
Neuro-Symbolic Regression
with Applications

Nour Makke(B) and Sanjay Chawla

Qatar Computing Research Institute, HBKU, Doha, Qatar
{nmakke,schawla}@hbku.edu.qa

Abstract. Discovering symbolic models is growing in popularity with
the increasing interest in interpretable machine learning. Symbolic
regression is the task of learning an analytical form of underlying models
in data. Two machine learning techniques have proven their effectiveness:
reinforce trick and transformer neural network. This paper discusses in
detail the two techniques and presents the application of symbolic regres-
sion on a simulated data set that describes a high-energy physics process.

Keywords: Model discovery · Symbolic regression · Neural network ·
Transformer network · Physics data

1 Introduction

Model discovery in a data-driven manner is a standard task of machine learning
(ML). Models learned from data often capture hidden patterns and can be used
to make accurate predictions associated with the studied phenomenon. Based
upon the technique adopted in the learning process, models are categorized as
follows: uninterpretable or “BlackBox” models such as deep neural networks,
where the relationship between the input and the output is neither transparent
nor tractable, and interpretable or “Whitebox” models such as decision tree,
where the input-output relationship is accessible, and allows for reasoning.

While there has been a lot of success in ML-based models in making highly
accurate predictions, they remain uninterpretable and opaque. The increasing
need for interpretable ML, especially in critical disciplines, motivates the devel-
opment of ML-based methods that are predictive and interpretable. This is espe-
cially important for the application of ML in physical sciences, which is needed
more than ever with the tremendous amount of data collected. For example, in
high-energy physics experiments, a large amount of data is generated, and it is
not humanly possible to carry out a manual examination to look for patterns. In
such a scenario, a machine learning model effectively summarizes the data and
can be used for making predictions. The model can then be introspected to elicit
the prediction process if the predictions are accurate. More generally, physics is
essentially described by mathematical equations, and one could ask if we can
learn such equations directly from data. This is the symbolic regression. It was
introduced back in 1970 [1]. It came back in 2009 with the commercial platform

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
S. Sachdeva et al. (Eds.): BDA 2022, LNCS 13830, pp. 38–50, 2023.
https://doi.org/10.1007/978-3-031-28350-5_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-28350-5_4&domain=pdf
http://orcid.org/0000-0001-5780-4067
http://orcid.org/0000-0002-8102-2572
https://doi.org/10.1007/978-3-031-28350-5_4

Neuro-Symbolic Regression with Applications 39

Eureqa [2], which was publicized as a scientific discovery tool and developed
using an evolutionary algorithm called genetic programming (GP). SR has since
then been developed within the GP community. More recently, symbolic regres-
sion has been further tackled with deep learning-based tools. The last decade
has witnessed the revolution of the deep learning field triggered by the develop-
ment of ImageNet [3], with a recent review in [4]. The enormous growth of deep
learning was based on the potential of deep neural networks, being universal
function approximators particularly known for being end-to-end differentiable
in their free parameters, predictive, and highly accurate.

The extensive use of deep neural networks over the last decade has unveiled
the limitations of pure data-centric machine learning methods, ranging from
adversarial attacks to explainability and fairness. These limits have triggered
a trend to incorporate abstract concepts into the machine learning framework,
such as graphs and symbolic representations, which help capture the complexity
hidden in data while preserving interpretability. Recent machine learning meth-
ods aiming at avoiding out-of-distributions effects and promoting interpretability
are growing in popularity. In particular, symbolic regression is attracting a wider
research community within the machine learning field. In contrast, its adoption
in scientific disciplines is at a very early stage, mainly due to immature devel-
opments made in this sub-field. Symbolic regression problems can be addressed
using various approaches; see [5] for a full review. This paper discusses in detail
and compares both the reinforce trick, which is used in reinforcement learning
problems and the transformer network approach, which solves symbolic regres-
sion problems analogously to a language translation task. These approaches are
of particular interest and have proven their effectiveness.

In the following, we present the definition of a function class (Sect. 2.1) and an
expression tree representation (Sect. 2.2) within the problem statement section
(Sect. 2). Furthermore, we discuss the symbolic regression problem within the
zeroth-order optimization context (Sect. 3) and the attention mechanism context
(Sect. 4). Finally, we present two state-of-the-art symbolic regression methods
and compare their results on a physics application in Sect. 5. The conclusion is
given in Sect. 6.

2 Problem Statement

Given a data set D = {xi, yi}, where xi ∈ R
d and yi ∈ R, symbolic regression

aims at finding the mapping (f�) in the class of mappings F : (f : Rd → R) that
minimizes the loss function as follows:

f� = arg min
f∈F

l(f) (1)

where f represents a non-linear, expressive, and parameterized function (e.g.,
neural network), and the loss function (l) is defined by:

l(f) =
b∑

i=1

l(f(xi), yi) (2)

40 N. Makke and S. Chawla

2.1 Function Class

The class of function F can be defined as the set of functions that can be
obtained by the composition of mathematical operations and operands from
a pre-defined library L. The latter includes unary and binary mathematical
operations, arithmetic operations, variables, and placeholders. Also, it can be
extended to include as many operations as needed, as follows:

L = {+(·, ·),−(·, ·),×(·, ·),÷(·, ·), cos(·), sin(·), tan(·), exp(·), log(·),
√

(·), x, etc.}
The class of function F defines the search space in the symbolic regression

problem and is, by definition, of discrete nature.

2.2 Expression Tree Representation

Every mathematical equation can be represented as a unary-binary tree. The
latter is a rooted tree in which internal nodes are mathematical operators (e.g.,
÷, log) and terminal nodes are operands, i.e., input variable or constant (e.g., x).
Operators may be unary (one argument, e.g., cosine) or binary (two arguments,
e.g., addition). For example, the function f(x) = x2 − cos(x/y) is represented
by the tree illustrated in Fig. 1.

Fig. 1. Unary-binary tree-like structure of the mathematical function f(x, y) = x2 −
cos(x/y).

Furthermore, an expression tree can be represented as a unique sequence
of symbolic representations, following the polish notation [7], by traversing the
(binary) tree top to bottom and left to right in a depth-first manner.

− × x x cos ÷ x y

Neuro-Symbolic Regression with Applications 41

3 Zeroth-Order Optimization Problem

Symbolic regression methods aim to learn a mapping from a set of input-output
pairs of numerical values to an analytical equation by minimizing a loss function.
Therefore, SR learns the structure and the parameters of underlying models in
data. Similarly to ML-based methods, the optimization task involves, through
gradient-descent approaches, the computation of gradients of the loss function.
However, the latter is not differentiable, which makes it a zeroth-order optimiza-
tion problem [8].

A state-of-the-art symbolic regression application is Deep Symbolic Regres-
sion (DSR) [9], in which mathematical equations are represented by symbolic
expression trees. DSR uses a deep neural network to generate sequences and
the “Reinforce trick” [6] to train it. The sequence generator is chosen to be a
recurrent neural network (RNN). The latter is a parameterized distribution over
mathematical expressions p(τ |θ) that allows backpropagation of a differentiable
loss function with respect to parameters θ. Symbols of a sequence τ are gener-
ated one at a time, and each symbol τi is sampled from a pre-defined library of
mathematical operations, e.g., L = {+,−,×,÷, sin, cos, log, x}. For each symbol
τi, RNN takes as input the parent and sibling nodes of the symbol being sam-
pled and outputs a probability distribution over L, conditioned by the preceding
symbols τ1, · · · , τ(i−1), as illustrated in Fig. 2. RNN is trained using the reinforce-
ment learning-based technique described in the following. Once the mathematical
expression is sampled, it is evaluated with a reward function R(τ) that is defined
using the normalized root-mean-square error (RMS), R(τ) = 1/(1 + RMS).

In this approach, the optimization problem reduces to maximize the reward
function. For this goal, the standard policy gradient objective defined by the
expectation of the reward is considered, i.e., J(θ) = Eτ∼p(τ |θ)[R(τ)]. The opti-
mization problem is thus formulated as:

θ� = arg max
θ

J(θ) (3)

This optimization task (Eq. 3) is challenging because the reward function
R(τ) is not differentiable with respect to learnable parameters θ. Here the “Rein-
force trick”, i.e., REINFORCE, originally introduced in the reinforcement learn-
ing community [6] is used. It transforms the gradient of the reward ∇θR(τ) to
the gradient of the logarithm of the policy log(p(τ, θ)) as follows:

∇θEp(τ,θ)[R(τ)] = ∇θ

∫
R(τ)p(τ, θ)dθ

=
∫

R(τ)∇θp(τ, θ)dθ

=
∫

R(τ)
∇θp(τ, θ)
p(τ, θ)

p(τ, θ)dθ

=
∫

R(τ)∇θ log(p(τ, θ))p(τ, θ)dθ

= Eτ∼p(τ,θ)[R(τ)∇θ log p(τ, θ)]

(4)

42 N. Makke and S. Chawla

Fig. 2. An example of generating the mathematical expression f(x) = 2x−cos(x) from
RNN. For the first node of the (binary) tree, empty symbols are given to the RNN as
input because the tree node does not have a parent or sibling. Following the pre-order
traversal of the tree, symbols are autoregressively sampled until the tree is completed.

The importance of this result is that ∇θJ(θ) can be evaluated by computing
the sample mean over a batch of N sampled expressions as follows:

∇θJ(θ) ≈ 1
N

N∑

i=1

R(τ (i))∇θ log p(τ (i)|θ) (5)

This, in turn, can be optimized using gradient ascent:

θ ← θ + αR(τ)
∑

i

∇θ[log p(τ, θ)] (6)

A key technique that boosts the performance of DSR is the use of “risk-
seeking policy gradient”, i.e., to optimize the best-case performance of a policy
instead of optimizing its average performance. For this goal, the top-performing
ε fraction of expressions found during training are selected, and a new learning
objective is defined by:

J(θ, ε) = Eτ∼p(τ |θ)[R(τ) | R(τ) ≥ Rε(θ)] (7)

The Reinforce trick is used to estimate the new objective function where
only the top ε fraction of expressions from each batch are used in the gradient
computation.

Neuro-Symbolic Regression with Applications 43

4 Transformer Neural Network for Symbolic Regression

A transformer neural network (TNN) is a novel neural network architecture
designed to treat sequential data (e.g., translation tasks). It is a sequence-to-
sequence model that was developed in Natural Language Processing (NLP) [11]
community to capture and model long-range dependencies in sequential data
based on the attention mechanism. Consider the English-to-French translation
of the two following sentences (sequences of words):

En: The mouse did not eat the cheese because it was sick.
Fr: La souris n’a pas mangé le formage parce qu’elle était malade.

En: The mouse did not eat the cheese because it was expired.
Fr: La souris n’a pas mangé le formage parce qu’ il était périmé.

The translation of the word “it” is different because of the different contexts
in the two sentences. However, they are almost identical. The only difference
between the two sentences is in the last word, which refers to the mouse in
the first sentence (i.e., “sick”), whereas it refers to the cheese in the second
sentence (i.e.,“expired”). This is what the attention mechanism is about. It
pays particular attention to the terms (of the sequence) with high weights. In this
example, the noun that the adjective of each sentence refers to has a significant
weight and is therefore considered for translating the word “it”. Technically, an
embedding xi is assigned to each element of the input sequence, and a set of m
key-value pairs is defined, i.e., S = {(k1, v1), · · · , (km, vm)}. For each query, the
attention mechanism computes a linear combination of values

∑
j ωjvj , where

the attention weights (ωj ∝ q · kj) are derived using the dot product between
the query (q) and all keys (kj), as follows:

Attention(q,S) =
∑

j

σ(q · kj)vj (8)

Fig. 3. A) The original embeddings (queries {qi}, keys {ki}, values {vi}) computed
from the embeddings of the input sequence {xi}. B) Evaluation of Attention(q, S)
(Eq. 8) for a query q.

44 N. Makke and S. Chawla

Here, q = xWq is a query, ki = xiWk is a key, vi = xiWv is a value, and
Wq, Wk, Wv are learnable parameters. The architecture of the self-attention
mechanism is illustrated in Fig. 3.

For symbolic regression tasks, mathematical equations are regarded as
sequences of symbolic representations, and TNN is used as a set-to-sequence
model. Consider the function f(x, y) = x2 − cos(x/y) whose tree is illustrated in
Fig. 1. Its sequence of embeddings is given by:

x1 : − x2 : × x3 : x x4 : x x5 : cos x6 : ÷ x7 : x x8 : y

In this example, for the prediction of the query (x8 : y), the attention mech-
anism will compute a higher weight for the binary division operator (x6 : ÷)
rather than for the subtraction operator (x1 : −) or the variables (x3 : x) or
(x4 : x).

Transformers have an encoder-decoder structure. The structure of each block
mainly comprises an attention layer and a feed-forward neural network. As an
example, the encoder block of TNN is illustrated in Fig. 4. TNN takes the
sequence of embeddings {xi} and outputs a “context-dependent” sequence of
embeddings {yi}, through a latent representation. The output can have a mul-
tipurpose use (e.g., translation task, classification task, etc.).

Fig. 4. Structure of the encoder in a transformer neural network. It comprises an
attention layer and a feed-forward neural network [13].

Neuro-Symbolic Regression with Applications 45

“Neural Symbolic Regression that Scales” (NeSymReS) [12] is a recently
developed TNN-based symbolic regression method. It builds on and combines
two approaches that have proven to be highly efficient. The first is pre-training
large models on large datasets, and the second is using transformers for tasks that
involve symbolic operations. Whereas existing TNN-based methods use trans-
formers in a pure symbolic domain (e.g., symbolic integration, solving differen-
tial equations, etc.), this approach aims at mapping numerical values to sym-
bolic equations. Therefore it represents a set-to-sequence model that predicts an
equation (expression tree) from a set of input-output pairs of numerical values
(X,Y).

NeSymReS comprises two phases. First is the pre-training phase. A large
amount of training data is generated using computers, which can generate an
infinite amount of data with perfect accuracy at almost no cost. A training
example is defined by {xi, f(xi)}n

i=1 and an equation (τ) that represents the
mapping f : R

dx → R
dy . In the pre-training phase, the encoder maps each

sequence {x, y} ∈ (X,Y) into a latent representation z. The decoder then gen-
erates a sequence of symbols τ = {τ1, · · · , τ|τ |}, where |τ | is the length of the
sequence (traversal of the expression tree). The decoder outputs a probability
distribution P (τi|τ1:(i−1), z) given the latent representation z and the previously
sampled symbols. Only mathematical operators (in the sequence) are sampled,
i.e., numerical constants are replaced by a placeholder symbol (), and will be
fit at a later stage. This is called the skeleton. Each placeholder will be treated
as an independent parameter in case of occurrence.

An example of sampling the mathematical expression f(x) = 2x − cos(x)
in NeSymReS is illustrated in Fig. 5. This method first predicts the sequence of
symbols as shown below, and then fits the numerical values of existing constants.

x1 : − x2 : × x3 : 	 x4 : x x5 : cos x6 : x

The second phase is the test time, in which the efficiency is measured on
the test data set. A key factor in this approach is that it improves over time
with data, and the (encoder-decoder) networks do not have to be retrained from
scratch for each new experiment (equation), in contrast with all SR approaches,
in particular, DSR.

5 Physics Application

This section presents the application of SR approaches to high-energy physics.
A problem of interest is the so-called “hadronization mechanism” [14], which
describes the formation of hadrons (such as protons and neutrons) from elemen-
tary particles (the so-called “quarks”). This process is studied using experimental
measurements of particle distributions, which are observed to follow an exponen-
tial functional form. Experimental measurements are commonly performed in a
multidimensional scheme for an in-depth understanding of the target phenom-
ena. In our discussion, we will only consider two dimensions for simplicity, i.e.,
D(x, y). D represents the distributions of particles as a function of one variable

46 N. Makke and S. Chawla

Fig. 5. An example of sampling the mathematical expression f(x) = 2x − cos(x) in
“Neural Symbolic Regression that Scales” application based on transformers. The
triangle symbol represents a numerical constant that will be fit at a later stage.
P (τi|τ1:(i−1), z) represents the probability distribution over the symbol τi given previ-
ous symbols τ1:(i−1) and the latent representation z.

x, in ranges of another variable y. The goal of such measurements is to learn
the analytical form of the underlying mechanism in terms of x and y. This goal
is traditionally achieved by fitting data points using a pre-defined functional
form with unknown parameters, which is not an ideal solution simply because
the underlying model is unknown. This application aims at applying symbolic
regression to such data points, and we expect that the symbolic models extracted
in the multiple ranges of y will be the same, however, numerical values of the
parameters are expected to change from one range of y to another.

In this application, we will use simulated data points instead of experimental
ones. Assume that experimental measurements follow the functional form:

f(x, y) =
1

a(y)
exp

(−x

a(y)

)
(9)

Here x and y represent two physical properties of the particles (e.g., energy
and momentum), and a is a fit parameter. The function f(x) exhibits an implicit
dependence upon y via its free parameter a. To imitate experimental data, we
simulate five data sets, each corresponding to a different range of y, i.e., to a
different value of a in the simulation. Figure 6 illustrates the function f as a
function of x (∈ [0, 3]) in intervals of y. The slopes of the curves significantly
change for different intervals of y, up to six orders of magnitude difference at

Neuro-Symbolic Regression with Applications 47

Fig. 6. Mathematical expression f(x, y) = 1/a(y) exp(−x/a(y)) as a function of x in
different ranges of y. Each range of y corresponds to a different value of a: y1 (a = 0.1,
solid curve), y2 (a = 0.2, dotted curve), y3 (a = 0.3, dashed curve), y4 (a = 0.4, loosely
dotted curve) and y5 (a = 0.5, dash-dotted curve).

high values of x between the smallest and the largest intervals of y, i.e., between
the smallest and the largest values of a given that data points are simulated.

Simulated data sets, i.e., D = {xi, f(xi)}n
i=1, each consisting of 30 input-

output pairs, are generated with perfect accuracy, and no noise is added. In
this application, we will apply the SR approaches DSR and NeSymReS, and
compare their results. Ideally, we expect to learn the same underlying model,
i.e., f(x) = 1/a exp(−x/a), in the five intervals of y, while obtaining different
values of a. We use a pre-trained version of NeSymReS, whereas DSR is trained
for each new experiment (data set), as previously mentioned in the text. A total
of 20 runs is performed on each experiment using NeSymReS and 100 runs using
DSR.

Figure 7 shows simulated data points (solid markers) and the results obtained
by applying both SR approaches to simulated data sets (curves). The resulting
equations and recovery rates (how many times the exact mathematical equation
is covered) are presented in Table 1 for each experiment. Results obtained using
NeSymReS show a significant discrepancy between the predicted expressions and
the ground-truth function for all intervals of y except one. An in-depth inves-
tigation shows that, in a successful experiment, either the skeleton is correctly
predicted (c1 ∗ exp(c2 ∗ x) in this case), or it is not accurately predicted, but, it
reduces to the correct equation after fitting the constants. For example, for the
only successful case in this application, i.e., y1(a = 0.1), NeSymReS predicts the
following skeleton:

c1 ∗ (c2 ∗ x + exp(c3 ∗ x))pow

where c1, c2, and c3 are fit constants, and pow is a power coefficient. They have
the following values:

c1 ≈ 10 c2 = 2.075 × 10−6 c3 ≈ 10 pow = −1

48 N. Makke and S. Chawla

Fig. 7. Results of DSR and NeSymReS applied to simulated data. The functional form
f(x, y) = 1/a(y) exp(−x/a(y)) is used to generate five data sets with x ∈ [0, 3] in five
ranges of the variable y.

The predicted expression becomes:

10 ∗ (0 ∗ x + exp(10 ∗ x))−1 = 10 ∗ exp(−10 ∗ x)

Therefore the predicted equation is equal to the ground-truth function. Con-
sider one of the failed experiments, i.e., y2(a = 0.2). NeSymReS predicts the
following expression:

(x + exp(x)2)−1

Neuro-Symbolic Regression with Applications 49

In this case, the NeSymReS predicts a skeleton that does not match the
ground-truth function and does not include any constant to fit, in contrast with
the successful case. In conclusion, the main reason for failure, in this method, is
the incorrect skeleton prediction rather than at the level of fitting the numerical
values of the constants in the predicted skeleton.

DSR successfully predicts mathematical equations for two (out of five) data
sets (a = 0.2 and a = 0.5), and it produces an accurate fit for the other ranges
of y with an R-coefficient that is greater than 0.99. Consider one successful
experiment, for example, y = 0.5. DSR predicts, in this case, a sequence of 14
symbols given by:

÷ + cos − x x cos − x x exp + x x

which is equivalent to:

cos(x − x) + cos(x − x)
exp(x + x)

=
2

exp(2 ∗ x)
= 2 ∗ exp(2 ∗ x)−1

Therefore, equations predicted by DST do not necessarily match the exact
sequence of the ground-truth function.

In summary, the success rates for both methods are less than 50% in this
application. However, the predictions made by DSR fit very well the data for
the whole range of x in all ranges of y, even in cases when the function is
not correctly predicted, in contrast to NeSymReS, although the latter has been
shown to outperform DSR on various data benchmarks in terms of test-time
compute and out-of-distribution prediction [12].

Table 1. Equations and recovery rates obtained by the application of SR methods,
DSR and NeSymReS, on simulated data sets. The equation predicted in y1-range is

f(x) = e−10∗x+e− cos(x)−ee
− sin(e−4e−6e−1ex

)

, and the equation predicted in y2-range is

f(x, y3) = e−3∗x+e−e−x
+e−ex1−ecos(e

−x)

.

Method → DSR NeSymReS

y-range ↓ Fit f(x) Rate (%) Fit f(x) Rate (%)

y1(a = 0.1) ✗ In caption 0 ✓ 10e−10x 100

y2(a = 0.2) ✓ 5e−5x 5 ✗ (x + e2x)−1.15 0

y3(a = 0.3) ✗ In caption 0 ✗ 3.3 e(−x2−2.8x) 0

y4(a = 0.4) ✗ e−2x−cos(ee
−3/8x

) 0 ✗ 2.4 e(−x2−1.9x) 0

y5(a = 0.5) ✓ 2e−2x 100 ✗ x
(x5+2x)

0

50 N. Makke and S. Chawla

6 Conclusion

Learning interpretable models is growing in interest and in popularity in the
last decade. Symbolic regression represents a key method to learn interpretable
models in a purely data-driven manner. Recent developments in the symbolic
regression field have shown that the use of deep neural networks boosts the
performance of these methods. In this paper, we presented the application of
two symbolic regression methods on simulated data towards applying them to
experimentally measured data, and we showed that state-of-the-art symbolic
regression methods do not necessarily produce consistent results, as one expects.

References

1. Langley, P.: Data-driven discovery of physical laws. Cogn. Sci. 5(1), 31–54 (1981).
https://doi.org/10.1016/S0364-0213(81)80025-0. Conference 2016

2. Dubcakova, R.: Eureqa: software review. Genet. Program Evolvable Mach. 12(2),
173–178 (2011). https://doi.org/10.1007/s10710-010-9124-z

3. Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: a large-scale
hierarchical image database. In: 2009 IEEE Conference on Computer Vision and
Pattern Recognition, pp. 248–255 (2009). https://doi.org/10.1109/CVPR.2009.
5206848

4. Chawla, S., et al.: Ten years after ImageNet: a 360◦ perspective on AI.
arXiv: 2210.01797

5. Makke, N., Chawla, S.: Interpretable scientific discovery with symbolic regression:
a review. arXiv:2211.10873

6. Ronald, W.J.: Simple statistical gradient-following algorithms for connectionist
reinforcement learning. Mach. Learn. 8, 229–256 (1992). https://doi.org/10.1007/
BF00992696

7. Lukasiewicz, J.: Aristotle’s Syllogistic from the Standpoint of Modern Formal
Logic, Second Edition Enlarged, pp. xvi 222. Clarendon Press, Oxford (1957).
Cloth, 305.net

8. Liu, S., Chen, P., Kailkhura, B., Zhang, G., Hero III, A.O., Varshney, P.: A
primer on zeroth-order optimization in signal processing and machine (2020).
arXiv:2006.06224

9. Petersen, B.: Deep symbolic regression: recovering mathematical expressions from
data via policy gradients. CoRR (2019). arXiv:1912.04871

10. Mundhenk, T.N., Landajuela, M., Glatt, R., Santiago, C.P., Faissol, D.M.,
Petersen, P.K.: Symbolic regression via neural-guided genetic programming popu-
lation seeding. CoRR (2021). arXiv:2111.00053

11. Vaswani, A., et al.: Attention is all you need. CoRR (2017). arXiv:1706.03762
12. Biggio, L., Bendinelli, T., Neitz, A., Lucchi, A., Parascandolo, G.: Neural symbolic

regression that scales (2021). arXiv:2106.06427
13. Wood, T.: Transformer neural network. https://deepai.org/machine-learning-

glossary-and-terms/transformer-neural-network
14. Andersson, B., Gustafson, G., Soderberg, B.: A general model for jet fragmentation.

Z. Phys. C 20, 317 (1983). https://doi.org/10.1007/BF01407824

https://doi.org/10.1016/S0364-0213(81)80025-0
https://doi.org/10.1007/s10710-010-9124-z
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1109/CVPR.2009.5206848
http://arxiv.org/abs/2210.01797
http://arxiv.org/abs/2211.10873
https://doi.org/10.1007/BF00992696
https://doi.org/10.1007/BF00992696
http://arxiv.org/abs/2006.06224
http://arxiv.org/abs/1912.04871
http://arxiv.org/abs/2111.00053
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/2106.06427
https://deepai.org/machine-learning-glossary-and-terms/transformer-neural-network
https://deepai.org/machine-learning-glossary-and-terms/transformer-neural-network
https://doi.org/10.1007/BF01407824

	Neuro-Symbolic Regression with Applications
	1 Introduction
	2 Problem Statement
	2.1 Function Class
	2.2 Expression Tree Representation

	3 Zeroth-Order Optimization Problem
	4 Transformer Neural Network for Symbolic Regression
	5 Physics Application
	6 Conclusion
	References

