 
for the last 75 years. 

Perhaps the most important and most unsettled issue of such techniques is the 
trust in quality of developed models: How to establish that the model is reliable and 
confirm that the model is dedicated—works well for a given substance? 

In addition to the established, calculated criteria, that could evaluate quality of 
a model, hints such as “all models are wrong, but some of them are useful” [4] or  
“everything should be made as simple as possible, but not simpler” [5] can be very 
beneficial for applications of the QSAR techniques. 

Any model must be tested before it can be used to “understand” or predict new 
phenomena, such as the biological activity of new compounds [6]. Nevertheless,



16 On Complementary Approaches of Assessing the Predictive Potential … 399

there are no generally accepted recommendations on how such a check should be 
carried out in practice. 

A set of guidelines for developing validation of predictive QSPR models may be 
the following: First randomization of the modeled property (Y-scrambling). Second, 
multiple leave-many-out cross-validations. Third, application of external validation 
that uses rational division of a dataset into training and test sets. In addition, one 
should also establish the domain of applicability of a model in the chemical space 
[7]. 

Nonetheless, often y-randomization is not available to a potential user of a model 
due to the values of all descriptors in the pool for all compounds not being published 
[8]. Despite widespread use, multiple leave-one-out (as well as leave-many-out) 
cross-validation methods are questioned [9, 10]. There is disagreement regarding the 
definition of the applicability domain [11, 12]. However, most researchers working in 
the field of QSPR/QSAR analyses recognize the expediency of external verification, 
that is, the evaluation of the model with molecules not used in the construction of 
the model [10, 13, 14]. Evidently, an appropriate software is required to create a 
QSPR/QSAR models. 

16.2 Software for Building Up QSPR/QSAR Models 

Currently, various types of software have been developed to assist in QSPR/QSAR 
studies. This confirms the importance and prevalence of the problem of devel-
oping computer models of the physicochemical and biomedical behavior of various 
substances. Examples of this kind of software can be found on the Internet. Table 
16.1 contains several examples of the mentioned software.

In addition, in order to develop QSPR/QSAR models, it is necessary to rationally 
distribute the available data into training and validation sets. The distribution of avail-
able data for QSPR/QSAR analyses into the training and validation sets can be done in 
various manners [15, 16]. Such distribution surely influences the statistical quality of 
QSPR/QSAR models [17–19]. Nevertheless, in the modern QSPR/QSAR research, 
the majority of the models are based solely on single distribution of available data 
into the training and validation sets. According to many authors, some rational split 
into training and validation sets gives better statistical results than models obtained 
with several random splits [20]. However, the numerical experiments point out that 
splits, which are successful for one approach, can be unsuccessful for another [21, 
22]. Therefore, it is better to consider several splits of the data into the training and 
validation sets [23].
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Table 16.1 List of software available on the Internet suggested for development of QSPR/QSAR 
models 

Software Comments Link 

CODESSA CODESSA (Comprehensive 
Descriptors for Structural and 
Statistical Analysis) PRO is a 
comprehensive program for 
developing QSAR/QSPR by 
integrating all necessary 
mathematical and 
computational tools to predict 
property values for any 
chemical compound with 
known molecular structure 

http://www.codessa-pro. 
com/ 

DRAGON Dragon 7.0 provides an 
improved user interface, new 
descriptors, and additional 
features such as the calculation 
of fingerprints and the support 
for disconnected structures 

https://chm.kode-solutions. 
net/pf/dragon-7-0/ 

Virtual Computational 
Chemistry Laboratory 

This site provides free online 
tools that can be useful in 
performing computational 
chemistry, including building 
and visualizing chemical 
structures, calculating 
molecular properties, and 
analyzing relationships between 
chemical structure and 
properties 

http://www.vcclab.org/ 

QSAR Research Unit in 
Environmental Chemistry and 
Ecotoxicology 

The development of QSAR 
models for predicting the 
environmental behavior and 
biological activities of 
chemicals of concern, such as 
classical organic environmental 
pollutants and emerging 
contaminants: personal care 
products, pharmaceuticals, and 
nanoparticles 

https://dunant.dista.uninsu 
bria.it/qsar/ 

PaDEL-Descriptor A software to calculate 
molecular descriptors. The 
software currently calculates 
1875 descriptors 

http://www.yapcwsoft.com/ 
dd/padeldescriptor/ 

VEGA The software predicts integrate 
traditional QSPR/QSAR 
models and models obtained 
with the read across technique 

https://www.vegahub.eu/

(continued)

http://www.codessa-pro.com/
http://www.codessa-pro.com/
https://chm.kode-solutions.net/pf/dragon-7-0/
https://chm.kode-solutions.net/pf/dragon-7-0/
http://www.vcclab.org/
https://dunant.dista.uninsubria.it/qsar/
https://dunant.dista.uninsubria.it/qsar/
http://www.yapcwsoft.com/dd/padeldescriptor/
http://www.yapcwsoft.com/dd/padeldescriptor/
https://www.vegahub.eu/
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Table 16.1 (continued)

Software Comments Link

CORAL The program provides an 
opportunity to develop and test 
QSPR/QSAR models in the 
“structure–property/activity” 
paradigm, as well as models in 
the “structure and experimental 
conditions—property/activity” 
paradigm (through the so-called 
quasi-SMILES) 

http://www.insilico.eu/coral 

DTC-QSAR: A complete 
QSAR modeling package 

DTC-QSAR software is a 
complete modeling package 
providing a user-friendly, 
easy-to-use GUI to develop 
regression (MLR, PLS) and 
classification-based (LDA and 
Random Forest) QSAR models. 
It includes two well-known 
variable selection techniques, 
i.e., genetic algorithm and best 
subset selection 

https://dtclab.webs.com/sof 
tware-tools

16.3 The Critical Analysis of Existing Approaches 
to Assessing the Predictive Potential 

Over the years, the number of statistical characteristics aimed to measure the predic-
tive potential of a model has gradually increased, despite the evident attractiveness 
of the minimum number of criteria of the predictive potential for practical applica-
tions. On the one hand, the diversity of different standards for predicting potential 
could be consider as a tool to improve the quality of QSPR/QSAR models. On the 
other hand, this situation sometimes causes uncertainty in choosing the best model. 
In other words, contradictions in the recommendations of various criteria force the 
researcher to search for truth (i.e., the best choice) in a greater maze of possibilities. 
Table 16.2 contains a list of widespread criteria of the predictive potential.

16.4 Convenience and Inconvenience of Correlation 

In fact, a QSPR/QSAR approach provides the user with correlations between a molec-
ular architecture-dependent physicochemical or biochemical parameter of interest 
and the calculated value of the aforementioned parameter through some mathematical 
function that uses the molecular structure and/or controlled experimental conditions 
data. Suppose the model value is calculated using a small number of molecular char-
acteristics. In that case, the predicted value becomes a very attractive alternative to

http://www.insilico.eu/coral
https://dtclab.webs.com/software-tools://dtclab.webs.com/software-tools
https://dtclab.webs.com/software-tools://dtclab.webs.com/software-tools
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Table 16.2 Collection of the most popular criteria for the predictive potential of QSPR/QSAR 

The criterion of the predictive potentiala References 
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CCC = 2
∑

(x−x)(y−y)
∑

(x−x)2+∑
(y−y)2+n(x−y)2

[28] 

IICC = rC min(−MAE C,+MAEC) 
max(−MAE C,+MAE C) 

−MAE C = 1
−N

∑−N 
k=1|Δk |, Δk0; −N is the number of Δk < 0 

+MAE C = 1
+N

∑+N 
k=1|Δk |, Δk0; +N is the number of Δk ≥ 0,

Δk = observedk − calculatedk 

[29] 

CIIC = 1 − ∑(
ΔR2 

j > 0
)

ΔR2 
j = R2 

j − R2 

[30] 

a x and y are experimental and predicted values of endpoint; n is the number of compounds in a set; 
R is the Pearson correlation coefficient; Q2 is cross-validated R2; CCC is concordance correlation 
coefficient; IICc is the index of ideality of correlation; MAE is mean absolute error; CIIc is the 
correlation intensity index

direct experimental determination, which requires time for the experiment, reagents, 
and a certain level of personnel qualification. It is to be noted that if such value 
is calculated using lager number of characteristics it should be even more useful 
since for larger pool of parameters more experiments are required. Interestingly, 
such developed correlation may lead to hypotheses about the respective mechanisms 
of molecular action. However, the legitimacy of these hypotheses cannot be tested 
without a statistically significant number of tests of the validity of this correlation
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for substances at least theoretically suitable for their respective applications. In prin-
ciple, this situation can be considered quite acceptable for solving local problems 
such as the choice of economically and environmentally acceptable dyes, packaging 
materials, thermal insulators, and others. At the same time, such a situation is unac-
ceptable or even risky when designing drugs. One has to remember that a correlation 
isolated from reality may become the basis for many erroneous assumptions and 
interpretations. 

Without doubt debatable issues related to QSAR include an erroneous association 
of correlation with causation. In addition, it is an important to note that the predictive 
potential of a model is not necessarily a measure of its utility [31]. 

Developed correlation often has a very convenient form [32]: without completely 
solving a scientific or technical problem. The correlations developed for QSAR allow, 
at the cost of relatively small expenses, to outline prospective targets for in-depth 
scientific research. Thus, paraphrasing a famous aphorism, “correlation often has the 
first word, but never the last.” 

16.5 Convenience and Inconvenience of Causation 

If causation is better than correlation, the question arises: should one use it or at least 
try everything necessary to turn correlations into causation? First of all, it should be 
borne in mind that many problems and situations exclude the possibility for devoting 
a reasonable amount of time to move from correlations to causation. 

Causality is not eternal and is not always reliable, and the problem arises with the 
need to monitor whether the reason to use it has lost its relevance. 

Let’s explain this point in more details. Initially, the study and assessment of odor 
was based on intensity (causality is defined as a strong odor produces a strong effect). 
However, subsequently such assessment moved to a valuation based on the intensity 
of effects on receptors (now causality is defined as a great change of receptors that 
has a strong effect) [33]. Another example: advertising the availability and reliability 
of cars can lead to a decrease in demand [34]. 

Therefore, causality cannot be measured. The strange idea that the predictive 
potential is not actually a measure of the quality of the model [31] can be transformed 
into the opinion that “causality cannot be proven.” Causality can be confirmed in 
100 experiments but failed in the experiment #101. 

Thus, causality does not have its own measure of reliability, unlike correlation, 
which can be measured via calculated criteria.
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Fig. 16.1 Portraits of good 
and poor QSPR/QSAR 
models 

16.6 Note on “Secrets of QSPR/QSAR” 

It is customary to characterize the quality of the model by the values of the coefficient 
of determination (the square of the correlation coefficient) and the standard devia-
tion or the value of the average absolute error. However, it is usually not mentioned 
that the main advantage of the QSPR/QSAR model is how the points are located 
in the coordinates of "experiment vs. calculation" relative to the diagonal of some 
square. Figure 16.1 shows zones one can establish to detect the quality of models 
in the first approximation. The simplest representation of correlations is presented. 
It is both correct and uninformative. Nevertheless, this is the basis for the construc-
tion of QSPR/QSAR. Figure 16.2 confirms that defining a “good model” is not 
straightforward.

16.7 Index Ideality of Correlation (IIC) 

The fuzziness of the manifestations of the actual world leads to the fact that math-
ematical idealizations cannot reliably represent a significant part of the real world. 
There is no easy way to define the term “suitable unambiguously.” For example, how 
to select a suitable car? In some cases, a small and compact car is sufficient. In other 
cases, a powerful heavy truck may be more ideal than a nimble supercar and vice 
versa. Clearly, the “class of all real numbers which are much greater than1,” or “the 
class of beautiful women,” or “the class of tall men,” do not constitute classes or 
sets in the usual mathematical sense of these terms. Yet, the fact remains that such 
imprecisely defined “classes” play an important role in human thinking, particularly 
in pattern recognition and information communication. Essentially, a fuzzy set is
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Fig. 16.2 Portraits of poor 
QSPR/QSAR models are 
placed in a place where the 
best models are expected 
(green dots describe poor 
correlation which can be 
detected in other scale; red 
dots display situation where 
slope of a regression model 
is not suitable for the 
validation set; black dots 
refer to a case where 
intercept of a regression 
model is not suitable for the 
validation set)

a natural way of dealing with problems in which the source of imprecision is the 
absence of sharply defined criteria of class membership [35]. 

One of the quite pressing examples of fuzziness is the correlations observed 
for QSPR/QSAR models. The fuzzy correlations that are “fuzzy” consequently to 
the value of the coefficient of determination can be ideal non-linear correlations, 
the graphical appearance of which will prompt the user that he is dealing with an 
“explicit” correlation. 

Obviously, without a graphical image, the user, focusing on the coefficient of 
determination only, is unlikely to be able to assess the quality of a clear non-linear 
correlation. 

At the same time, situations often arise when comparing large sets of models 
without visualizing them is necessary. This makes it desirable to develop efficient 
alternatives to the traditional coefficient of determination used in numerous statistical 
investigations. 

The idealization (or simplification) is one of the most common approaches to study 
complex phenomena in the field of natural sciences, e.g., ideal gas, ideal solution, 
ideal crystals, and ideal symmetry [29]. 

The index of ideality of correlation (IICC) is one of the possibilities to evaluate the 
quality of models in the above sense. It is well known that in practice, it is necessary 
to consider large numbers of pair’s correlations for quantities where there is no data 
on the standard error of estimation or the mean absolute error. For such situations, 
the index of ideality of correlation is not suitable. 

The IICC is calculated with data on the calibration set as the following: 

IICc = rc 
min(−MAEc, +MAEc) 
max(−MAEc, +MAEc) 

(16.1)
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min(x, y) =
⎧
x, if x < y 
y, otherwise 

(16.2) 

max(x, y) =
⎧
x, if x > y 
y, otherwise 

(16.3) 

−MAEc = 
1 

−N

∑
|Δk|, −N is the number of Δk < 0 (16.4) 

+MAEc = 
1 

+N

∑
|Δk|, +N is the number of Δk ≥ 0 (16.5)

Δk = observedk − calculatedk (16.6) 

The observed and calculated are corresponding values of an endpoint. 
The index of ideality of correlation improves models’ predictive potential based 

on so-called optimal descriptors calculated with SMILES [29]. Thus, it is advised to 
apply the index for QSPR/QSAR analyses of different endpoints. 

16.8 Correlation Intensity Index (CII) 

The fact that the index of ideality of correlation cannot be used in situations where 
there is no data on RMSE or MAE forces one to look for some alternative, that is, an 
index that makes it possible to quickly assess the quality of a “hidden” but promising 
correlation. The correlation intensity index is an attempt to develop a statistical 
index that could play the role of detector of “attractive hidden” correlations [30]. 
The application of CII in QSPR/QSAR analyses indicates that the contribution of 
the CII improves the predictive potential of QSPR/QSAR models based on optimal 
descriptors calculated with SMILES [30, 36–42]. These models can be applied to 
systematize knowledge in various areas including physical chemistry, biochemistry, 
ecology, and medical sciences [30, 36–42]. 

The CIIC is calculated as follows: 

CIIc = 1 −
∑

Protestk (16.7) 

Protestk =
⎧
R2 
k − R2, if R2 

k − R2 > 0 
0, otherwise 

(16.8) 

The R2 is the correlation coefficient for a set that contains n substances. The R2 
k 

is the correlation coefficient for n − 1 substances of a set after removing of k-th 
substance. Hence, if the (R2 

k − R2) is larger than zero, the k-th substance is an 
"oppositionist" for the correlation between experimental and predicted values of the 
set. A small sum of “protests” means a more “intensive” correlation.
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16.9 Can IIC and CII Be Useful? 

IIC and CII are suitable for improving the optimal descriptors calculated with 
SMILES, but can they be applied similarly to the traditional correlation coefficient 
or the concordance correlation coefficient? 

Figure 16.3 contains a collection of correlations and non-correlation that differ 
in nature. In other words, the mentioned collection contains linear and non-linear 
correlations with different levels of fuzziness. 

The cases marked a, b, and c represent not-linear correlations. The IIC can indicate 
a good correlation if its value is close to 1. Hence, IIC does classify such cases as 
non-correlations. CII also is able to demonstrate a good correlation if its value is 
close to 1. Hence, CII does classify these cases as correlations. Therefore, IIC and 
CII contradict each other in the situations denoted by a, b, and c. 

The situations marked d, e, and f represent linear correlations of varying degrees 
of fuzziness. IIC detect a good correlation for d and f , but a poor correlation for e. 
The case e is characterized by the location of all dots far from the diagonal. Regarding 
the fuzziness of the situation, e and f are identical. 

Cases g, h, and i represent linear correlations of varying degrees of fuzziness. The 
values of CII in all cases "recognize the correlation", while IIC (except in the case 
of g), rejects them.

Fig. 16.3 Estimation of different correlations via different criteria of the predictive potential. CCC 
= concordance correlation coefficient; R2 = determination coefficient; CII = correlation intensity 
index; IIC = index of ideality of correlation 
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Summing up, IIC to some extent, it is similar to CCC, but its assessment is more 
complex than the assessment of CCC. At the same time, CII is somewhat similar to 
R2, but its review is softer than the assessment of R2. 

In the process of developing and using the CORAL software (http://www.ins 
ilico.eu/coral), a number of experiments were carried out. The following important 
questions have been asked during these studies: 

1. Is it possible to obtain correlations suitable for prediction of various physico-
chemical and/or biochemical characteristics of substances based on the correla-
tion weighting of molecular features extracted from SMILES? 

2. Is it possible to improve the predictive potential of such models using IIC? 
3. Is it possible to improve the predictive potential of such models using CII? 

Below we address all the questions. 

16.10 Is It Possible to Improve the Predictive Potential 
of Such Models Using IIC? 

Figure 16.4 shows the impact of using the IIC on the optimization process. A record of 
the computational process without the IIC shows a gradual increase in the correlation 
coefficient for the training set, which is first accompanied by an increase in the 
correlation coefficient for the calibration and test sets. However, for the latter, this 
growth reaches a maximum and then gradually decreases. 

A record of optimization using IIC is quite different. For both training sets (active 
and passive) and control sets (calibration set and validation set), the correlation

Fig. 16.4 Record of the Monte Carlo optimization with and without IIC 

http://www.insilico.eu/coral
http://www.insilico.eu/coral
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coefficient gradually increases. However, in the case of optimization using IIC, the  
statistical quality of the model for training samples is noticeably more modest. In 
other words, IIC contribution improves correlations for validation sets (including 
the external validation set) but to the detriment of training sets (i.e., the statistical 
characteristics for the active and passive training sets are reducing). 

Table 16.3 contains a collection of computer experiments described in the liter-
ature to test the IIC. It can be seen (Table 16.3) that IIC contributes to improve the 
predictive potential of the proposed models of various types of biological activity. 

Table 16.3 Applying the Monte Carlo method to build up QSPR/QSAR models using IIC 

Endpoint The statistical quality Comments References 

Cytotoxicity of 
2-phenylindole derivatives 
against breast cancer cells 

Without IIC 
Active training set R2 = 
0.8435, MAE = 0.376; 
validation set R2 = 
0.9017, MAE = 0.211 
Using IIC 
Active training set R2 = 
0.8037, MAE = 0.452; 
validation set R2 = 
0.9685, MAE = 0.128 

Three random splits 
confirm the predictive 
potential of the approach 

[43] 

The experimental values 
measured for EC50 
(effective molar 
concentration) (mol/L) are 
represented by negative 
decimal logarithm pEC50 

Without IIC 
Active training set 
R2 = 0.8921, RMSE = 
0.291; validation set R2 

= 0.9062,RMSE = 0.267 
using IIC 
Active training set 
R2 = 0.7877, RMSE = 
0.409; validation set 
R2 = 0.9515, RMSE = 
0.223 

Three random splits 
confirm the predictive 
potential of the approach 

[44] 

The sweetness potential 
(logSw) is represented by 
the ratio of the 
concentration of the test 
compound in water with 
an equivalent 
concentration of sucrose 
in water 

Without IIC 
Active training set 
R2 = 0.8921, RMSE = 
0.291; validation set 
R2 = 0.9062, RMSE = 
0.267 
using IIC 
Active training set 
R2 = 0.7877, RMSE = 
0.409; validation set 
R2 = 0.9515, RMSE = 
0.223 

Three random splits 
confirm the predictive 
potential of the approach 

[45]

(continued)
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Table 16.3 (continued)

Endpoint The statistical quality Comments References

Cell viability (%) for 
human breast cancer cell 
line MCF-7 

Without IIC 
Active training set 
R2 = 0.9399, MAE = 
6.0; validation set 
R2 = 0.9272, MAE = 6.1 
Using IIC 
Active training set 
R2 = 0.9172, MAE = 
7.1; validation set 
R2 = 0.9416, MAE = 7.1 

Three random splits 
confirm the predictive 
potential of the approach 

[46] 

Glucokinase activators; 
experimental values were 
changed into negative 
decimal logarithm 
(pEC50) 

Without IIC 
Calibration set R2 = 
0.2635, validation set R2 

= 0.7209 
Using IIC 
Calibration set R2 = 
0.7190, validation set R2 

= 0.7936 

Statistics for calibration 
set and validation set only 

[47] 

Enhancement of azo dye 
adsorption affinity for 
cellulose fiber 

Without IIC 
Training set R2 = 
0.9972, RMSE = 0.256; 
validation set R2 = 
0.7597, RMSE = 2.072 
Using IIC 
Training set R2 = 
0.7190, RMSE = 1.43; 
validation set R2 = 
0.7936, RMSE = 1.200 

Three random splits 
confirm the predictive 
potential of the approach 

[48] 

16.11 Is It Possible to Improve the Predictive Potential 
of Such Models Using CII? 

The correlation intensity index was proposed somewhat later than the correlation 
ideality index. Therefore, CII has been studied to a lesser extent than IIC. However, 
some results point to this index’s ability to measure the predictive power of models. 
Table 16.4 contains some examples of the use of CII in building up models for 
different endpoints.

16.12 Testing Assumptions About the Significance of IIC 
and CII 

It can be assumed that the Monte Carlo optimization carried out taking into account 
the contributions of the IIC and CII will give better models than such an optimization
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Table 16.4 Applying the Monte Carlo method to build up QSPR/QSAR models using CII 

Endpoint The statistical quality Comments References 

Zeta potentials (ζ ) in  
metal oxide 
nanoparticles 

No IIC, No  CII 

R2 
v = 0.7012 

Use IIC 

(only)R2 
v = 0.7590 

Use IIC and CII 

R2 
v = 0.8674 

The use of IIC improved 
the predictive power, but 
the combined use of IIC 
and CII further increased 
the model’s predictive 
power 

[38] 

Biological activity of 
anti-influenza 
single-stranded DNA 
aptamers 

No IIC, No  CII 

R2 
v = 0.7501 

Use of IIC (only) 

R2 
v = 0.7687 

Use IIC and CII 

R2 
v = 0.8801 

The use of IIC improved 
the predictive power, but 
the use of CII further 
increased the model’s 
predictive power 

[40] 

Skin sensitivity (pEC3) No IIC, No  CII 

R2 
v = 0.672 

Use of IIC R2 
v = 0.726 

Use of CII R2 
v = 0.744 

Use of IIC and CII 

R2 
v = 0.779 

The use of IIC improved 
the predictive power, but 
the combined use of IIC 
and CII further increased 
the model’s predictive 
power 

[49]

based on only the IIC, or only the CII . To test this assumption, some data must be 
used. In particular, the toxicity data discussed in [50] provide a pool of data that 
could be applied for this purpose. For the specified check, the following descriptors 
were used, calculated on the basis of SMILES: 

DCW
(
T∗, N∗) =

∑
CW(APPk) +

∑
CW(Sk) +

∑
CW(SSk) +

∑
CW(SSSk) 

(16.9) 

The Monte Carlo optimization is a tool to calculate correlation weights for the 
descriptor. Two target functions, TF1 and TF2, for the Monte Carlo optimization 
should be examined. 

TF0 = rAT + rPT − |rAT − rPT| × 0.1 (16.10) 

TF1 = TF0 + IICc × 0.5 (16.11) 

TF2 = TF1 + CIIc × 0.5 (16.12) 

Table 16.5 contains the statistical characteristics of models studied in the case 
of target functions TF1 and TF2. One can see the first model calculated with IIC is
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better than the model suggested in the literature [50]. Interestingly, the second model 
studied in the case of involving both IIC and CII is better than model obtained using 
IIC solely without CII contribution. 

Table 16.5 Statistical characteristics of models calculated using IIC and CII 

Set n R2 CCC IIC CII Q2 RMSE F 

Split 1 

Active training 97 0.5571 0.7156 0.6459 0.8197 0.5371 1.04 120 

Passive training 102 0.5584 0.6358 0.6738 0.7450 0.5415 1.23 126 

Calibration 99 0.8184 0.8923 0.9046 0.9026 0.8116 0.463 437 

Validation 102 0.7907 0.8890 0.8813 0.8841 0.493 

Active training 97 0.4934 0.6607 0.6603 0.8079 0.4712 1.11 93 

Passive training 102 0.5442 0.6025 0.6696 0.7502 0.5265 1.26 119 

Calibration 99 0.8863 0.9240 0.9414 0.9454 0.8815 0.383 756 

Validation 102 0.8439 0.9183 0.7722 0.9178 0.422 

Split 2 

Active training 103 0.5648 0.7219 0.6820 0.8090 0.5493 1.04 131 

Passive training 101 0.5652 0.6690 0.5689 0.7698 0.5451 1.14 129 

Calibration 98 0.7259 0.8516 0.8520 0.8634 0.7153 0.617 254 

Validation 98 0.7614 0.8684 0.8548 0.8566 0.600 

Active training 103 0.4673 0.6370 0.6203 0.8128 0.4503 1.16 89 

Passive training 101 0.5736 0.5959 0.6572 0.7843 0.5560 1.16 133 

Calibration 98 0.8165 0.8912 0.9034 0.9162 0.8078 0.492 427 

Validation 98 0.7844 0.8718 0.6599 0.8910 0.549 

Split 3 

Active training 103 0.5815 0.7354 0.7194 0.8040 0.5654 0.987 140 

Passive training 103 0.6149 0.6260 0.6148 0.7987 0.5979 1.25 161 

Calibration 96 0.7204 0.8473 0.8488 0.8552 0.7095 0.586 242 

Validation 98 0.7884 0.8750 0.7113 0.8686 0.645 

Active training 103 0.5181 0.6826 0.6531 0.8057 0.4995 1.06 109 

Passive training 103 0.5920 0.5965 0.6307 0.7980 0.5757 1.27 147 

Calibration 96 0.8395 0.9134 0.9158 0.9212 0.8323 0.413 492 

Validation 98 0.8084 0.8982 0.7760 0.8788 0.528
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16.13 The Comparison of Criteria of the Predictive 
Potential of QSPR/QSAR 

QSPR/QSAR is the applicative theoretical tool of modern natural sciences. This 
approach provides qualitative (yes/no) and/or quantitative (how much) models for 
attribute of various substances. What does it take to recognize "the model is usable"? 
Suppose there are some experimental and model (calculated) values of a physico-
chemical property or biological activity. Those experimental and computed value 
pairs in the external test set are close to the diagonal of the experiment versus calcu-
lations relationship. In that case, there are good reasons to say, "The model can be 
recommended for practical application" (Fig. 16.5). Vice versa, if these values show 
large dispersion (relatively to the diagonal), the model is rather poor than good. 

However, in practice, the model developer, at best, receives information about 
the mentioned triangle only after building up the model. Therefore, mathematical 
criteria to assess the statistical quality of the model are essential for the practical 
development of models. There are many such criteria. Nevertheless, unfortunately, 
in practice, these criteria often do not guarantee that the model is suitable for use. 
Naturally, under such circumstances, new statistical criteria are searched for, as well 
as algorithms designed to solve the problem of a reliable assessment of the predictive 
potential of models. There are two counter-trends in developing quantitative and 
qualitative models of physicochemical properties and biological activity. Models 
must be deterministic, that is, they must predict the behavior of substances well, 
even though the sets of substances for which the forecast is required are immensely 
large and random (not deterministic). Under such conditions, a compromise that 
satisfies all interested parties becomes unlikely (or even non-possible at all), but

Fig. 16.5 Comparison of predictive potential of two models 
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developments in this area are unthinkable without some kind of compromise. Table 
16.6 contains a collection of statistical criteria for evaluating the predictive potential 
for various QSPR/QSAR approaches [24–31]. Unfortunately, "the unreliability of the 
reliability criteria" is an unpleasant but reliable rule [49]. Nevertheless, since these 
criteria are necessary and, in some cases, useful, experiments designed to compare 
their reliability (unreliability) may be considered as quite appropriate and even useful.

Table 16.6 contains the results of a comparison of fifteen models according to the 
rating defined as 

Rating = 

⎧ 
⎨ 

⎩ 

Correct if CR1c > CR2c and CR1v > CR2v 
or if CR1c < CR2c and CR1v < CR2v 

Wrong Otherwise 
(16.13) 

Table 16.6 contains 105 comparisons of models. The displayed data indicates that 
all statistical criteria (Table 16.2) give reasonable good assess for predictive potential, 
but no criteria avoids mistakes (wrong assessment). 

16.14 The System of Self-consistent Models 

A rather attractive alternative to using potential predictive criteria is constructing 
so-called systems of self-consistent models. The scheme for creating the system of 
self-consistent models is as follows: 

Each i-th model has an ith validation set. The validation sets must be non-identical. 
It is important to determine whether the arbitrary model can be used for a random 
validation set. If the answer is yes, these different models should be considered 
self-consistent ones. 

The measure of self-consistency is the average and dispersion of the correlation 
coefficient on different validation sets. The matrix can represent the corresponding 
computational experiments: 

⎡ 

⎢ 
⎣

(
M1 : V '

1 → Rv2 
11

) · · ·  (Mn : V '
1 → Rv2 

n1) 
... 

... 
(M1 : V '

n → Rv2 
n5) · · ·

(
Mn : V '

n → Rv2 
nn

)

⎤ 

⎥ 
⎦ (16.14) 

the Mi is an i-th model; the Vj is the list of compounds applied as the validation 
set in the case of j-th split; the Rv2 

i j  is the correlation coefficient observed for the 
j-th validation set if applied i-th model. The n is the total number of models (splits). 
Currently, the system of n models vs n splits was examined. However, it should be 
noted that the number of models, and the number of splits can be different.
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Table 16.6 Comparison of fifteen models 

Models R2 CCC IIC CII Q2 Q2 
F1 Q2 

F2 Q2 
F3

⟨
R2 
m

⟩ 

[1better 2] C C C C C C C C C 

[1better 3] C C C C C W W C C 

[1poorer 4] W W W W W W W W W 

[1poorer 5] W W W W W W W W W 

[1poorer 6] W W W W W C W C W 

[1poorer 7] W W W W W W W W W 

[1better 8] C C C C C C C C C 

[1better 9] C C C C C C C C C 

[1better 10] C C C C C C C W C 

[1better 11] C C C C C C C C C 

[1better 12] C C C C C C C C C 

[1better 13] C C C C C W C W C 

[1poorer 14] W W W W W W W W W 

[1better 15] C C C C C W C W C 

[2better 3] C C C C C C C C C 

[2better 4] C C C C C C C C C 

[2better 5] C C C C C C C C C 

[2better 6] C C C W C C C C C 

[2better 7] C C C C C C C C C 

[2better 8] C C C C C W C W W 

[2poorer 9] C C C C C C C C C 

[2poorer 10] C C C C C C C C C 

[2poorer 11] C C C W C C C W C 

[2poorer 12] W W W W W W W W W 

[2poorer 13] C C C C C C C C C 

[2poorer 14] C C C C C C C C C 

[2poorer 15] C C C C C C C C C 

[3poorer 4] W W W W W W W W C 

[3poorer 5] W W W W W W W W W 

[3poorer 6] W W W W W W W C W 

[3poorer 7] C W C C C W W W W 

[3better 8] C C C C C C C C C 

[3better 9] C C C C C C C W C 

[3poorer 10] W W W W W W W C W 

[3better 11] C C C C C C C C C 

[3better 12] C C C C C C C C C

(continued)
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Table 16.6 (continued)

Models R2 CCC IIC CII Q2 Q2
F1 Q2

F2 Q2
F3

⟨
R2
m

⟩ 

[3better 13] C C C C C W C W C 

[3poorer 14] C W C C C W W W W 

[3better 15] C C C C C C C W C 

[4poorer 5] C C C C C W C C W 

[4better 6] C C C C C W C W C 

[4poorer 7] C W C C C C C C W 

[4better 8] C C C C C C C C C 

[4better 9] W C W W W W C W C 

[4better 10] C C C C C W C W C 

[4better 11] C C C C C C C C C 

[4better 12] C C C W C C C W C 

[4better 13] W C W W W W C W C 

[4poorer 14] C W C C C C C C W 

[4better 15] C C C C C W C W C 

[5better 6] C C C C C W C W C 

[5better 7] C W C C C C W W W 

[5better 8] C C C C C C C C C 

[5better 9] W C W W W W C W W 

[5better 10] C C C C C W C W C 

[5better 11] C C C C C C C C C 

[5better 12] C C C W C C C C C 

[5better 13] C C C C C W C W W 

[5better 14] C W C C C C W W W 

[5better 15] C C C C C W C W C 

[6poorer 7] C C C C C W C W W 

[6better 8] C C C C C C C C C 

[6better 9] W W W W W C W C W 

[6better 10] W W W W W C W C W 

[6better 11] C C C C C C C C W 

[6better 12] W W W W W C W C W 

[6better 13] W W W W W W W W W 

[6poorer 14] C C C C C W C W W 

[6better 15] W W W W W C W C C 

[7better 8] C C C C C C C C W 

[7better 9] C W C C C W C W W 

[7better 10] C W C C C C C W W

(continued)
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Table 16.6 (continued)

Models R2 CCC IIC CII Q2 Q2
F1 Q2

F2 Q2
F3

⟨
R2
m

⟩ 

[7better 11] C C C C C C C C W 

[7better 12] C W C C C C C C W 

[7better 13] C W C C C W C W W 

[7better 14] C C C C C C C C C 

[7better 15] C C C C C W C W W 

[8poorer 9] C C C C C C C C C 

[8poorer 10] C C C C C C C C C 

[8poorer 11] C C C C C W C W C 

[8poorer 12] C C C C C C C C C 

[8poorer 13] C C C C C C C C C 

[8poorer 14] C C C C C C C C W 

[8poorer 15] C C C C C C C C C 

[9better 10] W W W W W W C C W 

[9better 11] C C C C C C C C C 

[9better 12] C W C W C C C C C 

[9better 13] C C C C C W C W C 

[9better 14] C W C C C W C W W 

[9better 15] C C C C C W C W C 

[10better 11] C C C C C C C C C 

[10better 12] C W C W C C C C W 

[10better 13] W C W W W W C W W 

[10poorer 14] C W C C C C C W W 

[10better 15] C C C C C W C W C 

[11poorer 12] W W W W W W W W W 

[11poorer 13] C C C C C C C C C 

[12poorer 14] C C C C C C C C W 

[11poorer 15] C C C C C C C C W 

[12poorer 13] C W C W C C C C C 

[12poorer 14] C W C C C C C C W 

[12poorer 15] W W W W W C W C W 

[13poorer 14] C W C C C W C W W 

[13poorer 15] W W W W W W W W W 

[14better 15] C C C C C W C W W 

Correct frequency 82 69 82 75 82 61 82 57 58 

Correct percentage 0.78 0.66 0.78 0.71 0.78 0.58 0.78 0.54 0.55 

The X better Y means that the statistical quality of X-th model is better; X poorer Y means that the 
statistical quality of Y-th model is better; C = correct, W = wrong
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16.14.1 Examples of Successful Applications 
of Self-consistent Models 

Systems of self-consistent models as a method of development and, most importantly, 
tests of the statistical quality of models have passed the first approbation, confirming 
certain advantages of this methodology. The methodology was used to development 
of models of the biological activity of nanoparticles having the same nanocore but 
different surface modifiers (small organic molecules) [51] as well as for building 
up models for the octanol/water partition coefficient of gold nanoparticles [52]. In 
addition, the approach gives reasonably well models applicable for the discovery of 
antiviral drugs [53]. The method provides the statistically reasonable recommenda-
tions to select agents in Alzheimer’s disease treatment [54]. Finally, the systems of 
self-consistent models offers promising results related to modeling vapor pressure 
[55] and the physicochemical behavior of polymers [56]. 

16.15 Conclusions 

Reliable verification of the predictive potential of developed models is an ideal but 
perhaps unattainable task of modern natural sciences. This obviously also apply to 
the QSAR/QSPR studies. There are several predictive potential criteria (Table 16.2). 
Each of these criteria can assess the predictive potential of models for external sets of 
substances included in the domain of applicability of the model. However, all these 
criteria represent values requiring additional checks. The development of systems 
of self-consistent models is an alternative to evaluating models through predictive 
potential criteria. In fact, this is an algorithm for checking the quality of the model 
based on considering QSPR/QSAR as random events occurring from random splits 
into training and testing sets. 
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Chapter 17 
CORAL: Predictions of Quality of Rice 
Based on Retention Index Using 
a Combination of Correlation Intensity 
Index and Consensus Modelling 

Parvin Kumar and Ashwani Kumar 

Abstract The purpose of this study is to utilize the Monte Carlo technique of 
CORAL software for establishing a quantitative structure-retention relationship 
(QSRR) for the retention indices of 136 primary flavour volatile organic molecules. 
SMILES notations of volatile organic compounds were used to compute the 
descriptor of correlation weight (DCW). Eight splits have been constructed from 
the dataset of 136 volatile organic chemicals, each of which was further divided into 
four sets: training, invisible training, calibration and validation. Two target functions 
i.e. TF1 (CIIweight = 0.0), TF2 (CIIweight = 0.3) were applied to build 16 QSRR 
models. All QSRR models were statistically good. The coefficient of determination 
derived by TF2 for the validation set of split 4 has the maximum statistical result 
(R2 

validation = 0.9532), hence it was accepted as the best model. The assignment of 
correlation intensity index (CII) on QSPR models was thoroughly examined and 
found to be more consistent and relevant. The common promoters of increase and 
decrease of endpoint were also extracted from four splits 1, 2, 3 and 4. Furthermore, 
consensus modelling using the split 4 architecture of dataset distribution enhances 
prediction accuracy by increasing the numerical value of R2 

validation from 0.9532 to 
0.9864. 

Keywords QSPR/QSAR · Retention index · Validation · Correlation intensity 
index
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17.1 Introduction 

Rice (Oryza sativa L.) is not only the primary source of calories for almost half of 
the world’s population but also offers food security to many low-income nations. In 
many Asian countries, rice is the most important staple cereal after wheat and maize, 
accounting for more than 90% of rice consumption worldwide [1]. White rice is the 
most popular type of rice, and these grains are progressively ground from the outside 
to the interior, resulting in disparities in composition between the rice layers, which 
affects functional and edible qualities [2]. From the outer surface to the inner side of 
the rice grains, the content of protein, fat, mineral and other non-starch components 
dropped, while the content of amylose and starch enhances [3, 4]. As a result, crop 
quality management must be improved to confirm that rice has the best organoleptic 
features and is admissible to consumers. 

The colour, texture, unique taste and aromatic composition of different rice vari-
eties can be used to identify the grain quality of the rice. Moreover, it has been 
noticed that modest alterations in sensory qualities, particularly aroma, alter customer 
acceptability. Currently, more than 150 diverse volatile substances have been iden-
tified in rice, primarily from the alkanes, alcohols, phenols, aldehydes, ketones, 
enones, furanone, fatty acids, esters, benzyl derivatives, monoterpenoids, sesquiter-
penoids, naphthalenes, xylenes, furans, pyridines and pyrroles [5–7]. Generally, gas 
chromatography (GC) is applied to analyse the volatile compounds present in rice. 

The quantitative structure–property relationship (QSPR) is a method that uses 
“descriptor-property” correlations to estimate unknown numerical data on endpoints 
of significance. After the innovative investigations of the use of QSPR to chromato-
graphic retention indices (I), investigators are more interested in using the quanti-
tative structure retention relationships method (QSRR) [8]. The models generated 
by the QSRR method can be applied to predict the retention index of unknown 
compounds and to separate the complex chemical mixtures [8, 9]. In the recent 
decade, The CORrelation And Logic (CORAL) programme has been recommended 
as a useful tool in QSAR/QSPR experiments (http://www.insilico.eu/CORAL) [10– 
12]. A global molecular descriptor, i.e. a descriptor of correlation weight (DCW) 
calculated by CORAL software, is applied to anticipate or compute the required 
endpoint value [13–15]. The inbuilt Monte Carlo algorithm of CORAL software 
is used to compute the correlation between the DCW and endpoints. Recently, the 
correlation intensity index (CII) is also applied to generate better QSPR models [16– 
24]. The goal of QSAR researchers is to improve prediction accuracy by attaining 
minimal predicted residuals for test molecules. When diverse models are present, 
a few QSPR scientists have adopted a consensus method of modelling to attain 
this purpose [25–27]. Various researchers have employed the original consensus 
modelling by considering all the separately developed models having good statis-
tical results [28]. Consensus modelling is seen to be superior to individual models 
because it contains all of the information found in many individual models. Roy 
et al. have created an intriguing “Intelligent Consensus Prediction” programme for 
performing consensus modelling [29].

http://www.insilico.eu/CORAL
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Because of the aforementioned information and as part of our ongoing efforts to 
develop QSPR models, the goal of the present research is to construct robust QSRR 
models for the retention indices of 136 volatile organic compounds (VOC) detected 
in the headspace of rice. Here, we have also implemented the correlation intensity 
index (CII), a new predictive potential criterion, and consensus modelling to get a 
better predictive model. 

17.2 Materials and Method 

17.2.1 Data 

Experimental retention indices (RI) for 136 major flavour volatile molecules 
were collected from the literature [9]. The Divinylbenzene-Carboxen-
Polydimethylsiloxane (DVB-CAR-PDMS) fibre was used to determine the exper-
imental retention indices using solid-phase microextraction-gas chromatography-
mass spectrometry (SPME–GC–MS). ChemAxon was employed to draw chemical 
structures, which were then converted into SMILES notation [30]. All SMILES 
notations were converted into canonical SMILES using the Open Babel programme 
[31]. The molecule 2,2,4-trimethylheptane (Cas Number 14720-74-2) was found 
as a duplication of trimethylheptane during the database screening. As a result, 
the trimethylheptane molecule was eliminated, and the retention index for 2,2,4-
trimethylheptane was taken as 878.5 (average of two RI). The molecular formula of 
the compound 2,6-bis-(t-butyl)-2,5-cyclohexadien-1-one (CAS number 6378-27-8) 
did not match with its structural formula, therefore it was not considered for QSRR 
model development. As a result, the QSRR model was built using 136 chemicals. The 
dataset of 136 major flavour volatile molecules is categorized into four sets: active 
training (for building the model), passive training (for inspecting the constructed 
model on the entities not included in the active training set), calibration (to monitor 
overtraining) and validation (for validating the model’s external predictability) 
(Table 17.1A, B). The whole dataset was used to make eight random splits and these 
were non-identical in line with the mathematical equation given in the literature 
[32].

17.2.2 Model 

The following equation is used for the prediction of RI of VOCs: 

RI = C0 + C1 ×SMILES DCW
(
T ∗, N ∗ 

epoch

)
(17.1)
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In this case, we may state that the current model is a mono-parametric correlation 
of a SMILES-based DCW. The C0 and C1 represent regression coefficients [33, 34]. 
The T and Nepoch denote the Monte Carlo optimization’s threshold and the number 
of epochs, respectively. The T* and N* are numeric of T and Nepoch for which the 
calibration set gives the best statistical result of determination coefficient [35–37]. 

17.2.3 Optimal Descriptor 

In the CORAL programme, the optimal descriptor was derived employing three kinds 
of descriptors: graph, SMILES and hybrid (graph + SMILES) [34, 38–43]. In this 
work, the SMILES optimum descriptor of correlation weights (DCW ) was used to 
create QSRR models. 

The optimal descriptor DCW based on SMILES was calculated using the 
following mathematical equation 

SMILESDCW(T ∗ N ∗) =
∑

CW(SK ) +
∑

CW(SSK ) 

+
∑

CW(SSSK ) +
∑

CW(BOND) 

+
∑

CW(NOSP) +
∑

CW(HARD) 

+
∑

CW(APP) + CW(Cmax) + CW(O) 

+ CW(N ) + CW(S) + CW(=) (17.2) 

The description for the depiction used in the above mathematical equation is 
explained in Table 17.2. 

Table 17.2 The detailed description of SMILES attributes 

S. No. SMILES notation Comments 

1 Sk One SMILES notation or two SMILES notation which cannot be 
inspected independently 

2 SSk An amalgamation of two SMILES notations 

3 SSSk An amalgamation of three SMILES notations 

4 BOND The presence or absence of double (‘=’), triple (‘#’) and 
stereochemical (‘@’) bonds 

5 NOSP Presence or absence of nitrogen, oxygen, sulphur and phosphorus 

6 HARD Association of BOND, NOSPand HALO 

7 APP Atomic pair proportions of oxygen, nitrogen, sulphur and double 
bond 

8 Cmax Contributions of the total number of rings 

9 O, N, S and= Contributions of oxygen, nitrogen, sulphur and double bond
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17.2.4 Monte Carlo Optimization 

In this study, two target functions, TF1 (CIIweight = 0.0) and TF2 (CIIweight = 0.3), 
were used to create reliable QSRR models. The statistical outputs of each target 
function were juxtaposed and analysed. 

17.2.4.1 Target Function 1 (TF1) 

The balance of correlation approach was applied to compute the target function 1 
(TF1) and the following mathematical equation is employed to represent it [44, 45]. 

TF1 = Ractive training + Rpassive training − |Ractive training − Rpassive training| ×  0.1 (17.3) 

Here, R is the correlation coefficient of a specific set. 

17.2.4.2 Target Function 2 (TF2) 

The weight of CII was added to TF1 to compute TF2 [19, 20, 24], which is expressed 
by the expression given below. 

TF3 = TF1 + CIIcalibration set × 0.3 (17.4) 

CII stands for the calibration set’s correlation intensity index, and it’s determined 
utilizing the underlying equations. 

CII = 1 −
∑

ΔR2 
n > 0 (17.5)

ΔR2 
n = R2 

n − R2 (17.6) 

Here, R2 stands for determination coefficient of all endpoints and R2 
n stands for 

determination coefficient all endpoints excluding n th compound. 

17.2.5 Applicability Domain 

The application domain (AD), which is the third pillar of the Organization for 
Economic Cooperation and Development (OECD), is another critical component 
to include in any built QSAR model [36]. The AD is an imaginary chemical region 
that includes both model characteristics and expected response. When building a 
QSAR model, the AD of molecules is used to calculate the degree of uncertainty in 
the prediction of a particular chemical based on how similar it is to the substances
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chosen to make the model. The prediction of a modelled response by QSAR is only 
valid if the molecule being predicted is inside the AD of the model because it is 
challenging to predict the entire spectrum of compounds using a single statistical 
model. 

The allotment of SMILES traits in the active training, passive training and cali-
bration sets is utilized to define AD in the QSPR/QSRR models of the CORAL 
programme [35, 46, 47]. 

In the present work, VOCs falls in AD if 

DefectNS < 2 × DefectNS (17.7) 

DefectNS =
∑

active AK 

S Adefect (17.8) 

Here, DefectNS is the average of the statistical defect for the training set. 

17.2.6 Validation 

The fourth OECD principle highlights the need for information on the efficacy of 
QSAR models, stating that models should be linked with appropriate goodness-of-fit, 
robustness (internal performance) and predictability metrics (external performance). 
Statistical validation methodologies provide a number of “fitness” criteria that QSAR 
researchers may use to evaluate the performance of various models and avoid models 
that are either too basic or too sophisticated. 

Three methodologies were used in this work to investigate the robustness, reli-
ability and predictive ability of the QSRR models: (i) Internal validation or cross-
validation; (ii) External validation; and (iii) Y-scrambling or data randomization. 
Table 17.3 denotes the equalities for the numerous validation standards ( R2, CCC, 
Q2, Q2F1, Q2 

F2, Q2F3, r2 m and MAE).

17.2.7 Consensus Modelling 

The reliability and effectiveness of the derived QSRR models are assessed by 
employing certain validation parameters. Researchers desire to improve predic-
tion reliability by minimizing calculated residuals for the developed models. In 
earlier research, consensus models-which comprised all unique models were found 
to be more accurately predictive than a specific model. Accordingly, the “Intelligent 
Consensus Predictor” tool developed by Roy et al. was employed to develop 
consensus models [17, 29, 57]. The following three strategies were typically used to 
improve the models’ ability to predict outcomes.
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Table 17.3 The 
mathematical equations for 
the various validation criteria 

Validation parameters References 

R2 = 1 −
∑

(Yobs−Yprd)
2

∑(
Yobs−Y

)2 [48, 49] 

Q2 = 1 −
∑

(Yprd−Yobs)
2

∑(
Yobs−Y train

)2 [49, 50] 

Q2 
F1 = 1 −

∑
(Yper(test)−Yobs(test))

2

∑(
Yobs(test)−Y train

)2 [51] 

Q2 
F2 = 1 −

∑
(Yprd(test)−Yobs(test))

2

∑(
Yobs(test)−Y ext

)2 [51, 52] 

Q2 
F3 = 1 −

∑
(Yprd(test)−Yobs(test))

2 
/next∑(

Yobs(test)−Y train
)2 

/ntrain 
[51] 

r2 m = r2 ×
(
1 − 

/
r2 − r2 0

)
[53] 

CCC = 2
∑

(X−X )(Y −Y )∑(
X−X

)2+∑(
Y −Y

)2+n(
(
X−Y

)2 [51, 54] 

MAE = 1 n ×
∑||Yobs − Yprd

|| [55, 56]

(a) Consensus model 1 (CM1): Average of predictions from all qualified indi-
vidual models: It is simply the arithmetic mean of the predicted response scores 
obtained for a specific sample molecule from all “N qualifying individual models 
(IM)”. 

(b) Consensus model 2 (CM2): Weighted average predictions (WAPs) from all 
qualified individual models: The average for a CM2 is calculated by assigning 
proportional weightage to authorized models for a given test molecule. Initially, 
the value of absolute prediction error (AE) for the listed training compounds 
is assessed for a specific model, henceforth, the result of AE is employed to 
compute the mean absolute error (MAEcv). The following mathematical rela-
tionship is applied to calculate the WAP for a particular query molecule (kth 
compound). 

WAPTest Object(k) 

=
[(
Pred(k)Model1 × w1

) + (
Pred(k)Model2 × w2

) +  · · ·  + (
Pred(k)Modeln × wn

)]

[w1 + w2 +  · · ·  +  wn] 
(17.9) 

Here, weightage (w) is computed by the following equation 

w1 = 
1 

r f1 
, w2 = 

1 

r f2 
, w3 = 

1 

r f3 
, . . . , wn = 

1 

r fn 
(17.10) 

The following equations are used to compute the relative fraction (rf) for the 
individual model
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r f1 = 
MAEcv(1)∑
MAECV  

, r f2 = 
MAEcv(2)∑
MAECV  

, r f3 = 
MAEcv(3)∑
MAECV  

, . . .  r fn = 
MAEcv(n)∑
MAECV  

(17.11) 

(c) Consensus model 3 (CM3): Best selection of predictions (compound-wise) 
from individual models: To predict that specific test set molecule, the best 
model with the lowest MAEcv is used. 

17.3 Results and Discussion 

17.3.1 QSRR Modelling and Validation 

In the present research, a total of sixteen QSRR models (Eqs. 17.12–17.27) were  
built using two target functions (TF1 and TF2) and the balance of correlation method 
was applied to obtain unswerving statistical findings. Table 17.2 shows the statistical 
findings of all QSRR models. To achieve a maximum prediction accuracy of T and 
Nepoch for all splits, the threshold and Nepoch values were set between 1–10 and 
1–25, accordingly. The numeric number for the probe was three while computing 
the best QSRR model. The numerical value of dstart was 0.5 and Dlimit was 0.1. The 
weight of CII was 0.0 for TF1. On the other hand, in the case of TF2, the weight 
of CII was used as 0.3. Following the principle that “QSAR is a random event,” we 
made eight random splits to make 16 QSRR models. 

The built QSRR models of VOCs based on TF1 (CIIweight = 0.0) for all splits are 
the following: 

RI = 379.5804434(±4.9670785) + 87.3071496(± 0.4360032) 
∗ DCW(2, 4) for Split 1 (17.12) 

RI = 776.1713518(±3.5923744) + 124.9844144(± 0.7137551) 
∗ DCW(5, 6) for Split 2 (17.13) 

RI = 149.4558572(±13.6894572) + 127.2163725(±1.4957200) 
∗ DCW(7, 7)for Split 3 (17.14) 

RI = 128.62300399(±5.9858047) + 103.1167439(±0.5663511) 
∗ DCW(7, 13)for Split 4 (17.15) 

RI = −126.5460843(±8.2693132) + 43.5125747(±0.2411775) 
∗ DCW(1, 6)for Split 5 (17.16)
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RI = 579.4274718(±3.9208238) + 82.0507869(± 0.5053360) 
∗ DCW(8, 16)for Split 6 (17.17) 

RI = 258.1293444(±5.1553852) + 136.5706989(± 0.6949786) 
∗ DCW(3, 8)for Split 7 (17.18) 

RI = 218.2068362(±4.9668148) + 84.6015056(± 0.3632482) 
∗ DCW(6, 4)for Split 8 (17.19) 

The built QSRR models of VOCs based on TF2 (CIIweight = 0.3) for all splits are 
the following: 

RI = 398.8188624(±5.2141795) + 65.0057648(± 0.3700230) 
∗ DCW(2, 4)for Split 1 (17.20) 

RI = 234.2735057(±5.6567674) + 69.6995549(± 0.3358152) 
∗ DCW(1, 14)for Split 2 (17.21) 

RI = −49.0157479(±3.0566361) + 81.2090986(± 0.1979594) 
∗ DCW(1, 15)for Split 3 (17.22) 

RI = −516.7046231(±6.4384415) + 98.7363085(± 0.4127289) 
∗ DCW(3, 19)for Split 4 (17.23) 

RI = −119.8129213(±8.1464342) + 121.2288111(± 0.6665878) 
∗ DCW(1, 15)for Split 5 (17.24) 

RI = 586.7821685(±3.5348059) + 104.8560860(±0.5358107) 
∗ DCW(2, 13)for Split 6 (17.25) 

RI = 135.1254654(± 5.1240395) + 101.4684828(± 0.4575822) 
∗ DCW(1, 16)for Split 7 (17.26) 

RI = 362.8926110 (±3.7981415) + 93.2377006(± 0.4038385) 
∗ DCW(3, 10)for Split 8 (17.27)
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Various statistical criteria (R2, CCC, CII, Q2,Q2F1,Q2F2,Q2F3, s,MAE,F,RMSE,  
R2 
m , ΔR2 

m , CR2 
P 
and Y-test) were examined in order to assess the models’ robustness 

and predictability. Roy et al. gave statistical parameters (R2 
m and ΔR2 

m) to in-depth 
examine the external predictability of a QSAR/QSPR model and defined that R2 

m 
is the most strict parameter of external validation [58]. Golbraikh et al. defined the 
acceptable range of important statistical metrics (R2 > 0.6 and Q2 > 0.5) to validate the 
robustness of QSAR/QSPR models [49]. Chirico et al. discussed the significance of 
the Concordance Correlation Coefficient (CCC) as a complementary, or alternative, 
more sensible measure of a QSAR model [51]. All statistical attributes of proposed 
models developed by both target functions (TF1 and TF2) are listed in Table 17.4A, 
B and all of the models meet the required criteria of each parameter. The coefficient 
of determination derived by TF2 for the validation set of split 4 has the maximum 
statistical result (R2 

validation = 0.9532), hence it is accepted as the winner model. The 
developed QSRR models with the second target function (TF2-optimization) were 
more robust with better predictive ability. For all splits, it was observed that the 
numerical value of R2 calculated by TF2 for calibration and validation was greater 
than the R2 calculated by TF1.

The applicability domain (AD) is the third OECD guideline, and it describes how 
a specific compound is relevant to the database employed to build a QSPR model. AD 
is deployed to identify the outlier in the SMILES-based QSAR model. The number 
of outliers present in the validation set of QSRR models developed by TF1 was 4, 3, 
3, 1, 3, 2, 3 and 3 for the splits 1, 2, 3, 4, 5, 6, 7 and 8, respectively (see supporting 
information TF1). But, in the case of the models built by TF2, the number of outliers 
for the validation set were 6, 7, 4, 3, 3, 9, 5 and 3 for the splits 1, 2, 3, 4, 5, 6, 7 and 
8, respectively (see supporting information TF2). 

To classify statistical results as “improved” or “unimproved,” the following 
conditions are used (Table 17.4A, B) [17, 57, 59–61]. 

if XClb [TF2] > XClb [TF1] and R
2 
valid[TF2] > R2 

valid[TF1] (17.28) 

(Then, the validation parameters were labelled as “improved”) 

if XClb[TF2] < XClb[TF1] and R
2 
valid[TF2] < R2 

valid[TF1] (17.29) 

and 

if XClb [TF2]
⟨
XClb [TF1] and R

2 
valid[TF2]

⟩
R2 
valid[TF1] (17.30) 

(Then, the validation parameters were labelled as “unimproved”). 
where XClb [TF2] and XClb[TF1] are the statistical results of different statistical 

standards (R2, CCC, IIC, Q2, Q2F1, Q2F2, Q2F3, s, MAE, F, RMSE,  Avg R2 
m , ΔR2 

m , 
CR2 

P 
and Y-test) of the calibration set. All statistical standards of QSRR models 

established for splits 3, 6 and 7 were improved by CII. The index of ideality correlation 
(IIC) was not enhanced in splits 2 and 1. The numerical value of Rr 

2 was not improved
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in the case of splits 1 and 8. The numerical results of ΔR2 
m was not improved by 

the CII for splits 4 and 5. As a result, it is logical to conclude that the correlation 
intensity index (TF2) improves the predictive potential of developed QSRR models 
for the retention indices of 136 volatile organic compounds (VOC) detected in the 
headspace of rice. 

17.3.2 Mechanistic Interpretation 

The structural attributes acquired from SMILES were categorized into two primary 
classes based on the numerical value of correlation weights (CW): reliable promoters 
(promoters of increase and decrease) and unreliable promoters. The reliable 
promoters were classified as the promoter of increase if these had consistent positive 
CW numerical values in all runs/in three or more splits of Monte Carlo optimization, 
otherwise, these were classified as the promoter of decrease (negative CW numerical 
values in all runs). The structural attributes were known as unreliable promoters if 
both negative and positive numerical values for all runs of Monte Carlo optimiza-
tion were obtained. These promoters were used to provide useful insight into the 
mechanistic analysis of the QSRR models generated by CORAL software’s inbuilt 
Monte Carlo algorithm. Table 17.5 provides a list of reliable promoters derived 
from four different splits (splits 1, 2, 3 and 4). The structural attributes (SAk) such 
as the presence of sulphur, aliphatic carbon, aromatic carbon aliphatic, cyclic ring, 
branching and alkene were identified as reliable promoters of increase. The struc-
tural attributes such as the absence of sulphur and oxygen were identified as reliable 
negative promoters.

17.3.3 Consensus Modelling 

The scientific study claims that the adoption of an “intelligent consensus predictor 
tool” and consensus modelling increased the predictability of QSAR/QSPR models 
[29, 57, 62]. To get new training and test sets for consensus modelling, the allocation 
method of split 4 was employed. The specific information on the results of consensus 
modelling and individual models is described in Table 17.6. The “Consensus Model 2: 
Weighted average predictions from “qualified” Individual models” was the winner 
model based on MAE (95%; test) [63]. The prediction ability of each model was 
rated “good” using the MAE-based standard. The Dixon-Q test and the applicability 
domain were employed. The value of threshold (k) and Euclidean Distance cut-off 
were taken as 3.0 and 0.3, respectively.

The numerical value of R2 determined from “Consensus Model 2: Weighted 
average predictions from “qualified” Individual models” was 0.9864 (Fig. 17.1). 
The result of consensus modelling was better than the individual modelling. As a 
result, it can be stated that consensus modelling may be used to predict the retention
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Table 17.5 List of reliable promoters derived from four different splits 

S. 
No. 

SAk CW(SAk) Description 

Split 1 Split 2 Split 3 Split 4 

A Promoters of endpoint Increase 

1. $00,001,000,000 0.0596 2.25613 0.89651 0.44436 Presence of 
oxygen 

2. < = > 
.0.0000… 

0.02998 0.1057 0.59068 0.6655 Absence of 
double bond 

3. 1…c…(… 0.39136 0.59142 0.43469 0.59046 Branching on 
the first aromatic 
ring 

4. 2… 0.41471 0.96504 0.75866 1.22903 Presence of two 
ring 

5. c…(… 0.17889 0.35486 0.51189 0.00123 Aromatic carbon 
with branching 

6. C…(…C… 0.39661 0.15471 0.56535 0.28287 Presence of two 
aliphatic carbon 
with branching 

7. C…/… 0.12037 0.52454 0.16729 0.3574 Aliphatic carbon 
with cis/trans 
bond 

8. C… = …C… 1.03587 0.32746 0.0524 0.13634 Two aliphatic 
carbon joined by 
a double bond 

9. c…1… 0.90253 0.35094 0.16078 0.55609 Presence of one 
aromatic carbon 

10. c…c…(… 0.14837 0.92669 0.54476 0.30209 Sequential 
combination of 
two aromatic 
carbon followed 
by branching 

11. C…C… 0.27372 1.18971 0.01506 0.47043 Combination of 
two aliphatic 
carbon 

12. c…c… 0.24999 0.39362 0.44382 0.10986 Combination of 
two aromatic 
carbon 

13. C…c…1… 1.09246 0.90312 0.09741 0.04667 Presence of 
aliphatic carbon 
with aromatic 
carbon on the 
first ring 

14. C…C…C… 0.78199 0.08293 0.9807 0.45479 Aliphatic chain 
of three carbon 
atom

(continued)
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Table 17.5 (continued)

S.
No.

SAk CW(SAk) Description

Split 1 Split 2 Split 3 Split 4

15. Cmax 0001… 0.87504 1.15809 0.24905 1.48948 Presence of 
maximum one 
ring 

16. O…(…C… 0.2674 0.19941 0.33266 0.53041 Sequential 
combination of 
aliphatic carbon, 
branching and 
aliphatic carbon 

17. O… 0.05484 0.55447 0.35917 0.33709 Presence of 
oxygen atom 

18. O… = …C… 1.61775 1.12829 0.05799 0.24476 Presence of 
aliphatic 
oxygen, double 
bond and carbon 

B Promoters of endpoint Decrease 

1. $00,000,000,000 − 1.93441 − 1.21227 − 0.8947 − 0.9151 Absence of 
HARD: 
Super-attribute 
of SMILES 

2. < = > 
.0.0001… 

− 1.15262 − 0.2895 − 0.10261 − 0.35307 Presence of one 
double bond 

3. < S > .0.0000… − 1.67041 − 0.0004 − 0.45945 − 2.56956 Absence of 
sulphur 

4. C…(…(… − 0.69041 − 0.2988 − 0.40102 − 0.56006 Presence of 
aliphatic carbon 
with two 
branching 

5. Cmax 0000… − 0.23134 − 1.10586 − 0.72821 − 0.58524 Absence of ring 

6. NOSP00000000 − 0.85768 − 0.38733 − 0.01996 − 1.35213 Absence of 
nitrogen, 
oxygen, sulphur 
and 
phosphorous

index (RI) of 136 volatile organic compounds (VOCs) detected in the headspace 
of rice utilizing a Divinylbenzene-Carboxen-Polydimethylsiloxane system (DVB-
CAR-PDMS) fibre in the solid-phase micro extraction-gas chromatography-mass 
spectrometry (SPME–GC–MS) analysis.
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R² = 0.9864 
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Fig. 17.1 The correlation between the observed RI and the predicted RI computed by CM2 

17.4 Conclusions 

The retention indices of 136 volatile organic compounds identified by the DVB-
CAR-PDMS fibre in the headspace of rice are explained and predicted by a SMILES-
based QSRR modelling using the CORAL software. The newly introduced statistical 
parameter “Correlation Intensity Index (CII)” is also applied. The results of validation 
parameters are improved by using the CII. Two target functions, TF1 (WCII = 0) and 
TF2 (WCII = 0.3) are implemented to make 16 QSRR models from eight random 
splits employing the balance of correlation scheme. The result of R2 

validation = 0.9532 
of TF2 (Split 4) is obtained better than that of the R2 

validation of the other splits, for this 
reason, it is accredited as a prominent model. The mechanistic interpretation is also 
done by computing the reliable structural attributes. The structural attributes (SAK) 
such as the presence of sulphur, aliphatic carbon, aromatic carbon aliphatic, cyclic 
ring, branching and alkene were identified as reliable promoters of increase. The 
structural attributes such as the absence of sulphur and oxygen were identified as 
reliable negative promoters. Finally, a consensus model is built using the allocation 
method of split 4 and the “Consensus Model 2: Weighted average predictions from 
“qualified” Individual models” is found best model based on MAE (95%; test). The 
numerical result of R2 of the test set for the CM2 model is found 0.9864. Hence, it 
can be concluded that the present QSRR methodology can be applied to predict the 
retention indices of 136 volatile organic compounds. 
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