®

Check for
updates

Caio Lazarini Morceli, Valeria Cesario Times, and Ricardo Rodrigues Ciferri

Abstract

MongoDB DBMS is a NoSQL database management
system that is known for its good performance in clusters
of computers. In addition, the MongoDB has distinct
levels of consistency that can be defined at the moment
that a database operation is performed. The work de-
scribed in this paper aims at investigating the MongoDB ‘s
performance using different levels of consistency. More
specifically, the throughput and runtime performance of
MongoDB operations are evaluated based on some work-
loads provided by the YCSB+T benchmark, which is an
extension of the YCSB benchmark. The performance tests
were performed according to two of the consistency level
settings offered by MongoDB, w:1, j:true and readCon-
cern (rc):local and w:majority, j:true and rc:local. The
conclusion reached is that better performance is achieved
when using the w:1, j:true and readConcern:local configu-
ration. As aresult, if there is a need for higher performance
and data consistency is not an essential requirement, a
write concern configuration that writes only to the primary
node is a good solution.

Keywords

MongoDB - NoSQL - Performance - Benchmark -
YCSB - YCSB+T - Consistency - WriteConcern -
ReadConcern - ReadPreference

C. L. Morceli (>4) - R. R. Ciferri

Department of Computing, Federal University of Sao Carlos, Séo,
Carlos, Brazil

e-mail: morcelicaio @estudante.ufscar.br; rrc @ufscar.br

V. C. Times

Center for Informatics, Federal University of Pernambuco Recife,
Brazil

e-mail: vet@cin.ufpe.br

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023

45.1 Introduction

The MongoDB is the most used NoSQL Database Manage-
ment System (DBMS) in the world, as shown in Fig.45.1,
which shows the ranking of the most used DBMS according
to a survey carried out on the StackOverflow (https:/survey.
stackoverflow.co/2022/) site, which is an environment that
has its main content related to systems and database program-
ming.

Several developers use the MongoDB for the most diverse
purposes, because they can take advantage of the availability
and scalability that the MongoDB provides in addition to
the ACID guarantees that are offered by default for unique
operations within the same collection [1].

45.2 Background

The main issue investigated and described in this paper is
related to MongoDB ‘s performance using different levels of
consistency. More specifically, the throughput and runtime
performance of MongoDB operations are evaluated based
on some workloads provided by the YCSB+T benchmark,
which is an extension of the YCSB benchmark. Therefore,
this paper uses the YCSB+T benchmark to carry out tests and
the MongoDB DBMS as a reference. In this way, its concepts
are addressed with more clarity in detail.

This paper is organized as follows: In the first section, we
provide a general introduction to MongoDB and its useful-
ness. In the second section, we present the tools used to write
this document. We explain the levels of consistency found in
MongoDB and its replica set architecture. We also report the
YCSB benchmark along with its YCSB+T extension, which
we use to perform data collection. In the third section, we
show the different experimental results of this comparative
study and analyze its results. Finally, the last section ends the

395

S. Latifi (ed.), ITNG 2023 20th International Conference on Information Technology-New

Generations, Advances in Intelligent Systems and Computing 1445,
https://doi.org/10.1007/978-3-031-28332-1_45

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-28332-1protect LY1	extunderscore 45&domain=pdf

 570
60137 a 570 60137 a

mailto:morcelicaio@estudante.ufscar.br
mailto:morcelicaio@estudante.ufscar.br
mailto:morcelicaio@estudante.ufscar.br

 13432
60137 a 13432 60137 a

mailto:rrc@ufscar.br
mailto:rrc@ufscar.br

 570 65118 a 570 65118 a

mailto:vct@cin.ufpe.br
mailto:vct@cin.ufpe.br
mailto:vct@cin.ufpe.br
https://survey.stackoverflow.co/2022/
https://survey.stackoverflow.co/2022/
https://survey.stackoverflow.co/2022/
https://survey.stackoverflow.co/2022/
https://survey.stackoverflow.co/2022/
https://doi.org/10.1007/978-3-031-28332-1_45
https://doi.org/10.1007/978-3-031-28332-1_45
https://doi.org/10.1007/978-3-031-28332-1_45
https://doi.org/10.1007/978-3-031-28332-1_45
https://doi.org/10.1007/978-3-031-28332-1_45
https://doi.org/10.1007/978-3-031-28332-1_45
https://doi.org/10.1007/978-3-031-28332-1_45
https://doi.org/10.1007/978-3-031-28332-1_45
https://doi.org/10.1007/978-3-031-28332-1_45
https://doi.org/10.1007/978-3-031-28332-1_45
https://doi.org/10.1007/978-3-031-28332-1_45

396

C. L. Morceli et al.

MySQL

PostgreSQL

SQLite

MongoDB

Microsoft SQL Server

Redis

ManaDB

Elasticsearch

Oracle

Firebase Realtime Database

DynamoDB

Cloud Firestore

Cassandra

Neodj

IBM DB2

Couchbase

CouchDB

Fig. 45.1 Ranking of the mostly used DBMSs according to the StackOverflow website

document with a summary and some estimates for our future
work.

45.2.1 MongoDB

MongoDB is a distributed document-based DBMS that lies
within the NoSQL ecosystem. Data storage takes place in a
binary form of JSON known as BSON [2], which is designed
to represent JSON data more compactly and efficiently, using
better encoding for handling numbers and other data types
[3].

Its datasets are made up of collections and documents. In
this way, MongoDB has collections and a set of documents
that belong to a collection, which, in an analogous way,
resembles the tables of a relational database [4].

When used in a cluster of computers, MongoDB has the
replica set mode by default to allow greater availability of the
stored data and can pass some parameters in the database op-
erations to define the read and write levels of the operations.

45.2.1.1 Data Replication Process

To achieve high availability, MongoDB allows running the
database as a group of nodes that work together, called
replica set, acting as a consensus set in which each node
participating in the replica set maintains a logical replica
of the database state [5]. These replica sets use a single-
leader-based consensus protocol, in which one node is used
as the leader (i.e., primary node) and receives writes while
the follower nodes (i.e., child nodes) are left with copies of
backup [6]. The recordings coming from the clients to this
primary node are placed in a replication log called oplog. This
oplog is a collection that is stored in the primary node’s local
database and contains information regarding how to apply
a database operation. In other words, the changes made to
the database are recorded in oplog. The oplog is used by
the secondary nodes so that the data replication takes place,
since the secondary nodes execute the instructions contained
in the oplog to maintain the similarity with the primary node.
Therefore, the main existence of replica sets is for MongoDB
to support high availability, allowing a cluster to have fault

45 A Performance Analysis of Different MongoDB Consistency Levels

Client
Application

| Driver |
writes reads
Y
Primary
replication replication
Secondary Secondary

Fig. 45.2 MongoDB Replica Set

tolerance. In Fig.45.2 the architecture of a replica set is
shown.

45.2.1.2 MongoDB Consistency Levels

MongoDB allows developers to make consistency adjust-
ments to operations performed through some parameters
that are passed at the transaction time. Such parameters can
be combined to reflect stronger or weaker integrity in the
database, making it possible to configure some consistency
levels.

MongoDB consistency levels are found in the parameters
write concern (set to w) and read concern. Controling how
data is written and read from cluster nodes is handled by
these two parameters. In addition, parameters like journal
and read preference can also be used to perform a consistency
adjustment combination. All these parameters can be set for
each database operation.

45.2.1.3 Write Concern and Journal
For write concern, the value set can be numeric (e.g., w:
1) or majority. The write concern parameter is responsible
for controlling the number of nodes that must confirm the
operation in a cluster before returning the response to the
user. When write concern is numeric, it means that a certain
number of nodes in the cluster must recognize the write.
Regarding the majority value, it means that most nodes
should recognize the recording. That is, if a cluster has three
nodes, then two of them must confirm the write operation
before returning to the user in a w: majority configuration.
Within the write concern setting, so that a commit is
recognized, by default MongoDB has a setting called journal,
which is a journal file on the primary node’s disk. When

397

Jjournal is set to j: true (its default setting), writes are required
to be persisted in the journal before completing. If it is set
to false, the recording is recognized only when it reaches
the server, that is, without writing it in the journal. In this
configuration, data loss may occur while writing takes place
on the primary node and a failure may occur. In this way,
from these definitions, part of the consistency adjustment is
achieved, as it configures the DBMS to guarantee the writing
operation to a certain number of nodes in the cluster.

45.2.1.4 Read Concern

The read concern parameter establishes the data durability
in addition to, on certain occasions, also determining the
consistency of what is returned by the server.

As per the official MongoDB documentation, for read
concern, the value set can be one of the following: local,
available, majority, snapshot and linearizable [7]. Once the
transaction of an operation is committed (i.e., committed),
it becomes a locally committed operation. That is, it is
confirmed only on the local node. Once the recording is in
oplog and in the database, its replication can be performed
to the secondary nodes. Thus, when it reaches the necessary
condition defined by a write concern (e.g., w: majority) and
performs the local commit on most nodes, it becomes mostly
confirmed, meaning permanent durability in the replica set.

When using read concern available, the data returned
from the server is not guaranteed to have been written to most
nodes of the replica set. The snapshot option is only applied
when dealing with multi-document transactions and ensures
that customers see an intact snapshot of the data. Finally,
the linearizable configuration remains. Such an option, when
combined with write concern w: majority, it guarantees to
return the effect of the most up-to-date majority write before
the read operation starts. It has a linearization effect on
operations, reflecting a stronger consistency guarantee.

When compared to the isolation levels reported in [8], the
levels read concern local and majority can be considered
analogous to the SQL isolation levels READ UNCOMMIT-
TED and READ COMMITTED, respectively. This is due to
the fact that the read concern local level can, in certain cases,
visualize data that has not yet been confirmed by the majority.
An operation using read concern majority is more similar to
a commit path operation in standard SQL isolation.

45.2.1.5 Read Preference

The read preference parameter setting is responsible for
indicating where a client sends read requests. In MongoDB,
such read requests are sent to the primary node by default.
In addition to this option, the MongoDB application devel-
oper may configure other settings for this parameter, such
as directing read requests only to a secondary node, to a
secondary node only when the primary node is unavailable,
or finally to the closest server. The read preference setting

398

C. L. Morceli et al.

also influences the DBMS by changing the magnitude of the
consistency offered, considering that when reads are directed
to the primary node, a higher consistency is achieved and
when reads are sent to a secondary node, the result produces
an eventual consistency.

Table 45.1 illustrates the settings for read preference.

45.2.2 YCSB

YCSB is a benchmark developed in the Java programming
language that is used to generate the data to be loaded in
a specific database chosen by the user and generate the
operations that make up a specific workload chosen by the
user [9]. In addition, one of its key features is that it is
extensible, supporting the definition of new workloads. It
was created with the purpose of enabling the conduction of
performance comparisons of the new era of DBMS that fo-
cuses on working with cloud services. Many of these systems
are referred to as key-value storage or recognized as NoSQL
systems as well. These systems have common goals, such as
having a strong adaptability of data on demand, also called
elasticity, and horizontal scalability.

It is complex to evaluate different systems when trying
to understand the performance of several systems, as some
systems aim at optimizing writes while others aim at opti-
mizing reads. This becomes a challenge as developers end up
reporting specific performance numbers according to specific

Table 45.1 Read Preference Levels in MongoDB

Read preference Behavior
primary

primaryPrefered

All reads for the primary node

When possible, reads to the primary node
secondary All reads for the secondary node
secondaryPrefered ~ When possible, reads to the secondary node

nearest Directs reads to the nearest node

Output

- Average latency

- Runtime

- Throughput

- min and max latency

-

Input

-DB

- Thread numbers
- Workload file

Fig. 45.3 YCSB client architecture

workloads for each of their systems. Another difficulty is
related to performing an exact comparison when different
numbers are derived based on different workloads. Thus,
developers have the need to manually perform the compari-
son between different systems. Considering this prerogative,
the YCSB benchmark was created with the idea of having
a standard benchmark structure to help in the evaluation of
different systems designed to run in the cloud.

The YCSB consists of two benchmark layers that aim
to assess the performance and scalability of cloud service
systems. One of the layers is the performance layer, which
focuses on the latency of requests while the DB is un-
der workload. According to Cooper et al. [9], latency is
an important metric to be evaluated, considering that you
usually have an impatient user waiting for a Web page to
load, for example. This layer has the objective of verifying
the compensation existing in the DBMS by measuring the
latency as the throughput is increased until the moment when
the DBMS becomes saturated and the performance stops
increasing. That is, the hardware is kept constant while the
workload size increases.

To drive the performance layer of the benchmark, it is
necessary to have the workload generator that is shown in
Fig.45.3.

The performance layer of the benchmark serves the pur-
poses of defining and loading the dataset and also performing
operations on top of these datasets while performing the
performance measurement that is handled by the statistics
layer.

The other layer is the scalability layer, which is intended
to check the scalability aspect of the DBMS. In this way,
this metric is used to verify the behavior of the application
as the data load increases. The scalability layer checks the
performance impact as the number of machines in the system
increases. That is, it allows knowing how the DB behaves as
the number of machines increases. For this purpose, a given
number of servers are loaded with data and then the workload

45 A Performance Analysis of Different MongoDB Consistency Levels

is executed. Next, the same task is performed by adding more
machines to the cluster.

The YCSB benchmark, by default, uses some workloads
to assess different performance aspects of a system. Each
workload configures a specific combination of read/write
operations and data sizes. These characteristics are used to
evaluate systems at a specific point in the performance space.

45.2.3 YCSB+T

Problems regarding transaction support in NoSQL DBMS
were identified and thus, the YCSB benchmark extension
was created. From a new workload class, database opera-
tions performed within the scope of transactions can also
be evaluated [10]. In this YCSB+T extension, a validation
stage was included, which has the purpose of detecting and
quantifying database anomalies that result from the user-
defined workload.

Thus, the YCSB+T benchmark aims at keeping flexibility
existing in the YCSB, and also allowing the user to choose the
database interface to be implemented. Furthermore, it allows
additional operations beyond the standard read, write, update,
delete and scan operations and, most importantly, allows such
operations to be grouped in the transaction scope. There is
also a validation stage that is used to specify data consistency
assessments conducted on the DBMS after a workload is
completed. This validation stage is responsible for detecting
and quantifying transaction anomalies.

For the experimental tests reported in this paper, the
YCSB+T benchmark is being used to measure the throughput
and runtime performance of operations, but in future work,
transactional metrics will also be evaluated.

45.3 Experimental Results

The experimental evaluation was performed using the YCSB
client on a physical machine: Core i7 9750H, 2.60GHz
CPU, 16GB RAM, 1TB HD and SSD128GB. The software
environment used was Windows 10 Home 64-bit. For the ex-
ecution of the performance tests, a cluster of computers was
used on MongoDB’s free cloud platform, MongoDB Atlas
[11], using a cluster in Replica Set mode with 3 nodes, being
a primary node and two secondary nodes. The benchmark
used is the YCSB+T which extends the 0.7.0 version of the
YCSB. The benchmark package provides a set of standard
workloads that can run as follows:

* Workload A (Update heavy): Consisting of a ratio of 50%
Read and 50% Update;

* Workload B (Read heavy): Consisting of a ratio of 95%
Read and 5% Update;

399

¢ Workload C (Read only): Its proportion is 100% read;

¢ Workload D (Read latest): Consisting of a ratio of 95%
Read and 5% Inserts;

* Workload E (Short ranges): Consisting of a rate of 95%
Scan and 5% Inserts;

In this way, 1000 records generated by the YCSB+T
default properties file were loaded, each of which consists of
10 randomly generated fields of 100 bytes in the record iden-
tification key, which gives approximately 1 KB per write. The
execution times of the workloads obtained during the read,
write and update operations are also presented. All workloads
perform 1000 operations and compute average execution
times. Subsequently, an evaluation of the performance of
some of the workloads chosen for the test is described.

45.3.1 Workload A (50% Read and 50%
Update)

Figure 45.4 shows the results obtained after running the
workload A.

In this test, when w:1, j:true and readConcern:local,
the performance is better than w:l, j:itrue and readCon-
cern:majority. This reports that getting the write acknowl-
edgment only on the primary node without replication
acknowledgment to the secondary nodes translates to a
shorter execution time and a higher rate of operations per
second.

45.3.2 Workload B (Read Heavy): 95% Read
and 5% Update

Figure 45.5 shows the results obtained after running the
workload B.

In this test, when w:l, j:itrue and readConcern:local,
the performance is better than w:1, j:true and readCon-
cern:majority. This means that even when write operations
are in the minority, an impact caused by ensuring data
durability is perceived. Regarding the rate of operations
per second, the result is very similar, since most operations
are read and the readConcern level is the same for both
configurations, which ends up not having a clearer impact on
the test.

45.3.3 Workload D (Read Latest): 95% Read
and 5% Inserts

Figure 45.6 shows the performance results obtained after
running the workload D.

400

C. L. Morceli et al.

200000
173788

W:majority, . true and rc: Local

(a)

180000
160000

144578
140000
120000
100000

0 I

40000
20000

W:1, j: true and rc: Local

6.91901271525168

W:1, j: true and rc: local

5.76025173150461

W:majority, j: true and rc: majority
(b)

Fig. 45.4 YCSB performance comparison on workload A. (a) Run-
Time (ms). (b) Throughput (ops/sec)

In this test, it is possible to observe that when w:1, j:true
and readConcern:local, the performance is better than w:1,
j:true and readConcern:majority. As with workload B, despite
write operations being the minority, an impact caused by
ensuring data durability is perceived. Regarding the rate of
operations per second, the result is very similar, since most
operations are read and the readConcern level is the same
for both configurations, which ends up not having a clearer
impact on the test.

In this work, tests were performed with the settings w:1,
j:true and readConcern:local and w:majority, j:true and read-
Concern:local of MongoDB. In addition, for data generation
and analysis, the YCSB, YCSB+T benchmark extension was
used. The performance differences between the configurable
consistency levels that MongoDB offers allow the system
developer to choose the most suitable configuration for the

153470

153461

153460
153450
153440
153430
153420

153407

W:1, j: true and rc: Local

153410

153400

153390

153380
W:majority, j: true and rc: Local

(a)

6.91901271525168

6
5
4
3
2
“
0

W:1, j: true and rc: Local

5.76025173150461

W:majority, j: true and rc: Local
(b)

Fig. 45.5 YCSB performance comparison on workload B. (a) Run-
Time (ms). (b) Throughput (ops/sec)

target application. Among the comparisons made, it is evi-
dent that data replication is mandatory. If you need higher
performance and data consistency is not so much of a con-
cern, a write concern configuration that writes only to the
primary node is good solution. On the other hand, if durabil-
ity guarantee is important for the other nodes, this incurs a
performance loss, but guarantees more consistent data, as the
database waits for the confirmation to be performed on most
nodes in the cluster.

45.4 Future Works

Regarding future work, the main idea is to carry out new
performance tests with other configurations that MongoDB
offers between the existing levels of consistency. In addition,

45 A Performance Analysis of Different MongoDB Consistency Levels

401

154500

154230

154000
153500

153000

152495

W:1, j: true and rc: Local

152500

152000

151500
W:majority, j: true and rc: Local

(a)

6.58

6.56 6.55777325320084

6.54
6.52

6.5
6.48424608961353

W:majority, j: true and rc: Local
(b)

Fig. 45.6 YCSB performance comparison on workload D. (a) Run-
Time (ms). (b) Throughput (ops/sec)

6.48

6.46

6.44
W:1, j: true and rc: Local

we plan to use all the other workloads that were not used
in this experiment, such as Workload C (Read only) and
Workload E (Short ranges). Another point to consider, in
addition to the performance of each tested level, will be to test
the transactional layer of operations using the transactional
evaluation layer, called CoreWorkload (CEW), that YCSB+T
offers. We will seek to analyze the guarantees of consistency
that these levels offered by MongoDB bring and we are also
interested in evaluating the number of anomalies generated
by the existing workloads in YCSB+T.

References

1. MongoDB Transactions.
manual/core/transactions/

2. BSON Project. https://bsonspec.org

3. G. Harrison, M. Harrison, MongoDB Performance Tuning
(Apress, Berkeley, 2021)

4. H. Matallah, G. Belalem, K. Bouamrane, Experimental compar-
ative study of NoSQL databases: HBASE versus MongoDB by
YCSB. Int. J. Comput. Syst. Sci. Eng. 32(4), 307-317 (2017)

5. W. Schultz, T. Avitabile, A. Cabral, Tunable consistency in mon-
godb. Proc. VLDB Endow. 12(12), 2071-2081 (2019)

6. KLEPPMANN. Martin, Designing Data-Intensive Applications
(O’Reilly, 2017)

7. MongoDB Read Concern. https://www.mongodb.com/docs/
manual/reference/read-concern/

8. H. Berenson, P. Bernstein, J. Gray, J. Melton, E. O’Neil, P. O’Neil,
A critique of ANSI SQL isolation levels, in Proceedings of the
ACM SIGMOD International Conference on Management of Data
(1995), pp. 1-10

9. B. Cooper et al., Benchmarking cloud serving systems with

YCSB, in ACM Symposium on Cloud Computing (SoCC), Indi-

anapolis, Indiana, June (2010)

A. Dey, A. Fekete, R. Nambiar, U. Rohm, YCSB+T: Benchmark-

ing web-scale transactional databases, in 2014 IEEE 30th Inter-

national Conference on Data Engineering Workshops (2014), pp.

223-230

MongoDB Atlas. https://www.mongodb.com/cloud/atlas

https://www.mongodb.com/docs/

10.

11.

https://www.mongodb.com/docs/manual/core/transactions/
https://www.mongodb.com/docs/manual/core/transactions/
https://www.mongodb.com/docs/manual/core/transactions/
https://www.mongodb.com/docs/manual/core/transactions/
https://www.mongodb.com/docs/manual/core/transactions/
https://www.mongodb.com/docs/manual/core/transactions/
https://www.mongodb.com/docs/manual/core/transactions/
https://www.mongodb.com/docs/manual/core/transactions/
https://bsonspec.org
https://bsonspec.org
https://bsonspec.org
https://www.mongodb.com/docs/manual/reference/read-concern/
https://www.mongodb.com/docs/manual/reference/read-concern/
https://www.mongodb.com/docs/manual/reference/read-concern/
https://www.mongodb.com/docs/manual/reference/read-concern/
https://www.mongodb.com/docs/manual/reference/read-concern/
https://www.mongodb.com/docs/manual/reference/read-concern/
https://www.mongodb.com/docs/manual/reference/read-concern/
https://www.mongodb.com/docs/manual/reference/read-concern/
https://www.mongodb.com/docs/manual/reference/read-concern/
https://www.mongodb.com/cloud/atlas
https://www.mongodb.com/cloud/atlas
https://www.mongodb.com/cloud/atlas
https://www.mongodb.com/cloud/atlas
https://www.mongodb.com/cloud/atlas
https://www.mongodb.com/cloud/atlas

	45 A Performance Analysis of Different MongoDB Consistency Levels
	45.1 Introduction
	45.2 Background
	45.2.1 MongoDB
	45.2.1.1 Data Replication Process
	45.2.1.2 MongoDB Consistency Levels
	45.2.1.3 Write Concern and Journal
	45.2.1.4 Read Concern
	45.2.1.5 Read Preference

	45.2.2 YCSB
	45.2.3 YCSB+T

	45.3 Experimental Results
	45.3.1 Workload A (50% Read and 50% Update)
	45.3.2 Workload B (Read Heavy): 95% Read and 5% Update
	45.3.3 Workload D (Read Latest): 95% Read and 5% Inserts

	45.4 Future Works
	References

