
Enhanced Dense Layers Using
a Quadratic Transformation Function

Atharva Gundawar and Srishti Lodha

1 Introduction

Dense layers, consisting of neurons, are the building blocks of any deep learning
architecture. Neurons compute output as a sum of the following two features: (1)
the summation of the product of the output vectors or logits from the previous layers
with the corresponding trainable weight vector and (2) a trainable linear bias (refer
Fig. 1).

Here, the function “f” refers to the selected activation function, “b” refers to the
bias, “xi” refers to input to the neuron, and “wi” refers to the weight assigned to that
neuron. X and Y are the input and output vectors of the neuron, respectively.

The numerous developments in deep neural network architectures, including
techniques like dropout [1] and pruning, have helped overcome problems like
exploding gradients and biased graphs. Some models involve skip connections (e.g.,
ResNet [2]), while some contain parallel paths (like InceptionNet [3]). While the
difference between these models lies in the arrangement of layers, connections,
paths traced by the logits, and so on, the underlying transformation function still
remains the same. Hence, by changing this computation, every neuron reflects a
minor change. Combined, all the neurons greatly impact the final result of the model.

Numerous mathematical functions can be explored to replace the linear function
that calculates the output of a neuron. Within the scope of this paper, we build and
test a simple dense neural network with a quadratic transformation function. The
output is now a sum of the summation of the products between the corresponding
trainable weight vectors firstly with the input and secondly with the input squared,
and the trainable linear bias. This equation is presented in Fig. 2 (“wi” and “wj” refer
to the weights assigned to that neuron.). We acquired four popular datasets to train

A. Gundawar · S. Lodha (�)
Vellore Institute of Technology, Vellore, Tamil Nadu, India

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Haldorai et al. (eds.), 5th EAI International Conference on Big Data Innovation
for Sustainable Cognitive Computing, EAI/Springer Innovations in Communication
and Computing, https://doi.org/10.1007/978-3-031-28324-6_1

3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-28324-6protect T1	extunderscore 1&domain=pdf
https://orcid.org/0000-0002-4601-0672
https://orcid.org/0000-0002-0323-5396
https://doi.org/10.1007/978-3-031-28324-6_1
https://doi.org/10.1007/978-3-031-28324-6_1
https://doi.org/10.1007/978-3-031-28324-6_1
https://doi.org/10.1007/978-3-031-28324-6_1
https://doi.org/10.1007/978-3-031-28324-6_1
https://doi.org/10.1007/978-3-031-28324-6_1
https://doi.org/10.1007/978-3-031-28324-6_1
https://doi.org/10.1007/978-3-031-28324-6_1
https://doi.org/10.1007/978-3-031-28324-6_1
https://doi.org/10.1007/978-3-031-28324-6_1
https://doi.org/10.1007/978-3-031-28324-6_1

4 A. Gundawar and S. Lodha

Fig. 1 Linear transformation function in the conventional perceptron

Fig. 2 Quadratic transformation function in the proposed perceptron

and evaluate the model. On comparing the results that conventional neurons [4] and
new neurons yielded from a simple architecture with convolutional and dense layers,
we observe an improved accuracy on any fixed number of epochs. Analysis of this
improvement produces notable results, which are discussed later in this study.

The remaining paper is organized as follows. We conduct a literature review of
closely related research and highlight their major contributions and drawbacks (Sect.
2). In Sect. 3, we discuss in depth, the methodology adopted for the implementation
of this study. Finally, we move to the results and analysis in Sect. 4, followed by the
conclusion (Sect. 5) and the references.

2 Literature Review

In this section, several related studies have been reviewed, and their contributions
have been highlighted. We also identified certain drawbacks in these papers.

In H. Lin et al. [5], a universal approximation method was implemented by
copying the Resnet structure, but with only one hidden neuron in alternating dense
layers. This neuron presented a very high-order function, which was a representation
of the combination of all neurons from a conventional hidden dense layer. Over-
parametrization was successfully reduced and a universal approximation theorem
for Resnet was implemented. However, this approach does not perform better than
the pre-existing Resnet architecture in terms of accuracy in classification tasks. In F.
Fan et al. [6], a successful autoencoder architecture was made using convolutional
layers and quadratic dense functions, which replace the traditional single-order
dense layers. The paper achieved the best results numerically and clinically in the
dataset cited in the paper. As this works very well on the targeted dataset, we have
no information if these results are translatable to other datasets and architectures as
well.

V. Kůrková et al. [7] used shallow signum perceptron to achieve a lower bound
on errors in approximation. In this probabilistic approach, the authors have shown
that lower bounds on errors can be derived from the total number of neurons
on finite domains. Not only is the proposal restrictive to certain domains, but
unless a minimum threshold of signum perceptron is present in a given layer, the

Enhanced Dense Layers Using a Quadratic Transformation Function 5

approximation of errors in both binary-valued and real-valued functions fails to give
reliable results. In another study, C. L. Giles and Y. Maxwell [8] presented a new
system of storing knowledge in higher-order neural networks with the use of priori
knowledge. This system resulted in a model which attained a higher accuracy on
multiple datasets and handled outliers better than the models used in the comparative
study. However, having a priori knowledge system for any dataset in the real world
is improbable, and the increase in accuracies does not always make up for the high
model size.

S. Du and J. Lee [9] found a strong relationship between the number of hidden
nodes activated by a quadratic function and the number of training examples.
The theory of Rademacher complex was used to show how a trained model
generalizes. Further research in terms of how the local search algorithm using over-
parametrization finds very close global minimas can be conducted.

Similar to our study, F. Fan et al. [10] introduced a new type of neuron to replace
the original dense layer neuron. Although it also has an order of 2, the function is a
sum of two terms entirely different from what is proposed in this study. Instead, it
is a summation of: (a) the product of the outputs of the conventional transformation
function with a different set of weights for the same input “x” and (b) the output
of the conventional transformation function but with the input squared. These
2nd order neurons worked well in solving low complexity tasks, like fuzzy logic
problems, and representing basic logic gates like “and,” “or,” “nand,” and “nor,”
but the research fails to put some light on the working of this principle on multi-
layer neural networks. The implementation in this research was confined to testing
the working theory on a single perceptron, with the aim of building a perceptron
capable of learning a more complex function than the simple linear function. More
research and analysis has to be done on multi-layer Neural Network (NN) and deep
NN architectures, where the results are compared to the conventional transformation
function. F. Fan et al. [11] also introduced a backpropagation algorithm especially
to better pass the gradients in the backward pass to update the weights of a second-
order neural network. There is a significant change in the accuracy of the models
used for comparison in this study; one trained using the traditional backpropagation
and the other trained using the new backpropagation algorithm discussed in this
paper. However, the paper summarizes results only from benchmarked biomedical
and engineering datasets and hence is not enough to prove its working in real-world
datasets.

In M. Blondel [12], training algorithms of HOFMs (higher-order factorization
machines) [12] and new HOFMs with new formulas that used shared parameters
have been presented. The study does a good job in terms of exploration of different
functions and augmentations of HOFMs which can be applied to neurons. While
the results have proven to be quite significant, the depth of the algorithms was not
much. Some training algorithms, if not most, have a lot of scope for fine-tuning.

6 A. Gundawar and S. Lodha

Fig. 3 Summarized process
pipeline

3 Methodology

The objective of this research is to propose an underlying architecture of dense
layers that improves the performance of all deep-learning models. This section
contains details of the entire research pipeline, starting from the custom layer
definition to the evaluation of the trained model. A simple convolutional neural
network is used to test the proposed architecture on five different well-known
datasets. The process pipeline is summarized in Fig. 3.

3.1 Defining Custom Layers

To define a new layer, we implement three main steps. These include the layer
definition, defining the type of variable and the computational kernel used, and
implementing a call function, where we define the forward pass logic of the neuron.

For initialization, we define the units and the activation. We can control the
number of units, the type of units, and other input independent initializations
required when we build the model. All constant and non-constant variables (which
directly or indirectly affect the computation in the forward pass) are defined here and
added to the class scope for access by other class functions. The building section of
the layer definition consists of defining the scope and the datatypes of the variables
defined above, as well as a selection of the kernel. This section of the layer is
implemented as a part of the model compilation process. During model compilation,
memory is allocated for these variables according to their shape and type. Finally, in
the section where we implement the calling functionality, the forward pass is coded,
where the mathematical function to define what happens to the input variable is
described. The function should contain at least the input to the model and return the
augmented logit value.

In our research, we initialized the starting parameters using a randomize function
which normalized the values for all the weight parameters between 0 and 1 using a

Enhanced Dense Layers Using a Quadratic Transformation Function 7

Fig. 4 Training and testing
sizes of the datasets used

0

30000

60000

90000

Training size Tes�ng Size

Gaussian distribution. The bias coefficient, on the other hand, was initialized to 0.
Both weight and bias coefficients were 32-bit float values.

After these steps have been completed, a simple test to check the randomness of
the initialized values of the defined variables and the working of the forward pass
confirms the proper working of the new layer.

3.2 Data Acquisition

As the datasets used in this research are very well maintained by TensorFlow [13],
we use its dataset API to acquire pre-structured and organized data (using the
load function). The datasets used for this study include 2 MNIST datasets, namely,
Handwritten Digits MNIST [14] (containing handwritten digits in grayscale images
of numbers from 0 to 9) and Fashion MNIST [15] (containing 10 different classes of
clothing items). Both of these consist of 70,000 images, which have a size of 28 × 28
pixels. The other 2 datasets are the CIFAR-10 [16] and the CIFAR-100 [16] datasets.
The CIFAR-10 dataset consists of 60,000 32 × 32 color images in 10 classes, and
CIFAR-100 with 100 classes (6000 images per class). All these datasets form a
benchmark and are recognized by the community for the task of classification. Their
training and testing sizes have been shown in Fig. 4. The datasets used have a huge
usability index, which is why the data preparation in this research constituted of
only rescaling the data and no more augmentation was required.

3.3 Model Architecture and Model Compilation

The model architecture used in this study consists mainly of two types of layers,
namely, the convolutional layer and the dense layer. The dense layer can be the
conventional or the newly proposed quadratic dense layer. The model consists of

8 A. Gundawar and S. Lodha

two pairs of convolutional layers followed by a MaxPooling layer and then one
single convolutional layer, with the number of filters being 32, 64, 64 from the first
layer to the last in that order. The activation for all these layers is ReLU [17], while
the input to the first layer is dataset dependent. All the MaxPool layers in these pairs
have a kernel size of 2 × 2. After flattening the output of the last convolutional
layer, we have three pairs of the dense layers, followed by a dropout layer, with the
number of units for the dense layer being 128, 64, 32 from the first layer to the last
in that order. These dense layers are conventional and quadratic respectively in two
different research experiments to compare them. The activations for all of these are
ReLU and the dropout rate for all the dropout percentages is 20%. Finally, a simple
dense layer is added with Softmax activation, and the number of units here equals
the number of classes, which is 100 in CIFAR-100 and 10 in the case of the other 3
datasets.

Both the models for all the datasets are compiled with the sparse categorical
cross-entropy [18] loss function and the Adam optimizer [19] to handle the gradient.
The algorithm for the backpropagation of gradient in the proposed quadratic dense
layer can be understood as follows.

Assuming the input variable is ∈Rd, the intermediate variable can be mathemati-
cally represented as:

z = W (1)
1 x2 + W (1)

2 x (1)

where W (1)
1 ,W (1)

2 ∈ Rh×d are the trainable weight parameters. After running the
logit or the intermediate variable z ∈ Rh through the activation function φ, we get
the hidden activation of the intermediate logit:

h = φ(z) (2)

Assuming that the parameters of the output layer only possess a weight of W(2)1,
W(2)2 ∈ Rq × h, we can obtain an output layer variable with a vector of length q:

o = W (2)
1 h2 + W (2)

2 h (3)

To calculate the loss for a single example, we can denote the loss L as the value
outputted by the loss function for an output h and expected real target label y as:

L = l (o, y) (4)

If we were to introduce �2 regularization, then considering the hyperparameter
term λ, we can calculate the regularization as:

s =
λ
2

(∣∣∣2W (1)
1 + W (1)

2

∣∣∣2

F
+

∣∣∣2W (2)
1 + W (2)

2

∣∣∣2

F

)
(5)

Enhanced Dense Layers Using a Quadratic Transformation Function 9

Fig. 5 BERT Model
architecture

Now, a customized sequential dense neural network is built (refer Fig. 5). All
the connections between blocks and layers, number of units, activation functions,
and other parameters to augment the architecture of the model are defined here. The
model is compiled with a sparse categorical cross-entropy loss function and a choice
of accuracy metrics.

10 A. Gundawar and S. Lodha

3.4 Preparing Custom Training Loop

Custom training loops include augmentations of what happens in a training step,
for example, redefining forward and backward passes while training. When epoch-
wise logging the accuracy and losses, early stopping, updating the learning rate with
momentum, etc. can be done using callback functions. In our implementation, the
patience of the early stopping callback was set to 3, and we monitored the loss. The
momentum of the optimizer was set to 0.5. In our implementation, we have used
callbacks to record certain accuracies and losses, which are presented in the results
section of this paper.

3.5 Model Training and Evaluation

Finally, the model is trained and the losses and accuracies are monitored. Tensor-
Board [13] has been used in our research to visualize these results.

4 Results and Analysis

As previously mentioned, the model was evaluated on four different datasets. We
recorded the conventional accuracy (neurons with linear transformation function)
and the accuracy obtained with the proposed model (neurons with quadratic
transformation function) at five different epoch values (refer Tables 1 and 2). The
results per dataset have also been visualized (Fig. 6). Several notable inferences can
be drawn from the results obtained.

The most important inference is that the quadratic dense layer converges much
faster than the traditional layers in terms of both training and validation accuracies.
For example, take the validation accuracies yielded on CIFAR-100. While the
conventional model reaches an accuracy of approximately 26% at the 20th epoch,
the new model reaches the same accuracy at around the 10th epoch itself. From the
training accuracies on this dataset, we can observe that the linear model yields an
accuracy of around 25% after the 20th epoch, while the proposed model reaches the
same accuracy in less than five epochs. This shows a performance that is four times
better with our model. Moreover, there is always a significant positive difference
in the accuracies at every epoch, suggesting that the quadratic function has higher
scope of learning. Although a large number of linear neurons can ultimately form
any function, including quadratic, directly using this quadratic function in the
neuron itself drastically reduces the number of epochs needed to reach a particular
accuracy. This in turn reduces the overall computation time. Hence, if a heavy deep
learning architecture with conventional neurons can reach the accuracy of 92% in 50
epochs, the same model will produce a 92% accuracy in half (or even fewer) number

Enhanced Dense Layers Using a Quadratic Transformation Function 11

Table 1 Training accuracy obtained on varying epochs for four datasets

Dataset Number of epochs

Accuracy obtained
with conventional
neurons (%)

Accuracy obtained
with quadratic
neurons (%)

Handwritten Digits
MNIST

1 91.40 91.58

2 97.82 97.99
3 98.41 98.47
4 98.76 98.79
5 98.96 99

Fashion- MNIST 1 73.12 75.59
2 84.51 85.63
3 87.36 88.40
4 88.86 89.59
5 89.70 90.18

CIFAR-10 1 32.10 94.19
2 45.12 94.64
5 54.41 94.60
10 73.32 95
20 81.69 95.70

CIFAR-100 1 2.56 23.34
2 5.12 24
5 12.41 25.21
10 18.49 27.07
20 24.86 30.26

of epochs with the new neurons. This hypothesis can be successfully validated
by implementing the proposed methodology for ResNet, InceptionNet, VGGNet,
etc. However, we can predict that both the types of neurons or dense layers might
ultimately reach the same accuracy, just with a drastically varying number of epochs.

It is also interesting to note how the initial accuracy yielded by the new neurons
is always much better than the old ones. For instance, training and validation
accuracies after the first epoch on CIFAR-10 were 94.19% and 90.30% with
the proposed neurons, against just 32.10% and 46.10%, respectively, with the
conventional ones. On CIFAR-100, this difference is even higher (23.24% against
2.56% while training, and 24.65% against 4.18% during validation). Importantly,
the training time was not affected much by the addition of an extra dimension to the
neuron’s equation. The execution time for every step in all the datasets remained
the same (at 5 ms for both the models). Both the models required an average of
7–8 seconds for every epoch to complete. The model weight was affected; the
architecture with the quadratic dense layer resulted in a model with 70% more
trainable parameters (at 342,468), compared to the conventional dense layer model,
which had a total of 201,156 trainable parameters. Both, the total number of

12 A. Gundawar and S. Lodha

Table 2 Validation accuracy obtained on varying epochs for four datasets

Dataset Number of epochs

Accuracy obtained
with conventional
neurons (%)

Accuracy obtained
with quadratic
neurons (%)

Handwritten Digits
MNIST

1 98.10 98.45

2 98.55 98.87
3 98.85 98.71
4 99.02 98.78
5 98.96 98.98

Fashion- MNIST 1 82.58 82.40
2 85.51 87.79
3 88.01 88.83
4 89.29 89.34
5 90.12 90.11

CIFAR-10 1 46.10 90.30
2 56.53 90.46
5 63.73 90.47
10 69.52 90
20 71.20 90.64

CIFAR-100 1 4.18 24.65
2 8.28 24.89
5 16.24 25
10 22.04 25.51
20 26.47 26.97

parameters and the trainable parameters, stay the same as none of the layers or
logits were frozen or untrainable in the model architecture.

Finally, as predicted, the improvement in the accuracy for initial epochs is much
higher in CIFAR-100 than in the other datasets. This is because of the large learning
potential that produces a high scope for improvement in the accuracy obtained from
the first epoch on this dataset, high variance in the data, and the high number of
output classes. On the contrary, the first epoch itself is yielding a high accuracy on
the MNIST datasets due to a good fit [20]. Hence, the model is easily overfitted, and
the results are only recorded at a low number of epochs. Here, we can observe that
despite the less room for improvement, the quadratic neurons perform better.

5 Conclusion

This paper proposed a new methodology for a neuron’s output computation,
by replacing the conventional linear transformation function with a quadratic
transformation function. When tested on four different popular datasets for a

Enhanced Dense Layers Using a Quadratic Transformation Function 13

1.00

0.98

0.96

0.94

0.92

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
epoch

(a) (b)

(c) (d)

epoch

epochepoch

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.50.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5

ac
cu

ra
cy

ac
cu

ra
cy

simple train acc

simple val acc

quad train acc

quad val acc

simple train acc

simple val acc

quad train acc

quad val acc

simple train acc

simple val acc

quad train acc

quad val acc

simple train acc

simple val acc

quad train acc

quad val acc

ac
cu

ra
cy

0.25

0.20

0.15

0.10

0.05

ac
cu

ra
cy

0.95

0.90

0.85

0.80

0.75

Fig. 6 Simple and quadratic (quad) accuracies plotted for the first 20 epochs for all 4 datasets: (a)
MNIST, (b) Fashion-MNIST, (c) CIFAR-10, and (d) CIFAR-100

simple dense neural network, an improvement in the accuracy is observed. This
improvement is higher when the initial accuracy is low, thus significantly reducing
the computation time (and the number of epochs) to arrive at a particular accuracy.
Nevertheless, initial convergence to higher accuracies is always much faster in the
proposed model. Moreover, the results would become exponentially better with a
very large number of neurons in the architecture. The proposed methodology can
hence improve the performance of any deep learning architectures containing dense
layers.

While the models built using the proposed transformation function do have
a higher model weight, they show faster convergence. If we were to increase
the number of fully connected layers in the model built using the conventional
transformation function with the aim of getting a similar convergence to the
quadratic transformation function, we would encounter the vanishing gradient
problem. Hence, the proposed methodology also overcomes the vanishing gradient
problem in the conventional transformation function when we wish to increase the
parameter count, without changing the number of parameters in a given layer.

The real-world applications of these new neurons are numerous. Besides the
faster convergence which yields drastically better accuracies when trained for the
same duration as conventional neurons, this improved perceptron helps in incredibly
reducing the training time of a model in case the same number of parameters are

14 A. Gundawar and S. Lodha

used in both the models. This in turn means that any research involving DL would be
accelerated, and any application utilizing DL models would become more efficient.
For instance, in systems like face recognition and real-time threat detection, which
use few shot learning techniques, the models will have a lower inference time and
yield better accuracies. In the field of medicine, all analyses involving DL would be
accelerated, and so on.

There is a vast future scope for this study. While we analyzed the replacement
of the linear function of a neuron with a quadratic sum, the same can be replaced
with other functions that will potentially yield further improved results [10, 21].
Furthermore, the true power of this methodology can be seen when the results are
recorded for larger deep learning architectures, employing a much higher number
of parameters. For example, VGG-16 [22], which consists of over 134.7 million
parameters, would ideally portray a much better performance on a dataset than
ResNet-18, which has 11.4 million parameters.

References

1. G.E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, R.R. Salakhutdinov, Improving neural
networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580
(2012)

2. K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, (Las Vegas, 2016), pp.
770–778

3. M. Lin, Q. Chen, S. Yan, Network in network. arXiv preprint arXiv:1312.4400 (2013)
4. F. Rosenblatt, The perceptron: A probabilistic model for information storage and organization

in the brain. Psychol. Rev. 65(6), 386 (1958)
5. H. Lin, S. Jegelka, Resnet with one-neuron hidden layers is a universal approximator. Adv.

Neural Inf. Proces. Syst. 31 (2018)
6. F. Fan, H. Shan, M.K. Kalra, R. Singh, G. Qian, M. Getzin, Y. Teng, J. Hahn, G. Wang,

Quadratic autoencoder (Q-AE) for low-dose CT denoising. IEEE Trans. Med. Imaging 39(6),
2035–2050 (2019)

7. V. Kůrková, M. Sanguineti, Probabilistic lower bounds for approximation by shallow percep-
tron networks. Neural Netw. 91, 34–41 (2017)

8. C.L. Giles, T. Maxwell, Learning, invariance, and generalization in high-order neural networks.
Appl. Opt. 26(23), 4972–4978 (1987)

9. S. Du, J. Lee, On the power of over-parametrization in neural networks with quadratic
activation, in International Conference on Machine Learning, (PMLR, 2018), pp. 1329–1338

10. F. Fan, W. Cong, G. Wang, A new type of neuron for machine learning. Int. J. Numer. Method
Biomed. Eng. 34(2), e2920 (2018)

11. F. Fan, W. Cong, G. Wang, Generalized backpropagation algorithm for training second-order
neural networks. Int. J. Numer. Method Biomed. Eng. 34(5), e2956 (2018)

12. M. Blondel, A. Fujino, N. Ueda, M. Ishihata, Higher-order factorization machines. Adv. Neural
Inf. Proces. Syst. 29 (2016)

13. M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G. Irving,
M. Isard, et al., TensorFlow: A System for Large-Scale Machine Learning (OSDI, 2016), pp.
265–283

14. L. Deng, The MNIST database of handwritten digit images for machine learning research.
IEEE Signal Process. Mag. 29(6), 141–142 (2012)

Enhanced Dense Layers Using a Quadratic Transformation Function 15

15. H. Xiao, K. Rasul, R. Vollgraf, Fashion-mnist: A novel image dataset for benchmarking
machine learning algorithms. arXiv preprint arXiv:1708.07747 (2017)

16. A. Krizhevsky, Learning Multiple Layers of Features from Tiny Images (University of Toronto,
Toronto, 2009)

17. A.F. Agarap, Deep learning using rectified linear units (relu). arXiv preprint arXiv:1803.08375
(2018)

18. J. Bridle, Training stochastic model recognition algorithms as networks can lead to maximum
mutual information estimation of parameters. Adv. Neural Inf. Proces. Syst. 2 (1989)

19. D.P. Kingma, J. Ba, Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

20. N. Venkat, The Curse of Dimensionality: Inside Out (2018). https://doi.org/10.13140/
RG.2.2.29631.36006

21. F. Fan, J. Xiong, G. Wang, Universal approximation with quadratic deep networks. Neural
Netw. 124, 383–392 (2020)

22. K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale image recogni-
tion. arXiv preprint arXiv:1409.1556 (2014)

	Enhanced Dense Layers Using a Quadratic Transformation Function
	1 Introduction
	2 Literature Review
	3 Methodology
	3.1 Defining Custom Layers
	3.2 Data Acquisition
	3.3 Model Architecture and Model Compilation
	3.4 Preparing Custom Training Loop
	3.5 Model Training and Evaluation

	4 Results and Analysis
	5 Conclusion
	References

