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Preface

Who is this book for intended? Primarily for students who are planning their carrier.
Ph.D. students can also get valuable ideas for their careers if they are sure that their
scientific activity somehow connects with chemistry, biology, medicine, informatics,
and mathematical chemistry. The author’s team contains specialists in different
directions of chemistry, biochemistry, and medicinal chemistry. The geography of
the authors is vast enough: USA, Canada, Iran, India, China, Uzbekistan, Czech
Republic, Portugal and Italy.

It seems that recognizing the differences in the paths of transition of randomness
into regularity or, conversely, the ways of randomness into stable chaos may be of
interest to everyone since this task affects any area of human activity. In fact, this
book describes attempts to solve the mentioned problem concerning development
processes QSPR/QSAR and nano-QSPR/QSAR.

The curious intrigue of the proposed book demonstrates the ability of randomness
to provide patterns through variational autoencoders (VAEs) defined over SMILES
string and molecular graph, the Monte Carlo technique, and using so-called quasi-
SMILES (i.e., traditional SMILES extended via special symbols which are reflecting
experimental conditions). However, the philosophic principle “nothing is the only”
should make the reader sure that every model should be validated as much as possible,
i.e., checked up under a diversity of experimental conditions.

Thus, there is the probability that the book can become curiously and attractive to
various “random” readers (professors, engineers, players) who are capable of curios
and wonder relevant to the process of building up models for different phenomena.

Milan, Italy Alla P. Toropova
Andrey A. Toropov
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Chapter 1

Fundamentals of Mathematical Modeling | <
of Chemicals Through QSPR/QSAR

Andrey A. Toropov, Maria Raskova, Ivan Raska Jr., and Alla P. Toropova

Abstract The evolution of mathematical chemistry in its applications to establish
the quantitative structure—property/activity relationships (QSPRs/QSARs) between
molecular structure and the physicochemical and biochemical behavior of substances
is discussed. The gradual improvement of molecular descriptors and the statistically
validated methods developed for the above general task are described. The possible
ways of applying and extending OECD principles are demonstrated via computa-
tional experiments to build QSPR/QSAR models. The leading role of validation
in obtaining applicable models is noted. Stochastic procedures able to improve the
reliability of QSPR/QSAR models are demonstrated.

Keywords Mathematical modeling -+ QSPR/QSAR + OECD principles -
Molecular descriptors * Data curation - Reproducibility + Applicability domain *
Model validation

1.1 Introduction

A considerable amount of valuable fundamental work on mathematical chemistry
was carried out in the twentieth century and the first decade of the twenty-first century.
However, this chapter will discuss the results obtained later, that is, in fact, in the
second decade of the twenty-first century. Mathematical chemistry aims for many
tasks. However, if try defines primary aims, one can extract the main word “model”.
The term model itself relates to a grand manifold of phenomena. The impossibility

A. A. Toropov (X)) - A. P. Toropova
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of connecting thinking experiments with traditional experiments becomes a great
challenge that is the beginning of mathematical chemistry and other sciences. Science
is the step from usual to unexpected. Naturally, mathematical chemistry is not an
exception.

Thus, mathematical chemistry [1] is the area of research engaged in novel appli-
cations of mathematics to chemistry, biochemistry, and biology. A significant part of
the above research is dedicated to the mathematical modeling of complex molecular
phenomena that are “quite visible” at the macro-level and can be measured. Those
are named endpoints (e.g., boiling point, heat capacity, or toxicity) [2]. Much has
been said about the role and significance of the sciences, but if we single out the
average, it turns out that few people are interested in this issue. Repeated sentences
in the literature are necessary to find new words and meanings for old concepts. For
instance, it has often been noted that science across all disciplines has become data-
driven, leading to additional needs concerning software for collecting, processing,
and analyzing data. Consequently, software becomes necessary for reproducibility
and analysis of the evolution of scientific methods, often even in real time. Currently,
research work is impossible without a computer for collecting, processing, and
analyzing data [3].

Transparency about the software used as the essence of the scientific process
is crucial to ensure reproducibility and to understand the provenance of individual
research data and results. Even minor changes to the software might significantly
influence the results of computational experiments [3].

The history of mathematical chemistry contains the contributions of many
outstanding scientists, such as H. Weiner, A. T. Balaban, M. Randi¢, I. Gutman,
N. Trinajsti¢, D. Bonchev, S. C. Basak, R. Carbé-Dorca, as well as many others
[4-15].

Many scientific reviews have become available in this area—nevertheless, the
most attractive ones consist of the quantitative features and characteristics of science
and scientific research collected in the literature [16]. Nonetheless, success in math-
ematical chemistry in different fields, especially in drug design, has been and will
continue to be on the verge of randomness and the danger of capital disappointments
resulting from overly bold optimizations and globalization [17].

Biopharmaceutical companies have done everything possible in the last decade
to globalize their capabilities. It is generally recognized that health information is a
crucial external function that must continually focus on optimizing its capabilities
to meet medical and even political challenges around the world [18]. However, the
essential quality of the developed resources for a mathematical understanding of
physical, chemical, and biochemical phenomena should be their open, general right
of usage, that is, the data and results being accessible to a broad mass of users, from
students to specialists working in other often distant fields, to apply QSPR/QSAR
results.
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1.2 QSPR/QSAR: Tools and Tasks

Developing new types of sweeteners, skin protection products, and cosmetics
is costly; however, it requires economically suitable solutions. Drug research
and development are even more complex, expensive, and time-consuming tasks
requiring acceptable solutions. Quantitative structure—property/activity relationships
(QSPRs/QSARs) are a popular approach to searching for answers to the above-listed
functions and solutions to many others.

The attractiveness of QSPR/QSAR is caused by: (i) this is a concept of compact
representation of complex physicochemical and biochemical phenomena; (ii) this is
a more economical way of searching for appropriately defined aims substances in
comparison with the experimental analysis; (iii) this is an additional way of knowing
of the nature, in general, and (iv) this is a way to avoid or at least to reduce the use
of animal tests drastically.

The wide variety of substances known now seems incomprehensible. This variety
appears to be far from our understanding. However, applying computer technologies
allows examining logically interacted parts of the above great list, at least fragmen-
tally. To select substances for practical aims, detecting one quality (e.g., boiling point,
heat capacity, toxicity, therapeutic effects, blood—brain barrier, and other properties)
is not enough. Knowledge of the similarity and dissimilarity of the substance with
others is necessary. The molecular structure is the basis for the comparison aimed at
collecting the similarity and dissimilarity of different substances.

There are many manners to compare molecules—topology, i.e., connecting atoms,
atoms composition, symmetry, and chirality. The 2D geometry represents these
molecular features reliable enough. The diversity of molecular architecture rapidly
increases in 3D space, starting from rotation conformers and finishing in supramolec-
ular systems [19, 20]. The molecular biological systems demo incredible levels of
simplicity and complexity. All living things depend on the ability of biomolecules to
perform the functions of encoding and transmitting information, that is, to preserve
and share various bio codes, including genetic ones [21-23].

The destruction of these molecular regulators leads to severe often-irreversible
consequences in organisms. Predicting and controlling such damage is an ideal but
hardly achievable goal of biochemistry and mathematical chemistry [24, 25]. Self-
consistency and antagonism of molecular systems are also essential properties of
biomolecules [26, 27]. Mathematical modeling of these phenomena is a complicated
but essentially solvable problem. Moreover, for these purposes, there are pretty well-
tested mathematical descriptions [28-30] and software available via the Internet
[31-34].

The similarity and differences of molecules are considered. The results of such
a comparison have been repeatedly described and found in numerous applications
[31-34].

Of course, such comparisons are a very effective heuristic tool. However, it is no
less exciting and promising to establish similarities and differences in various physic-
ochemical and biochemical parameters from a heuristic point of view. Suppose the
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comparison of molecules is carried out through configurations of atoms and bonds.
In that case, the search for analogies and antagonism for arbitrary endpoints can be
carried out based on comparisons of the corresponding structural fragments (alerts)
that strongly or weakly affect the endpoints [35, 36]. However, the molecular struc-
ture is not very convenient for making numerous comparisons using a computer.
The corresponding procedures are well implemented using molecular graphs or
their representation utilizing special matrices. With multiple matrices representing
different molecules and corresponding physicochemical or biochemical parameter
values, molecular descriptors can be calculated using a single algorithm. The descrip-
tors obtained by the manner can correlate with the endpoints of interest. Such corre-
lations make it possible to build models calculated through linear regression equa-
tions obtained by the least squares method. These can be either models calculated
using only one variable (descriptor) or models calculated using several or even many
variables (descriptors).

This approach convinced many researchers that the high accuracy of such fore-
casts is possible since the correlation coefficients often showed very high values.
Unfortunately, reality soon dispelled these high hopes. It turned out that a high
correlation on the so-called training set was often accompanied by an extremely low
correlation between the predicted and experimentally obtained values for physico-
chemical parameters (boiling points, melting points). Mainly, discouraging results
were observed for biological activity (toxicity, drug efficacy). As a result, the term
“chance correlation” appeared. Computer experiments have shown that, in principle,
chance correlations can be recognized through the ratio of the number of descrip-
tors involved in constructing the model and the number of molecules (substances)
available for analysis. According to the Topliss-Costello rule [37], this ratio should
be one to five (the ratio of the number of descriptors to the number of molecules).
The problem of the dimensionality paradox and linear dependence also should be
considered [38].

Despite these efforts devoted to improving the predictability of models, the QSAR
practice has faced significant challenges, even if a group of several conceptual
approaches to solving the same task is applied. Poor validation strategy is the most
prevalent cause of the unsuitability of many QSAR models. The simple postulate
“structurally those similar molecules should have similar biological properties” has
also been seriously questioned and renamed the “QSAR paradox”. Such an occur-
rence is significant for the case of drugs since, as a rule, a drug should act on multiple
targets rather than a single one. It increases the uncertainty of QSAR tasks and hence
QSAR results related to drug discovery [38].

All these listed circumstances indicated that some reforms were needed in
constructing and using QSPR/QSAR, both in theoretical and in practical terms. A
contradiction or conflict often becomes a point of development, a transition to some
new quality. Something similar happens from time to time in many, if not all, areas
of the natural sciences. So, it happened with the QSPR/QSAR theory/practices.

The proclamation of the so-called Settibal principles, which later became known
as the “OECD principles”, can be considered a leap change in the paradigm of
constructing “structure—property/activity”” models.
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1.3 Five OECD Principles

Gradually, the understanding of the necessity to check the statistical quality of a
model for compounds unknown at the moment of building up the model did become
the accepted principle.

The Organization for Economic Co-operation and Development (OECD) curates
QSPR/QSAR studies. The agreed OECD principles are as follows: for real applying
a QSAR model for regulatory purposes, it should be associated with the following
information:

A defined endpoint;

An unambiguous algorithm;

A defined domain of applicability;

Appropriate measures of goodness-of-fit, robustness, and predictive potential;
A mechanistic interpretation, if possible.

Nk W=

Unfortunately, these principles are more legal than mathematical. But even in this
capacity, they are instrumental.

1.4 Praxis of the QSPR/QSAR Development

Practice shows that in the field of QSPR/QSAR research, there are several paradigms
(analytical comparisons of these may be helpful) for solving the problem of predicting
the values of various endpoints (well-known to get truthful results if the comparison
of two or more opinions is necessary). Most likely, the number of such paradigms
will increase since none of the mentioned paradigms lacks both advantages and
disadvantages. A brief overview of the paradigms used to build the QSPR/QSAR
models follows, based on the diversity of molecular descriptors or algorithms for
building models.

1.5 Molecular Descriptors are the Basis
for the QSPR/QSAR

One might determine five construction levels according to the dimensionality of
the spaces in which information is taken to calculate the molecular descriptor. A
0D descriptor is one for calculating which no information on the molecular struc-
ture is used (e.g., physicochemical property, solubility, or molecular weight). The
1D descriptor requires stoichiometric data for its calculation (e.g., the number of
atoms or double/triple bonds). Then, 2D -descriptors are calculated according to
molecular topology (configuration of atoms and bonds between atoms). The 3D
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descriptors require data on molecular geometry (distances between atoms in three-
dimensional space) for their calculation. And 4D descriptors are calculated by aver-
aging all possible rotational conformers. Another version of 4D descriptors is the
consideration of molecules in a relativistic space, where time (T) is considered a
specific geometric component similar to the axes X, Y, and Z.

In practice, different methodologies apply all mentioned descriptors for
QSPR/QSAR analysis, often without an attempt to elucidate—why this descriptor
and no other one?

1.5.1 Principal Component Analysis

Principal component analysis (PCA) is probably the most popular multivariate statis-
tical technique, and almost all scientific disciplines use it. PCA analyzes a data table
representing observations described by several dependent variables, which are, in
general, inter-correlated. Its goal is to extract the primary information from the data
table and to express it as a set of new orthogonal variables called principal compo-
nents. PCA also represents the pattern of similarity of the observations and the
variables by displaying them as points in plots [39].

1.5.2 Multiple Linear Regressions

Multiple linear regression (MLR) is a statistical tool that uses independent variables
to model dependent variable. The objective of MLR is to find a linear model of the
property of interest according to the paradigm “Endpoint is a mathematical function
of a group of descriptors” [40]. However, this leads to a vast labyrinth of possibilities;
the number of options for combinations of descriptors grows exponentially with
the growth of the number of available descriptors and the growth of the model
dimensionality (three-, four-, ... n-dimension models).

1.5.3 Partial Least Squares

For structure—activity correlation, partial least squares (PLS) has many advantages
over regression, including the ability to robustly handle more descriptor variables
than compounds, non-orthogonal descriptors, and multiple biological results while
providing more predictive accuracy and a much lower risk of facing the chance
correlation. The significant limitations are a higher risk of overlooking “real” corre-
lations and sensitivity to the relative scaling of the descriptor variables [41]. PLS
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is the regression extension of PCA and is used for establishing QSARs. Judging by
the number of mentions of PLS in the SCOPUS database, this method has a lot of
supporters.

1.5.4 K-Nearest Neighbor Classification

K-nearest neighbors (KNN) is a nonparametric method used in the computational
scheme of establishing the correlation “structure—property/activity” that specifies
the class of each chemical based on K nearest of its neighbors (chemicals) from the
training set. The class is equal to the type of the majority of the K neighbors of the
tested chemical [42]. The molecular similarity is the basis of the approach.

1.5.5 Artificial Neural Network

Artificial neural networks are parallel computational devices consisting of groups of
highly interconnected processing elements called neurons. Neural networks are char-
acterized by topology, computational characteristics of their elements, and training
rules. Traditional neural networks have neurons arranged in a series of layers. The
first layer is termed the input layer, and each of its neurons receives information
from the exterior, corresponding to one of the independent variables used as inputs.
The last layer is the output layer; its neurons handle the output from the network.
The layers of neurons between the input and output layers are called hidden layers.
Each layer may make independent computations and pass the results to another
layer. In feedforward neural networks, the connections among neurons are directed
upwards, i.e., relationships are not allowed among the neurons of the same layer
or the preceding layer. Networks where neurons are connected to themselves, with
neurons in the same layer or neurons from a preceding layer, are termed feedback or
recurrent networks. At a very simplified level, artificial neural networks mimic the
way a biological brain organizes, stores, and processes information [43, 44].

The popularity of neural networks borders on complete trust in them; however,
the emergence of hybrid approaches partially using neural networks indicates the
possibility of improvements in “classical” neural networks [45].

1.5.6 Support Vector Machine

Support vector machine (SVM) is gaining popularity due to several attractive features
and promising empirical performances. The primary aim of SVM is data classifica-
tion, which is much easier and more applicable than artificial neural networks. Briefly,
a classification task usually involves training and testing data which consists of some
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data instances. Each instance in the training set contains one “target value” (class
labels) and several “attributes” (features). The goal of SVM is to produce a model
which predicts the target value of data instances in the test set, which is given only
the attributes [46].

Thus, SVM has many advantages, but together with two disadvantages. These
are the empirical nature of selecting descriptors and, as a rule, a large number of
molecular features involved in a model [46].

1.5.7 Random Forest

The algorithm random forest is widely used in classification and regression, given that
ithas several features that make it suitable for QSAR/QSPR tasks. These include good
predictive performance even when there are more variables than observations. The
availability of measures of the ranging of descriptors and the ability to integrate a large
number of simple models allow the possibility of reducing overtraining problems
[47].

The main disadvantages are the possibility of the initial data influencing the predic-
tive potential of the models, as well as the large amount of data required for the
implementation of the models.

1.5.8 Monte Carlo Method

The main idea of the Monte Carlo method is to play a set of random changes in
the simulation system, accompanied by quality control (evaluation) of the resulting
models. The strength of this approach is its real objectivity (due to the random nature
of all transformations). At the same time, the need to conduct many implementa-
tions/checks of these random modifications should be recognized as a weakness.
Unfortunately, Monte Carlo methods cannot provide high accuracy in modeling
anything, but they offer a comprehensive, absolutely random coverage of the
phenomenon under study, that is, an analysis of even those situations that may seem
illogical or unlikely; as a result, these possibilities escape from the attention of
researchers. Here, so-called optimal 2D descriptors calculated by the Monte Carlo
method for the defined endpoint are discussed [35, 36].

1.5.9 Data Curation

The curation of data selected for developing a model is a critically significant compo-
nent of a QSPR/QSAR analysis. Previously, before the advent of computers and the
Internet, an experiment was the primary data source. With the advent of computers,
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the experiment has lost its privilege of being the sole source of data. It turned out
that studying existing data (e.g., checking for consistency) can be a source of new
data. Sometimes, the data should be averaged. Also, this includes procedures for
identifying recent trends (new substances, new technologies) and new details in the
behavior of complex biochemical objects. In other words, QSPR/QSAR analysis is
possible only based on verified consistent data [48].

1.6 Reproducibility

A QSPR/QSAR loses significance if corresponding models are not reproducible in
defined parametrization. At the same time, it must be taken into account that the
ideal reproducibility of models with the appearance of new data (new substances,
the establishment of additional factors affecting the physicochemical or biochemical
behavior of molecular systems) is unattainable. However, the availability of reli-
able estimates of the dispersion of results indicates the reproducibility of predictive
systems. QSPR/QSAR models should aim to meet a standard level of quality and be
clearly described, ensuring their reproducibility [49].

In other words, each model should be checked up for a group of random splits
into the training and validation sets.

1.6.1 Applicability Domain

One cannot apply a model if the domain of applicability of the model is not defined.
The moment of determining the applicability domain is usually not considered.
However, whether to determine the domain of applicability before building the
model or the scope should be determined for the finished model nevertheless seems
quite natural and quite important. From the practical point of view, the definition
of the domain of applicability before building up a model appears more realistic.
Appreciating the mechanisms is critical to determining the most likely applicability
domain [50]. Four practical approaches for estimating the applicability domain in a
multivariate space are applied: range, distance, geometrical, and probability density
distribution [51].

1.6.2 Model Validation

Any QSPR/QSAR model becomes significant (suitable for practices) only after an
appropriate assessment of the statistical quality of the model. Currently, there are no
specific recommendations that suit everyone for assessing the predictive potential of
models. The need for this kind of verification is noted, and the unreliability of the
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existing criteria for the predictive potential is indicated, but the answer to the question
“how can this be done?” remains in the realm of philosophy, that is, “practice is the
reliability criterion of an approach”. In essence, this means that any approach is
suitable for solving a problem if this approach has shown its ability to solve similar
problems. Only models that have been validated externally can be considered reliable
and applicable for external prediction: “validation” is the word that is constantly used
but seldom defined [52].

A primitive and reliable model is possible, indicating the need for one or a few
structural fragments to guarantee the desired effect. But in such a situation, nothing
needs to be checked.

1.7 Recommendations for Building Robust QSPR/QSAR
Models

QSAR is a collection of well-defined protocols and procedures that enable the defi-
nition of promising chemical collections [53, 54]. All QSPR/QSAR models are the
result of computer experiments. One way or another, the identified molecular features
line up in a series of factors contributing to increasing or decreasing the endpoint
value. In some cases, unexpected analogies are observed between a computer exper-
iment with numerical data and an actual physical experiment. For example, Fig. 1.1
shows the dependence of the number of poor predictions and the percentage of poor
predictions for the validation set in group of models observed for different splits
into the training and validation sets. One can see that 20% in the test set is prefer-
able compared to the case where the test set contains 60% of the total set data.
The graphic of the above dependence is similar to the graphic of the dependence of
conductivity solutions of nanoparticles and their sizes [55]. Perhaps, this is a coin-
cidence. Perhaps, there exists some invisible analogy between the computational
process and the behavior of nanoparticles.

Therefore, it should be recognized that the formulation of a computer experi-
ment, as well as any other experiment, requires the exclusion of the influence of the
authors on this experiment. In other words, it is necessary to develop some standards
that ensure the reproducibility of the results obtained, regardless of the conditions
of a particular laboratory, well or poorly equipped, and irrespective of the person-
ality of the researcher (only the latter must be conscientious enough so that the
implementation of the instructions meets the necessary standards).

The traditional classical experiment with substances, energy, and information
aims to formulate a question about nature and, secondly, to obtain an answer to
this question. The computer experiment, in this sense, entirely coincides with the
classical one despite being related mainly to information.

Below, some examples of applying the computational experiments based on the
Monte Carlo method are discussed.
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Fig. 1.1 Dependence of numbers of poor predictions and percentage of poor predictions for the
validation set in group of models observed for different splits into the training and validation sets

1.8 Is It Possible to Obtain Correlations Suitable
for QSPR/QSAR Using SMILES?

A positive answer to the first of the above questions was obtained from more than
a hundred published works where the Monte Carlo technique (CORAL software,
http://www.insilico.eu/coral) aimed to correlation weighting of molecular features
to bring models of various physicochemical and biochemical endpoints collected in
Table 1.1.

It should be noted that the development of optimal descriptors is possible not
only based on SMILES, but it is also possible to develop optimal descriptors using
both SMILES and the molecular graph (Table 1.2). The optimal descriptors of such
categories were named hybrid ones [67-71]. Besides, optimal descriptors can be
obtained from molecular graphs without using SMILES [72].

However, the practical use of a model should be in agreement with the research
targets. SMILES and molecular graphs aim to represent the molecular structure.
However, these representations are not identical. Can the superposition (hybrid) of
these representations improve the quality of a model?
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Table 1.1 Applying the Monte Carlo method to build up QSPR/QSAR models based on optimal

descriptors
Endpoint The statistical quality Comments References
Carcinogenic potency n =170, R* = 0.628, The statistics for the [56]
(pTDsg) RMSE = 0.87; training and validation set
n=61,R*=0.758,
RMSE = 0.602
The cellular uptake in n =20, R = 0.87, MAE | The statistics for the [57]
PaCa2 cancer cells of =0.15 validation set
nanoparticles
Cytotoxicity for metal The statistical The average statistics on | [58]
oxide nanoparticles characteristics of these several splits
models are correlation
coefficients 0.90-0.94
(training set) and
0.73-0.98 (validation set)
The mutagenic potential | n = 14, R = 0.8087, 0> | The approach checked up | [59]
of multi-walled carbon =0.6975, s = 0.026, F = | with three random splits
nanotubes, pTA oo 51
(training set);
n=>5R*=09453,5 =
0.074
(test set);
n=5R>=08951,s =
0.052 (validation set)
Cytotoxicity of different | R? for internal validation | Three random splits [60]
types of multi-walled datasets: 0.60-0.80; examined
carbon nanotubes to R2 . for external
pred
human lung cells validation datasets:
0.81-0.88
Model for effective For the test sets of the four | Four random splits [61]
antidepressants, selective | random splits, observed examined
serotonin reuptake R? was 0.9459, 0.9249,
inhibitors 0.9473, and 0.9362
Aromatase inhibitors, a R? about 0.65(training Three random splits [62]
promising class of set); examined
therapeutic anticancer R? about 0.68 (validation
agents (pICsp) set)
Focal adhesion kinase The best statistical Four random splits [63]

inhibitors

parameters R> = 0.8398
(validation set)

examined

(continued)
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Table 1.1 (continued)
Endpoint The statistical quality Comments References
Acute toxicity of training set: R? ranges Three random splits [64]
pesticides in rainbow trout | 0.72-0.81, RMSE ranges | examined
(LCs0) 0.54-1.25; validation set
R? ranges 0.74-0.84; and
RMSE ranges 0.64-0.75
Biological activity of R? = 0.6837 (training Three random splits [65]
anti-diabetic drugs set); examined
R? = 0.8623 (validation
set)
Models for potential R? = 0.9524 (training Three random splits [66]

therapeutic SIRT1 for
several diseases like
cardiovascular, metabolic,
and inflammatory
disorders

set), and RZ = 0.9058
(test set)

examined

Table 1.2 Applying the Monte Carlo method to build up QSPR/QSAR models based on hybrid
optimal descriptors, which are calculated with SMILES, HSG, and GAO

Endpoint The statistical quality Comments References
Biological activity of R? = 0.8701 (training set); | Hybrid optimal [68]
antihypertensive used in | R? = 0.8430 (test set) descriptors are used,
the treatment of which are calculated with
hypertension, heart SMILES and HSG
failure, and renal diseases
Adsorption coefficients of | R? ranges 0.9463-0.8528 | Hybrid optimal [69]
aromatic compounds on | (training set); descriptors are used,
multi-wall carbon R? ranges 0.9573-0.8228 | which are calculated with
nanotubes were studied (validation set) SMILES and HSG
HIV-protease inhibitors n=175; R?> = 0.830; Hybrid optimal [70]
(experimental inhibitory | RMSE = 0.489 (training | descriptors are used,
constant, Ki) set); which are calculated with
n=15R>=0915; SMILES and HSG
RMSE =0.311
(validation set)
The prediction of binding | The best statistical Hybrid optimal [67]
affinities (pECsp) parameters descriptors are used,
R?2 =095 (training set) which are calculated with
R? = 0.77 (validation set) | SMILES, HSG, and GAO
The prediction of binding | The R? values of the three | Hybrid optimal [71]

affinities (pECs)

validation sets (splits 1 to
3) are 0.966, 0.921, and
0.886, respectively

descriptors are used,
which are calculated with
SMILES, HSG, and GAO

HSG Hydrogen suppressed graph; GAO Graph of atomic orbitals
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1.9 The Main Quality of a Descriptor Is to Indicate
the Differences Between Molecules

Most molecular descriptors correlate with molecular weight [73] and the length of the
carbon chain or the carbon skeleton branching in organic molecules. An uncompleted
list of molecular features that molecular descriptors should recognize includes the
presence/absence of various rings, symmetry, and chirality [74]. In addition, desir-
able descriptors should “capture” the tendency of molecules to form intra- and inter-
molecular hydrogen bonds. The features mentioned above are quite interpretable.
Descriptors that target correlation with the mentioned features are represented in
the literature. However, the purpose of descriptors is to “capture” ultimately other
abilities of molecules.

All models in the descriptor space might be wrong, but some are useful. How to
prove that some model is valid?

Suppose a model’s construction is considered a particular event characterized
by the values of statistical criteria. In that case, constructing a specific group of
such models can be qualified as a group of random models. If the method is chosen
adequately, then the statistical characteristics of these models should be more or less
reproducible, albeit with some variance.

Having the statistical characteristics of groups of random in the above sense,
models obtained by several methods, it is possible to compare the predictive potential
of these methods. The method that gives the best statistical characteristics for external
testing sets should be recognized as the most reliable for solving the problem.

To carry out the described computational experiments, (1) some set of compounds
with experimental data on the considered endpoint is necessary; (2) a group of random
distributions into a training set and a validation set; (3) a group of different methods
for building up the model.

To confirm the above hypothesis, dataset on toxicity to Rainbow Trout of 309 pesti-
cides (no mixtures) was taken in the literature [75]. Five random splits are calculated
randomly using the CORAL software (http://www.insilico.eu/coral). These splits are
random. The training sets are structured into three subgroups: active training set (=
25%), passive training set (* 25%), and calibration set (& 25%). The external vali-
dation set also contains 25% of the total dataset. Three versions of hybrid optimal
descriptors were used to develop a model for the above toxicity. The first hybrid
descriptor calculated using SMILES and Morgan extended connectivity of the zero,
first, and second order in HSG

DCW(T, N) = > CW(S) + > CW(SSp) + Y _ CW(SSS))

+ ) CW(ECO,) + Y CW(ECI) + » CW(ECZ)  (L.1)

The second hybrid descriptor calculated using SMILES and Morgan extended
connectivity of the zero order in GAO
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DCW(T,N) = "CW(S0) + Y CW(SSp) + Y CW(SSSy) + Y  CW(ECO,)
(1.2)

The second hybrid descriptor calculated using SMILES and Morgan extended
connectivity of the zero and first order in GAO as follows:

DCW(T, N) =Y "CW(S0) + » _CW(SSy) + Y  CW(ECO))
+ ) CW(ECL)) (1.3)

InEqgs. 1.1-1.3, T is the threshold, i.e., the minimal frequency of SMILES attribute
(S, SS, SSS) or Morgan’s extended connectivity of zero, first, and second order (ECOy,
EC1y, and EC2y, respectively) in the active training set; N is the number of epochs
of the Monte Carlo optimization applied to calculate the correlation weights (CWs)
of the SMILES attributes and graph invariants.

The calculation of optimal descriptors needs the numerical data on the above
correlation weights. Monte Carlo optimization is a tool to calculate those correlation
weights. The target functions for the Monte Carlo optimization are the following:

TFIVAT+VPT—|VAT—VPT| X01+HCX05 (14)

The rar and rpy are correlation coefficients between the observed and predicted
endpoints for the active and passive training sets. The IICc is the index of ideality of
correlation [76, 77]. The IICc is calculated with data on the calibration set as follows:

min(" MAEc, +MAEc)
HCC =rc (15)
max(-MAEc, *MAEc)

min(x, y) = {x’ o<y (1.6)
y, otherwise
x,ifx >y
max(x, y) = ; (1.7)
y, otherwise
_ 1 -
MAE¢ = W Z|Ak|, N 1is the number of Ay < 0 (1.8)
+*MAEC = LZM |, *N is the number of Az > 0 (1.9)
C= Iy kls k= .
A = observed; — calculated, (1.10)

The observed and calculated are corresponding values of the endpoint.
Having the numerical data on the correlation weights, one can calculate the model
via the equation
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pLCsy = Co + C1 x DCW(T, N) (1.11)

Tables 1.3, 1.4, and 1.5 contain the statistical characteristics of models calculated
with the hybrid descriptors calculated using Eqs. 1.1-1.3, respectively.

Thus, the modeled properties’ valid values should be sought in the average plus
minus a variance format.

Figure 1.2 represents the average determination coefficient values observed for
descriptors calculated with Egs. 1.1-1.3 as well dispersion of these values. Thus, the
comparison of the random QSAR models observed for different methods (Egs. 1.1-
1.3) indicated that the best method is the one observed for descriptor calculated
with Eq. 1.2. In contrast, other methods are characterized by smaller determination
coefficients for validation set and by more significant dispersion of this value.

Table 1.3 Statistical quality of the model is based on the optimal descriptor calculated with Eq. 1.1

Split |Set* |n | R? ccc IIC 0? RMSE |MAE |F

1 A 75 1 0.6695 |0.8020 |0.7553 |0.6487 0950 |0.821 |148
P 80 |0.7316 07504 |0.7204 |0.7171 |1.06 0.906 |213
C 72 10.8069 |0.8856 |0.8981 |0.7883 |0.556  |0.406 |293
v 82 |0.7561 0.791 0.602

2 A 74 107272 |0.8421 |0.8079 [0.7099 |0.856 |0.729 |192
P 81 |0.7141 [0.8413 [0.7562 [0.7005 |0.921 0.746 | 197
C 77 107434 |0.8616 |0.8622 |0.7305 |0.682 |0.554 |217
% 77 10.7785 0.680  |0.533

3 A 79 10.6703 |0.8026 |0.7588 |0.6525 |0.901 0.706 | 157
P 76 107595 |0.7509 | 0.7657 |0.7495 | 1.06 0.942 | 234
C 77 10.8886 |0.9422 |0.9425 |0.8834 0415 |0311 |598
\% 77 1 0.7265 0.631 0.507

4 A 78 |0.6144 |0.7611 |0.7074 |0.5946 0976 [0.855 |121
P 79 07157 |0.6209 |0.5627 |0.7009 | 1.32 1.16 194
C 76 |0.8570 0.9233 |0.9257 |0.8504 |0.380 | 0.288 |443
\Y% 76 | 0.8270 0515 0431

5 A 76 107702 |0.8702 |0.7492 |0.7573 0777 |0.657 |248
P 77 107370 | 0.8474 |0.7655 [0.7211 |0.895 |0.753 |210
C 78 0.7734 |0.8551 |0.8794 [0.7605 |0.804 |0.648 | 259
\Y% 78 1 0.6199 0.903 | 0.699

*) Here and below, A, P, C, and V are active training, passive training, calibration, and validation
sets, respectively
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Table 1.4 Statistical quality of the model is based on the optimal descriptor calculated with Eq. 1.2

Split |Set |n R? cce i@ 0> RMSE |MAE |F

1 A 75 105006 [0.6672 |0.6191 |0.4728 |1.17 1.04 |73
P 80 07189 |0.6233 |0.8064 |0.7056 |1.18 1.07 199
C 72 108489 09194 [0.9213 |0.8272 |0.427 |0.306 |393
v 82 10.8443 0.493 0.395

2 A 74 107196 |0.8369 |0.6828 |0.7006 |0.868 |0.730 | 185
P 81 0.6099 |0.7700 |0.6277 [0.5912 |1.19 1.01 124
C 77 0.8109 [0.8978 [0.9005 |0.8017 |0.601 0.499 |322
v 77 0.7966 0.676 | 0.496

3 A 79 10.6764 |0.8069 |0.6885 |0.6588 |0.893 0.775 | 161
P 76 [0.6792 |0.7455 |0.7009 |0.6653 | 1.11 0.956 | 157
C 77 0.8637 [0.9268 [0.9292 |0.8573 |0.478 |0.392 |475
\Y 77 0.7774 0.554  |0.439

4 A 78 10.5351 [0.6972 |0.6270 |0.5056 | 1.07 0977 |87
p 79 10.6353 [0.6177 |0.6677 |0.6163 |1.32 1.15 134
C 76 |0.8245 |0.9010 [0.9080 |0.8162 |0.430 |0.339 |348
v 76 |0.8470 0.495 0.397

5 A 76 05481 [0.7081 |0.6320 |0.7805 |0.5213 |1.09  [0.957
P 77 105098 [0.7114 |0.6547 |0.8097 |0.4850 |1.27 1.13
C 78 108346 [09117 [0.9135 |0.8986 |0.8239 |0.536 |0.447
\Y 78 |0.8067 0.528 |0.420

1.10 Significant Notes

e A QSPR/QSAR model is a random event (an unpleasant, ugly truth that cannot

be ignored when building wrong, but perhaps useful, models).

e An approach should be estimated for a few different distributions into training
and validation sets.
e The accurate measure of model robustness is likely to be the reproducibility of the
statistical quality of the model across multiple splits into training and validation
sets [78] rather than the high statistical quality of the model for a single split into
training and validation sets.
e All published models built using CORAL software can be reproduced with
an accuracy that users can measure by carrying out (repeated) corresponding
computational experiments.
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Table 1.5 Statistical quality of the model is based on the optimal descriptor calculated with Eq. 1.3

Split | Set |n R? cce 1c 0? RMSE |MAE |F
1 A 75 105207 | 0.6848 |0.7026 |0.4951 |1.14 0.985 79
P 80 |0.7080 |0.6379 |0.7026 |0.6916 |1.20 1.08 189
C 72 10.8230 | 0.9061 |0.9072 |0.8073 |0.465 0371 |325
\Y 82 |0.6865 0.714 0.528
2 A 74 10.6059 |0.7546 |0.6986 |0.5789 |1.03 0.823 | 111
P 81 105314 |0.7286 |0.6403 |0.5035 |1.20 0.978 90
C 77 107359 |0.8448 |0.8577 |0.7221 |0.661 0.521 |209
\Y 77 107151 0.705 0.558
3 A 79 105649 0.7219 |0.6621 |0.5408 |1.04 0.868 | 100
P 76 |0.6861 0.6892 |0.7636 |0.6651 |1.17 0983 |162
C 77 0.8155 0.8958 |0.9030 |0.8054 |0.518 0412|332
\Y 77 10.6603 0.666 0.509
4 A 78 04362 0.6074 |0.5960 |0.4006 |1.18 1.06 59
P 79 106106 |0.5728 |0.6648 |0.5901 |1.36 1.19 121
C 76 07266 0.8139 |0.8524 |0.7118 |0.557 0416 |197
\Y 76 |0.7758 0.588 0.452
5 A 76 [0.6432 0.7829 |0.7609 |0.6227 |0.968 0.803 | 133
P 77 105779 07566 |0.7134 |0.5552 | 1.22 1.02 103
C 78 0.7659 | 0.8750 |0.8751 |0.7533 |0.657 0.486 | 249
\Y 78  10.5973 0.863 0.629
Fig. 1.2 Comparison of the E;z;

predictive potential of
considered methods in
building up models for
toxicity of pesticides to
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1.11 Conclusions

Estimating a physicochemical or biochemical parameter by QSPR/QSAR is a surro-
gate for a real experiment. However, the reproducibility of the results is necessary
for assessing the QSPR/QSAR approach as successful. Despite the inconvenience of
applying many criteria for the statistical quality of the model, if they are diverse in
nature, they are the guarantors of the statistical reliability of the model and, therefore,
the patrons of confidence in the used approach. The general philosophical signifi-
cance of QSPR/QSAR lies in the satisfactory quality of the forecast of the phenomena
under consideration and in the semantic load on obtaining and using QSPR/QSAR
results. In other words, there must be harmony between the user and the logic of the
program as a tool for solving the problem.
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Chapter 2 ®)
Molecular Descriptors in QSPR/QSAR Gissiia
Modeling

Shahin Ahmadi, Sepideh Ketabi, and Marjan Jebeli Javan

Abstract Molecular descriptors are mathematical representation of a molecule
obtained by a well-specified algorithm applied to a defined molecular representa-
tion or a well-specified experimental procedure. The molecular descriptors as the
core feature-independent parameters used to predict biological activity or molecular
property of compounds in the quantitative structure property/activity relationship
(QSPR/QSAR) models. Over the years, more than 5000 molecular descriptors have
been introduced and calculated using different software. In this chapter, the main
classes of theoretical molecular descriptors including 0D, 1D, 2D, 3D, and 4D-
descriptors are described. The most significant progress over the last few years in
chemometrics, cheminformatics, and bioinformatics has led to new strategies for
finding new molecular descriptors. The different approaches for deriving molecular
descriptors here reviewed, and some of the new important molecular descriptors and
their applications are presented.

Keywords Molecular descriptors + QSAR - QSPR - Chemometrics *
Chemoinformatic
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DHFR Dihydrofolate Reductase

DLS Dynamic Light Scattering

EM Electronic Microscopy

EDX Energy Dispersive X-ray Spectrometry
ESEM Environmental Scanning Electron Microscopy
FFF Field Flow Filtration

FMO Frontier Molecular Orbital Theory

HOMO  Highest Occupied Molecular Orbital

WwWw Hyper-Wiener Index

ICPOES Inductively Coupled Plasma Emission Spectroscopy
ICP-MS  Inductively Coupled Plasma Mass Spectrometry

LC Liquid Chromatography

LUMO Lowest Unoccupied Molecular Orbital
MW Molecular Weight

MVC Multivariate Characterization

PCA Principal Component Analyses

PPs Principal Properties

QSAR Quantitative Structure—Activity Relationship
QSPR Quantitative Structure—Property Relationship
SMILES Simplified Molecular Input Line Entry System
TMACC Topological Maximum Cross Correlation
TEM Transmission Electron Microscopy

2.1 Introduction

2.1.1 History

The history of molecular descriptors as a feature vector for each compound is closely
related to the concept of molecular structure [1]. The years between 1860 and 1880
were marked by a strong disagreement about the theory of molecular structure,
which arose from studies on substances showing optical isomerism and Kekulé’s
(1867-1861) studies on the structure of benzene [2].

Today, many chemical, physical, and biological characteristics of compounds rely
on the principle that these parameters are effects of its structural descriptors.

In 1868, Crum-Brown and Fraser [3] introduced first formulation about relation-
ship between the bioactivity/property of a chemical (®) and its chemical constitution
(C), as the following equation:

@ = f(C) 2.1)
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Based on this concept, many studies were conducted on the relationship of molec-
ular descriptors to observed properties, including the relationship between the anes-
thetic power of various aliphatic alcohols with chain length of carbon and molecular
weight [4], between the color of disubstituted benzenes with various ortho-, meta-,
and para-orienting [5], and between the narcotic toxicity and solubility in water [6].

One of the most attractive quantitative structure—activity relationship (QSAR)
approach is the Hammett equation [7]. In 1973, he showed a linear relationship
between the rate constants of a series of methyl ester reactions with N(CHj3); and the
ionization equilibrium constants of the related carboxylic acids in aqueous solution
at ambient temperature. The linear relationship between the ionization constant of
the ester containing a substituent X in the meta (m) or para (p) orientation (Kx) and
the ionization constant of the unsubstituted ester (K ) is defined by the following
formula:

log<ﬁ> = p .oy, 2.2)

where o is the constant of the substituent in m or p position is indicated by o,, or o,
respectively. The absolute value of o, which varies for each substituent, refers to the
measure of the global electronic effect exerted on the reaction center by the presence
of substituent X. The sign of o is positive for electron-withdrawer and negative
for electron-donor substituent. The electronic induction effect and the electronic
resonance effect denote by o; and oy, respectively; the constant for the unsubstituted
aromatic ring as a reference represented by 02. Hammett’s equation in this case
defined by the following equation.

log(—x) = p; 07+ pr- ol (2.3)
R
Ky

2.1.2 QSPR/QSAR Modeling

In cheminformatics, a QSPR/QSAR model, either qualitative or quantitative, is a
mathematical function that can be used to describe the connection between the
molecular structures of a series of chemical compounds and their physicochemical
properties/biological activities [8—14].

This field of knowledge assumes that the activity or property of a compound
depends on its structural features, which affect its overall activities and properties
[15-19].

Despite the formal differences between different methodologies, each
QSPR/QSAR method is based on a QSPR/QSAR table that can be generalized as
presented in Fig. 2.1 [20].
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Molecular structures DATASET

Fig. 2.1 Flowchart of the combinatorial QSAR methodology

The differences in various QSPR/QSAR studies can be explained in the following
terms:

e Endpoint value
e Molecular descriptors
e Optimization algorithms.

Endpoint value as dependent variables can generally be of three types:
e Continuous

This endpoint is real values covering certain range, e.g., physicochemical properties
of compounds such as boiling point and melting point. or ICs, values and binding
constant.

e (Categorical-related

This is classes of activities covering certain range of values, e.g., active and
inactive compounds.

e Adjacent classes of metabolic stability
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Adjacent classes of metabolic stability such as unstable, moderately stable, stable;
and categorical-unrelated (i.e., classes of endpoints that do not relate to each other in
any continuum, e.g., compounds that belong to different pharmacological categories,
or compounds that are categorized as drugs vs. non-drugs).

Understanding this classification is indeed very important because the choice
of descriptor types as well as modeling methods is often determined by the type
of endpoints. Thus, in general the latter two types require classification modeling
methods, whereas the former type of the target properties allows using linear regres-
sion modeling. Therefore, the latter two types require categorical modeling methods,
generally while the former type of endpoint characteristics allows the use of linear
regression modeling. Methods related to data analysis are called classification or
continuous QSPR/QSAR.

2.1.3 Molecular Descriptors

Chemical descriptors as independent features in QSPR/QSAR modeling are usually
classified into the following two types:

e Continuous

There are so many continuous descriptors such as molecular weight or many
molecular connectivity indices.

e (Categorical-related

The categorized descriptors such as counts of functional groups, binary descriptors
indicating the presence or absence of a chemical functional group or an atom in a
molecule.

2.1.3.1 Types of Molecular Descriptors

Molecular descriptors can be obtained from different representations of molecules.
Knowing various types of descriptors is also critical for a fundamental understanding
of QSPR/QSAR modeling because, as mentioned above, any modeling requires
establishing a relationship between the chemical similarity of compounds and their
target properties [21-24]. Chemical similarity is calculated in descriptor space using
various similarity metrics [25]. For example, in the case of continuous molecular
descriptors, the Euclidean distance in the descriptor space is an advisable choice of
similarity metric, while in the case of binary descriptors metrics such as the Tanimoto
coefficient or the Manhattan distance seem more appropriate.

The grade of the sufficiency of molecular structure samples differs from 0 to 4D
demonstrations.
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0D Descriptors

The 0D models contain the simplest molecule interpretation that does not hold any
information about atom connections. Chemical formula, which organizes the atom
types and their occurrences within a molecule, is independent of any information
about the molecular structure. Therefore, molecular descriptors gained from the
chemical formula stated as 0D descriptors. The most usual examples are atom type,
number of atoms, molecular weight (MW), and any function of atomic properties.

1D Descriptors

Substructure list representation can be classified as a 1D description and contain
of structural fragments of a molecule such as functional groups, bonds, rings, and
substituents. Therefore, 1D descriptors do not involve a full information of molecular
structure. These descriptors are inanimate to any conformation variation and, hence,
do not recognize between isomers.

2D Descriptors

The 2D models include knowledge about the structure of the compound on the
basis of its structural formula [26]. These patterns solely mirror the topology of the
molecule. Such templates are highly common. The ability of such methods is that the
topology model of the molecular structure includes information about the possible
combinations of the molecule in virtual form.

Evaluation of the internal atomic arrangement of compounds is done by topolog-
ical parameters [27]. They originated from the topological exhibition of molecules
and can be measured as structure-manifest descriptors. These factors numerically
code data related to molecular shape, size, branching, attendance of heteroatoms, and
multifold bonds in numeric form. These topological parameters show the correlation
of atoms by the characteristic of chemical bonds.

In modeling distinct biological, physicochemical, and pharmacokinetic proper-
ties, they have considerable performance. A topological display of the molecule is
accessible as a molecular diagram. This diagram is defined in mathematical phrases
as G = (V, E), where V is a series of vertices corresponding to the atoms of the
molecule and E is a series of elements that initiate a double connection between pairs
of vertices.

These chemical diagrams illustrate a non-numerical figure of the molecular
compound although a numeric interpretation of the diagram is crucial for computing
topological parameters [28].

Some common 2D descriptors together with their description have been listed in
the following.

Wiener (W) Index

The structure descriptor based on the classical molecular diagram is the Wiener index
(W) which has become one of the most heavily applied descriptors in QSAR/QSPR
approaches [29]. The descriptor is defined as the sum of edges on the shortest path
in a chemical diagram.
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Actually, the following equation denotes Wiener index W(G) of the graph G (the
graph G is a tree, T):

W(G) = Z ni(e|Gnz(e|G) 24
ecE(G)

ni(e|G) and n,(e|G) counts the vertices of G lying closer to the endpoints of the
edge e than to its other endpoint

Hyper-Wiener Index (WW)

This index of a chemical tree T is defined as the sum of n;n, products over all pairs
of u vertices of 7 [30]. In fact, WW is the path number, and it is defined as the sum of
the distances between any two atoms in the molecule, in terms of atom-atom bonds.
Actually, WW can be calculated by multiplying the number of atoms on one side of
any path by those on the other side, and the sum of these values for all paths. Wiener
index is restricted to bonds and in Hyper-Wiener index bond is replaced with path.

Modified Wiener Index (W#*)

Bond contribution is determined by using the reciprocal of the number of atoms on
each side of the bond [31].

Novel Wiener Index

It is obtained as an additive bond quantity, where the bond contribution is given as
the product of the number of atoms close to each of the two points of each bond [32].

Connectivity Indices

It is structural invariant. Such indices are widely used in structure—property and
structure—activity studies. These descriptors are on the basis of graph-theoretical
constants that are presented to calculate the branching index of alkenes [33].

Kier and Hall extended these indices and intrinsic valence coupling indices to
differentiate heteroatoms. Today, these phenomena have been optimized for a wide
range of biological and physicochemical properties [34]. Randic [35] proposed some
descriptors for topological indices: (i) they should be well-correlated with at least
one feature; (ii) have structure commentary; (iii) be normal and self-determining;
(iv) easily applied in a situational structure; (v) be free of empirical features; and (vi)
be independent of other parameters.

Higher Order Connectivity

These indices are weight paths, where higher weight is given to terminal bonds and
a lower weight to less exposed internal bonds [36].

Kier Shape

The descriptor defines shape indexes from molecular graphs. The shape of molecules
is defined by the number of atoms and their bonding pattern which present in various
orders [37].
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Balaban Index

It is also one of the most distinctive molecular descriptors. Its value is independent
of the molecular size or the number of rings [38].

Zagreb Indices

This descriptor is the first topological indices used for the total w-energy of conju-
gated molecules. The significant use of these indices is the distinction between the
size of the molecules, flexibility, degree of branching, and entire shape [39].

Augmented Zagreb Index (AZI)

This index is based on the atom-bond connectivity (ABC index) used to obtain
extreme values of AZI in chemical trees, and it can be used for upper and lower
bonds’ power of chemical trees [40].

Hosoya (Z)
It constructs QSAR/QSPAR models that describe the physical properties [41].
Modified Hosoya Index (Z*)

The frequency of occurrence of single CC bond in disjoint bond patterns is considered
[42].

Autocorrelation Indices

This is a function of spatial separation and has particular advantageous for any
QSAR/QSPAR study [43]

Szeged (SZ)

It is obtained as an additive bond quantity, where the bond contributions are given
as the product of the number of atoms close to each of the two points of each bond
[44].

Luckily, most of these parameters are identified in the topological descriptors.
Therefore, they have been widely utilized in QSAR/QSPR simulation to determine
the structural resemblance or disparity of chemical compounds.

Topological Maximum Cross Correlation (TMACC)

These descriptors generated from atom properties determined by molecular topology
based on concepts derived from autocorrelation descriptors. In 2007, Topological
Maximum Cross Correlation (TMACC) was developed through atomic features
characterized by molecular topology [45]. These parameters are based on mean-
ings derived from coefficient descriptors. The ability to decode TMACC descriptors
using QS AR simulation of angiotensin-converting enzymes (ACE) and dihydrofolate
reductase (DHFR) inhibitors was demonstrated by Spowage et al. [46]. Altogether,
TMACC revealed specific properties for C domain-selective ACE inhibition, which
was an improvement on prior QSAR studies [46].
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The physical and chemical features of a molecule that are evaluated by examining
its 2D structure are physicochemical descriptors. These features play a main role in
characterizing the drug condensation in the body. The convenient characteristics of
a drug can enhance its effect and thus its market value.

Therefore, investigating these features of a drug not only contributes to the general
plan of drug safety but also plays a significant role in drug detection collaboration by
optimizing the selected compounds. Thus, it is necessary to pay attention to properties
like solubility, permeability, and lipophilicity that can warrant optimal power, as well
as to select the volunteer compounds with proper physicochemical properties.

The lipophilicity of a drug is related to its dependence on a lipophilic surrounding.
It is an essential feature in the movement of drugs in the body, which includes
intestinal absorption, membrane penetrance, protein linkage, and dispensation among
multiple tissues [47].

Generally, a drug exhibits negligible chemical absorption, distribution,
metabolism, excretion, and toxicity (ADMET) properties in the presence of low
lipophilicity [48]. Many pieces of research have been conducted on in vitro cellular
permeance, which have demonstrated its connection to lipophilicity with other
parameters, like molecular size, hydrophilicity, hydrogen bonds, and degree of
ionization. These factors are recognized to have a considerable role in the intestinal
absorption of a molecule. Molecular size is the main operative influencing biological
activity like intestinal absorption.

Hydrogen bond donors and lipophilicity play considerable roles in predicting
human intestinal permeability [49]. MW is associated with reduced permeability.
Solubility in water plays a significant role in the distribution of drugs and their
permeance through biological membranes, and their redeploy and sorption.

3D Descriptors

The 3D QSAR models [50-53] provide complete structural data including composi-
tion, topology, and steric form of the molecule for only one conformer. These patterns
are the most common. Geometrical descriptors are computed from the 3D correla-
tions of atoms in a given molecule. These parameters are in contrast to topological
descriptors in terms of data and distinction power for similar chemical structures and
molecular compounds [54].

In addition, they also contain data procured from atomic van der Waals regions
and their participation on the molecular surface. In spite of their high data quantity,
these parameters normally have drawbacks.

Geometrical descriptors need geometry optimization and, thus, the overhead
to compute them. Thus, new data are available and can be extracted for flexible
molecules that can have different molecular compositions. However, this propels
the complexity that can enhance considerably. In addition, most of these parameters
(grid-based descriptors) require arrangement rules to accomplish molecule abduc-
tion. Different groups of descriptors can be recognized using the set of geometric
descriptors [54].
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A diversity of 3D descriptors is accessible, some of them are:

3D-Molecular Representation of Structures Based on Electron Diffraction
(MoRSE)

MOoRSE descriptors have been shown to have good modeling power for various
biological and physicochemical properties and can also be used to simulate infrared
spectra [55].

Weighted Holistic Invariant Molecular (WHIM)

WHIM descriptors are applied to obtain related 3D data about molecular shape, size,
symmetry and atom dispensation and have been utilized to model several physico-
chemical and toxicology properties. At the minimum, ten distinct sorts of WHIM
parameters with distinct molecular characteristics have been expanded [54].

3D Autocohesion

Using the autocohesion function, these parameters are computed at individual spots
on molecular surface. For a specific geometry and sensitive conformational change,
they are unique and are constant to rototranslation [56].

GEometry, Topology, Atom-Weights AssemblY (GETAWAY)

These parameters are on the basis of spatial coherence formula, which weights the
atom to calculate van der Waals volume, atomic mass, and electronegativity along-
side 3D data. According to data factors and the matrix operator, seven GETAWAY
descriptors have been declared until now [54].

4D Descriptors

In 3D descriptors, the choice of the analyzed conformer is often random. The most
adequate explanation of the molecular structure will be provided by 4D-QSAR
patterns [57]. These models are similar to 3D models, but unlike them, structural
data are discussed for a set of conformers (in essence, the fourth dimension), for a
firm conformation.

Representation of molecular descriptors used in QSPR/QSAR modeling indicated
in Fig. 2.2.

2.1.3.2 Molecular Descriptors’ Resources

To get a considerable connection in QSAR studies, suitable descriptors must be used,
whether they are empirical, theoretical, or derived from easily accessible exper-
imental features of the molecules. Multiple descriptors mirror simple molecular
features and thus can equip vision into the physicochemical characteristics of the
property/activity under observation.
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Geometrical

Calculated from the ordinate of the

Topological Thermodynamic

Based on molecular graphs represents the
connectivity of atoms in molecules. Used
for modeling biclogical, physicochemical

and farmacokinetic properties, e.g. Weiner,

Zagreb connectivity indices

N - N\

Descriptors are used to relate chemical
structure to observed chemical behavior e.g
HF (head of formation), molRef (molar
refrativity) Alog P, etc.

Constitutional Electronic
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reflecting the chemical data of a molecule molecular or atoms bonds and molecular
without any data of atom connectivity, e g. fragments, e.g. Dipole moment, HOMO, LUMO

atoms and bond counts, MW, etc ENergy.

N\ N

Fig. 2.2 Representation of molecular descriptors used in QSPR/QSAR modeling

Quantum Chemical Descriptors. Quantum chemical computations are an important
source of new molecular descriptors that can actually represent all electronic and
geometrical properties of molecules and their interactions.

Quantum chemical and molecular modeling techniques provide the description
of a large number of molecular and local values that determine the shape, reactivity,
and binding characteristics of an entire molecule in addition to its molecular pieces
and substituents.

In the last years, quantum chemical parameters have been significant in QSAR
models helping researchers illustrate the biological activities and toxicity mecha-
nisms of various chemicals. In the past decades, semiempirical calculations were the
prior ways to generate descriptors owing to the restrictions of the software and applied
systems. Recent advances in computational hardware and the expansion of effective
algorithms have helped to expand molecular quantum mechanical computations. In
particular, the parameters derived from density functional theory (DFT) and hybrid
density functional calculations (mPW1PW91) have excellent potential through their
better accuracy in contrast to the semiempirical procedure and have good efficiency
to fit into the geometrical, electrostatic, and orbital energy calculations [58-61].

Since the context of large discrete physical data is encoded in a large number
of theoretical descriptors, their usage in the scheme of instruction sets in QSAR
studies offers two significant priorities: (a) molecules, their diverse parts, and their
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substitutions; can be instantly identified based on their molecular structure, and (b) the
presented mechanism of action can be straight considered for the chemical reaction
of the studied compounds [62]. As a result, the derived QSAR models contain data on
the essence of the intermolecular interactions imported in specifying the biological or
other properties of the investigated compounds. The most commonly used quantum
chemical descriptors can be classified as follows:

Geometry Descriptors. The bond lengths, angles, and molecular dihedrals of the
root segment should be the same for all molecules in the series.

Atomic Charges. In accordance with the classical theory of chemistry, all chem-
ical interactions are either orbital (covalent) or electrostatic (polar) in nature. The
electric charges in the molecule are clearly the order of the electrostatic interac-
tions. Indeed, local electron density or charges have been shown to be momentous
in a large number of physicochemical properties and chemical reactions of struc-
tures. Therefore, charge-based descriptors have been broadly utilized as indicators of
chemical reactivity or as a measure of fragile intermolecular interactions. Numerous
quantum chemical descriptors are derived from partial charge. Partial atomic charges
are known as indicators of static chemical reactivity [63]. The computed o- and 7t-
electron densities on a specific atom determine the feasible direction of the chemical
interactions and, hence, are often discussed as indices of directional reactivity. Unlike
the total electron density, specific charges on atoms are observed as indicators of non-
directional reactivity. Several sums of absolute or squared values of partial charges
have also been used to characterize intermolecular interactions, e.g., solute—solvent
interactions [64—66].

Molecular Orbital Energies. Highest occupied molecular orbital (HOMO) and
lowest unoccupied molecular orbital (LUMO) energies are very universal quantum
chemical descriptors. It has been displayed [67] that these orbitals play an important
role in controlling various chemical reactions and specifying electronic band gaps in
solids. They are also in charge of the formation of several charge transfer complexes
[63, 68]. Based on the frontier molecular orbital theory (FMO) of chemical reactivity,
the organization of a transition state is owing to the interaction between the frontier
orbitals (HOMO and LUMO) of the reacting fragments [69]. Therefore, the behavior
of frontier molecular orbitals is distinct from others based on the general origins
controlling the character of chemical reactions [69]. The HOMO energy is straightly
connected to the ionization potential and characterizes the ability of the molecule
to attack by electrophiles. The LUMO energy is straightly connected to the electron
affinity and determines the readiness of the molecule against nucleophile attack.
Both the HOMO and the LUMO energies are essential in radical reactions [70, 71].
The meaning of soft and hard nucleophiles and electrophiles is also connected to the
relative energy of the HOMO/LUMO orbitals.

Soft nucleophiles have high-energy HOMOs. Hard nucleophiles have low-energy
HOMOs. Soft electrophiles have low-energy LUMO, and hard electrophiles have
high-energy LUMOs[72]. The HOMO-LUMO gap, i.e., the energy difference
between HOMO and LUMO, is a major stability indicator [73].
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Egp = Erymo — Enomo (2.5)

A large HOMO-LUMO gap indicates high resistance for the molecule by defi-
nition its less reactivity in chemical reactions [67]. The HOMO-LUMO gap has
also been utilized as an estimate of the lowest stimulation energy of the molecule.
However, this definition ignores electronic restructuring in the excited state and hence
may mostly make incorrect theoretical results. The meaning of activation hardness
(n7) and softness (S) is also determined based on the HOMO-LUMO energy gap.

_ (Erumo — Enomo)

5 (2.6)
S = ! 2.7
=5 @7

Activation hardness determines the rate of reaction at various sites of the molecule
and is therefore related to anticipating direction effects [67]. The qualitative descrip-
tion of hardness is intimately connected to polarizability, as a reduction in the energy
gap normally results in an easier polarization of the molecule [74].

Frontier Orbital Densities. Frontier orbital electron densities on atoms provide an
effective alternative or accurate description of donor—acceptor interactions [71, 75].
Due to the theory of frontier electron reactivity, most chemical reactions happen
in the location and direction where the overlap of the HOMO and LUMO of the
respective reactants can be maximized [69].

In the matter of a donor molecule, both ionization potential (IE) and HOMO
density (electrophilic electron density, f.F) are necessary to charge transfer:

f E— Z(CHOMO,n)Z; Chomo,» are atomic orbital factors in HOMO  (2.8)

IE = —EHOMO (2.9)

and in the terms of an acceptor molecule, LUMO density (nucleophilic electron
density, er ) and electron affinity (EA) are critical [63].

r

N = Z(CLUMo,n)Z; CLumo.» are atomic orbital factors in LUMO  (2.10)

EA = —ELumo @2.11)

These descriptors have been applied in QSAR studies to characterize drug—
receptor interaction sites. By comparing the relativities of different molecules, the
frontier electron density should be normalized by the energy of the frontier molecular
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orbitals, and hence molecules with lower ionization potentials are predicted to be
more reactive as nucleophiles. Absolute electronegativity index (x ), electron affinity
(w), and electron charge transfer (AN) are also determined based on ionization
potential and electron affinity:

(I +4 o
X = > absolute electronegativity (2.12)
12
w = > electrophilicity index (2.13)
n
= M electron charge transfer (2.14)
2(na +ng)

Molecular Polarizability. The polarization of a molecule by an external electric
[76] area is given by the potential tensors of order n of the molecular mass. The
first-order term is used as polarizability («):

1
o= g(a” + oy, + azz) (2.15)

The second-order term is mentioned in the first hyperpolarizability, etc. Therefore,
the most considerable characteristic of molecular polarizability is binding to the
molecular bulk or molar volume [73]. Polarizability values have been demonstrated
to depend on hydrophobicity and other biological activities [77-79]. In addition,
the electronic polarizability of the molecules contributes to the typical parameters of
electrophilic super-delocalizability [80]. The first-order polarizability tensor includes
data about feasible inductive interactions in the molecule [70, 73, 81, 82]. The total
anisotropy of the polarizability (second-order term) determines the properties of a
molecule as an electron acceptor:

1
ﬂZ = E[(axx - ayy)z 4 (ayy — aZZ)Z + (OZZZ _ axx)Z] (216)

Dipole Moment and Polarity Indices. The polarity of a molecule is essential
for several physicochemical properties. A large number of descriptors have been
suggested to estimate the polarity effects. For instance, molecular polarity counts for
chromatographic retention in a polar static phase [65, 83]. The dipole moment (u)
is the most obvious and is often used to explain the polarity of the molecule [64, 65,
70, 81, 84]. Difference between net charges on atoms (A) [68, 84], and topological
electronic index (T'g) [68].

Te= Y }‘I"V_qu’ 2.17)
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The quadrupole moment tensor can also be applied as an index to characterize
probable electrostatic interactions. However, such tensors belong to the selection of
the coordinate system and thus the direction of the molecular root section must be
the same for all molecules in the series [70].

Energy. The total energy computed by quantum mechanical methods has been
presented as a good descriptor in several cases [64, 68, 85, 86].

In addition, thermodynamic parameters contain entropy (S°), internal energy
(Eth), constant-enthalpy (H°), free energy (G°), zero-point vibrational energy (ZPE),
and volume heat capacity (CV°) can be computed from frequency quantum mechan-
ical calculations. Reaction enthalpy (AH), entropy (AS), and free energy (AG) can
be calculated by the difference in heats of formation, entropy, and free energies of
formation between reactants and products or between conjugate forms [87, 88]. The
protonation energy, described as the difference between the total energy of the proto-
nated and neutral forms of the molecule, can be discussed as a good scale of the
power of hydrogen bonds (the higher the energy, the stronger the bond) and can be
used to specify the correct position of the most desirable hydrogen bond acceptor
[89].

The others. The descriptors considered above form the bulk of quantum chemical
descriptors effectively used in QSAR/QSPR studies. Other descriptors have also been
designed but do not fall into the categories mentioned above, such as frequency and
NMR chemical shifts.

2.1.3.3 Empirical and Experimental Descriptors

Quantum chemical and molecular modeling techniques allow the description of many
molecular and local values that determine the reactivity, binding features, and shape
of amolecule in addition to molecular moieties and substituents. A principled combi-
nation of theoretical molecular descriptors with both empirical Hammett’s substituent
constants (¢, and 7 ,) [90, 91], Swain—Lupton’s field and resonance constants (/" and
R) [92], hydrophobic constant (IT) [92], Taft’s steric parameter (Ey) [92], Verloop’s
steric parameters [90, 91], etc., and experimental descriptors (substituent-induced
chemical shifts, molecular weight and molecular refractivity (MR) [92]) are available.
Table 2.1 shows the list of empirical and experimental descriptors.

The mentioned substituent descriptors can be categorized pursuant to three
main cluster groups: (a) descriptors that capture the effects of the substituent on
the aromatic ring (electronic charges on the ring carbon atoms, resonance and
field substituent constants, and substituent-induced chemical shifts); (b) descrip-
tors characterizing the properties of the majority of substituents (Verloop’s steric
parameters and the molecular refractivity) are clustered with theoretical descriptors
describing the polarizability properties of the substituents, molecular polarizability
anisotropy, dispersion interaction terms (IP*ANIS, IP*X1I1,,,) and electrophilic
super-delocalizability of the substituent.
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Table 2.1 List of empirical and experimental descriptors
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Descriptor Definition References
Oy Taft’s substituent electronegativity effect parameter [93]

Oy Taft’s substituent polarizability effect parameter [93]

of Taft’s substituent field effect parameter [93]

o, Taft’s substituent resonance effect parameter [93]

Co 13C substituent chemical shift on the ortho-carbon atom [94]

C; 13C substituent chemical shift on the ipso-carbon atom [94]
Cn 13C substituent chemical shift on the meta-carbon atom [94]

Cc, 13C substituent chemical shift on the para-carbon atom [94]
Om Hammett’s substituent constant for the meta position [90, 91]
op Hammett’s substituent constant for the para position [90, 91]
F Swain—Lupton’s field constant [92]

R Swain—Lupton’s resonance constant [92]

II II hydrophobic constant [92]
MR Molecular refractivity [92]

E; Taft’s steric parameter [92]

H, Number of hydrogen bonds that the substituent can accept [95]
Hy Number of hydrogen bonds that the substituent can donate [95]

L Verloop multidimensional steric parameter [90, 91]
By Verloop multidimensional steric parameter [90, 91]
B> Verloop multidimensional steric parameter [90, 91]
B3 Verloop multidimensional steric parameter [90, 91]
By Verloop multidimensional steric parameter [90, 91]
Har Lien’s group dipole moment for aromatic substituent [22]

Aar Testa’s lipophobic constant for aromatic substituent [95]

IP = ionization potential derived from the AM1 wave function.

ANIS = anisotropy of the molecular polarizability.
IP*ANIS = product of the molecular ionization potential and the anisotropy of
the molecular polarizability.
IP*3¥11,, = product of the molecular ionization potential and the sum of the
self-atom polarizability over all the atoms of the molecule.
¥ IIxx = sum of the self-atom polarizability values of the substituent atoms.
Y10 = sum of the self-atom polarizability over all the atoms of the molecule.
£ S# = sum of the electrophilic super-delocalizability on the substituent atoms.
¥ Sg x = sum of the electrophilic super-delocalizability (computed over all the
occupied molecular orbitals) on the substituent atoms.
2 Syx = sum of the nucleophilic super-delocalizability (computed over all the
unoccupied molecular orbitals) on the substituent atoms.
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The hydrophobic parameter II is near to this cluster and to the solvent hydrophobic
available surface of the substituent and the electrophilic super-delocalizability with
the polarizability of the benzene ring; (c) molecular dipole moments and their
experimental and theoretical substituents and their square.

(a) Hammett substituent constants, substituent-induced chemical shifts, and Taft
and Lupton’s resonance constants are mapped by the first component, the major
contribution of which is the electronic charges of the carbon atoms of the benzene
ring, the super-electrophilic mobility of the benzene ring and the energy of frontier
molecular orbitals; (b) Verloop steric descriptors and the molecular refraction along
with substituent van der Waals volumes and molecular weight are mapped by the
second principal component, which includes theoretical parameters described as
polarizability (X11xx, ANIS, X11,,), dispersion forces (IP*X11,o;, IP*ANIS), and
substituent reactivity indices (XS 758 £.x,and X Sy x). These recent cases perhaps
indicate the portion of the molecular orbital development to molecular shape; (c) the
third component models the lipophobic descriptor A, and the lipophilic descriptor
II. The parameters that collaborate to this part are the dipole moments (consisting of
the group dipole moment, 11,,) and their square terms, the solvent available surfaces
of the substituent, the energy difference between the HOMO and the LUMO (GAP),
the II-symmetry component of the electronic charges and the polarizability of the
ring.

However, A, and II are not solely modeled by this section, as they also contribute
significantly to the first and the third components, respectively. This suggests that
more than one type of substituent effect specifies the values of these parameters. The
same result is for the steric descriptors E; modeled both by the first and the second
components. These findings are similar to other research aimed at modeling I1 [96]
and E [97] and support the intricate character of these empirical parameters.

Empirical scales called principal properties (PPs) which define the physicochem-
ical features of twenty naturally encoded amino acids were recently developed by
Sjostrom and Wold [98].

Sjostrom et al. applied the PPs in the same way to categorize several types of
signal peptides of different lengths [99]. Carlson and co-workers have reported prin-
cipal component analyses (PCA) of multivariate characterization (MVC) charac-
terize PPs, the physicochemical properties of organic solvents [100], Lewis acids
in organic synthesis [101], amines in the Willgerodt Kindler reaction [102], and
aldehyde/ketones [103].

These PPs are now heavily used in their laboratory to explore the realm and
limits of new organic reactions. PPs of amino acids may be suitable for instance for
screening of peptides [104]. The expansion of PPs for many aromatic substituents
for subsequent uses has been the aim of researchers, and unfortunately, it is very
difficult to find experimental information evaluated in a coordinated manner on a
large number of substituents. Therefore, they should use the next best kind of data,
famous and broadly used physicochemical parameters that are accessible for a large
number of substituents.
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The empirical parameter used to characterize a class of monosubstituted benzenes
were II, MR, o,,, 0, [92, 105], and the Verloop descriptors L and B;—B4 [106]. The
Verloop parameters B|—By, derived from STERIMOL calculations, are normally
listed in order of magnitude improvement. Researchers attempt to choose the vari-
ables to define steric bulk (MR), hydrophobicity (II), the shape of each substituent
(Verloop parameters), and electronic properties (sigmas).

In this case, they knew that there are three groups of variables: hydropho-
bicity/bulk, electronic, and size.

From the numeric amounts of the loadings, it is shown that the first component
is significantly connected to the steric bulk and hydrophobicity because the length,
molecular refractivity, and IT have the largest contributions. The second component is
dominated by the two electronic descriptors, o, and o ,, while the third component
is again mainly hydrophobicity (IT) but also shape since L and B;-B4 (Verloop
parameters) [106] have relatively large contributions.

Since biological sieving of chemical substances is both expensive and time-
consuming, it is essential to expand an instrument for the statistical design of the
compounds in a filtering experiment. The main features are heavily appropriate for
this purpose because they are few and orthogonal.

2.2 Descriptors for Nano-QSPR/QSAR

Over the past few decades, nano-based technology has become one of the top research
areas in all fields of science and technology. A wide variety of consumer products
are at the nanoscale, typically defined by all species having at least one diameter
of 100 nm or less. Currently, nanotechnology has integrated various fields including
biomedicine, pharmaceutical industry, food industry, environmental protection, solar
batteries, energy, information and communication, heavy industry, consumer goods,
and so on. However, it seems that we are only at the beginning of the “nano-industrial
revolution.” Because of the unique electrical as well as optical, magnetic, thermal,
and chemical properties of nanomaterials, the range of their possible applications is
likely to expand rapidly.

Some recent papers report obvious evident toxicity of selected nanoparticles
and highlight potential risk associated with the development of nano-engineering.
Currently, there are many gaps in nanomaterial data. Predictive nano-QSAR/QSPR
is one of the most promising methods used by chem informaticians to extrapolate
the activity/property of nanomaterials. We believe that some of the missing data
that are crucial for environmental risk assessment can be obtained using computa-
tional chemistry, saving the time and cost of conducting experiments. It is worth
noting that the nano-QSPR/QSAR approach should be employed to predict not only
activity responses (e.g., toxicity) but also many important physicochemical properties
(e.g., water solubility, n-octanol/water partition coefficient, vapor pressure). These
physicochemical properties affect the absorption, distribution, and metabolism of the
compound in the organism, as well as environmental transport and the fate.
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In nano-QSPR/QSAR modeling, one of the important parameters for building a
validate model is suitable descriptors. In general, there are more than 5000 different
descriptors for the characterization of molecular structure from zero to four dimen-
sional (0D-4D). Only a few of traditional descriptors can characterize nanostruc-
tures. There are some reports that [107, 108] the existing descriptors are not enough
to express the specific physical and chemical properties of nanoparticles. Therefore,
new and more suitable types of descriptors for characterizing of nanoparticles should
be developed.

Even though the computational features used for QSPR/QSAR modeling, exper-
imentally derived features may also be employed as descriptors for nano-QSARs
development (Fig. 2.3). The experimental descriptors seem to be especially useful for
expressing size distribution, aggregation mode, shape, porosity, and surface disorder.
Moreover, the combination of experimental results with a numerical approach can
be used to define a new descriptor. For instance, images obtained by scanning elec-
tron microscopy (SEM), transmission electron microscopy (TEM), or atomic force
microscopy (AFM) might be processed with new chemometric methods of image
analysis. This means that first a series of pictures of different particles of a nanostruc-
ture should be taken. Then, the images must be numerically averaged and converted
into a matrix containing numerical values that correspond to each pixel’s grayscale
intensity or red, green, and blue (RGB) color value. The other descriptors can be
produced based on the matrix (i.e., the shape descriptor can be obtained as the sum of
the nonzero elements in the matrix; the porosity as the sum of the relative differences
between each pixel and its “neighbors,” etc.) [109].

Undoubtedly, proper characterization of nanoparticle structure is currently one
of the most challenging tasks in nano-QSAR. Although more than five thou-
sand QSAR descriptors have been defined until now, they may be insufficient to
express the supramolecular phenomena governing the unusual activity/property of
nanomaterials. Consequently, much more effort is needed in this area.

2.3 SMILES and Quasi-SMILES Descriptors

The CORrelation And Logic (CORAL) software (http://www.insilico.eu/coral/) was
developed by Alla Toropova and Andrey Toropov used to build up QSPR/QSAR
models using Simplified Molecular Input Line Entry System (SMILES) [61, 111-
116] and quasi-SMILES descriptors. SMILES is a chemical notation system designed
by Weininger et al. [117, 118]. According to the principles of molecular graph theory,
SMILES uses a very small, natural grammar to specify precise structural features.
The SMILES symbol system is also suitable for high-speed machine processing
[119, 120].

Over the last two decades, there have been numerous reports on the QSAR/QSPR
modeling of nanomaterials and other compounds using CORAL software. This
approach provides simple representation of molecular structures. There are defined
equivalences between the representation of molecular structure using diagrams and
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Fig. 2.3 Experimental characteristics as descriptors in nano-QSAR research [110]

the SMILES symbol. However, one should also be aware of their significant differ-
ences [121]. The SMILES can be produced by popular software such as ChemSketch,
Biovia, and Chem Draw [122].

The prediction of activity/property of nanomaterials can be predicted by SMILES
[123-125]. Quasi-SMILES is an alternative of SMILES-based optimal descriptors to
build up predictive models for nanomaterials and other materials by consideration of
the experimental conditions. Quasi-SMILES may be eclectic condition [126, 127] or
combination of SMILES and eclectic conditions [128, 129]. The continuous eclectic
conditions can be normalized by the following equation for assigning codes:

Norm(P,) = — mint#) + Pi (2.18)
' min(P;) + max(P;) ’

P; is its value of physicochemical parameter P, min(/7;) is minimum value of P and
max(P;) indicates maximum value of P.
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Table 2.2 Distinction of Norm value Class

standardized physiochemical

features into classes 1-9 Norm(P) > 0.9 9

according to its value 0.8 < Norm(P) < 0.9 8
0.7 < Norm(P) < 0.8 7
0.7 < Norm(P) < 0.6 6
0.6 < Norm(P) < 0.5 5
0.5 <Norm(P) < 0.4 4
0.4 < Norm(P) < 0.3 3
0.3 < Norm(P) < 0.2 2
0.2 < Norm(P) < 0.1 1
Norm(P) < 0.1 0

According to Table 2.2, the number of unique values in each parameter was less
than 10; therefore, the quasi-SMILES descriptors representations could be coded by
assigning a number between zero and nine in a single character.

2.3.1 Quasi-SMILES Examples in Peer-Reviewed Papers

Table 2.3 shows an example of the construction codes for the quasi-SMILES. Based
on the data shown in Table 2.3, the quasi-SMILES can be generated, which can be
used to build a model according to the optimal descriptors. Table 2.4 indicates some
examples for quasi-SMILES generated by codes shown in Table 2.3.

The new reported QSPR analysis of MOFs by Ahmadi et al. is application of quasi-
SMILES parameters including Brunauer, Emmett, and Teller (BET) specific surface
area and pore volume, pressure, and temperature for prediction of CO, adsorption
of MOFs [128]. Tables 2.5 and 2.6 show the eclectic data range and quasi-SMILES
codes for them, respectively.

In the code-2019 of CORAL software for quasi-SMILES groups of symbols % 10—
%99 (reserved for representation of complex systems of rings for usual SMILES)
were applied as codes for the quasi-SMILES (Table 2.6). The disadvantage of this
version of quasi-SMILES is the difficulty of interpretation of results by a user.

Further development of the CORAL software (CORAL-2020) allows the display
of experimental conditions through groups of symbols enclosed in parentheses. Table
2.7 shows the comparison codes in the last version (CORAL-2020) and old version of
CORAL for creating quasi-SMILES in recently proposed models for the mutagenic
potential. One can see codes-2020 are quite transparent and consequently are more
convenient for a user. As is clearly evident, CORAL-2020 codes are quite transparent
and thus more user-friendly.
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Table 2.3 Codes used for the cell line, method, time exposition, concentration, size of nanoparti-
cles, and type of metal oxide to convert various information of experimental data into quasi-SMILES
[126]

Feature Value or Code | Feature Value or type Code
type

Cell line MCEF-7 H Normalized 0.2 < Norm(size) < 0.3 |P
HT-1080 |1 nanoparticles size | () 3 - Norm(size) < 0.4 | Q
HepG-2 J 0.4 < Norm(size) < 0.5 |R
HT-29 K 0.5 < Norm(size) < 0.6 |S
PC-12 L 0.9 < Norm(size) < 1.0 |T

Method MTT M Metal oxide type SnO, 1
NRU N MnO; 2

Time exposition | 24 X ZnO 3
48 Y Bi, 03 4
72 Z NiO 5

Concentration |5 A CeOs 6

(wgml™h g B Si0; 7
25 C TiO; 8
50 D
100 E
200 F

Toropov et al. reported the model of toxicity examined based on four eclectic
data including three possible forms of silver nanoparticles (bare, coat, cons), organ-
isms (Daphnia magna or Zebrafish), size (nm), and zeta-potential (mV) [131],
where “bare” characterizes nanoparticles without any coating, coat (coating) demon-
strates nanoparticles with a shell, and “cons” defines nanoparticles including coating
material descriptors (Table 2.8).

2.4 Software for Generation of Molecular Descriptors

Over the last two decades, the growing interest in property/activity prediction has
led to the release of many software products to the market and open-source domains
for scientists working in the field of QSPR/QSAR modeling. Table 2.9 shows some
popular software for calculating molecular descriptors. In addition, some of them are
complex packages that also include modules for QSPR/QSAR modeling, statistical
analysis, and data visualization.
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Table 2.5 Lower and high levels of CO, capture capacity, BET, pore volume, pressure (bar), and
temperature (K) [128]

CO; capture BET | Pore volume | Pressure (bar) | Temperature (K)
capacity (mol/kg) (cm?/g)

Low level 0.1 0 0.035 0.01 195

High level |54.5 6240 |7.5 55 318

Table 2.6 Defined quasi-SMILES codes for eclectic conditions (BET-normalized, normalized pore
volume normalized, pressure-normalized, and temperature-normalized) of CO; capture capacity of
MOFs [128]

Normalized range BET Code-2019 for pore Code-2019 for Code-2019 for
volume pressure temperature

0 < BET — %10 %20 %30 %40

normalized < 0.1

0.1 < BET — %11 %21 %31 %41

normalized < 0.2

0.2 < BET — %12 %22 %32 %42

normalized < 0.3

0.3 < BET — %13 %23 %33 %43

normalized < 0.4

0.4 < BET — %14 %24 %34 %44

normalized < 0.5

0.5 < BET — %15 %25 %35 %45

normalized < 0.6

0.6 < BET — %16 %26 %36 %46

normalized < 0.7

0.7 < BET — %17 %27 %37 %47

normalized < 0.8

0.8 < BET — %18 %28 %38 %48

normalized < 0.9

0.9 < BET — %19 %29 %39 %49

normalized < 1

2.5 Conclusion and Future Direction

Molecular descriptors are a critical component of the methodological toolbox used to
study quantitative structure—property/activity relationship (QSPR/QSAR) modeling
and are widely used to describe the structures of chemical compounds for design
of new compounds. The predictive and reliable QSPR/QSAR models depend on
accurate descriptors, as accurate predictions can save the time and cost needed to
design new compounds with the desired property/activity.

In this chapter, the main classes of theoretical molecular descriptors including
0D, 1D, 2D, 3D, and 4D descriptors are described. The most significant progress
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Table 2.7 Definition of eclectic condition for the definition of quasi-SMILES [130]

Condition Code-2019 Code-2020
Coating TA100 %10 [TA100]
TA98 %11 [TA98]
20-nm citrate %12 [20cit]
20-nm PVP %13 [20PVP]
50-nm citrate %14 [50cit]
50-nm PVP %15 [S0PVP]
100-nm citrate %16 [100cit]
Doses (pg/plate) 100-nm PVP %17 [100PVP]
0.0 %18 [d0.0]
6.3 %19 [d6.3]
12.5 %20 [d12.5]
25 %21 [d25]
50 %22 [d50]
100 %23 [d100]

Table 2.8 Indicates some quasi-SMILES used to generate nano-QSAR model for pLCsq [131]

Status of Organisms | Size (nm) Zeta-potential | Quasi-SMILES

nanoparticles (mV)

nanoparticles without | Daphnia 17.150-21.700 — 8.480 to — | [Bare][Daph][s%14][z%25]

any coating magna 5.050

NPs without any Daphnia 12.600-17.150 —25.630to | [Bare][Daph][s%13][z%20]

coating magna —22.200

NPs with a shell Daphnia | 53.550-58.100 —11.910to | [Daph][s%22][z%24]
magna — 8.480

NPs including Daphnia | 21.700-26.250 —11.910to | [Daph][s%15][z% 24]

coating material magna — 8.480

descriptors

NPs without any Zebrafish | 135.450-140.000 | — 22.200 to | [Bare][Fish][s%40][z%21]

coating — 18.770

NPs with a shell Zebrafish | 44.450-49.000 —25.630to | [Fish][s%20][z%20]

—22.200

over the last few years in chemometrics, cheminformatics, and bioinformatics has
led to new strategies for finding new molecular descriptors. Here, some of the most
common molecular descriptors and some new molecular descriptors especially for
design and QSPR/QSAR modeling of nanocomposites have been highlighted.

In nano-QSPR/QSAR modeling, the data in many different publications are small
and not ready enough for model building. In addition, nanomaterials exhibit high
complexity and heterogeneity in their structures, which makes data collection and
processing more challenging compared to traditional QSPR/QSAR. Quasi-SMILES
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descriptors are one of the solutions to this challenge and have been introduced as
new descriptors combining SMILES and eclectic conditions. These novel descrip-
tors provide transparent interpretation equation models with correlation weights
calculated by Monte Carlo optimization using CORAL software.

Finally, a list of the most commonly used software packages for calculating
molecular descriptors is reviewed here.

Table 2.9 List of software packages for the calculation of molecular descriptors

Name

Organization/institution

Availability

Descriptors

Platform/license

RDKit

GitHub

https://git
hub.com/
rdkit

> 200

Windows/Linux/Mac
(freeware)

PaDELPy

University of
Massachusetts Lowell

https://git
hub.com/
ecrl/pad

elpy

> 2500

Windows/Linux/Mac
(freeware)

ADAPT

Pennsylvania State
University

http://res
earch.
chem.psu.
edu/pcj
group/
adapt.html

> 260

Unix/Linux (freeware)

ADMET

Simulations Plus, Inc

http://www.

simula
tions-plus.
com/

297

Windows (commercial)

Predictor™
CODESSA

Semichem

http://www.

semichem.
com/cod
essa/defaul
t.php

> 600

Windows/Linux (commercial)

DRAGON

Talete SRL

http://www.

talete.mi.it/
products/
dragon_des
cription.
htm

4885

Windows/Linux (commercial)

EPISUITE™

EPA

http://www.

epa.gov/
opptintr/
exposure/
pubs/epi
suite.htm

20

Windows (freeware)

MOE

Chemical Computing
Group

http://www.

chemcomp.
com/sof
tware-moe
2009.htm

> 300

Windows/Linux/SGI/MAC/Sun
(freeware)

(continued)
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Table 2.9 (continued)

Name Organization/institution | Availability | Descriptors | Platform/license

Molconn-Z™ | EduSoft http://www. | 327 Windows/Unix/MAC
edusoft-Ic. (commercial)
com/mol
conn/

MOLD NCTR/FDA http://fwww. | 777 Windows (freeware)
fda.gov/Sci
enceResea
rch/Bioinf
ormaticsT
ools/
Mold2/def
ault.htm

MOLGEN University of Bayreuth | http://www. | 707 Windows (commercial
molgen.
de/?src
Yadocume
nts/molgen
gspr.html

PowerMV NISS https:/ > 1000 Windows (freeware)
WWW.NISS.
org/res
earch/sof
tware/pow
ermyv

Sarchitect™ | Strand Life Sciences http://www. | 1084 Windows/Linux (commercial)
strandls.
com/sarchi
tect/index.
html

SciQSAR™ | SciMatics http://www. | > 600 Windows (commercial)
scimatics.
com/jsp/
gsar/QSA
RIS jsp

Alvadesc Alvascience https:// > 6000 Windows/Linux/MAC
www.alv (commercial)
ascience.
com/alv
adesc/

CORAL Istituto di Ricerche http://www. | > 1000 Windows (freeware)
Farmacologiche Mario | insilico.eu/
Negri coral/SOF
TWAREC
ORAL.
html
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Chapter 3 )
Application of SMILES e
to Cheminformatics and Generation

of Optimum SMILES Descriptors Using
CORAL Software

Andrey A. Toropov and Alla P. Toropova

Abstract This chapter uses a simplified molecular input-line entry system
(SMILES) to solve diverse problems in science, technology, and medicine.
SMILES can be useful to model quantitative structure—property/activity relationships
(QSPRs/QSARs). The evolution of the applications of SMILES and the evolution of
SMILES descriptors are discussed. The construction of so-called optimal descriptors
based on SMILES using the CORAL software is described. These optimal descriptors
are useful for training QSPR/QSAR models for a wide range of diverse properties.

Keywords QSPR/QSAR : SMILES * Quasi-SMILES - Variational autoencoders *
SmilesDrawer + DeepSMILES

3.1 Introduction

Simplified molecular input-line entry system (SMILES) is a chemical notation system
for chemical information processing. Weininger developed the SMILES system
in 1988 [1-3]. It is based on principles of molecular graph theory and allows
rigorous structure specification using minimal and natural grammar. SMILES is
a line notation for representing molecular structure that is intuitive to chemists and
also well suited for high-speed computer-based analysis. SMILES has an increasing
number of database-related applications. Here we discuss the use of SMILES to train
quantitative structure—property/activity relationship (QSPRs/QSARs) models.
There are several useful text-based line formalisms based on the molecular graph
that has been applied to QSPR/QSAR analysis. Those include SMILES [4, 5],
SMILES arbitrary target specification (SMARTS) [6, 7], International Chemical
Identifier (InChI) [8—13]. SMILES is the most popular of these for the QSPR/QSAR
community while the use of SMARTS [6, 7, 14] and InChl [15, 16] is much less
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Table 3.1 Examples of Structure
representation for 2-methyl CHjy
butane )\/ CH
HaC °
SMILES CC(c)cce
InChI InChI=1/C5H12/c1-45(2)3/h5H,4H2,1-3H3
SMART [#6]-[#6]-[#6](-[#6])-[#6]

common. The acronym SMARTS stands for SMILES arbitrary target specification. It
is alanguage that allows specification of substructures for searching databases. Using
SMARTS, flexible and efficient substructure-search specifications can be made in a
way that is convenient for users. InChl, the International Chemical Identifier, also
represents the molecular structure by sequences of special symbols.

The number of accessible internet molecular databases that use SMARTS and
InChI representations is gradually increasing. This has accelerated the develop-
ment models for physicochemical and/or biochemical endpoints based on SMARTS,
SMILES, or InChl (i.e. directly from Internet databases). However, the number of
models trained on SMARTS or InChl is still considerably smaller than those using
SMILES. The main reason is that SMILES is a more natural and intuitive way to
represent molecular structures for scientists. Table 3.1 contains examples of SMILES,
InChl, and SMART for 2-methyl butane.

According to Einstein, “everything should be made as simple as possible, but not
simpler” [17]. Despite SMILES being simpler than chemical graphs, historically,
most of the descriptors used in practice are calculated using molecular graphs [18—
29]. The molecular graph is a convenient representation of the molecular structure
for the search for similarity and dissimilarity. This mathematical object has two
categories of elements (i) vertexes (atoms) and (ii) edges (covalent bonds).

Wiener combined chemistry and mathematics in pioneering work on generating
models for thermodynamic properties of paraffin compounds as a mathematical
function of the molecular structure represented using the so-called the hydrogen-
suppressed graph (HSG) [18-29]. The HSG can be expressed via the adjacency
matrix, where O indicates the absence and 1 indicates the presence of a covalent
bond between atoms. Figure 3.1 contains an example of the hydrogen-suppressed
graph together with its equivalent adjacency matrix.

Fig. 3.1 5 The adjacency (0,1)-matrix
Hydrogen-suppressed graph

and the adjacency matrix for |
2-methyl butane 1

[ ]
.
h & W9 =
OO S o=
=
n—-n—-wNn—-F;
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The adjacency matrix is the basis for many topological indices [30—35]. Table
3.2 contains examples of topological indices calculated from the adjacency matrix.
Researchers have generated many univariate and multivariate QSPR models for
physicochemical endpoints using these as descriptors. Subsequently, Fujita et al. [30]
established the first correlations for biochemical endpoints using these indices. The
relationships between the molecular structure and biochemical effects can be more
complex than between molecular structure and physicochemical properties. Metrics
for the quality of those models were (i) the total number of compounds in the avail-
able set; (ii) correlation coefficient; (iii) root mean error or mean absolute error. The
number of the topological indices and similar descriptors encoding physicochemical
information increases exponentially with the size of molecules [36]. Unfortunately,
in general, the increase in the quantity of indices and other descriptors derived from
them is not accompanied by arise in the quality of the corresponding models because
of overfitting and other issues [37].

The uncertainty in model predictions even using superficial criteria was of concern
to researchers, and new criteria for the statistical reliability of models were needed.
Internal and external validation sets are commonly used to assess predictive power
of models. The internal validation involves successively leaving or more molecules
aside, calculating a model with the remainder, and using it to predict the properties of
the molecules held aside [18]. When one molecule at a time is omitted (Ileave-one-out
cross-validation, LOQ), there is a low correlation between the external test set and
LOO predictive [19]. The QSPR/QSAR model quality is heavily influenced by the
type of molecular features used. Although the molecular graph was the mathematical
representation of molecular features for building QSPR/QSAR models, SMILES
[1-3, 20] can also represent molecular features.

The prediction of physicochemical and/or biochemical endpoints for a substance
via computational procedures is an attractive alternative to the experimental measure-
ment of the endpoints if this prediction is reliable. However, as machine learning

Table 3.2 Examples of topological indices (molecular descriptors) calculated from adjacency
matrices [38]

Comment Equations

Kier and Hall Zero-order connectivity index | %X = Z(OECk)_l/ 2
k

Randic’s connectivity index Ix= Y (OECk x VEC /.)_1/2
(k,j)edge ’
Zagreb group index M1 M1 = Z(OECk)2
k
Zagreb group index M2 M2= > (OECk X 0ECj)
(k, j)edge
Balaban index J = % Z (OECk X 0ECJ.)
(k,j)edge

where y is the circuit rank of the graph, i.e.
y = m — n + c; m is the number of nodes; m is
the number of edges; c is the number of cycles
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methods used to generate QSAR models are data-driven, they are critically depen-
dent on experimental data on similar substances with similar molecular structures
being available.

Many studies have been dedicated to the similarity of substances. However, the
best definition of molecular similarity is still not clear and is still controversial [38—
40]. Comparative molecular similarity indices analysis (CoMSIA) and compara-
tive molecular field analysis (CoMFA) provided important rational paradigms for
molecular similarity [31]. The quality, quantity, and chemical diversity of experi-
mental data used to train models is also very important if unbiased models with good
predictive powers and lack of bias are to be achieved [33]. Molecular descriptors
are also very important determinants of model quality and interpretability [34, 35].
Descriptors can be generated from molecular structure, physicochemical properties,
biological properties, provenance properties or an other factors that may influence
the property in question [36, 41]. Some descriptors are measured in experiments
(e.g. octanol/water partition coefficient) but the most useful ones are generated
mathematically experiment [37].

Thus, the SMILES representation of the molecular structure is visually and
intuitively useful for perception and interpretation by users. In contrast, InChl or
SMARTS text strings are less intuitive for people, despite (or perhaps because of) the
higher levels of information available in an InChl. Modelling of complex phenomena
almost always involves some simplification. Simplicity is a necessary and often useful
abstraction in science, promoting clarity and interpretability at the expense of rigour.
As best stated by Box: “All models are wrong, but some are useful” [42, 43]. The
domain of applicability of models is also a very important and sometimes neglected
property of QSAR models (indeed any ML models). This is the region of descriptor
and property space spanned by the molecules in the training set. A large number
of articles devoted to the applicability domain were written under the auspices of
the Organisation for Economic Co-operation and Development (OECD) [44-46].
Clearly, models with ideal applicability domains that can generalize to any molecules
in the whole of chemistry space are impossible. However, with appropriate choice
of descriptors that encode all relevant molecular properties relevant to the property
being modelled quite wide extrapolations of training chemical spaces are possible.

Molecular descriptors can be calculated in many ways, from high-level quantum
chemical calculations or mathematical analyses of molecules, though descriptors
derived from the chemical graph to those that are molecular fragment-, fingerprint-,
or signature-based. Software packages that are easy to learn and produce useful
results are clearly more popular with researchers.

SMILES has a growing cadre of users for solving diverse problems, especially
since the advent of convolutional neural networks and related algorithms. Several
other new descriptor generation and property modelling methods based on SMILES
have been developed recently.
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Variational autoencoders (VAEs) are a deep learning method designed to learn
nonlinear latent representations which generalize to unseen data using SMILES [47-
51]. A novel co-regularized variational autoencoders (Co-VAE) can predict drug-
target binding affinity based on drug structures and target sequences. The Co-VAE
model gives pairs VAEs for generating SMILES strings of therapeutically useful
agents [47].

Deep neural networks effectively learn directly from low-level encoded data [52—
57]. These models take the SMILES representation of the molecules as input to detect
promising SMILES fragments from the latent descriptors they generate. In addition,
the approach allows assessment of prediction uncertainty [58].

SmilesDrawer is a research tool capable of parsing and drawing SMILES-encoded
molecular structures. It can display organic molecules in large numbers and fast
succession. SmilesDrawer can draw structurally and stereochemically extremely
complex structures [59, 60].

DeepSMILES is a recently proposed variant of SMILES, designed for rational
analysis of extremely complex molecular structures. In addition, DeepSMILES
propose useful simplifications to the SMILES syntax [61-63].

CurlySMILES: a chemical language to customize and annotate encodings of
molecular and nanodevice structures [64] that is one more original modification
of the traditional SMILES.

In 2015, an extension of traditional SMILES, quasi-SMILES, was proposed [64—
69]. Quasi-SMILES extends standard SMILES but appends special codes for, for
example, experimental conditions, and can also be used to generate models [65-70].

Quasi-SMILES can be used in the CORAL program discussed here, so we first
describe this modification of traditional SMILES in more detail. The main reasons
for developing quasi-SMILES are derived from the apparent analogy between the
structure of peptides and ordinary molecules (in other words, for peptides we take
amino acids as atoms) secondly, the strong influence of experimental conditions on
various endpoints related to nanomaterials leads to attractively to apply special codes
reflecting these conditions.

Initially, it was found that the correlation weighting of amino acids for peptides
gives quite statistically significant results [65]. In addition, it was found that consid-
ering the experimental conditions significantly expands the possibilities for the
development of nano-QSPR/QSAR [65-69].

The first attempts to construct quasi-SMILES used isolated symbols (1-hot
descriptors) accounting for simple on/off effects (e.g. for the effect of lighting or
heating). Later, special symbols were added to convey continuous properties (temper-
atures, solubility). Currently, users of the CORAL program can describe experimental
conditions using identifiers (which include several characters for clarity) enclosed in
square brackets [68—70]. Table 3.3 contains examples of quasi-SMILES.

For molecules, there is ambiguity in the sequence of symbols representing the
molecule’s structure, as valid SMILES can be defined starting from any point in
the structure. This has been addressed by the concept of canonical SMILES, which
are unique for every molecule. Developers of software generally enforce the use of
generation of canonical SMILES for this reason.
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Table 3.3 Examples of quasi-SMILES with the interpretation of components
Quasi-SMILES Comment References

X0+ A The code ‘X’ means the presence of fullerene [66]
The code ‘0’ means the presence of dark
The code ‘+’ means ‘with Mix S9’

The code ‘A’ means the dose 50 g/plate

[Bare][Daph][s%14][z%25]

—

bare] = “nanoparticles without any coating” [70]
[daph] = “Daphnia magna”

[s%14] = the range of size from 17.1 to 21.7 nm
[z%?25] = the range of zeta potential from — 8.48 to
—5.05eV

3.1.1 The CORAL software description

Here we discuss a user-friendly program, CORAL (http://www.insilico.eu/coral).
CORAL is an abbreviation of the words CORrelation And Logics. It aims to generate
QSPR/QSAR models using input data lists of SMILES strings, together with corre-
sponding experimental data on endpoints. In addition, this program can be applied to
nano-QSPR/QSAR problems using lists of quasi-SMILES together with testing data
on endpoints related to nanomaterials. In both mentioned cases, strings of symbols
(SMILES or quasi-SMILES) are translated into the optimal descriptors.

A detailed description of the CORAL software follows that aims to provide a user
with the necessary information on using the software without excess detail.

3.1.1.1 CORAL: Preparation of Input Files

CORAL website (http://www.insilico.eu/coral) contains several versions of the
program. Previous versions may be convenient for users who have used them before
(2016, 2017, 2019, and 2020) and may wish to apply them for similar new tasks. In
addition, they provide the ability to verify and reproduce published models. However,
only the program’s latest version is described below since it contains all the features
used in previous versions.

The standard name for the input file is “#TotalSet.txt”. The file contains a list of
the following strings:

ID...SMILES...Endpoint (here, three dots mean space).

ID

ID can be mean simple numbering 1, 2, 3, ..., N. In the case of research work
dedicated to QSPR/QSAR analysis, the ID can be the chemical abstract service
number (CAS) [71].


http://www.insilico.eu/coral
http://www.insilico.eu/coral
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SMILES

Simplified molecular input-line entry system (SMILES) [1-3] is the widely used
format for molecular structure representation. It is preferable to use canonical
SMILES [72]. A popular software package to generate SMILES is ACD/ChemSketch
[73, 74] although it is also easy to encode SMILES strings by hand if required.

Endpoint

There are no limitations for the endpoint for generating models using CORAL, but
some rules should be considered. First, all compounds should express the endpoint in
the same units. Second, ideally experimental data should be taken from one source.
Third, the experimental conditions should be the same. For instance, solubility should
relate to the same temperature, and toxicity should be associated with the same
organisms, organs, and conditions.

3.1.1.2 CORAL: Selection of the Method

CORAL generates linear regression models expressed as:
Endpoint = Intercept + Slope * Descriptor (SMILES) 3.1

This model may appear extremely simple. However, the simplicity disappears
after the task of the defining the calculation system for the optimal descriptor form
SMILES is undertaken.

3.1.1.3 Defining the Optimal Descriptor

Figure 3.2 shows the interface of the CORAL program that defines how the optimum
descriptors for QSAR/QSPR models are calculated. The complexity of this task
arises from compromises between the information content of the selected molecular
features extracted from SMILES and their representation across the training set. For
example, the representation of molecules may be too detailed for the training set,
resulting in an overfitted model that predicts the training set well but generalizes
poorly. Structures outside the training set may also contain molecular features not
in molecules in the training set. Conversely, if too few molecular features are used,
then the model will be uninformative and predict both training and test sets poorly
since a significant number of relevant molecular characteristics will be ignored when
constructing the model. A suitable compromise can be reached using a simple logical
trick or heuristic. The impact of molecular moieties from the simplest to the most
complex are assessed by conducting appropriate computational experiments.
Below, the conception of the optimal descriptor is represented in more detail.
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Fig. 3.2 Interface of the CORAL program to define the scheme of calculation of the optimal
descriptor

1. Definition of SMILES components for the development of the optimal
descriptor

Figure 3.3 shows part 1 of the interface in detail.

The user may ignore some contributions to the SMILES string, in which case
the box relating to SMILES remains empty. If the user intends to use contributions
coming directly from SMILES to construct an optimal descriptor, then the square
referring to SMILES must be activated (Fig. 3.2).

In part 1, “s” denotes a “SMILES atom”, that is, a single character from the string
SMILES (e.g. C’, N, O, ‘=, #, ete.) or a group of characters that cannot be
considered in separately (e.g.’Cl’, ’Br’, %11, [Zn], etc.). The “ss” denotes a pair of
SMILES atoms following one after the other in the string SMILES (e.g. “CC”, “N17,
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“C=", “ON”, etc.). The “sss” denotes a triple of SMILES atoms following one after
the other in the string SMILES (e.g. “CCC”, “O=C”", “=C2”, etc.).

It should be noted that it is unacceptable for pairs or triplets of SMILES atoms
to be written in various sequences. For example, in one situation, “=C” is observed,
and in the other, “C=", since, in fact, both fragments represent the same situation in
the molecule. The corresponding characters’ pairs and triples are fixed according to
the ASCII codes [75] to avoid such inconsistencies.

s, ss, and sss are local SMILES attributes since they reflect the quality of local
parts of SMILES strings.

BOND, HALO, NOSP, and HARD are global SMILES attributes since these
reflect overall features of molecules extracted from SMILES. The BOND repre-
sents the presence or absence of different covalent bonds (double, triple, and
stereo-chemical). The BOND is not sensitive to the numbers of these covalent bonds.

BOND

The BOND is built up as a configuration of twelve symbols. Table 3.4 contains
examples of the twelve symbols in the BOND. Figure 3.4 contains graphical
representations of the BOND attribute.

HALO

The HALO is a global SMILES attribute that reflects the presence or absence of
fluorine, chlorine, bromine, and iodine atoms in a molecular structure. The HALO is
a configuration of twelve symbols representing information on the above chemical
elements. Table 3.5 contains simple examples of the HALO configurations. Figure 3.5
contains graphical representations for different statuses of the HALO attribute.

NOSP

The NOSP is a global SMILES attribute that reflects the presence or absence of
nitrogen, oxygen, sulphur, and phosphorus atoms in a molecular structure. The
NOSP is a configuration of twelve symbols representing information about the above
chemical elements. Table 3.6 contains simple examples of the NOSP configura-
tions. Figure 3.6 contains graphical representations of different statuses of the NOSP
attribute.

HARD

In contrast to the above BOND, HALO, and NOSP, the global attribute HARD
contains all the information in these attributes separately.

However, the information content of the HARD may be redundant if the training
set is divided into many non-overlapping classes of molecular structures. Using
BOND, HALO, and NOSP separately is a rational division of molecular structures
into subclasses. Table 3.7 contains the general scheme of building up the twelve
symbols code. Figure 3.7 shows the HARD configurations with the corresponding
examples of the molecular structures.
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Fig. 3.4 Examples of different configurations for the BOND attribute

2. Definition of local and global graph invariants for the development of the
optimal descriptor

SMILES and the molecular graph can be used to represent molecular structure data.
Both approaches aim to represent molecular structure but have specific features so are
notidentical. This makes it tempting to compare the performance of these approaches
for QSPR/QSAR analyses and to use both methods simultaneously in the hope of
obtaining better results than those from the use of either of these approaches alone.
Figure 3.8 contains the interface to select a group of different graph invariants.

The degree of the molecular graph vertex is the number of edges attached to this
vertex. Figure 3.9 shows an example of a molecular graph. Having some (arbitrary)
numbering, one can build up so-called adjacency (0, 1) matrix, where 1 means a
covalent bond, and 0 indicates the absence of a bond for the corresponding pair of
atoms in the graph. The adjacency matrix that gives possibility defines the sum of
vertex degrees of neighbour atoms or defines the extended connectivity (Morgan
extended connectivity [76]) (Fig. 3.10). A molecular graph built without considering
hydrogen atoms is called a hydrogen-suppressed graph (HSG).

Note that the CORAL software allows use of the hydrogen-suppressed graph
(HSG), the hydrogen-filled graph (HFG), and the graph of atomic orbitals (GAO)
[75]. Figure 3.11 contains an example of GAO.

3. Accounting for the influence of molecular rings

The CORAL software interface allows the user with the opportunity to include the
presence or absence of various rings. Figure 3.12 shows some examples of different
versions of the use of the interface to take into account for the influence of molecular
rings for building a model.

Special codes have been developed to account for the influence of molecular
rings and other molecular features. Correlation weights are calculated that are used
in calculating optimal descriptors. Figure 3.13 presents some examples of such codes
that reflect the quality of the rings according to their size (3—7 membered rings), the
presence (or absence) of heteroatoms, and the presence (or absence) of aromaticity.
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Fig. 3.5 Examples of different configurations for the HALO attribute

4. Atom pairs proportions (APP)

As discussed, molecular topology, i.e. the adjacency matrix of a molecular graph,
provides detailed information on molecular structure. For modelling some, the ratio
of various atoms can be important for building a model. In other words, biological
activity may be affected by the ratio of the number of oxygen and nitrogen atoms or
the ratio of the number of chlorine atoms and the double bonds [77].

To account for the influence of self-organizing vectors on the proportions of pairs
of atoms when building a model, a fragment of the interface shown in Fig. 3.14 can
be used.

5. Individual contributions of atoms

Descriptors or feature importance metrics are important for QSAR modelling because
removing low relevance features and retaining only high relevance ones substantially
improves model predictively and interpretability. One can test an atom (or several
atoms from the list) for its ability to improve the statistical quality of the model and
thus check whether the selected atom affects the predictive potential of the model or
not. Figure 3.15 contains examples of applying the mentioned possibility.

6. Monte Carlo method algorithms

CORAL is a system of algorithms for building models and verifying them. There
are several non-traditional methods for solving problems associated with modelling
various endpoints. There is a long-held opposition between the ideas of determinism
and randomness. It can be assumed that any model is a kind of random event, similar
to the experimental observations of various physicochemical properties or biological
activity.

CORAL uses random processes to build models that ensure the significance of
reproducibility over the significance of accuracy for predictions of the model. These
principles can be implemented in different ways.

e C(Classical QSPR/QSAR employs training and test sets. The information from the
training set should is used to build a model, and the test set is being used to assess
the ability of the model to generalize to unseen data.

e The balance of correlations method used active training, passive training sets, and
some calibration set (an analogy of the test set). Figure 3.16 shows the difference
between the classic scheme and the balance of correlations scheme.
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Fig. 3.6 Examples of different configurations for the NOSP attribute

The balance of correlations attempts to reduce the probability of a false model by
employing the passive training set. A passive training set is a group of compounds
similar to the active training set but with no overlap in these lists. In other words,
the result of the traditional scheme can be expressed as “if the model is quite good
for the training set, then one can expect that the model is good for external test set”.
The result of the balance of correlations can be expressed as “the model is nice for
active compounds which have been used to develop the model, and in addition, the
model is not bad for compounds which are not used to develop the model”.

Computational experiments with the above two manners described in the literature
confirm that the balance of correlations often gives better models than the traditional
scheme ones [5, 78-82].

7. Monte Carlo optimization: its implementation and verification

The Monte Carlo method can be used to generate models using CORAL. The aim is
to build an optimal descriptor capable of predicting endpoints through a regression
relation of the form:

EndPoint = Cy 4+ C; x DCW(T, N) (3.2)

Co and C, are the regression coefficients. The 7 and N are special parameters
governing the stochastic Monte Carlo optimization process. The T is the threshold
for the definition of the active and blocked components of the optimal descriptor. If
some component occurs in the training set (in the case of the balance of correlation,
the active training set) more than 7 times, then it is active and is involved in building
the model. If the indicated component occurs less than 7 times, it is blocked, and its
correlation weight is equal to zero. Thus, a blocked component does not affect the
model. The N is the number of iterations for Monte Carlo optimization. One iteration
is a sequence of the modifications of all active components. The sequence of compo-
nent modifications is random, and for each iteration, this sequence is determined
anew.
The optimal descriptor is calculated as follows:

DCW(T, N) = »  CW(Component,) (3.3)
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Fig. 3.7 Examples of different configurations for the HARD attribute
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Fig. 3.8 Interface to select graph invariants: e0 = vertex degree; e1—e3 = Morgan extended connec-
tivity of first—third orders, respectively; p2—p4 paths of lengths 2—4, respectively; 52, s3 = valence
shells of second and third orders, respectively; nn = nearest neighbours codes
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Fig. 3.9 Hydrogen-suppressed graph and the adjacency matrix



74 A. A. Toropov and A. P. Toropova

D—2)—3)—2)—1)
T - . el
: —2—2—3—1—1 p2
—(1—GE—3)—3 4 3 —{4—3 3 2 52
| - el 2
3 D—D—D—D——1 P 4
4 —{T ) —1D—7—3 3 2—1—1 3 3 53
J [ &2 2 :
5 D—O—O0—0—D—@ 4 g
15—19—185
7 19 7 5 0
an

Fig. 3.10 Examples of Morgan’s extended connectivity [76] (e0—e3), paths of length 2, 3, and 4
(p2—-p4), and valence shells of second and third orders (s2 and s3)
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Numbering: Vertex degree "EC:

Fig. 3.11 An example of the graph of atomic orbitals [55]
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the influence of the rings | model the influence of model the influence of
at all various variants of five- various variants of five-
membered rings membered and six-

membered rings

Fig. 3.12 Interface of the CORAL is related to taking into account molecular rings for building up
QSPR/QSAR models
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Fig. 3.13 Examples of codes applied to take into account for the influence of molecular rings

The CW(x) is the correlation weight of component x, obtained by the above Monte
Carlo optimization. In addition to 7 and N, the optimization is controlled by special
parametrization that defines the target function of the optimization:

TargetFunction = rar + rpr — |rar — rpr| X @« + IIC x B+ CII x y 3.4

The rar and rpy are correlation coefficients between the observed and predicted
endpoint for the active and passive training sets, respectively. The IIC is the index
of ideality of correlation [8§3—89]. The CII is the correlation intensity index [90-92].
The IIC is calculated with data on the calibration set as follows:

min("MAE, TMAE)
max(—“MAE, TMAE)

[IC=r

(3.5)
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Fig. 3.14 Examples of various variants of the self-organizing vector of atom pairs of proportions
(APP)
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Fig. 3.15 Possible uses for additional individual atom weights

. x,ifx >y
,Y) = : 3.6
min(x, y) {y, otherwise (3.6)
x,ifx >y
max(x, y) = X 3.7
y, otherwise
“MAE = > "IA¢l. TN is the number of A; < 0 (3.8)
= — s 1 u < .
-N k k
MAE = — D "IAkl, *N is the number of X > 0 (3.9)
- +N kls k= .

Ay = observed; — calculated, (3.10)
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Classic QSPR/QSAR

Training set ,::> Test set

Balance of correlations

Active training set

ﬁ@ |:> Calibration set
Passive training set @

Validation set

Fig. 3.16 Comparison of the classic scheme and the balance of correlations

The observed and calculated are corresponding values of the endpoint. Having
data on all Ay for the calibration set, one can calculate the sum of negative ("MAE)
and positive ("MAE) values of A, similar to traditional mean absolute error (MAE).

The CII is calculated as follows:

CIl = 1 — ) Protes (3.11)

R? —R?,if R? —R*>>0
Protesty = ¢ _ ¥ ’ k 3.12
rorest { 0, otherwise (3-12)

The R? is the correlation coefficient for a set that contains n substances. The
R,f is the correlation coefficient for n — 1 substances of a set, after removing of
kth substance. Hence, if the (R,f — R?)is larger than zero, the kth substance is an
“oppositionist” for the correlation between experimental and predicted values of the
set. A small sum of “protests” means a more “intensive” correlation.
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Fig. 3.17 An example of a model that is built up using the balance of correlations

3.1.2 An Example of Model Training and Validation
(Graphically)

Figure 3.17 contains an example of a model for toxicity towards Rainbow Trout
(LCsp) built using the balance of correlations. The interface provides a user with
information on the selected method and the statistical quality of the model on all sets
used to construct the model.

Figure 3.18 contains the results of applying the model for the external validation
set and demonstrates a strange quality of the CORAL models calculated with IIC.

The active and passive training sets are divided into pairs of clusters (red colour
shows calculated values that are overestimated, green colour shows calculated values
that are underestimated). Thus, the involvement of IIC (as well CII) leads to an
improvement in the quality of the model for the calibration set and for the validation
set, but to the detriment of the statistical quality of the model for both training sets.

3.2 Conclusions

The SMILES concept has found numerous applications. Moreover, new SMILES
applications are currently emerging for both applied and theoretical research in the
field of physics, chemistry, and biology, as well as at the intersections of the natural
sciences. SMILES modifications, both in practical and general theoretical terms, are
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Fig. 3.18 Strange quality (indicated by red and green) of the CORAL models calculated with IIC
and/or CII

also an important attribute of modern natural sciences. The CORAL program is one
of the possible ways to use SMILES for building models of various endpoints, as
well as for solving other problems in the field of natural sciences.
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Chapter 4 ®)
All SMILES Variational Autoencoder Guca i
for Molecular Property Prediction

and Optimization

Zaccary Alperstein, Artem Cherkasov, and Jason Tyler Rolfe

Abstract Variational autoencoders (VAEs) defined over SMILES string and graph-
based representations of molecules promise to improve the optimization of molecu-
lar properties, thereby revolutionizing the pharmaceuticals and materials industries.
However, these VAEs are hindered by the non-unique nature of SMILES strings and
the computational cost of graph convolutions. To efficiently pass messages along all
paths through the molecular graph, we encode multiple SMILES strings of a sin-
gle molecule using a set of stacked recurrent neural networks, harmonizing hidden
representations of each atom between SMILES representations, and use attentional
pooling to build a final fixed-length latent representation. By then decoding to a
disjoint set of SMILES strings of the molecule, our All SMILES VAE learns an
almost bijective mapping between molecules and latent representations near the
high probability mass subspace of the prior. Our SMILES-derived but molecule-
based latent representations significantly surpass the state of the art in a variety of
fully and semi-supervised property regression and molecular property optimization
tasks.
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4.1 Introduction

The design of new pharmaceuticals, OLED materials, and photovoltaics all requires
optimization within the space of molecules [1]. While well-known algorithms ranging
from gradient descent to the simplex method facilitate efficient optimization, they
generally assume a continuous search space and a smooth objective function. In
contrast, the space of molecules is discrete and sparse. Molecules correspond to
graphs, with each node labeled by one of ninety-eight naturally occurring atoms, and
each edge labeled as a single, double, or triple bond. Even within this discrete space,
almost all possible combinations of atoms and bonds do not form chemically stable
molecules, and so must be excluded from the optimization domain, yet there remain
as many as 10°° small molecules to consider [2]. Moreover, properties of interest
are often sensitive to even small changes to the molecule [3], so their optimization
is intrinsically difficult.

Efficient, gradient-based optimization can be performed over the space of
molecules given a map between a continuous space, such as R” or the n-sphere,
and the space of molecules and their properties [4]. Initial approaches of this form
trained a variational autoencoder (VAE) [5, 6] on SMILES string representations
of molecules [7] to learn a decoder mapping from a Gaussian prior to the space of
SMILES strings [8]. A sparse Gaussian process on molecular properties then facili-
tates Bayesian optimization of molecular properties within the latent space [8—11],
or a neural network regressor from the latent space to molecular properties can be
used to perform gradient descent on molecular properties with respect to the latent
space [12—15]. Alternatively, semi-supervised VAEs condition the decoder on the
molecular properties [16, 17], so the desired properties can be specified directly.
Recurrent neural networks have also been trained to model SMILES strings directly
and tuned with transfer learning, without an explicit latent space or encoder [18, 19].

SMILES, the simplified molecular-input line-entry system, defines a character
string representation of a molecule by performing a depth-first pre-order traversal of
a spanning tree of the molecular graph, emitting characters for each atom, bond, tree-
traversal decision, and broken cycle [7]. The resulting character string corresponds
to a flattening of a spanning tree of the molecular graph, as shown in Fig. 4.1. The
SMILES grammar is restrictive, and most strings over the appropriate character set
do not correspond to well-defined molecules. Rather than require the VAE decoder to
explicitly learn this grammar, context-free grammars [10] and attribute grammars [9]
have been used to constrain the decoder, increasing the percentage of valid SMILES
strings produced by the generative model. Invalid SMILES strings and violations of
simple chemical rules can be avoided entirely by operating on the space of molecular
graphs, either directly [14, 20-23] or via junction trees [13].

Every molecule is represented by many well-formed SMILES strings, correspond-
ing to all depth-first traversals of every spanning tree of the molecular graph. The
distance between different SMILES strings of the same molecule can be much greater
than that between SMILES strings from radically dissimilar molecules [ 13], as shown
in Fig. 4.2. A generative model of individual SMILES strings will tend to reflect this
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Fig.4.1 Molecular graph of the amino acid Tryptophan (a). To constructa SMILES string, all cycles
are broken, forming a spanning tree (b); a depth-first traversal is selected (c); and this traversal is
flattened (d). The beginning and end of intermediate branches in the traversal are denoted by
“( and )" respectively. The ends of broken cycles are indicated with matching digits. The full
grammar is listed in Sect. 4.7. A small set of SMILES strings can cover all paths through a
molecule (e)

AL S

(a) COCOC1CNCC(C)N1 (b) CCCCC(CCCC)CCCC
CCINC(CNC1)OCOC

Fig. 4.2 Multiple SMILES strings of a single molecule may be more dissimilar than SMILES
strings of radically dissimilar molecules. The top SMILES string for molecule (a) is 30% similar
to the bottom SMILES string by string edit distance, but 60% similar to the SMILES string for
molecule (b)

geometry, complicating the mapping from latent space to molecular properties and
creating unnecessary local optima for property optimization [24]. To address this
difficulty, sequence-to-sequence transcoders [25] have been trained to map between
different SMILES strings of a single molecule [26-29].

Reinforcement learning, often combined with adversarial methods, has been used
to train progressive molecule growth strategies [30—35]. While these approaches
have achieved state-of-the-art optimization of simple molecular properties that can
be evaluated quickly in silico, critic-free techniques generally depend upon property
values of algorithm-generated molecules (but see [20, 36]) and so scale poorly to
real-world properties requiring time-consuming wet laboratory experiments.

Molecular property optimization would benefit from a generative model that
directly captures the geometry of the space of molecular graphs, rather than SMILES
strings, but efficiently infers a latent representation sensitive to spatially distributed
molecular features. To this end, we introduce the All SMILES VAE, which uses
recurrent neural networks (RNNs) on multiple SMILES strings to implicitly per-
form efficient message passing along and among many flattened spanning trees of
the molecular graph in parallel. A fixed-length latent representation is distilled from
the variable-length RNN output using attentional mechanisms. From this latent rep-
resentation, the decoder RNN reconstructs a set of SMILES strings disjoint from
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those input to the encoder, ensuring that the latent representation only captures fea-
tures of the molecule, rather than its SMILES realization. Simple property regressors
jointly trained on this latent representation surpass the state of the art for molecu-
lar property prediction and facilitate exceptional gradient-based molecular property
optimization when constrained to the region of the prior containing almost all the
probability around it. We further demonstrate that the latent representation forms a
near bijection with the space of molecules and is smooth with respect to molecular
properties, facilitating effective optimization.

4.1.1 Summary of Novel Contributions

Starting with the work of Gomez-Bombarelli et al. [8], previous molecular variational
autoencoders have used one consistent SMILES string as both the input to the RNN
encoder and the target of the RNN decoder. Any single SMILES string explicitly
represents only a subset of the pathways in the molecular graph. Correspondingly,
the recurrent neural networks in these encoders implicitly propagated information
through only a fraction of the possible pathways. Kipf and Welling [37], Liuetal. [14],
and Simonovsky and Komodakis [23], among others, trained molecular VAEs with
graph convolutional encoders, which pass information through all graph pathways
in parallel, but at considerable computational expense. None of these works used
enough layers of graph convolutions to transfer information across the diameter of
the average molecule in standard drug design datasets. This is partially overcome
by Lusci et al. [38] who ensemble RNN-based representations of multiple directed-
acyclic graphs of a single molecule for property prediction. The All SMILES VAE
introduces the use of multiple SMILES strings of a single, common molecule as
input to a RNN encoder, with pooling of homologous messages among the hidden
representations associated with different SMILES strings. This allows information
to flow through all pathways of the molecular graph, but can efficiently propagate
information across the entire width of the molecule in a single layer.

Bjerrum and Sattarov [27] and Winter et al. [29] trained sequence-to-sequence
transcoders to map between different SMILES strings of the same molecule. These
transcoders do not define an explicit generative model over molecules, and their latent
spaces have no prior distributions. The All SMILES VAE extends this approach to
variational autoencoders and thereby learns a SMILES-derived generative model of
molecules, rather than SMILES strings. The powerful, learned, hierarchical prior of
the All SMILES VAE regularizes molecular optimization and property prediction.
To ensure that molecular property optimization searches within the practical support
of the prior, containing almost all of its probability mass, we introduce a hierarchical
radius constraint on optimization with respect to the latent space.
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4.2 Efficient Molecular Encoding with Multiple SMILES
Strings

A variational autoencoder (VAE) defines a generative model over an observed space x
in terms of a prior distribution over a latent space p(z) and a conditional like-
lihood of observed states given the latent configuration p(x|z) [5, 6]. The true
log-likelihood log [ p(x)] = log [ f p2) p(x|z)] is intractable, so the evidence lower
bound (ELBO), based upon a variational approximation g (z|x) to the posterior dis-
tribution, is maximized instead:

L =E,q [log p(x|2)] = KLIg(z|0)|[p(2)] . (4.1)

The ELBO implicitly defines a stochastic autoencoder, with encoder g(z|x) and
decoder p(x|z).

Many effective encoders for molecules rely upon graph convolutions: local mes-
sage passing in the molecular graph, between either adjacent nodes or adjacent
edges [38—42]. To maintain permutation symmetry, the signal into each node is a
sum of messages from the adjacent nodes, but may be a function of edge type, or
attentional mechanisms dependent upon the source and destination nodes [43]. This
sum of messages is then subject to a linear transformation and a pointwise nonlinear-
ity. Messages are sometimes subject to gating [42], like in long short-term memories
(LSTM) [44] and gated recurrent units (GRU) [45], as detailed in Sect. 4.3.

More specifically, graph convolutions are conventionally defined by:

m=f 2 mh W 4.2)
meN (n)

where N (n) is the set of neighbors of node n, for which there is an edge between n and
m € N'(n),and f (x)is apointwise nonlinearity such as a logistic function or rectified
linear unit. This message passing can be understood as a first-order approximation to
spectral convolutions on graphs [46]. Kipf and Welling [41] additionally normalize
each message by the square root of the degree of each node before and after the sum
over neighboring nodes. Kearnes et al. [40] maintain separate messages for nodes
and edges, with the neighborhood of a node comprising the connected edges and the
neighborhood of an edge comprising the connected nodes. Li et al. [42] add gating
analogous to a GRU.

Message passing on molecular graphs is analogous to a traditional convolutional
neural network applied to images [47, 48], with constant-resolution hidden lay-
ers [49] and two kernels: a 3 x 3 average-pooling kernel that sums messages from
adjacent pixels (corresponding to adjacent nodes in a molecular graph) and a train-
able 1 x 1 kernel that transforms the message from each pixel (node) independently,
before a pointwise nonlinearity. While convolutional networks with such small ker-
nels are now standard in the visual domain, they use hundreds of layers to pass



90 Z. Alperstein et al.

information throughout the image and achieve effective receptive fields that span
the entire input [50]. In contrast, molecule encoders generally use between three and
seven rounds of message passing [11, 13, 14, 34, 39, 40, 51]. This limits the compu-
tational cost, since molecule encoders cannot use highly optimized implementations
of spatial 2D convolutions, but each iteration of message passing only propagates
information a geodesic distance of one within the molecular graph.! In the case of the
commonly used ZINC250k dataset of 250,000 drug-like molecules [8], information
cannot traverse these graphs effectively, as their average diameter is 11.1 and their
maximum diameter is 24, as shown in Sect. 4.5.

Non-local molecular properties, requiring long-range information propagation
along the molecular graph, are of practical interest in domains including pharma-
ceuticals, photovoltaics, and OLEDs. The pharmacological efficacy of a molecule
generally depends upon high binding affinity for a particular receptor or other tar-
get, and low binding affinity for other possible targets. These binding affinities are
determined by the maximum achievable alignment between the molecule’s electro-
magnetic fields and those of the receptor. Changes to the shape or charge distribution
in one part of the molecule affect the position and orientation at which it fits best
with the receptor, inducing shifts and rotations that alter the binding of other parts
of the molecule and changing the binding affinity [52]. Similarly, efficient next-
generation OLEDs depend on properties, such as the singlet-triplet energy gap, that
are directly proportional to the strength of long-range electronic interactions across
the molecule [53]. The latent representation of a VAE can directly capture these non-
local, nonlinear properties only if the encoder passes information efficiently across
the entire molecular graph.

Analogous to graph convolutions, gated RNNs defined directly on SMILES strings
effectively pass messages, via the hidden state, through a flattened spanning tree of
the molecular graph (see Fig. 4.1). The message at each symbol in the string is a
weighted sum of the previous message and the current input, followed by a pointwise
nonlinearity and subject to gating. This differs from explicit graph-based message
passing in that the molecular graph is flattened into a chain corresponding to a depth-
first pre-order traversal of a spanning tree, and the set of adjacent nodes that affect
a message only includes the preceding node in this chain. Rather than updating all
messages in parallel, RNNs on SMILES strings move sequentially down the chain, so
earlier messages influence all later messages, and information can propagate through
all branches of a flattening of a spanning tree in a single pass. With a well-chosen
spanning tree, information can pass the entire width of the molecular graph in a single
RNN update.

! All-to-all connections allow fast information transfer, but computation is quadratic in graph
size [40, 51]. Lusci et al. [38] considered a set of DAGs rooted at every atom, with full message
propagation in a single pass.
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4.3 Review of Recurrent Neural Networks

Recurrent neural networks, such as long short-term memories (LSTMs) [44] and
gated recurrent units (GRUs) [45], are commonly used to model text, audio, and
other one-dimensional sequences. Gated recurrent units (GRUs) are defined by Cho
et al. [45]:

[rzl=0 (xz‘ [Wrs Wz] + hi—1 [Urv Uz] + (b, bz])
hy=(0-2)©h—1 +zOtanh (x, W + (r © hy—1) U + by)

where r, z, and h are row vectors, [x, y] denotes the column-wise concatenation
of x and y, and the logistic function o (x) = (1 + e"‘)_1 and hyperbolic tangent
are applied element-wise to vector argument x. The hidden state 4,, comprising
the message from node ¢, is a gated, weighted sum of the previous message /;_
and the current input x,, both subject to an element-wise linear transformation and
nonlinear (sigmoid) transformation. Specifically, the sum of the message from the
input, x, WU ~! and the gated message from the previous node, » ® h,_, is subject to
a linear transformation U and a pointwise nonlinearity. This is then gated and added
to a gated residual connection from the previous node.
Long short-term memories (LSTMs) are defined similarly [44]:

[ﬁa its OT] =0 (xl‘[va ‘/Viv Wo] + htfl[va Ul'v U()] + [bfv biv bo])
¢ = fi ©cr—1 +i; ©tanh (x, We + b, Uc + b.)
h; = o; ® tanh (¢;)

where f is the forget gate, i is the input gate, and o is the output gate. LSTMs impose
a second hyperbolic tangent and gating unit on the nonlinear recurrent message,
but nevertheless still follow the form of applying width-two kernels and pointwise
nonlinearities to the input and hidden state.

An LSTM, taking a SMILES string as input, can realize a subset of the messages
passed by graph convolutions. For instance, input gates and forget gates can conspire
to ignore open parentheses, which indicate the beginning of a branch of the depth-
first spanning tree traversal. If they similarly ignore the digits that close broken rings,
the messages along each branch of the flattened spanning tree are not affected by
the extraneous SMILES syntax. Input and forget gates can then reset the LSTM’s
memory at close parentheses, which indicate the end of a branch of the depth-first
spanning tree traversal, and the return to a previous node, ensuring that messages only
propagate along connected paths in the molecular graph. While an LSTM decoder
generating SMILES strings faces ambiguity regarding which of the set of SMILES
strings representing a molecule to produce, this is analogous to the problem faced
by graph-based decoders, as discussed in Sect. 4.7.2.
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4.4 All SMILES VAE Architecture

To marry the latent space geometry induced by graph convolutions to the informa-
tion propagation efficiency of RNNs on SMILES strings, the All SMILES encoder
combines these architectures. It takes multiple distinct SMILES strings of the same
molecule as input and applies RNNs to them in parallel. This implicitly realizes a
representative set of message passing pathways through the molecular graph, corre-
sponding to the depth-first pre-order traversals of the spanning trees underlying the
SMILES strings. Between each layer of RNNs, the encoder harmonizes homologous
messages between parallel representations of the multiple SMILES strings. In this
harmonization, all messages to a single atom across the multiple SMILES strings are
replaced with their pooled average, so that information flows along the union of the
implicit SMILES pathways.

Initially, the characters of the multiple SMILES strings are linearly embedded,
and each string is preprocessed by a bidirectional GRU (BiGRU) [45], followed by
a linear transformation, to produce the layer O representation H? for each SMILES
string i. For each SMILES string i and layer /, Hf is a sequence of vector embed-
dings, one for each character of the original SMILES string, collectively forming
a matrix. The encoder then applies a stack of modules, each of which harmonizes
atom representations across SMILES strings, followed by layer norm [54], concate-
nation with the linearly embedded SMILES input, and a GRU applied to the parallel
representations independently, as shown in Figs. 4.3 and 4.4.

Multiple SMILES strings representing a single molecule need not have the same
length, and syntactic characters indicating branching and ring closures rather than
atoms and bonds do not generally match. However, the set of atoms is always con-
sistent, and a bijection can be defined between homologous atom characters. At
the beginning of each encoder module (Fig. 4.3), the parallel inputs correspond-
ing to a single, common atom of the original molecule are pooled, as shown in
Fig. 4.4. This harmonized atom representation replaces the original in each of the
input streams for the subsequent layer normalizations and GRUs, reversing the infor-
mation flow of Fig. 4.4. To realize atom harmonization, we experimented with aver-
age and max pooling, but found element-wise sigmoid gating to be most effective [42,

_— —| Linear embedding —
— -
o T S@RD— ()
. 7

Ince(Clhel - > @ <)-_m _>-GRU _>
~ ~ /
— —[ Linear embedding —

Fig.4.3 Ineach layer of the encoder after the initial BIGRU and linear transformation, hidden states
corresponding to each atom are harmonized across encodings of different SMILES strings for a
common molecule, followed by layer norm and a GRU on each SMILES encoding independently
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(a) Original molecule (b) Harmonization of two SMILES strings representing the same
molecule

Fig. 4.4 To pass information between multiple SMILES representations of a molecule (a), the
encoder harmonizes the representation of each atom. Homologous messages corresponding to the
same atom are pooled (b), and the original messages are replaced with this pooled message, reversing
the information flow of (b)

Pool atoms
e
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Fig. 4.5 The approximating posterior is an autoregressive set of Gaussian distributions. The
mean (p) and log-variance (log o2) of the first subset of latent variables z; are a linear transforma-
tion of the max-pooled final hidden state of GRUs fed the encoder outputs. Succeeding subsets z;
are produced via Bahdanau-style attention with the pooled atom outputs of the GRUs as keys (k),
and the query (g) computed by a neural network on z_;

43,55]:a’ = % Dok (ak Oo (W [ak, % Dk ak] + b)), where [x, y] is the concatena-
tion of vectors x and y and the logistic function o (x) is applied element-wise. The
pooling effectively sums messages propagated from many adjacent nodes in the
molecular graph, analogous to a graph convolution, but the GRUs efficiently transfer
information through many edges in each layer, rather than just one. The hidden repre-
sentations associated with non-atom, syntactic input characters, such as parentheses
and digits, are left unchanged by the harmonization operation.

The approximating posterior distills the resulting variable-length encodings into
a fixed-length hierarchy of autoregressive Gaussian distributions [56]. The mean and
log-variance of the first layer of the approximating posterior, z;, are parametrized
by max-pooling the terminal hidden states of the final encoder GRUs, followed by
batch renormalization [57] and a linear transformation, as shown in Fig. 4.5.

Succeeding hierarchical layers use Bahdanau-style attention [58] over the pooled
final atom vectors. Specifically, the final encoder hidden vectors for each atom com-
prise the key vectors k, whereas the query vector ¢ is computed by a one-hidden
layer network of rectified linear units given the concatenation of the previous latent
layers as input. The final output of the attentional mechanism, c, is computed via:
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e; = tanh (qW, + k;U,) v"
__exp(e)
Zj exp(e;)

Cc = Z(X,‘k,‘

The output of the attentional mechanism is subject to batch renormalization and a
linear transformation to compute the conditional mean and log-variance of the layer.

This is analogous to the order-invariant encoding of set2set, but an output is pro-
duced at each step, and processing is not gated [24]. The attentional mechanism is also
effectively available to property regressors that take the fixed-length latent represen-
tation as input, allowing them to aggregate contributions from across the molecule.
The prior has a similar autoregressive structure, but uses neural networks of ReL.Us in
place of Bahdanau-style attention, since it does not have access to the atom vectors.
For molecular optimization tasks, we usually scale up the term KL [¢g(z]|x)||p(2)]
in the ELBO by the number of SMILES strings in the decoder, analogous to multi-
ple single-SMILES VAE:s in parallel; we leave this KL term unscaled for property
prediction.

The decoder is a single-layer LSTM, for which the initial cell state is computed
from the latent representation z = [z}, Z, . ..] by a neural network, and a linear
transformation of the latent representation is concatenated onto each input. It is
trained with teacher forcing to reconstruct a set of SMILES strings disjoint from
those provided to the encoder, but representing the same molecule. As in conven-
tional language models, the decoder LSTM autoregressively produces a sequence
of categorical distributions for each successive SMILES character conditioned on
the preceding characters. Grammatical constraints [9, 10] can naturally be enforced
within this LSTM by parsing the unfolding character sequence with a pushdown
automaton and constraining the final softmax of the LSTM output at each time step
to grammatically valid symbols. This is detailed in Sect. 4.7, although we leave the
exploration of this technique to future work.

The full All SMILES VAE architecture is summarized in Fig. 4.6. The evidence
lower bound (ELBO) of the log-likelihood (Eq. 4.1) is the sum of the conditional
log-likelihoods of x; in Fig. 4.6, minus the Kullback—Leibler divergence between
the approximating posterior, g (z|x), computed by node AP in Fig. 4.6, and the prior
depicted in Fig. 4.7.

The All SMILES VAE is a generative model over both the structure and properties
of molecules M, so we define the conditional likelihood to be

pMIz) = p (p™MI2) - [ [ 2 (xM12).

J

N
where {ij } is a set of N SMILES strings of a molecule M with properties p™*!.
=1

Unlike a conventional VAE, the representation of the molecule M input to the encoder
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Fig. 4.6 Multiple SMILES strings representing a single, common molecule are preprocessed by a
BiGRU and a linear transformation, followed by multiple encoder blocks as in Figs. 4.3 and 4.4.
The approximating posterior depicted in Fig. 4.5 then produces a sample from the latent state z,
which is decoded into SMILES strings by LSTMs. Note that all SMILES strings, in both the input
and the output, are distinct. The encoder blocks also receive a linear embedding of the original
SMILES strings as input
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Fig.4.7 Priordistributionoverz = [z1, z3, .. .]is ahierarchy of autoregressive Gaussians. The con-
ditional prior distribution of hierarchical layer i given layers 1 throughi — 1, p(z;|z1, 22, ... Zi—1),
is a Gaussian with mean p and log-variance log o2 determined by a neural network with input
[Z], Z,..., Zi—l]

N7 ()

q(z|] M) is not identical to the target of the conditional likelihood p(M|z); rather, it
comprises a set of SMILES strings { }i_l of the molecule M disjoint from the
decoding target and does not include the molecular properties. Nevertheless, both
encoder input and decoder target correspond to a single molecule M. The conditional
log-likelihood of the molecular properties log p (pM |z) is implicitly parametrized
by scaling its contribution to the ELBO by A. For instance, if p (lez) is a unit-
variance Gaussian distribution, then A sets the effective variance to A ~!. Finally, when
optimizing molecular properties, we scale the KL term by M, the number of SMILES
strings in the decoder, rendering the ELBO analogous to multiple single-SMILES
VAEs in parallel. The resulting ELBO is

M
£= By | A 108 p 1) + T lom (el | — M KL [a (=11, ) 1pe @]
j=

Since the SMILES inputs to the encoder are different from the targets of the
decoder, the decoder is effectively trained to assign high probability to all SMILES
strings of the encoded molecule. The latent representation must capture the molecule
as a whole, rather than any particular SMILES input to the encoder. To accommodate
this intentionally difficult reconstruction task, facilitate the construction of a bijection
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between latent space and molecules, and following prior work [16, 29], we use a
width-five beam search decoder to map from the latent representation to the space
of molecules at test time.

In all experiments, we use a set of M = 5 randomly selected SMILES strings
for encoding and N =5 disjoint SMILES strings as the decoding target. We use
encoder stacks of depth three, with 512 hidden units in each GRU. The approximating
posterior uses four layers of hierarchy, with 128 hidden units in the one-hidden layer
neural network that computes the attentional query vector. In practice, separate GRUs
were used to produce the final hidden state for z; and the atom representations for z.. ;.
The single-layer LSTM decoder has 2048 hidden units. Training was performed using
ADAM, with a decaying learning rate and KL annealing. In all multiple SMILES
strings architectures, we use five SMILES strings for encoding and decoding which
are selected with RDKit [59].

In contrast to many previous molecular VAEs, we do not scale down the term
KL [g(z|x)||p(z)] in the ELBO by the number of latent units [9, 10]. However, our
loss function does include separate reconstructions for multiple SMILES strings of
a single molecule. For molecular optimization tasks, we usually scale up this KL
term by the number of SMILES strings in the decoder, analogous to multiple single-
SMILES VAESs in parallel; we leave the KL term unscaled for property prediction.

4.4.1 Computational Complexity

Since the length of a SMILES string is linear in the total number of bonds b, the
computational complexity of each layer of the All SMILES encoder is O(M - b),
where M =5 is the number of random SMILES strings of the molecule. Simi-
larly, the complexity of each layer of graph convolution is O(b). However, to pass
information through the entire molecule, graph convolutions require a number of
layers proportional to the graph diameter. Molecular graph convolutions generally
use a fixed architecture for all molecules. In principle, the maximum diameter of a
molecule is equal to the number of bonds. As a result, the computational complex-
ity for graph convolutions to pass information through all molecules is O (b?). In
contrast, each RNN in the All SMILES encoder can in principle pass information
through the entire graph, so the computational complexity remains O(M - b).

4.4.2 Latent Space Optimization

Unlike many models that apply a sparse Gaussian process to fixed latent representa-
tions to predict molecular properties [9-11, 13], the All SMILES VAE jointly trains
property regressors with the generative model (as do [14]).> We use linear regressors

2 Gémez-Bombarelli, et al. [8] jointly train a regressor, but still optimize using a Gaussian process.
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for the log octanol-water partition coefficient (logP) and molecular weight (MW),
which have unbounded values, and logistic regressors for the quantitative estimate
of drug-likeness (QED) [60] and twelve binary measures of toxicity [61, 62], which
take values in [0, 1]. We then perform gradient-based optimization of the property of
interest with respect to the latent space and decode the result to produce an optimized
molecule.

Naively, we might either optimize the predicted property without constraints on
the latent space, or find the maximum a posteriori (MAP) latent point for a conditional
likelihood over the property that assigns greater probability to more desirable values.
However, the property regressors and decoder are only accurate within the domain
in which they have been trained: the region assigned high probability mass by the
prior. For a n-dimensional standard Gaussian prior, almost all probability mass lies
in a practical support comprising a thin spherical shell of radius +/n — 1 [63]. With
linear or logistic regressors, predicted property values increase monotonically in the
direction of the weight vector, so unconstrained property maximization diverges from
the origin of the latent space. Conversely, MAP optimization with a Gaussian prior is
pulled toward the origin, where the density of the prior is greatest. Both unconstrained
and MAP optimization thus deviate from the practical support in each layer of the
hierarchical prior, resulting in large prediction errors and poor optimization.

We can use the reparametrization trick [5, 6] to map our autoregressive prior
back to a standard Gaussian. The image of the thin spherical shell through this
reparametrization still contains almost all of the probability mass. We therefore
constrain optimization to the reparametrized n — 1 dimensional sphere of radius
A/n — 1 for each n-dimensional layer of the hierarchical prior by optimizing the
angle directly.> Although the reparametrization from the standard Gaussian prior to
our autoregressive prior is not volume preserving, this hierarchical radius constraint
holds us to the center of the image of the thin spherical shell. The distance to which
the image of the thin spherical shell extends away from the n — 1 dimensional sphere
at its center is a highly nonlinear function of the previous layers.

The pseudocode for optimization in the latent space is shown in Algorithms 1
and 2. We project each layer of latent variables separately onto the radius defined by
their conditional Gaussian distribution and then optimize with respect to the n — 1
angles.

To further ensure that the optimization is constrained to well-trained regions of
latent space, we add 8 - log p(z) to the objective function, where $ is a hyperparam-
eter. Finally, to moderate the strictly monotonic nature of linear regressors, we apply
an element-wise hard tanh to all latent variables before the regressor, with a linear
region that encompasses all values observed in the training set.

To compare with previous work as fairly as possible, we optimize 1000 random
samples from the prior to convergence, collecting the last point from each trajectory
with a valid SMILES decoding. From these 1000 points, we evaluate the true molecu-
lar property on the 100 points for which the predicted property value is the largest. Of
these 100 values, we report the three largest. However, optimization within our latent

3 This generalizes the slerp interpolations of Gémez-Bombarelli et al. [8] to optimization.
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space is computationally inexpensive and requires no additional property measure-
ment data. We could somewhat improve molecular optimization at minimal expense
by constructing additional optimization trajectories in latent space and evaluating
the true molecular properties on the best points from this larger set.

Algorithm 1: Initialize Angles

output: Angular coordinates of latent variable sample on the spherical shell with radius

VN =1
fori < Oto K do // For each layer i in the hierarchy
& < N, 1)
& <« H:%H JN=T1; // project onto spherical shell
f; < ToPolarCoords (€;)

end
return {6; }]lV

Algorithm 2: Optimization in Latent Space with Hierarchical Radius Constraint

input : Property models: [ fi, ..., fi], Prior distribution:
[p(zkINNk(z<K)), ..., p(z1|N No(z0)), p(z0)], Objective function: O(-)
output: Spherical coordinates of a molecule in latent space with converged property values
initialize {6;}¥ <« InitializeAngles () ;
// The first layer of the prior is a standard Gaussian
o < 0,00 < 1;
fori < Oto K do // For each layer i in the hierarchy
zi < ToCartesianCoords ( 6;)
Zi < Zi0p + Wi s // Re-parametrize standard Gaussian variable
to conditional Gaussian at position i in the hierarchy
it Oir] < NN; (Z<;) 3 // Compute p and o of the next level
end
// Optimize {#;} until the objective function O(-) has converged
{01.*}{\’ <« GradientDescent ( O({fj}’lw, {z,-(@i)}f()) ;
return {91.*}{(

Molecular optimization is quite robust to hyperparameters. We considered ADAM
learning rates in {0.1, 0.01, 0.001, 0.0001} and 8 € {0.1, 0.01, 0.001, 0.0001}.

4.5 Datasets

SMILES strings, as well as the true values of the log octanol-water partition coeffi-
cient (logP), molecular weight (MW), and the quantitative estimate of drug-likeness
(QED), are computed using RDK:it [59].
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Fig. 4.8 Histogram of molecular diameters in the ZINC250k dataset. The diameter is defined as
the maximum eccentricity over all atoms in the molecular graph. The mean is 11.1; the maximum
is 24. Typical implementations of graph convolution use only three to seven rounds of message
passing [11, 13, 14, 34, 39, 40, 51] and so cannot propagate information across most molecules in
this dataset

4.5.1 ZINC

For molecular property optimization and fully supervised property prediction, we
train the All SMILES VAE on the ZINC250k dataset of 250,000 organic molecules
with between 6 and 38 heavy atoms and penalized logPs from —13 to 5 [8]. This
dataset is curated from a subset of the ZINC12 dataset [64] and available from https://
github.com/aspuru-guzik-group/chemical_vae. The distribution of molecular diam-
eters in ZINC250k is shown in Fig. 4.8. Penalized logP is commonly used in molecu-
lar optimization benchmarks and comprises the log octanol-water partition coefficient
minus the synthetic accessibility score and the number of rings with more than six
atoms, with all component terms normalized to have zero mean and unit standard
deviation on the ZINC250k dataset [9-11, 13, 34, 35].

For semi-supervised property prediction on logP, MW, and QED, we train on
the ZINC310k dataset of 310,000 organic molecules with between 6 and 38 heavy
atoms [16]. This dataset is curated from the full ZINC15 dataset [65] and available
from https://github.com/nyu-dl/conditional-molecular-design-ssvae.
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4.5.2 Tox21

For the semi-supervised prediction of twelve forms of toxicity, we train on the Tox21
dataset [61, 62], accessed through the DeepChem package [66], with the provided
random train/validation/test set split. This dataset contains binarized binding affini-
ties against up to 12 proteins for 6264 training, 783 validation, and 784 test molecules.
Tox21 contains molecules with up to 140 atoms, ranging from large peptides to lan-
thanide, actinide, and other metals. Many of these metal atoms are not present in
any of the standard molecular generative modeling datasets, and there are metal
atoms in the validation and test set that never appear in the training set. To address
these difficulties, we curated an unsupervised dataset of 1.5 million molecules from
the PubChem database [67]. To maintain commensurability with prior work, this
additional unsupervised dataset is only used on the Tox21 prediction task.

4.6 Results

We compare the performance of the All SMILES VAE to a variety of state-of-the-
art algorithms that have been evaluated on standard molecular property prediction
and optimization tasks. In particular, we compare to previously published results
on the character/chemical VAE (CVAE) [8] (with results reported in [10]), gram-
mar VAE (GVAE) [10], syntax-directed VAE (SD-VAE) [9], junction tree VAE (JT-
VAE) [13], NeVAE [11], semisupervised VAE (SSVAE) [16], graph convolutional
policy network (GCPN) [34], molecule deep Q-network (MolDQN) [35], and the
DeepChem [66] implementation of extended connectivity fingerprints (ECFP) [68]
and graph convolutions (GraphConv) [39, 40, 66]. Extended connectivity finger-
prints are a fixed-length hash of local fragments of the molecule, used as input to
conventional machine learning techniques such as random forests, support vector
machines, and non-convolutional neural networks [66]. For toxicity prediction, we
also compare to PotentialNet [69], ToxicBlend [70], and the results of [71].

4.6.1 Reconstruction Accuracy and Validity

The full power of continuous, gradient-based optimization can be brought to bear on
molecular properties given a bijection between molecules and contractible regions
of a latent space, along with a regressor from the latent space to the property of
interest that is differentiable almost everywhere. Such a bijection is challenging to
confirm, since it is difficult to find the full latent space preimage of a molecule
implicitly defined by a mapping from latent space to SMILES strings, such as our
beam search decoder. As a necessary condition, we confirm that it is possible to map
from the space of molecules to latent space and back again, and that random samples
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from the prior distribution in the latent space map to valid molecules. The former is
required for injectivity, and the latter for surjectivity, of the mapping from molecules
to contractible regions of the latent space.

Using the approximating posterior as the encoder, but always selecting the mean of
each conditional Gaussian distribution, and a using beam search over the conditional
likelihood as the decoder, 87.4% =+ 1% of a held-out test set of ZINC250k (80/10/10
train/val/test split) is reconstructed accurately. With the same beam search decoder,
98.5% £ 0.1% of samples from the prior decode to valid SMILES strings. We
expect that enforcing grammatical constraints in the decoder LSTM, as described
in Sect. 4.7, would further increase these rates. All molecules decoded from a set
of 50,000 independent samples from the prior were unique, 99.958% were novel
relative to the training dataset, and their average synthetic accessibility score [72]
was 2.97 £ 0.01, compared to 3.05 in the ZINC250k dataset used for training.

Previous molecular variational autoencoders have been evaluated using the per-
centage of molecules that are correctly reconstructed when sampling from both the
approximating posterior g (z|x) and the conditional likelihood p(x|z) (reconstruction
accuracy), and the percentage of samples from the prior p(z) and conditional like-
lihood p(x|z) that are valid SMILES strings (validity). While these measures have
intuitive appeal, they reflect neither the explicit training objective (the ELBO), nor the
requirements of molecular optimization. In particular, when optimizing molecules
via the latent space, a deterministic decoder ensures that each point in latent space
is associated with a single set of well-defined molecular properties.

The All SMILES VAE is trained on a more difficult task than previous molecular
VAESs, since the reconstruction targets are different SMILES encodings than those
input to the approximating posterior. This ensures that the latent representation only
captures the molecule, rather than its particular SMILES encoding, but it requires the
decoder LSTM to produce a complex, highly multimodal distribution over SMILES
strings. As aresult, samples from the decoder distribution are less likely to correspond
to the input to the encoder, either due to syntactic or semantic errors.

To compensate for this unusually difficult decoding task, we evaluate the All
SMILES VAE using a beam search over the decoder distribution.* That is, we decode
to the single SMILES string estimated to be most probable under the conditional
likelihood p(x|z). This has the added benefit of defining an unambiguous decoding
for every point in the latent space, simplifying the interpretation of optimization in
the latent space (as discussed in Sect. 4.6.3). However, it renders our reconstruction
and validity results incommensurable with much prior work, which use stochastic
encoders and decoders.

4 The full decoder distribution is still used for training.
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Fig.4.9 Semi-supervised mean absolute error (MAE) = the standard deviation across ten replicates
for the log octanol-water partition coefficient (a), molecular weight (b), and the quantitative estimate
drug-likeness (c) [60] on the ZINC310k dataset. Plots are log-log; the All SMILES MAE is a fraction
of that of the SSVAE [16] and graph convolutions [40]. Semi-supervised VAE (SSVAE) and graph
convolution results are those reported by Kang and Cho [16]

4.6.2 Property Prediction

Ultimately, we would like to optimize molecules for complicated physical proper-
ties, such as binding affinity to selected receptors and low toxicity. Networks can
only be trained to predict such physical properties if their true values are known
on an appropriate training dataset. While simple properties can be accurately com-
puted from first principles, properties like drug efficacy arise from highly nonlinear,
poorly characterized processes, and can only be accurately determined through time-
consuming and expensive experimental measurements. Since such experiments can
only be performed on a small number of molecules, we evaluate the ability of the
All SMILES VAE to perform semi-supervised property prediction.

As Fig. 4.9 and Table 4.1 demonstrate, we significantly improve the state of the
art in the semi-supervised prediction of simple molecular properties, including the
log octanol-water partition coefficient (logP), molecular weight (MW), and quantita-
tive estimate of drug-likeness (QED) [60], against which many algorithms have been
benchmarked. We achieve a similar improvement in fully supervised property predic-
tion, as given in Table 4.2, where we compare to extended connectivity fingerprints
(ECFP) [68], the character VAE (CVAE) [8], and graph convolutions [39]. We also
surpass the state of the art in toxicity prediction on the Tox21 dataset [61, 62], as given
in Table 4.2, despite refraining from ensembling our model, or engineering features
using expert chemistry knowledge, as in previous state-of-the-art methods [70].

Rather than jointly modeling the space of molecules and their properties, some
earlier molecular variational autoencoders first trained an unsupervised VAE on
molecules, extracted their latent representations, and then trained a sparse Gaus-
sian process over molecular properties as a function of these fixed latent represen-
tations [9-11, 13]. Sparse Gaussian processes are parametric regressors, with the
location and value of the inducing points trained based upon the entire supervised
dataset [73]. They have significantly more parameters, and are correspondingly more
powerful, than linear regressors.
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Table 4.1 Mean absolute error (MAE) of semi-supervised property prediction on the log octanol-
water partition coefficient (logP), molecular weight (MW), and the quantitative estimate of drug-
likeness (QED) on ZINC310k dataset

Model % labeled MAE logP MAE MW MAE QED
ECFP 50 0.180 & 0.003 9.012 +£0.184 0.023 £ 0.000
GraphConv 50 0.086 &+ 0.012 4.506 + 0.279 0.018 = 0.001
SSVAE 50 0.047 £ 0.003 1.05 £ 0.164 0.01 +£0.001
All SMILES 50 0.007 £ 0.002 0.21 £0.07 0.0064 £0.0002
ECFP 20 0.249 £ 0.004 12.047 £ 0.168 | 0.033 = 0.001
GraphConv 20 0.112 +£0.015 4.597 £ 0.419 0.021 £+ 0.002
SSVAE 20 0.071 &+ 0.007 1.008 £+ 0.370 0.016 £ 0.001
All SMILES 20 0.009 =+ 0.002 0.33 +0.06 0.0079 +0.0003
ECFP 10 0.335 + 0.005 15.057 £0.358 | 0.045 £ 0.001
GraphConv 10 0.148 £ 0.016 5.255 £ 0.767 0.028 £ 0.003
SSVAE 10 0.090 £ 0.004 1.444 +£0.618 0.021 £ 0.001
All SMILES 10 0.014 £ 0.002 0.30 £ 0.06 0.0126 + 0.0006
ECFP 5 0.380 £ 0.009 17.713 £0.396 | 0.053 £ 0.001
GraphConv 5 0.187 £ 0.015 6.723 £2.116 0.034 £+ 0.004
SSVAE 5 0.120 % 0.006 1.639 £ 0.577 0.028 £ 0.001
All SMILES 5 0.036 £ 0.004 04 £0.1 0.0217 £ 0.0003

Results other than the All SMILES VAE are those reported by Kang and Cho [16]

Table 4.2 Fully supervised regression on ZINC250k (a), evaluated using the mean absolute error;
and Tox21 (b), evaluated with the area under the receiver operating characteristic curve (AUC-ROC),
averaged over all 12 toxicity types

(a) ZINC250k (b) Tox21

Model MAE logP MAE QED Model AUC-ROC
ECFP 0.38 0.045 GraphConv + SN | 0.854

CVAE 0.15 0.054 PotentialNet 0.857 +0.006
CVAE enc 0.13 0.037 ToxicBlend 0.862
GraphConv 0.05 0.017 All SMILES (o | 0.864 +0.003

harmonization)
All SMILES 0.005 -+ 0.0006 0.0052 + 0.0001 All SMILES 0.8751 + 0.0008

Aside from All SMILES, results are those reported by ECFP: [68], CVAE: [8], GraphConv: [39],
Graph Conv + Super Node (SN): [71], PotentialNet: [69], and ToxicBlend: [70]. The ablation of
atom harmonization is also evaluated on the Tox21 dataset

Molecular properties are only a smooth function of the VAE latent space when
the property regressor is trained jointly with the generative model [8]. Results using
a sparse Gaussian process on the latent space of an unsupervised VAE are very poor
compared to less powerful regressors trained jointly with the VAE. Our property
prediction is two orders of magnitude more accurate than sparse Gaussian process
regression on an unsupervised VAE latent representation, as given in Table 4.3.
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Table 4.3 Root mean square error of the log octanol-water partition coefficient (logP) on the
ZINC250k dataset

Model RMSE
Character VAE (CVAE) [8, 10] 1.504
Grammar VAE (GVAE) [10] 1.404
Syntax-directed VAE (SD-VAE) [9] 1.366
Junction tree VAE (JT-VAE) [13] 1.290

NeVAE [11] 1.23

All SMILES 0.011 £ 0.001

Results other than the All SMILES VAE are those reported in the cited papers

Accurate property prediction only facilitates effective optimization if the true
property value is smooth with respect to the latent space. In Fig. 4.10a, we plot the
true (not predicted) logP over a densely sampled 2D slice of the latent space, where
the y-axis is aligned with the logP linear regressor.

Pathways on which activity (active or inactive) is assessed for the Tox21 dataset
include seven nuclear receptor signaling pathways: androgen receptor, full (NR-AR);
androgen receptor, LBD (NR-AR-LBD); aryl hydrocarbon receptor (NR-AHR); aro-
matase (NR-AROMATASE); estrogen receptor alpha, LBD (NR-ER-LBD); estrogen
receptor alpha, full (NR-ER); and peroxisome proliferator-activated receptor gamma
(NR-PPAR-GAMMA). The Tox21 dataset also includes activity assessments for
five stress response pathways: nuclear factor (erythroid-derived 2)-like 2/antioxidant
responsive element (SR-ARE); ATADS (SR-ATADS); heat shock factor response ele-
ment (SR-HSE); mitochondrial membrane potential (SR-MMP); and p53 (SR-p53).
We report the area under the receiver operating characteristic curve (AUC-ROC) on
each assay independently in Table 4.4. The average of these AUC-ROC:s is reported in
Table 4.2. We do not include the result of [40] in Table 4.2, since it is not evaluated on
the same train/validation/test split of the Tox21 dataset, and so is not commensurable.

4.6.3 Molecular Optimization

We maximize the output of our linear and logistic property regressors, plus a log-
prior regularizer, with respect to the latent space, subject to the hierarchical radius
constraint described in Sect. 4.4.2. After optimizing in the latent space with ADAM,
we project back to a SMILES representation of a molecule with the decoder. Follow-
ing prior work, we optimize QED and logP penalized by the synthetic accessibility
score and the number of large rings [9-11, 13, 34, 35]. Figure 4.10b depicts the
predicted and true penalized logP over an optimization trajectory, while Table 4.5
compares the top three values found among 100 such trajectories to the previous state
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Fig. 4.10 Dense decodings of true penalized logP along a local 2D sheet in latent space, with
the y-axis aligned with the regressor (a), and predicted and true penalized logP across steps of
optimization (b). We also display a coarse sampling of the molecules corresponding to the logP
heatmap (c)
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Table 4.4 Area under the receiver operating characteristic curve (AUC-ROC) per assay on the
Tox21 dataset

NR-AR NR-AR-LBD |NR-AHR NR- NR-ER NR-ER-LBD
AROMATASE

0.864 0.921 0.909 0.908 0.719 0.811

NR-PPAR- SR-ARE SR-ATADS SR-HSE SR-MMP SR-p53

GAMMA

0.935 0.860 0.870 0.901 0.927 0.882

Table 4.5 Properties of the top three optimized molecules trained on ZINC250k

Model Penalized logP Model QED

JT-VAE 5.30,4.93,4.49 JT-VAE 0.925,0.911, 0.910
GCPN 7.98,7.85,7.80 CGVAE 0.938, 0.931, 0.880
MolDQN 8.93,8.93,8.91 GCPN 0.948, 0.947, 0.946
All SMILES 12.31,12.13, 12.01 MolDQN 0.948, 0.948, 0.948
All SMILES (L unscatea) | 29.80, 29.76, 29.11 All SMILES 0.948, 0.948, 0.948

Other results are taken from JT-VAE: [13], GCPN: [34], MolDQN: [35], and CGVAE: [14]. Fol-
lowing prior work, penalized logP is normalized by the statistics of the Zinc250k dataset

of the art.’ The molecules realizing these property values are shown in Fig. 4.11. The
molecules optimized for penalized logP in Fig. 4.11a are more akin to polymers than
small molecules, despite the training set consisting of small molecules from ZINC,
reflecting the ability of the model to generalize beyond its training set. We present
an optimization trajectory for the quantitative estimate of drug-likeness (QED) in
Fig. 4.12.

For the molecules depicted in Fig. 4.11, we scaled KL(g (z|x)|| p(z))) in the ELBO
(Eq. 4.1) of the All SMILES VAE by the number of SMILES strings in the decoder.
This renders the loss function analogous to that of many parallel single-SMILES
VAEs, but with message passing between encoders leading to a shared latent rep-
resentation. If we leave the KL term unscaled, latent space embeddings are subject
to less regularization forcing them to match the prior distribution. Optimization of
molecular properties with respect to the latent space therefore searches over a wider
space of molecules, which are less similar to the training set.

5 Zhou et al. [35] appear to report unnormalized penalized logP values: 11.84, 11.84, and 11.82. In
Table 4.5, we recompute normalized values for their best molecules. Recently, Winter et al. [28]
reported molecules with penalized logP as large as 26.1, but train on an enormous, non-standard
dataset of 72 million compounds aggregated from the ZINC15 and PubChem databases.
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Fig. 4.11 Molecules produced by gradient-based optimization in the All SMILES VAE
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Fig. 4.12 Predicted (red line) and true (blue x’s) quantitative estimate of drug-likeness (QED) over
the optimization trajectory resulting in the molecule with the maximum observed true QED (0.948)

4.6.4 Ablation of Model Components

In Table 4.6, we progressively ablate model components to demonstrate that all ele-
ments of the All SMILES architecture contribute to building a powerful fixed-length
representation of molecules, rather than their particular SMILES string instantia-
tions. We evaluate the effect of these ablations on the mean absolute error (MAE) of
logP and QED predictions, as well as the percentage of samples from the prior that
decode to valid SMILES strings (Val) and the percentage of test molecules that are
reconstructed accurately (Rec acc). In all cases, we use the mean of each conditional
Gaussian distribution and a beam search decoder.

NO ATOM HARMONIZATION removes the pooling among each instance of an atom
across SMILES strings in the encoder, depicted in Fig. 4.4. As a result, the multiple
SMILES inputs are processed independently until the final max pooling over GRU
hidden states. A random SMILES string is chosen to serve as input to the attention
mechanisms of the approximating posterior. Table 4.2b shows the significant effect
of this ablation on toxicity prediction, demonstrating the importance of atom harmo-
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Table4.6 Effect of model ablation on fully supervised property prediction and generative modeling

using the ZINC250k dataset

Z. Alperstein et al.

Ablation MAE logP MAE QED Val Rec acc
Full model 0.005 £ 0.0006 | 0.0052 £ 0.0001 |98.5 £0.1 874 £1.0
No atom 0.008 £+ 0.004 0.0076 + 0.0005 |97.6 £0.2 84.0+ 0.4
harmonization

One SMILES enc | 0.008 £ 0.005 0.0073 + 0.0002 |98.4 £ 0.1 823+04
One SMILES 0.009 £ 0.001 0.0091 + 0.0003 |97.1 £0.7 809+ 0.4
enc/dec (#)

One SMILES 0.025 £+ 0.003 0.0115 £ 0.0004 |85.7 £ 1 913+ 0.6
enc/dec (=)

No posterior 0.010 £ 0.003 0.0051 + 0.0001 |[98.2+0.5 85.2£0.6
hierarchy

Table 4.7 Effect of the hierarchical radius constraint on penalized logP optimization

Ablation First best logP Second best logP Third best logP
With radius constraint | 17.0 £ 3.0 16.0 £2.0 148 £0.3
Without radius 8.5044 £ 0.0 6.9526 £ 0 5.36 £ 0.05
constraint

Predicted penalized logP was evaluated on 1000 optimization trajectories. From these, the true logP
was evaluated on the 100 best trajectories, and the top three true penalized logPs are reported. Each
optimization was repeated 5 times

nization for nonlinear properties of the entire molecule, in contrast to the quasi-linear
logP and QED reported in Table 4.6. We extend this process in ONE SMILES ENC
by only feeding a single SMILES string to the encoder, although the decoder still
reconstructs multiple disjoint SMILES strings. ONE SMILES ENC/DEC (#) further
reduces the size of the decoder set to one, but the encoded and decoded SMILES
strings are distinct. Finally, ONE SMILES ENC/DEC (=) encodes and decodes a sin-
gle, shared SMILES string. Except for ONE SMILES ENC/DEC (=), all of these abla-
tions primarily disrupt the flow of messages between the flattened spanning trees and
induce a similar, significant decay in performance. ONE SMILES ENC/DEC (=) fur-
ther permits the latent representation to encode the details of the particular SMILES
string, rather than forcing the representation of only the underlying molecule, and
causes a further reduction in performance.

We also observe a meaningful contribution from the hierarchical approximating
posterior. In NO POSTERIOR HIERARCHY, we move all latent variables to the first
layer of the hierarchy, removing the succeeding layers. The remaining prior is a
standard Gaussian, and there is no attentional pooling over the atom representations.

Table 4.7 shows that the hierarchical radius constraint significantly improves
molecular optimization. In contrast to Table 4.5, optimization is performed on penal-
ized logP alone, without a log prior regularizer. This produces better results without
the radius constraint and so constitutes a more conservative ablation experiment.
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4.7 SMILES Grammar Can Be Enforced with a Pushdown
Automaton

The subset of the SMILES grammar [7] captured by Dai et al. [9] and Kusneretal. [10]
is equivalent to the context-free grammar as shown in Fig. 4.13. This subset does not
include the ability to represent multiple disconnected molecules in a single SMILES
string, multiple fragments that are only connected by ringbonds, or wildcard atoms.
element_symbols includes symbols for every element in the periodic table,
including the aliphatic_organic symbols.

Productions generally begin with a unique, defining symbol or set of
symbols. Exceptions include bond and charge (both can begin with -), and
aromatic_organic and aromatic_symbols (both include ¢, n, o, s, and
p), but these pairs of productions never occur in the same context, and so cannot be
confused. The particular production for chiral can only be resolved by parsing
characters up to the next production, but the end of chiral and the identity of the
subsequent production can be inferred from its first symbol of the production after
chiral. Alternatively, the strings of chiral can be encoded as monolithic tokens.

Whenever there is a choice between productions, the true production is uniquely
identified by the next symbols. The only aspect of the SMILES grammar that requires

chain — branched_atom rest_of_chain
rest_of_chain — € | bond? chain
bond — | ‘=" | # | $ |||V
branched_atom — atom ringbond* branch*
ringbond — bond digit? digit
branch — ‘(’ bond? chain ‘)’
atom — aliphatic_organic | aromatic_organic | bracket_atom
aliphatic_organic — ‘B’ | ‘C’ | ‘N’ | ‘O’ | ‘S’ | ‘P’ | ‘F’ | ‘CI’ | ‘Br’ | ‘T
aromatic_organic — ‘b’ | ‘¢’ | ‘n’ | ‘0’ | ‘s’ | ‘p’
bracket_atom — ‘[’ isotope? symbol chiral? hcount? charge? class? ‘]’
isotope — digit? digit? digit
symbol — element_symbols | aromatic_symbols
aromatic_symbols — ‘¢’ | ‘n’ | ‘0’ | ‘p’ | ‘s’ | ‘se’ | ‘as’
chiral -» ‘@’ | ‘@@’ | ‘@TH!’ | ‘@TH2’ | ‘@AL1’ | ‘@AL2’ |
‘@SP1’ | ‘@SP2’ | ‘@SP3’ | ‘@TB1’ | ‘@TB2’ - - - ‘@TB30’ |
‘@OHI’ | ‘@OH2’ - - - ‘@OH30’
hcount — ‘H’ digit?
charge — ‘-’ digit? | ‘+” digit?
class — ‘7 digit? digit? digit?
digit — 0’ [ ‘1" [ 2|3 |4 |56 |T]|®]D

Fig. 4.13 Context-free grammar of SMILES strings
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more than a few bits of memory is the matching of parentheses, which can be per-
formed in a straightforward manner with a pushdown automaton. As a result, parse
trees [9, 10] need not be explicitly constructed by the decoder to enforce the syntactic
restrictions of SMILES strings. Rather, the SMILES grammar can be enforced with
a pushdown automaton running in parallel with the decoder RNN. The state of the
pushdown automaton tracks progress within the representation of each atom and the
sequence of atoms and bonds. The output symbols available to the decoder RNN
are restricted to those consistent with the current state of the pushdown automaton.
( and [ are pushed onto the stack when emitted and must be popped from the top of
the stack in order to emit ) or ] respectively.

For example, in addition to simple aliphatic organic (B, C, N, O, S, P, F,C1, Br, or
T) or aromatic organic (b, ¢, n, o, s, or p) symbols, an atom may be represented by
a pair of brackets (requiring parentheses matching) containing a sequence of isotope
number, atom symbol, chiral symbol, hydrogen count, charge, and class. With the
exception of the atom symbol, each element of the sequence is optional, but is easily
parsed by a finite state machine. i sotope, symbol, chiral, hcount, charge,
and class can all be distinguished based upon their first character, so the position
in the progression can be inferred trivially.®

When parsing branched_atom, all productions after the initial atom are
ringbonds until the first (, which indicates the beginning of a branch. After
observing a ), and popping the complementary ( off of the stack, the SMILES
string is necessarily in the third component of a branched_atom, since only a
branched_atom can emit a branch, and only branch produces the symbol
). The next symbol must be a (, indicating the beginning of another branch,
or one of the first symbols of rest_of_chain, since this must follow the
branched_atom in the chain production.

4.7.1 Ringbond and Valence Shell Semantic Constraints

Similarly, the semantic restrictions of ringbond matching and valence shell con-
straints can be enforced during feedforward production of a SMILES string using a
pushdown stack and a small (100-element) random access memory. Our approach
depends upon the presence of matching bond labels at both sides of a ringbond,
which is allowed but not required in standard SMILES syntax. We assume the trivial
extension of the SMILES grammar to include this property.

ringbonds are constrained to come in pairs, with the same bond label on both
sides. Whenever a given ringbond is observed, flip a bit in the random access
memory corresponding to the ring number (the set of digits after the bond). When
the ringbond bit is flipped on, record the associated bond in the random access
memory associated with the ring number; when the ringbond bit is flipped off,
require that the new bond matches the recorded bond, and clear the random access

6 symbo1l and hcount can both start with ‘H’, but symbol is mandatory, so there is no ambiguity.
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memory of the bond. The molecule is only allowed to terminate (rest_of_chain
produces € rather than bond? chain) when all ringbond bits are off (parity
is even). The decoder may receive as input which ringbonds are open and the
associated bond type, so it can preferentially close them.

The set of nested atomic contexts induced by chain, branched_atom, and
branch can be arbitrarily deep, corresponding to the depth of branching in the
spanning tree realized by a SMILES string. As a result, the set of SMILES symbols
describing bonds to a single atom can be arbitrarily far away from the associated
atom. However, once a branch is entered, it must be traversed in its entirety before
the SMILES string can return to the parent atom. For each atom, it is sufficient to
push the valence shell information onto the stack as it is encountered. If the SMILES
string enters a branch while processing an atom, simply push on a new context, with
a new associated root atom. Once the branch is completed, pop this context off the
stack and return to the original atom.

More specifically, each atom in the molecule is completely described by a sin-
gle branched_atom and the bond preceding it (from the rest_of_chain
that produced the branched_atom). Within each successive pair of bond and
branched_atom, track the sum of the incoming rest_of_chain bond, the
internal ringbond and branch bonds, and outgoing rest_of_chain bond
(from the succeeding rest_of_chain) on the stack. That is, each time a new
bond is observed from the atom, pop off the old valence shell count and push on
the updated count. Require that the total be less than a bound set by the atom, any
remaining bonds are filled by implicit hydrogen atoms. Provide the number of avail-
able bonds as input to the decoder RNN, and mask additional ringbonds and
branches once the number of remaining available bonds reaches one (if there are
still open ringbonds) or zero (if all ringbonds are closed). Mask the outgo-
ing bond, or require that rest_of_chain produce €, based upon the number of
remaining available bonds.

4.7.2 Redundancy in Graph-Based and SMILES
Representations of Molecules

To avoid the degeneracy of SMILES strings, for which there are many encodings
of each molecule, some authors have advocated the use of graph-based representa-
tions [14, 21-23]. While graph-based processing may produce a unique representa-
tion in the encoder, it is not possible to avoid degeneracy in the decoder. Parse trees [9,
10], junction trees [13], lists of nodes and edges [11, 14, 22], and vectors/matrices of
node/edge labels [20, 21, 23] all imply an ordering among the nodes and edges, with
many orderings describing the same graph. Canonical orderings can be defined, but
unless they are obvious to the decoder, they make generative modeling harder rather
than easier, since the decoder must learn the canonical ordering rules. Graph match-
ing procedures can ensure that probability within a generative model is assigned to
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the correct molecule, regardless of the order produced by the decoder [23]. However,
they do not eliminate the degeneracy in the decoder’s output, and the generative loss
function remains highly multimodal.

4.8 Conclusion

For each molecule, the All SMILES encoder uses stacked, pooled RNNs on multi-
ple SMILES strings to efficiently pass information throughout the molecular graph.
The decoder targets a disjoint set of SMILES strings of the same molecule, forcing
the latent space to develop a consistent representation for each molecule. Attentional
mechanisms in the approximating posterior summarize spatially diffuse features into
a fixed-length, non-factorial approximating posterior, and construct a latent represen-
tation on which linear regressors achieve state-of-the-art semi- and fully supervised
property prediction. Gradient-based optimization of these regressor outputs with
respect to the latent representation, constrained to a subspace near almost all proba-
bility in the prior, produces state-of-the-art optimized molecules when coupled with
a simple RNN decoder.
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Chapter 5 ®)
SMILES-Based Bioactivity Descriptors oo
to Model the Anti-dengue Virus Activity:

A Case Study

Soumya Mitra, Sumit Nandi, Amit Kumar Halder,
and M. Natalia D. S. Cordeiro

Abstract The present work aims to demonstrate the significance of the newly
suggested bioactivity descriptors (so-called signaturizers) towards developing
predictive 2D-QSAR models. As a case study, we examined the development of
2D-QSAR models based on a dataset containing 77 compounds with inhibitory
activity reported ina DENV2ProHeLa assay, which is basically a cell-based assay that
estimates the Dengivirus-2 (DENV-2) protease inhibitory potential within cellular
atmosphere. Indeed, though dengue is a well-known neglected tropical disease, its
global incidence has risen sharply in recent years. Moreover, DENV infections may
lead to serious and life-threatening diseases such as haemorrhagic fever and dengue
shock syndrome. Inhibition of the DENV protease may therefore be a potential
target for discovering anti-DENV agents. Interestingly, our initial attempts to set
up QSAR models based solely on a number of chemicals descriptors coming from
a range of different software packages/programs completely failed, since none of
these yielded satisfactory statistical results. Hybrid QSAR models were generated
also by combining both chemical and biological descriptors. Noteworthy is that
the predictive quality of the 2D-QSAR models significantly improved by resorting
instead to solely bioactivity descriptors or those combined with chemical descrip-
tors. The comparison analysis carried out in this work certainly shows that bioactivity
descriptors can be useful for setting up predictive models to characterise complex
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biological activity data, but then of course at the expense of their mechanistic interpre-
tation. Simultaneously, this work provides important guidelines to exploit different
linear and non-linear model development strategies in a systematic and consistent
manner. What is more, it is based on non-commercial open-access tools, programs
and webservers, so that the models can be reproduced, and the proposed models’
development strategies be easily and productively followed in the near future.

Keywords Dengue virus - Protease inhibitor + QSAR - Descriptor + Signaturizer

5.1 Introduction

The incidence of dengue fever has increased drastically in recent years owing to
high population density, poor environment and health management systems as well
as due to increased vector distributions [1, 2]. Being endemic in tropical and sub-
tropical regions, dengue has been categorised as a ‘neglected tropical disease’, but
the rise in international travel to those regions led to an increased number of imported
dengue cases in Western countries as well [3]. Around 390 million dengue infections
occur per year globally though only 30% cases are clinically recognised [4]. Similar
to malaria and filariasis, dengue is a mosquito-borne viral disease that typically
causes symptoms such as high fevers, headaches, muscle pains and rash. Dengue
virus (DENV) belongs to the Flaviviridae family, which are single-positive-stranded
RNA viruses. The DENV is transmitted by four major serotypes, namely: DENV-
1, DENV-2, DENV-3 and DENV-4. The DENV-carrying female Aedes mosquitoes,
including Aedes albopictus and Aedes aegypti may infect humans [2]. One critical
disorder caused by dengue infections is thrombocytopenia, which is normal in both
gentle and severe cases [5, 6]. The DENV infections may lead to serious and life-
threatening diseases such as haemorrhagic fever and dengue shock syndrome [7].
The WHO declared that the reported deaths increased from 960 to 4032 between the
year 2000 and 2015. Despite growing threats of dengue, its treatment still remains
symptomatic, focusing mainly on the management of fever, pain and body fluid [8].
Even though a vaccine Dengvaxia has recently been developed, it performs differently
in seropositive and seronegative patients, and its application is thus highly restricted
[9, 10]. In-depth studies are thus required to develop small molecules as potential
therapeutic agents to resist DENV infection.

Meanwhile, the protease inhibitors remained one of the most potential targets for
antiviral chemotherapy. The flaviviral protease complex (NS2B-NS3) is responsible
for the cleavage of the viral polyprotein into separate functional proteins responsible
for the replication of viruses [8, 11]. Inhibition of the DENV protease may therefore
be a potential target for discovering anti-DENV agents. Recently, Klein and co-
workers of the Heidelberg University have designed and synthesised a series of
synthetic small molecules as potential inhibitors of NS2B-NS3 in DENV-2. The
authors set up a luciferase-based DENV-2 protease reporter system in HeLa cells
(DENV2ProHeLa) that was employed to estimate the activity of the compounds
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in a cellular environment [8, 12]. In the current study, we collected 77 of such
data-points from two reports, where the DENV2ProHeLa activity was expressed in
50% effective concentration (ECsp), with the aim of setting up linear QSAR models
that may characterise the structural attributes important for the higher anti-DENV
property of these compounds [8, 12]. Overall, we followed a conventional 2D-QSAR
modelling approach but have also employed distinct categories of descriptors step-
by-step with the goal of generating the best predictive and validated models from this
dataset. By doing so, we attempt to find the significance of the bioactivity molecular
descriptors recently introduced by Bertoni et al. [13], which the authors so-referred to
as ‘signaturizers’. In contrast to chemical descriptors, that mainly rely on the chemical
attributes of compounds, signaturizers tend to describe their biological profile in
terms of numerical values. Specifically, this work focuses on a case study with anti-
DENYV protease inhibitors that combine the influence of both chemical and bioactivity
descriptors in order to develop validated predictive 2D-QSAR models. However, as
it will be described in this chapter, our case study highlights the significance of these
newly developed (as well as less exploited) bioactivity descriptors for setting up
predictive models.

5.2 Materials and Methods

5.2.1 Importance of Bioactivity Descriptors

The 2D-QSAR modelling primarily relies on chemical descriptors that represent
physicochemical and structural properties of small molecules. Due to availability of
large bioactivity databases, it is now possible to set up other numerical representa-
tions of molecules beyond chemical structures by detecting their biological prop-
erties. Bioactivity signatures are multidimensional vectors that capture 25 different
biological traits of the molecule (including target profiles, cellular response and clin-
ical outcomes) in a numerical vector format that is similar to the structural descriptors
or fingerprints used in the field of cheminformatics [13]. The source of bioactivity
signatures is Chemical Checker (CC) [14], which is an integration of major chemoge-
nomics and drug databases containing 25 different elements ranging from A1-ES (A:
chemistry, B: targets, C: networks, D: cells, E: clinics). The details of their sublabels
are shown in Table 5.1.

In CC, each molecule is annotated with multiple n-dimensional vectors (i.e., bioac-
tivity signatures) with respect to the spaces for which experimental information is
available. Evidently, all these elements do not have the same number of available data
and in fact significant differences exist. However, since these bioactivity spaces are
correlated, signatures for any novel compound may be obtained by tackling the metric
learning problem using the Siamese neural network (SNN) containing a stacked array
of CC signatures available for the compound (belonging to any of the A1-ES layers:
Si) as input whereas a n-dimensional embedding optimised to distinguish between
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Table 5.1 Summary of Chemical Checker spaces

Space Description Sublabels Name
A Chemistry Al 2D fingerprints
A2 3D fingerprints
A3 Scaffolds
A4 Structural keys
A5 Physicochemical parameters
B Targets B1 Mechanisms of action
B2 Metabolic genes
B3 Crystals
B4 Binding
BS5 High-throughput screening bioassays
C Network Cl Small-molecule roles
C2 Small-molecule pathways
C3 Signalling pathways
C4 Biological processes
C5 Interactome
D Cells D1 Gene expression
D2 Cancer cell lines
D3 Chemical genetics
D4 Morphology
D5 Cell bioassays
E Clinics El Therapeutic areas
E2 Indications
E3 Side effects
E4 Diseases and toxicology
ES Drug—drug interactions

similar and dissimilar molecules in Si as output [13]. More specifically, the SNN
is fed with triplets of molecules (an anchor molecule, one that is similar to the
anchor—i.e., positive, and one that is not—i.e., negative), and the SNN is expected
to correctly classify this pattern with a distance measurement based on Euclidean
distances computed in the embedding space. Therefore, the 25 SNNs are trained
on the basis of existing CC signature molecule triplets reflecting Si similarities. The
SNN embedding of 128 is chosen for all CC space to get an output of 128 dimensions
and with ‘global’ option 3200 (= 25 x 128) biological signatures are obtained for
each molecule. In the present work, we calculated these global signatures for each
dataset compound to build 2D-QSAR models.
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5.2.2 Dataset Collection

The ECsg (in wM) values of cell-based DENV2ProHeLa activity of 77 compounds
were collected from the literature and these were then converted to pECsg (in M)
and subsequently used as response variables. The SMILES notation and the reported
biological activity of the dataset compounds is given in the supplementary mate-
rials (Table S1). In-depth details of this comparatively novel assay method can be
found elsewhere [12]. Briefly, the DENV2ProHeLa assay, also named as DENV-
2 protease reporter gene assay, is basically a high-throughput screening (HTS)-
capable intracellular DENV-2 protease assay with luciferase reporter system that
enables us to estimate the DENV-2 protease activity in a cellular atmosphere. The
assay results also reflect membrane permeability, metabolic stability and cytotoxi-
city of the compounds under investigation. Since the protease in DENV2ProHeLa
cells interacts with a number of human host proteins and membranes, this assay
provides biologically more meaningful environment as compared to the biochemical
assay conducted with isolated protease. The SMILES structures of the 77-dataset
compounds were directly collected from the reports of Klein et al. [8, 12], and these
were then converted into 3D.sdf formats using the Discovery Studio Visualizer.

5.2.3 Calculation of Molecular Descriptors

The 3D structures of these compounds were submitted to the OCHEM webserver [15]
for the calculation of molecular descriptors. This work resorts to a range of different
theoretical chemical descriptors other than biological signatures with attempts to
generate statistically reliable models. We looked in the OCHEM webserver [15] for a
number of well-known software packages to calculate the molecular descriptors for
the dataset compounds, including the following ones: (a) AlvaDesc v.2.0.4 [16], (b)
CDK 2.7.1 [17], (c) RDK:it (https://www.rdkit.org/docs/), (d) simplex representation
of molecular structure—SIRMS (https://github.com/DrrDom/sirms) [18], (e) ISIDA
fragments and GSFragment [19], (f) multilevel neighbourhoods of atoms (MNA)
[20], (g) Mera + Mersy [21], (h) Mordred descriptors [22], and (i) PyDescriptors
[23]. The application of so many diverse types of descriptors basically aimed to check
which descriptors are more capable of generating validated and predictive models. In
OCHEM, the structures are first pre-processed using Chemaxon following steps such
as standardisation, neutralise, remove salts and clean structures [24]. For calculation
of 3D structures, optimisation of the compounds geometries was performed using the
Corina tool under the OCHEM platform. The ‘global’ signaturizer descriptors were
calculated with signaturizer tool (accessed from https://gitlabsbnb.irbbarcelona.org/
packages/signaturizer), where the SMILES notation of the several structures was
submitted as inputs for the calculation of the descriptors using Jupyter notebook
provided with this tool [13].
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5.2.4 Development of Linear 2D-QSAR Models

Since the present work compares the performance of a number of descriptor calcu-
lating tools (e.g., alvaDesc, PyDescriptors) for setting up predictive and validated
linear models, we needed robust but consistent model development strategies. We
initially used our in-house SFS-QSAR tool (accessed from https://github.com/ncorde
irfcup/SFS-QSAR-tool) for developing multiple models using the sequential forward
selection (SFS) technique [25], as illustrated in Fig. 5.1.

Each dataset containing the response variables and the descriptors were randomly
divided into three training set-test set combinations, using in the SFS-QSARtool
random seed values of 3, 20 and 42. For each division, the following four scoring
functions were applied: the determination coefficient (R?), the negative mean abso-
lute error (NMAE), the negative mean Poisson deviance (NMPD) and the negative
mean gamma deviance (NMGD). Similarly, for each of these scoring functions, two
cross-validation strategies were used for model development, namely: (i) no cross-
validation and (ii) fivefold cross-validation. Therefore, for each descriptor calcu-
lating tool, a total of 24 (= 3 x 4 x 2) models were generated (see Fig. 5.1). After
developing these models, the statistical quality of each model was assessed on the
basis of internal and external predictivities, as explained later in this chapter. The
data division that produced the best statistical result from SFS was then utilised for
generating genetic algorithm-based multiple linear regression (GA-MLR) models by
employing the GeneticAlgorithm v.4.1_2 [26]. In contrast to SFS, GA is a stochastic
feature selection technique and the latter is based on random selection of the set
of descriptors, estimation of fitting scores of these random models followed by
cross-over and mutation schemes to improve the fitting scores when setting up the
final models [26]. The SFS technique, meanwhile, is a non-stochastic technique that
includes descriptors in the model one by one following specific scoring functions,
and given the same dataset and parameter settings for model development, the users
end up with the same model every time [27]. Descriptor pre-treatment was carried

| Dataset

Seed 3 Seed 42

Seed 20

Random =, 5 =

data division Data distribution 1 Data distribution 2 Data distribution 3
(Training + Test) (Training + Test) (Training + Test)
v . .
Sooing . ! | b ' Voo | o
functions R NMAE NMPD NMGD R? NMAE NMPD NMGD R? NMAE NMPD NMGD
Cross-validation I + + + v v

strategy No CV 5-fold CV No CV 5-fold CV No CV 5-fold CV

Fig. 5.1 SFS-QSAR model development strategies for each dataset
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out for each model development in which constant, near-constant and highly corre-
lated descriptors were eliminated by setting a variance cut-off of 0.0001 and an inter
correlation cut-off of 0.99. Notice that even though a high intercorrelation cut-off was
employed, the maximum intercollinearity of the final models was carefully checked
to ensure that the descriptors of the model are unique and independent. Apart from
these, the following parameter settings were used for GA-MLR: (a) total number
of iterations/generations: 100, (b) equation length: 8, (c) mutation probability: 0.3,
(d) cross-over probability: 1 (default), (e) initial number of equations generated: 100
(default), (f) number of equations selected in each generation: 30. Since GA-MLR
models require multiple runs for selecting the best model, in this work, we ran each
model 20 times with the training set, and the best model was then chosen based on
the overall higher statistical quality [26].

5.2.5 Statistical Analysis of Models

The goodness of fit, robustness and predictivity of the final 2D-QSAR models were
estimated using a range of well-known statistical parameters. Initially, the models’
internal predictivity was estimated by 0%*.00 and rm?L00, Whereas their external
predictivity was assessed from R%preq and ri2est. The final models were more crit-
ically examined by checking the R?, R? 54, the Fisher’s statistics (F-test), and the
mean absolute error (MAE) values. Furthermore, along with the 7,2 00 and 72 est
values, their deviations (Arm2Loo and Arp2est) were also determined [28—30]. Three
additional parameters R%1ey, k, k' and lry? — ¥ o%l, which belong to Golbraikh and
Tropsha’s acceptable model, criteria were also considered for checking the external
predictivity of the test set [30, 31].

As discussed before, the proposed models were checked for intercollinearity, and
at the same time, the multicollinearity of the final models was estimated by calculating
the variation inflation factor (VIF) using the following equation.

VIF =1/(1 — R}) (5.1

In this equation, Ri2 is the determination coefficient (R?) determined by regressing
the ith descriptor on the other descriptors [32].

Additionally, to confirm that the 2D-QSAR model was not developed by chance,
the Y-randomisation test was performed to generate the parameter cRp> that
measures the difference between original R?> and average value of randomised R>.
1000 randomised models were generated in this work by scrambling the response
values [33].
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5.2.6 Applicability Domain of the Models

The applicability domain is basically the chemical-biological space within which
the prediction of a specific model is deemed reliable. In this work, the Williams plot
(leverage vs. standardised residuals) was obtained to identify structural and response
outliers in the linear 2D-QSAR models [34, 35].

5.2.7 Non-linear Model Development

The non-linear models were developed using three well-known machine learning
tools namely (a) support vector regression (SVR), (b) random forest regression (RFR)
and (c) multilayer perception-based regression (MLPR) using our in-house non-
linear regression tool (accessed from https://github.com/ncordeirfcup/Non-linear-
Regression-tools) that employs scikit-learn algorithms to set up non-linear models. In
this work, we also performed hyperparameter optimisation for each machine learning
technique and the parameters that were tuned during model development are listed
in Table 5.2.

Fivefold cross-validated R? and RZ%p,q were used to estimate the internal and
external predictivity of the non-linear models.

Table 5.2 Parameters
optimised during the
deve]opment of non-linear RFR Bootstrap: true/false

2D-QSAR models Criterion: Gini, entropy
Maximum depth: 10, 30, 50, 70, 90, 100, 200, none

Maximum features: auto, sqrt

Technique | Parameters tuning

Minimum samples leaf: 1, 2, 4

Minimum samples split: 2, 5, 10
Number of estimators: 50, 100, 200, 500
SVR C: 0.1, 1, 10, 100, 1000

Gamma: 1, 0.1, 0.01, 0.001

Kernel: RBF, linear

MLPR Hidden layer sizes: 100

Activation: identity, logistic, tanh, relu
Solver: SGD, Adam

Alpha: 0.0001, 0.001, 0.01, 1

Learning rate: constant, adaptive, invscaling
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5.3 Results and Discussion

As referred to above, descriptors calculated from eight different tools were applied
to establish predictive models from the dataset. Finally, the bioactivity descriptors
(signaturizers) were employed for setting up models. At first, we resorted to the SFS
feature selection technique since this technique is non-stochastic in nature and with
a given dataset and parameter settings yields the same model each time. For each
descriptor calculating tool, 24 SFS-QSAR models were developed by varying the
data distributions (i.e., using as random seed values 3, 20 and 42), scoring functions
(i.e., R, NMAE, NMPD and NMGD) and cross-validation techniques (i.e., none and
fivefold), as previously shown in Fig. 5.1. To assess the overall quality of these linear
2D-QSAR models, the average values of 0%.00 and R?p,.q were also calculated (see
Table 5.3).

One thing which is clearly seen from the results in Table 5.3 is that, obtaining a
predictive linear 2D-QSAR model based on the current dataset is quite challenging.
Indeed, models with poor overall predictivity were obtained for descriptors calcu-
lated by means of Mera + Mersy, CDK, GSFrag + ISIDA and MNK, whereas
moderate predictability was obtained for the models generated with the descrip-
tors coming from PyDescriptors, Mordred, AlvaDes, SIRMS and RDKit. Finally, it
is evident from these results that bioactivity descriptors (i.e., signaturizers) led to
a linear model, the statistical predictivity of which is considerably higher (around
20%) than the best models generated with other types of descriptors, which clearly
underlines the importance of such descriptors in model generation. We hypothesised
that better models may be retrieved from PyDescriptors, Mordred, AlvaDes, SIRMS,

Table 5.3 Summary of the statistical results obtained from SFS-QSAR modelling with molecular
descriptors calculated with a number of descriptors calculating software/programs

Descriptors Random seed | Scoring | Fold 0%1.00 | R?pred | rm2L00 | Fmtest Average?
Mera + 20 R? 5 0.288 [0.203 |0.194 0.162 |0.246
Mercy

CDK 20 NMAE |0 0.332 10.398 |0.189 0.318 | 0.365
GSFrag + 3 NMAE |5 0.411 |0.463 |0.274 0.301 | 0.437
ISIDA

MNK 3 NMAE |5 0.539 [0.360 |0.401 0.295 | 0.449
PyDescriptors | 20 R? 0 0.536 |0.498 |0.403 0.301 | 0.517
Mordred 3 R? 5 0.537 |0.550 |0.401 0.423 | 0.544
AlvaDesc 42 NMAE |5 0.526 |0.576 |0.386 0.468 |0.551
SIRMS 3 NMAE |0 0.565 [0.570 |0.439 0.530 |0.567
RDK:it 3 R? 0 0.658 |0.540 |0.546 0.380 | 0.599
Signaturizers |20 R? 0 0.717 10.720 |0.615 0.660 |0.718

2 Average value of 02100 and R%preq
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Table 5.4 Summary of statistical results obtained from GA-MLR modelling

Descriptors Random seed Q2LOO R2pred Fm2L00 Fm2test Average®
Signaturizers 20 0.582 0.468 0.448 0.419 0.525
AlvaDesc 42 0.495 0.62 0.356 0.356 0.558
PyDescriptors 20 0.455 0.505 0.308 0.509 0.480
Mordred 3 0.388 0.312 0.243 0.232 0.350
RDKit 3 0.485 0.503 0.343 0.37 0.494
SIRMS 3 0.523 0.483 0.39 0.261 0.503

2 Average value of 0%1.00 and R%preq

RDAKit and Signaturizers if other feature selection techniques are explored. There-
fore, we selected the data distributions of Table 5.3 for each of these descriptors to
set up MLR models by means of the stochastic GA feature selection technique and
the results are presented in Table 5.4.

As seen, the GA technique failed to improve the quality of the 2D-QSAR MLR
models significantly. Indeed, only the model based on the descriptors computed
using AlvaDesc reveals a slight quality improvement. Summing up, the SFS-MLR
model based on signaturizer descriptors gave us the most predictive linear 2D-QSAR
model, judging from the attained 0%.00 and R?pgq values (= 0.717 and 0.720,
respectively). The statistical quality of this model is significantly better than the
models developed with any other tool. Therefore, the next step to be followed is
to merge the chemical descriptors with the biological signatures in order to check
if more predictive models can be generated or not. For such purpose, we merged
the signaturizer descriptors separately with the descriptors calculated by AlvaDesc,
RDKit, SIRMS, PyDescriptors, Mordred and MNA. It should be noticed however that
descriptors calculated by the remaining tools, such as CDK, Mera 4+ Mercy, were
not included since these produced the least predictive models. The same model
development strategy was applied for each set of descriptors, i.e., the best model
was picked from 24 initially developed SFS-QSAR models by varying the data
distributions, the scoring functions, and the cross-validation schemes. The attained
results are provided in Table 5.5.

It is now clearly observed that the combination of biological signatures with
chemical descriptors improves the overall predictivity of the models as compared
to that of the models developed only with chemical descriptors. More importantly,
even though the biological signatures provided the most predictive models among
descriptors, they do not afford mechanistic interpretations. Yet, hybrid models devel-
oped with both the chemical descriptors and biological signatures are able to unveil
by some means mechanistic interpretability. From Table 5.5, it is inferred that the
most predictive hybrid model is generated with the AlvaDesc descriptors followed by
SIRMS and RDK:it descriptors. Noticeably, the model produced with signaturizers
and Mordred descriptors has a very low FmZtest Value (= 0.497) indicating that it does
not have satisfactory external predictivity. We also attempted to generate these MLR
models by using the GA selection but no better model was retrieved. Additionally,
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Table 5.5 Summary of the SFS-QSAR models obtained after combining the chemical descriptors
calculated with a number of software packages/programs with biological signatures

Descriptors Random | Score Fold QzLoo Rped | rm2L00 | Fm2test Average®
seed

Signaturizers + |20 R? 0 0.740 |0.647 |0.644 0.582 |0.693

PyDescriptors

Signaturizers + |42 NMGD |0 0.761 0.654 |0.674 0.540 |0.707

MNA

Signaturizers + |20 R? 0 0.742 |0.710 |0.647 0.626 | 0.726

RDKit

Signaturizers + |42 R? 0 0.782 |0.673 |0.698 0.497 |0.728

Mordred

Signaturizers + |20 NMGD |5 0.741 0.722 | 0.644 0.648 |0.731

SIRMS

Signaturizers + |20 NMGD |0 0.760 |0.720 |0.668 0.631 |0.740

AlvaDesc

2 Average value of QZLOO and R%preq

when AlvaDesc and SIRMS descriptors were combined with biological signatures,
the statistical quality of the resulting models largely deteriorated, having the best
obtained model values of 0.691 and 0.623 for Q2L00 and R%pred, respectively. A
detailed description of the four most predictive linear 2D-QSAR models obtained
in the present work is given in Table 5.6, and the observed versus predicted activity
plots for such models are shown in Fig. 5.2.

The statistical significance of these models was also established by the fact that the
maximum intercorrelation obtained from these four models are 0.620 (for Model 1),
0.639 (for Model 2) and 0.511 (for both Models 3 and 4). Furthermore, we determined
the VIF value for each model descriptor and found that all values were less than five,
indicating that multicollinearity does not exist in these models. Moreover, the Y-
randomization tests (1000 runs) carried out for each of such models yielded high
cRp? values always (> 0.7), which lead us to conclude that they are indeed unique in
nature.

Here, it should be also noticed that the biological signatures of the hybrid 2D-
QSAR models prevailed in fact in all of them. Out of eight descriptors of these hybrid
models, 6-7 descriptors belong to the biological signatures, clearly pinpointing their
key role. Furthermore, some biological signatures like D0253 and D2942 appear
almost in every model, whereas D0406, D1581 and D2035 were found to be present
in multiple models.

As shown in Fig. 5.3, the relative significance of the descriptors computed for
each of these four models patently portrays the fact that it is significantly lower
for the chemical descriptors than for the biological signatures. Therefore, biological
signatures mainly prevailed in these hybrid models, and even if with low importance
helped in improving the quality of the models to a considerable extent.
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The determined Williams plots are shown in Fig. 5.4. Inspection of these plots
reveals that, save for Model 3 developed by considering both SIRMS and signatur-
izers descriptors, no structural outliers were detected in these models. It may therefore
be inferred that the descriptors of these models assured that the data-points are within
their AD. Moreover, two structural outliers of Model 2 were in fact predicted very
well by this model. All hybrid models contain two response outliers which naturally

Table 5.6 Detailed outline of the four most predictive linear 2D-QSAR models obtained in the
present work by mixing different type of descriptors

Model | Descriptors Equation Statistical results?
1 AlvaDesc + signaturizers | pECso = + 3.728 (£ 0.205) | Niraining = 61; R? =0.821;
— 3.000 (£ 0.602) D0253 + R2Adj =0.790; F(52; 8) =
1.597 (£ 0.609) DO791 — 29.780; 0200 = 0.743;
6.828 (£ 0.940) D1649 + MAE = 0.137; MSE =
1.858 (+ 0.544) D2144 — 0.179; rm2L00 = 0.668;
3.717 (£ 0.898) D2830 — Arm21.00 = 0.153; Niest =
4.380 (£ 0.648) D2942 + 16; R%pyeq = 0.720; RMSEP
0.092 (£ 0.018) = 0.311; rm2ese = 0.631;
CATS3D_09_DL + 0.143 Armest = 0.043; R2 e =
(£ 0.029) CATS3D_08_PL 0.719; k = 1.013, k' =
0.984; Irg> — 'p%l = 0.078;
cRp? = 0.756
2 SIRMS + signaturizers pPECsp = + 5.767 (£ 0.151) | Niraining = 61; R?2=0.791;
—2.918 (£ 0.586) D0253 — RzAdj =0.759; F(52;8) =
1.412 (£ 0.521) D0856 + 24.569; 0% 00 = 0.741;
4.232 (£ 0.677) D1581 + MAE = 0.136; MSE =
5.338 (= 1.480) D2035 + 0.194; rm2L00 = 0.644;
1.525 (£ 0.521) D2199 + Arm2Loo = 0.068; Niest =
0.816 (= 0.589) D2492 — 16; R?preq = 0.722; RMSEP
3.768 (£ 0.673) D2942 — = 0.309; rp2est = 0.648;
0.321 (% 0.073) ISInl 11411 Arm2iest = 0.020; R 1o =
IREFRACTIVITYIC-D.C = | (733: k = 1.017. k' =
D 0.980, Iro? — r'o?l = 0.079;
cRp? =0.724
3 RDK:it + signaturizers pECso = + 4.967 (£ 0.219) | Niraining = 61; R?2 =0.821;
— 3.311 (£ 0.449) D0253 — RzAdj =0.794; F(52; 8) =
3.260 (& 0.580) D0406 + 29.829; 0% oo = 0.742;
3.071 (£ 0.733) D0448 + MAE = 0.135; MSE =
4.523 (£ 0.653) D1581 + 0.179; rm2L00 = 0.647;
5.914 (£ 1.360) D2035 — Arm2Lo0 = 0.142; Niegt =
4.830 (£ 0.628) D2942 + 16; R%pyeq = 0.710; RMSEP
0.314 (£ 0.116) MORSE42 | — (.316; rp2 e = 0.626;
+0.006 (£ 0.001) RDF197 | Ay, 2 = 0.032; R2 et =
0.714; k = 1.010; k' =
0.987; Irg> — /%l = 0.027;
cRp? = 0.756

(continued)
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Table 5.6 (continued)

129

Model

Descriptors

Equation

Statistical results®

4

Signaturizers

pECsp = 5.578 (£ 0.176) —

3.1407 (& 0.522) D0253 —
2.440 (£ 0.597) D0406 +
1.526 (& 0.533) D0605 +
3.763 (£ 0.675) D1581 +
6.832 (& 1.4912) D2035 —
1.795 (& 0.631) D2619 +
1.601 (£ 0.675) D2895 —
4.444 (& 0.689) D2942

Niraining = 61; R? =0.788;
RzAdj =0.756; F(52;8) =
24.210; Q*Loo = 0.717;
MAE = 0.142; MSE =
0.195; rm*Loo = 0.615;
ArmzLOO =0.147; Niest =
16; R2preq = 0.720; RMSEP
= 0.311; rmZiest = 0.660;
ArmZiest = 0.030; R2eq =
0.742; k = 1.020; k' =
0.977; Irg? — /%l = 0.064;
cRp? =0.723

 Ntraining: number of training set compounds; R2: determination coefficient; R? Adj: adjusted R F:
Fisher statistics; QZLOO: leave-one-out cross-validated RZ; MAE: mean absolute error; MSE: mean
square error; rm2L00: leave-one-out ry2 metric; ArmZLoo: standard deviation of rm2L00: Niest:
number of test set compounds; R2preq: R? for external prediction; RMSEP: root mean square error
of prediction; FmZest: Im?2 for the test set; Arm2esi: standard deviation of rym2est; R2Test, k, k' and
Iro> — r'o%l: parameters belong to Golbraikh and Tropsha’s acceptable model criteria for test set
validation; and cRp?: statistical parameter of the Y-randomization test [28-31, 33]
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lowers their overall predictivity, but these should not be removed since they lie very
well within the applicability structural domain of the models.

We finally left with the question whether non-linear 2D-QS AR models with higher
statistical predictivity might exist using the employed descriptors so far. Even though
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the main goal of this work is to develop linear models, since most of the chem-
ical descriptors failed to accomplish such a goal, the question becomes even more
significant. Therefore, we also attempted to develop non-linear models to check
that. Nowadays, it is well known that there are multiple ways of developing non-
linear models as regards to (a) the applied machine learning (ML) technique, (b) the
setting of parameters for the targeted ML technique and (c) the descriptors selec-
tion strategy. In this work, we paid particular attention on two different schemes
for developing such non-linear models using the following three ML techniques:
(a) support vector regression (SVR), (b) random forests regression (RFR) and (c)
multilayer perception-based regression (MLPR). The models were firstly developed
after careful hyperparameter optimisation, the details of which were provided in
Table 5.2. As far as the descriptor selection is concerned, we followed two schemes.
In the first one, descriptors and data distributions obtained from the best linear models
were considered for model development. In the second, 20 most distinct descriptors
were obtained from the differential Shannon entropy (dSe) technique calculated with
the IMMAN software (http://mobiosd-hub.com/imman-soft/) [36, 37]. A statistical
summary of the performance of the best non-linear models found by following these
schemes is given in Table 5.7.
The attained results may be summarised as follows:

(a) Descriptors selected by dSe as well the descriptors selected directly from
the linear 2D-QSAR models failed to generate predictive non-linear models.
However, the performance of the models was better when the descriptors of the
respective linear model were deployed for model generation. Therefore, we did
not consider the dSe selected descriptors for deriving hybrid non-linear models,
that is, based on chemical descriptors plus bioactivity descriptors.

(b) Even more importantly, none of the non-linear models achieved a statistical
predictivity significantly higher than that pertaining to the linear 2D-QSAR
models.

(c) The SVR remained the most successful regressor among the three ML tech-
niques employed for model generation. All predictive SVR models were derived
with a ‘linear’ kernel and not with a ‘RBF’ kernel. Nevertheless, the SVR models
were not statistically more predictive when compared to the linear 2D-QSAR
models (see Table 5.5).

(d) Hybrid non-linear models were found to be more predictive compared to models
generated either with only chemical descriptors or with only biological signa-
tures. The best non-linear model found was produced by SVM with AlvaDesc
and signaturizer descriptors (Q%.00 = 0.750, R%peq = 0.705). However, the
statistical quality of this model was no better than that of the linear models.

(e) Finally, it is worth mentioning here that we even attempted to derive models
including all the descriptors from each set, after removing the constant and
near-constant descriptors as well as highly correlated features by setting the
correlation cut-off to 0.95 and the variance cut-off to 0.001. Still, we realised
that the quality of the non-linear models rather deteriorates with the increase in
the number of descriptors (results not shown).
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Table 5.7 Summary of the statistical results achieved for the non-linear models
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Descriptors Random seed | Type of ML 0%00 R2pred Average?
descriptors

AlvaDesc 42 dSe MLPR | —0.463 0.522 0.030

AlvaDesc 42 dSe RFR 0.203 0.258 0.231

AlvaDesc 42 dSe SVR 0.198 0.182 0.190

RDKit 3 dSe MLPR | —0.049 0.028 | —0.011

RDKit 3 dSe RFR 0.264 0.135 0.200

RDKit 3 dSe SVR 0.140 0.162 0.151

SIRMS 3 dSe MLPR 0.169 | —0.073 0.048

SIRMS 3 dSe RFR 0.384 0.209 0.297

SIRMS 3 dSe SVR 0.384 0.209 0.297

Signaturizers | 20 dSe MLPR 0.183 0.176 0.180

Signaturizers |20 dSe RFR 0.110 0.237 0.174

Signaturizers | 20 dSe SVR 0.162 0.315 0.239

AlvaDesc 42 Linear MLPR 0.190 0.526 0.358
model

AlvaDesc 42 Linear RFR 0.426 0.432 0.429
model

AlvaDesc 42 Linear SVR 0.579 0.556 0.568
model

RDKit 3 Linear MLPR 0.003 0.099 0.051
model

RDKit 3 Linear RFR 0.317 0.522 0.420
model

RDKit 3 Linear SVR 0.655 0.516 0.586
model

SIRMS 3 Linear MLPR 0.427 | — 0.066 0.181
model

SIRMS 3 Linear RFR 0.472 0.514 0.493
model

SIRMS 3 Linear SVR 0.310 0.513 0.412
model

Signaturizers |20 Linear MLPR 0.200 0.163 0.182
model

Signaturizers |20 Linear RFR 0.391 0.536 0.464
model

Signaturizers | 20 Linear SVR 0.715 0.695 0.705
model

AlvaDesc + 20 Linear MLPR 0.362 0.598 0.480

Signaturizers model

(continued)
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Table 5.7 (continued)

Descriptors Random seed | Type of ML QZLOO R2pred Average®
descriptors

AlvaDesc + 20 Linear RFR 0.470 0.450 0.460
Signaturizers model

AlvaDesc + 20 Linear SVR 0.750 0.705 0.728
Signaturizers model

RDKit + 20 Linear MLPR | —0.200 0.132 | —0.034
Signaturizers model

RDKit + 20 Linear RFR 0.592 0.713 0.653
Signaturizers model

RDKit + 20 Linear SVR 0.695 0.669 0.682
Signaturizers model

SIRMS + 20 Linear MLPR 0.203 0.210 0.207
Signaturizers model

SIRMS + 20 Linear RFR 0.603 0.180 0.392
Signaturizers model

SIRMS + 20 Linear SVR —0.147 |—-0.121 |—-0.134
Signaturizers model

2Average value of Q%00 and R2Pred

5.4 Conclusions

In this chapter, we attempted to highlight the importance of the newly developed
descriptors—i.e., bioactivity descriptors or biological signatures, for setting up
predictive 2D-QSAR models. Such descriptors require only the SMILES notation for
the targeted compounds and provide a range of descriptor values jointly embodying
their chemical, biological and clinical profiles. As a case study for such purpose,
we employed a dataset comprising 77 compounds with cell-based biological activity
against the DENV-2 protease. What is more, it is also important to understand the
significance of the current work from the context of the nature of biological activity
data used for modelling. As referred to earlier, the outcomes of such cell-based assays
(i.e., the DENV2ProHeLa assay) are influenced not only by the type of biological
target (i.e., the NS2B-NS3 protease) but also by the complex multifactorial condi-
tions that do exist inside a specific cellular system. The less satisfactory performance
of chemical descriptors to characterise the structure activity relationships may well
be explained from the fact that they fail to encode the complexity of biological
results. Therefore, most likely the outcomes of such cell-based assays can only be
modelled by some kind of bioactivity descriptors that not only encode chemical
attributes but also biological profiles with numerical values. From this very reason,
we were encouraged to explore the newly developed bioactivity descriptors (also
named signaturizers) for building 2D-QSAR models. For the sake of comparisons,
we attempted to develop linear 2D-QSAR models using different sets of chemical
descriptors calculated with a number of different software packages/programs. As
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such, the present work paid particular attention to both the robustness and consis-
tency of the models’ development techniques. For each descriptor, we generated as
many as 44 (i.e., 24 SFS-MLR plus 20 GA-MLR) different models to select the most
predictive model, which is reported here. Regardless of chemical descriptors (or
fragments) or model development techniques, no linear 2D-QSAR model was found
with satisfactory statistical predictivity. The global signaturizer descriptors however
supplied us a linear 2D-QSAR model, the overall statistical quality of which was
around 20% better than the most predictive model generated with chemical descrip-
tors. Bioactivity descriptors were then merged with chemical descriptors to generate
hybrid linear models in a bid to improve the overall predictivities of the 2D-QSAR
models. The combination of signaturizers with AlvaDesc descriptors afforded the
most predictive linear hybrid model, although SIRMS and RDKit descriptors also
delivered hybrid models with similar statistical predictivity. What is more, non-
linear models generated with multiple machine learning techniques also showed the
importance of bioactivity descriptors. The results from this work therefore mean
that the newly proposed biological signatures proposed by Bertoni et al. [13] shall
be very useful in the future for developing predictive 2D-QSAR models. Naturally,
their true significance may only be established when these bioactivity descriptors are
compared with other chemical descriptors just as it was carried out here. Thanks to
that, this work conveys important guidelines to exploit different linear and non-linear
model development strategies in a systematic and consistent manner. The entire work
outlined in this chapter is based on non-commercial open-access tools, programs and
webservers, so that the models can easily be reproduced, and a model development
strategic landscape followed in the future as well.
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Chapter 6 ®)
QSPR Models for Prediction of Redox Guca i
Potentials Using Optimal Descriptors

Karel Nesmérak and Andrey A. Toropov

Abstract The redox potential is an important physicochemical property widely used
for the characterization of chemical species, and, as a characteristic constant of a
given chemical species, it is also useful for predicting various other properties of the
species. In the chapter, we review and discuss the pros and cons of QSPR models
for the prediction of redox potentials using optimal descriptors calculated with the
SMILES as well as using the so-called hybrid descriptors calculated with considering
SMILES and molecular graphs of atomic orbitals.

Keywords QSPR - Redox potential -+ Drug design - Monte Carlo method

6.1 Introduction, Redox Potential, and Its Significance

The electron and its transfer play a fundamental role in chemical reactions, processes
that are very common in our real world and that lead to the chemical transformation
of one set of chemical substances to another [1]. When a chemical reaction involves
a change in the oxidation states of the reactants, we refer to such a reaction as
an oxidation-reduction reaction, or redox reaction, for short. A reactant that has a
strong affinity for electrons (an electron acceptor) is referred to as an oxidant, and
its oxidation number decreases during the reaction. The opposite is a reactant called
a reductant, which is an electron donor, and its oxidation number increases during
the reaction.

The tendency of a chemical species to electron transfer is characterized by
the oxidation—reduction (redox) potential [2]. The redox reaction between two
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substances can be represented by the general chemical equation,
npARed + naBox = npAox + naBred, (6.1)

where Aox/red, respectively, Box/red, i termed oxidation—reduction chemical pair, and
ny, respectively, ng, is the stoichiometric coefficient. Equation (6.1) also represents
the chemical transformation of the system from state I to state II. The equilibrium
constant based on the activities a; of the individual reactants or products can be
written for this reaction as

np na

a
K = o Bra (6.2)

np na
Aged " Box

The shift of equilibrium of any chemical reaction depends, at constant temperature
and pressure, on the change in the free enthalpy AG corresponding to the transition
from state I to state II, which can be expressed as the change of the chemical potential
Wi, that is for Eq. (6.1)

AG =G — Gy =nplay, +NalhByg — NBMAgeq — NAMBo,- (6.3)

The chemical potential is generally defined on the basis of the activity of a
substance by the relationship,

wi = u;RT Ina;, (6.4)
where @7 is standard chemical potential, R is the molar gas constant

(8.314J K~! mol™'), and T is thermodynamic temperature.
Inserting Eq. (6.4) into Eq. (6.3) and rearranging leads to

np na
_ o o o o AOx Bred
AG =npflyo, +NAlpy, ~ 1B Ay, — Malp,, + RTIn—5r—ss
Area” Box
[¢] azl(j)xa,l;;:ed
=AG°+ RT In TR (65)
A A48
Red Ox

At the same time, the redox reaction can be seen as a chemical work in which a
certain number of electrons n is transferred and the potential difference E between
the two redox pairs is overcome [3, 4]. The change in free enthalpy representing this
chemical work is given,

AG = —nFE, (6.6)

where F is the Faraday constant (96,485 C mol~!), representing the electric charge
of one mole of electrons.
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Substituting Eq. (6.6) into Eq. (6.5), we obtain the famous Nernst equation,
which represents the basic relation defining the dependence of the equilibrium redox
potential on the activity of the electroactive species,
na

RT d'fa
E = E° — — In —20 Bre 6.7)

np ny ?
nF aARedaBOx

in which E° is a characteristic of the redox system (called the standard redox potential)
that is intrinsically linked to the chemical nature of the species, and the term after
the logarithm describes the effect of the actual composition of the system.

When the system reaches equilibrium (AG = 0), Eq. (6.7) goes — applying
simultaneously Eq. (6.2) — to the form,

RT
E°=—IK, (6.8)
nkF

which is the fundamental relationship between the standard redox potential and
the equilibrium constant. By combining Eq. (6.8) with Eq. (6.6), we obtain the
relationship between the standard redox potential and the standard Gibbs energy of
the system,

AG°=—-RTInK = —nFE"°. (6.9)

This equation describes the intrinsic relationship between the change in free
energy for a chemical reaction and the redox potential value. In addition, as will be
shown below, this is the basic relationship underlying the possibility of a correlation
between the structure and redox potential.

The standard redox potential is a characteristic constant for a given
molecule/species and is directly connected to its chemical structure. It is an impor-
tant physicochemical characteristic of any chemical species that characterizes the
ease, or difficulty, of structural changes of this molecule related to the transfer of
electrons. Therefore, the redox potential is of great importance both for chemistry
as such and for the application of chemical species in biological systems in which
redox reactions are predominant (hence its application in medicinal chemistry, e.g.,
in drug development) [5, 6]. The redox potential also finds application in many other
areas of applied chemistry and chemical technology [7, 8].

Like other physicochemical quantities, the redox potential can be obtained exper-
imentally, based on electrochemical measurements [2]. In particular, wide ranges of
voltammetric techniques are used in which a signal, which results from the inter-
action of electrons directly with the chemical species under study, is obtained. In
addition, the facile variability of the electrochemical measurement conditions makes
it easy to change the desired conditions for the reaction under investigation, for
example, by measuring at different pH [9] or in the non-aqueous medium [10, 11].
Depending on the measurement technique used, the redox potential may be expressed
as the half-wave potential (E/,) measured by direct-current voltammetry or the peak
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potential (E},) measured by, most often, differential pulse voltammetry. Using cyclic
voltammetry, the potentials of the oxidation (Ep,) or reduction (E ) peaks are avail-
able. In some cases, calculated values such as Ercqox = (Epe + Epa)/2 (for reversible
systems) or Enig = E, — Ep» (for irreversible systems) are used. Occasionally, other
parameters are used [12, 13].

6.2 Relationship Between Redox Potential and Structure

The wide application of the redox potential is the reason why quantitative relation-
ships between the structure of a chemical species and the value of the redox potential
are sought [14]. The possibility of quantifying the relationships between structure
and redox potential leads to a better understanding of the role of redox properties of
a chemical species in its chemical, biological, therapeutic, or other action. This can
be found using methods of quantitative structure—activity/structure—property rela-
tionships (QSAR/QSPR). The objective of QSPR is to find a function, described
by a mathematical equation, of the dependence of physicochemical property on the
structure of a chemical species [15-17].

QSPR allows general conclusions to be drawn from experimental data and to
predict the behavior and properties of unstudied or even non-existent chemical
species. This is a practical application of the central assumption of QSPR that struc-
turally similar molecules have similar properties [18]. A tool to achieve the objectives
of QSPR is to compare quantitative experimental and theoretical data using different
mathematical models and procedures. In short, the result of any QSPR should be the
equation

Endpoint = mathematical function (Molecular descriptors), (6.10)

where molecular descriptors are a set of calculated or measured values that effectively
describe the molecular structure of a chemical species.

The process of producing QSPR models essentially follows the procedures used
in any conventional data mining task. Thus, the process consists of five basic steps
[19]:

1. Measurement of physicochemical data and their processing.

2. Selection and calculation or measurement of appropriate molecular descriptors.
3. Model establishing and training.

4. Model validation.

5. Determination of the applicability of the QSPR model.

Generally, physicochemical data are the most important component of any QSPR.
Many studies indicated that the quantity and quality of input physicochemical data
seriously affect the quality of the model [20, 21]. When dealing with experimental
data, the study is always dependent on the data provider, and care should be taken to
be aware of errors and variability/irregularities in the data [22].
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Molecular descriptors play a crucial role in any QSPR. They are derived using
graph theory, information theory or physical, quantum, and organic chemistry.
Thousands of types of molecular descriptors are currently defined [23]. Molecular
descriptors can be roughly divided into two main groups:

1. Descriptors based on experimental measurements (e.g., octanol-water partition
coefficient, molar refractivity), which are generally applicable as physicochem-
ical descriptors.

2. Theoretical descriptors, which are derived from symbolic representations of the
molecule (e.g., graph theory) or are derived from physicochemical theories and
have some natural overlap with experimental methods (e.g., Hammett constants).

The fundamental difference between experimental and theoretical molecular
descriptors is that theoretical descriptors, unlike experimental ones, do not contain
statistical error due to noise in experimental measurements.

The relationship between the redox potential of chemical species and its structure
was already noticed by one of the founders of modern electrochemistry, Heyrovsky,
who in 1934 defined the conjugation rule [24]: “The polarographic reduction becomes
easier as the number of conjugated bonds in the organic molecule increases.” The
next empirical rule was the electronegativity rule formulated in 1938 by Shikata and
Tachi [25]: ‘The more electronegative the substituent, the more positive the half-wave
potential.’

The actual quantification of the relationship between redox potential and chemical
species structure was only possible after the introduction of the Hammett approach
to QSPR. Hammett studied the effect of substituents on the reaction rate constants
of a series of substituted organic acids [26]. From the results, he postulated that the
effect of substitution (i.e., the change in the distribution of electrons in a compound
due to a substituent) on the quantitative change in a property (the value of the rate or
equilibrium constant) could be expressed by the equation,

log kx = logky + pox, (6.11)

where ky is the rate (or equilibrium) constant of the substituted derivative, ky is the
rate (equilibrium) constant of the unsubstituted derivative (with a hydrogen atom
in place of the substituent), p is the reaction constant, which is a measure of the
sensitivity of a given reaction to the electronic effect of substituents (and is therefore
characteristic of the reaction), and oy is the Hammett constant of the substituent,
describing—in general, since it is transferable between single reactions—the effect
of the substituent on the distribution of electrons in a given molecule. Equation (6.11)
became one of the first examples of the approach that received the name linear free
energy (Gibbs energy) relationship [18], and Hammett constant became the first
descriptor that allowed the encoding of chemical information into a mathematical
expression.

By combining Eq. (6.11) with Eq. (6.8), the Hammett equation for the redox
potential is obtained,
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Ey = Ej + pox, (6.12)

where E is the standard redox potential of the substituted derivative and E7; is the
standard redox potential of the unsubstituted derivative.

Currently, a variety of techniques is used for QSPR relationships describing the
effect of structure on the redox potential of a chemical speciation. The fundamental
work on QSPR of the redox potential was published by Zuman [27]. In the 1990s, the
subfield of QSPR that deals with the influence of the structure of a chemical species
on its electrochemical properties acquired the acronym QSER, that is, quantitative
structure—electrochemical relationships [28]. Table 6.1 summarizes recent QSER
relationships between a redox potential and a structure.

Table 6.1 A review of recently published papers on quantitative structure—electrochemical relation-
ships for redox potential using different structural descriptors (descriptors used class of compounds,
number of compounds in study, squared correlation coefficient of test set, references)

Descriptors Compounds Number of R? References
compounds

Electronic effect 1,4-Naphthoquinones 19 0.96 [29]

descriptor

Electrophilicity Quinones 26 0.98 [30]

index

Group of different Chlorinated organic 21 0.88 [31, 32]

descriptors compounds
Quinones 36 <0.36 [33]
Steroids 40 n/a [34]

Hammett constants | 9-Anilinoacridines 18 0.69 [35]
1,4-Benzoquinones 54 0.79 [28]
Benzoxazines 40 0.90 [36]
Benzylideneanilines 49 0.89 [37]
4-(Benzylsulfanyl)pyridines 22 0.99 [38]
1,4-Naphthoquinones 30 0.83 [28]
Polysubstituted benzenes 9 n/a [39]
a,B-Unsaturated ketones 17 0.98 [40]
a,B-Unsaturated ketones 11 0.99 [41]

Minimum charges Quinones 9 n/a [42]

on oxygen atoms

Molecular graphs Aldehydes and ketones 73 >0.80 [43]
Anthraquinones 30 0.96 [44]
Anthraquinones 33 0.94 [45]

(continued)
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Table 6.1 (continued)
Descriptors Compounds Number of R? References
compounds

Steroids 38 0.59 [46]

Molecular orbital Benzoxazines 40 0.80 [36]

energy Flavonoids 29 0.93 [47]
Polycyclic aromatic 44 0.99 [48]
hydrocarbons

Polarizability ZZ Carotenoids 23 0.77 [49]

index

Quantum chemical | Benzoxazines 40 0.95 [50]
Benzylsulfanyltetrazoles 19 0.98 [51]
Nitrobenzenes 15 0.96 [52]
Phenylquinolinylethynes 30 0.84 [53]
Quinones 8 n/a [54]
Quinones 10 n/a [55, 56]
Quinones 18 n/a [57]
Quinones n/a [58]
Squaric acid n/a [59]
Thioxanthenes n/a [60]

Swain—Lupton 1,4-Benzoquinones 54 0.80 [28]
1,4-Naphthoquinones 30 0.86 [28]

Topological indices | Aldehydes 6 n/a [61]
Benzenoids 23 0.97 [62]
Indolizines 52 0.89 [63]
Quinones 6 0.99 [61]

6.3 Optimal Descriptors in QSPR of Redox Potential

6.3.1 Basic Principles of Employing Optimal Descriptors

in QSPR

Molecular descriptors derived from symbolic representations of the molecule are
one of the very promising directions in QSPR because they do not contain statistical
errors as experimentally derived descriptors [23]. The basic idea is to use molec-
ular graphs to calculate descriptors that, being a representation of the molecular
structure, can then be correlated with arbitrary physicochemical properties including
the thermodynamic of the chemical species. Since their introduction in the 1980s,
simplified molecular-input line-entry systems (SMILES) have represented an attrac-
tive alternative for the representation of the molecular structure by graph [64—66].
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Currently, most molecule editors, computer programs for creating and modifying
representations of chemical structures, support the conversion of graphical repre-
sentations of chemical structure (i.e., topological information) to SMILES and vice
versa. For the use of SMILES in QSPR, an efficient computer program CORAL [67]
has been developed which is able to extract from the SMILES various graph theo-
retical invariants such as the vertex degree and the extended connectivity of higher
order, as well as invariants for the graph of atomic orbitals. SMILES-based QSPR
has been proven to be a powerful tool in the correlation of many physicochemical or
biological properties [68].

A detailed description of CORAL and its use, including a discussion of the advan-
tages and disadvantages of its use, is provided by Toropov et al. [69]. In a nutshell,
the SMILES-based QSPR can be summarized as follows:

1. Collection of a set of chemical compounds and measurement of the desired
physicochemical property (e.g., redox potential).

2. Conversion of the structure of the studied compounds into SMILES.

3. Calculation of the optimal descriptor of the correlation weight (DCW) as a
mathematical function of SMILES, which is defined as,

N
DCW = Z CW(S), (6.13)
k=1

where Sy is a rule one-character fragment of the SMILES notation (situations
where two symbols cannot be examined separately, e.g., ‘Cl,;” ‘Br’), CW(S)
the so-called correlation weight of Si, N is the number of characters in the
given SMILES. The correlation weight CW(Sy) is calculated by the Monte Carlo
method [70] as coefficients which produce the largest correlation coefficient
between the DCW and the endpoint examined of the training set. Using calculated
CW(Sy), itis possible to calculate DCW for training and test sets of all substances
examined.
4. The QSPR model is then based on the least squares method,

(Endpoint) Co + C; x DCW, (6.14)

pred —

where (Endpoint),eq is the predictive endpoint, which can be validated with the
structures of the test set, and Cy and C; are regression coefficients.

6.3.2 Published Studies on SMILES-Based QSPR for Redox
Potential

To date, only four QSPR studies using SMILES-based optimal descriptors have been
published in the literature to correlate redox potential with the structure.
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In 2006, the first SMILES-based QSPR analysis of half-wave potentials was
performed for 40 benzoxazines, which belong to possible antituberculotic agents.
Toropov et al. [71] have shown that the statistical quality of this approach (R? =
0.882) is fully comparable with the classical approach based on Hammett constants
for the same data set (R = 0.897 [36]). This pilot study demonstrated and confirmed
the suitability of using SMILES-based optimal descriptors for predicting the redox
potentials of heterocyclic organic compounds.

In 2012, Toropov and Nesmerak [72] established SMILES-based QSPR
for half-wave potential of 16 antimycobacterially active 1-phenyl-5-benzyl-
sulfanyltetrazoles. The predictive potential of the applied approach was tested with
three random splits into training and test sets, and R? > 0.75 was observed for all
splits. The SMILES attributes, which are promoters of decrease of the half-wave
potential in this QSPR, were identified.

This was followed in 2013 by a study by Nesmerak et al. [73] in which SMILES
notation was used in QSPR of the half-wave potential of 24 derivatives of N-
benzylsalicylthioamide. A detailed statistical evaluation of the predictive potential of
the applied approach was carried out with three random splits into the sub-training,
calibration, test, and validation sets. The R? > 0.72 was observed for all validation
sets. Again, the SMILES attributes, which are promoters of an increase and decrease
of the half-wave potential in this QSPR, were identified.

The most recent work published so far using SMILES-based optimal descriptors
is the 2016 paper by Nesmérdk et al. [38], which studied the half-wave potentials of
22 derivatives of 4-(benzylsulfanyl)pyridine. In the work, the QSPR approach using
Hammett o constants was compared with SMILES-based QSPR for three random
distributions of derivatives into three sets (training, calibration, and validation). It was
found that the SMILES-based equations have more validity from a statistical point
of view (higher coefficients of determination); moreover, this approach allows one
to identify the influence of individual structural motifs on the value of the half-wave
potential.

6.3.3 Case Study of Two Large Data Sets

Here, the feasibility of using SMILES-based optimal descriptors in QSPR of the
redox potential is demonstrated on two large data sets that have not been tested in
this way before. Both data sets contain different chemical compounds with different
numbers of atoms, which is reflected in the variability of their SMILES:

1. Data Set 1, which contains data on half-wave potentials for 71 aldehydes and
ketones, has already been published by Garkani-Nejad and Rashidi-Nodeh [43].
In their study, the authors searched the QSPR for the half-wave potential using
multiple linear regression, partial least square, artificial neural network, and
wavelet neural network modeling methods. The best-established model was
based on an artificial neural network and has R?> = 0.993 for validation set.
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Table 6.2 contains the data applied here to build up models using the Monte
Carlo method.

2. Data Set 2 contains the data obtained in our previous work [38, 71-73] (which
we mentioned in Sect. 6.3.2). The data applied here to build up models using the
Monte Carlo method are tabulated in Table 6.3.

Data for each individual data set studied were haphazardly distributed into four
sets: an active training set (= 25%), a passive training set (= 25%), a calibration set
(& 25%), and a validation set (=~ 25%). The specific distribution of individual data
to a given set is shown in Tables 6.2 and 6.3, respectively. The assignment of the
active training set is to project the model. The molecular features, which are extracted
from SMILES of this set, are included in the Monte Carlo optimization process to
grant correlation weights that give the maximum correlation coefficient between the
DCW and the half-wave potential. The passive training set is used to test whether
the model projected from the active training set is acceptable for such SMILES that
were not present in the active training set. The purpose of the calibration set is to
detect the onset of the overtraining (overfitting). At the start of the optimization
process, the correlation coefficients between the half-wave potential experimental
values and DCW simultaneously increase for all sets, but the correlation coefficient
for the calibration set attains a maximum,; that is, the onset of overfitting is reached.
The continuation of the optimization process results in a decrease of the correlation
coefficient value for the calibration set. Thus, optimization procedure should be
ceased when overtraining begins. After the Monte Carlo optimization procedure is
completed, the validation set is employed to evaluate the predictive potential of the
obtained model.

Models for both data sets were built using a single type of molecular descriptor,
calculated as,

DCW(T, N) = Z CW(Sy) + Z CW(SSy) + Z CW(ECO;) + Z CW(EC1y),
(6.15)

where the Sy is a SMILES-atom, i.e., single symbol in SMILES or a group of symbols
which cannot be examined separately, and the SS; is a pair of SMILES-atoms. The
ECO0; and EC1;, are the Morgan extended connectivity of zero and first order, respec-
tively. The CW(x) is the correlation weights of the listed molecular features extracted
from SMILES or the graph of atomic orbitals (GAO) [74]. Figure 6.1 and Table 6.4
contain an example of the adjacency matrix of GAO for compound #1 of Data Set
1, which is acetaldehyde.

The numerical data on the CW(x) are calculated by the Monte Carlo method,
which is the optimization process with the target function defined as,

TF = rar + rpr — 0.1 |[rar — rpr| + 0.11IC 4 0.5 CII, (6.16)

where rar and rpr are correlation coefficients between the observed and predicted
endpoint for the active training set and the passive training set, respectively. The IIC
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Fig. 6.1 An example of a
graph of atomic orbitals for
compound #1 of Data Set 1
(acetaldehyde, SMILES is

A2

0=CC) . _ “ Numbering
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X/
@ o
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e )
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is the index of ideality of correlation [75], and the CII is the correlation intensity
index [76].

QSPRs based on hybrid optimal descriptors were performed for both data sets
examined. Table 6.5 contains an example of calculation of the DCW(1, 15) for
compound #1 of Data Set 1 (acetaldehyde, SMILES is O=CC). The definition of
DCW(1, 15) is the follows: (i) the threshold to define minimal number of the molec-
ular features extracted from SMILES or from GAO in the training set (this is 1)
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Table 6.4 Adjacency matrix of the graph of atomic orbitals for compound #1 of Data Set 1
(acetaldehyde, SMILES is O=CC)

1 |2 (3 |4 |5 |6 |7 |8 |9 |10 |11 |12 |13 |ECO |ECI1

1s? | 252 | 2p* | 1s? | 252 | 2p? | 1% |2s% | 2p? | 1s! | 1s! |1s! | 1s!
1 (1520 (o (o |1 |1 |1 |o o |o |o (o |o |o |3 |21
2 1220 |0 [0 |1 |1 |1 o |o |o |o [0 |0 [0 |3 |21
3 |2p*f0 |0 (0 |1 |1 |1 |0 |o o o |0 |0 |o [3 |21
4 (121 (1 |1 o |o o |1 |1 |1 |1 |o |o |o |7 |30
5 0221 |1 [1 |0 [o |o |1 |1 |1 |1 |o |o |o |7 |30
6 [2p* |1 |1 |1 |0 |o fo |1 |1 |1 |1 |o |o |o |7 30
7 [1s2/o o jo |1 |1 |1 |o |o |o |o |1 |1 |1 |6 30
8 |2s2/0 o o |1 |1 |1 |o |o |o o |1 |1 |1 |6 |30
9 [2p2]0 |0 |0 |1 |1 |1 Jo |o |o |o |1 |1 |1 |6 |30
10/t {fo (o (o |t |1 |1 o |o |0 |0 |Oo |o |o |3 |21
1mifistjo (o jo jo o jo |1 |1 |1 |o |o [0 |o |3 18
121+ o o (o |o |o o |1 |1 |1 |o |0 |0 |0 |3 18
13f1s'jo (o |o |jo o |o |1 |1 |1 |o |0 [0 |O0 |3 18

and (ii) the number of iterations in the Monte Carlo optimization for the correlation
weights (this is 15).
The following QSPR equations were obtained:

1. for Data Set 1

—(E12) yreq = 10353363 (& 0.0412942) + 0.0347993(+ 0.0023327)
x DCW(1, 15) 6.17)

2. for Data Set 2

—(E1/2) preq = 0-5574662( 0.0099109) + 0.0263809(= 0.0002835)
x DCW(1, 15) (6.18)

Table 6.6 contains the statistical quality of these models. Figure 6.2 shows a graph-
ical comparison of the correlation between the experimental and predicted values of
the half-wave potential for the validation set for both data sets studied. The model
for Data Set 1, published by Garkani-Nejad and Rashidi-Nodeh [43], is statistically
better, but the model which is given by Eq. (6.17) is based on representation of
the molecular structure solely by SMILES (GAO is extracted from SMILES using
CORAL software).

The scope of applicability of the CORAL model is defined by the so-called
statistical defects of the SMILES attributes [77]. These defects are calculated as,
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Table 6.5 Calculation of the
DCW(l, 15) for compound #1
of Data Set 1 (acetaldehyde,
SMILES is O=CC)

161
CW(x)

ECO0-1s% 3... —0.6596
EC0-2s2 3... 0.0746
EC0-2p* 3... 2.2005
ECO-1s%7... 0.4244
ECO0-2s%7... —0.1800
ECO0-2p2 7... —0.0190
ECO0-1s% 6... —0.4280
ECO0-252 6... —0.7785
EC0-2p2 6... 0.1469
ECO-1s' 3... 0.8279
ECO-1s! 3... 0.8279
ECO-1s! 3... 0.8279
ECO-1s' 3... 0.8279
ECl1-1s% 21... 1.6104
ECl1-2s% 21... 1.9570
EC1-2p* 21... 0.7659
EC1-1s2 30... 1.9697
EC1-2s% 30... 1.7082
EC1-2p? 30... 1.2908
EC1-1s2 30... 1.9697
EC1-2s2 30... 1.7082
EC1-2p? 30... 1.2908
ECI-1s! 21... — 04715
ECl1-1s! 18... —0.2068
ECl1-1s! 18... —0.2068
ECl1-1s! 18... —0.2068
O...... 1.6307
S —0.4282
Co.o..... —0.1585
C......... —0.1585
O..=...... 1.0734
C..=...... —0.0588
C..C...... —0.3071
DCW(, 15) 18.865
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Table 6.6 Statistical characteristics of the models for the data sets examined for (AT) active training
set, (PT) passive training set, (C) calibration set, and (V) validation set

n |R? CcCcC | IIC CII 0? RMSE |MAE |F
DataSet 1 |AT |19 |0.5257 |0.6891 |0.6525 |0.7187 |0.3882 |0.343 |0.276 | 19
PT |18 |0.7412 [0.7171 |0.5221 |0.8367 |0.6584 |0.403 |0.346 | 46
C |17 107952 [0.8914 |0.8917 |0.9442 |0.6983 |0.122 |0.106 | 58
vV |17 |0.6679 0.165 | 0.124
Data Set2 | AT |25 |0.9301 |0.9638 |0.7578 [0.9499 |0.9191 |0.049 |0.038 |306
PT (27 |0.9431 [0.9635 |0.6634 |0.9619 |0.9335 |0.054 |0.040 |415
C |28 |0.9543 [0.9702 | 0.9761 |0.9684 |0.9458 |0.052 |0.035 |543
vV |25 09153 0.061 |0.043

Abbreviations used: n is the number of compounds in the corresponding set, R? is determination
coefficient, CCC is the concordance correlation coefficient, IIC is the index of ideality of the
correlation, CII is the correlation intensity index, Q2 is cross-validated R?, RMSE is root mean
squared error, MAE is the mean absolute error, and F is the Fischer F-ratio

(b)
0.8 1 055 1 1 1 1 1 1 1

0.8 1.0 1.2 1.4 1.6 1.8 1.2 14 1.6 1.8
_(El/Z)exp /v _(Ellz)exp /v

Fig. 6.2 Correlation between the experimental and predicted values of the half-wave potential
for the validation set of a Data Set 1 and b Data Set 2. The numbers at each point indicate the
compound numbers in Table 6.2, resp. Table 6.3. On the abscissa are plotted the experimentally
measured values of the half-wave potential, on the ordinate are the values calculated according to
Eqgs. (6.17) and (6.18), respectively

_|PA) = P'(AY)| | |P(A) — P"(AD| | |P'(A) — P"(AD)]

k= , (6.19)
N(A) = N'(A)  N(A) = N"(A)  N'(A) — N"(Ap)

where P(A;), P (Ay), and P (Ay) are the probability of Ay in the active training set, the
passive training set, and the calibration set, respectively; N(Ay), N ' (Ap), and N ! (Ap)
are the frequencies of A in the active training set, the passive training set, and the
calibration set, respectively. The statistical SMILES-defects (D;) are calculated as
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NA
D; = Z dy, (6.20)
k=1

where NA is the number of non-blocked SMILES attributes in the SMILES. A given
SMILES falls in the domain of applicability if

D; <2D (6.21)

The D is average value of the statistical defect on the association of the active
training set, passive training set, and calibration set. As can be seen from Table 6.2,
the model for Data Set 1, given by Eq. (6.17), cannot be applied to compounds #19,
#25,#37, and #42, which represent 5.6% of the data set. In the case of Data Set 2, the
model given by Eq. (6.18) is not applicable for compounds #25, #37, #44, #68, #81,
#82, #94, and #103; that is 7.6% in total (Table 6.3). For this model, it is interesting
that the compounds that are excluded are all substituted on one of the ring moieties
by two chlorine atoms; the probable reason is that chlorine is a substituent with a
very strong negative induction effect.

From the statistical quality of the QSPRs obtained, it can be seen that the model
derived for Data Set 2 has a higher statistical validity. This is probably due to the
smaller variability in the SMILES of the individual compounds included in Data Set
2 compared to Data Set 1. In Data Set 1, the length of the SMILES ranges from 3 to
51 characters while in Data Set 2 the length ranges from 23 to 54 characters.

Finding successful QSPR models between the half-wave potential and the struc-
ture of the molecule for both data sets studied demonstrated that optimal descriptors
calculated with molecular features extracted from SMILES together with molec-
ular features extracted from GAO are very useful molecular descriptors applicable
to QSPR of non-congeneric and structurally diverse compounds (which is a very
topical issue in QSAR/QSPR [78]).

6.4 Conclusions

As the redox potential is an important electrochemical property used for the charac-
terization of chemical species, this chapter illustrates the possibilities of using hybrid
optimal descriptors calculated with molecular features extracted from SMILES
together with molecular features extracted from GAO for developing QSPR models
for redox potential. The CORAL software is able to be an efficient tool for building
a robust model for redox potentials of various classes of compounds. On two large
data sets, it was found that although the sets contained structurally very different
substances, statistically significant correlations could be found. The quality of the
correlations is affected by the difference in the number of features that form SMILES.
It has also been confirmed that an optimal descriptor can be a translator of eclectic
information into a model for the prediction of redox potential.
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Chapter 7 ®)
Building Up QSPR for Polymers o
Endpoints by Using SMILES-Based

Optimal Descriptors

Valentin O. Kudyshkin and Alla P. Toropova

Abstract The general scheme of QSPR analysis of endpoints related to polymers
is described. The basic idea of the approach is building up a model of a polymer as
a mathematical function of monomer structure represented by a simplified molec-
ular input line-entry system (SMILES). The suitability of so-called hybrid optimal
descriptors in QSPR analysis of polymer systems is suggested and discussed. QSPR
models for glass transition temperature and refractive index are represented in detail.
Possible ways of evolution of the QSPR for polymers are listed and discussed.
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QSAR Quantitative Structure—Activity Relationships
QSPR Quantitative Structure—Property Relationships
SMILES Simplified Molecular Input Line-Entry System
SVM Support Vector Machine

7.1 Introduction

It is rather difficult, perhaps, impossible, to name classes of economically useless
substances. It is perhaps even more challenging to call substances that are
unpromising, useless, and not of any interest from the point of view of the theory and
practice of the natural sciences. According to Engels (Dialectics of Nature. Frederick
Engels, 1883), “Life is the mode of existence of protein bodies”. In other words, life
is the mode of existence of biopolymers. It seems that conventional polymers should
also have some applications and some practical significance (Table 7.1).

The rational use of polymeric materials requires data on their physicochemical
as well as biochemical properties. Experimental determination of all properties of
polymers, and even more so of their solutions, alloys, and mixtures, is impossible.
Under such circumstances, developing appropriate models is a promising task. If
for organic, inorganic, and coordination compounds, multiple structural descriptors
have been developed, based on which the corresponding models are built (boiling,
melting points, solubility, toxicity), whereas for polymers, in that case, developing
such descriptors is carried out according to somewhat different rules, taking into
account the peculiarities of the molecular structure polymers. Often, monomer units
are the basis for developing quantitative structure—property (activity) relationships
(QSPR/QSAR) for different polymers. Unfortunately, this is not always possible
because there are situations when different polymers consist of identical monomer
units. However, owing to the significant economic and scientific sounds of polymers,
many models for phenomena related to polymers cannot be reached via QSPR/QSAR
analysis (Table 7.2).

It follows from the above that the models describing the behaviour of polymers
are numerous and varied. Here, we consider recently proposed approaches to solving
the problems of QSPR/QSAR related to polymer systems.

7.1.1 The General Scheme of QSPR/QSAR Analysis
of Endpoints Related to Polymers

Most often, polymers’ properties are modelled using the molecular structure of
monomer units [46—49]. In the case of modelling the properties of polymer solutions
in organic solvents, the structures of monomer units are considered together with the
molecular structure of solvents [50]. The list of physicochemical properties for which
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Table 7.1 Use of polymers in economics and natural science research
Application area | Comment References
Technology The automotive industry [1]
Molecularly imprinted polymers [2]
Improving thermal conductivity of multi-walled carbon [3]
nanotubes
Optics [4]
In the telecommunications industry, medicine, and analytical [5]
chemistry
Glass transition temperature [6]
Intrinsic viscosity in polymer—solvent combinations [71
Optics and mechanics properties of polymers [81
Refractive index, glass transition thermal decomposition [9]
temperature, solubility
Polymer photovoltaic research [10]
Electronics Superparamagnetic polyacrylamide/magnetite composite gels [11]
The efficiency of polymer solar cells [10]
Generation and transfer of energy [10, 12]
Medicine Drug discovery; anti-Alzheimer drugs [3,13]
The aesthetic action of polymer systems [14]
Antimicrobial activity [15]
Pharmaceuticals [16]
Anticancer therapy [17,18]
Polymeric foams [19-21]
Agriculture Innovative polymeric materials and intelligent delivery systems; | [22]
increasing the efficiency of pesticides and herbicides; protecting
the environment through filters or catalysts to reduce pollution
and clean up existing pollutants
Superabsorbent polymers [23]
Systems using nature-derived polymers for agriculture [24]
Drug delivery, bioremediation, firefighting, biosensors, food [25]
industries, thermal energy storage, and tissue engineering
Nanotechnology | The effect of nanosurfactant in emulsion polymerization [26]
Polymer brushes: prevention of bacterial adherence and cell [27]
protection
Cooperative phenomena “nanoparticles-polymers”: new [28]

information and sensor technology approaches may be possible




170

V. O. Kudyshkin and A. P. Toropova

Table 7.2 Phenomena related to polymers are objects of different manners of modelling

The object to model

Comment

References

Viscosity

High molecular weight, viscoelastic
polymers are used for heavy oil recovery

[29]

The viscoelastic properties of polymers have
been widely studied due to their extensive
range of engineering applications in
aerospace and automotive industries, fluid
transport, and electronics

[30]

Thermo-viscoelastic shape memory
polymers are an emerging class of active
materials that respond to a specific
temperature influenced by a shape change

[31]

Viscoelasticity

Shape memory polymers an increasing
potential for various applications in
biomedicine

[32-34]

Diffusion

Tune of time the release of drugs from a
polymer matrix

[35]

Elastic properties

Effective properties of the composite
structure for optimization of the design of
composite structures

[36]

Electrical conductivity

Applications in electronics, sensors,
aerospace, and shielding

[37]

Thermo-elastic properties

Thermo-plastic polymers have been widely
used to fabricate engineering components in
industries ranging from automotive and
aerospace to biomedical fields due to their
excellent impact resistance, high
strength-to-weight ratio, and good
bio-affinity

[38]

Various forms of 3D printing systems rely
on the extrusion of polymer materials

[39]

Biodegradation

Biodegradable polymers, mainly aliphatic
polyesters, have highly desirable
applications in the biomedical field and are
presently being used as disposable products
(e.g. syringes, blood bags), supporting
materials (e.g. sutures, bone plates), artificial
tissue/organs (e.g. artificial heart, kidney,
eyes), and controlled release formulations
for use with various drugs and hormones

[40]

(continued)
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Table 7.2 (continued)
The object to model Comment References

Laser-based polymers

The parts are obtained without needing
moulds, cutting tools, or other auxiliary
resources, starting from a computer-aided
design with a laser. The technology can
handle details with complex geometries with
excellent efficiency and near-zero material
waste

[41]

Polymer-supported membranes

Polymer-supported membranes as models of
the cell surface are the tools of modern
genetic engineering. Bioorganic chemistry
makes it possible to tune many biomolecule
types to supported membranes

[42]

Smart materials

The so-called soft matters, touted to be the

next generation intelligent materials, can be
categorized into many different types, such
as gels, shape memory polymers, dielectric
elastomers, liquid crystals

[43]

Fuel cells

Fuel cells employing polymer systems are
promising candidates for electric vehicle
applications. The polymer electrolyte
provides room temperature start-up,
eliminating corrosion-related problems

[44]

Polymer solvent systems

The intrinsic viscosity of polymer solutions
has technological and biomedical
applications

[45]

QSPR/QSAR models are developed according to the “structure—property” paradigm
includes the following: refractive indices [5, 51-53]; critical solution temperature
[54, 55]; solubility [56, 57]; transport behaviour in amorphous polymeric materials
[58]; solubility of CO, and N in polymers [21]; melting point and glass transition
temperature [59]; thermal decomposition [60, 61]; retention factor [62]; flamma-
bility characteristics [63]; Flory—Huggins parameter [64]; micellar properties [65];
and binding of drugs to polymer [66]. Below are some approaches to QSPR/QSAR
analysis examined in more detail.

7.1.2 QSPR Analysis of Endpoints Related to Polymers

with MLR

In QSPR studies based on multiple regression analysis (MLR), the goal is to find one
or more equations that are functions of a small number of structure-based molecular
descriptors that accurately predict the experimental property. As it is possible to
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generate a large number of molecular descriptors for each compound in the data set,
the problem becomes how to efficiently select the set of molecular descriptors that
yield a reliable relationship [45].

7.1.3 QSPR/QSAR Analysis of Endpoints Related
to Polymers with PLS

Quantitative structure—activity and structure—property relationship models should
contain detailed information regarding how differences in the molecular struc-
ture of compounds correlate with differences in the observed biological or other
physicochemical properties of those compounds. Partial least squares (PLS) regres-
sion analysis allows for identifying specific structural trends related to observed
properties’ differences. The study of the completed model is the last step of the
process [67]. PLS models are built up with different descriptors such as Constitu-
tional (molecular composition, molecular weight, number of atoms/bonds, number
of H-bond donors/acceptors); topological (2D structural formula, Kier—Hall indices,
branching); geometrical (3D structure of molecule, molecular volume, polar and
non-polar surface area); electrostatic (charge distribution, atomic partial charges,
electronegativity); and quantum mechanical (electronic structure, HOMO-LUMO
energies, dipole moment) [68].

7.1.4 QSPR Analysis of Endpoints Related to Polymers
with ANN

QSPR models can be constructed to predict polymer properties using artificial neural
networks (ANN). ANN-Procedures are carried out using functional monomers,
which serve as input for generating molecular descriptors. Constitutional, topolog-
ical, geometrical, electrostatic, and quantum mechanical descriptors are suitable for
building ANN models. Some sets of descriptors fed to ANN should be selected
preliminary as input vectors. As a rule, the networks consist of an input layer, an
output layer, and some number of intermediate layers known as hidden layers. Each
unit in the network is influenced by those units to which it is connected. The degree
of influence is dictated by the values of the links or connections. The system’s overall
behaviour can be modified by adjusting the importance of the relationships or weights
through a repeated application of a learning algorithm. The advantage of the ANN
approach is the possibility of building models for nonlinear phenomena [69].
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7.1.5 QSPR Analysis of Endpoints Related to Polymers
with SVM

A support vector machine (SVM) is an original and capable classification and regres-
sion method. SVM models are primarily developed for classification problems;
however, they can also be applied to solve nonlinear regression problems. To realize
an accurate regression model, SVM is used to construct a nonlinear model based
on a subset of descriptors. The performances of SVM for regression rely on the
combination of several parameters [70].

7.2 Significant Notes

The four approaches discussed regarding modelling the properties of polymers do
not exhaust all the ideas related to this topic. However, they are currently the most
common.

Speaking of QSPR/QSAR, it is necessary to take into account that all proposed
models must comply with the five famous OECD principles, which state:

A defined endpoint;

An unambiguous algorithm;

A defined applicability domain;

Appropriate measures of goodness-of-fit and robustness;
A mechanistic interpretation, if possible.

7.3 Building Up Models of Polymers Endpoints Using
SMILES

The approaches considered above are widely used to construct models of polymer
systems’ physicochemical and biochemical behaviour and throughout the whole
area of QSPR/QSAR analysis. However, all of the approaches mentioned need to
use various additional descriptors. This section discusses methods that require only
data on the structure of monomeric units (without additional geometrical, electro-
static, and quantum mechanical descriptors) for their implementation. The general-
ized name for these approaches is formulated as “optimal descriptors” calculated via
a simplified molecular input line-entry system (SMILES) [71].
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Table 7.3 Representation of

Name Structure SMILES
molecular structure by
SMILES Hydrogen HC=N C#N

cyanide

Triethylamine CCN(CO)CC

HyC— CH,4
T
ot

Acetic acid CC(=0)0
OH
0
Cyclohexane ClCccccl
Benzene [ Ival

7 N\

1,3-Butadiene C=CC=C

—CH
HQC:/_ 2

7.3.1 SMILES

For the practical implementation of input data in the form of SMILES, as practice
shows, it is better to use programs that use not only capital letters of the Latin
alphabet but also small ones to point out aromaticity. The ACD/ChemSketch (www.
acdlabs.com) is an example of such a program. SMILES can be used to represent
chemical reactions, but these features, while in demand for database development,
have not yet been used in QSPR/QSAR analysis. Table 7.3 contains examples of the
representation of substances via SMILES.

7.3.2 Optimal SMILES-Based Descriptors

The set of descriptors was calculated using the adjacency matrix, which was the
source of the vertex degrees. The vertex degree for the kth vertex is actually the sum
of the elements of the adjacency matrix in the kth row (or column). It has been shown
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that the correlation potential of a descriptor can be improved by using the optimal
non-zero values of the diagonal elements in the adjacency matrix for heteroatoms
(non-carbon atoms), calculating the degrees of vertices as the sum of the elements
of the adjacency matrix [72].

Instead of the adjacency matrix, you can use SMILES, choosing a special corre-
lation weight for each SMILES atom. A SMILES atom is a single character in the
string SMILES (e.g. “C”, “O”, “N”, etc.) or several characters that cannot be consid-
ered separately (e.g. “Cl”, “Br”, etc.). Hence, the optimal SMILES-based descriptor
calculated as

DCW(T, N) = > CW(Sy) (7.1)

The CW(Sy) is the correlation weight of a SMILES atom. The Monte Carlo
optimization procedure calculates the CW(S}) numerical data.

7.3.3 The Monte Carlo Optimization Procedure

It is assumed that as a model, there is a one-parameter equation (QSPR-regression
model) of the form [73]:

Endpoint = Cy + C; x DCW(T, N) (7.2)

Cy and C are the regression coefficients; T is the threshold, i.e. an integer limits
frequency of a SMILES atom in the training set; and N is the number of epochs
of the optimization process (step-by-step modifications) of all correlation weights
accepted to build up the model accordingly to the threshold (7).

7.3.4 The Classic Scheme of Building Up the QSPR/QSAR
Model Using the Optimal Descriptors

The essence of the classical model building scheme is to establish a correlation
between the optimal descriptor and a property for the training set in the hope that this
correlation will be preserved for similar external molecules not taken into account
when building this correlation. Thus, it should be emphasized: that the classical
optimization scheme is reduced to selecting such correlation weights that give the
maximum value of the coefficient of determination between the endpoint and the
descriptor for the entire training set. However, it was stated that the so-called balance
of correlations gives more reliable models than the classical scheme [73].
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7.3.5 The Balance of Correlations for the QSPR/QSAR
Model Using the Optimal Descriptors

The balance of correlations [73] provides the division of data for building models
into two groups—active and passive training samples. The molecules of the active
training set are used to build the model. Passive training set molecules are used to
control whether the resulting model works for “outside observers” (passive training
set). In practice, this is achieved by modifying the objective function (instead of the
determination coefficient on the whole training set) for optimization to the following:

TFog = rar +rpr — |rar — el x 0.1 (7.3)

The rar and rpr are correlation coefficients between the observed and predicted
endpoints for the active and passive training sets, respectively.

7.3.6 Search and Use for Reliable Criteria of the Predictive
Potential of QSPR/QSAR Models Based on the Optimal
Descriptors

The index of ideality of correlation (IIC) [74] and the correlation intensity index (CII)
[75] are two relatively new criteria for the predictive potential of the QSPR/QSAR
models. The IICc is calculated with data on the calibration set as the following:

min(~MAEc, *MAEc)

IICc = 7.4
€ = € hax(-MAEc, *MAE() (74)
. x,ifx <y
min(x, y) = g (7.5)
y, otherwise
x, ifx >y
max(x, y) = . (7.6)
v, otherwise
_ 1 -
MAEc = — > "IAkl, 7N isthe number of A < 0 (7.7)
+MAEC = LZM |, TN is the number of Ay > 0 (7.8)
C= TN kls k= .
A = observed; — calculated, (7.9)

The observed and calculated are corresponding values of the endpoint.
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The correlation intensity index (CII), similarly to the above IIC, was developed
as a tool to improve the quality of the Monte Carlo optimization to build up QSPR
models.

The Cll¢ calculated as follows:

Cllc=1-— ZProtest;< (7.10)
2 p2 oiep2_ p2

Protest, — | Xk — RS i Rg — R >0 (7.11)
0, otherwise

The R? is the determination coefficient for a set that contains n substances. The R}
is the determination coefficient for n — 1 substances of a group after removing of kth
substance. Hence, if the (R,% — R?) is more significant than zero, the kth substance
is an “oppositionist” for the correlation between experimental and predicted values
of the set. A small sum of “protests” means a more “intensive” correlation.

7.3.7 Hybrid Optimal Descriptors

Both a molecular graph and a SMILES are a representation of a molecular structure.
These representations partly coincide (that is, they contain identical information)
and somewhat differ (complement each other). Optimal descriptors calculated from
the correlation weights of molecular features extracted from SMILES and molecular
features extracted from graphs are called hybrid optimal descriptors [76]. Using
hybrid optimal descriptors can improve the statistical characteristics of a model.

7.3.8 Model Complication

Another way that can lead to model improvement is the complication of optimal
descriptors [51]. The SMILES components of the optimal descriptor can connect to
the calculation scheme, considering the influence of neighbouring pairs of SMILES
atoms and neighbouring triplets of SMILES atoms. In addition, it is possible to
involve global SMILES attributes, such as the configuration of covalent bonds, as
well as configurations of four atoms (nitrogen, oxygen, sulphur, phosphorus and/or
fluorine, chlorine, bromine, iodine). For graph components of optimal descriptors,
complication can be achieved through correlation weighting the sums and differ-
ences of various graph invariants. However, it should be noted that increasing the
complexity of the model often leads to a significant improvement in the statistical
quality of the model for the training set, but which is accompanied by deterioration
of the statistical quality of the model for the test set.
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7.4 Examples of Improving Models Built Up with Optimal
Descriptors

The described possibilities for improving models calculated using optimal descrip-
tors should be confirmed with specific examples. Below are the results of using the
correlation intensity index (CII) to increase the efficiency of the Monte Carlo method
for developing models for glass transition temperature and refractive index.

7.4.1 Development of a New Conception to Building Up
a Model

The application of the CII is the main improvement of the models for glass transi-
tion temperature and refractive index of polymers. The optimal descriptor has been
defined as the following:

DCW(T*, N*) = > CW(Sp) + > _CW(SS) + Y CW(SSS)  (7.12)
Sy is the SMILES atom (one symbol or a group of symbols which cannot be exam-
ined separately); SS; and SSSy are two and three connected SMILES atoms. CW(S},),
CW(SSk), and CW(SSSy) are the correlation weights for the attributes mentioned
above of the SMILES. The correlation weights were calculated by the Monte Carlo
optimization with the target function calculated as the following:

TF = TFy 4+ 0.5 x IC + 0.5 x ClI (7.13)
Models for the glass transition temperature GTT (experimental data taken [77]):
GTT'K = 303.15 (£ 2.50) + 6.536 (£ 0.225) * DCW(1, 15) (7.14)

Models for the refractive index RI (experimental data taken [78]):
RI = 1.5009 (£ 0.0007) + 0.00427 (£ 0.00007) * DCW(1, 15) (7.15)
It is to be noted both models were obtained by the same calculating scheme.

Figure 7.1 contains the graphical interface of the CORAL method (http://www.ins
ilico.eu/coral) for the calculations above endpoints.
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Fig. 7.1 Graphical representation of the CORAL method applied to build up models for glass
transition temperature and refractive index

7.4.2 QSPR Models for the Glass Transition Temperature

The best model for the glass transition temperature built up with the optimal SMILES-
based descriptors [77] is characterized by a determination coefficient of 0.9058. The
model was calculated with hybrid optimal descriptors sensitive combinations of
single SMILES atoms together with their connected pairs and three SMILES atom:s.
In addition, the model is sensitive to the presence of Morgan’s extended connectivity
of first- and second-order as well as to the fact of five- and six-member rings [77].
The Monte Carlo optimization was carried out by considering the IIC values. Monte
Carlo optimization of the descriptor based on the mentioned SMILES combinations
of atoms, without taking into account molecular graph invariants, in the case of using
the CII, gives a model for the glass transition temperature for the case of the same
polymers, which is characterized (validation set) by a coefficient of determination of
0.9184. Thus, thanks to using CII in Monte Carlo calculations, obtaining a glass tran-
sition temperature model with improved predictive potential is obtained. It is a more
straightforward model calculated using only SMILES without involving molecular
graph invariants. Supplementary materials section contains technical details on the
model (Table S1 for QSPR models for the glass transition temperature).
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7.4.3 QSPR Models for the Refractive Index

The best model for the refractive index that has been built up with the optimal
SMILES-based descriptors [78] is characterized by a determination coefficient of
0.9028. This model is calculated by means of a correlation adjustment of a descriptor
that includes both molecular features expressed by SMILES attributes and molec-
ular features represented by invariants of molecular graphs. Models suggested in
the literature [78] were built up by the Monte Carlo technique by applying the IIC.
The approach described above (the same descriptor and the same Monte Carlo opti-
mization that involves CII) gives for the refractive index model, which is statistically
characterized (validation set) by the determination coefficient of 0.9452. Thus, a
simpler model with improved predictive potential was also obtained for modelling
the refractive index. Supplementary materials section contains technical details on
the model (Table S2 for QSPR models for refractive index).

7.5 Comparison QSPR-Models

The comparison of the statistical quality of different models and models suggested
here confirms that models obtained with the Monte Carlo optimization involving IIC
and CII characterize models with quite comparable statistical quality (Table 7.4).

Table 7.4 Comparison of the statistical quality for different models

Endpoint Method Statistical quality References
Glass transition | CODESSA R? =0.946 [46]
temperature CORAL Training set R? = 0.7477, | [77]
validation set R2 = 0.9058
MLR R?=0.755 [79]
SVM R? =0.479 [79]
RF R?2=0.721 [79]
ANN Training set R% =0.8477, [80]
test set R2 = 0.5272
DRAGON PLS: R?2 = 0.848 [81]

SVM: R? = 0.886

MLR: R? = 0.860

Least absolute shrinkage and
selection operator: R? =
0.869

Elastic net: R? = 0.880
Gaussian process regression:
R? =0.899

(continued)
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Table 7.4 (continued)
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Endpoint Method Statistical quality References
Virtual Computational Training set R? = 0.9473, [82]
Chemistry Laboratory validation set R> = 0.9283
SVM Training set R% =0.920, [83]
validation set R2 = 0.779

CORAL Training set R> = 0.683, [84]
validation set R2 = 0.877

CORAL Training set R> = 0.4490, In this work
validation set R?> = 0.9184

Refractive index | CODESSA R? = 0.940 [47]
MLRA R? =0.929 [49]
Correlating the refractive R? =0.801 [49]
indices with two 2D
descriptors
Correlation between the R?2=00918 [49]
refractive indices and the
three 2D descriptors
Regression model based on | Training set RZ = 0.96, [51]
DRAGON and CORAL validation set RZ = 0.95
descriptors
ANN Training set R* = 0.971, [52]

validation set R?> = 0.9613
PLS with DRAGON and | Training set R> = 0.895, [53]
PaDEL descriptors validation set RZ = 0.707
Training set R* = 0.899,
validation set R?> = 0.794
Training set R* = 0.897,
validation set R? = 0.766
Training set R* = 0.896,
validation set R* = 0.796
CORAL Training set R? =0.7764, [78]
validation set RZ = 0.9028
DRAGON Training set R% =0.907, [85]
validation set R? = 0.823
Genetic algorithm and Training set R> = 0.932, [86]

QSARINS

validation set RZ = 0.882

CORAL

Training set R> = 0.7788,
validation set R2 = 0.9452

In this work

It should be noted that in the case of using the objective function of the involving
CII, as well as in the case of the objective function of the involving Monte Carlo IIC,
optimization improves the statistical quality of the models for the calibration set as
well for the validation set, but to the detriment of the training set.
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7.6 Possible Ways of Evolution of the QSPR for Polymers

The list of main unpleasant peculiarities of QSPR/QSAR is as follows: (i) possibility
of “chance correlations”; (ii) possibility of overtraining; (iii) possibility of weak
reproducibility of statistical quality of an approach suggested [87].

Often the modern QSPR/QSAR researches are based solely on one distribution
of available data into the training and validation sets. According to many authors,
a rational split into training and validation sets gives better statistical results for the
validation sets than models based on a group of random splits. An examination of
several splits decreases the probability of “chance correlations”: solely one good
correlation easily can become a chance correlation; however, three good correlations
hardly can be “chance correlations”.

The number of statistical characteristics aimed to measure the predictive potential
of amodel gradually increases, despite the attractiveness of a small number of criteria
for the predictive potential for practical applications. On the one hand, the diversity
of different standards of predicting potential is a tool to improve the quality of
QSPR/QSAR models. On the other hand, this situation causes uncertainty in choosing
the best model. In other words, contradictions in the recommendations of various
criteria force the researcher to search for the best choice in a maze of numerous
possibilities.

As a rule, the contribution of the molecular structure is crucial to an endpoint.
However, any physicochemical property, as well as any biological activity, is a math-
ematical function of many different conditions and circumstances. In other words,
non-equilibrium physicochemical processes or pharmaceutical effects are caused by
not only molecular structure but also physicochemical conditions (e.g. temperature,
humidity) and circumstances (noise/silence, illumination/darkness). Apparently, one
can agree with the above postulation, but the majority of QSPR/QSAR has built up
without taking into account something besides molecular structure. However, it is
to be noted that in some cases, the molecular structure is not informative to build
up a predictive model of endpoints, e.g. endpoints related to polymers and/or nano-
materials. Sometimes, in addition to the molecular structure, one should consider
experimental conditions. Thus, the definition of a model as a mathematical function
of experimental conditions (after consultations with experimentalists) could be a
shorter and consequently more attractive way to solve the corresponding tasks.

QSPR/QSAR should be assessed as a surrogate of a real experiment for tradi-
tional substances as well for polymers. QSPR/QSAR aimed to measure an endpoint
value. However, to expect adequate prediction of physicochemical and biochemical
behaviour of an arbitrary substance by means of the QSPR/QSAR model is naive.
Despite the above-mentioned thesis, QSPR/QSAR has become an integral part of
modern science as a tool to detect “fuzzy tendencies” in the behaviour of groups of
substances. This fact logically echoes the theory of fuzzy sets. This is not surprising,
as fuzzy set theory has solved some QSPR/QSAR analysis problems. One can extract
two components in the total wide variety of QSPR/QSAR studies: (i) “extensive”
studies and (ii) “intensive” studies. “Extensive” studies aim to integrate the results of
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applying current approaches to solve practical tasks. The “intensive” studies attempt
to develop new conceptions of the QSPR/QSAR analysis. Naturally, a small part of
the results of the “intensive” studies gradually become a tool for robust “extensive”
studies. Nowadays, multi-target QSPR/QSAR is a part of “intensive” studies. The
development of criteria for models’ predictive potential is also a part of the “inten-
sive” studies. Maybe searching for the similarity of endpoints will also become part
of “intensive” QSPR/QSAR research.

Reliable prediction of endpoints related to different substances using unam-
biguous algorithms is an attractive alternative to experimental investigation.

7.7 Quasi-SMILES Can Be a Tool for the Discussion
of Experimentalists and Model Developers

Quasi-SMILES is a sequence of symbols representing all available eclectic data,
i.e. the molecular structure and different conditions, which can influence examined
endpoint [88, 89]. Descriptor calculated with optimal correlation weights of different
fragments of quasi-SMILES defined by the Monte Carlo technique is used to predict
an endpoint as a mathematical function of molecular structure and arbitrary experi-
mental conditions. The statistical quality of the models based on correlation weights
of fragments of quasi-SMILES can be better than the statistical quality of models
obtained with traditional SMILES.

7.8 Conclusions

The QSPR for polymers can be developed from SMILES representing the molecular
structure of monomer units or their compositions. These models can be improved
by means of applying the IIC and CII. Quasi-SMILES is a possible way to establish
new models which will extract all available eclectic data on the endpoint of interest.
All QSPR/QSAR related to polymer systems should be qualified as random events.
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Part IV
Quasi-SMILES for QSPR/QSAR



Chapter 8 ®)
Quasi-SMILES-Based QSPR/QSAR Gissiia
Modeling

Shahin Ahmadi and Neda Azimi

Abstract Quantitative structure—property/activity relationships (QSPRs/QSARs)
have been used to predict the physicochemical property and biological activity
of different substances, considering that the physicochemical property/biological
activity of a new or untested substance can be inferred from the molecular structure or
other properties of similar compounds whose properties/activities have already been
assessed. Traditional QSPR/QSAR models based on physicochemical properties and
molecular information are not so successful in predicting endpoint of substances
such as nanomaterials due to scarcity of available dataset in same conditions. A
new approach using eclectic information as descriptors to predict the endpoint of
substance materials was developed in CORAL software (http://www.insilico.eu/
coral). In this approach, physicochemical properties and the experimental condi-
tions of substance are represented by so-called quasi-SMILES, which are character-
based representations derived from traditional Simplified Molecular Input Line Entry
System (SMILES). Thus, a main advantage of the quasi-SMILES is to increase the
number of available datasets by using the eclectic data in developing quasi-SMILES-
based QSPRs/QSARs models. This chapter provides instructions on how to use
CORAL software for building QSPR/QSAR models based on quasi-SMILES.

Keywords QSPR - QSAR - Eclectic information + Quasi-SMILES - CORAL
software
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Abbreviations

AD Applicability Domain

CCC Concordance Correlation Coefficient
CORAL  CORrelation And Logic

ClI Correlation Intensity Index

EP Endpoint

F Fischer ratio

IIC Index of Ideality Correlation

MAE Mean Absolute Error

NPs Nanoparticles

OECD Organization of Economic Co-operation and Development

QSAR Quantitative Structure—Activity Relationship
QSPR Quantitative Structure—Property Relationship
RMSE Root-Mean-Square Error

SMILES Simplified Molecular Input Line Entry System
TF Target Function

8.1 Introduction

Quantitative structure—activity/property relationship (QSAR/QSPR) approach is
indubitably of considerable importance in food chemistry [1, 2], environmental
chemistry [3], modern chemistry [4—6], biochemistry [7], nanotechnology [8, 9], and
drug design [10, 11]. The QSAR/QSPR approach is the mathematical and comput-
erized search for compounds with desired activities/properties using chemical intu-
ition and experience. Once a structure—activity/property correlation has been estab-
lished, any number of compounds, including those not yet synthesized, can be easily
screened on a computer to select structures with the desired activity/properties. Then
the most promising compounds can be found for synthesis and experimental testing
[12]. Therefore, QSAR/QSPR study saves cost and time for the development process
of new molecules as drugs, materials, additives, or any other purpose. While finding
successful structure—activity models is not an easy task, the recent increase in the
number of papers in QSPR/QSAR research clearly indicates the rapid evolution in
this area. To obtain a significant correlation, it is very important to use appropriate
descriptors, whether they are theoretical, empirical, or derived from easily empirical
properties of the constructs [12]. A group of descriptors shows simple molecular
properties and therefore can give insight into the physicochemical nature of the
activity/property under consideration.

Considering the growth of nanotechnology, modeling the properties or toxicity
of nanoparticles (NPs) on living organisms is very important [13—15]. Although it is
difficult to conduct toxicological experiments or obtain physical properties of NPs on
a case-by-case basis, QSPR/QSAR is a computationally efficient technique because
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it saves time, cost, and animal sacrifice. The first part of nano-QSPR/QSAR model
implementation includes data collection (including descriptors and endpoints) and
data processing. The dataset can be obtained from the literature, databases, exper-
iments, or integrated multiple sources. Therefore, to construct nano-QSPR/QSAR
models, itis important to identify a new set of descriptors that can accurately represent
the properties of NPs as well as the experimental conditions.

During recent years, the Simplified Molecular Input Line Entry System (SMILES)
and quasi-SMILES descriptors have been examined by some researchers for
QSPR/QSAR modeling [16—19]. The SMILES can reveal molecular structures, and
quasi-SMILES can represent molecular structure and physicochemical properties
and exposure conditions [8, 20, 21]. SMILES of a molecule is based on a set
of rules that allow a molecular structure to be represented as a sequence of atom
and bond symbols, but quasi-SMILES imports the physicochemical properties and
experimental conditions as a string of characters after SMILES symbol.

8.2 Principals of QSPR/QSAR Models

Although QSPR/QSAR modeling has been used for over five decades, many studies
still do not follow the Organization of Economic Co-operation and Development
(OECD) guidelines. Figure 8.1 summarizes the best practices for each step of
QSPR/QSAR approach using models in peer reviewed literature. Dearden et al. have
reported a detailed description of common errors in QSPR/QSAR research [22].

According to OECD guidelines, if a QSPR/QSAR study is to be reliable, the
following five principles must be met: (i) a well-defined endpoint, (ii) an unam-
biguous algorithm, (iii) a defined applicability domain (AD), (iv) appropriate
measures of goodness-of-fit, robustness, and predictivity, and (v) a mechanistic
interpretation, if possible.

8.3 Monte Carlo Technique for Nano-QSPR/QSAR

8.3.1 SMILES and Quasi-SMILES

SMILES is a chemical notation system designed by Weininger et al. [23, 24].
According to the principles of molecular graph theory, SMILES uses a very small,
natural grammar to specify precise structural features. The SMILES symbol system
is also suitable for fast machine processing. Quasi-SMILES is an alternative to
SMILES, which is used for substances considering physicochemical properties and
experimental conditions.
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Fig. 8.1 General flowchart
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8.3.2 The Main Step for QSPR/QSAR Modeling by SMILES
or Quasi-SMILES

CORrelation And Logic (CORAL) software (http://www.insilico.eu/coral) has two
possibilities for building QSPR/QSAR models based on SMILES or quasi-SMILES.
In the following, the method of preparing the input data for the CORAL software is

described.


http://www.insilico.eu/coral
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L) 8 N{cccc)(cccc)cco 3.9 - 13 O=[Al]O[Al]=026 4.15
- 9 N{Cccc)(ccccjccce 347 - 14 O=[AlJO[AI]=0127 4.09
* 10 c(canca 4.14 - 15 O=[AlJO[AI]=0IN1 3.88
# 11 €1{CNC(C)C)eceecl 453 " 16 O=[AlJO[AI]=0AN1 3.6
# 12 c1(/N=N/c2cceec2)cecccl 5.04 - 17 0=[Ce]=0GN1 3.44
+ 13 C1({CO1)CCC=C 337 . 18 0=[Ce]=0GN1 338
- 14 ¢1(/C=C/COC(=0)C)ecccccl 4.13 + 19 0=[Ce]=0EQ2 2.78
+ 15 cl{eccccl)N=C=S 5.64 + 20 0=[Ce]=0AR1 333
+ 16 clfeccec1)NC(=0)C 2.66 - 2 0=[Ce]=0AN1 349
+ 17 ¢1{cec{ec)OC)CCC({=0)C X . 2 0=[Ce]=0AN1 3.38
= 18 cl{eccc{ecl)N)CCCCCOCCCCCC 6.48 " 23 0=[Ce]=0KN1 303

Fig. 8.2 Sample of data based on a SMILES, and b quasi-SMILES as input for CORAL

8.3.2.1 Dataset Preparation for Models Based on SMILES

The SMILES string is a procedure for representing a two-dimensional molecular
graph as a one-dimensional string that can show the connectivity and chirality of a
molecule. In most cases, there are too many SMILES strings for a structure. Canonical
SMILES gives a single ‘canonical’ form for any particular molecule. Molecular struc-
tures of desired compounds were transformed to canonical SMILES using different
software such as Open Babel and ACD/ChemSketch program. Figure 8.2a, b indi-
cates the sample of data based on SMILES, and quasi-SMILES as input for CORAL
software, respectively. The first column indicates set, the second is compound ID,
the third is SMILES/quasi-SMILES, and the last column is desired property/activity.

8.3.2.2 Dataset Preparation for Models Based on Quasi-SMILES

For building of QSPR/QSAR in different physicochemical properties and/or the
experimental conditions of substance, one can use quasi-SMILES instead of SMILES
of molecules. Dataset preparation for quasi-SMILES is same as SMILES, only
SMILES is replaced by quasi-SMILES.

8.3.2.3 Quasi-SMILES Definition for Various Datasets/Endpoints

Quasi-SMILES is a sequence of symbols that not only represents the molecular
structure but also the different conditions that can affect the endpoint under investi-
gation. Eclectic data can include: different physical properties such as temperature,
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Table 8.1 Distinction of Normalized value Class

standardized physiochemical

features into classes 1-9 Norm(E) > 0.9 9

according to its value 0.8 < Norm(E) < 0.9 8
0.7 < Norm(E) < 0.8 7
0.7 <Norm(E) < 0.6 6
0.6 < Norm(E) < 0.5 5
0.5 <Norm(E) < 0.4 4
0.4 < Norm(E) < 0.3 3
0.3 <Norm(E) < 0.2 2
0.2 < Norm(E) < 0.1 1
Norm(E) < 0.1 0

pressure, and assay of experiment to obtain an endpoint, or cell line type, time expo-
sition, concentration, etc. to obtain an activity. The type and number of eclectic data
can be different in various datasets.

Quasi-SMILES may be made by eclectic condition, only [4, 13] or combination
of SMILES and eclectic conditions [5, 8]. The continuous eclectic conditions can be
normalized by the following equation for assigning codes:

Norm(E;) = —un(En) + £ 8.1)
" min(E;) + max(E;) ’

E; is its value of physicochemical parameter E, min(E;) is minimum value of E, and
max(E;) indicates maximum value of E.

According to Table 8.1, the number of unique values in each parameter was less
than 10; therefore, the quasi-SMILES descriptors representations could be coded by
assigning a number between zero and nine in a single character.

A further development of the CORAL software (CORAL-2020) allows the display
of experimental conditions through groups of symbols enclosed in parentheses.
Table 8.2 shows the comparison codes in the last version (CORAL-2020) and old
version of CORAL for creating quasi-SMILES in recently proposed models for cyto-
toxicity of metal oxide NPs [4]. One can see codes-2020 are quite transparent and
consequently are more convenient for a user. As is clearly evident, CORAL-2020
codes being quite transparent and thus more user-friendly. Table 8.2 indicates codes
used for the cell line, method, time exposition, concentration, nanoparticle size, and
metal oxide type. Table 8.3 indicates the examples of quasi-SMILES obtained based
on these codes.

Toropov and Toropova developed a QSAR model based on the new version
of CORAL for the toxicity of ZnO NPs [14]. Experimental data from the litera-
ture are toxicity assessment of ZnO NPs and ZnO NPs coated with polyethylene
glycol (PEG), which are investigated by intraperitoneal injections in the rat (50,
100, 200 mg/kg) for one month. Measurement of the toxic effects of renal factors
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Table 8.4 Codes used as
fragments of quasi-SMILEs
and their meaning

199
Code Meaning
[15d] Renal factor measured after fifteen days
post-injection
[30d] Renal factor measured after thirty days
post-injection
[RF1] Variation in creatinine as renal factor
[RF2] Variation in uric acid as renal factor
[RF3] Variation in blood urea nitrogen as renal
factor
[50] 50 mg per kg of body weight
[100] 100 mg per kg of body weight
[200] 200 mg per kg of body weight
[ZnO] Uncoated ZnO NPs is injected
[ZnO][peg] ZnO coated by PEG NPs is injected

including creatinine, uric acid, and blood urea nitrogen was measured after 15 and
30 days after injection. Table 8.4 shows the quasi-SMILES attributes together with
experimental conditions. Table 8.5 represents examples of available quasi-SMILES
obtained based on this condition and related activity.

Toropova et al. developed new nano-QSAR model for predicting toxicity of nano-
mixtures to Daphnia magna based on quasi-SMILES [25]. The binary mixtures of
TiO, NPs and with of one of the second component including AgNO3, Cd(NO3),,
Cu(NO3),, CuSQOy4, Na,HAsOy4, NaAsO;, benzylparaben, and benzophenone-3 have
been investigated. Quasi-SMILES contain the following information: (1) Second

Table 8.5 Some examples for quasi-SMILES extracted by codes presented in Table 8.4

Time Renal NPs NPs type | Quasi-SMILES Experimental

exposition | factor type | (mg/kg) renal factor

(days)

15 Creatinine 50 ZnO [15d][RF1][50][ZnO] 0.79

15 Creatinine | 100 ZnO [15d][RF1][50][ZnO] 0.87

15 Creatinine | 100 ZnO-peg | [15d][RF1][50]1[ZnO][peg] 0.50

15 Uric acid 100 ZnO-peg | [15d][RF2][200][ZnO][peg] | 1.37

15 Blood urea | 100 ZnO-peg | [15d][RF3][100][ZnO][peg] | 62.30
nitrogen

30 Creatinine | 100 ZnO [30d][RF1][100][ZnO] 0.72

30 Uric acid 50 ZnO-peg | [30d][RF2][50][ZnO][peg] 1.30

30 Blood urea | 50 ZnO-peg | [30d][RF3][50][ZnO][peg] |50.33
nitrogen

30 Blood urea | 200 ZnO-peg | [30d][RF3][200][ZnO][peg] | 49.0
nitrogen
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Mixed Core diameter  Zeta potential ~ Mole fraction Mol fraction of Exposure
substance of TiO2 NPs of Ti02 NPs of Ti02 NPs mixed substance time (h)
C Z F1 F2 E
CA(NOs)2 30 -16.3 0948 0.052 48
AgNOs 20 -18 0.999 0.001 48
AgNO; 20 -18 0.999 0.001 7
NaHAsOs 20 -1.8 0.982 0.018 48
Na;HAsO: 20 -18 0.980 0.020 48
Experimental data
Core Zeta Mole Mole  Exposure
diameter of potential  fraction of fraction  time (h)
SMILES TiOyNPs  of TiOy TiQ, NPs of mixed

substance
F1 F2

NP:
X i o

#1 [Cd+2L[0-IIN+](T0-])=0.[0-]N+]([0-1)=0][C30][Z-16.31][F 10.948][F20.052][E48] 2.326
#4 [Ag+1[0-)[N+)([0-])=0.[C20] [2-1.8][F10.999][F20.001][E48] 2.003

#6 [Ag+L[O-][N+]([0-])=0.[C20] [Z-1.8][F10.999][F20.001][E72] 2.003

-7 [Na+L[Na+][0-][As]([0-]) (0)=0.[C20] [Z-1.8][F10.980][F20.02][E48] 2.084

+§ [Na+L[Na+][0-][As]([0-]) (0)=0.[C20] [Z-1.8][F10.948][F20.02][E48] 2.093

Quasi-SMILES

Fig. 8.3 Transfer of experimental data into quasi-SMILES [25]

component of mixture represented by SMILES; (2) core diameter of TiO, NPs; (3)
Zeta potential of TiO, NPs; (4) mole fraction of TiO, NPs; (5) mole fraction of
mixed substance; and (6) exposure time. Figure 8.3 shows the transformation of the
experimental condition and substance into the quasi-SMILES.

8.3.2.4 Model Development

Model development has several steps that can be organized in CORAL software and
does not require any software for data partitioning, descriptor generation, and model
validation. In the following sections, the main step for QSPR/QSAR modeling using
CORAL software is described.

8.3.2.5 Dataset Splitting

After the preparation and curation of dataset, the next step of building a QSAR/QSPR
model for an endpoint by CORAL software (http://www.insilico.eu/coral) is loading
an array of lines. Each line consists of four components.


http://www.insilico.eu/coral
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The first column is the types of set which ‘+°, ‘—’, ‘#’, and ‘*’ indicate the active
training, passive training, calibration, and vahdatlon, respectively (Fig. 8.2).

e The second column without space with type of set is number or ID of compound.
e The third column is quasi-SMILES.
e The last column is endpoint value.

After the preparation of input file, the dataset was splitted into training, passive
training, calibration, and validation sets using CORAL software, randomly with
desired present for each set.

8.3.2.6 Monte Carlo Optimization Process

Quasi-SMILES is a group of attributes where each attribute group is converted into
a group of coefficients called correlation weights. Monte Carlo optimization refines
the correlation weights that provide numerical data on them, which maximizes the
predictive potential of a model as much as possible. Figure 8.4 shows the flowchart
of one cycle of Monte Carlo optimization of correlation weights (n is the number of
correlation weights that contribute to model construction).

There are different target functions (TFs) in CORAL software for Monte Carlo
optimization [25-29], which are introduced below four TFs:

Fig. 8.4 Flowchart of one / By
cycle of the Monte Carlo \ K=0/.-':
optimization for finding ==
correct correlation weights (n K= ;(4_ ] e
is the number of correlation
weights that contribute to
model construction) |@’§]\} Yes \{m-n /
.\IO

- CW=CW,+A
1
Calculation of TF

Yes | NO
.
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TFy = rar +rpr — |rar — rprl X C (3.2)
TF, = TF, + IICc x Wic (8.3)

TF, = TF; + Cll¢c x Wcpp (8.4)

TF; = TF; + IICe x Wi + Clle x Wen 8.5)

rar and rpy represent the correlation coefficient between the experimental and
predicted endpoints for active and passive training sets, respectively. Empirical
constant (C), Wrc, and W¢pr have a defined numerical value [1, 18, 30-33].

IICc is the index of ideality correlation. IIC¢ is obtained based on the calibration
set as follows:

min(~MAEc, *MAE)

Cllc = 8.6

€ = ¢ hax(-MAEc, TMAE.) (8.6

“MAE ! § |Ail, N is th berof A; < 0 (8.7)
= — il is the number of A; < .

TN
+*MAEc = 1 Z|A-| *+ N is the numberof A; > 0 (8.8)
-N ils i Z
Al’ = ObSi - Calc,- (89)

The Obs; and Calc; are the experimental and predicted endpoint for i th compound.

The correlation intensity index (CII), like IIC criteria, was developed to modify
the quality of the Monte Carlo optimization used to build the QSPR/QSAR models.
CII is formulated as follows:

Cll=1-) AR} >0, IfAR? <0 then AR} =0 (8.10)

AR? = R? — R? (8.11)

where R? is the coefficient of determination for all endpoints and R? is the coefficient
of determination for all endpoints in the absence of ith compound. Therefore, if A R?
is greater than zero, the meaning of ith is an ‘opposite’ for the correlation between
the experimental and calculated values of the set.

A small sum of ARi2 means a more ‘intensive’ correlation.

The CORAL model for an endpoint (EP) is defined by the below equation:

EP = Cy + C; x DW(T, N) (8.12)
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Cy and C| represent regression coefficients, 7 is a threshold, and N is the number of
optimization cycles. The DCW(T, N) is defined as the below equation:

DCW(T, N) =Y CW(S) (8.13)

where S; represents the symbol of a quasi-SMILES line; the CW(Sy) shows the
correlation weights of Sy.

8.3.2.7 Applicability Domain

The AD of QSAR/QSAR models for CORAL software is determined in two steps
based on the distribution of SMILES or quasi-SMILES features in the training and
calibration sets:

Step 1: the statistical defect (dy) is calculated for each involved (unblocked) SMILES
or quasi-SMILES feature (Sy) to build the model with the following equation:

_ [P0 = P'(SY)|

dy
N(Sp) + N'(Sx)

(8.14)

here, P(Sy) and P’(Sy) represent the probability of S; in the active training set and
calibration sets, respectively; N(Si) and N'(Sy) denote the frequencies of Sy in the
active training and calibration sets, respectively.

Step 2: the quasi-SMILES (D;) statistical defect of all compounds is defined
according to the following equation:

Na
a:}j@ (8.15)
k=1

here N, denotes the number of non-blocked quasi-SMILES features in the quasi-
SMILES.
Quasi-SMILES falls in the AD if:
D;i<2xD (8.16)

where D represents average statistical defect of the training set.
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8.3.2.8 Model Validation

Validation, as the fourth principle of OECD, is recognized as an intrinsic component
to check the robustness, predictability, and reliability of any QSPR/QSAR models.
There are three approaches to examine the robustness, reliability, and predictive
potential of the QSPR/QSAR models in CORAL software, including:

e Internal validation
e External validation
e Y-scrambling or data randomization.

Various statistical criteria such as determination coefficient (R?), concordance
correlation coefficient (CCC), cross-validated correlation coefficient (Q%), Q%,, 0%,
Q2F3, standard error of estimation (s), mean absolute error (MAE), Fischer ratio
(F) and root-mean-square error (RMSE), an, and average of Ré metric (R_rzn) are
calculated to authenticate the QSPR/QSAR models constructed based on the Monte
Carlo optimization by the CORAL software. Table 8.6 indicates the mathematical
equation of diverse statistical benchmark of the predictive potential for CORAL
models.

Table 8.6 Mathematical formulation of different statistical benchmark of the predictive potential
for CORAL models

Criterion of the predictive potential | Description References
5 )2
02=1- M Leave-one-out cross-validated correlation | [34]
20i=» )
coefficient
SIEXT (5 —y;)? . . .
Q% =1— S 0 Criteria of predictabilit [35]
1 ST (5w ) P Y
0%, = 1 — S G Criteria of predictability 35]
F2 ST (5 —Vexr)”
NEXT (4 2
i= i—Yi)" |/N .. . .-
Q12r3 =1- [Z ) ] = Criteria of predictability [36]

[Z,{V:F‘IXT (i *YEXT)Z]/NTR

Rﬁj:sz(l—‘/R2—R§> [36]

_— 2 _R2 (v .

R2 = M Average of R2, metric [36]
— 23 (=D =Y) i i

CCC = S TESLES T Concordance correlation coefficient [37]

C R = R./(R? - R?) Coefficient of determination for [38]

Y-randomization
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8.3.2.9 Mechanistic Interpretation

The 5th OECD principle focuses on mechanistic interpretation of the QSPR/QSAR
model if possible. The model interpretation is used to examine the critical and respon-
sible attributes that influence the endpoint. Finally, the new compounds are designed
based on these attributes. In the QSPR/QSAR modeling based on the CORAL soft-
ware, the same structural attributes (S;) collected from three or more different splits
are used to perform the mechanistic interpretation [39—42]. These structural attributes
(Sk) are divided into three categories according to previous studies:

e Increasing factor if the CW(Sy) is positive in all splits and in three attempts,
e Decreasing factor if the CW(S}) is negative in all splits and in three attempts,
e Undefined attributes if the CW(S}) is both positive and negative [43—45].

8.4 Examples of Quasi-SMILES-Based QSPR/QSAR
Models

Some examples of QSAR/QSPR models base on quasi-SMILES with CORAL
software using different TFs are presented in Table 8.7.

8.5 Conclusion and Future Direction

QSPR/QSAR modeling based on SMILES and quasi-SMILES by CORAL software
is useful for big dataset. In CORAL software, QSPR/QSAR generally follows the
five OECD principles. In addition, additional principles may be defined practically
for nano-QSPR/QS AR that reflect the nature of the nanomaterial under investigation.
For example, the new principles should take into account the test conditions and the
quality of the applied equipment.

The use of CORAL software in building QSPR/QS AR models for nanomaterials in
different conditions is simple, and the models can be easily predicted and interpreted.
There are very good TFs (TFy—TF3) to find reliable correlation weights and this is
one of the important capabilities of CORAL for building excellent QSAR/QSAR
models. The type and number of input features can change the performance of a
QSAR/QSPR model. But there is one of a shortcoming for CORAL software, the
user can use only CORAL software descriptors, and it is impossible to add the other
descriptors produced by other descriptor generators.

In CORAL software, there is only Monte Carlo algorithm to find correlation
weights. The use of various algorithms can increase the quasi-SMILES QSPR/QSAR
performance. Data splitting in CORAL software is done randomly; the possibility
of using different methods of data splitting can increase the validity of the models.
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Since the correlation weight of the descriptors in this software is calculated through
Monte Carlo approach, the use of consensus modeling can dramatically increase the
prediction results.
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Chapter 9 ®)
Quasi-SMILES-Based Mathematical Guca i
Model for the Prediction of Percolation
Threshold for Conductive Polymer

Composites

Swayam Aryam Behera, Alla P. Toropova, Andrey A. Toropov,
and P. Ganga Raju Achary

Abstract The traditional method for creating conductive polymer composites
(CPCs) involves mixing carbon black, metal powder, or carbon fibre into a polymer
matrix. Since the polymer matrix acts as an insulator, when a threshold filler level
is achieved, the conductivity of these composites can exhibit a sharp increase. The
common term generally used to describe such phenomena is called ‘percolation’.
As the conductive filler content increases in the insulator polymer matrix, it creates
different conductive routes, steady rise in the electrical conductivity is observed at a
critical volume fraction ®. That critical volume fraction ® responsible for the transi-
tion of polymers from insulators to conducting is called the ‘percolation threshold’.
The diverse experimental percolation threshold cured data of 45 conductive polymer
composite systems were classified into four sets: A = active training set; P = passive
training set; C = calibration set; V = validation set. Systems of eclectic condi-
tions of various processes of mixing such as dry mixing, latex technology, and melt
blending employed to fabricate the conducting polymer composites with various
polymer matrixes like high-density polyethylene (HDPE), low-density polyethylene
(LDPE), maleic anhydride (MA), polyamide (PA) and the conducting fillers such
as multi-wall carbon nanotube (MWNT), single-wall carbon nanotube (SWNT),
polyaniline (PANI) are very important and crucial to have desired properties. Unique
quasi-SMILES codes for different CPCs were suggested taking into consideration
various systems of eclectic conditions. These quasi-SMILES codes were the basis
for building mathematical models for predicting percolation threshold CPCs.

S. A. Behera - P. G. R. Achary (<)

Department of Chemistry, Institute of Technical Education and Research (ITER), Siksha
‘O’ Anusandhan University, Bhubaneswar, Odisha 751030, India

e-mail: pgrachary @soa.ac.in

A. P. Toropova - A. A. Toropov

Laboratory of Environmental Chemistry and Toxicology, Department of Environmental Health
Science, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156
Milano, Italy

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 211
A. P. Toropova and A. A. Toropov (eds.), QSPR/QSAR Analysis Using SMILES

and Quasi-SMILES, Challenges and Advances in Computational Chemistry

and Physics 33, https://doi.org/10.1007/978-3-031-28401-4_9


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-28401-4_9&domain=pdf
mailto:pgrachary@soa.ac.in
https://doi.org/10.1007/978-3-031-28401-4_9

212 S. A. Behera et al.

Keywords Conductive polymer composites + Percolation threshold + Quantitative
structure—property relationship (QSPR) * Quasi-SMILES

9.1 Introduction

Electrically conductive polymer composites (CPCs), which are made of metallic,
carbonaceous or conducting polymeric particles dispersed in a multi-phase blend or
a single polymer matrix, have drawn considerable industry and academic attention
over several decades [1-5]. The number of research publications about CPCs that
were found on 20th May 2014 when the term ‘conductive polymer composite was
searched in the (Web of Science database) Institute for Scientific Information (ISI),
serves as evidence of their popularity. CPCs have served applications as electromag-
netic interference (EMI) shielding, conductors, and sensors due to their low cost, ease
of processing, and tunable electrical characteristic compared to intrinsic conducting
polymers [6-9]. The specific applications of CPCs depend on their electrical resis-
tivity (Table 9.1). For instance, EMI shielding necessitates electrical resistivity values
of 1072 cm, whereas CPC materials for electrostatic dissipation typically require
an electrical resistivity of 107°Q cm in plastic fuel tanks.

The CPCs having electrical performance depend only on conductive (continuous)
networks built after inserting the conductive fillers because the majority of common
host polymers are fundamentally insulating [10, 11]. The CPC material will demon-
strate an insulator/conductor transition at a critical level when the conductive filler
content reaches; particularly, the electrical conductivity dramatically increases when
the initial conducting channels are produced by several orders of magnitude. The
percolation threshold &, is referred to as this critical volume fraction ®. As the
conductive filler content rises, additional conductive routes may be created in the

Table 9.1 Classifying conductive polymer composite materials according to their electrical
resistivity and application ranges

Resistivity (€2 cm) Applications and products

Insulating (10 to 1014 Insulators

Electrostatic dissipative (10° to 10'!) | Anti-static materials: microscope housing materials, fuel
tanks, anti-static storage containers, electronic
connectors, electrostatic paintable compounds, mining
pipes, etc.

Conductive (10! to 10%) Sensors & EMI shielding: electronic nose devices, strain
sensing materials, self-regulated heating elements,
organic liquid sensing devices, over-current protectors,
etc.

Highly conductive (10 to 10') Conductors: conducting adhesives & coatings. Resistors,
bipolar plates, metal replacement, bus bars,
thermos-electric materials, etc.
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polymer matrix, steadily increasing the electrical conductivity until a plateau is
achieved at its saturation. Typically, a power law can be used for a CPC material
to objectively describe the electrically conductive behaviour [10].

o = op(d—D,)’ 9.1)

where o is the electrical conductivity of the CPC and ¢ is the critical exponent for the
conductive networks related to the dimensionality in the CPC. For two-dimensional
(2D) conductive networks, this model uses ¢ ~ 2, and for three-dimensional (3D), t &~
1.3. However, the experimental values frequently differ from these expected values
[12, 13].

The melt-mixing technologies, such as internal mixing, twin-screw extrusion, and
injection moulding, are the widely used approaches among the conventional CPC
fabrication methods (i.e. melt mixing, solution processing, and in situ polymerisa-
tion) used to fabricate commercial CPC materials. This is because current industrial
practices are compatible with these techniques. However, traditional melt-mixing
techniques typically have a high &, in which the CPCs are made. Theoretically, the
16 vol% percolation value anticipated by the classical percolation theory [14, 15]
is close to 10-20 vol% of the ®. for randomly dispersed, spherical fillers, such as
metallic particles, carbon black (CB), and conducting polymer particles.

Although carbon nano-tubes (CNT) and graphene nano-sheets (GNS) have huge
surface areas that can sustain well-developed transport networks, these high-aspect-
ratio conductive nanoparticles’ severe agglomeration characteristic during host poly-
mers processing produces the high &, relatively. Unfortunately, a number of disad-
vantages are in CPCs with high ®., including low economic viability, high-melt
viscosities, and worse mechanical qualities, particularly in terms of ductility and
toughness [16, 17]. Therefore, high-performance CPC materials manufacturing,
lowering &, efficiently has emerged as a persistent, significant concern.

The most promising method for achieving low &, [18-20] in a CPC material has
remained the formation of a segregated structure. Throughout the entire CPC system,
instead of being distributed randomly conductive fillers are largely found at the poly-
meric matrix particle interfaces in segregated CPC (s-CPC) materials. Several times
this particular structure reduce the percolation value as compared to ordinary melt-
mixed CPCs because in the interfacial regions of s-CPC materials, there is perfect
mutual contact and an extremely high percentage between the conductive fillers.
For example, in acrylonitrile-butadiene—styrene (ABS), Gupta et al. created a segre-
gated CB-based conductive network with an exceptionally 0.0054 vol% of low &,
value, the lowest value for CPC materials (CB-based) in the literature at this time
[21]. A polymeric matrix with conductive fillers and an exclusionary microstruc-
ture assigned a constrained volume is the basis for the formation of a segregated
conductive network mechanism, which at specific filler concentrations, the effec-
tive density of the conductive pathways significantly raises. In a nutshell, with little
filler loading, this intriguing topology offers an effective paradigm for establishing
a conducive network.
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As depicted in Fig. 9.1, there have been three primary methods developed to
prepare s-CPCs. To create segregated conductive networks, the first method is using
dry or solution mixing, a combination of polymer granules compression coated with
conductive fillers (Fig. 9.1a) [22, 23]. Different conducive fillers (e.g. CB, metallic
particles, GNSs, and CNTs) on the external surfaces of polymeric particles can be
distributed without overly emphasising the filler dispersion levels before being hot
compressed to form bulk materials with segregated structures due to the simplicity of
the mixing and compaction processing methods [24—27]. However, due to processing
difficulties, the filler concentration cannot reach very high values (often less than 10
wt%), and the polymers should have relatively high-melt viscosities utilised with
this construction approach to sustain the segregated conducting networks during hot
compression moulding. The second method, known as latex technology, involves
spreading conductive fillers into polymeric latex. The fillers are kept between the
latex particles within the interstitial spaces while the polymer emulsion is freeze-
dried (Fig. 9.1b) [18, 28, 29]. In spite of the somewhat sophisticated manufacturing
technology, this method has clear advantages: when compared to materials made
through dry or solution mixing, latex materials made using only distilled water have
the following advantages: (i) an environmentally friendly and inexpensive process;
(ii) a satisfactory dispersion at the surfaces of the latex particles of conductive fillers;
(iii) and the availability of any composition of polymer-filler systems without being
constrained by high-melt viscosities during melt-mixing [30, 31].

The third tactic relies on melt blending, which is at the interfaces of immiscible
polymer mixes and conductive fillers’ selective distribution (Fig. 9.1c) [32, 33]. Melt
blending is the initial option when producing s-CPC products industrially because
of how straightforward it is. However, because this method encompasses so many
influencing factors, such as kinetics parameters (such as sequence and mixing proce-
dures, shear strength, and blending time), thermodynamic coefficients (such as the
interfacial energy between the conductive fillers and polymer matrices), and forming
a stable segregated conductive network are significantly more challenging than it is
for other technologies at the interfaces of polymer blends [34—-36]. The ‘segregated
conductive network concept’ for nickel particle/(HDPE) high-density polyethylene
composites was first put forth by Turner and colleagues in 1971 [22, 23]. Since then,
s-CPCs based on conductive fillers and various polymeric matrices have undergone
extensive research to determine the relationships between processing, morphology,
and property. In order to maximise their performance, the associated CPC variables
(such as grain size, polymer modulus, and processing and parameter) have also been
identified.

The present chapter highlights the importance of the percolation threshold, the
effect of conductive filler and host polymers, different methods generally employed
to fabricate the conductive polymer, the changes in the conducting properties, appli-
cations of such conductive polymer systems and a theoretical attempt to build
a mathematical model to predict percolation threshold for conductive polymer
composites.
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Fig. 9.1 Schematic for the fabrication of the s-CPCs using various processing methods: a dry or
solvent mixing, b latex technology, and ¢ melt-blending methods

9.2 Theoretical Background of the Percolation Threshold

Significant effort has been put towards customising separated structures during the
past ten years to achieve ultralow ®.. The ultralow percolation behaviours, such as
conductive filler type, the polymeric matrix, and fabrication procedures, help explain
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the highly intriguing electrical percolation behaviours of s-CPCs. Polymers having
high-melt viscosity, like polystyrene (PS), ultrahigh molecular weight polyethylene
(UHMWPE), and natural rubber (NR), make up the majority of s-CPC matrices
because they can preserve the conductive pathways that are confined in the interfa-
cial areas during processing. Furthermore, conductive fillers with high aspect ratios
(such GNSs and CNTs) have drawn more attention than those with low aspect ratios
(e.g. metallic particles, CB, and graphite flakes). Great-aspect-ratio fillers are quite
popular because of their excellent transport characteristics and high effectiveness in
constructing segregated conductive networks.

The s-CPC systems at very low (below 0.5 vol%) conductive filler loadings typi-
cally change from being an insulator to a conductor, as seen in row 4 of Table 9.1. The
values for UHMWPE-based s-CPCs varied from 0.028 to 0.5 vol%, depending on the
unique morphology of segregated conductive networks and the types of conductive
fillers. Despite this, there does not appear to be agreement regarding the &, of s-
CPCs. After inserting large polymeric beads for the segregated conductive networks
(about a diameter of 5 mm) as a scaffold, Gerhardt’s group in a segregated CB/ABS
system was able to achieve the lowest (0.0054 vol%) ®. recorded among s-CPC
materials [21].

The CPCs with emulsion-based and melt-blended have greater ®. than those
made through solution mixing or dry technology when the impact of the dispersion
methods on @, of s-CPCs is examined. By latex technology, the relatively high ®. of
s-CPCs produced can be attributed to two factors: (i) the size of the polymeric latex
particles (typically at the nanometre level) is too small to achieve even distribution
with the conductive fillers [37, 38], and (ii) the low melt viscosity of the latex polymer
makes the conductive fillers more difficult to easily stabilise at the interface between
the polymeric matrix granules. The conductive fillers are entrenched in the polymeric
matrix during mixing in the s-CPCs created by melt compounding, which reduces
their effectiveness in creating segregated conducting networks [31, 39].

The range of values for o ,x, another critical s-CPC parameter, is wide (107 to
10* S/cm). The obvious discrepancies in the maximum values in Table 9.1 may be
explained by the junction resistance between the conductive fillers and the inherent
electrical conductivity of the conductive fillers. For instance, the transport charac-
teristics of thermally or chemically reduced GNSs are poorer; hence, the s-CPCs,
which are based on CNT, always demonstrate greater conductance than the GNS-
based materials [24, 40-42]. High junction resistance is caused by the segregated
conductive channels, which are caused by host polymer layers forming insulating
gaps between the neighbouring conductive fillers or surfactants like (SDS) sodium
dodecyl sulphate [43, 44]. Additionally, the inter-diffusion of the molecular chains
is primarily prevented by the segregated distribution of conductive fillers, which
hinders the melting process, especially at high loading levels [19].

As aresult, the filler weight percentage of s-CPCs made using dry, melt-blending,
and mechanical processes cannot be greater than 10%. The melt viscosity has little
bearing on the filler concentration of the s-CPCs manufactured using the latex
method, which can range practically between 0 and 100 wt% anywhere [2]. As
a result, the o, of the s-CPCs made using dry, melt-blending, and mechanical
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procedures is often smaller than that of the materials manufactured using latex tech-
nology. Several works [45-47] must be acknowledged in order to expand the o yax
number of these CPC. Instead of the usual insulating stabilisers, they used an intrin-
sically conducting polymer system, specifically poly(3,4-ethylenedioxythiophene):
poly (styrene sulfonate) (PEDOT: PSS), to disperse the CNTs as the conducting
surfactant. At 30 vol% CNTs, they achieved high o . values (10° S/cm), which
is comparable to the electrical conductivity of pristine CNTs. Theoretically, thanks
to the segregated distribution, conductive fillers can build a typical two-dimensional
conductive network [24, 48, 49]. The intricacy of the segregated conductive networks
and many contributing elements, such as the morphology, dispersion, and distribution
of conductive fillers, are attributed to this phenomenon [30]. This is accomplished
by attributing the variations in the percolation behaviours of the s-CPC materials
to a variety of factors, such as the electrical properties, processing techniques and
dispersion quality of the conducting fillers, and the modulus, molecular weight, and
particle size of the polymeric matrices.

9.2.1 Effect of the Conductive Fillers

The sort of conductive fillers significantly impacts how electrically conductive s-CPC
materials are. In this section, we focus on the impact of geometrical morphology,
aspect ratio, intrinsic electrical conductivity, and dispersion techniques for conduc-
tive fillers on the ¢, max, and ¢ of s-CPC systems. According to the excluded volume
theory [50], the &, of the s-CPCs decrease as the conductive filler aspect ratio
is increased when the conductive fillers are uniformly dispersed at the interfaces
between polymeric domains. Grossiord et al. discovered that the high-aspect-ratio
(~ 120) MWNTs reduced to 20% of &, that for the low-aspect-ratio MWNTs (~
40) for the PS-based s-CPCs made by the latex technique [51]. The percolation
behaviours of PVAc-based s-CPCs filled with low-aspect-ratio CB and high-aspect-
ratio SWNTs were explored by Grunlan et al. [18, 28, 52]; the @, of the SWNT/PVAc
s-CPCs reached an ultralow value (0.03 vol%), which is significantly lower than
that of the CB ones (2.39 vol%). These two instances show that creating segre-
gated conductive networks is frequently made easier by high-aspect-ratio conduc-
tive fillers. Additionally, the conductive fillers with high aspect ratios always result in
greater maximum values. According to Mierczynska and colleagues, the UHMWPE-
based s-CPC materials were less conductive than the MWNT ones due to the high
level of SWNT agglomeration [53]. Therefore, while building segmented conduc-
tive networks, effective dispersion techniques are required to achieve the benefits of
high-aspect-ratio conductive fillers.

The majority of the conductive filler in the separated CPCs remains at the polymer
domains’ interface. As aresult, it is challenging to maintain the uniform dispersion of
the conductive fillers, particularly the high-aspect-ratio ones at relatively high load-
ings. The MWNTs continue to localise as aggregates at the surfaces of the UHMWPE
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granules despite the extensive sonication and mechanical stirring treatment. High-
aspect-ratio conductive nano-fillers are not advised for use in the construction of
segregated conductive networks without effective dispersion methods due to their low
economic affordability and efficiency (e.g. adding surfactants followed by intensive
sonication and mechanical stirring measurements).

The geometry of the conductive fillers inseparably affects the 7 of the segregated
conductive networks because ¢ largely depends on the distribution of the tunnelling
distance within the CPC materials [12, 13]. Using the two most common high-
aspect-ratio fillers, 2D GNS, and one-dimensional (1D) CNT, as examples, the 2D
GNS segregated networks frequently show a value of ¢ below 1.3. Disparities in
the conductive network microstructure may be the reason for the variable dimen-
sions of the segregated conductive networks. Due to the flat nature of 2D GNSs, the
nano-sheets are frequently restacked, resulting in a segregated conductive network
formed by plane-to-plane contact, which accounts for the low dimensionality of the
segregated conductive networks. Furthermore, compared to 1D CNTs, 2D structure
fillers, GNSs were less inclined to interlace and build high-dimensional conductive
networks [24].

Due to changes in the intrinsic electrical conductivity and dispersion of the
conductive fillers, their chemical surface qualities also have an impact on the dimen-
sionality of the segregated conductive networks [54]. In order to stabilise the place-
ment of GNSs at the interfaces between the PS and PMMA phases, Tan et al. func-
tionalised GNSs covalently with P(St-co-MMA) recently. This s-CPC displayed an
odd value of ¢ that reached a maximum of 6.9 and was indicative of a complete
departure from the conventional percolation hypothesis [54]. Due to the insulating
layers of grafted molecular chains coated on the conductive nano-sheets and the poor
electrical conductivity of the chemically modified GNS, ¢ underwent a significant
divergence. In the following section, we’ll talk about how conductive fillers affect
the 0 2 s-CPC.

The o max of s-CPCs is determined by the junction resistance between nearby
conductive fillers and the inherent electrical conductivity of those fillers. The intrinsic
electrical conductivity of impurities, such as amorphous carbon, catalyst particles,
and surface imperfections, in traditional carbon fillers is typically below 10 S/cm.
Due to its comparatively low electrical conductivity, high on,.x values are less
accessible, even at large loadings, and conductor applications, such as those for
bipolar plates, conducting polymer adhesives, and thermoelectric materials, are not
possible [44]. However, it appears that metallic fillers with better intrinsic elec-
trical conductivities would be better candidates for achieving reasonably high o yax
[55-57].

9.2.2 Effect of the Host Polymers

The chemical and physical characteristics of host polymers, which serve as scaffolds
for segregated conductive networks, inexorably impact the electrical performance
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of S-CPCs. The host polymeric matrices’ molecular weight and modulus affect the
percolation behaviours. Because there is less mixing of the host polymers and conduc-
tive fillers during hot compaction, host polymers with large molecular weights and
moduli are better able to resist plastic deformation [25, 36]. The s-CPCs that have
high molecular weights and moduli in their polymer matrix consequently invariably
have relatively low ®.. In contrast to low molecular weight (1 x 10° g/mol) one,
the ®. (~ 1.0 wt%) of the CB/lUHMWPE s-CPCs with a high molecular weight (6
x 10° g/mol) showed attenuation of about 100%. The o .x increased to 102 S/cm
for the high molecular weight material from 10 S/cm for the low molecular weight
UHMWPE s-CPCs [25].

9.3 Methods for the Synthesis of Conductive Polymers

9.3.1 Chemical Method

Conductive polymers (CPs) have been created chemically by polymerising matching
monomers after they have undergone oxidation or reduction. The potential for afford-
able mass production is one of its benefits. To improve the yield and quality of the
manufactured product produced using the oxidative polymerisation process, numer-
ical studies have been used. The employment of electrochemical techniques is not
mandated by chemical route principles [58]. For instance, the well-known and widely
researched CP poly (3-hexylthiophene) is virtually always created chemically. Chem-
ical methods can be used to manufacture polypyrrole (PPy) and polyaniline (PANI);
however, electrochemical methods typically result in variations with higher conduc-
tivity and mechanical qualities. After conjugation, stability is the primary require-
ment when getting ready for chemical polymerisation. Oligomers and low molecular
weight polymers must be sufficiently reactive and soluble to polymerise in order for
high molecular weight polymerisation to be successful. The polymerisation should
continue using a heterogeneous technique if an oligomer precipitates out of the solu-
tion, although this is becoming less and less likely as the concentration of monomer
and reactive polymer decreases. A failed chemical polymerisation would stop before
the molecular entanglement weight is reached, leaving the reaction vessel walls with
a mechanically unstable covering. However, chemical polymerisation guarantees the
exact choice of oxidant to selectively create cation radicals at the appropriate position
on the monomer in an adequately soluble system.
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9.3.2 Metathesis Method

The interchange of one component from each substance to create a new one is
known as metathesis, and it occurs when two chemicals interact chemically. Ring-
opening cyclo-olefin metathesis, acyclic or cyclic alkynes metathesis, and di-olefin
metathesis are the three types of metathesis polymerisation. Evans et al. investigated
the metathesis of derivatives of aniline and 1,2-dihydroquinoline [59]. Masuda has
examined the characteristics of polymers created using metathesis polymerisation
that is typically based on acetylene [60].

9.3.3 Photochemical Method

The primary techniques for locating polymers in industry and academic research
facilities have been chemical approaches [61]. However, during the past two
decapods, although extensively studied, photochemical preparation has been claimed
to have minimal advantages due to its speed, low cost, and environmental friendli-
ness. The technique can be used to fabricate some CPs. As an illustration, pyrrole
has been successfully polymerised to PPy by exposure to visible light while acting
as either a suitable electron acceptor or photosensitiser.

9.3.4 Electro-Chemical Method

Among the various described synthesis techniques, electrochemical synthesis of CPs
is highly important since it is straightforward, affordable, can be carried out in a
single-section glass cell, is reproducible, and the generated films have the necessary
thickness and homogeneity. Anodic oxidation of suitable electroactive functional
monomers is the electrochemical method utilised the most frequently to prepare
electro-CPs; cathodic reduction is employed much less frequently. In the earlier
example, the simultaneous creation of a polymer layer and the doping of counter ions
as a result of oxidation takes place. The capacity for monomer oxidation leading to
polymerisation is frequently higher than the potential for charging oligomeric inter-
mediate polymers. A streamlined method of electropolymerisation, using alternate
chemical and electrode reaction stages, was used to polymerise an electroactive
monomer, such as pyrrole or thiophene [62]. For instance, in the potential dynamic
electropolymerisation of thiophene, a radical cation is typically likely to form in the
initial electrode reaction stage of thiophene electro-oxidation, cleared by an anodic
peak of high positive potential [63]. At the subsequent chemical reaction stage, the
radical cation reacts with the monomer to produce the protonated dimer of a radical
cation. Then, during the electrode reaction step, the protonated dimer of the radical
cation is electro-oxidised to the decomposition.
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9.3.5 Plasma Polymerisation

An innovative method for creating thin films from a variety of organic and
organometallic starting ingredients is plasma polymerisation. Pinhole-free and
strongly cross-linked plasma polymerised films are insoluble, thermally stable, chem-
ically inert, and physically robust. Furthermore, these films stick exceedingly well
to various substrates, including those made of common polymer, glass, and metal
surfaces [64]. They have been widely used in recent years for a variety of appli-
cations, including perm-selective membranes, protective shells, biological mate-
rials, electronic, optical devices, and adhesion supports, thanks to their exceptional
qualities.

9.3.6 Solid-State Method

By using vacuum, heat, or removal with an inert gas to drive away reaction by-
products, solid-state polymerisation enlarges polymer chain lengths in the absence
of oxygen and water. Pressure, temperature, and the diffusion of waste products from
the pellet’s core to the shell all influence the reaction. After melt polymerisation, it is
a crucial step frequently employed to improve polymers’ mechanical and rheological
characteristics before injection blow moulding [65]. This process is incredibly helpful
in the commercial manufacturing PET films, advanced industrial fibres, and fibres
suitable for bottles. The main industrial benefits of solid-state polymerisation are
using straightforward, inexpensive equipment, and avoiding some of the issues with
traditional polymerisation processes.

9.3.7 Inclusion Method

Atomic or molecular-level manufacturing of composite materials is often accom-
plished using inclusion polymerisation. Therefore, this type of polymerisation can
open the door to extraordinary low-dimensional composite materials that have a lot
of potentials. An electroconductive polymer, for instance, might be used to create a
molecular wire. Composites of these polymers with organic hosts have been created
based on inclusion. According to Miyata et al., this polymerisation can be seen as a
typical space-dependent polymerisation and shouldn’t only be seen from the stand-
point of stereo-regular polymerisation [66]. The author failed to mention conventional
solutions and bulk polymerisations in previous investigations.
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9.4 Various Properties of Conducting Polymers

Conductive polymers are the subject of intensive research due to their exceptional
qualities, such as tunable electrical properties, high optical, and mechanical capabil-
ities. Conducting polymer composites have several uses in the electrical, electronic,
and optoelectronic domains thanks to their synergistic effects.

9.4.1 Magnetic Properties

Due to their exceptional magnetic properties and technological implications, CPs’
magnetism is greatly interesting. Transition metal oxide nanoparticles are crucial, in
addition to the structural and magnetic properties of nanomaterials to be included in
a polymer matrix. EPR and magnetisation measurements are the two basic experi-
mental methods for examining the magnetic characteristics of conductive polymers
[67]. EPR is highly sensible, and it is able to look at low energy changes in the
produced polymers’ magnetic characteristics that are related to unpaired electrons.
On the other hand, magnetisation measurements track the samples’ overall reaction to
magnetic moments. Consequently, from this vantage point, these two methodologies
offer complementing information.

9.4.2 Optical Properties

In optical absorption, i.e. in an excited state, a pi electron can be promoted from
the lower energy state to the highest energy state in a tiny molecule with an isolated
double bond by absorbing a photon with energy greater than the energy gap (E,)
between the two orbitals. However, a comparable molecule with conjugated double
bonds will have an energy difference between its lowest unoccupied molecular orbital
(LUMO) and its highest occupied molecular orbital (HOMO). A lower energy photon
can encourage a pi electron from HOMO to LUMO because orbital interactions
reduced the energy gap; as a result, in conductive polymers, the energy gap E, can
be even smaller [68].

However, in excited state relaxation through optical emission, a semiconducting
polymer can boost an electron from HOMO to LUMO and create an exciton. This
electron—hole pair is electrostatically bonded when the polymer absorbs a suitable
energy photon. This excited state species can move from one place to another until it
relaxes due to some deactivation process. Luminescence is one of the most practical
methods for deactivating conductive polymers (light emission).
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9.4.3 Electrical Properties

The doping level, chain arrangement, conjugation length, and sample purity all affect
how the conductivity of polymers is determined. Electrical CPs lack long-range
organisation and are molecular in origin. Electronic motion occurs around the indi-
vidual macromolecules because polymers are molecular. For polymers and inorganic
semiconductors, different processes are used to achieve high conductivity. The devel-
opment of self-localised excitons such as solitons, polarons, and bi-polarons is related
to the higher conductivities, which depend on doping in the polymers. These parti-
cles result from a powerful interaction between the charges on the chain that doping
enabled. Charged solitons are the charge carriers in CPs with degenerate ground
states, such as trans-polyacetylene, while polarons are typically formed on doping
in CPs with non-degenerate ground states, such as PPy. After that, these polarons
combine to create spinless bi-polarons, which are used as charge carriers [68]. The
inexpensive cost of the polymers and the ability to molecularly design the appro-
priate characteristics have made them incredibly desirable materials for electrically
conductive applications.

9.5 Applications of Conductive Polymers

9.5.1 Sensors

As an electrode modification, conductive polymers are used in sensor technologies to
improve sensitivity, impart selectivity, minimise interference, and provide a support
matrix for sensing materials. Below are some examples of sensors that use conductive
polymers [69]:

(a) Gas Sensor: A major ecological problem is the release of gaseous pollutants,
including nitrogen oxide, SO;, and hazardous gases from related businesses. To
recognise and assess the concentration of such gaseous contaminants, sensors
are necessary. Gas sensor equipment has typically been made using PANI and
PPy.

(b) Humidity Sensor: According to electrical, optical, and other physical prop-
erties, humidity sensors (HSs) are capable of detecting relative humidity in a
variety of situations. The industrial and medical communities paid these sensors
a lot of attention. Humidity calculations and regulation are important in various
fields, including the food and electronics industries, residential environments,
and medicine, among others. Humidity sensor devices have made use of the
hydrophilic features of polymers, polymer composites, and modified polymers.

(c) Bio Sensor: Conductive polymers are being employed in chemical analysis for
the large-scale detection of ions and molecules in the liquid phase. Over the
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past 20 years, the development of biosensors has been one of the most signif-
icant areas. It is reported that the most recent developments in biosensors and
their applications are in the fields of agriculture, medicine, environmental moni-
toring, and clinical detection [70]. Conductive polymers might be used in the
sensing mechanism or to immobilise the component that senses the molecular
modifications. Biosensors have been created using the films produced by the
electrochemical co-deposition of enzymes on CP or conductive substrates [71].

9.5.2 Solar Cells

Polymer solar cells (PSCs) have developed into a competitive substitute for silicon-
based solar cells. PSCs provide a number of important benefits, including inexpensive
production costs, straightforward processing, mechanical flexibility, and adaptability
of a chemical structure due to advancements in organic chemistry. A plastic film
substrate has been used in various experiments on flexible and lightweight appliances
in place of fragile glass. A transparent anode must be applied using organic-based
materials in order to create entirely plastic PSCs.

9.5.3 Supercapacitors

The popular name for a group of electrochemical capacitors is supercapacitors (SC).
Because of their variety of uses, conductive polymers are a topic of interest to
many researchers. Developing novel, specifically designed electrode materials with
improved performance has received emphasis from SCs [72]. Conductive polymers,
high-surface carbons, and transition metal oxides are typically used as SC elec-
trode materials. Superior capacitive energy density and inexpensive cost of materials
are two advantages of SCs based on CPs. Their main advantages are increased elec-
trical conductivity, improved pseudo-capacitance, and a quick doping/de-doping rate
during the charge/discharge process.

9.5.4 Data Storage Transistors

Due to their exceptional qualities, conductive polymers have found widespread use
in electronics as charge storage and field effect transistors. Due to its capacity to
enhance in-situ and gate-modulate channel conductance, conductive polymers can
be used as field effect transistors to achieve high sensitivity.
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9.5.5 Batteries

The first area where conductive polymers are sure to have a significant commercial
influence is this one. The electrolyte provides a physical separation between the
cathode and the anode and provides a source of cations and anions to balance the
redox processes [73]. The electrodes allow for the accumulation of current and the
diffusion of power.

9.6 Mathematical Models for the Prediction of Percolation
Threshold

Thus, the electrically conductive properties of polymeric materials find numerous
and varied applications. However, the experimental tuning of polymer systems for
certain tasks is complex (requiring time for qualified performers) and expensive
(purely economic factors, such as the cost of materials, energy, and labour remu-
neration). Under such circumstances, the attractiveness of computational methods
becomes quite obvious as a tempting alternative to direct experiments. In other
words, the development of computer technologies for the development of appro-
priate models becomes an important or even an integral part of technologies related
to the electrically conductive properties of polymer systems.

9.6.1 Data and Building the Quasi-SMILES Codes

The diverse experimental percolation threshold data of 55 conductive polymer
composite systems were obtained from the literature [74]. The above data were
manually cured to remove the duplicity in the data. The refined data of 45 best
diverse system data were chosen to build a quasi-simplified molecular input-
line entry systems (quasi-SMILES) [75, 76]-based quantitative structure—prop-
erty relationships (QSPR) mathematical model to predict the percolation threshold
theoretically.

Systems of eclectic conditions of various processes of mixing such as dry mixing,
latex technology, and melt blending employed to fabricate the conducting polymer
composites with different polymer matrixes like high-density polyethylene (HDPE),
low-density polyethylene (LDPE), maleic anhydride (MA), polyamide (PA) and the
conducting fillers such as multi-wall carbon nanotube (MWNT), single-wall carbon
nanotube (SWNT), and polyaniline (PANI) are very important and crucial to have
desired properties.

Table 9.2 contains a list of symbols and groups of symbols (quasi-SMILES atom:s,
i.e. fragments of quasi-SMILES line, which cannot be examined separately) which
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Table 9.2 Details of the quasi-SMILES codes employed

Polymer matrix | Quasi-SMILES | Fillers Quasi-SMILES | Process of | Quasi-SMILES
code code mixing code

ABS A CB 1 Dry w
mixing

HDPE B GRAPHITE |2 Latex X
technology

BA C SWNT 3 Melt y
blending

MMA D GNS 4 Solution z
mixing

AAEM E MWNT 5

LDPE F EG 6

NR G Al 7

PA H ITO 8

PC 1 CNT 9

PE J Clay U

PS K PANI A%

PP L CU 0

PET M CUNW |

PMMA N

PPS o

PVC P

PVDF Q

SAN R

UHMWPE S

WPU T

PVAc U

are utilised to represent various conditions. These systems were randomly split into
the training (= 65-70%), calibration (~ 15-17%), and validation (& 15-17%) sets.

Table 9.3 lists the final quasi-SMILES Codes of each polymer composite system
with their experimental percolation threshold.

9.6.2 Optimal Descriptor

The correlation weights of the various components that can be included in the
construction of a model are used to calculate the best descriptors. The circum-
stance that occurs the most frequently is when data on molecular structure features
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Table 9.3 Quasi-SMILES g N0 | Quasi- SMILES code | ®c t
code of polymer composites
with their experimental 1 Alw— 0.0054
percolation threshold and 2 A2w— 0.16 1.68
critical exponent (Eq. 9.1) 3 Bdz— 0.95 108
4 Flw— 1.0
5 Gdx— 0.62
6 I4x— 0.14 4.04
7 BKly+ 0.40
8 BMly— 3.80
9 N7w— 10.0 2.0
10 Niw— 0.26
11 N3x+ 0.20
12 N4x— 0.16
13 N8w+ 3.0
14 LKAly— 0.95 2.90
15 Lox+ 0.30
16 Ldx— 0.03 1.69
17 Kx+ 0.28 1.58
18 Klx+ 1.50
19 K9z+ 0.05
20 K3x+ 0.40
21 Kax— 0.20
22 Kax+ 0.60
23 Kiz— 0.67
24 KN4z— 0.02 6.92
25 Ulx— 2.39 1.57
26 Ulux— 0.90
27 U3x+ 0.04
28 Uvx+ 0.60 4.6
29 PSw— 0.05 3.50
30 POw— 5.0 2.9
31 P4x+ 0.30
32 Qdz— 0.11 1.10
33 Q5z+ 0.07
34 Q5w+ 0.08 1.04
35 R5z+ 0.03 2.15
36 Slw— 0.26 2.90
37 Slw+ 0.50

(continued)



228 S. A. Behera et al.

Table 9.3 (continued) S.No. |Quasi-SMILES code | @ t

33 SSw+ 0.50

39 S52— 0.07 113
40 S3w+ 0.14 2.0
41 SSw— 0.06 1.80
) Sdz— 0.06 1.54
43 Sdw— 0.10 117
44 SN57— 0.09 037
45 S45+ 0.10

46 Tix— 0.23 120

are used to create a model for an endpoint that would see quantitative structure—
property-activity relationships (QSPRs/QSARs) based on molecular graphs [77-79].
Simplified molecular input-line entry systems (SMILES), which can also be used to
construct QSPR/QSAR, are an alternative to the molecular graph [80].

When SMILES/quasi-SMILES is employed as the foundation for QSPR or QSAR,
an endpoint is viewed as a mathematical function of the SMILES/quasi-SMILES
nomenclature, such as

Endpoint = F(SMILES /quasi—SMILES). 9.2)

However, there are occasions when an endpoint is a mathematical function of
not just a particular chemical molecular structure but also of its physicochemical
(temperature, pressure), biochemical (toxicity and/or mutagenicity), and/or both
circumstances [75, 76]. Instead of using conventional SMILES, which represent the
molecular structure, in these situations, one might utilise quasi-SMILES, which are
lines of symbols that reflect not only molecular structure but also physicochemical
and/or biological parameters that can have an impact on an endpoint [75, 76].

The foundation of the theoretical mathematical model to forecast the percolation
threshold is the one-variable correlations between descriptor of correlation weights
(DCW) calculated with correlation weights of quasi-SMILES fragments [75, 76] and
various experimental percolation threshold data.

The following formula is used to compute the ideal descriptor:

DCW(T, N) =Y CW(Sp)+ Y CW(SS) + »_ CW(SSSy) 9.3)

where the Sy, SSi, and SSS; are pieces of a quasi-SMILES line that, respectively,
contain one, two, and three quasi-SMILES ‘atoms’. The quasi-SMILES atom is
a collection of symbols that cannot be studied individually since they collectively
represent a specific situation [81]. In Table 9.2, the groups that are used to construct
quasi-SMILES are depicted.
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For example, symbols H, I, J, M, N, L, O, U, P and Q represent polyamide
(PA), polycarbonate (PC), polyethylene (PE), poly(ethylene terephthalate) (PET),
poly(methyl methacrylate) (PMMA), polypropylene (PP), poly(phenylenesulfide)
(PPS), poly(vinyl acetate) (PVAc), poly(vinyl chloride) (PVC), poly(vinylidene fluo-
ride (PVDF), respectively (Table 9.2). The quasi-SMILES codes are assigned for
different fillers such as CB:1; GRAPHITE:2; SWNT:3; GNS:4; MWNT:5 (Table
9.2). Similarly, processes of mixing to fabricate the conducting polymer compos-
ites such as dry mixing, latex technology, melt blending, and solution mixing were
assigned the quasi-SMILES codes as ‘w’, ‘x’,’y’, and ‘z’, respectively.

The optimisation process employing the Monte Carlo approach is used to deter-
mine the correlation weights of all Si, SS;, and SSS;, i.e. CW(S;), CW(Sy), and
CW(Sy) [80]. The procedure has two parameters: I the 7', which is the threshold for
classifying quasi-SMILES fragments into rare and non-rare categories (correlation
weights of quasi-SMILES fragments that are rare, according to the selected 7', have
correlation weight equal to zero); and (ii) the N, which is the number of optimisation
epochs.

The correlation coefficient between the endpoint and descriptor, computed using
Eq. 9.3 for the training set, is the desired outcome of the optimisation approach. When
the calibration set’s correlation coefficient reaches its maximum, the operation should
be ended. If the process is continued past this point, the model will likely exhibit
overtraining (i.e. excellent statistical quality for the training set but poor quality for
the calibration and the validation set).

Since T = T* and N = N* yield the highest correlation coefficient for the cali-
bration set, there is where the model should start. These 7* and N* ought to be
established using computational studies using 7" from arange of 7'y, T5,..., T,, and N
from arange of Ny, N»,..., N,,,. With the correlation weights produced in the method
just explained, one can use Eq. 9.4 to determine the best descriptor for each system
with eclectic circumstances and then create a model using the systems in the training
set.

Percolation Threshold (®.) = Cy + C; x DCW(T %, N*) 9.4)

The generated model should have predictive capability after cross-checking
against the calibration set to ensure sufficient statistical quality. The validation
set serves as the final estimate of the predictive potential for Eq. 9.4 in the stated
model-building process.

9.7 Results and Discussion

These quasi-SMILES-based mathematical models for three random splits into the
training, calibration, and validation sets are presented in the following Egs. (9.5)—
9.7):
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Percolation Threshold (®.) = —1.2561(£ 0.1050)
+ 0.4076(4 0.0629) * DCW(1, 15) 9.5)

Percolation Threshold (®.) = —1.7077(£ 0.1087)
+ 0.7008(£ 0.0501) * DCW(1, 15) (9.6)

Percolation Threshold (®.) = —1.0869(+£ 0.0653)
+ 0.6465(4 0.0420) * DCW(1, 15) 9.7)

The statistical characteristics of the quasi-SMILES-based model for the prediction
of the percolation threshold (®.) of different conductive polymer composites are
summarised in Table 9.4.

Table 9.5 lists the percentage of identity for three random splits adopted in the
present study.

The list of structural attributes (SA) and their correlation weights with the
defect SAg for the above three models are represented in Tables 9.6, 9.7, and 9.8,
respectively.

Figure 9.2 shows the experimental and predicted percolation threshold (®.) of
the above three models.

These ranges of the statistical characteristics of models for the validation set for
models based on the correlation weights of quasi-SMILES fragments are:

r* € [0.5082, 0.5504], RMSE € [0.371, 0.532]

Thus, the suggested models’ level is overage compared with models from work
[82]. However, the model (calculated with Eq. 9.4) is built up by utilising conceptually
other approaches. In addition, in fact, the suggested approach is checked up with three
different splits into the training, calibration, and validation sets (Table 9.4). In other
words, the approach is reliable.

Here the Monte Carlo method using the CORAL software (http://www.insilico.
eu/coral) has been applied. But it should be taken into account, the range of problems
involved in modern polymer science is exactly the same as the range of problems in
the natural sciences as a whole. Hence, many other approaches QSPR/QSAR uses to
analyse the polymer systems. There are both QSPR analysis [8§3—89] and QSAR anal-
ysis devoted to polymer systems [90-95]. Along with polymer electrical conductivity,
stability [83—85], thermodynamic properties [§6—88], and viscosity of polymers [89]
are important modelling objectives. Of considerable interest are studies devoted to
QSAR analysis of polymer systems, both natural [84] and transport-oriented poly-
meric substances introduced through membranes, which can be drug deliverers and
means of reducing undesirable environmental consequences [92]. Quantum mechan-
ical approaches to the study of polymer systems are gradually becoming on the same
flow as traditional quantum mechanical analysis applied to organic and inorganic
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Table 9.5 Percentage of identity for three splits acceptable

S. A. Behera et al.

i, j)* Split 1 Split 2 Split 3
Split 1 0 435 455
Split 2 273 0 34.8
Split 3 273 54.5 0

4 Matrix Element [i, j], i > j the identity for the active training sets; Matrix Element [i, j], i < the
identity for the validation sets

Table 9.6 List of structural attributes (SA) and their correlation weights (CW) for the model

(Eq.9.5)

SAk CW(SAy) ID N1 N2 N3 DEFECT[SAk]
+... 0.3842 1 4 6 2 0.053
— 0.7312 2 7 6 9 0.0289
1... —0.0165 3 3 5 1 0.0724
2... 0 4 0 0 1 0

3. —0.4746 5 2 0 0 1

4. —0.2081 6 5 1 5 0.0675
5. —0.4387 7 2 1 3 0.0631
7... 0 8 0 1 0 0

8... 0 9 0 1 0 0

9... 0 10 0 1 0 0

A —0.6578 11 2 0 1 0.1212
B... 0.8268 12 2 0 0 1

F... 0 13 0 1 0 0

G... 0 14 0 1 0 0

K... 0.3147 15 4 2 2 0.0492
L... —0.0436 16 2 1 0 1

M... 1.3778 17 1 0 0 1

N... 0.5097 18 1 2 2 0.0364
P... 0.5975 19 1 0 1 0.0909
Q... 0 20 0 0 1 0

S... —0.0732 21 1 2 5 0.0909
uU... 0.0626 22 1 3 0 1

i.. 0 23 0 1 0 0

u... 0 24 0 1 0 0

V... 0 25 0 1 0 0

w.. 0.5219 26 2 5 3 0.047

(continued)
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Table 9.6 (continued)
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SAk CW(SAx) ID N1 N2 N3 DEFECT[SAk]
X... 0.3165 27 4 6 4 0.0195
y... 1.1738 28 2 0 0 1

—0.4104 29 3 1 4 0.0701

Threshold= 1 Number of SMILES Attributes (SA) = 29 Number of active SA = 19

Table 9.7 List of structural attributes (SA) and their correlation weights (CW) for the model

(Eq. 9.6)
SAx CW(SAY) ID N1 N2 N3 DEFECT[SA(]
+.. 1.2095 1 5 3 6 0.039
- 1.0054 2 7 8 5 0.0273
0... 2.1456 3 1 0 0 1
1... —0.1480 4 4 4 0 1
2... 0.3166 5 1 0 0 1
3. —0.1899 6 2 0 1 0.1111
4... — 04728 7 2 3 4 0.0438
5... —0.5935 8 1 1 5 0.1061
7... 0 9 0 1 0 0
8... 0 10 0 1 0 0
9... 0 11 0 0 1 0
A... — 04671 12 2 1 0 1
B... 0.7469 13 2 1 0 1
F... 0 14 0 1 0 0
G... 0 15 0 1 0 0
K... 0.4414 16 4 2 2 0.0379
L... 0.3774 17 2 0 0 1
M... 1.1834 18 1 0 0 1
N... 0.6094 19 2 2 1 0.0364
P... 0.1610 20 1 0 1 0.0909
Q... 0 21 0 0 1 0
R... 0 2 0 0 1 0
S... 0.5237 23 1 1 5 0.1061
U... —0.1338 24 2 2 0 1
i.. 0 25 0 1 0 0
u... 0 26 0 1 0 0
V... 1.5677 27 1 0 0 1
w.. —0.3257 28 3 5 3 0.0372

(continued)
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Table 9.7 (continued)
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SAk CW(SAx) ID N1 N2 N3 DEFECT[SAk]
X... 0.0734 29 4 2 0.0427
y... 0.1315 30 0 0 1

—0.3574 31 1 2 6 0.1027

Threshold=1 Number of SMILES Attributes (SA) = 31 Number of active SA = 22

Table 9.8 List of structural attributes (SA) and their correlation weights (CW) for the model

(Eq. 9.7)
SAk CW(SAy) ID N1 N2 N3 DEFECT[SA«]
+... 0.3146 1 5 3 4 0.0303
- 0.2657 2 6 8 8 0.0165
0... 0 3 0 1 0 0
1... —0.0708 4 3 3 2 0.0265
2... 0 5 0 0 1 0
3. — 0.4807 6 2 2 0 1
4... - 03191 7 2 2 7 0.073
5... —0.2881 8 2 2 1 0.0394
7... 0 9 0 0 1 0
8... 1.6126 10 1 0 0 1
9... —0.7815 11 1 0 0 1
A... —0.5985 12 1 1 1 0.0051
B... 0.3118 13 1 2 0 1
F... 0 14 0 1 0 0
G... 1.1463 15 1 0 0 1
I... 0 16 0 0 1 0
K... 0.1807 17 5 1 3 0.0808
L... 0.1605 18 1 0 1 0.0909
M... 0 19 0 1 0 0
N... 0.1976 20 2 2 1 0.0394
P... 0.2354 21 1 1 1 0.0051
Q... 0 2 0 1 0 0
S... —0.098 23 1 2 4 0.0693
U... 0.9848 24 2 0 0 1
i... 0 25 0 1 0 0
w.. 0.1925 26 2 5 5 0.0455
X... 0.0387 27 4 2 6 0.053
y... 0.8251 28 2 1 0 1
z... —0.1994 29 3 3 1 0.0541

Threshold=1 Number of SMILES Attributes (SA) = 29 Number of active SA = 21
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Fig. 9.2 Experimental and calculated percolation threshold valued for mathematical Model-1,
Model-2, and Model-3

objects [93]. The development of the models for stochastic aspects of polymer agents’
influence in medicine also is necessary for QSPR/QSAR-researches fields [94, 95].

9.8 Conclusion

The critical volume fraction that causes polymers to change from insulators to
conductors is known as the ‘percolation threshold’. The experimental percolation
threshold cured data of 45 conductive polymer composite systems used in the present
article were quite good and gave better performance when it was divided into four
groups: active training set, passive training set, calibration set, and validation set.
The suggested approach based on the quasi-SMILES, which are analogous to the
traditional SMILES, gives reasonably good predictions for the percolation threshold
for the studied conducting polymer composites (CPCs). The stability and reliability
of the reported mathematical models are found to be reasonably stable, which is
evident from the statistical parameters obtained for three random splits. The described
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methodology is believed to be universal for similar situations where one aims to
predict the response of an eclectic system upon a variety of physicochemical and/or
biochemical conditions. The numerous conductive polymer variants, characteristics,
conduction mechanisms, synthesis methods, and applications in diverse fields are
also briefly highlighted in this communication.
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Chapter 10 )
On the Possibility to Build up the QSAR oo
Model of Different Kinds of Inhibitory

Activity for a Large List of Human

Intestinal Transporter Using

Quasi-SMILES

P. Ganga Raju Achary, P. Kali Krishna, Alla P. Toropova,
and Andrey A. Toropov

Abstract Membrane transporters play a significant role in pharmacokinetics and
drug resistance and mediate many biological effects of substances. Among biolog-
ically active chemicals, it is necessary to evaluate the profiles of their transporter
interactions in order to identify potential medication candidates. The constraints and
predictive capability of models for substances with heterogeneous physicochem-
istry and variable permeability/absorption are explored in this communication using
the largest diverse permeability and absorption dataset for 3199 compounds. Here,
we offer a classification-based QSAR model of different inhibitory activities for
an extensive list of Human Intestinal Transporter using quasi-SMILES. The extrac-
tion of properties from quasi-SMILES and the computation of so-called correlation
weights for these attributes using Monte Carlo techniques were the foundation for
the classification-based models. As qualitative statistical validation criteria, the clas-
sification model was tested using sensitivity (= 0.86), specificity (= 1), accuracy (=
0.96), and Matthews correlation coefficient (MCC = 0.90). Described computational
experiments confirm the suitability of application of so-called Index of Ideality of
Correlation to improve the predictive potential of the models.
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10.1 Introduction

Even though oral medication delivery is the preferred method at the moment,
intestinal drug absorption is hampered by a number of highly variable and unpre-
dictable processes, including gastrointestinal motility, intestinal drug solubility, and
intestinal metabolism. The intestinal drug transport, which is mediated by many
transmembrane proteins, including P-glicoprotein (P-gp), breast cancer resistance
protein (BCRP), human peptide transporter 1 (PEPT1), and organic anion trans-
porting polypeptide 2B1(OATP2B1), is another factor that has been discovered and
characterised over the past 20 years. It is generally known that intestinal transporters
have a substantial impact on the oral absorption of many medications, either by
promoting their cellular uptake or by pumping the medications back to the gut lumen,
which reduces the oral bioavailability of the pharmaceuticals. When medications that
elicit transporter induction or inhibition are given concurrently with other pharma-
ceuticals, the functional relevance of these drugs becomes even more clear in cases
of unintended drug-drug interactions, which, in turn, affects the number of drugs
exposed. The preferred site of intestinal medication absorption may be affected func-
tionally by the non-homogeneous longitudinal expression of a number of intestinal
transporters along the human intestine. Understanding the precise location of phar-
macologically important transporters on the apical or basolateral membrane of ente-
rocytes, which is occasionally disputed, is also of importance. Furthermore, there
is clearly a connection between intestine transporters (apical-basolateral), intestinal
enzymes and transporters, and intestinal and hepatic transporters.

For the development of new drugs, intestinal absorption prediction models are
essential. For more common “drug-like” compounds (also known as “rule of 5” or
Ro5 drugs), there are numerous in silico, in vitro, and in vivo models available to
help and understand the process in a better way. However, there are many concerns
regarding the applicability of these models to “nondrug-like” compounds typically
found for “undruggable targets” (also known as “beyond the rule of 5” or “bRo5
drugs”) [1-6]. Given that these drugs are frequently bigger, more complicated, and
have lower permeability, there are concerns about the applicability of such models in
this area. Medicinal researchers are uncomfortable using current or existing models
that haven’t been thoroughly tested for intestinal absorption in these circumstances
[6].

All biological species have membrane transport proteins, such as members of
the ATP-binding cassette (ABC) superfamily and the solute carrier (SLC) family.
By regulating their cellular inflow or efflux, transporters are known to impact the
membrane permeability of numerous xenobiotic and endogenous substances [7].
Active transport proteins (like P-glycoprotein) are crucial for pharmacokinetics,
drug-drug interactions, and multidrug resistance [8, 9]. Membrane transporters are
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widely distributed and expressed across all tissues and organs; the human genome
only contains about 600 transport proteins from the ABC and SLC families [10, 11].
When one takes into account the interdependencies between membrane transporters
as well as their relationships with other metabolic systems, one can see the actual
intricacy of processes governing the permeability of tiny molecules across biological
membranes [7, 12].

Absorption, distribution, metabolism, and elimination influence how drugs are
disposed of (ADME). Understanding absorption is important because it affects total
systemic exposure, and oral administration is the most frequent way to provide small
compounds. The ability of a substance to pass through the intestinal wall (f,) and
avoid intestinal and hepatic metabolism (Fy and F,, respectively) determines how
much of it can be absorbed orally. Total oral bioavailability (), the term used to
describe the total fraction of a drug that reaches the systemic circulation, is a function
of three factors (Eq. 10.1).

F=faxFxF (10.1)

The susceptibility of a molecule to first-pass metabolism may have an impact on
the compound’s overall oral bioavailability. When the bioavailability in the stomach
and liver is known, fa can be calculated and used as a “cleaner” metric to assess
human absorption.

F

h= e

(10.2)

Computer simulations have been used for in silico quantitative structure—activity
relationship (QSAR) [12] models to realise how a compound’s chemical structure
affectsits ADME qualities. Over time, numerous QS AR techniques have been created
to learn which chemical characteristics can enhance absorption through a variety of
endpoints, including Caco-2 permeability, effective human permeability [12, 13],
and first-order human rate of absorption (Ka) [14]. Before even being produced in
the lab, these correlations can assist the design of novel molecules with enhanced
absorption properties.

The present book chapter aims to offer a distinctive viewpoint on the usefulness
of the most recent and well-liked models for forecasting human f, for bRo5 and
low permeability/absorption organic molecules. We can assess the constraints and
predictive capability of models for substances with heterogeneous physicochem-
istry and variable permeability/absorption using the largest permeability and absorp-
tion dataset compiled to date (to our knowledge, with n = 3199). Here, we offer a
classification-based QSAR model of different kinds of inhibitory activity for a large
list of Human Intestinal Transporter using quasi-SMILES [15-20]. The suggested
models were obtained by the Monte Carlo technique via the CORAL software (http://
www.insilico.eu/coral) with applying the quasi-SMILES technology.
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10.1.1 Literature Review on Various QSAR Models
Jor Human Intestinal Transporter

A hierarchical support vector regression-based in silico model for Caco-2 perme-
ability is being reported. One of the important considerations in the process of
discovering and developing new drugs is drug absorption. To begin studying intestinal
absorption, the human colon cancer cell layer (Caco-2) model has commonly been
used as a surrogate. A novel machine learning-based hierarchical support vector
regression (HSVR) method was used to create a QSAR model to represent the highly
confusing passive diffusion and transporter-mediated active transport. The experi-
mental values of the training samples, test samples, and outlier samples showed a high
degree of agreement with the HSVR model. A mock test and a number of rigorous
statistical standards were used to validate further and confirm the predictability of
HSVR. In order to aid in the creation of new drugs, this HSVR model can be used
to predict the Caco-2 permeability [21].

A vast class of polyphenols known as flavonoids is present in a wide variety of
plant-based meals. While flavonoids have a variety of biological properties, including
anti-cancer, antioxidant, and anti-inflammatory properties, their poor oral bioavail-
ability has been viewed as a significant barrier to their utilisation as functional foods.
The bioavailability of flavonoids is affected by cellular absorption and efflux.

Twenty-seven flavonoids were assessed for their cellular absorption in Caco-
2 cells with verapamil and cellular uptake of flavonoids without verapamil to
research their cellular uptake and efflux. Then, from each compound’s matching
without verapamil, a quantitative structure—absorption relationship (QSAR) model
was constructed. The model had a high cross-validation coefficient (Q?) value of
0.809 and showed good resilience and predictability [22].

Flavonoid interactions during digestion, absorption, distribution, and metabolism:
asequential QSAR-based approach has been carried out in the study of bioavailability
and bioactivity. When consumed, the group of polyphenols known as flavonoids
promotes good health. However, their low bioavailability is a significant barrier to
their usage as medications or nutraceuticals. Flavonoid interactions at digestion,
absorption, and distribution phases have been linked to low bioavailability, and their
molecular structure significantly impacts these interactions [23].

Critical evaluation of human oral bioavailability for pharmaceutical drugs is
carried out by using various cheminformatics approaches. In clinical trials, a novel
drug’s oral bioavailability (%F) is a critical element that influences its outcome.
Historically, expensive, and time-consuming experimental tests have been used to
determine %F. In order to improve the drug development process, computational
models that assess potential drugs’ %F properties before they are manufactured
should be created. To create a number of computational %F models, researchers
used a combinatorial QSAR technique. A dataset of 995 medications is from open
sources. Chemical descriptors for each drug were created, and the appropriate QSAR
models were created using random forest, support vector machine, k closest neigh-
bour, and CASE Ultra. Fivefold cross-validation was used to validate the models that
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were generated. The reliability of %F values’ external predictivity was low (R? =
0.28, n =995, MAE = 24), but it was enhanced (R? = 0.40, n = 362, MAE = 21) by
removing unreliable predictions that were highly likely to interact with MDR1 and
MRP?2 transporters. A further outcome of categorising the compounds using the %F
values (%F 50% as “low”, %F 50% as “high”) and creating category QSAR models
was an external accuracy of 76%. The integration of data on drug-transporter interac-
tions considerably improves the predictive %F QSAR models that were constructed,
which might be utilised to assess new therapeutic compounds [24].

Structural determinants for transport across the intestinal bile acid transporter
using C-24 bile acid conjugates are also reported. The human apical sodium-
dependent bile acid transporter (hASBT) is a potential prodrug target to improve
oral drug absorption and reabsorption of bile acid per day. Cross-validation was used
to assess the CSP-SAR models, which were developed using structural and physic-
ochemical descriptors. One structural and three physicochemical descriptors were
used in the best CSP-SAR model for Km/normVmax, which similarly showed that
hydrophobicity improved efficiency [25].

Computational models for drug inhibition of the human apical sodium-dependent
bile acid transporter are carried out. The human apical sodium-dependent bile acid
transporter (ASBT; SLC10A2) is the main mechanism for intestinal bile acid reab-
sorption. Secondary bile acids raise the danger of colon cancer. As a result, medica-
tions that block ASBT may raise the risk of colon cancer. The authors aimed through
this work to develop computational models for ASBT inhibition and to discover FDA-
approved medications that inhibit ASBT [26, 27]. A modified Laplacian Bayesian
modelling method using 2D descriptors, a HipHop qualitative approach, and a
Hypogen quantitative approach were all used in computational modelling. Thirty
substances were first tested for ASBT inhibition. The most powerful 11 molecules
were used to create a qualitative pharmacophore, which was then used to search a
drug database, producing 58 hits. The Ki values of other substances were evaluated
after testing. Using 38 compounds, a 3D-QSAR and a Bayesian model were created.
According to a validation examination, both models have shown good predictability
in determining whether a medicine is a powerful or non-potent ASBT inhibitor. The
most effective chemicals were appropriately rated by the Bayesian model. It was
discovered that many FDA-approved medications from various families, including
dihydropyridine calcium channel blockers and HMG CoA-reductase inhibitors, are
ASBT inhibitors utilising a combined in vitro and computational method [26, 27].

A QSAR study for the translocation of tripeptides via the human proton-coupled
peptide transporter, APEPT1 (SLC15A1), is reported. It has been discovered that the
human intestine proton-coupled peptide transporter, hPEPT1 (SLC15A1), functions
as an absorptive transporter for both prodrugs and drug molecules. Models based
on competitive tests have so far helped to grasp the conditions for transport. The
predictive power of these models for substrate translocation via hPEPT1 is rather low.
The study’s objective was to look into the prerequisites for translocation via hPEPT1.
Using a statistical approach, a set of 55 tripeptides was chosen using a principal
component analysis based on VolSurf descriptors. A large portion of these tripeptides
has not yet been studied. An MDCK/hPEPT1 cell-based translocation assay assessing
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substrate-induced variations in the fluorescence of a membrane potential-sensitive
probe was used to quantify the tripeptides’ translocation via hPEPT1. Competition
experiments with [14C]Gly-Sar in MDCK/hPEPT1 cells were used to evaluate the
affinities of pertinent tripeptides for hPEPT1. It was discovered that forty tripeptides
were hPEPT1 substrates, with Km app values ranging from 0.4 to 28 mM. A QSAR
model connecting Km app values with VolSurf descriptors was built to rationalise the
need for transportation. This is the first prediction model for the hPEPT1-mediated
translocation of tripeptides [28].

The discovery of ligands for the human intestinal di-/tripeptide transporter
(hPEPT1) was carried out using a QSAR-assisted virtual screening strategy [29-31].

SAR models were proposed for the binding of tripeptides and tripeptidomimetics
to the human intestinal di-/tripeptide transporter hPEPT1. 3D-QSAR models were
built based on a series of 25 different tripeptides for the binding of tripeptides
and tripeptidomimetics to hPEPT1. By using multivariate data analysis, VolSurf
descriptors were created and associated with binding affinities. Using Caco-2 cell
monolayers, tripeptides and tripeptidomimetics have their affinities for hPEPT1
experimentally evaluated. The structural variety of the 25 tripeptides and tripep-
tidomimetics was defined by VolSurf descriptors, and their Ki values ranged from
0.15 to 25 mM. A QSAR model was created to connect the tripeptides’ experi-
mentally determined binding affinity for hPEPT1 with their VolSurf characteristics.
The QSAR model was used to derive structural data on tripeptide characteristics
impacting the binding to hPEPT1. This knowledge could be useful for developing
tripeptides and tripeptidomimetics that target hPEPT1 as an absorptive transporter
to enhance intestinal absorption [30].

The dipeptide model suggested the intestinal oligopeptide transporter. By creating
peptidomimetic prodrugs, it has been proposed that the human intestinal di/tripeptide
carrier, hPepT1, could be a drug delivery target for enhancing intestinal transport
of poor permeability substances. These findings suggest that the dipeptide prodrug
principle is a promising drug delivery paradigm. It has been demonstrated that model
ester prodrugs use D-Glu-Ala and D-Asp-Ala as pro-moieties for benzyl alcohol
maintain an affinity for hPepT1. D-Asp(BnO)-Ala and D-transepithelial Glu(BnO)-
Ala’s transport investigations in Caco-2 cells revealed that the Km for transepithelial
transport was not significantly different for the two compounds. Additionally, there is
no difference in the maximum transport rate of the carrier-mediated flux component
between the two model prodrugs [31].

The progress in predicting human ADME parameters by various in silico methods
is being continuously given attention from time to time. Analysing the evolution of a
scientific approach is a useful exercise for predicting the future course that the process
might follow. There are distinct eras in the recent history of computational techniques
to study absorption, distribution, metabolism, and excretion (ADME). With the work
of Corwin Hansch and others, the first started in the 1960s and continued into the
1970s [32]. Small collections of in vivo ADME data were used in their models. The
second period, which spanned the 1980s and 1990s, saw extensive use of in vitro
methods as substitutes for in vivo ADME research. These strategies encouraged the
development and expansion of interpretable computational ADME models that are
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now widely available in the literature. The third era is now, and there are numerous
literature datasets for absorption, drug-drug interactions (DDI), drug transporters
and efflux pumps [P-gp, multidrug resistance protein (MRP)], intrinsic clearance,
and brain penetration that are derived from in vitro data and can theoretically be
used to predict the situation in vivo in humans.

Pharmaceutical corporations have been under constant pressure to accelerate drug
discovery while lowering drug development costs, which has led to the emergence of
combinatorial synthesis, high throughput screening, and computational techniques.
Reduced drug candidate dropout rates are desired in drug development’s final, most
expensive phases. This is done by speeding up the nomination of likely clinical
candidates and raising the failure rate of candidate molecules during the preclinical
stages. The market is now aware that toxicity and pharmacokinetics are the primary
causes of clinical failure aside from efficacy. In order to evaluate features such as
metabolic stability, cytochrome P-450 inhibition, absorption, and genotoxicity earlier
in the drug discovery paradigm, major firm investment in ADME and drug safety
departments occurred in the late 1990s. Evaluating higher throughput data to see
if computational (in silico) models can be built and verified from it is the natural
next step in this process. With such models, the number of chemicals that could be
virtually screened for ADME characteristics could expand exponentially. To address
intestinal permeability and cytochrome P-450-mediated DDI, many researchers have
begun to use in silico, in vitro, and in vivo techniques concurrently [33].

Another study uses comparative molecular field analysis (CoMFA), a three-
dimensional method for developing QSAR, to examine the relationship between
chemical structure (steric and electrostatic fields) and affinity for the small intestinal
oligopeptide carrier (PepT1). Numerous chemical descriptors (CoMFA fields,
isobutyl alcohol/water distribution coefficients, Kt, Jmax, and Pc) and biological
activity parameters (Kt, Jmax, and Pc) were investigated. The regression line between
the experimental and calculated Pc had a slope of 0.994 and an intercept of 0.009. The
model suited the experimental data with a correlation coefficient of 0.993 and a stan-
dard error of 0.041. These findings improve our knowledge of the molecular prereq-
uisites for ideal drug-carrier interactions with the intestinal peptide transporter and
provide a helpful visual tool for developing novel, potentially intriguing structures
that have an affinity for PepT1 [34].

In a comparative molecular field analysis, data from a number of bile acid
analogues were used to create a link between structure and binding activity for
the intestinal bile acid transporter (CoMFA). The investigated compounds included
a number of bile acid-peptide conjugates with modifications at the cholic acid sterol
nucleus position 24, as well as compounds with minor modifications at positions
3, 7, and 12. These substances were split into a training set and a test set for the
CoMFA investigation, each consisting of 25 and 5 molecules, respectively. With
a cross-validated, conventional, and predictive R? of 0.63, 0.96, and 0.69, respec-
tively, the best three-dimensional QSAR model discovered rationalises the steric and
electrostatic factors that modulate affinity to the bile acid carrier, indicating a good
predictive model for carrier affinity. Positioning an electronegative moiety at the
specified positions and adding steric bulk to the side chain’s terminus help bind. The
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model recommends replacements that could result in novel substrates with a suitable
affinity for the carrier at the positions selected positions [35].

10.1.2 An Overview of Computer Simulations Study
of Human Intestinal Transporter

Aninteresting in vivo, in situ, in vitro, and in silico studies report the influence of rhein
on the absorption of rehmaionoside D. Authors stated that breast cancer resistance
and multidrug resistance-associated protein 2 affected the intestinal epithelium’s
permeability by mediating the stimulation of absorption of rehmaionoside D in the
presence or absence of rhein [36].

Physiologically based pharmacokinetic (PBPK) modelling presented to evaluate
in vitro-to-in vivo extrapolation for intestinal P-glycoprotein (P-gp) inhibition. In
order to quantitatively anticipate drug-drug interactions (DDIs) on drug-metabolising
enzymes and transporters, PBPK modelling coupled with in vitro-to-in vivo extrap-
olation (IVIVE) is commonly used in model-informed drug discovery and develop-
ment. Through the use of PBPK modelling, this study sought to examine an IVIVE
for intestinal P-gp-mediated DDIs, including three P-gp substrates-digoxin, dabi-
gatran etexilate, and quinidine- and two P-gp inhibitors-itraconazole and verapamil
[37].

A comparative study on the intestinal absorption of three gastrodin analogues
via the glucose transport pathway is reported in the paper [38]. Three gastrodin
analogues, salicin, arbutin, and 4-methoxyphenyl-D-glucoside, have their intestinal
absorption characteristics assessed using conventional biopharmaceutical and
computer-aided molecular docking techniques (4-MG). The logP values of the
gastrodin analogues were found to be in the following order: 4-MG > salicin >
arbutin, according to the oil-water partition coefficient (logP) studies. Arbutin’s
apparent permeability coefficient value was found to be higher than that of salicin
and 4-MG for in vitro Caco-2 cell transport studies. Arbutin and 4-MG were more
effectively absorbed than salicin, according to in situ single-pass intestinal perfusion
tests, and the three compounds were more effectively absorbed in the small intestine
than the colon. Therefore, the difference in chemical structure can have an impact
on absorption [38].

An in silico, in vitro, and ex vivo approach was presented for the intestinal efflux
transporter inhibition activity of xanthones from mangosteen pericarp [39].

PBPK model-informed drug development for fenebrutinib is presented to under-
stand complex drug-drug interactions. In vitro, fenebrutinib inhibits BCRP and
OATPI1B transporters as well as CYP3A substrate and time-dependently. The
ultimate goal of developing PBPK modelling methodologies was to comprehend
complex drug-drug interactions (DDIs) and suggest doses for hypothetical situa-
tions. Because fenebrutinib inhibits intestine BCRP rather than hepatic OATP1B,
the results of two separate methods: PBPK simulation and endogenous biomarker
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measurement were consistent and supported this theory. The unexpected obser-
vation of itraconazole-fenebrutinib DDI (maximum plasma concentration (Cmax)
lowered, and area under the curve (AUC) increased) was explained by a mechanistic-
absorption model that took into consideration the effects of excipient complexation
with fenebrutinib. Overall data from clinical and nonclinical studies, sensitivity anal-
yses, and other sources indicated that fenebrutinib is probably a sensitive CYP3A
substrate. Without the need for additional clinical DDI trials, this enhanced PBPK
application enabled the adoption of a model-informed approach to assist in the
establishment of concomitant medicine recommendations for fenebrutinib [40].

Development of simplified in vitro P-Glycoprotein substrate assay and in silico
prediction models was presented to evaluate the transport potential of P-gp. Simpli-
fying P-gp substrate tests and offering in silico models that forecast P-transport gp’s
potential are essential for effective drug discovery and screening. The study aimed at
creating a more straightforward in vitro screening approach to assess P-gp substrates
in cells overexpressing P-gp via unidirectional membrane transport. Additionally,
the test set’s low-potential classes in the random forest three-class classification
model displayed high balanced accuracy of 0.821 and precision of 0.761. Authors
concluded that the streamlined in vitro P-gp substrate assay was appropriate for
screening compounds in the early stages of drug discovery and that the in silico
regression model and three-class classification model using only chemical structure
information could identify the transport potential of compounds, including P-gp-
mediated flux ratios. The approach is anticipated to be a useful tool to enhance
efficient central nervous system medications and enhance intestine absorption [41].

Prebiotics and probiotics, which are combined to form synbiotics, may be utilised
to treat diseases like colorectal cancer (CRC) by altering the human gut micro-
biota. The potential combinatorial mechanisms of action of such regimens have not
yet been identified due to methodological restrictions. In order to co-culture CRC-
derived epithelial cells with a model probiotic under a simulated prebiotic regimen,
HuMiX gut-on-a-chip model was enlarged. Researchers also linked the multi-omic
data with in silico metabolic modelling. In contrast to separate prebiotic or probi-
otic treatments, the synbiotic regimen decreased levels of the oncometabolite lactate
and downregulated genes involved in drug resistance and procarcinogenic pathways.
The simulated regimens resulted in various ratios of organic and short-chain fatty
acids being generated. The synbiotic diet was applied to primary CRC-derived cells,
which resulted in a diminished capacity for self-renewal. This strategy exemplifies
the promise of modelling for logically developing medicines based on synbiotics in
future [42].

Computational discovery and experimental validation of inhibitors of the Human
Intestinal Transporter OATP2B1 are elaborated on in the article [43]. Human organic
anion transporters (OATPs) are essential for medication absorption and endoge-
nous chemical efflux. Experimental screening is currently used to identify these
transporter inhibitors. Because there aren’t enough experimental three-dimensional
protein structures, virtual screening is still difficult. An outline of the process for
finding OATP2B1 transporter inhibitors in the DrugBank library of more than 5,000
pharmaceuticals and drug-like compounds is explained. The OATP member 2B1
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transporter is abundantly expressed in the intestine and takes a role in the absorption
of medications taken orally [43].

The role of in silico and in vitro modelling for the intestinal transport of
thyrotropin-releasing hormone (TRH) analogues through PepT1 is discussed in the
chapter [44]. In order to determine how structural changes affect the PepT1-mediated
transport of TRH analogues, the current study uses molecular docking, molecular
dynamics (MD) simulation studies, and a Caco-2 cell monolayer permeability assay.
Using a homology model of the human PepT1, four TRH analogues were molecularly
docked, and then the following MD simulation studies were conducted. Four TRH
analogues were subjected to apical to basolateral and basolateral to apical tests on the
permeability of the Caco-2 cell monolayer. Gly-Sar, acommon PepT1 substrate, was
used in inhibition tests to verify the PepT1-mediated transport mechanism of TRH
analogues. According to MD simulation studies, the majority of substrate binding is
caused by polar interactions with amino acid residues in the active site, and a decline
in substrate binding was seen as bulkiness at the N-histidyl moiety of TRH analogues
increased [44].

10.2 Materials and Methods

10.2.1 Experimental Data Curation

Purpose membrane transporters mediate many biological effects of chemicals and
play a major role in pharmacokinetics and drug resistance. The selection of viable
drug candidates among biologically active compounds requires the assessment of
their transporter interaction profiles. Dataset on 3199 compositions of compounds
which are potential transporters is extracted from the literature [7]. These were repre-
sented by quasi-SMILES containing data on molecular structure together with special
codes related to activity in different directions (Table 10.1). The transporter behaviour
data of the inhibitors were classified as the two main classes of inhibitors [versus
non-inhibitors]. The data on the inhibitory activity of these 3199 compounds were
assigned “1” for active and “— 1 for inactive or non-inhibitors [7]. These contain
1548 active quasi-SMILES (represented inhibitors of different quality) and 1651
inactive samples.
An example of building up a quasi-SMILES:

1. SMILES=“N1C(=NC(=C2C=1N(C=N2)[C@ @H]3C[C@ @H]
(C=C3)CO)NC4CC4)N”;

2. Code for transporter (Table 1)=[ASBT];

3. Quasi-SMILES=“N1C(=NC(=C2C=1N(C=N2)[C@ @H]3C[C@ @H]
(C=C3)CO)NC4CC4)N[ASBT]”.
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Table 10.1 _Ql?asl_SMILES Code for quasi-SMILES | Comment
code of the inhibitors
ASBT Apical sodium-dependent bile acid
transporter
BCRP Breast cancer resistance protein
MCT1 Monocarboxylate transporter I
MDRI1 Multidrug resistance protein I
MRP1 Multidrug resistance-associated
protein 1-4
OATP2B1 Organic anion transporting
polypeptide 2B1
OCT1 Organic cation transporter 1
PEPT1 Peptide transporter 1

10.2.2 Development of the Models

A classification-based model to forecast the inhibitor or non-inhibitor of the
combined potential transporters. The so-called quasi-simplified molecular input-line
entry system (quasi-SMILES), which is equivalent to the conventional SMILES,
is used in QSPR/QSAR evaluations but uses all available data (not just informa-
tion about the molecular structure). Such derived quasi-SMILES codes were used
in the models to represent transporter behaviour [15-20, 45]. Further, the combined
dataset (n = 3199) of the transporters was split into active-training set (ATS) (25%),
passive-training set (PTS) (25%), calibration set (CS) (25%), and validation set (VS)
25%).

Using the technique of semi-correlation [14, 45] models for the inhibitory activity
of different samples was built up.

y = Co + C; x DCW(quasi_SMILES) (10.3)

DCW (quasi_SMILES) = Z CW(code of quasi_SMILES;) (10.4)

The codes for quasi-SMILES are calculated by the Monte Carlo optimisation
procedure that provides the maximum of the target function

TF=Rs+ Rp — 0.1 x |Ra — Rp| + 11C x Wy;¢ (10.5)

R4 and Rp are correlation coefficient values for AT'S and PTS, respectively. The /IC
is the lindex of Ideality of Correlation [46, 47]. The same Monte Carlo optimisation
without the /IC gave significantly poorer predictive potential of the models.

In order to construct the classification model for the two classes of inhibitor (1) and
non-inhibitor (— 1), additional statistical criteria like sensitivity, specificity, accuracy,
and Matthews correlation coefficient (MCC) were also employed [48, 49]. The MCC
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coefficient is mainly utilised in machine learning to evaluate the accuracy of binary
classifications, and it can be applied when the classes have extremely disparate sizes
[50].

TP x TN — FP x FN

MCC = (10.6)
/(TP + FP)(TP + FN)(IN + FP)(IN + FN)
. TP
Sensitivity = ———— (10.7)
TP + FN
Specificit il (10.8)
ecificity = ——— .
P YT FP+IN
TP + TN
Accuracy = (10.9)
TP 4+ FP + FN + TN

In a confusion matrix, the combined two letters TP, TN, FP, and FN stand for
the corresponding numbers of true positives, true negatives, false positives, and false
negatives. MCC values vary from — 1 to + 1, with the former denoting a poor
prediction that is exactly wrong, 0 denoting a prediction that is no better than random,
and + 1 denoting a complete adequating between predicted and observed values [50].

10.3 Result and Discussion

The calculation of the optimal descriptor (DCW), which is the key parameter
to build any classification-based model, is using the CORAL software (http://
www.insilico.eu/coral). The calculation of DCW for a given molecule here
depends on the quasi-SMILES structure of that molecule, where the given
quasi-structure is split into a number of the small structural attributes (SA),
and the Monte Carlo optimisation calculates the correlation weights (CWs) for
each SA of the quasi-SMILES. These CWs for each SA thus obtained by the
above optimisation are added so that they constitute the full molecule; in this
case, it is the quasi-SMILES structure. Table 10.2 lists the CWs obtained for
each SA of the quasi-SMILES present in the molecules. An example of the
calculation of the DCW for one of the molecules having the quasi-SMILES code
(NIC(=NC(=C2C=1IN(C=N2)[C@ @H]3C[C@ @H](C=C3)CO)NC4CC4)N[ASBT])
is provided in Table 10.3.

where Nar, Npr and N¢ are the numbers of SA in active-training set, in passive-
training set, and calibration set, respectively (Tables 10.2 and 10.3). The data given
in Tables 10.2 and 10.3 were obtained for Wy = 0.5, which is discussed in the
subsequent section.

One of the aims of the given study was the assessment of ability of the /IC to
improve the predictive potential of classification models. The W ¢ is weight of the
1IC, i.e. coefficient ranged 0.1-0.7.
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Table 10.2 Correlation weights (CWs) for each SA of the quasi-SMILES

253

Ag CW(SAy) ID Nar Npr Nc¢ DEFECT[SA]
#... 0.5113 1 31 36 18 0.0005
C...C... 0.1667 2 219 220 194 0.0001
(... 0.0918 3 796 823 782 0
/... 0.4731 4 41 50 49 0.0002
/... —0.3147 5 53 65 57 0.0001
1...(... —0.2059 6 398 410 372 0

1... 0.8357 7 774 807 765 0
1.../... —5.0785 8 1 3 1 0.0009
2...(.. —0.5258 9 402 421 372 0.0001
2... 0.3407 10 675 692 668 0
2../... — 2.5945 11 5 8 5 0.0004
2...1... — 1.0360 12 59 59 55 0
3.0 — 0.6801 13 298 307 274 0.0001
3. 0.0936 14 535 528 509 0
3.1 4.8924 15 1 4 1 0.0012
3. 1. 0.5043 16 11 5 12 0.0007
3..2... 0.8259 17 36 30 29 0.0002
4...(.. — 0.4946 18 211 217 184 0.0001
4.. 0.5763 19 356 353 342 0
4..0... 0 20 1 0 0
4...1... 6.4339 21 7 0.0007
4..2... —2.9543 22 10 0.0002
4..3... 1.0088 23 27 20 35 0.0005
5..(.. 0.1400 24 105 98 80 0.0002
5.. 0.0189 25 209 202 166 0.0002
5.1 5.6393 26 2 0 0 1
5...1... — 7.4750 27 1 1 2 0.0007
5..2... — 1.2957 28 1 4 3 0.0009
5..3... —0.2638 29 8 3 4 0.0008
5..4.. — 0.6366 30 9 6 5 0.0005
6...(... — 1.0850 31 72 51 47 0.0004
6... —0.4438 32 94 78 65 0.0003
6.../... 0 33 0 3 0 0
6...1... 2.5367 34 1 3 0 1
6..3... 6.1258 35 2 0 1 0.0017
6..4... 0 36 0 1 0 0

(continued)
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Ag CW(SAy) ID Nar Npr Nc¢ DEFECT[SA]
6...5... 2.0127 37 4 4 4 0
7...(.. —0.7746 38 36 22 20 0.0005
7... — 1.5993 39 46 32 28 0.0004
7...6... — 1.1444 40 3 5 3 0.0004
8...(... — 1.4578 41 15 8 7 0.0007
8... — 1.4890 42 15 8 8 0.0006
8...7... 0.7743 43 2 1 0 1
9...C.. — 5.2887 44 1 1 3 0.001
9... —4.0709 45 3 2 3 0.0004
9...6... 0 46 0 1 3 0
9..8... —5.0209 47 1 0 0 1

G 0.0766 48 656 663 639 0
=.. 0.1613 49 724 757 716 0

I PO 0.2969 50 280 317 305 0.0001
=..2... 0.3230 51 269 261 239 0.0001
=..3... 1.6280 52 232 227 216 0
=..4.. 0.0092 53 131 135 131 0
=..5... 2.8998 54 83 97 80 0.0001
=...6... —0.1574 55 59 45 37 0.0004
=..7.. — 0.8928 56 36 20 15 0.0007
=..8... — 0.8572 57 10 5 2 0.0012
=..9... 7.5056 58 1 0 0 1
C..#.. —0.3565 59 29 35 16 0.0005
C...(... 0.2899 60 785 806 767 0
C... 0.0453 61 795 820 783 0
C.../... 1.4637 62 41 52 52 0.0002
C...1... 0.5849 63 585 631 584 0
C..2... 1.0689 64 539 563 545 0
C..3... 0.4973 65 446 430 409 0.0001
C..4.. —0.0300 66 267 287 265 0
C..5... 0.1184 67 163 165 128 0.0002
C...6... —0.5474 68 74 62 54 0.0002
C...7... —0.2580 69 43 23 19 0.0007
C...8... — 0.8147 70 14 6 5 0.0009
C..9... 1.2824 71 2 1 3 0.0009
C.. = 0.3848 72 553 559 527 0

(continued)
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Table 10.2 (continued)
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Ag CW(SAy) ID Nar Npr Nc¢ DEFECT[SA]
C...C... 0.8918 73 723 742 705 0
F...(... —0.5111 74 63 75 68 0.0001
F... 1.9909 75 73 83 76 0.0001
F...1... 0 76 0 1 0 0
F..2... — 7.0879 77 1 0 1 0.0013
F..4.. 0 78 0 0 3 0
F...C... — 1.0458 79 41 46 32 0.0002
Br.( 0.2533 80 7 2 3 0.0011
Br... —0.1213 81 7 2 3 0.0011
Br0.2... 0 82 0 0 1 0
Br.0.3... —0.9756 83 1 1 0 1
Br.04... —1.0217 84 1 0 2 0.0017
Br.C... 0 85 0 1 0 0
L..C.. —0.7582 86 2 3 6 0.0009
I... —0.1647 87 2 4 6 0.0009
I..3... 0 88 0 0 1 0
I...C... 0 89 0 1 2 0
CL.(.. — 0.2604 90 28 26 26 0.0001
Cl.. 1.3187 91 31 32 28 0.0001
CLO.1 — 24033 92 2 0.0007
CLO.2. 0 93 1 0
C1.0.3. 0 94 1 0
CL.C —2.9645 95 3 0.0003
N..#... 1.3416 96 25 32 15 0.0005
N...(... —0.8278 97 480 501 460 0

N... —0.3147 98 583 622 584 0
N.../... — 1.9614 99 7 9 3 0.0007
N...1... —0.5937 100 142 142 151 0.0001
N...2... —0.3584 101 143 168 165 0.0001
N...3... 0.1814 102 144 137 133 0.0001
N..4... —0.1822 103 67 66 66 0
N...5... 0.6578 104 17 19 16 0.0001
N...6... — 3.3376 105 8 4 10 0.0007
N...7... 0.5438 106 3 1 1 0.001
N...8... 0 107 0 1 3 0
N..9... — 209121 108 1 0 0 1

(continued)
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Ag CW(SAy) ID Nar Npr Nc¢ DEFECT[SA]
N...= 0.2142 109 177 178 186 0.0001
N...C... 0.5314 110 490 525 496 0
N...F... 0 111 0 1 0 0
N...ClL.. 0 112 0 0 1 0
N...N... —2.3714 113 16 11 6 0.0007
O...(... —0.1308 114 695 705 683 0

O... 0.0593 115 732 756 736 0
O.../... — 2.8947 116 4 3 5 0.0005
O...1... 1.0195 117 139 129 140 0.0001
0...2... —0.1934 118 83 87 95 0.0001
0..3... 1.0158 119 71 60 53 0.0002
O..4... 0.3474 120 36 26 37 0.0003
0...5... —0.2599 121 50 39 43 0.0002
0O...6... 0.0207 122 10 9 4 0.0006
0..7... 3.6845 123 4 5 4 0.0002
0..8... —2.5514 124 1 0 2 0.0017
O...= 0.2706 125 610 602 622 0.0001
0...C... 0.0309 126 520 530 506 0
O...N... 1.7677 127 3 8 4 0.0008
0...0... 0 128 0 0 1 0
P...(... — 1.0819 129 4 4 2 0.0005
P.. 2.6365 130 7 7 2 0.0008
P...1... — 1.1353 131 3 3 0 1
P...= 1.6753 132 6 3 2 0.0009
P...O... —2.4209 133 1 4 0 1
S...(... —0.7941 134 94 78 93 0.0002
S.. — 0.1689 135 117 111 124 0.0001
S.../... 1.6703 136 1 1 0 1
S...1... 0.4432 137 5 9 10 0.0005
S...2... — 3.4664 138 9 21 20 0.0006
S..3... 4.2809 139 5 6 1
S...4.. 0.0080 140 5 2 0.0008
S...5... 0 141 0 0 0
S...8... 0 142 0 0 1 0
S...= 0.3710 143 35 35 38 0.0001
S..C... 1.0060 144 46 47 48 0.0001

(continued)
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Table 10.2 (continued)
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Ag CW(SAy) ID Nar Npr Nc¢ DEFECT[SA]
N — 0.9896 145 10 7 6 0.0004
...0.. 8.5332 146 5 3 4 0.0004
\oC 0.5120 147 37 39 26 0.0003
\.. 0.7106 148 52 55 49 0
\. 1 —2.7657 149 2 1 3 0.0009
\..3... — 2.1106 150 2 1 0 1
\..4... 0 151 1 0 0
\...C... 0.9521 152 42 49 44 0.0001
\...N... 1.8119 153 12 13 9 0.0002
\...O... — 29818 154 5 7 3 0.0006
[C+]... 7.4452 155 1 0 0 1
[BCRP]... —0.596 156 79 104 99 0.0002
[ASBT]... —2.3700 157 31 43 33 0.0002
[C@@H]... —0.0922 158 193 168 198 0.0002
[Ce@]... 0.3572 159 86 81 80 0.0001
[C@H]... 0.0880 160 189 169 190 0.0001
[C@]... 0.4880 161 93 87 85 0.0001
[CH]... — 0.8197 162 8 13 12 0.0003
[Br—]... —0.4078 163 4 2 0.0011
[Cl-]... — 1.7000 164 1 1 0 1
[Br]... 2.1211 165 6 10 3 0.0009
[I-]... — 4.3498 166 1 2 0 1
[C]]... 1.0336 167 45 58 34 0.0004
A — 1.2665 168 9 7 2 0.001
A2 8.3159 169 1 0 0 1
ARG F 3.5091 170 1 0 0 1
N4 0 171 0 1 0 0
ALSL 0 172 0 2 0 0
ALCl 1.2156 173 6 3 1 0.0012
AN I 1.6154 174 3 2 1 0.0008
A.LLCL. —4.5392 175 1 0 0 1
AN O I 0 176 0 1 1 0
[H]... — 1.7327 177 11 14 11 0.0002
[N+]... — 1.0429 178 23 12 11 0.0006
[O—]... —0.5924 179 13 9 13 0.0003
[MCT1]... 3.0453 180 12 10 24 0.0008

(continued)
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Ag CW(SAy) ID Nar Npr Nc¢ DEFECT[SA]
[MDRI1]... — 1.2082 181 399 409 371 0
[P+1]... 0 182 0 0 1 0
[P—]... — 2.6936 183 3 2 0.0008
[NH2]... 1.5537 184 1 1 0 1
[MRP1]... — 1.3966 185 119 100 108 0.0002
[MRP2]... — 1.4168 186 27 27 19 0.0003
[MRP3]... —0.2338 187 7 11 9 0.0003
[MRP4]... 4.2517 188 21 13 16 0.0004
[NH]... 0.7952 189 3 5 1 0.0011
[OATP2B1]... 1.1454 190 30 32 44 0.0004
[OCT1]... 4.1562 191 51 54 43 0.0001
[PEPTI]... 4.6009 192 26 26 12 0.0005
[N]... —4.6764 193 7 0.0004
[Se]... 1.1415 194 1 1
[Si]... 1.2054 195 1 0
[mn+1]... 0.8357 196 13 10 13 0.0003
[nH]... 2.8228 197 13 13 15 0.0002
c...(... —0.0761 198 209 211 216 0.0001
c... 0.0934 199 231 233 241 0.0001
c.../... —2.0681 200 2 5 3 0.0007
c...l... 0.2582 201 188 197 207 0.0001
c..2... 1.2260 202 148 139 157 0.0001
c...3... 0.6555 203 84 69 90 0.0003
c...4.. 1.1246 204 67 54 62 0.0002
c...5... 1.8007 205 44 29 32 0.0004
c...6... 0.4491 206 12 10 11 0.0002
c...7... —3.5070 207 3 6 0.0005
c...8... 6.3699 208 1 1 1
c...9... 4.3633 209 1 1 1
C...= —2.7384 210 2 0 1
c...C... 0.5559 211 116 103 118 0.0002
c...ClL. 0.8779 212 2 2 1 0.0005
c...N... 1.3671 213 31 37 44 0.0003
c...0... 0.6487 214 79 73 89 0.0002
c...S... — 2.7646 215 3 0.0006
c..\... —1.0142 216 8 0.0001

(continued)
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Table 10.2 (continued)
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Ax CW(SAg) ID Nar Npr Nc¢ DEFECT[SA:]
c...C... 0.6562 217 218 215 223 0.0001
n...(... — 0.4899 218 23 26 33 0.0003
n.. —0.7286 219 63 66 64 0
n...l... — 1.0714 220 31 23 26 0.0003
n...2... 0.2175 221 11 7 18 0.0008
n...3... 0.9786 222 3 6 2 0.0009
n...4... 2.8537 223 4 1 2 0.0011
n...5... 0 224 0 2 1 0
n...C... — 1.2624 225 4 7 2 0.0009
n...0... 0 226 0 1 0 0
n...c... 0.7512 227 45 55 44 0.0001
n...n... — 1.8964 228 3 0 2 0.0015
o...(... — 1.3584 229 9 5 4 0.0007
o.. —0.5391 230 28 30 24 0.0001
o...1... —4.2328 231 6 10 6 0.0004
o...2... 0 232 0 2 1 0
o...3... 0.0319 233 1 3 3 0.0007
o...4... 5.3312 234 4 7 1 0.0012
o...5... 2.1397 235 3 3 0 1
0...6... 0 236 0 1 0 0
0...C... 0.2404 237 7 14 4 0.0009
0...N... — 0.6625 238 21 15 18 0.0003
S...(... 4.9839 239 7 4 7 0.0005
S.. 0.9463 240 24 22 27 0.0002
s...l... 1.5798 241 11 13 15 0.0003
s...2... — 6.3189 242 4 2 0.0011
s...3... 5.9390 243 3 0.0015
s...4... 0 244 0 0
S...C... 2.7841 245 22 20 26 0.0003

So when we are changing the Wy from 0.1 to 0.7, the changes in the classifica-
tion parameters of the model such as sensitivity, specificity, accuracy, and Matthews
correlation coefficient (MCC) for the different sets of the data (active-training,
passive-training, calibration and validation sets) are given in Table 10.4.

The graphical variation of these parameters for the validation set is represented in
Fig. 10.1a the variation of sensitivity versus different W;¢; Fig. 10.1b the variation of
specificity versus different Wy¢; Fig. 10.1c the variation of accuracy versus different
Wiic; and Fig. 10.1d the evolution of values of Matthews correlation coefficient
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Table 10.3 Example of the calculation of the optimal descriptor (DCW) for quasi-SMILES
“NI1C(=NC(=C2C = IN(C = N2)[C@ @H]3C[C@ @H](C = C3)CO)NC4CC4)N[ASBT]”

Structural attribute CW(SA) ID Nar Npr Nc¢
(SA)

N... —0.3147 98 583 622 584
1... 0.8357 7 774 807 765
C... 0.0453 61 795 820 783
(.. 0.0918 3 796 823 782
= 0.1613 49 724 757 716
N... —0.3147 98 583 622 584
C... 0.0453 61 795 820 783
(.. 0.0918 3 796 823 782
= 0.1613 49 724 757 716
C... 0.0453 61 795 820 783
2... 0.3407 10 675 692 668
C... 0.0453 61 795 820 783
= 0.1613 49 724 757 716
1... 0.8357 7 774 807 765
N... —0.3147 98 583 622 584
(.. 0.0918 3 796 823 782
C... 0.0453 61 795 820 783
= 0.1613 49 724 757 716
N... —0.3147 98 583 622 584
2... 0.3407 10 675 692 668
(... 0.0918 3 796 823 782
3... 0.0936 14 535 528 509
C... 0.0453 61 795 820 783
(... 0.0918 3 796 823 782
C... 0.0453 61 795 820 783
= 0.1613 49 724 757 716
C... 0.0453 61 795 820 783
3... 0.0936 14 535 528 509
(.. 0.0918 3 796 823 782
C... 0.0453 61 795 820 783
O... 0.0593 115 732 756 736
(.. 0.0918 3 796 823 782
N... —0.3147 98 583 622 584
C... 0.0453 61 795 820 783
4... 0.5137 19 356 353 342

(continued)
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Table 10.3 (continued)
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Structural attribute CW(SA) ID Nar Npr Nc
(SA)

C... 0.0453 61 795 820 783
C... 0.0453 61 795 820 783
4... 0.5137 19 356 353 342
(... 0.0918 3 796 823 782
N... —0.3147 98 583 622 584
N...1... — 0.6562 100 142 142 151
C...1... 0.5849 63 585 631 584
C...(... 0.2899 60 785 806 767
=...(... 0.0766 48 656 663 639
N...= 0.2142 109 177 178 186
N...C... 0.5314 110 490 525 496
C...(... 0.2899 60 785 806 767
=..(... 0.0766 48 656 663 639
C...=.. 0.3848 72 553 559 527
C..2... 1.0689 64 539 563 545
C...2... 1.0689 64 539 563 545
C...=.. 0.3848 72 553 559 527
=...1.. 0.2344 50 280 317 305
N...1... — 0.6562 100 142 142 151
N...(... — 0.8278 97 480 501 460
C...(... 0.2899 60 785 806 767
C...= 0.3848 72 553 559 527
N... = 0.2142 109 177 178 186
N...2... — 0.3584 101 143 168 165
2...(... —0.5258 9 402 421 372
C..3... 0.4973 65 446 430 409
C...(... 0.2899 60 785 806 767
C...= 0.3848 72 553 559 527
C...= 0.3848 72 553 559 527
C..3... 0.4973 65 446 430 409
3. — 0.6801 13 298 307 274
C...(... 0.2899 60 785 806 767
0O...C... 0.0309 126 520 530 506
O...(... —0.1307 114 695 705 683
N...(... — 0.8278 97 480 501 460

(continued)
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Table 10.3 (continued)

Structural attribute CW(SA) ID Nar Npr Nc¢
(SA)

N...C... 0.5314 110 490 525 496
C..4... —0.03 66 267 287 265
C..4... —0.03 66 267 287 265
C...C... 0.8918 73 723 742 705
C..4... —0.03 66 267 287 265
4...(... — 0.5571 18 211 217 184
N...(... — 0.8278 97 480 501 460
[C@@H]... —0.0922 158 193 168 198
[C@@H]... —0.0922 158 193 168 198
[ASBT]... — 24325 157 31 43 33
DCW 4.9603

for different Wyc. One can see that the maximal value of the MCC observed for
Wic = 0.5 (Fig. 10.1d). So the classification model at Wy = 0.5 gives better
sensitivity, accuracy, and Matthews correlation coefficient. However, the highest
specificity could be obtained at Wy = 0.6 (Fig. 10.1b).

Hence, the value of the Wy = 0.5 should be applied to build up a model for
inhibitor activity for potential Human Intestinal Transporters.

The outcomes of the classification-based models on the Human Intestinal Trans-
porters are represented in Table 10.4. This table contains the statistical quality of
these models. The statistical criteria are calculated as:

active if,y >0

10.10
inactive if, y < 0 ( )

Category(quasi_SMILES) = {

Using qualitative statistical validation metrics, such as sensitivity [0.7629—
0.8067], specificity [0.7323-0.7626], accuracy [0.7526-0.7844], and Matthews
correlation coefficient (MCC = [0.5058-0.5697]), a classification-based model
that predicts the kind of combined inhibition (activator, non-activator) was veri-
fied. The CORAL classification model, which is being implemented to build these
classification models, has the predictive potential.

Supplementary materials section contains the technical details on the model
observed in the case Wiic = 0.5.
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Fig. 10.1 a Variation of sensitivity versus different Wy, b the variation of specificity versus
different Wyjc, ¢ the variation of accuracy versus different Wyc and d the changes in Matthews
correlation coefficient for different Wy ¢

10.4 Conclusion

The classification-based QSAR model of different kinds of inhibitory activity
presented in the chapter for a large list of Human Intestinal Transporter using quasi-
SMILES codes was good. The extraction of biological characteristics from quasi-
SMILES and computation of so-called correlation weights (CWs) for these attributes
using Monte Carlo techniques proved successful in building classification-based
models. As qualitative statistical validation criteria, the classification model was
tested using sensitivity (= 0.86), specificity (= 1), accuracy (= 0.96), and Matthews
correlation coefficient (MCC = 0.90). A model of several types of inhibitory activity
using quasi-SMILES was presented for a large dataset on 3199 of the Human
Intestinal Transporter. The computational experiments confirm the ability of the
IIC to improve the predictive potential of classification models. So it can be said
that the reported classification-based models highlighted in the present chapter are
a successful attempt to predict Human Intestinal Transporters’ behaviour of a large
dataset. The selection of promising therapeutic candidates from libraries of bioactive
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compounds should be made more accessible by understanding such features. Addi-
tionally, these profiles might be useful for modelling higher-order ADMET effects
mediated by intricate transporter interactions.

Declaration of Competing Interest The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to influence the work reported in
this paper.
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Chapter 11 ®)
Quasi-SMILES as a Tool for Peptide oo
QSAR Modelling

Md. Moinul, Samima Khatun, Sk. Abdul Amin, Tarun Jha,
and Shovanlal Gayen

Abstract Peptides have played an attractive role since a few decades in the discovery
of new drugs in various areas involving hormones, antimicrobials, cytokines, etc. The
peptide is very righteous alternative for small molecules and biological therapeutics.
Different modelling approaches can be applied to accelerate the design of different
peptides-based molecules. Simplified molecular input line entry system (SMILES) is
asequence of symbols which is used to recount the molecular structure of compounds.
This method helps in the development of QSAR models that describe the physio-
chemical property of the compounds. In contrast to SMILES, quasi-SMILES is used
as an encipher for both information about molecular structure and specific experi-
mental conditions (biological and physicochemical conditions). Quasi-SMILES uses
eclectic information to design an extended representation of data. It represents all
peptides in abbreviation of their corresponding amino acid and can be applied in
the field of peptide-based QSAR modelling. In this chapter, we have discussed the
different modelling approaches including quasi-SMILES approach for the develop-
ment of QSAR models of peptide. The different models and their success in peptide
QSAR models have been covered in detail.
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11.1 Introduction

Peptides are a chain of amino acids (usually 2-20). Peptide is attracting wide atten-
tion due to its high activity and selectivity with few side effects against different
targets [1-3]. To date, a variety of functional peptides have been reported, including
antihypertensive, antithrombotic, opioid, antimicrobial, antioxidant, anticancer, and
immunomodulatory peptides [3, 4]. Thus, peptides are playing a pivotal role in drug
discovery, development of vaccines, hormones, antibiotics, cytokines, neurotrans-
mitters, immunomodulating agents, toxins, exogenous antigens, and food additives
(Fig. 11.1). In comparison with small-molecule inhibitors, peptides as drug candi-
dates have the potential to combine the properties of easy modification, remarkable
specificity, excellent biocompatibility, and low side effects [3, 5].

The successful applications of peptides in drug discovery were initiated with the
use of insulin in type I diabetics which was extracted from the animal pancreas. Short
peptides such as oxytocin, gonadotropin-releasing hormone (GnRH), vasopressin,
and somatostatin have initiated the field of peptide drug development [5]. To date,
over 60 peptide drugs have been approved in the United States, Europe, and Japan to
date. More than 150 peptide drugs are in the clinical development phase, and another
260 have been tested in human clinical trials [6].

Further, optimization of natural sequences of these peptides has led to the devel-
opment of a number of naturally occurring hormone-mimetic peptide drugs [7]. For
instance, the development anti-T2DM peptide drugs such as liraglutide, dulaglutide,
and semaglutide, peptide drugs derived from GnRH such as degarelix and leuprolide
and some other approved peptide drugs such as octreotide (a somatostatin mimicking

L Advantages ] L Therapeutic Applications ]
High specificity Development of natural hormones
(insulin, GLP-1, GnRH, oxytocin etc.)
Good efficacy

Development of natural hormone-
mimetic peptide drugs
Eg. Dulaglutide, leuprolide

Low immunogenicity

Easy modification
Membrane permeability Tumor-therapy, gastric cancer and

Cardiovascular diseases

Peptide-based nanomaterials,
peptide vaccines

Low cost

Fig. 11.1 Current applications and advantages of peptides in therapeutics
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peptide drug), desmopressin (synthetic analogue of 8-Arg-vasopressin), carbetocin
(an oxytocin homologue), and atosiban (an oxytocin antagonist) [5].

Peptides are also used in development of antimicrobial drugs. These antimicrobial
peptides are also useful in the cosmetic industry. Antiviral peptides [8—10] drew a lot
of interest during the COVID-19 pandemic. Scientists have devoted extensive effort
to develop peptide vaccines against SARS-CoV-2. Design and identification of poten-
tial peptide vaccine candidates have been accelerated by the rapid application of novel
technologies such as immunoinformatics analysis, in silico identification, epitope-
based design, and molecular docking. Although, no antiviral peptide vaccine has
been approved for COVID-19 treatment, and significant expertise has been gained in
the development of antiviral peptide vaccines against potential future viruses, such
as SARS-CoV-2 [5]. Due to their tiny size, strong affinity, ease of modification,
and minimal immunogenicity, peptides have also gained interest in the treatment
and diagnosis of tumours. Some altered peptides have also shown to be stable. For
instance, stable-helical peptides were developed by Carvajal et al. as MDMX and
MDM?2 inhibitors for pS3-dependent cancer treatment [11, 12]. Peptides have also
demonstrated potential for treating gastric cancer. Additionally, it has been demon-
strated that peptides regulate gastrointestinal (GI) motility. By boosting CGRP and
endogenous PGs instead of NO, GLP-2 peripheral injection improved GI blood flow
and mucosal blood flow of stomach [13].

Several peptides are identified from natural products. Some bioactive peptides
obtained from plants, animals, bacteria, and fungi exhibit therapeutic properties. For
example, venom peptides extracted from scorpions and snakes have been transformed
for therapeutic purposes. Snake venom is believed to be a vascular endothelial growth
factor (VEGF) analogue (also known as svVEGF or VEGF-F) [14-16]. Addition-
ally, ziconotide derived from Conus magus venom and exenatide (a GLP-1 agonist)
derived from Gila monster venom have both been used in the treatment of chronic
neuropathic pain [17, 18]. Furthermore, another type of peptide obtained from natural
products is non-ribosomal peptide (NRP). Vancomycin, lugdunin, teixobactin, and
cyclosporin are antibacterial NRPs derived from bacteria and fungi, whereas a-
amanitin, actinomycin, and nanocystin A are anti-tumour NRPs [19-22]. Some
cyclodepsipeptides [23-25] (a type of NRP found in plants), such as enniatin B
and emodepside [26, 27], have improved plasma stability, allowing for oral adminis-
tration. Recently, recombinant technology is also employed for the longer peptide for
lead discovery [5]. Peptide represents different physiological functions like natural
biological messenger in endocrine signalling pathway.

Currently, in silico methods such as molecular docking and simulations, mathe-
matical modelling, chemometrics, and quantum-chemical calculations are progres-
sively being employed to design, screen, and discover bioactive peptides [28]. The
QSAR modelling techniques of peptides have attracted attention in the recent years
[29-31]. QSAR modelling has been extensively used to predict the physicochemical
properties or biological activity of chemicals and pharmaceuticals. Designing and
screening new molecules, predicting their activities, and figuring out the mechanism
of bioactive peptides have all been accomplished using QSAR techniques. A variety
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of techniques derived from QSAR have surfaced in the recent years [32—40]. To ratio-
nally research, evaluate, and design bioactive peptides or peptidic molecules with in
silico assistance, computational peptidology has appeared as a distinct and promising
area [41]. However, unfortunately, only few databases of peptides like CAMPR3 [42];
DBAASP [43]; BACTIBASE [44]; and CS-AMPPred [45] are available. Therefore,
development of new mathematical models involving different activities of peptides
is very much necessary along with conventional development of peptide containing
medicines or therapy.

11.2 A Brief Overview of QSAR

The quantitative structure—property/activity relationships (QSPRs/QSARs) are a
relatively emerging field in drug discovery [46]. The QSPRs/QSARs method is
linked with a broad number of goals, the most important of which are likely the
estimation of the physicochemical behaviour of various substances and their subse-
quent effect in human and animal bodies, prediction of the biochemical behaviour
of various substances in medicinal aspects, and selection of substances that could
be potential contender for the specific role [47]. The QSAR/QSPR approaches are
based on the idea that a particular chemical compound’s activity or property such
as a drug binding to receptors or poisonous effect relates to its structure through a
particular mathematical equation. A chemical compounds molecular structure will
be related to its properties or biological activity. The prediction, interpretation, and
evaluation of novel compounds with desired activities or qualities can therefore be
done using this connection, lowering and simplifying the time, effort, and expense
of synthesis as well as the cost of developing new products [48]. The establishment
of a mathematical relationship between a chemical reaction and quantitative chem-
ical characteristics characterizing the characteristics of the examined molecules is
known as QSAR modelling on a group of structurally related chemicals. Therefore,
this work aims to develop a mathematical formalism between a chemical’s behaviour,
or reaction, and a collection of quantitative chemical properties that may be derived
from chemical structures using the appropriate experimental or theoretical methods.
Therefore, QSAR technique can be mathematically represented as

Biological activity = f(Chemical attributes) (11.1)

The fundamental idea behind the term ‘“chemical attribute” is to refer to the
characteristics that specify how a chemical compound behaves, or responds [49].
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11.3 Peptide QSAR Modelling

Peptide QSAR modelling involves several steps, such as dataset collection, structural
characterization, variable selection, model building, model validation, and evaluation
[50]. Figure 11.2 depicts a workflow of QSAR modelling of peptides.

The first important step in QSAR modelling of peptides is the dataset collection.
The scope, application, and predictive power of a QSAR model depend largely on
the selected dataset. The datasets can be obtained from databases, experimental
results, and literature. Dearden et al. recommended avoiding datasets generated
from different sources or datasets that were established using different protocols
because they frequently produce unreliable modelling results [38]. The modelling
results will suffer if the dataset contains duplicate samples or if two peptides have
identical sequences but different endpoint values. Data collection should consider
the subsequent modelling as one of the most important steps. For instance, the
balance of sample size between the positive and negative groups should be taken
into consideration to prevent over fitting in QSAR modelling. One of the crucial
components of QSAR modelling is the characterization of molecular structures. To

Dataset collection
== gy il
Database Experiments Literature

!

Structural Characterization
*Amino acid descriptors
*Global descriptors

!

Variable selection

!

Model Construction

Maltiple Lincar Regressbon

Z e00ee
[

Quasi-SMILES AN SVM PLS MLR PCA

Evaluation and applications

Fig. 11.2 Workflow of QSAR modelling of peptides
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describe the structure of peptides, global and local descriptors—also referred to as
amino acid descriptors—are frequently used. Global descriptors are molecular terms
that describe an entire compound. For instance, global descriptors of molecules
are those that describe a compound holistically, such as volume and polar surface
area. Researchers have used global descriptors such as hERG channel inhibitors
[51], chemical reactivity properties, and bioactivity scores [52] to computationally
predict the potential of compounds. Some programmes such as ADMETSar [53] and
ADMETLab [54] can employ global descriptors for prediction of bioactive peptides.
These programmes utilize the structural characteristics of compounds annotated in
SMILES code rather than amino acid sequences. The basic idea behind amino acid
descriptors is to transform the amino acid sequence into a matrix—vector of structural
descriptors by describing the peptide residues quantitatively. “Z-scales” (scales of
hydrophilicity and bulk and electronic properties) are a set of descriptors used in
peptide QSAR modelling. It is based on 29 physicochemical variables of 20 coded
amino acids and is determined by principal component analysis (PCA) [55]. Later,
Sandberg et al. used 5z-scales [56], which combine 26 physicochemical variables
with steric, lipophilic, electronic, and other properties derived from PCA, to char-
acterize the structures of 87 amino acids. Isotropic surface area (ISA) of the amino
acid side chain and the electronic charge index (ECI) of all the atoms in the side
chain are also used to interpret the peptide QSAR [57]. Moreover, peptides are 3D
molecules with distinctive structures. From this viewpoint, the structural descrip-
tion of peptides should fairly represent their 3D properties. In this regard, global
descriptors are superior to amino acid descriptors.

After structural characterization, the next important step of peptide QSAR
modelling is variable selection. To guarantee the reliability and appropriate inter-
pretation of a QSAR model, variable selection is essential. Currently, there are a
lot of variable selection techniques used in QSAR modelling [58]. Some of the
representative methods for variable selection include the genetic algorithm (GA),
the stepwise method, forward selection, and backward elimination. Forward selec-
tion is also known as “in but not out” algorithm. In forward selection, a variable
with a significant effect on dependent variables will be introduced until a new vari-
able cannot be introduced. Backward elimination is an “out but not in” algorithm
in which each variable that has no significant impact on the dependent variables is
eliminated until none of the independent variables can be eliminated. The stepwise
method performs forward selection and backward elimination at the same time [59],
making it an efficient method for locating the optimal subspace. Genetic algorithm
is a variable selection method that mimics natural selection and the natural genetic
mechanism of biology [60].

After preparing the selected variables as independent variables and the correct
response values of the dataset as dependent variables, the next step is to use scientific
methods to build the model. This step is known as model construction. The various
approaches used for peptide modelling include simplified molecular input line
entry system (SMILES) and quasi-SMILES approaches [41], linear approaches like
partial least square (PLS) method, multiple linear regression (MLR), and nonlinear
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approaches, such as artificial neural network (ANN) and support vector machine
(SVM).

Simplified molecular input line entry system (SMILES) is a specific type of chem-
ical language or information system for defining chemical structure in a simpler way
by using line notation [61]. This molecular representation can be trained faster and
during training set generation improve the model and give less over fit. The molec-
ular generation system in SMILES follows two steps, scaffold generator and decora-
tors. Moreover, SMILES syntax is extended with aster marks [“*”]. To describe
data that includes not just molecular structure but also physicochemical and/or
biochemical circumstances, new expanded forms of representation must be found
due to the diversity of substances used to decide activities in medicinal chemistry.
Quasi-SMILES is alternative of SMILES to design the extended representation of
data, which have all available eclectic information. Quasi-SMILES departs from
regular simplified molecular input line entry system (SMILES) by incorporating
additional symbols that encode for experiment circumstances. SMILES descrip-
tors can be used to construct quantitative structure—property/activity relationships
(QSPRs/QSARs) [62-65], whilst quasi-SMILES descriptors can be used to develop
quantitative models of experimental results derived under diverse situations. It is
undeniable that the quasi-SMILES strategy is encouraging better communication
and collaboration between experimentalists and computational researchers [41]. The
most commonly used software CORAL [66] that is based on the SMILES with string
symbol helps to develop QSAR of chemical structures.

In this discussion, we have mainly focussed on QSAR studies of peptides based on
quasi-SMILES tool for the development of QSAR model that will help to design new
peptide molecules in the discovery and development of amino acid-based therapeutics
and also in the development of peptide drug discovery in the future. This QSAR
modelling will also help to improve other properties of peptide during new lead
discovery, such as half-life of peptide, selectivity, potency, pharmacokinetics, and
pharmacodynamics property.

11.4 SMILES-Based Descriptors for QSAR Model
Development

For the development of QSAR model by using SMILES notation system, a simple
mathematical equation is used for describing all descriptors which is representing in
Eq. 11.2.

DCW(T, N) = yCW(BOND) + .CW(ATOMPAIR)
+ (CW(NOSP) + CW(HALO) +a Y  CW(S,)

+BY _CW(SS)) + ¥ ) CW(SSSy) (11.2)
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Coefficients y, x, z, t, &, 8, and y can be 0 (no) or 1 (yes). When the value of a
coefficient is 1, an appropriate SMILES-based descriptor is used in model construc-
tion. If the value is 0, an appropriate SMILES-based descriptor is discarded during
model construction. 7 and N stand for the respective threshold value and number
of epochs in this equation. By using CW, the correlation weights were expressed
[67-70]. To modify descriptors, various coefficients including x, y, z, and ¢ were
employed. The global SMILES qualities are represented by NOSP, HALO, BOND,
and ATOMPAIR, whereas the local smile properties are indicated by S, SSi, and
SSSk.

Conventional SMILES-based QSAR methods have solved different types of
problem but there have few disadvantages of these methods that is why not able
to solve all task specially related to peptides for development of QSAR model. This
is due to the fact that in general, very complicated molecular structures of peptides
and related chemical compounds cannot be described by graphs or SMILES. In the
peptide QSAR modelling, instead of SMILES, quasi-SMILES can be implemented.

11.5 Quasi-SMILES

Quasi-SMILES is a technique, which is initially used for representing aspects such as
circumstances and conditions associated with the substance’s behaviour [71-74]. In
another way, the quasi-SMILES allows for the representation of situations where the
examined phenomena appear to be influenced by factors other than molecular archi-
tecture, such as physicochemical (biochemical) conditions and different environ-
mental factors (such as the presence or absence of light, concentration, and porosity)
[72]. Each condition of the substances is represented by a specific code [71]. The total
of the correlation weights of the codes of conditions serves as the best descriptor.
The Monte Carlo approach is used to calculate the correlation weights’ numerical
data [74].
The main purport for traditional QSAR model is

Endpoint = F (molecular structure) = F(SMILES) (11.3)

But in case of quasi-SMILES-based QSAR modelling, the equation changes
because of the eclectic data that is

Endpoint = F (All available eclectic conditions) = F(quasi-SMILES)  (11.4)

Toropova et al. [75] reported the representation of the quasi-SMILES based
on the “SMILES + Cell Code”, where cell codes are like for MCEF-7,
Cell Code %11; for HCT-116, Cell Code %12; for A549, Cell Code %14
and for HepG2, Cell Code %13. Further for example, if the SMILES is
“COclcec(ccl)c2ec3ce(en2)C(=0)C(=CC30)NC” and Cell Code is “%11”, then
quasi-SMILES is like “COclccc(ccl)c2ec3ce(cn2)C(=0)C(=CC30)NC%11”. In
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case of peptide QSAR, the amino acid sequence can be directly used as input for the
quasi-SMILES-based model development by using Monte Carlo approach.

11.5.1 Development of QSAR Model by Quasi-SMILES

For the development of QSAR model, firstly data should be collected for different
literature like “cellular uptake potentials of specific cells” [73] or “cytotoxicity of
different cell line” or any other biological data [75]. To get a proper QSAR model,
the biological activity data is very much important. These are represented by specific
way like ICso value. Then, the dataset is separated into training dataset, invisible
training set, calibration set, and validation sets. The special symbol in the first place
of a quasi-SMILES string denotes the distribution: active training set is denoted by +
, passive training set is denoted by —, calibration set is denoted by #, and validation
set is denoted by *. Here, all splits are non-identical. There are different roles of
these sets which are as follows: the active training set is used for the model builder
whether the invisible training set acts as a model inspector (it should check that the
current model is appropriate for quasi-SMILES that are not included in the active
training set). The calibration set should indicate that no overtraining has occurred. On
the other hand, validation set is used for the final estimation of a model’s predictive
capacity [73-75].

11.5.2 Optimal Descriptor Approach

The correlation weights of these fragments are utilized to calculate appropriate
descriptors for quasi-SMILES fragments. The numerical data on the correlation
weights come from the Monte Carlo optimization. Monte Carlo optimization is used
to maximize value of a target function. Five steps are followed for the development
of the model as described below [75-77]

Step 1: Development of the quasi-SMILES of the peptides which is nothing but
the amino acid sequence.

Step 2: Correlation weights CW(Sy) calculation for attributes of quasi-SMILES
using so-called balance of correlations. CW(SAy) is the correlation weights for the
SAy. The numerical data on the CW(Sy) should provide maximal value for the target
function.

Step 3: Calculation of optimal descriptors (descriptor of correlation weights) for
all quasi-SMILES by the simple equation:

DCW(T*, N*) = ) CW(Sp) (11.5)
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The correlation weights for attributes of quasi-SMILES are calculated by the
Monte Carlo method together with an example of calculation of optimal descriptor
with the correlation weights.

One can identify the amino acids of two classes using numerical data on correlation
weights of various amino acids that were obtained in several optimization runs: (1)
amino acids with stable positive correlation weights, which are promoters of increase
of pICsg; and on the other hand (2) amino acids with stable negative correlation
weights, which are promoters of decrease of pICsy. As a result, the method provides
the models’ statistical mechanistic explanation.

Step 4: Then, calculation of the model by least squares method, using quasi-
SMILES of the training set:

Potential of the model = Cy + C; x DCW(T*, N*) (11.6)

where the C and C; are the regression coefficients.

Different types of potentiality of the model can be calculated, i.e., drug loading
capacity, pICsy of any therapeutic agents, antimicrobial activity of peptide, and
cellular uptake in specific cell.

Step 5: Further, binary classification of the model is done by using this formula

1, ifPoM > 0

11.7
—1, ifPOM < 0 (L.7)

Class = {

Step 6: Finally, check the model predictive potential. The schematic representation
is given in Fig. 11.3.

Advantages of Quasi-SMILES

(i) These approaches offer the chance to consider all variables that might have an
impact on the endpoint being studied.

(i) In terms of the factors that support an increase or decrease in the endpoint, it
ensures a transparent interpretation of the data.

(ii1) Itis possible to compare the outcomes of various data splits into active training
set, passive training set, calibration set, and validation set to the integrated
statistical flaws of quasi-SMILES’ fragments and the quasi-SMILES algorithm
itself [73].

Disadvantages of Quasi-SMILES

(a) Itisimpossible to construct a model from a structured training set with a limited
fraction of compounds (i.e., a composition that includes the training, invisible
training, and calibration sets).

(b) Itis impossible to determine the function of quasi-SMILES’ attributes that are
missing from the training set [73, 75].
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Fig. 11.3 Schematic representation of the peptide QSAR model by quasi-SMILES

11.6 Different Application of SMILES/Quasi-SMILES
in Peptide QSPR/QSAR Modelling

Quasi-SMILES-based QSAR model has applications in different peptide-based
QSAR modelling. Here, we have highlighted its applications mainly as antimicrobial
peptides and epitope peptides with class I major histocompatibility complex (MHC).

11.6.1 Antimicrobial Peptides

In today’s world, the development of novel antimicrobial peptides is very important.
This is due to the fact that different bacteria are emerging as multi-drug resistant. In
agricultural industry, the potent antimicrobial peptides are high in demand. As the
experimental techniques for the optimization of the biological activity of the antimi-
crobial peptides is very time consuming as well as expensive, different computational
strategies like QSAR can be applied to make the optimization process faster and
cheaper. In 2015, Toropova et al. [77] established QSAR of peptides (mastoparan
analogues) for their antibacterial activity. The sequence of the amino acids was used
as an input for the molecular structure of the peptides. On a dataset of 33 peptides,
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QSAR modelling was done using the best descriptors possible based on the represen-
tation of the peptide structure by the amino acid sequence. The information for the
examined peptides was divided into three groups: training, calibration, and test sets.
To calculate QSAR models, the Monte Carlo approach was employed as a computa-
tional tool. The definition of correlation weights was done in the beginning to get the
highest value for the correlation coefficient for the calibration set. In the second step,
the model was validated by using external validation set. For the external validation
set, the statistical quality of QSAR for peptide antibacterial activity was as follows:
n="17,r>=0.8067,s = 0.248 (split 1); n =6, 2 =0.8319, s = 0.169 (split 2); and
n=6,r>=0.6996, s = 0.297 (split 3). Other statistical parameters for the training
set and calibration set of the QSAR model are shown in Table 11.1. The graphical
representation of the observed and predicted values of the generated QSAR equation
for different splits is shown in Fig. 11.4.

Comparing the given QSAR models to the other QSAR models developed by
using 2D and 3D descriptor-based ones, the statistical parameters are better in the
current QSAR models. Moreover, QSAR model generated by 3D descriptor needs
high computation power and complex calculations. The QSAR study indicates that
Alanine (A), Aspartic Acid (D), Phenylalanine (F), Isoleucine (I), and other amino
acids can raise the pMIC (negative decimal logarithm of minimum inhibitory concen-
trations) value. Glutamic acid (E) and serine are two amino acids that may lower
the pMIC value (S). Glycine (G) plays an unspecified function. Thus, the QSAR

Table 11.1 Statistical parameters for training set and calibration set of the QSAR model in case
of the peptides (mastoparan analogues) for their antibacterial activity

Number of peptides R? S Q? F
Training set (Split 1) 21 0.6063 0.219 0.5162 29
Training set (Split 2) 22 0.6763 0.202 0.6255 42
Training set (Split 3) 20 0.6161 0.228 0.5391 59
Calibration set (Split 1) 5 0.9678 0.108
Calibration set (Split 2) 5 0.9630 0.278
Calibration set (Split 3) 8 0.6819 0.222
Fig. 11.4 Experimental Q 5.1 1 + .
versus predicted antibacterial = 49 A m *at b
P . =, [ [ LN » =
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modelling analysis by using Monte Carlo method by using the sequence of amino
acids as input of the molecular structure can generate statistically significant QSAR
models, and the generated models can be used also for the design of better active
antimicrobial peptides.

In 2018, Toropova et al. [41] built a classification-based model by examining
the amino acid sequences in peptides to predict the antibacterial activities of 1581
peptides that are represented by quasi-SMILES. The large set of the peptides are
taken from the literature [78] and are classified as actives and inactives. A semi-
correlation-based approach was used to build up models between different classes
[41]. Firstly, all peptides were divided into four set which were training set, invis-
ible training, calibration, and finally validation sets. In this case also, amino acid
sequences were used as a descriptor for model building. The model was generated
by using Monte Carlo optimization technique by using CORAL software. When it
comes to the training, invisible training, calibration, and validation sets, the predic-
tive potential of binary classification for antimicrobial activity for various splits was
fairly strong. The statistical requirements were (i) sensitivity 0.82-097; (ii) speci-
ficity 0.88-0.99; (iii) accuracy 0.87-0.98; and (iv) Matthew’s correlation coefficient
0.73-0.97 for the external validation sets. A plot of different statistical parameters
was shown in Fig. 11.5. From Fig. 11.5, it is evident that classification-based models
were fairly strong. True positive, true negative, false positive, and false negative
values of different classification-based QSAR models were shown in Table 11.2. The
obtained models have given insight about mechanistic insights about the biological
activity of antimicrobial peptides. Attributes of the quasi-SMILES-related promoters
of increase and decrease of antibacterial activity were obtained. These attributes for
peptides’amino acid composition can be used to guide the design of peptides with
higher antibacterial effectiveness.

Fig. 11.5 Sensitivity, 12 1
specificity, accuracy, and 7 "
MCC values of different ! 1 1 ¢
classification-based QSAR 0.8 - i X . 4
models in case of 0.6 - : * Sensitivity
antimicrobial peptides Sl B Spocificity
Accuracy
02 1 <MCC
0 T T T 1

Split 1 Split2 Split3 Split4
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Table 11.2 True positive, true negative, false positive, and false negative values of different
classification-based QSAR models in case of antimicrobial peptides

Splits | True positive | True negative | False positive | False negative
Training set 1 146 216 10 24
2 150 207 16 31
3 147 213 11 27
4 138 194 16 47
Invisible training set | 1 154 205 8 28
2 134 214 9 30
3 172 204 12 21
4 140 186 18 51
Calibration set 1 131 217 18 38
2 156 206 10 24
3 139 222 8 18
4 123 242 0 30
Validation set 1 137 202 16 31
2 140 219 11 24
3 138 200 22 27
4 145 233 3 15

11.6.2 Epitope Peptides with Class I Major
Histocompatibility Complex (MHC)

Identification of epitope peptides to induce cytotoxic T lymphocytes is very important
for our immune system, and it is also very important for the development of vaccines
as well as immunotherapy directed against different pathogens. Major histocompat-
ibility complex (MHC) is very important to present these peptides to T lymphocytes
[79]. Thus, peptide interaction to MHC molecule is a very important step in the
immunity process. The amino acid sequence can dictate the biochemical interaction
between MHC-peptide complexes, and therefore, different modelling approaches
can be applied to accurately predict the sequence of the peptide. In 2021, Toropova
et al. [80] reported the sequence of amino acids as the basis for the development
of biological activity model of these kinds of peptides. The quantitative information
on class I major histocompatibility complex (MHC) molecules’ biological activity
with epitope peptides was collected and was randomly distributed into the active
training set (25%), passive training set (25%), calibration set (25%), and validation
set (25%). These different sets have different purpose in model development. Calcu-
lation of optimal correlation weights was done by the active training set, and finally,
model predictive power was calculated by the validation set. The QSAR models were
developed with Monte Carlo optimization with target functions TF, and TF,. The
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different statistical parameters obtained from the Monte Carlo-based QSAR models
were shown in Table 11.3.

From Table 11.3, it is clear that target function TF, may be the best approach as
there are better statistical parameters observed in case of calibration set and validation
set. A comparison of statistical parameters of TF; and TF, approaches for the active
training set as well as validation set was shown in Fig. 11.6.

These QSAR models identify the amino acid as promoters of increase and
promoters of decrease the binding affinity with MHC. Developed QSAR model
showed that the amino acids like valine, leucine, phenylalanine and isoleucine,

Table 11.3 Statistical parameters of different models on epitope peptides with class I MHC

R? 0? i(e RMSE
Active training set
Optimization with TF; Split 1 0.7625 0.5558 0.8732 0.36
Split 2 0.8205 0.7052 0.9058 0.333
Split 3 0.8846 0.8229 0.9406 0.265
Optimization with TF, Split 1 0.6416 0.3506 0.534 0.442

Split 2 0.6976 0.4905 0.5568 0.432
Split 3 0.5326 0.1846 0.7298 0.533

Passive training set

Optimization with TF; Split 1 0.825 0.7065 0.6739 0.395
Split 2 0.9165 0.8301 0.4709 0.374
Split 3 0.7283 0.5982 0.8264 0.599
Optimization with TF, Split 1 0.7231 0.5868 0.412 0.507
Split 2 0.9543 0.9192 0.8516 0.332
Split 3 0.8128 0.6796 0.6251 0.562

Calibration set
Optimization with TF Split 1 0.6012 0.4017 0.3695 0.506
Split 2 0.5223 0.2836 0.4258 0.592
Split 3 0.5053 0.2612 0.3745 0.927
Optimization with TF, Split 1 0.9486 0.9157 0.9679 0.142
Split 2 0.7102 0.5447 0.8406 0.337
Split 3 0.8743 0.8139 0.8827 0.214

Validation set

Optimization with TF; Split 1 0.622 0.4816 0.49
Split 2 0.5481 0.3476 0.515
Split 3 0.59 0.3277 0.7

Optimization with TF, Split 1 0.7766 0.6298 0.306
Split 2 0.7856 0.6596 0.27

Split 3 0.7909 0.6721 0.248
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Fig. 11.6 Comparison of statistical parameters of TF| and TF; approaches for the active training
set and validation set

alanine, glycine, tyrosine, etc., can increase the binding affinity value, and on the other
hand, threonine and glutamic acid can decrease the binding affinity value (pICs).
Thus, in this example also, simple amino acid sequence can be nicely used to develop
QSAR models by using Monte Carlo approach.

11.7 Mathematical Approaches Used for Peptide QSAR
Modelling

11.7.1 Multiple Linear Regressions (MLR)

The optimal QSAR model can be derived using multiple linear regression (MLR),
a common mathematical modelling technique to gain more in-depth understanding
of the structure—activity correlations between the chemical structure and bioactivity.
MLR has the advantage of being a straightforward mathematical expression with an
understandable form [18]. Despite its effective use, MLR is susceptible to descriptors
that are correlated, making it unable to determine which correlated sets may be more
important to the model. The best multiple linear regression (BMLR), the genetic
algorithm-based multiple linear regression (GA-MLR), the heuristic method (HM),
the stepwise MLR, the factor analysis MLR, and others are some of these techniques
that are used recently for development of peptide QSAR [81]. Tong et al. [82] reported
peptide quantitative structure activity relationship (QSAR) by using novel descriptor
of amino acids (SVGER). Here, mainly amino acid descriptors were used instead
of entire peptide sequences to represent the amino acid structure characteristics. It
was used in two peptides, a dipeptide with a threshold of bitter taste and inhibitors
of the angiotensin converting enzyme. Using stepwise multiple regression-multiple
linear regression (SMR-MLR) and stepwise multiple regression-partial least square
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regression (SMR-PLS), QSAR models were created. Coefficient of correlation Ry,
was employed to estimate how well the model fit the data. The model was based on
the correlation coefficient between cross-validation and observed activities (Q.002)
for internal validation and Q. for external validation.

Masand et al. [83] built a peptide QSAR model for finding out the special structural
feature in peptide type of inhibitors responsible for the SARS-CoV inhibition by
using genetic algorithm—multi-linear regression (GA-MLR) methodology with the
help of QSARINS ver. 2.2.2 software.

11.7.2 Partial Least Square (PLS)

PLS is widely utilized in many different industries. The PLS model attempts to
determine the multidimensional direction in X space that best describes the highest
multidimensional variance direction in Y space [49]. The ability to interpret the influ-
ence of descriptors on output prediction is the main advantage of PLS models. PLS is
well-known in the realm of QSAR/QSPR for its use with CoMFA and CoMSIA. PLS
has recently changed by combining with other mathematical techniques to perform
better in QSAR/QSPR analysis. There have different types of PLS like genetic partial
least squares (G/PLS), orthogonal signal correction partial least squares (OSC-PLS),
and factor analysis partial least squares (FA-PLS) [81]. In 2007, Jenssen et al. [84]
published peptide QSAR results using Simca-P 10.0 software and PLS techniques
to find out the antimicrobial activity of peptide.

11.7.3 Principal Component Analysis (PCA)

Principal component analysis, or PCA, is a technique for reducing the number of
dimensions in large data sets by condensing a large collection of variables into a
smaller set that retains the majority of the large set’s information. Mahmoodi-Reihani
etal. [85] developed a peptide QSAR model to calculate numerical descriptive vectors
(NDVs) for peptide sequences that was based on the physicochemical properties of
amino acids (AAs) and principal component analysis (PCA).

For the development of composite variables, PLS and PCA function somewhat
differently. Whilst PLS builds its composite variables to explain the maximum
variability in the response within the context of linear regression, PCA builds its
composite variables to explain the maximum variability in all the original predictors,
or the explanatory variables of interest [86].
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11.7.4 Genetic Algorithm (GA)-Based Peptide QSAR

This is another type of algorithm for the design of peptide QSAR. A binary string
termed a chromosome, which defines each individual in the population, represents
a subset of descriptors (Fig. 11.7). There are as many genes on the chromosome
as there are descriptions. If the matching descriptor is chosen in the model, a gene
is given the value 1; otherwise, it is given the value 0. The initial population of
chromosomes is created during GA initialization. A generation is the development
of a new population from an existing one. A fitness function in each generation
makes sure that only the fittest chromosomes pass on their genes to the following
one. A local change in a chromosome is produced by a second procedure called
mutation, which is administered with a modest chance. The fitness function and
selection process, along with the crossover and mutation procedures, are necessary
to generate variation within the population, which leads to learning and evolution
towards an optimum solution. One distinguishing characteristic of a GA is that, in
keeping with Darwinian evolution, only the fittest chromosomes are allowed to pass
on their traits to the following generation [87].

Andrade-Ochoa et al. [88] applied genetic algorithm-variable subset selection
for peptide QSAR model generation with MobyDigs software. To establish which
structural arrangement and functional groups are most crucial for biological activity,
QSAR models were only run with structural descriptors.
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Fig. 11.7 Schematic representation of the genetic algorithm
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11.7.5 Particle Swarm Optimization Algorithm (PSO)

Each individual particle in the multidimensional search space is a potential solu-
tion for the PSO algorithm. Every particle’s updated location is influenced by its
own and the swarm’s collective experience in each generation; specifically, each
particle’s velocity is adjusted in the direction of its own personal best position (P;)
and the overall best position (P,). The PSO algorithm limits each particle’s position
to the 0 and 1 binary search space, and the velocity denotes the likelihood that each
dimension’s position will take the value 1 or 0. The velocity updating equation does
not change, and a sigmoid function maps each dimension’s velocity to the range
[0, 1]. Schematic representation of the PSO-GA-SVM scheme for peptide QSAR is
depicted in Fig. 11.8.

Zhou et al. [89] proposed a novel method based on PSA-GO-SVM in order to fully
utilize the advantages of genetic algorithm (GA) and particle swarm optimization
(PSO) algorithm. The PSO-GA-SVM scheme is illustrated in Fig. 11.8. In this
method, the kernel parameters of SVM were optimized, and the optimized features
subset was simultaneously determined. In order to evaluate the proposed method,
four peptide datasets were employed for the investigation of QSAR. The structural
and physicochemical features of peptides from amino acid sequences were used to
represent peptides for QSAR. A protein dataset of 277 proteins was employed to
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Fig. 11.8 Representation of the PSO-GA-SVM scheme for peptide QSAR



288 Md. Moinul et al.

evaluate the proposed method to predict the structural class of protein. Good results
were obtained which indicated that the proposed method may have a great potential
for usage as a tool in peptide QSAR and protein prediction research [89].

11.7.6 Artificial Neural Network (ANN)

ANN is a type of artificial intelligence that attempts to imitate some of the qualities
of neural networks. In case of antimicrobial peptide discovery, ANN is represented
by a network of descriptors, which can be thought of as input nodes or neurons.
These nodes are linked together to form a network, which is then transformed in a
hidden layer to produce an output node (Fig. 11.9). The ability of neural networks to
naturally model nonlinear systems is one of their advantages. The potential to over
fit the data and the difficulty in determining which descriptors are most important in
the final model are drawbacks of this method [90].

He et al. [91] built a peptide QSAR model with the help of ANN algorithm and
finally designed some ACE inhibitor peptide. In order to model the neural network,
seven hidden layer neurons were chosen. Repeated modelling showed that the corre-
lation coefficient R reached 0.928, the mean square error for the training set was
0.0188, and the mean square error for the prediction set was 0.2091. This study also
suggested that Alcalase was a suitable protease for the production of ACE-inhibitory
peptides, and C-terminal is particularly significant to ACE-inhibitory action. Proteins

Activity
g of
Peptide

Input Layer Hidden Layer Output Layer

Fig. 11.9 Aurtificial neural network for peptide QSAR modelling. Input layer represents the descrip-
tors of the peptide structure, the hidden layer illustrates the transformations of the input layer to a
reduced level, and finally, the output layer is associated with activity of the peptide
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containing rich hydrophobic amino acids are also possible good sources to produce
ACE-inhibitory peptides.

Rajkumar et al. [92] utilized ANN approach with a back propagation neural
network (BPNN) to detect the antifungal, antibacterial, and antiviral effects of
antimicrobial peptides (AMPs). In the proposed model, BPNN was used to build
an ANN framework that aids in the optimal categorization of peptide sequences with
antimicrobial activity (Fig. 11.10).

The BPNN is trained on the datasets, and then, a PSO algorithm was used to avoid
over fitting. As a result, during testing, the BPNN clearly finds predicted samples
pertaining to the same classes, avoiding the problem of false positives. The simulation
is used to assess the model’s efficacy against various metrics such as accuracy, preci-
sion, recall, and f1-measure. The performance of the BPNN-PSO model demonstrates
its effectiveness in classifying instances faster than other techniques. The principle
is simple, easy to programme, converges faster, and it generally provides a better
solution [92].

11.7.7 Support Vector Machine (SVM)

SVM is essentially utilized as a classification method, with a hyperplane acting as
a barrier between two classes (H). The margin between the two classes is measured
by the distances between plane H and the planes cutting the closest sample points
on either side of H, namely H; and H,. The optimized plane is then defined as the
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one that maximizes this margin. In particular, support vectors are defined as sample
points that are perfectly positioned on planes H; and H, [28].

Zhou et al. [93] reported peptide QSAR modelling for systematic comparison and
comprehensive evaluation of the 80 amino acid descriptors (AADs) by using linear
PLS, GA, and nonlinear SVM. 11 structural and physicochemical characteristics
of peptide, including amino acid composition, dipeptide composition, autocorrela-
tion, composition, transition and distribution, sequence order, and pseudo-amino acid
composition, were used to define peptide from amino acid sequences. This research
also indicated that adding more new AADs with more diverse original features would
not significantly enhance their performance in peptide QSAR modelling. Instead, the
AAD characterization of peptide sequences can be handled using multivariate algo-
rithms that take into account residue interaction, context effect, and conformational
factor, amongst other things.

11.7.8 Other Methods

Ant colony optimization algorithm (COA) and artificial immunization algorithm are
also employed for the feature selection of any derivatives.

11.8 Conclusions

Peptides have recently emerged as a distinct class of bioactive molecules due to their
high therapeutic potential. Several peptides are in the clinical development phase,
and more than 80 have already made it to the market on a global scale. Peptide
drugs are used to treat a variety of diseases, including cancer, cardiovascular disease,
diabetes mellitus, digestive disorders, infectious diseases, and in the development of
vaccines. We anticipate that therapeutic peptides will continue to draw funding and
research attention due to their enormous therapeutic potential, economic value, and
market potential. In silico approaches such as QSAR have been employed to identify,
screen, and discover peptides. On the one hand, we need to emphasize more on the
benefits of QSAR such as how it can be used to probe the mechanism(s) of action and
significantly cut down on the time and expense associated with peptide identification
and evaluation. On the other hand, we must confront the challenges of QSAR when
applied to peptides, such as the difficulty in obtaining high-quality datasets, limited
number of descriptors to generate models, and selection of model building methods
which is a requirement for QSAR modelling. The method of model construction is
an important factor in peptide QSAR modelling. Applications of SMILES, quasi-
SMILES, machine learning algorithms, and artificial intelligence in QSAR have
received enough attention in the recent past. In the current work, various model
building techniques are discussed, giving special emphasis to SMILES and quasi-
SMILES approaches. However, it is challenging to suggest a particular method as
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the best and only method for QSAR modelling of peptides due to the differences
in the quality of the chosen sample, numbers, and structural parameters. We should
not only rely on established modelling techniques, but also consciously apply novel
modelling techniques or incorporate integrate modelling methodologies such as the
sample grouping method and parameter selection algorithm. It is important to test
a variety of approaches or combination strategies to accomplish QSAR analysis.
Improved mathematical methods in the quasi-SMILES construction can be helpful
for better statistical quality. There are not many peptide QSAR studies already avail-
able. Therefore, extensive research is required to advance our understanding for using
QSAR approach in peptide drug discovery.
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Materials Properties in Safety

and Environment Application

Yong Pan, Xin Zhang, and Juncheng Jiang

Abstract A brief summary of QSAR/QSPR methodology, together with an explana-
tion of the approach using SMILES and quasi-SMILES descriptors to study diverse
hazardous characteristics of diverse materials, is given. Studies of several properties
of importance to safety and environment application are described including (i) the
cytotoxicity of heterogeneous single metal oxide-based engineered nanoparticles,
(i) the cytotoxicity of a series of metal oxide nanoparticles, (iii) the flammability
properties of chemicals and their mixture, (iv) thermal hazards properties of ionic
liquids and their mixture and (v) the toxicity of ionic liquids and their mixtures. The
limitations and outlook of this field in safety and environment are discussed.

Keywords QSAR/QSPR - SMILES - Toxicity - Nano-metal oxide - Flammability
properties * Ionic liquids

12.1 Introduction

12.1.1 QSAR/QSPR Methods

Over the past few decades, cheminformatics has been emerging with the rise
in information science and computational chemistry. Quantitative structure—prop-
erty/activity relationship (QSPR/QSAR) is a hot research topic in cheminformatics.
Combining the theoretical computational methods with various statistical tools,
QSPR/QSAR is used to determine the physicochemical or biological properties as
a quantitative function of the molecular structure. The basic assumption is that the
physicochemical properties or activities are dependent on the molecular structure.
This means that the properties or activities can be expressed as a function of the chem-
ical structure. Taking the structure as the independent variable and the macroscopic
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properties as the dependent variable, a quantitative relationship between them can be
established by using mathematical and statistical methods. Based on the constructed
QSPR/QSAR models, it can be used to predict various properties of new or unsynthe-
sized compounds [1-3]. It can be also possible to identify the key structural factors
of molecules that determine the macroscopic properties. Therefore, it is helpful to
reveal the underlying mechanism and design the molecular structure to improve the
property or activity.

QSPR/QSAR has been widely used to predict the biological activity and toxicity,
the metabolic kinetic parameters of drugs, the physicochemical properties and the
environmental effects [1, 2, 4-7]. This research covers many disciplines such as
chemistry, medicine, life sciences and environmental sciences. QSPR/QSAR can
significantly reduce research time and costs, which is of both theoretical and practical
significance. Therefore, QSPR/QSAR has been increasingly applied to the design of
chemical processes, the design of drug molecules and the evaluation of environmental
risks.

12.1.2 Brief Description of the QSAR/QSPR Methodology

A typical QSAR/QSPR study contains the main steps as below.

(1) Data collection: It includes various physicochemical properties and structural
data from databases, manuals or experimental measurements.

(2) Description of the molecular structure: According to certain theories or rules,
structural parameters that reflect various structural information can be calcu-
lated, such as topological, compositional and quantum chemical parameters.

(3) Selection of the molecular descriptors: The characteristic structure parame-
ters should be closely related to the target properties, which are identified as
molecular descriptors. Therefore, various statistical methods and optimization
algorithms are applied to extract the characteristic molecular descriptors from
a large number of structure parameters.

(4) Construction of prediction model: The prediction models including regression
methods, neural networks and support vector machines are often used to build
a quantitative relationship between the selected molecular descriptors and the
target properties.

(5) Model evaluation and validation: The reliability of the constructed QSAR/QSPR
model and the predictive capability of the model are evaluated by the mean
correlation coefficient (R?) and root mean square error (RMSE).

Among these steps, the description of molecular structure, the selection of molec-
ular descriptors and the construction of prediction model are three key steps, which
will be described as below.
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12.1.2.1 Molecular Descriptors

The selected molecular descriptors play a key role in the quality of the model.
Commonly used molecular descriptors can be divided into two main categories:
experimental descriptors and theoretical descriptors. Early QSPR/QSAR studies
often used a number of experimental descriptors, such as octanol-water partition
coefficient, water solubility, Hammett’s constant and Taft’s constant. The advantage
of these descriptors is that the physicochemical meaning is clear, and the disadvantage
is that the acquisition of these parameters is labor intensive and costly.

With the development of knowledge in mathematics, molecular topology, quantum
chemistry and other disciplines, theoretical molecular descriptors have been devel-
oped rapidly. Compared with experimental descriptors, theoretical descriptors have
the following advantages: (1) Instead of the experimental characterizations, only the
structural information of the molecule is required, which makes it possible to study
the properties of unsynthesized compounds and greatly expands the application scope
of QSPR; (2) the acquisition of these parameters is not restricted by experimental
conditions, which is more convenient and faster. Moreover, the accuracy and speed
of the calculations have also been improved with the development of computer tech-
nology; (3) these parameters provide a more comprehensive and detailed description
of the molecular structure, which is beneficial to reveal the underlying mechanisms
[8,9].

12.1.2.2 Descriptor Selection Methods

In QSAR/QSPR studies, if the underlying mechanism is unknown, as many molecular
descriptors as possible are often chosen to avoid omitting the significant factors.
From the above-mentioned discussions, many types of molecular descriptors can be
calculated. Such a large number of structural parameters must contain a large amount
of useless and repetitive information for modeling, which affects and interferes with
the construction and interpretation of QSPR models. In order to build QSPR models
with fine fitting, predictivity, stability and interpretation, it is necessary to effectively
identify and filter the molecular descriptors. The commonly used selection methods
are listed as follows.

Multiple Linear Regressions-Based Selection Methods

The multiple linear regressions-based selection methods take the significance of the
molecular descriptors on the model as a criterion. The criterion is that the addition
or elimination of the descriptor has a significant effect on the model and the other
molecular descriptors, which should also meet a predetermined significance level.
There are three main types of such kind of methods including the forward selection,
backward elimination and stepwise regression [10, 11].
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The forward variable selection method starts with a one-parameter model and
gradually increases the model parameters according to the significance criterion. The
backward variable removal method starts with a model with all numerator descriptors
and gradually decreases the model parameters according to the significance criterion.
The stepwise regression method is a two-way selection regression that both adds and
removes parameters from the model. It achieves two-way selection by setting two
significance level criteria. One criterion is used to include the descriptor in the model,
and the other criterion is used to remove the descriptor.

These methods are suitable for variable selection and model optimization for data
where there is no multicollinearity between variables. The advantages are that they
are simple and intuitive. The procedures are easy to implement, and the corresponding
solutions can be obtained quickly. The disadvantage is that they cannot traverse all
combinations of variables, which does not guarantee that the optimal solution in the
variable space is found. When variable selection is performed on a large amount of
data, these methods often result in a locally optimal solution.

Model Fitting-Based Selection Methods

This type of method often uses the goodness of fit of the model as a criterion for
the simulation screening of variables. Such methods include optimal multiple linear
regression and heuristic regression [1, 3].

The optimal multiple linear regression method first finds all orthogonal pairs in
the initial set of descriptors. These orthogonal pairs are then used separately to model
the physical properties of the target, resulting in a series of two-parameter models.
The remaining descriptors that are not colinear with the parameters of several of the
models with the largest degree of fitting are then added to the model one by one,
resulting in a series of three-parameter models. If the degree of fitting of each of
these three-parameter models is less than that of the two-parameter model with the
largest degree of fitting, then the two-parameter model is the final result. Otherwise,
the model variables continue to be added as described above until the optimal result
is produced.

The heuristic regression method first calculates all the one-parameter models,
removing the parts of them where the degree of fitting and significance is smaller than
the set criteria. All two-parameter models are calculated from the retained numerator
descriptors. The molecular descriptors with smaller parameter correlations to the part
of the model with the largest degree of fitting are selected and added to the model
resulting in a series of three-parameter models. The models with the largest degree of
fitting were then selected. The model parameters are gradually increased as described
above until the desired model size is reached and the model with the largest degree
of fitting is selected as the final result.

Both methods are fast and unlimited in the size of the dataset and often result in
a globally optimal solution. In comparison, the optimal multiple linear regression
method is faster than the heuristic regression method.
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Search Algorithms-Based Selection Methods

The main disadvantage of the above-mentioned methods is that they do not have
global search capability and thus do not guarantee a globally optimal solution. In
contrast, search algorithms such as simulated annealing algorithms and genetic algo-
rithms (GAs) have considerable search capabilities. When they are combined with
modeling methods such as multiple linear regression, partial least squares and arti-
ficial neural networks, they are able to search for the optimal model in the variable
space within a limited time under certain conditions. Such methods have received
great attention from researchers in recent years and have been better applied in QSPR
research.

The simulated annealing algorithm is a relatively new optimization algorithm,
which is derived from the solid annealing principle. The algorithm starts from the
initial solution and the initial values of the control parameters, repeats the iterative
process of “generate a new solution — calculate the objective function difference
— accept or discard” for the current solution and gradually decays the values of
the control parameters. It is a stochastic search algorithm based on the Monte Carlo
iterative solution method, which has the potential to achieve global optimality and
avoid local optimality. Therefore, it has been successfully used in QSPR studies
of organic matter. For example, Jurs group [12] at Pennsylvania State University
has combined simulated annealing algorithms with artificial neural networks for the
selection of molecular structure parameters. They applied them to QSPR studies of
many physical and chemical properties, achieving many interesting results.

Genetic algorithm (GA) is an adaptive global optimization probabilistic search
method that simulates the genetic and evolutionary processes of organisms in their
natural environment. It was first proposed by Holland in 1960 [13]. Based on the
Darwin’s fundamental principle of biological evolution in nature, superiority and
inferiority produce individuals more adapted to their environment through crossover
and mutation of genes. This principle is used to find the optimal answer to a practical
problem and finally to obtain the optimal answer to a problem. GAs consist of three
genetic operons: replication, hybridization and mutation. The evolutionary process
is carried out by genetic operons. Genetic operators translate genetic concepts such
as selection, recombination (or crossover) and variation into data processing to solve
optimization problems dynamically. The problem is solved by so-called artificial
chromosomes, which are changed and adapted by the optimization process until an
optimization goal is obtained. The chromosomes contain information called genes,
which are usually represented by strings. Depending on the problem to be solved,
the string can be binary, an integer or even a real number.

GA is a simple, flexible, common and efficient global optimization algorithm. It
performs parallel searches along multiple routes and generally does not fall into the
trap of local optimality. It is able to find the global optimal solution among better
local solutions. As a result, the study and application of GA have now become a
dynamic direction internationally, with successful applications in process control,
fault diagnosis, nonlinear fitting and many other engineering and research areas.
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In 1994, Rogers and Hopfinger [14] introduced GAs into QSPR research for
the first time. The GAs are used to intelligently select a reasonable combination of
variables to obtain the optimal model. The main steps in QSPR research based on
GA:s are as follows

(1) Generating initial groups
First, an initial group set is generated. Once the initial groups are generated,
each individual is evaluated using a score function.
(2) Selecting operation
A key feature of GAs is that only the optimal chromosomes pass on their
characteristics to the next generation during evolution. Once all individuals in
the group have been evaluated, the individuals to be retained in the new group
can be selected based on the scores of the individuals in the group combined
with a random method. For each individual to be eliminated, a new individual
will be substituted. Commonly used selection functions are roulette selection,
league selection and truncated selection. In roulette selection, the probability of
selecting each individual is proportional to its score (fitness); in league selection,
individuals are selected from the group to compete against each other, with the
highest scoring individuals being retained; in the truncated selection, individuals
are first ranked in order of their score and the optimal ones are selected.
(3) Crossbreeding operations
To perform the crossover operation, two retained individuals are selected
as females in the group, then the two females are randomly divided into two
segments, and a portion of the different females is later selected to form a new
individual.
(4) Variation operations
The mutation operation, in which an individual is randomly selected in the
group and an element of that individual is randomly changed to produce a new
individual, results in a new property. All individuals generated by these two steps
are evaluated using the score function, and new individuals are then selected
according to their scores, resulting in a new group.
(5) Comparing operations
In order to preserve the optimal individuals, the optimal groups are used to
preserve them. After the crosses and mutations have been made, the individuals
of the new group are compared with those of the optimal group one by one, and
if there are better individuals in the new group, they are copied into the optimal
group.
(6) Convergence judgment
There are three ways to determine whether the calculation is converged: (1)
The number of cycles is defined. When the number of steps has reached the
defined value, the calculation is considered to be converged; (2) the total score
of the optimal group is defined. When the total score of the optimal group no
longer changes after a number of genetic operations, the calculation can be
considered to be converged; (3) the average score of the group is defined. If
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the average score of the group maintains constant for a number of times, the
calculation is considered to be converged.

Compared to other methods, QSPR studies based on GA selection variables have
three advantages: (1) the ability to find a set of models effectively, whereas other
methods often provide only a single model. (2) The fitness function is not constrained
by conditions such as continuity and differentiability and has a wide range of appli-
cability. (3) It has inherent implicit parallelism and a good global search capability.
(4) To build the model of multiple forms of linear combinations, the mathematical
transformation of variables can be defined. In particular, these parameters can be
classified by building truncated models, to obtain more useful information.

Because GA has a considerable search capability, when it is combined with
modeling methods such as multiple linear regression, partial least squares and artifi-
cial neural networks, it is able to search for the optimal model in variable space in a
limited time under certain conditions. Therefore, in recent years, GAs have received
a great deal of attention and have been better applied in QSPR research [10].

It can be concluded that each of the above-mentioned variable selection methods
has its own advantages, disadvantages and scope of application. Generally speaking,
for problems with a linear relationship between the response variable and the indepen-
dent variable, stepwise regression, heuristic regression and variable optimal subset
regression are mostly used. However, for complex nonlinear problems, variable
selection based on GAs often gives more satisfactory results.

12.1.2.3 Modeling Methods

To build quantitative functional relationships between the properties/activities and
the molecular descriptors, the selected mathematical methods are a major step in
QSAR/QSPR research. The commonly used modeling methods are divided into
two main categories: linear methods such as multiple linear regression, principal
component regression and partial least squares regression and nonlinear methods
such as artificial neural networks and support vector machines.

Multiple Linear Regression Method

Multiple linear regression methods are the most common statistical method used
in traditional QSAR/QSPR studies. The multiple linear regression process is the
process of establishing a linear expression between the response variable and multiple
independent variables. Assuming that there are m molecular descriptors, denoted by
X1, X3, ... X, and the target materiality is denoted by y; and there are n sample
compounds, X1, X7, ... X, ¥ are all n-dimensional vectors. Multiple linear regression
refers to the establishment of a linear relationship between y and xi, x,, ... X, as
below.
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y=b0+b]X] +b2x2+"'+bm~xm (1211)

where by, by, ... b, are the constants. by, by, ... b,, are obtained by solving a system of
linear equations. The least squares parameter estimation is usually used to minimize
the sum of squared errors. The molecular descriptors of the sample compounds form
a matrix of coefficients that can only be solved when the matrix is full rank.

The multiple linear regression method is easy to use with the intuitive model,
which is favorable to obtain the underlying mechanism. The disadvantage is that
the resulting linear regression model may be distorted when the system is noisy or
disturbed.

Principal Component Regression Method

The principal component regression is a linear combination of the original molecular
descriptors to obtain principal components, which act as estimation parameters to
build a multivariate linear model of their relationship with the target properties.
Therefore, it is a combination of principal component analysis and multiple linear
regression.

The purpose of principal component analysis, also known as factor analysis,
is to obtain new variables of comparable variability but small dimensionality by
linearly combining the original variables, which are known as principal components
or factors. This process is achieved through matrix transformation. The principal
components are inherently uncorrelated and can therefore be used directly in linear
regression modeling.

The main steps in principal component regression include (1) standardization of
the data, (2) derivation of the eigenvectors from the covariance matrix of the data,
and (3) selection of principal components for multiple regression analysis.

The advantage of principal component regression is that it can effectively solve the
problem of multicollinearity among variables by combining and filtering the infor-
mation in the original data; the disadvantage is that it only deals with the independent
variables and does not consider the information of the response variables, so the first
principal component it obtains does not necessarily have the strongest correlation
with the response variables. For this reason, it has been improved by introducing the
partial least squares regression method.

Partial Least Squares Method

The partial least squares method is also a regression method based on component
extraction [15]. Unlike principal component regression, it combines the extraction of
principal components with the target properties to ensure that the principal compo-
nents are correlated with the target properties. The process involves extracting compo-
nents from both the independent variable data and the respondent data, which should
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meet two requirements: (1) The extracted components represent as much informa-
tion as possible from the original data table; (2) the correlation between the extracted
components from the independent variable data and the respondent data is maxi-
mized, and the extracted components are then used to model the regression. If the
model meets the modeling requirements, the component extraction operation is termi-
nated; otherwise, the components are extracted again from the remaining data infor-
mation, and these components must also meet the two requirements above. Then, the
extracted principal components are modeled again. This process is repeated several
times until the modeling requirements are met. The model is then reduced to a model
of the original variables.

Compared with the traditional multiple linear regression and principal component
regression methods, the partial least squares method has the following advantages:
(1) The original data information is integrated and filtered, effectively solving the
problem of multicollinearity among variables; (2) when the number of indepen-
dent variables is more than the number of samples, statistically significant equations
can still be obtained; (3) both the information of the independent variables and the
response variables are considered, making it easier to obtain meaningful; (4) the use
of interaction tests to select the optimal number of principal components in the model
reduces the “chance correlation” of the model. Because of these obvious advantages,
the partial least squares method has good robustness and strong predictive power. The
partial least squares method has become one of the more commonly used modeling
methods in QSAR/QSPR studies of organic matter.

Artificial Neural Network Method

The artificial neural network is a nonlinear, adaptive information processing system
composed of a large number of interconnected processing units. It is proposed on the
basis of modern neuroscience research results and attempts to process information by
simulating the way the brain’s neural network processes and remembers information.

According to the different learning strategies, artificial neural networks can be
divided into two categories: supervised neural networks and unsupervised neural
networks. The supervised neural networks are mainly trained on known samples
and then predict the unknown samples. Unsupervised methods, also known as self-
organizing neural networks, can be used to classify compounds without training on
known samples, such as Kohonen neural networks and Hopfield models. Currently,
BP neural networks are the most used in QSAR/QSPR research.

BP neural networks generally adopt a three-layer network structure, i.e., input
layer, implicit layer and output layer. The input layer receives the external data
input, the implicit layer processes and transforms the input data, and the output
layer produces the output results. A typical BP network structure model is shown in
Fig. 12.1.

Each layer of the network contains a number of neurons, with the number of
neurons in the input and output layers determined by the number of variables in the
model and the number of neurons in the hidden layer determined by trial and error.
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Fig. 12.1 Structure model Input layer Hidden layer Output layer

of BP neural network
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Each neuron in the implicit and output layers contains two functions: a summation
function and a transfer function. The sum function is a weighted sum of all input
neurons entering each hidden layer neuron and converts the result into a single value
for further processing in the transfer function; the transfer function is used to convert
the summed information into output. The sigmoid transfer function is most widely
used as below.

1

F(x) = —[1 o]

(12.1.2)

The specific steps of the BP algorithm are briefly described as follows: (1) initial-
ization. The coefficients and values of the weights of each layer are randomly set; (2)
the training sample data X is added to the input layer of the network, and the output
Y of each layer is calculated. The error is obtained by comparing the output with the
expected value; (3) the connection weights according to the error are readjusted; (4)
if it is less than the predetermined error, the network is considered to be converged
and stops learning. Otherwise, it returns to Step (2) and continues to Step (3).

Artificial neural networks have many advantages such as nonlinearity, self-
learning, adaptability, fault tolerance, associative memory and trainability, which are
superior to traditional multiple linear regression and partial least squares and have
become an important algorithm in QSAR/QSPR research. However, in the process
of practical application, the neural network method also reveals the following short-
comings: (1) Due to the strong nonlinear fitting ability of neural networks, when the
training set samples are small, the phenomenon of “overfitting” often occurs; (2) the
neural network is built as a “black box” model and the input and output are not the
same. The relationship between input and output is unclear; (3) due to the random-
ness of the initialization of the neural network weights, the results are difficult to
repeat.

The existence of these problems limits the further application of neural networks in
QSAR/QSPR research, and new and more superior machine learning algorithms need
to be introduced to promote the profound development of QSAR/QSPR research.
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Support Vector Machine Method

(1) Theoretical background

The support vector machine (SVM) algorithm is a new machine learning method
proposed by Vapnik and his co-workers [16, 17] in 1995, based on statistical learning
theory.

The term “statistical learning theory” refers to a theory that specializes in the
study of machine learning patterns in the context of small samples. Vapnik et al.
[16] started to work on this area in the 1960s and 1970s, and by the mid-1990s, as
their theory continued to develop and mature, the theory began to gain increasing
attention. The traditional statistical approach regards empirical risk minimization
(ERM) as the starting point, without examining theoretical issues such as its ratio-
nality, applicability and achievable quality of approximation. It finally makes the
empirical risk minimization not guarantee expected risk minimization. Unlike the
statistical learning theory, it proposes the principle of structural risk minimization
and the core concept of VC dimension. It also states that to minimize the expected
risk, both the empirical risk and the VC dimension must be minimized. VC dimen-
sion theory provides a rigorous justification for the ERM principle, i.e., a sufficient
condition for consistent convergence, a sufficient condition for fast convergence and a
sufficient condition for consistent convergence independent of the probability distri-
bution. Therefore, it has a rigorous theoretical foundation. It is on this theoretical
basis that the SVM approach is developed. To obtain the optimal universality, it is
based on VC dimensional theory and the principle of structural risk minimization
and seeks the optimal compromise between the complexity of the model (i.e., the
learning accuracy for a given training sample) and the learning ability (i.e., the ability
to identify arbitrary samples without error) based on limited sample information.

Compared with traditional statistical learning methods, the SVM method has the
following main advantages [18]. (1) It has a strict theoretical and mathematical foun-
dation, overcoming the “empirical” nature of traditional methods; (2) it is specifically
designed for the finite sample case and its optimal solution is based on the informa-
tion of the available samples, rather than the optimal solution when the number of
samples tends to infinity; (3) the algorithm is ultimately transformed into a convex
optimization problem, so the solution of SVM is globally unique, solving the local
minimum problem that cannot be avoided by neural networks; (4) by applying the
kernel function technique, the nonlinear problem in the input space is mapped to
the high-dimensional feature space through the nonlinear and linear function in the
high-dimensional feature space which is constructed to realize the nonlinear function
in the original space. Therefore, the model has a good universality. The complexity
of the algorithm is closely related to the dimensionality of the input vector, thus
avoiding the “dimensionality disaster”.
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Therefore, SVM has become an international research hotspot. In an article
published in Science, SVMs are “a very popular approach and success story in the
field of machine learning and a very compelling direction for development”.

(2) Mechanism

SVM algorithms were originally applied to solve classification problems. In recent
years, with the introduction of the e-insensitive loss function, SVM algorithms have
also been increasingly used to solve regression problems and have shown good perfor-
mance. In this paper, we focus on the application of SVM to regression problems,
so the following is a brief introduction to the SVM regression algorithm and we do
not go into the classification methods. The detailed principles of both can be found
in the SVM user guidance.

The core idea of the SVM regression algorithm is to find an optimal hyperplane
that minimizes the distance from all sample points to the hyperplane, as illustrated
in Fig. 12.2. As can be seen from Fig. 12.2, the optimal hyperplane is actually
determined by a small number of samples called support vectors.

We assume that the training sample set {(x;, y;), i = 1,... n} is given, where x; €
R, is the input value of the ith learning sample and y; € R is the corresponding target
value. For linear regression, a linear function is applied for estimation.

f)=@-x)+>b (12.1.3)
To ensure that Eq. (12.1.3) is flat, a minimum w must be found. Assuming that all
training data (x;, ;) can be fitted with a linear function at accuracy &, the problem of

finding the minimum w is transformed into minimizing the model complexity, which
is shown below:

1
min§||w||2(y,<—w-x—bfe,w~x+b—yi58) (12.1.4)

Taking the fitting error into account, a relaxation factor £ > 0, £* > 0 and a penalty
factor C are introduced and the corresponding quadratic programming problem is

Fig. 12.2 SVM for T
regression +£ Optimal
‘ Hyperplane
., j f(x)=w * xtb

“ ~E o, . ®
a ~ Support vector
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rewritten as

. 1 2 - *
min | w]] +c§<s,~+s,->

i—w-x—b<e+&w-x+b—y <e+&.,& & >0) (12.1.5)

The penalty factor C > 0 is used to balance the flatness of the regression function
f(x) and the number of sample points with deviations greater than . Equation (12.1.5)
is derived based on the following e-insensitive loss function. Il is expressed as
follows

], = {0(|s| =¢) (12.1.6)

|&] — e(otherwise)

When the number of samples is small, the above SVM is generally solved using
pairwise theory, which transforms it into a quadratic programming problem. The
following Lagrange equation is developed:

1 n n
lw, 6,6 = S(w-w)+CY (& +E) =) aile +6

i=l1 i=1

+yi—(w,x)—b) =Y (e +E +

i=1

—(w,x;) = b) = Y (mi&i + 0jE) (12.1.7)

i=1

The partial derivatives of the above equation are equal to O for the parameters w, b,
&;,&;*, and the pairwise optimization problem is obtained by substituting Eq. (12.1.7)

min% Y (i — )y —aDlrx)+ Y aile —y)+ Y (e + )

i,j=1 i=1 i=1

(Z (; —af) =0,0;, af €0, C]) (12.1.8)

i=1

For nonlinear regression, the SVM solution is to map the sample into a high-
dimensional feature space by a nonlinear mapping ¢ and solve it by conventional
linear methods. Assuming that the sample X is mapped to a high-dimensional space
using a nonlinear function ¢(X), the nonlinear regression problem is transformed
into Eq. (12.1.9).
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min% D (i — ) —aD(pt), pe)) + D aile —y) + Yo e+ y)

ij=1 i=1 i=1

(Z (@ —af) = 0,0, af €0, C]) (12.1.9)

i=1

and thus obtain w = Y | (a; — )¢ (x;).

A SVM can map samples to a high-dimensional feature space through a kernel
function transformation, with the kernel function K(x, x’) satisfying K (x, x") =
(#(x), ¢(x")). Thus, Eq. (12.1.8) is rewritten as

1 n n n
min ,-,-2_1 (; — o) — DK (xi, x)) + ;axa — )+ ;a;‘(e + )

(12.1.10)

The introduction of kernel functions allows the function to be solved directly
in the input space, bypassing the feature space, thus avoiding the need to compute
nonlinear mappings ¢. The four main types of kernel functions commonly used in
SVMs today are linear kernels, polynomial kernels, radial basis kernels and sigmoid
kernels.

(3) Parameter optimization

In order to obtain the optimal universality, the SVM needs to adjust the corresponding
combination of parameters in the modeling process, i.e., choosing the appropriate
kernel function, determining the parameters of the kernel function, the penalty factor
C and the size of ¢ in the e-insensitive loss function. The kernel function determines
the distribution of the input vectors in the high-dimensional space and the optimal
hyperplane to be found and therefore determines the predictive power of the SVM
to a large extent. There is no unified method for the selection of the kernel function,
which is basically determined by empirical methods. The most commonly used
kernel function in practice is the radial basis form of the radial basis function (RBF)
kernel function, which has a high learning efficiency and learning rate. For the RBF
kernel function, the most important parameter is the width of the kernel function
y, which determines the amplitude of the kernel function and therefore to some
extent the universality of the SVM. The penalty factor (C) is also another important
parameter controlling the prediction performance of the SVM, which controls the
balance between maximizing the bound and minimizing the training error. If the
parameter is too small, underfitting of the training data will occur; if the parameter
is too large, the training data will be overfitted. Therefore, C also affects the training
speed and universality of the SVM. The optimal value of ¢ depends on the noise of
the data, which is usually unknown, while the number of support vectors has to be
considered in practical problems even if sufficient knowledge is available to choose
the optimal value of €. The ¢-insensitive loss function prevents the entire training set
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from reaching the boundary condition, allowing sparsity in the solution of the dyadic
form, and therefore theoretically, it is also important to choose the right value of ¢.

At present, there is no unified method to determine the optimal parameters of
SVM. The commonly used methods are the single-factor rotation method and the
grid point search (GS) method. The single-factor rotation method is based on a certain
empirical basis to optimize the parameters under study one by one to find the optimal
value, its advantage is that it can quickly build a model, but the disadvantage is that
it does not consider the interaction between the parameters. The advantage of this
method is that it is fast to build a model, but the disadvantage is that it does not take
the interactions between the parameters into account. The grid point search method
generally uses cross-validation to select the appropriate parameters through multiple
trials.

12.2 SMILES and Quasi-SMILES Descriptors

Simplified molecular input line entry system (SMILES) is a specification for explic-
itly describing molecular structures using ASCII strings. SMILES was developed by
Weininger and Weininger [19] in the late 1980s and has been modified and extended
by others, notably Daylight Chemical Information Systems Inc.

The SMILES formula consists of a series of characters without spaces, and it
is essential to ensure that the chemical structure of a substance corresponds to its
SMILES expression. One substance corresponds to only one SMILES structure.
Therefore, in the calculation of SMILES expressions for substances, certain gram-
matical expression rules are set for atoms, chemical bonds (single, double and triple
bonds), branched chains, rings, atomic chirality, isotopes, etc. The specific expression
rules are listed in Table 12.1.

When using the SMILES formula to represent the chemical structure of a
substance, the hydrogen atoms in the chemical structure are first eliminated. If the
chemical structure contains rings, the rings also need to be opened and represented
by breaking them off. The atoms in the rings are all represented in lowercase letters.
The two atoms connected at the ring break are marked with the same number to
indicate that there is a bond between the atoms. The branched chains in the chemical
structure are written in parentheses.

SMILES rules have recently become an international standard and are consid-
ered to be the most applicable and compatible form of linear coding compared to
other rules. This is because SMILES can be used quickly to express the structural
information of a compound into a computer-readable code, requiring only the atomic
symbols of the compound, the bond symbols, and certain syntactic expression rules.

SMILES is calculated by a longitudinal priority traversal tree algorithm, which
converts the chemical formula of a compound into a SMILES expression by means
of a sequence of characters without spaces. The basic rules to be followed in the
SMILES coding transformation are (i) the hydrogen atom is ignored during the
chemical structure transformation; (ii) the aromatic ring structure is opened before
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Table 12.1 Expression rules of SMILES

Y. Pan et al.

Type

SMILES expressions

Notes

Example

Atom

@ [Element symbol]

Atoms such as C, N, O,
P, S, Br, Cl and I of
organic chemicals are
omitted in the square
brackets

Iron atom: [Fe]

@ Hydrogen atom is
omitted

Water: O

@ [Element symbol £+
electric charge]

“+” and “—" denote
positive and negative
charges, respectively,
followed by the charge
value

The tetravalent titanium
ion: [Ti+4]

Chemical bond

® Double bond is
represented as “="

Carbon dioxide: O=C=0

@ Triple bond is
represented as “#”

Hydrogen cyanide: C#N

@ The ring needs to be
broken, and the two
atoms at the break are
marked with the same
number

The C, O, S and N
atoms in the aromatic
ring are represented as
lowercase letters

Cyclohexane:
ClCcccccl
Benzene: clcceecl

Branched chain

® Branched chain on
the carbon chain is
represented as “()”

Propionic acid:
CCC(=0)0

Stereochemistry | @ The structure on each | “/” and “\” represent cis; | Trans difluoroethylene:
side of the double bond | “/” and “/” represent F/C=C/F
is represented as “/” trans Cis difluoroethylene:
and “\” F/C=C\F
@ Chiral carbon atom is L-alanine:
marked with “@” or N[C@ @H](C)C(=0)0O
“@@”

Isotope @ Isotopes are shown Chloroform-d:

with the mass number
written in front of the
element symbol

[2H]C(CI)(CNCI

coding, or expressed in Kekuler style; (iii) in the opened chain expression, the number
is used to mark the broken atom, the atom is represented by a lowercase letter, and
the branched chain is characterized by round brackets. The SMILES strings are
often used as input files in some calculation software and are converted into 2D
or 3D structures, so that each compound has its own SMILES string structure. In
addition, SMILES strings are compatible with a wide range of software and have
been successfully applied to the toxicity prediction of traditional compounds.
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SMILES is a traditional tool for representing the molecular structure. In contrast

to conventional SMILES, quasi-SMILES can be used as a tool to establish quan-
titative features-property/activity relationships (QFPRs/QFARs) for endpoints that
are defined not by molecular structure alone, but by a set of physicochemical and/or
biochemical conditions.

ey

(@)

3)

“

&)
(6)

The nano-QSAR study in this paper is divided into the following major steps.

Collection of sample data: The current data on physicochemical parameters
(descriptors) and toxic effects of nanomaterials are mainly obtained from
biological experiments, literature reports and authoritative databases.
Identification and acquisition of descriptors for metal oxide nanomaterials: The
information on molecular structure, elemental periodicity and quantum chem-
istry of nanoparticles was studied to establish descriptors of physical and chem-
ical parameters such as absolute molecular weight, particle size distribution,
surface area, morphological parameters and zeta potential to characterize the
physical and chemical characteristics of nanomaterials and to select descriptors
that are closely related to the cellular toxicity of nanoparticles. The SMILES
descriptors were combined with the SMILES structures of the nanomaterials
to optimize and improve the SMILES descriptors and the optimized SMILES
descriptors were used to characterize the basic structural information of the
particles.

Screening of metal oxide nanomaterial descriptors: Firstly, the descriptors with
high similarity were removed by correlation analysis to complete the pre-
screening of descriptors. Then, support vector machine-recursive feature elimi-
nation (SVM-RFE) was jointly used to derive the importance ranking of subsets
of descriptors. The optimal subset of features was determined according to the
accuracy of the classification model.

Study and modeling of cytotoxicity of nanomaterials: Using the selected
nanoparticle descriptors as input parameters and combining different modeling
methods, nano-QSAR studies were conducted on the cytotoxicity of different
nano-metal oxide systems to establish the corresponding toxicity classification
and prediction models.

Evaluation and validation of the model: To evaluate and assess the fitting ability,
stability and prediction ability of the model.

Mechanistic interpretation of the model: The model will be mechanistically
interpreted to reveal the main factors affecting the cytotoxicity of different
nanomaterials and their influence laws, to reveal the mechanism of toxicity
of nanoparticles and to provide guidance for the synthesis and design of new
nanomaterials. In summary, the characterization of nanomaterial structures, the
calculation and screening of descriptors and the establishment of predictive
models are the main contents of this study.
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12.3 Study of Several Important Properties/Activities
in Safety and Environmental Applications

12.3.1 The Cytotoxicity of Metal Oxide Nanoparticles

Nanotechnology is a symbol of science and technology in the twenty-first century.
With the rapid development of nanotechnology, there are increasing types of nano-
materials and widespread applications. Nanomaterials, in a broad sense, are materials
that have at least one dimension in the nanoscale range (1-100 nm, 1 nm = 10~ m) in
three-dimensional space or are made up of the basic structural units of substances in
this scale range. Nanomaterials are very small in size and have a very special structure
and have many physical and chemical properties that are very different from those
of macroscopic materials, such as large specific surface, very high reactivity and the
unique surface effect, small size effect and macroscopic quantum tunneling effect
of nanomaterials. With the industrialization of nanotechnology, nanomaterials are
increasingly used in traditional and emerging industries such as the pharmaceutical
industry, dyestuffs, coatings, food, cosmetics and environmental pollution control.
However, this technology is a “double-edged sword”. While it brings great economic
benefits and technological innovations, the safety issues arising from nanomaterials
cannot be ignored, especially their biological toxicity, which has received widespread
attention from researchers in various countries. There is a growing awareness of the
enormous impact that atmospheric nanoparticles have on the environment and on
living organisms. In addition to the atmospheric environment, nanoparticles are also
present in local working environments, such as coal mining, welding and powder
processing, where a large number of nanoparticles are floating in the surrounding
environment and their impact on human health cannot be ignored. In addition, as
nanomaterials are widely used in daily life, the possibility of contacting with nano-
materials for people has greatly increased. Either directly into the human body during
production and use, or through the environment or food chain, nanomaterials have an
inevitably negative impact on human health after an intrusion. It is found that many
serious diseases can be caused by exposure to nanomaterials [20]. The toxicity of
nanomaterials has become a major obstacle to the development of the nanotechnology
industry. Therefore, the study of the biotoxicity of nanomaterials is an important issue
that needs to be addressed in the development of nanotechnology and its industry.

In April 2003, Service [21] first published an article in Science on the biotoxic
effects of nanomaterials. In the following year, researchers from various countries
discussed the biotoxicity of nanomaterials and the potential environmental safety
issues [22-24]. As aresult, policies and measures have been taken to increase research
on the biotoxicity of nanomaterials.

The determination of the cytotoxicity and safety of metal oxide nanomaterials
has traditionally been carried out by experimental tests, and it is undoubtedly still
the most effective way. However, traditional assays are controversial in terms of
cost, efficiency and ethical implications and are not able to cope with the increasing
number of newly developed nanomaterials on the market. With the development of
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nanotechnology, many experimental data on the cytotoxicity of nano-metal oxides
have emerged in recent years, but the difference in experimental conditions and
methods between studies often makes it difficult to assess the toxicity of metal oxide
nanoparticles. Furthermore, even though there are many toxicological methods avail-
able for assessing nanotoxicity, the effects of nanomaterials on cellular metabolism
in vitro and in vivo are still unknown. Moreover, the inconsistent results between
the various studies make it hard to develop a comprehensive system for studying the
mechanisms of cytotoxicity.

The QSAR method is a simple and effective way to accurately predict the biolog-
ical activity of a compound before it is synthesized. By converting the structural
information of a compound into a descriptor and using mathematical calculations,
the link between the descriptor and the target property is established, which is helpful
to predict the relevant toxic effects and elucidate the mechanisms. Nano-QSAR is
an extension of the traditional QSAR research and is a method to predict the bioac-
tive effects of nanomaterials, which is a theoretical basis for the synthesis of new
nanoparticles and the design of functional nanoparticles.

In recent years, optimized descriptors based on SMILES structures have also
received a lot of attention from nano-QSAR researchers. With the emergence and
development of CORAL software, Toropov et al. [25-28] proposed a series of confor-
mational models for the study of the biotoxicity of nanomaterials, which facilitated
the development of nano-QSAR research.

12.3.1.1 The Cytotoxicity of Single Metal Oxide Nanoparticles

Toropova et al. [29] established a model of malondialdehyde (MDA) levels in
different organ wet tissues of rats under different effects of Al,O3 nanoparticles
based on quasi-SMILES. The levels of MDA in different organ wet tissues were
used as a standard measure of toxic effects. Numerical data on MDA concentrations
in rat liver, kidney, brain and heart wet tissues were studied as endpoints, which
were influenced by different doses, exposure times (3 and 14 days) and single oral
treatments with 30 nm or 40 nm Al,Os.

Manganelli et al. [30] developed a model to predict the survival of human embry-
onic kidney cells (HEK293) under 40 different experimental conditions using silica
nanomaterials. They used SMILES-based descriptors as input parameters to the
model and combined particle size, concentration and exposure time into the SMILES
structure to form “quasi-SMILES”, thus fully characterizing the experimental condi-
tions of the nanomaterials. The sample set was randomly divided into five groups,
and then Monte Carlo optimization and modeling were carried out using CORAL
software. The prediction models all had complex R? above 0.7, and the prediction
results of the models were good.

Toropov and Toropova [31] developed a model based on quasi-SMILES to esti-
mate the toxicity of ZnO nanoparticles to rats by intraperitoneal injection. They
calculated the correlation weights of the quasi-SMILES fragments by the Monte
Carlo method. A univariate toxicity model was developed with the numerical data of
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the correlation weights. All available data were randomly divided into five parts, and
the results of 36 experiments were divided into a training subsystem and a validation
subsystem. The mean coefficient of determination was 0.957 (with a dispersion of
0.010 mg/kg), and the average root mean square error was 7.25 mg/kg (with a disper-
sion of 0.59 mg/kg). The method described is suitable for predicting the outcome
of intraperitoneal injections of nanoparticles in rats and can also be used in other
experiments which can be represented by quasi-SMILES, similar to the experiments
described here.

12.3.1.2 The Cytotoxicity of a Series of Metal Oxide Nanoparticles

Toropova et al. [32] investigated the QSAR of the pLC50 for the toxic effects of 18
nano-metal oxides on Escherichia coli and used a Monte Carlo algorithm to develop
a predictive model. The SMILES-based descriptor was obtained by combining the
SMILES string calculated by ACD/ChemSketch software with the symbol “*” char-
acterizing whether the cytotoxicity was photoinduced and was applied for the first
time to the nano-QSAR model of nano-metal oxide cytotoxicity. The data were then
randomly divided into training, calibration and validation sets with different func-
tions according to a certain ratio. The stability of the constructed prediction models
was verified.

Toropova et al. [33] developed a predictive model for cell membrane damage
caused by a range of nano-metal oxides. They applied the optimal descriptors that
were calculated from the so-called correlation weights for different concentrations
and different exposure times. The numerical data of the correlation weights were
calculated by Monte Carlo method. The results obtained are in good agreement
with the experimental data. For the seven metal oxide nanoparticles, the chemical
composition had the most important effect on cell membrane damage. Surprisingly,
the effect of the dose on cell membrane damage was the lowest. Exposure time had
a moderate effect on endpoints.

Pan et al. [34] coded some physicochemical properties related to the toxicity
of nanomaterials into codes and formed a new string with the traditional SMILES
structure. They proposed a new descriptor, namely the improved SMILES-based
descriptor, which can characterize the structure of nanomaterials more comprehen-
sively and easily. In this study, two nano-QSAR prediction models were developed
for different nano-metal oxides targeting the toxicity effects of human keratinocytes
and Escherichia coli, respectively. The average R of the two models was as high
as 0.95, and the models were rigorously validated for stability, predictive power
and robustness. The mechanistic interpretation of the models was that the original
particle size and hydrated particle size were the main factors for the biotoxicity of
the nanomaterials.

Toropovaetal. [29] developed a single QSAR model for predicting the cytotoxicity
of metal oxide nanoparticles against (i) Escherichia coli (E. coli) and (ii) human
keratinocyte cell lines (HaCaT) based on data on the half-lethal concentrations of
32 metal oxides nanoparticles. The mean R? and root mean square error (RMSE)
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for the training set were 0.79 and 0.216; the R? and RMSE for the validation set
were 0.90 and 0.247, respectively. The method yielded reasonably good models for
compromised data related to the cytotoxicity of metal nanoparticles against E. coli
and HaCaT.

Choi et al. [35] collected a large amount of toxicity data from the S2NANO
(www.s2nano.org) database and developed a QSAR model for predicting the cell
viability of 21 metal oxide nanomaterials on human lung bronchial epithelial cells
and human dermal keratinocytes. The physicochemical properties of the nanomate-
rials and experimental conditions were transformed into codes, which combine the
SMILES structures to form the quasi-SMILES descriptors. The effects of different
coding methods on the performance of the nano-QS AR model were compared. It was
shown that the QSAR models generated using the hierarchical clustering analysis
(HCA) method had better performance than the min—-max method.

Cao et al. [36] examined the LC50 of 21 nano-metal oxides on A549 cells by
biological screening experiments to determine the nanotoxicity characteristics of
the nanoparticles. A corresponding quantitative structure—activity relationship model
for nanoparticles (nano-QSAR) was developed for the risk assessment of nano-metal
oxides using an improved SMILES-based optimal descriptor and MC-PLS modeling
approach. In addition, the effects and mechanisms of different physicochemical prop-
erties on their acute cytotoxicity are discussed. The R? and Q% oo values of all four
models were above 0.8, while all external validation coefficients of Q% were above
0.7, indicating that all four models were reliable, stable and had satisfactory predic-
tive power. The applicability and reliability of the improved SMILES-based optimal
descriptors in predicting the acute cytotoxicity of the novel nano-metal oxides were
also verified. Furthermore, the effects of structural factors on the acute cytotoxicity
of nano-metal oxides showed that individual size and aggregation size were the most
critical physical factors affecting the acute cytotoxicity of nano-metal oxides to A549
cells, followed by cat ion charge and zeta potential, with weaker effects of metal mass
fraction and molecular weight. ROS experiments in A549 cells showed that the reac-
tive oxygen species theory (mechanism I) in nano-metal oxides predominated in the
mechanism of toxicity to A549 cells. In addition, the developed model has potential
applications in guiding risk assessment and safer and greener design of nanomate-
rials and can be prioritized in virtual screening. The study of acute cytotoxicity of
nano-metal oxides on A549 cells will also contribute to medical development.

Ahmadi [37] researched and developed a nano-QFAR (quantitative nano-featured
activity relationship) model to predict the cell viability of metal oxide nanoparticles
(MO-NPs) by applying quasi-SMILES such as cell line, assay method, exposure
time, concentration, nanoparticle size and metal oxide type. A total of 83 quasi-
SMILES of metal oxide nanoparticles were randomly divided into three sets: training
set, validation set and test set. The results of the statistical models based on the
equilibrium-related target function (TF), the exponential-desirability-related target
function (TF,) and Monte Carlo optimization were compared. The comparison of the
results of the two objective functions showed that TF, improved the predictability
of the model. The significance of the various trade-off features for increases and
decreases in cell survival is provided. A mechanistic explanation of the important


http://www.s2nano.org

318 Y. Pan et al.

factors of the model is also presented. The full statistical quality of the three TF,-
based nano-QFAR models suggests that the developed models can be used to predict
the cell viability of MO-NPs.

Toropova et al. [38] analyzed the sustainable nanotechnology (S2NANO) dataset
containing 574 experimental cell viability and toxicity data points measured under
different conditions for Al,O3;, CuO, Fe,0s, Fe;04, SiO,, TiO, and ZnO. They
used the quasi-SMILES molecular representation to develop a QSAR model based
on classification and regression. The introduced quasi-SMILES takes all available
information into account, including the structural characteristics of the nanoparti-
cles (molecular structure, core size, etc.) and relevant experimental parameters (cell
line, dose, exposure time, assay method, hydrodynamic size, surface charge, etc.).
The resulting regression models showed adequate predictive power, while the clas-
sification models showed higher accuracy. As the analyzed datasets reported cell
viability and cytotoxicity measured under a variety of experimental conditions, the
developed models were able to capture the general safety profile of the seven types
of nanoparticles.

The antibacterial activity and cytotoxicity of metal oxide nanoparticles are known
to be determined by the energy band gap. Toropova and Toropov [39] gave prediction
models for the energy gap (E,) based on quasi-SMILES nano-QSARs for E, of metal
oxide nanoparticles. The new version of quasi-SMILES has been applied to model
the energy band gap of metal oxide nanoparticles. Both the correlation index and
the correlation strength index have the potential to improve the prediction potential
of nano-QSAR for the energy band gap of metal oxide nanoparticles. However,
calculations using three different data show that the correlation intensity index gives
a more reliable model for the prediction of the energy band gap of metal oxide
nanoparticles.

12.3.2 Flammability Properties of Chemicals and Their
Mixtures

Although the flammability properties contain the flash point (FP), auto-ignition
temperature, and flammability limits, etc., the current QSPR research with SMILES
and quasi-SMILES descriptors only focused on the FP. Saldana et al. [40] developed a
QSPR model using the SMILES molecular representation to model the FP and cetane
number (CN) of molecules that may be found in alternative fuels. The models are
applicable to hydrocarbons, alcohols and esters. A database containing FP and CN
for these types of molecules has been created using experimental data from the avail-
able literature. For both properties, various methods of linear modeling approaches
including GAs and PLS and nonlinear approaches including feed-forward artifi-
cial neural networks (FF-ANNs), generalized regression neural networks (GRNNG),
SVMs and graph machines (GMs) have been investigated. For both properties, none
of the models obtained was more accurate than the others. Therefore, the consensus
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modeling was proposed, which improves robustness and predictability compared to
individual models. The results were that FP depends mainly on the total number of
carbon atoms in the molecule. They also show how the CN evolves when one or
two alcohol groups are added to a carbon chain and when these are moved along the
chain.

Toropova et al. [41, 42] applied quasi-SMILES to model the flammability of
binary and ternary liquid mixtures separately. The method provides a good model
for predicting the flash points (in degrees Celsius) of binary and ternary mixtures of
organic substances. The associated ideality index (IIC) is a criterion for the predictive
potential of the QSPR/QSAR model. The application of the IIC to improve the
flammability model for ternary liquid mixtures confirms the applicability of this
criterion to improve the predictive potential of the above models.

Gantzer et al. [43] compared their work with that of Saldana et al. [40]. In the work
of Saldana et al., the database was filtered to retain only compounds of interest, such
as hydrocarbons and oxygenated molecules (mainly alcohols and esters). In the work
of Gantzer et al., they considered the complete database including additional families
of compounds such as aldehydes, ketones, ethers and alkynes. This database of 785
chemicals was randomly divided into two subsets, 599 compounds for training and
186 for testing the model. They calculated ISIDA descriptors to encode molecular
features based on SMILES. For each descriptor set, the parameters of the support
vector regression (SVR) were optimized using fivefold cross-validation (5-CV). The
models based on two to four atomic sequences and their built descriptors performed
well according to internal (cross-validation) and external validation. The model of
Gantzer et al. showed a similar performance to that derived by Saldana et al. The
small difference in performance can be attributed to the Gantzer et al. database, which
contains a wider diversity than the database used by Saldana et al. and the use of a
single QSPR, whereas Saldana et al. used several QSPRs in a consensus model.

12.3.3 Thermal Hazard Properties of Ionic Liquids and Their
Mixtures

Thermal hazards have become one of the fundamental characteristics of different
ionic liquids (ILs). The thermal decomposition of ionic liquids (ILs) is also an
important aspect in the evaluation of the thermal hazards of ILs.

Lotfi et al. [44] focused on predicting the thermal decomposition (74) of ionic
liquids (ILs). They developed QSPR models for the molecular structure of ILs based
on the SMILES notation and used the Monte Carlo algorithm of the CORAL soft-
ware to calculate Ty for 263 imidazole-like ionic liquids. They constructed four
QSPR models with a hybrid optimal descriptor based on the correlation weights
derived from SMILES and molecular hydrogen-suppression graphs (HSG). They
also performed validation by using the criterion index of ideality correlation (IIC).
In this descriptor, a balance of the desirability correlation index (TF,) was used to
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develop the models. The experimental dataset was split indiscriminately into training,
stealth training, calibration (~74%) and validation (~26%) sets. Four models were
developed from the four splits, all of which were statistically satisfactory and stable.

Lotfi et al. [45] investigated the melting points of imidazolium-based ionic liquids
using a QSPR approach to develop a melting point model for predicting the melting
points of imidazolium-based ionic liquid datasets. A robust QSPR model was devel-
oped by applying the Monte Carlo algorithm of CORAL software to calculate
the melting point values of 353 imidazole-like ionic liquids. Using a combina-
tion of SMILES and hydrogen-suppression molecular graphs (HSG), hybrid optimal
descriptors were calculated and used to generate the QSPR model. Internal and
external validation parameters were also used to assess the predictiveness and relia-
bility of the QSPR models. Four slices were prepared from the dataset, each randomly
assigned to four sets, namely the training set (*33%), the invisible training set
(&31%), the calibration set (*16%) and the validation set (20%). In the QSPR
modeling, the values of various statistical features of the validation set, such as
R2, 1 dutions Q¥atidation @0 TICvalidation, were found to be in the range of 0.7846-0.8535,
0.7687-0.8423 and 0.7424-0.8982, respectively. For mechanistic interpretation, they
also extracted the structural properties that lead to an increase/decrease in melting
point.

Makarov et al. [46] have also carried out some research on the melting point of
ionic liquids. They developed a new model based on the SMILES translator and
neural network, which showed a significant improvement in prediction accuracy
compared to the previous studies. The model had R?> = 0.67 and RMSE = 44 °C.
The model is applicable to any type of ILs.

The ability to quantitatively predict ionic liquid (IL) properties using QSPR
models is of great importance. It is therefore necessary to understand which modern
machine learning (ML) methods combined with which types of molecular charac-
terization are more suitable for this purpose. To address this issue, Baskin et al.
[47] conducted a large-scale benchmarking study of QSPR models that were used to
predict six important physical properties of ILs (density, conductivity, melting point,
refractive index, surface properties) by combining three traditional ML methods
and neural networks with seven different structures with five types of molecular
representations (in the form of numerical molecular descriptors or SMILES text
strings), melting point, refractive index, surface tension and viscosity. QSPR models
for predicting the properties of ILs at eight different temperatures were developed
using a multitask learning approach. The optimal combination of ML methods and
molecular representation was determined for each property. A unified ranking system
was introduced. The different ML methods and molecular representations were prior-
itized. This study shows that, on average, (i) nonlinear ML methods perform much
better than linear methods, (ii) neural networks perform better than traditional ML
methods and (iii) transformers, which are actively used in natural language processing
(NLP), perform better than other types of neural networks due to the advanced ability
to analyze chemical structures of ILs encoded into SMILES text strings. It has also
employed a special “composition judgment” cross-validation scheme to assess how
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much the predictive performance deteriorates for ILs consisting of cations and anions
that are not present in the dataset.

12.3.4 Toxicity of lonic Liquids and Their Mixtures

In recent years, ionic liquids (ILs) have attracted a great deal of attention due to
their remarkable physicochemical properties. Despite the advantages of ILs, these
compounds can cause persistent pollution and pose an environmental risk.

Ghaedi [48] used CORrelation And Logic (CORAL) software and cytotoxicity
data for 225 ionic liquids to build QSAR models, where molecular structures are
represented by SMILES symbols. These global SMILES descriptors account for the
presence of a number of chemical elements and various types of chemical bonds
(double bonds, triple bonds and stereochemistry). The balance of correlations (BC)
of QSAR was constructed and compared with the classical scheme. The results of the
three stochastic splits show that the R? for the reliable model predicting the external
test set and Q? for the cross-validation range from 0.7315 to 0.8760 and 0.7062 to
0.8490, respectively. The optimal predictions obtained from the classical scheme are
incorporated into the modeling process together with the global SMILES descriptors.
The mean statistical characteristics of the external test set were as follows: n = 44,
R? = 0.8760, Q% = 0.8540, standard error (s) = 0.529, mean absolute error (MAE)
= 0.400 and Fischer F-ratio (F)) = 297. The results indicate that the classical scheme
is in terms of predictability of the QSAR model compared with the BC method. The
results showed that the classical scheme was improved in terms of the predictability
of the QSAR model compared with the BC method.

Lotfi et al. [49] predicted the minimum inhibitory concentration (MIC) of 204 of
these ILs against Staphylococcus aureus (S. aureus) and the minimum bactericidal
concentration (MBC) of 114 ILs using a QSAR based on a Monte Carlo approach. The
molecular structures of all ILs are shown using the SMILES notation. For modeling
pMIC and pMBC, a hybrid optimal descriptor was used, which was obtained by
combining molecular maps and SMILES. For pMIC, the hybrid optimal descriptor
was calculated by combining SMILES and a hydrogen-suppression molecular graph
(HSG), while for pMBC the hybrid optimal descriptor was calculated by combining
SMILES and a hydrogen filling graph (HFG). The full dataset was randomly divided
into the training set, invisible training set, calibration set and validation set. QSAR
models of pMIC and pMBC for ILs were developed by statistical analysis, and the
index of correlation (IIC) was used as abenchmark for the predictive potential of these
models. Their R? values for the training, invisible training, calibration and valida-
tion components were 0.8585-0.8853, 0.8523-0.8898, 0.8809-0.9240 and 0.8036—
0.8903 for pMIC and 0.8357-0.8991, 0.8223-0.9306 for pMBC, respectively. The
results indicate that the predictability of the QSAR model developed for all splits
is at a high level. The method is shown to have reasonable predictive potential and
mechanistic interpretation.
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Ahmadi et al. [50] estimated the logarithm of the half-maximal effective concen-
tration (logECs) for the toxicity of ILs to the leukemic rat cell line IPC-81 based on
a QSAR using a Monte Carlo approach with CORAL software. QSAR models were
developed using mixed optimal descriptors for 304 different ionic liquids, including
ammonium, imidazole, morpholine, phosphorus, piperidine, pyridine, pyrrolidine,
quinoline, sulfate and plasmalogen ionic liquids. The SMILES notation of the ionic
liquids was used to calculate the descriptor correlation weights (DCW). Four splits
were performed from the entire dataset, and each split was randomly divided into four
groups (training subset and validation set). The index of correlation (IIC) was used
to assess the veracity and stability of the QSAR model. One of the QSAR models
with statistical parameters of R? = 0.85, CCC = 0.92, 0% = 0.84 and MAE = 0.25
for the optimal split validation set was considered as a primary model.

12.4 Limitations and Outlook in Safety and Environmental
Applications

12.4.1 Limitations

(1) Limited data
Biological systems are complex and have many indicators to measure toxi-
city. Besides, the toxicity data are few. Moreover, the physicochemical param-
eters of the nanomaterials are still unclear, which hindered the application of
SMILES descriptors. Therefore, the nano-QSAR system needs to be tested,
improved and refined.
(2) Limited descriptors
Descriptors largely determine the QSAR model. At present, there are very
limited descriptors available for QSAR studies in nanomaterials. The predictive
performance of models with different descriptors varies considerably.
(3) Unclear molecular mechanism
The toxic mechanism is very complex and not well understood, which needs
to be explored from both experimental research and nano-QS AR research. From
the existing studies, it can be found that mechanistic research is mainly focused
on a few nano-metal oxides. Moreover, it is difficult to speculate on the molec-
ular mechanism as the diverse research methods of experimental methods and
standards.
(4) Insufficient database for model validation
Few studies meet the requirements of the OECD for QSAR models to
calculate the application areas and explain the mechanisms. They commonly
focused on the construction of predictive models without validating and giving
comprehensive explanations.
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12.4.2 Outlook

ey

@
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“

Reliable experimental database

Currently, there are limited data available for nano-QSAR studies of metal
oxide cytotoxicity. The reliability of the available experimental data on the
biological effects of nanomaterials is yet to be verified due to the differences
in their experimental methods and conditions. Therefore, the construction of a
more complete and reliable nanomaterial cytotoxicity experimental database is
still an important issue that needs to be addressed.
More descriptors

Various nanomaterials have different compositions and different physico-
chemical properties. How to effectively characterize their structural and physic-
ochemical characteristics is one of the key issues to be solved in nano-QSAR
research. It is necessary to develop a series of new structural descriptors, graph-
ical descriptors and other molecular descriptors to effectively characterize and
describe their nanostructures, so as to establish more accurate and reliable
prediction models.
Mechanistic explanation

The mechanisms of toxicity of nano-metal oxides are complex. Although
much research has been carried out, the underlying mechanism of toxicity of
nano-metal oxides needs further in-depth research. This will provide guidance
for the safe design, synthesis and application of nanoparticles.
Flammability and toxicity of ionic liquids

SMILES has shown excellent performance in the field of ionic liquids. There
are still many directions to be developed for the research on the flammability
and toxicity of ionic liquids.
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Chapter 13 ®)
SMILES and Quasi-SMILES in QSAR Gissiia
Modeling for Prediction

of Physicochemical and Biochemical

Properties

Siyun Yang, Supratik Kar, and Jerzy Leszczynski

Abstract QSAR modeling of diverse physicochemical and biochemical proper-
ties of organic chemicals and nanomaterials utilizing the simplified molecular-input
line-entry system (SMILES) and quasi-SMILES representation is quite a popular
approach nowadays. Along with the SMILES, the quasi-SMILES approach offers
the likelihood to identify and weigh the statistical importance of various eclectic
data accessible for computational systematization and analysis. Therefore, the quasi-
SMILES can be helpful as a tool for drug design, environmental risk assessment, and
regulation caused by applying nanomaterials and organic chemicals as the method
gives the possibility to consider building up corresponding models. The Monte Carlo
method is applied to build up the QSAR modeling employing information collected
from SMILES and quasi-SMILES. The model can be freely developed using open-
access CORrelation And Logic (CORAL) software. The quasi-SMILES is an ideal
approach for complex chemical systems like nanomaterials where there is no limi-
tation to choose the list of eclectic data to make a reliable, efficient, and predictive
QSAR model. In the present book chapter, we will talk about the fundamental of
SMILES and quasi-SMILES-based QSAR models and their major applications in
physicochemical and biochemical properties prediction.
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CCI Correlation Contradiction Index

GNPs Gold nanoparticles

HSG Hydrogen-suppressed graphs

IIC Index of ideality of correlation

MOFs Metal—organic frameworks

QSAR Quantitative structure—activity relationship
QSGFEAR Gibb’s free energy of activation relationship
QSPRs Quantitative structure—property relationships
QSRR Quantitative structure—retention relationship
QSTR Quantitative structure—toxicity relationship
SADT Self-accelerating decomposition temperature
SMILES Simplified molecular-input line-entry system
WS Water solubility

13.1 Introduction

Simplified molecular-input line-entry system (SMILES) and quasi-SMILES is a
series of representative symbols including all accessible information from the dataset,
like the structure of molecules, physicochemical conditions of the molecule, size of
nanomaterials, etc. [1]. Among the major in silico approaches, quantitative structure—
activity/toxicity/property relationships (QSARs/QSTRs/QSPRs) can utilize limited
experimental resources and need minimal computing time, saving money. QSAR
modeling can deliver significant information at a low expense for drug discovery and
development by facilitating rational strategy design. In addition, the QSAR approach
can predict the chemical response of a relatively large number of compounds within
the chemical domain using the response data of a small number of chemicals which
is commonly used in predictive toxicology studies for the evaluation of chemical
risks [2].

Due to the convenience that SMILES and quasi-SMILES brought, modeling with
these notations has become increasingly popular among scientists. The first and fore-
most reason is easy to represent any molecules followed by features calculation for
modeling any physicochemical and biochemical properties. Quasi-SMILES is an
analogy of traditional SMILES which contain some additional information besides
the molecular architecture [3]. To develop the QSAR models, Toropova et al. [4]
had developed CORAL software (http://www.insilico.eu/coral) where 2D-optimal
descriptors can be calculated with so-called correlation weights for attributes of
SMILES and quasi-SMILES where the correlation weights are obtained as results of
the unique Monte Carlo optimization [5]. Although, additional features and condi-
tions may need to be considered during modeling to develop predictive QSAR
models.

A series of physicochemical and biochemical properties were already modeled
using SMILES and quasi-SMILES employing Monte Carlo approach using CORAL


http://www.insilico.eu/coral

13 SMILES and Quasi-SMILES in QSAR Modeling for Prediction ... 329

Fig. 13.1 Major research
areas of SMILES and
quasi-SMILES-based QSAR
model

SMILES &
quasi-SMILES
QSAR models

Physicochemical and
biochemical prediction
of organic chemicals

software. Toropov and Toropova [6] also proposed an index of ideality of corre-
lation (IIC), which has been tested to improve the predictive potential of diverse
QSAR endpoints. The fundamental aim of the IIC is to unite sensitivity to corre-
lation, dispersion, and symmetry of the distribution of images around the diagonal.
Another important index, Correlation Contradiction Index (CCI), has been proposed
by Toropov and Toropova [7] as a criterion of predictive potential. Therefore, the
whole modeling process is simple, as no 3D structure is required for the study. The
entire model can be developed in CORAL software followed by strong predictive
indices like IIC and CCL

SMILES and quasi-SMILES-based method was successfully employed for the
development of model for mutagenicity and mutagenic potential of fullerenes and
multi-walled carbon nanotubes [8, 9], toxicity of nanoparticles [10, 11], and cytotox-
icity of metal oxide nanoparticles to bacteria Escherichia coli [12], predict behavior
of complex systems like peptides [13, 14], physicochemical [15, 16] and biochem-
ical properties of polymers [17]. The wide range of successful applications of these
mentioned approaches makes it one of the most powerful prediction tools (Fig. 13.1).

13.2 Fundamentals of SMILES and Quasi-SMILES

Simplified molecular-input line-entry system (SMILES) is a chemical notation that
lets a user depict a chemical structure in a way the computer system can utilize.
SMILES is a quickly learned and flexible notation that allows for a simple repre-
sentation of any molecular structure. There are defined equivalences between the
representation of the molecular structure by graphs and using SMILES approach
[18].

To model diverse endpoints, 0D to 7D descriptors have evolved over the years
[19]. But it’s always best to use simple descriptors from OD to 2D, which are easy
to compute and interpret the developed QSAR models [2]. Optimal descriptors have
been developed and refined along with advances in QSAR approaches. Initially, the
molecular graph-derived features or descriptors were the basis for building a QSAR
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model. A similar idea has been introduced and developed for SMILES and SMILES
attributes. It can be summed up as follows [20]:

(a) Each SMILES of the modeling set computes a list of attributes, xy;:
SMILESk — {xkl,xkg,...,ka}. (131)

(b) Followed by the Monte Carlo method offers correlation weights for the total set
of attributes. They are extracted from all SMILES notations of the modeling set,
which provide the maximal correlation coefficient between the studied endpoint
and sums of correlation weights for SMILES of the modeling set:

Monte Carlo method — {CW (x;1), CW(xx2), ..., CW(xpm)]. (13.2)

(c) A one-variable linear equation represents the predictive model:

EP,=Co+Cix Y CW(xy)=Co+Ci x DCW(T*, N*). (13.3)
xij €SMILES

In the vector and matrix depictions, this approach can be explained as the
following:

MS] X11 X12 -« X1m El
MSQ N X21 X22 ... Xom PN Ez ’ (134)
Msn Xnl Xn2 -+« Xnm En

where MS; are molecular structures available from SMILES or graphs and xy;
illustrate molecular features extracted from SMILES, while the basis of preparing
quasi-SMILES can be removed from a graph, SMILES, and eclectic data.

The traditional approach assumes that an endpoint depends on the molecular struc-
ture. However, there are cases in which this approach has to be revised. There are
also situations where one can expect that the endpoint depends on other conditions
(concentration, temperature, dose, etc.) and circumstances (magnetic field, the pres-
ence/absence of illumination, different times of exposure, etc.). In this case, instead
of the hypothesis: “Endpoint (¥) = function (Molecular Structure),” one can consider
the following hypothesis: “Endpoint = functions (Eclectic Data).”

ED1 CW()CH) CW(xlz) e CW(xlm) E1
ED, N CW(x21) CW(x22) ... CW(x2) - E;

(13.5)
ED, CW(x,1) CW(x,2) ... CW(xp) E,

EDj can be defined as symbols correlation weights obtained from quasi-SMILES,

CW(xy;) is obtained experimental data for the endpoint, Ej. Finally, the vector
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Fig. 13.2 General scheme of SMILES and quasi-SMILES QSAR modeling

computed from eclectic data signifies quasi-SMILES. Interesting to point out that,
like SMILES, quasi-SMILES isn’t inevitably the depiction of molecular features.

Once the user computed Eq. 13.5, the Monte Carlo method will be utilized to
optimize the correlation weights. The explained methodology defines the mechanical
interpretation of the model based on the correlation weights of effective features
obtained from quasi-SMILES. Having the numerical data on the correlation weights
of features that takes place in several runs of the Monte Carlo optimization, one can
extract three categories of these features:

1. Features with negative values of the correlation weight in all runs, which are
reasons for endpoint decrease.

2. Features with positive values of the correlation weight in all runs, which are
reasons for endpoint increase.

3. Features with both positive and negative values of the correlation weight in
different runs of the optimization, which are features with an unclear role.
A complete flow diagram of SMILES and quasi-SMILES QSAR model is
illustrated in Fig. 13.2.

13.3 Application of SMILES and Quasi-SMILES-Based
QSAR Model

To better understand readers, we have divided multiple physicochemical and
biochemical properties into diverse materials, properties and toxicity.
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13.3.1 Nanoparticles Toxicity and Property Prediction

Quasi-SMILES could acts as a flexible foundation for accessing the regulation and
environmental risk of nano-QSAR [21]. The technique served as a bridge between
experimentalists and model developers for nanomaterials-related endpoints. The
boundary rejection between the effect of the biochemical reality of molecular level
substance and the experiment conditions effect at the macro-level permits the devel-
opment of models that are epistemologically more reliable than traditional ways.
The reason is solely based on the interdependence between molecular structure and
biological activity (without taking into account experimental conditions). Nanopar-
ticle physicochemical and biochemical behavior models are required for developing
and applying new industrial accomplishments like food, makeup, and medicine
without detrimental impacts on the environment and human health.

Nano-QSPR/QSAR should always follow the five OECD principles. In addi-
tion, it may be necessary to specify new regulations for nano-QSPR/QSAR that
represent the nano-nature of the compounds under study. For example, the prin-
ciples should consider the experimental settings and the quality of the applicable
equipment. In this case, the software could access environmental regulation and risk
assessment. Nanomaterials exhibit unique physicochemical and biological proper-
ties. The logic of nanoparticles differs from the logic governing the behavior of
conventional substances. An apparent distinction between nano-phenomena and
phenomena associated with traditional substances was the vast number of physic-
ochemical circumstances that interact and mutually influence one another and the
difficulty in identifying the nature of these relationships. The quasi-SMILES method
allows for detecting and evaluating the statistical significance of various eclectic data
accessible for computer systematization and analysis. Moreover, the approach allows
for the relatively rapid modification of computational experiment bases (adding or
removing eclectic conditions or circumstances).

The quasi-SMILES technique could be utilized as a regulatory and environ-
mental risk assessment tool resulting from nanomaterials since the approach allows
for the incorporation of the essential properties of the molecular structure and the
experimental settings.

Toropov and Toropova [7] reported that they have successfully applied the quasi-
SMILES to predict the mutagenicity of silver nanoparticles under different condi-
tions. With the 72 data points, the data was equally distributed into training, invisible
training, calibration, and validation group, and the calculation is performed 15 times.
As a result, two target functions were optimized, TF; and TF,. Based on the rule of
random effect of QSAR, fifteen random splits were completed with both functions
and indicated that TF, had better performance, as shown below:

Nep = — 7.240(+ 5.835) + 26.43(£2.92) x DCW(1, 10). (13.6)

Additionally, the (i) Index of Ideality of Correlation (IIC) and (ii) Correlation
Contradiction Index (CCI) were calculated based on TF,; the result showed that IIC
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has a value of R equal to 0.73, and the CCI showed a value of 0.78 which was better
in comparison. The experimental result demonstrated that Quasi-SMILES could be a
predictive model for silver nanoparticle mutagenicity. Simultaneously, IIC and CCI
could be critical models to examine models’ predictive potential.

Another application was executed on gold nanoparticles in 2021 [22]. A549 cell
uptake potential of gold nanoparticles (GNPs) model under different conditions was
computed, and Monte Carlo method was used for optimization. In this case, quasi-
SMILES was defined as an information system with fragments about the phenomena
of the inhibitory activity of GNPs under defined conditions. From the original target
function, four more target functions were optimized with the criteria of IIC and CII
below:

TFo = ra+r5 — ra —rp| x 0.1 (13.7)
TF, = TFy + IIC¢ x 0.5 (13.8)
TF, = TF, + IIC¢ x 0.5 + IICp x 0.5 (13.9)
TF; = TFy + CIl¢ x 0.5 (13.10)
TF, = TF, + Cll¢ x 0.5 + ClIp x 0.5. (13.11)

All four target functions that were used to compute models for cellular absorp-
tion of GNPs can predict the cell uptake. The created models enable mechanistic
interpretation and promoters of an increase or decrease of the investigated endpoint
to be identified. The use of the CII values for both the passive training set and the
calibration set was what gives the model with the best predictive potential that has
been seen in the case of the target function.

Quasi-SMILES could work as a foundation of nanoparticle toxicity and risk
assessment. In this experiment, quasi-SMILES was a series of symbols that serve as
codes for the settings of studies designed to evaluate the toxicity of ZnO nanoparticles
to rats when injected intraperitoneally [23]. Correlation weights of each fragment
from quasi-SMILES could be accessed by the Monte Carlo method and used to
develop the variable models as per Eq. 13.12:

Renal Factor = Cy + C; x DCW(T, N). (13.12)

The authors performed five random split sub-systems of training and validation.
As a result, a 0.957 determination coefficient and a 7.25 root mean square error
were gained. In this study, the applicability domain depended on the space of acces-
sible qualities of quasi-SMILES, which corresponded to experimental conditions. If
the experimental circumstances were not included in the list of experimental condi-
tions, it becomes challenging to make a credible prediction of the endpoint using
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the model applied here. The disclosed method could be used to produce predictions
for the outcomes of intraperitoneal nanoparticle injections in rats, as well as for
other experiments that can be represented by quasi-SMILES that were comparable
to those.

In 2016, a model of an effective method for predicting the genotoxicity of carbon
nanotubes was provided [24]. The experimental results of the bacterial reverse muta-
tion test (TA100) on multi-walled carbon nanotubes (MWCNTs) were gathered from
the published literature and analyzed as the last step. A mathematical model of the
endpoint was developed using the optimum descriptors computed with the Monte
Carlo approach. The model is a function of (i) dosage (g/plate), (ii) metabolic acti-
vation, and (iii) two kinds of MWCNTs. The method employed yielded a semi-
quantitative prediction for three distinct distributions of experimental data: visible
training and calibration sets and an invisible validation set. The predictive capability
of these models varies. In the created models, quasi-SMILES exist with “atypical”
behavior which suggests they are outliers even when included in the training set.
However, deleting these quasi-SMILES conditions reduces the predictive capability
of the models.

With the quasi-SMILES, the toxicity of Daphnia magna to nano-mixtures was
also predictable [25]. As a mathematical function of experimental circumstances,
toxicity is simulated. Nano-QSAR for predicting the toxicity of nano-mixtures was
constructed utilizing a database of experimental data and the Monte Carlo method
for optimization to calculate optimal descriptors with the potential predictive criteria
CCI and IIC. The optimized target functions TF; and TF, were listed below:

TFOZFAT+rPT_|rAT_rPT| x 0.1 (1313)
TF, = TF; + CIl¢ x 0.5. (13.15)

The described quasi-SMILES method yields models of nano-mixtures toxicity of
TiO; nanoparticles with high prediction ability. Compared to the IIC, the CCl is a
more effective predictability criterion for nano-QSAR analysis as per the obtained
outcome in the present study. The quasi-SMILES method can serve as the foundation
for alanguage that facilitates communication between experimentalists and modelers
of the properties or activity of nanomaterials.

Nano-QSPR model could also be modeled by quasi-SMILES which was proposed
by Jafari et al. in 2022 [1]. Utilizing nanofluids as a suspension of nanoparticles
in a common liquid was a relatively new subject that has attracted considerable
interest recently. Quasi-SMILES is a series of representative symbols including all
accessible information, like molecular structure and physicochemical conditions.
This notation was used to illustrate the structure of nanofluids in consideration of
the power of quasi-SMILES molecular representation to characterize diverse facts,
such as nanoparticle size and form. To construct models, three random splits of
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each dataset into active training, calibration, passive training, and validation sets
were evaluated, and statistical assessment revealed that models generated using CII
were superior to those developed using IIC. The following two target functions were
examined via Monte Carlo optimization:

TFOZrAT+rPT_|rAT_rPT| x 0.1 (1316)
TF, = TFy + IIC¢c x 0.5 (13.17)

In these formulas, rar and rpr were the experimental and anticipated values of
the endpoint for the active training set and passive training set, respectively. Due
to the unique uses of nanofluids, it was necessary to optimize nanofluids’ compo-
sition and empirical circumstances rather than their intended thermophysical char-
acteristics. The size of nanoparticles affects viscosity; thus, it was possible to esti-
mate the model’s outcome. Through the analysis, TF, was the best in the running
datasets. It was determined that model creation based on the CII was statistically
more trustworthy than model generation based on the IIC.

Metal oxide nanoparticles could be modeled by quasi-SMILES [26] for the risk
assessment and safety evaluation which was typically a time-consuming and expen-
sive experimentally. Hence, computational analyses were frequently employed to
supplement actual testing. Structure—activity relationships (SAR) modeling was one
of the most time-efficient approaches. The Sustainable Nanotechnology (S2NANO)
collection comprises 574 experimental cell viability and toxicity for Al,O3, CuO,
Fe, 03, Fe 04, SiO,, TiO,, and ZnO were included in the model construction
settings. A quasi-SMILES molecular representation-based QSAR models were built
up for classification and regression-based structure—activity relationship. The quasi-
SMILES algorithm had all available data, including nanoparticle structural charac-
teristics like molecular structure, core size, and relevant experimental factors like
cell line, dose, exposure time, assay, hydrodynamic size, and surface charge. Regres-
sion models generated sufficient predictive ability. However, classification models
displayed more precision. Incorporating both theoretical and experimental data into
quasi-SMILES descriptors might be helpful for early risk evaluation of metal oxide
nanoparticles. The proposed descriptors are easily calculable and might be utilized
to create statistically sound models. Since the examined dataset contained measure-
ments of cell viability and cytotoxicity under a range of experimental settings,
seven types of nanoparticles were capable of capturing by the developed models
and generalized safety pictures.

A novel method for constructing and evaluating predictive models of the
octanol/water partition coefficient for gold nanoparticles was set up by Toropova
and Toropov [27]. The partition coefficient for nanoparticles in octanol/water is an
essential parameter for estimating the ecological destiny of these novel chemicals
rapidly disseminating in everyday life. The validation of a model’s prediction ability
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is a crucial component of QSPRs. The so-called system of self-consistent models
may provide a novel strategy for validating predictive capability. The measure of
self-consistency is the mean of the correlation coefficients found for several models
on distinct validation sets. The purpose of the study was to assess the adequacy of the
self-consistency of models derived from two methods to identify a superior modeling
method for octanol/water partition coefficients for gold nanoparticles (GNPs). The
models mentioned above are predicated on the representation of GNPs by so-called
quasi-SMILES, which are unique sequences of symbols that translate data about the
architecture and operating circumstances of GNPs. Two optimized target functions
are listed below.

TF; = rar + rpr — |rar — rpr| X 0.1 (13.19)

TF, = TF; +IICc x 0.5. (13.20)

The first method involves the Monte Carlo optimization of the correlation coeffi-
cient between the observed and anticipated outcomes. The second technique modifies
the first by incorporating an extra criterion, IIC. The self-consistency and predictive
capability of the second method are superior. Concurrently, it is demonstrated that
the described quasi-SMILES approach yields a model of log P for gold nanoparticles
that is highly resilient.

The models for solubility of fullerenes C[60] and C[70] were able to predict
through SMILES and quasi-SMILES-based QSPR models [28]. Correlations of
criteria of prediction ability of models for solubility of fullerenes C[60] and C[70]
observed for the calibration (visible) set with determination coefficients of compa-
rable models for validation sets (external, invisible). The IIC participated in the
Monte Carlo optimization to establish a one-variable QSPR to forecast the solubility
of fullerenes C[60] and C[70]. This significantly enhanced the forecasting capability
of models for this solubility. Following a study of the statistical quality of the calibra-
tion set, better models may be selected based on the criteria of predictive potential,
and the genesis of the potential predictive measures addressed is distinct. Two statis-
tical elements, the correlation coefficient and the mean absolute error, are considered
by the IIC, which may be a benefit.

13.3.2 Toxicity Predictions and Risk Assessment of Organic
Chemicals

Quasi-SMILES could also be a helpful tool for removal rates of pharmaceuticals and
dyes prediction in sewage [29]. In this study, quasi-SMILES codes could represent
various eclectic conditions, such as the existence of light, X-rays beam impaction,
and seasons. From the data collected from the literature, two CORAL models were
constructed and stated below:
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Removal Rate (%) = — 83.32 + 1.63 « DCW(1, 15) (13.21)

Removal Rate (%) = 16.61 + 0.589 x DCW(1, 20). (13.22)

The approach described here gives quite efficient and predictive QSAR models.
In addition, the process was much more straightforward with quasi-SMILES. Exper-
imental methods provide more precise numerical data on removal rates, but predic-
tive computer models are also required, at least for simple engineering decision
estimations.

Based on Monte Carlo approach, organic compounds’ ecotoxicological predic-
tion toward Pseudokirchneriella subcapitata could be performed [30]. Acute toxi-
city was one of the most critical factors utilized in ecotoxicological risk assessment.
P. subcapitata have been used in ecotoxicological investigations to determine the
toxicity of several toxic compounds in freshwater. Using quantitative structure—toxi-
city relationship (QSTR) modeling, the toxicity of 334 distinct compounds on P.
subcapitata was evaluated in terms of ECyy and ECsg values. Using CORAL soft-
ware, the QSTR models were created by combining the target function (TF,) and
the IIC using a hybrid optimum descriptor generated from SMILES and molecular
hydrogen-suppressed graphs (HSG). Overall, the approach of balancing of correla-
tion with IIC was utilized to develop QSTR models. Using the IIC to create the QSTR
models improved the robustness and predictability of the produced models, notably
for the validation set. In addition, the generated QSTR models were nonparametric.
Three random splits and four sets of single-split active training, invisible training,
calibration, and validation sets were employed to prove the dependability of QSTR
models.

The Monte Carlo method examines the adsorption affinity of azo dyes by applying
new predicted statistical criteria [31]. Due to their chemical stability and simplicity
of production, azo dyes are widely employed in several sectors. However, these
colors are often recognized as hazardous environmental contaminants. Consequently,
a mathematical model for the adsorption affinity of azo dyes may be used for medical
and ecological problems. As a result of their chemical stability and simplicity of
production, azo dyes are utilized in a variety of sectors. However, these colors are
frequently recognized as significant environmental contaminants. Consequently, a
mathematical model for the adsorption affinity of azo dyes may be used to solve
problems in the fields of health and ecology. The optimal SMILES-based descriptors
were used to create QSPR for the adsorption affinity of azo dyes to a substrate (DAF,
kJ/mol) using the Monte Carlo approach. The IIC and the CII improved the model’s
predictive potential, primarily when they were used simultaneously.

TF():I"AT+FPT— |VAT—I"pT| x 0.1 (1323)
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TF; = TFy 4 Cll¢ x 0.3 +1ICc x 0.5. (13.26)

The IIC in TF; and CCI in TF, enhance the prediction capability of QSPR for DAF.
The concurrent usage of these indices (TF3) is particularly efficient. The significant
absolute mean of the determination coefficient on ten random splits and the tiny
dispersion of the value on ten random splits illustrate the benefit of the TF3.

The Monte Carlo approach for constructing models of the half-lives of hydrol-
ysis of organic molecules was presented in 2021 [5]. The hydrolysis of organic
molecules such as pesticides, pollutants, and pharmaceuticals can influence the
destiny and behavior of environmental contaminants; thus, it is important to examine
the substance’s stability in water for various reasons. However, the actual measure-
ments of all compounds would necessitate colossal resources, and computational
models may become appealing. Using the CORAL program, QSPR models of hydrol-
ysis were constructed. The 2D-optimal descriptor is computed using correlation
weights for SMILES characteristics. The correlation weights are derived using a
unique Monte Carlo optimization. The composition of five or six carbon rings is
a crucial component of this strategy. The QSPR models for predicting the half-
life of hydrolysis of organic compounds are based on the idea that “QSPR is a
random occurrence.” In other words, this strategy was evaluated using three random
splits. In every instance, the CORAL program provides accurate models. Moreover,
this method provides insights into the mechanism and has been validated using the
external validation set. Once again, the unique and paradoxical capacity of the index
of ideality of correlation (IIC) to increase the statistical quality of a model for the
calibration and validation sets at the expense of the training set is verified.

SMILES could be used to develop a hybrid descriptor-based QSTR model for
predicting the toxicity of dioxins and dioxin-like compounds using correlation inten-
sity index and consensus modeling [32]. The study included 95 halogenated dioxins
and relevant chemicals with endpoint pEC50 for developing 12 QSTR models
based on the Monte Carlo algorithm in CORAL software. Three target functions
were computed and optimized. CII was discovered to be a dependable indicator
of the prediction ability of QSTR models. In terms of the promoter of increase or
decrease for pEC50, the fragments responsible for the toxicity of dioxins and similar
substances were also found. Four QSTR models were developed for each target func-
tion type to get accurate statistical findings. Conforming to the idea that “QSAR is a
random event,” three optimized functions were evaluated using four random splits.

Models for organophosphates compounds (OPC) binding to acetylcholinesterase
(AChE) developed via representing the molecular structure were proposed by
Toropova et al. [33]. QSARs are used to construct organophosphate prediction
models. The determination coefficient for the validation set varied from 0.87 to
0.90, indicating that these models had a high predictive ability. These models were
developed following the notion “QSAR is a random event,” which states that the
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predictive capacity of a method should be evaluated by dividing available data into
training and test sets many times.

New robust and predictive models for AChE binding to OPC were developed.
The sphere of applicability and a mechanistic explanation accompany these models.
The statistical quality of the models investigated here is superior to that of models
for the same endpoint generated by the CODESSA program [34]. The method [33]
is reasonably straightforward and utilizes open-source CORAL software.

13.3.3 Miscellaneous Physicochemical and Biochemical
Property Predictions of Organic Chemicals

13.3.3.1 Vapor Pressure (VP) Prediction

A self-consistent model system developed by Toropova et al. could be used to create
and validate QSPRs [35]. The standard for these models’ self-consistency is their
ability to reproduce statistical quality despite variations in distributions. The model
was built up by CORAL software:

log VP = Cy 4+ C; x DCW(T, N), (13.27)
Cy and C| stand for regression coefficient; DCW was the optimal descriptor
calculated by SMILES. Monte Carlo method was performed for optimizations. Five

splits of models were gained from the calculation:

log VP = —3.838(£0.012) + 0.2281(£0.0010) x DCW(3, 15)  (13.28)
log VP = —3.941(£0.012) + 0.2400(£ 0.0010) x DCW(3,15)  (13.29)
log VP = —3.625(£0.011) + 0.2363(%0.0009) x DCW(3,15)  (13.30)
log VP = —3.708(£0.011) + 0.2638(£ 0.0009) x DCW(3,15)  (13.31)

log VP = — 4.241(£0.010) + 0.1876(£0.0010) x DCW(3, 15).  (13.32)

All the target formulas have an R? of about 95%. One could assert that these
models were generic and could be used for predictions since they were repeatable
for the five splits, showing that they were not discovered by chance. Compared to
various approaches, the system was applicable to realistically. The computational
data confirmed that IIC could increase the predictive potential of the QSPR model.
VP models were relatively simple to compute with SMILES structure.
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13.3.3.2 Food Property Prediction

SMILES can be applied to food models. In 2019, Achary et al. proposed a model
for sweetness [36]. With 315 molecules, QSAR models were built for the sweet-
ness value (log S). The descriptor used to build the model for log S was a hybrid
optimal descriptor obtained by combining the following two descriptors: (1) molec-
ular graph-based descriptor built from molecular feature correlation weights, (2)
SMILES code describing the sweetener molecules. The 315-molecule dataset was
partitioned into four random splits. The four QSAR models constructed for log S
based on the IIC criterion were compared to four comparable models built using the
“conventional approach” detailed elsewhere. The comparison found that IIC-built
models had a superior statistical performance. The CORAL program could correctly
simulate the sweetness potential (log S). The IIC enables the statistical interpretation
of CORAL-based QSAR models to be enhanced. The CORAL model had distinct
criteria for estimating the quality of separating a given dataset into sets. Additionally,
the requirements offered a statistically significant specification of the applicability
domain (AD). The CORAL models’ statistical properties proved superior to the other
models obtained from the 2D or 3D support vector regression.

13.3.3.3  Solubility Model

The water solubility (WS) model could be built up with SMILES introduced by
Toropov et al. [37]. Water solubility models were constructed for 4224 molecules
utilizing correlation weights of fragments of the SMILES, 2D graph invariants, and
the ring hierarchy of the molecules. Two kinds of optimization were performed; one
was the traditional version, and the other one was IIC version. Three splits were
constructed for each version. The provided method produced reliable and resilient
water solubility models. The IIC increased the descriptive models’ statistical quality.
Despite the structural diversity of the examined compounds, the developed models
were based on molecular structures without using 3D molecular descriptors, physico-
chemical descriptors, and/or quantum mechanical descriptors. The statistical quality
of models derived using the IIC was equivalent to that of models constructed using
recently proposed physicochemical endpoints and quantum mechanics descriptors.
The models for pesticide water solubility proposed in this publication are crucial
from an ecological engineering standpoint [38]. Good in silico models were identified
using the IIC of groups of QSPR models for the aqueous solubility of pesticides asso-
ciated with the calibration sets. This comparison demonstrated that the high IIC set
produces a model with superior statistical quality for the validation set. Even though
there are extensive databases on solubility, the accurate prediction of the endpoint for
novel compounds that might be used as pesticides is a crucial ecological challenge.
The CORAL program provides a model for the WS of 1168 pesticides comparable to
other solubility models proposed in the literature. Unfortunately, predictive models
for various outcomes are susceptible to overtraining; the IIC aims to prevent or
mitigate this. The IIC and correlation distribution enhance these models’ prediction
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ability. This method compares a group of distinct data distributions into training
and validation sets. Lastly, these models may be utilized for at least a preliminary
mechanistic interpretation of specific molecular characteristics.

13.3.3.4 Self-accelerating Decomposition Temperature of Organic
Peroxides Prediction

The breakdown of the organic peroxide is exothermic, and this heat can be employed
for the polymers’ or emulsion’s intended or anticipated reactions. However, the unin-
tended breakdown of these peroxides creates heat that is not efficiently dispersed and
can lead to severe issues. Quasi-SMILES could be an appropriate way for computing
self-accelerating decomposition temperature (SADT) [39]. A prediction model has
constructed with the help of IIC and the organic peroxides dataset. Every fragment
or component of SMILES could be evaluated in terms of its incidence and statistical
impact as a promoter of an increase or decrease in SADT. The benefit of dividing the
SADT dataset into sets is an understandable criterion for generating robust CORAL-
based QSPR models. However, the disadvantage of the SMILES-based technique,
with or without the IIC criteria, is that it might take a long time to finish the optimiza-
tion on huge datasets. When the SMILES attribute is not present in the molecular
fragment, the CWs for such an attribute cannot be computed, resulting in a significant
variation in optimal descriptors. CORAL-based QSPR models are novel models that
appear to be sufficiently efficient for predicting critical features such as SADT and
others.

13.3.3.5 Biological Activity of “Micelle-Polymer” Prediction

Modeling the biological activity of “micelle—polymer” samples with quasi-SMILES
was created in 2018 [3]. The primary step of drug discovery is determining the molec-
ular structure of novel pharmacological medicines. The delivery of active chemi-
cals to the proper destinations within an organism must be clarified in detail. The
polymeric structures identification serving as the foundation for transferring thera-
peutic substances into the body is one solution to the problem. Typically, models
computed using the CORAL program offer mechanistic interpretation information
regarding promoters of rise or reduction in several runs of an endpoint’s optimiza-
tion. There are only two fragments with multiple occurrences in training and cali-
bration sets of quasi-SMILES with consistent positive correlation weights for arm
star polymer and poly(ethylene glycol) methacrylate, and only one fragment with
consistent negative correlation weights for Poly(ethylene glycol). However, the defi-
nition of quasi-SMILES and the strategy for extracting fragments of quasi-SMILES
can be improved, for example, by separating micelles and polymers, defining not just
digits but also integer coefficients, and possibly by making other changes. The stated
investigation has demonstrated that suitable prediction models based on the provided
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quasi-SMILES are theoretically conceivable. Quasi-SMILES is adequate represen-
tations of the micelle—polymer systems that allow for the construction of models.
The technique utilized to define pieces of quasi-SMILES in the modeling process
can be enhanced. Due to the high quality of the proposed models, further information
on the physicochemical and biochemical properties of the micelle—polymer samples
is not required.

13.3.3.6 CO, Uptake Prediction Model

Metal-organic frameworks MOFs were high-specific surface areas of hybrid
organic—inorganic crystalline porous materials [40]. The model was examined and
created that utilizes quasi-SMILES parameters such as Brunauer, Emmett, and Teller
specific, surface area, pore volume, pressure, and temperature to MOFs for CO,
uptake prediction. The dataset, which included 260 quasi-SMILES characteristics
of MOFs, was randomly divided into training, validation, and test sets three times.
Six QSPR models utilizing two target functions based on quasi-SMILES descrip-
tors have been developed. The relevance of several eclectic characteristics of CO,
increases and decrease ability of MOFs to absorb CO; is discussed:

log(CO, uptake) = Co 4+ C; x DCW(T*, N*) (13.33)
TF; = R1rn + Ritrn — |RTRN — RiTrN| X 0.1 (13.34)
TF, = TF; 4+ IICcaL X Wic. (13.35)

Rrrn and Ritrn experimental and projected log(CO, uptake) correlation coeffi-
cients for the training and invisible training sets, respectively. Optimization using
Monte Carlo develops QSPR models based on IIC (TF;). Wy was an empirical
coefficient (Wyc = 0.2 in this case), whereas IICc,y is the index of the ideality of
correlation for the calibration set, which was defined by the calibration set’s data.

The results show that TF, improves the predictability of models. Hence, simple
and predictive models may be used to forecast the CO, capture capacity of MOFs.
Based on the outputs of the QSPR models, the most critical factors that increase or
decrease the CO, uptake capacity correspond with observations from experimental
studies. According to the results of the QSPR model, the impacts of temperature
and pressure on capturing CO, had been explored and are compatible with experi-
mental observations. In addition, the model demonstrates that functionalization was
a powerful technique for enhancing CO,-MOF interaction and the CO, absorption
of MOFs. According to the model interpretation results, the addition of basic N-
and O-containing and double-bond-containing functional groups to the surfaces of
organic linkers of MOFs was crucial for enhancing CO, absorption capabilities.
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13.3.3.7 Monte Carlo Method-Based Gibbs Free Energy Studies

Construct quantitative structure under SMILES, Gibb’s free energy of activation
relationship (QSGFEAR) models with broad application and complete validation
is feasible [41]. The experimental data of Gibb’s activation free energy (AGY) at
seven different temperatures served as the endpoint, and the descriptor of correlation
weight (DCW) was generated from the SMILES notation of the compounds. Two
target functions were optimized in this case, one with CCI and one without.

TF; = Ratry + Rprry — |RATRN — RprRN| X Wi (13.36)

TF, = TF; + Cllcar x 0.3. (13.37)

The QSGFEAR models were validated with a new statistical parameter called
correlation intensity index (CII). A total of eight models were formed from the
dataset of experimentally determined AG#¥ values, four using target function TF,
(Wen = 0.0) and four using target function TF, (W = 0.3). It was found that the
models built by applying CII were more accurate, robust, and consistent than those
without CII. All the developed models were effective for predicting AG# values
reliably and consistently. The leading model was developed from split 3 using TF,
with Ry, = 0.9108. The mechanistic interpretation was done with the help of split
3, and the SMILES attributes responsible for the increase and decrease of AG%: value
were identified.

Using the CII as a measure of predictors, a new target function was utilized to
generate the SMILES-based descriptors. It was determined that the statistical quality
of all the created models was adequate and that the developed model had an excel-
lent predictive capacity. Examining the correlation weights of different molecular
characteristics estimated through repeated Monte Carlo optimization runs provided
a comprehensive mechanistic explanation of the increasing or decreasing structural
features.

13.3.3.8 Glass Transition Temperature Studies

The optimal descriptors computed using SMILES indicated a structure of monomer
units used to construct a model of the temperatures of glass transition of various poly-
mers [42]. QSPRs were developed for the dataset mentioned above. Robust statistical
quality characterizes the model of transition temperatures for glass. The molecular
structure of matching monomers has been represented using SMILES. As the foun-
dation for the one-variable model, the hybrid optimum descriptors generated using
the so-called correlation weights of molecular characteristics taken from SMILES
and molecular hydrogen-suppressed graph (HSG) were utilized. The IIC is a new
criterion of the QSPR model’s predictive ability. Here, the usefulness of the IIC as a
tool to enhance the model’s prediction capability for temperatures of glass transition
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is demonstrated. The target function with a R* = 0.90 & 0.01 listed below:
Tg'K = Cy+ C x DCW(T*, N*). (13.38)

The computation experiments conducted with three iterations of the Monte Carlo
optimization verify that the predictive potential of models constructed with consider-
ation of the IIC is acceptable, as the dispersion of the statistical quality of the models
is satisfactory at 0.01 for the determination coefficient and 0.5 for the mean absolute
error of the predicted glass transition temperatures.

13.3.3.9 Application on Chromatography Studies

QSRR of taste and fragrance compounds was investigated on a stationary phase
methyl silicone OV-101 column utilizing correlation intensity index and consensus
modeling by CORAL [43]. In chromatography, the QSRR is a critical technique
for estimating unknown substances’ retention period. Using the statistical parameter
“correlation intensity index” (CII), the QSRR method is utilized to create robust
models’ of 1176 taste and aroma chemicals on the OV-101 glass capillary gas chro-
matographic column. QSRR models are constructed using the optimum descriptor,
i.e., the descriptor of correlation weight (DCW) derived using SMILES notation.
Using the balance of correlation technique, two target functions, TF; (W¢y = 0) and
TF, (Wep = 0.3), are used to create 12 QSRR models from six splits. According to
statistical outcomes, models developed using CII perform better. The lists of struc-
tural characteristics responsible for variations in the retention index (RI) of tastes
and scents compounds were retrieved as well. Utilizing the allocation structure of
split 1 and the revised consensus, a consensus model is constructed (CM1). The
test set’s determination coefficient (R?) for the modified consensus (CM1) model
is calculated to be 0.9772, which is more than the leading model. QSRR models
are statistically robust and validated with many validation parameters, exhibiting
exceptional performance for external chemical prediction inside the AD.

Another relative research was proposed in 2022 [44]. A total of 1179 flavors and
fragrances were included in this study for the creation of the QSRR model based on
Monte Carlo algorithm in CORAL software. All organic molecules were encoded by
SMILES notation to compute the correlation weight descriptor (DCW). The dataset
of 1179 flavor and fragrance organic compounds was divided into nine subsets, each
consisting of four subsets: training, invisible training, calibration, and validation. 18
QSRR models and two types of target functions were developed. The function of the
index of ideality correlation (IIC) was thoroughly analyzed, and it was discovered
that the QSRR models created by using the IIC were more robust and significant.
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13.3.3.10 Models for Flammability of Binary Liquid Mixtures

The binary liquid mixtures QSPR model was also developed in 2020 [45]. Data on
the flammability of binary liquid mixes is required for the categorization of liquid
mixtures rationally. The list of related binary mixes with practical uses is extensive
and is growing continuously. Therefore, accurate predictions of the endpoint might be
advantageous. SMILES is the molecular structure representation. Quasi-SMILES is
the extension of standard SMILES with the addition of symbols representing “eclec-
tic” circumstances that might impact physicochemical endpoints. The application of
quasi-SMILES to develop a model for the flammability of binary liquid mixtures
revealed that the method provides an excellent model for the flash points (°C) of
binary organic mixtures.

The method enables the definition of a model’s mechanistic interpretation via a list
of molecular characteristics that encourage flash points’ development (or reduction).
The quasi-SMILES method yields relatively accurate predictions for the flash points
of binary liquid mixes, including organic compounds. The IIC is an essential and
valuable component of Monte Carlo optimization, as it provides the opportunity to
enhance the prediction capability of models for flash points, for external, invisible
validation sets. IIC is a new predictive capability metric. Successful attempts were
made to utilize the IIC to enhance models for the flammability of binary liquid
combinations.

13.3.3.11 Model for Disease Treatment Study

For a large database (n = 141,706), robust QSARs for hBACE-1 inhibitors (pIC50)
are developed [46]. New statistical criteria for evaluating the predictive capability of
models are proposed and evaluated. These are the ideality of the correlation index
(IIC) and the correlation intensity index (CII).

TF] :rAT+rPT_|rAT_rPT| x 0.1 (1339)
TF, = TF; + IIC¢ x 0.5 (13.40)
TF; = TF, + ClI¢ x 0.5. (13.41)

In conjunction with the Monte Carlo approach, the SMILES algorithm provides
highly accurate models for hBACE-1 inhibitor action (IC50). The best model after
optimization is from TF3. Computational investigations with five distinct distribu-
tions for the active training set, passive training set, calibration set, and validation set
demonstrated the statistical validity of these models. The models’ statistical proper-
ties for the validation set are assessed to measure the model’s predictive capability.
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Despite the stochastic nature of the given technique, the proposed system of self-
consistent models measures both the predictive potential of the applied approach
(chosen model) and the repeatability of the findings.

13.4 Conclusion

The present chapter summarizes the major concepts of SMILES, quasi-SMILES, the
Monte Carlo method, and Coral software and their application in diverse research
field. SMILES and quasi-SMILES QSAR models have already been successfully
applied on various endpoints. Due to the simplified notation, it is easier to build up a
model for the aimed target. Using the Monte Carlo approach, CCI, and IIC parame-
ters, one can make robust and significant QSAR models. From the existing models,
SMILES and quasi-SMILES have satisfactory performance on environmental risk
assessment, nanoparticle toxicity, property studies, drug design and discovery, envi-
ronmental risk assessment, etc. The open-access CORAL software makes the whole
modeling approach user-friendly and accessible to academics, industry, and indepen-
dent researchers. One of this modeling method’s unique features is modeling complex
nanomaterial toxicity and properties using SMILES and quasi-SMILES followed by
successful prediction. We believe this popular QSAR modeling approach will solve
many unsolved queries of diverse scientific areas in the upcoming days.
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Chapter 14 )
The CORAL Software as a Tool ez
to Develop Models for Nanomaterials’
Endpoints

Alla P. Toropova and Andrey A. Toropov

Abstract This chapter discusses the evolution of the so-called quasi-SMILES. The
traditional simplified molecular-input line-entry system (SMILES) is a string of char-
acters conveying information about the structure of molecules. Quasi-SMILES is a
string of characters that can convey codes reflecting the structure of molecules and the
conditions for conducting chemical or biochemical experiments. Several examples
demonstrate the similarity in reporting data on individual nanomaterials and data on
two or more nanomaterials subjected to the same type of experiment. The possibility
of gradual expansion of the scope of application of quasi-SMILES, as well as the
possibility of using quasi-SMILES as input information for the CORAL software
(abbreviation CORrelation And Logic) when building models of physicochemical
and biochemical phenomena for nanomaterials, is shown.

Keywords Nano-QSPR : Nano-QSAR * Quasi-SMILES - Monte Carlo method -
CORAL software

14.1 Introduction

In their autobiography, Sir Harry Kroto (Nobel Prize, 1996) noted, ‘... I had the strong
gut feeling that it was so beautiful a solution that it just had to be right.” It is about
fullerene structure Cgp. Although the practical applications of Cgy have remained
limited, its discovery changed the perception of the behavior of carbon and paved
the way for work on carbon nanotubes and graphene. The existence and formation of
Cgo molecules in outer space were detected and confirmed; hence, the astronomical
role of Cg is established [1-3]. Analysis of cave paintings suggests that people of
ancient civilizations used nanomaterials, such as graphene, without knowing it [4].
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Luster ceramic decoration was revealed by analytical electron microscopy to have
been the first nanostructured film made by man. This is a real technological discovery
because nanocrystal films have been produced empirically since medieval times [5].

Currently, reports on nanomaterials are more common than on any other materials.
There is both bad and good news. Nanomaterials are able to rapidly impact many
areas of daily life, such as food, cosmetics, pharmaceuticals, electronics, building
materials, medical materials, and so on. The question arises about the safety of using
these still new but no longer exotic materials. Some life-threatening and health-
threatening effects can be detected quickly. However, many other deleterious effects
can only be detected using long-term observations or even multi-generational data.

For example, mutagenicity and/or carcinogenicity is harm that can only be
detected by comparing the health of several generations. Thus, in the ‘ocean of
nanotechnologies,” there may be dangerous pitfalls. The dangers of some nanoma-
terials are currently established. It can be expected that in the near future, the list
of dangerous effects of nanomaterials will expand. Nanomaterials are characterized
by a strange and ‘uncomfortable’ molecular architecture. Traditional methods for
predicting physicochemical and biological behavior are often not suitable for nano-
materials since the essence of traditional methods is to use molecular structure data
to compare and further predict the behavior of substances. The behavior of traditional
(small) molecules is mainly determined by the presence of various chemical elements
and the configuration of covalent bonds between them. Other features resulting from
the impacts of large clusters of chemical elements are likely to determine the behavior
of nanomaterials. Thus, approaches aimed at predicting the behavior of nanomaterials
require a new presentation of the relevant experimental data.

Analogies are practically a necessary part of research work. The transition from
the study of traditional ‘non-nanosubstances’ to the study of nanomaterials is analo-
gous to the transition from considering the economic state of villages to considering
the economic state of cities [6] or the transition from looking at calculators to looking
at computers. The village may be loosely connected to other parts of the planet. The
city must be connected to other cities. The economic status of the village is deter-
mined by the ratio of men, women, and children: a small number of workers, as a rule,
leads to a decrease in the economic potential of the village. In the case of a city, these
criteria are not informative. However, it is possible to define specific indicators of the
economic potential of the city (not informative for the countryside), for example, the
number of stations and airports. If we continue this ‘village-city’ analogy, then we
can state that in the case of traditional substances, the basis for predicting the physic-
ochemical and/or biological potential of a substance (‘village’) is a comparison of
the molecular structure of this substance with the molecular structure of other similar
substances (analogy proportion of men, women, and children in villages), while in
the case of nanomaterials, other characteristics must also be compared. The condi-
tions of synthesis and the conditions of the impact of nanomaterials on biological
targets (cells, membranes, organs, animals, humans) are informative characteristics
analogous to the ‘number of stations and airports’ for cities.

Thus, developing models of nanomaterials’ physicochemical and biochemical
behavior is a real and important task of modern natural sciences. Previously, the
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solution to this problem was expected in the form of a paradigm like QSPR/QSAR
(quantitative structure—property/activity relationships) [7]. However, apparently,
such a solution will not have complete similarity with QSPR/QSAR, although some
analogies are quite possible.

The Organization for Economic Co-operation and Development (OECD) has
numerous goals concerning the development of international cooperation in the field
of economy and ecology, as well as in the field of natural and human sciences.
The appearance of new categories of nanomaterials implies radical modifications
of methods of computational modeling physicochemical and biochemical endpoints
desired. For such a task, the traditional QSPR/QSAR approaches need a radical
transformation.

Modern society seems to increase its rate of risk production constantly (i.e., indus-
trial and agricultural pollutions, destroy of ecosystems via technological disasters
and others), and this is not only due to the increased production of advanced tech-
nology [8]. There are four components of any real risk assessment: identification,
risk analysis, risk impact, and economic aspect of the development of the corre-
sponding legislation documents. According to OECD, dissolution rate and disper-
sion stability in the environment are important parameters for nanomaterials, i.e.,
these parameters are the main drivers in the environmental fate of nanomaterials and
nanomaterials (bio)availability [9]. Therefore, the development of models for other
endpoints related to nanomaterials is a practical task that also is significant and urgent
[7,10, 11].

The problem of assessing the risk of using nanomaterials in the environmental
aspect intersects with the problem of the correct, efficient, and safe use of nanotech-
nologies in medicine [12, 13]. Factually, medicine involves fullerenes [14—16], single
carbon nanotubes [17, 18], multiwall carbon nanotubes [19, 20], nano-oxides [21,
22], and quantum dots [23, 24].

Nanomaterials are widely used in cosmetics [25-31]. However, the lists of nano-
materials for medicine and cosmetics are pretty different. Nano-oxides are mainly
used for cosmetics [27, 28] and, to a lesser extent, also fullerenes [30]. Concerns over
health risks have limited the further incorporation of nanomaterials in cosmetics.
Since the cosmetic industry may use new nanomaterials in the future, a detailed
characterization and risk assessment are needed to fulfill the standard safety require-
ments. To solve the above task, undouble the fast methods of risk assessment using
computational approaches, which are currently being developed [31]. It is to be
noted that the stream of nanotechnology applications involves not only medicine and
cosmetics but also electronics [23, 24] and even the design of nanorobots [32].

The term nano-QSAR appears for the first time in work of Puzyn et al. [33].
Thus, the efforts of researchers aimed at the development of nano-QSAR started less
than fifteen years ago. Pretty soon, it became clear that some qualitative changes
in the QSAR paradigm were needed for the cases of nanomaterials. It became
obvious that a new approach was needed to re-define databases that were suit-
able for classical QSAR but were not suitable for the case of QSAR for nanomate-
rials. To solve this problem, an ISA-TAB-nanoparadigm (investigation—study—assay)
was proposed [34]. The approach is based on the representation of nano-data in a
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particular format, ‘investigation—study—assay’ [34]. The term ‘nano-informatics’ was
suggested perhaps to the same end [35].

Another critical point in the search for approaches for modeling the physico-
chemical properties and biological activity of nanomaterials is the search for ways
to consolidate potential consumers of nano-models online, through special websites.
For instance, to make the nano-model (the model is based on the k-Nearest Neighbors
(kNN) algorithm) available to interested users, the model was made available via the
Internet (Enalos In Silico Nanoplatform [36]). Quantum mechanical descriptors as
a basis for nano-QSAR have been successfully used to model nano-oxides toxicity
[37]. The k-nearest neighbors (kNN-based regression) and support vector machine
(SVM) were applied to build up a good model for PaCa2 cell line uptake on 109
nanoparticles [38].

Having a group of records related to the influence of nanomaterials upon the
biological targets under different conditions, one can select conditions of three cate-
gories of their impacts: (i) conditions that are promoters of increased impact; (ii)
conditions that are promoters of decreased impact; and (iii) conditions that do not
influence the impact of nanomaterials. The CORAL software (http://www.insilico.
eu/coral) gives the possibility to automatically carry out the analysis of the records
related to nanomaterials, mentioned above. Moreover, it is possible to integrate
separated recommendations into a united system of estimation for a large group
of different nanomaterials in the future.

Numerous disputes about the expediency of constructing quantitative structure—
property/activity relationships (QSPRs/QSARs) have not yet led to a denial of the
main issue—that such studies are useful both in practical and theoretical terms. At the
beginning of its development, the theory and practice of the QSPR/QSAR research
were criticized for the lack of transparency in the interpretation of models [38—40].
However, later, the questionable reliability and reproduction of the models became
the main point of criticism [41-44].

Nevertheless, QSPR/QSAR method has gradually become a generally accepted
tool for constructing models of physicochemical properties and biological activity
for organic [44-47], inorganic [48], organometallic [49] compounds, and polymers
[50]. The listed categories of substances are characterized by unambiguous molecular
structure, which, in fact, is the basis for constructing QSPR/QSAR models.

However, in the case of models related to nanomaterials [S1], the representation
of an exclusively molecular structure or even in conjunction with data from molec-
ular mechanics and quantum chemistry calculations [52] becomes insufficient for
the development of new perspective ways of building up models for phenomena in
biology, and medicinal nanotechnologies [53]. New technologies used in the agri-
culture and food industry, e.g., nano-pesticides, force a revision of the QSAR and the
quantum mechanics as well all other descriptors suitability, owing to the high diver-
sity of dangerous effects which can be observed in the case of using nano-pesticides
[53].

Significant difficulties arise from the fact that a small change in the production
of such pesticides can lead to a significant change in their impact on biosystems,
ecosystems or even economic systems. In other words, an agricultural process based
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on nanotechnology may become both environmentally and economically unsustain-
able, as the unclear impact on yields will be a danger to ecosystems and human health.
Another important point is the increase in the diversity of nanomaterials. For example,
in recent years, nano-cellulose has attracted increasing attention from researchers
and industry as an alternative to traditional cellulose [54]. The same situation occurs
for quantum dots, which are becoming more and more widespread in research and
industry [55]. Obviously, a wide variety of nanomaterials inevitably leads to a greater
likelihood of unexpected and often unpleasant or, moreover, dangerous effects.

A sufficiently detailed analysis of a large number of various scenarios is econom-
ically complex. Therefore, for example, the development of reliable models of the
physicochemical and biochemical behavior of quantum dots associated with nano-
materials is an evident and important task. It should be taken into account that these
models should accurately reflect the experimental conditions. The choice of a list
of experimental conditions that should be available for building a model is also a
non-trivial and important problem.

Unfortunately, the solution to the above problem likely should be selective and
tuning for each specific experiment. Thus, consideration of a new nanomaterial
category can imply radical modifications of QSPR and QSAR conception.

QSPR/QSAR studies obey special rules defined by different international orga-
nizations (e.g., the above OECD). These rules supply particular standards to make
the corresponding models and provide software reliable enough for practical use
[56, 57]. However, it should be noted the above standards are not dogmas. More-
over, these standards will develop and change rapidly. Since the theory and prac-
tice of nanomaterials manufacturing are innovative, these standards will change and
improve according to new experimental data on the abilities and dangerousness of
nanomaterials.

14.2 Theory and Practices of QSPR/QSAR

Any QSPR/QSAR model implies a way of estimating of value of a parameter of
interest to a substance y via a mathematical function

y = F(all available influences on the system). (14.1)

In the classical QSPR/QSAR, the equation defined as
y = F(all available descriptors). (14.2)
The predictive capability of the QSAR models is established by performing an
external validation, information indices, topological indices, quantum mechanics
descriptors, molecular operating environment indices, and just physicochemical

parameters of substances under investigation. It has been shown that those measures
are appropriate tools for selecting the model calculated with Eq. 14.2.
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The advantage of the one-variable model is their reliability. Often the one-variable
model is characterized by a modest (but not poor) statistical quality for both the
training and test sets. Multiple linear regression analysis (MLRA) can be utilized
to obtain a model that is developed using a group of several descriptors. The model
obtained by MLRA is often characterized by good (perfect) statistical quality for the
training set, but this model can be a poor one for the external validation set.

According to many authors, a rational split data into training and validation sets
gives better statistical results for the validation sets than models based on random
splits. However, the experiment confirms that often there are some distributions into
the training and validation sets successful for one approach, which is unsuccessful
for another method.

All the above-mentioned circumstances and instructions become precise and reli-
able basis for building up models for the physicochemical and biochemical behavior
of diverse substances. Nevertheless, in the science space, nanomaterials have become
a new, unexpected scientific targets. The theory and practices of the QSPR/QSAR
require new tools to analyze these new substances. There are, however, principal
barriers that make corresponding efforts ineffective.

First, molecules of nanomaterials are large; more exactly, nanomaterials’
molecules are much larger than molecules of most traditional substances (which are
not nanomaterials). Second, the difference between the physicochemical or biochem-
ical behavior of the two nanomaterials is caused rather by an influence of the medium
and not by intramolecular interactions.

On the one hand, according to Bertrand Russell, ‘All exact science is dominated
by the idea of approximation’; on the other hand, ‘all models are wrong but some
are useful’ [58].

Gradually, the target of the QSPR/QSAR research shifted from the selection of
a perfect molecular structure to the harmonization of all available often-eclectic
circumstances. For example, a drug should not be toxic. Cosmetics should not be
bio-accumulative. Plastic should be biodegradable.

Applying QSPR/QSAR for regulatory aims is an attractive idea. Still, this idea is
hardly realized since, for regulatory purposes, the experiment is the only way to get
the necessary numerical data and technical information. Computational experiments
aimed at estimating toxicity are surrogates of real experiments on toxicity assessment.
No one could declare data on toxicity to be reliable if the data is provided from mathe-
matical methods, without verification by corresponding experiments. Economic and
legal evaluation of a new substance is available only based on a real experiment.

The different methodologies aimed to solve the above tasks in the ecologic risk
assessment hardly can be systematized. In other words, the current QSPR/QSAR as
well as the QSPR/QSAR in the future become a mathematical function of eclectic
data, not solely a mathematical function of the molecular structure. Figure 14.1
illustrates the trend.

Nevertheless, the various phenomena observed in computer experiments aimed
at building QSPR/QSAR models are sometimes very similar to those observed in
traditional science experiments, performed without computers. For example, the
dependence of the numbers of poor predictions and percentage of poor predictions
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Fig. 14.1 Essence of QSPR/QSAR models

for the data validation set in a group of models observed for different splits into the
training and validation sets is similar to the dependence of conductivity and thickness
in molybdenum disulfide MoS; nanoflakes [59].

14.3 SMILES and Nanomaterials

Paradoxically, the practical development of QSPR/QSAR models related to nanoma-
terials began without any data on the molecular structure of nanomaterials [60-62].
These were models aimed at predicting the solubility of fullerene (Cgp) in various
organic solvents. Thus, although the solubility of the nanomaterial was modeled, its
molecular structure was not used to develop this model. The only fact of the presence
of fullerene in the solution was considered in this research.

Nevertheless, soon after initial works the comparison of the regularities of biolog-
ical activity along different sequences of fullerene derivatives (Cgo) with considering
molecular features of fullerene derivatives [63—65] began. Similar research was
carried out for single-wall carbon nanotubes (SWCNTSs) [66, 67] and multi-walls
carbon nanotubes (MWCNTS5) [68].

The unique qualities of SWCNTs, MWCNTs, and fullerenes C¢y and C7o required
an actual revision of the traditional concept of QSPR/QSAR as models based on
molecular 2D and 3D descriptors obtained from molecular mechanics and quantum
mechanical calculations. Instead, descriptors partially reflecting ‘nano-nature’ of
substances were developed and tested. Such approach subsequently became almost
independent of the molecular structure, concentrating on the experimental conditions
[69-71]. Nevertheless, it is to be noted that some QSPR/QSAR research is based
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solely on the molecular structure of fullerene derivatives without considering the
conditions of an experiment carried out [61, 64, 72-76].

Fullerene derivatives have been studied longer than most other nanomaterials. This
led to a considerable flow of work devoted to these substances, which were considered
exotic for along time. At present, fullerene derivatives have found some applications.
These applications do the QSPR/QSAR analysis of fullerene derivatives actual. The
first attempts at such an analysis were carried out using a simplified molecular-
input line-entry system (SMILES) for anti-HIV activity [72], the solubility of Cg
in organic compounds [61], and mutagenicity of fullerene derivatives [73]. Further
computation experiments dedicated to building up predictive models were aimed to
extend the targets list, namely to the mutagenicity of SWCNTs and fullerene Cg
[76], and united models for mutagenicity of fullerenes Cgp and Cy¢ [64].

SMILES is the representation of the molecular structure by a sequence of
special symbols that encode different molecular features such as atoms, bonds, pres-
ence/absence of various rings [77]. Briefly, the SMILES is a line where chemical
elements represented by corresponding symbols (e.g., ‘C’ = carbon; ‘Br’ = bromine,
etc.); double covalent bonds indicated by ‘=,” triple covalent bonds indicated by ‘#,” as
well there are some other special codes for combination of rings (e.g., digits 1-9, and
%10, %11, etc.); finally, some 3D features also taken into account (e.g., @, or @ @).
It can be said that, at present, there is some implicit competition between SMILES
and graphs in the development of models of various physicochemical and biolog-
ical parameters for various molecular systems. In some cases, it is preferable to use
molecular graphs. In other cases, SMILES is more convenient. At the same time, an
important circumstance is that these representations are far from identical. However,
they are aimed at solving the same task, namely representing molecular structures in
databases, providing users with the ability to quickly identify and compare all kinds
of molecular features [78—86].

14.4 Quasi-SMILES and Nanomaterials

When developing any program, one should know the answers to several questions.
Table 14.1 contains a collection of such questions as well as some typical responses
to these.

Everything listed in Table 14.1 refers to SMILES as a tool for solving practical
problems in mathematical and computational chemistry. Unfortunately, during the
development of quasi-SMILES, logistics were not planned at all. It was assumed that
quasi-SMILES is a tool for creating models according to the paradigm expressed by
Eq. 14.2,1.e., quasi-SMILES was aimed to include maximum information to develop
a model.

Just as in traditional molecules, the presence of various fragments down to
individual atoms and bonds affects molecules’ ability to be solvents, poisons, or
something else. Additionally, the presence or absence of light, the concentration
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Table 14.1 Logistics of development QSPR/QSAR aimed software

Questions Responses

What is the model that is expected to build | The model makes it possible, having some list of
up? the features of the phenomenon, to predict how the
situation will change if the values of the mentioned
features are changed or the list is changed
(expanded or shortened)

For whom is the model? The model users will be those interested in the
opportunity to influence the phenomenon under
consideration (experimentations); those who
develop similar models; those who plan to be an
experimentations or developers of such models

How to provide the model to potential It is obvious that, first, one should be informed
consumers? about what this program can accomplish for the
potential user, and second, information should be
available on how to use it

Does the software developer need user If the development of the program is planned, then
feedback? feedback is needed

How do establish feedback with The only option is dialogue. Dialogue is actually
consumers? possible only if the user wants it

of impurities, and the nature of porosity can affect the ability of nanomaterials
(physicochemical, biochemical, and others).

Thus, at the very beginning, quasi-SMILES gave models for the behavior of nano-
materials depending on the experimental conditions, while the molecular architecture
of nanomaterials was not involved in the development of the model at all [69, 87].
Table 14.2 contains an example of the list of experimental conditions used as a basis
to build up such models.

However, later, quasi-SMILES were improved by including codes indicating
various nanomaterials [69, 70, 88]. It can be interpreted as ‘fullerene acts here’
or ‘multi-walled carbon nanotubes act here.” The collection of such experimental
conditions is represented in Table 14.3. Table 14.4 contains an example of codes for

Table 14.2 List of attributes of fullerene Cgp nanoparticles exposure and their codes which are
used for the construction of quasi-SMILES

Experimental conditions Codes for quasi-SMILES
The presence or absence of lighting The code ‘0’ means absence of lighting
The code ‘1’ means presence of lighting
Mix S9 The code ‘+” means ‘with mix S9’
The code ‘—’ means ‘without mix S9’
Dose The code ‘A’ means the dose 50 g/plate

The code ‘B’ means the dose 100 g/plate
The code ‘C’ means the dose 200 g/plate
The code ‘D’ means the dose 400 g/plate
The code ‘E’ means the dose 1000 g/plate
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Table 14.3 Brunauer—-Emmett-Teller (BET) surface area analysis: an example of experimental
conditions on bacterial reverse mutation tests on multi-walled carbon nanotubes of two types [88]

MWCNT? Surface area, Concentration, S9 microsomal The average

Diameter, m2/g ng/plate fraction number of

nm/BET revertant
colonies/plate,
TA100

44 69 0.78 Without mix S9 120

44 69 1.56 Without mix S9 109

44 69 3.13 Without mix S9 119

44 69 6.25 Without mix S9 116

44 69 12.5 Without mix S9 114

44 69 25.0 Without mix S9 109

44 69 50.0 Without mix S9 114

44 69 100.0 Without mix S9 117

44 69 0.78 With mix S9 105

44 69 1.56 With mix S9 115

44 69 3.13 With mix S9 114

44 69 6.25 With mix S9 127

44 69 12.5 With mix S9 133

44 69 25.0 With mix S9 120

44 69 50.0 With mix S9 125

44 69 100.0 With mix S9 128

70 23 0.78 Without mix S9 111

70 23 3.13 Without mix S9 118

70 23 6.25 Without mix S9 122

70 23 12.5 Without mix S9 123

70 23 25.0 Without mix S9 118

70 23 50.0 Without mix S9 121

70 23 100.0 Without mix S9 121

70 23 0.78 With mix S9 126

70 23 3.13 With mix S9 114

70 23 6.25 With mix S9 135

70 23 12.5 With mix S9 124

70 23 25.0 With mix S9 124

70 23 50.0 With mix S9 108

70 23 100.0 With mix S9 134

4 N-MWCNT (diameter = 44 and surface area 69); MWNT-7 (diameter = 70 and surface area 23)
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Table 14.4 List of codes used to construct quasi-SMILES reflecting the situation where two kinds
of multi-walled carbon nanotubes act in similar experimental conditions

Experimental conditions Codes to construct quasi-SMILES

Test substance The code ‘1’ means presence of N-MWCNT
The code ‘2’ means presence of MWNT-7

Mix S9 The code ‘+’ means ‘with mix S9’

The code ‘—’ means ‘without mix S9’

Concentration The code ‘A’ means the dose 0.78 pg/plate
The code ‘B’ means the dose 1.56 g/plate
The code ‘C’ means the dose 3.13 pg/plate
The code ‘D’ means the dose 6.25 pg/plate
The code ‘E’ means the dose 12.5 pg/plate
The code ‘F’ means the dose 25.0 pg/plate
The code ‘G’ means the dose 50.0 pg/plate
The code ‘H’ means the dose 100.0 pg/plate

constructing quasi-SMILES reflecting the situation where two kinds of multi-walled
carbon nanotubes act under similar experimental conditions.

Using codes (Table 14.4), one can obtain a predictive system represented by
Table 14.5. One can see the result of three different distributions of data in the
training set (T), calibration set (C), and validation set (V).

In fact, traditional SMILES uses a significant portion of the available characters.
Under such circumstances, certain compromises had to be found to search for a letter
(symbol) basis for quasi-SMILES constructions. Particular agreed-upon combina-
tions such as Al, A2, ..., A9, Bl, B2, ..., B9, ... were used to discretize various
scales.

The examples in Tables 14.2, 14.3, 14.4, 14.5, 14.6, and 14.7 showed similar
situations when 10-15 additional special characters were enough to develop quasi-
SMILES and corresponding models. In principle, the collection of such models can
be expanded with new analogous models of the physicochemical properties or biolog-
ical activity of nanomaterials [89, 90], peptides [91], or membranes [92]. However,
this approach is not comfortable for users (limited number of special characters,
weak mnemonics, etc.). To increase comfort, there was an attempt to involve special
groups of symbols borrowed directly from the classic SMILES. These groups of
symbols aimed to represent in SMILES information about the presence of more
than ten rings [77], e.g., %11, %12, etc. (molecule contains eleven, twelve, or more
rings, respectively). Figure 14.2 includes some examples of discretion of a parameter
(experimental condition) to involve in quasi-SMILES.

The discretion representation for a parameter X is calculated using the formula
Eq. 14.3 [93-95].

Xpmin + X
Discret(X) = ﬁ (14.3)
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Table 14.5 Three distributions of available experimental data into the training (T), calibration (C),
and validation (V) sets; three-symbols quasi-SMILES representing genotoxicity by multi-walled
carbon nanotubes, experimental and predicted average TA100 values (the number of revertant
colonies/plate)

ID | Split Quasi-SMILES | TA100
1 2 3 Experiment | Average prediction | Dispersion

01 |C v |T 1-A 120 111.98 +9.22
02 |T T T 1-B 109 108.19 + 1.67
03 |C T T 1-C 119 112.96 +7.62
04 |V |T C 1-D 116 119.16 +2.08
05 |T C T 1-E 114 118.34 +5.06
06 |T v |C 1-F 109 111.94 +6.34
07 | T C T 1-G 114 116.98 +4.04
08 |v |T vV |1-H 117 119.25 +2.01
09 |T T T 1+A 105 116.03 +0.53
10 |V |T \% 1+B 115 119.86 +5.16
11 |v |V |T 1+C 114 118.32 +3.39
12 |V |V |C 1+D 127 135.19 +2.36
13 |T T T 1+E 133 128.83 +0.95
14 |C C v 1+F 120 123.06 +0.42
15 |T T T 1+G 125 116.93 + 0.54
16 |C T V |1+H 128 132.60 +2.04
17 |T C T 2-A 111 115.33 +5.36
18 |T v |C 2-C 118 116.31 +4.10
19 |T T T 2-D 122 122.52 + 4.46
20 | T C T 2-E 123 121.68 +2.85
21 | T T C 2-F 118 115.29 +5.54
22 |T T T 2-G 121 120.33 +1.84
23 |T v |T 2-H 121 122.60 +1.97
24 |T T T 2+A 126 115.11 +0.32
25 |T T T 2+C 114 117.40 +3.43
26 |T T T 2+D 135 134.26 +3.14
27 | T v |T 2+E 124 127.90 +0.12
28 |C T V | 2+F 124 122.14 +1.23
29 |T T T 2+G 108 116.01 +0.30
30 |T T T 2+H 134 131.68 +1.83
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Table 14.6 Features of action of nanomaterials (fullerene and MWCNT) and their codes

ID Feature Code for the feature
I Fullerene The code ‘X’ means presence of fullerene
MWCNT The code ‘Z’ means presence of MWCNT
11 Dark or irradiation The code ‘0’ means presence of dark
The code ‘1’ means presence of irradiation
III Preincubation The code ‘N’ means absence of preincubation
The code ‘Y’ means presence of preincubation
v Mix S9 The code ‘+” means ‘with mix S9’
The code ‘—’ means ‘without mix S9’
v Dose Fullerene

The code ‘A’ means the dose 50 g/plate
The code ‘B’ mean