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1 Introduction 

Dense layers, consisting of neurons, are the building blocks of any deep learning 
architecture. Neurons compute output as a sum of the following two features: (1) 
the summation of the product of the output vectors or logits from the previous layers 
with the corresponding trainable weight vector and (2) a trainable linear bias (refer 
Fig. 1). 

Here, the function “f” refers to the selected activation function, “b” refers to the 
bias, “xi” refers to input to the neuron, and “wi” refers to the weight assigned to that 
neuron. X and Y are the input and output vectors of the neuron, respectively. 

The numerous developments in deep neural network architectures, including 
techniques like dropout [1] and pruning, have helped overcome problems like 
exploding gradients and biased graphs. Some models involve skip connections (e.g., 
ResNet [2]), while some contain parallel paths (like InceptionNet [3]). While the 
difference between these models lies in the arrangement of layers, connections, 
paths traced by the logits, and so on, the underlying transformation function still 
remains the same. Hence, by changing this computation, every neuron reflects a 
minor change. Combined, all the neurons greatly impact the final result of the model. 

Numerous mathematical functions can be explored to replace the linear function 
that calculates the output of a neuron. Within the scope of this paper, we build and 
test a simple dense neural network with a quadratic transformation function. The 
output is now a sum of the summation of the products between the corresponding 
trainable weight vectors firstly with the input and secondly with the input squared, 
and the trainable linear bias. This equation is presented in Fig. 2 (“wi” and “wj” refer 
to the weights assigned to that neuron.). We acquired four popular datasets to train 
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Fig. 1 Linear transformation function in the conventional perceptron 

Fig. 2 Quadratic transformation function in the proposed perceptron 

and evaluate the model. On comparing the results that conventional neurons [4] and 
new neurons yielded from a simple architecture with convolutional and dense layers, 
we observe an improved accuracy on any fixed number of epochs. Analysis of this 
improvement produces notable results, which are discussed later in this study. 

The remaining paper is organized as follows. We conduct a literature review of 
closely related research and highlight their major contributions and drawbacks (Sect. 
2). In Sect. 3, we discuss in depth, the methodology adopted for the implementation 
of this study. Finally, we move to the results and analysis in Sect. 4, followed by the  
conclusion (Sect. 5) and the references. 

2 Literature Review 

In this section, several related studies have been reviewed, and their contributions 
have been highlighted. We also identified certain drawbacks in these papers. 

In H. Lin et al. [5], a universal approximation method was implemented by 
copying the Resnet structure, but with only one hidden neuron in alternating dense 
layers. This neuron presented a very high-order function, which was a representation 
of the combination of all neurons from a conventional hidden dense layer. Over-
parametrization was successfully reduced and a universal approximation theorem 
for Resnet was implemented. However, this approach does not perform better than 
the pre-existing Resnet architecture in terms of accuracy in classification tasks. In F. 
Fan et al. [6], a successful autoencoder architecture was made using convolutional 
layers and quadratic dense functions, which replace the traditional single-order 
dense layers. The paper achieved the best results numerically and clinically in the 
dataset cited in the paper. As this works very well on the targeted dataset, we have 
no information if these results are translatable to other datasets and architectures as 
well. 

V. Kůrková et al. [7] used shallow signum perceptron to achieve a lower bound 
on errors in approximation. In this probabilistic approach, the authors have shown 
that lower bounds on errors can be derived from the total number of neurons 
on finite domains. Not only is the proposal restrictive to certain domains, but 
unless a minimum threshold of signum perceptron is present in a given layer, the
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approximation of errors in both binary-valued and real-valued functions fails to give 
reliable results. In another study, C. L. Giles and Y. Maxwell [8] presented a new 
system of storing knowledge in higher-order neural networks with the use of priori 
knowledge. This system resulted in a model which attained a higher accuracy on 
multiple datasets and handled outliers better than the models used in the comparative 
study. However, having a priori knowledge system for any dataset in the real world 
is improbable, and the increase in accuracies does not always make up for the high 
model size. 

S. Du and J. Lee [9] found a strong relationship between the number of hidden 
nodes activated by a quadratic function and the number of training examples. 
The theory of Rademacher complex was used to show how a trained model 
generalizes. Further research in terms of how the local search algorithm using over-
parametrization finds very close global minimas can be conducted. 

Similar to our study, F. Fan et al. [10] introduced a new type of neuron to replace 
the original dense layer neuron. Although it also has an order of 2, the function is a 
sum of two terms entirely different from what is proposed in this study. Instead, it 
is a summation of: (a) the product of the outputs of the conventional transformation 
function with a different set of weights for the same input “x” and (b) the output 
of the conventional transformation function but with the input squared. These 
2nd order neurons worked well in solving low complexity tasks, like fuzzy logic 
problems, and representing basic logic gates like “and,” “or,” “nand,” and “nor,” 
but the research fails to put some light on the working of this principle on multi-
layer neural networks. The implementation in this research was confined to testing 
the working theory on a single perceptron, with the aim of building a perceptron 
capable of learning a more complex function than the simple linear function. More 
research and analysis has to be done on multi-layer Neural Network (NN) and deep 
NN architectures, where the results are compared to the conventional transformation 
function. F. Fan et al. [11] also introduced a backpropagation algorithm especially 
to better pass the gradients in the backward pass to update the weights of a second-
order neural network. There is a significant change in the accuracy of the models 
used for comparison in this study; one trained using the traditional backpropagation 
and the other trained using the new backpropagation algorithm discussed in this 
paper. However, the paper summarizes results only from benchmarked biomedical 
and engineering datasets and hence is not enough to prove its working in real-world 
datasets. 

In M. Blondel [12], training algorithms of HOFMs (higher-order factorization 
machines) [12] and new HOFMs with new formulas that used shared parameters 
have been presented. The study does a good job in terms of exploration of different 
functions and augmentations of HOFMs which can be applied to neurons. While 
the results have proven to be quite significant, the depth of the algorithms was not 
much. Some training algorithms, if not most, have a lot of scope for fine-tuning.
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Fig. 3 Summarized process 
pipeline 

3 Methodology 

The objective of this research is to propose an underlying architecture of dense 
layers that improves the performance of all deep-learning models. This section 
contains details of the entire research pipeline, starting from the custom layer 
definition to the evaluation of the trained model. A simple convolutional neural 
network is used to test the proposed architecture on five different well-known 
datasets. The process pipeline is summarized in Fig. 3. 

3.1 Defining Custom Layers 

To define a new layer, we implement three main steps. These include the layer 
definition, defining the type of variable and the computational kernel used, and 
implementing a call function, where we define the forward pass logic of the neuron. 

For initialization, we define the units and the activation. We can control the 
number of units, the type of units, and other input independent initializations 
required when we build the model. All constant and non-constant variables (which 
directly or indirectly affect the computation in the forward pass) are defined here and 
added to the class scope for access by other class functions. The building section of 
the layer definition consists of defining the scope and the datatypes of the variables 
defined above, as well as a selection of the kernel. This section of the layer is 
implemented as a part of the model compilation process. During model compilation, 
memory is allocated for these variables according to their shape and type. Finally, in 
the section where we implement the calling functionality, the forward pass is coded, 
where the mathematical function to define what happens to the input variable is 
described. The function should contain at least the input to the model and return the 
augmented logit value. 

In our research, we initialized the starting parameters using a randomize function 
which normalized the values for all the weight parameters between 0 and 1 using a
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Fig. 4 Training and testing 
sizes of the datasets used 
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Gaussian distribution. The bias coefficient, on the other hand, was initialized to 0. 
Both weight and bias coefficients were 32-bit float values. 

After these steps have been completed, a simple test to check the randomness of 
the initialized values of the defined variables and the working of the forward pass 
confirms the proper working of the new layer. 

3.2 Data Acquisition 

As the datasets used in this research are very well maintained by TensorFlow [13], 
we use its dataset API to acquire pre-structured and organized data (using the 
load function). The datasets used for this study include 2 MNIST datasets, namely, 
Handwritten Digits MNIST [14] (containing handwritten digits in grayscale images 
of numbers from 0 to 9) and Fashion MNIST [15] (containing 10 different classes of 
clothing items). Both of these consist of 70,000 images, which have a size of 28 × 28 
pixels. The other 2 datasets are the CIFAR-10 [16] and the CIFAR-100 [16] datasets. 
The CIFAR-10 dataset consists of 60,000 32 × 32 color images in 10 classes, and 
CIFAR-100 with 100 classes (6000 images per class). All these datasets form a 
benchmark and are recognized by the community for the task of classification. Their 
training and testing sizes have been shown in Fig. 4. The datasets used have a huge 
usability index, which is why the data preparation in this research constituted of 
only rescaling the data and no more augmentation was required. 

3.3 Model Architecture and Model Compilation 

The model architecture used in this study consists mainly of two types of layers, 
namely, the convolutional layer and the dense layer. The dense layer can be the 
conventional or the newly proposed quadratic dense layer. The model consists of
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two pairs of convolutional layers followed by a MaxPooling layer and then one 
single convolutional layer, with the number of filters being 32, 64, 64 from the first 
layer to the last in that order. The activation for all these layers is ReLU [17], while 
the input to the first layer is dataset dependent. All the MaxPool layers in these pairs 
have a kernel size of 2 × 2. After flattening the output of the last convolutional 
layer, we have three pairs of the dense layers, followed by a dropout layer, with the 
number of units for the dense layer being 128, 64, 32 from the first layer to the last 
in that order. These dense layers are conventional and quadratic respectively in two 
different research experiments to compare them. The activations for all of these are 
ReLU and the dropout rate for all the dropout percentages is 20%. Finally, a simple 
dense layer is added with Softmax activation, and the number of units here equals 
the number of classes, which is 100 in CIFAR-100 and 10 in the case of the other 3 
datasets. 

Both the models for all the datasets are compiled with the sparse categorical 
cross-entropy [18] loss function and the Adam optimizer [19] to handle the gradient. 
The algorithm for the backpropagation of gradient in the proposed quadratic dense 
layer can be understood as follows. 

Assuming the input variable is ∈Rd, the intermediate variable can be mathemati-
cally represented as: 

z = W (1) 
1 x2 + W (1) 

2 x (1) 

where W (1) 
1 ,W  (1) 

2 ∈ Rh×d are the trainable weight parameters. After running the 
logit or the intermediate variable z ∈ Rh through the activation function φ, we get 
the hidden activation of the intermediate logit: 

h = φ(z) (2) 

Assuming that the parameters of the output layer only possess a weight of W(2)1, 
W(2)2 ∈ Rq × h, we can obtain an output layer variable with a vector of length q: 

o = W (2) 
1 h2 + W (2) 

2 h (3) 

To calculate the loss for a single example, we can denote the loss L as the value 
outputted by the loss function for an output h and expected real target label y as: 

L = l (o, y) (4) 

If we were to introduce �2 regularization, then considering the hyperparameter 
term λ, we can calculate the regularization as: 

s = 
λ 
2

(∣∣∣2W (1) 
1 + W (1) 

2

∣∣∣2 

F 
+

∣∣∣2W (2) 
1 + W (2) 

2

∣∣∣2 

F

)
(5)
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Fig. 5 BERT Model 
architecture 

Now, a customized sequential dense neural network is built (refer Fig. 5). All 
the connections between blocks and layers, number of units, activation functions, 
and other parameters to augment the architecture of the model are defined here. The 
model is compiled with a sparse categorical cross-entropy loss function and a choice 
of accuracy metrics.
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3.4 Preparing Custom Training Loop 

Custom training loops include augmentations of what happens in a training step, 
for example, redefining forward and backward passes while training. When epoch-
wise logging the accuracy and losses, early stopping, updating the learning rate with 
momentum, etc. can be done using callback functions. In our implementation, the 
patience of the early stopping callback was set to 3, and we monitored the loss. The 
momentum of the optimizer was set to 0.5. In our implementation, we have used 
callbacks to record certain accuracies and losses, which are presented in the results 
section of this paper. 

3.5 Model Training and Evaluation 

Finally, the model is trained and the losses and accuracies are monitored. Tensor-
Board [13] has been used in our research to visualize these results. 

4 Results and Analysis 

As previously mentioned, the model was evaluated on four different datasets. We 
recorded the conventional accuracy (neurons with linear transformation function) 
and the accuracy obtained with the proposed model (neurons with quadratic 
transformation function) at five different epoch values (refer Tables 1 and 2). The 
results per dataset have also been visualized (Fig. 6). Several notable inferences can 
be drawn from the results obtained. 

The most important inference is that the quadratic dense layer converges much 
faster than the traditional layers in terms of both training and validation accuracies. 
For example, take the validation accuracies yielded on CIFAR-100. While the 
conventional model reaches an accuracy of approximately 26% at the 20th epoch, 
the new model reaches the same accuracy at around the 10th epoch itself. From the 
training accuracies on this dataset, we can observe that the linear model yields an 
accuracy of around 25% after the 20th epoch, while the proposed model reaches the 
same accuracy in less than five epochs. This shows a performance that is four times 
better with our model. Moreover, there is always a significant positive difference 
in the accuracies at every epoch, suggesting that the quadratic function has higher 
scope of learning. Although a large number of linear neurons can ultimately form 
any function, including quadratic, directly using this quadratic function in the 
neuron itself drastically reduces the number of epochs needed to reach a particular 
accuracy. This in turn reduces the overall computation time. Hence, if a heavy deep 
learning architecture with conventional neurons can reach the accuracy of 92% in 50 
epochs, the same model will produce a 92% accuracy in half (or even fewer) number
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Table 1 Training accuracy obtained on varying epochs for four datasets 

Dataset Number of epochs 

Accuracy obtained 
with conventional 
neurons (%) 

Accuracy obtained 
with quadratic 
neurons (%) 

Handwritten Digits 
MNIST 

1 91.40 91.58 

2 97.82 97.99 
3 98.41 98.47 
4 98.76 98.79 
5 98.96 99 

Fashion- MNIST 1 73.12 75.59 
2 84.51 85.63 
3 87.36 88.40 
4 88.86 89.59 
5 89.70 90.18 

CIFAR-10 1 32.10 94.19 
2 45.12 94.64 
5 54.41 94.60 
10 73.32 95 
20 81.69 95.70 

CIFAR-100 1 2.56 23.34 
2 5.12 24 
5 12.41 25.21 
10 18.49 27.07 
20 24.86 30.26 

of epochs with the new neurons. This hypothesis can be successfully validated 
by implementing the proposed methodology for ResNet, InceptionNet, VGGNet, 
etc. However, we can predict that both the types of neurons or dense layers might 
ultimately reach the same accuracy, just with a drastically varying number of epochs. 

It is also interesting to note how the initial accuracy yielded by the new neurons 
is always much better than the old ones. For instance, training and validation 
accuracies after the first epoch on CIFAR-10 were 94.19% and 90.30% with 
the proposed neurons, against just 32.10% and 46.10%, respectively, with the 
conventional ones. On CIFAR-100, this difference is even higher (23.24% against 
2.56% while training, and 24.65% against 4.18% during validation). Importantly, 
the training time was not affected much by the addition of an extra dimension to the 
neuron’s equation. The execution time for every step in all the datasets remained 
the same (at 5 ms for both the models). Both the models required an average of 
7–8 seconds for every epoch to complete. The model weight was affected; the 
architecture with the quadratic dense layer resulted in a model with 70% more 
trainable parameters (at 342,468), compared to the conventional dense layer model, 
which had a total of 201,156 trainable parameters. Both, the total number of
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Table 2 Validation accuracy obtained on varying epochs for four datasets 

Dataset Number of epochs 

Accuracy obtained 
with conventional 
neurons (%) 

Accuracy obtained 
with quadratic 
neurons (%) 

Handwritten Digits 
MNIST 

1 98.10 98.45 

2 98.55 98.87 
3 98.85 98.71 
4 99.02 98.78 
5 98.96 98.98 

Fashion- MNIST 1 82.58 82.40 
2 85.51 87.79 
3 88.01 88.83 
4 89.29 89.34 
5 90.12 90.11 

CIFAR-10 1 46.10 90.30 
2 56.53 90.46 
5 63.73 90.47 
10 69.52 90 
20 71.20 90.64 

CIFAR-100 1 4.18 24.65 
2 8.28 24.89 
5 16.24 25 
10 22.04 25.51 
20 26.47 26.97 

parameters and the trainable parameters, stay the same as none of the layers or 
logits were frozen or untrainable in the model architecture. 

Finally, as predicted, the improvement in the accuracy for initial epochs is much 
higher in CIFAR-100 than in the other datasets. This is because of the large learning 
potential that produces a high scope for improvement in the accuracy obtained from 
the first epoch on this dataset, high variance in the data, and the high number of 
output classes. On the contrary, the first epoch itself is yielding a high accuracy on 
the MNIST datasets due to a good fit [20]. Hence, the model is easily overfitted, and 
the results are only recorded at a low number of epochs. Here, we can observe that 
despite the less room for improvement, the quadratic neurons perform better. 

5 Conclusion 

This paper proposed a new methodology for a neuron’s output computation, 
by replacing the conventional linear transformation function with a quadratic 
transformation function. When tested on four different popular datasets for a
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Fig. 6 Simple and quadratic (quad) accuracies plotted for the first 20 epochs for all 4 datasets: (a) 
MNIST, (b) Fashion-MNIST, (c) CIFAR-10, and (d) CIFAR-100 

simple dense neural network, an improvement in the accuracy is observed. This 
improvement is higher when the initial accuracy is low, thus significantly reducing 
the computation time (and the number of epochs) to arrive at a particular accuracy. 
Nevertheless, initial convergence to higher accuracies is always much faster in the 
proposed model. Moreover, the results would become exponentially better with a 
very large number of neurons in the architecture. The proposed methodology can 
hence improve the performance of any deep learning architectures containing dense 
layers. 

While the models built using the proposed transformation function do have 
a higher model weight, they show faster convergence. If we were to increase 
the number of fully connected layers in the model built using the conventional 
transformation function with the aim of getting a similar convergence to the 
quadratic transformation function, we would encounter the vanishing gradient 
problem. Hence, the proposed methodology also overcomes the vanishing gradient 
problem in the conventional transformation function when we wish to increase the 
parameter count, without changing the number of parameters in a given layer. 

The real-world applications of these new neurons are numerous. Besides the 
faster convergence which yields drastically better accuracies when trained for the 
same duration as conventional neurons, this improved perceptron helps in incredibly 
reducing the training time of a model in case the same number of parameters are
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used in both the models. This in turn means that any research involving DL would be 
accelerated, and any application utilizing DL models would become more efficient. 
For instance, in systems like face recognition and real-time threat detection, which 
use few shot learning techniques, the models will have a lower inference time and 
yield better accuracies. In the field of medicine, all analyses involving DL would be 
accelerated, and so on. 

There is a vast future scope for this study. While we analyzed the replacement 
of the linear function of a neuron with a quadratic sum, the same can be replaced 
with other functions that will potentially yield further improved results [10, 21]. 
Furthermore, the true power of this methodology can be seen when the results are 
recorded for larger deep learning architectures, employing a much higher number 
of parameters. For example, VGG-16 [22], which consists of over 134.7 million 
parameters, would ideally portray a much better performance on a dataset than 
ResNet-18, which has 11.4 million parameters. 
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